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1. Introduction 

 

1.1 Endothelial apoptosis 

              The endothelium is a monolayer of cells forming the innermost lining of the 

entire circulatory system. It acts as a selectively-permeable membrane barrier 

between the blood and the interstitial spaces. Although historically viewed as a 

passive monolayer merely reducing the turbulence of blood flow, the endothelium 

infact, is a dynamic membrane making many active contributions to cardiovascular 

function. The major contributions of the endothelium include selective blood tissue 

exchange, regulation of vascular tone by vasoactive secretions like nitric oxide (NO), 

endothelium derived hyperpolarizing factor, prostacyclin and endothelin, flow induced 

vasodilatation and constriction and hence control of blood pressure, blood clotting, 

modification of circulating plasma components by angiotensin-converting enzyme, 

inflammatory defence against pathogens and initiation of angiogenesis.  

       The function and integrity of the endothelium, therefore, are absolute necessities 

for the function of the cardiovascular system. However, this integrity is at stake in 

several pathological conditions like ischemia-reperfusion, leading to damage or loss 

of endothelial cells. Under these conditions, apoptosis is the predominant form of cell 

death in the endothelium due to the robust energy metabolism of these cells. The 

ability of endothelial cells to maintain high levels of ATP, even in the adverse 

conditions of hypoxia or ischemia, prevents them from the necrotic fate (Lelli et al., 

1998) (Fig 1.1). Increasing evidence suggests that apoptosis of endothelial cells can 

be responsible for acute and chronic coronary diseases, e.g. through atherogenesis 

(Chen et al., 2004), thrombosis (Bombeli et al., 1997) and endothelial dysfunction 

(Werner et al., 2006), hence jeopardizing the survival of the whole myocardial tissue. 

It is now known that endothelial apoptosis is a critical part of reperfusion injury and it 

is the endothelial cells rather than the cardiomyocytes that begin to undergo 

apoptosis early during reperfusion (Scarabelli et al., 2001). 

       Inspite of the high clinical relevance associated, little is known about the 

mechanisms preventing apoptosis in endothelial cells. The present study focuses on 

hypoxia-reoxygenation induced endothelial apoptosis and its response to 

postconditioning. 
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Fig 1.1 Endothelial apoptosis: a) Apoptosis – necrosis switch by ATP. b) Cross 
section of a rat heart subjected to 35 min ischemia followed by 60 min reperfusion, 
showing TUNEL positive (yellow) apoptotic endothelial cells around the vessel and 
TUNEL positive cardiomyocytes whose number decreases with increasing distance 
from the lumen (Scarabelli et al., 2001). 
 

1.2 Reperfusion injury 

              ‗Ischemia‘, literally meaning restriction of blood flow, is one of the most 

frequent cardiovascular complications and the leading cause of death worldwide. 

Reperfusion or restoration of blood flow remains the definitive strategy for saving the 

myocardium. However, reperfusion has been referred as a ‗double edged sword‘ 

(Braunwald and Kloner, 1985), because reperfusion itself is associated with a series 

of detrimental events that extend the damage beyond that observed during the 

ischemic period alone. These events are collectively called as reperfusion injury. 

Reperfusion injury is not a mere worsening of the ischemia-induced damage, but it 

constitutes processes that are specifically induced by reperfusion per se. It includes 

complex mechanisms involving mechanical, extracellular and intracellular processes. 

Some of the events that trigger reperfusion injury are: 

 Rapid generation of reactive oxygen species (ROS) by activated vascular 

endothelial cells, neutrophils and stressed cardiomyocytes (Ambrosio et al., 

1991). 

 Activation of sodium hydrogen exchanger (Allen et al., 2003) and 

augmentation of ischemia induced cellular and mitochondrial Ca
2+

 overload 

(Piper et al., 1989). 
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 Increased osmotic gradient and cell swelling induced by the accumulation of 

products of anaerobic metabolism (Jennings et al., 1986). 

 Opening of the mitochondrial permeability transition pore (mPTP), resulting in 

influx of otherwise impermeable proteins, mitochondrial swelling, uncoupling of 

oxidative phosphorylation and release of pro-apoptotic molecules like 

cytochrome C (Cyt C) and second mitochondria-derived activator of caspase 

(Smac/DIABLO) into the cytosol (Griffiths et al.,1995). 

 Reduced NO availability (Lefer et al., 1993) leading to the augmented 

expression of cellular adhesion molecules, induction of local inflammation, 

leukocyte infiltration and no-reflow phenomenon. 

The clinical consequences of these events, occurring within minutes of the onset of 

reperfusion are manifested by myocardial stunning or hypercontracture, infarction, 

reperfusion arrhythmias, endothelial dysfunction and cell death by necrosis and 

apoptosis. 

 

1.3 Apoptosis in reperfusion injury          

       Ischemia/reperfusion induces cell death via apoptosis, oncosis and necrosis. 

However, endothelial cells due to their robust energy metabolism undergo apoptosis, 

rather than necrosis.  

          Apoptosis is a controlled process of programmed cell death. The morphology 

of this death process was originally recognized by nineteenth century microscopists. 

Thus, what we now call apoptosis was first described in the epithelial cells of atretic 

ovarian follicles by Flemming in 1885 (Eefting et al., 2004; Scarabelli et al., 2006). 

Morphologically, apoptosis is characterized by cell shrinkage, chromatin 

condensation and migration, DNA fragmentation and blebbing of the plasma 

membrane. Nuclear and cytoplasmic material is surrounded by intact plasma 

membrane and these apoptotic bodies are engulfed by phagocytes. Due to this rapid 

vesiculation and phagocytosis, there is no spilling of intracellular material into the 

surrounding tissue. Therefore, there is less inflammation in the surrounding tissue 

compared to necrosis, where cell swelling and rupture of the plasma membrane lead 

to leakage of cellular content, consequently resulting in a strong inflammatory 

response. Due to its programmed nature, apoptosis is also more amenable to 

therapeutic interventions. Though seemingly opposing insults, both prolonged 

hypoxia/ischemia and reperfusion result in apoptosis, with the burst of reactive 
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oxygen species caused by reperfusion, enhancing the rate of apoptosis initiated by 

hypoxia or ischemia. 

 

DNA fragmentation in ischemia and reperfusion: 

       DNA fragmentation is one of the defining characteristics of apoptosis. It is 

commonly identified by DNA laddering in gel electophoresis and by terminal 

deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. 

Gottlieb et al., (1994) have identified the absence of TUNEL-positive apoptotic cells 

or DNA laddering in the rabbit heart exposed to ischemia alone but did detect DNA 

fragmentation by both these assays during reperfusion following ischemia. In 

contrast, Kajstura et al., (1996) have observed DNA fragmentation by both these 

assays in rat hearts exposed to prolonged ischemia without reperfusion. In a more 

recent study (Zhao et al., 2002), very few TUNEL-positive cells and no DNA 

laddering were detected in the dog heart exposed to ischemia alone, but a very large 

number of TUNEL-positive cells and extensive DNA laddering were observed in the 

peri-necrotic area, after 6 hours of reperfusion. These studies suggest that although 

there may be differences between species and different experimental systems, it is 

likely that the vast majority of DNA fragmentation is confined to the post-ischemic 

period rather than to ischemia itself. This conclusion is reinforced by the work of 

Scarabelli et al., (2001) who observed no TUNEL positivity in both cardiomyocytes 

and endothelial cells of the rat heart exposed to ischemia alone. However, TUNEL 

positivity was detected in endothelial cells after as little as 5 minutes of reperfusion, 

peaked at 60 minutes of reperfusion and decreased at 2 hours of reperfusion. In 

contrast, the proportion of TUNEL-positive cardiac myocytes slowly increased over 2 

hours of reperfusion. As expected, DNA laddering was detected in samples prepared 

after reperfusion but not in samples exposed to ischemia alone. These studies, 

therefore, indicate that apoptosis does occur in the heart, particularly during 

reperfusion, and has a different time-course in endothelial cells compared to cardiac 

myocytes. 

       The importance of apoptosis as a key step in reperfusion injury is supported by 

studies in which such DNA fragmentation was inhibited by treatment with 

aurintricarboxylic acid (ATA), an inhibitor of DNA endonucleases. In these 

experiments, addition of ATA at the onset of reperfusion resulted in reduced infarct 

size and enhanced regional contractile function (Zhao et al., 2003). 
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Translocation of phosphotidylserine in reperfusion injury: 

       Translocation of phosphotidylserine residues from the inner to the outer side of 

the plasma membrane occurs as an outcome of apoptosis. Hence apoptotic cells 

exhibit staining with Annexin V, which binds to phosphotidylserine. 

It has been shown that surface staining with Annexin V appeared in the intact mouse 

heart only during reperfusion and not during the ischemic episode (Dumont et al., 

2000). This reinforces the DNA fragmentation studies that apoptosis occurs 

predominantly during reperfusion. Increased uptake of labeled Annexin V in the 

infarct area was shown in patients with acute myocardial infarction when treated with 

primary coronary angioplasty, confirming the role of apoptosis in reperfusion injury 

(Hofstra et al., 2000).  

 

Caspase activation in reperfusion injury: 

          Caspases are cysteine (Cys)-dependent aspartic acid (Asp)-specific proteases 

that are the key executers of apoptosis. They are constitutively expressed as inactive 

precursor zymogens that are activated in response to an apoptotic stimulus by 

proteolytic cleavage and dimerization, to generate active caspases. Upon activation, 

they execute the cell death process through cleavage of specific structural and 

regulatory proteins necessary for cell survival. Fourteen caspases have been 

identified so far and they are divided into two groups, namely, the initiator and the 

effector caspases.  

           The initiator caspases like -2, -8, -9, -10 and -12 are characterized by the 

presence of long N-terminal regions that contain one or more adaptor domains (death 

effector domain, DED or caspase recruitment domain, CARD), which are absent in 

the effector enzymes. Activation of initiator caspases takes place in a multiprotein 

complex, such as the apoptosome for caspase-9 and the death-inducing signaling 

complex (DISC) for caspase-8. Active initiator caspases consequently activate 

downstream effector caspases, such as caspase-3, -6, and -7 by cleavage at internal 

Asp residues. Effector caspases are expressed as homodimers and their activation 

involves intrachain cleavage that generates fragments of ~10 and ~20 kDa still in a 

dimeric form. Active effector caspases recognize a 4-amino-acid motif in their 

substrates, P4-P3-P2-P1, and cleave after the C-terminal (P1) Asp. Over 280 such 

caspase substrates have been identified and most of them are structural or 

regulatory proteins whose function is inactivated by caspase cleavage (Fischer et al., 
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2003). In some cases the cleaved fragment also helps to augment the apoptotic 

process (Scarabelli et al., 2006). 

The initiator caspases -8, -9 and -12 and the effector caspases -3, -6 and -7 have 

been shown to be involved in ischemia-reperfusion induced apoptosis. Activation of 

these caspases in response to ischemia-reperfusion involves both the intrinsic and 

the extrinsic pathways (Scarabelli et al., 2006).  

 

1.4 The intrinsic pathway 

        The intrinsic pathway is also called the mitochondrial pathway and is employed 

by a wide range of apoptotic stimuli that converge on the mitochondria. These stimuli 

affect the mitochondria in different ways by either altering the permeability or by 

membrane swelling and disruption. Caspase-9 is the principle initiator caspase of the 

intrinsic pathway. Release of Cyt C from the inner mitochondrial membrane into the 

cytosol is the critical initiating step of mitochondria-mediated apoptosis. In the 

cytosol, Cyt C binds to apoptosis protease activating factor (Apaf-1), in the presence 

of ATP. Procaspase-9 is recruited to, and activated, in this complex, called the 

apoptosome (Adrain et al., 2001). Active caspase-9 subsequently cleaves the 

effector caspases -3, -6 and -7 thereby activating them.  

          Cyt C release has been observed in the intact heart exposed to 

ischemia/reperfusion, with its translocation from mitochondria to the cytosol 

becoming maximal during the reperfusion phase (Narula et al., 1999) and was 

associated with caspase-9 activation (Scheubel et al., 2002). The key role for Cyt C 

is further supported by studies in which inhibition of Cyt C release was found to block 

apoptosis (Borutaite et al., 2003), whereas its addition to heart cytosol was shown to 

be sufficient to induce apoptosis (Borutaite et al., 2001). Release of Cyt C is 

governed by the integration of the Bcl-2 family proteins, Bax and Bak that form 

channels in the mitochondrial membrane or by the opening of the mPTP.  

          mPTP is a protein pore spanning across the inner and outer mitochondrial 

membranes together with proteins of the intermembrane space. Its opening, apart 

from Cyt C release, results in release of other pro-apoptotic molecules like Smac/ 

DIABLO, production of ROS, release of mitochondrial NADH and influx of ions such 

as calcium, causing swelling of the mitochondria.  Inhibition of the mPTP in rat hearts 

by cyclosporine A (Griffiths et al., 1995) and sanglifehrin A (Hausenloy et al., 2003) 
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during reoxygenation was observed to be protective against ischemia-reperfusion 

injury. 

 

1.5 The extrinsic pathway 

       The extrinsic pathway or the death receptor pathway operates via ubiquitously 

expressed cell surface receptors characterized by the presence of a death domain. 

Six death receptors have been identified, including CD95 (also known as APO-1, 

Fas), TNFα receptor-1 (TNFR1), and death receptors 3-6 (DR 3-6), and all of these 

are expressed in the heart (Spierings et al., 2004). Their corresponding ligands, 

CD95 ligand (CD95L), tumor necrosis factor-α (TNFα), and TNFα-related apoptosis-

inducing ligand (TRAIL), are also expressed in the heart. On ligation to the receptors, 

the death domains transduce the apoptotic signal by recruiting adaptor molecules 

(e.g. Fas-associated death domain (FADD) or TNF receptor-associated death 

domain (TRADD)), which in turn, recruit the enzymatically inactive procaspase-8. The 

resulting complex is known as the death inducing signaling complex (DISC). The 

recruitment of procaspase-8 to the DISC results in its oligomerization and activation 

through selfcleavage. The enzymatically active caspase-8 then cleaves downstream 

caspases, such as caspases-3, -6, and -7.  
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Fig 1.2 Cross talk between the intrinsic and extrinsic apoptotic pathways converging 
at effector caspases and their inhibitors, the IAPs. 
         

 

Though the molecular cascades employed are distinct to each pathway, the 

mitochondrial and the death receptor mediated apoptotic pathways are not mutually 

exclusive. Procaspase-8 activated by stimulation of the death receptors, can activate 

the BH3 only protein, BID, whose cleavage product, tBID, migrates into the 

mitochondria, disrupting the membrane. This disruption causes the translocation of 

Cyt C to the cytoplasm interlinking both the apoptotic pathways (Luo et al., 1998).  

        Evidence is now available that both caspase-8, the initiator caspase of the 

extrinsic pathway and caspase-9, the initiator caspase of the intrinsic pathway, play 

important but distinct roles in reperfusion injury. Specific inhibitors of either caspase-9 

or caspase-8 given at reperfusion were able to reduce infarct size in the isolated rat 

heart (Scarabelli et al., 2002). More detailed studies in cultured cardiac cells 

(Stephanou et al., 2001) have indicated that both chemical and gene-based inhibitors 

of caspase-9 can reduce apoptotic cell death in cardiomyocytes exposed to 
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simulated ischemia alone, whereas inhibition of caspase-8 has no effect. In contrast, 

inhibition of either caspase-8 or caspase-9 was able to reduce apoptotic cell death in 

response to ischemia/reperfusion. These studies in cultured cardiac cells were 

supported by further studies in the intact isolated heart exposed to 

ischemia/reperfusion that demonstrated activation of caspase-9 during ischemia 

alone with further activation during reperfusion, whereas caspase-8 was only 

activated by reperfusion following ischemia (Scarabelli et al., 2002). In addition to this 

difference in the activation of the two caspases during ischemia and reperfusion, 

another interesting observation was that their activation differs in endothelial cells 

and cardiomyocytes. Activation of caspase-9 was observed primarily in endothelial 

cells and only to a much lesser extent in cardiac myocytes, whereas activation of 

caspase-8 was only observed in cardiac myocytes. In agreement with this, a specific 

caspase-9 inhibitor prevented endothelial apoptosis in this system, whereas a 

specific caspase-8 inhibitor affected only cardiac myocyte apoptosis (Scarabelli et al., 

2002). In this study, it was also shown that endothelial apoptosis preceeds 

cardiomyocyte apoptosis, in the heart exposed to ischemia/reperfusion.  

        Taken together, these findings on the time-course of apoptosis in the different 

cell types suggest a model in which activation of caspase-9 during ischemia itself 

leads to initiation of apoptosis, primarily in the endothelium, which futher extends to 

cardiomyocytes and continues during reperfusion as well. On the other hand, 

caspase-8, which is the principal initiator caspase in cardiomyocytes, is activated 

only at reperfusion and not during ischemia. This clearly indicates that endothelial 

apoptosis is one of the initiating events of reperfusion injury and is central to the 

outcome of myocardial damage.  

 

1.6 Inhibitors of apoptosis proteins 

       As their name implies, the IAPs (inhibitor of apoptosis proteins), are a family of 

proteins that confer protection to the cell by counteracting apoptotic execution. They 

are characterized by the presence of at least one baculovirus IAP repeat (BIR) 

domain, reflecting their original discovery in baculovirus. A genetic screen to identify 

regulators of host cell viability led to this discovery of IAPs (Crook et al., 1993), which 

was followed by identification of cellular orthologues in species as diverse as yeast 

(Uren et al., 1999), nematodes (Fraser et al., 1999), flies (Hay et al., 1995) and 

humans (Duckett et al., 1996; Liston et al., 1996). Eight human IAPs have been 
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identified so far and their regulation has been implicated in the maintenance of tissue 

homeostasis in several physiological and pathophysiological situations like acute 

myelogenous leukaemia (Tamm et al., 2000), MALT lymphoma (Dierlamm et al., 

1999), melanomas (Vucic et al., 2000), oesophageal squamous-cell carcinoma 

(Imoto et al., 2001), neuro-degenerative disorders (Roy et al., 1995) and in ischemia 

(Dong et al., 2001).  

 

1.6.1 Structure and function of mammalian IAPs  

         Three major domains, namely, the BIR domain, the RING finger and the CARD 

domain constitute mammalian IAPs, though not all of them are present in all the eight 

proteins of the family (Fig 1.3).  

    

BIR Domain: The BIR domain is a ~ 70 to 80 amino acid zinc-binding domain, the 

existence of which in a protein constitutes membership of the IAP family (Miller et al., 

1999; Hinds et al., 1999; Sun et al., 1999). It comprises three short β-strands and 

four α-helices that fold into a compact structure containing a zinc ion coordinated by 

conserved histidine and cysteine residues (Hinds et al., 1999). The BIR domain 

sequences are strongly conserved from viral to mammalian IAPs and have a 

remarkable structural similarity. However, specific sequence differences underlie the 

distinct binding properties of each of the BIR domain. One to three copies of this 

motif have been identified in numerous proteins, not all of which have clear links with 

apoptosis. Indeed, IAPs are sometimes referred by the alternative nomenclature of 

BIRPS (BIR-containing proteins), as some BIR-containing proteins do not seem to 

function as bona fide inhibitors of apoptosis, but all IAPs are BIR-containing proteins 

(Uren et al., 1998). The BIRs are essential for the anti-apoptotic properties of the 

IAPs (Duckett et al., 1996) and in several cases this has been directly attributed to 

the binding and inhibition of caspases (Devereaux et al., 1997).  
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Fig 1.3 Domain repersentation of the mammalian IAPs: Each member of the family 
has atleast one BIR or baculoviral IAP repeat. CARD or caspase recruitment domain 
is found only in cellular IAP1 (cIAP1) and cellular IAP2 (cIAP2). RING finger is 
present at the carboxy terminal in all except neuronal IAP (NIAP), Survivin and 
Appolon. 
 
 

RING Domain: The prototype baculoviral IAPs, and several cellular IAPs, contain a 

second type of zinc-binding motif known as the RING (really interesting new gene) 

domain (Joazeiro et al., 2000). In an IAP that contains a RING domain, this motif is 

invariantly found at the extreme carboxyl terminus of the protein. It is a small ~ 40 

amino acid domain that is defined by eight cysteine and histidine residues that 

coordinate two zinc ions. Although RING domains have been identified in various 

proteins with different functions, the RINGs of IAPs are much more closely related to 

each other than they are to the RINGs of other proteins. This indicates that they 

might have evolved, and retained, a specialized function. The RING domain 

possesses dimerization and E3 ligase activity (Silke et al., 2005) that enables RING-

containing proteins to catalyse the degradation of both themselves and selected 

target proteins through ubiquitination. 
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CARD Domain: The caspase recruitment domain (CARD) is another conserved 

domain that is found only in cIAP1 and cIAP2. The structure and function of CARD in 

these molecules has not been determined. However, given the conserved nature of 

this domain, it is highly likely that in IAPs the CARD forms a six-helix bundle, which 

serves as a protein-protein interaction motif (Park et al., 2007).  

 

Non-apoptotic functions: Keeping up to their name as inhibitors of apoptosis, IAPs 

are the key regulators of programmed cell death occurring in various physiological 

and pathophysiological processes including cancers, neurological disorders and 

ischemia-reperfusion diseases. However, the function of IAPs is not restricted to anti-

apoptosis. There is a rapidly growing body of evidence that an important, if not a 

predominant, role of IAPs is the regulation of a diverse set of non-apoptotic signaling 

pathways, including those involved in cell cycle regulation, morphogenesis, MAP 

Kinase activation, NF-kB activation, innate immunity and even in heavy metal 

metabolism (Srivasula et al., 2008). 

 

1.6.2 Mechanism of caspase inhibition by IAPs 

        The BIR domains of IAPs allow them to bind to and inhibit caspases, the 

proteases that orchestrate apoptosis, providing a direct explanation for how IAPs 

prevent apoptosis. Importantly, X linked IAP (XIAP), cIAP1 and cIAP2 are shown to 

directly inhibit specific caspases (Devereaux et al., 1997; Roy et al., 1997). This 

differs from the effects of Bcl-2-related apoptotic suppressors, which function at 

points that are distal in the death pathway, upstream of the apoptosome, to prevent 

integration of the caspase-activating signal. 

Structure–function analysis of XIAP showed two distinct domains in XIAP that can 

suppress caspase activity (Devereaux et al., 1999). The BIR3 domain of XIAP binds 

directly to the small (carboxy-terminal) subunit of caspase-9 (Srinivasula et al., 2001). 

The cleavage of caspase-9 is not required for its activation (Stennicke et al., 1999), 

yet, paradoxically, cleavage seems to be required for the inactivation of caspase-9 by 

XIAP. The small subunit of caspase-9 is generated by means of proteolytic cleavage 

at a conserved Asp residue at position 315 — an event that exposes a segment, 

starting at residue 316, that is recognized by the BIR3 domain of XIAP (Srinivasula et 

al., 2001). 

 



 21 

 

   

 

 

 

 
 
Fig 1.4 Interaction of IAP with Caspase-3 and -9: The order of XIAP domains starts 
with BIR1 at the amino terminus and terminates with the RING domain at the 
carboxyl terminus. The caspases are shown in their dimeric structure, with large 
subunits in blue-grey, small subunits in blue, and active-site substrate pockets (S-
designation) as yellow dots. The catalytic machinery is between the S1 and S1′ 
pockets (Salvesen and Duckett, 2002). 
 

The mechanism by which XIAP binds to caspase-3 and caspase-7 is entirely different 

to the manner in which it binds caspase-9. The crystallographic resolution of XIAP 

with caspase-3 and caspase-7 shows that the domain in XIAP that is essential for 

interaction lies in a small segment, which is immediately amino-terminal to BIR2 

(Huang et al., 2001; Riedl et al., 2001). This domain functions by reversible, high-

affinity binding to caspase-3 and caspase-7, and results in the steric occlusion of 

normal substrates of these caspases. The crucial sequence in XIAP binds the 

caspase in the opposite orientation to a caspase substrate, and has little requirement 

for the substrate-binding residues in the caspase. So, this important inhibitory domain 

in XIAP binds with high affinity to a surface that is conserved between caspase-3 and 

caspase-7, but XIAP is not a pseudosubstrate and functions solely to mask the active 

site in the caspase (Chai et al., 2001). 

 

1.6.3 Regulation of IAPs 

         Regulation of IAPs is necessary for the occurrence of controlled apoptosis 

which is crucial for modulation of cell number and elimination of damaged cells. IAPs 

are unstable proteins with very short half lives (Hu and Yang, 2003), explaining the 

existence of efficient regulatory mechanisms that control their abundance. They are 

known to be regulated at the transcriptional, post-transcriptional and post-

translational levels by auto-ubiquitination and control of IAP activity by regulatory 

proteins. 
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Transcriptional and post-transcriptional control:  Expression levels of certain IAPs are 

subject to tight transcriptional control. For example, expression of survivin is 

regulated in a cell-cycle-dependent manner, and seems to be induced in normal cells 

at the G2–M boundary (Li et al., 1998). In many situations, the activation of NF-κB 

has been shown to exert a pro-survival effect, and this has been proposed to be 

mediated by the transcriptional activation of one or more genes that encode anti-

apoptotic proteins including cIAP2 (Chu et al., 1997) and XIAP (Stehlik et al., 1998). 

Also, transcriptional upregulation of cIAP2, but not cIAP1 or XIAP was shown under 

severe hypoxia (Dong et al., 2001). 

 

Post-translational control: The highly conserved RING domain at the carboxy termini 

of several mammalian IAPs has a key role in the targeted degradation of proteins by 

the ubiquitin–proteasome system. This process involves the sequential covalent 

addition of ubiquitin, a 76-residue protein; onto specific lysine residues on the target 

protein (Weissman et al., 2001). The RING domains of XIAP, cIAP1 and cIAP2 show 

ubiquitin ligase enzyme (or E3) activity. Targets of IAP-mediated ubiquitination 

include caspases (Huang et al., 2000; Suzuki et al., 2001), Smac/DIABLO 

(McFarlane et al., 2002; Hu et al., 2003) and TRAFs (Li et al., 2002). Importantly, 

IAPs themselves are controlled by auto-ubiquitination leading to degradation (Yang 

et al., 2000). Mammalian IAPs have been reported to form homodimers and 

heterodimers through their RING domains (Silke et al., 2005), which might lead to 

their auto-ubiquitination in trans. The RING domain of IAPs is also found to be 

required for IAP antagonists to induce their degradation (Zachariou et al., 2003). 

  

IAP regulatory proteins: A well studied IAP-interacting molecule is the mitochondrial 

protein Smac/DIABLO (Du et al., 2002; Verhagen et al., 2000). Smac/DIABLO is a 

239-residue protein that is translocated from the inter-membrane space of 

mitochondria to the cytosol, apparently along with Cyt C, in response to an apoptotic 

stimulus. On its release from mitochondria, mature Smac/DIABLO binds XIAP, and 

probably several other IAPs, in a manner that displaces caspases from XIAP. So, 

Smac/DIABLO is a negative regulator of IAP, and is therefore an apoptosis-

enhancing molecule.  
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Smac/DIABLO and several other IAP regulatory proteins like OMI/HTRA2 (Martins et 

al., 2001; Loo et al., 2002) have been found to bind to IAPs through a conserved 

sequence, known as an IAP-binding motif or IBM (Srinivasula et al., 2002) (Fig 1.5).  

 

 

 

 

 

 

 
Fig 1.5  IAP binding motifs (IBMs):  Caspases and many mammallian & insect IAP-
regulatory proteins contain a conserved tetrapeptide sequence that interacts with the 
BIR motifs of IAPs. Also known as RHG (Reaper-Hid-Grim) motif. 
 

1.7 Postconditioning 

               Deleterious manifestations initiated by reperfusion per se are proven to be 

efficiently abrogated by hypoxic pre and postconditioning (Zhao ZQ et al., 2002). 

Events like rapid generation of ROS, activation of sodium hydrogen exchanger, Ca
2+

 

overload and mPTP opening, which are initiated in the first minutes of reperfusion, 

can also trigger later events, such as increased capillary permeability, no-reflow, 

necrosis and apoptosis. The more proximal the position of the above events in the 

time course of reperfusion injury, the greater likelihood that they are effective targets 

for reperfusion therapy, since they tend to attenuate downstream responses as well. 

As stated by Prof. Dr. H. M. Piper ―What comes first must be treated first, as 

otherwise the opportunity for specific treatment is lost‖ (Piper et al., 2004). 

       Postconditioning is controlled reperfusion (Buckberg 1986), defined as a series 

of brief interruptions of ischemia/hypoxia applied at the very onset of reperfusion. The 

concept of postconditioning was first revealed in 2002 by Vinten-Johansen and 

colleagues. The first studies published by Zhao et al., (2002) and Halkos et al., 

(2004) from this group compared postconditioning to the gold standard 

cardioprotective strategy of ischemic preconditioning. Using a canine model of one 

hour of left anterior descending (LAD) coronary artery occlusion and three hours of 

reperfusion, one group was assigned to abrupt coronary artery reflow while the other 
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was assigned to postconditioning using an algorithm of 30 seconds LAD reperfusion 

and 30 seconds re-occlusion, repeated for three cycles. Full reflow was continued for 

the remainder of the three hours. A third group of canines was preconditioned by a 

single 5 minute LAD occlusion followed by 10 minutes of reperfusion prior to the 

prolonged ischemic period. As expected, ischemic preconditioning reduced infarct 

size by approximately 40% compared to controls and surprisingly, the infarct size 

observed with the postconditioning algorithm was comparable to that observed with 

ischemic preconditioning. The infarct size reduction was confirmed by plasma 

creatine kinase activity at the end of reperfusion. Neutrophil accumulation (tissue 

myeloperoxidase (MPO) activity) in the area at risk in both the ischemic 

preconditioning and the postconditioning groups was significantly reduced compared 

to untreated controls. Postconditioning also preserved post-ischemic coronary artery 

endothelial function (vasorelaxation to endothelium-dependent stimulators of nitric 

oxide synthase) comparable to that observed with preconditioning. The surface 

expression of P-selectin on coronary artery vascular endothelium was comparably 

attenuated with both preconditioning and postconditioning, suggesting a reduction in 

the pro-inflammatory state of the coronary artery endothelium. Furthermore, 

superoxide radical generation by the endothelium of the postischemic LAD was less 

in postconditioned groups than in controls subjected to abrupt coronary artery 

reperfusion. The comparable reduction in tissue edema observed in both 

preconditioning and postconditioning groups is commensurate with an attenuation of 

vascular endothelial activation and dysfunction. It was also observed that oxidant 

generation by the postischemic myocardium at the end of reperfusion, measured by 

dihydroethidium fluorescence, was reduced with postconditioning in both 

parenchyma and vascular/perivascular tissue, suggesting a reduction in the oxidant 

burden in reperfused tissue (Zhao et al., 2002). The plasma lipid peroxidation product 

malondialdehyde was accordingly reduced comparably in preconditioned and 

postconditioned groups, consistent with reduced oxidant generation. Additionally, 

Halkos et al., (2004) also reported that postconditioning reduced the incidence of 

reperfusion arrhythmias, a finding that was confirmed by Galagudza et al., (2004) in 

isolated perfused rat hearts. 
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1.7.1 Triggers and mediators of postconditioning 

 

Adenosine: Endogenously released adenosine is involved in the cardioprotection of 

postconditioning. It has been shown that the release of endogenous adenosine into 

the buffer perfusate of isolated mouse hearts was delayed during postconditioning 

(Kin et al., 2004). Additionally, in a rat model of coronary artery occlusion-reperfusion, 

blockade of adenosine receptors with 8-sulfophenyl theophylline administered 

intravenously five minutes before reperfusion reversed the infarct reduction observed 

with postconditioning. This was also observed in an in situ rabbit model of coronary 

artery occlusion-reperfusion (Philipp et al., 2004). The cardioprotective actions of 

adenosine during postconditioning were linked to activation of the adenosine A2A 

and A3 receptors, but not the A1 receptor subtype (Kin et al., 2005). Interestingly, the 

physiological effects of adenosine reperfusion therapy essentially recapitulate those 

observed for postconditioning (Zhao et al., 1993; Jordan et al., 1997). Therefore, 

higher concentrations of endogenous adenosine may act as a trigger of 

cardioprotection, potentially through its interactions with adenosinergic G-protein 

coupled receptors to attenuate the release of oxidants and cytokines by activated 

endothelium and myocytes, in addition to its well-known inhibitory effects on 

neutrophils. 

 

KATP channels:  The adenosine triphosphate-sensitive potassium (KATP) channels are 

activated during postconditioning (Yang et al., 2004). Blockade of KATP channels with 

the nonselective inhibitor, glibenclamide, abrogated the infarct sparing effect of 

postconditioning. Further, the selective inhibitor of mitochondrial KATP channel 

activation, 5-hydroxydecanoate, also reversed the infarct sparing effect of 

postconditioning, suggesting that protection involved specific activation of the 

mitochondrial KATP channels. However, it was not shown whether the sarcolemmal 

KATP channel had any role, parallel or synergistic. 

  

Nitric oxide: Nitric oxide synthase (NOS) is reported to be involved in the protective 

effect of postconditioning (Yang et al., 2003). Blocking NOS with L-NAME 

administered just before reperfusion alone had no effect on infarct size, but in 

conjunction with postconditioning, L-NAME completely inhibited the infarct-sparing 

effects of postconditioning. The involvement of the endothelial isoform (e-NOS) is 
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supported by a reported increase in phospho-eNOS seven minutes after reperfusion 

with postconditioning compared to abrupt reperfusion in isolated perfused rat hearts 

(Tsang et al., 2004). In addition, postconditioning could be blocked by L-NAME and 

the guanylyl-cyclase inhibitor 1H-[1,2,4]oxadiazolo- [4,3-a]quinoxaline-1-one (ODQ), 

suggesting an NO – cGMP pathway (Pagliaro et al., 2004). NOS may be involved at 

several levels in ischemia/reperfusion. The release of NO by coronary vascular 

endothelium is impaired after ischemia/reperfusion (Guo et al., 1996; Ma et al., 

1993). Although not shown directly, postconditioning may reverse the NO release, 

speculated by attenuated P-selectin expression, decreased neutrophil adherence, 

and improved vasodilator responses to acetylcholine observed after postconditioning 

in canine models (Halkos et al., 2004; Zhao et al., 2003), all of which are 

physiological responses associated with increased NO generation. eNOS is also a 

downstream target of PI3 kinase – Akt pathway and other reperfusion injury kinase 

pathways (Hausenloy et al., 2004), which were shown to be involved in 

postconditioning. 

  

mPTP: The mitochondrial permeability transition pore is one of the most important 

mediator of cardioprotection elicited by postconditioning. This selectively permeable 

pore remains closed during ischemia, but opens during the first few minutes of 

reperfusion (Griffiths et al., 1995; Halestrap et al., 1998). Opening of the mPTP has 

been associated with onset of cell death by both necrosis and apoptosis. 

Accordingly, inhibition of mPTP opening has been shown to be cardioprotective 

(Hausenloy et al., 2003). Postconditioning does inhibit opening of the mPTP (Argaud 

et al., 2005). This would be consistent with the involvement of NO, which inhibits 

mPTP opening (Piantadosi et al., 2002), reduced oxidant burden and reduced 

intracellular and mitochondrial Ca
2+

  (Sun et al., 2005). Taken together, inhibition of 

mPTP opening, generation of NO, reduction of ROS and Ca
2+

 and activation of 

several possible signaling molecules are major contributors of the cardioprotection 

mediated by postconditioning. 

 

1.7.2. Signaling pathways in postconditioning 

              A number of signal transduction pathways have been shown to be recruited 

by postconditioning, which mostly converge at the mitochondria and are pivotal to the 

cardioprotection elicited.   
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Akt (Tsang et al., 2004) and ERK 1/2 (Yang et al., 2003) pathways are the first 

among these, providing the first line of evidence that postconditioning is capable of 

recruiting pro-survival signal transduction cascades. In these studies, PD98059 and 

LY294002 / Wortmannin, inhibitors of ERK1/2 and Akt pathway respectively, were 

shown to reduce the infarct sparing effect of postconditioning. Akt and ERK1/2 

pathways together were subsequently named as RISK or reperfusion-induced 

survival kinase pathway (Hausenloy et al., 2004). Although the actual mechanism 

through which the RISK pathway is recruited by postconditioning is unresolved, 

experimental data suggest the activation of cell-surface receptors, including the 

adenosine A2 receptor (Morrison et al., 2007). The down stream targets of RISK- 

mediated protection are clearer and converge on the mitochondria. The 

phosphorylation and thus inhibition of GSK-3β, known to elicit cardioprotective effects 

via inhibition of mPTP opening (Juhaszova et al., 2004), is reported to occur in 

postconditioning (Gomez et al., 2008).  

The roles of p38 MAPK and the JNK pathway in postconditioning have been much 

debated (Hausenloy et al., 2006; Bassi et al., 2008). One study shows the inhibition 

of JNK and p38 MAPK in postconditioning (Sun et al., 2006), indicating that activation 

of these pathways is detrimental to cardioprotection. Other signal transduction 

pathways involved in postconditioning include the JAK-STAT pathway (Boengler et 

al., 2008; Goodman et al., 2008), sphingosine kinase 1 (Jin et al., 2008) and protein 

kinase C (Penna et al., 2006). Sphingosine kinase 1 was infact demonstrated to have 

an obligatory role in postconditioning, which is potentially upstream to the RISK 

pathway (Jin et al., 2008) 

           Taken together, postconditioning is not only as powerful as preconditioning, 

but infact seems to be a comparatively better strategy, since it has the potential of 

being clinically applicable in the most common situation of unexpected coronary 

occlusion and acute myocardial infarction. The clinical usage of the maneuver gained 

further acclaim since the application of postconditioning to human heart following 

acute myocardial infarction (Laskey et al., 2005).  

 

1.8 Aims and objectives of the project 

      The present study aims to examine the effect of postconditioning on hypoxia-

reoxygenation induced endothelial apoptosis. Coronary endothelial apoptosis, 

preceding myocyte apoptosis, is a critical event in reperfusion injury. 
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Postconditioning, a strategy known to effectively reduce reperfusion injury, is well 

proven in cardiomyocytes, However, little is known about postconditioning in 

endothelial cells and whether it plays a role in anti-apoptosis. The project aims to 

study the anti-apoptotic effect of postconditioning in endothelial cells and the 

molecular mechanisms involved, focusing on the inhibitors of apoptosis proteins 

(IAPs) as potential antiapoptotic candidates induced by hypoxia. More specifically, 

the following questions were addressed; 

 

 What is the effect of postconditioning on hypoxia/reoxygenation-induced 

endothelial apoptosis? 

 What are the anti-apoptotic proteins involved? 

 What is their mechanism of action? 

 Which signal transduction pathways might be recruited? 

        

       The study was performed using cultured human umbilical vein endothelial cells 

(HUVEC), that were subjected to hypoxia-reoxygenation and/or postconditioning. 

Apoptosis was measured by Annexin V staining in flow cytometry and caspase-3 

cleavage in Western blotting. Downregulation with siRNA and pharmacalogical 

inhibition were employed to determine the molecular and signaling mediators 

involved. Co-immunoprecipitation and co-localization studies were performed to 

analyze the interaction of proteins. An intact vessel model of rat aorta was 

established to demonstrate the physiological relevance of the molecules identified to 

be involved in the anti-apoptotic effect of endothelial postconditioning.  
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2. Materials 
   

2.1 Chemicals and reagents 

 

All chemicals used were of the highest analytical purity and best quality available. 

 

Acrylamide Roth, Karlsruhe 

Agarose Invitrogen, Paisley, United Kingdom 

6-Aminohexanoic acid Merck-Schuchardt, Hohenbrunn 

APS Serva, Heidelberg 

Benzonase Merck, Darmstadt 

Bisacrylamide Roth, Karlsruhe 

Bromphenol blue Sigma, Deisenhofen 

BSA Sigma, Deisenhofen 

Calcium chloride Merck, Darmstadt 

Collagenase PAA Laboratories, Pasching, Austria 

CWFSG Sigma, Deisenhofen 

Di-Sodium hydrogen phosphate  Roth, Karlsruhe 

DMSO Stigma, Deisenhofen 

DTT Stigma, Deisenhofen 

Dynabeads protein G Invitrogen, Karlsruhe 

EC Oxyrase                                              Oxyrase, Mansfield, USA 

EDTA-Sodium chloride Sigma, Deisenhofen 

Endothelial growth medium kit PromoCell, Heidelberg 

Ethanol Riedel de Haёn, Seelze 

FCS PAA Laboratories, Pasching, Austria  

Filter paper Biotec-Fischer, Reiskirchen 

Glucose Merck, Darmstadt 

Glycerine Roth, Karlsruhe 

HBSS PAA Laboratories, Pasching, Austria 

HEPES Roth, Karlsruhe 

High molecular weight standard Sigma, Deisenhofen 

Isoflurane                                                 Baxter, Unterschleißheim 

Low molecular weight standard Sigma, Deisenhofen 

Magnesium chloride Fluka, Neu-Ulm 
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Magnesium sulfate Merck, Darmstadt 

Methanol Riedel de Haёn, Seelze 

Mercaptoethanol Merck-Suchard, Hohenbrunn 

NCS PAA Laboratories, Pasching, Austria 

Nitrocellulose membrane Schleicher und Schuell, Dassel 

Page Ruler Fermentas, St.Leon-Rot 

Paraformaldehyde Merck, Darmstadt 

Penicillin-streptomycine Gibco BRL, Eggenstein 

Ponceau S solution Serva, Heidelberg 

Potassium chloride Merck, Darmstadt 

Potassium  dihydrogen phosphate Merck, Darmstadt 

Protease inhibitor cocktail Complete Roche Diagnostics, Mannheim 

Protein blockt serum-free  Dako, Hamburg 

Skimmed milk powder Applichem, Darmstadt 

Sodium bicarbonate  Merck, Darmstadt 

Sodium chloride Roth, Karlsruhe 

Sodium hydroxide Roth, Karlsruhe 

Sodium dodecyl sulphate Merck, Darmstadt 

Sodium flouride Merck, Darmstadt 

Super Signal-West Pierce, Niedderau 

TEMED Sigma, Deisenhofen 

Tissue Tek Sakura Finetek, Staufen 

Tris Roth, Darmstadt 

Triton X 100 Serva, Heidelberg 

Trypsin-EDTA solution Biochrom AG, Berlin 

Tween 20 Amersham, Braunschweig 

 

2.2 Pharmacalogical inhibitors 

 

LY294002 Calbiochem, Bad Soden  

PD98059 Calbiochem, Bad Soden 

SB203580  Calbiochem, Bad Soden 

SP600125 Sigma, Steinheim 

UO126  Calbiochem, Bad Soden 
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2.3 Antibodies 

 

Primary antibodies: 

Anti-Actin (mouse IgG) Sigma, Deisenhofen  

Anti-Akt~p (rabbit IgG) Cell Signaling Technology, USA 

Anti-cIAP1 (goat IgG) Santa Cruz biotechnology, Heidelberg 

Anti-cIAP2 (rabbit IgG) Santa Cruz biotechnology, Heidelberg 

Anti-c-jun~p (rabbit IgG) Cell Signaling Technology, USA 

Anti-cleaved Caspase-3 (rabbit IgG) Cell Signaling Technology, USA 

Anti-ERK1/2~p (mouse IgG) Cell Signaling Technology, USA  

Anti-p38 MAPK~p (mouse IgG) Cell Signaling Technology, USA 

Anti-procaspase-3 (mouse IgG) Imgenex, Darmstadt 

Anti-vinculin (mouse IgG)    Sigma, Steinheim 

Anti-von Willebrand Factor (rabbit IgG)  Dako, Hamburg 

Anti-XIAP (rabbit IgG)   Cell Signaling Technology, USA 

 

Secondary antibodies: 

Anti-goat IgG HRP-conjugated Dianova, Hamburg 

Anti-mouse IgG HRP-conjugated Amersham, Freiburg 

Anti-rabbit IgG HRP-conjugated  Amersham, Freiburg 

Anti-mouse IgG Alexa 633-conjugated Invitrogen, Karlsruhe 

Anti-rabbit IgG Alexa 488-conjugated Invitrogen, Karlsruhe 

Anti-rabbit IgG Alexa 546-conjugated                      Invitrogen, Karlsruhe 

 

2.4      SiRNA transfection 

 

cIAP2 siRNA Santa Cruz biotechnology, Heidelberg                                     

Control siRNA                                                  Eurogentec, Cologne  

JetSI Endo                                                       Eurogentec, Cologne 

Opti-MEM                                                         Invitrogen, Karlsruhe 
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2.5   Flow cytometry 

  

AnnexinV/PI-FITC kit BD Pharmingen, Heidelberg 

FACS Clean BD Pharmingen, Heidelberg 

FACS Flow BD Pharmingen, Heidelberg 

FACS Rinse BD Pharmingen, Heidelberg 

FACS tubes BD Biosciences, Heidelberg 

 

2.5 Laboratory instruments 

 

CCD camera  Bio Rad, Hercules, USA 

Culture dishes Becton-Dickinson, Heidelberg 

Demineralisation unit Millipore, Eschborn 

Electroblot chamber Biotec-Fischer, Reiskirchen 

Electrophoresis chamber Biotec-Fischer, Reiskirchen 

Electrophoresis apparatus Biometra, Göttingen 

FACS Calibur flowcytometer® BD Biosciences, Heidelberg 

Glass articles Schott, Mainz 

Glass coverslips Menzel, Braunschweig 

Hamilton syringe Hamilton, Bonaduz, Switzerland 

Incubator Heraeus,Hanau 

LSM-510 confocal microscope Carl-Zeiss, Heidelberg 

Magnetic rack Dynalbiotech ASA Oslo, Norway 

Magnet stirrer Jahnke und Kunkel, Staufen 

Microscope Olympus, Japan 

Neubauer-chamber Superior, Marienfeld 

pH-Meter WTW-Weilheim  

Pipettes Eppendorf Netheler-Hinz, Hamburg 

Pipette tips Eppendorf Netheler-Hinz, Hamburg 

Power supply Biometra, Göttingen 

Shaker Biometra, Göttingen 

Sterile bench Heraeus, Hanau 

Sterile filter (0.2 µm) Sartorius, Göttingen 

Sterile pipettes Becton-Dickinson, Heidelberg 
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Table centrifuge Hereaus, Hanau 

Tubes Eppendorf-Netheler-Hinz, Hamburg 

Vortex Heidolph, Kehlheim 

Water bath Julabo, Seelbach 

 

2.6  Software 

Cell-Quest-Pro BD Biosciences, Heidelberg 

LSM 510 Carl-Zeiss, Heidelberg 

Quantity One analysis software Bio Rad, Hercules, USA 
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3.        Methods 

 
3.1 Preparation of human umbilical vein endothelial cells 

 

Collagenase solution: 

HBSS x ml 

Collagenase II (293 Units/mg) (wt/vol)          0.025% 

MgCl2. 6 H2O        0.5 mM 

CaCl2            1.5 mM 

 

Cell culture medium: 

Endothelial cell basal medium x ml 

FCS (vol/vol) 10% 

penicillin/streptomycin (vol/vol) 2% 

ECGS/Heparin (wt/vol) 0.4% 

Hydrocortisone (wt/vol) 0.1% 

Basic fibroblast factor 1 ng/ml 

Epidermal growth factor 0.1 ng/ml 

 
Protocol: The procedure conforms to the principles outlined in the ‗‘Declaration of 

Helsinki‘‘ (Cardiovascular Research 1997; 35:2–3). Human umbilical vein endothelial 

cells (HUVEC) were isolated from freshly collected umbilical cords according to Jaffe 

et al., (1973) with minor modifications. After cleaning, the untraumatized umbilical 

vein was canulated and perfused with HBSS to remove traces of blood. The lumen of 

the vein was then filled with collagenase solution and incubated for 20 min at 37° C.  

After incubation, the collagenase solution containing endothelial cells was removed 

by perfusing the vein with 30 ml of HBSS containing 3% (vol/vol) FCS, added to 

inactivate collagenase. The effluent was collected in a 50 ml falcon tube and 

centrifuged for 5 min at 250 x g at RT. The supernatant was discarded and the cell 

pellet was resuspended in culture medium containing 0.1% (vol/vol) 

penicillin/streptomycin. Thereafter, cells were seeded onto 3-4 primary culture dishes. 

After incubation for 2 h at 37° C and 5% CO2 cells were extensively washed with 

HBSS to remove the unattached non-endothelial cells and cell debris. Adherent cells 

were incubated in 15-20 ml of cell culture medium containing 2% (vol/vol) 
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penicillin/streptomycin at 37° C and 5% CO2. After 24 h the medium was replaced 

with fresh cell culture medium. 

 

3.2 Subcultivation of endothelial cells 

 

Confluent monolayers of primary endothelial cell cultures were trypsinized 5 to 7 days 

after isolation. Cells were washed with HBSS and subsequently incubated with 3 ml 

of trypsin/EDTA solution (composition in mM: 137 NaCl, 2.7 KCl, 1.5 KH2PO4, 8.0 

Na2HPO4, pH 7.4, 0.05% (wt/vol) trypsin and 0.02% (wt/vol) EDTA). Trypsinized cells 

were collected into cell culture medium and seeded at a density of 5.5 x104 cells/cm2 

on 35 mm2 or 60 mm2 dishes, according to the experiment being performed. For 

immunostaining and confocal microscopy cells were seeded on 25 mm2 glass cover 

slips. Experiments were performed with confluent endothelial monolayers of either 

primary or passage 1, 3-4 days after seeding. 

 

3.3   Experimental protocol for hypoxia/reoxygenation and postconditioning 

 

Subconfluent monolayers of HUVEC were subjected to severe hypoxia (Po2 < 1 

mmHg) for 2 h followed by 24 h of reoxygenation. Hypoxia was applied with 1U/ml 

EC Oxyrase, a biocatalyst capable of consuming molecular oxygen in the presence 

of an available hydrogen donor (Jacobson et al., 1987). Following the hypoxic phase, 

postconditioning was applied at the onset of reoxygenation by the intermittent 

application of three short periods of severe hypoxia, 5 min each, separated by a 5 

min reoxygenation period (see below). For this, endothelial monolayers were 

incubated with regular growth medium containing 1U/ml EC Oxyrase, thrice for 5 min, 

interrupted by 3 periods of incubation with Oxyrase-free medium, 5 min each. 

Oxyrase-free medium was used during all the 6 incubation periods for control 

samples, to nullify the effects of medium change.  
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3.4 siRNA transfection of endothelial cells 

Downregulation of cIAP2 was achieved by transfecting endothelial cells with cIAP2 

specific siRNA duplexes ordered from Santa Cruz Biotechnolgy. The calculations 

given below are for subconfluent HUVEC monolayers seeded on 30 mm
2
 dishes.  

Solution A: X (X = siRNA in ng x 0.003) µl of JetSI-ENDO in 100µl Opti-MEM 

Solution B: 2.5µl (25 nM) of siRNA in 100µl Opti-MEM 

Protocol: 24 h prior to the application of hypoxia/reoxygenation or postconditioning, 

70 - 80 % confluent cell monolayers were transfected with cIAP2 specific siRNA for 

5.5 h according to the manufacturer‘s instructions. For this, cells were washed and 

incubated in a low-serum transfection medium, Opti-MEM, since serum hinders the 

uptake of siRNA by the cells. Solution A containing the transfection reagent, Jet SI-

ENDO is then added to solution B containing siRNA by gentle vortexing. The mixture 

was incubated for 30 min to allow formation of complexes and is then gently added to 

the cells drop-wise. After 5.5 h of incubation, the low-serum transfection medium is 

replaced with regular medium allowing normal growth for 16-18 h. Control samples 

were treated with the same concentration of non-specific control siRNA following the 

same protocol. 

 
3.5 Application of pharmacological inhibitors 
 
PI3 kinase inhibitor  LY 294002  10 µM 

ERK 1/2 inhibitor  PD 98059            20 µM  

ERK 1/2 inhibitor  UO 0126             10 µM  

p38 MAPK inhibitor  SB 203580          10 µM 

JNK inhibitor   SP600125            10 µM 

 

Stock solutions were prepared immediately before use in basal medium with DMSO. 

Appropriate volumes of these solutions were added to the cells yielding a final 

solvent concentration of ≤ 0.1% (vol/vol), 30 min prior to the experiment. The same 

final concentrations of DMSO were included in all respective control experiments. 
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3.6 Fluorescence-activated cell sorting (FACS) analysis 

 

Effect of hypoxia/reoxygenation and postconditioning on endothelial cell apoptosis 

was determined by FACS analysis of annexin V-FITC and propidium iodide staining 

according to the manufacturer‘s instructions. Annexin V and PI were added to 

trypsinized and suspended endothelial cells which were analyzed by flow cytometry 

on a FACS Calibur using Cell Quest Pro software. Cells that were annexin-FITC 

positive were identified as apoptotic, while cells that were PI positive and Annexin-

FITC negative were categorized as necrotic. Non-stained cells were identified as 

vital. 

3.7 Protein analysis 

3.7.1   Preparation of Samples 

Lysis buffer: 

Tris/HCl pH 6.8  250 mM 

Glycerol                              20 % (vol/vol) 

SDS                                    4 % (wt/vol) 

β-mercaptoethanol             1 % (vol/vol) 

Bromphenol blue                0.001 % (wt/vol)  

DTT                                    10 mM (added freshly before use) 

Benzonase®                      50 IU/ml (added freshly before use) 

MgCl2                                 2 mM (added freshly before use) 

 

Protocol: Endothelial cells were washed with HBSS and subsequently lysed in 150 μl 

of preheated 2X SDS lysis buffer. Subsequently, 50 IU/ml Benzonase® and 2 mM 

MgCl2 were added and lysate was collected in a 1.5 ml Eppendorf tube. Samples 

were denatured for 3 minutes at 95 °C and used immediately or stored at –20 °C. 

 

3.7.2    SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Resolving gel buffer:  Tris/HCl; pH 8.8 120 mM 

Stacking gel buffer:   Tris/HCl; pH 6.8 120 mM 
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10X Gel running buffer:  

Tris   250 mM 

Glycine 2.0 M 

SDS  10 % (wt/vol) 

 

 

SDS gels: 

  

Resolving gels 

 

Stacking gel 

 

Percentage 

 

12.5 % 

 

15 % 

 

6 % 

 

Acrylamide 

Bisacrylamide 

Millipore water 

Resloving gel buffer 

Stacking gel buffer 

SDS 10% ( wt/vol ) 

TEMED 

APS 10% ( wt/vol ) 

 

12.7 ml 

7.0 ml 

9.8 ml 

9.5 ml 

-------- 

0.4 ml 

30 µl 

0.4 ml 

 

15.3 ml 

8.4 ml 

5.8 ml 

9.5 ml 

-------- 

0.4 ml 

30 µl 

0.4 ml 

 

3.8 ml 

2 ml 

17.5 ml 

-------- 

6.0 ml 

0.25 ml 

20 µl 

0.25 ml 

 

 

Protocol: After cleaning the glass plates and spacers with water and ethanol, the gel 

apparatus was assembled and the resolving gel solution was poured (~ 10 cm 

height), and layered with water. The gel was let to polymerize for 3-4 h or overnight at 

room temperature. The layer of water was removed and the stacking gel solution was 

poured on top of the resolving gel, followed by the insertion of a comb. The stacking 

gel was let to polymerize for 1 h at room temperature. After removing the comb, 1X 

running gel buffer was added to the chamber and the wells were washed with a 

syringe. Protein samples were loaded into the wells and the gel was run overnight at 

45 volts. The run was stopped when bromophenol blue had passed through the gel. 
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3.7.3 Western blotting  

 

Proteins separated by SDS-PAGE were transferred onto a nitrocellulose membrane 

by semi-dry blotting. Afterwards proteins of interest were immunodetected using 

specific antibodies. 

Solutions and materials: 

• Nitrocellulose transfer membrane, cut to the dimensions of the gel 

• Six pieces of Whatman® 3 MM filter paper, cut to the dimensions of the gel 

• Blotting chamber 

• Anode buffer 1: 0.3 M Tris/HCl; pH 10.4, 20% (vol/vol) methanol 

• Anode buffer 2: 30 mM Tris/HCl; pH 10.4, 20% (vol/vol) methanol 

• Cathode buffer: 25 mM Tris/HCl; 40 mM 6-amino-n-hexanoic acid; pH 9.4, 20%         

   (vol/vol) methanol  

 

Protocol: The blotting chamber was assembled as follows: Two sheets of filter paper 

(Whatman® 3MM) soaked in anode buffer 1, were placed onto the centre of the 

graphite anode of the blotting chamber. On top of these sheets, two sheets of filter 

paper, soaked in anode buffer 2, were placed followed by nitrocellulose membrane 

equilibrated in anode buffer 2 for 10-15 min. After briefly equilibrating with cathode 

buffer, the SDS-gel (devoid of stacking gel) was layered on top of the nitrocellulose 

membrane, avoiding air bubbles. Two sheets of filter paper, pre-soaked in cathode 

buffer, were then placed on top of the gel followed by the graphite cathode of the 

blotting chamber. Transfer was achieved by application of 0.8-0.9 mA /cm
2
 current 

for approximately 2- 2.5 h. 

 

3.7.4 Staining of transferred proteins 

  

To estimate the efficiency of protein transfer after blotting, the membrane was stained 

with ponceau S, a reversible stain that produces pink bands on a light background. 

The nitrocellulose membrane was washed with Millipore water for 1 min, incubated in 

Ponceau-S solution for 2-3 min with constant shaking at room temperature. 

Subsequently the membrane was destained by washing in Millipore water to the 

desired contrast and photographed. To remove the stain completely, the membrane 

was washed with TBST (1X TBS plus 0.1% Tween 20) under constant shaking. 
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3.7.5 Immunodetection of proteins 

 

Solutions: 

10X Tris-buffered saline (TBS): 100 mM Tris/HCl (pH 7.4), 1.6 M NaCl  

TBS Tween (TBST): 1X TBS, 0.1% (vol/vol) Tween 20 

Blocking-buffer and antibody-dilution buffer: 

3% (wt/vol) BSA in 1X TBST or 5% (wt/vol) non-fat dried milk powder in 1X TBST 

 

Primary Antibodies: 

 

Antibody                                                 Dilution                                      Dilution buffer 

Anti-Actin (mouse IgG)   1:1000    BSA 

Anti-cIAP1 (goat IgG)                             1:500                                           BSA 

Anti-cIAP2 (rabbit IgG)                           1:2000                                         BSA 

Anti-cleaved caspase-3 (rabbit IgG)       1:1000                                        BSA 

Anti-phospho Akt (rabbit IgG)                 1:1000                                         Milk 

Anti-phospho c-jun (rabbit IgG)               1:1000                                         BSA 

Anti-phospho ERK1/2 (mouse IgG)         1:2000                                         BSA 

Anti-procaspase-3 (mouse IgG)              1:1000                                        BSA 

Anti-vinculin (mouse IgG)                        1:1000                                         BSA 

Anti-XIAP (rabbit IgG)                             1:1000                                         Milk 

 

Secondary antibodies, horseradish peroxidase (HRP)-labeled: 

 

Antibody                                                  Dilution                             Dilution buffer 

Anti-rabbit IgG    1:2000   BSA or Milk 

Anti-mouse IgG                                       1:2000   BSA or Milk 

Anti-goat IgG                                           1:1000   BSA or Milk 

 

Protocol: After a brief washing with Millipore water and TBST, the membranes were 

blocked with either 5% (wt/vol) non-fat milk powder or 3% (wt/vol) BSA in TBST for 2 

h at room temperature. After blocking, the membranes were incubated with primary 

antibody overnight at 4 °C, followed by washing with TBST 3-4 times for 5-10 

minutes each time at room temperature and incubated with secondary antibody for 1 
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h at room temperature. The membranes were then washed with TBST 3-4 times for 

10-15 min each and incubated with enhanced chemiluminescence (ECL) solution (30 

sec to 1 min) and the luminescence was detected and recorded with Bio-Rad 

Quantity One gel documentation system. 

 

3.7.6 Stripping and reprobing 

 

Stripping solution:  (50 ml) 

Millipore H2O                   44 ml 

1M Tris HCl (pH 6.8)       3.1 ml 

10% SDS (wt/vol)  2.5 ml 

 

To reprobe the membranes with antibodies against other proteins of the same or 

equal size, bound antibodies were removed by incubating the membranes with 

prewarmed (60°C) stripping buffer 2-5 min at RT under constant shaking. 

Subsequently membranes were washed extensively with TBST buffer, blocked and 

reprobed with appropriate antibodies. 

 

3.8 Co-immunoprecipitation 

 

To determine the binding of cIAP2 with procaspase-3 under conditions of 

hypoxia/reoxygenation and postconditioning, co-immunoprecipitation was performed 

with procaspase-3 coated G protein dynabeads. 

 

Solutions and materials: 

G protein coated magnetic beads:         6 µl beads suspention / ~ 1mg total cell lysate 

Anti-procaspase-3 antibody:                  3 µg / ~ 1 mg total cell lysate 

 

Sodium phosphate buffer (0.1M) pH 7.4: 

Na2HPO4 80 mM 

NaH2PO4                                       20 mM 

 

Phospahate Buffer Saline (PBS) pH 7.4: 

NaCl     137 mM 



 42 

KCl      2.7 mM 

KH2PO4     1.5 mM 

Na2HPO4     8.0 mM 

 

Lysis Buffer (ice cold): 

Tris/HCl (pH 7.5)     50 mM 

NaCl     150 mM 

Triton X-100      50 mM  

NaF         1 mM  

EDTA         1 mM  

EGTA     150 mM 

Na3VO4     0.5 mM  

PMSF (vol/vol)        0.5% 

NP-40 (vol/vol)        0.5% 

1 tablet proteinase inhibitor CompleteTM per 10 ml buffer 

 

Preparation of beads: Protein G-coated magnetic beads were washed 3-4 times with 

0.1 M sodium phosphate buffer using a magnetic rack and incubated with anti-

procaspase-3 antibody overnight at 4 °C with end-over-end rotation. The antibody 

coated beads were blocked with 6% (wt/vol) skimmed milk powder in 0.1 M sodium 

phosphate buffer and 0.1% (vol/vol) tween 20 for 1 h at room temperature. 

Afterwards the beads were washed 3-4 times with 0.1 M sodium phosphate buffer 

containing 0.1 % (vol/vol) Tween 20 and stored in 50 μl of 1X PBS. 

 

Protocol: Confluent endothelial monolayers cultured on a 10 cm cell culture dish that 

were subjected to hypoxia/reoxygenation or postconditioning were incubated with 

600 μl lysis buffer for 10 minutes on ice and subsequently harvested by scraping with 

a rubber policeman. Cells were further lysed in a douncer or using a 25 g needle and 

syringe. The lysate was centrifuged at 1000 X g for 2 min at 4 °C. The cleared 

supernatant was added to the antibody coated beads and incubated for 1.5 h at 4 °C 

with end-over-end rotation. Supernatant containing unbound protein was discarded 

and the beads were washed three times with PBS containing 0.1 % (vol/vol) Tween 

20, followed by heating with 2X SDS lysis buffer for 5 min at 90 °C to detach the 

bound protein. The dissolved protein in buffer was analyzed by SDS-PAGE. 
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3.9 Immunofluorescence: 

 

Solutions and materials: 

 

Primary antibodies: 

 

 
Antibody 

 
Cell culture  

 
Aorta sections 

 
 

 
Dilution 

 
Dilution buffer 

 
Dilution 

 
Dilution buffer 

 
Anti-cIAP2 (rabbit IgG) 

 
Anti-procaspase-3  

(mouse IgG) 
 

Anti-von Willebrand factor 
(rabbit IgG) 

 
1:500 

 
1:500 

 
 

------ 

 
BSA+CWFSG 

 
BSA+CWFSG 

 
 

----------- 

 
1:50 

 
1:50 

 
 

1:50 

 
Protein block 

 
Protein block 

 
 

Protein block 

 
 
 
Secondary antibodies: 
  

 
Antibody 

 
Cell culture  

 
Aorta sections 

 
 

 
Dilution 

 
Dilution buffer 

 
Dilution 

 
Dilution buffer 

 
Anti-mouse  

Alexa fluor 488  
 

Anti-rabbit  
Alexa fluor 633 

 
Anti-rabbit 

Alexa fluor 546 
 

 
1:500 

 
 

1:500 
 
 

------ 

 
BSA+CWFSG 

 
 

BSA+CWFSG 
 
 

----------- 

 
----- 

 
 

----- 
 
 

1:250 

 
--------- 

 
 

--------- 
 
 

 Protein block  

 
 
 
Buffered glycerol:  

Na2CO3 1.5 M 

NaHCO3                                  1.5 M 

Glycerol (water-free) 
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1.5 M NaHCO3 solution is slightly heated and set to a pH of 8.6 using 1.5 M Na2CO3 

solution. 1 portion of the above buffer is then mixed with 1 portion of glycerol.  

 

Protocol: Endothelial monolayers on glass cover slips were washed with 1X PBS and 

fixed with 4 % (wt/vol) paraformaldehyde at 37 °C for 20 min, followed by 

permeabilization with 0.1 % (wt/vol) Triton X-100 at 37 °C for 20 min. Cells were then 

washed 3-4 times with 1X PBS and blocked with 5 % (wt/vol) bovine serum albumin 

+ 5 % (wt/vol) cold water fish skin gelatin for 1 h to prevent non-specific binding. 

Tissue sections were blocked similarly with Protein block serum-free. Samples were 

then probed with primary antibody (1:50 dilution for tissue sections and 1:500 dilution 

for cells) overnight at 4 °C, followed by thorough washing in 1X PBS. Secondary 

antibodies tagged with Alexa fluor 488/ Alexa fluor 546/ Alexa fluor 633 were used in 

a dilution of 1: 250 – 1:500 for 1 h at room temperature. The samples were then 

washed 3-4 times with 1X PBS and mounted with buffered glycerol. Immunoreactivity 

was visualized and analyzed by confocal microscopy with Carl Zeiss LSM 510. 

 

3.10    Intact vessel model 

 

Zamboni fixative (pH 7.3): 

Paraformaldehyde:    20 mg 

Picric acid (saturated solution):  150 ml 

 

The solution is heated to 60°C and alkalized with 2.5% (vol/vol) NaOH until the 

solution is clear and made upto 1 litre with phosphate buffer (80 mM NaH2PO4; 20 

mM Na2HPO4). 

 

Protocol: Freshly excised aortas were cleaned and rinsed with 1X PBS and 

immersed in a 2 ml Eppendorf tube containing PromoCell growth medium. Hypoxia 

was applied following the same protocol used for cell cultures, by flushing the 

medium with 1U/ml of EC oxyrase. Postconditioning was applied at the onset of 

reoxygenation after 2 h of hypoxia, while control vessels were normally reoxygenated 

with EC-oxyrase free medium. After the experiment, aortas were fixed with 1X 

Zamboni for 24 h and washed with 1X PBS until the colour of Zamboni is cleared, 

followed by over night washing.  The aortas were thereafter incubated in 18% (wt/vol) 
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saccharose over night, embedded in Tissue Tec and were frozen in liquid nitrogen. 6 

µm tissue sections were obtained at -20 °C on a Leica CM 3050S crystat and 

mounted with buffered glycerol onto frost free glass slides. 

 

3.11 Statistical analysis 

 
Data are given as means ± S.D. of 3-5 experiments using independent cell 

preparations. The comparison of means between groups was performed by oneway 

analysis of variance (ANOVA) followed by a Student-Newman-Keuls post-hoc test. 

Changes in parameters within the same group were assessed by multiple ANOVA 

analysis. Probability (P) values of less than 0.05 were considered significant (P< 

0.05). 
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4. Results 

 

4.1 Effect of postconditioning on hypoxia/reoxygenation-induced apoptosis in 

endothelial cells 

 To test whether postconditioning protects endothelial cells from 

hypoxia/reoxygenation-induced apoptosis, HUVEC were first induced to apoptosis by 

subjecting them to severe hypoxia (Po2 < 1 mmHg) for 2 h followed by 24 h 

reoxygenation. Postconditioning was applied at the onset of reoxygenation and cell 

death was analysed by annexin V/ PI staining in FACS, 24 h after reoxygenation, in 

comparision to cells that were reoxygenated after hypoxia, without the application of 

postconditioning.  

Hypoxia/reoxygenation led to an increase in apoptosis from 8.1± 0.9% to 19.2± 

1.4% in cultured endothelial cells. Application of hypoxic postconditioning at the 

onset of reoxygenation reduced the percentage of annexin V positive cells (Fig. 4.1) 

to basal values. Correspondingly, the loss in percentage of vital cell population due to 

hypoxia/reoxygenation was revived by postconditioning (Fig. 4.1). No significant 

changes were observed in percentage of necrotic cells.  

 

 

Fig. 4.1 Effect of hypoxia/reoxygenation and postconditioning on percentage of 
apoptotic cells: HUVEC were subjected to 2 h of severe hypoxia followed by 24 h of 
reoxygenation without (HR) and with (PC) postconditioning. Non-treated cells were 
taken as control (C). Distribution of vital, apoptotic and necrotic cells determined by 
FACS analysis. Data are means ± SD of 3 separate experiments with independent 

cell preparations. P < 0.05 vs C; P < 0.05;  n.s: not significantly different. 
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4.2 Effect of postconditioning on hypoxia/reoxygenation-induced cleavage of 

caspase-3 

  Cleavage of caspase-3, a central effector caspase of the apoptotic cascade, 

was measured to analyze the effect of postconditioning on hypoxia/reoxygenation-

induced apoptosis in endothelial cells. For this, HUVEC were induced to apoptosis by 

subjecting them to 2 h severe hypoxia, followed by 24 h reoxygenation. 

Postconditioning was applied at the onset of reoxygenation and caspase-3 cleavage 

was measured at 6 and 24 h after reoxygenation in comparision to cells that were 

reoxygenated after hypoxia without the application of postconditioning.  

As shown in fig. 4.2, severe hypoxia followed by 6 h reoxygenation caused a 

distinct 2.1± 0.3 fold increase in cleavage of caspase-3. This hypoxia/reoxygenation-

induced caspase-3 cleavage was abolished by the application of hypoxic 

postconditioning. The changes in cleavage of caspase-3 in response to 

hypoxia/reoxygenation and postconditioning were less distinct when measured after 

24 h of reoxygenation.  
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Fig. 4.2 Effect of hypoxia/reoxygenation and postconditioning on caspase-3 

cleavage: HUVEC were subjected to 2 h of severe hypoxia followed by 6 h and 24 h 
of reoxygenation without (HR) and with (PC) postconditioning. Non-treated cells were 
taken as control (C). (A) Representative Western blot showing cleavage of caspase-
3. Actin was taken as loading control. (B) Densitometric analysis of caspase-3 

cleavage at 6 h reoxygenation. Cleaved caspase-3 relative to actin is given as x-fold 
of control. The ratio of control was set to 1. Data are means ± SD of 3 separate 

experiments with independent cell preparations. P < 0.05 vs. C; P < 0.05. 
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4.3 Effect of postconditioning on inhibitor of apoptosis proteins, cIAP1, cIAP2 

and XIAP 

        Inhibitors of apoptosis proteins, known to be potential caspase-3 inhibiting 

proteins, were screened in this study for their expression in postconditioning. For this, 

HUVEC were subjected to postconditioning, following 2 h of severe hypoxia. Cells 

were harvested for protein lysates, at the end of postconditioning or at the end of the 

corresponding time period (30 min reoxygenation) for cells that were reoxygenated 

without postconditioning.     

       Western blot analysis showed that, cIAP2 but not its close homologues, cIAP1 or 

XIAP, is upregulated by severe hypoxia and declines to basal levels with 

reoxygenation. As shown in fig. 4.3, a striking increase of 6.4 ± 0.3 fold in the protein 

level of cIAP2 was observed with 2 h of severe hypoxia compared to normoxia. The 

protein level reduced to basal values in cells that were reoxygenated for 30 minutes. 

On the other hand, cells that were subjected to postconditioning showed a 7.6 ± 0.7 

fold increase in cIAP2 levels compared to normal hypoxia/reoxygenated cells that 

were taken as control. In contrast, the levels of cIAP1 and XIAP remained unchanged 

under corresponding conditions (Fig. 4.3).  
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Fig. 4.3 Effect of hypoxia/reoxygenation and postconditioning on protein levels of 
cIAP1, cIAP2 and XIAP: (A) Representative Western blots showing cIAP2, cIAP1 and 
XIAP under 2 h severe hypoxia (H) followed by 30 min reoxygenation without (HR) 
and with postconditioning (PC). Actin or vinculin (Vinc) was used for loading control. 
(B) Densitometric analysis of cIAP2 expression. cIAP2 relative to vinculin is given as 

x-fold of control. The ratio of control was set to 1. Data are means ± SD of 4 separate 
experiments with independent cell preparations. *P < 0.05 vs. C; #P < 0.05 vs HR. 
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4.4 Effect of cIAP2 silencing on hypoxia/reoxygenation-induced apoptosis and 

postconditioning        

       To confirm the role of cIAP2 in endothelial postconditioning, the protein was 

downregulated by transfecting with specific siRNA 24 h prior to the experiment. The 

efficiency of downregulation was checked by Western blot analysis by measuring 

cIAP2 protein content in transfected cells. Cells transfected with non-specific siRNA 

were taken as control, to nullify the effects of transfection procedure. A reduction of 

80 ± 12% in the protein levels of cIAP2 was achieved with cIAP2 siRNA in 

comparison to non-specific siRNA transfected cells (Fig. 4.4 A, B).  

      The effect of postconditioning on hypoxia/reoxygenation-induced apoptosis was 

measured in these cIAP2 downregulated cells. For this, HUVEC were transfected 

with non-specific or cIAP2 siRNA, 24 h prior to the application of 

hypoxia/reoxygenation or postconditioning. Cell death was analysed by annexin V/ PI 

staining in FACS, 24 h after reoxygenation. As shown in fig. 4.4 C, cIAP2 

downregulation caused a 1.7 ± 0.4 fold increase in the basal level of apoptosis in 

non-treated cells. As expected, hypoxia/reoxygenation lead to a significant increase 

in percentage of apoptosis compared to normoxic controls, in cells transfected with 

non-specific siRNA and cIAP2 siRNA as well. As observed previously in non-

transfected cells (Fig. 4.1), postconditioning abolished hypoxia/reoxygenation-

induced apoptosis in cells transfected with non-specific siRNA. However, this 

reduction of apoptosis by postconditioning was significantly less effective in cIAP2 

downregulated cells, confirming the protein‘s role in postconditioning. 

Correspondingly, postconditioning could revive the loss in percentage of healthy cells 

due to hypoxia/reoxygenation (HR), in non-specific siRNA transfected cells, while the 

revival effect was lost in cIAP2 downregulated cells (Fig. 4.4 C). 
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Fig. 4.4 Effect of cIAP2 downregulation on hypoxia/reoxygenation-induced apoptosis 

and postconditioning. HUVEC were transfected with cIAP2 siRNA 24 h prior to the 
application of hypoxia/reoxygenation (HR) or postconditioning (PC). Non-treated cells 
were taken as control (C). (A) Representative Western blot showing downregulation 
of cIAP2 with cIAP2 specific siRNA (cIAP2 si) in comparison to non-specific control 
siRNA (NS si). Non-transfected cells were taken as control (NT). Vinculin was taken 
as internal loading control. (B) Densitometric analysis of cIAP2 relative to Vinculin, 
given as percentage of control. Data are means ± SD of 5 separate experiments with 

independent cell preparations. 
*
P < 0.05 vs. NS si; n.s: not significantly different. (C) 

Distribution of vital, apoptotic and necrotic cells determined by FACS analysis of cells 
treated with cIAP2 siRNA compared to those treated with non-specific siRNA (NS si). 
Data are means ± SD of 3 separate experiments with independent cell preparations. 
*
P < 0.05 vs. C;

 #
P < 0.05; n.s: not significantly different. 

C 

C 
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4.5 Effect of cIAP2 silencing on hypoxia/reoxygenation-induced caspase-3 

cleavage and postconditioning 

       In addition to FACS analysis, the effect of postconditioning on hypoxia/ 

reoxygenation-induced caspase-3 cleavage was measured in cIAP2 downregulated 

cells, to confirm the role of cIAP2 in endothelial postconditioning.   

       Following 24 h of transfection with non-specific siRNA or cIAP2 specific siRNA, 

HUVEC were subjected to severe hypoxia. Caspase-3 cleavage was measured 6 h 

after reoxygenation or postconditioning. Consistent with the previous observation 

(Fig. 4.2), hypoxia/reoxygenation caused an increase in cleavage of caspase-3 which 

was effectively abolished by postconditioning (Fig 4.5). Treatment with non-specific 

siRNA showed no influence on the protective effect of postconditioning in reducing 

hypoxia/reoxygenation-induced caspase-3 cleavage. However, postconditioning 

failed to abolish hypoxia/reoxygenation-induced caspase-3 cleavage in cells treated 

with cIAP2 siRNA (Fig. 4.5) 

 

 

Fig. 4.5 Effect of cIAP2 silencing on caspase-3 cleavage under 

hypoxia/reoxygenation and postconditioning. Cells were transfected with cIAP2 
siRNA or non-specific siRNA (NS si), 24 h prior to the application of 
hypoxia/reoxygenation (HR) or postconditioning (PC). Non-treated cells were taken 
as control (C). Representative Western blot showing cleavage of caspase-3. Actin 
was taken for internal loading control. 
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4.6 Effect of hypoxia/reoxygenation and postconditioning on cIAP2 - 

procaspase-3 interaction 

       cIAPs are known to execute their anti-apoptotic function by directly binding to 

specific procaspases and inhibiting their proteolytic activation (Roy et al., 1997). To 

test whether cIAP2 directly binds to procaspase-3 in endothelial cells under 

hypoxia/reoxygenation and postconditioning, co-immunoprecipitation of both the 

proteins and their co-localization were studied. HUVEC were subjected to 2 h of 

severe hypoxia followed by reoxygenation or postconditioning. 

Anti-procaspase-3 antibody coated beads were used to coimmunoprecipitate 

procaspase-3 with its interacting partners from protein lysates of cells subjected to 

hypoxia/reoxygenation or postconditioning. As shown in fig 4.6 A, cIAP2 was co-

immunoprecipitated with the caspase-3 zymogen under conditions of hypoxia and 

postconditioning, while no binding was observed under control or reoxygenation 

conditions. 

        In accordance with the coimmunoprecipitation studies, co-staining of cIAP2 and 

procaspase-3 in immunocytochemistry showed increased co-localization of both 

proteins in the peri-nuclear regions, during hypoxia and postconditioning compared to 

control or reoxygenated cells (Fig. 4.6B).  

 

 

 

 

 

 

 

 

 

 
 
  
 
 
 
 
 
 
 
 

A 
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Fig. 4.6 Effect of hypoxia/reoxygenation and postconditioning on cIAP2 - 
procaspase-3 interaction. HUVEC were subjected to 2 h hypoxia (H) followed by 
reoxygenation without (HR) and with postconditioning (PC). Non-treated cells were 
taken as control (C). (A) Representative Western blot showing co-

immunoprecipitation of cIAP2 with procaspase-3 under hypoxia and postconditioning, 
while no binding was observed under control and reoxygenation conditions (B) 

Immunostaining of procaspase-3 (green) and cIAP2 (red), showing increased co-
locolization of both the proteins (yellow), under hypoxia and postconditioning 
compared to reoxygenation and control conditions.  

B 

A 
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4.7 Effect of postconditioning on PI3-kinase and MAPKs in endothelial cells 

       Mitogen activated protein kinases and the PI3-Kinase pathway play a major role 

in various anti-apoptotic/pro-survival mechanisms. The activation of Akt, ERK1/2, p38 

MAPK and JNK pathways in endothelial postconditioning was examined as an initial 

step to identify the mechanism by which cIAP2 is maintained in postconditioning. 

      For this, HUVEC were subjected to postconditioning, following 2 h of severe 

hypoxia. Cells were harvested for protein lysates at the end of postconditioning or at 

the end of the corresponding time period (30 min reoxygenation) in cells that were 

reoxygenated without postconditioning. Phosphorylation of the kinases was detected 

in Western blotting as a measure of their activation. As shown in fig 4.7, a significant 

increase in the phosphorylation of Akt, ERK1/2 and p38 MAPK was observed during 

postconditioning in comparison to cells that were normally reoxygenated after 

hypoxia. Phosphorylation of c-jun remained unchanged under all corresponding 

conditions, negating the role of the stress activated protein kinase in endothelial 

postconditioning. 
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Fig. 4.7 Effect of postconditioning on phosphorylation of PI3 kinase and MAPKs. 
HUVEC were subjected to 2 h severe hypoxia (H) followed by 30 min reoxygenation, 
without (HR) or with postconditioning (PC). Representative Western blots showing 
phosphorylation of Akt, ERK1/2, p38MAPK and c-Jun. Duplicate samples were taken 
for each condition. Actin or vinculin was taken for internal loading control.  
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4.8 Role of PI3 kinase and MAPKs in the maintenance of cIAP2 by 

postconditioning  

       Pharmacological inhibition of the kinases that were found to be activated during 

postconditioning in endothelial cells was used as a strategy to test the involvement of 

those kinases in the maintenance of cIAP2 by postconditioning. Accordingly, HUVEC 

were subjected to postconditioning in the presence of the Akt inhibitor LY294002, 

MEK-1/2 inhibitors PD98059 or UO126, the p38 MAPK inhibitor SB203580 or the c-

jun inhibitor SP600125. DMSO treated cells were taken as vehicle control.  

       As observed previously (Fig. 4.3), postconditioning prevented the loss of cIAP2 

during reoxygenation (Fig. 4.8). However, inhibitors of both Akt and ERK 1/2 

phosphorylation attenuated the high levels of cIAP2 in postconditioning, indicating 

their role as upstream targets of cIAP2 (Fig. 4.8). Despite the increase in p38 MAPK 

phosphorylation during postconditioning (Fig. 4.7), its inhibition had no significant 

effect on the maintenance of cIAP2 in postconditioning (Fig. 4.8), suggesting a non-

causal role of the kinase activation in cIAP2 mediated protection in postconditioning.  

Inhibition of c-jun phosphorylation had no effect on cIAP2 in postconditioning (Fig. 

4.8). Treatment with DMSO has no effect on the maintenance of cIAP2 by 

postconditioning. 
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Fig. 4.8 Effect of PI3 kinase and MAPK inhibitors on cIAP2 under postconditioning. 
HUVEC were subjected to postconditioning in the presence of PD98059 (20 µM), 
UO126 (10 µM), SB203580 (10 µM), SP600125 (10 µM), LY294002 (10 µM) or 
DMSO (10 µM). Cells subjected to postconditioning in the presence DMSO were 
taken as vehicle control. (A) Representative Western blot showing cIAP2 in non-
treated control (C), hypoxia (H), hypoxia/reoxygenation (HR) and during 
postconditioning in the absence (NT) and presence of specific kinase inhibitors. 
Vinculin (Vinc) was taken for internal loading control. (B) Densitometric analysis of 

cIAP2 relative to Vinculin, given as percentage of control. The ratio of control was set 
to 100. Data are means ± SD of 3 separate experiments with independent cell 

preparations. 
*
P < 0.05 vs. HR;

 #
P < 0.05 vs. vehicle n.s: not significantly different vs. 

vehicle. 
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4.9 Effect of hypoxia/reoxygenation and postconditioning on cIAP2 expression 

in the rat aorta 

      To confirm the relevance of cIAP2 expression in reponse to hypoxia, 

reoxygenation and postconditioning, in endothelial monolayers, an intact vessel 

model was established using rat aortas. Freshly excised rat aortas were subjected to 

2 h of hypoxia, followed by reoxygenation or postconditioning, using the same 

protocol applied for cultured endothelial cells. Immunofluorescence labeling of the 

sectioned aortas showed an increase in staining of cIAP2 in the endothelium 

(identified by von Willebrand factor) with 2 h hypoxia. In accordance with the effect 

observed in cultured endothelial cells, reoxygenation caused a decrease in cIAP2, 

while postconditioning prevented the loss of cIAP2 with reoxygenation in the intact 

vessel as well (Fig. 4.9).  
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Fig. 4.9 Effect of hypoxia/reoxygenation and postconditioning on immunostaining of 

cIAP2 in the rat aorta. (Upper panel) Immunostaining of rat aorta cryosections 
showing differences in cIAP2 staining (red) in the endothelium of vessels subjected to 
hypoxia (H), hypoxia/reoxygenation (HR) or postconditioning (PC). Non-treated 
aortas were taken as control (C). DAPI (blue) was used as a nuclear stain. (Lower 
panel left) Immunostaining of von Willebrand factor (red) indicates endothelium. 
(Lower panel right) Non-stained section of the aorta was taken for negative control 
(neg. control).  

neg. 
control 
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5. Discussion 

 

       In the present study, the effect of postconditioning on endothelial cell survival 

and the molecular mechanisms involved were investigated. Postconditioning has 

emerged as a clinically feasible intervention, well-proven to effectively reduce 

reperfusion injury in cardiomyocytes (Zhao et al., 2003). However, little is known 

about the effects of this maneuver in endothelial cells and whether it has an influence 

on apoptosis, which is the predominant form of endothelial cell death in the 

reperfused myocardium. In an attempt to study this, endothelial cells were exposed to 

hypoxia/reoxygenation and the effects of postconditioning on cell survival as well as 

the underlying molecular mediators were examined. 

       The major findings of the present study are: (a) Postconditioning protects 

cultured endothelial cells from hypoxia/reoxygenation-induced apoptosis. (b) Cellular 

inhibitor of apoptosis protein 2, cIAP2, but not cIAP1 or XIAP is upregulated during 

hypoxia and its loss during reoxygenation is prevented by postconditioning. This 

effect of postconditioning on cIAP2 stabilization was observed in cultured endothelial 

cells as well as in intact vessels. (c) Downregulation of cIAP2 with siRNA augments 

hypoxia/reoxygenation-induced apoptosis and diminishes the protective effect of 

postconditioning. (d) cIAP2 directly interacts with pro-caspase3 in hypoxia and 

postconditioning. (e) ERK1/2 and PI3 Kinase pathways, but not p38 MAPK or the 

JNK pathway, are involved in the maintenance of cIAP2 in endothelial 

postconditioning. 

  

5.1 Postconditioning protects endothelial cells from hypoxia/reoxygenation-

induced apoptosis 

        This study shows for the first time that postconditioning, known to rescue 

cardiomyocytes from reperfusion injury, also has an effect on endothelial cells. 

According to the principle that the first few minutes of reperfusion provide the ‗window 

of opportunity‘ (Piper et al., 2004), intermittent hypoxia applied at the very onset of 

reoxygenation reduced the caspase-3 cleavage and apoptosis induced by 

hypoxia/reoxygenation. Correspondingly, postconditioning could revive the loss in 

percentage of healthy cells induced by hypoxia/reoxygenation, while there were no 

significant changes in the percentage of necrotic cells. 

       The increase in percentage of apoptosis in response to hypoxia/reoxygenation 

can be explained by the robust energy metabolism of endothelial cells, which allows 
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them to maintain high phosphorylation potential, even in adverse conditions like 

ischemia or hypoxia. This ability to maintain their ATP levels prevents endothelial 

cells from the necrotic fate (Lelli et al., 1998), resulting in no significant changes in 

percentage of necrosis, in response to hypoxia/ reoxygenation or postconditioning.  

      Increasing evidence suggests that loss of endothelial integrity leads to leakage 

of cytokines, interleukins and other pro-inflammatory mediators, jeopardizing the 

survival of the entire myocardial tissue (Bombeli et al., 1997, Werner et al., 2006). 

Hence it is likely that prevention of apoptosis, which is the predominant form of cell 

death in the endothelium, comprises a significant fraction of the protection exerted by 

postconditioning. This is further supported by studies reporting endothelial apoptosis 

as a critical event preceding myocardial apoptosis during ischemia reperfusion injury 

(Scarabelli et al., 2001). It was also reported that during ischemia, inhibition of 

caspase-9, the principal initiator caspase of the endothelium, and not inhibition of 

caspase-8, which is found in the cardiomyocytes, leads to a reduction in infarct size 

(Stephanou et al., 2001), suggesting that prevention of endothelial apoptosis, could 

be critical in determining the outcome of reperfusion injury in the myocardium. The 

systematic nature of this cell death process, unlike necrosis, allows greater chances 

for therapeutic interventions and revival. 

The algorithm of postconditioning applied in this study effectively abolished 

reoxygenation-induced caspase-3 cleavage and apoptosis, reviving the loss in 

percentage of vital cell population. Though postconditioning was originally performed 

on the canine heart, by the application of 3 cycles of ischemia and reperfusion, each 

lasting for 30 sec (Zhao et al., 2003), the optimal algorithm for postconditioning can 

vary widely depending on the species and the experimental model under study 

(Skyschally et al., 2009). 3 cycles of severe hypoxia and reoxygenation, 5 min each, 

were applied in this study, which is established to be optimal for cell culture models 

(Sun et al., 2005). 

 

5.2 Inhibitors of apoptosis proteins in postconditioning 

     The Inhibitors of apoptosis family of proteins are known to play pivotal roles in a 

wide variety of pro-survival and anti-apoptotic pathways by inhibiting caspases, the 

key mediators of apoptosis. Here, the involvement of IAPs in the protective effect of 

postconditioning on endothelial cells was examined. Among the IAPs screened in the 

study, only cIAP2 was found to be upregulated by hypoxia. Importantly, 
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reoxygenation leads to a loss in cIAP2, which is prevented by the application of 

postconditioning. The protein levels of cIAP1 and XIAP remained unchanged in 

response to hypoxia/reoxygenation or postconditioning. 

       Focus was laid on the IAP family of proteins among all other known hypoxia-

sensitive anti-apoptotic molecules, because of the converging downstream 

positioning of IAPs in both the intrinsic and extrinsic apoptotic pathways. IAPs act to 

directly suppress the activity of caspases, which are the key apoptotic executors. 

Further, the loss of cIAP2 at reoxygenation supports the hypothesis that a maneuver 

to prevent the loss could protect the cells from apoptosis. This makes cIAP2 an 

interesting candidate for postconditioning. Bcl2, for instance is one of the other 

hypoxia sensitive anti-apoptotic proteins, but the continued endogenous expression 

of this protein in reoxygenation has no protective effect, still allowing apoptosis to 

occur in reperfusion injury (Mishra et al., 2006). Similar is the case with Bcl-xL, 

making these proteins less plausible candidates to be involved in postconditioning. 

cIAP2, on the other hand, is upregulated as an adaptive response to hypoxia but 

reduces to basal levels with the onset of reoxygenation. As demonstrated by the 

present study, postconditioning indeed strengthens this adaptive response induced 

by hypoxia and prevents the loss of cIAP2 with the onset of reoxygenation. 

Although other mammalian IAPs and particularly cIAP1, share a highly conserved 

structural and functional homology with cIAP2 including an NFкB response element, 

it is not yet clear what distinguishes cIAP2 from the others in terms of its hypoxia 

sensitivity. A previous study by Dong et al., (2001) supports our observation that only 

cIAP2, but not cIAP1 is upregulated by hypoxia. The upregulation was reported to be 

HIF-independent, but the specific mechanism remains to be elucidated.  

 

5.3 Effect of cIAP2 silencing on hypoxia/reoxygenation-induced apoptosis and 

postconditioning 

       The functional significance of cIAP2 expression in endothelial postconditioning 

was tested by silencing the protein with specific siRNA before the application of 

hypoxia/reoxygenation or postconditioning. About 80% downregulation in the protein 

levels of cIAP2 was achieved in comparison to non-specific siRNA treated cells taken 

as control. As expected, cIAP2 silencing slightly increased the basal level of 

apoptosis in normal growing cells. Hypoxia/reoxygenation led to an increase in 

cleavage of caspase-3 and percentage of apoptosis, in both cIAP2 siRNA and non-
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specific siRNA treated cells. This was accompanied by a corresponding loss in 

percentage of vital cell population, in both cases. As observed in non-treated cells, 

postconditioning effectively abolished hypoxia/reoxygenation-induced apoptosis in 

cells transfected with non-specific siRNA. However, the protective effect of 

postconditioning was diminished in cIAP2 downregulated cells, as seen by the failure 

of the maneuver to reduce hypoxia/reoxygenation-induced caspase-3 cleavage and 

apoptosis in these cells. Correspondingly, postconditioning was effective in reviving 

hypoxia/reoxygenation-induced loss in percentage of vital cell population in non- 

specific siRNA treated cells, but not in cIAP2 downregulated cells. 

       cIAP2 appears to be one of the anti-apoptotic molecules central in balancing the 

apoptotic machinery of endothelial cells. This is evident from the fact that, cIAP2 

silencing even causes an increase in the basal level of apoptosis in normal growing 

cells that are unexposed to hypoxia/reoxygenation. The drastically high levels of the 

protein in postconditioning and the significant antagonizing effect of its silencing on 

the protective effect of postconditioning strongly emphasize the crucial role of cIAP2 

in endothelial postconditioning.  

 

5.4 Interaction of cIAP2 and procaspase-3 

      Based on the previously reported observation that cIAP1 and cIAP2 inhibit 

apoptosis by directly binding to procaspase-3 (Roy et al., 1997), it was hypothesized 

that the elevated levels of cIAP2 in postconditioning might prevent reoxygenation 

induced apoptotic execution by directly binding to procaspase-3 and preventing its 

cleavage to active subunits. The hypothesis was tested by studying the interaction of 

both the proteins in endothelial cells subjected to hypoxia/reoxygenation or 

postconditioning. Co-immunoprecipitation of cIAP2 with procaspase-3 showed direct 

interaction of the two proteins under conditions of hypoxia and postconditioning. This 

was further supported by immunocytochemical images showing increased co-

localization of both the proteins in the peri-nuclear regions of the cell, under hypoxia 

and postconditioning.  

          In several cases, the BIR domain of IAPs enables them to bind caspases and 

suppress their activity (Devereaux et al., 1997). However cIAP1 and cIAP2 also 

possess an exclusive caspase recruitment domain (CARD), the function of which is 

not yet completely understood. It is not yet known whether the BIR or the CARD 

domain of cIAP2 binds to procapase-3 in endothelial cells, but it may be speculated 
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that either of the two domains or both of them could be potential motifs responsible 

for the protein‘s binding to procaspase-3 thereby leading to its inactivation during 

postconditioning in endothelial cells. 

 

5.5 Role of PI3-kinase and MAPKs in the maintenance of cIAP2 by 

postconditioning  

        As an initial step to identify the signaling mechanism involved in the 

maintenance of cIAP2 by postconditioning, the activation of Akt and MAPK pathways 

in endothelial postconditioning was examined. The expression of cIAP2 in 

postconditioning was then studied by performing postconditioning in the presence of 

pharmacological inhibitors of those kinases that are found to be activated during 

postconditioning.  

        Increase in phosphorylation of Akt, ERK1/2 and p38 MAPK was observed in 

postconditioning compared to hypoxia/reoxygenation in endothelial cells. There were 

no significant changes in the phosphorylation state of c-jun. In accordance to this, 

pharmacological inhibition of PI3-kinase and ERK1/2 prevented the maintenance of 

cIAP2 by postconditioning. On the contrary, inhibition of p38 MAPK had no effect on 

the protein levels of cIAP2 during postconditioning, in spite of the fact that 

phosphorylation of p38 MAPK was observed in endothelial postconditioning, 

excluding p38 MAPK as an upstream signaling element in cIAP2 maintenance. The 

levels of phospho c-jun remained unchanged, suggesting that the stress-activated 

JNK pathway is not involved in endothelial postconditioning. 

       Activation of PI3-kinase and ERK1/2 pathways during postconditioning in 

endothelial cells is similar to cardiomyocytes (Hausenloy et al., 2004), where both the 

pathways were found to be activated during postconditioning. ERK1/2 and PI3-kinase 

are collectively called as reperfusion injury salvage kinases (RISK) and their 

activation is reported to protect against reperfusion injury (Hausenloy et al., 2004).  

The mechanism by which these survival kinases are recruited by postconditioning is 

still unresolved, although it is suggested that it may be due to activation of cell-

surface receptors including the adenosine A2A receptor (Morrison et al., 2007). Other 

studies have placed its activation downstream of other signaling elements such as 

sphingosine kinase (Jin et al., 2008) and the recovery of neutral pH in the first few 

minutes of myocardial reperfusion (Fujita et al., 2007). The downstream targets of 

RISK are better resolved and converge on inhibition of mPTP opening, principally via 
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GSK-3ß (Halestrap et al., 1998; Gomez et al., 2008). Further, the mechanism by 

which activation of PI3-kinase and ERK1/2 lead to stabilization of cIAP2 in 

endothelial postconditioning is yet to be determined. However, pharmacological 

inhibition clearly indicates their upstream role in the maintenance of cIAP2 during 

postconditioning.  

In addition, p38 MAPK was also found to be activated in endothelial postconditioning. 

The role of p38 MAPK in cardiac conditioning has frequently countered controversy, 

with studies reporting both cardio-protective (da Silva et al., 2004) and pro-injurious 

(Sun et al., 2006) roles of the kinase at the time of reperfusion (Ping et al., 2000; 

Hausenloy et al., 2007). In our model, p38 MAPK was observed to be activated 

during postconditioning, however, blocking the kinase by pharmacological inhibition 

had no effect on cIAP2, indicating that the activation plays no role in the maintenance 

of cIAP2 during postconditioning. 

 

5.6 cIAP2 expression in the intact vessel 

       To test the expression of cIAP2 during hypoxia/reoxygenation and 

postconditioning in the intact vessel, a vessel model using rat aorta was established. 

The endothelium in the intact vessel showed an increased expression of cIAP2 in 

response to hypoxia. Reoxygenation led to a loss in signal intensity, which was 

prevented in the postconditioned vessel.  

      The expression pattern of cIAP2 in response to hypoxia/reoxygenation and 

postconditioning was very similar to the cell culture model, negating the occurrence 

of any cell culture artifacts. The increased expression of cIAP2 under 

postconditioning, seen in the intact vessel model, confirms the functional significance 

of the anti-apoptotic protein in endothelial postconditioning. It was also observed that 

the endothelium, identified by von Willebrand factor, showed more cIAP2 than the 

surrounding tissue, suggesting the importance of endothelial postconditioning. 

 

5.7 Future perspective 

      Postconditioning is gradually being adapted into clinical practice in cases of 

coronary intervention, cardiac surgery, organ transplantation and vascular-based 

procedures. However, it has not yet assumed the position of ‗standard care‘ in any of 

the clinical settings. Further insight into the molecular mechanisms of 

postconditioning, the signaling pathways recruited and the cell types involved is 
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necessary to establish postconditioning as a standard clinical practice to counteract 

reperfusion injury. In this context, understanding endothelial cell responses is 

essential since they are in direct contact with the blood carrying triggers and 

mediators of hypoxia/reperfusion and postconditioning, including oxidants, cytokines, 

interleukins, chemokines and ionic dyshomeostasis. The present study shows that 

endothelial cells do respond to postconditioning and that cIAP2 is crucial for the anti-

apoptotic effect exerted. It was also observed that ERK1/2 and PI3-kinase are 

involved in the maintenance of cIAP2 by postconditioning, however, the mechanism 

by which postconditioning leads to activation of the kinases and how this activation 

controls cIAP2 content in the cells, remain to be elucidated.  

       Prevention of the mPTP opening, which is a crucial step in postconditioning of 

cardiomyocytes, would also be a question of interest in endothelial postconditioning. 

Phosphorylation of GSK-3ß, which leads to its inactivation, is known to prevent the 

opening of mPTP, and thus exert cardioprotection (Gomez et al., 2008). Whether 

such inactivation of GSK-3ß occurs in endothelial postconditioning or not, is yet to be 

determined.  

       Finally, in vivo experiments designed to study the role of endothelial 

postconditioning on the outcome of myocardial protection, would help to further 

validate the patho-physiological relevance of the current study and to better adapt 

postconditioning into clinical practice. 
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7. Summary 

          

       Postconditioning (intermittent hypoxia at the onset of reperfusion), a strategy 

known to effectively reduce reperfusion injury, is well proven in cardiomyocytes. 

However, little is known about postconditioning in endothelial cells and whether it 

plays a role in anti-apoptosis, which is the predominant form of cell death in 

endothelial cells. Here the protective effect of postconditioning in endothelial cells 

and the molecular mechanisms involved were studied, focusing on the inhibitors of 

apoptosis proteins (IAPs) as potential anti-apoptotic candidates induced by hypoxia. 

Exposure of human umbilical vein endothelial cells to severe hypoxia (Po2 < 1 

mmHg) for 2 h caused a 2.1 ± 0.3 fold increase in caspase-3 cleavage, 6 h after 

reoxygenation and a 2.3 ± 0.2 fold increase in apoptosis (annexin V staining) 24 h 

after reoxygenation. Postconditioning abolished hypoxia/reoxygenation-induced 

apoptosis in endothelial cells. Quest for possible anti-apoptotic molecules led to the 

observation that cIAP2 but not its close homologue cIAP1 or XIAP, is upregulated 

during hypoxia and reduces to basal level with the onset of reoxygenation. 

Importantly, cIAP2 could be maintained by postconditioning in an ERK1/2 and PI3-

Kinase dependant manner. Hypoxia as well as postconditioning induced an 

interaction between cIAP2 and procaspase-3 (co-immunoprecipitation and co-

localization in immunochemistry), suggesting a mechanism by which cIAP2 

counteracts hypoxia/reoxygenation-induced apoptosis. Downregulation of cIAP2 with 

siRNA enhanced hypoxia/reoxygenation-induced apoptosis and abolished the 

protective effect of postconditioning. Maintenance of cIAP2 by postconditioning in the 

intact vessel confirms the patho-physiological significance of the finding. The present 

study shows for the first time that postconditioning can protect endothelial cells 

against hypoxia/reoxygenation-induced apoptosis. This protective effect is conferred 

by the cIAP2, which is expressed during hypoxia and could be maintained at an 

elevated level by postconditioning, interacting with procaspase-3. 
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8. Zusammenfassung 

 

Postkonditionierung (Phasen intermittierender Hypoxie zu Beginn einer 

Reperfusion) ist eine wirksame Strategie, die das Ausmaß des kardiomyozytären 

Reperfusionsschadens reduzieren kann. Es ist jedoch unklar, welche Wirkung die 

Postkonditionierung auf die endotheliale Apoptose hat, welche die vorherrschende 

Form des Zelluntergangs darstellt. Ziel dieser Arbeit war es daher, die protektive 

Wirkung der Postkonditionierung und die zu Grunde liegenden molekularen 

Mechanismen in Endothelzellen zu untersuchen. Der Fokus lag dabei auf einer 

Familie Apoptose-inhibierender Proteine (Inhibitors of Apoptosis Proteins, IAPs) als 

potentielle anti-apoptotische Kandidaten, die durch Hypoxie induziert werden. 

Humane Endothelzellen aus Nabelschnurvenen, die einer zweistündigen Hypoxie 

(Po2 < 1 mmHg) ausgesetzt wurden, zeigten nach sechstündiger Reoxygenierung 

einen 2,1 ± 0,3-fachen Anstieg der Caspase 3-Aktivität (Westernblot) und nach 24 

Stunden Reoxygenierung eine 2,3 ± 0,2-fache Steigerung der Apoptoserate (Annexin 

V-Färbung). Postkonditionierung im Anschluss an die zweistündige Hypoxie 

reduzierte die Hypoxie/Reoxygenation (H/R)-induzierte Apoptose. Die Suche nach 

möglichen antiapoptotischen Molekülen ergab, dass der zelluläre Gehalt an cIAP2, 

nicht jedoch der von cIAP1 oder XIAP, während Hypoxie anstieg. Mit Einsetzen der 

Reoxygenation sank der cIAP2-Gehalt wieder auf das Ausgangsniveau. Durch 

Postkonditionierung konnte ERK1/2- und PI3-Kinase-abhängig der cIAP2-Gehalt auf 

dem post-hypoxischen Niveau gehalten werden. Hypoxie sowie Postkonditionierunng 

induzieren die Interaktion zwischen cIAP2 und Pro-Caspase 3 (Co-

Immunoprezipitation bzw. Co-Lokalisation im immunzytologischen Nachweis). Die 

gezielte Herunterregulation von cIAP2 durch Einsatz von siRNA führte zu einer 

Verstärkung der H/R-induzierten Apoptose und hob die protektive Wirkung der 

Postkonditionierung. Die Aufrechterhaltung von cIAP konnte in Untersuchungen an 

intakten Gefäßen bestätigt werden. Die vorliegende Arbeit erstmalig, dass 

Postkonditionierung Endothelzellen vor einer H/R-induzierten Apoptose schützt. 

Dieser Effekt wird durch cIAP2 vermittelt, das während Hypoxie verstärkt exprimiert 

wird und dessen Konzentration durch Postkonditionierung auf dem posthypoxischen 

Niveau gehalten werden kann und mit Procaspase-3 interagiert. 



 87 

9. Declaration  

 

        ―I declare that I have completed this dissertation single-handedly without the 

unauthorized help of a second party and only with the assistance acknowledged 

therein. I have appropriately acknowledged and referenced all text passages that are 

derived literally from or are based on the content of published or unpublished work of 

others, and all information that relates to verbal communications. I have abided by 

the principles of good scientific conduct laid down in the charter of the Justus Liebig 

University of Giessen in carrying out the investigations described in the dissertation.‖ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Krishnaveni Gadiraju 

Giessen, March 2010 

 

 

 

 



 88 

10. Acknowledgements 

       

        I would like to first thank my supervisor Dr. Thomas Noll, for his valuable 

guidance and for providing a remarkable insight into my project. Apart from excellent 

scientific advice, he greatly helped me improve my analytical thinking, reasoning and 

presentation skills. I thank him for being such a kind guide and a wonderful human 

being.  

       I sincerely thank the former director of the Institute of Physiology, Prof. Dr. Dr. H. 

M. Piper, for providing me a place in the Institute and for all the facilities required to 

carry on my project 

       Many thanks to Dr. Frauke V. Härtel, who constantly challenged me with new 

ideas through out the course of my PhD and corrected my thesis. 

       I extend my gratitude to Dr. Sedding for kindly allowing me to practice 

Immonohistochemistry in his lab.  

      Very Special thanks to Hermann Holzträger, Anna Reis and Annika Krautwurst 

for their technical assistance, which greatly speeded up the progress of my work. 

       I thank all my lab mates, especially, Daniel, Tatyana, Marion, Aslam, Arshad, 

Assad, Kiran and Sabiha for their company and cooperation. 

       Finally, I thank all my family, especially, my father, mother, chinnana, my 

grandparents, and my husband, for being such a source of joy, strength and 

inspiration, through out the course of my PhD and always. 

 

Thanks!  

        

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Der Lebenslauf wurde aus der elektronischen 
Version der Arbeit entfernt. 
 
 
 
 

The curriculum vitae was removed from the 
electronic version of the paper. 



 90 

12. Publications 

           

 Abstracts:  

 

 Krishnaveni Gadiraju, Frauke V. Haertel, H. M. Piper, Thomas Noll (2007) 

Stabilization of cIAP2 during postconditioining protects endothelial cells from 

reperfusion injury. Circulation. 2007; 116(II) 29 Abstract 248 (American Heart 

Association Scientific sessions 2007, Orlando) 

 

 Krishnaveni Gadiraju, Frauke V. Haertel, H. M. Piper, Thomas Noll (2008) 

Postconditioning protects endothelial cells from hypoxia-reoxygenation 

induced apoptosis - Role of cIAP2. Hämostaseologie. 2008; 28:1-98 (52nd 

Annual meeting of GTH 2008, Wiesbaden) 

 

 Krishnaveni Gadiraju, Frauke V. Haertel, H. M. Piper, Thomas Noll (2008) 

Inhibitor of apoptosis 2 (cIAP2) elevated during postconditioning protects 

endothelial cells from reperfusion induced apoptosis. Eur J Cell Biology. 

2008; 87S1: S58 (31st Annual meeting of German Society for Cell Biology 

(DGZ) 2008, Marburg) 

 

 Krishnaveni Gadiraju, Frauke V. Haertel, H. M. Piper, Thomas Noll (2008) 

Role of Inhibitor of apoptosis 2 in endothelial postconditioning. Acta 

Physiologica. 2008; 192:S663 (87th Annual meeting of Deutsche 

Physiologische Gesellschaft 2008, Cologne) 

 

 Daniel Urban, Frauke V. Haertel, Krishnaveni Gadiraju, H. M. Piper, Thomas 

Noll (2008) ATP released during hypoxia/reoxygenation activates a P2Y 

receptor mediated survival mechanism in human endothelial cells. Circulation 

2008; 118 S. 563 Abstract 5506 (American Heart Association Scientific 

sessions 2008, New Orleans) 

 

 Krishnaveni Gadiraju, Frauke V. Haertel, H. M. Piper, Thomas Noll (2008) 

Rolle des Inhibitor of Apoptosis 2 beim endothelialen postconditioning. (74th 

Annual meeting of German Cardiac Society (DGK) 2008, Mannheim) 



 91 

 

PhD Publication: 

 

 Krishnaveni Gadiraju, Frauke V. Haertel, Daniel Urban, Tatyana S. 

Dimitrova, Daniel Sedding, H. M. Piper, Thomas Noll (2009) Postconditioning 

protects endothelial cells from hypoxia/reoxygenation-induced apoptosis - 

Role of cIAP2.  (Manuscript in preparation) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


