. Theorem 2 (Stability for all o > 0):

ON THE EIGENVALUES OF LINEAR AUTONOMOUS DIFFERENTTAL

DEIAY EQUATTIONS
H. O. WALTHER

1. The stability of the zero solution of the equation
F(t) = Liyy)s (1)
with L:C[-1,0] = R linear and continuous with respect to the supre-

‘mum-norm and with yt(a) = y(t+a), is determined by the distribution

of the eigenvalues, i.e. of the complex solutions X = u + 1iv of

» - L(exp(™-)) = O. (2)
We consider the case L + 0, L(9) £ O for ¢ > 0, which includes the
equations v(t) = -ay(t) (3)
and y(t) = -oy(t-1) (%)

with @ > 0. We may write L(9) = —aj (p(a)ds(a.) with @ > O and
s € 8§ := {o:[-1,0] = R|o(-1) =0, © 1ncreas1ng, oc(1) = 1}

Equation (2) becomes f(A,0,s) =X + af exp(ra)ds(a) = (5)
The parameter @ may serve as a measure of the power of the negati-
ve feedback in the system given by y(t) = —af v(t+a)ds(a)

while the function s describes the hereditary dependence. For
example, one might expeét that for s concave the stability is in
some way less than for s convex because the system takes longer to
produce a sufficient regction to perturbations of the equilibrium.
Tn the extremal cases this conjecture is right in the following way.
Equation (3) corresponds to the minimal (convex) function in 8,

and we have asymptotic stability for all @ > 0. Equation (%) comes
from the meximal (concave) function in S, and for every @ ? n/2
there is at least one eigenvalue with u > 0, see the paper of Wright
[6]. In addition, we have '
Theorem 1: For every s € S and for every O < /2, every eigenvalue

has negative real part.

Proof: [4].
We shall see how this behaviour of the minimal and maximal function -
in S carries over to two classes of smooth functions in 8.

First, 1et us state some prellmlnary facts.

P af exp(ra)ds(a) =0 <& (u+ af' exp(ua)cos (va)ds{a) = O

AV O+ af' exp(ua)sin(va)ds(a) = 0), (6)
f(X,OhS) =0 <= f()" a S) = O: (7)
f(h,a,8) =0~uy»0 => [r<a. (8)

Let s € 8 N C2[-1,0] N ¢2(~1,0]
o~ n
> O

and s'(-1) =s8"(-1) =0, s , 8" = 0. Then for every



a > 0, every eigenvalue has negative real part.
Sketch of proof: Integration by parts yields focos(va)ds(a) >0
for all v > 0. Hence there are no eigenvalues on iR, by (6) and (7).
Now the existence of an eigenvalue in C¥ ;= R* + iR for certain ao
would imply the existence of an eigenvalue in C¥ for o = 1 < n/2,
by (8) and by the continuous dependence of the eigenvalues on a.
But this contradicts Theorem 1.

Remark: Theorem 2 holds for s:a —+ (a+1 )ﬁ, B > 2. The case B = 2
shows that Theorem 2 is optimal in a certain sense: $:a -*(a+1)2
fulfills the hypotheses except of ¥"#+ 0, and f(znkl,(enk)z/é,S) =
for ke Z\(0].

Theorem 3 (Instability): For s € 8 N 01[-1,0] with s(a) » a+l, there

are @ > 0 and X with u > 0 and f(X,a,s) = 0.

Remark:The hypothesis in Theorem > can be replaced by "s concave"

Sketch of broof: Let s € S. Define a mapping

E .
F = (}:):RQXR+** R? by.Fi (u,v,a) = Re T(A,a,s), Fa(u,v,a) =
2

Im £(h,a,s). Suppose iv € iR" is an eigenvalue for s and @ > 0. Then
F(O,v,a) = 0, and ¥*E F

= det g; g; (0,v,a) 3 a2(£3 a sin(va)ds(a))g,

au av

For d > O there are neighbourhoods U of @ and W of (0,v) and a map-
ping G:U— W with G(«) = (0,v) and Fo(G,id) = O on U, hence
G1 (@) + iGa(@") are eigenvalues for o' e U, and Gi (@) > O would imply
the assertion. - We have Gi(a} = v/d f a sin(va)ds(a). Therefore
we only have to find an elgenvalue iv € 1R+ with f~ a sin(va)ds(a)
positive. - Let 8 € S N C [-1,0], s(a) » a+!. Then focos(na)ds(a)

1+ 1Tf051n(na)s(a)da 1+ nf (a+1)sin(wa)da = 0, and the function R

hit =+ L9 cos(ta)ds(a) has a zero v in (0,m]. Obviously,
[2sin(va)ds(a) < O and_[f a sin(va)ds(a) > 0 and
f(iv,—v/[? sin(va)ds(a),s) = O.

2. For the simplest smooth function in S, s(a) = a+l, we can
describe the location of all eigenvalues for all o > O.
Theorem 4: Let s(a) = a+l for -1 £ a £ O.
a) For every @ > 0, every eigenvalue lies in one of the
strips R + i(-2m,2n) and R + i(2nk,2nk + 2n) with k € N.

b) For every & > 0 and every k € N, there is exactly one ei-
genvalue Xk(a) in R + i(2nk,2nk + 2mn). Ve have

€ R™ + i{2nk,2rnk + n) for a < o = (2nk + n) /2
A (a){f ivy := i(enk + ©) for o = ak
e RY + i(enk + =m,2nk + 2n) for a > a .
c) For every @ > 0, there are exactly two eigenvalues in
R+ i(-2n,2n). Let o™ := -2u*exp(u*) with u* < 0 and
2exp(u*) - 2 = u*. For a ¢ a”, both eigenvalues are real.
If we denote them by uy (&) and uz(a) with ui(a) € ua(a),

then uy (@) < u*< ua(@) < 0 for @ < af uy (@) ~ -» and

uz(@) = 0 for @ = 0, and w (d) = u*= ux(d). ‘

For a*< a < ao = ng/é, there 1is exactly one eigenvalue in
R + i(0,n), for a = a, im is an eigenvalue, and for

a > a, there is exactly one eigenvalue in R + i(m,2n).
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The arrows indicate the direction of increasing o.

Remarks:1) We see: If A is an eigenvalue with u > 0, then |v| > =.
This exhibits one of the difficulties which arise if one tries to
prove the existence of a nonconstant periodic solution of the non-
linear equation x(t) = —aig x(t+a)dal1 + x(t)]. - Even in the
simpler case of %(t) = -ox(t-1)[1 + x(t)] the existence of eigen-



values of the linearised equation with u > 0 and 0 < v < ® is re-
quiréd,{see the different proofs of Nussbaum [3], Grafton [2] and
Chow [1].
2) A similar theorem concerning the equation \ + aexp(-2) = O was
proved by Wright [6]. He used elementary functions to derive his
result. Our method is different:
Remarks on the proof of Theorem 4: Set £(\,a) := f£(i,a,id + 1). Ve
have f(A,a) =0 &= A £0 A :
(2 4 a)exp(r) = a. ' : (9)
From (9) we infer a) and -
((iv,a) e iR x RY|£(iv,a) = 0) = {((enk + 7)1, (2nk + =)2/2) |k € 2],
To explain the method of our proof let us try to show that there are
exactly two zeros of f(-,n2/2) in G #= R + i(-2%,2%). We know that
there are exactly two zeros in G N iR, namely +im, and that iv € G
and f(iv,a) = 0 imply v =%ixw, o = ng/é.
i) Suppose there is another zero in G, with u > 0. Then there exist
@ <7m%/2 and » € RY + i(-2m,2n) with £(A,a) = 0, too. For a'e [1,a],
every zero with A € G and u > O lies in the bounded open set
B i= (0,a+1) + i(-2m,2n) (because of &' % 7°/2 there is no zero of
f(~,&) on iR N 9B). Hence f£(A,1) = 0 with u > O in contradiction to
Theorem 1.
ii) Suppose there is a zero in G with u < O. Then there are o > n2/2
and A € G with u < 0 and £(M,a) = 0. We need
Proposition 1: ¥V @ > 0 AT < 0: a'Ya ar eG ~f(X,a) =0 = T < u.
(Proof: (9) implies ((u2 + 4n2)/d +1) > ng/u‘ + 1
> exp(-u), hence ue/ﬁ > exp(-u) - 1 - 4n2/ﬁ.)
As above, a continuity argument now yields the existence of eigen-
values in G with u < O for every o > ng/é. - But on the other hand
we have )
Proposition 2: 3 o*> ng/é: AeG f(k,$) =0 = u> 0.

5. There is another fact which expresses an increase of stability if
the maximal (step-) function in S is replaced by a smaller, smooth
function: The branches of eigenvalues in the right half-plane be-
come bounded. Such a branch is a maximal connected subset of the set
P:=(reclu>0a (3 a>o0:f(r,a,s) =0]J.

For s(a) =1 on (-1,0], there are unbounded branches: Choose
v € (m/2,%), set u, 1= -v cos(v)/sin(v) and o i= —uvexp(uv)/cos(v).
Then f(uv+ iv,av,s) = 0, and [uV+ ivle/2 < v < W is an unbounded
connected subset of P.

" On the other hand, we have

Theorem 5: For s € S N 03[—1,0] with &(-1) > 0 and s(0) > 0, every
connected subset of P is bounded.

For s:a =+ a+1, the proof is simple: From the preceding theorem we

know that every connected subset Q of P has bounded imaginary part

Im Q := {Im X |{Xe Q). For A € Q and suitable @ > 0, (9) gives

Xz/d + 1 = exp(-r), (u2— v2)/u'+ 1 = exp(-u)cos(v). For sequences

Xn, o with Xn € Q and oo we infer 1 ¢ &iﬂn (uﬁ/dn + 1) =~

. 2 _ .
3ﬂﬂ;<vh/un + exp(—un)cos(vn)) = 0, contradiction.

4, The proofs of Theorems 2 - 5 can be found in [5].
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