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status at the watershed level as “healthy”, “at-risk”, 
and “unhealthy”. Quantitative complex landscape 
metrics derived from Landsat spaceborne data were 
used to explore whether similar health statuses can be 
retrieved on a broader scale. The assignment of ter-
restrial ecosystem health classes based on field and 
the remotely sensed metrics were tested using multi-
variate and cluster analysis methods.
Results According to the IIRH assessments, soil 
surface loss, plant mortality, and invasive species 
were identified as important indicators of health. 
According to the quantitative landscape metrics, 
“healthy” sites had lower amounts of spectral het-
erogeneity, edge density, and resource leakage. We 
found a high agreement between health clusters based 
on field and remote-sensing data (NMI = 0.91) when 
using a combined approach of DBSCAN and k-means 
clustering together with non-metric multi-dimen-
sional scaling (NMDS).
Conclusions We provide an exemplary workflow 
on how to combine qualitative field data and quanti-
tative remote-sensing data to assess SDGs indicators 
related to terrestrial ecosystem health. As we used a 
standardized method for field assessments together 
with publicly available satellite data, there is potential 
to test the generalizability and context-dependency of 
our approach in other arid and semi-arid rangelands.

Abstract 
Context Combining field-based assessments with 
remote-sensing proxies of landscape patterns pro-
vides the opportunity to monitor terrestrial ecosystem 
health status in support of sustainable development 
goals (SDG).
Objectives Linking qualitative field data with quan-
titative remote-sensing imagery to map terrestrial 
ecosystem health (SDG15.3.1 “land degradation 
neutrality”).
Methods A field-based approach using the Interpret-
ing Indicators of Rangeland-Health (IIRH) protocol 
was applied to classify terrestrial ecosystem health 
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Introduction

Arid and semi-arid ecosystems cover ∼45% of the 
globe and provide important ecosystem services 
related to water supply, preserving biodiversity, flood 
protection, food security, and the storage and capture 
of carbon (UN 2019; Berdugo et  al. 2020). How-
ever, the ecological functioning of these drylands 
is currently threatened by ecosystem degradation, 
unsustainable land management practices, acceler-
ated urbanization rates, and changing demograph-
ics (IPBES 2018, 2019; Berdugo et al. 2020). These 
factors are recognized as the most critical drivers of 
the depletion of natural resources (van der Zanden 
et al. 2016) and terrestrial ecosystem health (Lausch 
et  al. 2016). The ecosystem degradation in drylands 
is negatively affecting ecosystem functions and ser-
vices and indirectly threatening the well-being of at 
least 3.2 billion people worldwide with costs of more 
than 10% of the global gross product per year (IPBES 
2018; UN 2019).

Thus, understanding how arid and semi-arid eco-
systems respond to ongoing environmental change is 
crucial in achieving sustainable development goals 
(SDGs) (https:// sdgs. un. org/ goals). Each SDG is 
assigned certain indicators that are ideally sensitive, 
unambiguous, quick and easy to sample, temporally 
consistent, and applicable to a wide range of eco-
systems (Prince 2019). More specifically, fulfilling 
SDGs should be measurable by employing both qual-
itative and quantitative indicators (Hák et  al. 2016). 
For example, SDG15 “Life on Land” addresses the 
urgency of stopping the degradation of natural habi-
tats along with the integration of biodiversity and 
ecosystem values into development processes and 
local planning (UN 2019). SDG 15.3.1, in particular, 
addresses the need to accomplish land degradation 
neutrality (LDN) (Sims et  al. 2021). The degree of 
land degradation can be quantified by sub-indicators 

such as (i) land cover and land cover change, (ii) land 
productivity, and (iii) carbon stocks above and below 
ground (Prince 2019; UN 2019). Therefore, spatial 
indicators of terrestrial ecosystem health as monitor-
ing and decision-making tools are important for land 
managers to combat land degradation.

However, scaling issues can apply when translating 
terrestrial ecosystem information from the field level 
to broader levels in space and time (Wu and Hoobs 
2002). Linking ecological information between finer 
and larger scales constitutes a fundamental challenge 
in landscape ecological research as well as a practical 
land management challenge because some ecological 
processes might only be noticeable at a certain level, 
and interactions might occur between levels. Addi-
tionally, to assess the effects of land management, 
it is important to select appropriate spatial units for 
the studied ecological processes considering the fact 
that there is a spatial hierarchy of ecosystems and that 
there are linkages between systems, for example via 
sediment transport, groundwater movement, runoff, 
and microclimate (Bailey 1985). In a broader sense, 
spatially-explicit knowledge of scaling is an essential 
requirement to understand patterns and processes of 
ecosystem health status.

Terrestrial ecosystem health can be understood 
as the degree to which vegetation, climate, and soil 
integrity are capable of sustaining self-organized 
structures and processes (NRSC 1994). Thus, a 
healthy ecosystem can be regarded as resilient against 
disturbance (Gunderson 2000). In contrast, degrada-
tion occurs when different ecosystem states related 
to energy flow, nutrient cycling, and hydrological 
regimes are negatively affected. Particularly for semi-
arid lands, protecting the structure and functionality 
of the ecosystems and actively restoring degraded 
drylands are essential to ensure soil integrity, nutri-
ent cycling, and water retention (Pyke et  al. 2002; 
Briske et al. 2005). As a result, a wide range of ter-
restrial ecosystem health indicators has been devel-
oped (van der Zanden et al. 2016; Estevez et al. 2017) 
with the emphasis on utilizing both qualitative and 
quantitative indicators (Duniwayet al. 2010). The 
Interpreting Indicators of Rangeland Health (IIRH) 
protocol (see Pyke et al. 2002) is regarded as an inter-
national standard to assess land health and degrada-
tion in drylands (Duniway et al. 2010; Herrick et al. 
2019). IIRH is a qualitative assessment of ecologi-
cal processes using 17 observable indicators and it 

https://sdgs.un.org/goals
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is designed for assessing ecosystem health and func-
tions in rangelands. However, assessing ecosystem 
functioning based on qualitative field data has distinct 
spatio-temporal limitations. These drawbacks can be 
investigated by properly integrating quantitative met-
rics from remotely sensed data (Toevs et al. 2011). A 
variety of remote sensing data has been used to assess 
and monitor ecosystem health across a range of scales 
(Li et  al. 2014). However, remote sensing data has 
certain limitations in accurately assessing the state of 
ecosystem health (Li et al. 2014). Thus, methodologi-
cal approaches combining and verifying remote sens-
ing data with ground-based field sampling informa-
tion on ecosystem health require further investigation.

The question is, however, how to scale up from the 
qualitative field-based measures to a broader scale 
using quantitative remote sensing data without los-
ing crucial functional information. An integrated 
approach that combines field data, experimental 
manipulations, GIS, remote sensing, and modeling 
is essential for advancing science of scale (Wu and 
Hobbs 2002). Integrating remote sensing with in situ 
data is challenging, but it has a large potential to 
deepen our understanding of sustainable use of eco-
systems and ecosystem resilience (Cavender-Bares 
et  al. 2022). Common remote sensing products are 
land-use land cover (LULC) maps. LULC change 
analysis allows for mapping changes of landscape 
structural and functional characteristics (Matsushita 
et  al. 2006) and supports monitoring SDG 15.3.1 
(Prince 2019). LULC changes are among the main 
anthropogenic factors needed for health assessment in 
semi-arid land ecosystems (Soffianian and Madanian 
2015; Baranian et al. 2017; Molaeinasab et al. 2018; 
Safaei et al. 2021). Beyond the commonly used Nor-
malised Difference Vegetation Index (NDVI) (Tucker 
1979), complex remote sensing-based indices that 
are linked to landscape functionality and degradation 
(Tanser and Palmer 1999; Bastin et al. 2002) as well 
as landscape metrics (Frank et al. 2012; Inkoom et al. 
2018) have been applied to map ecosystem function-
ing. An example of a complex remote-sensing index 
is the Moving Standard Deviation Index (MSDI). It 
can capture the spectral diversity across images and 
has been applied in rangelands to map ecosystem 
degradation caused by overgrazing and improper 
management (Tanser and Palmer 1999; Jafari et  al. 
2008). Another example is the Leakiness Index (LI) 
(Bastin et al. 2002; Ludwig et al. 2007). The LI can 

be applied to assess sub-catchment-level resource 
leakage based on the hydrological regime, digital 
elevation models (DEM), and vegetation cover. As 
a result, the LI has emerged as a promising ecologi-
cal index with a high potential to monitor terrestrial 
ecosystem health status across arid and semi-arid 
landscapes (Ludwig et  al. 2007). To our knowledge, 
the LI has been underutilized in terrestrial ecosystem 
health assessments.

Because all remote sensing approaches present 
scaling issues at least to some extent (Torgerson 
1958), and as data availability, transferability, and 
uncertainty in estimating valid health indicators 
remains challenging (Li et  al. 2014), more research 
is required on using landscape metrics or complex 
indices for valid upscaling of field assessments based 
on remote sensing data to aid mapping terrestrial 
ecosystem health. In this study, we used multivari-
ate methods to compare field-based, terrestrial eco-
system health indicators from the watershed scale 
with the landscape level by means of remote sensing. 
Based on a case study for central Iran, the main aim 
of our study is to link qualitative field data with quan-
titative remote sensing data to identify indicators ter-
restrial ecosystem health related to SDG 15.3.1 that 
can be monitored from space. By quantifing LULC 
changes over 28 years using remote sensing metrics 
and assigning health classes in each sub-catchment, 
the proportion of land degradation was estimated. We 
use a standardized field protocol, publicly available 
satellite data and mainly free and open-source soft-
ware so the methodology described here can be tested 
and applied in other arid and semi-arid rangelands as 
a decision support tool to conduct land degradation 
zoning and to prioritize regions for restoration efforts.

Material and methods

Study area

This study was carried out in central Iran across an 
area of 2238 square km located between 33°04′18" 
and 32°36′23" E and 49°38′40" and 50°19′25" N 
(Fig. 1). The region has a mean annual precipitation 
and temperature of 538 mm and 10.1 °C, respectively, 
and the climate is considered to be Mediterranean 
type (DeMartonne 1962). The natural landscape of 
this region, which is part of the vast central Zagros 
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Fig. 1  A Study region in western Isfahan Province, Iran. The 
region was divided into 40 sub-catchments. Each sub-catch-
ment has been assigned a health class that is derived from five 
replications of IIRH (Interpreting Indicators of Rangeland 
Health) protocol assesments. B Sites of health assessment 
in the forest and rangelands were distributed using stratified 
random sampling. Photos show examples of landscape views 
with the recording of a few health indicators at some evalua-
tion sites. C Rangeland in near reference state condition domi-

nated by tall grass with shrubs, subdominant annual grasses, 
and rarely connected patches of bare ground. D Shrub com-
munity (Astragalus versus) with dead and dying branches and 
leaves (shown in red circles). E Native shrub with good vigor 
and reproductive capability (red circle). F Rills in a steep slope 
are the result of geologically sensitive formation. G Degraded 
rangeland site with large patches of bare ground. H Open for-
est dominated by oak trees
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Mountains, traditionally provides forage for livestock, 
water, and other ecosystem services to the local peo-
ple. Overgrazing and droughts with varying severi-
ties and magnitudes along with the dieback of oak 
tree forests (Quercus persica Jaub. & Spach), and 
other valuable rangeland species such as Astragalus 
verus (Olivier) and Astragalus adscendens (Boiss. 
& Hausskn. ex Boiss) have resulted in substantial 
changes in LULC (Safaei et al. 2021). Although many 
oak forests in Iran suffer from oak charcoal rot, which 
is caused by two opportunistic fungi, Biscogniauxia 
mediterranea and Obolarina persica, the incidence of 
this disease has not been reported in the study area so 
far (Ahmadi et al. 2020).

We developed an exemplary workflow that links 
qualitative field data (Fig. 2, Step 1) with quantitative 

remote sensing data (Fig.  2, Step 2) for identifying 
and assessing SDG indicators related to terrestrial 
ecosystem health in semi-arid lands using different 
multivariate analyses (Fig.  2, Step 3). Finally, we 
tested whether this combination of analyses can be 
used to assess the state of terrestrial ecosystem health 
in the past (Fig. 2, Step 4). All steps of our workflow 
are illustrated in Fig. 2.

Field data collection through IIRH protocol 
and analysis of terrestrial ecosystem health

A field survey was conducted at the sub-catchment 
scale to determine the most important indicators of 
health status according to the IIRH assessment given 

Fig. 2  Graphical illustration of the workflow linking field and 
remote sensing data to aid our understanding of the health sta-
tus of arid and semi-arid ecosystems. CA: Total (Class) Area, 
TE: Total Edge, ED: Edge Density, NP: Number of Patches, 
LPI: Largest Patch Index, Ent: Entropy, Cont: Contagion, LI: 

Leakiness index, MSDI: moving standard deviation index, 
NMDS: Non-Metric Multi-Dimensional Scaling, DBSCAN: 
Density-Based Spatial Clustering of Applications with Noise, 
SOM: Self Organizing Map, PA: Procrustes analysis, NMI: 
Normalized Mutual Information
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by Pyke et al. (2002). We considered sub-catchments 
as our sampling unit because their hydraulic gradient 
is crucial for the calculation of functionality (Ludwig 
et  al. 2007). Of the 40 sub-catchments, rangelands 
were dominating in 35, and forests were dominating 
in 5 sub-catchments. Since the study area was large 
(2238  km2), careful selection of health sites at the 
sub-catchment scale that reflected the overall condi-
tion of each sub-catchment was important. To avoid 
misevaluations, the scaling of health data from sam-
pling point to sub-catchment was done using stratified 
random strategy to cover the representative site con-
ditions in each sub-catchment and the 17 Interpreting 
Indicators of Rangeland Health (IIRH) were assessed 
(Table  1). Based on the IIRH protocol (Pyke et  al. 
2002; Pellant et  al. 2020), two sites, one rangeland, 
and one forest, were selected as ecological reference 
sites. An ecological reference site is a well-managed 
landscape unit in which ecological processes (i.e., 
energy flow, nutrient cycling, and hydrological condi-
tion) are working within the natural range of variabil-
ity, and the vegetation has adequate resilience and/or 
resistance to typical disturbances (Pyke et al. 2002). 
The 17 ecological indicators were utilized to identify 
three ecosystem attributes that reflect ecosystem func-
tionality including (i) soil and site stability, (ii) hydro-
logical function, and (iii) biotic integrity (Table  1) 
(Pyke et  al. 2002; Pellant et  al. 2020). They were 
manually recorded on evaluation sheets in five rep-
licates at different locations in each sub-catchment. 
The five replicates were representative for the degree 
of health in each sub-catchment. The deviation of the 
17 measured indicators in each sub-catchment from 
the reference area conditions was rated in five qual-
ity categories (extreme to total, moderate to extreme, 
moderate, slight to moderate, and none to slight) (see 
Pellant et al. (2020) for a detailed IIRH description). 
As it is shown in Table 1, the deviation of nine indi-
cators were used to rate soil and site stability, 10 indi-
cators to rate hydrological function, and nine indica-
tor to rate biotic integrity based on a preponderance 
of evidence approach using a two way table in the R 
package “base” (R Core Team 2021). Finally a health 
class including “healthy”, “at-risk” and “unhealthy” 
status was assigned to sub-catchment using the pre-
ponderance of evidence of three health attributes ((i) 
soil and site stability, (ii) hydrological function, and 
(iii) biotic integrity). To prevent or reduce observer 
bias, fieldwork was performed by two fixed observers 

who worked together on the same site with a sound 
ecological knowledge of the study area in two months 
during June and July 2016. Information related to the 
40 sub-catchments, as well as the assigned health sta-
tus for the three ecosystem attributes, are given in the 
Supplementary file 1 (Table S.1).

Remotely sensed landscape metrics 
across terrestrial ecosystem health classes

Two LULC maps with a pixel size of 30 m includ-
ing forest, rangelands in good, moderate and poor 
conditions, agriculture, residental area, snow and rock 
classes were produced based on 2016 Landsat OLI 
imagery with 6 bands (bands 2 to 7) with an overall 
accuracy of 94% (see Safaei et  al. 2021) and 1987 
Landsat TM imagery with 4 bands (bands 1 to 4) 
(Soffianian and Madanian 2015) with an overall accu-
racy of 84%, respectively, applying the supervised 
Maximum Likelihood Classification (MLC) algo-
rithm. Both images were downloaded from the United 
States Geological Society (USGS) Earth Resources 
Observation and Science (EROS) Center (https:// 
earth explo rer. usgs. gov/). We consider two-time steps 
to see whether the estimation of terrestrial ecosys-
tem health in the past is possible. The validity of the 
2016 LULC map was assessed using 401 field points 
assessed in 2016 (Safaei et al. 2021). The validity of 
the 1987 LULC map was tested using 86 reference 
points from aerial photographs of 1985 (National 
Cartographic Center; ncc.gov.ir).

Five landscape metrics including the (i) number 
of patches, (ii) total edge, (iii) edge density, (iv) larg-
est patch area, and (v) total class area (see Table 2) 
were quantified at landscape level in each sub-catch-
ment using Fragstats 4.2 (McGarigal et al. 2012). (vi) 
Entropy and (vii) contagion metrics, two indicators 
of fragmentation, were measured using the Guidos 
Toolbox 3 (Vogt and Riitters 2017). The (viii) MSDI, 
a proxy for landscape degradation patterns (Tanser 
and Palmer 1999), was computed using a 3 × 3 win-
dow filter moving across the Landsat OLI 2016 red 
band. The (ix) LI, a functionality indicator, was cal-
culated based on a DEM with a spatial resolution 
of 30 m using 1:25,000 topographic maps (National 
Cartographic Center; ncc.gov.ir) (Safaei et  al. 2021) 
(Table 2), and the NDVI (Tucker 1979) from Landsat 
OLI imagery for 2016. See Ludwig et al. (2007) for 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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details about the LI. The reasons for choosing metrics 
are explained in Table 2. All metrics were calculated 
at landscape level in each sub-catchment.

Analysis of variance (ANOVA) followed by a post-
hoc Tukey test for unequal sample sizes (α = 0.05) 
was performed to assess whether landscape metrics 
showed significant differences among health classes. 
Only the landscape metric ED met the assumptions 
for ANOVA. For all other remotely sensed indices, 
a Kruskal–Wallis test followed by a Dunn’s test with 
a bh p-value adjustment (α = 0.05) for the multiple 
comparisons was applied. Autocorrelations among 
the remotely sensed data were checked using the R 
packages “tseries” (R Core Team 2021; Trapletti and 
Hornik 2020).

Linking field‑based indicators with remote sensing 
metrics

To test if the sites can be grouped into the three 
health classes “healthy”, “at-risk” and “unhealthy” 
based on the NMDS, an unsupervised cluster analy-
sis was conducted on the remotely sensed data and a 
supervised cluster analysis was conducted on the field 
data. (Tables  1 and 2). Non-Metric Multi-Dimen-
sional Scaling (NMDS) (Kruskal 1964) with different 
distance measures including Euclidean, Manhattan, 
Mahalanobis, and Bray–Curtis were employed. The 
returning stress values for the different dissimilarity 
indices were used to identify the best dimensional 
ordination fit of field and remotely sensed data. Mini-
mum stress solution was sought with Procrustean 
rotation (Gower 1971). The two-dimentional NMDS 
with 20 runs was performed in the “vegan” R pack-
age (Dixon 2003; R Core Team 2021). Terrestrial 
ecosystem health field indicators and remotely sensed 
metrics that were significantly correlated with the 
ordination axes were plotted in the two-dimensional 
ordination space.

Since it is challenging to identify the best algo-
rithm a priori (e.g. Kozakura et  al. 2017), differ-
ent clustering algorithms were employed. Common 
types of clustering methods were tested including 
DBSCAN (Hahsler et  al. 2019), k-means cluster-
ing (Johnson 1967), hierarchical clustering (Johnson 
1967), and Self-Organizing Map (SOM) (Vialaneix 
et al. 2020). The clustering algorithm DBSCAN can 
identify clusters of any shape containing outliers 

and noise in the dataset. The goal of DBSCAN is 
to measure the number of objects close to a given 
point and then to identify dense regions (Ester et al. 
1996). k-means clustering aims to partition “n” obser-
vations into “k” clusters based on the nearest mean 
(Kriegel et al. 2016), whereas hierarchical clustering 
is one of the most popular clustering techniques in 
machine learning. It places similar observations close 
to each other with no need to pre-specify the number 
of clusters as in k-means clustering (Johnson 1967). 
Finally, the Self Organizing Map (SOM) algorithm 
which is part of Artificial Neural Networks (ANNs) 
techniques, includes dimensionality reduction and 
data clustering. The SOM can be used for providing 
the geographic topology of the input data (Kohonen 
2001; van der Zanden et al. 2016). We conducted the 
DBSCAN, the combination of DBSCAN + k-means 
clustering, hierarchical clustering, and SOM cluster-
ing analysis for both field qualitative indicators and 
remotely sensed quantitative metrics using the R 
packages “dbscan”(Hahsler et al. 2019; R Core Team 
2021), “factoextra” (Kassambara and Mundt 2020; 
R Core Team 2021), “SOMbrero”, and “kohonen” 
(Kohonen 2001; R Core Team 2021; Vialaneix et al. 
2020).

We compared the patterns of terrestrial ecosys-
tem health using different multivariate and cluster 
analyses considering the challenges of monitoring 
landscapes using remote sensing data to quantify and 
identify the spatio-temporal characteristics at water-
shed scale (Wu and Qi 2000). The combination of 
DBSCAN + k-means clustering was applied to check 
if the performance of clustering can be increased 
when combining methods.

Comparison of qualitative field indicators 
and quantitative remote sensing indices

The degree to which ecological processes and spa-
tial patterns of both field and remote sensing level 
are related can be identified by testing if the assign-
ment of terrestrial ecosystem health classes based on 
field indicators matched the characterization based on 
remotely sensed indicators. The multivariate spaces 
of both levels were compared using Procrustes anal-
ysis (PA) (Gower 1971). In PA, the ordination solu-
tions are rotated to minimize the sum of squared 
residuals and maximize similarity (Gower 1971). 
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Procrustes analysis has been successfully applied 
to test the relation between multivariate data sets in 
ecology including both field and remote sensing data 
(Feilhauer et  al. 2010; Magiera et  al. 2013; Große-
Stoltenberg et al. 2018). The clustering was compared 
using the Normalized Mutual Information measure 
(NMI) (Chiquet et al. 2020). The Normalized Mutual 
Information measure shows the consistency between 
two clustering results (Formula. 1).

Formula 1

where |||Up

||| and
|||Vp

||| represent the cardinality of the 
p-th and q-th clusters in U and V clusters on a set of 
data, respectively (Kozakura et al. 2017). A zero NMI 
value corresponds to no mutual information (e.g. no 
correlation between the clustering results of the field 
and remote sensing based NMDS ordinations), while 
a value of one indicates a perfect correlation.

Thus, both NMI and PA help to evaluate the simi-
larity of datasets generated by multivariate analysis 
and cluster analysis, respectively (Kozakura et  al. 
2017). The PA was performed using the function 
“protest” in the R package “vegan” (Dixon 2003; R 
Core Team 2021) and NMI was calculated in “NMI” 
and “aricode” packages of R (Chiquetet al. 2020; R 
Core Team 2021).

Transferability of quantitative remote sensing 
indices to the past time

In addition, we tested whether this combination of 
indicators and clustering methods can be used to 
assess the state of terrestrial ecosystem health in the 
past. Therefore, after validating the remotely sensed 
indicators and clustering methods against field data 
for 2016 (see previous paragraph), metrics and clus-
ters were computed for satellite imagery in 1987 to 
investigate health status in the past. The reason for 
choosing 1987 was because shortly thereafter exten-
sive LULC conversions (e.g. converting rangelands to 
dry farmlands) caused a sharp decline in the size of 
rangelands and heavy grazing occurred that consid-
erably affected the rangeland health (Baranian et  al. 
2017; Safaei et al. 2021), so distinct changes could be 

I(U,V) =

P∑
p=1

Q∑
q=1

|||Up ∩ Vp
|||

N
log

N
|||Up ∩ Vp

|||
|||Up

||| ×
|||Vp

|||

expected. While satellite data were available for 1987, 
there was no IIRH assessment available. Thus, after 
testing the validity of our approach for 2016, the RS 
indicators were applied to the 1987 data to derive a 
health status map. The plausibility of the 1987 map 
and the change of ecosystem health from 1987 to 
2016 was assessed using published literature. Based 
on the available ecological report and a publication 
from that time (Bassiri et  al. 1989; Bassiri and Ira-
vani 2009) ecological information about the health 
status of the sub-catchments was obtained. The visual 
interpretation of the LULC map obtained from Land-
sat 7 in 1987 (see Supplementary file 3; Fig S.1) and 
86 points drived from the aerial photographs in 1981 
(National Cartographic Center; ncc.gov.ir) helped to 
compare good, moderate and poor rangelands as well 
as dense, semi-sparse and sparse forest (see Safaei 
et  al. 2021) to health classes derived from NMDS. 
Expert assessments from the combination of these 
three data sets have been used to validate health 
classes in the past. Finally, to determine the efficacy 
of integrating field and remotely sensed data for esti-
mating SDG 15.3.1, we quantified site-based data to 
assess the three health classes “ healthy”, “at-risk” 
and “unhealthy” derived from geospatial information. 
The measurement unit for SDG indicator 15.3.1 is 
the spatial extent  (km2) calculated as the proportion 
of land that is degraded relative to the total land area 
(percentage) (Table 3) (Prince 2019; UN 2019; Sims 
et al. 2021).

Results

Qualitative field assessment following the IIRH 
protocol: indicators and health class assignment

According to the IIRH protocol, nine, 11, and 20 
sites were classified as “healthy”, “at-risk”, and 
“unhealthy” at the watershed level, respectively 
(Fig.  3). Among the 17 indicators, the presence of 
structural and functional groups, vegetation compo-
sition, productivity, and litter volume was capable 
of discriminating healthy sites from unhealthy ones. 
The most important indicators in unhealthy sites were 
compaction layer, plant mortality, rills and water 
flow pattern, invasive species, and surface soil condi-
tion. The region has no gully formation, making this 



Landsc Ecol 

1 3
Vol.: (0123456789)

factor ineffective in site discrimination and health 
evaluation.

Remotely sensed landscape metrics across terrestrial 
ecosystem health classes

Healthy sites had the largest patch sizes (LPI) 
(Fig.  4A) as well as the lowest edge length 
(Fig. 4C, and G) and lowest number of patches (NP) 
(Fig.  4B) compared to at-risk and unhealthy sites 
(p < 0.05), while the total class area (CA), (Fig. 4D) 
was similar across health classes. The entropy met-
ric showed that the degree of disorder in each site 
was low in healthy and high in at risk and unhealthy 
sites (Fig.  4E), indicating that these were more 
fragmented than healthy ones. Accordingly, conta-
gion showed an opposite trend relative to entropy, 
highlighting that regions with a low spatial conta-
gion, i.e. unhealthy sites, were severely fragmented 
(Fig. 4F).

Both the MSDI index and the LI were signifi-
cantly lower for healthy sites than for unhealthy 
ones (Fig. 4H, I) indicating lower degradation with 
lower water and soil resource loss at healthy sites.

Comparison of qualitative field indicators and 
quantitative remote sensing indices

The multivariate analysis (NMDS) coupled with clus-
tering (DBSCAN, k-means clustering, hierarchical 
clustering, and SOM) performed well (Table  4) to 
categorize both field qualitative and remotely sensed 
quantitative data (Fig.  5). Among the different dis-
tance measures (Euclidean, Manhattan, Mahalanobis, 
and Bray–Curtis), Manhattan performed best with 
the lowest stress value (0.022) for the qualitative field 
data, while Euclidean performed best with the lowest 

stress value (0.067) for remotely sensed data (Supple-
mentary file 5; Fig S.3 and S.4).Based on the NMDS 
for field health indicators (Fig. 5A), higher values for 
soil surface loss and degradation, plant mortality and 
decadence, compaction layer, soil surface resistance 
to erosion, rills, and water flow patterns were related 
to unhealthy sites. In contrast, higher values for struc-
tural and functional groups, annual production, the 
reproductive capability of perennial plants, and plant 
community composition were related with healthy 
sites. The NMDS revealed that larger patch values 
were associated with healthy sites (Fig.  5B). High 
edge density, number of patches, entropy, MSDI, 
and leakiness values were related to unhealthy sites. 
These data confirmed the results obtained from the 
univariate analyses of single measures (Fig. 4).

We used PA to determine if similar NMDS rela-
tionships of health indicator data and sites can 
be retrieved from both field-based indicators and 
remotely sensed metrics to validate the metrics 
derived from remote sensing analyses. There was a 
high Procrustes correlation derived from the sym-
metric Procrustes residual (0.88) between terrestrial 
ecosystem health groups based on field indicators 
(Fig. 5A) and derived from remotely sensed metrics 
(Fig. 5B) (Supplementary file 4; Fig. S.2).

The NMI differed between clustering approaches. 
The minimum was 0.54 (DBSCAN and k-means clus-
tering, raw data) while the combination of DBSCAN 
and k-means clustering on two-dimensional NMDS 
data performed best (NMI = 0.91). The NMI value for 
the SOM on NMDS data showed the second-best per-
formance (NMI = 0.84) (see Table 4, Supplementary 
file 5 and 6; Fig. S3, and S4). Collectively, NMI dif-
fered between methods and data types, although using 
a combination of clustering methods based on ordi-
nated data performed best.

Table 3  Calculating the 
SDG15.3.1 by comparing 
the status of the three helth 
classes”healthy”, “at-risk”, 
and “unhealthy” in 1987 
and 2016

SDG15.3.1 Equation Explanation (Sims et al. 2021)

A (Degraded) = 
A (Stable) + A (Negative) - A 

(Positive)

A (Stable or unchanging): Areas of land that have persisted 
state since the baseline period

A (Negative or declining): Areas that have degraded since the 
baseline period

A (Positive or improving): Areas that have improved from a 
degraded state to a non-degraded state wince the baseline 
period

P =
A(Degraded)

A(Total)
The proportion of land that is degraded (%)
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Compared to the field-based map, both 
DBSCAN + k-means clustering and SOM overesti-
mated the health status for one site (“At-risk” instead 
of “Unhealthy”, site 16), SOM additionally under-
estimated the status for a further site (“Unhealthy” 
instead of “At-risk”, site 21). Generally, both field and 
remote-based maps of terrestrial ecosystem health 
were consistent (Fig. 6A, B, C; Table 3), and incon-
sistencies of the RS-based maps accounted for 2.5% 
(DBScan and k-means clustering) and 5% (SOM), 
respectively. Finally, a LULC map with an over-
all accuracy of 84% (See Supplementary file 3; Fig. 
S1) was created for 1987, and a terrestrial ecosystem 
health status map for 1987 was produced following 
the classification approach for 2016 (Fig. 6D and see 
Supplementary file 5 and 6; Fig. S3, 4). Compared to 
2016, there were 23 “healthy” sites, 11 “unhealthy” 
sites, and six “at-risk”. There was a clear degradation 
of ecosystem health status in the Western part of the 
study area (Fig. 6D). The interpretation of the aerial 
images and the LULC maps (Supplementary file 3; 
Fig. S1), indicated that degradation occurred due to 
the conversion of forest in 1987 to poor and moderate 
rangelands in 2016 (Supplementary file 3; Fig. S1A, 

C, D). The increasing number of patches and total 
edge, as well as the decreasing largest patch index, 
has resulted in a higher level of fragmentation.

Fig. 3  The two-way table provides an overlay of 17 health 
indicators (rows) in sites with different health status (columns) 
of evaluation sites (S) and reference sites (R). The color gradi-
ent from pink (0) to green (1) indicates the increasing impor-
tance of the index in each site. The horizontal black lines dif-

ferentiate the three functional attributes from the 17 indicators 
Due to the lack of gullies in the study area, no scores were 
included (grey colored line in the middle of the figure). The 
vertical black lines seperate the three health classes

Table 4  Normalized mutual information value for each clus-
tering method

A zero NMI value corresponds to no mutual information, 
whereas one indicates a perfect correlation. Each NMI value 
is calculated based on the correlation of clusters between 
remotely sensed quantitative data and field qualitative assess-
ment data. *Graphical results of different methods are shown 
in Supplementary file 5; Fig. S3. Hierarchical clustering is 
presented by heatmaps based on ward linkage and Manhattan 
distance. Since DBSCAN + k-means clustering and SOM per-
formed best, they were used to produce health status maps for 
2016 (Fig. 6A, B, C, Table 3)

Method* Types of data NMI

DBSCAN Raw data 0.57
Ordination score 0.57

DBSCAN + k-means clustering Raw data 0.54
Ordination score 0.91

SOMbrero Raw data 0.75
Ordination score 0.84

Hierarchal clustering* Raw data 0.67
Ordination score 0.64
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Discussion

The overall results of this study illustrate that stand-
ardized field assessments of terrestrial ecosystem 
health in drylands following the established IIRH 
protocol can be accurately reproduced with satellite 
data by combining multivariate methods together 
with unsupervised cluster analysis in this region. So 
we present an exemplary workflow on how to inte-
grate a standardized in  situ data set with publicly 
available satellite imagery to monitor land degra-
dation (SDG indicator 15.3.1). The best approach, 
DBSCAN + k-means clustering, reached a very high 
correlation (PA = 0.88 and NMI = 0.91) between 
field and spaceborne data. Only the status of one out 
of 40 sites, which accounted for 0.93% of the total 
area, was misclassified by one health class (“at-risk” 

instead of “unhealthy”). Therefore, if field indicators 
of ecosystem health are linked with the appropriate 
RS metrics, there is potential for combining the data 
at different scales and extents, which could be tested 
in further studies in other rangelands to explore the 
transferability of our approach. Indeed, integrating 
in  situ ecological data with remote sensing is both 
promising and challenging (Cavender-Bares et  al. 
2022). There is an urgent need for identifying indi-
cators that anticipate change in terrestrial ecosystem 
health caused by human impacts to allow for timely 
management at the landscape scale (Briske et  al. 
2005; Estevez et al. 2017), because human, social and 
economic development relies on the health of natu-
ral habitats (UN 2019). Due to the complexity and the 
variety of available indicators, assessing terrestrial 
ecosystem health status across field and RS scale is 

Fig. 4  Boxplots of landscape metrics across different health 
classes. A: LPI (largest patch index); B: NP (number of 
patches); C: ED (edge density); D: CA (total class area); E: 
Ent (Entropy); F: Contag (Contagion); G: TE (Total edge); 

H: MSDI (moving standard deviation index); I: LI (leakiness 
index). Lowercase letters indicate significant differences across 
health classes after Tukey test (P < 0.05). n.s. in Fig. 4D indi-
cates no significant differences across classes



 Landsc Ecol

1 3
Vol:. (1234567890)

Fig. 5  Two-dimensional ordination NMDS of 40 sample 
sites. A 10 vectors of health indicators significantly correlated 
(p = 0.001, α = 0.05) with the 2-D ordination axes (stress 0.14 
Manhattan Metric); B Seven vectors of remotely sensed met-
rics significantly correlated (p = 0.001, α = 0.05) with the 2-D 

ordination axes, (stress: 0.07 Bray–Curtis Metric). Each color 
includes groups of sites assigned to the three health classes. 
MSDI moving standard deviation index, LI leakiness index, 
Ent entropy, Contag contagion, LPI largest patch index, NP 
number of patches, ED edge density

Fig. 6  Terrestrial eco-
system health status maps 
across space and time and 
comparing methods. A 
Field assessment in 2016, 
B DBSCAN + k-means 
clustering on NMDS scores 
of remote sensing (RS) data 
in 2016, C Self-organizing 
map on NMDS scores of 
RS data in 2016, and D 
DBSCAN + k-means clus-
tering on NMDS scores of 
RS data in 1987
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a challenging task, but integrating expert knowledge 
and ecological data with remote sensing data has a 
large potential (Herrick et al. 2019), and in this study 
we present an exemplary methodological approach 
on how to deal with this challenge. In the following 
discussion, we describe the efficacy of combining 
field-based and remote sensing methods in determin-
ing health indices regarding structural and functional 
changes across health status.

Field assessment and IIRH protocol: health 
classes and indicators influencing terrestrial 
ecosystem health

Even though the IIRH protocol is a well-established 
method, adequate information of the studied ecologi-
cal units is essential to interpret its indicators (Pyke 
et al. 2002). The classification of our study sites into 
three groups (“healthy”, “at-risk”, and “unhealthy”) 
based on the indicators defined in the IIRH protocol 
directly provides useful information for land manag-
ers and decision-makers. Here, both the unhealthy 
and the at-risk sites were characterized by a clear 
deviation of indicators from the optimal state for all 
three attributes (soil and site stability, hydrological 
function, and biotic integrity). On the other hand, 
the healthy sites were characterized by good status of 
indicators related mainly to biotic integrity. The dif-
ferences in the ratings of IIRH attributes were likely 
due to a combination of disturbances associated with 
the proximity to nomadic and rural areas, land-use/
cover conversion to abandoned rainfed lands, and 
decreasing coverage of under-canopy perennial plants 
(Duniway et al. 2010; Molaeinasab et al. 2018). Such 
disturbances lead to soil degradation and erosion, 
decreasing the frequency of productive, perennial, and 
palatable grass species like Bromus tomentellus and 
Agropyron tricophorum, and increasing the frequency 
of annual, toxic, and invasive plants in the study area 
(Safaei et al. 2021). This combination of disturbances 
affects various ecosystem functions and explains the 
combination of indicators in all three attributes, which 
are relevant for the unhealthy ecosystem status. Thus, 
integrating “moment-in-time assessments” such as 
the IIRH (Pyke et al. 2002) with scientific knowledge 
of ecosystem processes of a region can help to stimu-
late the understanding of terrestrial ecosystem health 
status. Since healthy ecosystems significantly reduce 

the destructive impact of human and natural disas-
ters in arid and semi-arid ecosystems (Li et al. 2014; 
Lausch et  al. 2016; Estevez et  al. 2017; Molaeinasb 
et al. 2018), this understanding could help to develop 
expert knowledge-based benchmarks (Herrick et  al. 
2019) to support UN sustainable development indi-
cators (Hák et al. 2016) in terms of land degradation 
neutrality (LDN, SDG.15.3.1).

Assessment of terrestrial ecosystem health using 
remotely sensed metrics

In the studied area, remote sensing methods have 
been successfully applied to assess terrestrial ecosys-
tem health status and to investigate impacts on eco-
system functioning and services. There has been a lot 
of discussion about how to relate landscape metrics 
to ecological processes (Bastin et  al. 2002; Lausch 
et al. 2016; Robinson and Weckworth 2016; Wu and 
Hobbs 2002). However, scale issues and data availa-
bility as well as uncertainty in estimating health indi-
cators from remote sensing can limit the applicability 
and accuracy (Li et al. 2014). For example, the diag-
nostic value of vegetation indices such as the NDVI 
to assess ecosystem degradation can be increased 
when changes in the spectral reflectance are linked 
to the underlying ecosystem processes using scien-
tific knowledge (Herrick et  al. 2019). In semi-arid 
lands, there are various methods to determine terres-
trial ecosystem health using structural and functional 
indicators (Estevez et al. 2017; Berdugo et al. 2020). 
Here, we examined changes in landscape metrics 
related to landscape function (LI) and landscape deg-
radation (MSDI) in rangeland and forest ecosystems. 
The LI can be used to assess and monitor changes in 
the leakiness status of various landscapes and at dif-
ferent scales. Combining coarse or fine-scale satel-
lite imagery with low or high-resolution DEM allows 
for LI to be derived at different spatial scales (Lud-
wig et al. 2007). Most landscape indices such as the 
LI and MSDI differed significantly between health 
classes and showed the same trend as, for example, 
the number of patches and the largest patch area. 
Indeed, decreasing terrestrial ecosystem health in 
this region can lead to an increase in the number of 
fragmented patches and leakage of resources, show-
ing less integrated ecosystems with a higher degree 
of fragmentation (Safaei et  al. 2021). The spectral 
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heterogeneity was relatively high in degraded and 
unhealthy sites. Results from this and other studies all 
found that the MSDI serves as an appropriate com-
plementary or alternative method to expensive field 
investigation for measuring landscape status and land 
degradation in arid and semi-arid regions (Tanser and 
Palmer 1999; Jafari et al. 2008). On the basis of these 
findings, the current structural condition of these 
ecosystems, which stems from past changes and con-
versions, is an indication of increasing land degrada-
tion. Given that one significant consequence of land-
scape degradation and conversion is health reduction, 
numerous ecological consequences are expected to 
rise (Tanser and Palmer 1999). Due to the importance 
of landscape structure and functionality for land man-
agement, it would be beneficial to consider RS based 
landscape metrics such as LI and MSDI in future 
research to outline management practices and to iden-
tify appropriate management strategies.

Integration of field‑based indicators with remote 
sensing metrics to map and assess terrestrial 
ecosystem health status across spatio‑temporal 
scales

The validation of remotely sensed information on 
terrestrial ecosystem health with expert field assess-
ments can contribute to a science-based and data-
driven assessment of rangeland health (Herrick et al. 
2006, 2019). In this study, comparing field data with 
remote sensing metrics using multivariate statisti-
cal methods turned out to be a promising approach 
for clustering terrestrial ecosystem health classes 
at the landscape scale in the studied area. We com-
pared eight clustering methods to identify the appro-
priate clustering approaches on both field-based and 
remote sensing metrics, as the performance of differ-
ent classification algorithms might vary clearly for a 
chosen dataset (Abbas 2008; Wiwie et al. 2015). The 
accuracy between maps using field and remote sens-
ing data differed between best-performing cluster-
ing methods and pre-processing procedures. Here, 
DBSCAN combined with k-means clustering using 
NMDS ordination data showed the best performance 
in terms of concordance between field and remote 
sensing assessments of terrestrial ecosystem health 
gradients. Our results outline the potential of NMDS 
to deal with mixed data types (McCune and Grace 

2002), the utility of Procrustes rotation of ordina-
tion data coupled with cluster analysis to assess sur-
vey data at larger spatial scales (Gonzalez-Mejia 
et al. 2018), and of combining distance and density-
based clustering algorithms (Dash et  al. 2001). Our 
results particularly highlight the recent popularity of 
DBSCAN (Ester 1996; Saha 2021). It has the typical 
characteristic to group data points with many nearby 
neighbors and to accurately identify clusters con-
taining outliers and noise in the dataset (Ester et  al. 
1996). The results of this and other studies (Kozakura 
et  al. 2017) demonstrated that combining cluster-
ing algorithms is a promising avenue to approximate 
clusters and to find the optimal clustering method 
suited to different types of ecological data. This 
approach enabled us to identify appropriate RS indi-
cators of land degradation such as complex vegetation 
indices that cannot be calculated from field data alone 
(Toevs et  al. 2011). The linkage between field and 
remotely sensed indices helped to better interpret the 
numerical appearance of metrics and the respective 
ecological patterns and processes. With the assign-
ment of health status clusters to the landscape indices 
using a combination of multivariate analysis and clus-
ter analysis, we go beyond the patch-based metrics 
(Wu and Hobbs 2002) and illustrate how landscape 
metrics can be applied to assess ecological processes 
at the watershed level, which highlights the potential 
to monitor land degradation from space. Further stud-
ies to test the transferability of our approach to other 
rangelands or across spatial scales are possible as we 
used a standardized field protocol, mainly free and 
open-source software as well as publicly available 
satellite data. Future directions could include identi-
fying ecological thresholds (Andersen et al. 2009) or 
spatial early warning signals of ecosystem transitions 
to alternative stable states (Kéfi et al. 2014) based on 
complex remote-sensing indices and the IIRH proto-
col to test the integrity of land degradation monitor-
ing in rangelands in the field, from space and based 
on ecological conceptual frameworks and theory.

The primary challenge in defining the benchmark 
of land degradation is the lack of historical data (Her-
rick et al. 2019). However, from a remote sensing per-
spective, the use of archive data from long-lasting sat-
ellite programs such as Landsat (Wulder et al. 2016) 
can partly fill such data gaps. Here, the remote sens-
ing-based model for the assessment of terrestrial eco-
system health in 2016 was validated by field surveys 
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and projected to Landsat data from 1987 (Fig.  6). 
From 1987 to 2016, decreasing areas of forest and 
dense rangeland together with increasing fragmenta-
tion exert negative trends on the ecosystem health sta-
tus (Supplementary file 3; Fig. S1). Briefly, terrestrial 
ecosystem health maps derived from field information 
and remotely sensed indicators were consistent. This 
allowed for a transfer of the methods to historical sat-
ellite data, which produced plausible results. Providing 
an overview of the current and past state of ecosystem 
conditions is important because it affects the delivery 
of services and, therefore, human well-being (Ren-
don et al. 2019). Decreasing soil quality (Molaeinasab 
et  al. 2018), increasing soil erosion, dust problems, 
and tree mortality in unhealthy sites have been attrib-
uted to the long history of over-grazing with domestic 
livestock like sheep and goats, and the conversion of 
forests and rangelands to arable lands (Baranian et al. 
2017). When transferring our remote sensing approach 
to assess terrestrial ecosystem health from 2016 to 
satellite data from 1987, we found 32% of degrada-
tion and, therefore, a deviation from SDG 15.3.1 and 
its main aim to achieve land degradation neutrality 
(Prince 2019; UN 2019). In fact, it has been estimated 
that the actual number of livestock in some parts of 
the western rangelands of Iran including the study area 
exceeds considerably the grazing capacity (Farahpour 
2002). It is partly because herders rely more on other 
feed sources for their livestock such as hay from farm-
ing lands (Abolhassani 2011). It is worth mentioning 
that rangeland management in the study area changed 
considerably following the Nationalization of Range-
lands and Forests Act (Ghorbani et al. 2013). Before 
the land reform, rangelands were managed by nomads 
in common, public rangelands, while private range-
lands were controlled by landlords. As a result, the 
rangelands were in better condition due to appropriate 
management, specifically due to the lower number of 
livestock and herders compared to the present time. 
Based on the land reform law, all rangelands were 
allocated to the government, resulting in “tragedy of 
the commons” dilemma (Baland and Platteau 1994). 
Another cause of rangeland health decline is extensive 
land conversion to farms by local farmers and villagers 
whose primary intention is to claim ownership of land 
rather than agricultural goods. These farmers are well 
aware that rainfed agriculture in degraded rangeland 
is not profitable but would help them acquire more 
land by taking advantage of an inefficient long-lasting 

land management system in the region (Baranian et al. 
2017). The current approach holds bright prospects for 
outlining policies that contribute to the range and for-
estry development efforts, integrated management of 
resource exploitation, and reducing resource degrada-
tion (Matsushita et al., 2006; Miller 2008).

In summary, the presented workflow on how to 
combine ecological information from the field with 
ecological information from space to map ecosystem 
health in space and time is in line with Wu and Hobbs 
(2002), who introduced an integrated approach that 
combines field data, experimental manipulations, GIS, 
remote sensing, and modeling for developing a sci-
ence of scale. Using a combination of multivariate and 
cluster analysis to compare field and remotely sensed 
data turned out to be suitable to map ecosystem deg-
radation. As the quality and availability of data over 
large areas and extended time periods are critical for 
modeling (Wu and Hobbs 2002), and continuously 
gathering field data over large areas has limitations, 
complex remotely sensed indices that are verified 
against field data provide one of the best opportunities 
to overcome these challenges. Future research could 
investigate the combined use of different sensors and 
platforms including the analysis of time-series data, 
and the transfer to different sites and ecosystems.

Conclusion

In this paper, we showed that assessing rangeland 
health based on satellite data can coincide accu-
rately with an assessment based on common field 
approaches (IIRH protocol). Thus, there is potential 
for the integration of standardized in  situ data with 
remote sensing imagery to enable continuous monitor-
ing of land degradation (SDG 15.3.1). We presented 
a methodological approach on how this information 
on ecosystem health can be linked using multivariate 
statistics, cluster analysis, and complex remote sens-
ing metrics based on publicly available satellite data. 
As spatial data-driven monitoring approaches are 
essential to achieve SDGs, this approach could con-
tribute to the development of benchmarks for land 
health and monitoring of indicators for land degrada-
tion neutrality based on remote sensing. Identification 
of spatial indicators of degradation could also help to 
establish links to conceptual frameworks such as eco-
logical regime shifts with the objective to determine 
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spatial early warning signals of shifts to alternative 
stable states. In the next step, our approach could be 
tested at the national or even continental scale in arid 
and semi-arid regions or could be transferred to other 
study areas and ecosystems to support monitoring land 
degradation neutrality from space.
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