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Abstract

Context Combining field-based assessments with
remote-sensing proxies of landscape patterns pro-
vides the opportunity to monitor terrestrial ecosystem
health status in support of sustainable development
goals (SDG).

Objectives Linking qualitative field data with quan-
titative remote-sensing imagery to map terrestrial
ecosystem health (SDG15.3.1 “land degradation
neutrality”).

Methods A field-based approach using the Interpret-
ing Indicators of Rangeland-Health (IIRH) protocol
was applied to classify terrestrial ecosystem health
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status at the watershed level as “healthy”, “at-risk”,
and “unhealthy”. Quantitative complex landscape
metrics derived from Landsat spaceborne data were
used to explore whether similar health statuses can be
retrieved on a broader scale. The assignment of ter-
restrial ecosystem health classes based on field and
the remotely sensed metrics were tested using multi-
variate and cluster analysis methods.

Results According to the IIRH assessments, soil
surface loss, plant mortality, and invasive species
were identified as important indicators of health.
According to the quantitative landscape metrics,
“healthy” sites had lower amounts of spectral het-
erogeneity, edge density, and resource leakage. We
found a high agreement between health clusters based
on field and remote-sensing data (NMI=0.91) when
using a combined approach of DBSCAN and k-means
clustering together with non-metric multi-dimen-
sional scaling (NMDS).

Conclusions We provide an exemplary workflow
on how to combine qualitative field data and quanti-
tative remote-sensing data to assess SDGs indicators
related to terrestrial ecosystem health. As we used a
standardized method for field assessments together
with publicly available satellite data, there is potential
to test the generalizability and context-dependency of
our approach in other arid and semi-arid rangelands.
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Introduction

Arid and semi-arid ecosystems cover ~45% of the
globe and provide important ecosystem services
related to water supply, preserving biodiversity, flood
protection, food security, and the storage and capture
of carbon (UN 2019; Berdugo et al. 2020). How-
ever, the ecological functioning of these drylands
is currently threatened by ecosystem degradation,
unsustainable land management practices, acceler-
ated urbanization rates, and changing demograph-
ics (IPBES 2018, 2019; Berdugo et al. 2020). These
factors are recognized as the most critical drivers of
the depletion of natural resources (van der Zanden
et al. 2016) and terrestrial ecosystem health (Lausch
et al. 2016). The ecosystem degradation in drylands
is negatively affecting ecosystem functions and ser-
vices and indirectly threatening the well-being of at
least 3.2 billion people worldwide with costs of more
than 10% of the global gross product per year (IPBES
2018; UN 2019).

Thus, understanding how arid and semi-arid eco-
systems respond to ongoing environmental change is
crucial in achieving sustainable development goals
(SDGs) (https://sdgs.un.org/goals). Each SDG is
assigned certain indicators that are ideally sensitive,
unambiguous, quick and easy to sample, temporally
consistent, and applicable to a wide range of eco-
systems (Prince 2019). More specifically, fulfilling
SDGs should be measurable by employing both qual-
itative and quantitative indicators (Hak et al. 2016).
For example, SDG15 “Life on Land” addresses the
urgency of stopping the degradation of natural habi-
tats along with the integration of biodiversity and
ecosystem values into development processes and
local planning (UN 2019). SDG 15.3.1, in particular,
addresses the need to accomplish land degradation
neutrality (LDN) (Sims et al. 2021). The degree of
land degradation can be quantified by sub-indicators
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such as (i) land cover and land cover change, (ii) land
productivity, and (iii) carbon stocks above and below
ground (Prince 2019; UN 2019). Therefore, spatial
indicators of terrestrial ecosystem health as monitor-
ing and decision-making tools are important for land
managers to combat land degradation.

However, scaling issues can apply when translating
terrestrial ecosystem information from the field level
to broader levels in space and time (Wu and Hoobs
2002). Linking ecological information between finer
and larger scales constitutes a fundamental challenge
in landscape ecological research as well as a practical
land management challenge because some ecological
processes might only be noticeable at a certain level,
and interactions might occur between levels. Addi-
tionally, to assess the effects of land management,
it is important to select appropriate spatial units for
the studied ecological processes considering the fact
that there is a spatial hierarchy of ecosystems and that
there are linkages between systems, for example via
sediment transport, groundwater movement, runoff,
and microclimate (Bailey 1985). In a broader sense,
spatially-explicit knowledge of scaling is an essential
requirement to understand patterns and processes of
ecosystem health status.

Terrestrial ecosystem health can be understood
as the degree to which vegetation, climate, and soil
integrity are capable of sustaining self-organized
structures and processes (NRSC 1994). Thus, a
healthy ecosystem can be regarded as resilient against
disturbance (Gunderson 2000). In contrast, degrada-
tion occurs when different ecosystem states related
to energy flow, nutrient cycling, and hydrological
regimes are negatively affected. Particularly for semi-
arid lands, protecting the structure and functionality
of the ecosystems and actively restoring degraded
drylands are essential to ensure soil integrity, nutri-
ent cycling, and water retention (Pyke et al. 2002;
Briske et al. 2005). As a result, a wide range of ter-
restrial ecosystem health indicators has been devel-
oped (van der Zanden et al. 2016; Estevez et al. 2017)
with the emphasis on utilizing both qualitative and
quantitative indicators (Duniwayet al. 2010). The
Interpreting Indicators of Rangeland Health (IIRH)
protocol (see Pyke et al. 2002) is regarded as an inter-
national standard to assess land health and degrada-
tion in drylands (Duniway et al. 2010; Herrick et al.
2019). IIRH is a qualitative assessment of ecologi-
cal processes using 17 observable indicators and it
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is designed for assessing ecosystem health and func-
tions in rangelands. However, assessing ecosystem
functioning based on qualitative field data has distinct
spatio-temporal limitations. These drawbacks can be
investigated by properly integrating quantitative met-
rics from remotely sensed data (Toevs et al. 2011). A
variety of remote sensing data has been used to assess
and monitor ecosystem health across a range of scales
(Li et al. 2014). However, remote sensing data has
certain limitations in accurately assessing the state of
ecosystem health (Li et al. 2014). Thus, methodologi-
cal approaches combining and verifying remote sens-
ing data with ground-based field sampling informa-
tion on ecosystem health require further investigation.

The question is, however, how to scale up from the
qualitative field-based measures to a broader scale
using quantitative remote sensing data without los-
ing crucial functional information. An integrated
approach that combines field data, experimental
manipulations, GIS, remote sensing, and modeling
is essential for advancing science of scale (Wu and
Hobbs 2002). Integrating remote sensing with in situ
data is challenging, but it has a large potential to
deepen our understanding of sustainable use of eco-
systems and ecosystem resilience (Cavender-Bares
et al. 2022). Common remote sensing products are
land-use land cover (LULC) maps. LULC change
analysis allows for mapping changes of landscape
structural and functional characteristics (Matsushita
et al. 2006) and supports monitoring SDG 15.3.1
(Prince 2019). LULC changes are among the main
anthropogenic factors needed for health assessment in
semi-arid land ecosystems (Soffianian and Madanian
2015; Baranian et al. 2017; Molaeinasab et al. 2018;
Safaei et al. 2021). Beyond the commonly used Nor-
malised Difference Vegetation Index (NDVI) (Tucker
1979), complex remote sensing-based indices that
are linked to landscape functionality and degradation
(Tanser and Palmer 1999; Bastin et al. 2002) as well
as landscape metrics (Frank et al. 2012; Inkoom et al.
2018) have been applied to map ecosystem function-
ing. An example of a complex remote-sensing index
is the Moving Standard Deviation Index (MSDI). It
can capture the spectral diversity across images and
has been applied in rangelands to map ecosystem
degradation caused by overgrazing and improper
management (Tanser and Palmer 1999; Jafari et al.
2008). Another example is the Leakiness Index (LI)
(Bastin et al. 2002; Ludwig et al. 2007). The LI can

be applied to assess sub-catchment-level resource
leakage based on the hydrological regime, digital
elevation models (DEM), and vegetation cover. As
a result, the LI has emerged as a promising ecologi-
cal index with a high potential to monitor terrestrial
ecosystem health status across arid and semi-arid
landscapes (Ludwig et al. 2007). To our knowledge,
the LI has been underutilized in terrestrial ecosystem
health assessments.

Because all remote sensing approaches present
scaling issues at least to some extent (Torgerson
1958), and as data availability, transferability, and
uncertainty in estimating valid health indicators
remains challenging (Li et al. 2014), more research
is required on using landscape metrics or complex
indices for valid upscaling of field assessments based
on remote sensing data to aid mapping terrestrial
ecosystem health. In this study, we used multivari-
ate methods to compare field-based, terrestrial eco-
system health indicators from the watershed scale
with the landscape level by means of remote sensing.
Based on a case study for central Iran, the main aim
of our study is to link qualitative field data with quan-
titative remote sensing data to identify indicators ter-
restrial ecosystem health related to SDG 15.3.1 that
can be monitored from space. By quantifing LULC
changes over 28 years using remote sensing metrics
and assigning health classes in each sub-catchment,
the proportion of land degradation was estimated. We
use a standardized field protocol, publicly available
satellite data and mainly free and open-source soft-
ware so the methodology described here can be tested
and applied in other arid and semi-arid rangelands as
a decision support tool to conduct land degradation
zoning and to prioritize regions for restoration efforts.

Material and methods
Study area

This study was carried out in central Iran across an
area of 2238 square km located between 33°04'18"
and 32°36'23" E and 49°38'40" and 50°1925" N
(Fig. 1). The region has a mean annual precipitation
and temperature of 538 mm and 10.1 °C, respectively,
and the climate is considered to be Mediterranean
type (DeMartonne 1962). The natural landscape of
this region, which is part of the vast central Zagros
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Fig.1 A Study region in western Isfahan Province, Iran. The
region was divided into 40 sub-catchments. Each sub-catch-
ment has been assigned a health class that is derived from five
replications of IIRH (Interpreting Indicators of Rangeland
Health) protocol assesments. B Sites of health assessment
in the forest and rangelands were distributed using stratified
random sampling. Photos show examples of landscape views
with the recording of a few health indicators at some evalua-
tion sites. C Rangeland in near reference state condition domi-
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nated by tall grass with shrubs, subdominant annual grasses,
and rarely connected patches of bare ground. D Shrub com-
munity (Astragalus versus) with dead and dying branches and
leaves (shown in red circles). E Native shrub with good vigor
and reproductive capability (red circle). F Rills in a steep slope
are the result of geologically sensitive formation. G Degraded
rangeland site with large patches of bare ground. H Open for-
est dominated by oak trees
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Mountains, traditionally provides forage for livestock,
water, and other ecosystem services to the local peo-
ple. Overgrazing and droughts with varying severi-
ties and magnitudes along with the dieback of oak
tree forests (Quercus persica Jaub. & Spach), and
other valuable rangeland species such as Astragalus
verus (Olivier) and Astragalus adscendens (Boiss.
& Hausskn. ex Boiss) have resulted in substantial
changes in LULC (Safaei et al. 2021). Although many
oak forests in Iran suffer from oak charcoal rot, which
is caused by two opportunistic fungi, Biscogniauxia
mediterranea and Obolarina persica, the incidence of
this disease has not been reported in the study area so
far (Ahmadi et al. 2020).

We developed an exemplary workflow that links
qualitative field data (Fig. 2, Step 1) with quantitative

remote sensing data (Fig. 2, Step 2) for identifying
and assessing SDG indicators related to terrestrial
ecosystem health in semi-arid lands using different
multivariate analyses (Fig. 2, Step 3). Finally, we
tested whether this combination of analyses can be
used to assess the state of terrestrial ecosystem health
in the past (Fig. 2, Step 4). All steps of our workflow
are illustrated in Fig. 2.

Field data collection through IIRH protocol
and analysis of terrestrial ecosystem health

A field survey was conducted at the sub-catchment
scale to determine the most important indicators of
health status according to the IIRH assessment given

LS
A@ - Terrestrial ecosystem health characteristics in support of SDGs

Step 1: Field assessment using IIRH protocol

|

Assessing 17 qualitative indicators of health : %

Biotic integrity

Soil and site stability

N\

Step 2. Remote sensing processing with Landsat imagery
from 2016 and 1987 for spatio- temporal health analysis
Landscape metrics (CA, TE, ED, NP, LPI, Ent, Contag)

Moving Standard Deviation Index (MSDI)

Leakiness index (LI)

Three ecosystem
health attributes

Hydrological function

Step 3. Comparing field-based info. and RS 1
data using multivariate & cluster analysis

!

Quantifying the qualitative
rating of attributes

Healthy i

At risk

- @ Unhealthy

NMDS
DBSCAN
Hierarchical clustering

Fig. 2 Graphical illustration of the workflow linking field and
remote sensing data to aid our understanding of the health sta-
tus of arid and semi-arid ecosystems. CA: Total (Class) Area,
TE: Total Edge, ED: Edge Density, NP: Number of Patches,
LPI: Largest Patch Index, Ent: Entropy, Cont: Contagion, LI:

k-means clustering

SOM
Comparison of similarity of
the results at two scales
using PA and NMI

@ Step 4. Characterizing

spatio-temporal changes and
mapping ecosystem health

across different scales

Leakiness index, MSDI: moving standard deviation index,
NMDS: Non-Metric Multi-Dimensional Scaling, DBSCAN:
Density-Based Spatial Clustering of Applications with Noise,
SOM: Self Organizing Map, PA: Procrustes analysis, NMI:
Normalized Mutual Information
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by Pyke et al. (2002). We considered sub-catchments
as our sampling unit because their hydraulic gradient
is crucial for the calculation of functionality (Ludwig
et al. 2007). Of the 40 sub-catchments, rangelands
were dominating in 35, and forests were dominating
in 5 sub-catchments. Since the study area was large
(2238 km?), careful selection of health sites at the
sub-catchment scale that reflected the overall condi-
tion of each sub-catchment was important. To avoid
misevaluations, the scaling of health data from sam-
pling point to sub-catchment was done using stratified
random strategy to cover the representative site con-
ditions in each sub-catchment and the 17 Interpreting
Indicators of Rangeland Health (IIRH) were assessed
(Table 1). Based on the IIRH protocol (Pyke et al.
2002; Pellant et al. 2020), two sites, one rangeland,
and one forest, were selected as ecological reference
sites. An ecological reference site is a well-managed
landscape unit in which ecological processes (i.e.,
energy flow, nutrient cycling, and hydrological condi-
tion) are working within the natural range of variabil-
ity, and the vegetation has adequate resilience and/or
resistance to typical disturbances (Pyke et al. 2002).
The 17 ecological indicators were utilized to identify
three ecosystem attributes that reflect ecosystem func-
tionality including (i) soil and site stability, (ii) hydro-
logical function, and (iii) biotic integrity (Table 1)
(Pyke et al. 2002; Pellant et al. 2020). They were
manually recorded on evaluation sheets in five rep-
licates at different locations in each sub-catchment.
The five replicates were representative for the degree
of health in each sub-catchment. The deviation of the
17 measured indicators in each sub-catchment from
the reference area conditions was rated in five qual-
ity categories (extreme to total, moderate to extreme,
moderate, slight to moderate, and none to slight) (see
Pellant et al. (2020) for a detailed IIRH description).
As it is shown in Table 1, the deviation of nine indi-
cators were used to rate soil and site stability, 10 indi-
cators to rate hydrological function, and nine indica-
tor to rate biotic integrity based on a preponderance
of evidence approach using a two way table in the R
package “base” (R Core Team 2021). Finally a health
class including “healthy”, “at-risk” and “unhealthy”
status was assigned to sub-catchment using the pre-
ponderance of evidence of three health attributes ((i)
soil and site stability, (ii) hydrological function, and
(iii) biotic integrity). To prevent or reduce observer
bias, fieldwork was performed by two fixed observers
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who worked together on the same site with a sound
ecological knowledge of the study area in two months
during June and July 2016. Information related to the
40 sub-catchments, as well as the assigned health sta-
tus for the three ecosystem attributes, are given in the
Supplementary file 1 (Table S.1).

Remotely sensed landscape metrics
across terrestrial ecosystem health classes

Two LULC maps with a pixel size of 30 m includ-
ing forest, rangelands in good, moderate and poor
conditions, agriculture, residental area, snow and rock
classes were produced based on 2016 Landsat OLI
imagery with 6 bands (bands 2 to 7) with an overall
accuracy of 94% (see Safaei et al. 2021) and 1987
Landsat TM imagery with 4 bands (bands 1 to 4)
(Soffianian and Madanian 2015) with an overall accu-
racy of 84%, respectively, applying the supervised
Maximum Likelihood Classification (MLC) algo-
rithm. Both images were downloaded from the United
States Geological Society (USGS) Earth Resources
Observation and Science (EROS) Center (https:/
earthexplorer.usgs.gov/). We consider two-time steps
to see whether the estimation of terrestrial ecosys-
tem health in the past is possible. The validity of the
2016 LULC map was assessed using 401 field points
assessed in 2016 (Safaei et al. 2021). The validity of
the 1987 LULC map was tested using 86 reference
points from aerial photographs of 1985 (National
Cartographic Center; ncc.gov.ir).

Five landscape metrics including the (i) number
of patches, (ii) total edge, (iii) edge density, (iv) larg-
est patch area, and (v) total class area (see Table 2)
were quantified at landscape level in each sub-catch-
ment using Fragstats 4.2 (McGarigal et al. 2012). (vi)
Entropy and (vii) contagion metrics, two indicators
of fragmentation, were measured using the Guidos
Toolbox 3 (Vogt and Riitters 2017). The (viii) MSDI,
a proxy for landscape degradation patterns (Tanser
and Palmer 1999), was computed using a 3 X3 win-
dow filter moving across the Landsat OLI 2016 red
band. The (ix) LI, a functionality indicator, was cal-
culated based on a DEM with a spatial resolution
of 30 m using 1:25,000 topographic maps (National
Cartographic Center; ncc.gov.ir) (Safaei et al. 2021)
(Table 2), and the NDVI (Tucker 1979) from Landsat
OLI imagery for 2016. See Ludwig et al. (2007) for
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Landsc Ecol

details about the LI. The reasons for choosing metrics
are explained in Table 2. All metrics were calculated
at landscape level in each sub-catchment.

Analysis of variance (ANOVA) followed by a post-
hoc Tukey test for unequal sample sizes (x=0.05)
was performed to assess whether landscape metrics
showed significant differences among health classes.
Only the landscape metric ED met the assumptions
for ANOVA. For all other remotely sensed indices,
a Kruskal-Wallis test followed by a Dunn’s test with
a bh p-value adjustment (x=0.05) for the multiple
comparisons was applied. Autocorrelations among
the remotely sensed data were checked using the R
packages “tseries” (R Core Team 2021; Trapletti and
Hornik 2020).

Linking field-based indicators with remote sensing
metrics

To test if the sites can be grouped into the three
health classes ‘“healthy”, “at-risk” and “unhealthy”
based on the NMDS, an unsupervised cluster analy-
sis was conducted on the remotely sensed data and a
supervised cluster analysis was conducted on the field
data. (Tables 1 and 2). Non-Metric Multi-Dimen-
sional Scaling (NMDS) (Kruskal 1964) with different
distance measures including Euclidean, Manhattan,
Mahalanobis, and Bray—Curtis were employed. The
returning stress values for the different dissimilarity
indices were used to identify the best dimensional
ordination fit of field and remotely sensed data. Mini-
mum stress solution was sought with Procrustean
rotation (Gower 1971). The two-dimentional NMDS
with 20 runs was performed in the “vegan” R pack-
age (Dixon 2003; R Core Team 2021). Terrestrial
ecosystem health field indicators and remotely sensed
metrics that were significantly correlated with the
ordination axes were plotted in the two-dimensional
ordination space.

Since it is challenging to identify the best algo-
rithm a priori (e.g. Kozakura et al. 2017), differ-
ent clustering algorithms were employed. Common
types of clustering methods were tested including
DBSCAN (Hahsler et al. 2019), k-means cluster-
ing (Johnson 1967), hierarchical clustering (Johnson
1967), and Self-Organizing Map (SOM) (Vialaneix
et al. 2020). The clustering algorithm DBSCAN can
identify clusters of any shape containing outliers

and noise in the dataset. The goal of DBSCAN is
to measure the number of objects close to a given
point and then to identify dense regions (Ester et al.
1996). k-means clustering aims to partition “n” obser-
vations into “k” clusters based on the nearest mean
(Kriegel et al. 2016), whereas hierarchical clustering
is one of the most popular clustering techniques in
machine learning. It places similar observations close
to each other with no need to pre-specify the number
of clusters as in k-means clustering (Johnson 1967).
Finally, the Self Organizing Map (SOM) algorithm
which is part of Artificial Neural Networks (ANNs)
techniques, includes dimensionality reduction and
data clustering. The SOM can be used for providing
the geographic topology of the input data (Kohonen
2001; van der Zanden et al. 2016). We conducted the
DBSCAN, the combination of DBSCAN + k-means
clustering, hierarchical clustering, and SOM cluster-
ing analysis for both field qualitative indicators and
remotely sensed quantitative metrics using the R
packages “dbscan”(Hahsler et al. 2019; R Core Team
2021), “factoextra” (Kassambara and Mundt 2020;
R Core Team 2021), “SOMbrero”, and “kohonen”
(Kohonen 2001; R Core Team 2021; Vialaneix et al.
2020).

We compared the patterns of terrestrial ecosys-
tem health using different multivariate and cluster
analyses considering the challenges of monitoring
landscapes using remote sensing data to quantify and
identify the spatio-temporal characteristics at water-
shed scale (Wu and Qi 2000). The combination of
DBSCAN + k-means clustering was applied to check
if the performance of clustering can be increased
when combining methods.

Comparison of qualitative field indicators
and quantitative remote sensing indices

The degree to which ecological processes and spa-
tial patterns of both field and remote sensing level
are related can be identified by testing if the assign-
ment of terrestrial ecosystem health classes based on
field indicators matched the characterization based on
remotely sensed indicators. The multivariate spaces
of both levels were compared using Procrustes anal-
ysis (PA) (Gower 1971). In PA, the ordination solu-
tions are rotated to minimize the sum of squared
residuals and maximize similarity (Gower 1971).
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Procrustes analysis has been successfully applied
to test the relation between multivariate data sets in
ecology including both field and remote sensing data
(Feilhauer et al. 2010; Magiera et al. 2013; Grof3e-
Stoltenberg et al. 2018). The clustering was compared
using the Normalized Mutual Information measure
(NMI) (Chiquet et al. 2020). The Normalized Mutual
Information measure shows the consistency between
two clustering results (Formula. 1).
Formula 1

P ‘UmV| N|UnV’
I(U,V) = ZZ

p=1g=1

v

where |Up| and’Vp| represent the cardinality of the

p-th and g-th clusters in U and V clusters on a set of
data, respectively (Kozakura et al. 2017). A zero NMI
value corresponds to no mutual information (e.g. no
correlation between the clustering results of the field
and remote sensing based NMDS ordinations), while
a value of one indicates a perfect correlation.

Thus, both NMI and PA help to evaluate the simi-
larity of datasets generated by multivariate analysis
and cluster analysis, respectively 