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co-locating QTL from different datasets and their actions .............................................. 60 

 

Table 4.1 Number and percentage contribution of main-effect and interactive (epistatic) 

heterotic QTL ................................................................................................................ 71 
 



 

viii 

List of Abbreviations 

 

List of Abbreviations and Symbols 
 

AFLP 

BC 

cDNA 

CSIRO 

DH 

DNA 

F1, F2, F3 

KWS 

MCMC 

MPH 

MSL 

P 

P1, P2 

QTL 

r 

RIL 

RNA 

SAGE 

SLA 

SLW 

SSR 

TSM 

 

Amplified Fragment Length Polymorphism 

back cross 

complementary DNA 

Commonwealth Scientific and Industrial Research Organisation 

doubled-haploid 

deoxyribonucleic acid 

filius 1 (1st generation after crossing), and so on 

Kleinwanzlebener Saatzucht AG (former name) 

Markov-chain Monte Carlo method 

mid-parent heterosis 

Male-Sterile Lembke 

probability 

first parent, second parent 

quantitative trait loci 

coefficient of correlation 

recombinant inbred lines 

ribonucleic acid 

Serial Analysis of Gene Expression 

specific leaf area (area per dry mass of leaf) 

specific leaf weight (dry mass per unit area of leaf) 

simple-sequence repeats 

thousand seed mass 

 

 

 



 1 

 

Introduction 

 

1 INTRODUCTION 

1.1 Introduction and literature review 

Oilseed rape (Brassica napus ssp. napus) is the most important oilseed crop in Europe 

and the second most important worldwide after soybean. In recent decades demand for 

rapeseed oil as a nutritional, industrial and fuel oil has risen dramatically, meaning that 

increasing the seed yield has a high priority for breeding of new varieties. Since the 

discovery and development of male-sterile systems suitable for hybrid oilseed rape 

production, hybrid varieties are today gaining an increasing market share. As an 

illustration, from 17 hybrid cultivars among the 62 approved German „00‟ (low 

glucosinolate, zero erucic acid) winter oilseed rape cultivars listed by Bundessortenamt, 

the German Variety Registration Office, in 2008 (Bundessortenamt 2008), more than 

60% of the winter oilseed rape crop in 2007/08 was made up of hybrids (Rapool Online 

2009). Since the 2003/04 growing season hybrid cultivars have dominated Germany‟s 

winter oilseed rape cultivation area. In that year the hybrid cultivar „Talent‟ replaced the 

once-popular line cultivar „Express‟ as the most widely-cultivated winter oilseed rape 

variety in Germany, the first time a hybrid cultivar had achieved the top position. One of 

the most important reasons for the popularity of hybrid varieties is that they tend to have 

higher yield performance and stability than pure line, synthetic, or composite cultivars. A 

study on nitrogen acquisition and utilisation of oilseed rape has shown that hybrid 

cultivars showed better performance for both traits (Kessler 2000).  

The increased yield potential of F1 hybrids in comparison to their parental inbred lines is 

known as heterosis. This phenomenon, the basis for breeding of hybrid cultivars, has 

been observed by numerous researchers in oilseed brassicas under a large range of test 

conditions (Schuster 1969, Grant and Beversdorf 1985, Lefort-Buson et al. 1987, Brandle 

and McVetty 1989, Friedt and Schilling 1991). For this reason, the exploitation of the 

heterosis effect in hybrid breeding of both winter and spring oilseed rape has become 

increasingly important in recent years. In rapeseed hybrids based on design trials, Zehr et 

al. (1997) recorded seed yield heterosis up to 27% compared to commercial varieties. In 

current winter oilseed rape material yield improvements of up to 15% have been reported 

for F1 hybrids compared to non-hybrid varieties. 
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One common method applied in hybrid breeding programs uses reciprocal recurrent 

selection (Comstock et al. 1949). Within this scheme it is important to determine 

„heterotic pools‟, subpopulations that have a distant genetic background and supposedly 

show a high ability to express heterosis effects when crossed with members of other 

subpopulations. Certain mating designs, such as a diallel design (Griffing 1956) or a 

North Carolina design II (Comstock and Robinson 1948), can be applied to determine 

materials to be included in heterotic pools and to test crosses that may result in a high 

hybrid performance. However using such complex experimental designs for breeding is 

cumbersome and requires considerable resources. In some crop species, such as maize, it 

is relatively simple to generate such experimental crossing populations due to the 

technically simple castration of flowers from large numbers of individuals for production 

of pure F1 seed. This is not the case in oilseed rape, and only after the introduction of 

male-sterility technologies did it becomes feasible to develop F1 hybrid cultivars in this 

crop.  

With the possibility to incorporate molecular markers into breeding programs, interest is 

increasing today in the potential use of DNA marker information to predict hybrid 

performance and hence reduce the time and cost of hybrid cultivar breeding. In oilseed 

rape, Lefort-Buson et al. (1987), Diers et al. (1996), Shen et al. (2003) and Qian (2007) 

tried to find a relationship between genetic distance and heterozygosity based on marker 

alleles, and to predict hybrid performance based on this relationship. These studies 

revealed that molecular marker-based genetic distance cannot always be used to predict 

hybrid seed yield and combining ability. One reason for this is probably the fact that 

hybrid vigour can only be accurately predicted on the basis of genetic distance if the 

molecular markers used for the distance estimation are linked to genes affecting the trait 

of interest (Charcosset et al. 1991, Bernardo 1996). One way of potentially identifying 

genes influenced by heterosis is to map molecular markers relevant to heterotic 

quantitative trait loci (QTL) in defined mapping populations, making use of QTL 

mapping techniques. Experiments aimed at mapping QTL involved in yield and yield-

related traits in rapeseed have been conducted previously, in some cases involving hybrid 

materials (e.g. Quijada et al. 2006, Udall et al. 2006). However, reports on QTL that are 

directly relevant to heterosis in oilseed rape are still scarce.  

 



 3 

 

Introduction 

 

1.1.1 Theoretical aspects of heterosis 

Heterosis, the term that followed “heterozygosis” which was first used at the beginning of 

20th century, was defined by Shull (1948) as “the increased size, the excessive kinetic 

energy, the increased productiveness, resistance to disease or to unfavorable conditions of 

the environment, the „stimulating effects of hybridity‟ […..] which may be observed in 

cross-bred organisms when compared with corresponding inbred or relatively more pure-

bred organisms”. In short, heterosis is “the increase in size or rate of growth of offspring 

over parents” (Duvick 1999). This is a phenotypic definition and heterosis is generally 

observed as a property of quantitative traits, hence the first theoretical explanation of 

heterosis was given through quantitative genetics. 

Heterosis can be described in different ways: One formulation is the difference between 

the hybrid and the mean of the two parents, known as mid-parent heterosis. Falconer and 

Mackay (1996) explained the theoretical background of mid-parent heterosis based on the 

relationship between genetic distance (difference in allele frequency), a dominance effect 

and a heterosis effect, which had been observed by earlier workers. Later, Lamkey and 

Edwards (1998, 1999), based on a theoretical framework described by Willham and 

Pollak (1985), revisited and refined the theoretical relationship by differentiating 

heterosis at the population level and in an inbred line cross system. The former could be 

derived from the genetic architecture of both parents, whether they were from random-

mating or inbred populations. These authors introduced the concepts of baseline 

heterosis, panmictic-midparent heterosis, and inbred-midparent heterosis. The inbred-

midparent heterosis, which is the sum of baseline-heterosis and panmictic-midparent 

heterosis, is what has been generally exploited in the production of hybrid cultivars. 

Another particularly important point that emerged from the theoretical considerations of 

heterosis is that the performance of an F1 hybrid is a function of dominance and unlinked 

dominance interacting via dominance epistasis at loci showing genetic divergence. 

The first hypothesis proposed as an explanation of heterosis was the theory of 

overdominance presented by East and Hayes (1912) and refined by East (1936). This idea 

assumed that “vigor is promoted when the genes at certain loci are unlike”. On the other 

hand, Jones (1917) showed that heterosis “could result from normal gene action and be a 

phenomenon accompanying hybridity”. This observation led to a second hypothesis 
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dubbed “dominance theory”, although it can be better described as “avoidance of 

recessive deleterious genes” since the idea is based on heterozygous loci that prevent 

deleterious effects brought about by recessive genes. Rasmusson (1933) proposed a gene 

interaction hypothesis which was later called “epistasis theory”. These three hypotheses 

still dominate the discourse on heterosis today, whereby different types of evidence can 

support or reject each of the different ideas. Numerous discussions of the three 

hypotheses, along with corresponding evidence reflecting current knowledge on this 

phenomenon, were reported at an International Symposium on the Genetics and 

Exploitation of Heterosis in Crops in 1997 (Coors and Pandey 1999). 

Before the dawn of molecular biology and high-capacity computing devices, deciphering 

the basis of heterosis was based purely on quantitative genetics, mostly using linear 

models (Cockerham 1954). In a quantitative genetics sense, estimation of heterosis 

effects is actually a breakdown of genetic architecture into its components, dissecting 

phenotypic variation into additive genetic and dominance gene actions and their epistatic 

interactions (Hayman 1948, Mather and Jinks 1972, Griffing 1956, Comstock and 

Robinson 1948). Within a properly set mating design to develop certain types of 

generations, the heterosis effect is often treated as an effect of dominance, or the “specific 

combining ability” effect, especially when epistasis is ignored in the model.  

Estimating heterosis effects using mating designs is not without problems. The models 

developed tend to ignore epistasis effects, since introducing epistasis requires 

considerably more materials. Designs involving partial mating to reduce the required 

resources were suggested (e.g. the partial diallel cross of Kempthorne and Curnow 1961), 

but these can still not completely account for epistasis. Another criticism is that analyses 

based on linear models tend to overweight the information from simpler effects, which 

explains why epistasis usually has no significant effect. Cheverud and Routman (1995) 

proposed that effects should be calculated without considering their frequency, so that 

epistatic effects could be better observed. With the emergence of high-capacity 

computers, calculation-intensive analysis methods such as Best Linear Unbiased 

Prediction (BLUP) using linear mixed models (Bernardo 1996) became suitable for such 

designs.   

Thorough molecular genetic investigation opens new possibilities to elucidate the 

mechanism of heterosis, either by using markers as tools to determine genome regions 
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influencing heterosis at certain points in the chromosome, or by explaining heterosis at 

the molecular level (so-called molecular heterosis). Bernardo (1999) found that 

prediction of untested single crosses using molecular marker-assisted BLUP did not 

provide an advantage compared with phenotype-based BLUP, especially when many loci 

control the trait. Using evidence from human data, Comings and MacMurray (2000) 

proposed three explanations for single-locus molecular heterosis, which may not be 

mutually exclusive: optimal gene expression of the heterozygote, existence of 

independent contributing factors, and a broader range of expression of heterozygote 

genotypes. The proposal was supported by Song and Messing (2003) through comparison 

of relative expression of zein-expressing genes with their respective relative cDNA 

frequencies in maize grain; they find out that heterosis is likely not just an accumulation 

of dominant alleles, but rather the molecular phenotype of the heterozygous genotype 

itself determines the degree to which dominance influences heterosis. Because maximum 

levels of heterosis have obviously not yet been achieved in crop plants despite extensive 

breeding, Birchler et al. (2003) questioned the validity of allelic complementation to 

explain the dominance theory of heterosis. Evidence found in allopolyploid plants and 

studies on their inbreeding tended to contradict allelic complementation as a cause of 

dominant heterotic effects.  

In the model system rice (Oryza sativa), Zhang et al. (2000) assessed the relationship 

between gene expression and heterosis by assaying differential gene expression in 

hybrids relative to their parents in a diallelic crossing scheme. Hybridisation of isolated 

cDNAs with RNA populations from seedling and flag leaf tissues detected an overall 

elevated level of gene expression in the hybrid compared with the parents. Detailed 

expression analysis revealed that differentially expressed cDNAs occurring in only one 

parent of the cross were positively correlated with heterosis. The genetic basis of 

quantitative traits and heterosis was generally found to be underlaid by large numbers of 

two-locus epistatic interactions. Huang et al. (2006) used microarray analysis to show 

that changes in biochemical and physiological activities were related to differential gene 

expression in the rice hybrid relative to the parents. Interestingly, they found that genes 

functioning in DNA replication and repairing tended to show positive heterosis, while 

genes functioning in carbohydrate, lipid, and energy metabolism, translation, protein 

degradation and cellular information processing showed negative heterosis. Genes 
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involved in amino acid metabolism, transcription, signal transduction, plant defense, and 

transportation were found to exhibit both positive and negative heterosis.  

Although the quantity of data describing heterosis and its effects in crop plants has grown 

in recent years, very little knowledge exists to date regarding the contributions of the 

different potential effects on heterosis in rapeseed. The possible relationships among 

heterotic traits in different developmental stages (particularly seedlings) and their 

potential correlation to seed yield heterosis is completely unknown in oilseed rape.  

1.1.2 Mapping of quantitative trait loci (QTL) 

Mapping of quantitative trait loci, commonly known as QTL analysis (Lander and 

Botstein 1989), is today an important tool in plant breeding. Besides its direct practical 

application to support marker-assisted breeding, it provides vital information for studying 

the genetic architecture of complex traits (Holland 2007) and for localising parts of the 

genome involved in important traits as a first step in map-based cloning of relevant genes 

(Salvi and Tuberosa 2005).  

The most common methods used in QTL mapping were developed during the late 1980s 

and early 1990s. Initially, Lander and Botstein (1989) invented interval mapping, which 

relates the intervals between pairs of linked markers to the phenotypic distribution of a 

trait. In this technique the estimation of QTL positions and effects uses the maximum-

likelihood method. This is an extension from single-marker analysis, which relies on an 

association between a marker and the trait distribution based on common statist ical 

methods, such as regression analysis or analysis of variance. An approximation of the 

interval mapping technique using least-square methodology was suggested by Haley and 

Knott (1992) and Martinez and Curnow (1992), respectively. This method gained 

popularity since it was fast and often gave similar results to the cumbersome maximum-

likelihood technique. However, Kao (1995) warned that the least-square method should 

be treated as a preliminary test, which needs to be verified by maximum-likelihood based 

methods. Refinements of interval mapping suggested by Jansen (1993) and Zeng (1994) 

led to multiple interval mapping and composite interval mapping, respectively. These 

authors proposed the use of some markers as so-called “cofactors” for the interval being 

investigated, in order to uncover possible effects of markers that may not be detected 
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using interval mapping. The most recent QTL mapping methods integrate Bayesian 

models (Markov Chain Monte Carlo, MCMC) as the estimation method (Sillanpää and 

Arjas 1999) or even use a nonparametric concept (Zou et al. 2003).  

The above-mentioned QTL mapping methods are usually based on clearly defined 

mapping populations derived from a biparental cross between two homozygous lines. 

Typical mapping populations used are F2-F3 families, doubled-haploid (DH), back cross 

(BC) populations or pools of recombinant inbred lines (RIL). The latter are particularly 

useful for QTL mapping since their genetic properties are clearly defined. In the case of 

QTL analysis in species that are impossible to self-fertilise, as is the case in animal 

breeding, information on kinship within the mapping population becomes extremely 

important.  

In recent years a class of QTL mapping methods called association mapping (see e.g. 

Pritchard et al. 1996) was developed to deal with species for which the development of 

classical mapping populations is difficult or impossible (e.g. humans). Its application in 

the model plant Arabidopsis was promising (Thornsberry et al. 2001) and now it has been 

applied to at least eleven crops, including two tree species (Zhu et al. 2008) and oilseed 

rape (Hasan et al. 2008). Association mapping is based on the detection of linkage 

disequilibrium amongst markers and/or genes and their statistical associations with the 

phenotypic trait distribution. In plant breeding populations association mapping 

techniques offer a useful way to detect trait-related allelic diversity, for example in gene 

bank materials, since they are not restricted to the biallelic state that is intrinsic in a 

biparental cross. Moreover, these techniques are relatively cheap since the development 

of a defined mapping population is not a necessity.  

1.1.3 QTL mapping of heterosis-relevant loci 

Heterosis and the related phenomenon of inbreeding depression are related to fitness and 

are generally influenced by numerous genes and by environment (Mather & Jinks 1982). 

Most studies on the mapping of heterosis QTL in crop plants have attempted to dissect 

the genetic basis of heterosis and inbreeding depression in the model species rice. 

According to Xiao et al. (1995), heterosis in rice is mainly influenced by dominance 

complementation. Yu et al. (1997) reported overdominance at several major-effect QTL 
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with considerable additive-additive epistasis affecting grain yield and its components. 

Recent results in Arabidopsis also revealed the significant role of epistasis in heterosis. 

(Kusterer et al. 2007). Similarly, Li et al. (2001) and Luo et al. (2001) concluded that 

most QTL involved in heterosis and inbreeding depression in rice appeared to be 

involved in epistasis. Furthermore, 90% of the QTL they found to be involved in 

heterosis were overdominant. Seed yield and its component traits have been extensively 

studied in QTL mapping studies, particularly in cereals, and dissection of complex 

heterosis-relevant traits into component QTL can enable detection of a larger number of 

relevant loci. Particularly the contrasting results in rice (cf. Xiao et al. 1995, Yu et al. 

1997, Li et al. 2001, Luo et al. 2001) demonstrate that the genetic control of heterosis can 

differ in different crosses. The possibility to investigate heterosis QTL in different oilseed 

rape populations would give useful insight into whether this also holds true for the much 

more complex, polyploid B. napus genome.  

1.1.4 Synteny-based comparative mapping in Brassica using Arabidopsis resources 

With an ever-growing resource of Brassica sequence data and its exact annotation to 

orthologous sequences in the Arabidopsis genome (see e.g. http://www.brassica.info and 

http://atidb.org/) it is today becoming increasingly possible – despite the complex 

rearrangements among Brassica genomes compared to Arabidopsis – to align and 

compare chromosomal and genomic data between the crop brassicas and the model 

species and to use this new information for genomic studies in the comparatively large 

genome of oilseed rape. Comparison between Brassica and Arabidopsis physical maps 

using published genome annotation and synteny data (e.g. Parkin et al. 2005) uncovers an 

enormous wealth of tools for fine-mapping, synteny-based gene cloning and marker 

development for marker-assisted selection. For example, online SSR search engines can 

be used to scan Arabidopsis or B. rapa chromosome regions flanking candidate genes of 

interest or major QTL positions (Hasan et al. 2008), and Brassica SSR primers that are 

identified in this manner can amplify polymorphic markers at one or more homologous 

loci in oilseed rape. Hasan et al. (2008) showed that linkage of such markers to QTL for a 

complex trait such as seed glucosinlate content could be confirmed by re-mapping to 

QTL regions or by allele-trait association analysis in genetically diverse genotypes. If 

such markers are in linkage disequilibrium with the gene of interest, this strategy can be 

extremely useful for indirect mapping of candidate genes on Brassica chromosomes. 
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Because SSR markers are codominant, this approach also has the potential to enable map 

localization of duplicated copies of a given candidate gene, for example to allow 

comparisons with major QTL positions. 

1.2 Objectives 

The overall aim of this project was a comparative analysis of the genetic control of 

heterosis in oilseed rape by QTL mapping of heterosis-relevant loci for biomass and yield 

traits at different developmental stages. A large population of 250 DH lines from a cross 

between two genetically diverse winter oilseed rape lines was used to create a genetic 

map for QTL analysis. Greenhouse and field trials of test hybrids from crosses between 

the individual DH lines with male-sterile tester lines were performed to enable the 

identification and dissection of QTL that correspond to the expression of heterosis in 

seedling biomass traits and seed yield, respectively. 

Based on the results of the experiments the following to date unanswered questions will 

be addressed in this thesis: 

a) Is it possible to identify quantitative trait loci that relate to heterosis for seedling 

biomass traits and seed yield in oilseed rape? 

b) Are there common loci influencing heterosis for early biomass traits and seed yield? 

c) How do these loci influence heterosis for the different traits (additive, dominance, 

overdominance or epistatic interactions)? 
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2 MATERIAL AND METHODS 

2.1 Plant materials 

The material used for this study comprises a doubled-haploid (DH) population of winter 

oilseed rape that was top-crossed with a common male-sterile parent to produce a back 

cross (BC) population. The production of the materials involved two steps: First, a DH 

population was generated from a cross between an inbred line („Express 617‟) of the 

German winter oilseed rape cultivar „Express‟ (00-quality: low seed glucosinolate, zero 

erucic acid content) and the genetically diverse semi-synthetic breeding line „V8‟ (++ 

quality: moderate glucosinolate, high erucic acid content). A total of 250 DH lines were 

produced via microspore culture from a single F1 plant of this cross (Spiller 2006). Seed 

increase of the DH lines was achieved by self-pollination in isolation tents using solitary 

bees (Osmia cornuta) as pollinators. In the second step, a population of 250 corresponding 

test-hybrids were produced from the DH lines by controlled crossing with the common 

female parent „MSL-Express‟, a male-sterile line that is derived from the parental genotype 

„Express 617‟. The genetic architecture of the population of the test hybrids is the same as a 

BC population, since it contains two possible genotypes for any given locus, namely 

homozygous for „Express 617‟ alleles, or heterozygous with one „Express 617‟ and one 

„V8‟ allele, respectively. The expected segregation ratio between homozygous and 

heterozygous individuals at any given locus is 1:1. Because the test hybrids only have a 

maximum of two alleles at each locus, it is theoretically possible to estimate additive and 

dominance effects of QTL contributing to heterosis.  

2.2 Genotyping and genetic mapping 

2.2.1 DNA extraction 

Young leaf material from three-week old plants was collected from each of the 250 DH 

lines of the mapping population plus the two parental lines „Express 617‟ and „V8‟. 

Genomic DNA was extracted following the method described by Doyle and Doyle (1990). 

The DNA samples were stored as aliquots at -20°C until they were used for marker 

screening. 
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2.2.2 Genotyping 

A total of 256 AFLP
®

 primer combinations, derived from combinations of the restriction 

enzymes EcoRI and MseI, were screened in the cross parents to determine the most 

polymorphic primer combinations for the subsequent genetic analysis. The 77 primer 

combinations that showed the highest levels of polymorphism between the cross parents 

were applied on the 250 DH lines. AFLP
®
 analysis was performed using the standard 

procedure described by Vos et al. (1995). For unambiguous identification of linkage 

groups, a total of 797 simple sequence repeat (SSR) markers were also screened for 

polymorphism between the parents. Most of the SSR primers used are publicly available 

(Suwabe et al. 2002, Lowe et al. 2004, Piquemal et al. 2005); 96 were commercial SSR 

primer combinations kindly provided by the Saaten Union Resistenzlabor, Leopoldshöhe, 

Germany. The protocol used for SSR marker genotyping follows the usual PCR procedures 

using Mg
2+

 salt as cofactor for the Taq-polymerase. The optimal annealing temperature was 

used whenever known; otherwise, a “touch-down” PCR scheme was applied as described 

by Hasan et al. (2008). LICOR
®
 polyacrylamide gel electrophoresis with 48 lanes was 

applied to score marker bands for each AFLP and SSR primer combination in the mapping 

population and parental genotypes.  

2.2.3 Genetic mapping  

A total of 527 polymorphic AFLP
®

 markers and 176 SSR markers were used to construct a 

genetic map using the software JoinMap
®
 3.0 (Kyazma, B. V., Wageningen, The 

Netherlands; see Van Ooijen and Voorrips 2001) with Kosambi‟s mapping function and a 

maximum likelihood distance of 40 cM. Prior to QTL analysis, cosegregating markers and 

markers with genetic distance lower than one centimorgan (cM) were removed from the 

map, whereby preference was given to SSR markers when these cosegregated with AFLP
®

 

markers. The result was a map covering 1792 cM, with 19 linkage groups containing 269 

markers, 144 of which are SSR markers. 

2.3 Field trials 

The mapping population of 250 DH lines and the corresponding population of 250 BC test 

hybrids from the DH lines were evaluated at four locations in Germany during the growing 



12 

Material and methods 

 

 

seasons 2005/06 (sowing at September 2005 and harvest in August 2006) and  2006/07. 

The locations used were Rauischholzhausen and Grund-Schwalheim (in cooperation with 

SW Seed GmbH) in Middle Hesse, along with Reinshof (in cooperation with the University 

of Göttingen) and Einbeck (in cooperation with KWS Saat GmbH) in Lower Saxony.  

The field trials at each location were performed using an alpha-lattice design (Patterson and 

William 1976) with 26 blocks of 26 plots each. Randomisation was conducted using 

ALPHA+
©

 ver. 2.4 (1998) from CSIRO and Biomathematics and Statistics Scotland. Due 

to the very large size of the trial at each location it was necessary to ensure that each DH 

line was grown in a position close to its corresponding test hybrid, in order to exclude 

performance differences between the lines and their hybrids that were due to positional 

effects rather than heterosis. For this reason each block was divided into two halves that 

were sown parallel to each other. One half contained 10 plots of DH line; while the 

opposite half of the block contained the back cross hybrids corresponded to these DH lines. 

Due to the large size of the trial, it was not feasible to include two replications per location, 

except for the standards, which had five replicates. Consequently, locations became 

replicates in the analysis and genotype-location interaction effects could not be estimated.  

Estimates of yield potential were calculated from the harvest of each plot, after conversion 

to dt per ha (10
-1

 metric ton.ha
-1

) with a seed water content of 91%. Besides the seed yield, 

thousand seed mass (TSM) was calculated as a measure of seed size. Plant height was 

observed at the end of flowering.  

2.4 Greenhouse trial 

A greenhouse trial was conducted in the IFZ Research Centre greenhouse facilities at 

Justus Liebig University, Giessen, to study heterosis during seedling development. The 

greenhouse trial used the same populations of DH lines and their test hybrids that were 

used in the field trial, in order to enable direct comparisons between heterosis for seedling 

traits and for yield, and their respective QTL.  

Biomass accumulation was approximated through fresh and dry mass at 28 days after 

sowing (das). The seedling growth was estimated by measuring cotyledon height at 14 das. 

Leaf area was measured at 28 das as an approximation of the functional assimilation area, 

and also served for estimation on specific leaf weight (SLW, dry leaf biomass per unit leaf 
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area). SLW, as well as its reverse counterpart, the SLA, is often used to measure the 

“leafiness” of a plant; it indicates the “thickness” of the leaf per unit area and thus gives an 

indirect indication of photosynthetic characteristics of a leaf, while giving a direct 

measurement of allocations of biomass in a plant (Jurik 1986). 

Seedlings of each accession were grown in the greenhouse in nine pots of size 10 cm × 10 

cm. Initially three seeds per pot were sown into soil as growth medium, and each pot was 

thinned to one seedling per pot at seven days after sowing (das). The nine pots of each 

genotype were arranged in a 3 × 3 pattern, and the lines and their respective hybrids were 

always positioned adjacently to ensure that each line and its corresponding test hybrid were 

grown under the same temperature, water and light conditions. An alpha-lattice design with 

two replicates was applied as a randomisation scheme, using twenty blocks comprising 13 

pairs of accessions that were each sown on the same day.  

After seven days the seedlings that were thinned from each pot were used for the first 

observations of total shoot fresh weight (7 das). At 14 das, the timepoint when the epicotyls 

generally started to appear, cotyledon height was measured on five plants per genotype 

without removing the seedlings. The shoot fresh weight of the nine remaining plants of 

each genotype was measured at 28 das by weighing directly after harvesting. Finally, two 

plants per genotype were sampled for measuring the leaf area. The leaves were scanned 

using a HewlettPackard Scanjet 5400c flatbed scanner and the images were processed 

using ImageJ v. 1.37 (http://rsbweb.nih.gov/ij/index.html) to calculate the leaf area.   

2.5 Statistical analysis  

PROC MIXED from SAS
®

 8.02 was employed to analyse the observation data and to 

estimate least square means (LS means) of the trait values for each accession. The analysis 

of data from the field trials was conducted for each year individually as well as pooled over 

years. The model statement was arranged following Piepho et al. (2003), based on the trial 

design applied. Accession, location (as replicate), year and accession-to-year interaction 

effects were considered random. 
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2.6 Quantitative trait loci (QTL) analysis  

A quantitative trait analysis was applied to the greenhouse and field trial data to obtain 

information on the positions and effects of QTL in the „Express 617‟ × „V8‟ genetic map. 

The QTL analysis was conducted using the freely available software QTL Network 2.0 

(Yang et al. 2005). The method used was composite interval mapping (Zeng 1994). 

Threshold levels were set to the equivalent of 0.005 value of probability for QTL detection 

to be declared as significant. For each trait, three sets of data based on the different 

population datasets were analysed: DH population, BC population and midparent heterosis 

data (MPH). For the QTL analysis all of the three sets of data were analysed using the 

_Population DH option. As a result, when interpreting the genetic effects measured by 

the software for each dataset, the genetic architecture of the respective population needs to 

be taken into account.  

2.7 Interpretation of genetic effects 

2.7.1 Single locus case 

The option _Population DH in QTL Network 2.0 will pool data into two groups: Those 

whose genotype code is the same as first parent (P1) and those who have the same code as 

the second parent (P2), with the corresponding means   and  , respectively. The 

calculated additive genetic effect estimate a is provided both by QTL Mapper (Wang et al. 

1999) and by QTL Network 2.0 (Yang et al. 2005) using the simple formula 

 

    . 

 

Since in the analysis all types of dataset/population (DH, BC, and MPH) were treated in the 

same way as DH data, this calculation leads to different genetic interpretations depending 

on the population, as follows: 

 

DH line dataset 

 

Assuming A1A1 is the genotype from parent 1 (P1, „Express 617‟) at locus A, and A2A2 is 

the genotype from parent 2 (P2, „V8‟). The population of DH lines comprises a mixture of 

two homozygous genotypes for this locus: A1A1 and A2A2 at an expected ratio of 1:1. 
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Using Fisher‟s notation, the genotypic value of A1A1 is a, whereas A2A2 has the value –a 

(Falconer and Mackay 1997). Thus, in this population, a estimates the additive genetic 

effect a in the following way: 

 

   . 

 

Where  and  are average values of individuals with genotypes A1A1 and A2A2, 

respectively, at locus A. If   > , the value is positive. 

 

BC dataset 

 

The BC hybrid population comprises, for any given locus, a mixture of homozygotes with 

two copies of the allele (e.g. A1) from parent 1 („Express 617‟) and heterozygotes with one 

allele from each parent (A1 A2): The expected segregation for A1A1 and A1A2 is 1:1. In the 

scoring of the genotypes for mapping, P1 pools individuals with genotype A1A1 (coded as 

„a‟ in the marker scoring), whereas P2 pools individuals with A1A2 genotypes (coded as 

„b‟). Following Fisher‟s notation, the genotypic value of the latter is written as d. In this 

case, a estimates 

 

   

 

or half the difference between the additive genetic and dominance effects. The 

interpretation of the value needs information from the value of parent 2 („V8‟) because d is 

calculated as the deviation from the midparent value.  

 

Midparent heterosis dataset 

 

The midparent heterosis (MP) dataset is calculated for each pair of lines and hybrids using 

the formula 

 

 
 

where index i denotes the DH line number (1 to 250). Again the MP data are divided into 

two groups: The first, P1, pools samples with the code „a‟ and the mean value , while the 

second, P2, pools samples with the code „b‟ and the mean value . The 1P  is expected to 

have the value of 0, since the BC and DH parents have the same genotype as the recurrent 

parent „Express 617‟, A1A1. Meanwhile, 2P   is expected to  have  the  same  
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Table 2.1 Genetic interpretation of genotype from a single QTL. 

 

Dataset Direction of positive 
contribution

1 Situation Genetic interpretation of a 

DH „Express‟  >  a 

 „V8‟  <  -a 

BC „Express‟ and „V8‟  >  (a-d)/2 

 „Express‟ and „V8‟  <  -(a-d)/2 

 „Express‟  >  (a+d)/2 

 „V8‟  <  -(a+d)/2 

 none  >  -(a-d)/2 

 none  <  (a-d)/2 

MPH „Express‟  >  -d/2 

 „V8‟  <  d/2 
1 

Positive contribution as taken when mid-parent value is set to zero.  

 

value as d, since the BC individuals have the genotype A1A2 and the DH lines have the 

genotype A2A2. Thus,  

 

    

 

Or  = –2a. A positive a value (when  > ) is half the negative value of d.  

 

 

2.7.2 The case of two-locus epistasis 

As stated in the QTLMapper 1.0 Manual (Wang et al. 1999, p. 37): 

 

“A positive AAij value implies that the two-locus genotypes being the same as those 

in P1 parent or P2 parent take the positive effects, while the two-locus genotypes of 

recombination between the P1 parent and P2 parent take the negative effects. The 

case of negative AAij values is just the opposite.” 

 

This implies that the parental (P1 and P2) genotypes are the reference for the given sign of 

the effect. The recombinant genotypes will take the opposite sign. This is the result of the 
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product of coefficients of contrast attributed to additive effects for both loci in the design 

matrix for the interaction columns.  

 

Recall that P11 and P22 are the groups of data with parental types and their average values 

are  and , respectively. The recombinant types in this case are P12 and P21, and 

their average values are  and , respectively. Due to the interactive nature of 

epistasis, the additive-to-additive epistasis effect aa is estimated using the following simple 

formula  

 

  . 

 

DH line dataset 

 

Suppose there are two loci, A and B, whose alleles in the two parents are denoted A1 and 

A2 and B1 and B2, respectively. In a DH population, the group P11 pools individuals with 

the A1A1B1B1 genotype (a–a at both loci), while the group P22 pools the individuals with 

the A2A2B2B2 genotype (b–b). For the recombinant types, P12 and P21 pool the genotypes 

A1A1B2B2 (a–b) and A2A2B1B1 (b–a), respectively. Because 

 

  , 

  , 

   and 

  , 

we have, for the DH line dataset, the following estimate for two-locus epistasis: 

 

   

 

where aaAB is the additive-to-additive genetic interaction effect for the respective pair of 

loci. The other components cancel each other out. Notice that the positive sign of the 

estimates of aaAB means that the epistasis favours the parental genotypes, and the negative 

sign favours recombinant genotypes. It should be remembered that this epistatic component 

is estimated from the dataset from which the heterosis arises. 

 

BC dataset 
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In data from a BC population, the group P11 pools individuals with the A1A1B1B1 genotype 

(a–a at both QTL) and the group P22 pools individuals with the A1A2B1B2 genotype (b–b). 

For the recombinant types, P12 and P21 pool the genotypes A1A1B1B2 (a–b) and A1A2B1B1 

(b–a), respectively. While  has the same definition as mentioned before, the other pools 

now have new interpretations: 

 

  , 

   and 

  . 

 

This will imply that the estimate takes the form of 

 

   

 

The interpretation of the expression is somewhat complex as it depends on the direction 

and size of the effects relative to the midparent values at both loci. 

 

MP dataset 

 

The MP dataset provides another genetic interpretation. The group P11 pools the samples 

with a–a genotype codes in both loci. The group P22 pools samples with the genotype code 

b–b, with an expected value of dA + dB + ddAB – aaAB. The group P12 pools samples with 

the genotype code a–b and an expected value of dB + adAB, while the group P21 pools 

samples with the genotype code b–a and an expected value of dA + adBA. Estimated values 

of each group are  

 

    

  , 

  , and 

   

Using these genetic interpretations we can calculate the two-locus epistasis as  
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A positive value of aa indicates a greater contribution from dominance-to-dominance 

interactions, in the form of its difference from additive-to-additive interactions. If aa is 

negative, the main source of epistasis comes from additive-to-dominance interactions. It is 

worth noting that by subtracting the aa value obtained from the BC dataset from the aa 

value from the MP dataset, we have an estimate of the additive-to-additive interaction 

(epistasis) that is involved in heterosis. This means that we may obtain two estimates of 

aaAB whenever QTL from the three sets of data occur in the same region/locus. However, 

estimates obtained from the subtractions are expected to have greater variances.     
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3 RESULTS 

3.1 Genetic map 

From 797 publicly available SSR primer pairs, 422 were tested in the two parents. Of 

these, 230 pairs did not amplify, 119 pairs amplified monomorphic fragments, and 73 

were polymorphic. Additionally, 32 (from 35) SSR primer pairs provided by Saaten 

Union Resistenzlabor GmbH and 42 (from 114) primer pairs from the Celera AgGen 

Brassica Consortium (see Piquemal et al. 2005) were found to be polymorphic. The 

polymorphic primer pairs were used to genotype 262 DH lines.  

The mapping enabled integration of 703 markers into 22 linkage groups, which were then 

reduced to 19 linkage groups since three groups were too small (only two or three 

markers). After removing redundant markers, the total map covered 1787.3 cM in 19 

linkage groups that could be assigned to B. napus chromosomes N01 to N19 (Appendix 

A). With 419 markers mapped, the average marker-to-marker distance is 4.5cM. For QTL 

mapping purposes, markers with a distance smaller than 1cM were discarded, resulting in 

a backbone map containing 269 markers with an average distance of 7.2cM between 

markers.  

3.2 Phenotypic observations: Greenhouse experiment 

3.2.1 Shoot fresh and dry weight 

As expected, shoot fresh and dry weight showed a strong correlation in all the datasets 

studied: DH (r = 0.88), BC (r = 0.83), and MPH (r = 0.80). Hence it can be concluded 

that the proportion of water content from all materials was relatively at the same level. 

The distributions of shoot fresh weight and dry weight of both the DH and BC 

populations were skewed slightly to the right in the BC population (Fig. 3.1 and 3.2). The 

DH mean values were 12.15 g and 0.72 g for shoot fresh weight and dry weight, 

respectively, whereas the corresponding mean values in the BC population were 13.26 g 

and 0.77 g, respectively. Further investigation on correlations of both traits between the 
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DH and BC populations showed that the DH performance has only a weak, albeit 

significant, effect on its BC counterpart (Fig. 3.3). This indicated a slight contribution of 

covariance between the DH and BC populations.  

The level of MPH calculated ranged from -24% (DH 571) to 43% (DH 199) for fresh 

weight and -30% (DH 114) to 84% (DH 199) for dry weight.  

3.2.2 Leaf area 

The leaf area distribution of the BC and DH populations showed the same pattern as 

shoot weight. A slight shift of means was also detected (Fig. 3.4). The mean values were 

549.6 cm
2
 and 579.7 cm

2
 for the DH and BC populations, respectively. The correlation 

coefficient between the two populations was 0.27 (P < 0.001; Fig. 3.5), again indicating 

slight covariance between the DH and BC populations. The similar distribution pattern of 

leaf area to that for shoot weight was confirmed by a correlation coefficient for shoot 

fresh weight of 0.68 for the DH population and 0.66 for the BC population. Calculation 

of MPH for leaf area revealed a range from -31% (DH/BC pair #33) to 45% (#345). 

Among all the accessions, 89 (36%) pairs of accessions had a negative MPH value. 

3.2.3 Hypocotyl length 

Hypocotyl length was observed at 14 das and used as an approximation of seedling 

growth rate. Comparison of the hypocotyl length data distribution from the DH lines with 

the BC population showed, again, that the BC distribution shifted slightly to the right 

(Fig. 3.5). A unique feature, relative to the other traits measured, was that both 

distributions tended to skew to the right with a weak second peak. The correlation 

between the DH lines and the BC population indicated a strong association between the 

two datasets (r = 0.81, P < 0.001). The range of the MPH distribution for hypocotyl 

length   (-14.6% to 54.1%) showed that most of the accessions had positive values. Only 

14 accessions had BC values lower than their respective midparent value.   
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Figure 3.1 Shoot fresh weight distribution of 250 DH lines (straight line) from the DH 

population „Express 617‟ × „V8‟ and their respective BC test hybrids with „MSL-

Express‟ (broken line). The triangles show means of parents: „Express 617‟ (black) and  

„V8‟ (white), as well as their F1 (grey).  

 

 

Figure 3.2  Shoot dry weight distribution of 250 DH lines (straight line) from the DH 

population „Express 617‟ × „V8‟ (white bars) and their respective BC test hybrids with 

„MSL-Express‟ (broken line). the trait values of the cross parents „Express 617‟ (black) 

and „V8‟ (white) and their F1 hybrid (grey).  
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Figure 3.3 Relationship of (a) fresh and (b) dry shoot weight from the DH population 

„Express 617‟ × „V8‟ and their respective BC test hybrids with „MSL-Express‟ (grey 

bars). The correlation coefficients were 0.34 (P < 0.001) for fresh weight and 0.20 (P = 

0.001) for dry weight, respectively.  
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3.2.4 Specific leaf weight 

The specific leaf weight (SLW), calculated as the ratio of leaf dry weight to leaf area, was 

taken as an indicator of dry mass accumulation per leaf unit area. This trait is usually 

regarded as a measure of the capacity of a leaf to store biomass. Comparison of the SLW 

data distributions from the DH lines and the BC population showed that the DH lines had 

a broader variation than their BC progenies, with a lower frequency on the modal interval 

(Figure 3.6). The MPH values for SLW ranged from -29% for #114 and #345 to 49% for 

#199. From all DH/BC combinations tested, 104 (42%) pairs had negative MPH. 

3.3 Phenotypic observations: Field trials 

The field yields in the two growing seasons (2005/06 and 2006/07) showed a clear 

difference. The 2006/07 growing season was characterised by unusually mild winter 

temperatures that led to earlier flowering, followed by a dry period during the peak 

flowering season in April. The mean temperature in January and February 2007 was more 

than 3°C higher than average. In 2007 the normally wet month of April, when monthly 

precipitation of more than 30 lt.m
-2

 can be expected, experienced 0.0 lt.m
-2

 in both 

locations in Hesse (Rauischholzhausen: RH; Grund-Schwalheim: GS) and 3.2 lt.m
-2

 in 

southern Lower Saxony (Reinshof, Göttingen: RE). This resulted in significantly lower 

yields in the 2007 harvest compared to 2006: on average 30% lower in GS, 23% in RE, 

and 36% in RH (Fig. 3.7). The fact that the differences in yield were location specific 

was supported by a statistically significant genotype-year interaction (P = 0.0011). Based 

on this, the estimation of yield, thousand seed mass (TSM) and plant height was 

performed individually for each planting year and not pooled.  

3.3.1 Yield  

Yields of the DH lines had a stronger correlation between the two harvest years in 

comparison to the BC and MPH datasets (Fig. 3.8). The DH population yields were also 

distributed over a wider range with lower mean, relative to the BC population. This 

indicated that the performance of the DH lines tended to be more stable to environmental 

(year) influence, whereas the BC population was more affected by environment but 

overall had a more uniform performance. The pattern of the MPH dataset resembled that 
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of the BC. Unexpectedly, the correlation coefficient of field yield between the 

populations for the 2005/06 and 2006/07 harvest gave similar patterns. The correlations 

between DH lines and BC were moderate and positive (0.47 for both harvest years), 

whereas between DH lines and MPH they were negative (-0.27 and -0.46 for 2005/06 and 

2006/07, respectively). Although also moderate, the BC population had slightly higher 

correlations with MP than did the DH. This result may be influenced by the calculation 

used to generate the MPH data; however, the possibility that the BC population exhibited 

a stronger effect on yield heterosis than the DH lines was not unexpected.  

 

 

 

 
Figure 3.4 Leaf area distributions „for 250 DH lines from the DH population „Express 

617‟ × „V8‟ (white bars) and their respective BC test hybrids with „MSL-Express‟ (grey 

bars). Triangles show the trait values of the cross parents „Express 617‟ (black) and „V8‟ 

(white) and their F1 hybrid (grey).  
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Figure 3.5 Hypocotyl length distributions of  250 DH lines from the population „Express 

617‟ × „V8‟ and their respective BC test hybrids with „MSL-Express‟. Triangles show the 

trait values of the cross parents „Express 617‟ (black) and „V8‟ (white) and their F1 

hybrid (grey).  

 
Figure 3.6 Specific leaf weight (g.dm

-2
) distribution of  250 DH lines from the population 

„Express 617‟ × „V8‟ and their respective BC test hybrids with „MSL-Express‟. Triangles 

show the trait values of the cross parents „Express 617‟ (black) and „V8‟ (white) and their 

F1 hybrid (grey).   
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The frequency distributions of yield data from 2005/06 and 2006/07 harvests showed that 

the range for the DH population was broader than for the BC population, and the modus 

of the BC population located at a higher yield value than the DH population (Fig. 3.9).  

The absolute mid-parent heterosis (MPH) values from the 2005/06 harvest ranged from   

-7.25 dt/ha (#429) to 6.70 dt/ha (#213). From all accession pairs, 61 had negative MPH 

for plot yield in 2005/06. In contrast, MPH values from the 2006/07 harvest ranged from 

-3.8 dt/ha (-10.9%, #208) to 8.6 dt/ha (29.3%, #18) and only 11 pairs of accessions had a 

negative value (Figure 3.8). The MPH for the 2006/07 harvest turned out to have more 

positive values than 2005/06, although nominally they were lower. The drop in yield of 

the parent „Express 617‟ to only 35% of the yield attained in the previous year (greater 

than the average yield reduction in the progenies) was detected and might be attributed to 

the sub-optimal situation of 2006/07 planting year.  

3.3.2 Thousand seed mass (TSM) 

Thousand seed mass had no significant relationship with yield, with correlation 

coefficients for the DH, BC and MPH populations being invariably near zero. None of 

the correlations were significant (P ≥ 0.001). A strong correlation was observed between 

the TSM of the DH lines harvested in 2005/06 and in 2006/07 (r = 0.84, P < 0.001), 

reflecting the high stability of this trait in oilseed rape. The BC showed a more moderate 

correlation (r = 0.41, P < 0.001), whereas the MPH data showed the weakest correlation 

(r = 0.25, P < 0.001). This resembled the pattern of correlations seen for plot yield in 

each datasets. As shown by the scatter diagrams in Fig. 3.10, the DH lines tended to 

spread over a wider range for TSM relative to the BC population and the MPH data. 
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Figure 3.7 Means (arithmetic) of overall yield from the four trial locations Einbeck (EB), 

Grund-Schwalheim (GS), Reinshof (RE) and Rauischholzhausen (RH), in 2005/06 

(darker) and 2006/07 planting year. No data was available from Einbeck in 2006/07 due 

to hail damage. Error bars show standard deviation ranges. 

 

 

(a) 

20

25

30

35

40

45

25 30 35 40 45 50 55 60

DH line's field yield 2005/06 

D
H

 li
ne

's
 f

ie
ld

 y
ie

ld
 2

00
6/

07

 
 

 

 



  29 

Results  

 

 

(b) 

20

25

30

35

40

45

25 30 35 40 45 50 55 60

Test hybrid's field yield 2005/06 

Te
st

 h
yb

ri
d'

s 
fi

el
d 

yi
el

d 
20

06
/0

7

 
 

 (c) 

-10

-5

0

5

10

-10 -5 0 5 10

MPH's field yield 2005/06 

M
PH

's
 f

ie
ld

 y
ie

ld
 2

00
6/

07

 
 

Figure 3.8 Scatter diagrams showing the relationships between seed yield in 2005/06 and 

2006/07 for (a) „Express 617‟ × „V8‟ DH lines, (b) their BC test hybrids with „MSL 

Express‟, and (c) mid-parent heterosis (MPH) of the BC test hybrids. Diagrams for the 

DH and BC populations are made with the same scale to emphasise their relative 

distributions.  
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Between populations, the correlation coefficients for TSM were moderate to high. The 

DH and BC populations showed a relatively high correlation (0.77) for 2005/06 and a 

moderate one (0.56) for 2006/07, whereas the DH population was moderately negatively 

correlated to the MPH data (-0.57 and -0.44 in 2005/06 and 2006/07, respectively). The 

correlations between the BC and MPH data were very different in the two harvest years 

(0.09 and 0.50, respectively), indicating that for TSM the change in heterosis 

performance was controlled more by a change in the performance of the hybrids. The 

effect of the respective DH lines was relatively stable. 

Frequency distributions of the TSM data for both harvest years are presented in Fig. 3.11. 

Again it is seen that the DH population was distributed more broadly than the BC 

population for both years, indicating a tendency of BC toward uniformity, whereas the 

high correlation between the DH data from 2005/06 and 2006/07 indicated an inert 

situation. Unlike the yield, which showed a reduction in the 2000/07 harvest, TSM did 

not show a dramatic change. The distributions showed quite similar patterns to yield 

patterns, although the BC population distribution tended to have the modus at a higher 

value of TSM. However, the ranks of the BC accessions in the two harvest years were 

dissimilar.  

The MPH for TSM was weak, since the hybrid values were clustered around their 

respective mid-parent values. In 2005/06, 95 accession pairs had negative MPH values 

for TSM, with a range from -0.49 (#17) to 0.43 (#95). In 2006/07, 171 of the 250 

accession pairs had negative MPH values, ranging from -0.92 (#17) to 0.53 (#165). DH 

17 was the best performing DH line, and because its BC performed only moderately the 

MPH value for this pair was considerably reduced.  

3.3.3. Plant height 

The same pattern of correlations seen for the two other traits was observed for plant 

height, measured at the end of flowering. The DH population showed a stronger 

correlation between the years than the other two sets of data. Again the DH lines showed 

a broader spread of data, especially in comparison with the BC population, which had 

only a very narrow distribution (Fig. 13.12). The MPH  for  plant  height  showed a  more  
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(a) 

 
 (b) 

 
Figure 3.9 Distributions of seed yield in (a) 2005/06 and (b) 2006/07 for 250 DH lines 

from the population „Express 617‟ × „V8‟ and their respective BC test hybrids with 

„MSL-Express‟. Triangles show the trait values of the cross parents „Express 617‟ (black) 

and „V8‟ (white) and their F1 hybrid (grey). Notice the change of position of „Express 

617‟ in (a) and (b). 
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consistent pattern in both planting years and was dominated by positive heterosis, 

although individual accession numbers were not always consistent in both years. 

The plant height data distribution patterns of the DH and BC populations during the two 

planting years again showed that the modus of the BC population shifted slightly to the 

right compared to the DH population distribution. In both years the range of the BC 

population was smaller than that of the DH lines. In general, the DH lines in the 2006/07 

growing season had a wider range and many individual accessions had lower values than 

in the earlier year (Fig. 3.13).  

The MPH for plant height showed a similar spread of distribution for 2005/06 and 

2006/07, however, the correlation was weak between the two years. Only 11 out of 250 

(4.4%) accession pairs had negative MPH values in 2005/06 and 22 (8.8%) in 2006/07. 

The absolute MPH ranged from -1.64 cm (-1.03%, #157) to 17.86 cm (11.84%, #163) in 

2005/06, and from -4.9 cm (-3.3%, #171) to 18.3 cm (12.4%, #126) in 2006/07. 
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Figure 3.10 Scatter diagrams showing the relationships between thousand seed mass 

(TSM) in 2005/06 and 2006/07 for (a) „Express 617‟ × „V8‟ DH lines, (b) their BC test 

hybrids with „MSL Express‟, and (c) mid-parent heterosis (MPH) of the BC test hybrids. 

Diagrams for the DH and BC populations are made with the same scale to emphasise 

their relative distributions. 
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 (a) 

 
(b) 

 
Figure 3.11 Distributions of thousand seed mass (TSM) in (a) 2005/06 and (b) 2006/07 

for 250 DH lines from the population „Express 617‟ × „V8‟ and their respective BC test 

hybrids with „MSL-Express‟. Triangles show the trait values of the cross parents 

„Express 617‟ (black) and „V8‟ (white) and their F1 hybrid (grey). Notice the different 

scale of X-axis between (a) and (b). 
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3.4 Phenotypic observations: greenhouse and field trials  

As expected due to the complexity of the traits analysed, the correlation analysis on 

heterosis for traits observed in the greenhouse and field analysis revealed only a few clear 

relationships. However, some small (lower than 0.2) but still significant correlations 

existed although all were attributed to yield data from a single growing season, except the 

correlation between shoot dry weight and yield. The latter had significant but small 

correlations of shoot dry weight with yield for both the 2005/06 and 2006/07 field trials 

(both have r = 0.14, see Fig. 3.14) and was of particular interest. Specific leaf weight 

correlated with two different traits from different planting years (plant height in 2005/06 

and yield in 2006/07). Thousand seed mass from both harvest years appeared to be 

expressed independently from all of the observed early developmental traits. 
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Figure 3.12 Scatter diagrams showing the relationships between plant height in 2005/06 

and 2006/07 for (a) „Express 617‟ × „V8‟ DH lines, (b) their BC test hybrids with „MSL 

Express‟, and (c) mid-parent heterosis (MPH) of the BC test hybrids. Diagrams for the 

DH and BC populations are made with the same scale to emphasise their relative 

distributions. 

 



  37 

Results  

 

 

 (a) 

 
(b) 

 
Figure 3.13 Distributions of plant height (in cm) in (a) 2005/06 and (b) 2006/07 for 250 

DH lines from the population „Express 617‟ × „V8‟ and their respective BC test hybrids 

with „MSL-Express‟. Triangles show the trait values of the cross parents „Express 617‟ 

(black) and „V8‟ (white) and their F1 hybrid (grey). Notice the different scale of axis and 

the performance of „Express 617‟ in the two years. 
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Since in general there were only low correlations between traits from the greenhouse and 

field trials, correlation analyses to yield heterosis were repeated with the fifty BC hybrids 

showing the best and worst heterosis performance, respectively, for the individual early 

biomass traits. The aim was to to see if hybrid combinations with particularly high or low 

heterosis for a given early biomass trait also showed correspondingly high or low 

heterosis for yield. A significant difference (P > 0.05) was seen for both harvest years 

between the seed yield of hybrids with high and low seedling biomass heterosis, 

respectively (Fig. 3.15). Shoot dry weight was associated with a significant difference in 

yield heterosis in 2007, whereas  hybrids with  high  and  low  heterosis  for  leaf fresh 

 

 
 

 

Figure 3.14 Small but significant correlation coefficients (P<0.05) between traits 

observed in greenhouse and field trials from the mid-parent heterosis (MP) data. 

Combinations not joined by lines showed no significant correlations. 
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weight showed significantly different yields at the 2006 harvest. Considering this result 

and the earlier correlations analysis, and that there were high correlation between shoot 

fresh weight and shoot dry weight, it appears that there may be a weak but significant 

relationship between heterosis for shoot weight and heterosis for yield. This could 

indicate common regulatory mechanisms involved in heterosis in early seedling 

development and during the seed-filling stages in adult winter oilseed rape plants. 
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Figure 3.15 Comparison of mid-parent heterosis (MPH) for yield in 2005/06 (dark grey 

bars) and 2006/07 (light grey bars), respectively, in groups of the 50 BC test hybrids with 

the respectively highest (H) and lowest (L) MPH for (a) shoot fresh weight, (b) leaf fresh 

weight, (c) shoot dry weight, (d) leaf dry weight, (e) leaf area, (f) hypocotyl height, and 

(g) specific leaf weight.  
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3.5 Quantitative trait loci analysis  

As mentioned in Section 2.7, single locus estimates provided by QTL analysis of the 

MPH data represent dominance effects of the respective QTL, while estimates from the 

DH data represent additive genetic effects. Incorporating a two-locus interaction model 

(epistasis model) may give information on additive-to-additive genetic interaction effect 

when applied to the DH data. Although its genetic interpretation is more difficult, 

analysis of the BC and MP data sets using an epistasis model is also given to show the 

possible roles of other types of multilocus interaction. 

3.5.1 Main-effect QTL for early morphological traits  

From seven traits observed in the greenhouse trial, eleven main-effect QTL were 

detected. None of these derived from the MPH dataset, while seven and four loci were 

detected from the DH and BC datasets, respectively (Table 3.1). Percentage of variance 

due to the QTL compared to the phenotypic variance, as a measure of the relative 

contribution of the locus, ranged from 6.8% (fresh leaf weight in the BC dataset) to 2.3% 

(hypocotyl length in the DH dataset). It might be argued that the absence of QTL from 

the MPH dataset makes it impossible to obtain estimate of dominance of QTL, thus to 

relate heterosis to any locus. Heterosis effect cannot be attributed to the DH population. 

On the other hand, the lines provide estimates of additive genetic effects, which are 

determined directly by alleles they possess and not affected by the genotypes they build. 

Furthermore, the BC data set gives indications of heterosis effects, since it estimates the 

difference between additive genetic and dominance effects. Therefore, in cases where the 

BC and DH datasets each show QTL in a common position, a rough approximation of 

dominance effects on heterosis can be made. This situation, however, was not observed 

for early biomass traits.  

3.5.2 Main-effect QTL of traits observed in field trials 

A total of 47 main-effect QTL were observed for plant height at the end of flowering, 

TSM and yield during the two growing seasons (Table 3.2). Among these, four are QTL 

from the  MPH data  set  (heterosis)  from  2005/06,  while seven QTL for heterosis in the
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various traits were observed in 2006/07. Although these QTL did not overlap between the 

two years, numerous overlaps were found with QTL from the DH and BC datasets. 

Chromosome N07 contained a cluster of QTL from the different datasets exclusively for 

TSM; one of them is a QTL for heterosis in TSM (Httsm06), whereas other QTL were 

from the DH and BC datasets for both growing seasons (Table 3.2). Another notable 

cluster of QTL for TSM (including another heterotic QTL, Httsm07) was located on 

chromosome N16, accompanied by two QTL for TSM from per se data (DH population) 

plus a QTL for yield heterosis in 2006 (Hty06). Two other clusters of QTL exclusively 

for TSM were located on chromosomes N09 and N10, respectively, although neither 

contained a significant heterotic QTL. A further heterotic QTL for TSM was located on 

chromosome N19. 

QTL for yield were found on chromosomes N01, N03, N05, N08, N09, N13 and N16, 

with heterotic QTL being detected on N03, N08, N13, and N16. As mentioned 

previously, Hty06 on N16 co-located with a QTL cluster for TSM. A QTL for yield 

heterosis on N03 (Hty07) co-located with two interaction QTL for TSM and plant height, 

while a QTL for yield heterosis on N08 (Hty06) co-located with a QTL for yield in the 

BC dataset (Hby08) and two QTL for epistatic interactions affecting hypocotyl length 

whose respective pairs also co-located at the same position. Based on these findings it is 

possible that these QTL have pleiotropic effects, or that they may represent regulatory 

gene loci involved in numerous developmental processes.  

QTL for plant height were localised on a number of chromosomes. Three of these QTL 

were heterotic, namely on chromosomes N03 and N05 in 2006/07 and on chromosome 

N11 in 2005/06. The QTL on N05 for heterosis in plant height (Htph07) co-localised 

with a QTL for per se yield (Dy07). Two further QTL for per se plant height were 

detected in both years on N16 and N13.  

3.5.3 Active regions 

Numerous clusters were observed where QTL for various traits from one or more of the 

datasets occurred in a common location. For the sake of simplicity the term “active 

region” was  introduced  in this  work  to  describe these regions. An  active  region is any  
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Table 3.2 QTL with main effect detected in the field trials of 250 DH lines from the cross 

„Express 617‟ × „V8‟ and their respective BC test hybrids with „MSL-Express‟. QTL 

names are derived from the abbreviation of the data set used and  the trait observed: D = 

DH population data, Hb = BC hybrid data, Ht = mid-parent heterosis data, y = yield, ph = 

plant height, tsm = thousand seed mass. Values of genetic effects are presented after 

adjustments for BC and MP: Effects of QTL obtained from the DH data set are not 

adjusted, BC effects are multiplied by 2 and MP effects are multiplied by -2. 

  

QTL 

Flanking marker 
Position 

(cM) 
Range Effect 

Heritability 

(%) 
Left Right 

Dph07 

N01 
E44M47_77 E45M574_23 60.8 54.8–68.6 -1.30 3 

Dph07 

N07 
E39M49_307 E44M58_101 6.0 0.0–16.0 -1.99 6 

Dph07 

N13 
BRAS039b E36M51_45 91.1 84.9–96.5 -2.66 11 

Dph07 

N16 
E31M49_112 E32M51_350 90.2 83.8–97.8 -3.02 14 

Hbph07 

N12 
E43M51_140 CB10316 44.0 35.6–54.8 2.12 4 

Hbph07 

N16 
E45M48_404 E32M59_285 111.7 97.8–122.1 -2.00 4 

Htph07 

N03 
CB10079 E43M51_254 133.0 123.6–135.0 1.56 3 

Htph07 

N05 
BRAS063 CB10574 34.8 19.5–51.5 1.60 3 

Dy07 

N05 
BRAS063 CB10574 36.8 32.8–42.8 -1.41 15 

Dy07 

N09 
E42M55_131 E31M55_249 85.4 79.6–89.4 -1.16 10 

Hby07 

N05 
E31M62_195 E42M55_166 58.7 53.5–64.7 -1.28 11 

Hty07 

N03 
Na14G10 E42M55_125 61.2 52.8–67.2 -0.78 4 

Hty07 

N13 
Ol10E05 HMR320 2.3 0.0–8.0 -0.60 3 

Dtsm07 

N07 
GMR166 Ra2G08 24.2 22.2–28.6 -0.20 23 

Dtsm07 

N09 
E44M51_350 E35M60_540 17.2 7.7–21.9 0.11 6 
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QTL 
Flanking marker 

Position 

(cM) 
Range Effect 

Heritability 

(%) 
Left Right 

Dtsm07 

N10 
Na12H04 E42M55_595 74.2 70.3–78.2 -0.12 9 

Dtsm07 

N16 
E34M54_45 E32M51_225 68.5 64.5–72.5 0.13 10 

Hbtsm07 

N07 
Ra2G08 Na12B02 27.1 16.4–34.6 -0.16 10 

Hbtsm07 

N09 
Na14C12 E36M57_123 57.4 49.5–64.0 0.14 8 

Hbtsm07 

N10 
Na12H04 E42M55_595 74.2 56.4–78.2 -0.10 4 

Httsm07 

N06 
E45M49_137 E34M55_290 66.3 59.5–74.0 -0.08 3 

Httsm07 

N16 
E34M54_45 E32M51_225 70.5 55.3–94.2 -0.08 4 

Httsm07 

N19 
Ol12F07 E32M49_386 96.4 87.6–109.6 0.12 7 

Dy06 

N05 
CB10609 Na12E01b 47.9 42.8–55.5 -0.85 5 

Dy06 

N16 
CB10211b BRAS048 130.5 116.1–132.5 1.12 9 

Hby06 

N01 
CB10097 E34M51_63 22.4 16.9–26.4 -0.76 3 

Hby06 

N05 
E34M59_94 BRAS063 29.5 23.5–40.8 -1.12 6 

Hby06 

N08 
CB10629 E43M62_222 45.1 38.9–51.4 -0.80 3 

Hby06 

N09 
Na12E06B Na14C12 49.5 46.0–53.4 -0.86 4 

Hty06 

N08 
CB10629 E43M62_222 41.1 38.9–49.4 -0.90 5 

Hty06 

N16 
E34M54_45 E32M51_225 74.5 66.5–83.8 -0.70 3 

Dtsm06 

N07 
GMR166 Ra2G08 24.2 22.2–27.1 -0.17 19 

Dtsm06 

N09 
E44M51_350 E35M60_540 15.2 7.7–19.9 0.11 8 

Dtsm06 

N09 
MR230 CB10116B 141.0 137.0–145.9 0.09 5 

Table 3.2 Continued 
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QTL 
Flanking marker 

Position 

(cM) 
Range Effect 

Heritability 

(%) 
Left Right 

Dtsm06 

N10 
Na12H04 E42M55_595 76.2 72.2–78.2 -0.11 8 

Dtsm06 

N16 
E34M54_45 E32M51_225 70.5 66.5–75.9 0.12 9 

Hbtsm06 

N07 
Na12B02 Na12E11 30.6 28.6–34.6 -0.11 12 

Hbtsm06 

N09 
E44M51_350 E35M60_540 13.2 7.7–17.9 0.10 10 

Hbtsm06 

N09 
E43M62_336 MR230 126.3 110.6–134.3 0.10 10 

Hbtsm06 

N10 
Na12E09 Ol10B11 59.9 58.4–67.9 -0.08 7 

Hbtsm06 

N16 
E33M49_199 Na12E01a 53.3 45.6–58.3 0.09 8 

Httsm06 

N07 
GMR166 Ra2G08 24.2 18.4–28.6 0.09 12 

Dph06 

N10 
E34M62_109 E46M59_241 9.3 4.0–17.3 0.93 2 

Dph06 

N13 
E46M62_120 BRAS039B 86.9 73.9–95.1 -1.24 4 

Dph06 

N16 
E31M49_112 E32M51_350 88.2 85.8–92.2 -3.19 25 

Hbph06 

N16 
E31M49_112 E32M51_350 88.2 83.8–94.2 -1.98 8 

Htph06 

N11 
E31M55_102 E32M54_52 43.6 39.6–48.5 1.48 5 

 

 

region in a chromosome that possesses at least one main-effect QTL from one of the 

datasets. If two or more overlapping QTL were found in the same region, this was treated 

as a single active region.  

A total of 26 active regions were detected on 15 of the 19 chromosomes. Only N02, N04, 

N15, and N18 did not have active regions, although they did have epistatic QTL, of 

which some interacted with QTL located in active regions. Chromosome N09 had the 

most active regions, namely five.  

Table 3.2 Continued 
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Active regions containing more than one QTL were found in chromosomes N05, N07, 

N08, N09 (two regions), N10, N11, N13, N14 and N16, whereby some regions deserved 

particular attention. Chromosome N05 has active region qN05_1 spreading from 16.4 cM 

to 64.7 cM. This long region is associated with field traits (yield per se in both planting 

years and heterosis for 2007 plant height) and greenhouse traits (SLW, leaf area and 

hypocotyl length). Chromosomes N07, N09 and N10 possessed active regions 

exclusively related to thousand seed mass (TSM) for both planting years, especially 

qN07_1 (which also influenced heterosis in 2006), qN09_1 and qN10_2. Other regions 

related to TSM were qN06_1 (influence on heterosis in 2007), qN09_2 (2007, shared 

with yield 2006), qN09_4 and qN09_5, qN16_1, and qN19_1 (heterosis in 2007). Region 

qN08_1 had two QTL for yield in 2006 from both the BC and MP data sets. Another 

particularly interesting active region was qN14_2, which contained QTL from the BC 

data set for both shoot dry weight and fresh weight. Two overlapping QTL for plant 

height in both years were located in region qN13_3. These regions, in which main effect 

QTL affected multiple traits, appear to influence different traits throughout the lifespan of 

plant, and could represent regulatory or “housekeeping” genes. Single-trait regions, on 

the other hand, such as for thousand seed mass, are more likely to encode specific 

regulators of the trait in question that are not involved in other traits.  

Other active regions had only single main-effect QTL; however these are treated as 

equally important because interacting QTL – from any trait – may indicate a connection 

between active regions. For example, the region qN10_1 (with a main-effect QTL for 

plant height) interacted with the active region qN13_3 with regard to hypocotyl length 

(Figure 3.16), and the latter is an active region for two main-effect QTL influencing plant 

height. Region qN10_1 was also related through a QTL for yield heterosis with qN05_1, 

an active region containing QTL for yield and plant height. This interconnection 

suggested a possible co-regulatory function among the respective regions and their 

corresponding QTL, including a regulatory effect influencing yield heterosis.  

3.5.4 Epistatic QTL 

A considerable degree of two-locus epistatic interaction was observed. Many additive to 

additive epistatic QTL could be detected in the DH dataset (see Section 2.7; Appendix 

C). Genetic interpretation of interaction terms estimated by each data set is complex due 
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to  the large  quantity of epistatic  interactions;  hence  the  interactions were  classified  

into three classes for each dataset: Class I – interaction between two main effect QTL, 

Class II – interaction between main effect QTL and non-main effect QTL, and Class III – 

interaction between two non-main effect QTL. A similar classification was made based 

not on QTL but on active regions. Tabular summaries of the epistatic interaction classes 

for QTL and active regions are presented in Table 3.3 to Table 3.6. 

A notable feature of the detectable epistatic interactions was that Class I interactions were 

almost non-existent in both the field and greenhouse trials. Using QTL as the basis of 

grouping provided no main-effect QTL to main-effect QTL interaction. Furthermore, 

there were also very few Class II QTL interactions, so that Class III interactions were the 

dominating class of epistasis detected. Radoev et al. (2008b) found a similar situation 

using a closely-related mapping population. This indicated  that main-effect  QTL did not  

 

 
 

 

Figure 3.16 Interconnection among active regions in chromosomes N05, N10, and N13. 

Regions qN10_1, qN13_2 and qN05_1 each had QTL for plant height. An interacting 

QTL for hypocotyl length connected qN10_1 to qN13_3 and another interacting QTL for 

yield heterosis connected qN10_1 to qN05_1. The latter also had QTL for yield.   
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Table 3.3 Number of epistatic interactions among QTL for traits observed in the field 

trials in 2005/06 and 2006/07. Type I = interaction between two main-effect QTL, Type 

II = interaction between a main-effect QTL with and a non-main effect  QTL, Type III = 

interaction between two non-main effect QTL. 

 

Harvest 

time Trait  Data set 
Interaction type 

Type I Type II Type III Total 

2006 Yield  DH 0 0 5 5 

  BC 0 0 5 5 

  MP 0 0 3 3 

 Plant height  DH 0 0 10 10 

  BC 0 1 9 10 

  MP 0 0 2 2 

 TSM DH 0 0 6 6 

  BC 0 0 5 5 

  MP 0 0 2 2 

2007 Yield  DH 0 0 1 1 

  BC 0 0 8 8 

  MP 0 0 8 8 

 Plant height  DH 0 0 7 7 

  BC 0 1 6 7 

  MP 0 1 5 6 

 TSM DH 0 1 7 8 

  BC 0 0 2 2 

  MP 0 0 3 3 

 DH 0 1 36 37 

Total per population BC 0 2 35 37 

 MP 0 1 23 24 

Total 0 4 94 98 

 

 

 

play a major role in epistatic interactions related to heterosis, whereas complex 

interactions between non-main effect QTL appear to be heavily involved in expression of 

heterosis for different biomass and yield traits.  
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Table 3.4 Number of epistatic interactions among active regions for traits observed in the 

field trials in 2005/06 and 2006/07. Type I  = is interaction between two main-effect 

QTL, Type II = interaction between a main-effect QTL with and a non-main effect  QTL, 

Type III = interaction between two non-main effect QTL. 

 

Year Trait  Data set 
Interaction type 

Type I Type II Type III Total 

2006 Yield  DH 1 2 2 5 

  BC 0 1 4 5 

  MP 2 1 0 3 

 Plant height  DH 1 3 6 10 

  BC 0 6 4 10 

  MP 0 2 0 2 

 TSM DH 0 3 3 6 

  BC 0 2 3 5 

  MP 0 1 1 2 

2007 Yield  DH 0 0 1 1 

  BC 0 5 3 8 

  MP 2 4 2 8 

 Plant height  DH 1 2 4 7 

  BC 2 2 3 7 

  MP 1 4 1 6 

 TSM DH 0 3 5 8 

  BC 1 1 0 2 

  MP 0 0 3 3 

  DH 5 10 20 35 

Total per population BC 3 18 17 38 

  MP 2 11 7 20 

Total 10 39 44 93 

 

 

 

Further investigations showed that certain interactions involving the same trait could be 

found clustering in the same location. This finding is quite interesting, since such patterns 

were typical for transcription factors. Many investigations on the nature of QTL for 

complex traits  have  led  to a  conclusion  that the  underlying  genes  were  transcription 
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Table 3.5 Number of epistatic interactions among QTL for early biomass traits observed 

in the greenhouse trials. Type I  = is interaction between two main-effect QTL, Type II = 

interaction between a main-effect QTL with and a non-main effect  QTL, Type III = 

interaction between two non-main effect QTL. 

 

Trait Data set 
Interaction type 

Type I Type II Type III Total 

 DH 0 0 3 3 

Fresh shoot weight BC 0 0 6 6 

 MP 0 0 5 5 

 DH 0 0 5 5 

Dry shoot weight BC 0 0 3 3 

 MP 0 0 1 1 

 DH 0 1 5 6 

Fresh leaf weight BC 0 0 4 4 

 MP 0 0 4 4 

 DH 0 0 3 3 

Dry leaf weight BC 0 0 4 4 

 MP 0 0 2 2 

 DH 0 0 3 3 

Leaf area BC 0 0 2 2 

 MP 0 0 4 4 

 DH 0 0 1 1 

Specific leaf weight BC 0 0 0 0 

 MP 0 0 1 1 

 DH 0 0 6 6 

Hypocotyl length BC 0 0 7 7 

 MP 0 0 2 2 

 DH 0 1 26 27 

Total per population BC 0 0 26 26 

 MP 0 0 19 19 

Total 0 1 71 72 

 

 

factors (see, for instance, Yano et al. 2000a, 2000b, Gibert et al. 2005). Since the 

investigation of interactions is a demanding task, clusters of interacting QTL are a useful 

starting point to identify target regions where relevant transcription factors might be 

located. 
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Table 3.6 Number of epistatic interactions among active regions for traits observed in the 

greenhouse trials. Type I = is interaction between two main-effect QTL, Type II = 

interaction between a main-effect QTL with and a non-main effect  QTL, Type III = 

interaction between two non-main effect QTL. 

 

Trait Data set 
Epistasis 

Type I Type II Type III Total 

 DH 0 2 1 3 

Fresh shoot weight BC 2 1 3 6 

 MP 0 3 2 5 

 DH 0 2 3 5 

Dry shoot weight BC 0 2 1 3 

 MP 1 0 0 1 

 DH 0 3 3 6 

Fresh leaf weight BC 1 2 1 4 

 MP 2 2 0 4 

 DH 1 1 1 3 

Dry leaf weight BC 1 1 2 4 

 MP 1 1 0 2 

 DH 0 0 3 3 

Leaf area BC 0 1 1 2 

 MP 1 1 2 4 

 DH 0 0 1 1 

Specific leaf weight BC 0 0 0 0 

 MP 0 1 0 1 

 DH 0 2 4 6 

Hypocotyl length BC 1 3 3 7 

 MP 1 1 0 2 

 DH 1 10 16 27 

Total per population BC 5 10 11 26 

 MP 6 9 4 19 

Total 12 29 31 72 
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3.5.5 Epistatic QTL considering active regions 

Considering active regions, which meant treating a cluster of main QTL as a single QTL 

region, changed the composition of QTL interaction classes (Table 3.4 and 3.6). In 

particular this led to an increase in the number of detectable Class I and Class II 

interactions for all the data sets.  

In the field trial data, Class I interactions increased from zero to almost 11% and Class II  

interactions from 4% to 43%, while  the Class III interactions were consequently reduced 

from 96% to 46%. In the MP data set, in which a total of 20 interactions were observed, 

Class I interactions were 21% higher (from 0%), Class II increased from 4% to 50% and 

Class III reduced from 96% to 29%. The use of active regions, instead of strict-to-trait 

epistatic interaction was a useful reminder that a looser definition of complex traits could 

help gaining more information on QTL-to-QTL interactions.  

Similar shifts were also observed in the greenhouse trial. Class I interactions increased  

from 0 to 12 (17%) and Class II interactions from 1 (1%) to 29 (40%). Consequently 

Class III interactions decreased from 99% to only 43%. When we look at the interaction 

QTL from the MP data set, a 32% increase (from 0 to 6) of Class I interactions and a 47%  

increased (from 0 to 9) of Class II interactions QTL were detected.  

Considering common active regions for field trial data as well as greenhouse trial  data 

demonstrated that treating complex traits without a strict discrimination between  

different traits traits can give valuable additional information. Although few statistically 

significant average-based correlation coefficients were observed between traits in the two 

experiments, at the same time numerous interacting QTL were observed among 

statistically uncorrelated traits. This suggests potential “minor” interactions that could not 

be detected at a phenotypic level, and may be a further indication of factors with diverse 

influences on various traits. This gives also indication of the high complexity of the 

genetic architecture behind each observed trait.  
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3.6 Genetic action of the QTL 

Due to the genetic structure of the DH and BC populations used in this study, additive 

genetic, dominance, and epistatic effects can be independently estimated. With regard to 

heterosis we can only use information on dominance as an effect that is purely estimated 

(using the MP formula). Estimations derived from the BC population, as well as 

interactions derived from the BC population data or the MP formula, are functions that 

are difficult to interpret. However, they can still be used to a certain extent.    

3.6.1 Greenhouse trial 

From the greenhouse trial, which was aimed at early morphological traits, there were no 

QTL with dominance effect related to heterosis, although four QTL showed significant 

differences between additive genetic and dominance effects as estimated using data from 

the BC population (Table 2.1). Two of these QTL were located in the same region of N14 

and derived from two closely related traits (dry and fresh shoot weight). The other two 

QTL were for fresh leaf weight (on N13) and for leaf area (on N05). These QTL had a 

low contribution to phenotypic variation (ranged from 3.0 to 6.0%) and their effect had a 

negative sign, indicating that the dominance effect was higher than the additive genetic 

effect. This was in agreement with the phenotypic observation that the BC population 

tended to have slightly higher values than the DH, thus indicating the advantage of 

heterozygotes. 

When we compare the QTL effects of traits from the BC population to BC average value, 

their effects were relatively small (Table 3.7), i.e. lower than 5%. However, the effect of 

QTL calculated from BC is actually only half the difference between additive and 

dominance effects. If these QTL effects are compared to the difference between DH and 

BC population means, we can see that these QTL really have a high relative 

contributions. They reach reach almost 20%  for fresh shoot weight and more than 80% 

for leaf area.   

Interacting QTL derived from the BC and MP data sets were abundant in the greenhouse 

trial. All the traits observed had interacting QTL which contribution mostly around 6% to  
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Table 3.7 Genetic effects of main-effect QTL found from the the BC test hybrids data set 

in the greenhouse trials. The effects are estimated from the BC population relative to the 

BC population average and to the average difference between the BC and DH population 

means. A negative effect value indicates that materials with the allele from parent 

„Express 617‟ have a lower average than those with the corresponding allele from parent 

„V8‟. 

 

 

Trait Location Effect  

BC 

population 

average 

Relative 

effect to BC 

pop. average 

(%) 

Average 

difference  

Relative 

effect to 

average 

diff. (%) 

Dry shoot 

weight 
N14 -0.02 0.77 -2.6 -0.05 40.0 

Fresh shoot 

weight 
N14 -0.21 13.26 -1.6 -1.11 18.9 

Fresh leaf 

weight 
N13 -0.16 5.58 -2.9 -0.34 47.1 

Leaf area N05 -12.84 290.30 -4.4 -15.51 82.8 

 

 

7% to phenotypic variation and a maximum of of 14.7% (Appendix C). The type of 

interaction contributing to the variation is unknown in this case, since we cannot 

distinguish additive-to-additive from  additive-to-dominance or dominance-to-dominance 

interactions. Nevertheless, the estimates were functions of purely epistatic genetic 

components. Thus, they provided evidence that QTL interactions play an important role 

in determining heterosis in the early phase of oilseed rape development.  

3.6.2 Field trials 

Unlike the greenhouse experiment, QTL that directly estimated dominance effects were 

found  for  traits  in  field  trials.  Both  planting years  resulted  in series of QTL showing  
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Table 3.8 Co-location of heterotic main-effect QTL with epistatic QTL of the same or 

other traits. 

 

 

Chromosome Main QTL Co-locating  
epistatic QTL 

Counterpart 
chromosome of the 

epistatic QTL 

N01 Hby06 Hty07 N13 

N03 Hty07 Hbtsm07 

Hbph07 

N16 

N07 

N05 Htph07, Hby06 

 

 

Hbla, Hby07 

Htph07 

Htfshw 

Hbfphw 

Hbdshw 

Htla 

Hbph06 

Hty06 

N04 

N08 

N14 

N15 

N15 

N12 

N10 

N06 Httsm07 Hbph06 N11 

N07 Httsm06, Hbtsm07, 

Hbtsm06 

Hthch 

Hbph07 

N19 

N03 

N08 Hty06, Hby06 Hbhch  

Hthch 

N10  

N10 

N09 Hby06, Hbtsm07 Hbhch N02 

N10 Hbtsm06, Hbtsm07 Hbhch  

Hthch 

Htph06 

Hty07 

Hby06 

Htph07 

N08   

N08   

N06 

N16 

N09 

N01 

N11 Htph06 Hbph06 

Htph07 

N13 

N16 
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Chromosome 
Main QTL Co-locating  

epistatic QTL 

Counterpart 
chromosome of the 

epistatic QTL 

N13 Hty07 Hbdshw 

Hbfshw 

Hbph07 

Hty06 

N06 

N19 

N17 

N07 

N16 Hty06, Httsm07 Htfshw 

Hbtsm07 

N13 

N03 

N19 Httsm07 Hbph07 N06 

 

additive genetic, dominance and two-locus interaction effects. All the traits observed in 

both planting years gave at least one QTL related to a dominance effect (see Table 3.2). 

QTL with dominance-related epistatic effects, derived from the BC and MP data sets, 

were abundant;  some  even co-located with main-effects QTL. The latter  could be found 

in N05 (for plant height heterosis 2007), N09 (for thousand seed mass 2007, albeit from 

the BC and DH data sets) and N16 (for plant height 2007 BC). From the DH data set 

there were two such cases, i.e. at N11 (for fresh leaf weight) and N17 (for fresh leaf 

weight), although neither QTL overlapped with QTL involved in heterosis.  

When QTL for all traits were considered together, the co-location of main-QTL with 

epistatic-QTL became common (Table 3.8). These might indicate pleiotropism, where 

heterosis-related genes do not influence only a single trait but rather many traits simultan-

eously through some common upstream or regulatory process. Some of the relationships 

showed interesting nature, by relating certain main QTL through interacting QTL for 

different traits. Examples of this were observed between two main-effect QTL on N08 

and N10, and between main-effect QTL on N03 and N16.  

It was not easy to thoroughly conclude whether a heterosis-relevant main-effect QTL 

showed partial or complete dominance, as well as overdominance, since most of main-

effect QTL showing heterosis did not co-locate at the same position with other main-

effect QTL from the same trait that had additive effect (from DH data set). An estimate of 

additive effects at  a specific locus is necessary to ascertain  the type of dominance effect.  

Table 3.8 Continued 
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Table 3.9 Estimates of additive genetic effects ( ) and dominance effects ( ) based on 

co-locating QTL from different datasets and their actions. Italicised figures are obtained 

from derivation using the other estimates. PD = partial dominance. 

 

Chromo-

some 
Trait â  d̂  Action 

N07 Thousand seed mass 2005/06 -0.17 0.09 PD to „V8‟ 

N07 Thousand seed mass 2006/07 -0.20 -0.04 PD to „Express‟ 

N08 Yield 2005/06 -1.7 -0.90 PD to „Express‟ 

N09 Thousand seed mass 2005/06 0.11 0.01 weak PD to „Express‟ 

N10 Thousand seed mass 2006/07 -0.12 -0.02 weak PD to „Express‟ 

N16 Plant height 2005/06 -3.19 -1.21 PD to „Express‟ 

N16 Thousand seed mass 2006/07 0.13 -0.08 PD to „V8‟ 

 

For example, in the active region qN07_1 on N07, a heterotic QTL (from the MP data 

set) for TSM co-located with an additive QTL for TSM.  At the  same  active  region, two 

main QTL for TSM from the BC and DH data sets also co-located. Similar MP and DH 

combinations appeared again on the homoeologous chromosome N16. A BC and DH 

pairing also appeared on the homoeologous chromosomes N09 (qN09_1 region) and N10 

(qN10_2 region), again for TSM. In addition, there was a BC-DH pairing for plant height 

found at N16.  

From the estimates of additive genetic and dominance effects obtained from co-locating 

QTL from different datasets (Table 3.9), all the QTL invariably gave partial dominance 

effect. From seven QTL which both additive and dominant effect could be estimated, 

only two QTL had dominance direction in favor of „V8‟. This was largely in agreement 

with the direct measurements (Fig. 3.11) of  the line parental lines and the hybrid, in 

which the hybrid was in favor of „Express‟ although the latter was undermined by „V8‟ in 
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performance. A QTL for TSM  measured  in 2005/06 and a QTL for TSM in 2006/07 

were located in the same active region but not co-located. They had different dominance 

direction. Unfortunately, we could not compare results from 2005/06 planting year with 

phenotypic measurement since „V8‟ was not involved.  Plant height  in 2005/06  had  

partial  dominance QTL, whereas yield of 2005/06 had a partial dominance QTL, too, 

which also could not be compared with the phenotypic situation. To compare the results 

of 2005/06 with 2006/07 is problematic, since yields and overall performance of was 

clearly lower in 2006/07 compared to 2005/06 due to irregularity of temperature and 

rainfalls during early 2007; thus, it is not done. 
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4 DISCUSSION 

Heterosis-relevant QTL were detected for numerous traits in field and greenhouse trials. 

By combining data from the DH and BC populations, classes of QTLs were determined 

based on their effects. How strongly each QTL affected a particular trait was important in 

associating patterns of phenotypic level with the QTL that were detected. One may 

assume, for instance, that two genetically correlated traits, as estimated in this study, can 

be traced back to the same QTL. Alternatively, a QTL for a trait may affect another QTL 

responsible for another trait, which may lead to a causal relationship. However, if the 

contribution of a QTL to the trait variation is weak, an attempt to relate QTL to a 

quantitatively variable phenotype becomes challenging.  

The following discussion begins with an interpretation of the phenotypic patterns shown 

in the respective greenhouse and field trials, followed by an interpretation of detected 

QTL with a focus on QTL related to heterosis-relevant effects (dominance and 

dominance-derived epistasis). Finally an attempt will be made to relate the phenotypic 

patterns related to heterosis to the QTL composition. The results will be discussed in 

relation to other relevant work and with an outlook towards further investigations of the 

genetic control of heterosis. 

4.1 Phenotype patterns 

4.1.1 Heterotic patterns 

Comparing the DH and BC data distributions provided evidence for the existence of 

heterosis. Slight differences were seen in the peaks from the two population distributions 

for almost all the traits observed, in greenhouse as well as in field. This indicated changes 

in performance due to the genetic structure of the respective populations. DH lines 

contain only homozygous loci, whereas half of the BC population members are expected 

to be heterozygous for any given locus, whereby the degree of heterozygosity of each of 

its members depends on different alleles with „Express 617‟. Considering the genetic 

structure, the BC populations has the „advantage‟ of heterozygosity which is related to 

heterosis. This probably accounts for the general performance increase in the BC 

population compared to the DH population.  
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From a quantitative genetics perspective, a population that consists of heterozygous 

individuals (e.g. BC test hybrids), has an additional driving effect due to dominance and 

dominance-related epistasis. The presence of these effects alters the additive contribution 

from each allele due to the interaction between them (additive-to-additive interaction). 

Although a negative effect is possible, in general heterozygosity brings an overall 

positive improvement to the phenotypic performance. This is why heterosis and hybrid 

vigor are often used as interchangeable terms. The results obtained from the present study 

simply support this expectations, since there were more positive improvements from the 

DH lines to the respective BC test hybrids.  

Another common feature seen in the phenotypic observations of the DH and BC 

populations is that variability was generally higher among the DH lines than among the 

BC hybrids. This was the case for almost all of the traits observed in both the greenhouse  

experiment and the field trials. Such relative performance is expected, simply because the 

BC hybrids are obtained by backcrossing each DH line with „MSL-Express‟. Thus each 

member of the BC population shares half of its alleles, meaning that the allelic pool of 

the BC population has lower variability than that of the DH population. 

The field trials over two growing seasons made it possible to compare the performance of 

the materials between 2005/06 and 2006/07. The DH population performed relatively 

consistently for plant height, yield and TSM (despite a clearly lower yield and plant 

height in 2006/07 in comparison to 2005/06), whereas the BC population tended to 

cluster resulting in a lack of correlation patterns. Mid-parent heterosis had different 

patterns for each of the traits reported here. Plant height, which was measured at the end 

of flowering season, had positive heterosis recorded for both years in almost all accession 

pairs involved in the trial, although an apparent lack of consistency was shown by many 

of the accession pairs since a low correlation existed between the two years of 

observations. Yield, on the other hand, showed a clear difference in pattern between 

2005/06 and 2006/07. There was clearly more positive mid-parent heterosis in 2006/07 

than 2005/06. In 2005/06, roughly half of the DH-BC pairs showed negative MPH. On 

the other hand, the parental line „Express 617‟ performed poorly in 2006/07, leading to a 

reduction of mid-parent values and hence a higher estimate of mid-parent heterosis.  
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4.1.2 Correlations among traits 

One aim of this study was to search for possible relationships between early 

morphological traits with traits in the later stage of development, and particularly with the 

seed yield. Such information could help us to learn about certain physiological or 

developmental advantages that are maintained from an early stage throughout the plant‟s 

lifecycle. Practically, this knowledge may help us to identify gene loci influencing early 

development that are critical for improved seed yield.  

The trait correlation patterns within the mid-parent heterosis dataset did not meet the 

expectations. There were significant correlations of certain early morphological traits to 

plant height and yield (Figure 3.14). Shoot dry weight showed a low but signficant 

correlation to yield in both 2005/06 and 2006/07. Another early trait, specific leaf weight, 

showed a significant but low correlation to plant height in 2005/06 and yield in 2006/07. 

Although low, these correlations indicated that certain relationships among traits existed 

in the heterotic expression at a morphological level. The DH population showed slightly 

higher correlations of fresh and dry shoot weight with yield and plant height from both 

harvest years. These indicated that per se biomass building activity, which estimates 

additive action, influences different traits separated in time. Thus, we have clear 

indications for correlations between early and later developmental traits, and these 

correlations are influenced by both additive and dominance actions.  

Quijada et al. (2006) observed correlations among field traits from DH lines and their 

respective test crosses and concluded that the correlation pattern between traits in the DH 

and testcross populations were different. Exceptions were between plant height and day 

to flowering, as well as between seed yield and test weight. Unfortunately, that study 

provided no information relating early development traits with traits at later development 

or harvest. In the study of Quijada (2006) there was an indication that  yield and plant 

height had a close additive correlation, based on DH data set analysis, however seed 

weight was correlated with neither of those traits. 

Comparing scatter plots from the 2005/06 and 2006/07 field trials in the present study 

revealed that heterosis expression in the BC test hybrids was not stable in different 

environments relative to the performance of the DH lines. That did not mean, however, 
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that the BC test hybrids had a lower performance. The hybrids still showed higher 

average trait values than the lines, however the range of trait values was smaller than that 

of the lines. In other words the performance of the poorest DH lines was compensated by 

hybridisation, whereas the performance of the best DH lines was not improved so 

dramatically. This suggests a role of dominance effects that were already expressed in the 

best DH lines because positive alleles from the recurrent parent „Express 617‟ were 

already present. 

4.2 Genetic mapping 

The development of the genetic map used for the QTL analysis was a stepwise procedure. 

In the beginning 855 markers were involved. Excluding markers with significant 

deviation from the expected 1:1 segregation resulted in a preliminary genetic map with 

694 markers in 22 linkage groups. Three linkage groups were excluded since they were 

too short or contained only two or three markers. The subsequent removal of co-

localising markers from the remaining groups left 519 markers in 19 linkage groups. 

Throughout the process remapping was not applied, since reduction of markers may lead 

to rearrangement of marker positions and result in confusion when comparing the full 

version of the map with the reduced version. 

Allocation of linkage groups to specific chromosomes was done by comparing the map 

with a reference map published by Piquemal et al. (2005), an aligned map from the DH 

population „Express 617‟ × „R53‟ (Radoev 2008), and with map positions provided by 

SaatenUnion Resistenzabor GmbH for a further set of commercial SSR markers. 

Development of the genetic map used in this study and the „Express 617‟ × „R53‟ map 

was synchronized by applying a number of common SSR markers. A total of 41 SSR 

markers and two AFLP markers were used to align 16 linkage groups. Final verification 

was achieved by comparison of chromosome linkage group lengths and orientations with 

a dense commercial SSR map (information from Jörg Schondelmaier, SaatenUnion 

Resistenzlabor GmbH). As the result, some of the markers were excluded in the final 

map, leaving 475 markers in 19 linkage groups representing the 19 B. napus 

chromosomes. The map was published in Basunanda et al. (2007), while the mapping 

population and mapping data are available as a public resource as part of the 

Multinational Brassica Genome Project (see http://www.brassica.info/resources.php). 
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4.3 Quantitative trait loci 

4.3.1 Genetic action of heterotic QTL 

Comparison of the BC and DH data sets gave useful information on the genetic action of 

QTL with respect to heterosis, whereas epistasis actions on heterosis could be determined 

from the heterosis data set. Epistatic heterotic QTLs were found throughout all linkage 

groups except N04, although N04 did contain epistatic QTLs detected using the BC data 

set. Pooling all contributions of heterosis-relevant epistatic QTL according to trait, and 

comparing them with their main-effect counterparts, revealed their significant and strong 

contribution. Some of the epistatic heterotic QTLs had an even higher contribution to the 

phenotypic variation than some main-effect heterotic QTLs.  

It should be mentioned, however, that the estimates for epistatic effects were linear 

functions of all epistatic component effects. Nevertheless, these results gave clues about 

the critical role of epistasis in controlling heterosis. By applying genetic marker data, Yu 

et al. (1997) reported that epistasis between loci played a role in rice yield. Subsequent 

results in rice also confirmed this (Luo et al. 2001, Hua et al. 2003). In oilseed rape, 

Radoev et al. (2008) reported that epistasis was strongly involved in heterosis. Before  

molecular markers covering the entire genome were available, detecting epistasis effects 

relevant to heterosis was problematic due to overparameterisation of the available 

mathematical models (because not enough generations were available to fulfil the need 

for proper statistical analysis) or because simpler models were insufficient for interaction 

analyses.  

The dominance effects that could be estimated using the available data sets enabled a 

description of the type of dominance that played a role in the respective heterotic main-

effect QTL. There were no such QTL detected for early morphological traits from the 

greenhouse trial, but field trials provided some QTL showing dominance. Partial 

dominance invariably detected for all the QTL (Table 3.9). This corresponds with 

previous studies which showed, as marker-assisted studies of QTL genetic action became 

possible, that many QTL showed some degree of semidominant or partially dominant 

behaviour (Tanksley, 1993). Moreover, most of the QTL showed dominance toward 

„Express‟ parent, which showed large agreement with the phenotypic data obtained from 
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2007 harvest, as well as the hybrid, that was in favor of „Express‟ parent, although due to 

weather anomaly „Express‟ was underperformed by „V8‟, a condition that was not 

expected since „V8‟ was taken as parent due to its low GCA (Spiller 2006). 

Results from harvest in 2006 unfortunately could not be verified since neither the 

parental line „V8‟ nor its hybrid with „MSL Express‟ were tested in the field in that year. 

Partial dominance shown by two QTL for TSM in 2006/07 (in N07 and N10) was in 

favor of „Express 617‟. They were relatively weak, compared to that of the other one for 

„V8‟. To explain that the F1-hybrid showed a similar TSM to „Express 617‟, other factor 

was needed than just additive and dominance.  

The main-effect heterotic QTL, in comparison to epistatic QTL, did not have uniform 

patterns with regard to the traits observed. For thousand seed mass (TSM) from both  

harvest years, the contribution of main-effect QTL were more or less equal to the 

contribution of epistatic QTL. For plant height in 2006/07, no epistatic QTL for heterosis 

were found for field traits, but there was a greater contribution from epistatic QTL than 

from main-effect QTL for plant height in 2005/06. Yield was dominated by epistatic QTL 

in both years.  

The absence of main-effect QTLs detected for early morphological traits is unexpected 

since, phenotypically, there were significant differences for the traits observed. However, 

in similar work done by Radoev (2008), using DH and BC populations derived from 

cross of „Express 617‟ with the resynthesised rapeseed line „R53‟, it was found out that 

there was only one main-effect heterotic QTL for fresh shoot weight at 28 days after 

sowing. However this QTL on chromosome N03 is potentially co-located with a heterotic 

main-effect QTL for yield in the „Express 617‟ × „V8‟ population. Main-effect heterotic 

QTLs for field traits were also observed in the „Express 617‟ × „R53‟ populations, and 

indications were also seen for co-location of heterotic QTLs between the two populations 

(Basunanda et al., 2009).   

4.3.2 Possible loci involved in plant height and thousand seed mass (TSM) 

Heterotic QTL for plant height and TSM raise the question of what genes might be 

represented by these loci. Both are related to traits that have been studied more 
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thoroughly in numerous model and crop species. In a study of flowering time, for 

example, Thornsberry et al. (2001) found an influence of the gene Dwarf8. This gene is 

known to be the member of DELLA protein gene family, whose orthologs including GAI 

(GA insensitive) were found in Arabidopsis thaliana to control height (Peng et al. 1999; 

Hussain & Peng 2003). Orthologs involved in plant height have also been identified in 

wheat (as Rht), and a less similar ortholog (Vvgai) with an analogous effect on GA 

signaling was also found in grapevine (Hussain & Peng 2003). In A. thaliana, Johanson 

et al. (2000) found that the vernalisation and flowering-time regulator FRIGIDA (FRI) 

also plays a role in development, while Caicedo et al. (2004) found that epistatic 

interactions between FRI and the flowering time regulator FLC can have a general effect 

on development. All of the genes mentioned are transcription factors, not coding 

enzymes. Although FRI and FLC are not from GA pathway, but involve in the 

vernalisation cascade, they are known to also influence hormonal pathways within the 

plant and therefore presumably have more global effects.  

QTL hotspots for heterosis in biomass traits and metabolites, respectively, were reported 

recently in Arabidopsis by Meyer et al. (2009) and Lisec et al. (2009). Significant clusters 

of heterotic metabolite QTL were observed by Lisec et al. (2009) at the bottom of 

Arabidopsis chromosome 1, the bottom of chromosome 3 and the top of chromosome 4. 

The latter two regions coincided with significant clusters of per se and heterotic biomass 

QTL in the study of Meyer et al. (2009), while the cluster on chromosome 4 also 

contained multiple per se metabolite QTL (Lisec et al. 2008) and was also involved in 

digenic epistatic interactions (Meyer et al. 2009). Both regions are known to contain 

numerous flowering-time related genes, and FRI is one of the potential regulatory 

candidate genes identified by Meyer et al. (2009) in the main heterotic QTL cluster at the 

top of Arabidopsis chromosome 4.  

Other possible gene candidates related to plant height are Brrga1, found in Brassica rapa 

(Muangprom et al. 2005), and BREIZH (bzh) (Foisset et al. 1995) as well as ndf1 from 

Brassica napus (Wang et al. 2004). Brrga1 is, again, a member of DELLA protein gene-

family and has non-lethal, dwarfing effect in A. thaliana and B. napus when transformed 

(Muangprom et al. 2005), however allelic variants may have non-dwarfing phenotypes 

that influence hormone biosynthesis and gene regulation. 
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Seed size (TSM) has been intensively studies in Arabidopsis. Garcia et al. (2005) 

proposed a cross-talk model between genes in zygotic (endosperm) and maternal 

(integument) tissues as the controlling mechanism that leads to the final potential size of 

seeds. TTG2 (AtWRKY44, At2g37260) and KRP2 genes in the integument are involved in 

cell elongation and division. These genes work independently to the HAIKU (IKU) class 

of genes that is expressed exclusively in the endosperm. However, there is interaction 

between both mechanisms which determine the seed size.  

Luo et al. (2005) elaborated on the way in which two HAIKU genes, IKU1 and IKU2 

(At3g19700), could be related to the MINI3 (AtWRKY10, At1g55600) gene in regulating 

endosperm (seed) size. They suggested that the genes are involved in a single pathway, 

with IKU1 located furthest upstream followed by MINI3 and IKU2, consecutively. It is 

interesting that TTG2 and MINI3 both belong to the same gene WRKY family of 

transcription factor genes, which has 74 members in Arabidopsis (Ülker and Somssich 

2004). IKU2 is a member of LRR receptor kinase family of genes involved in cell 

signaling. Recent findings uncovered a possible role of the photosensitive gene SHB1 

expressed in the embryo (Zhou et al. 2009) and its epigenetic influence in form of DNA-

methylation controlled by expression of MET1 in somatic and flowal gametic cells 

(Fitzgerald et al. 2008). The latter was suggested to cause a significant maternal effect on 

final seed size. 

4.3.3 Nature of heterotic QTL  

The results obtained in the present study show that the detection of heterosis-relevant 

QTL depended on the trait observed, but n all cases was environmentally influenced. This 

was clear from different QTL that were found in different years or types of trial. 

Although there were some co-locating QTL from the same trait in different years, or from 

different traits or trials, many of the QTL found were located individually. On the other 

hand when clusters of QTL (active regions) for different traits, trials or years were 

considered, the co-localisation gave another meaning. QTL observed in active regions 

might have a common physiological or biochemical basis impacting the traits involved.  

Regulatory genes are known to affect multiple genes, either by regulating different genes 

(common regulators) or by regulating a key gene which in turn influences other genes in 
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a subsequent cascade. The bulk of QTL are known to be regulatory (Birchler et al. 2001). 

As will be discussed below, such QTL belong to the class of polygenes and are subject to 

minor mutations that occur throughout the cell lifecycle. Dynamics of environmental 

influences force selection to these mutation products as a mean to maintain variation 

(Barton and Keightley 2002).  

Many epistatic interactions were detected contributing to heterosis in this study. In fact, 

the number of main-effect heterotic QTL detected was less than the number of epistatic 

heterotic QTL (Table 4.1). While epistasis has been known to affect heterosis, most 

studies avoid elaborating it further. This is not surprising, since epistatic interaction is 

often viewed as “complicating factor”, especially if one tries to exploit it in selection. 

Hence the results of this study will be very difficult to use for practical breeding. More 

than 90% of the interactive QTL detected are QTL only give significant effects in the 

interacting state (see Table 3.2 and Table 3.4). Only a small fraction are Type II 

interactive QTL, while no main-effect-QTL to main-effect-QTL (Type I) interactions 

were detectable. Even if we consider active regions as QTL, heterosis for complex traits 

seems to result from highly complex activities of many genetic factors. Furthermore, as 

with main-effect QTL, epistatic QTL may be pleiotropic and thus involved in more than 

single trait by influencing common physiological or biological pathways.   

A weak influence of the QTL on the observed phenotypic variation, as approximated by 

their “heritabilities”, indicated that applying only QTL analysis is not sufficient to study 

heterosis on the molecular level. Critic to this type of analysis (QTL analysis) is that it 

applies a (statistical) level of significance in deciding which loci to elaborate further. 

While this threshold is important to dissect “true” QTL from random disturbances, 

evidence that small contributing QTL  are involved (maybe in a constant interactive state) 

makes it likely that this concentration on statistically significant QTL causes a loss of 

information. 

The understanding of heterosis or hybrid vigor is developing interestingly with  the 

incorporation of more sophisticated molecular tools. By the end of the 20th century, the 

debate on dominance versus overdominance theory was still not decisively solved, even 

with the help of molecular techniques such as QTL analysis. As mentioned in the 

Introduction,  some studies  found that hybrid vigor was  more  influenced by dominance,  
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Table 4.1 Number and percentage contribution of main-effect and interactive (epistatic) 

heterotic QTL detected in greenhouse and field trials of 250 DH lines from the cross 

„Express 617‟ × „V8‟ and their respective BC test hybrids with „MSL-Express‟. 

 

Trait 
No. of main-

effect QTL 

No. of epistatic 

QTL pairs 

Total 

contribution of  

main-effect QTL 

(%) 

Total 

contribution of 

epistatic QTL 

(%) 

Greenhouse trial      

Shoot dry weight 0 1 0 6 

Shoot fresh weight 0 5 0 34 

Leaf dry weight 0 2 0 12 

Leaf fresh weight 0 4 0 27 

Hypocotyl length 0 2 0 13 

Leaf area 0 4 0 20 

Specific leaf weight 0 1 0 5 

Field trial     

Yield 2006 2 3 8 17 

TSM 2006 1 2 12 12 

Plant height 2006 1 2 5 8 

Yield 2007 2 8 7 30 

TSM 2007 3 3 14 16 

Plant height 2007 2 6 6 32 
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while others concluded that overdominance or pseudo-overdominance was involved 

more.  However,  epistasis has  also been  implicated  in many cases,  and  evidence  from 

more detailed molecular studies is providing more and more support for this cause (e.g. 

Lisec et al. 2009, Meyer et al. 2009). Although clear results were obtained from the 

model plants rice and Arabidopsis, with small and fully-sequenced genomes, results from 

oilseed rape or other Brassicas are more difficult to interpret due to their larger, less well 

characterised genomes and plastic phenotype nature caused by genome duplications and 

polyploidy. This study reinforces the need for more detailed analysis of the heterosis 

phenomenon in B. napus, for example using genome-wide SNP maps.  

The integration of quantitative genetics concepts, such as applying estimations of 

additive, dominance or epistatic effects to QTL studies, may help to understand the 

mechanisms behind heterosis but apparently is not adequate for complete understanding. 

Quantitative genetics estimation methods are based on the assumption that genes related 

to a trait each have a small contribution and their effects sum up additively to build the 

trait. The effects are dissected into three major groupings – additive genetic, dominance, 

and epistatic effects – which estimation is purely statistical. While for a complex trait this 

assumption is acceptable (since we do not know exactly how it develops from many 

genes), application of molecular techniques gives hints that in gene expression level the 

interplay of factors affecting expression of genes is considerably more complex.  

Birchler et al. (2007) suggested the role of dosage-effects on heterosis at the expression 

level. The theory he and others propose is not directly linked to heterosis, rather it 

basically supports the idea of “multiple genes”, the basic tenet of quantitative genetic 

principles (Birchler et al. 2001). Instead of being “summed up additively” like in classical 

quantitative genetics, however, any target gene is subject to certain hierarchical 

regulations. A target gene is regulated by transcription factors, and these in turn are also 

modulated by modifier genes which mostly act additively, implying dosage-effects. The 

theory does not exclude epistasis, since transcription factors usually react negatively to 

dosage-effects, causing a compensation process. An increase in number of genes 

controlling a certain trait may not affect the increase in level of expression if their 

respective transcription factors react negatively. The study of Semel et al. (2006), which 

supports the existence of overdominant QTL and rejects that the action is simply pseudo–

overdominance, raised the possibility of dosage-effect mechanisms controlling heterosis. 
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It is widely known that many QTL are members of signal transduction cascades or are 

transcription factors. These two classes of genes have a known tendency to exhibit 

dosage-modifying effects (Birchler et al. 2001).    

In a broader perspective, heterosis is increasingly evident as part of evolutionary 

processes. The results of Semel et al. (2006), using a set of test-crossed near-isogenic 

inbred lines from an interspecific cross of diploid tomatoes, revealed that overdominant 

actions were detected only for reproductively related traits, while this mode of action was 

absent for other traits. Each line was characterised with respect to its regional genome 

differences from one of its parents, to ensure a minimal possibility for epistasis to occur. 

Based on this study, heterosis was seen by Semel et al. (2006) as a strategy to survive or 

to maintain the gene-pool.  

If heterosis is really part of the (molecular) evolutionary process, it is not impossible that 

various molecular evolutionary mechanisms may shed light on our understanding oh how 

heterosis develops. One explanation on how genes evolve is through modification after 

mutation. One mutation process often associated with modification is gene duplication. 

As described by Louis (2007), the fate of duplicated genes can be (1) loss of function (the 

most common) in one of the copies, (2) divergence of functions in both copies, (3) 

complementary of functions, or (4) differential regulation due to modifications in 

regulatory regions. A common cause of such modifications is gene methylation, a 

widespread epigenetic mechanism. 

Using Saccharomyces cerevisiae, Hittinger and Carroll (2007) explained the fate of an 

apparently bifunctional ancestral gene which experienced duplication followed by 

complementary functionality and adjustment of each regulatory region. These genes, now 

known as GAL1 and GAL3, are paralogs involved in the same biochemical pathway, but 

have different functions. GAL3 is the co-inducer of GAL1 activity, by sequestering the 

repressor for transcription factor to activate GAL1. GAL1 is known to have a multiplied 

activity compared to its ancestral type, which can still be found in Kluyveromyces lactis, 

both by “dividing the tasks” and by making the regulation more effective.  By realising 

that duplication may lead to complementation or differential regulation, one may deduce 

that such evolutionary mechanism can result in development of heterosis. 
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Recent findings in maize apparently support the theory of hemizygous complementation 

(Hochholdinger & Hoecker 2007). Inbreds of maize were known to have disrupted gene 

collinearity; that is, loss of particular copies of genes. In hybrids this loss is partly 

compensated, leading to more effective biochemical activities and, in turn, better 

performance. Inbreeding will disrupt the compensatory effect in some inbreds, thus one 

may observe inbreeding depression.  

4.4 Role of expression studies 

Expression studies provide a possibility to connect QTL with expression data. Whereas 

expression of a small number of genes can be studied using low-throughput gene 

expression techniques, such as real-time PCR, it is now possible to conduct whole-

genome studies using high-throughput expression techniques. Beginning with microarray 

technologies, innovative methods have since been developed that can simultaneously 

reduce the costs and increase the efficiency of global transcriptome profiling. In 

particular, a combination of Serial Analysis of Gene Expression (SAGE) (Velculescu et 

al. 1995, Obermeier et al. 2009) with new sequencing technologies gives the opportunity 

for ultradeep transcriptome profiling. The newest DNA sequencing methods, together 

dubbed “massively parallel” or “next-generation” sequencing, can generate millions of 

sequence tags from a series of transcriptome libraries within a few days (Ju et al. 2006, 

Shendure et al. 2005, Gnirke et al. 2009). In contrast to microarray analysis, next-

generation sequencing in combination with SuperSAGE (Matsumura et al. 2003) can also 

enable exact quantification of differential expression of rare transcripts or unknown 

genes.  

Abundant information of differential expression data in segregating populations will 

make it possible to relate this with trait and genetic marker data. By mapping expression 

profiles onto a genetic map it is possible to obtain expression-relevant positions in the 

genome using a technique known as expression QTL (eQTL; Gibson and Weir 2005). 

This approach, dubbed genetical genomics (Jansen and Nap 2001), enables one to 

determine which QTL behave as cis-acting genes and which as trans-acting loci with a 

regulatory effect on more complex networks. Although such techniques are still relatively 

expensive, they have good potential for identification of transcription factors underlying 

complex traits. Nettleton and Wang (2006) described techniques for the use of selective 
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transcriptional profiling for trait-based eQTL mapping. This approach, in which groups 

of extreme phenotypes that show marker segregation at major QTL are selected for the 

differential expression analysis, can enable a reliable localisation of trait-related eQTL in 

a relatively small subset of mapping genotypes; therefore the costs of effective eQTL 

analysis can be considerably reduced. Applying the techniques with our data will unveil 

more active factors controlling heterosis in the trait studied. Recognizing cis-acting or 

trans-acting QTL and identifying the underlying genes will potentially give a wealth of 

new information on the nature of heterosis and related the epistatic interactions involved 

in expression of heterosis effects.
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5 SUMMARY 

Development of hybrid cultivars increasingly becomes part of strategies to achieve higher 

oilseed rape production.  In Germany, hybrid cultivars dominate the oilseed rape seeds 

market, despite high concurrence from line cultivars, the more traditional type. Involving 

molecular marker-assisted technologies may potentially reduce production time and cost 

of hybrid varieties, which is known to be time consuming and resource demanding. 

Markers are used to detect quantitative trait loci (QTL) that are responsible to the trait in 

question. Since the central theme in hybrid breeding is heterosis – a genetic phenomenon 

displayed by heterozygots, in which they show better performance than their parents – 

displayed by the traits of interest, it is important to put the first emphasize on the QTL 

relevant to answer heterosis. The genetic action of the QTL found furthermore is 

necessary to be studied, as this will become the basis for decision on which breeding 

method to be used.  

In order to study this, a mapping population of a series of doubled-haploid (DH) lines 

from a cross between 'Express 617' and 'V8' was developed from an F1 plant using 

microspore culture. The population was used to develop genetic map and involved in 

QTL analysis. A counterpart series of back-cross hybrid (BC) population was also 

developed in 2004/05 by crossing each line in DH line population with the „Express 617‟ 

parent. The mapping populations would provide estimates of genetic effects.  By using 

information provided by both populations, estimates of genetic effects of QTL, including 

the heterosis-related ones, could be obtained.  

Phenotypic performance was studied through two-stages study: in greenhouse and in 

field. Greenhouse trial was conducted from May to August 2007 to provide information 

on early development stage of growth. Field trial was conducted in four locations, namely 

Einbeck and Reinshof in Lower Saxony as well as Rauischholzhausen and Grund-

Schwalheim in Hesse; all were evaluated for two planting seasons (2005/06 and 

2006/07). To handle the great number of accessions, an alpha lattice design was utilized 

with 26 blocks of 26 plots each and locations were treated as replicates. Plant height at 

the end of flowering time, seed yield, and thousand seed mass were observed.  
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Microsatellites (SSR) and AFLP
®
 were used to develop genetic maps using the mapping 

population. The genotyping was done using Licor machine involving 527 AFLP
®

 and 

176 SSR markers toward 250 genotypes in order to built a genetic map. The genetic map, 

generated using JoinMap
®
 3.0, comprised all the chromosomes of Brassica napus 

(Chromosome N01-N19) covering 1792 cM. From this, 269 markers – 144 of which are 

SSR markers – were chosen as backbone map in the subsequent QTL analysis. Three sets 

of data were analysed for each trait, namely from DH-lines population, from BC 

population, and from mid-parent heterosis values that were calculated from the difference 

between BC values and average of their respective parents.   

Greenhouse trial showed that BC population tended to perform slightly better than DH in 

almost all traits observed. Its average value was higher and it had a smaller range 

distribution than DH. Heterosis distributions were varied among traits, which range 

spanning from -31% (leaf area) to 84% (shoot dry mass). The proportion of the crossing 

pairs showing positive heterosis was higher than the ones showing negative one over all 

the traits observed, which was typical. The correlation coefficients between BC and DH 

population among the traits observed were medium, but in hypocotyl length it was high 

(0.81) and in specific leaf weight was very low. Correlations among traits were high 

between shoot weight and leaf area in DH and BC population; however, in MP data set 

they were reduced, indicating that heterosis were developed independently from their 

parents for each pair. 

Three traits were observed in the field trials that took place for two planting years 

(2005/06 and 2006/07): seed yield (yield), thousand seed mass (TSM), and plant height at 

the end of flowering. Seed yield for 2005/06 was clearly higher than the next planting 

year. Mild winter and dry period during flowering time by 2006/07 caused the yield to go 

down 30% in average. DH was less affected by year effect than BC; however BC showed 

less inner-variation than DH. The data distribution showed that BC had tendency to 

higher value than DH for both planting years. Mid-parent heterosis in 2006/07 was better 

(higher) than the previous year. 

Thousand seed mass showed different pattern than yield, indicating that it was controlled 

through different mechanism. DH showed a strong correlation over both planting years, 

whereas BC and MPH were much weaker. This indicated the inert character of lines. 
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Strong correlations between BC and MPH indicated that MPH was controlled more by 

variation in BC. In this trait negative heterosis was abundant and even in 2006/07 

planting year more than half of the accession pairs showed negative heterosis. Even the 

parents and their F1 showed such phenomenon.  

When the greenhouse trial results were compared with the field trial ones, it was evidence 

that MPH correlation between the traits observed in both experiments were invariably 

low; most of them were insignificant statistically. Of the small number of significant 

correlations are shoot dry weight with yield from both planting years, specific leaf weight 

with plant height at 2005/06 and yield at 2006/07. Thousand seed mass appeared to be 

unconnected, as well as hypocotyl length and leaf area. Biomass (fresh shoot mass) in 

general might show a weak correlation with yield. 

From greenhouse trial there was no heterosis-relevant main-effect QTL detected. Eleven 

main-effect QTL nevertheless was found from DH and BC populations; however, they 

were not co-located, making it impossible to indirectly estimate dominance effect.  

In opposite to greenhouse trial, there were eleven heterosis-relevant main-effect QTL 

detected in field trials: four from 2005/06 planting year and seven from 2006/07. All the 

traits observed from both planting years were represented. As already indicated from 

phenotypic relationship, QTL for thousand seed mass were mostly different from the 

other traits. Chromosome N07 and N16 were especially unique for the heterosis-relevant 

QTL for thousand seed mass although N16 also contained heterosis QTL for yield. 

Heterotic QTL for yield were detected at N03, N08, and N13, beside N16. Heterotic QTL 

for plant height located at chromosome N03, N05, and N11. 

Since there were overlaps among QTL and the distribution of QTL was not random, 

clusters of main-effect QTL were called „active regions‟ and each was seen as a single 

region, ignoring the traits. Twenty six active regions were detected on 15 of the 19 

chromosomes. Only N02, N04, N15, and N18 did not have active regions, although they 

did have epistatic QTL, of which some interacted with QTL located in active regions. 

Chromosome N09 had the most active regions, namely five. Certain active regions 

contain QTL that control wide range of traits, such as the one in chromosome N05. This 

active region, however, is very long, almost 50 cM. Most single trait active regions were 
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due to thousand seed mass, indicating a much different control of this trait from the 

others, although in certain regions there were also overlapping with other trait, as in 

chromosome N09 with yield 2005/06. Certain interacting QTL were also found 

connecting different active regions, which may also indicate possible co-regulatory 

function. 

A notable feature of the detectable epistatic interactions was that Class I interactions, i.e. 

interactions between two main-effect QTL, were non-existent in both the field and 

greenhouse trials. Purely interactive QTL dominated the epistasis cases. Applying “active 

region” as basis for interaction unit raises the percentage of interaction involving at least 

one active region from 5% to 65%. This suggested that, at least in case of epistasis, it is 

better to see a cluster of QTL as single unit. Moreover, certain interactions involving the 

same trait could be found clustering in the same location. Such feature is quite 

interesting, since it may indicate existence of transcription factors.  

QTL effects related to heterosis from early traits (greenhouse trials) were evidently 

dominated by epistatic origin, since no dominant QTL was detected directly from MP 

data set. Nevertheless, four main-effect QTL were found from BC data set, estimating 

difference between genetic additive and dominance effect; two of them, responsible for 

dry shoot weight and fresh shoot weight, located at the same region in N14.  

Observation on traits from field trials provided us with estimates of dominance obtained 

from main-effect QTL either found in MP or BC data set. Heterosis-related epistatic 

effects were also abundant covering all traits. Certain main-effect QTL co-located with 

epistatic QTL, either from the same or different traits, lead to possible pleiotropism, i.e. 

QTL or a trait affecting other trait(s).  

Further investigation on the type of dominance of a heterosis-relevant main-effect QTL, 

that is whether they showed partial, complete dominance, or overdominance is not always 

easy since most of main-effect QTL showing heterosis did not co-locate at the same 

position with other main-effect QTL from the same trait that had additive effect (from 

DH data set). Nevertheless, partial dominance played in all the QTL for heterosis which 

additive and dominance effects could be estimated. Five of the seven such QTL showed 

partial dominance toward „Express‟, the other two toward „V8‟. Most of the estimates 
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were from QTL for thousand seed weight The other two were for plant height and seed 

yield in planting year 2005/06.  

The results showed that epistasis was evidently the source of heterosis in the early 

developmental stage. Dominance was found to play role in the traits observed at end 

stages of life, although epistasis was still abundant; most of the dominance were partially 

dominance, with one (for yield) showed overdominance. Phenotypic correlation between 

shoot dry weight at early stage and yield could not be strongly supported by the QTL 

analysis. Genetic analysis involving expression of gene, such as e-QTL can be used to 

explain the mechanism behind the correlation, which further can be applied in developing 

more effective marker-assisted methods to detect heterosis-relevant alleles.  
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6 ZUSAMMENFASSUNG 

Die Entwicklung von Hybrid-Sorten findet zunehmend Anwendung, um die 

Rapsproduktion zu steigern. In Deutschland dominieren heute die Hybridssorten den 

Saatgutmarkt von Raps trotz starker Konkurrenz durch die traditionellen Linien-Sorten. 

Die Nutzung molekularer Marker, um quantitative Merkmale Loci (QTL) zu lokalisieren, 

eröffnet die Möglichkeit, gewisse Nachteile der Hybridzüchtung - wie hohe Kosten und 

großen Zeitaufwand - zu reduzieren. Der Hybridzüchtung liegt das Phänomen der 

Heterosis zugrunde, das eine höhere Leistungsfähigkeit von Heterozygoten gegenüber 

ihren Eltern bezeichnet. Daher erlangen Heterosis-relevante Gene bzw. QTL eine 

zunehmende Bedeutung. Dabei ist es auch notwendig, die genetischen Effekte der 

gefundenen QTL zu untersuchen, da auf der Basis dieses Wissens Entscheidungen zur 

Wahl der geeigneten Züchtungsmethode getroffen werden können. 

Für die vorliegende Studie wurde über Mikrosporenkultur eine Doppelhaploid-Population 

(DH) aus der Kreuzung 'Express 617' × 'V8' (F1) entwickelt. Die Population wurde 

verwendet, um eine genetische Karte zu entwickeln und QTL zu berechnen. 

Darüberhinaus wurde in der Vegetationsperiode 2004/05 eine Rückkreuzungspopulation 

(Backcross, BC) aus Kreuzungen jeder DH-Linie mit dem Elter 'Express 617' entwickelt, 

um QTL-Analysen anhand dieser Population und eine Bestimmung der Heterosis (Mid-

parent heterosis) zu ermöglichen. Auf der Grundlage der ermittelten genetischen Effekte 

der QTL kann die Ursache des Heterosis-Effekts bestimmt werden. 

Von Mai bis August 2007 wurde ein Gewächshausversuch durchgeführt, um 

Informationen über die frühen Wachstumsphasen der Rapspflanzen zu gewinnen: 

gemessen wurden die Blattfläche und die Biomasseakkumulation. In den Jahren 2005/06 

und 2006/07 wurden Feldversuche an vier Standorten, Einbeck und Reinshof 

(Niedersachsen) sowie Rauischholzhausen und Grund-Schwalheim (Hessen) durch-

geführt; an allen Prüfgliedern wurden in beiden Vegetationsperioden die Pflanzenhöhe 

zum Blühende, der Samenertrag und die Tausendkornmasse (TKM) gemessen. 

Als molekulare Marker wurden Mikrosatelliten (SSR) und AFLP
®
 verwendet, um die 

Linien zu genotypisieren und genetische Karten zu entwickeln. Die genetische Karte 

wurde mit JoinMap
®
 3.0 berechnet und umfasste alle 19 Chromosomen (N01 bis N19) 
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des Genoms von Brassica napus und hatte eine Gesamtlänge von 1792 cM. Für die QTL-

Analyse wurde eine Basiskarte mit 269 ausgewählten Markern erstellt. Die Berechnung 

der QTL wurde mit der Software QTL-Network 2.0 durchgeführt. Die analysierten Daten 

bestanden aus drei Gruppen von Werten: DH-Linien, Rückkreuzungen (BC) und 

Heterosis.  

Der Gewächshausversuch 2007 zeigte, dass die Leistung der BC-Population in fast allen 

beobachteten Merkmalen etwas besser war als die der DH-Population. Die 

Heterosiswerte variierten von -31% (Blattfläche) bis +84% (Sproßtrockenmasse). 

Außerdem waren die positiven Heterosiswerte häufiger als die negativen. Die 

Korrelationen zwischen den beobachteten Merkmalen der BC- und DH-Population waren 

meistens durchschnittlich, wobei die Korrelation bezüglich der Hypokotyllänge jedoch 

hoch (0,81) und beim spezifischen Blattgewicht (Blattgewicht/Fläche) sehr niedrig war. 

Die Korrelation zwischen der Sproßmasse und der Blattfläche der DH- und BC-

Population war hoch, war aber bzgl. der Heterosis reduziert. Dies ist ein Hinweis darauf, 

dass die Heterosisleistung meistens von der Leistung der jeweiligen Eltern unabhängig 

war. 

Der Kornertrag im Anbaujahr 2005/06 war deutlich höher als im Folgejahr. Der milde 

Winter und eine Trockenperiode während der Blüte in 2006/07 haben den Ertrag in 

Durchschnitt um 30% gesenkt. Dabei war die DH-Population weniger von dem Jahres-

effekt betroffen als die BC-Population; trotzdem zeigte die BC-Population selbst aber 

eine geringere Variation als die DH-Population. Die Verteilung der Ertragsdaten der 

beiden Anbaujahren ergab, dass die BC-Population höhere Werte aufwies als die DH-

Population. Die Heterosis war in 2006/07 ausgeprägter als im Vorjahr. 

Die Tausendkornmasse (TKM) zeigte andere Ergebnisse als Kornertrag und 

Pflanzenhöhe. Dies deutet darauf hin, dass diese Merkmale genetisch unterschiedlich 

kontrolliert sind. Allerdings zeigte sich für alle Merkmale in der DH-Population eine 

enge Korrelation zwischen den Anbaujahren, während die BC-Population und die 

Heterosiswerte schwächere Korrelationen zeigten. Man kann feststellen, dass die Werte 

der DH-Linien stabiler waren – wenn auch auf niedrigerem Niveau – als die BC-

Nachkommen. Das TKM zeigte eine besonders deutliche, negative Heterosis. Selbst im 
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Anbaujahr 2006/07 zeigten mehr als die Hälfte der Nachkommenschaften eine solche 

Tendenz.   

Die Korrelationen zwischen Heterosiswerten der beobachteten Merkmale aus 

Gewächshaus- und Feldversuch waren ausnahmslos niedrig und meistens statistisch nicht 

signifikant. Signifikante Korrelationen konnten jedoch zwischen Sproßtrockenmasse und 

Kornertrag (in beiden Anbaujahren), spezifischem Blattgewicht und Pflanzenhöhe 

(2005/06) sowie spezifischem Blattgewicht und Kornertrag in 2006/07 ermittelt werden. 

Dagegen zeigten TKM, Hypokotyllänge und Blattfläche keine Korrelationen, während 

die Sproßfrischmasse mit dem Kornertrag schwach korrelierte. 

Für die DH- und BC-Populationen wurden im Gewächshausversuch 11 Haupt-QTL 

ermittelt, die jedoch nicht als direkt heterosis-relevant anzusehen sind. Die QTL 

kolokalisierten jedoch nicht und schlossen damit die Möglichkeit der indirekten 

Schätzung von Dominanzeffekten aus.  

Im Feldversuch wurden ebenfalls 11 heterosis-relevante Haupt-QTL ermittelt: vier für 

das Anbaujahr 2005/06 und sieben für 2006/07. Wie von den phänotypischen 

Korrelationen zu erwarten war, kolokalisierten QTL für Tausendkornmasse nicht mit 

QTL für die anderen Merkmale. Heterosis-relevante QTL für TKM wurden auf den 

Chromosomen N07 und N16 lokalisiert, während heterotische QTL für Kornertrag auf 

den Chromosomen N03, N08, N13 sowie N16 identifiziert wurden. Heterotische QTL für 

Pflanzenhöhe befinden sich auf den Chromosomen N03, N05, und N11. 

Da die berechneten QTL-Bereiche nicht zufällig über das Genom verteilt waren, sondern 

sich teilweise überschnitten und Cluster bildeten, kann von sogenannten „aktiven 

Bereichen“ gesprochen werden. Insgesamt 26 solche aktive Bereiche wurden in 15 der 19 

Chromosomen nachgewiesen. Nur N02, N04, N15 und N18 zeigten keine aktiven 

Bereiche, obwohl sie epistatische QTL aufwiesen, von denen einige zu QTL-Effekten in 

aktiven Bereichen beitrugen.   

Chromosom N09 besitzt mit fünf die meisten aktiven Bereiche. Einige aktive Bereiche – 

wie auf Chromosom N05 – enthielten QTL-Regionen, die ein breites Spektrum an 

Eigenschaften kontrollieren. Der aktive Bereich ist jedoch mit fast 50 cM sehr groß. Die 
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meisten aktiven Bereiche mit einem QTL für nur ein Merkmal kontrollierten das 

Merkmal TKM. Bestimmte epistatische QTL verbanden auch verschiedene aktive 

Bereiche miteinander, und zeigten so eine mögliche koregulatorische Funktion. 

Eine bemerkenswerte Eigenschaft der gefundenen epistatischen Wechselwirkungen war, 

dass es keine Klasse-I-Wechselwirkungen (zwischen zwei Haupt-QTL) gab. Die 

epistatischen Effekte waren allerdings dominiert von wechselwirkenden QTL, die keine 

Haupt-QTL beinhalteten. Verwendet man aktive Bereiche als Basis für die Beurteilung 

von Wechselwirkungen, erhöht sich der Anteil der Wechselwirkungen, die mindestens 

einen aktiven Bereich umfassten, von 5% auf 65%. Daraus folgt, dass die Beurteilung 

von Epistasie zweckmäßiger auf der Basis ganzer aktiver Bereiche, also Haupt-QTL-

Clustern erfolgt, anstatt auf Basis von Einzel-QTL. Ferner kolokalisierten bestimmte 

Wechselwirkungen, die dieselben Merkmale betrafen, was ggf. auf Effekte von 

Regulatorgenen (Transkriptionsfaktoren) hindeutet. 

Die heterosis-relevanten QTL-Effekte von Jugendmerkmalen – berechnet aus den 

Ergebnissen des Gewächshausversuchs – wurden offenbar von Epistasie geprägt, weil 

keine dominanten QTL direkt aus den Heterosis-Werten festgestellt werden konnten. 

Dennoch wurden vier Haupt-QTL in der BC-Population gefunden, die als Schätzungen 

des genetischen Unterschieds zwischen additiv-genetischen und Dominanz-Effekten 

gelten können. Zwei von ihnen, verantwortlich für Sproßtrockenmasse und -frischmasse, 

befanden sich im gleichen Bereich auf N14. 

Anhand der Ergebnisse aus den Feldversuchen konnte Dominanzeffekte der Haupt-QTL 

ermittelt werden. Einige Haupt-QTL, die mit epistatischen QTL kolokalisierten, können 

möglicherweise Pleiotropie verursachen, d.h. dass ein QTL oder Merkmal andere 

Merkmale beeinflusst. 

Die genauere Charakterisierung des Dominanztyps eines heterosis-relevanten Haupt-

QTL, d.h. ob es sich um unvollständige Dominanz, vollständige Dominanz oder 

Überdominanz handelt, war nicht immer einfach, da die meisten der heterosis-relevanten 

Haupt-QTL sich nicht an den gleichen Positionen wie die Haupt-QTL mit additiv-

genetischem Effekt befanden. Die durchgeführten Schätzungen der heterosis-relevanter 

QTL zeigten, dass die Effekte unvollständig Dominanz waren. Fünf von den sieben QTL, 
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deren Additiv- und Dominanzeffekte geschätzt werden konnten, waren ihre Direktionen 

nach „Express„ geneigt. Die zwei andere waren QTL für Tausendkornmasse, eine von 

2005/06 Anbaujahr und die andere von 2006/07 Anbaujahr. Anscheinend, 

Tausendkornmasse wurde mehr von dem Haupteffekt kontrolliert als die andere 

Merkmale. Aufgrund nur wenig QTL, die ihre Haupteffekte geschätzt werden konnten, es 

muss anderen Faktor geben, denen Effekt die phenotypische Expression weiter erklärt. 

Die Ergebnisse zeigen, dass Epistasie offenbar eine wichtige Ursache für Heterosis in 

frühen Entwicklungsstadien der Rapspflanze darstellt. In unseren Untersuchungen spielte 

Dominanz ein wichtigere Rolle bei Merkmalen, die in späteren Stadien (inkl. 

Ertragsmerkmale) beobachtet wurden; aber auch hier hatte Epistasie noch einen starken 

Einfluss. Im wesentlichen wurde unvollständige Dominanz nachgewiesen, im Fall von 

Ertrag auch Überdominanz. 

Die festgestellte phänotypische Korrelation zwischen Sproßtrockenmasse im frühen 

Stadium und dem Kornertrag konnte durch die QTL-Analyse nicht gestützt oder erklärt 

werden. Weitere genetische Analysen anhand der Gen-Expression, wie die Erfassung von 

e-QTL, können zukünftig dazu beitragen, die zugrunde liegenden Mechanismen der 

Merkmalskorrelation zu untersuchen und die Entwicklung effektiver marker-gestützter 

Selektionsmethoden auf heterosis-relevante Allele für die Hybridzüchtung zu 

ermöglichen.  
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APPENDICES 

Appendix A. Genetic map.  

 

Genetic map of the Brassica napus doubled haploid (DH) population „Express 617‟ × 

„V8‟, containing 419 AFLP and SSR markers grouped using JoinMap
®
 3.0. SSR markers 

(with prefices Na, Ni, Ol, and Ra)  mainly were already listed at http:// 

brassica.bbsrc.ac.uk/cgi-bin/ace/searches/browser/BrassicaDB , with additional 32 (from 

total 35) SSR primer pairs provided by Saaten Union Resistenzlabor GmbH (with 

prefices HMR or GMR) and 42 (from total 114) primer pairs from the Celera AgGen 

Brassica Consortium (see Piquemal et al. 2005; with prefices BRAS, CB, and MR). The 

polymorphic primer pairs were used to genotype 262 DH lines.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

E32M54_51 0.0 
CB10081 1.7 
BRMs037 2.0 
E33M50_164 6.0 
E33M58_209 7.4 
E44M60_371 16.9 
HMR274 18.8 
CB10097 22.4 
HMR293 23.6 
E34M51_63 28.5 
E46M51_99 36.8 
E46M62_52 39.6 
E43M51_273 43.3 
E46M62_282 47.6 
E46M62_274 49.4 
E44M47_77 54.8 
E45M57_423 60.9 
CB10189 63.5 
E35M48_118 64.3 
E34M62_179 65.6 
E39M47_157 66.6 
E42M51_661 68.6 
E35M48_361 76.9 
E44M60_210 77.9 
E44M50_235 80.5 
E33M54_65 81.9 
Na14F11 90.5 
CB10536b 93.4 

N1 

E36M47_496 0.0 
E34M51_230 1.8 
MR1912 6.9 
MR1632 7.9 
BRAS031 8.5 
HMR588b 8.9 
E34M51_159 9.4 
E32M54_197 11.6 
E31M53_90 15.4 
E31M53_267 29.6 

N2 

Na12H06 0.0 
CB10413 3.5 
E34M49_141 4.9 
E31M49_351 5.9 
E45M48_118 11.9 
E32M49_212 13.1 
E44M50_56 14.5 
E34M49_80 15.9 
E37M50_86 20.0 
E44M57_448 22.7 
E31M61_305 31.9 
BRAS056 36.6 
E43M51_108 46.4 
E35M48_148 47.9 
E34M49_444 48.9 
HMR443 58.5 
Na14G10 59.3 
Ol11G11 60.7 
E42M55_125 68.8 
Ol11B05 75.2 
BRMs043 75.8 
Na12E02 82.0 
CB10036 89.9 
E33M49_207 99.9 
Ra2A06 115.9 
E33M47_141 120.1 
E44M62_55 123.6 
E34M49_61 124.8 
CB10079 129.0 
E42M59_103 130.0 
E31M55_158 133.9 
E43M51_254 136.2 

N3 
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Na12E05 0.0 
E45M49_114 3.3 
E34M60_54 10.2 
CB10196b 29.6 
HMR416a 39.9 
E33M58_78 42.2 
E42M47_146 43.1 
E33M58_45 45.4 
CB10448 48.0 
E34M54_213 49.0 
E33M47_49 50.0 
HMR386 51.8 
CB10347 52.5 
BRAS010a 53.0 
E32M50_481 54.3 
E45M51_62 57.4 
BRAS010b 66.4 

N4 

CB10545 0.0 
E43M52_253 2.9 
E32M51_329 4.0 
E32M51_325 5.2 
E33M50_48 6.0 
E44M49_261 12.4 
E32M49_149 17.5 
E34M59_94 29.5 
BRAS063 32.8 
HMR342 33.2 
Na10E02 34.0 
E43M59_132 36.7 
E36M47_151 38.6 
E36M51_300 40.5 
MD21 41.6 
CB10574 42.8 
E43M52_320 43.7 
E34M55_189 44.0 
CB10609 45.9 
E34M59_153 47.7 
E46M62_78 49.9 
GMR014 50.7 
Na12E01b 51.5 
E31M55_105 53.8 
E31M62_195 56.7 
E33M49_104 58.7 
E32M59_162 60.6 
E42M55_166 71.5 
E42M60_190 87.8 

N5 

E44M60_472 0.0 
E32M48_677 14.7 
HMR572 22.0 
E33M47_73 25.8 
E44M60_432 36.0 
E33M60_378 55.7 
Na12D08 57.5 
E45M49_137 66.3 
E33M58_56 67.7 
E34M55_290 70.0 
E43M62_272 71.7 
E33M50_327 76.5 
E31M53_161 78.5 
HMR558 79.3 
HMR201 79.4 
HMR389 79.5 
E32M62_70 80.8 
E43M59_81 83.0 
Na12H07b 85.3 
E34M62_116 87.0 
E34M62_304 88.2 
E34M62_305 93.9 

N6 

E39M49_307 0.0 

E44M58_101 16.4 
HMR166 22.2 
MR153b 24.1 
Ra2G08 25.1 
Na12B02 28.6 
Na12E11 35.3 
Ni2D03 43.7 

N7 

E33M47_216 0.0 
E46M59_160 9.5 
HMR588a 10.8 
E45M57_110 12.8 
BRAS039a 14.3 
CB10364 16.0 
HMR388 16.3 
CB10578 16.7 
HMR307 16.9 
E45M59_514 18.7 
HMR353a 20.8 
E45M51_344 21.9 
E38M55_386 23.0 
E31M53_515 24.0 
HMR582 30.8 
E45M51_302 31.5 
E44M48_414 34.5 
E32M51_301 36.9 
CB10629 41.1 
E39M59_106 42.1 
E39M61_243 44.6 
E43M62_222 45.4 
E39M47_181 52.1 
Na12B05 59.4 
E32M59_123 68.9 
E44M49_170 69.3 
Ra1F06 72.5 
E42M59_122 77.2 

N8 

E39M59_186 0.0 
E44M47_406 3.0 
E32M48_148 3.7 
E44M51_350 13.2 
E35M60_540 17.9 
Na10B11 22.8 
GMR013a 30.4 
E46M59_87 37.0 
E38M49_139 41.9 
E31M55_333 43.2 
HMR360 44.6 
BRAS020 46.0 
E33M54_331 47.4 
Na12E06B 49.5 
E33M60_98 52.4 
Na14C12 53.4 
E36M51_53 56.7 
E46M59_79 57.7 
E34M49_108 59.6 
E36M57_123 62.0 
E33M49_170 62.6 
E42M59_96 64.5 
E31M61_188 67.1 
E37M59_237 68.4 
HMR602 69.1 
E44M57_123 70.4 
E45M54_110 75.0 
E44M60_80 75.5 
MR216 77.6 
E42M55_131 81.4 
E31M55_241 92.5 
E34M51_122 94.6 
CB10373 97.6 
HMR381 98.8 
Na10B07 100.2 
E31M55_230 101.5 
CB10476 102.6 
E33M50_80 111.6 
E45M61_233 115.9 
E31M53_95 116.4 
E32M62_348 118.2 
E34M62_196 120.0 
E43M62_336 122.3 
E33M62_200 135.3 
E45M54_187 136.2 
MR230 137.0 
CB10116b 141.9 
E32M48_182 146.2 
E31M49_223 147.0 

N9 
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MR86b 0.0 
Ol10E05 2.3 
MR111a 2.8 
E33M62_153 4.3 
E33M49_268 6.3 
HMR320 8.0 
E32M62_252 11.2 
E44M51_636 16.5 
E32M59_85 18.3 
E44M47_290 23.4 
E45M57_436 28.9 
E46M59_202 30.0 
E33M60_156 37.0 
E45M59_151 43.2 
E34M49_501 45.8 
E35M62_226 52.1 
MR153a 56.2 
Ol10B07 58.3 
E46M62_122 59.9 
E39M47_352 60.4 
E43M59_291 61.6 
E35M56_176 65.5 
Na10G10a 67.9 
E44M47_237 72.2 
E38M55_460 73.9 
E31M61_195 74.6 
E42M53_334 76.6 
BRAS068 77.8 
E44M47_322 79.8 
MR49 80.6 
E46M62_120 82.9 
E45M51_52 84.5 
E44M47_239 86.4 
HMR322 87.2 
Na10C01a 87.8 
BRAS039b 89.1 
E36M51_45 96.5 
E43M62_147 104.2 
E31M62_310 107.7 
BRMs033 109.4 
Na12B07b 111.1 
E32M48_304 113.5 
E31M62_410 116.8 

N13 

E39M61_383 0.0 
HMR542 7.5 
Ol12D02 9.8 
Na10C01b 11.2 
Na12B07c 11.6 
MR140 11.7 
MR37 11.9 
CB10159 12.2 
MR185 14.0 
MR111b 14.6 
Ol10F12 15.8 
Ol13D02A 20.8 
HMR363b 32.4 
E44M48_267 35.2 
Na10C01c 37.4 
HMR416b 42.6 
E32M47_116 45.9 
E32M59_142 48.6 
CB10196a 52.2 
E33M62_109 58.6 
E32M47_190 65.2 
E35M62_214 68.9 
E42M51_76 78.6 
E32M62_140 80.7 
E31M60_118 82.5 
HMR399 87.2 
CB10493 87.4 
E33M60_86 88.4 
HMR032 88.9 

N14 

E34M59_164 0.0 
E34M62_52 1.9 
CB10374 3.5 
E36M61_67 8.4 
E36M61_256 9.5 
E33M59_257 12.8 
Ol10E04 13.5 
HMR354 14.0 
Ol10D02 14.7 
Na10A08 14.9 
HMR562 15.0 
Na10D11 16.2 
E34M60_224 18.3 
HMR585 19.8 
Na12C01 20.9 
CB10027 30.3 
Ol10B02 44.5 
CB10312 45.3 

N15 

E44M60_114 0.0 
E34M62_109 9.3 
E46M59_241 17.6 
E39M59_142 19.9 
E33M54_131 24.4 
E33M54_170 25.9 
E33M59_62 30.5 
E39M59_329 36.9 
E39M61_362 46.6 
E43M51_349 48.0 
E46M59_252 50.4 
Na10E08 59.5 
Na12E09 59.9 
E44M48_137 62.3 
Ol10B11 68.3 
Na12H04 72.2 
E42M55_595 78.4 

N10 

E35M60_324 0.0 
E37M59_135 1.6 
E37M59_140 4.2 
CB10587 6.3 
E33M50_415 16.8 
E33M50_414 22.5 
Ol13C10b 29.4 
E31M55_102 35.6 
E32M54_52 44.5 
E43M59_241 49.2 
E33M50_298 51.3 
E36M51_477 52.7 
HMR292 53.4 
CB10206 54.4 
E31M60_314 55.9 
E32M54_81 58.0 
E32M62_248 63.1 
E44M58_436 64.0 
CB10536a 68.1 
E44M50_316 74.7 
E44M48_97 89.4 

N11 

MR86a 0.0 
E44M58_250 8.5 
E44M62_128 19.1 
E32M50_72 28.7 
E34M59_71 33.6 
E31M61_154 37.0 
E43M51_140 42.0 
E33M50_93 43.4 
CB10316 46.0 
E32M50_80 46.9 
E31M62_156 49.5 
E32M48_462 51.0 
E35M56_81 53.0 
E45M51_177 54.8 
E31M55_172 57.9 
E34M60_94 58.8 
E43M62_121 61.3 
E44M49_210 65.1 
HMR353b 66.4 
HMR364 67.9 
E33M50_43 70.6 
Ni2C12 73.8 
E32M51_83 76.2 
CB10119 102.8 
HMR278.1 108.4 

N12 
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E35M48_183 0.0 

E44M60_67 14.9 
E33M50_312 16.1 
MR26 17.8 
E36M47_696 22.9 
E36M47_689 23.6 

Ol10F08 49.8 
E33M49_199 53.3 
E38M49_117 55.8 
Na12E01a 58.3 
MR54 58.7 
E44M51_331 61.0 
E34M54_45 64.5 
E32M51_225 75.9 
E45M48_151 79.8 
E31M55_372 86.2 
E31M49_112 88.2 
E32M51_350 97.8 
CB10632 101.5 
E43M62_168 102.5 
E39M41_200 106.6 
E45M48_404 107.7 
E32M59_273 114.3 
E32M59_285 116.1 
CB10211b 126.5 
E34M62_490 130.4 
BRAS048 133.5 

N16 

Na12F03 0.0 
Ol13C10a 3.4 
BRAS066b 5.7 
Na12B07a 7.4 
E36M51_177 9.3 
E42M51_160 15.4 
CB10299 17.9 
E35M56_65 18.8 
E32M59_75 20.3 
E34M51_91 22.5 
E32M47_50 30.4 
E39M47_324 32.7 
E34M55_428 34.4 
E35M62_246 36.5 
E46M62_109 38.6 
E31M55_201 39.9 
E36M61_110 40.9 
E45M54_515 47.7 
BRAS014 49.6 
CB10268 52.5 
E31M62_240 59.0 
E38M49_507 60.8 
Na12H07a 70.1 
E43M59_123 73.2 
E34M54_113 80.6 
Na12A10 83.9 
E31M62_355 85.3 
E43M51_58 90.0 
CB10425 95.0 
E44M49_242 103.0 
E33M54_647 109.4 

N17 

E42M55_62 0.0 
E37M50_91 9.3 
E39M49_89 10.8 
E32M51_190 16.2 
E32M48_253 19.6 
E37M50_120 26.9 
E39M49_314 29.1 
E39M59_210 33.1 
E33M49_65 35.9 
CB10092 36.8 
HMR355 37.3 
CB10028 37.6 
E33M62_150 39.0 
E36M51_251 42.7 
CB10116a 52.7 

N18 

E45M51_80 0.0 
CB10266 14.8 
E35M62_232 19.2 
MR111c 25.4 
E32M49_405 29.3 
E45M49_173 31.1 
E33M47_256 33.2 
E44M62_104 38.1 
E34M51_252 46.4 
E32M62_386 51.2 
GMR013b 54.7 
E39M61_62 55.5 
E43M62_82 64.4 
E33M47_135 70.4 
E39M49_102 72.3 
E34M62_369 79.0 
E43M51_385 81.9 
E42M51_357 83.8 
HMR281 87.6 
Ol12F07 90.4 
Na12G04 91.9 
E44M48_121 93.0 
E32M49_578 95.2 
E32M49_386 99.5 
E45M54_500 103.6 
E36M61_358 113.3 
E32M50_374 120.1 

N19 
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Appendix B. Graphical summary of QTL positions 

 

Visual summary of all main-effect and interactive QTL in field and greenhouse trials of 

250 DH lines from the cross „Express 617‟ x „V8‟ and their respective BC test hybrids 

with „MSL-Express‟. QTL names are derived from the abbreviation of the data set used 

and  the trait observed: D = DH population data, Hb = BC hybrid data, Ht = mid-parent 

heterosis data, y = yield, ph = plant height, tsm = thousand seed mass, fshw = shoot fresh 

weight, dshw = shoot dry weight, fphw = photosynthetic organ (leaf) fresh weight, dphw 

= photosynthetic organ (leaf) dry weight, hch = hypocotyl height, la = leaf area, slw = 

specific leaf weight. 
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Appendix C. List of epistatic QTL 

Epistatic (interactive) QTL  that were detected in this study. QTL  names are derived 

from the abbreviation of the data set used and  the trait observed: D = DH population 

data, Hb = BC hybrid data, Ht = mid-parent heterosis data, fshw = shoot fresh weight, 

dshw = shoot dry weight, fphw = photosynthetic organ (leaf) fresh weight, dphw = 

photosynthetic organ (leaf) dry weight, hch = hypocotyl height, la = leaf area, slw = 

specific leaf weight. y = yield, ph = plant height, tsm = thousand seed mass. Values of 

genetic effects are presented after adjustments for BC and MP: Effects of QTL obtained 

from all the data set were not adjusted. 
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QTL 
Left flanking 

marker i 

Right flanking 

marker i 

Posit. 

 i (cM) 
Range i 

Left flanking 

marker j 

Right flanking 

marker j 

Posit. 

 j (cM) 
Range j Effect 

Var. 

contr. 

(%) 

Ddshw 

N01-N18 
Na14F11 CB10536b 92.5 90.5-92.5 E37M50120 E39M49314 26.9 23.6-28.9 0.03 5 

Ddshw 

N03-N08 
CB10413 E36M6183 11.5 0.0-14.5 E33M47216 E46M59160 2.0 0.0-8.0 0.02 4 

Ddshw 

N05-N08 
E44M49261 E32M49149 12.4 6.0-14.4 HMR582 E32M51301 30.8 28.0-34.8 -0.02 3 

Ddshw 
N05-N15 

E34M5994 BRAS063 29.5 23.5-40.8 CB10027 CB10312 44.3 40.3-44.3 -0.02 5 

Ddshw 

N10-N12 
E33M5962 E39M59329 30.5 26.4-34.5 E44M62128 E32M5072 19.1 12.5-27.1 -0.02 3 

Ddphw 

N08-N12 
E32M51301 CB10629 38.9 32.8-45.1 MR86a E44M58250 2.0 0.0-8.0 -0.01 6 

Ddphw 

N09-N17 
E46M5987 BRAS020 37.0 32.4-45.0 CB10268 E38M49507 52.5 49.6-56.5 0.01 7 

Ddphw 

N09-N15 
E33M5080 E31M5395 111.6 102.6-118.4 CB10027 CB10312 44.3 40.3-44.3 0.01 4 

Dfshw 

N01-N08 
E44M60371 CB10097 20.9 14.0-20.9 E46M59160 BRAS039a 11.5 6.0-24.0 0.313 3.5 

Dfshw 

N09-N16 
CB10373 Na10B07 97.6 94.5-99.6 E32M51350 CB10632 97.8 90.2-99.8 0.362 4.8 

Dfshw 

N13-N13 
E35M62226 Ol10B07 54.1 49.2-58.3 Na10G10a E38M55460 69.9 66.3-71.9 -0.457 7.6 

Dfphw 

N06-N09 
HMR572 E33M4773 22.0 14.7-33.8 MR230 CB10116b 139.0 130.3-145.9 -0.127 3.0 

Dfphw 

N07-N08 
Ra2G08 Na12B02 25.1 0.0-39.3 E33M47216 E46M59160 0.0 0.0-4.0 -0.112 2.3 



 

 

  1
1
0

 

A
p
p
en

d
ix

 QTL 
Left flanking 

marker i 

Right flanking 

marker i 

Posit. 

 i (cM) 
Range i 

Left flanking 

marker j 

Right flanking 

marker j 

Posit. 

 j (cM) 
Range j Effect 

Var. 

contr. 

(%) 

Dfphw 

N08-N17 
E33M47216 E46M59160 0.0 0.0-4.0 E43M5158 CB10425 92.0 82.6-101.0 -0.187 6.6 

Dfphw 

N08-N10 
E32M51301 CB10629 36.9 30.8-38.9 E39M59329 E39M61362 42.9 32.5-54.4 0.138 3.6 

Dfphw 

N09-N16 
CB10373 Na10B07 97.6 94.5-99.6 E32M51350 CB10632 97.8 92.2-99.8 0.179 6.0 

Dfphw 

N11-N16 
CB10206 E32M62248 54.4 39.6-70.1 E35M48183 E44M6067 6.0 0.0-16.9 0.134 3.4 

Dhch 

N03-N15 
E42M55125 BRMS043 68.7 63.2-72.7 CB10374 E36M6167 3.5 2.0-7.5 2.438 6.3 

Dhch 

N06-N07 
E33M4773 E44M60432 35.8 27.8-46.0 GMR166 Ra2G08 22.2 16.4-24.2 1.883 3.8 

Dhch 

N08-N11 
E46M59160 BRAS039a 9.5 6.0-13.5 E44M50316 E44M4897 88.7 82.7-88.7 -1.833 3.6 

Dhch 
N09-N17 

E31M55249 CB10373 94.5 87.4-96.5 Na12B07a CB10299 7.4 5.7-13.4 2.171 5 

Dhch 

N10-N13 
E46M59241 E33M54131 17.6 13.3-21.6 E46M62120 BRAS039b 82.9 77.8-86.9 -1.901 3.8 

Dhch 

N11-N18 
E44M50316 E44M4897 88.7 82.7-88.7 E32M48253 E37M50120 21.6 16.2-26.9 1.858 3.7 

Dla 

N01-N04 
E46M5199 E46M6252 36.8 32.5-38.8 CB10196b HMR416a 37.6 20.2-39.9 -14.25 4 

Dla 

N11-N13 
CB10536a E44M50316 72.1 65.1-84.7 BRMS033 E31M62410 115.4 109.4-115.4 -16.20 5 

Dla 

N12-N14 
MR86a E44M58250 0.0 0.0-4.0 E33M62109 E32M47190 58.6 56.2-62.6 -16.10 5 
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N12-N18 
E44M58250 E44M62128 8.5 4.0-14.5 E39M49314 CB10092 29.1 26.9-33.1 0.038 4.4 

Dy07 

N01-N11 
E33M50164 E44M60371 6.0 6.0-12.0 CB10587 E33M50415 10.3 4.2-16.3 -0.71 4 

Dph07 

N01-N08 
E33M50164 E44M60371 6.0 1.7-12.0 E32M51301 CB10629 36.9 32.8-38.9 -1.47 3 

Dph07 

N01-N17 
E46M5199 E46M6252 36.8 30.5-39.6 BRAS014 CB10268 51.6 44.9-60.5 -1.19 2 

Dph07 

N03-N11 
BRAS056 E43M51108 44.6 36.6-48.4 E37M59140 CB10587 4.2 0.0-6.2 1.58 4 

Dph07 

N04-N09 
CB10448 CB10347 48.0 43.9-52.0 E46M5987 BRAS020 45.0 39.0-49.5 -1.83 5 

Dph07 

N09-N14 
E42M55131 E31M55249 83.4 79.6-89.4 HMR363b Na10C01c 34.4 30.8-46.6 1.61 4 

Dph07 
N11-N14 

Ol13C10b E31M55102 29.4 26.5-33.4 HMR363b Na10C01c 34.4 30.8-46.6 -1.10 2 

Dph07 

N11-N13 
E32M62248 CB10536a 65.1 58.4-74.1 Na10G10a E38M55460 67.9 64.3-71.9 -1.32 3 

Dtsm07 

N03-N09 
E33M49207 Ra2A06 99.8 95.8-105.8 E46M5987 BRAS020 37.0 32.4-41.0 -0.07 3 

Dtsm07 

N04-N08 
E45M5162 BRAS010b 65.4 57.4-65.4 E46M59160 BRAS039a 9.5 4.0-16.0 -0.06 2 

Dtsm07 

N05-N09 
E42M55166 E42M60190 71.5 66.7-77.5 Na14C12 E36M57123 53.4 49.5-61.4 0.06 2 

Dtsm07 

N06-N12 
Na12H07b E34M62305 85.3 81.3-91.3 E44M58250 E44M62128 8.5 4.0-12.5 -0.06 2 
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Dtsm07 

N09-N09 
E46M5987 BRAS020 37.0 32.4-41.0 E42M55131 E31M55249 83.4 77.6-87.4 -0.05 2 

Dtsm07 

N09-N16 
E46M5987 BRAS020 37.0 32.4-41.0 MR26 E36M47689 17.8 14.9-21.8 0.06 2 

Dtsm07 

N13-N15 
MR86b Ol10E05 0.0 0.0-16.0 CB10027 CB10312 30.3 24.9-38.3 -0.05 1 

Dtsm07 

N13-N16 
E35M62226 Ol10B07 54.1 49.2-62.3 CB10211b BRAS048 132.5 126.5-132.5 0.06 2 

Dy06 

N03-N09 
CB10036 E33M49207 93.8 84.0-99.8 CB10116b E31M49223 145.9 139.0-145.9 1.18 10 

Dy06 

N08-N15 
Na12B05 E32M59123 59.4 56.1-63.4 Na10D11 Na12C01 20.2 13.5-26.9 -0.90 6 

Dy06 

N09-N13 
E31M5395 E43M62336 118.4 111.6-126.3 MR86b Ol10E05 0.0 0.0-6.3 -0.60 2 

Dy06 
N13-N15 

MR86b Ol10E05 0.0 0.0-6.3 E34M59164 CB10374 0.0 0.0-3.5 0.56 2 

Dy06 

N13-N14 
E33M60156 E45M59151 37.0 32.0-41.0 Ol13D02a HMR363b 22.8 17.8-30.8 -0.83 5 

Dtsm06 

N01-N14 
E42M51661 E35M48361 68.6 60.9-72.6 Ol12D02 Ol10F12 9.8 4.0-11.8 0.062 2.5 

Dtsm06 

N03-N14 
Na12E02 CB10036 86.0 77.7-89.8 HMR363b Na10C01c 32.4 28.8-36.4 0.064 2.7 

Dtsm06 

N07-N19 
E39M49307 E44M58101 0.0 0.0-10.0 E43M6282 E33M47135 64.4 60.7-68.4 -0.076 3.8 

Dtsm06 

N08-N16 
BRAS039a CB10364 14.3 9.5-22.8 E31M49112 E32M51350 88.2 81.8-94.2 -0.052 1.8 
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N09-N17 
HMR602 MR216 77.1 69.1-81.4 CB10425 E44M49242 97.0 90.0-101.0 0.062 2.6 

Dtsm06 

N13-N14 
E44M51636 E44M47290 20.5 14.0-27.4 Ol12D02 Ol10F12 9.8 4.0-11.8 -0.053 1.9 

Dph06 

N01-N19 
E46M62282 E44M4777 49.6 39.6-54.8 E36M61358 E32M50374 115.3 107.6-119.3 -1.067 2.7 

Dph06 

N01-N11 
E46M62282 E44M4777 49.6 39.6-54.8 Ol13C10b E31M55102 29.4 26.5-31.4 1.001 2.4 

Dph06 

N03-N18 
E33M49207 Ra2A06 99.8 95.8-103.8 E36M51251 CB10116a 42.7 41.0-44.7 -1.158 3.2 

Dph06 

N04-N09 
HMR416a CB10448 41.9 31.6-45.9 Na14C12 E36M57123 53.4 51.5-59.4 -1.028 2.5 

Dph06 

N06-N13 
E45M49137 E34M55290 66.3 61.5-76.0 Na10G10a E38M55460 69.9 62.3-71.9 -1.311 4.1 

Dph06 
N10-N14 

E44M60114 E34M62109 0.0 0.0-2.0 E39M61383 Ol12D02 0.0 0.0-6.00 1.160 3.2 

Dph06 

N10-N15 
E39M59329 E39M61362 38.9 30.5-50.4 CB10374 E36M6167 5.5 2.0-13.5 1.140 3.1 

Dph06 

N11-N12 
Ol13C10b E31M55102 29.4 26.5-31.4 HMR353b Ni2C12 66.4 61.3-72.4 -0.786 1.5 

Dph06 

N12-N19 
E44M62128 E32M5072 25.1 12.5-32.7 E45M5180 CB10266 14.0 4.0-16.8 1.066 2.7 

Dph06 

N14-N16 
Ol12D02 Ol10F12 13.8 9.8-19.8 CB10211b BRAS048 130.5 124.1-132.5 1.377 4.6 
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N05-N15 
Na12E01b E31M62195 51.5 45.9-55.5 CB10027 CB10312 38.3 34.3-44.3 -0.02 6 

Hbdshw 

N06-N13 
E44M60472 E32M48677 8.0 0.0-14.0 Ol10E05 HMR320 4.3 0.0-14.0 -0.02 7 

Hbdshw 

N06-N12 
Na12H07b E34M62305 93.3 89.3-93.3 E32M5183 CB10119 76.2 73.8-84.2 -0.03 11 

Hbdphw 
N06-N12 

E33M50327 HMR558 78.5 70.0-85.3 Ni2C12 E32M5183 73.8 66.4-75.8 -0.01 3 

Hbdphw 

N11-N16 
E43M59241 CB10206 53.2 46.5-62.4 CB10632 E45M48404 105.5 97.8-113.7 -0.01 5 

Hbdphw 

N11-N17 
E44M50316 E44M4897 88.7 78.7-88.7 E44M49242 E33M54647 109.0 105.0-109.0 -0.02 11 

Hbdphw 

N13-N15 
Na10G10a E38M55460 67.9 64.3-69.9 CB10027 CB10312 32.3 22.9-38.3 -0.01 5 

Hbfshw 

N01-N09 
E33M50164 E44M60371 6.0 1.7-14.0 MR216 E42M55131 77.6 71.1-81.4 -0.280 5.3 

Hbfshw 

N03-N18 
CB10413 E36M6183 13.5 3.5-18.5 E33M62150 E36M51251 39.0 23.6-42.7 0.242 4 

Hbfshw 

N06-N12 
Na12H07b E34M62305 93.3 89.3-93.3 E32M5183 CB10119 78.2 73.8-88.2 -0.263 4.7 

Hbfshw 

N07-N13 
E39M49307 E44M58101 0.0 0.0-12.0 E38M55460 BRAS068 73.9 69.9-77.8 0.241 3.9 

Hbfshw 
N11-N17 

E44M50316 E44M4897 88.7 80.7-88.7 E44M49242 E33M54647 109.0 105.0-109.0 -0.291 5.7 

Hbfshw 

N13-N19 
Ol10E05 HMR320 2.3 0.0-16.5 E45M54500 E36M61358 111.6 96.4-113.3 0.198 2.6 
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QTL 
Left flanking 

marker i 

Right flanking 

marker i 

Posit. 

 i (cM) 
Range i 

Left flanking 

marker j 

Right flanking 

marker j 

Posit. 

 j (cM) 
Range j Effect 

Var. 

contr. 

(%) 

Hbfphw 

N04-N13 
CB10196b HMR416a 33.6 24.2-39.6 BRAS039b E36M5145 93.1 86.9-102.5 0.114 3.6 

Hbfphw 

N05-N14 
CB10574 CB10609 42.8 36.8-55.5 E39M61383 Ol12D02 6.0 0.0-13.8 0.109 3.3 

Hbfphw 

N10-N19 
E46M59241 E33M54131 17.6 13.3-21.6 E45M54500 E36M61358 103.6 101.5-111.6 -0.101 2.8 

Hbfphw 

N13-N17 
Ol10B07 Na10G10a 62.3 58.1-66.3 E43M5158 CB10425 90.0 83.9-94.0 -0.157 6.8 

Hbhch 

N02-N09 
E32M54197 E31M5390 11.6 0.0-15.4 Na12E06b Na14C12 49.5 48.0-53.4 -2.105 2.9 

Hbhch 

N05-N16 
CB10545 E33M5048 2.0 0.0-8.0 CB10211b BRAS048 126.5 120.1-132.5 2.381 3.7 

Hbhch 

N06-N06 
E44M60472 E32M48677 8.0 4.0-12.0 E44M60432 E33M60378 50.0 44.0-57.5 4.328 12.2 

Hbhch 
N06-N07 

E44M60472 E32M48677 8.0 4.0-12.0 E39M49307 E44M58101 4.0 0.0-16.0 3.814 9.5 

Hbhch 

N08-N10 
CB10629 E43M62222 43.1 38.9-49.4 Na12E09 Ol10B11 63.9 50.4-72.2 -3.530 8.1 

Hbhch 

N11-N19 
Ol13C10b E31M55102 29.4 26.5-31.4 E35M62232 MR111c 25.2 21.2-29.3 3.113 6.3 

Hbhch 

N14-N19 
E42M5176 CB10493 86.6 80.6-87.4 E34M51252 E32M62386 48.4 46.4-51.2 -2.791 5.1 

Hbla 

N09-N12 
E32M48148 E44M51350 3.7 0.0-9.7 E43M62121 HMR353b 61.3 56.8-65.3 -14.25 4 

Hbla 

N12-N12 
E44M62128 E32M5072 19.1 14.5-25.1 E32M5183 CB10119 76.2 75.8-84.2 17.07 6 
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marker i 

Posit. 

 i (cM) 
Range i 

Left flanking 

marker j 

Right flanking 

marker j 

Posit. 

 j (cM) 
Range j Effect 

Var. 

contr. 

(%) 

Hby07 

N01-N11 
E46M6252 E43M51273 39.6 36.8-43.3 E33M50414 Ol13C10b 22.5 10.3-24.5 -0.32 3 

Hby07 

N03-N19 
BRMS043 Na12E02 75.7 72.7-79.7 E43M6282 E33M47135 64.4 60.7-66.4 -0.46 6 

Hby07 

N04-N18 
Na12E05 E45M49114 0.0 0.0-9.3 E32M48253 E37M50120 23.6 13.3-28.9 -0.34 3 

Hby07 

N09-N11 
E33M5080 E31M5395 111.6 106.6-115.6 Ol13C10b E31M55102 29.4 26.5-31.4 0.38 4 

Hby07 

N10-N14 
E44M60114 E34M62109 0.0 0.0-6.0 HMR363b Na10C01c 34.4 26.8-37.4 0.27 2 

Hby07 

N10-N14 
E46M59252 Na12E09 56.4 50.4-63.9 HMR363b Na10C01c 34.4 26.8-37.4 0.44 5 

Hby07 

N13-N16 
E45M59151 E35M62226 43.2 39.0-47.2 E33M49199 Na12E01a 53.3 49.8-57.3 -0.38 4 

Hby07 
N16-N19 

NA12E01a E34M5445 64.3 58.3-72.5 E32M49386 E45M54500 101.5 94.4-107.6 0.44 5 

Hbph07 

N01-N19 
E32M5451 CB10081 0.0 0.0-5.7 E45M5180 CB10266 10.0 0.0-18.8 -1.12 5 

Hbph07 

N01-N09 
E34M5163 E46M5199 36.5 30.5-38.8 Na10B07 CB10476 100.2 97.6-102.2 -0.89 3 

Hbph07 

N03-N07 
Na14G10 E42M55125 59.2 54.8-63.2 Na12B02 Na12E11 28.6 25.1-32.6 1.04 4 

Hbph07 

N03-N17 
E42M55125 BRMS043 72.7 68.7-74.7 CB10268 E38M49507 58.5 48.9-62.8 1.15 5 

Hbph07 

N06-N19 
E44M60472 E32M48677 8.0 2.0-14.7 Ol12F07 E32M49386 94.4 83.0-103.5 1.33 7 
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Left flanking 

marker i 

Right flanking 

marker i 

Posit. 

 i (cM) 
Range i 

Left flanking 
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Right flanking 
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 j (cM) 
Range j Effect 

Var. 

contr. 

(%) 

Hbph07 

N09-N16 
CB10116b E31M49223 141.9 139.0-145.9 E45M48404 E32M59285 111.7 97.8-122.1 -0.82 3 

Hbph07 

N13-N17 
MR86b Ol10E05 0.0 0.0-4.3 CB10268 E38M49507 58.5 48.9-62.8 -1.31 7 

Hbtsm07 

N03-N16 
Na14G10 E42M55125 59.2 54.8-63.2 E32M51225 E45M48151 77.9 75.9-85.8 0.05 5 

Hbtsm07 

N13-N13 
Na10G10a E38M55460 69.9 64.3-71.9 BRAS039b E36M5145 89.1 84.9-95.1 -0.07 8 

Hby06 

N01-N17 
E33M5465 Na14F11 81.9 76.9-92.5 Ol13C10a BRAS066b 5.4 0.0-7.4 -0.45 4 

Hby06 

N06-N07 
E44M60472 E32M48677 4.0 0.0-12.0 Na12E11 Ni2D03 43.3 39.3-43.3 -0.43 4 

Hby06 

N06-N07 
E33M60378 Na12D08 55.7 48.0-55.7 Na12E11 Ni2D03 43.3 39.3-43.3 0.41 3 

Hby06 
N09-N10 

CB10116b E31M49223 145.9 139.0-145.9 Na12E09 Ol10B11 59.9 54.4-65.9 -0.37 3 

Hby06 

N15-N17 
E36M6167 Ol10E04 8.4 5.5-12.4 E35M62246 E36M61110 36.5 32.4-38.5 -0.37 3 

Hbtsm06 

N02-N14 
E36M47496 MR191_2 0.0 0.0-6.9 Na10C01c HMR416b 39.4 34.4-42.6 -0.021 1.6 

Hbtsm06 

N03-N08 
E44M6255 CB10079 123.6 117.8-129.0 E31M53515 HMR582 24.0 20.8-28.0 0.029 3.2 

Hbtsm06 

N08-N13 
Na12B05 E32M59123 67.4 59.4-76.5 BRAS039b E36M5145 91.1 81.8-100.5 -0.023 2 

Hbtsm06 

N09-N16 
E42M55131 E31M55249 89.4 83.4-92.5 MR26 E36M47689 19.8 10.0-41.6 0.022 2 
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marker i 

Right flanking 

marker i 

Posit. 

 i (cM) 
Range i 

Left flanking 

marker j 

Right flanking 

marker j 

Posit. 

 j (cM) 
Range j Effect 

Var. 

contr. 

(%) 

Hbtsm06 

N10-N13 
E39M61362 E46M59252 46.6 42.9-50.4 E33M60156 E45M59151 39.0 36.0-43.0 -0.026 2.6 

Hbph06 

N02-N13 
BRAS031 E32M54197 8.5 0.0-11.6 E38M55460 BRAS068 73.9 71.9-77.8 0.499 2.1 

Hbph06 

N03-N17 
E36M6183 E44M57448 14.5 11.5-20.5 E34M54113 Na12A10 82.6 76.1-87.9 0.721 4.3 

Hbph06 

N03-N15 
E42M55125 BRMS043 70.7 65.2-74.7 CB10374 E36M6167 3.5 0.0-7.5 1.014 8.5 

Hbph06 

N05-N12 
Na12E01b E31M62195 51.5 47.9-55.5 E44M62128 E32M5072 21.1 12.5-27.1 0.636 3.3 

Hbph06 

N05-N09 
E42M55166 E42M60190 85.5 77.5-87.5 E42M55131 E31M55249 81.4 79.6-87.4 0.890 6.5 

Hbph06 

N06-N11 
E45M49137 E34M55290 68.3 61.5-74.0 E44M50316 E44M4897 86.7 76.7-88.7 -0.605 3 

Hbph06 
N08-N13 

Na12B05 E32M59123 59.4 54.1-63.4 E44M51636 E44M47290 16.5 12.0-20.5 -0.598 2.9 

Hbph06 

N11-N15 
E33M50414 Ol13C10b 22.5 18.8-26.5 Na12C01 CB10027 20.9 18.2-24.9 -0.566 2.6 

Hbph06 

N11-N13 
E31M55102 E32M5452 41.6 37.6-46.5 E33M60156 E45M59151 37.0 34.0-43.0 0.638 3.4 

Hbph06 

N17-N19 
E44M49242 E33M54647 103.0 99.0-107.0 CB10266 E35M62232 14.8 8.0-18.8 -0.475 1.9 
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QTL 
Left flanking 

marker i 

Right flanking 

marker i 

Posit. 

 i (cM) 
Range i 

Left flanking 

marker j 

Right flanking 

marker j 

Posit. 

 j (cM) 
Range j Effect 

Var. 

contr. 

(%) 

Htdshw 

N07-N13 
E39M49307 E44M58101 0.0 0.0-8.0 E46M59202 E33M60156 36.0 32.0-41.0 0.02 6 

Htdphw 

N03-N08 
E36M6183 E44M57448 20.5 11.5-30.6 E33M47216 E46M59160 0.0 0.0-6.0 -0.02 7 

Htdphw 

N11-N16 
E43M59241 CB10206 49.2 46.5-53.2 E45M48404 E32M59285 107.7 103.5-111.7 -0.01 5 

Htfshw 
N05-N08 

E34M5994 BRAS063 29.5 25.5-31.5 HMR582 E32M51301 32.8 28.0-36.8 0.209 2.6 

Htfshw 

N08-N08 
E46M59160 BRAS039a 11.5 8.0-16.0 E31M53515 HMR582 24.0 20.8-26.0 0.500 14.7 

Htfshw 

N11-N17 
E44M50316 E44M4897 86.7 76.7-88.7 E44M49242 E33M54647 109.0 107.0-109.0 -0.354 7.4 

Htfshw 

N13-N16 
Na10G10a E38M55460 67.9 64.3-71.9 E32M51225 E45M48151 75.9 68.5-79.8 0.263 4.1 

Htfshw 

N14-N18 
Ol10F12 Ol13D02a 15.8 11.8-17.8 E37M5091 E32M51190 9.3 4.0-15.3 0.286 4.8 

Htfphw 

N07-N13 
E39M49307 E44M58101 4.0 0.0-12.0 E38M55460 BRAS068 73.9 69.9-75.9 0.129 4.5 

Htfphw 

N13-N17 
E35M62226 Ol10B07 52.1 49.2-56.1 E38M49507 Na12H07a 60.8 54.5-64.8 0.133 4.8 

Htfphw 

N13-N17 
BRAS039b E36M5145 93.1 89.1-100.5 E32M4750 E35M62246 34.4 30.4-38.5 -0.200 10.8 

Htfphw 
N14-N19 

Ol10F12 Ol13D02a 19.8 17.8-22.8 E45M54500 E36M61358 103.6 99.5-107.6 -0.156 6.5 

Hthch 

N07-N19 
Ra2G08 Na12B02 27.1 16.4-32.6 E33M47135 E34M62369 70.4 66.4-74.4 -1.802 5.2 
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marker i 

Right flanking 

marker i 

Posit. 

 i (cM) 
Range i 

Left flanking 

marker j 

Right flanking 

marker j 

Posit. 

 j (cM) 
Range j Effect 

Var. 

contr. 

(%) 

Hthch 

N08-N10 
CB10629 E43M62222 41.1 38.9-45.1 Na12E09 Ol10B11 65.9 59.9-74.2 -2.255 8.2 

Htla 

N01-N09 
E33M5465 Na14F11 89.9 83.9-92.5 E46M5987 BRAS020 43.0 37.0-46.0 16.52 6 

Htla 

N05-N15 
Na12E01b E31M62195 51.5 45.9-56.7 CB10374 E36M6167 3.5 2.0-5.5 -13.94 4 

Htla 

N07-N13 
E39M49307 E44M58101 4.0 0.0-12.0 E38M55460 BRAS068 75.9 71.9-77.8 16.77 6 

Htla 

N12-N15 
E44M62128 E32M5072 25.1 19.1-30.7 CB10027 CB10312 30.3 26.9-34.3 13.33 4 

Htslw 

N01-N05 
CB10097 E34M5163 26.4 22.4-32.5 E42M55166 E42M60190 73.5 64.7-79.5 -0.042 5.1 

Hty07 

N01-N13 
E44M60371 CB10097 20.9 10.0-26.4 E33M60156 E45M59151 37.0 34.0-39.0 -0.43 5 

Hty07 
N03-N16 

NA12H06 CB10413 0.0 0.0-3.5 E44M6067 MR26 16.9 8.0-16.9 -0.27 2 

Hty07 

N03-N18 
BRAS056 E43M51108 38.6 30.6-44.6 E33M62150 E36M51251 41.0 36.8-48.7 0.40 5 

Hty07 

N09-N12 
Na10B11 GMR013a 24.8 19.9-28.8 E34M5971 E43M51140 33.6 28.7-41.6 -0.40 5 

Hty07 

N09-N09 
BRAS020 Na12E06b 48.0 43.0-51.5 CB10116b E31M49223 141.9 137.0-145.9 0.38 4 

Hty07 

N10-N16 
Na12E09 Ol10B11 59.9 52.4-65.9 E44M6067 MR26 16.9 8.0-16.9 0.32 3 

Hty07 

N12-N19 
E45M51177 E43M62121 56.8 50.0-65.3 E33M47256 E44M62104 33.2 29.3-37.2 -0.38 4 
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QTL 
Left flanking 

marker i 

Right flanking 

marker i 

Posit. 

 i (cM) 
Range i 

Left flanking 

marker j 

Right flanking 

marker j 

Posit. 

 j (cM) 
Range j Effect 

Var. 

contr. 

(%) 

Hty07 

N16-N19 
E44M6067 MR26 16.9 8.0-16.9 E33M47256 E44M62104 33.2 29.3-37.2 0.28 2 

Httsm07 

N02-N09 
E31M5390 E31M53267 23.4 6.9-29.4 CB10373 Na10B07 97.6 94.5-99.6 0.04 4 

Httsm07 

N03-N12 
BRAS056 E43M51108 36.6 28.6-40.6 E44M62128 E32M5072 25.1 19.1-30.7 0.06 8 

Httsm07 

N03-N03 
Na12E02 CB10036 82.0 77.7-86.0 CB10079 E43M51254 129.0 125.6-135.0 -0.04 4 

Htph07 

N01-N10 
E33M50164 E44M60371 6.0 0.0-12.0 Na12H04 E42M55595 72.2 65.9-76.2 -1.02 5 

Htph07 

N04-N05 
E34M6054 CB10196b 10.2 3.3-20.2 BRAS063 CB10574 34.8 19.5-51.5 0.91 4 

Htph07 

N08-N13 
E32M51301 CB10629 36.9 32.8-38.9 E43M62147 BRMS033 104.2 100.5-106.2 1.15 6 

Htph07 
N08-N16 

E39M47181 Na12B05 54.1 47.4-61.4 MR26 E36M47689 21.8 10.0-33.6 1.05 5 

Htph07 

N09-N11 
CB10116b E31M49223 141.9 141.0-145.9 E37M59140 CB10587 4.2 0.0-6.2 1.16 7 

Htph07 

N11-N16 
E32M5452 E43M59241 46.5 41.6-53.2 CB10211b BRAS048 126.5 118.1-132.5 1.03 5 

Hty06 

N01-N14 
E33M50164 E44M60371 10.0 1.7-16.0 CB10196a E33M62109 52.2 48.6-56.2 0.55 7 

Hty06 

N05-N10 
Na12E01b E31M62195 51.5 45.9-55.5 E34M62109 E46M59241 13.3 2.0-26.4 -0.48 5 

Hty06 

N07-N13 
E39M49307 E44M58101 0.0 0.0-6.0 Ol10E05 HMR320 4.3 0.0-18.5 0.44 5 
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 QTL 
Left flanking 

marker i 

Right flanking 

marker i 

Posit. 

 i (cM) 
Range i 

Left flanking 

marker j 

Right flanking 

marker j 

Posit. 

 j (cM) 
Range j Effect 

Var. 

contr. 

(%) 

Httsm06 

N01-N03 
E34M5163 E46M5199 28.5 24.4-32.5 E33M49207 Ra2A06 111.8 105.8-117.8 -0.035 7.8 

Httsm06 

N01-N13 
E44M50235 E33M5465 80.5 70.6-87.9 E38M55460 BRAS068 73.9 71.9-75.9 0.025 3.9 

Htph06 

N01-N17 
E44M4777 E45M57423 56.8 51.6-60.8 Ol13C10a BRAS066b 3.4 2.0-5.4 -0.715 4.3 

Htph06 

N06-N10 
HMR558 Na12H07b 79.3 76.5-83.3 Na12E09 Ol10B11 59.9 54.4-63.9 -0.618 3.2 
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