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Abstract

Purpose: Hodgkin's disease is a common malignant disorder in adolescent patients.

Although most patients are cured, approximately 10%–15% of patients experience a

relapse or have resistant disease. Furthermore, there are no definitive molecular pre-

dictors for early identification of patients at high risk of treatment failure to first line

therapy. The aim of this study was to evaluate the deep learning-based classifier

model of medical image classification to predict clinical outcome that may help in

appropriate therapeutic decisions.

Methods: Eighty-three FFPE biopsy specimens from patients with Hodgkin's disease

were stratified according to the patient's qPET scores, stained with picrosirius red

dye and digitalized by whole slide image scanning. The resulting whole slide images

were cut into tiles and annotated by two classes based on the collagen fibers' degree

of coloring with picrosirius red. The neural network (YOLOv4) was then trained with

the annotated data. Training was performed with 30 cases. Prognostic power of the

weakly stained picrosirius red fibers was evaluated with 53 cases. The same neural

network was trained with MMP9 stained tissue slides from the same cases and the

quantification results were compared with the variant from the picrosirius red cases.

Results: There was a weak monotonically increasing relationship by parametric

ANOVA between the qPET groups and the percentages of weakly stained fibers

(p = .0185). The qPET-positive cases showed an average of 18% of weakly stained

fibers, and the qPET-negative cases 10%–14%. Detection performance showed an

AUC of 0.79.

Conclusions: Picrosirius red shows distinct associations as a prognostic metric candi-

date of disease progression in Hodgkin's disease cases using whole slide images but

not sufficiently as a prognostic device.
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1 | INTRODUCTION

Hodgkin's disease is the most common lymphoma disease in

adolescents, with approximately 80 000–100 000 cases per year world-

wide.1 Typical signs of this malignancy are B-symptoms, lymphopenias

as well as increased inflammation levels.1,2 Treatment of Hodgkin's dis-

ease usually consists of multi-agent combination chemotherapy with or

without radiotherapy.3 The choice of therapy depends on the stage of

disease and prognostic parameters, that is, the patient's risk of relapse.4,5

Currently, only clinical criteria including affected lymph node areas, B

symptoms, treatment response measured by qualitative PET analyses,

volume, occurrence of bulky disease or mediastinal disease exist to pre-

dict the risk of progression or recurrence.1,2,6 A potential histological

parameter—the quantification of MMP9-positive cells—was currently

discussed in several publications.7–9 MMP9 is a matrixin belonging to

the zinc-metalloproteinases family involved in collagenous degradation

of the extracellular matrix.10 The discovery of a robust and reliable prog-

nostic marker would help especially in the selection of therapy for youn-

ger patients. Here we face a trade-off between efficacy and side effects

caused by therapy often leading to severe side effects in later stages of

life,11 a more conservative approach for patients with better prognosis

would help to diminish the risk of the later complications. A prerequisite

for the success and acceptance of the use of a histologic prognostic

marker is an accurate quantification capability.12 The usual methods of

quantifying, for example, MMP9 or other histological parameters with

the microscope by the practitioner himself turns out to be highly subjec-

tive and extremely time-consuming. As data volumes continue to grow,

artificial intelligence algorithms are becoming increasingly important

where human performance is reaching its limits in terms of time and

computational capacity.13–15 For the quantification of histological

parameters, convolutional deep learning networks (CNN) have become

increasingly important serving as a suitable deep learning architecture

for analyzing tissue structures on whole slide images.16–18 Due to

MMP9 quantification in classical Hodgkin lymphoma had shown signifi-

cant prognostic power7 we hypothesized that picrosirius red collagen

staining of Hodgkin's lymphoma tissue might serve as a prognostic signal

in young patients. As it was almost impossible to accurately quantify the

absolute amount of faintly stained fibers through quantification of the

microscopic field of view, we decided to use a deep learning approach

with the CNN model YOLOv4 which has been successfully used in sev-

eral medical computer vision tasks regarding object detection on whole

slides.19–21 We chose patients from the EuroNet-PHL-C2 study that

were representative for different degrees of response to perform auto-

mated analysis and another fraction to test our hypothesis statistically.

2 | MATERIALS AND METHODS

2.1 | Data collective

All of the 83 cases used for the investigations were selected from

the EuroNet-PHL-C2 study, an international cross-group study of

classical Hodgkin's lymphoma in children and adolescents. The

treatment regimen based on a risk- and response-adapted treatment

approach.22,23 Patients were all administered two cycles of induc-

tion chemotherapy by vincristine, etoposide, prednisolone, and

doxorubicin (OEPA), followed by early response assessment (ERA),

including whole-body CT or MRI and FDG-PET scan.24 Patients who

achieved complete metabolic remission received one to four cycles

of further chemotherapy according to diagnostic stage and stratifi-

cation of the treatment risk group.25 All other patients received

radiation to the affected site after completion of their planned

chemotherapy regimen (ISRT). We used qPET, a quantitative exten-

sion of the Deauville scale used in evaluating treatment response of

FDG-PET scans in lymphoma patients, after initial primary chemother-

apy as an indicator of abnormal tumor metabolism and stratified cases

using the qPET thresholds proposed by Hasenclever et al. (2014).26

Accordingly, the cases were selected to represent four qPET groups (“D
1–4”) (Table 1). For some analyses, the D-groups were additionally uni-

fied into a qPET-negative group (D1 + D2 as qPET-Neg., qPET < 1.3,

median age = 14 years, range = 3–17 years, 23 males, 11 females) and

a qPET-positive group (D3 + D4 as qPET-Pos., qPET > 1.3, median

age = 15 years, range = 6–17 years, 13 males, 6 females) according to

the qPET threshold value of 1.3 (Table 1). The biopsy formalin fixed and

paraffin embedded (FFPE) material was cut into sections of about 5 μm

thickness using a Leica SM 2000R sliding microtome (Leica Microsys-

tems, Wetzlar, Germany). Selected slide-mounted sections were depar-

affinized, incubated with primary antibody against MMP9 (mouse anti-

human monoclonal Ab, clone 5G3, dilution 1:5000, antigen retrieval with

EDTA, Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA), and

visualized with 3,30-Diaminobenzidine (DAB) using Bond Polymer Refine

Detection Kit (DS9800, Leica Biosystems, Newcastle, UK) on a Leica

BOND-MAX automated staining platform (Leica Microsystems, Wetzlar,

Germany) according to manufacturer's protocol. Another set of deparaf-

finized slide-mounted sections from the same cases underwent

manufacturer's picrosirius red staining protocol (ab150681—Picro Sirius

Red Stain Kit (Connective Tissue Stain), Abcam, Cambridge, UK).

Afterwards, the stained slides were scanned using a Panoramic SCAN II

slide scanner (3DHISTECH, Budapest, Hungary) equipped with a 20�
plan apochromat objective and a 5-megapixel CMOS camera mounted

on a 0.63� C-mount adapter. The obtained whole slide images (WSI) in

MRSX format had a resolution of 0.2749 � 0.2749 μm/pixel.

2.2 | CNN training

From the selected 83 cases, 30 WSIs were used to provide training data

for a neural network and 53 WSIs to evaluate the prognostic signifi-

cance of the biomarker candidate. The whole slide images were first

divided into 320 � 320 pixel tiles in original full resolution with the

open source software QuPath 0.3.227 to provide suitable input format

for the convolutional neural network YOLOv4.28 Training data annota-

tion was performed using LabelImg29 by drawing rectangles around the

objects of interest including them in so-called bounding boxes. The

annotated objects were weakly and strongly stained fibers in the case of

picrosirius red staining, MMP9-positive and -negative cells for MMP9
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staining. Transfer-learning based training of the model YOLOv4 was car-

ried out with pre-trained weights (MS-COCO).30 The complete training

set for picrosirius red included 7134 tiles. For MMP9, the complete

training set consisted of 5788 tiles. The training sets were split into a

training subset and a validation subset fixed at a ratio of 80:20 in both

settings (picrosirius red and MMP9). The achieved mean average preci-

sion was 73.4% for picrosirius red and 87.6% for MMP9 WSIs. The

trained neural network was used to verify the biomarker candidate as a

suitable prognostic entity using the preselected 53 WSIs and their clini-

cal data with 953.068 tiles from picrosirius red and 409.406 tiles from

the MMP9WSIs.

2.3 | Final analysis and development of fiber
quantification technique

Trained YOLOv4 models were used to analyze tiles from 53 WSIs dedi-

cated to the final analysis. In the case of MMP9 the result of the analy-

sis consisted of coordinates of the bounding boxes—network generated

frames enclosing detected cells. For the further analysis, we quantified

(counted) the number of bounding boxes corresponding to the detected

(MMP9 positive) cells per WSI. In the case of picrosirius red staining,

the enclosing detected objects were weakly or strongly stained fibers.

As the length of the detected fibers differed among each WSI and

between WSIs, we decided to quantify the length of the fibers enclosed

by bounding boxes rather than the number of boxes as such. At the

time of manuscript preparation, there was no established method to

reliably quantify fiber lengths on WSIs. We decided to measure the

diagonals of the bounding boxes of the weakly colored fibers cumula-

tively (in pixels). In a preliminary investigation, the actual fiber lengths

(ground truth) in pixels, measured by ruler tool in QuPath, within the

bounding boxes of each tile were compared to the length of the diago-

nals of the bounding boxes. Each pair of fiber length inside a bounding

box and its diagonal length (Figure 1) were compared using T-test

(p > .05). Thus, the diagonal proved to be a suitable proxy for the fiber

length. For each case, the total length of diagonals of the bounding box

of all detected weakly stained fibers was summed and calculated as a

percentage of the total area of the WSI with a custom Python script

(“PicLow Percent,” Table 1).

2.4 | Statistics

Parametric ANOVA was performed using R programming language31

to compare means of weakly stained fiber percentage in cases

across the groups stratified by qPET thresholds (D 1–4). Logistic

regression with binarized dependent variable (qPET ≥ 1.3 = 1,

qPET < 1.3 = 0) and the percentage of weakly stained fibers as

independent variable was performed. The qPET thresholds were

represented in the results as a PET-positive group (qPET ≥ 1.3) and

a PET-negative group (qPET < 1.3 = 0). In order to measure detec-

tion performance for discriminating clinically favorable and unfavor-

able cases based on the percentage of weakly stained fibers

receiver operating characteristic curve (ROC) and the area under the

curve (AUC) of the regression was conducted. The model's goodness

of fit was evaluated by McFadden pseudo R2 and Chi-Square score

(X2). For ROC, the confidence interval based on bootstrapping with

2000 replications was constructed at a confidence level of 95%. An

AUC of 69% or above was considered statistically significant. The

Seaborn package,32 Matplotlib33 and pROC package34 was used

for graphical plotting. A p value <.05 was considered statistically

significant.

3 | RESULTS

The parametric ANOVA revealed that there was a weak monotoni-

cally increasing relationship between groups D1–D4 and the percent-

ages of weakly stained collagen fibers (p = .0185) (Figure 2). Among

unified qPET groups, the qPET-positive cases (unfavorable prognosis)

had an average of 18% of weakly stained fibers, and the qPET-

negative cases (favorable prognosis) had 10%–14%. Based on the

logistic regression performed on unified qPET groups, the coefficients

for “PicLow Percent” means were found to have a value of 0.256

(standard error: 1.39, p = .006) and an intercept of �4.14 (standard

error: 0.09, p = .003). The McFadden pseudo R2 was 0.255 and Chi-

Square score (X2) was 11.698 with p = .0006. Receiver operating

characteristic (ROC) analysis showed an area under the curve (AUC)

of 79.2% with a confidence interval of 67.3%–91.2% constructed with

2000 bootstraps (Figure 3). Comparing qPET-negative cases (D1, D2)

TABLE 1 Picrosirius red detection results grouped by qPET values.

Group Group size

Age in years

[median(range)]

Sex

(male/female) qPET range qPET mean (SD)

PicLow percent

mean (SD)

D1 19 14 (3–17) 12/7 <0.95 0.52 (0.41) 9.86 (4.91)

D2 15 14 (4–17) 11/4 0.95–1.3 1.12 (0.09) 12.41 (5.71)

qPET-Neg. 34 14 (3–17) 23/11 <1.3 0.78 (0.43) 10.98 (5.35)

D3 12 15 (6–17) 9/3 1.3–3.0 1.64 (0.41) 14.09 (3.86)

D4 7 15 (10–17) 4/3 >3 5.43 (3.43) 18.12 (6.15)

qPET-Pos. 19 15 (6–17) 13/6 >1.3 3.04 (2.74) 15.58 (5.06)

Note: Groups were formed by qPET ranges as D1–D4. D groups were additionally paired by qPET threshold value 1.3 into a qPET-negative group and a

qPET-positive group.
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and qPET-positive cases (D3, D4) showed differences in the studied

areas not only in terms of staining intensity between cases containing

a lot of weakly stained fibers (qPET-positive) and such cases with only

few weakly stained but with a higher content of strongly stained

fibers (qPET-negative). In addition, strongly stained fibers showed a

more homogeneous, smoother texture with uniform bright red colora-

tion, whereas weakly stained fibers showed a more frayed texture

with inhomogeneous color distribution in the pink to purple range.

Furthermore, a visibly higher number as well as density of

MMP9-positive cells could be observed in the immediate vicinity of

the weakly stained fibers on the picrosirius red slides analogously to

the MMP9 WSIs (Figure 4).

4 | DISCUSSION

Our preliminary observations on a limited number of 9 cases showed

that cases with complicated treatment response and/or relapse had a

F IGURE 1 Bounding box diagonal
and ground truth. Actual weakly
stained fiber lengths on picrosirius red
sections and the diagonals of the
corresponding bounding boxes
(purple rectangles) were measured.
On each bounding box, its diagonal
length was compared to the true fiber
length inside the box and length

difference between each of them
was tested for statistical significance
(T-test) to verify bounding box
diagonals as a suitable proxy for
actual fiber length inside each
bounding box. In the course of the
investigations weakly stained
picrosirius fibers were labeled as
“PicLow.” The thin yellow lines
represent the measured fiber lengths
and the thin black lines the diagonal
of each bounding box.

F IGURE 2 Box plot and result of analysis of variance of the
53 cases grouped by qPET ranges. Colored dots = individual
measurements, black bars in boxes = median of groups,
boxes = upper and lower quartiles, whiskers = data extremes within
1.5 times the quartiles. There were significant differences between
the means of qPET ranges.

F IGURE 3 Receiver operating characteristic curve (ROC; thick
stepped line) of the logistic regression of PicLow on qPET-groups
(negative = D1, 2; positive = D3, D4). The thin diagonal line as the
boundary represents an algorithm that would make only random-
based decisions (AUC 0.5). The area under the curve (AUC) value is
79.2% with a CI of 67.3%–91.2% (grey area), constructed by

bootstrapping, at a confidence level of 95% which indicates a
satisfying evaluation performance with a qPET threshold value of 1.3.

MOTMAEN ET AL. 725
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different microscopic appearance of collagen fibers stained with

picrosirius red than cases with regular treatment response: Tissue

slides from patients with worse therapy outcomes appeared to have

higher amounts of collagen fibers with weaker dye and irregular con-

sistency than their counterparts with better therapy outcome. The

results of the performed analysis might be mitigated by an inconsis-

tent or unprecise fiber detection algorithm. As a crucial step towards

prevention, the training material must be annotated as well as possi-

ble.35,36 Annotating the training images depends on the perception of

the person performing the training and on his knowledge of how to

distinguish regular collagen fibers from abnormal fibers which was the

responsibility of a well-trained physician.37 These results were statisti-

cally significant observations in the differences in the proportion of

weakly stained picrosirius red collagen fibers found by ANOVA when

cases were grouped by qPET values. Furthermore, they indicated a

positive correlation between qPET values and the proportion of

weakly stained collagen fibers. However, the statistical connection

between these two parameters is not large enough to provide a

confident prognosis for a less favorable clinical course in Hodgkin

lymphoma. Although, the detected relationship may represent a

disease course relevant connection between fiber staining patterns

and prognostic outcome among cases. This relationship could be

based on the differences in collagen metabolism in the qPET-positive

cases associated with poorer clinical outcome: an additional investiga-

tion revealed that the collagen modulating enzyme MMP9 was more

expressed in the cases with an increased proportion of weakly stained

fibers than in the cases with fewer such fibers. Increased MMP9

expression correlated with reduced overall survival in 148 young adult

cases in one study.7 Various other works indicated MMP9 as a corre-

late to collagen alteration in lymphomas.38–40 MMP9 contributes to a

family of enzymes that are involved in the degradation of the

extracellular matrix and subsequently in the processes of invasion as

well as metastasis of many human tumors.41 These results confirm

our assumption that the detected faintly stained fibers are not arti-

facts but a result of biological processes modulating collagen fibers.

There are other published studies in literature that relate collagen

modifications in lymphomas to clinical outcome.42,43

In further addition, it should be mentioned that the YOLOv4

neural network in particular has already been successfully used in

other fields, such as the textile industry, for the detection of fibers

making it also suitable for the detection of collagen fibers.44,45 Our

results appear promising and probably indicates a likely correlation

between the percentage of weakly dyed collagen fibers and picrosirius

red staining. Validation of these findings in a larger cohort will be

necessary to confirm our results.
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