
 

Bone marrow transplantation of CD117+ (c-Kit)
 
stem cells 

and investigation of the bile acid transporter regulation  

in Abcb4
-/-

 mice,  

a model of sclerosing cholangitis 

 

 

 

 

 

 

 

 

Inauguraldissertation 

 

zur Erlangung des Grades eines Doktors der Humanbiologie  

des Fachbereichs Medizin  

der Justus-Liebig-Universität Gießen  

 

Vorgelegt von 

Sravanthi Pasupuleti 

aus Machilipatnam, India 

 

Gießen 2014 



 

 

Aus dem Medizinischen Zentrum fur Innere Medizin 

 Medizinischen Klinik II und Poliklinik 

Schwerpunkt Gasteroenterologie 

Leiterin: Univ.Prof. Dr. med. Elke Roeb MA 

der Universitätsklinikum Gießen und Marburg GmbH 

Standort Gießen 

 

 

 

 

 

 

 

 

 

 

Supervisor: Prof. Dr. E. Roeb 

Referee: Prof. Dr. S. Wenisch  

Unterstützer betreuer: PD. Dr. M. Roderfeld 

Date of defence: 25.03.2015 



 

 

 

 

 

 

 

 

Dedicated 

 

 

 

 

 

 

 

 

 

to my grandmother and parents



Index 

i 

 

Table of Contents 

1. INTRODUCTION ..................................................................................................................... 1 

1.1 Primary sclerosing cholangitis (PSC): ................................................................................ 1 

1.2 ATP binding cassette sub family B member 4 (Abcb4-/-) knockout: ..................................... 2 

1.3 Stem cells: ......................................................................................................................... 3 

1.3.1 Hematopoietic stem cells (HSC):..................................................................................... 4 

1.3.2 Plasticity / Transdifferentiation of stem cells: ................................................................... 5 

1.4 Liver physiology: ................................................................................................................ 5 

1.4.1 Immunity and inflammation: ............................................................................................ 6 

1.4.2 Bile acids: ....................................................................................................................... 6 

1.4.3 Phospholipids and cholesterol: ........................................................................................ 7 

1.4.4 Hepatobiliary transport system: ....................................................................................... 7 

1.4.5 Nuclear receptors: ........................................................................................................... 9 

1.4.5.1 FXR nuclear receptor: .................................................................................................. 9 

2. AIM OF THE STUDY ............................................................................................................. 13 

MATERIALS AND METHODS: .................................................................................................. 14 

3. MATERIALS: ......................................................................................................................... 14 

3.9 Kits................................................................................................................................... 22 

3.10 General equipment: ....................................................................................................... 23 

4. METHODS ............................................................................................................................ 24 

4.2 Isolation of bone marrow stem cells: ................................................................................ 24 

4.3 Transplantation of Hematopoietic (CD117+) progenitor cells: .......................................... 27 

4.4 Serum transaminases measurement: ............................................................................... 27 



Index 

ii 

 

4.5 Liver histology and preparing paraffin sections: ............................................................... 27 

4.6 Immunohistochemistry: .................................................................................................... 28 

4.7 Hydroxyproline assay: ...................................................................................................... 30 

4.8 Semi quantitative polymerase chain reaction (PCR): ....................................................... 30 

4.9 Western Blot: ................................................................................................................... 32 

4.10 Measurement of serum total bile acids: .......................................................................... 33 

4.11 miRNA Analysis: ............................................................................................................ 34 

5. RESULTS: ............................................................................................................................. 36 

5.1 Transplantation of CD117+ hematopoietic stem cells in Abcb4-/- mice ............................. 36 

5.1.2 Infiltration of GFP+ cells into BALB/c-Abcb4-/- mice: ...................................................... 37 

5.1.3 Cell fusion of GFP+ stem cells of donor mice and host hepatocytes: ............................ 38 

5.1.4 Serum biochemistry: ..................................................................................................... 39 

5.2 FIBROSIS ........................................................................................................................ 40 

5.2.1 Total collagen level analysis: ......................................................................................... 40 

5.2.2 Periductular collagen levels reflected by Sirius red staining: ......................................... 40 

5.2.3 Matrix metalloproteinase-9 (MMP-9) activity after BM-Tx: ............................................. 41 

5.2.4 Acute expression of transforming growth factor (TGF-β) after BM-Tx: ........................... 43 

5.3 INFLAMMATION .............................................................................................................. 43 

5.3.1 Hepatic infiltration of inflammatory cells after BM-Tx: .................................................... 43 

5.3.2 Acute hepatic infiltration of inflammatory cells 2 weeks after BM-Tx: ............................. 44 

5.3.3 Th2 and Th1 response after CD117+ BM-Tx: ................................................................ 45 

5.3.4 Prolonged expression of tumor necrosis factor (TNF-α) after BM-Tx: ............................ 46 



Index 

iii 

 

5.3.6 Involvement of dendritic cells in tissue inflammation: .................................................... 48 

5.3.7 Infiltration of inflammatory cytotoxic T (CD8+) cells: ...................................................... 49 

5.4 Bile acid transporters in Abcb4-/- mice .................................................................................. 50 

5.4.1 Bile acid (BA) concentrations in serum of Abcb4-/- mice: ............................................... 50 

5.4.2 Expression analysis of basolateral bile acid transporter Na+ - taurocholate cotransporting 

polypeptide (Ntcp) in Abcb4-/- mice: ....................................................................................... 51 

5.4.3 Expression analysis of basolateral bile acid transporter organic anion transporter 

polypeptide Oatp1a1 (slco 1a1) in Abcb4-/- mice: ................................................................... 53 

5.4.4 mRNA expression analysis of bile salt export pump (Bsep):.......................................... 55 

5.4.5 Transcript levels of alternative basolateral transporters: ................................................ 56 

5.4.6 Unaltered gene expression of key bile acid transporter regulators: ............................... 57 

5.4.7 Transcription analysis of Hepatic nuclear factors (HNF-4α and HNF-1α): ..................... 58 

5.4.8 Elevated miR-199a-5P expression in Abcb4-/-: .............................................................. 59 

6. DISCUSSION: ....................................................................................................................... 61 

6.1 What is already known about this subject......................................................................... 61 

6.2 Current study findings ...................................................................................................... 62 

6.3 cytokines in fibrotic and inflammatory stimuli .................................................................... 62 

6.4 Matrix metalloproteinase .................................................................................................. 63 

6.5 Dendritic and cytotoxic T-cell infiltration ........................................................................... 64 

6.6 Hepatobiliary transporters ................................................................................................ 65 

6.7 Enhanced serum BA concentration .................................................................................. 65 

6.8 Bile acid uptake at basolateral side of Abcb4-/- mice ........................................................ 65 

6.9 Alternative basolateral efflux transporters ........................................................................ 66 



Index 

iv 

 

6.10 Regulation role of Nucear receptor (FXR) and short hetero dimer partner (SHP) ........... 67 

6.11 Hepatic nuclear factors (HNF-4α and HNF-1α) .............................................................. 67 

6.12 miRNA-199-5p in Abcb4-/- mice ...................................................................................... 68 

6.13 Limitations of the study .................................................................................................. 68 

6.14 Conclusion ..................................................................................................................... 69 

Abbreviations: ........................................................................................................................... 70 

Index of figures .......................................................................................................................... 72 

Index of tables ........................................................................................................................... 74 

7. Reference list ..................................................................................................................... 75 

Acknowledgements ................................................................................................................ 88 

Erklärung ............................................................................................................................... 89 

8. Appendix ............................................................................................................................ 90 

Publications ........................................................................................................................... 91 



Summary 

iv 

 

Summary 

Abcb4 (ATP-binding cassette sub family-b) or Mdr2 (multidrug resistance protein 2) is a gene 

which encodes for ABCB4 protein that mediates the transportation of phospholipids across the 

canalicular membrane of hepatocytes into the bile. Functional loss of the ABCB4 transporter 

disturbs the excretion of phospholipids into bile, leading to toxic bile composition, bile duct 

alterations, and damaged bile duct epithelia resembling sclerosing cholangitis (1). Long term 

consequences are biliary cirrhosis, cholangiocarcinoma and liver failure (2). 

In Abcb4-/- mice, a model of sclerosing cholangitis, we aimed to investigate the regenerative 

potential of bone marrow transplantation (BM-Tx) and especially BM-Tx of desialylated CD117+ 

(c-Kit) stem cells. CD117 receptor expressing cells are hematopoietic progenitors, which bear 

the potential to differentiate into specialized cell types depending upon tissue environment. 

Based on these characteristics we analysed whether CD117+ cells differentiated into 

hepatocytes, e.g. by by cell fusion (3). 

Successfully isolated mouse (BALB/c-GFP) hematopoietic stem cells were sorted with the help 

of hematopoietic (Lin- CD117+) cell surface markers. Neuraminidase treated CD117+ progenitor 

cells were transplanted into lethally irradiated Abcb4-/- (BALB/c-GFP → BALB/c-Abcb4-/- 

allogenic transplantation) mice at the age of 6-7 weeks. At respective time points (i.e 2 and 20 

weeks after transplantation, actually 8 and 26 weeks of age) mice were sacrificed and underlying 

immunomodulatory and matrix remodelling processes were analyzed. In addition, we elucidated 

molecular and biochemical analysis of hepatic bile acid transport in Abcb4-/- mice during the 

course of the disease. 

The present studies demonstrated a reduced temporary graft versus host disease and unaltered 

liver integrity. Fusion of transplanted (GFP+) cells with host (Abcb4-/-) hepatocytes was a rare 

event. Whereas lots of GFP+ cells, including T-cells infiltrated around portal fields could be 

detected. Significant upregulation of proinflammatory (Th1) and profibrogenic (Th2) cytokines 

revealed enhanced fibrosis in the longterm observation. Furthermore, bile acid transporter data 

revealed an altered gene regulation at basolateral and canalicular membrane in chronically 

injured liver of Abcb4-/- mice. 

The present work suggests that transcriptional changes of bile acid transporters may open new 

molecular targets for therapy of liver fibrosis in Abcb4-/- mice. These data from fibrogenesis in 

Abcb4-/- mice are of great interest for translational antifibrotic strategies. 
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Zusammenfassung 

Abcb4 (ATP-Bindungs-Cassette-Unterfamilie-b) auch bekannt als Mdr2 (multidrug resistance 

protein 2) ist ein Gen, das für das ABCB4 Protein, das den Transport von Phospholipiden für die 

kanalikuläre Membran der Hepatocyten in die Galle vermittelt, codiert. Ein Funktionsverlust der 

ABCB4 Transporter stört die Ausscheidung von Phospholipiden in die Galle und führt zu einer 

toxischen Zusammensetzung der Galle, Gallengangsveränderungen und beschädigtem 

Gallengangsepithel, was einer sklerosierenden Cholangitis ähnelt (1). Langfristige Folgen sind 

biliäre Leberzirrhose, Gallengangskarzinom und Leberversagen (2). In Abbc4-/- Mäusen, einem 

Modell der sklerosierenden Cholangitis, wollten das regenerative Potenzial der 

Knochenmarkstransplantation (BM-Tx) und vor allem BM-Tx desialylierten CD117+(c-Kit) 

Stammzellen zu untersuchen. CD117-Rezeptor exprimierende Zellen sind hämatopoetische 

Vorläuferzellen, die das Potenzial in spezialisierte Zelltypen je nach Gewebeumgebung 

unterscheiden zu tragen. Basierend auf diesen Eigenschaftenhaben wir untersucht, ob CD117+ 

Zellen in Hepatozyten differenzieren können, z. B. durch Zellfusion (3). Erfolgreich aus einer 

Maus (BALB/c-GFP) isolierte hämatopoetische Stammzellen wurden mit Hilfe von 

hämatopoetischen (Lin- CD117+) Zelloberflächenmarker aussortiert. (BALB/c-GFP → BALB/c-

Abcb4-/- allogene Transplantation) Mäuse im Alter von 6-7 Wochen - Neuraminidase CD117+ 

Vorläuferzellen wurden in letal bestrahlten Abcb4-/- transplantiert. An den jeweiligen Zeitpunkten 

(2 und 20 Wochen nach der Transplantation, eigentlich 8 und 26 Wochen alt) wurden die Mäuse 

getötet und die zugrunde liegenden immunmodulatorischen und Matrix-Umbauprozesse wurden 

analysiert. Darüber hinaus führten wir molekulare und biochemische Analysen von Leber-

Gallensäure -Transport in Abcb4-/- Mäusen im Verlauf der Erkrankung durch. Die vorliegenden 

Studien zeigten eine reduzierte temporäre Graft-versus-Host-Krankheit und unveränderte 

Leberintegrität. Die Fusion von transplantierten (GFP+) Zellen mit Host (Abcb4-/-) Hepatozyten 

war ein seltenes Ereignis. Während könnten viele GFP+ Zellen, einschließlich T-Zellen um 

Portalfeldern infiltriert erkannt werden. Bedeutende Hochregulation proinflammatorischer (Th1) 

und profibrogenen (Th2) Zytokine zeigte verbesserte Fibrose in der langfristigen Beobachtung. 

Darüber hinaus offenbaren die Gallensäure-Transporter-Daten eine veränderte Genregulation 

der basolateralen Membran und kanalikulären bei chronisch verletzte Leber Abcb4-/- Mäusen.Die 

vorliegende Arbeit zeigt, dass Transkriptionsänderungen von Gallensäure- Transportern neue 

molekulare Ziele für die Therapie von Leberfibrose in Abcb4-/- öffnen Mäusen sein können. 

Diese Daten aus Fibrose in Abcb4-/- Mäuse sind von großem Interesse für translationale 

antifibrotischen_Strategien.
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1. Introduction 

Liver fibrosis is a consequence of chronic damage to the liver. It arises via a complex network of 

signaling pathways that regulates the accumulation of extracellular matrix proteins and 

fibrogenesis, a characteristic feature of many types of chronic liver disease. Fibrosis is a 

common outcome of chronic hepatic diseases including viral hepatitis, alcohol abuse and 

metabolic diseases and can ultimately lead to liver cirrhosis and hepatic failure. Primary 

sclerosing cholangitis is a chronic cholestatic liver disease, which impairs the biliary system 

often associated with inflammation and fibrosis.  

1.1 Primary sclerosing cholangitis (PSC): 

PSC is characterized by progressive obliteration of extrahepatic and intrahepatic bile ducts and 

systemic accumulation of bile acids (4). It is often accompanied with inflammatory bowel disease 

and high risk for hepatobiliary tree heading to final stage of liver fibrosis requiring liver 

transplantation (5). The incidence of PSC is estimated to be 13.9 per 100,000 individuals across 

the USA and 10 per 10,000 in northern Europe. The prevalence of PSC seems to be increasing 

steadily. Occurrence of disease takes place at any age, but is more common in people aged 

around 40 years. It is twice more common in men than in women (6) (7). 

PSC is characterised by inflammation of the bile ducts, scar formation and narrowing of bile 

ducts. As scaring increases, bile builds up in the liver and damages parenchyma which 

eventually leads to biliary cirrhosis, cholangio carcinoma and liver failure (8). The cellular 

mechanism involved in the development of PSC is transdifferentiation of hepatic stellate cells 

(HSC) into myofibroblasts expressing α-smooth muscle actin (α-SMA) and subsequent 

accumulation of extra cellular matrix (ECM) (9). Recent studies on mice (10) and human (11) 

reported the contribution of bone marrow derived fibrocytes and portal myofibroblasts (12) and 

their involvement in the hepatic fibrogenesis. Accumulated portal myofibroblasts in PSC are 

shown to be activated by epithelial cells in order to secrete collagen and its deposition around 

damaged bile ducts (13). 
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Figure 1: Depiction of a normal liver with hepatic biliary tree showing normal bile duct as well as ducts 

destroyed by inflammation and scarring (Resource - Modified from http://www.liver.ca/liver-

disease/types/primary-sclerosing-cholangitis.aspx ). 

At the molecular level, matrix metalloproteinases (MMPs) and tissue inhibitor of 

metalloproteinases (TIMPs) play a pivotal role to balance the homeostasis of ECM. Juran and 

colleagues comprehensively assessed the influence of genetic variation in MMP-3 on risk of 

PSC development as well as disease progression (14). While transient up-regulation of MMP-2, 

MMP-7, MMP-9, and MMP-13 expression demonstrated improved hepatic fibrosis in Abcb4-/- 

mice (15). In mice the development of sclerosing cholangitis is spontaneous due to the 

disruption of multidrug resistance gene (Mdr2/Abcb4), which is a member of ATP binding 

cassette sub family. 

1.2 ATP binding cassette sub family B member 4 (Abcb4-/-) knockout: 

The multidrug resistance protein 2 (MDR2/ABCB4) flops phospholipids from interior to exterior 

bile leaflet of the canalicular membrane. These phospholipids bind to bile acids and forms mixed 

micelles with cholesterol. Abcb4 (an ortholog of human MDR3/ABCB4) knockout mice represent 

a well-studied and highly reproducible non-surgical in-vivo (mouse) model system for 

cholangiopathy, clearly showing the macroscopic (bile duct structures and dilatations of the large 

bile ducts) and microscopic features (onion skin-type like pericholangitis and periductal fibrosis) 

of sclerosing cholangitis in humans (16, 17). Deletion of multidrug resistance protein2 (MDR2) 

results in no excretion of Phosphatidyl choline (PC) into bile leading to sclerosing cholangitis, 
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biliary fibrosis and hepatocellular carcinomas (18). Mutations of the human Abcb4 gene result in 

phenotypes of chronic liver disease like progressive familial intrahepatic cholestasis (PFIC type 

3) or biliary liver cirrhosis (19). Whereas in mice Abcb4-/- - represents a murine model of chronic 

cholestasis, which spontaneously develops biliary fibrosis, proliferation of bile ducts and 

sclerosing cholangitis (9). Furthermore this model provides the possibility to study mechanisms 

of inflammation driven fibrosis (20). There are some evidences that norUDCA (side chain-

modified bile acid 24-norursodeoxycholic acid) reverses liver fibrosis in Abcb4-/- and Insulin like 

growth factor 1 (IGF1) effectively blocks fibrosis in acute models of liver damage in mice. IGF1 

over-expression, however, failed to inhibit liver fibrogenesis in Abcb4-/- mice, a model of chronic 

cholangiopathy (21, 22). In spite of current medical therapies, PSC still needs a lot of attention 

because PSC is considered to be a potential fatal disorder with poor prognosis. Stem cell 

transplantation remains the only conventional treatment, hence stem cells and its lineages 

become a promising new approach and might be able to address mostly unmet medical needs. 

Over a decade, intensive research has focused on stem cell transplantation, which has an 

enormous capability of becoming an alternate therapy for liver transplantation. 

1.3 Stem cells: 

Stem cells can be defined as a class of undifferentiated cells that are able to differentiate into 

specialized cell types. The hot topic in stem cell biology is the transdifferentiation potential or so 

called plasticity of adult stem cells. The concept of transdifferentiation stands for cellular 

reprogramming in response to external stimuli leading to phenotypically differentiated cells 

towards lineages different from the tissue of their origin (23). Ability of stem cells to differentiate 

in to any kind of cell depends on surrounding environment is known as potency. Totipotency, is 

to form any kind of tissue in the body and pluripotency is the capability of the cell to generate 

almost any type of cells in the organism. Multipotent stem cells are those that can only give rise 

to a few number of cell types (24). Basically two types of stem cells are exist, they are 

Embryonic stem cells (ES) and  

Adult stem cells  
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Figure 2: Hierarchy of stem cells  

Both (embryonic and adult) stem cells have their own advantages and limitations. Ethical issues 

are a major aspect for embryonic stem cells, whereas adult stem cells are multipotent and able 

to differentiate only a limited number of cell types. Adult stem cells exist in two fractions of cell 

populations a) Hematopoietic stem cells (HSC) and b) Mesenchymal stem cells (MSC). The 

adult stem cells can be derived from bone marrow, peripheral blood and umbilical cord (25). The 

main source of tissue specific stem cells is bone marrow (both MSC and HSC), having the 

potential for differentiation into cells of different lineages. MSCs are stromal cells, which give rise 

to adipocytes, chondrocytes and osteoblast cells. HSCs are the most studied adult stem cells 

over the last years (26) 

1.3.1 Hematopoietic stem cells (HSC): 

HSCs are rare cells that reside in adult bone marrow where hematopoiesis is continuously taking 

place. These cells are self-renewing and have the capacity to differentiate into all types of 

mature blood cells that comprises the blood forming system (27). These are multipotent 

precursors that can differentiate into any hematogenous cell types. Easy accessibility of HSC 

provides an attractive cell population for cell regeneration therapy. Isolation of HSC can be 

performed by different cell surface markers. Mouse HSCs are characterized by expression of the 

c-Kit tyrosine kinase receptor (CD117), stem cell antigen-1 (sca-1), and low levels of the Thy-1.1 
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cell surface antigens found on differentiated cells of various lineages (28). HSCs are classified 

into two types: 

a) Myeloid progenitor cells and b) Lymphoid progenitor cells 

These HSC cells were carefully sorted to enrich the CD117+ progenitor cells and were treated 

with 2U/ml of neuraminidase (N5254, Sigma Aldrich) enzyme to enhance the stem cell fusion to 

the existing healthy hepatocytes (Misawa et al 2006). Neuraminidase removes terminal sialic 

acid residues from cell surface glycoproteins and helps to bind the hepatic asialoglycoprotein 

receptor (ASGPR). 

1.3.2 Plasticity / Transdifferentiation of stem cells: 

Plasticity and the self-renewal ability of stem cells attracted a tremendous attention towards 

stem cell therapy transplantation and regeneration medicine. BMCs as a potential source of 

hepatocytes (29-31) and purified HSCs differentiation towards functional hepatocytes were 

shown in recent studies (32). Similarly, these progenitor cells were also found to partially 

regenerate myocardium and vascular structure (33) as well as other organs (34-36). In contrast, 

Wagers and his colleagues showed that transdifferentiation of bone marrow stem cells (BMCs) 

into non hematopoietic tissue is a rare event (37). In Fah-/- (fumarylacetoacetate hydrolase) mice 

hepatocytes are derived from hematopoietic stem cells (HSC), where “cell fusion is the principal 

mechanism’’ of hepatocyte regeneration (38, 39). Hence, the hematopoietic system is currently 

under extensive investigation with respect to their potential for transdifferentiation into 

hepatocytes. The aim of the current study is to investigate the therapeutic potential of 

transplantation of bone marrow derived hematopoietic stem cells (BM-Tx) in Abcb4 knockout 

mice, a model system of sclerosing cholangitis. Several studies demonstrated that Lin- (Lineage-

), c-Kit+(CD117+), and sca-1+ cells display characteristic features of HSCs. The other name of c-

Kit is CD117 (stem cell factor receptor) or tyrosine-protein kinase. Lin-, sca-1+ and CD117 

expressing cells are hematopoietic progenitors (32, 40). 

1.4 Liver physiology: 

The liver is the central organ for metabolic processes. The major functions of the liver are 

gluconeogenesis, glycogenesis, detoxification, bile acid synthesis, and lipid metabolism. It 

performs many essential functions such as biosynthesis and the breakdown of important 

proteins (e.g lipoproteins, acute phase proteins, complement system proteins). Another 
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important role of the liver is excretion of waste substances through bile. In addition, the liver 

performs the production of albumin protein, which processes of hemoglobin and maintains the 

homeostasis of chemicals in blood. 

1.4.1 Immunity and inflammation: 

The liver receives two thirds of its blood supply from the intestine. This blood enriched with 

nutrients contains many antigenes, that are filtered through the hepatic sinusoids by cells of the 

innate immunity system. The liver contains cells of the innate immune system including Kupffer 

cells (KCs), dendritic cells (DCs) and natural killer (NK) cells (41). Liver sinusoidal endothelial 

cells (LSEC’s), DC’s and KC’s represent as antigen-presenting cells (APCs). Kupffer cells are 

resident macrophages that play a major role in liver inflammation by releasing reactive oxygen 

species (ROS) and cytokines (42). Fibrocytes (CD34+) can be mobilized upon inflammatory 

signals and infiltrate damaged tissue where, they are involved in wound healing, antigen 

presentation, and cytokine production. While CD34+ fibrocytes were derived from hematopoietic 

bone marrow cells (43). In chronic cholestatic models it has been observed that portal 

inflammation was associated with infiltrating macrophages and lymphocytes specifically near to 

the biliary epithelium (44). In addition, Fickert and his colleagues proved that changing of CD11b 

(integrin αM) rich niche to a CD4/CD8 rich infiltration results in pronounced periductal 

inflammation and enhanced KCs with induced intrahepatic production of proinflammatory and 

profibrogenic cytokines (e.g TNF-α, IL-1β, TGFβ-1) in Abcb4-/- mice (1). Due to the enhanced 

inflammation after BM-Tx, we analyzed microarray data to get an overview of genes, which are 

mainly involved in inflammatory signaling milieu. Interestingly, our attention was attracted by bile 

acid transporting genes with higher (NTCP ≥ 4 OATP≥ 100,000) fold change. Hence we further 

focussed on bile acid transportation since ABCB4 is also a member of the hepatobiliary transport 

system. 

1.4.2 Bile acids: 

Bile is an alkaline solution and bile salts (the ionized from of bile acids) are major organic 

components that include phospholipids and cholesterol (45). Bile acids (BAs) are 24-carbon 

steroids and are end products of cholesterol catabolism. They are synthesized in the liver, stored 

in the gall bladder, and discharged in the duodenum during digestion allowing the absorption of 

dietary lipids. In the liver de novo synthesized primary bile acids (cholic acid and 

chenodeoxycholic acid) result from hydroxylation of cholesterol with help of the key rate limiting 

enzyme CYP7A1 (cholesterol 7 alpha hydroxylase) (46). All bile acids secreted by the liver are 



Introduction 

7 

 

conjugated with an amino acid, either with glycine or with taurine making them hydrophilic. 

Thereby conjugated bile acids are converted to secondary (deoxycholic acid) and tertiary bile 

salts as a result of bacterial catabolism in the gut (47). The conjugated bile acids form further 

complexes with sodium to become bile salts. Two major functions of biliary phospholipids are 

emulsification of fats and reduction of detergent activity of the bile acids (48). Bile acids affects 

glucose and lipid metabolism and can also influence the energy homeostasis, drug metabolism 

via activation of FXR (49). Since BAs are identified as natural endogenous ligands of FXR and 

various number of membrane-bound transporters and nuclear receptors are involved in 

secretion and uptake of bile salts. 

1.4.3 Phospholipids and cholesterol: 

The Mdr2/MDR3 designates the canalicular flippase translocating PCs from the inner to the 

outer leaflet of the canalicular membrane. The transport of cholesterol into bile is enabled by the 

hemi transporters ABCG5/8. Indeed an accurate secretion of PC is essential to reduce the 

toxicity on the canalicular membrane by forming mixed micelles along with cholesterol and bile 

acids (BA). Apart from binding of bile acids with micelles it is necessary to undergo bile 

hydration, alkalinisation, mucin formation and bile flow to avoid the damage of bile ducts via the 

detergent nature. In Abcb4-/- knockout mice, PC secretion is virtually absent and spontaneously 

develops sclerosing cholangitis (20, 50). PC deficiency also leads to periductular fibrosis via 

massive dysregulation of pro and anti-fibrotic genes in Abcb4-/- mice (9). Elimination of 

cholesterol from the body is essential and excreted via feces either directly or after the 

conversion into BAs. Release of phospholipids into bile prevents the formation of gall stones by 

solubilizing cholesterol. Thereby, phospholipids reflect themost important elimination pathway of 

cholesterol and a large part of these lipids are reabsorbed in the intestine (51). 

1.4.4 Hepatobiliary transport system: 

Uniquely bile acids undergo enterohepatic circulation under the control of corresponding 

transporters and their nuclear receptors in order to perform normal physiological functions. The 

transport of bile acid (about 90%) from portal blood into the hepatocyte cytoplasm is mediated by 

sodium taurocholate co-transporting peptide (NTCP). The sodium independent translocation of 

unconjugated bile salts and other lipophilic albumin bound molecules are transported by organic 

anion transporting peptide (OATP). Both NTCP and OATP are located on the basolateral side of 

hepatocytes (52). Bile salt export pump (BSEP), located on the canalicular membrane, mediates 

excretion of conjugated bile acids into bile. Intestinal recycling of bile acids occurs via a Na+ 
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dependent carrier (apical sodium bile acid transporter ASBT) located on the apical side of 

enterocytes in the terminal ilium as well as on the apical side of hepatocytes and cholangiocytes. 

Organic solute and steroid transporters (Ostα/Ostβ) have been shown to be essential 

transporters on the basolateral side of enterocytes and cholangiocytes. Under normal 

physiological conditions expression of basolateral transporters is low, but can be upregulated 

under cholestatic conditions (53, 54). 

 

Figure 3: Diagram representing the mechanism of the hepatobiliary transport system 

At the canalicular membrane, the Bsep (bile salt export pump) secretes bile, which is almost 

reabsorbed into the small intestine and transported back to the liver via the portal circulation at 

the sinusoidal membrane (via Ntcp) of hepatocytes to complete a cycle (55, 56). Alterations or 

mutations in the hepatobiliary transport system cause a spectrum of liver diseases. The rodent 

models of hereditary and acquired cholestasis have been proven very useful to study the role of 

transport system in the pathogenesis of cholestasis (57). Denson and his co-workers showed 

Ntcp feedback regulation via shp (small heterodimer partner) induction by bile acid activated 

FXR. This FXR serves as a coordinated down regulation of bile acid synthesis and import, 

thereby protecting bile acid induced damage in rats. Regulation at the transcription and post-

transcription levels of these transporters are under tight regulation by the nuclear receptor (NR) 

to limit the bile synthesis (58). 
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1.4.5 Nuclear receptors: 

Nuclear receptors (NRs) are transcription factors typically under the control of small lipophilic 

molecules, which easily pass through biological membranes. The ligand activated NRs thereby 

regulate expression of target genes by binding to cis-acting DNA sequences (59). Historically 

nuclear receptors are classified into three types: 

a) Classical receptors: Extensively regulated by endocrine ligands 

b) Adopted orphan receptors: either natural or synthetic ligands 

c) Orphan receptors: Have no natural ligands and act as transcription factors (small 

heterodimer partner (shp) 

1.4.5.1 FXR nuclear receptor: 

FXR (farnesoid X receptor) belongs to the group of nuclear hormone receptors and functions as 

a transcription factor for which bile acids are naturally endogenous ligands (60). Activated FXR 

in the liver can induce the expression of BSEP and MDR3/Mdr2 for the secretion of BAs and 

phosphatidylcholine, respectively, into the canalicular lumen (61-63). In liver and gut gene 

expression can be altered by bile acids via activation of FXR (Nr1H4 nuclear receptor subfamily 

1 group H, member4), Vitamin D receptor (VDR, Nr1l1), G protein coupled receptor TGR5, and 

other signaling cascades (JNK 1/2, AKT and ERK1/2) (64). In feedback mechanism FXR inhibits 

Cyp7a1 and Cyp8b1 expression via small heterodimer partner (shp) hindering the accumulation 

of bile acids and thereby preventing toxic damage to the liver (65, 66). Evidence has shown that 

mutations as well as polymorphisms in FXR lead to cholestasis. Studies with bile duct ligated 

(BDL) and α-naphthylisothiocyanate rat models of acute intrahepatic and extrahepatic 

cholestasis showed improved liver injury after treatment with GW4064 a synthetic agonist for 

FXR. Hence they suggest FXR agonists may be the best suitable treatment of cholestatic liver 

diseases (67). Also in a chronic cholestatic model induced by 17α-ethinylestradiol, the FXR 

agonist 6-ethyl chenodeoxycholic acid (6-ECDCA) protected cholestasis by enhanced shp and 

reduced cyp7a1, cyp8b1 and NTCP, thus proving its pivotal role in in-vivo (67). In Abcb4-/-  mice, 

transgenic expression of activated FXR in the intestine protected against liver damage, and 

absence of FXR promoted progression of liver disease (68). Recent evidence showed that FXR-/- 

mice develop a pronounced inflammation with high expression of inflammatory genes in the 

liver. Activation of FXR in animal models of non-alcoholic fatty liver diseases demonstrated 
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inhibition of inflammation and fibrosis (69). Growing evidence suggests that, miRNA expression 

is regulated by nuclear receptor (NR) either by directly binding to the promoter region or by 

transcriptional regulation of miRNA expression via NR target genes and interacting with 

regulation of miRNA biogenesis (70-72). Therefore we aimed to elucidate miRNA expression at 

transcriptional level and their involvement in underlying mechanisms that might have major roles 

in liver fibrosis and tumerogenesis. Taken together, nuclear receptors are actively investigated 

because of therapeutic options for cholestatic liver diseases (73). 

1.6 MicroRNAs (miRNAs): 

miRNAs are small non-coding RNA transcripts of about 22–24 nucleotides, which are capable of 

interacting with the 3' untranslated region of coding RNAs (mRNAs), leading to a blockage of 

protein translation and/or mRNA degradation. miRNAs interfere with transcriptional and post-

transcriptional regulation of gene expression. They affect various signalling pathways by acting 

as regulators of gene expression at the translational and transcriptional level (74-77). miRNAs 

play a central role in diverse cellular processes including development, immunity, cell-cycle 

control, metabolism, viral or bacterial disease, stem-cell differentiation, and oncogenesis (77-79). 

In general, miRNAs are transcribed from RNA polymerase II or III in the nucleus and transported 

to the cytoplasm, where they are processed into mature miRNAs. Mature miRNAs can target 

hundreds of genes by either binding to the 3′ or 5′ untranslated (UTR) regions of mRNA. 

 

Figure 4: This diagram depicts miRNA involvment in various molecular mechanisms (modified according 

to Shashi Bala et al. World Journal of Gastroenterology 2009) 
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Emerging evidence suggests that miRNAs are also capable of modulating transcription and 

methylation processes (80, 81). In a short time, miRNA research has received tremendous 

attention due to their fine-tuning roles in almost all biological pathways. Thus, miRNAs regulate 

diverse physiological and developmental processes by controlling levels of specific mRNAs and 

their own expression and processing must be tightly regulated for normal cell function (82, 83). 

Each miRNA could be transcribed and regulated independently, at the transcriptional levels by 

activators and repressors, or at the epigenetic level through DNA methylation (84, 85). The 

expression levels of processing components are also specifically controlled to regulate the 

abundance of mature miRNAs. Variances in any of these processes could lead to tumorigenesis 

or development of other diseases (86). 

miRNA Regulation Note Target 

miR 122 HNF-4α HNF4α binds to the miR122 promoter Hfe; Hvj; CPEB; HCV; 

CAT-1; smarcd1/baf60α 

miR-34a FXR, SHP P
53

 binds to miR-34a promoter, FXR 

interacts with p53 via sHP to regulate 

miR-34a 

 

FoxP1 

miR-29a FXR FXR responsive element in the miR-29a 

promoter, regulated by TGF-β, c-Myc, 

Nf-kB or hedgehog 

 

ski; MCT1; PTEN; CDK6 

miR-146a ER, AR Repressed by estradiol, androgen and 

LPS; LPS induces Nf-kB binding to the 

miR-146a promoter 

ROCK1; TRAF6; IRAK1; 

BRCA1; CD40L; 

STAT1 

miR-221/222 ER, AR Nf-kB, c-JUN, ER and AR bind to the 

miR-221/222 promoter 

P27; kip1; PTEN; 

ERα;PUMA 

miR-26a ER, AR Esterdiol induces miR-26a, which 

reduces PR at mRNA level 

 

EZH2; MTDH 

miR-17-92 

cluster 

ER c-Myc, adiol, binds to the miR-17-92 

promoter induced by estrogen ; p53 and 

sTAT3 bind to the miR-17-92 promoter 

Myc; E2F; HNF1; PTEN; 

B IM; ER; AIB1; cyclin D1 

Table 1. Showing miRNA expression regulated by nuclear receptors (Modified according to Yang and 

Wang Cell & Bioscience 2011) 
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1.6.1 miRNA’s in liver and disease: 

Disease-specific tissue miRNA signatures have been identified in various etiologies such as 

hepatocellular carcinoma (HCC), hepatitis C virus (HCV), hepatitis B virus (HBV), cardiac 

disease, neuro inflammation, rheumatic arthritis (RA), and various cancers (79-81, 87, 88). 

Expression of miR-122 is liver specific and inhibition of miR-122 expression in mice leads to a 

down-regulation of cholesterol and lipid-metabolizing enzymes (89). miR-122 was first identified 

as liver-specific cellular miRNA and is associated with the enhanced replication of HCV by 

targeting the viral 5’ non-coding region (90). Down-regulation of hepatocyte-specific miR-122, 

promoted growth of HCCs in mice, regulated expression of cell cycle components, and 

increased migration of HCC cells and their invasive activities. miR-122 might therefore be a 

suppressor of HCC metastasis (91). 

Endoplasmic reticulum (ER) stress is associated with pathogenesis of many liver diseases. The 

potential role of miRNAs in the hepatic ER stress responses to bile acid and other agents just 

beginns to emerge. Recently, miR-199a has also been proven to regulate ER stress in cancer 

cells (92). Studies have implicated an overexpression of the miR-199 with progression of liver 

fibrosis (93). In general, down-regulation of miRNAs was observed in a feedback mechanism 

that develops during the early phases of liver regeneration (94). miR-199a-5p is believed to be a 

multifunctional miRNA involved in the regulation of many diseases like angiogenesis, cell 

proliferation and autophagy. Dai et al. (92) observed that miR-199a-5p is necessary for the 

modulation of hepatic ER stress progression and may reduce hepatic ER stress by targeting ER, 

chaperones and signal transducers, which may protect the liver from injury.
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2. AIM OF THE STUDY 

Mutations of the Abcb4 gene can cause a wide clinical spectrum of liver diseases ranging from 

neonatal cholestasis to adult liver diseases (95). In spite of our growing knowledge of the 

pathogenesis of liver fibrosis, this subject still requires a lot of attention due to ineffective medical 

therapies. In this situation, bone marrow transplantation (BM-Tx) emerged a better alternative for 

the treatment of hepatic fibrogenesis. In the current study, our intentions were: 

1) reconstitution of Abcb4-/-transporter function. 

2) isolation and purification of CD117+ (c-kit) expressing hematopoietic stem cells from 

whole bone marrow population 

3) investigation of the regenerative potential of desialylated CD117+ stem cells by means of 

cell fusion with recipient mouse hepatocytes in Abcb4-/- mice  

4) the analysis of microarray data to get an overview about the transcriptome with focus on 

hepatobiliary transport  

5) analysis of miRNA data to perceive the underlying molecular mechanism leading to 

hepatic fibrogenesis and tumorigenesis. 
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MATERIALS AND METHODS: 

3. Materials: 

3.1 Chemicals: 

All standard chemicals and reagents were purchased from VWR chemicals (France), Sigma 

Aldrich (Steinheim), Merck (Darmstadt), Roth (Karlsruhe) and Fluka (Steinheim), J.T Backer 

(Netherlands) unless otherwise stated. 

3.1.1 Chemicals for Histology: 

3.1.1.1 Hematoxylin and Eosin (H&E staining): 

 Haematoxylin (Mayers’ acidic, Fa Waldeck)  

 Eosin (Thermo Scientific, Heraeus) 

3.1.1.2 Sirius red staining 

 0.1% Sirius red (0.1 g of Sirius red in 100 ml of picric acid) 

 1 % Acetic acid (1 ml of 100% Acetic acid in 99 ml of distilled water) 

3.1.1.3 Masson goldner staining 

 Weigert’s Hematoxylin solution: 

Solution A: 1 g - hematoxylin, 100 ml - 95% alcohol 

  Solution B: 4 ml - 29% Ferric chloride, 1 ml - Hydrochloric acid (HCl) in dd H2O 

 Ponceau de Xylidine: 0.5 g - ponceau de xylidine, 250 mg - Acid fuchsin, 100 ml - acetic 

acid, 50 ml - distilled water 

 Orange G: 200 mg - Phospho tungstic acid, 50 ml distilled water 

 Light green: 0.1 g - light green, 100 µl - acetic acid, 50 ml - distilled water 

 Methanol (JLU pharmacy) 
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 Isopropanol 

 Xylene 

 Ethanol 

3.1.2 Chemicals for peroxidase / microwave method: (paraffin sections) 

 Stock Solution A: 0.1 M Citric acid (C6H807) = 21.01g (fill up to 1 liter; pH=2.1) 

 Stock Solution B: 0.1 M tri-Na-Citrate dihydrate (C6H5Na3O7 X 2H20) =29.41 g (fill up to 1 

liter; pH=6.0) 

Use: 9 ml of buffer A + 41 ml of buffer B and 500ml of distilled water (pH=6.0) 

3.2 Buffers and solutions used for MACS (magnetic activated cell sorting): 

Common laboratory solutions and buffers were prepared according to the standard lab 

protocols. The buffer solutions required for performing the experiments are listed below. 

3.2.1 MACS buffer for bone marrow cells: 

 0.5% - BSA, 2 mM - EDTA in  1 X PBS - pH 7.2; Sterile filtered and maintained at 4-8°C  

 Biotin-Antibody: biotin-conjugated monoclonal antibodies CD5, CD45R (B220), Cd11b, 

Anti-Gr1 and Ter-119. 

 Anti-Biotin Micro beads: Micro beads conjugated to monoclonal Anti-biotin antibodies. 

 Micro beads conjugated to monoclonal anti-mouse CD117 antibodies (PE conjugated) 

(Miltenyi Biotec) 

Column Max. number of labeled 

cells 

Separator 

MS 107 Mini MACS 

LS 108 Midi MACS 

XS 109 Super MACS 
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Table 2. Columns used for magnetic cell sorting 

3.2.2 FACS buffer: 

0.5% - BSA, 1 X PBS - pH 7.2 

Sterile filtered and maintained the buffer at 4-8°C 

3.3 Hydorxyproline (HYP) assay: 

 Glass tubes Schott Duran 

 Ultra Turrax T18 homogenizer, IKA-Works, USA 

 Sterile needle (B. Braun, Germany) 

 Filter Millex HP (Merck Millipore, Cat. No. SLHP033RS) 

 Syringe, 1 ml (B.Braun, Germany)  

Solutions Used: 

 6N HCL 

Standards used in HYP assay 

 

Concentration Dilution 

640 µg/50 µl (12.8 µg /ml) 1:2 

320 µg/50 µl (6.4 µg/ml) 1:2 

160 µg/50 µl (3.2 µg/ml) 1:2 

80 µg/50 µl (1.6 µg/ml) 1:2 

40 µg/50 µl (0.8 µg/ml) 1:2 



Materials 

17 

 

Table 3. Standards for hydroxyproline assay 

87.2 µl of 50% isopropanol + 12.8 µl of 100 µg/ml of Hydroxyproline were mixed to obtain a 

concentration of 640 ng/50 µl. 

3.4 Buffers for Western blot and gel electrophoresis: 

 Resolving buffer: 2 M Tris (pH 8.8), 20% SDS in dd H2O 

 Stacking  gel buffer: 2 M Tris (pH 6.8), 20% SDS in dd H2O 

 Western blotting buffers: 

 

Anode buffer 1 

 

Anode buffer 2 

 

Cathode buffer 

 

0.3 M Tris, 20% Methanol 

pH (10.4) 

 

25 mM Tris, 20% Methanol 

pH (10.4) 

 

40 mM Aminocaproic acid 

20% SDS, 20% methanol 

Table 4. Buffers used in Western blot 

 10 X Electrophoresis buffer: 10 g - SDS, 30 g - Tris, 144 g - Glycine in 1 liter of dd H2O. 

 TBS buffer: 20 mM - Tris and 137mM- NaCl were dissolved in dd water. pH was adjusted 

to 7.5 with concentrated HCl. 

 TBST buffer/wash buffer: 20 mM - Tris and 137 mM - NaCl were dissolved in dd water. 

pH was adjusted to 7.5 with concentrated HCl then 0.1 % tween 20 was added. 

 5% milk powder in TBST: 5% milk was prepared by dissolving 5 g of milk powder in 

100ml of TBST buffer (w/v) and used for blocking, also for primary and secondary 

antibodies. 

 Stripping Buffer: 15 g - Glycine, 1 g - SDS, 10 ml – Tween 20 in 1 liter of dd H2O and pH 

was adjusted to 2.2 
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 Resolving gel components 

Concentration of the 

resolving gel 
8% 10 % 12 % 15 % 

dd H2O 7.025 ml 6.025 ml 5.025 ml 3.525ml 

30 % Acrylamide 4 ml 5 ml 6 ml 7.5 ml 

4 X Resolving buffer 3.75 ml 3.75 ml 3.75 ml 3.75 ml 

15 % Ammonium per sulphate 

(APS) 
75 µl 75 µl 75 µl 75 µl 

Temed 7.5 l 7.5 l 7.5 l l 

Optimum Separation for > 100 kDa 30-100 kDa 20-30 kDa < 20 kDa 

Table 5. Resolving  gel components 

 Stacking gel components 

 

Concentration of the stacking gel 

 

Volume 

dd H2O 2.6 ml 

30 % Acrylamide 625 µl 

4 X stacking buffer 1,25 ml 

15 % Ammonium per sulphate (APS) 25 µl 

Temed 3.75 µl 

Table 6. Stacking gel components 

3.4.1 Buffers used to check protein concentration: 

 Amido black stain: 

0.25% - Amido black, 45% - MeOH, 45% - dd H2O, 10% - glacial acetic acid 
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 Amido black destain: 

45% - MeOH , 10% - glacial acetic acid , 45% - dd H2O  

 Cellulose acetate dissolving solution: 

80 ml formic acid, 10 ml glacial acetic acid and 1 ml 100%  trichloric acid 

Standards used in amido black assay 

Concentration Dilution 

25 µg/µl 1:2 

12,5 µg/µl 1:2 

6,25 µg/µl 1:2 

3,125 µg/µl 1:2 

1,56 µg/µl 1:2 

0,78 µg/µl 1:2 

Table 7. Amido black standards 

3.6 Antibodies 

Primary antibodies 

Antibodies Dilution/Isotype Manufacturer 

Goat anti mouse GFP+ 1:50/Goat IgG Bio legend 

Rabbit anti CD3 1:50/Rabbit IgG Abcam 

Rat anti CD34 Rat IgG/1:50 Abcam 

Rat anti mouse CD8a 1:50/Rat IgG2a Bio legend 

Rabbit anti CD4  1:50/ Rabbit IgG Abcam 

Goat anti-mouse GFP+ 1:200/goat IgG Rockland 
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Rabbit anti-mouse NTCP & 

OATP 1:200/Rabbit IgG 

Provided by Dr.  B. Stieger 

(Zurich) 

Armenian hamster anti-

mouse CD11c 1:50/Armenian hamster IgG Bio legend 

 

Secondary antibodies 

Antibodies Dilution/Isotype Manufacturer 

Donkey anti goat Alexa568 1:1000 eBio science 

Goat anti rat Alexa568 1:1000 Invitrogen 

Goat anti Rabbit Alexa488 1:1000 Invitrogen 

Table 8. Antibodies used in the experiments 

3.7 Primers list: 

Primer Name Company Catalog number 

CD 8a Qiagen QT00244433 

CD 11c Qiagen   QT00113715 

CD45 Qiagen QT00139405 

F4-80 Qiagen QT00099617 

Ifg Qiagen QT01038821 

IL-10 Qiagen QT00106169 

IL-13 Qiagen QT00099554 

MMP-9 Qiagen QT00108815 
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Table 9. Primers used in PCRs 

3.8 miRNA list 

miRNA Catalog number ID number 

SnoRNA 202 (as control) 4427975 001232 

miRNA199-5p 4427975 002304 

Table 10. miRNAs used in PCRs 

Myeloperoxidase Qiagen  QT01065687 

Tnf-α Qiagen QT00104006 

Abcc3 Qiagen QT00251006 

Abcc4 Qiagen QT01199226 

Bsep Qiagen QT00157752 

Cyp7a1 Qiagen QT00121569 

Cyp7b Qiagen QT01168944 

Fxr(nr1h4) Qiagen QT00105336 

c-Met Qiagen QT00126616 

Hnf-1a Qiagen QT00170975 

Hnf-4a Qiagen QT00144739 

Ntcp Qiagen QT01045177 

Oatp Qiagen QT01065239 

Ostb Qiagen QT00171717 

Shp Qiagen QT00319333 
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 Components and volume used in reverse transcription (RT) miRNA assay 

Component Master mix volume per 15-µl reaction 

10mM dNTPs (with dttp ) 0.15 µL 

Multiscribe Reverse Transcriptase 50U/µl 1.00 µL 

10X Reverse Transcription buffer 1.50 µL 

RNase Inhibitor, 20 U/µl 0.19µL 

Nuclease-free water 4.16 µL 

Total volume 7.00 µL 

Table 11. Components used in reverse transcription (RT) of miRNA assay 

 Components used in qRT-PCR of miRNA 

 

Components 

 

Volume per 20 - µL reaction  

(for single reaction) 

TaqmanR small RNA Assay (20X) 1.00 µL 

Product from RT reaction 1.33 µL 

TaqmanR universal PCR master mix II (2X) 10.00 µL 

Nuclease – free water 7.67 µL 

Total volume 20.00 µL 

Table 12. Components used in reverse transcription (RT) of miRNA assay 

3.9 Kits 

Kit Name       Company 

Bile acid kit       Diazyme 

RNA isolation kit      Qiagen 

cDNA synthesis kit       Bio-Rad 

Micro RNA isolation kit      Qiagen 
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RT (reverse transcription) kit     Applied biosystems 

Micro RNA PCR kit      Applied biosystems 

3.10 General equipment: 

Laminar flow hood      Heraeus 

Mega centrifuge       Beckman 

Mini centrifuge       Hettich 

Microscope       Leica 

Microtome       Leica 

Weighing machine       Sartorius 

Thermo cycler       Biometra 

Western blotting chambers (protein gel)   Biometra 

Nano drop machine       Pecalab 

Spectrophotometer      Thermo 

Gel imager       Camag 

X-ray film developing machine    Curix 60 

RT-PCR machine      Applied biosystems/stratagene 

pH meter       Metrohm 

Incubator       Heraeus 

FACS canto        BD (Becton Dickinson) biosciences 
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4. METHODS 

4.1 Animals: 

The current study was performed with permission of the state of Hessen, Regierungspräsidium 

Giessen, according to section 8 of the German Law for the Protection of Animals and confirms to 

the NIH guide for the care and use of laboratory animals. The BALB/c-GFP+ transgenic mice 

were raised from C57BL/6-TgN (ACTbEGFP+) 1 Osb (Jackson laboratories, Bar Harbor, Maine, 

USA) and crossed back on BALB/c for 10 generations which were kindly provided by Dr. M. Heil 

(Max-Planck Institute, Bad Nauheim, Germany). The BALB/c- Abcb4-/- mice were raised by 

breeding FVB/N knockout mice (Jackson laboratories, Bar Harbor, Maine, USA) with BALB/c 

over 10 generations.  

4.2 Isolation of bone marrow stem cells: 

BALB/c-GFP+ transgenic mice were sacrificed by isoflurane inhalation. Tibia and femur bones 

were collected into RPMI 1640 medium (PAN biotech, Aidenbach, Germany) with 0.01 % FCS 

(Fetal calf serum) and 1 % PS (penicillin streptomycin). The bone ends were tarred and the cells 

were flushed out with a 21G needle (BD Microlance, Spain) and syringe (B. Braun, Melsungen, 

Germany). Single cell suspension was produced by repeated gentle pipetting and then 

transferred into a new falcon tube through 100 µm sterile nylon cell strainer (BD Falcon, USA). 

Cells were centrifuged at 400 x g for 5 min at 4°C. After discarding the supernatant cells were 

resuspended in 1 ml of RPMI 1640 medium. Single cell suspension was produced by repeated 

gentle pipetting and transferred into the new falcon tube through 40 µm sterile nylon cell strainer. 

Cells were centrifuged at 400 x g for 5min at 4°C and resuspended in 1 ml of MACS buffer (PBS, 

pH 7.2, 0.5% BSA, 2 mM EDTA and maintained at 4-8°C). Cell viability was checked with trypan 

blue solution (Life Technologies, Darmstadt) and cells were counted by Neubauer chamber 

(Brandt, Mannheim). Thus isolated bone marrow stem cells were sorted by MACS using 

antibodies against cell surface markers Lin- and CD117+. 

Medium: RPMI 1640  

1% of pencillin streptomycin (PS) 

0.1% of fetal calf serum (FCs) were added and maintained at 4-8°C  
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4.2.1 Lineage depletion by Magnetic Activated Cell Sorting (MACS):  

To enrich CD117+ pluripotent stem cells, mature hematopoietic cells, such as T cells, B cells, 

monocytes/macrophages, granulocytes and erythrocytes and their committed precursors were 

depleted from bone marrow of BALB/c GFP+ transgenic mice. Depletion was performed by 

magnetic labeling of cells with a cocktail of biotinylated antibodies against a panel of “lineage” 

antigens and anti-biotin micro beads (clone: Bio3-18E7.2; mouse IgG1). Cells were centrifuged 

at 300 x g for 10 min and the supernatant was completely aspirated. After washing the cell pellet 

was resuspended in 40 µl of MACs buffer and blocked with the FCR reagent to avoid unspecific 

binding. Cells (10 µl per 107 cells) were incubated with biotin-antibody cocktail and incubated at 

4-8°C for 10 min. Then 20 µl of anti-biotin micro beads (30 µl MACS buffer per 107 cells) were 

added and the cell suspension was incubated for 15 min at 4-8°C. Later cells were washed by 

MACS buffer (1 - 2 ml) and centrifuged at 300 x g for 10 min. Then supernatant was aspirated 

completely and the pellet was resuspended into MACS buffer (up to 108 cells in 500 µl). Washed 

and resuspended cell suspension was loaded onto a MACS column for cell separation. 

Magnetically labeled cells were retained in the column while the unlabeled lineage negative cells 

passed through the column and were collected for further separation. 

CD117+ cell sorting: After depletion of Lin- cells, CD117+ cell sorting was continued. Cells were 

counted to determine the cell number. Once the counting was performed, cells were centrifuged 

at 300 x g for 10 min and the supernatant was aspirated completely. The cell pellet was 

resuspended in buffer (80µl to 107 cells) and anti-mouse CD117 micro beads 20 µl (PE 

conjugated) to 107 cells were added. Cells were mixed by gently tapping in between the 

incubation time (10 min at 4-8°C). Later cells were washed (1 ml of buffer per 107 cells) and 

centrifuged at 300 x g for 10 min. The supernatant was aspirated completely and resuspend in 

500 µl of the MACS buffer up to 108 cells. Separation was performed by loading cell suspension 

onto MACS column according to the number of cells obtained. The magnetically labeled 

CD117+ stem cells retained within the column, which is placed in a magnetic field of MACS 

separator. Thus the cell fraction retained in MACs column was flushed out and the effluent was 

collected as positive (CD117 cells) fraction, after removal from the separator. 



Methods 

26 

 

 

Figure 5: Magnetic activated cell sorting (modified from http://edoc.hu-

berlin.de/dissertationen/hajkova-petra-2002-09-16/HTML/chapter3.html)  

4.2.2 Desialylating of bone marrow cells by neuraminidase: 

Cells were treated with 2U/ml of neuraminidase (N5254, Sigma Aldrich) enzyme to enhance the 

stem cell fusion to the existing healthy hepatocytes (96). This enzyme removes terminal sialic 

acid residues from cell glycoprotein surface and helps to bind with asialoglycoprotein receptor 

(ASGPR) of hepatocytes. To determine the enrichment of CD117+ cells, a suspension of 

positive and negative aliquots was collected and analyzed by flow cytometry. 

4.2.3 Fluorescence activated cell sorting (FACS): 

Cells were washed with FACS buffer (0.5% BSA in 1 X PBS maintained at 4-8°C) and then cells 

were stained with PE (Phycoerythrin) conjugated (10 µl per 106 cells) antibodies, which were 

specific for CD117+ cells. The basic principle involved is an antigen - antibody interaction where, 

PE labelled CD117+ cells were stimulated and recognized by laser light of FACS Canto (Becton 
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Dickinson, Heidelberg). Once sorting was finished cells were ready to transplant into the 

irradiated mice. 

4.3 Transplantation of Hematopoietic (CD117+) progenitor cells: 

At the age of 6 weeks, Abcb4-/- mice were lethally irradiated with (11 Gy, 60Co) in order to 

weaken the immune system and to avoid the immune reactions as well as graft rejections. 

Subsequently CD117+ (4 X 105) stem cells were transplanted into Abcb4-/- mice via tail vein 

injection under aseptic conditions. After transplanting successfully, mice were housed in sterile 

cages and kept under supervision. Body weight and food intake were observed each day. One 

week later, weight was observed every alternate day. Till the date of killing all mice were 

monitored to avoid infections or any other contaminations. On completion of time points that is 2 

and 20 weeks after transplantation, mice were sacrificed to assess liver staging and gading by 

means of histological and serological examinations. 

4.4 Serum transaminases measurement: 

Serum biochemistry was analyzed by measuring the transaminases such as Alanine 

transaminase (ALT), Aspartate transaminase (AST) and Alkaline phosphatase (AP). Blood was 

collected from the vena cava of transplanted mice kept 10 min at room temperature, which 

allowed blood to clot and 20 min on ice. Following incubation on ice, blood was centrifuged at 

2510 xg for 10 min. Then 50 µl of the supernatant was collected into new 1.5 ml Eppendorf tube 

and stored at -80°C for further use. On the day of measurement probes were thawed on ice and 

30 µl of serum taken on to Reflotron (Roche, Mannheim, Germany) strips and measured at 567 

nm after 124 seconds. In case of ALT and AST, the sample was diluted in 1:100, whereas no 

dilution was performed for AP. 

4.5 Liver histology and preparing paraffin sections: 

The livers were harvested and fixed in 1% paraformaldehyde (PFA) at 4° C for overnight, then 

washed for 5 times with 1 x PBS for 20 min. Then the tissue was processed to exclude water 

and the tissue was paraffin embedded (Leica EG 1140H). Sections of 3-5 µm thickness were cut 

on a microtome (Leica RM2165) and left overnight at 37°C. Later sections were kept in dark at 

room temperature and the rest of the paraffin embedded probes was stored at 4°C for future 

evaluations. All the stainings (H&E, Sirius red and Masson Goldner) were performed according 

to standard procedures. 
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4.5.1 Hematoxylin and Eosin (H&E) staining: 

HE staining is most popular because of its usage to diagnose abnormalities in morphology of 

organ tissues. Paraffin embedded sections were incubated for 40-60 min at 60°C and were 

washed in alcoholic solutions like 2 x 10 min and 1 x 5 min Xylol, 2 x 5 min 99.6% Ethanol, 1 x 5 

min 96 % Ethanol, 1 x 2 min 70% Ethanol and 1 x 5 min under tap water. Then the sections 

were incubated in HE (Mayers’ acidic, Fa Waldeck, Germany) solution for 2-4 min and washed 

under tap water for 5 min. Following HE staining the sections were incubated for 15 min in Eosin 

(Thermo scientific, Heraeus,Germany) solution and followed by washing in row of chemical 

reagents such as 2 min in 96% ethanol, 2 x 5 min in isopropanol, 3 x 5 min in xylene. 

Subsequently the tissue sections were covered with glass cover slips with mounting (Medite, 

Pertex, Burgdorf) solution and allowed them to dry. 

4.5.2 Sirius red staining: 

Sirius red staining is specific for collagens. These collagens were highlighted by sirius red and 

make the stain particularly suitable for quantification by image analysis. Sections of liver tissue 

of 3 µm thickness were stained with sirius red in order to analyze collagen fibril deposition in 

Abcb4 knockout mice. Firstly sections were incubated at 60°C for an hour and hydrated using a 

series of alcohol solutions. Xylol - 10 min; 10 min; 5 min, 99, 6%; 90%; 70% - ethanol 5 min in 

each solution, 5min under running tap water. Then probes were left in 0.1% Sirius red (Sigma 

Aldrich, Steinheim) solution for 1 hour and dipped in freshly prepared 1% acetic acid. Thus 

stained sections were treated with a row of ethanol solutions for 1 x 2 min 96% ethanol, 2 x 5 

min Isopropanol, 3 x 5 min Xylene and mount with Pertex. The sections were investigated under 

polarized light microscopy (Leica) and for image acquisition Mirax software was used. 

4.6 Immunohistochemistry: 

Liver tissue was embedded in tissue tec and frozen at -80°C. Prior to cutting sections the probes 

were placed at -20°C overnight. The following day tissue sections were cut with microtome (3 

µm thick) and picked up on microscopic glass slides. Slides were used either directly or stored at 

-20°C until further use. It was ensured that the sections were neither thawed until final 

processing, nor dried up during the pre-treatment and dyeing. Nonspecific, purified IgG Isotype 

was used as controls, which were immunized from the same host of antibody purified. 
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4.6.1 Immunostaining of cryosections: 

In order to quantify the expression, 3 µm frozen tissue sections were fixed in acetone/methanol 

for 2 minutes at -20°C min and washed with PBS buffer. Unspecific binding sites were blocked 

for 30 min with 5% bovine serum albumin and 0.1% cold fish skin gelatin (Sigma-Aldrich, 

Munich, Germany) in PBS with 0.1% Triton (Roth, Karlsruhe, Germany) and 0.05% Tween 20 

(Serva, Heidelberg, Germany). The antibodies used in immunohistological staining are shown (in 

table 8 ) and fluorescent conjugated secondary antibodies Alexa fluor 488 and Alexa 588 were 

purchased from Molecular Probes (Eugene, OR, USA). Nucleus staining was performed with 

DAPI (4´,6-diamidino-2-phenylindole dihydrochloride, Sigma Aldrich, Munich, Germany). 

Specificity of all immunofluorescence staining was proved using equally concentrated unspecific 

Isotype IgG instead of primary antibodies. In case primary antibodies are of mouse origin, we 

have utilized a specific blocking reagent called mouse on mouse (Vector Biolabs) to prevent 

unwanted background. 

4.6.2 Immunostaining of paraffin sections: (peroxidase/microwave method) 

As in histology liver tissue sections were deparaffinized at 60°C for 1 h and plunged in 

descending order of alcohol row 2 x 10 min 1 x 5 min Xylol, 2 x 5 min in 99.6% ethanol, 1 x 5 

min in 96% ethanol, 1 x 2 min 70% ethanol and 1 x 5 min under running tap water. Slides were 

allowed to cook with citrate buffer for 1 min for 10 times and colled at room temperature about 

an hour. The sections were washed with 2 x 5 min PBS; 1 x 5 min tap water. By heat treatment 

with citrate buffer antigens were unmasked that have been masked by formalin fixation. This 

was followed by 10 min blocking with a 1:10 diluted H2O2: methanol mixture and washed 2 x 5 

min PBS; 1x 5 min tap water with gentle agitation. Then tissue sections were blocked with 2.5% 

normal horse serum for 20 min (prevents excessive background) and subsequently washed 

briefly with PBS and incubated with primary antibody for overnight at 4°C (in humid chamber). 

Immunostaining was performed against membrane proteins Ntcp and Oatp using rabbit anti Ntcp 

(1:200 Zurich, Switzerland) rabbit anti Oatp (1:150 Zurich, Switzerland). The antibodies were 

kindly provided by Dr. B. Stieger (Zurich). 

After primary antibody incubation, slides were washed again 4 x 5 min with PBS, and then 

incubated with secondary antibody for 1 h at room temperature under humid conditions. Later 

slides were decanted, washed and gently swiped. Followed by vector VIP (catalog number SK-

4600) incubation 2-3 min to achieve optimum colour, observed under microscope and washed 
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under tap water for 5 min subsequently counterstained with methylene green/hematoxylin. After 

counterstaining tissue sections were washed in a series of alcohols such as 96% Ethanol - 2 

min, Isopropanol - 2 x 5 min, Xylene 3 x 5 min. At the end slides were mounted with cover slips 

with the help of Pertex solution. 

4.7 Hydroxyproline assay: 

Hydroxyproline is a cyclic amino acid and a key component of collagen. By acid hydrolysis it is 

possible to determine the hydroxyproline content of the liver sample (quantified and to calculate 

there from the total collagen content (10). Increased hydroxyproline content in tissue samples is 

thus an indicator of increased collagen deposition. 

4.7.1 Sample preparation: 

Liver tissue (50 mg) was weighed and put on dry ice until further processing. Added 1 ml of 6N 

HCl, homogenized and incubated for 16 h at 110°C in an incubator. Taken out the content with a 

sterile needle and syringe and transferred into 1.5 ml Eppendorf tube throughthe filterr and 

centrifuge for 5 min at 14000RPMm and transferred 15 µl 2 x (double value) in 1.5 ml of 

Eppendorf tube. 15 µl of methanol added to each sample and mixed well before keeping on to 

theheatert block. Then the samples were heated about 20 min at 40°C and gassed 

simultaneously with nitrogen. The resulting pellet was either used directly or stored at -20°C for 

further use. In the meantime, standards (table 3) were prepared and later the pellet was 

dissolved in 50 µl of 50% isopropanol. 100 µl of 0.6% chloramine T solution was added to the 

sample (50 µl) and to the standards, vortexed immediately and incubated at room temperature 

for 10 min. It was Mixed shortly after adding 100 µl of freshly prepared Ehrlich’s reagent and 

incubated at 50°C for 45 min. At the end samples were measured at 570 nm (Fusion, Packard) 

and concentration was calculated in parallel with the standards (µg/g liver). 

4.8 Semi quantitative polymerase chain reaction (PCR): 

4.8.1 RNA isolation: 

Mouse liver tissue of 20-30µg was homogenized with 600 µl of the RLT buffer to which 

mercaptoethanol (10 µl/ml) was added. The homogenate was centrifuged at maximum speed for 

3 min and carefully extracted the supernatant. 1 volume of 70% ethanol was added to the lysate, 

and then mixed gently. Up to 700 µl of the sample was transferred (including any precipitate) to 

RNeasy mini spin column and placed in a 2 ml collection tube and centrifuged at ≥ 8000xg for 15 
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sec and discarded the flow through. Then 700 µl of 2 x RW1 buffer was added (pink columns) 

and centrifuged at ≥ 8000xg for 15 sec and discarded the flow through. Later 500µl of RPE 

buffer was added to the RNeasy spin column and centrifuged at ≥ 8000xg for (1 x 15 sec and 1 x 

2 min). The RNeasy spin columns were placed in a new 1.5 ml collection tube and added 30 µl 

of RNase free water directly on to the spin column membrane and centrifuged at ≥ 8000xg for 1 

min to elute the RNA. After elution the DNA digestion was performed. 

4.8.2 DNA digestion: 

Genomic DNA contamination was eliminated by TURBO Dnase digestion. One µl of 10X 

TURBO Dnase buffer and one µl of TURBO DNase was added to the RNA. The reaction mixture 

was incubated at 37°C for 20-30 min. Then the reaction mixture was resuspended well in Dnase 

inactivation reagent and incubated 5 minutes at room temperature by mixing occationally. The 

total reaction was centrifuged at 10,000 x g for 1.5 min and transferred to a fresh tube. Thus 

obtained RNA was measured for concentration and purity by Nano drop at 260/280 nm and the 

quality of the RNA was evaluated by agarose gel electrophoresis. 

4.8.3 cDNA synthesis: 

For reverse transcription (RT), extracted RNA (1 µg) was converted to cDNA using the iScript 

cDNA synthesis kit as of end reaction volume 20µl (5 X iScript reaction mix-4µl; iScript reverse 

transcriptase-1µl; Nuclease free water + RNA (1 µg) template - 15 µl). Total reagents were then 

incubated in thermo mixer at 25°C for 5 min followed by 30 min at 420C where reverse 

transcription takes place and for 5 min at 85°C to inactivate reverse transcriptase. Using r18s as 

the housekeeping gene quality of cDNA was checked by qRT-PCR. 

4.8.4 Quantitative real time PCR (qRT-PCR): 

Real time PCR was performed with stratagene and quantification of Cts (threshold cycle) was 

done by Maxpro software. For PCR amplification 6.3 µl of SYBR ROX (12.5 ml Syber green+100 

µl of Rox), 4.45 µl of water, 1.25 µl of Qiagen primers and 0, 5 µl of cDNA were used. Samples 

were taken as duplicates and PCR conditions were as follows. 
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Chosen an appropriate annealing temperature according to primers used (table 9). The 

expression of all genes was normalized to r18s to determine the relative mRNA expression (Δ 

CT). The fold change (2 Δ ΔCT) was calculated. Among all genes, expression of few genes was 

analysed at protein level by Western blot. 

4.9 Western Blot: 

4.9.1 Liver lysates preparation: 

Liver tissue of 10 mg wasweighed on dry ice and was mixed in 400 µl of Laemmli buffer (1:4 

dilutions) by short vortexing. The tissue was, incubated for 10 min in thermo mixer at 99 oC 

following centrifugtion for 10 min at ≥ 8000 x g. The supernatant was transferred into a new 1.5 

ml eppendorf and loaded immediately on the gel. The liver tissue was normalized by adding 

Laemmili buffer according to weight (W/V). Protein concentration was measured by Amido black 

stain method. Starting with 5 mg/ml BSA in Laemmli series of 1:2 dilutions in Laemmli (100µl 

BSA+100µl of Laemmli) were made. One µl of each standard (as shown in figure 7) and the 

samples to be estimated were added to a strip of cellulose acetate membrane and the spots 

were allowed to air dry. Dried membrane was stained with amido black reagent for 10 minutes 

under shaking condition. Then the membrane was de-stained in destaining buffer until the 

background is nearly white. Thus obtained membrane was utilized to examine the intensities of 

the test protein by comparing the standard spot intensities. Each spot was carefully punched out 

and dissolved in 400µl of cellulose acetate dissolving solution and the protein concentration was 

measured at 630nm and the concentration was calculated according to the standard curve. 

Carefully punched out the each spot and dissolved in 400µl of cellulose acetate dissolving 

solution. According to the obtained concentration, 20 µg/µl of protein was loaded on to gel to 

perform SDS PAGE for Western blot analysis. 

72°C 
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4.9.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot: 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis was prepared according to 

Laemmli (1970). It is particularly useful for separation of proteins according to size (molecular 

weight), the method can also be used to determine the relative molecular mass of proteins. 

According to molecular weight of the protein, gels were prepared (table 5,6). Then proteins were 

transferred onto the polyvinylidene fluoride membrane (PVDF) membrane by semi-dry method. 

Unspecific binding sites were blocked with 5% milk powder by dissolved in 1x TBS-T buffer for 1 

h at room temperature. Incubation with respective primary antibody was performed at 4°C for 

overnight. Next day blots were washed with 1xTBS-T buffer and incubated with horse radish 

peroxidase (HRP) conjugated secondary antibody. After washing with 1x TBS-t, blot was placed 

in ECL reagent for a short time to detect HRP signal by enhanced chemoluminescence. Then 

the blots were exposed on to the X-ray film (CL-xposureTm film Thermo scientific, Belgium) in a 

dark room. Later blots were reprobed for housekeeping gene α-tubulin as internal control. The 

antibodies used for immunobloting were mentioned in table 8. 

4.10 Measurement of serum total bile acids: 

Bile acids are metabolized in the liver; hence they act as a marker for the normal liver function. 

Serum total bile acids (TBA) were measured with the help of TBA assay kit (DIAZYME DZ042A-

K, Dresden). Firstly 4 µl of sample and standard was pipetted into two different cuvettes, to this 

270 µl of R1 buffer was added. Similarly 4 µl of water and 270 µl of R1 buffer were added into 

another cuvette which was used as blank. Then all the samples were incubated at 37° C for 3 

min. After the incubation, 90 µl of R2 buffer was pipetted into the cuvettes and mixed well.  

Immediately measured the absorbance at 405 nm for 2 min (made autozero of the blank at same 

absorbance). Optical density (OD) values obtained by (ΔA405 = O.D at 120 sec – O.D at 60 

sec). Using the following formula total amount of bile acids concentrations were determined. 

Sample ΔA405nm/min−Blank ΔA405nm/min 

Sample (TBA, µ mole/L) =        X Standard 

Standard ΔA405nm/min − Blank ΔA405nm/min 
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The following equation represents the principle of the assay 

  

4.11 miRNA Analysis: 

4.11.1 miRNA isolation: 

For isolation of miRNA, 20-30 mg of mouse liver tissue was used and miRNeasy mini Kit 

(Qiagen, Cat. no. 217004, Hilden, Germany) was used for extraction. To disrupt the tissue 700µl 

of QIAzol lysis buffer was added and homogenized. Homogenate was incubated at 15-25°C, for 

5 min. To the lysate 140 µl of chloroform was added and mixed vigorously for 15 sec. Following 

2-3 min of incubation at room temperature the lysates were centrifuged for 15 min at 12,000 X g 

at 4°C. The upper aqueous phase was gently collected in to a new tube avoiding the interphase 

contamination. To this 525 µl of 100 % ethanol was added and mixed thoroughly by pipetting up 

and down. Thus obtained 700 µl of the sample was transferred into RNeasy mini column which 

is attached to collection tube. Then the sample was centrifuged at 8000 X g for 15 sec at room 

temperature. Flow through was discarded and 700 µl of RWT buffer was added to the column 

and centrifuged for 15 sec at 8000 X g and discarded the flow through. To the column 500 µl of 

RPE buffer was pipetted and centrifuged again at 8000 X g for 15 sec. This step was repeated 

for 2 times and the RNeasy mini column  was placed into new 2 ml collection tube to centrifuge 

at full speed for 1 minute to allow to dry the column membrane. Finally 30-50 µl of Rnase free 

water was pipetted directly onto the RNeasy mini column membrane and centrifuges for 1 

minute at 8000 X g to elute the RNA. Thus eluted RNA was measured on Nano drop to check 

the concentration and stored at -80°C for future use. 

4.12.2 Reverse transcription of miRNA: 

Reverse Transcription (RT) was performed with extracted RNA (1 µg/µl) by using TaqMan® 

MicroRNA Reverse Transcription Kit (Applied Biosystems, Cat.No. 4366596, Germany). The 

components required for preparation RT master mix were given (table 11). For amplification 7 µl 

master mix, 3 µl of 5 X RT primer, and 5 µl of RNA were used. Samples were mixed gently and 

briefly centrifuged. The thermal cycler conditions were 30 min 16 °C, 30 min 42°C, 5 min 85°C 

and hold at 4°C. 
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4.12.3 miRNA quantitative real time PCR (qRT-PCR): 

The expression of different mature miRNAs was verified by real-time PCR analysis, using a 

TaqMan® Micro RNA Assays (Applied Biosystems, Cat.No.4427975, ID 002304 Germany). The 

components used to prepare the qRT-PCR mix were as follows (table 12). In each case specific 

RT primers were used to each miRNAs which were listed in table 6. The real-Time PCR 

reactions were performed in duplicate in a total volume of 15 μl. The following temperatures 

were used to program the PCR machine 50°C for 2 min, an initial step at 95°C for 10 min 

followed by 40 cycles each of 15 s at 95°C and then 60 s at 60 °C (Applied Biosystems StepOne 

Plus). The expression of all miRNAs was normalized to RT-001232 (life technologies, cat.no 

4427975, Darmstadt) as a control miRNA to determine the relative miRNA expression (Δ CT) 

and the fold change (2 Δ ΔCT) was calculated. 
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5. Results: 

Bone marrow transplantation (BM-Tx) demonstrated both, enhanced and reduced effects on 

liver fibrogenesis (97). In our previous studies, we could demonstrate that whole bone marrow 

transplantation (BM-Tx) improves liver fibrosis via induction of Th1 switch as the underlying 

mechanism of the fibrolytic effects and upregulated MMP-9 (Matrix metalloproteinase-9) activity 

(15). 

In the present study, our aim was the reconstitution of Abcb4 transporter. Therefore, we sorted 

and transplanted desialylated CD117+ hematopoietic progenitor cells in Abcb4-/- mice by via tail 

vein injection. Allogenic BM-Tx (i.e BALB/c-GFP+ to BALB/c-Abcb4-/-) was performed for two 

time periods to understand the short and longterm effects of BM-Tx on liver physiology. 

 

In addition, we investigated the regenerative potential of CD117+ cells and to get an insight of 

the genes that were involved in inflammatory signaling and cytokine production in Abcb4-/- mice. 

Microarray data from BM-Tx of liver tissue revealed a set of genes (e.g Ntcp and Oatp), which 

play a pivotal role in the hepatobiliary transport system at transcriptional level (98). ABCB4 

transport phospholipids across the hepatocyte canalicular membrane. Thereby, demonstrating 

that defects in transporter expression and function can cause cholestasis (57). Therefore, we 

further evaluated the expression analysis of hepatobiliary transporter genes during the course of 

disease. 

5.1 Transplantation of CD117+ hematopoietic stem cells in Abcb4-/- mice 

5.1.1 Isolation, purification and transplantation of CD117+ hematopoietic stem 
cells: 

CD117+ stem cells were isolated and purified from the tibia and femur of BALB/c-GFP+ 

transgenic murine bone. The lineage depleted cells were counted and further sorted for CD117+ 

stem cells with the help of cell surface markers. Sorted cells were counted and treated with 

7AAD (7 aminoactinomycin-D) to analyse the dead cell amount and purity by FACS (figure 6). 
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We tried to increase the accumulation of bone marrow cells (BMCs) directly into the liver through 

the interaction between hepatic asialoglycoprotein receptor and desialyted BMCs. Desialylated 

BMCs were obtained by treating with neuraminidase, which removes the terminal sialic acid from 

glycoprotein located on the cell surface. These desialyted BMCs were transplanted into 6 weeks 

old BALB/-c Abcb4-/- (allogeneic) mice. 

A)       B) 

 

Figure 6: Cell purity assessed by flow cytometry. The above pictures show CD117+ stem cell with A) 

Isotype control. B) CD117+ bone marrow stem cells, which are labeled with Phycoerythrine-A conjugated 

antibodies. In quarter Q 4-3 of panel B indicates 70% cells positive for CD117+. 

5.1.2 Infiltration of GFP+ cells into BALB/c-Abcb4-/- mice: 

In order to identify whether transplanted GFP+ cells are recruited into recipient Abcb4-/- mice, 

immunostaining for GFP antigen was performed and the staining revealed that lot of GFP+ cells 

were infiltrated around portal fields (figure 7B). Sham control means non-transplanted Abcb4-/- 

mice, whereas BM-Tx means CD117+ BMC transplanted Abcb4-/- mice. 
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Figure 7: Immunostaining of transplanted GFP+ bone marrow cells: The staining provides BM 

engraftment of transplanted cells. A) Sham control showing no infiltration of cells B) BM-Tx mice showing 

infiltration of GFP+ cells, which were dark brown in colour marked by black arrows. (Original magnification 

- 400 x, scale bar=25µm). 

5.1.3 Cell fusion of GFP+ stem cells of donor mice and host hepatocytes: 

 

Figure 8: Cell fusion of transplanted GFP+ BM cells with hepatocytes from recipient mouse: The 

staining shows hepatocytes from recipient mouse fused with GFP+ cells, which were of purple colour. The 

fusioned cell is surrounded by a white dashed line (Original magnification-1000 x, scale bar=10µm). 
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Cell fusion is the principal mechanism by which hematopoietic stem cell (HSC)-derived 

hepatocytes arise (37, 38). We performed immunohistology to identify whether cell fusion 

occurred between transplanted GFP+ CD117+ stem cells and recipient Abcb4-/- mouse 

hepatocytes. The staining revealed that, fusion of transplanted cells with host hepatocytes was a 

rare event. Lots of GFP+ cells infiltrated portal fields (figure 8). 

5.1.4 Serum biochemistry: 

Under normal physiological conditions, serum transaminases were released into the 

bloodstream, and elevated transaminases indicate liver damage. Routine serum biochemistry 

was performed to assess the liver function. In 2 (8) weeks group, after BM-Tx serum levels of 

alanine transaminase (ALT) were significantly increased, whereas aspartate transaminase (AST) 

was not altered. Alkaline phosphatase (AP) levels was slightly higher in sham controls, whereas 

aminotransferase levels were not altered in 20 (26) weeks (long term) old Abcb4-/- mice 

compared to sham control (figure 9). 

 

Figure 9: Serum ALT, AST, and AP levels in sham and allo Tx mice. 6 - 10 mice per group were analyzed 

independently; gray column: sham control; dark column: allogeneic BM-Tx. 
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5.2 FIBROSIS 

5.2.1 Total collagen level analysis: 

Unlike in previous studies (where whole bone marrow transplantation revealed reduced hepatic 

collagen) the current CD117+ stem cell transplantation showed significantly upregulated hepatic 

collagen accumulation after 2 (8) weeks of transplantation. Whereas, at 20 (26) weeks no 

significant enhancement was observed after allogeneic BM-Tx, which was normalized to sham 

(figure 10). 

 

Figure 10: Hydroxyproline content for measurement of total collagen: Hydroxyproline (HYP) analysis 

revealed significant increases of hepatic collagen levels in 2 (8) weeks after BM-Tx (allogeneic) **p=0.002. 

Analysis was performed independently containing 6-10 mice per group; gray column: sham control; dark 

column: allogeneic BM-Tx. 

5.2.2 Periductular collagen levels reflected by Sirius red staining: 

Histopathological anomalies of the liver after BM-Tx was analysed by Sirius red staining, which 

is used to assess the accumulation of collagen levels. The stainings revealed increased fibrotic 

tissue content over a period of time. Presence of collagen was minimal in 8 weeks sham control, 

whereas, 2 (8) weeks BM-Tx increased collagen fibrils around portal fields were observed 

(Figure 11B). However, 20 (26) weeks after BM-Tx severe phenotype of portal field fibrosis was 

observed compared to 26 weeks sham control mice (Figure 11D). 
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Figure 11: Long term BM-Tx induced collagen levels in Abcb4
-/-

 liver. Sirus red staining for the liver 

collagen shows A) 8 weeks sham control (untreated Abcb4
-/-

 mice) B) 2 (8) weeks BM-Tx mice (CD117+ 

stem cells transplanted). The lower panel shows C) 26 weeks sham control (untreated Abcb4
-/-

 mice) D) 

20 (26) weeks BM-Tx mice (CD117+ stem cells transplanted) collagen fibrils were stained in dark red 

colour, which were indicated by black arrows. (Original magnification -20 x, scale bar-100µm) 

5.2.3 Matrix metalloproteinase-9 (MMP-9) activity after BM-Tx: 

MMP-9 plays an important role in the context of hepatic fibrosis and fibrolysis. Hence, we 

assessed the MMP-9 activity by qRT-PCR (figure 12A) and Western blot analysis (figure 12B). 

At the age of 2 (8) weeks MMP-9 activity was significantly upregulated after BM-Tx at both 

transcriptional and protein level. Whereas, at 20 (26) weeks after transplantation no significant 

changes were observed. 
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Figure 12: A) In the above picture mRNA expression of matrix metalloproteinase-9 (MMP-9) after bone 

marrow transplantation was indicated. Following CD117+ BM-Tx, MMP-9 transcription was significantly 

increased (**p=0.002) whereas, in 20 (26) weeks old mice we didn’t observe any significant changes. 6-10 

mice per group were analyzed independently; gray column: sham control; dark column: allogeneic BM-Tx. 

A) Following mRNA expression, protein level expression was revealed a transiently prolonged expression 

of matrix metalloproteinase-9 (MMP-9) in 2 (8) weeks after bone marrow transplantation was detected by 

Western blotting. 



Results 

43 

 

5.2.4 Acute expression of transforming growth factor (TGF-β) after BM-Tx: 

TGF-β known to be a potent cytokine, which is mainly involved in liver disease progression (99). 

In order to analyze the TGF-β contribution in liver fibrosis and liver injury, its expression analysis 

was performed by qRT-PCR. Our results indicated a significant up-regulation of TGF-β 2 (8) 

weeks after BM-Tx (figure 13). But later, 20 (26) weeks after BM-Tx, significant changes were 

not observed in comparison to sham controls. 

 

Figure 13: Transforming growth factor-β expression: Significantly increased expression (*p=0. 04) of 

TGF-β 2 (8) weeks after BM-Tx. whereas, in 20 (26) weeks the expression was not regulated when 

compared to sham control. 

5.3 INFLAMMATION 

5.3.1 Hepatic infiltration of inflammatory cells after BM-Tx:  

Histopathological features of the liver after BM-Tx were investigated by HE stainings. 8 weeks 

after BM-Tx partial infiltration was observed whereas, after 26 weeks massive accumulation of 

infiltrated inflammatory cells appeared around periportal areas (figure 14B & 14D). These 

observations indicated an enhanced infiltration of inflammatory cells around periportal fields after 

BM-Tx compared to sham controls (8 w and 26 w). 
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Figure 14: Infiltration of inflammatory cells around periportal fields H&E staining. The upper panel 

shows A) 8 weeks sham controls (untreated Abcb4
-/-

 mice) B) 2 (8) weeks BM-Tx mice (CD117+ stem 

cells transplanted). The lower panel shows C) 26 weeks sham control (untreated Abcb4
-/-

 mice) D) 20 (26) 

weeks BM-Tx mice (CD117+ stem cells transplanted). Clusters of infiltrating cell population around portal 

fields were stained in blue colour, which are indicated by black arrows. (Original magnification 20X 

100µm)  

5.3.2 Acute hepatic infiltration of inflammatory cells 2 weeks after BM-Tx: 

In order to characterize the infiltrates of inflammatory cells, transcriptional levels of specific 

cellular surrogate markers of inflammation were assessed. Hepatic gene expression of 

myeloperoxidase (surrogate for neutrophils) was significantly enhanced at 2 (8) weeks & down 

regulated at 20 (26) weeks after BM-Tx. In contrast, a marker for macrophages F4/80 did not 

show any significant changes. CD45 (pan leucocyte surrogate marker) was increased 

significantly 2 weeks after BM-Tx (normalized to sham). Declined mRNA levels of all three 

surrogate inflammatory markers were observed in due course of 2 (8) to 20 (26) weeks of BM-Tx 

(figure 15). 
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Figure 15: mRNA expression of inflammation relevant genes. This result depicts Pan leukocyte 

marker CD45 gene expression significantly elevated 2 (8) weeks after BM-Tx, (*p=0.02) neutrophil 

granulocyte marker myeloperoxidase (MPO) gene expression was significantly elevated at 2 (8) and down 

regulated at 20 (26) weeks after BM-Tx, (**p=0.002 and *p=0.03) compared to sham. All data were 

normalized to r18s (6-10 mice per group were analyzed independently). The mean SEM fold increase to 

sham is shown. 

5.3.3 Th2 and Th1 response after CD117+ BM-Tx: 

Th1 switch after bone marrow transplantation was analyzed by measuring the expression of IL-

13, IFN-γ, IL-10 at transcription level by quantitative real time PCR. And the results unveiled that 

Th2 cytokine interleukin 13 (IL-13) and interleukin 10 (IL-10) were not altered at 2 weeks after 

BM-Tx. Interestingly, Th1 cytokine interferon gamma (IFN-γ) was significantly enhanced at 2 (8) 

and 20 (26) weeks after BM-Tx indicates a Th1 response after BM-Tx (figure 16). 
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Figure 16: T-cell polarization influenced inflammation and fibrosis. The figure depicts mRNA 

expression of the Th2-associated interleukin 13 and 10 (IL -13 IL -10) significantly increased at 20 (26) 

weeks after BM-Tx (*p=0.05 and *p=0.03). Th1 cytokine IFN-γ was significantly enhanced at 2 (8) and 20 

(26) weeks after BM-Tx (**p=0.001 and *p=0.02). All data were normalized to r18s. The mean SEM fold 

increase to sham is shown (6-10 mice per group were analyzed independently). 

5.3.4 Prolonged expression of tumor necrosis factor (TNF-α) after BM-Tx:  

In response to inflammation macrophages secrete TNF-α, which plays a major role in tissue 

inflammation. Therefore, the mRNA expression of TNF-α was measured. The results implicated 

a significant increase of TNF-α expression, both at 2 (8) and 20 (26) weeks after transplantation 

(figure 17). 

 

 

 

 

 

 

Figure 17: mRNA expression of 

TNF-α in tissue inflammation. This 

picture represents TNF-α expression, 

which was significantly elevated in 

both 2 (8) and 20 (26) weeks after BM-

Tx, (*p=0.01) compared to sham 

control. 
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5.3.5 Donor derived dendritic cells (DCs): 

Earlier studies indicated that the hepatic microenvironment programs hematopoietic progenitor 

differentiation into dendritic cells. Hence, we investigated the possibility of dendritic cell 

differentiation in our BM-Tx model by co-immunostaining. Our results depicted, that co-staining 

of dendritic cell marker CD11c and GFP+ stem cells did not occur (figure 18D). Taken together 

these results indicate that transplanted CD117+ progenitor stem cells did not differentiate into 

dendritic cells. 

 

Figure 18: Co-immunostaining of GFP+ and DCs: The above picture shows A) CD11c (DCs marker) 

which was highlighted in dark red colour represented by yellow arrows; B) GFP+ cells were shown in 

green colour indicated by white arrows; C) DAPI staining for nuclei D) Overlay picture of GFP+ and 

CD11c. Scale bar-50µm. 
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5.3.6 Involvement of dendritic cells in tissue inflammation: 

Dendritic cells (DC) are antigen presenting cells with an emerging role in hepatic inflammation 

inducing fibrosis. To check the involvement of DC’s in inflammation of Abcb4-/- mice liver after 

2(8) and 20 (26) weeks of BM-Tx, we performed Immunohistochemistry for CD11c, which is a 

DC marker. The obtained results indicated an increased amount of DCs observed around 

periportal areas after BM-Tx when compared to sham control in both age groups (figure 19a & 

19b). 

 

 

A 

D 

a) 

b) 
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Figure 19a: DC infiltration in 2 (8) weeks after BM-TX: A) DCs (CD11c marker) in sham control B) & E) 

DAPI staining for nuclei C) & F) overlay of CD11c and DAPI; D) DCs in BM-Tx mice were in green colour 

represented by white arrows. Original magnification 40x.Figure 19b: DC infiltration in 20 (26) weeks 

after BM-TX: A) DCs (CD11c marker) in sham control B) & E) DAPI staining for nuclei C) & F) overlay of 

CD11c and DAPI; E) DCs in BM-Tx mice were in green colour represented by white arrows Original 

magnification 40 x. 

5.3.7 Infiltration of inflammatory cytotoxic T (CD8+) cells:  

T-cells are another important cell population mainly involved in inflammatory stimulation by 

profibrotic cytokines (1). Hence, we performed co-immunostaining of cytotoxic T-cells (CD8+) 

with T-cell receptor (CD3+). Co-immunostaining results displayed more number of CD8+ cells 

around periportal areas after BM-Tx at both ages (figure 20a &20b). Additionally, with the 

progression of age following BM-Tx increased amounts of CD8+ staining were observed (figure 

20b)  

 

a) 
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Figure 20a: CD8
+
 infiltration in 2 (8) weeks after BM-Tx: A) & D) CD3+ (T-cell receptor/TCR) in green 

colour (sham control & BM-Tx)  B) & E) CD8+ (cytotoxic cell marker) cells in red colour (sham control & 

BM-Tx) C) & F) overlay of CD8+ and CD3+ in sham control and BM-Tx; Nuclei were stained with DAPI. 

Original magnification 40 x. Figure 20b: CD8
+
 infiltration in 20 (26) weeks after BM-TX: A) & D) CD3+ 

(T-cell receptor/TCR) in green colour (sham control and BM-Tx). B) & E) CD8+ (cytotoxic cell marker) 

cells in red colour (sham control & BM-TX). C) & F) overlay of CD8+ and CD3+ in sham control and BM-

Tx; Nuclei were stained with DAPI. Original magnification 40 x. 

5.4 Bile acid transporters in Abcb4-/- mice 

5.4.1 Bile acid (BA) concentrations in serum of Abcb4-/- mice: 

The toxic bile is considered to trigger the cascade of pathogenic events involved in liver damage 

of Abcb4-/- mice. Hence we measured concentrations of total bile acids (TBA) in serum of 8 w 

and 26 w old Abcb4-/- mice in comparison to wild (wt) mice. Dramatic differences were observed 

between wt and mutant mice such as significant elevation of total BA concentrations in both 8 w 

(6.88 µmol/l) and 26 w (40.33 µmol/l) mutant mice compared to wt (concentration below 

detection level) type mice (figure 21). 

b) 
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Figure 21: Bile acid concentrations in serum of Abcb4
-/-

-mice were raised in comparison to wild 

type mice. Bile acid concentrations were significantly enhanced in both 8 w (*p=0.02) and 26 w 

(**p=0.001) compared to wt mice, where BA concentrations were below detection levels. Dark gray bars 

represent Abcb4
-/-

-mice. All data are expressed as mean ± SEM for n=10 mice in each group. 

5.4.2 Expression analysis of basolateral bile acid transporter Na+ - taurocholate 

cotransporting polypeptide (Ntcp) in Abcb4-/- mice: 

Na+ - taurocholate cotransporting polypeptide (Ntcp) is the major BA uptake transporter in 

hepatobiliary system. Analysis of Ntcp mRNA transcript levels showed significant down 

regulation of in both 8 (2.4 fold) and 26 weeks (3.5 fold) of Abcb4-/- mice compared to wild type 

(figure 22A). Whereas Ntcp protein levels were unaltered at the age of 8 weeks and but 

significantly down regulated at the age of 26 weeks in comparison to wild type Abcb4 mice 

(figure 22B). Immunohistochemistry revealed lowered expression of Ntcp membrane protein 

both in 8 and 26 weeks Abcb4-/- mice (figure 22C,D,E&F). 



Results 

52 

 

 

 



Results 

53 

 

 

Figure 22: Reduced NTCP expression in Abcb4
-/-

-mice: A) This picture showing significant down-

regulation of Ntcp gene expression in Abcb4
-/-

-mice at both the ages of 8 and 26 weeks (*p= 0.006) and 

(*p=0.009) where n = 5-10. Dark gray bars represent the wild type mice, and black bars represent Abcb4
-/-

 

mice. All the data were normalized to r18s. B) Western blot analysis of Ntcp in wt and mutant mice. The 

expression of Ntcp was semi-quantified by band intensity-analysis at 8 and 26 weeks. Where n = 5-10 

animals per group. Dark gray bars represent the wild type mice, and black bars represent Abcb4
-/-

 mice. 

C, D, E & F) Immunohistochemical analysis of Ntcp expression of liver sections of 8 and 26 weeks old 

wilde type and Abcb4
-/-

-mice. Red arrows depict expression of membrane protein Ntcp (Original 

magnification 20 x, bars 100 µm). 

5.4.3 Expression analysis of basolateral bile acid transporter organic anion 

transporter polypeptide Oatp1a1 (slco 1a1) in Abcb4-/- mice: 

Another important basolateral bile acid transporter is organic anion transporter Oatp1a1 (slco 

1a1). The uptake analysis was assessed by qRT-PCR and the results showed significantly 

down-regulated mRNA expression (figure 23A). While protein expression of Oatp 1a1 was not 

detectable in both, 8 and 26 w Abcb4-/- mice, compared to wild type (figure 23B). Histological 

analysis, demonstrated an elevated expression of Oatp 1 a1 membrane protein in wild type 

compared to Abcb4-/- mice (figure 23C,D,E&F). 
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Figure 23: Complete loss of Oatp expression in Abcb4
-/-

-mice. A) The hepatic Oatp1a1 mRNA 

expression at 8 weeks and 26 weeks significantly reduced in Abcb4
-/-

 mice when compared to wild type wt 

mice. Dark gray bars represent the wild type mice, and black bars represent Abcb4
-/-

 mice. All data are 

normalized to r18s, (**p<0.001). B) Western blot analysis of Oatp expression at 8 and 26 weeks. Dark 

gray bars represent the wild type mice, and black bars represent Abcb4
-/-

-mice (**p=0.001). C, D, E, F) 

Immunohistochemical analysis of Oatp expression from liver sections of 8 and 26 weeks of wild type and 

Abcb4
-/-

-mice. Red arrows depict expression of membrane protein Oatp. Original magnification 20x, 

bar=100 µm. Where n = 5-10 animals per group. 

5.4.4 mRNA expression analysis of bile salt export pump (Bsep): 

Bile salt export pump (Bsep; ATP-binding cassette subfamily B, member 11) functions as the 

major bile salt export transporter, translocating bile salts across the canalicular membranes into 

the bile. In order to investigate the bile acid excretion we analyzed mRNA expression of Bsep 

and the results revealed the significant down regulation of Bsep expression at 8 weeks (2 fold) 

and gradually increased by 26 weeks (0.35 fold) in Abcb4-/- mice compared to wild type mice 

(figure 24). 
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Figure 24: Canalicular membrane transporter expression: A) Hepatic mRNA expression of bile salt export 

pump (Bsep) in 8 (*p=0.019) weeks and 26 weeks mice of wild type and Abcb4
-/-

 mice which was 

analyzed by qRT-PCR. Dark gray bars represent the wild type mice, and black bars represent Abcb4
-/-

 

mice. All data are normalized to r18s. 

5.4.5 Transcript levels of alternative basolateral transporters: 

mRNA expression of alternative bile acid efflux transporters such as, organic solute transporter 

beta (Ost-b), multidrug resistance associated protein 3 (Mrp3/Abcc3) and 4 (Mrp4/Abcc4) were 

measured by qRT-PCR. Transcript levels of Abcc3 expression was significantly down-regulated 

(2.3 fold) in Abcb4-/- compared to wild type at the age of 8 w (figure 25B). Similarly Abcc4 mRNA 

expression (figure 25C) was down-regulated in 26 w (3 fold) and Ost-b was reduced in 8 w (2.4 

fold) and increased after 26 w in Abcb4-/- mice when compared to wild type mice (figure 25A). 
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Figure 25: Alternative BA transporters are less expressed in young Abcb4
-/-

-mice. A) Hepatic mRNA 

expression of organic solute transporter beta (Ost-b) in 8 weeks and 26 weeks wild type and Abcb4 
-/-

 

mice, which was analyzed by qRT-PCR. B) & C)  mRNA expression of multi drug resistance protein 3 and 

4 (Abcc3 & Abcc4). The expression of the gene of interest was normalized against r18S RNA. Dark gray 

bars represent the wild type Abcb4 mice, and black bars represent Abcb4
-/-

 mice. Where n = 5-10 per 

group. All data are represented as mean ± SEM. Significance (p < 0.05) is indicated by *. 

5.4.6 Unaltered gene expression of key bile acid transporter regulators: 

To investigate the mechanism of Abcb4-/- mice induced suppression of Cyp7a1, the mRNA 

expression of farnesoid X receptor (FXR) and small heterodimer partner (SHP), which have 

been shown to regulate Cyp7a1, was quantified in livers of both wt and Abcb4-/- mice following 

BM-Tx. FXR gene regulation was unaltered in both 8 and 26 weeks (figure 26A). Shp mRNA 

level was significantly lower in 8 weeks (2 fold) and no regulation at 26 weeks was observed in 

Abcb4-/- mice compared to wt type (figure 26B). Whereas, the mRNA expression of Cyp7a1 was 

significantly upregulated (4 fold) at the age of 8 weeks and was unaltered at 26 weeks in Abcb4-/- 

compared to sham controls (figure 26C). 
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Figure 26: Key regulators of BA transporters on transcriptional level: Gene expression of bile acid 

(BA) regulation nuclear receptor genes farnesoid X receptor (FXR or Nr1H4), SHP were quantified using 

total hepatic RNA from wild type and Abcb4-/- mice of 8 and 26 weeks age. A) and B) mRNA expression 

of FXR and SHP. Data were normalized to against r18S RNA and presented as mean ± SEM (n = 5 –10 & 

, *p=0.015). Dark gray bars represent the wild type Abcb4 mice, and black bars represent Abcb4
-/-

 mice. 

C) Cyp7a1 gene expression is induced in young Abcb4
-/-

-mice. The expression of the rate-limiting Cyp7a1 

mRNA was significantly enhanced 2 weeks and no changes were observed 20weeks after BM-Tx in 

Abcb4
-/-. 

mice. Statistically significant differences (**p=0.001) compared to the control. Where n = 5-10 

animals per group. 

5.4.7 Transcription analysis of Hepatic nuclear factors (HNF-4α and HNF-1α): 

HNF-4α gene expression was significantly down-regulated by 2.2 fold in 8 weeks and by 1.8 fold  

in 26 w old Abcb4-/- mice (figure 27A). Similarly, HNF-1α gene expression was significantly 

down-regulated 2-fold only in the 26 weeks old Abcb4-/- mice 20 weeks after BM-Tx (figure 27B). 

These results directly correlate with the down-regulation of Ntcp expression in the Abcb4-/- mice. 

C 
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Figure 27: Gene expression of transcription factors Hnf-1α and Hnf-4α was reduced in Abcb4
-/-

mice. The expression of HNF-4α and HNF-1α was measured by quantitative real time PCR and 

normalized to 18 s RNA expression. Significant decrease of mRNA expression of HNF-4α at both 8 weeks 

and 26 weeks (*p=0.04 & **p=0.001) and down regulation of HNF-1α only at 26 weeks (*p=0.02) was 

shown. All data are expressed as mean ± SEM. Where n = 5 -10. Dark gray bars represent the wild type 

Abcb4 mice, and black bars represent Abcb4
-/-

 mice. 

5.4.8 Elevated miR-199a-5P expression in Abcb4-/-: 

Bile acid induced hepatocellular stress was shown to be down-regulated by microRNA-199a-5p 

(100). Hence, we investigated the expression levels of miR-199a-5P in mice. Interestingly, the 

expression of miR-199a-5P was significantly up-regulated 6 fold in 8 weeks and 7 fold in 26 

weeks old Abcb4-/-. Hence, these results implicating that the expression of stress regulatory 

markers such as miR-199-5p might play a protective role in Abcb4-/- mice following BM-Tx 

induced hepatocellular damage (figure 28). 
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Figure 28: Hepatic miRNA-199-5p expression was analyzed by qRT-PCR and normalized to SnoRNA 

202 (as a control). Dark gray bars represent the wild type mice, and black bars represent Abcb4
-/-

 mice. All 

data are expressed as mean ± SE for n = 4 mice in each group. Statistically significant difference between 

the wild type and mutant Abcb4
-/- 

mice was observed, **p< 0.002. 
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6. Discussion: 

Abcb4-/- mice represent a well-characterized model for sclerosing cholangitis and represent 

several key morphological aspects of PSC (20). Since the etiology of sclerosing cholangitis 

remains unclear, this model represents an attractive approach to investigate potential underlying 

disease mechanisms. A better understanding of the basic pathogenic mechanisms of chronic 

immune mediated cholangiopathy is essential for developing new diagnostic, prognostic as well 

as therapeutic tools for these disorders. Several rodent models for chronic immune-mediated 

cholangiopathies such as PSC are available. Unfortunately till date, no animal model exhibits all 

features of PSC (102, 103). Models which are induced by bacterial cell components or colitis fill 

the gap of the association between IBD and cholangiopathies (101). Drugs or xenobiotics 

induced bile duct injury, via 3,5-diethoxycarbonyl-1,4-dihydrocollidine or litocholic acid, lead to 

biliary fibrosis or even cirrhosis through a direct toxic or immune mediated injury (101). 

6.1 What is already known about this subject 

Due to the disrupted phospholipid excretion Abcb4-/--mice develop pericholangitis, periductal 

fibrosis with ductular proliferation and finally sclerosing cholangitis. This defect results in an 

increase of free non-micellar bile acids and more hydrophobic "toxic" bile (20, 102, 103). As a 

consequence, mice develop histological changes resembling human PSC. This makes it the 

most valuable knockout-model for this type of cholestatic disorders. Since there is an urgent 

need for new medical treatment strategies in human PSC, this model has often been chosen as 

an approach for testing novel therapeutics. Furthermore, existing therapeutics (e.g. norUDCA) 

need clinical studies and a determination of the safety and efficacy of norUDCA (the principle of 

side chain–shortened bile acids) in the treatment of human cholangiopathies. Stem cells serve 

as another attractive target for liver diseases with end stage fibrosis. 

Interestingly, till date, literature reporting the therapeutic benefit of stem cell transplantation to 

cure chronic liver disease is still controversial since both a reduction in hepatic fibrosis and an 

increase in BM-derived fibrogenic cell pools has been shown by different experimental 

approaches (96, 106). In our previous studies, we have proven that bone marrow transplantation 

improves hepatic fibrosis in Abcb4-/- mice via Th1 response and matrix metalloproteinase activity 

(10, 15) The transiently enhanced inflammation after BM-Tx described in this study reflects the 

enhanced expression of IFN-γ, a major Th1 cytokine, while IL-13, representing the Th2 

response, remained unaltered. In agreement with others, our observation suggests that BM-Tx 



Discussion 

62 

 

induces a switch towards the anti fibrotic Th1 response which is known to restrain the pro fibrotic 

Th2 activity (104). Furthermore, MMP-9 expression showed a strong positive correlation with 

IFN-γ but not with IL -13, thereby strengthening the hypothesis that the BM-Tx-induced Th1 

response was responsible for the enhanced proteolytic activity and thus for the long-term 

amelioration of hepatic fibrosis. Thus, the Th1 response upon BM-Tx is leading to an increased 

expression of anti-fibrotic IFN-γ. Prolonged MMP-9 activity from cellular infiltrates (mainly 

neutrophils) occured within the regions of hepatic fibrosis. This enhanced MMP activity may 

therefore be responsible for the long-term amelioration of hepatic fibrosis (15). 

6.2 Current study findings 

With the aim of further expanding the therapeutic application of specific bone marrow derived 

stem cells (CD117+), we evaluated whether transplantation of a specific bone marrow derived 

stem cell fraction CD117+ (c-Kit) might be able to regenerate healthy hepatocytes, which carries 

Abcb4 genes to regulate phospholipids transportation normally, which in turn improves the liver 

fibrosis in Abcb4-/- mice. CD117+ (c-Kit) is an important cell surface marker to identify 

hematopoietic stem cell from bone marrow. Donor derived hematopoietic stem cell are able to 

differentiate into hepatocytes by means of cell fusion with recipient mouse (Fah-/-) hepatocytes 

(38, 39). Our previous results provide that whole BM-Tx is capable of improving hepatic fibrosis 

and inflammation on long term (i.e. after 20 (26) weeks). In the current study, we focused on cell 

fusion between the transplanted bone marrow cells with existing host hepatocytes of recipient 

mice (39). 

The hydroxyproline content was significantly higher in 2 weeks after BM-Tx mice (Figure 10). 

Simultaneously sirius red staining reveals enhanced collagen fibrils over a period of time (i.e 20 

(26) weeks after BM-Tx). 

6.3 cytokines in fibrotic and inflammatory stimuli 

It was well known that TGF-β stimulates the production of tissue inhibitors of metalloproteases 

(TIMP’s) and plays a prominent role in progression of liver fibrosis through multiple molecular 

mechanisms (105). Transcriptinal lavels of TGF-β is significantly enhanced only  after 2 (8) 

weeks of transplantation indicated the profibrogenic activity. But 20 (26) weeks after BM-Tx no 

significant changes were observed compared to sham control. Over recent years, several 

studies have emphasized the crucial role of hepatic infiltration of neutrophils and macrophages 

following hepatocyte transplantation, which is driven by cytokines and chemokines (106). The 
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acute infiltration of inflammatory cells such as macrophages, neutrophils and leukocyte 

populations were found by hepatic gene expression at transcriptional level in Abcb4-/- mice, hints 

the stimulation of profibrotic factors. As inflammation with leukocytes and cytokines release are 

known as triggers of hepatic fibrosis (107). Therefore, acute infiltration of inflammatory cells 

producing pro-fibrotic factors could lead to development of stronger fibrosis in the liver of 

transplanted Abcb4-/-mice. 

On the other hand, It  has been shown that TNF-α plays a major role in tissue inflammation, 

extra cellular matrix remodelling and liver fibrosis (108, 109). Significantly increased TNF-α 

expression (figure 17) might be one of the major causes of infiltration of cells after BM-Tx 

(CD117+). Subsequently hematoxylin and eosin (HE) staining (figure 14) also showed intense 

accumulation of inflammatory cells around periportal fields in later stages (after 20 (26) weeks) 

compared to sham control. It has been discribed that the activation of neutrophils and 

macrophages is an initial response to TNF-α secretion after hepatocyte transplantation (106). 

The release of TNF-α by macrophages might have been also stimulated by neutrophils and may 

be capable of inducing the expression of chemokines by parenchymal cells (110). In this way, 

increased hepatic TNF-α expression could induce enhanced in liver inflammation following cell 

transplantation. 

T- cell polarization known to play key role in liver fibrosis (111) and Th1 or Th2 polarization 

depends upon the host response to a infection or a injury (112). Earlier studies demonstrated 

that IL-4 and IL-13 can progress fibrocyte differentiation towards a fibrogenic phenotype (113). It 

has also shown that, the IL-13 is a dominant cytokine of fibrosis (114) and also large amounts 

IL-10 production leads to liver fibrosis (115). The mRNA expression of Th2 cytokines (IL-10 and 

IL-13) were significantly enhanced at 20(26) weeks (figure 16) indicating stronger fibrosis after 

transplantation. On the other hand several studies indicated the anti-fibrotic activity of Th1 

cytokine (IFN-γ) (15, 111). Anti fibrotic acivity of Th1 (figure 16) was declined with ongoing age 

which correlates with Th2 cytokine response. Thus, it seems to be Th1 fibrolytic action might 

restrained by the significantly enhanced (figure 16) Th2 profibrotic cytokines (IL-10 and IL-13).  

6.4 Matrix metalloproteinase 

MMPs and TIMPs play a central role in matrix homeostasis and remodelling processes during 

hepatic fibrogenesis and fibrolysis. MMP-9 was expressed by CD45+ leukocytes, 

myeloperoxidase, neutrophil granulocytes and CD34+ fibrocytes. Apart from these cells, stellate 
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cells and portal fibroblasts have been described as a source of MMP-9 secretion (15). 

Higashiyama and co-workers observed the expression of MMP-9 and MMP-13 by BM-derived 

cells during fibrolysis.  Sakaida et al. demonstrated MMP-9 expression by GFP+ BM derived 

donor cells after BM-Tx in carbon tetrachloride-induced liver fibrosis. From our observervation 

prolonged MMP-9 activity (figure 12) couldn’t help any anti fibrotic effect. Hence, increased 

MMP-9 activity is not enough to resolve the fibrosis in CD117+ BM-Tx treated Abcb4-/- mice. 

6.5 Dendritic and cytotoxic T-cell infiltration 

As well Dendritic cells (monocyte subsets) are believed to be play a crucial role in hepatic 

inflammation and fibrosis (116). Based on these findings, we wondered whether grafted cells 

might differentiate into DCs´(dendritic cells). Since it has been shown that unique hepatic 

microenvironment programs Lin- CD117+ hematopoietic progenitor differentiation into regulatory 

DCs. These DCs are responsible for maintaining liver tolerance (117). Hence, we performed co-

immunostaining of grafted (GFP+) cells and host hepatocyte. The results (figure 18) proved that 

our speculation was wrong, but we have observed a higher amount of DCs around the portal 

areas. While it is known that DCs arise either from CD34+ bone marrow progenitor cells or 

CD14+ monocytes (118). Whereas, CD34+ cells were shown to be derived from bone marrow in 

Abcb4-/- mice (10). However, our co-immunostaining results indicate that observed DC’s are not 

from GFP+ donar derived. The fibrotic dendritic cells have a marked capacity to induce hepatic 

stellate cells, NK cells and T cells to mediate inflammation, proliferation and production of potent 

immune responses. Importantly, these proinflammatory and immunogenic effects of fibrotic 

dendritic cells were contingent on their production of TNF-α (119). However, in Abcb4-/- mice 

DC’s are not donar derived but with unknown molecular mechanisms DC’s might involving in 

liver fibrosis. 

After dendritic cells, we focused on hepatic T-cell infiltration. Most of the infiltrated cells were 

identified as cytotoxic (CD8) T-cells. Because, CD4/CD8 rich infiltration results in pronounced 

periductal inflammation. This inflammation results in enhanced kuffer cells (KCs) with induced 

intrahepatic production of proinflammatory and profibrogenic cytokines (e.g TNF-α, IL-1β, TGFβ-

1) in Abcb4-/- mice (1). Similar effect was observed by immunohistochemistry staining of CD8 

cells in our Abcb4-/- model. Stainings confirmed that accumulation of inflammatory T-cells and 

susequent T-cell receptors were more with ongoing age (Figure 20). Thus, the enhaced 

periductular inflammation is due to storonger infiltration of cytotoxic T cells around periportal 

fields. 
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In continuation of this study, we have analysed the microarray data of chemokine and cytokine 

receptors of inflammatory cell population. During this analysis our attention was attracted by bile 

acid transporter expression. Since bile acid toxicity is the major cause of sclerosing cholangitis  

characterized by biliary obliteration, inflammation of biliary tree and biliary cirrhosis (120)  

6.6 Hepatobiliary transporters 

The growing knowledge on the transcriptional regulation of hepatobiliary transport system is a 

key for understanding the pathophysiology and underlying molecular mechanisms of cholestasis 

(121). In the case of cholestasis-mediated injury, bile duct epithelial cells (BDECs) rather than 

hepatocytes are the primary target of damage, bile reflux being the major inducer of this type of 

injury (99). Therefore, in this study we used Abcb4-/- mice to investigate whether disruption of 

phospholipid transporter may cause transcriptional alterations at the basolateral and canalicular 

membrane transporters. For this reason we analyzed gene expression of BA-uptake transporters 

(Ntcp, Oatp), canalicular transporter (Bsep), alternative basolateral transporters (Ost-b, 

Abcc3/Mrp3, and Abcc4/Mrp4), bile acid synthetic enzyme (Cyp7a1), nuclear receptor (FXR), 

short heterodimer partner (SHP) and hepatic nuclear factor (HNF-4α, HNF-1α). 

6.7 Enhanced serum BA concentration 

Altered phosphatidylcholine homeostasis in the liver might lead to the accumulation of toxic bile 

acids in the blood and exaggerate the bile acid toxicity of the liver. From our observations, total 

bile acid concentrations in the serum were significantly increased at both 8 w and 26 w of age in 

the Abcb4-/- mice compared to wild type. Accumulation of bile acids in the serum was markedly 

enhanced with the disease progression in Abcb4-/- mice (figure 21). In line with this finding, 2 

weeks old Abcb4-/- mice showed leaky tight junctions and concomitant regurgitation of bile acids 

and accumulation of bile acids in the serum (1). 

6.8 Bile acid uptake at basolateral side of Abcb4-/- mice 

The main hepatocellular bile acid uptake transporter is Na+ taurocholate Co transporter (Ntcp), 

was shown to be down regulated in various cholestatic liver diseases and represents an 

important protective regulatory step to prevent further bile acid uptake by hepatocytes (123, 

124). From our data, a significant down-regulation of the major hepatocellular uptake system for 

bile acids Ntcp in 26 w Abcb4-/- mice (figure 22) and serum BA concentrations raised in parallel, 

we hypothesize that hepatocellular BA uptake is reduced with progression of disease. Ntcp 

expression is controlled by a complex network of nuclear receptors (FXR, RXR) and hepatic 
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enriched transcription factors (55, 125) such as, bile acid depepromoterP induction has been 

shown to interfere with RXRα: RXRα activation of the Ntcp promotor, thus, reducing Ntcp gene 

expression (122). In addition, organic anion transporting polypeptide (Oatp a1) another bile acid 

up-take transporter has been shown to be  down-regulated in BDL (bile duct ligated) rat model, 

suggesting that down-regulation of organic anion transporting polypeptide seems less 

pronounced than that of Na+-dependent taurocholate co-transporting polypeptide. 

Nevertheless, Oatp1a1  could contribute to a decreased uptake of potentially toxic bile acids or 

organic anions in this situation. Whereas our data showed that Oatp 1a1 expression (figure 23) 

was impaired completely in mutant Abcb4-/-suggesting hepatic uptake of toxic BAs were 

hindered completely at Oatp1a1 system. 

It is well known that Abcb4-/ mice are not capable of excreting phospholipids into bile and 

spontaneously develop bile duct injury. Our data showed significant downregulation of Bsep 

(figure 24), which might be a result of spontaneous bile duct injury from potential toxic bile acid 

and in parallel significant up-regulation of Cyp7a1 a rate limiting enzyme in BA synthesis hints 

toxic BA accumulation in 8 w Abcb4-/- mice might alter the expression of Bsep. The tendency of 

enhanced Bsep expression supports an adaptive response, which was clearly demonstrated by 

the reduced Ntcp expression in 26 w Abcb4-/- mice. It is reported that Bsep expression during 

obstructive cholestasis is relatively well preserved compared with other membrane transporters 

and may lessen the extent of liver injury produced by bile acid retention, particularly when 

cholestasis is prolonged, thereby supporting our observation in 26 weeks old Abcb4-/- mice. In 

addition, induction of Bsep by bile acids via FXR seems to operate as an adaptive mechanism 

under these conditions by accumulating bile acids and promoting their own export into bile (123). 

6.9 Alternative basolateral efflux transporters 

Under normal physiological conditions alternative basolateral transporters (such as Mrp3/Abcc3, 

Mrp4/Abcc4, Ostα/β) are expressed at very low levels in hepatocytes (57). During obstructive 

cholestasis up-regulation of multi drug resistance protein 3(Mrp3) was observed in hepatocytes 

and cholangiocytes of rat liver (124). As we observed the tendency of Ost-b is higher in 26 w 

Abcb4-/- mice (figure 25) suggesting that Ost-b may play a role in the retrograde bile acid 

transport with increasing severity of disease. Much of our knowledge in cholestatic conditions, 

bile acid retention in the liver results in enhanced expression of Ostα/β at the sinusoidal 

membrane, where it is in position to facilitate extrusion of toxic bile acids and other sterols into 
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the circulation as part of the adaptive protective response to cholestatic liver injury (125, 126). 

Substrates for Abcc3 (MRP3/Mrp3) include sulfated and nonsulfated bile salts, bilirubin 

glucuronides, 17β-glucuronosyl estradiol, and leukotrienes (127-129). However, rat Mrp3 is 

markedly up-regulated in the liver following bile duct obstruction (124, 130). But the Abcc3 

expression is found to be significantly decreased in 8w Abcb4-/- mice representing Mrp3 

expression in hepatocytes, which vary between species (131, 132). Mennone et al. showed that 

serum bile acid concentrations are lower in Mrp4 knockout mice than in wt CBDL (common bile 

duct ligation) mice presumably owing to impaired secretion of bile acids over the basolateral 

hepatocyte membrane (133). However, we couldn´t find a significant change in Mrp4 expression. 

6.10 Regulation role of Nucear receptor (FXR) and short hetero dimer partner 
(SHP) 

The genes encoding for organic anion uptake, canalicular export and alternative basolateral 

export in liver are regulated by a complex interacting network of nuclear factors (HNF1,3,4) and 

nuclear receptors (FXR, SHP) (57). FXR plays a prominent role in the feedback repression of BA 

synthesis by reducing the expression of cholesterol 7α hydroxylase (CYP7A1) via SHP (65, 66). 

In our Abcb4-/- mice model, gene regulation of FXR was unaltered at both 8 and 26 weeks (figure 

26A) compared to wt controls. However, SHP expression was significantly down-regulated 

(figure 26B) compared to wild type at the age of 8 weeks correlates with significant increase of 

Cyp7a1 expression (Figure 26C) in 8w Abcb4-/- mice, since shp is the target gene of FXR which 

is a key regulator in feedback mechanism of BA synthesis. It is well known that bile acids are 

natural ligands of farnesoid X receptor (FXR) (60), and that FXR induces the expression of short 

heterodimer partner (SHP) (65, 66). However, in vitro studies in primary rat hepatocytes have 

also demonstrated the possibility of c-JUN/AP-1 mediated activation of the SHP promoter via the 

JNK1 pathway, which in turn suppressed cholestrol 7α hydroxylase expression (122). In 

addition, activation of FXR in the liver can induce the expression of BSEP and MDR3/Mdr2 for 

the secretion of BAs and phosphatidylcholine, respectively, into the canalicular lumen (60-62). 

Loss of orphan nuclear receptor shp increases sensitivity to liver injury from obstructive 

cholestasis, which was induced by BDL (134). 

6.11 Hepatic nuclear factors (HNF-4α and HNF-1α) 

Bile acids have been shown to suppress HNF-4α transcription through SHP independent 

mechanisms (135, 136). These effects could explain reduction of HNF-1α and subsequent Ntcp 

expression despite low SHP levels. Our findings clearly demonstrated that transcriptional levels 
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of HNF-4α and HNF-1α expression (Figure 27) were significantly reduced in later stages (26- 

weeks), which successfully meet the SHP independent pathway in down-regulating the mRNA 

expression of Ntcp. Recently, an HNF4 binding site in the rat Ntcp promotor overlapping with the 

RXRα:RXRα response element has been identified, indicating that SHP may also repress rat 

Ntcp via reduced HNF4 activity (137, 138). Findings in HNF1-/- and conditional HNF4-/- mice with 

reduced Ntcp, Oatp1 (Oatp1a1) and Oatp2 (Oatp1a4) expression (139, 140), indicate a role of 

HNF1 and HNF4 as central positive regulators of these basolateral bile acid uptake systems 

responsible for constitutive gene expression. However, the human OATP2 gene contains an 

HNF-1α binding site in its promotor region (141). Thus, HNF-1α appears to be the master 

regulator of basolateral Ntcp and Oatp expression. Of interest, HNF1α is also able to negatively 

regulate its own expression and that of HNF-4α by a negative feedback loop (142).  HNF-1α 

expression in turn depends on HNF-4α expression and is reduced under condition HNF-4α of 

reduced HNF-4α activity (136, 143, 144). 

6.12 miRNA-199-5p in Abcb4-/- mice 

Micro RNAs role in the process of cellular pathways that attenuate hepatic ER stress induced by 

bile acids- and thapsigargin (TG) stimulated cultured hepatocytes, as well as in the liver of bile 

duct ligated mice have been the focus of recent studies. In this study it has been shown that bile 

acid can induce the de novo expression of miR-199-5p most likely through JNK/AP-1 pathway. 

AP-1 induced miR-199a-5P then directly targets the 3´UTRs of GPR78, IRE1 α (100). According 

to this, we also examined miR-199a-5p as one of the most abundant miRNAs in hepatocytes 

and found it elevated in Abcb4 mutant mice in comparison to wild type (figure 28). This means 

miR-199a-5p might protecting hepatocytes from bile acid induced stress via different molecular 

mechanism, which needs to by elucidate in future studies. 

6.13 Limitations of the study 

Compared to our previous BM-Tx studies, we have come across certain limitations in the 

present study of CD117+ BM-Tx such as, 

Intially we used to isolate a few amount of CD117+ progenitor cells. After few standardisation 

experiments, we had overcome this limitation. Another major drawback was after CD117+ cell 

transplantation some of the mice were dead due to unknown reasons. Although we had an 

expertise animal take carers. Due to the death of the animals our animal expeiments were 
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delayed for a while. In the mean time we thought of isolating liver derived CD34+ fibrocytes, but 

we couldn´t get any success due to lack of proper markers. 

Abcb4-/- mice transplanted with CD117+ did not show any significant changes in liver cell 

integrity. Infiltrated multinucleated GFP+ hepatocytes demonstrate fusion of transplanted cells 

with host hepatocytes was a rare event. Hence, CD117+ BM-Tx might be not a suitable cell 

fraction to treat the liver fibrosis. Prolonged MMP-9 activity alone was not enough to restrain the 

liver fibrosis. 

6.14 Conclusion 

In conclusion, the results of the present study demonstrate that the fusion of transplanted BM-

cells to host hepatocytes was a rare event (figure 8). The frequency of spontaneous fusion 

resulting in bone marrow derived hepatocytes (BMHs) is very low, but it is conceivable that 

induced cell fusion may achieve the efficiency necessary for the treatment of genetic diseases 

(145). Moreover the inflammatory effects observed in the present study were enhanced after 

allogeneic BM-Tx. The influx of inflammatory cells around intrahepatic bile ducts after irradiation 

and subsequent allogeneic BM-Tx (but not after irradiation alone) is a well-characterised 

phenomenon (146). Recently it was demonstrated that genetic drift in mouse inbred strains had 

a significant impact on the allo-reactive immune response caused by altered MHC antigens 

(147). This might explain the immune reactions and the enhanced effects after allogeneic BM-

Tx, although GFP+ donor mice and Abcb4-/- mice bred with the same genetic background 

(BALB/c). 

In addition, our results clearly demonstrated that the basolateral and the canalicular membrane 

transporter gene regulation are altered in chronically injured liver of BALB/c-Abcb4-/--mice. 

Hence, modulation of transporter function may represent a potential target for therapy.
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Abbreviations: 

Abcb4   ATP binding cassette subfamiliy B member 4 

ABCG 5/8  ATP binding cassette subfamiliy G member 5/8 

ALT    Alanine transaminase 

AST   Aspertate transaminase 

AP   Alkaline phosphatase 

ATP  Adenosine triphosphate 

BA   Bile acids 

BM   Bone marrow 

BM-Tx   Bone marrow transplantation 

BSEP   Bile salt export pump 

cDNA  Complementary deoxyribonucleic acid 

Cyp7a1   Cholesterol 7-α hydroxylase a1 

ECM   Extra cellular matrix 

FACS   Flourescence activated cell sorting 

FXR   Farnesoid X receptor 

HSC   Hepatic stellate cells 

HSC       Hematopoeitic stem cells 

HNF-1α  Hepatic nuclear factor 1α 

HNF-4α  Hepatic nuclear factor 4 

IGF-1   Insulin like growth factor 

KC  Kupffer cells 
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MACS   Magnetic activated cell sorting 

MMP   Matrix metalloproteinases 

MRP3   Multidrug-resistance associated protein 3 

MRP4  Multidrug-resistance associated protein 4 

MSC  Mesenchymal stem cells 

NR  Nuclear receptor 

norUDCA  nor Ursodeoxycholic-acid 

NTCP   Sodium taurocholate co-transporting polypeptide  

OATP   Organic-anion transporter 

Ost α/β  Organic solute transporter α/β 

PC   Phosphotidyl choline 

PL   Phospholipids  

PSC   Primary sclerosing cholangitis 

α- SMA  Alpha smooth muscle actin 

TBA   Total bile acids 

TIMP   Tissue inhibitor metalloproteinase 

TNF-α   Tumor necrosis factor 

TGF-β   Transforming growth factor 

Th1&Th2  T helper cells 

Wt  wild type 
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