I F I G
RESEARCH
REPORT

Institut fiir Informatik

JLU GieBen

ArndtstraBe 2

D-35392 Giessen, Germany
Tel: +49-641-99-32141

Fax: +49-641-99-32149
mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

INSTITUT FUR INFORMATIK

@

ITERATIVE ARRAYS WITH
A WEE BIT ALTERNATION

Thomas Buchholz Andreas Klein
Martin Kutrib

IFIG RESEARCH REPORT 9905
APRIL 1999

JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

IFIG RESEARCH REPORT
IFIG RESEARCH REPORT 9905, APRIL 1999

ITERATIVE ARRAYS WITH A WEE BIT ALTERNATION

Thomas Buchholz! Andreas Klein?
Martin Kutrib?

Institute of Informatics, University of Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract. An iterative array is a line of interconnected interacting finite automata.
One distinguished automaton, the communication cell, is connected to the outside
world and fetches the input serially symbol by symbol. We are investigating iter-
ative arrays with an alternating communication cell. All the other automata are
deterministic. The number of alternating state transitions is regarded as a limited
resource which depends on the length of the input.

We center our attention to real-time computations and compare alternating IAs with
nondeterministic IAs. By proving that the language families of the latter are not
closed under complement for sublogarithmic limits it is shown that alternation is
strictly more powerful than nondeterminism. Moreover, for these limits there exist
infinite hierarchies of properly included alternating language families. It is shown
that these families are closed under boolean operations.

CR Subject Classification (1998): F.1, F.4.3, B.6.1, E4

!E-mail: buchholz@informatik.uni-giessen.de
2E-mail: andreas.klein@informatik.uni-giessen.de
3E-mail: kutrib@informatik.uni-giessen.de

Copyright (© 1999 by the authors

1 Introduction

Devices of interconnected parallel acting automata have extensively been in-
vestigated from a language theoretic point of view. The specification of such
a system includes the type and specification of the single automata, the in-
terconnection scheme (which sometimes implies a dimension to the system), a
local and/or global transition function and the input and output modes. One-
dimensional devices with nearest neighbor connections whose cells are deter-
ministic finite automata are commonly called iterative arrays (IA) if the input
mode is sequential to a distinguished communication cell.

Especially for practical reasons and for the design of systolic algorithms a se-
quential input mode is more natural than the parallel input mode of so-called
cellular automata. Various other types of acceptors have been investigated
under this aspect (e.g., the iterative tree acceptors in [6]).

In connection with formal language recognition IAs have been introduced in [5]
where it was shown that the language families accepted by real-time IAs form a
Boolean algebra not closed under concatenation and reversal. Moreover, there
exists a context-free language that cannot be accepted by any d-dimensional TA
in real-time. On the other hand, in [4] it is shown that for every context-free
grammar a 2-dimensional linear-time IA parser exists. Compared with e.g.,
Turing machines there are essential differences in the recognition power. For
example, the language of palindromes needs a lower bound of n? time steps for
Turing machines but is acceptable in real-time by TAs.

In [7] a real-time acceptor for prime numbers has been constructed. Pattern
manipulation is the main aspect in [1]. A characterization of various types
of TAs by restricted Turing machines and several results, especially speed-up
theorems, are given in [8, 9, 10].

Various generalizations of IAs have been considered. In [11] IAs are studied in
which all the finite automata are additionally connected to the communication
cell. Several more results concerning formal languages can be found e.g., in
[12, 13, 14].

Sometimes completely nondeterministic arrays have been studied. In [3] arrays
with restricted nondeterminism have been introduced. There it has been shown
that the number of nondeterministic transitions can be reduced by a constant
factor and that there exists an infinite hierarchy of properly included language
families for necessarily sublogarithmic limits. Some closure properties for such
families are given.

Here we continue the work initiated in [3] by making a further generalization
step. We introduce arrays with restricted alternation. Our interest focuses on
the question how much alternation is required, if at all, to enhance the power
of a particular (nondeterministic) class. Thereby we are trying to identify the
power and limitations of commonly known iterative arrays. In order to define
alternations as limited resource we restrict the ability to perform alternating
transitions to the communication cell, all the other automata are deterministic
ones. Moreover, we limit the number of allowed alternating transitions which

additionally have to appear at the beginning of the computation. Our attention
is centered on real-time computations.

The basic notions and the model in question are defined in the next section.
Section 3 is devoted to technical results mainly. By generalizing a method
in [5] an equivalence relation is used to define a necessary condition for real-
time languages. Another result states that for a given alternating iterative
array one can always find another one that accepts the same language and that
uses existential and universal states by turns at every time step. In Section 4
the closure under Boolean operations is investigated. Comparing alternating
iterative arrays to nondeterministic ones for sublogarithmic limits in Section 5
it is shown that the former are strictly more powerful. The properness of the
inclusion is proved at the hand of different closure properties. In particular
the nondeterministic families are not closed under complement, a question left
open in [3]. Finally we obtain infinite hierarchies of properly included language
families varying the amount of allowed alternation.

2 Model and Notions

We denote the positive rational numbers by Q., the integers by Z, the positive
integers {1,2,...} by N, the set NU {0} by Ny and the powerset of a set S by
25. The empty word is denoted by e and the reversal of a word w by w?.

An iterative array with alternating communication cell is an infinite linear ar-
ray of finite automata, sometimes called cells, each of them is connected to its
both nearest neighbors to the left and to the right. For our convenience we
identify the cells by integers. Initially they are in the so-called quiescent state.
The input is supplied sequentially to the distinguished communication cell at
the origin. For this reason we have two local transition functions. The state
transition of all cells but the communication cell depends on the actual state
of the cell itself and the actual states of its both neighbors. The state transi-
tion of the communication cell additionally depends on the actual input symbol
(or if the whole input has been consumed on a special end-of-input symbol).
The finite automata work synchronously at discrete time steps. Their states are
partitioned into existential and universal ones. What makes a, so far, nondeter-
ministic computation to an alternating computation is the mode of acceptance,
which will be defined with respect to the partitioning. More formally:

Definition 1 An iterative array with alternating communication cell (A-IA)
is a system (S, 0, 04, So, #, A, F'), where

a) S is the finite, nonempty set of states which is partitioned into existential

Se and universal S, states: S = S, U S,

b) A is the finite, nonempty set of input symbols,

c¢) F C S is the set of accepting states,

d) so € S is the quiescent state,

e) #¢ A is the end-of-input symbol,

f) §: 8% — S is the deterministic local transition function for non-communi-
cation cells satisfying 6(sg, s, So) = So,

g) 6ng: S x (AU {#}) — 2% is the local transition function for the commu-
nication cell satisfying Vsi, so,s3 € S,a € AU {#} : dpq(s1, $2, 83,a) # 0.

Let M be an A-IA. A configuration of M at some time ¢ > 0 is a description of
its global state, which is actually a pair (w, ¢;), where w € A* is the remaining
input sequence and ¢; : Z — S is a mapping that gives the actual states of the
single cells. The configuration (w,cg) at time 0 is defined by the input word w
and the mapping ¢y(7) := sg, i € Z, while subsequent configurations are chosen
according to the global transition A,4: Let (w,c) be a configuration then the
possible successor configurations (w’,c’) are as follows:

(W', d) € Apa((w,c)) <= (i) =6(c(i —1),c(i),ci +1)),i € Z\ {0},
C’(O) € Ond (c(_l), C(O), C(l), a)

where a = # and w' = e if w = ¢, and a = w; and W' = wy---w, if w =
wy - - - Wy Thus, the global transformation A, is induced by § and d,4. The
i-fold composition of A4 is defined as follows:

Agd((w,c)) = {(w,c)}, A:L'Zl ((w,c)) = U And((w',c'))

(w',¢) €A, 4((wyc))

The evolution of M is represented by its computation tree.

The computation tree Thiqy of M under input w € AT is a tree whose nodes
are labeled by configurations. The root of T, is labeled by (w,cp). The
children of a node labeled by a configuration (w, ¢) are the nodes labeled by the
possible successor configurations of (w,c). Thus, the node (w,c) has exactly
|Ana((w,c))| children.

A configuration (w,c¢) is accepting iff ¢(0) € F, it is universal iff ¢(0) € S, and
it is said to be ezistential iff ¢(0) € S,.

In order to define accepting computations on input words we need the notion
of accepting subtrees.

Definition 2 Let M = (S, 6,0pq, S0, #, A, F') be an A-IA and T, be its com-
putation tree for an input word w € A", n € N. A finite subtree T' of Tryy, Is
said to be an accepting subtree iff it fulfills the following conditions:
a) The root of T' is the root of Ty q-
b) If a non-leaf node of T' is labeled by an universal configuration then all
its successors belong to T".
c¢) If a non-leaf node of T' is labeled by an existential configuration then
exactly one of its successors belongs to T".
d) The leafs of T' are labeled by accepting configurations.

From the computational point of view an accepting subtree is built by consid-
ering one possible successor (a guessed successor) if the communication cell is
in an existential state and by considering all successors if the communication
cell is in an universal state.

Now we are prepared to define the language accepted by an A-IA.

Definition 3 Let M = (S, 6,04, S0, #, A, F) be an A-IA.

a) A word w € A* is accepted by M iff there exists an accepting subtree of
Trt,o-

b) LIM) = {w € AT | w is accepted by M} is the language accepted by
M.

c) Let t : N — N, t(n) > n, be a mapping. Iff for all w € L(M) there exists
an accepting subtree of Tpq,, the height of which is less than t(|w|), then
L is said to be of time complexity t.

An A-TA M has a nondeterministic communication cell if the state set consists
of existential states only. An accepting subtree is now a list of configurations
which corresponds to a possible computation path of M. Iterative arrays with
nondeterministic communication cell are denoted by G-TA.

A G-IA is deterministic if 0,,4(s1, S2, S3, @) is a singleton for all states s1, s2, $3 €
S and all input symbols a € AU {#}. In these cases the course of computation
is unique for a given input word w and, thus, the whole computation tree is a
list of configurations. Deterministic iterative arrays are denoted by IA.

If the state set is a Cartesian product of some smaller sets S = Sy x S X--- X .S,
we will use the notion register for the single parts of a state. The concatenation
of a specific register of all cells forms a track.

The family of all languages which can be accepted by an A-IA with time com-
plexity ¢ is denoted by Z(A-IA). In the sequel we will use a corresponding
notion for other types of acceptors. If ¢(n) equals n + 1 acceptance is said to
be in real-time and we write .Z;;(A-IA). The linear-time languages .Z};(A-IA)
are defined according to Zj;(A-IA) := Uyeq, k>1-Zhn(A-TA).

There is a natural way to restrict the alternation of the arrays. One can limit
the number of allowed alternating state transitions of the communication cell.
Note, here we do not limit the number of alternations (i.e., transitions from
an universal to an existential state or vice versa) but the number of time steps
at which alternating transitions may occur. For this reason a deterministic
local transition function d4 : S® x (AU {#}) — S for the communication cell
is provided and the global transition induced by § and J4 is denoted by Ag.
Let f : N = Np be a mapping that gives the number of allowed alternating
transitions dependent on the length of the input.

The resulting system (S, 6, nq, 04, So, #, A, F') is a fA-IA (f alternating IA) if
starting with the initial configuration (w, ¢g) the possible configurations at some
time ¢ are given by the global transition as follows:

{(w,c0)} ift =0, AL ,((w, o)) if t < f(|w|) and
U Az_f(‘wD((w',c')) otherwise
(w'e)ealq) (w.eo))

Observe that all alternating transitions have to be applied before the determi-
nistic ones. Up to now we have f not required to be computable at all. Of

course for almost all applications we will have to do so but some of our general
results can be developed without such a requirement.

3 Equivalence Classes and Normalization

Definition 4 Let L C A* be a language over an alphabet A and [€ N be a
constant. Two words w and w' are l-equivalent with respect to L iff ww; €
L < w'w; € L for all w; € A'. The number of l-equivalence classes of words
of length n with respect to L are denoted by N(n,l,L) (i.e. jlww| = n).

The following lemma gives a necessary condition for a language to be real-time
acceptable by an fA-TA.

Lemma 5 Let f : N — No, f(n) < n, be a mapping. If L € %,(fA-IA) then
there exist constants p,q € N such that N(n,l,L) < pl'qf(n).

Proof. Let M = (S,0,0n4,d4, S0,#, A, F') be a real-time fA-TA which accepts
L. We define g := max {|6,4(s1, 52, 53,0)| ‘31,32,33 € S,a € A}

In order to determine an upper bound to the number of /-equivalence classes at
first we consider the possible configurations of M after reading all but [input
symbols. The remaining computation depends on the last [input symbols and
the states of the cells -l — 1,...,0,...,l + 1. For the 2] + 3 states there are
|S|?!+3 different possibilities. Let p; := |S|® then due to |S|?*3 = |S|% - |S|? =
(1512)"- 1813 < (IS12)"- (1S13)" = (1S)2 - |8|3)" = p! we have at most p} different
possibilities.

Now we consider the computation trees of M. Since the number of alternating
steps is bounded by f(n) in each computation tree there are at most g/
internal nodes that are labeled by existential or universal configurations (all the
others are part of the deterministic computation) we have to distinguish 9¢/ ™
different labelings. Each computation tree of finite height has at most ¢/(") leafs.
Each leaf at level n—[can be labeled with one of the p! different configurations.
Since the number of equivalence classes is not affected by the last [input symbols
altogether one can distinguish (pll)qf(n) 247" different computation trees of

height n — [. Correspondingly, there are at most pllq 297 (lasses. For a

suitable p € N this is less than p*e’ ™. O

If M is a fG-IA for the number of equivalence classes we need not to take the
. . . .gf ()

labelings into account. Thus, we obtain less than pllq classes.

Now we are going to extend the previous lemma. The question is how the

number of [-equivalence classes is affected if we concatenate each word of L by
another arbitrary [symbols from A.

Lemma 6 Let f: N — Ny, f(n) < n, be an increasing mapping that satisfies
f(2n) < 2f(n). If the number of l-equivalence classes with respect to a language
L C A* is not bounded according to Lemma 5 then Le Al ¢ Z.,(fG-TA).

Proof. At first we prove N(n +1+1,2-1+ 1, LeA!) = N(n,l, L).
From ww; € L for an arbitrary w; € Al it follows wwew; € Le Al for all w; € Al
and w'w;, € L. From w'w; € L it follows w'wjew) € Le Al for all w] € A'.

Conversely, let w and w' be (2] + 1)-equivalent with respect to LeA!. From
wwew) € Le Al for an arbitrary w € A! and all w] € Al it follows ww; € L and
w'wjew, € LeAl. From the latter we obtain w'w; € L.

Secondly, there exist n and [such that we have N(n,l,L) > """ for every
p,q € N, since the number of [-equivalence classes with respect to L is not
bounded according to Lemma 5 (i.e., L ¢ Z+(fG-IA)).

On the other hand, a real-time fG-TA can distinguish at most p(2'l+1)'qf(n+l+l)

equivalence classes with respect to Le Al. Since ! < n it follows p(Z'ZH)qﬂnHH) <
n g fm)

pCNI ™ < " N L) = N(n 414+ 1,2 -1+ 1, Le Al).

Thus, LeA! ¢ Z,(fG-IA) by Lemma 5. O

In order to reduce the technical effort for proofs it is often useful to be able
to start with devices that meet a certain normal-form. For our purposes it
is convenient to consider iterative arrays which are alternation normalized as
follows: sgp € S. and Vsi1,s92,83 € S,a € AU {#} : d,4(51,52,53,a) C Se if
s9 € Sy and 6,4(s1, 2, 83,a) C Sy if 59 € Se.

Thus the communication cell changes continually from an existential state into
an universal state and vice versa.

Lemma 7 Let f : N = Ny, f(n) < n+1, andt : N = N, t¢(n) > n, be
two mappings. If L € .£,(fA-IA) then exists an alternation normalized fA-IA
which accepts L with time complexity t.

Proof. Let L € 4 (fA-TA) and let M = (S, 9, n4,d4, S0,#, A, F) be some
fA-TA which accepts L with time complexity ¢t. Denote by S, resp. S, the
existential resp. universal states of M. Now we are going to construct an
alternation normalized fA-TIA M' = (5',d',0! ;,0/, s0,#, A, F') which simulates
M without any loss of time. Suppose for a moment that sqg € S, i.e., the
quiescent state of M is existential. The situation sy € S, is handled afterwards.

Let Ay := AU {#}. For s € S define X := {(I,r,a,p) | ,r,pE S ANa € Ag A
P € 0pq(l,s,7,a)}. Thus, the fourth component p of a quadruple (I,7,a,p) from
X, contains a possible successor state of the communication cell of M under
the assumption that it is in state s and its left resp. right neighbor is in state
[resp. r whereby the input symbol a is consumed. By X we denote the union

of all such X, i.e., X = J g X.

Let S":=SU(S x X x {e,u} x {+,—,0}) be the set of states and partition it
into the existential states S, := SU (S x X x {e} x {+,—,0}) and the universal
ones S;, := S"\ S.. So a state of M’ is existential iff it belongs to S or its third

component (register) contains e. Clearly, by continually changing the content
of the third register during the nondeterministic transitions the alternation
normalization can be ensured. Therefore, if y € {e,u} we will later use the
notation g for the complementary symbol, i.e. g = u if 4y = e and g = e if
U= U.

Before formally defining the local transition functions of M’ we will explain
what behavior they are intended to realize. The deterministic transitions of the
communication cell of M’ as well as the transitions of the deterministic cells
are direct simulations of the corresponding ones of M. So the only crux is the
arrangement of the nondeterministic transitions of M’ to which we will give
our attention in the following.

Apart from the very first time step the communication cell of M’ consists of
four registers, i.e., it state belongs to S x X x {e,u} x {+,—,0}. The first
register contains the actually simulated state s of the communication cell of
M. The second register enables M’ to simulate an existential (resp. universal)
transition of M even if the communication cell of M’ is in a universal (resp.
existential) state.

Therefore, it contains a nondeterministically determined quadruple (I,7,a,p)
from X, which was chosen in the previous time step. During that time step M’
has performed an existential (resp. universal) transition. Thus, if the content of
the quadruple matches the actual situation (i.e., [resp. r are the states of the left
resp. right neighbor of the communication cell and a is the fetched input symbol)
by easily extracting p as successor state of s the existentiality (resp. universality)
of the previous transition can be exploited. If otherwise the quadruple do not
match the actual situation the communication cell switches into a rejecting
(resp. accepting) state. Hence wrong guesses does neither become effective in
the computation of M’ if the previous transition was existential nor if it was
universal.

The third register ensures the alternation normalization as explained above and
the fourth register assists rejection (—) resp. acception (4) which is required
in the case of a wrongly guessed quadruple. Correspondingly, the set of final
states is defined by F' := FU(F x X x {e,u} x {0}) U (S x X x {e,u} x {+}).

Now let s1,82,83 € S, z € X, p € {e,u}, B € {+,—,0}, and a € Ag. In the
sequel the local transition functions are defined partially only. Observe that
in a not covered situation they are always considered to map on their second
argument.

The local transition function ¢ of the deterministic cells simply simulates ¢
using the content of the first register (of the communication cell) if necessary:

6,(81532533) = 5,(315827(3&'7:7”,5)) = 5’((31@,/%5),32,33) = 5(81132733)'

Similarly, the deterministic local transition function 8/, of the communication
cell behaves:

6:1(3173%83’“) = 5:1(317(825337,”’0)’33’0') = 6d(315327337a)-

The nondeterministic local transition function ¢] ; is now designed as follows.
During the first nondeterministic time step the communication cell is equipped
with the four registers (observe that sg is existential in both M and M'). So,

8 4(s1, 82, 83,a) = {(s',x',u,O) | 8" € 0pa(s1,82,83,a) A1’ € XS/}.

For the next case if s, € S, (and § = 0) an existential (resp. universal) transi-
tion of M can be simulated directly since the communication cell of M’ is in
an existential (resp. universal) state, too:

8.4(s1, (82,2, 1,0), 83,a) := {(s',a:',ﬂ,O) | s' € 6pals1,80,83,a) ANz’ € Xs/}.

If so € Sy, (B =0), and there exists a p € S such that = (s1, s3,a,p), then p
is a possible successor state of sy (in M):

(%d(sla (32,$1M50)533aa) = {(p,xl,ﬂ,(]) | z' e Xp}-

Since z has been determined during an existential (resp. universal) time step
the extraction of p from z during the succeeding time step (which is universal
(resp. existential)) actually corresponds to the simulation of an existential (resp.
universal) transition.

Finally if s € Sy, (8 = 0), and = # (s1,83,a,p) for all p € S, then z has
not been guessed appropriately and in case of an existential (resp. universal)
transition during the previous time step rejection (resp. acception) has to occur:

6Ind(51a (82,'7:’“’0)583561) = {(SZax,/'_l’,ﬁl) | BI = - lfM =eA ﬂl =+ lflj' = U’}

It remains to show how M’ can be constructed if sg € Sy, i.e., the communica-
tion cell of M’ has to simulate a universal transition of M during the first (ex-
istential) time step. Obviously, using sufficiently many tracks on which every
possible successor state is simulated in parallel solves this problem. Clearly,
then a configuration is accepting iff the configurations on all tracks are accept-
ing. O

4 Closure under Boolean Operations

Lemma 8 Let f : N — Ny, f(n) < n, andt : N — N, t¢(n) > n, be two
mappings then £;(fA-IA) is closed under union and intersection.

Proof. Let M; and Mj be two t-time fA-TAs. By Lemma 7 we may assume
that M7 and My are alternation normalized. Due to the normalized behavior
we can construct a t-time fA-TA M’ that simulates M; and My on different
tracks in parallel. It is easy to see that the computation tree of M’ contains an
accepting subtree if M1 or Ms accept simply by considering the corresponding
track only. The closure under union follows.

In order to find an accepting subtree for the intersection we have to use the
successor that contains guesses of M; and Mo which lead to acceptance in

existential steps, respectively. Clearly in universal steps all successor configura-
tions of M’ contain all successor configurations of M; and M and vice versa.
The closure under intersection follows. O

The comparison between nondeterministic and alternating IAs in the next sec-
tion is done at the hand of closure under complement. It is easy to prove the
closure of A-IAs but hard to disprove it for G-IAs. Here is the easy part:

Lemma 9 Let f : N — Ny, f(n) < n, be a mapping then .£+(fA-IA) is closed
under complement.

Proof. The meaning of an existential transition is that there must exist one
successor configuration which leads to acceptance. In order to accept the com-
plement this can be replaced by the meaning that all successor configurations
do not lead to acceptance. On the other hand, the meaning of an universal step
that all successors must lead to acceptance can be replaced by the meaning that
one successor does not lead to acceptance. The negation in the new meaning is
simply realized as follows: if the communication cell has consumed the whole
input it now accepts if it would have rejected before and vice versa. Thus, final
and non-final configurations are exchanged. O

5 Alternating Hierarchy

5.1 Comparison with Nondeterministic Iterative Arrays

In the following we incorporate some results of a previous work [3] concerning
IAs with nondeterministic communication cell.

In order to define an important language let f : N — Ng be an increasing
mapping such that f € o(log). We define another mapping A : N — N by
h(n) := 27" It is increasing since f is. Moreover, since f € o(log) for all
k € Q4 it holds lim,_, %%2 = lim, oo 21%2% = 0 and therefore h € o(n*).
Especially for k& = % it follows that the mapping m(n) := max {n' € Ny |
(h(n)+1)-(n'+1) < n} is unbounded, and for large n we obtain m(n) > h(n).
The following language depends on f only.

Ly:= {$Tw1$w2$---$wj¢y¢ | IneN:j=h(n) Aw; €{0,1}™™ 1 <4<,
Ar=n—(h(n)+1)-(m(n)+1)
ANF1T<i <j:wy :yR}

The words of length n of L; consist of 2/(n) subwords w; and one subword y

which is the reversal of one of the w;. The number of subwords is fixed for a
given n. The lengths of the subwords is as large as possible.

The next theorem follows immediately from a theorem shown in [3] in order to
prove a nondeterministic hierarchy.

Theorem 10 Let f : N — Ng and g : N — Ny be two increasing mappings such
that f € o(log) and g € o(f) then Ly € £4(fG-TA) and Ly ¢ £1(9G-TA).

10

Since for g € o(f) the language L is not a real-time gG-IA language but, on
the other hand, it can be accepted in real-time by a fG-TA, and the number of
guesses can be reduced by a constant factor [3] one obtains the following corol-
lary. Moreover, it holds for A-TAs too, since our approximation of the numbers
of equivalence classes are identical regardless of whether or not nondeterministic
or alternating IAs are in question:

Corollary 11 Let f : N — Ng and g : N — Ng be two increasing mappings such
that f € o(log) then Ly € Z41(9G-IA) = g € Q(f) and Ly € £4(gA-IA) =
g9 € Q).

The next theorem is the main result of the present section. It states that under
some preconditions the real-time alternating TAs are strictly more powerful than
the real-time nondeterministic IAs. For the proof we need a closure property
concerning marked iteration.

Definition 12 Let L be a language over an alphabet A and e ¢ A be a dis-
tinguished marking symbol. The language (Le)" is the marked iteration of
L.

Here we have to require f to be in some sense computable. This can be done
in terms of deterministic real-time TA languages. It should be mentioned that
the family .%,+(IA) is very rich.

Theorem 13 Let f : N — Ny be an increasing, unbounded mapping such
that f € o(log) and {af™b™=F(™) | m € N} € Z4(TA) then Z(fG-TA) C
Zri(fA-IA).

Proof. Since a fG-IA is just a fA-IA with only existential states we have the
inclusion .Z4(fG-IA) C Z(fA-IA).

It remains to show % (fG-IA) # Z.+(fA-IA). The idea is to prove the in-
equality at the hand of different closure properties.

By Lemma 9 the family .%.(fA-IA) is closed under complement. We are going
to show that .Z+(fG-IA) is not closed under complement.

In order to do so suppose .Z;(fG-IA) is not closed under marked iteration
which will be shown by Lemma 14.

Let L € %+(fG-IA) be a language over an alphabet A. If L does not belong
to Zr(fG-TA) we are done.

Assume now Z(fG-IA) is closed under complement and let M be a fG-IA
that accepts L in real-time. Now we construct a real-time fG-IA M’ that
accepts (Le)*T.

In [2, 3] the real-time simulation of stacks by deterministic IAs has been shown.
Thereby the communication cell contains the symbol at the top of the stack. We
will use the ability of TAs to simulate such data structures at the construction.
One deterministic regular task of M’ is to check whether the input is of the
form z ezqe---ex,e where ; € AT, 1 < i < k. All words that do not fit this
form are accepted.

11

A word ziexqe--- ez e belongs to (Le)T iff at least one z;, 1 < i < k, belongs
to L. In order to accept such words M’ simulates M on z; directly and addi-
tionally during its nondeterministic steps the f(|z;|) nondeterministic steps of
M on input z; for 7 > 1. Since f is increasing M’ has at least as many nonde-
terministic steps as M. The guessing is done by choosing nondeterministically
one of the (finite) local transition functions at each time step and pushing it
onto a stack.

When the direct simulation of M on z; succeeds the job of M’ is done. Other-
wise it starts the following task every time a e appears in the input.

A signal is sent through the stack which copies the content of the stack to a
second stack cell by cell. Additionally, M’ simulates M on the next subword
z;. In order to simulate a nondeterministic step one mapping is popped from
the second stack (leaving the first stack unchanged) and is applied to the local
configuration. So the communication cell can simulate a nondeterministic step
of M deterministically by applying a previously nondeterministically determ-
ined deterministic local transition. Again, if one of the simulations succeeds
M’ accepts otherwise it rejects.

Up to now we kept quiet about a crucial point. The number f(|z;|) of simulated
nondeterministic transitions may be incorrect. Therefore, the decision of M’
depends on corresponding verifications additionally: In order to perform this
task an acceptor for the language L' = {a/(Mpm—f(M) | m € N} is simulated
in parallel whenever a e appears in the input. Thereby an input symbol a is
assumed for each nondeterministic step (up to the guessed time f(|z;|)) and an
input symbol b for each deterministic step (up to the end of input z;). So the
number z resp. y of simulated nondeterministic resp. deterministic transitions
corresponds to a word a”b¥ belonging to L’ iff there exists an m € N such that
z = f(m) and y = m — f(m). Thus, iff |z;| =2z +y = f(m)+m— f(m) =m.

Altogether M’ accepts (Le)* in real-time.

Since we have assumed that .Z;(fG-IA) is closed under complement it follows

(Le)t € Z.+(fG-TA). But we have supposed .Z+(fG-IA) is not closed under
marked iteration. From the contradiction it follows that .Z.(fG-IA) is not
closed under complement if .%.;(fG-TA) is really not closed under marked iter-
ation. This will be proved in the next theorem. O

The next lemma has already been used to prove a previous one.

Lemma 14 Let f : N — Ny be an increasing, unbounded mapping such that
f € o(log) and {a/Mpm—1(M) | m € N} € Z+(IA) then Z+(fG-TA) is not
closed under marked iteration.

Proof. By Theorem 10 L; belongs to .Z;(fG-IA). Now we are going to show
that the marked iteration (Lse)"™ of L; does not belong to Z(fG-IA) from
which the lemma follows.

Assume in contrast there exists a fG-IA M = (S,...) which accepts (Lse)™
in real-time. We consider words zezqe---ex e € (Lye)™ for a k € N. Let
z) be an arbitrary word in Ly and ny be its length: ny := |zx|. Since m

12

is an unbounded mapping we can find a smallest n; € N such that m(n;) >
|zi®x;i10--- exe| respectively, for 1 < i < k — 1. Obviously, there exist words
of length n; in Ly. Let z; be one of them respectively. For the lengths /; of the
subwords z;e - - - z® we obtain Iy = ng+1landforl <i¢ < k—1: [; = n;+14+0;41.

In what follows let k; be appropriated constants. Since h(n;) < m(n;) and
ri < m(n;) it holds n; = (m(n;) + 1) (h(n;) +1) +7r; < (m(n;) + 1)2 +m(n;) <
kg - m(n;)2. For I; we obtain:

li =i+ (h(ng) + 1) (m(ng) + 1) + 1+l
< ks -lig1 + (h(ni) + 1) (ks - Lig1 + 1) + 1+ li41 since r; < m(n;) < ks - lia
< ke - h(ni) - lita
< k¢ - h(k7 - li2+1) “lit
< ki If,1liy1 since h(n) € 0(n6/2) for all e € Q4

Tt follows I} <k} - 1376 <---<kj-...- 59—1'11(91+6)k_1-

If we choose € € Q4 such that (1 + €)*~! < 2 then for large n we obtain that
h < %-ZQZ%-(nk—i—l)QSni.

Thus for processing zie---xi e M performs at most f (n%) nondeterministic
transitions. Since f € o(log) there exists k1 € N such that ki - f(ng) > f(n?)
for large ny. Therefore, for large n at most ki - f(ng) nondeterministic steps
are performed by M. (note that k; does not depend on k).

Now we consider the equivalence classes that appear if we cut zie---x,e after
the first symbol ¢ in z; respectively. Since zqe---zie is at most as long as
the y; in 1 we have N(|z1e---zge|,2]yi| + 1, LyeAl]) different equivalence
classes for the cut in z;. By Lemma 6 this number equals N(|z1|, |y1], Ly).
By Corollary 11 there exists a constant such that at least ko - f(n1) guesses
are necessary in order to accept languages with such a number of equivalence
classes. Define ¢y, := max{|d,4(s1, 52, 83,a)| | s1,52,53 € S,a € A}. Thus, the

computation of M on input z;e contains at least qf,f M) Qifferent paths.

Now we consider all computation paths of M. For all 21 € L there exists a class
of paths that are accepting for words of the form z;e - - - Since for computations
on z1e there are at least ¢&2/ 1) Jifferent paths we have now at least g2/ (1)

disjoint classes.

If we cut zie---x,e after the first symbol ¢ in zo, again, it results in
N(|z1ex2|,|y2|, L) equivalence classes for which ky - f(no) different computa-
tions paths are necessary. These paths are all in the same class for 1. There-

fore, every class contains at least qf,f f(n2) paths. Since at least qykn2 (M) lasses
are disjoint there are at least g&2) -qfr?'f M2) Jifferent paths.

Proceeding inductively we conclude that there are at least qfn?'f (n1)

-qf,f () > (qf,f I ("’“))k different paths. To realize the paths M at least needs to
perform k - ks - f(ng) nondeterministic steps (here we need ¢, > 1 what follows
since f is unbounded). For a k such that k- ko > k1 we get a contradiction
because M performs at most k; - f(ng) nondeterministic transitions. O

13

Corollary 15 Let f : N — Ng be an increasing mapping such that f € o(log)
then .Z,.(fG-IA) is not closed under complement.

5.2 The Hierarchy

In [3] the following nondeterministic hierarchies have been shown: Let f : N —
No, f € o(log), and g : N — No, g € o(f), be two increasing mappings such that
Vm,n,€ N: f(m) = f(n) = g(m) = g(n). If L = {a9Mp/m)=9(m) | yy ¢ N}
belongs to the family .Z};(IA) then .%1(gG-TA) C Z+(fG-TIA).

By the results of the previous subsection we obtain an alternating hierarchy,
too.

Theorem 16 Let f : N — Ny, f € o(log), and g : N — Ny, g € o(f) be two
increasing mappings such that ¥ m,n,€ N : f(m) = f(n) = g(m) = g(n). If
{a9tm)plm)=9(m) | ;e N} € Z(TA) and {a/ ™™™ | m € N} € Z4(TA)
then Z1(gA-TA) C Ly (fA-TA).

Proof. Due to the assumption L := {a9™p/(m)-9(m) | m;m ¢ N} € %, (1A)
a real-time fG-IA can limit its nondeterministic transitions up to the guessed
time step g(n) and verify its guess. For a deterministic real-time IA language
this technique has been used in the proof of Lemma 14. It is known that
deterministic linear-time IAs can be sped up to 2 - n time [9]. Since f € o(log)
we can assume f < 7 and, hence, during n time steps a (2 - n)-time IA for L
can be simulated.

By this constructibility property and for structural reasons we obtain
Zri(gA-IA) C Z(fA-IA). Since g is of order o(f) but by Corollary 11
it has to be of order Q(f) in order to accept L; in real-time we conclude

Lf ¢ Zri(gA-TA).

On the other hand by Theorem 10 L; belongs to .Z4(fG-IA). We obtain
Zr(fG-IA) L4 (gA-TA).

By Theorem 13 it holds .Z+(fG-TIA) C .Z.+(fA-TIA).

It follows 21 (gA-IA) C £ (fA-TA). O
At a first glance the preconditions of the hierarchy seem to be rather compli-
cated but the following natural functions meet them. Let ¢ > 1 be a constant
then f(n) := log’(n) and g(n) := log"*!(n) (log’ denotes the i-fold composition
of log).

References

[1] Beyer, W. T. Recognition of topological invariants by iterative arrays.
Technical Report TR-66, MIT, Cambridge, Proj. MAC, 1969.

[2] Buchholz, Th. and Kutrib, M. Some relations between massively parallel
arrays. Parallel Computing 23 (1997), 1643-1662.

14

[10]

[11]

[12]

[13]

[14]

Buchholz, Th., Klein, A., and Kutrib, M. [Iterative arrays with limited
nondeterministic communication cell. IFIG Report 9901, Institut fiir In-
formatik, Universitiat GieBen, Gieflen, 1999.

Chang, J. H., Ibarra, O. H., and Palis, M. A. Parallel parsing on a one-
way array of finite-state machines. IEEE Transactions on Computers C-36
(1987), 64-75.

Cole, S. N. Real-time computation by n-dimensional iterative arrays of
finite-state machines. IEEE Transactions on Computers C-18 (1969), 349
365.

Culik II, K. and Yu, S. Iterative tree automata. Theoretical Computer
Science 32 (1984), 227-247.

Fischer, P. C. Generation of primes by a one-dimensional real-time itera-
tive array. Journal of the ACM 12 (1965), 388-394.

Ibarra, O. H. and Jiang, T. On one-way cellular arrays. STAM Journal on
Computing 16 (1987), 1135-1154.

Ibarra, O. H. and Palis, M. A. Some results concerning linear iterative
(systolic) arrays. Journal of Parallel and Distributed Computing 2 (1985),
182-218.

Ibarra, O. H. and Palis, M. A. Two-dimensional iterative arrays: Char-
acterizations and applications. Theoretical Computer Science 57 (1988),
47-86.

Seiferas, J. I. Iterative arrays with direct central control. Acta Informatica
8 (1977), 177-192.

Seiferas, J. I. Linear-time computation by nondeterministic multidimen-
sional iterative arrays. STAM Journal on Computing 6 (1977), 487-504.

Smith ITI, A. R. Real-time language recognition by one-dimensional cellular
automata. Journal of Computer and System Sciences 6 (1972), 233-253.

Terrier, V. On real time one-way cellular array. Theoretical Computer
Science 141 (1995), 331-335.

15

