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Abstract
This work shows that the connected component Ξ0(𝑆3) of the standard tight contact
structure in the space of (tight) contact structures on 𝑆3 that are fixed at one point
has the homotopy type of a point.
The problem is transferred to a family of vector fields on 𝑆2 using Giroux’s theory
of surfaces in contact manifolds. Their singular points are treated via 3 types of
neighbourhoods. A deformation of contact structures is described that deforms
the family of vector fields and eliminates these neighbourhoods. Building on this
construction an algorithm is given that deforms a loop of contact structures in Ξ0(𝑆3)
until all spheres are convex surfaces with respect to each contact structure. In this
situation a homotopy of this loop to the constant one can be constructed.
Via the Serre fibration

Diff(𝑆3) → Ξ(𝑆3)

whose fibre over 𝜉 ∈ Ξ(𝑆3) is the group of contactomorphisms Cont(𝑆3, 𝜉) the
statement implies that every loop of diffeomorphisms of 𝑆3 that fixes a 2-plane in
the tangent space of one point is homotopic to a loop of contactomorphisms of the
standard contact structure 𝜉𝑠𝑡.
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Introduction

Contact structures were introduced by Sophus Lie in his work on
‘Berührungstransformationen’ (contact transformations) in 1896, but
he traces the origins back even further.

Their ubiquity has not been noticed until the early 1970s as Lutz
and Martinet discovered that there are contact structures on any closed
3-manifold. The importance of contact structures in the theory of
classical mechanics became apparent after Gromov’s influential work
in 1985 and the following rise of their older even-dimensional sibling,
symplectic geometry.

For a more detailed account on the history of contact structures than
this introduction will and can contain I would like to refer the reader
to the book by Geiges [Gei08], without which no historical overview of
contact structures could be complete.

A contact structure is a maximally non-integrable hyperplane field in
the tangent space of a manifold of odd-dimensions. Contact structures
occur naturally on those submanifolds of codimension 1 in symplectic
manifolds that are transverse to a Liouville vector field. Such sub-
manifolds arise as energy hypersurfaces in phase spaces of classical
mechanical systems such as the much studied 3-body problem.

Symplectic and contact structures are alike in the sense that there
are Darboux theorems: As are symplectic structures, contact structures
are locally indistinguishable, any two points in contact manifolds have
isomorphic neighbourhoods.

One can still ask about their global structure. Bennequin [Ben83]
discovered that contact manifolds whose contact structure takes a
prescribed form near an embedded 2-disc, an overtwisted disc, are of a
different kind than those who do not admit an overtwisted disc. The
latter ones are called tight contact manifolds. In 1989, Eliashberg
[Eli89] showed that the overtwisted contact structures have a degree of
flexibility and their isotopy classification coincides with their homotopy
classification as tangent plane fields.
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Introduction

Tight contact structures are both less flexible and more rare. In fact,
one can always construct an overtwisted contact structure from a tight
one using a Lutz twist, but the converse direction is in general not
possible. For the 3-sphere, Eliashberg [Eli92] found in 1992 that any
two tight contact structures are isotopic. In particular, tight contact
structures only exist in one homotopy class of plane fields.

We do not have to worry about the correct notion of homotopical
equivalence of two contact structures, as by Gray stability any two
contact structures 𝜉0, 𝜉1 that are (smoothly) homotopic through contact
structures are already isotopic, i.e. there is a path of diffeomorphisms
starting at the identity whose time-1 map sends 𝜉0 to 𝜉1.

This settles the question for overtwisted contact structures on 𝑆3

but leaves the question about the homotopy type of the space of tight
contact structures. In his work about tight contact structures Eliashberg
states without proof that the space of tight contact structures on 𝑆3

that are fixed at one point is contractible.
This work studies aforementioned space and verifies the claim.
A second reason to study the full homotopy type of this space is

the following. A diffeomorphism 𝜓 of a manifold 𝑀 maps a contact
structure 𝜉 to a contact structure 𝑇 𝜓(𝜉) via its differential. Thus the
group of diffeomorphisms acts on the space Ξ(𝑀) of contact structures
on 𝑀. Its kernel with respect to 𝜉, the diffeomorphisms that map
the contact structure 𝜉 to itself, form the group of contactomorphisms
Cont(𝑀, 𝜉). In fact, the action of the diffeomorphisms on the group of
contact structures

Diff(𝑀) → Ξ(𝑀)

is a Serre fibration with fibre Cont(𝑀, 𝜉) over 𝜉 ∈ Ξ(𝑀).
Understanding the group of diffeomorphisms is a central task in

differential topology. Even for 𝑀 = 𝑆3 the proof of Smale’s conjecture
that Diff(𝑆3) has the homotopy type of 𝑂(4) is a deep result.

Geiges and Zehmisch [GZ10] showed that the group of contacto-
morphisms of (𝑆3, 𝜉𝑠𝑡), the 3-sphere with the standard, tight contact
structure, is connected by considering 𝑆3 as the boundary of the 4-ball
and filling the latter with holomorphic discs. Similar arguments can
only work for tight contact structures as only these can bound compact
symplectic manifolds.
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The fact that the connected component of 𝜉𝑠𝑡 in Ξ(𝑆3) is contract-
ible once we fix the contact structures in one point implies that every
loop of diffeomorphisms that fixes said contact plane is homotopic to
a loop of contactomorphisms of 𝜉𝑠𝑡. This may allow further develop-
ment in understanding the group of diffeomorphisms via the group of
contactomorphisms of (𝑆3, 𝜉𝑠𝑡).

Let me conclude with a few words about the argument and an outline
of the present work.

The argument is inspired by Giroux’s proof that the space of tight
contact structures on 𝑆3 is connected (see [Gir00]) as it is presented in
[Gei08]. The argument heavily uses Giroux’s theory of characteristic
foliations on surfaces (see [Gir91]) and the observation that this foliation
recovers the contact structure in a neighbourhood of the surface.

Chapter I begins with a Darboux theorem for families of contact
structures and the observation that Gray stability carries over to families
of contact structures as well. Using these, in Section I.6, an isotopy
is given that makes a given loop of contact structures on 𝑆3 coincide
with 𝜉𝑠𝑡 outside a compact ball away from the poles of 𝑆3.

The complement of two disc-shaped neighbourhoods of the poles is
foliated by 2-spheres and the loop of contact structures is determined by
the characteristic foliations they induce on the spheres. These singular
foliations can be understood as a movie of vector fields on 𝑆2.

It turns out that if all of these vector fields are of a nice form, if
they belong to characteristic foliations of convex surfaces, then each
vector field admits a closed curve that separates positive from negative
singular points. In this case we can construct a smooth family of such
curves (Section I.10), bring them to the equator of 𝑆2 and are then
able to construct an isotopy of our given loop to the constant one 𝜉𝑠𝑡,
see Section I.11.

Chapter II first reminds of characteristic foliations and of basic
notions about dynamical systems. Whereas in the non-parametric
applications one usually uses genericity results, most of these fail for
sufficiently large dimension of the parameter space. What still remains
stable in families is the topology of the phase portraits near singular
points. For example, a disc that contains a source and whose boundary
is transverse to a given vector field 𝑋 will still be a disc whose boundary
is transverse to all vector fields 𝑌 close to 𝑋, even should they contain
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Introduction

uncountably many singular points inside this disc. (In a generic family,
each surface only has finitely many singular points, see Section III.1.
However, these will be degenerate.) Section II.3.1 reviews the conditions
on a vector field to belong to a convex surface and Section II.3.2 phrases
these conditions in terms of neighbourhoods of singular points. What
parametric neighbourhoods should be and what properties we ask for
is explained in Section II.4.

Thus set up we are ready to manipulate our loop of contact structures
to deform the movie of vector fields until each vector field belongs to a
convex surface. The strategy is to try to remove as many singular points
(or neighbourhoods) as possible. Section III.2 contains an elimination
deformation that not only works for families of contact structures but
also eliminates whole neighbourhoods of singular points. In order to
find pairs of neighbourhoods this elimination can be applied to, we will
consider in Section III.4 a graph of these neighbourhoods and show
that it is a forest. Leaves of this graph can be eliminated. To aid
this process we define in Section III.3 a complexity valuation of the
vector fields together with said neighbourhoods. Finally Section III.5
describes how to actually perform these deformations, how to deal with
overlapping deformations, and that the process terminates and gives
the desired result: That each vector field from the movie belongs to a
convex surface, that each contact structure is now such that all spheres
are convex surfaces with respect to it.

This allows us to construct aforementioned homotopy of the (de-
formed) loop of contact structures to the constant one.

And now, let me not keep you from reading any longer.
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I. Families of contact structures

1. Tight contact structures on 𝑆3

Definition 1.1. A 2-plane distribution 𝜉 ⊂ 𝑇 𝑀 on a 3-manifold 𝑀
given as the kernel of a 1-form 𝛼 ∈ Ω1(𝑀) such that

𝛼 ∧ d𝛼 is a volume form

is a contact structure. In this case 𝛼 is called a contact form.

Remark 1.2. We can allow a contact structure 𝜉 to be given as the
kernel of only locally defined contact forms. If 𝜉 is the kernel of a
single globally defined 1-form 𝛼, this form induces an orientation on
the 1-dimensional subspaces in 𝑇 𝑀 complementary to 𝜉. Then we call
the contact structure cooriented.

As one can obtain a cooriented contact structure from any given one
by passing to a double cover, we will only consider cooriented contact
structures.

Example 1.3. Consider the unit sphere in ℂ2 with coordinates 𝑥1, 𝑦1,
𝑥2, 𝑦2. The restriction of the 1-form 𝑥1 d𝑦1 − 𝑦1 d𝑥1 + 𝑥2 d𝑦2 − 𝑦2 d𝑥2
is a contact form that we will call 𝛼𝑠𝑡. Denote its kernel by 𝜉𝑠𝑡 and call
it the standard contact structure on 𝑆3.

The volume form 𝛼𝑠𝑡 ∧ d𝛼𝑠𝑡 is positive with respect to the standard
orientation on 𝑆3.

Definition 1.4. Contact structures that are given as the kernel of a
contact form 𝛼 that satisfy

𝛼 ∧ d𝛼 > 0 (I.1)

are called positive.

1



I. Families of contact structures

A diffeomorphism 𝜓 of 𝑀 allows us to define a 1-form (𝜓−1)∗𝛼. It is
again a contact form. Its kernel is a contact structure and comprises
the image of 𝜉 = ker 𝛼 under the differential 𝑇 𝜓 of 𝜓, i.e.

ker((𝜓−1)∗𝛼) = 𝑇 𝜓(ker 𝛼) = 𝑇 𝜓(𝜉) .

Hence the group of diffeomorphisms acts on the set of contact forms
and on the set of contact structures.

Likewise, an isotopy of 𝑀 induces a smooth path of contact forms
and hence a smooth path of contact structure.

Definition 1.5. We call a contact structure 𝜉1 isotopic to a given
one 𝜉0 if there is an isotopy 𝜓𝑡, 𝑡 ∈ [0, 1], of 𝑀 with 𝜓0 = id𝑀 and

𝜉1 = 𝑇 𝜓1(𝜉0) .

Bennequin [Ben83] observed that there are contact structures on
𝑆3 that are homotopic as plane fields, but not isotopic as contact
structures.

Definition 1.6. An embedded disc Δ in a contact manifold (𝑀, 𝜉)
such that for each point 𝑞 ∈ 𝜕Δ

• 𝑇𝑞(𝜕Δ) ⊂ 𝜉𝑞 and

• 𝑇𝑞Δ ≠ 𝜉𝑞

is an overtwisted disc. If (𝑀, 𝜉) contains an overtwisted disc, then
(𝑀, 𝜉) is called overtwisted, and tight otherwise.

Remark 1.7. This definition is equivalent to the frequently given one
requiring there to be single point in the interior Δ with 𝑇𝑞Δ = 𝜉𝑞, as is
explained in [Gei08, Proposition 4.6.28].

The image of an overtwisted disc under a diffeomorphism is again an
overtwisted disc. In particular, a contact structure that is isotopic to
an overtwisted contact structure is overtwisted.

Theorem 1.8 (Eliashberg [Eli92]). Every positive tight contact struc-
ture on 𝑆3 is isotopic to 𝜉𝑠𝑡.

2



2. Main results and overview of proof

The same publication states without proof that this theorem can be
generalised to multiparametric families of tight contact structures. The
goal of this work is to give a proof of this generalisation (Theorem 2.1)
using different methods than those used in [Eli92].

2. Main results and overview of proof
Denote by Ξ0(𝑆3) the space of tight positive contact structures on
𝑆3 with the property that their contact plane at the point (−𝑖, 0) ∈
𝑆3 ⊂ ℂ2 agrees with the contact plane of 𝜉𝑠𝑡. This is the plane
ker 𝛼𝑠𝑡,(−𝑖,0) ∩ 𝑇(−𝑖,0)𝑆3 = ker(d𝑥1) ∩ 𝑇(−𝑖,0)𝑆3 = {0} × ℂ2.

Theorem 2.1. Every 𝑆𝑘-parametric family of contact structures in
Ξ0(𝑆3) is homotopic to the constant one (𝜉𝑠𝑡).

We will construct an homotopy of parametric contact structures as
follows.

Step 1: There is a parametric Darboux Theorem that yields a first
isotopy after which all contact structures agree in a neighbourhood
of (−𝑖, 0).

Step 2: There is an isotopy that enlarges the neighbourhood where all
contact structures agree with the standard one until it contains a
hemisphere.

Step 3: The complement of two discs around the poles is foliated by
spheres. The characteristic foliation of any sphere with respect
to any contact structure agrees with the characteristic foliation
with respect to the standard contact structure outside a disc. Suc-
cessive elimination of singular points will turn the characteristic
foliations on all spheres into nice forms and thereby make the
spheres convex.

Step 4: An isotopy will bring the dividing curves of all spheres to the
equator.

Step 5: This will then allow us to find an isotopy between the para-
metric family of contact structures and the constant family (𝜉𝑠𝑡).

3



I. Families of contact structures

The space of cooriented 2-planes in ℝ3 is the double cover of the
Grassmannian 𝐺2(ℝ3) and can be identified with the unit sphere
𝑆2 ⊂ ℝ3. Cooriented contact structures are hence given by specific
smooth sections in 𝑆𝑇 𝑆3, the unit sphere bundle to 𝑇 𝑆3.

The space of smooth sections of 𝑆𝑇 𝑆3 over the compact manifold 𝑆3

is a tame Fréchet manifold, cf. [Ham82, Example I.4.1.6]. The contact
condition is 𝒞1-open and hence 𝒞∞-open in 𝑆𝑇 𝑆3. Consequently the
space Ξ(𝑆3) of (cooriented) contact structures on 𝑆3 is a tame Fréchet
manifold.

Lemma 2.2. The space Ξ0(𝑆3) is a tame Fréchet manifold

Proof. Consider the fibre of 𝑆𝑇 𝑆3 over the point (−𝑖, 0) and pick an
identification with the unit sphere 𝑆2 ⊂ ℝ3 such that 𝜉𝑠𝑡 takes the value
(1, 0, 0) ∈ 𝑆2 in (−𝑖, 0). Denote the subset {(𝑥, 𝑦, 𝑧) ∈ 𝑆2 ∣ 𝑥 > 0} ≅
𝐵2 ⊂ ℝ2 by 𝐸.

The space Ξ𝜀(𝑆3) of contact structures on 𝑆3 that lie in the connected
component of 𝜉𝑠𝑡 and that in the fibre over (−𝑖, 0) take values in 𝐸 is
an open subset in Ξ(𝑆3) and hence a tame Fréchet manifold.

Consider the projection Ξ𝜀(𝑆3) → 𝐸 → ℝ2 that assigns to a con-
tact structure 𝜉 its value in the fibre over (−𝑖, 0). Its differential is
surjective and its target is a finite dimensional vector space, so the pre-
image of (0, 0), the set Ξ0(𝑆3), is a Fréchet submanifold, cf. [Ham82,
Theorem III.2.3.1].

Theorem 2.3. The space Ξ0(𝑆3) has the homotopy type of a point.

Proof. Since the Fréchet manifold Ξ0(𝑆3) is metrizable, an infinite-
dimensional extension of J. H. C. Whitehead’s theorem (see [Pal66]
and [Eel66]) implies that Ξ0(𝑆3) is contractible.

3. Families of contact structures
Let (𝜉𝑠) ⊂ Ξ0(𝑆3), 𝑠 ∈ 𝑆𝑘, be a continuous 𝑆𝑘-family of contact
structures that agree with 𝜉𝑠𝑡 in (−𝑖, 0). Let them be given as kernels
of a family (𝛼𝑠) of contact forms on 𝑆3. After rescaling these, we may
assume that all contact forms agree with 𝛼𝑠𝑡 in the point (−𝑖, 0).

4



4. Step 1: Darboux theorem

The contact forms are sections in the bundle of differential 1-forms
on 𝑆3. Hence, after a Weierstraß-type approximation, bearing in mind
that the contact condition is 𝒞1-open, we may assume that the contact
forms 𝛼𝑠 form a smooth family and that each 𝛼𝑠 still agrees with 𝛼𝑠𝑡
in the point (−𝑖, 0).

4. Step 1: Darboux theorem
Let us observe that there is a family of isotopies after which the contact
forms agree with 𝛼𝑠𝑡 in a whole neighbourhood of the point (−𝑖, 0).
This is a consequence of a parametric version of the Darboux theorem
for contact forms.

Proposition 4.1 (Parametric Darboux theorem). Let 𝑀 be a 3-di-
mensional connected manifold, 𝒫 a compact manifold and 𝛼𝜌 a smooth
𝒫-family of contact forms on 𝑀 that is constant at one distinguished
point.

Then around any given point 𝑞 ∈ 𝑀 there are 𝑆𝜌-parametric co-
ordinates 𝑥𝜌, 𝑦𝜌, 𝑧𝜌 in a neighbourhood 𝑈 of 𝑞 such that 𝑞 = (0, 0, 0)
and

𝛼𝜌|𝑈 = d𝑧𝜌 + 𝑥𝜌 d𝑦𝜌 − 𝑦𝜌 d𝑥𝜌 for all 𝜌 ∈ 𝒫.

Proof. Consider any smooth chart around 𝑞. This allows us to assume
that 𝑀 = ℝ3 and 𝑞 is the origin. The Reeb vector fields 𝑅𝛼𝜌,0 in the
origin are a smooth 𝒫-family of vectors. Denote it by 𝜕𝑧𝜌.

Assertion 1. We can solve the problem in the origin, i.e.
there are smooth 𝒫-families 𝜕𝑥𝜌, 𝜕𝑦𝜌 of vectors at the origin
such that

𝛼𝜌(0) = (d𝑧𝜌 + 𝑥𝜌 d𝑦𝜌 − 𝑦𝜌 d𝑥𝜌)(0),

where d𝑥𝜌, d𝑦𝜌 and d𝑧𝜌 are dual to 𝜕𝑥𝜌, 𝜕𝑦𝜌 and 𝜕𝑧𝜌,
respectively, in 0 ∈ ℝ3.

Proof. Consider the contact planes 𝜉𝑠(0) in the origin. They
define a rank-2 vector bundle over 𝒫. As any path from 𝑞

5



I. Families of contact structures

to the distinguished point 𝑝 in which 𝛼𝜌 is constant gives an
homotopy of the family 𝜉𝜌(𝑞) to the constant family 𝜉𝜌(𝑝).
Hence the bundle ℝ2 → 𝜉∙(0) → 𝒫 is trivial.

Pick any section 𝜕𝑥𝜌 without zeroes. As d𝛼𝜌 is non-degen-
erate on the contact planes 𝜉𝜌(0),

𝜄𝜕𝑦𝜌 d𝛼𝜌 = −2 d𝑥𝜌

uniquely defines a 𝒫-parametric vector in the origin with

d𝛼𝜌 = 2 d𝑥𝜌 ∧ d𝑦𝜌.

Choose linear coordinates 𝑥𝜌, 𝑦𝜌 and 𝑧𝜌 on ℝ3 such that in the origin
the directions of 𝑥𝜌, 𝑦𝜌 and 𝑧𝜌 are given by 𝜕𝑥𝜌, 𝜕𝑦𝜌 and 𝜕𝑧𝜌, respectively.
Denote by d𝑥𝜌, d𝑦𝜌, d𝑧𝜌 the 1-forms dual to the coordinates 𝑥𝜌, 𝑦𝜌

and 𝑧𝜌. Using these, define

𝛼𝜌
𝑡 ≔ (1 − 𝑡)(d𝑧𝜌 + 𝑥𝜌 d𝑦𝜌 − 𝑦𝜌 d𝑥𝜌) + 𝑡𝛼𝜌 for 𝑡 ∈ [0, 1].

This is a smooth family of 1-forms constant in the origin. They are
also contact forms in the origin and, as the contact condition is open,
contact forms in some neighbourhood 𝑈1 of 0 ∈ ℝ3 for all 𝜌 ∈ 𝒫.

We will now use Moser’s trick to obtain a 𝒫-parametric isotopy 𝜓𝜌
𝑡

of ℝ3 that is the identity away from the origin and that satisfies

(𝜓𝜌
𝑡 )∗𝛼𝜌

𝑡 = 𝛼𝜌
0 = d𝑧𝜌 + 𝑥𝜌 d𝑦𝜌 − 𝑦𝜌 d𝑥𝜌 (I.2)

near the origin. Then the contact forms 𝛼𝜌 have are of the form stated
in the local coordinates

𝑥 ∘ (𝜓𝜌
1), 𝑦 ∘ (𝜓𝜌

1), 𝑧 ∘ (𝜓𝜌
1) .

To construct 𝜓𝜌
𝑡 assume that 𝜓𝜌

𝑡 is the flow of a parametric vector
field 𝑋𝜌

𝑡 . A necessary condition for (I.2) is

0 =
d
d𝑡((𝜓𝜌

𝑡 )∗𝛼𝜌
𝑡 ) = (𝜓𝜌

𝑡 )∗( ̇𝛼𝜌
𝑡 + ℒ𝑋𝜌

𝑡
𝛼𝜌

𝑡 )

6



4. Step 1: Darboux theorem

which equals, using a Cartan’s formula for time-dependent vector fields,

0 = (𝜓𝜌
𝑡 )∗( ̇𝛼𝜌

𝑡 + 𝜄𝑋𝜌
𝑡

d𝛼𝜌
𝑡 + d(𝜄𝑋𝜌

𝑡
𝛼𝜌

𝑡 )) .

A proof of this version of Cartan’s formula can be found in [Gei08,
Lemma B.1]. As 𝜓𝜌

𝑡 are diffeomorphisms, this is equivalent to

0 = ̇𝛼𝜌
𝑡 + 𝜄𝑋𝜌

𝑡
d𝛼𝜌

𝑡 + d(𝜄𝑋𝜌
𝑡
𝛼𝜌

𝑡 ) . (I.3)

Split 𝑋𝜌
𝑡 uniquely into its component in Reeb direction (with respect

to 𝛼𝜌
𝑡 ) and a vector field 𝑌 𝜌

𝑡 in the contact structure ker 𝛼𝜌
𝑡 and write

𝑋𝜌
𝑡 ≕ ℎ𝜌

𝑡 𝑅𝛼𝜌
𝑡

+ 𝑌 𝜌
𝑡

with ℎ𝜌
𝑡 ∈ 𝒞∞(𝑀). The equation (I.3) turns into

0 = ̇𝛼𝜌
𝑡 + 𝜄𝑌 𝜌

𝑡
d𝛼𝜌

𝑡 + dℎ𝜌
𝑡 . (I.4)

Inserting the Reeb vector field gives

0 = ̇𝛼𝜌
𝑡 (𝑅𝛼𝜌

𝑡
) + 𝑅𝜌

𝑡 (ℎ𝜌
𝑡 ) . (I.5)

To solve the differential equation, denote the 𝒫-parametric flow of the
(time-dependent) vector field 𝑅𝛼𝜌

𝑡
by Ψ𝜌

𝑡 .

Assertion 2. The flow Ψ𝜌
𝑡 exists for some time 𝑇 and

all 𝜌 ∈ 𝒫 on a neighbourhood 𝑉 of 0 of {𝑧 = 0} and there
is a neighbourhood 𝑈0 of 0 such that all points in 𝑈0 lie in
the image of Ψ𝜌

𝑡 (𝑉) for all 𝜌 ∈ 𝒫.

Proof. Remember that in 0, the vector 𝑅𝛼𝜌
𝑡

corresponds to
𝜕𝜌

𝑧 for all 𝑡 ∈ [0, 1]. In particular, it is transverse to {𝑧 = 0}.
Hence for each 𝜌 in the compact parameter space 𝒫 and
hence also for all 𝜌 ∈ 𝒫 there is an open neighbourhood 𝑊 of
0 in {𝑧 = 0} in which 𝑅𝛼𝜌

𝑡
is transverse to {𝑧 = 0}. Shrink

𝑊 such that 𝑊 still has this property. Regard the flow of
the parametric vector field as a flow on 𝒫 × ℝ3 that has

7



I. Families of contact structures

constant 𝒫-component. As the smooth vector field satisfies
a Lipschitz-inequality on 𝒫×𝑊 for all 𝑡 ∈ [0, 1], every point
𝜂 in the compact set 𝒫 × 𝑊 has an open neighbourhood 𝑈𝜂
in 𝒫 × ℝ3 and some 0 < 𝑡𝜂 < 1 such that the flow Ψ𝜌

𝑡 is
defined on 𝑈𝜂 for time 0 ≤ 𝑡 < 𝑡𝜂.

Hence Ψ𝜌
𝑡 is defined on some open neighbourhood ̃𝑉 of 𝑊

in ℝ3 for all 𝜌 ∈ 𝒫 and 0 ≤ 𝑡 < 𝑇 up to some 𝑇 > 0. Let 𝑉
be the open set ̃𝑉 ∩ {𝑧 = 0} and define

̃𝑈 ≔ {(𝜌, Ψ𝜌
𝑡 (𝑥)) ∣ 𝜌 ∈ 𝒫, 0 ≤ 𝑡 < 𝑇 , 𝑥 ∈ 𝑉} .

The set ̃𝑈 contains the compact set 𝒫 × 𝑊. Hence there
is an open neighbourhood 𝑈+

0 of 0 in {𝑧 ≥ 0} such that
𝒫 × 𝑈+

0 ⊂ ̃𝑈.

We will now solve (I.5) by integration. For all points 𝑝 in 𝑈+
0 there

is a time 𝑠𝜌
+(𝑝) as well as a point 𝑥𝜌(𝑝) in {𝑧 = 0} that both smoothly

depend on 𝜌 and 𝑝 such that 𝑝 = Ψ𝜌
𝑠𝜌(𝑝)(𝑥

𝜌(𝑝)). Using these, define

ℎ𝜌
𝑡 ∶ 𝑈+

0 → ℝ

𝑝 = Ψ𝜌
𝑠𝜌(𝑝)(𝑥

𝜌(𝑝)) ↦ −

𝑠𝜌
+(𝑝)

∫
0

̇𝛼𝜌
𝑡 (𝑅𝛼𝜌

𝑡
(Ψ𝜌

𝜏(𝑥𝜌(𝑝)))) d𝜏 .

As ̇𝛼𝜌
𝑡 vanishes in 0 for all 𝜌 ∈ 𝒫 and 𝑡 ∈ [0, 1], we may, after shrinking

𝑈+
0 , assume that ℎ𝜌

𝑡 is well-defined.
Similarly, there is a neighbourhood 𝑈−

0 of 0 in {𝑧 ≤ 0} such that
there is a time 𝑠𝜌

−(𝑝) as well as a point 𝑥𝜌(𝑝) in {𝑧 = 0} that both
smoothly depend on 𝜌 and 𝑝 such that 𝑥𝜌(𝑝) = Ψ𝜌

𝑠𝜌(𝑝)(𝑝). Define again

ℎ𝜌
𝑡 ∶ 𝑈−

0 → ℝ

𝑝 ↦ −
𝑠𝜌

−(𝑝)

∫
0

̇𝛼𝜌
𝑡 (𝑅𝛼𝜌

𝑡
(Ψ𝜌

𝜏(𝑥𝜌(𝑝)))) d𝜏 .

Then ℎ𝜌
𝑡 the unique solution of (I.5) in a neighbourhood 𝑈1 ⊂ 𝑈+

0 ∪𝑈−
0

of 0 with initial values ℎ𝜌
𝑡 ≡ 0 on {𝑧 = 0}. As the functions ℎ𝜌

𝑡 also

8



4. Step 1: Darboux theorem

smoothly depend on 𝜌 ∈ 𝒫, this shows that we constructed a 𝒫-family
of smooth functions.

This then defines 𝑋𝜌
𝑡 uniquely by equation (I.4) as d𝛼𝜌

𝑡 is non-
degenerate on ker 𝛼𝜌

𝑡 . The contact forms 𝛼𝜌
𝑡 form a 𝒫-family and hence

do d𝛼𝜌
𝑡 as well as the functions ℎ𝜌

𝑡 . Consequently, we obtain a 𝒫-family
of vector fields 𝑋𝜌

𝑡 .
In 0, the 1-forms ̇𝛼𝜌

𝑡 and the functions ℎ𝜌
𝑡 vanish and hence so do

the vector fields 𝑋𝜌
𝑡 . If we define 𝜓𝜌

𝑡 as the flow of 𝑋𝜌
𝑡 , it is defined for

all times 𝑡 in the point 0. As a flow of a vector field is always defined
on an open domain, it is defined uniquely for 𝑡 ∈ [0, 1] on a sufficiently
small neighbourhood 𝑈 ⊂ 𝑈1 of 𝑞 for all 𝜌 ∈ 𝒫. The defining vector
fields 𝑋𝜌

𝑡 form a 𝒫-family and thus so do the isotopies 𝜓𝜌
𝑡 . Notice we

did not integrate in 𝜌-direction. Hence we obtained 𝜓𝜌
1.

Remark 4.2. Proposition 4.1 also holds for higher dimensional contact
manifolds without changes in the proof.

Remark 4.3. In Proposition 4.1 we used the hypothesis that the family
of contact forms is fixed at one point only in Assertion 1 to assure that
the (symplectic) bundle ℝ2 → 𝜉∙

0 → 𝒫 is trivial.
The theorem holds also true without this hypothesis if for example

𝒫 = 𝑆𝑘 for 𝑘 ≠ 2 as the bundle is trivial if its first Chern class vanishes.

Consider our 𝑆𝑘-family of contact forms 𝛼𝑠 that coincide at the
point (−𝑖, 0). Applying the Darboux theorem to 𝛼𝑆 3

𝑠𝑡 in (−𝑖, 0) gives
coordinates 𝑥, 𝑦, 𝑧 in a neighbourhood of (−𝑖, 0), in which 𝛼𝑆 3

𝑠𝑡 is given
as d𝑧 + 𝑥 d𝑦 − 𝑦 d𝑥. The contact forms 𝛼𝑠 agree with 𝛼𝑆 3

𝑠𝑡 in (−𝑖, 0),
so in these coordinates, all 𝛼𝑠 are of the form d𝑧 + 𝑥 d𝑦 − 𝑦 d𝑥 in the
point (−𝑖, 0). The parametric Darboux theorem then gives a 𝑆𝑘-family
of isotopies 𝜓𝑠

𝑡 , 𝑡 ∈ [0, 1] of 𝑆3 such that 𝜓𝑠
0 = id𝑆 3 and

(𝜓𝑠
1)∗𝛼𝑠 = d𝑧 + 𝑥 d𝑦 − 𝑦 d𝑥

in the coordinates just chosen. In particular, the family of contact
structures (𝜉𝑠) is isotopic to (𝑇 𝜓𝑠

1(𝜉𝑠)) and the latter one coincides
with 𝜉𝑆 3

𝑠𝑡 on a neighbourhood 𝑈 of (−𝑖, 0).
We shall denote 𝑇 𝜓𝑠

1(𝜉𝑠) again by 𝜉𝑠.
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I. Families of contact structures

5. Gray stability

So far we deformed our given contact structures such that they agree
near (−𝑖, 0) in 𝑆3. To obtain an isotopy of contact structures on the
complement, we will make use of Gray stability.

Proposition 5.1 (Gray’s stability theorem). To a family of contact
structures (𝜉𝑡), 𝑡 ∈ [0, 1], on a closed manifold 𝑀, there is an isotopy
𝜓𝑡, 𝑡 ∈ [0, 1], of 𝑀 such that

𝑇 𝜓𝑡(𝜉0) = 𝜉𝑡 for each 𝑡 ∈ [0, 1].

A reference for this statement is [Gei08, Theorem 2.2.2]. To deal with
families of contact structures, let us produce a parametric version. The
proof using a Moser trick argument is analogous to the non-parametric
version.

Proposition 5.2 (Parametric Gray stability). To a smooth family
(𝜉𝑠

𝑡 ), 𝑡 ∈ [0, 1], 𝑠 ∈ 𝑆𝑘, of 𝑆𝑘-parametric contact structures on a closed
manifold 𝑀, there is a 𝑆𝑘-parametric isotopy 𝜓𝑠

𝑡 , 𝑡 ∈ [0, 1], of 𝑀 such
that

𝑇 𝜓𝑠
𝑡 (𝜉𝑠

0) = 𝜉𝑠
𝑡 for each 𝑡 ∈ [0, 1] and 𝑠 ∈ 𝑆𝑘.

Proof. Let 𝛼𝑠, 𝑠 ∈ 𝑆𝑘, 𝑡 ∈ [0, 1] be a smooth (𝑆𝑘 × [0, 1])-family of
contact forms to 𝜉𝑠

𝑡 , i.e. 𝜉𝑠
𝑡 = ker 𝛼𝑠

𝑡 for all 𝑠 ∈ 𝑆𝑘 and 𝑡 ∈ [0, 1]. Assume
that the isotopies 𝜓𝑠

𝑡 arise as the flow of a time-dependent 𝑆𝑘-parametric
vector field 𝑋𝑠

𝑡 on 𝑀. Then the condition that 𝑇 𝜓𝑠
𝑡 (𝜉𝑠

0) = 𝜉𝑠
𝑡 translates

into
𝜆𝑠

𝑡𝛼𝑠
0 = (𝜓𝑠

𝑡 )∗𝛼𝑠
𝑡 for each 𝑠 ∈ 𝑆𝑘, 𝑡 ∈ [0, 1]

for some smooth family of functions 𝜆𝑠
𝑡 ∶ 𝑀 → ℝ+. Differentiation

with respect to 𝑡 yields the necessary condition

𝜆̇𝑠
𝑡𝛼0 =

d
d𝑡((𝜓𝑠

𝑡 )∗𝛼𝑠
𝑡) = (𝜓𝑠

𝑡 )∗( ̇𝛼𝑠
𝑡 + ℒ𝑋𝑠

𝑡
𝛼𝑠

𝑡) , (I.6)

where the dot denotes the derivative with respect to 𝑡. The left hand
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5. Gray stability

side can be written as

𝜆̇𝑠
𝑡𝛼0 =

𝜆̇𝑠
𝑡

𝛼𝑠
𝑡
(𝜓𝑠

𝑡 )∗𝛼𝑠
𝑡 = 𝜇𝑠

𝑡(𝜓𝑠
𝑡 )∗𝛼𝑠

𝑡

with 𝜇𝑠
𝑡 ≔ d

d𝑡(log 𝜆𝑠
𝑡) ∘ (𝜓𝑠

𝑡 )−1. For the right hand side of equation (I.6),
notice that

̇𝛼𝑠
𝑡 + ℒ𝑋𝑠

𝑡
𝛼𝑠

𝑡 = ̇𝛼𝑠
𝑡 + 𝜄𝑋𝑠

𝑡
d𝛼𝑠

𝑡 + d(𝜄𝑋𝑠
𝑡
𝛼𝑠

𝑡) (I.7)

by Cartan’s Formula. Combining these, equation (I.6) is equivalent to

𝜇𝑠
𝑡𝛼𝑠

𝑡 = ̇𝛼𝑠
𝑡 + 𝜄𝑋𝑠

𝑡
d𝛼𝑠

𝑡 + d(𝜄𝑋𝑠
𝑡
𝛼𝑠

𝑡) . (I.8)

Let us assume that we can choose 𝑋𝑠
𝑡 to lie in ker 𝛼𝑠

𝑡 = 𝜉𝑠
𝑡 . Thereby

we write equation (I.8) as

𝜇𝑠
𝑡𝛼𝑠

𝑡 = ̇𝛼𝑠
𝑡 + 𝜄𝑋𝑠

𝑡
d𝛼𝑠

𝑡 , (I.9)

which implies, inserting the Reeb vector field 𝑅𝑠
𝑡 ,

𝜇𝑠
𝑡 = ̇𝛼𝑠

𝑡(𝑅𝑠
𝑡 ) .

This uniquely determines 𝜇𝑠
𝑡 . Equation (I.9), that we can write as

𝜄𝑋𝑠
𝑡

d𝛼𝑠
𝑡 = 𝜇𝑠

𝑡𝛼𝑠
𝑡 − ̇𝛼𝑠

𝑡

then uniquely determines 𝑋𝑠
𝑡 as the right hand side has no component

in Reeb-direction and d𝛼𝑠
𝑡 is non-degenerate on ker 𝛼𝑠

𝑡 = 𝜉𝑠
𝑡 .

We may integrate these smooth vector fields up to time 1. Its flow
𝜓𝑠

𝑡 smoothly depends on both 𝑡 ∈ [0, 1] and 𝑠 ∈ 𝑆𝑘 and by construction
satisfies equation (I.6) and hence

𝑇 𝜓𝑠
𝑡 (𝜉𝑠

0) = 𝜉𝑠
𝑡 for each 𝑡 ∈ [0, 1] and 𝑠 ∈ 𝑆𝑘.

Corollary 5.3 (Parametric Gray stability, relative version). Let (𝜉𝑠
𝑡 ),

𝑡 ∈ [0, 1], 𝑠 ∈ 𝑆𝑘 be a smooth family of 𝑆𝑘-parametric contact structures

11



I. Families of contact structures

on a manifold 𝑀 that is constant in 𝑡 on a compact set 𝐾 ⊂ 𝑆𝑘 × 𝑀.
Then there is an 𝑆𝑘-parametric isotopy 𝜓𝑠

𝑡 , 𝑠 ∈ 𝑆𝑘, of 𝑀 such that

𝑇 𝜓𝑠
𝑡 (𝜉𝑠

0) = 𝜉𝑠
𝑡 for each 𝑡 ∈ [0, 1] and 𝑠 ∈ 𝑆𝑘

and 𝜓𝑠
𝑡 is stationary on 𝐾.

Proof. Let 𝛼𝑠
𝑡 , 𝑠 ∈ 𝑆𝑘 be a smooth (𝑆𝑘 × [0, 1])-family of contact forms

to 𝜉𝑠
𝑡 . Rescaling them we may assume that they coincide on 𝐾. In

particular, their derivatives ̇𝛼𝑠
𝑡 with respect to 𝑡 vanish there.

Follow the proof of Proposition 5.2. That ̇𝛼𝑠
𝑡 vanishes on 𝐾 implies

that 𝜇𝑠
𝑡 = ̇𝛼𝑠

𝑡(𝑅𝑠
𝑡 ) vanishes there. Consequently, we obtain 𝜄𝑋𝑠

𝑡
d𝛼𝑠

𝑡 =
𝜇𝑠

𝑡𝛼𝑠
𝑡 − ̇𝛼𝑠

𝑡 = 0 and hence 𝑋𝑠
𝑡 ≡ 0 on 𝐾.

The parametric vector field 𝑋𝑠
𝑡 is compactly supported and can be

integrated up to time 1. Its flow 𝜓𝑠
𝑡 is stationary on 𝑀 ∖ 𝐾.

6. Step 2: Extending the Darboux neighbourhood
Let us come back to our situation on the 3-sphere. In a first step we
used a parametric Darboux theorem to find an isotopy of the contact
structures after which they agreed with 𝜉𝑠𝑡 on a neighbourhood 𝑈
of the point (−𝑖, 0) ∈ 𝑆3. We will see that an isotopy of families of
contact structures yields contact structures that agree with 𝜉𝑠𝑡 on a
much larger neighbourhood 𝑈 of (−𝑖, 0). In particular, we can arrange
that all contact structures agree with the standard contact structure
on a neighbourhood of a hemisphere. To do this, we will temporarily
transform our situation to the euclidean space and give an isotopy
there.

On ℝ3 with coordinates 𝑢, 𝑣 and 𝑤, the 1-form ̃𝛼𝑠𝑡 ≔ d𝑤+𝑢 d𝑣−𝑣 d𝑢
is a contact form. Its induced contact structure on ℝ3, ̃𝜉𝑠𝑡 ≔ ker ̃𝛼𝑠𝑡,
is the standard contact structure on ℝ3.

There is a contactomorphism

𝜓∶ (𝑆3 ∖ {(−𝑖, 0)}, 𝜉𝑠𝑡) → (ℝ3, ̃𝜉𝑠𝑡).

In [Gei08, Proposition 2.1.8] there is an explicit description of a con-
tactomorphism (𝑆3 ∖ {(0, 𝑖)}, 𝜉𝑠𝑡) → (ℝ3, ̃𝜉𝑠𝑡) as a composition of the
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(−𝑖, 0)
𝐵

𝑆−

𝑆3

𝑈

(𝑖, 0)

Figure 6.1.: The contact structures 𝜉𝑠 agree with 𝜉𝑠𝑡 on the complement of 𝐵

stereographic projection

(𝑥1 + 𝑖𝑦1, 𝑥2 + 𝑖𝑦2) ↦ (
𝑥1

1 − 𝑦2
,

𝑦1
1 − 𝑦2

,
𝑥2

1 − 𝑦2
)

with the inverse of the map ℝ3 → ℝ3 given by

(𝑟, 𝜑, 𝑤) ↦ (𝑟, 𝜑 − 𝑤, 1
2𝑤(1 + 1

3𝑤2 + 𝑟2))

in cylindrical coordinates. Pre-composing it with the contactomorphism
(𝑧, 𝑤) ↦ (𝑤, −𝑧) of 𝑆3 that sends (−𝑖, 0) ↦ (0, 𝑖) gives the contacto-
morphism (𝑆3 ∖ {(−𝑖, 0)}, 𝜉𝑠𝑡) → (ℝ3, ̃𝜉𝑠𝑡).

For any 𝑠 ∈ 𝑆𝑘 the contact structure 𝜉𝑠 agrees with 𝜉𝑠𝑡 on the
neighbourhood 𝑈 of (−𝑖, 0). Its image 𝑇 𝜓(𝜉𝑠) under 𝜓 therefore agrees
with ̃𝜉𝑠𝑡 outside the compact ball 𝜓(𝑆3 ∖ 𝑈).

We want to find contact isotopies such that the modified contact
structures agree with 𝜉𝑠𝑡 on the complement of the closed ball 𝐵 ≔
{(𝑧, 𝑤) ∈ 𝑆3 ∣ ℑ𝔪 𝑧 ≥ 1/2} that is fully contained in the hemisphere
𝑆− ≔ {(𝑧, 𝑤) ∈ 𝑆3 ∣ ℑ𝔪 𝑧 ≥ 0} of 𝑆3 as in Figure 6.1.

Observe that 𝜓 sends (𝑖, 0) to (0, 0, 0). In the image of 𝜓 the condition
that 𝜉𝑠 agree with 𝜉𝑠𝑡 in the complement of 𝐵 translates to the condition
that 𝑇 𝜓(𝜉𝑠) agree with ̃𝜉𝑠𝑡 outside a smaller compact ball around the
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origin in ℝ3 that lies in 𝜓(𝐵). One quickly checks that the ball of
radius 1/4 lies in the image of 𝐵.

By hypothesis 𝑇 𝜓(𝜉𝑠) agree with ̃𝜉𝑠𝑡 outside a ball 𝐵𝑅(0) of radius
𝑅 around 0 such that 𝜓(𝑆3 ∖ 𝑈) ⊂ 𝐵𝑅(0). Let us assume that 𝑅 > 1/4,
otherwise the contact structures 𝜉𝑠 already agree with 𝜉𝑠𝑡 on 𝐵.

Consider the maps

𝜙𝜆 ∶ ℝ3 → ℝ3

(𝑢, 𝑣, 𝑤) ↦ (𝜆𝑢, 𝜆𝑣, 𝜆2𝑤)

with 𝜆 > 0. It is a contactomorphism of 𝜉0. In fact, 𝜙∗
𝜆 ̃𝛼𝑠𝑡 =

𝜙∗
𝜆(d𝑤 + 𝑢 d𝑣 − 𝑣 d𝑢) = 𝜆2(d𝑤 + 𝑢 d𝑣 − 𝑣 d𝑢) = 𝜆2 ̃𝛼𝑠𝑡.
Choose 𝜆(𝑡) ≔ (1 + 𝑡) + 𝑡/(4𝑅). With 𝜆(1) = 1/(4𝑅) < 1 we also

have 𝜆2(1) < 1/(4𝑅) and thus 𝜙𝜆(1) maps 𝜓(𝑆3 ∖ 𝑈) into a ball of
radius 1/4 around the origin and hence into the image of the ball 𝐵.
The images

̃𝜉𝑠
𝑡 ≔ 𝑇 𝜙𝜆(𝑡) ̃𝜉𝑠

of ̃𝜉𝑠 under 𝑇 𝜙𝜆(𝑡) form a smooth family of contact structures. As for all
𝑠 ∈ 𝑆𝑘 the contact structure ̃𝜉𝑠 agreed with ̃𝜉0 outside a ball of radius
𝑅 and 𝜙𝜆 are contactomorphisms of ̃𝜉0, the contact structures ̃𝜉𝑠

𝑡 agree
with ̃𝜉0 outside a ball of radius 1/4 around the origin, cf. Figure 6.2.

The parametric and relative version of Gray stability (cf. Corol-
lary 5.3) yields a 𝑆𝑘-family of isotopies Φ𝑠

𝑡 , 𝑠 ∈ 𝑆𝑘, 𝑡 ∈ (0, 1), of ℝ3

that is stationary outside 𝜓(𝑆3 ∖ 𝑈) and satisfies

𝑇 Φ𝑠
𝑡( ̃𝜉𝑠) = 𝜉𝑠

𝑡 for each 𝑡 ∈ [0, 1] and 𝑠 ∈ 𝑆𝑘.

As Φ𝑠
𝑡 is stationary outside a compact ball, the conjugation 𝜓−1 ∘ Φ𝑠

𝑡 ∘ 𝜓
with 𝜓 gives a family of isotopies of 𝑆3 that is stationary near the
point (−𝑖, 0) and defines isotopies of the contact structures 𝜉𝑠 with
𝑇 𝜓−1 ∘ Φ𝑠

1 ∘ 𝜓(𝜉𝑠) = 𝑇 𝜓−1 ∘ Φ𝑠
1( ̃𝜉𝑠). As 𝑇 Φ𝑠

1( ̃𝜉𝑠) agrees with ̃𝜉0 outside
the image of the hemisphere 𝑆− and 𝜓 is a contactomorphism, each
𝑇 𝜓−1 ∘ Φ𝑠

1( ̃𝜉𝑠) agrees with 𝜉𝑠𝑡 on the complement of 𝑆−.
Let us denote the contact structures 𝑇 𝜓−1 ∘ Φ𝑠

1 ∘ 𝜓(𝜉𝑠) again by
𝜉𝑠. These agree with 𝜉𝑠𝑡 on 𝑆3 ∖ 𝐵, the complement of the ball 𝐵 =
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0 𝜓(𝑈)
𝐵 1

4

𝑓(𝑆−)

𝑓(𝐵)

𝐵𝑅(0) ℝ3

Figure 6.2.: The contact structures 𝑇 𝜓(𝜉𝑠) agree with ̃𝜉𝑠𝑡 outside the ball
𝐵𝑅(0)

{ℑ𝔪 𝑧 ≥ 1/2}. We also find a smooth family of contact forms 𝛼𝑠 for 𝜉𝑠

such that each 𝛼𝑠 coincides with 𝛼𝑠𝑡 on 𝑆3 ∖ 𝐵.

7. Caps and spheres: Transforming the problem

All contact structures 𝜉𝑠 agree with the standard contact structure 𝜉𝑠𝑡 on
the subset 𝑆3 ∖𝐵 = {(𝑧, 𝑤) ∈ 𝑆3 ∣ ℑ𝔪 𝑧 < 1/2} of 𝑆3. This set contains
the caps 𝐶+ ≔ {ℜ𝔢 𝑧 > 7/8} ∩ 𝑆3 and 𝐶− ≔ {ℜ𝔢 𝑧 < −7/8} ∩ 𝑆3

that are open discs around the north pole 𝑁 ≔ (1, 0) and the south
pole 𝑆 ≔ (−1, 0), respectively. Their complement, 𝑆3 ∖ (𝐶− ∪ 𝐶+) =
{−7/8 ≤ ℜ𝔢 𝑧 ≤ 7/8} is diffeomorphic to [−1, 1] × 𝑆2 via

Φ∶ [−1, 1] × 𝑆2 ⊂ [−1, 1] × ℝ3 → 𝑆3 ⊂ ℂ2 ≅ ℝ4

(𝑧, 𝑢, 𝑣, 𝑤) ↦ (7
8𝑧, 𝑟(𝑧) 𝑢, 𝑟(𝑧) 𝑣, 𝑟(𝑧) 𝑤)

where 𝑟2(𝑧) + (7
8𝑧)2 = 1. The contact form 𝛼𝑠𝑡 pulls back to

Φ∗𝛼𝑠𝑡 = 7
8𝑟 ⋅ 𝑧 d𝑢 − 7

8𝑟−1 ⋅ 𝑢 d𝑧 + 𝑟2 ⋅ 𝑣 d𝑤 − 𝑟2 ⋅ 𝑤 d𝑣 ,
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𝐵

𝑆3𝐶+

𝐶−

𝑧

𝑆2

0

− 7
8−1

1 7
8

Figure 7.1.: On the caps 𝐶+ and 𝐶− and near them the contact structures
𝜉𝑠 agree with 𝜉𝑠𝑡. The complement of the caps is foliated by
2-spheres.

which we shall write as

Φ∗𝛼𝑠𝑡 = 𝛽𝑠𝑡
𝑧 + ℎ𝑠𝑡

𝑧 d𝑧

where 𝛽𝑠𝑡
𝑧 ≔ 7

8𝑟 ⋅ 𝑧 d𝑢+𝑟2 ⋅ 𝑣 d𝑤−𝑟2 ⋅𝑤 d𝑣 and ℎ𝑠𝑡
𝑧 ≔ −7

8𝑟−1𝑢. For each
fixed 𝑧, we regard 𝛽𝑠𝑡

𝑧 as a 1-form on 𝑆2. Likewise, ℎ𝑠𝑡
𝑧 as a smooth

function on 𝑆2: We consider our standard contact structure restricted
to [−1, 1] × 𝑆2 as a 1-parametric family of 1-forms and functions.

Similarly, we can pull back the contact forms 𝛼𝑠 and write them as

Φ∗𝛼𝑠 ≕ 𝛽𝑠
𝑧 + ℎ𝑠

𝑧 d𝑧 .

Observation 7.1. For 𝑧 close to ±1, the embedding Φ maps the sphere
{𝑧} × 𝑆2 into 𝑆3 ∖ 𝐵. Hence for all 𝑠 ∈ 𝑆𝑘, both 𝛽𝑠

𝑧 and ℎ𝑠
𝑧 agree with

𝛽𝑠𝑡
𝑧 and ℎ𝑠𝑡

𝑧 , respectively, for 𝑧 sufficiently close to ±1.
To be able to apply Gray stability, cf. Section 5, we need to find a

path of parametric contact structures between 𝜉𝑠 and 𝜉𝑠𝑡. Equivalently,
we will construct a parametric path of contact forms between the family
𝛼𝑠 and the standard contact form 𝛼𝑠𝑡.
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Let us construct a path that is constant outside Φ([−1, 1] × 𝑆2) as
the contact forms 𝛼𝑠 coincide with 𝛼𝑠𝑡 there already.

Let us assume we are given any such path (𝛼𝑠
𝑡), 𝑡 ∈ [0, 1]. We may

pull it back to [−1, 1] × 𝑆2 and write the contact forms 𝛼𝑠
𝑡 there as

𝛽𝑠
𝑡,𝑧 + ℎ𝑠

𝑡,𝑧 as mentioned above. This turns a path of contact structures
into paths of 1-forms and functions on 𝑆2.

Conversely, paths of 1-forms 𝛽𝑠
𝑡,𝑧 and functions ℎ𝑠

𝑡,𝑧 on 𝑆2 that are
constant in 𝑡 for 𝑧 close to ±1 determine paths of 1-forms on 𝑆3.
However, without further assumptions, these will not be contact forms.

Observation 7.2. With respect to this splitting [−1, 1] × 𝑆2, the contact
condition (I.1) for a 1-form 𝛼 = 𝛽𝑧 + ℎ𝑧 d𝑧 translates into

0 < 𝛼 ∧ d𝛼 = (𝛽𝑧 + ℎ𝑧 d𝑧) ∧ (d𝛽𝑧 − ̇𝛽𝑧 ∧ d𝑧 + dℎ𝑧 ∧ d𝑧)

= 𝛽𝑧 ∧ d𝛽𝑧 − 𝛽𝑧 ∧ ̇𝛽𝑧 ∧ d𝑧 + 𝛽𝑧 ∧ dℎ𝑧 ∧ d𝑧 + ℎ𝑧 d𝛽𝑧 ∧ d𝑧

= (−𝛽𝑧 ∧ ̇𝛽𝑧 + 𝛽𝑧 ∧ dℎ𝑧 + ℎ𝑧 d𝛽𝑧) ∧ d𝑧 ,

(I.10)

where the dot denotes derivative with respect to 𝑧 and all exterior
derivatives are with respect to 𝑆2.

Hence the problem to find an 𝑆𝑘-parametric isotopy between the
contact structures 𝜉𝑠 and 𝜉𝑠𝑡 translates into finding paths of 𝑆𝑘 ×
[−1, 1]-parametric 1-forms and functions on 𝑆2 that satisfy the contact
condition (I.10).

A naïve idea would be to choose a convex interpolations between 𝛽𝑠
𝑧

and 𝛽𝑠𝑡
𝑧 and between ℎ𝑠

𝑧 and ℎ𝑠𝑡
𝑧 :

Observation 7.3. For any fixed family of 1-forms 𝛽𝑧 on [−1, 1] × 𝑆2,
the contact condition is convex in ℎ𝑧: Let ℎ𝑧 and 𝑘𝑧 be two families of
smooth functions on 𝑆2 such that both 𝛽𝑧 + ℎ𝑧 d𝑧 and 𝛽𝑧 + 𝑘𝑧 d𝑧 are
contact forms and define

𝛼𝑡 ≔ 𝛽𝑧 + ((1 − 𝑡) ℎ𝑧 + 𝑡𝑘𝑧) d𝑧 .
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Then we have

𝛼𝑡 ∧ d𝛼𝑡 = (−𝛽𝑧 ∧ ̇𝛽𝑧 + (1 − 𝑡)(𝛽𝑧 ∧ dℎ𝑧 + ℎ𝑧 d𝛽𝑧)

+ 𝑡 (𝛽𝑧 ∧ d𝑘𝑧 + 𝑘𝑧 d𝛽𝑧)) ∧ d𝑧

= (1 − 𝑡)(−𝛽𝑧 ∧ ̇𝛽𝑧 + 𝛽𝑧 ∧ dℎ𝑧 + ℎ𝑧 d𝛽𝑧) ∧ d𝑧

+ 𝑡(−𝛽𝑧 ∧ ̇𝛽𝑧 + 𝛽𝑧 ∧ d𝑘𝑧 + 𝑘𝑧 d𝛽𝑧) ∧ d𝑧
= (1 − 𝑡)((𝛽𝑧 + ℎ𝑧 d𝑧) ∧ d(𝛽𝑧 + ℎ𝑧 d𝑧))

+ 𝑡((𝛽𝑧 + 𝑘𝑧 d𝑧) ∧ d(𝛽𝑧 + 𝑘𝑧 d𝑧))
> 0 .

Consequently, all 𝛼𝑡 are contact forms. The contact condition is,
however, not convex in 𝛽𝑧 for fixed ℎ𝑧.

We may still construct paths of contact structures provided the 1-
forms 𝛽𝑠

𝑧 are nice, cf. Section 11. These nice 1-forms 𝛽𝑠
𝑧 belong to convex

surfaces.

8. Convex surfaces
Definition 8.1. If a surface Σ in a contact manifold (𝑀, 𝜉 = ker 𝛼)
has a tubular neighbourhood (−𝜀, 𝜀) × Σ such that the contact form 𝛼 is
invariant with respect to the normal direction 𝑧, i.e. 𝛼 can be written as

𝛼|(−𝜀,𝜀)×Σ = 𝛽 + ℎ d𝑧 ,

where neither 𝛽 nor ℎ depend on 𝑧, then the surface Σ is called convex.

Observation 8.2. The contact condition (I.10) for 1-forms given as
𝛽𝑧 + ℎ𝑧 d𝑧 in a neighbourhood of a surface Σ simplifies to

0 < (𝛽 ∧ dℎ + ℎ d𝛽) (I.11)

if the 1-form is invariant with respect to 𝑧.
This implies that wherever ℎ vanishes, we have that 0 < 𝛽 ∧ dℎ. In

particular, the differential of ℎ does not vanish and hence Γ ≔ {ℎ = 0}
is a 1-dimensional submanifold of Σ. This submanifold separates areas
where ℎ is positive from those where ℎ is negative.
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Definition 8.3. A 1-dimensional submanifold Γ of a surface Σ is
called dividing set of Σ with respect to a contact structure 𝜉, if there
is a tubular neighbourhood (−𝜀, 𝜀) × Σ of Σ, the contact structure 𝜉 is
given as the kernel of 𝛽 + ℎ d𝑧 and Σ = {ℎ = 0}. The submanifold Γ
shall be oriented as the boundary of {ℎ < 0}.

Let us take a short moment to compare the contact condition (I.10)
with the contact condition (I.11) for convex surfaces. Notice that the
latter is positively linear in ℎ. This property will allow us in Section 11
to find paths of contact forms provided the dividing sets coincide since
the linearity allows us to rescale the function ℎ.

In Chapter II we will derive criteria on 𝛽 and ℎ for the condition
that a given surface Σ is convex.

9. Characteristic foliations
Definition 9.1. Let Σ be any surface embedded via 𝜙 into a 3-dimen-
sional contact manifold (𝑀, 𝜉 = ker 𝛼). The kernel of 𝛽 ≔ 𝜙∗𝛼 is the
intersection of the contact planes of 𝜉 with the tangent space of Σ. It is
a 1-dimensional singular foliation, the characteristic foliation of Σ
with respect to 𝜉. We will denote it by 𝜉Σ.

The characteristic foliation on a surface determines 𝛽 up to rescaling.
In fact, it also determines the germ of the contact structure near the
surface, cf. [Gir91, Proposition II.1.2]. A proof in English can be found
in [Gei08, Theorem 2.5.22].

Proposition 9.2 (Giroux). Let Σ1 and Σ2 be two closed surfaces
in contact 3-manifolds (𝑀1, 𝜉1) and (𝑀2, 𝜉2), respectively. Then any
diffeomorphism 𝜙∶ Σ1 → Σ2 that sends characteristic foliation to
characteristic foliation, preserving orientation, extends to a contacto-
morphism Φ∶ (𝒩(Σ1), 𝜉1) → (𝒩(Σ2), 𝜉2).

Moreover, any diffeomorphism Φ′ ∶ 𝒩(Σ1) → 𝒩(Σ2) of sufficiently
small open neighbourhoods of the surfaces is isotopic to a contacto-
morphism.

As the characteristic foliation of a surface Σ determines the contact
structure in a neighbourhood of Σ and being convex is a condition on
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the contact structure in a neighbourhood of Σ, cf. Definition 8.1, being
convex ultimately is a condition on the characteristic foliation.

Corollary 9.3. Let Σ be a surface in a 3-dimensional contact manifold
(𝑀, 𝜉 = ker 𝛼). If there is a 𝜕𝑧-invariant contact structure on (−1, 1)×
Σ that induces the same characteristic foliation on Σ, then Σ is convex.

10. Step 4: Bring dividing sets into standard form
Remember our situation from Section 7: The contact structures 𝜉𝑠

already coincide with 𝜉𝑠𝑡 on two caps. On its complement, identified
with [−1, 1] × 𝑆2, the contact structures 𝜉𝑠 are given as the kernel of
𝛽𝑠

𝑧 + ℎ𝑠
𝑧 d𝑧. We want to construct a path of families of 1-forms 𝛽 and

functions ℎ on 𝑆2 such that these induce a path of parametric contact
structures. In Step 3, cf. Chapter III, we will see how to find an isotopy
of the contact structures 𝜉𝑠 such that all spheres {𝑧}×𝑆2 that make up
the complement of the caps are convex with respect to all 𝜉𝑠, 𝑠 ∈ 𝑆𝑘. In
order to find a path of contact structures in Section 11, we will require
that we can find on each sphere {𝑧} × 𝑆2 a single closed curve that is a
dividing set for all contact structures 𝜉𝑠 and 𝜉𝑠𝑡. To arrange this, we
will need to deform the contact structures 𝜉𝑠 with another isotopy.

Consider 𝑆2 in ℝ3 with coordinates 𝑢, 𝑣 and 𝑤 as in Section 7 and
for each 𝑧 ∈ [−1, 1] its embedded copy {𝑧} × 𝑆2 ⊂ 𝑆3.

Lemma 10.1. For each 𝑧 ∈ [−1, 1] and 𝑠 ∈ 𝑆𝑘 there is an embedded
curve Γ𝑠

𝑧 in 𝑆2 such that its image in {𝑧} × 𝑆2 is a dividing set with
respect to 𝜉𝑠.

The curves Γ𝑠
𝑧 smoothly depend on 𝑧 and 𝑠 and are contained in the

closed hemisphere {𝑢 ≥ 0} ⊂ 𝑆2. For 𝑧 close to ±1, they agree with
the equator {𝑢 = 0} for all 𝑠 ∈ 𝑆𝑘.

Proof. Consider 𝑧0 ∈ [−1, 1] and 𝑠0 ∈ 𝑆𝑘. The sphere {𝑧0} × 𝑆2 is
convex with respect to 𝜉𝑠0, i.e. there is a tubular neighbourhood of
{𝑧0} × 𝑆2 in [−1, 1] × 𝑆2 with respect to which the contact structure
𝜉𝑠0 is given as the kernel of 𝛽𝑠0𝑧0 + ℎ d𝑧, where ℎ does not depend on 𝑧.
In particular, the function ℎ and the 1-form 𝛽𝑠0𝑧0 satisfy the invariant
contact condition (I.11). As before, we consider both the 1-form 𝛽𝑠0𝑧0 and
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the function ℎ to be living on 𝑆2. By Section III.6 we find a dividing
set on {𝑧} × 𝑆2 that is contained in the hemisphere {𝑢 ≥ 0} ⊂ 𝑆2, so
we may assume that ℎ > 0 on {𝑢 < 0}.

The invariant contact condition is 𝒞1-open in the space of 1-forms
on 𝑆2 with respect to 𝛽. As the 1-forms 𝛽𝑠

𝑧 smoothly depend on both
𝑧 ∈ [−1, 1] and 𝑠 ∈ 𝑆𝑘, there is an open neighbourhood 𝑁 of (𝑠0, 𝑧0) in
𝑆𝑘 ×[−1, 1] such that for all (𝑠, 𝑧) ∈ 𝑁 the 1-forms 𝛽𝑠

𝑧 +ℎ d𝑧 satisfy the
invariant contact condition (I.11). In general these will not be contact
forms, however.

We can find such neighbourhoods 𝑁 and functions ℎ to all points
(𝑠, 𝑧) ∈ 𝑆𝑘 × [−1, 1]. Since 𝑆𝑘 × [−1, 1] is compact, there is a finite
cover 𝑁1, … , 𝑁𝑚 of 𝑆𝑘 × [−1, 1] with such neighbourhoods. Let us call
the corresponding functions ℎ1, … , ℎ𝑚.

Choose a partition of unity 𝜙1, … , 𝜙𝑚 ∶ 𝑆𝑘 × [−1, 1] → [0, 1],
∑𝑚

𝑖=1 𝜙𝑖 ≡ 1, subordinate to the open cover and define

𝐻∶ 𝑆𝑘 × [−1, 1] × 𝑆2 → ℝ
(𝑠, 𝑧, 𝑞) ↦ ∑𝑚

𝑖=1 𝜙𝑖(𝑠, 𝑧) ⋅ ℎ𝑖(𝑞) .

Denote the map 𝑆2 → ℝ, 𝑞 ↦ 𝐻(𝑠, 𝑧, 𝑞) by 𝐻𝑠
𝑧 .

Assertion 1. For each {𝑠, 𝑧} ∈ 𝑆𝑘 × [−1, 1], the image of
the zero set {𝑞 ∈ {𝑧} × 𝑆2 ∣ 𝐻𝑠

𝑧(𝑞) = 0} of 𝐻𝑠
𝑧 in {𝑧} × 𝑆2

is a dividing set with respect to 𝜉𝑠.

Proof. On ℝ × 𝑆2, where we denote the ℝ-coordinate by
𝜁, we can define a 1-form as 𝛽𝑠

𝑧 + 𝐻𝑠
𝑧 d𝜁. By construction of

𝐻 this 1-form satisfies the invariant contact condition (I.11).
As neither 𝛽𝑠

𝑧 nor 𝐻𝑠
𝑧 depend on 𝜁, our 1-form is a thus a

contact form on ℝ × 𝑆2.

There is a tubular neighbourhood (−𝜀, 𝜀)×𝑆2 of {𝑧}×𝑆2 in
[−1, 1]×𝑆2 such that 𝜉𝑠 is given as the kernel of 𝛽𝑠

𝑧 +𝐻𝑠
𝑧 d𝜁,

where 𝜁 is the (−𝜀, 𝜀)-coordinate, cf. Proposition 9.2. In
particular, the zero set {𝑞 ∈ {𝑧} × 𝑆2 ∣ 𝐻𝑠

𝑧(𝑞) = 0} of 𝐻𝑠
𝑧 is

a dividing set of the sphere {𝑧} × 𝑆2 with respect to 𝜉𝑠, cf.
Observation 8.2.
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As each {𝐻𝑠
𝑧 = 0} is a dividing set, the differential of the function

𝐻 does not vanish along the pre-image of 0, hence Γ ≔ {𝐻 = 0} is
a codimension-1 submanifold of 𝑆𝑘 × [−1, 1] × 𝑆2. It intersects each
sphere {𝑧} × 𝑆2 transversely in Γ𝑠

𝑧 ≔ {𝐻𝑠
𝑧 = 0} for all 𝑠 ∈ 𝑆𝑘 and thus

Γ𝑠
𝑧 depends smoothly on both 𝑠 and 𝑧.
For 𝑧 close to ±1, all contact structures 𝜉𝑠 coincide with 𝜉𝑠𝑡 and

hence on {𝑧} × 𝑆2 the contact structures 𝜉𝑠 are given as the kernel
of 𝛽𝑠𝑡

𝑧 + ℎ𝑠𝑡
𝑧 d𝑧 . Consequently, the function 𝐻𝑠

𝑧 coincides with ℎ𝑠𝑡
𝑧 for

all 𝑠 ∈ 𝑆𝑘 and {𝐻𝑠
𝑧 = 0} is the equator {𝑢 = 0} of 𝑆2, a single closed

curve. Hence all Γ𝑠
𝑧 are single closed curves.

It remains to show that all Γ𝑠
𝑧 are contained in the hemisphere

{𝑢 ≥ 0}. This follows from the fact that each ℎ𝑖 was strictly positive
on {𝑢 < 0} and hence so is 𝐻𝑠

𝑧 for all 𝑠 ∈ 𝑆𝑘 and 𝑧 ∈ [−1, 1].

We saw in the proof of the preceding lemma that the hypersurface
Γ = {𝐻 = 0} in 𝑆𝑘 ×[−1, 1]×𝑆2 is contained in 𝑆𝑘 ×[−1, 1]×{𝑢 ≥ 0},
which itself is contained in 𝑆𝑘 × [−1, 1] × {𝑢 > −1/2}. The latter set
is diffeomorphic to 𝑆𝑘 × [−1, 1] × ℝ2 such that {𝑢 = 0} is mapped
to the unit circle {𝑟 = 1} in ℝ2. The hypersurface Γ intersects each
disc {(𝑠, 𝑧)} × 𝐷2 in a single closed curve, hence Γ is diffeomorphic to
𝑆𝑘 × [−1, 1] × 𝑆1.

The hypersurface Γ bounds a cylinder 𝐶 diffeomorphic to 𝑆𝑘 ×
[−1, 1] × 𝐷2 inside 𝑆𝑘 × [−1, 1] × ℝ2. Let 𝜂∶ 𝑆𝑘 × [−1, 1] × 𝐷2 → 𝐶
be a diffeomorphism with 𝜂(𝑠, 𝑧, 𝑞) ∈ {(𝑠, 𝑧)} × ℝ2 for all 𝑠 ∈ 𝑆𝑘 and
𝑧 ∈ [−1, 1]. For 𝑧 close to ±1, the curves Γ𝑠

𝑧 are the equator {𝑢 = 0}
in 𝑆2, which we mapped to the unit circle {𝑟 = 1} in ℝ2. Hence we
may choose 𝜂 to be (𝑠, 𝑧, 𝑞) ↦ (𝑠, 𝑧, 𝑞) for 𝑧 close to ±1. After an
isotopy away from 𝑧 = ±1 that preserves each level {(𝑠, 𝑧)} × 𝐷2 we
may assume that 𝜂(𝑠, 𝑧, 0) = (𝑠, 𝑧, 0) for all 𝑧 ∈ (−1, 1).

Denote by 𝜂𝑠
𝑧 the map 𝑞 ↦ 𝜂(𝑠, 𝑧, 𝑞) and by 𝐷𝑞𝜂𝑠

𝑧 its linearisation as
a map 𝐷2 → 𝐷2. For 𝑡 ∈ [0, 1] define

𝜓𝑡 ∶ 𝑆𝑘 × [−1, 1] × 𝐷2 → 𝑆𝑘 × [−1, 1] × 𝐷2

(𝑠, 𝑧, 𝑞) ↦
⎧{
⎨{⎩

(𝑠, 𝑧, 1
𝑡 𝜂(𝑠, 𝑧, 𝑡𝑞)), 𝑡 > 0

𝐷0𝜂𝑠
𝑧(𝑞), 𝑡 = 0 .

This is an isotopy of 𝜂 that preserves the level sets of (𝑠, 𝑧) and is
stationary for 𝑧 close to ±1.
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11. Step 5: Isotopy to the constant family

Extend both isotopies to a level-preserving isotopy Ψ𝑡 of 𝑆𝑘×[−1, 1]×
𝑆2 relative to {𝑧 = ±1}. Its time-1 map sends Γ ⊂ 𝐶 to 𝑆𝑘 × [−1, 1] ×
{𝑟 = 1}.

The isotopy Ψ𝑡 is stationary near {𝑧 = ±1} and hence extends further
to an isotopy of 𝑆𝑘 × 𝑆3 that is stationary on the caps 𝐶− and 𝐶+.
In particular, it induces isotopies of the contact structures 𝜉𝑠 on 𝑆3

via 𝑇 Ψ𝑠
𝑡 (𝜉𝑠) where Ψ𝑠

𝑡 ≔ Ψ𝑡|{𝑠}×𝑆 3. Denote the contact structures
𝑇 Ψ𝑠

1(𝜉𝑠) again by 𝜉𝑠 and the induced contact forms by 𝛼𝑠.
As Ψ𝑡 is stationary on the caps 𝐶− and 𝐶+, the contact structures

𝜉𝑠 and the contact forms 𝛼𝑠 still agree with 𝜉𝑠𝑡 and 𝛼𝑠𝑡, respectively,
on 𝐶− ∪ 𝐶+ for all 𝑠 ∈ 𝑆𝑘.

A contactomorphism sends convex surfaces to convex surfaces and
their dividing sets to dividing sets. Consequently, all spheres {𝑧} × 𝑆2

are convex with respect to all 𝜉𝑠, 𝑠 ∈ 𝑆𝑘, and for all 𝑧 ∈ [−1, 1]. On any
of these we may choose Ψ1(Γ ∩ {(𝑠, 𝑧)} × 𝑆2) = Ψ1(Γ)∩{(𝑠, 𝑧)}×𝑆2 =
{𝑢 = 0} ⊂ {(𝑠, 𝑧)} × 𝑆2 as dividing set with respect to 𝜉𝑠. In other
words, for all spheres the equator {𝑢 = 0} is a dividing set with respect
to all contact structures 𝜉𝑠.

11. Step 5: Isotopy to the constant family

We are now ready to construct an isotopy of the contact structures 𝜉𝑠

to the constant family 𝜉𝑠𝑡. On the caps 𝐶− and 𝐶+, cf. Section 7, of
𝑆3 the contact structures 𝜉𝑠 already coincide with 𝜉𝑠𝑡, so we need to
find an isotopy on [−1, 1] × 𝑆2.

The tool we will be using is a parametric version of the Gray stability
theorem, cf. Corollary 5.3: A smooth path of contact forms on [−1, 1]×
𝑆2 gives rise to a path of contact structures, which in turn will produce
an isotopy of contact structures. This construction is a parametric
adaptation of ideas from [Gir00, Lemma 2.6] and their explanation in
[Gei08, Lemma 4.9.2].

On [−1, 1] × 𝑆2 we wrote the contact structures 𝜉𝑠 as the kernel
of 𝛽𝑠

𝑧 + ℎ𝑠
𝑧 d𝑧, cf. Section 7, and 𝜉𝑠𝑡 as the kernel of 𝛽𝑠𝑡

𝑧 + ℎ𝑠𝑡
𝑧 d𝑧. A

convex interpolation between these forms will in general not be through
contact forms. Instead, we may use the fact that all spheres {𝑥} × 𝑆2

are convex and their equators are common dividing sets with respect
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I. Families of contact structures

to all 𝜉𝑠 and 𝜉𝑠𝑡: It allows us to find paths to contact forms with large
functions ℎ𝑠

𝑧 and ℎ𝑠𝑡
𝑧 , first. If chosen sufficiently big, their contribution

in the inequality of the contact condition dominates the remaining
summands and guarantees that convex combinations of the contact
forms are indeed through contact forms.

Step I The forms 𝛽𝑠𝑡
𝑧 +ℎ𝑠𝑡

𝑧 d𝑧 are contact forms and 𝛽𝑠𝑡
𝑧 and ℎ𝑠𝑡

𝑧 satisfy
the invariant contact condition (I.11). Hence a quick calculation shows
that for 𝜆 > 1 the forms 𝜇𝑧 ≔ 𝛽𝑠𝑡

𝑧 + 𝜆ℎ𝑠𝑡
𝑧 d𝑧 are also contact forms.

𝜇𝑧 ∧ d𝜇𝑧 = (𝛽𝑠𝑡
𝑧 + 𝜆ℎ𝑠𝑡

𝑧 d𝑧) ∧ (d𝛽𝑠𝑡
𝑧 − ̇𝛽𝑠𝑡

𝑧 ∧ d𝑧 + 𝜆 dℎ𝑠𝑡
𝑧 ∧ d𝑧)

= (−𝛽𝑠𝑡
𝑧 ∧ ̇𝛽𝑠𝑡

𝑧 + 𝜆𝛽𝑠𝑡
𝑧 ∧ dℎ𝑠𝑡

𝑧 + 𝜆ℎ𝑠𝑡
𝑧 ∧ d𝛽𝑠𝑡

𝑧 ) ∧ d𝑧

= (−𝛽𝑠𝑡
𝑧 ∧ ̇𝛽𝑠𝑡

𝑧 + 𝛽𝑠𝑡
𝑧 ∧ dℎ𝑠𝑡

𝑧 + ℎ𝑠𝑡
𝑧 ∧ d𝛽𝑠𝑡

𝑧 ) ∧ d𝑧
+ (𝜆 − 1)(𝛽𝑠𝑡

𝑧 ∧ dℎ𝑠𝑡
𝑧 + ℎ𝑠𝑡

𝑧 ∧ d𝛽𝑠𝑡
𝑧 ) ∧ d𝑧

As before, d denotes the exterior derivative with respect to the 𝑆2

factor. The first summand is a positive area form on 𝑆2 as the forms
𝛽𝑠𝑡

𝑧 + ℎ𝑠𝑡
𝑧 d𝑧 are contact forms, the second summand is positive as

𝛽𝑠𝑡
𝑧 + ℎ𝑠𝑡

𝑧 d𝑧 satisfy the invariant contact condition. Consequently, the
convex combinations

𝜂𝑠
3,𝑡 ≔ 𝛽𝑠𝑡

𝑧 + 𝑡ℎ𝑠𝑡
𝑧 d𝑧 + (1 − 𝑡)𝜆ℎ𝑠𝑡

𝑧 d𝑧

are contact forms as well.
The forms 𝛽𝑠

𝑧 + ℎ𝑠
𝑧 d𝑧 are contact forms, but 𝛽𝑠

𝑧 and ℎ𝑠
𝑧 do not satisfy

the invariant contact condition. All spheres {𝑧} × 𝑆2 are convex with
respect to all 𝜉𝑠, 𝑠 ∈ 𝑆𝑘, and the equator of 𝑆2 is a dividing set for
all 𝜉𝑠. Considering 𝑆2 ⊂ ℝ3 with coordinates 𝑢, 𝑣 and 𝑤, the equator
of 𝑆2 is the set {𝑢 = 0}. Since the equator is a dividing set for every
𝑧 ∈ [−1, 1] and 𝑠 ∈ 𝑆𝑘 a construction as in the proof of Lemma 10.1
yields functions 𝐻𝑠

𝑧 on 𝑆2 such that the 1-forms 𝛽𝑠
𝑧 + 𝐻𝑠

𝑧 d𝑧 do satisfy
the invariant contact condition. These functions coincide with ℎ𝑠𝑡

𝑧 for
𝑧 close to ±1, vanish exactly and up to first order on the equator. As
also the functions ℎ𝑠𝑡

𝑧 vanish exactly on {𝑢 = 0} and up to first order,
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11. Step 5: Isotopy to the constant family

the functions
𝑓𝑠

𝑧 ≔
ℎ𝑠𝑡

𝑧
𝐻𝑠

𝑧

defined on {𝑢 ≠ 0} extend uniquely to a smooth family of smooth pos-
itive functions 𝑓𝑠

𝑧 ∶ 𝑆2 → ℝ+. Rescaling the 1-forms 𝛽𝑠
𝑧 + 𝐻𝑠

𝑧 d𝑧 with
the functions 𝑓𝑠

𝑧 yields the 1-forms 𝑓𝑠
𝑧 𝛽𝑠

𝑧 + ℎ𝑠𝑡
𝑧 d𝑧. A quick calculation

shows that these still satisfy the invariant contact condition (I.11). First
notice that

ℎ𝑠𝑡
𝑧 d𝑓𝑠

𝑧 = ℎ𝑠𝑡
𝑧

𝐻𝑠
𝑧 dℎ𝑠𝑡

𝑧 − ℎ𝑠𝑡
𝑧 d𝐻𝑠

𝑧

(𝐻𝑠
𝑧)2 = 𝑓𝑠

𝑧 dℎ𝑠𝑡
𝑧 − (𝑓𝑠

𝑧 )2 d𝐻𝑠
𝑧 .

Let us omit the indices 𝑠 and 𝑧 for simplicity for a moment.

(𝑓𝛽) ∧ dℎ𝑠𝑡 + ℎ𝑠𝑡 d(𝑓𝛽)
= 𝑓𝛽 ∧ dℎ𝑠𝑡 + ℎ𝑠𝑡 d𝑓 ∧ 𝛽 + ℎ𝑠𝑡𝑓 d𝛽
= 𝑓𝛽 ∧ dℎ𝑠𝑡 + 𝑓 dℎ𝑠𝑡 ∧ 𝛽 − 𝑓2 d𝐻 ∧ 𝛽 + ℎ𝑠𝑡𝑓 d𝛽
= 𝑓2(𝐻 d𝛽 + 𝛽 ∧ d𝐻) > 0 .

The second factor is positive as the 1-forms 𝛽𝑠
𝑧 +𝐻𝑠

𝑧 d𝑧 satisfy the invari-
ant contact condition and the functions 𝑓𝑠

𝑧 are positive by construction.
As rescaling the contact forms 𝛽𝑠

𝑧 + ℎ𝑠
𝑧 d𝑧 with the positive functions

𝑓𝑠
𝑧 results in contact forms that still define the contact structures 𝜉𝑠,

we will do so, denoting 𝑓𝑠
𝑧 𝛽𝑠

𝑧 by 𝛽𝑠
𝑧. Notice that we do not change 𝛽𝑠

𝑧
for 𝑧 close to ±1, where they already coincide with 𝛽𝑠𝑡

𝑧 .

Step II To aid some calculations, observe that the forms

𝐴𝑠
𝑧 ≔ −𝛽𝑠

𝑧 ∧ ̇𝛽𝑠
𝑧 + 𝛽𝑠

𝑧 ∧ dℎ𝑠
𝑧 + ℎ𝑠

𝑧 d𝛽𝑠
𝑧

are (positive) area forms on 𝑆2 as 𝛽𝑠
𝑧 + ℎ𝑠

𝑧 d𝑧 are contact forms. The
invariant contact conditions for 𝛽𝑠

𝑧 + ℎ𝑠𝑡
𝑧 d𝑧 and 𝛽𝑠𝑡

𝑧 + ℎ𝑠𝑡
𝑧 d𝑧 imply that

𝐵𝑠
𝑧 ≔ 𝛽𝑠

𝑧 ∧ dℎ𝑠𝑡
𝑧 + ℎ𝑠𝑡

𝑧 d𝛽𝑠
𝑧

𝐵𝑠𝑡
𝑧 ≔ 𝛽𝑠𝑡

𝑧 ∧ dℎ𝑠𝑡
𝑧 + ℎ𝑠𝑡

𝑧 d𝛽𝑠𝑡
𝑧

are positive area forms as well.
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Consider the convex combinations

𝜂𝑠
1,𝑡 ≔ 𝛽𝑠

𝑧 + (1 − 𝑡)ℎ𝑠
𝑧 d𝑧 + 𝑡𝜆ℎ𝑠𝑡

𝑧 d𝑧

between 𝛽𝑠
𝑧 + ℎ𝑠

𝑧 d𝑧 and 𝛽𝑠
𝑧 + 𝜆ℎ𝑠𝑡

𝑧 d𝑧. Observe that

𝜂𝑠
1,𝑡 ∧ d𝜂𝑠

1,𝑡 = [(1 − 𝑡)(𝛽𝑠
𝑧 ∧ dℎ𝑠

𝑧 + ℎ𝑠
𝑧 d𝛽𝑠

𝑧 − 𝛽𝑠
𝑧 ∧ ̇𝛽𝑠

𝑧) − 𝑡𝛽𝑠
𝑧 ∧ ̇𝛽𝑠

𝑧

+ 𝜆𝑡(𝛽𝑠
𝑧 ∧ dℎ𝑠𝑡

𝑧 + ℎ𝑠𝑡
𝑧 d𝛽𝑠

𝑧)] ∧ d𝑧

= [(1 − 𝑡)𝐴𝑠
𝑧 − 𝑡𝛽𝑠

𝑧 ∧ ̇𝛽𝑠
𝑧 + 𝑡𝜆𝐵𝑠

𝑧] ∧ d𝑧 .

Hence, the 1-forms 𝜂1,𝑡 are contact forms, provided 𝜆 is chosen large
enough.

Finally, consider the convex combinations

𝜂𝑠
2,𝑡 ≔ (1 − 𝑡)𝛽𝑠

𝑧 + 𝑡𝛽𝑠𝑡
𝑧 + 𝜆ℎ𝑠𝑡

𝑧 d𝑧 .

A quick calculation shows that

𝜂𝑠
2,𝑡 ∧ d𝜂𝑠

2,𝑡 = [𝜆(1 − 𝑡)(𝛽𝑠
𝑧 ∧ dℎ𝑠𝑡

𝑧 + ℎ𝑠𝑡
𝑧 ∧ 𝛽𝑠

𝑧)
+ 𝜆𝑡(𝛽𝑠𝑡

𝑧 ∧ dℎ𝑠𝑡
𝑧 + ℎ𝑠𝑡

𝑧 ∧ 𝛽𝑠𝑡
𝑧 )

+ 𝑡(1 − 𝑡)(−𝛽𝑠
𝑧 ∧ ̇𝛽𝑠𝑡

𝑧 − 𝛽𝑠𝑡
𝑧 ∧ ̇𝛽𝑠

𝑧)

− (1 − 𝑡)2𝛽𝑠
𝑧 ∧ ̇𝛽𝑠

𝑧 − 𝑡2𝛽𝑠𝑡
𝑧 ∧ ̇𝛽𝑠𝑡

𝑧 ] ∧ d𝑧
= [𝜆((1 − 𝑡)𝐵𝑠

𝑧 + 𝑡𝐵𝑠𝑡
𝑧 ) + 𝐶𝑠

𝑧] ∧ d𝑧 .

Hence these too are contact forms provided we choose 𝜆 sufficiently
large.

Having obtained the three paths 𝜂1,𝑡, 𝜂2,𝑡 and 𝜂3,𝑡 of contact forms,
we may smoothly concatenate them as follows. Pick 𝜀 > 0 and a smooth
function 𝜙∶ [0, 1] → [0, 1] with 𝜙(𝑡) = 0 for 𝑡 < 𝜀 and 𝜙(𝑡) = 1 for
𝑡 > 1 − 𝜀 and define

𝜂𝑠
𝑡 ≔

⎧{{
⎨{{⎩

𝜂𝑠
1,𝜙(3𝑡), 0 ≤ 𝑡 < 1

3
𝜂𝑠

2,𝜙(3𝑡−1),
1
3 ≤ 𝑡 ≤ 2

3
𝜂𝑠

3,𝜙(3𝑡−2),
2
3 < 𝑡 ≤ 1.
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11. Step 5: Isotopy to the constant family

This is a smooth path of contact structures connecting 𝛽𝑠
𝑧 + ℎ𝑠

𝑧 d𝑧 and
𝛽𝑠𝑡

𝑧 + ℎ𝑠𝑡
𝑧 d𝑧.

Step III A Moser trick argument will now, similar to the proof of
the Gray stability theorem, yield a family of isotopies 𝜓𝑠

𝑡 , 𝑡 ∈ [0, 1], of
[−1, 1] × 𝑆2 relative to {−1, 1} × 𝑆2 such that 𝑇 𝜓𝑠

𝑡 (ker 𝜈𝑠
0) = ker 𝜂𝑠

𝑡 .
The latter condition is satisfied if

𝜆𝑠
𝑡𝜂𝑠

0 = (𝜓𝑠
𝑡 )∗𝜂𝑠

𝑡 for each 𝑠 ∈ 𝑆𝑘, 𝑡 ∈ [0, 1] (I.12)

for some smooth family of functions 𝜆𝑠
𝑡 ∶ [−1, 1] × 𝑆2 → ℝ+. If we

assume that we obtain 𝜓𝑠
𝑡 as the time-𝑡 map of the flow of a parametric

vector field 𝑋𝑠
𝑡 , as in the proof of Proposition 5.2 we derive the necessary

condition
𝜇𝑠

𝑡𝜂𝑠
𝑡 = ̇𝜂𝑠

𝑡 + 𝜄𝑋𝑠
𝑡

d𝜂𝑠
𝑡 + d(𝜄𝑋𝑠

𝑡
𝜂𝑠

𝑡 ) . (I.13)

for 𝜇𝑠
𝑡 ≔ d

d𝑡(log 𝜆𝑠
𝑡) ∘ (𝜓𝑠

𝑡 )−1. As before, the dot denotes the derivative
with respect to 𝑧 and the external derivative is taken with respect to
the 𝑆2-factor.

Denote by 𝑅𝑠
𝑡 the Reeb vector fields to the contact forms 𝜂𝑠

𝑡 . We
may the vector fields 𝑋𝑠

𝑡 uniquely as 𝑌 𝑠
𝑡 + 𝑢𝑠

𝑡𝑅𝑠
𝑡 with 𝑌 𝑠

𝑡 ∈ ker 𝜂𝑠
𝑡

and 𝑢𝑠
𝑡 ∶ [−1, 1] × 𝑆2 → ℝ smooth functions. Equation (I.13) then

amounts to
𝜄𝑌 𝑠

𝑡
d𝜂𝑠

𝑡 = 𝜇𝑠
𝑡𝜂𝑠

𝑡 − ̇𝜂𝑠
𝑡 − d𝑢𝑠

𝑡 . (I.14)

Insert the Reeb vector field 𝑅𝑠
𝑡 yields

𝜇𝑠
𝑡 = ̇𝜂𝑠

𝑡 (𝑅𝑠
𝑡 ) + 𝑅𝑠

𝑡 (𝑢𝑠
𝑡) .

Any choice of 𝑢𝑠
𝑡 determines 𝜇𝑠

𝑡 . In fact, for 𝜇𝑠
𝑡 chosen that way, the right

hand side of equation (I.14) has no component in Reeb direction and non-
degeneracy of d𝜃𝑠

𝑡 on the contact structure ker 𝜂𝑠
𝑡 uniquely determines

𝑌 𝑠
𝑡 . We are left to find 𝑢𝑠

𝑡 such that 𝑋𝑠
𝑡 vanishes on {−1, 1} × 𝑆2.

Remember that 𝜂𝑠
𝑡 , restricted to 𝑇({±1} × 𝑆2) is constant in 𝑡.

Hence, on {±1}×𝑆2 the 1-form ̇𝜂𝑠
𝑡 is only non-zero on vectors transverse

to {±1} × 𝑆2, i.e.

̇𝜂𝑠
𝑡 = 𝑘𝑠

𝑡 d𝑧 on {±1} × 𝑆2 .
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I. Families of contact structures

Consequently, we may choose as 𝑢𝑠
𝑡 any family of smooth functions that

are zero on {−1, 1} × 𝑆2 and satisfy 𝜕
𝜕𝑧𝑢𝑠

𝑡 = 𝑘𝑠
𝑡 there.

With this choice 𝜇𝑠
𝑡 vanishes on {−1, 1} × 𝑆2 and by equation (I.14)

so do 𝑌 𝑠
𝑡 and 𝑋𝑠

𝑡 = 𝑌 𝑠
𝑡 + 𝑢𝑠

𝑡𝑅𝑠
𝑡 .

This determines a smooth family of vector fields 𝑋𝑠
𝑡 that vanish

on {−1, 1} × 𝑆2. We can integrate them up to time 1. Its flow 𝜓𝑠
𝑡

gives a family of isotopies between the contact structures 𝜉𝑠 and 𝜉𝑠𝑡 on
[−1, 1] × 𝑆2. They are stationary on {−1, 1} × 𝑆2 and hence extend to
isotopies of 𝑆3.

This concludes the proof of Theorem 2.1.

28



II. Families of characteristic foliations

We still need to modify our family of contact structures 𝜉𝑠 on [−1, 1]×𝑆2

such that all spheres {𝑧} × 𝑆2 ⊂ [−1, 1] × 𝑆2 ⊂ 𝑆3 become convex
surfaces, cf. Definition I.8.1, with respect to all contact structures 𝜉𝑠,
𝑠 ∈ 𝑆𝑘.

We noticed in Section I.9 that the conditions on a surface in a contact
manifold on being convex it determined by its characteristic foliation.
The goal of this chapter is to understand which characteristic foliations
belong to convex surfaces. We will review some theory about character-
istic foliations in Section 1, about dynamical systems in Section 2, and
recapitulate the situation for an isolated surface in Section 3.1. From
there we can understand the conditions on the characteristic foliations
in term of neighbourhoods (Section 3.2) and develop properties of these
neighbourhoods. This paves the way for the deformations described in
the next chapter.

1. Characteristic foliations and vector fields
Let Σ be a sphere {𝑧} × 𝑆2 in [−1, 1] × 𝑆2 ⊂ 𝑆3 with contact structure
𝜉𝑠. In a neighbourhood of this sphere, the contact structure 𝜉𝑠 is given
as the kernel of

𝛽𝑠
𝑧 + ℎ𝑠

𝑧 d𝑧 .

As in Section I.7, we consider 𝛽𝑠
𝑧 as a 1-form on 𝑆2 and ℎ𝑠

𝑧 as a function
on 𝑆2. The characteristic foliation 𝜉𝑠Σ is given as the kernel of 𝛽𝑠

𝑧. In
particular, we may regard it as a singular foliation on 𝑆2.

Definition 1.1. If 𝑋 is a vector field on 𝑆2 parallel to the characteristic
foliation 𝜉𝑠Σ (and vanishing in the singular points), we say 𝑋 directs
the characteristic foliation 𝜉𝑠Σ.

While we speak of leaves of the characteristic foliation, we shall refer
to flow lines of vector fields as trajectories. Each trajectory of 𝑋 is a
leaf of 𝜉Σ.
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II. Families of characteristic foliations

Observation 1.2. Let 𝑆2 oriented as 𝑆2 ⊂ ℝ3. If we pick an area form
Ω on 𝑆2 that corresponds to this choice, we may uniquely define a
vector field 𝑋 on 𝑆2 using

𝜄𝑋Ω = 𝛽𝑠
𝑧 .

In particular, this fixes an orientation on the singular foliation 𝜉Σ.
The 1-forms 𝛽𝑠

𝑧 on 𝑆2 depend smoothly on both 𝑠 ∈ 𝑆𝑘 and 𝑧 ∈
[−1, 1]. Hence we obtain a smooth family of vector fields 𝑋𝑠

𝑧 that define
the characteristic foliations.

Example 1.3. Let us consider the spheres {𝑧} × 𝑆2, 𝑧 ∈ [−1, 1], in
(𝑆3, 𝜉𝑠𝑡). We saw in Section I.7 an embedding of these and pulled
the contact form 𝛼𝑠𝑡 back via this embedded to 𝛽𝑠𝑡

𝑧 + 𝑢𝑠𝑡
𝑧 d𝑧 with

𝛽𝑠𝑡
𝑧 = 7

8𝑟 ⋅ 𝑧 d𝑢 + 𝑟2 ⋅ 𝑣 d𝑤 − 𝑟2 ⋅ 𝑤 d𝑣 and ℎ𝑠𝑡
𝑧 = −7

8𝑟−1𝑢.
To visualise vector fields directing the characteristic foliation of these

spheres, consider spherical coordinates given by

𝐹∶ [−1, 1] × [0.𝜋] × (−𝜋, 𝜋] → [−1, 1] × 𝑆2 ⊂ [−1, 1] × ℝ3

(𝑧, 𝜗, 𝜑) ↦
⎛⎜⎜⎜⎜⎜
⎝

𝑧
cos 𝜗

sin 𝜗 cos 𝜑
sin 𝜗 sin 𝜑

⎞⎟⎟⎟⎟⎟
⎠

Pulling the 1-form 𝛽𝑠𝑡
𝑧 back via 𝐹 yields

𝐹 ∗𝛽𝑠𝑡
𝑧 = −

7
8𝑟(𝑧)𝑧 sin 𝜗 d𝜗 + 𝑟2(𝑧) sin2 𝜗 d𝜑 .

With respect to the area forms 𝑟2(𝑧) sin 𝜗 d𝜗 ∧ d𝜑 for {𝑧} × 𝑆2 we
obtain the vector fields

𝑋𝑠𝑡
𝑧 ≔

7
8

𝑧
𝑟(𝑧)

𝜕𝜑 + sin 𝜗 𝜕𝜗

that direct the characteristic foliation of {𝑧} × 𝑆2 with respect to 𝜉𝑠𝑡.
These have two zeroes, each in a pole. In the north pole, 𝜗 = 0, it is

a source and the zero in the south pole is a sink. Their complement is
foliated with trajectories of 𝑋𝑠𝑡

𝑧 that emanate at the north pole and
tend to the south pole.
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2. Characteristic foliations of convex surfaces

The vector fields 𝑋𝑠
𝑧 agree with 𝑋𝑠𝑡

𝑧 on the set that gets mapped
to {𝑢 ≤ 1

2} = {cos 𝜗 ≤ 1
2}. In particular, this includes the northern

hemisphere for each 𝑧 ∈ [−1, 1].

2. Characteristic foliations of convex surfaces

Our goal will be to deform the movie 𝑋𝑠
𝑧 of vector fields by isotopies

of the contact structures 𝜉𝑠 until all spheres {𝑧} × 𝑆2 are convex with
respect to all contact structures 𝑠 ∈ 𝑆𝑘. As a first step, we will see
which properties each of the final vector fields will have to have, i.e.
which characteristic foliations belong to convex surfaces.

Let Σ be a closed sphere in a tight contact manifold (𝑀, 𝜉). It has a
tubular neighbourhood on which the contact structure 𝜉 is given as the
kernel of 𝛽𝑧 + ℎ𝑧 d𝑧. Let Ω be an area form on Σ. Then

𝜄𝑋Ω = 𝛽0

defines a vector field 𝑋 that directs the characteristic foliation 𝜉Σ.
To be able to derive conditions on 𝑋 that, once satisfied, imply that

Σ is convex, let us remember some theory about dynamical systems.

2.1. Regular points and trajectories

Let 𝑋 be a vector field on a closed manifold 𝑀 of arbitrary dimension.
We will mainly consider planar vector fields, however, we shall make
use of the fact that smooth 𝒫-parametric vector fields on a surface Σ
form a single vector field on 𝒫 × Σ.

A point 𝑞 ∈ 𝑀 in which 𝑋 does not vanish is a regular point of
𝑋. A trajectory of the vector field 𝑋 is a curve 𝛾∶ (−𝛿, 𝛿) → 𝑀 on
𝑀 that is defined on an interval (−𝛿, 𝛿) and satisfies ̇𝛾(𝑡) = 𝑋𝛾(𝑡) for
all 𝑡 ∈ (−𝛿, 𝛿). The dot here denotes the derivative with respect to 𝑡.
We consider smooth vector fields 𝑋 on closed manifolds 𝑀, so we will
always be able to extend the domain of 𝛾 to ℝ.

Through any point 𝑝 ∈ 𝑀 passes a unique trajectory 𝛾∶ ℝ → 𝑀
with 𝛾(0) = 𝑝. We will denote this trajectory by 𝛾(𝑝).
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II. Families of characteristic foliations

Definition 2.1. To each trajectory 𝛾∶ ℝ → 𝑀 of a vector field 𝑋
on 𝑀 we associate the 𝛼-limit set to be

𝛼(𝛾) ≔ {𝑞 ∈ 𝑀 ∣ ∃(𝑡𝑛)𝑛∈ℕ ⊂ ℝ, 𝑡𝑛 → −∞∶ 𝛾(𝑡𝑛) → 𝑞} .

Analogously, we define the 𝜔-limit set to be points that comprise the
limit of 𝛾 in positive time, i.e.

𝜔(𝛾) ≔ {𝑞 ∈ 𝑀 ∣ ∃(𝑡𝑛)𝑛∈ℕ ⊂ ℝ, 𝑡𝑛 → +∞∶ 𝛾(𝑡𝑛) → 𝑞} .

The unique trajectory through a singular point 𝑞 ∈ 𝑀 is constant
and both its 𝛼- and 𝜔-limits are the set {𝑞}.

Definition 2.2. A codimension-1 submanifold 𝐶 of Σ is called a cross
section of the vector field 𝑋 if it is transverse to 𝑋.

As transversality is an open condition, we find cross sections through
any regular point of 𝑋.

Theorem 2.3 (Flow Box Theorem). Around a regular point 𝑞 of
a vector field 𝑋 on a manifold 𝑀 of dimension 𝑚 there are local
coordinates 𝑥1, 𝑥2, … , 𝑥𝑚 such that in these coordinates, the vector
field 𝑋 is given as 𝜕𝑥1

= 𝜕
𝜕𝑥1

. Such coordinates are called flow box.

Proof. Choose a cross section 𝐶 to 𝑋 through 𝑞 together with co-
ordinates 𝑥2, … , 𝑥𝑚. The flow of the vector field 𝑋 then defines the
coordinate 𝑥1 in an open neighbourhood of 𝑞.

This classical result is also known as Rectification Theorem, Funda-
mental Theorem for differential equations or Tubular Flow Theorem.

Corollary 2.4 (Long Flow Box Theorem). Let 𝛾∶ [0, 𝑇 ] → 𝑀 with
𝑇 > 0 be an arc of a trajectory of 𝑋 on 𝑀 with 𝛾(0) ≠ 𝛾(𝑇 ). Then there
is a neighbourhood 𝑁 of 𝛾([0, 𝑇 ]) with coordinates 𝜙∶ [0, 𝑇 ] × 𝑉 → 𝑁
for some 𝜀 > 0 and 𝑉 ⊂ ℝ𝑚−1 open such that on 𝑁 the vector field 𝑋
is given as 𝜕𝑥1

and 𝛾 = 𝜙(∙,0). These coordinates are called a long
flow box.

The arc 𝛾([0, 𝑇 ]) is compact, so we can cover it with finitely many
flow boxes. Similar to the way one extends a trivialisation of a bundle
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2. Characteristic foliations of convex surfaces

we can construct coordinates along all of 𝛾([0, 𝑇 ]). A detailed proof is
presented in [PM82, Section 3.1].
Remark 2.5. If, in the situation of Corollary 2.4, we are given a para-
meterised cross section 𝐶 of 𝑋 that intersects the arc 𝛾∶ [0, 𝑇 ] → Σ
in exactly one point, then there is a long flow box that extends these
coordinates, i.e. coordinates 𝜙∶ 𝑈 × 𝑉 → Σ with 𝑈 ⊂ [0, 𝑇 ] and
𝑉 ⊂ ℝ𝑚−1 open that restrict on {𝑐} × ℝ𝑚−1 to the given coordinates
of 𝐶 for some 𝑐 ∈ 𝑈.

This condition determines 𝜙 and 𝑉 uniquely up to the size of 𝑉:
If there are two flow boxes (𝑉 , 𝜙) and (𝑉 ′, 𝜙′) that both extend the
coordinates on 𝐶 then they coincide on the preimage of 𝜙(𝑉) ∩ 𝜙′(𝑉 ′).

Let me conclude with introducing the Poincaré map. A more detailed
treatment can be found in [PM82, Section 3.1].

Definition 2.6. Let 𝐶1 and 𝐶2 two cross sections of a vector field 𝑋
on a manifold 𝑀. Denote the flow of 𝑋 by 𝜓𝑡 and by

𝑇𝐶1,𝐶2
∶ 𝐶1 → ℝ+ ∪ {∞}

𝑞 ↦ min{𝜏 ∈ ℝ+ ∣ 𝜓𝜏(𝑞) ∈ 𝐶2}

the time that is takes the flow of 𝑋 to map points of 𝐶1 to 𝐶2. This
flow time map map allows us to define the Poincaré map

𝑃𝐶1,𝐶2
∶ 𝐶1 → 𝐶2

𝑞 ↦
⎧{
⎨{⎩

𝜓𝑇𝐶1,𝐶2(𝑞)(𝑞), 𝑇𝐶1,𝐶2
(𝑞) < ∞

undefined otherwise.

The Poincaré map 𝑃𝐶,𝐶 ≕ 𝑃𝐶 from a cross section 𝐶 to itself is called
the Poincaré return map.

Lemma 2.7. The flow time map 𝑇𝐶1,𝐶2
to two cross sections 𝐶1

and 𝐶2 is finite on an open domain and is smooth there. The Poincaré
map 𝑃𝐶1,𝐶2

is a local diffeomorphism.

Proof. Let 𝑇𝐶1,𝐶2
be defined in a point 𝑞 ∈ 𝐶1. If 𝑞 and 𝑃𝐶1,𝐶2

(𝑞) are
disjoint, the claims follow from the Long Flow Box Theorem. Otherwise,
if 𝑞 = 𝑃𝐶1,𝐶2

(𝑞), pick another cross section 𝐵 trough a point 𝑝 ≠ 𝑞
in the trajectory 𝛾(𝑞) through 𝑞, splitting the closed trajectory in
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II. Families of characteristic foliations

two arcs, from 𝑞 to 𝑝 and from 𝑝 to 𝑞. Choosing long flow boxes
around the two arcs of 𝛾(𝑞), observe that 𝑇𝐶1,𝐶2

= 𝑇𝐵,𝐶2
∘ 𝑇𝐶1,𝐵 and

𝑃𝐶1,𝐶2
= 𝑃𝐵,𝐶2

∘𝑃𝐶1,𝐵 in a neighbourhood of 𝑞. Thus the claims follow
as in the first case.

2.2. Singular points

Let 𝑋 now be a vector field on 𝑆2 and Ω be an area form on 𝑆2.
Singular points of the characteristic foliation are zeroes of the directing
vector field. We will be referring to both using the same term, singular
points.

Definition 2.8. The divergence divΩ(𝑋) of a vector field 𝑋 with
respect to the area form Ω is defined as

ℒ𝑋 Ω = divΩ(𝑋) ⋅ Ω .

Observation 2.9. We defined a special vector field 𝑋 on 𝑆2 that directs
the characteristic foliation using 𝜄𝑋Ω = 𝛽0. For this vector field we
obtain

d𝛽0 = d(𝜄𝑋Ω)

which equals ℒ𝑋 Ω by Cartan’s Formula. Hence

d𝛽0 = divΩ(𝑋) ⋅ Ω .

Any positive multiple of 𝑋 also directs the same characteristic fo-
liation. Let 𝑓∶ 𝑆2 → ℝ+ be a positive function and consider the
vector field 𝑓𝑋. A quick calculation yields

ℒ𝑓𝑋 Ω = d(𝜄𝑓𝑋Ω) = d(𝑓𝜄𝑋Ω) = d𝑓 ∧ 𝜄𝑋Ω + 𝑓 d(𝜄𝑋Ω) .

As the 3-form d𝑓 ∧ Ω vanishes on 𝑆2, we get

0 = 𝜄𝑋(d𝑓 ∧ Ω) = 𝑋(𝑓) Ω − d𝑓 ∧ 𝜄𝑋Ω

and hence

ℒ𝑓𝑋 Ω = d𝑓 ∧ 𝜄𝑋Ω + 𝑓 d(𝜄𝑋Ω) = (𝑋(𝑓) + 𝑓 divΩ(𝑋)) ⋅ Ω .
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2. Characteristic foliations of convex surfaces

We obtain the identity

divΩ(𝑓𝑋) = 𝑋(𝑓) + 𝑓 divΩ(𝑋) . (II.1)

Likewise, we can calculate the divergence of the vector field 𝑋 with
respect to the rescaled positive area form 𝑓Ω. As Ω is closed, we have
ℒ𝑋(𝑓Ω) = d(𝜄𝑋𝑓Ω) = d(𝜄𝑓𝑋Ω) = ℒ𝑓𝑋 Ω and hence

divΩ(𝑓𝑋) = div𝑓Ω(𝑋) = 𝑋(𝑓) + 𝑓 divΩ(𝑋) . (II.2)

If we restrict again to the vector field 𝑋 defined by the area form Ω,
we can rewrite the contact condition using the divergence of 𝑋.

Observation 2.10. The 3-form Ω ∧ dℎ0 vanishes on the surface Σ. Con-
sequently,

0 = 𝜄𝑋(Ω ∧ dℎ0) = 𝜄𝑋Ω ∧ dℎ0 + 𝑋(ℎ0) Ω
= 𝛽0 ∧ dℎ0 + 𝑋(ℎ0) Ω .

Hence, on Σ the contact condition (I.10),

0 < (−𝛽𝑧 ∧ ̇𝛽𝑧 + 𝛽𝑧 ∧ dℎ𝑧 + ℎ𝑧 d𝛽𝑧) ∧ d𝑧

translates into

0 < (−𝛽0 ∧ ̇𝛽0 + (ℎ0 divΩ(𝑋) − 𝑋(ℎ0)) Ω) ∧ d𝑧 . (II.3)

Observation 2.11. In a singular point 𝑞 of the characteristic foliation
𝜉Σ, the 1-form 𝛽0 vanishes, as does the vector field 𝑋. Consequently,
the contact condition (II.3) implies

0 < ℎ0(𝑞) divΩ(𝑋)(𝑞) .

In particular, the Jacobian of 𝑋 has at least one eigenvalue with non-
vanishing real part.

Notice that Equation II.1 implies that the divergence in a singular
point does not depend on the vector field that directs the characteristic
foliation.

This allows us to speak of the sign of singular points of 𝑋.
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II. Families of characteristic foliations

Definition 2.12. Singular points of 𝜉Σ are positive or negative
depending on the sign of the divergence of any vector field directing 𝜉Σ.

The linearisation of a vector field 𝑋 in a singular point 𝑞 defines a
linear map of ℝ2 via the Jacobian 𝐷𝑞𝑋 and an identification of 𝑇𝑞Σ
with ℝ2. The eigenvalues of this map do not depend on the chosen
identification of 𝑇𝑞Σ.

Definition 2.13. If both eigenvalues 𝜆1 and 𝜆2 of the linearisation
of 𝑋 in 𝑞 have non-vanishing real part, the singular point 𝑞 is generic
or non-degenerate.

If both ℜ𝔢 𝜆1 and ℜ𝔢 𝜆2 have the same sign, the singular point 𝑞
is an elliptic singular point, if they have different signs, we call 𝑞
hyperbolic.

An elliptic point with two eigenvalues with negative real part is a
sink, one with two positive real parts is a source.

These names for the singular points are motivated by the Grobman–
Hartman Theorem.

Theorem 2.14 (Grobman–Hartman). Let 𝑋 be a vector field on a
surface Σ, 𝜓𝑡 its flow and 𝑞 ∈ Σ a non-degenerate singular point of 𝑋
in the interior of Σ. Then there is a neighbourhood 𝑈 ⊂ Σ of 𝑞 and
a homeomorphism ℎ∶ 𝑈 → 𝑈 that conjugates 𝜓𝑡 to the linear flow
induced by 𝐷𝑞𝑋, i.e.

𝜓𝑡 = ℎ ∘ 𝑒𝑡𝐷𝑞𝑋 ∘ ℎ−1 .

A proof can be found in [PM82, Section 2.§4]. In many cases, we can
find a conjugation map of higher regularity, see [Jän12, Section III.2.3]
for a short overview. The following example and the pictures also
appear in [Jän12, Example III.2.20].

Example 2.15. On ℝ2 with coordinates 𝑥 and 𝑦 consider the vector
field 𝑋1 given as (−2𝑥 + 5𝑦) 𝜕𝑥 + (−5𝑥 − 3𝑦) 𝜕𝑦. The Jacobian of 𝑋 in
the origin 0 is

𝐷0𝑋1 = ( −2 5
−5 −3 ).
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2. Characteristic foliations of convex surfaces

(a) source (b) sink (c) hyperbolic point

Figure 2.1.: Types of non-degenerate singular points. The light grey arrows in
the background depict the vector field, the solid black, oriented
lines are its trajectories.

Both its eigenvalues, 5/2 ± 3/2
√

11 𝑖, have positive real part, so the
vector field 𝑋1 has a source in the origin, cf. Figure 2.1a. Changing the
sign of the vector field, we obtain another vector field 𝑋2 ≔ −𝑋1. It
has a sink in the origin, cf. Figure 2.1b.

The linearisation of the vector field 𝑋3 ≔ 2𝑥𝜕𝑥 − 3𝑦𝜕𝑦 in the origin
has the eigenvalues 2 and −3, the vector field has a hyperbolic point
in the origin, cf. Figure 2.1c. Notice the four trajectories of 𝑋3 that
emanate at or tend to the origin. These are called separatrices.

We may also distinguish degenerate singular points by the behaviour
of 𝑋 in its vicinity. We will still restrict ourselves to isolated singular
points; we will be able to achieve that all singular points are isolated.

Construction 2.16. If the point 𝑞 ∈ Σ is a degenerate singular point,
one eigenvalue of the linearisation of 𝑋 in 𝑞 vanishes. The contact
condition implies that the other eigenvalue 𝜆 is non-zero and real, cf.
Observation 2.11. Let us assume that the singular point 𝑞 is isolated,
i.e. there is a neighbourhood of 𝑞 in Σ such that 𝑞 is the only singular
point in this neighbourhood. Choose coordinates 𝑥, 𝑦 around 𝑞 such
that 𝑞 = (0, 0) and in 𝑇𝑞Σ the vector 𝜕𝑥 is contained in the eigenspace
to 0 in 𝑞 and 𝜕𝑦 lies in the eigenspace to 𝜆. We may assume that 𝑥, 𝑦
respect the orientation of Σ. In these coordinates, write the vector field
𝑋 as 𝑎(𝑥, 𝑦) 𝜕𝑥 + 𝑏(𝑥, 𝑦) 𝜕𝑦. By the Implicit Function Theorem we may,
shrinking our coordinate neighbourhood, assume that 𝑏(𝑥, 𝑦) vanishes
exactly on {𝑦 = 0}.
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II. Families of characteristic foliations

Definition 2.17. If for 𝑋(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) 𝜕𝑥+𝑏(𝑥, 𝑦) 𝜕𝑦 in local coordin-
ates as in Construction 2.16, the function 𝑥 ↦ 𝑎(𝑥, 0) does not change
sign in 𝑥 = 0, the singular point 𝑞 is half-hyperbolic. In case 𝑎
changes sign from negative to positive and 𝜆 > 0, 𝑞 is a degenerate
source. Analogously we call negative degenerate points degenerate
sinks or degenerate hyperbolic points.

2.3. Neighbourhoods of singular points

Even though there is no Grobman–Hartman theorem for degenerate
singular points, we can, even if we do not know the trajectories of 𝑋
up to conjugation near degenerate points, derive some properties of the
topology of the trajectories of 𝑋 near isolated (degenerate) singular
points.

Construction 2.18. Let 𝑞 be an isolated singular point of the vector
field 𝑋 on Σ and assume that 𝑞 is a positive singular point. Choose
local coordinates 𝑥 and 𝑦 around 𝑞 as in Construction 2.16 and write
the vector field 𝑋 as 𝑎(𝑥, 𝑦) 𝜕𝑥 +𝑏(𝑥, 𝑦) 𝜕𝑦. By the choice of coordinates
the function 𝑏 is strictly positive for 𝑦 > 0 and strictly negative for
𝑦 < 0. Consequently, for any 𝑐 ≠ 0 the arc {𝑦 = 𝑐} is a cross section of
𝑋.

As 𝑞 is an isolated singular point, we find a small 𝛿𝑥 > 0 such that
𝑎(−𝛿𝑥, 0) ≠ 0 and 𝑎(𝛿𝑥, 0) ≠ 0. By continuity, there is 𝛿𝑦 > 0 such that
𝑎(−𝛿𝑥, 𝑦) ≠ 0 and 𝑎(𝛿𝑥, 𝑦) ≠ 0 for all 𝑦 ∈ (−𝛿𝑦, 𝛿𝑦). Thus the segments
{±𝛿𝑥} × [−𝛿𝑦, 𝛿𝑦] are cross sections of 𝑋.

Hence there is a rectangle [−𝛿𝑥, 𝛿𝑥] × [−𝛿𝑦, 𝛿𝑦] around 𝑞 such that
all four sides are cross sections of 𝑋. Choosing 𝛿𝑥 and 𝛿𝑦 sufficiently
small the rectangle will not contain any other singular point.

Each pair of adjacent cross sections of these four intersect each other.
If the vector field 𝑋 passes through two intersecting cross sections with
matching orientation, we may smoothly join the two cross section.

Construction 2.19 (Connected sum of cross sections). Let 𝐶1 and 𝐶2
be two cross sections of the vector field 𝑋 on a surface Σ that intersect
transversely in 𝑝 ∈ Σ. Both cross sections are 1-dimensional curves.
Assume that both cross sections are given an orientation such that their
respective orientation followed by 𝑋 gives the same orientation on Σ.
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2. Characteristic foliations of convex surfaces

Choose a parameterisation 𝑥 of 𝐶1 respecting its orientation. The flow
of the vector field 𝑋 induces a tubular neighbourhood 𝜈𝐶1 of 𝐶1 whose
transverse coordinate we will denote by 𝑦. In a small neighbourhood
𝑈 ⊂ 𝜈𝐶1 of the intersection point 𝑝 the cross section 𝐶2 is a graph
𝑦 = 𝑐(𝑥) over 𝐶1 in 𝜈𝐶1. The neighbourhood 𝑈 contains (−3𝜀, 3𝜀)×{0}
for some 𝜀 > 0. Let 𝜙∶ (−3𝜀, 3𝜀) → [0, 1] be a smooth function that
is identically zero on (−3𝜀, 𝜀], identically 1 on [2𝜀, 3𝜀) and is strictly
monotone in between. We obtain a new smooth cross section 𝐶 by
taking the part of 𝐶1 that lies before 𝑈 with respect to the orientation
of 𝐶1, the part of 𝐶2 that lies after 𝑈 and by taking the graph of 𝜙 ⋅ 𝑐
inside 𝑈, cf. Figure 2.2.

Figure 2.2.: Connected sum of cross sections

2.3.1. Elliptic singular points

Near an elliptic singular point the four cross sections from Construc-
tion 2.18 can be joined to a single one bounding an embedded disc.

Corollary 2.20. Let 𝑞 ∈ Σ be an isolated, possibly degenerate, source
of a vector field 𝑋 on Σ. Then there is a disc 𝐷 in Σ that contains 𝑞
and no other singular point and its boundary 𝜕𝐷 is a cross section
of 𝑋.

Proof. Consider coordinates around 𝑞 ∈ Σ as in Construction 2.16.
With respect to those, there is, by Construction 2.18, a rectangle
𝑅 = [−𝛿𝑥, 𝛿𝑥] × [−𝛿𝑦, 𝛿𝑦] around 𝑞 that does not contain other singular
points and its sides are cross sections of 𝑋. Orient the top side 𝐶1 ≔
[−𝛿𝑥, 𝛿𝑥]×{𝛿𝑦} of 𝑅 as 𝜕𝑥 and the bottom side 𝐶3 ≔ [−𝛿𝑥, 𝛿𝑥]×{−𝛿𝑦}
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II. Families of characteristic foliations

as −𝜕𝑥. By construction of the coordinates, the vector field 𝑋 crosses
the top side from below and the bottom side from above, i.e. from
inside 𝑅 to outside.

The singular point 𝑞 is a source, so the component function 𝑥 ↦
𝑎(𝑥, 0) changes sign from negative to positive in 𝑞, i.e. 𝑥 = 0, cf.
Definition 2.17. Hence, for sufficiently small 𝛿𝑥, the vector field 𝑋
crosses the right side 𝐶2 ≔ {𝛿𝑥} × [−𝛿𝑦, 𝛿𝑦] and the left side 𝐶4 ≔
{−𝛿𝑥} × [−𝛿𝑦, 𝛿𝑦] from inside 𝑅.

Orienting all four sides as the boundary of 𝑅, we can apply Construc-
tion 2.19 to get a closed cross section 𝐶 of 𝑋. It bounds a disc 𝐷 ≅ 𝐷2

that is contained in 𝑅 and hence contains no singular point of 𝑋 apart
from 𝑞.

Analogous statements holds for negative singular points and sinks
with obvious sign-changes in the arguments.

2.3.2. Hyperbolic singular points

Lemma 2.21. Let 𝑞 ∈ Σ be an isolated, possibly degenerate, hyperbolic
singular point of 𝑋 and assume it is a positive singular point. Then there
are up to reparameterisation exactly two trajectories 𝛾1, 𝛾2 that have 𝑞
as their 𝜔-limit. These trajectories are called stable separatrices.

The union of their images and 𝑞, the set 𝛾1(ℝ) ∪ {𝑞} ∪ 𝛾2(ℝ), is an
immersed interval in Σ that is a smooth submanifold of Σ near 𝑞.

Proof. Consider coordinates 𝑥 and 𝑦 around 𝑞 ∈ Σ as in Construc-
tion 2.16 and a rectangle 𝑅 ≔ [−𝛿𝑥, 𝛿𝑥] × [−𝛿𝑦, 𝛿𝑦] around 𝑞 as in
Construction 2.18. The two trajectories 𝛾1 and 𝛾2 through the points
(−𝛿𝑥, 0) and (𝛿𝑥, 0), respectively, tend to 𝑞: The vector field 𝑋 is par-
allel to 𝜕𝑥 along {𝑦 = 0} and there are no other singular points of 𝑋
contained in the rectangle.

Let 𝛾 be the trajectory that passes through any point 𝑝 = (𝑥, 𝑦) in
the coordinate chart with 𝑦 > 0 and assume that 𝛾(0) = 𝑝. As the
𝑦-component 𝑏 of 𝑋 is positive on {𝑦 > 0}, the 𝑦-component of 𝛾(𝑡)
increases with increasing time 𝑡. In particular, 𝛾 will not tend to 𝑞
without leaving the rectangle 𝑅 first. Similarly, trajectories through
points (𝑥, 𝑦) with 𝑦 < 0 cannot tend to 𝑞 without leaving 𝑅.
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If the trajectory 𝛾 trough 𝑝 = (𝑥, 𝑦) with 𝑦 ≠ 0 tends to 𝑞, it
has to enter the rectangle 𝑅 at (−𝛿𝑥, 0) or (𝛿𝑥, 0). But then it is a
reparameterisation of either 𝛾1 or 𝛾2.

The image of each of the two trajectories 𝛾1 and 𝛾2 is an immersed
interval. Close to the singular point 𝑞 = (0, 0) their union agrees with
{(𝑥, 0) | 𝑥 < 0} ∪ {(𝑥, 0) | 𝑥 > 0}.

Following the theory of non-degenerate singular points as for example
in [PM82, Section 2.§6], we will call the set 𝛾1(ℝ) ∪ {𝑞} ∪ 𝛾2(ℝ) the
stable submanifold.

Similarly, to a negative hyperbolic point there are exactly two tra-
jectories that emanate at it. These are called unstable separatrices
and form the unstable manifold.

In case the singular point 𝑞 is a non-degenerate hyperbolic point,
it has both stable and unstable separatrices. This follows from the
Implicit Function Theorem that we can apply to both eigenspaces in
the case that both eigenvalues are non-zero.

2.3.3. Half-hyperbolic singular points

An argument analogous to the proof of Lemma 2.21 yields a similar
statement for half-hyperbolic points.

Lemma 2.22. Let 𝑞 ∈ Σ be an isolated half-hyperbolic singular point
of a vector field 𝑋 and assume it is a positive singular point. Then
there is, up to reparameterisation, exactly one stable separatrix, i.e. a
trajectory 𝛾 that has 𝑞 as its 𝜔-limit.

Proof. Consider coordinates 𝑥 and 𝑦 around 𝑞 ∈ Σ as in Construc-
tion 2.16 and a rectangle 𝑅 ≔ [−𝛿𝑥, 𝛿𝑥] × [−𝛿𝑦, 𝛿𝑦] around 𝑞 as in
Construction 2.18. The component function 𝑥 ↦ 𝑎(𝑥, 0) of 𝑋, restric-
ted to {𝑦 = 0}, does not change sign in 𝑞 = (0, 0). Hence 𝑎(−𝛿𝑥, 0)
and 𝑎(𝛿𝑥, 0) have the same sign, assume they are both positive. The
trajectory 𝛾 through the point (−𝛿𝑥, 0) tends to 𝑞: The vector field 𝑋
is parallel to 𝜕𝑥 along {𝑦 = 0} and there are no other singular points
of 𝑋 contained in the rectangle.

As in the proof of Lemma 2.21 observe that no trajectory that passes
through a point (𝑥, 𝑦) with 𝑦 ≠ 0 can tend to 𝑞 without leaving 𝑅 first.
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Since 𝑎(𝑥, 0) > 0 for all 𝑥 > 0, trajectories through points (𝑥, 0) with
𝑥 > 0 will also leave 𝑅 before eventually tending to 𝑞. Hence 𝛾 is the
only stable separatrix of 𝑞.

The stable separatrix of a half-hyperbolic point 𝑞 is, close to 𝑞, also
contained in an embedded interval that is tangent to 𝑋 by the same
argument as in Lemma 2.21 for hyperbolic singular points.
Construction 2.23. Let 𝑅 be a rectangle as in Construction 2.18 around
a positive half-hyperbolic point 𝑞 ∈ Σ of a vector field 𝑋. Then 𝑋
points out of 𝑅 along the top and the bottom as well as along one side.
Hence we can apply Construction 2.19 to obtain a half-disc 𝐷 ⊂ 𝑅
whose boundary comprises two smooth cross sections, cf. Figure 2.3.

Figure 2.3.: A rectangle and a half-disc around a half-hyperbolic singular
point

2.4. Closed trajectories and cycles
In our case all surfaces are spheres and they are contained in tight
contact manifolds. Consequently, none of their characteristic foliations
contains a closed leaf and hence no vector field directing a characteristic
foliation contains a closed trajectory.

Lemma 2.24. The characteristic foliation 𝜉Σ of a 2-sphere Σ in the
tight contact manifold (𝑆3, 𝜉𝑠𝑡) does not contain a closed leaf.
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2. Characteristic foliations of convex surfaces

Proof. If there was a closed leaf 𝛾, then it bounds a disc Δ in Σ whose
boundary lies in the contact structure 𝜉 and there is no point in 𝜕Δ in
which the contact planes agree with 𝑇 Σ. Hence the contact structure
has to be overtwisted, cf. Definition I.1.6, but (𝑆3, 𝜉𝑠𝑡) is tight.

Definition 2.25. A trajectory 𝛾 emanates at a singular point 𝑞 ∈ Σ,
if 𝛼(𝛾) = {𝑞} and tends to the singular point 𝑝 ∈ Σ, if 𝜔(𝛾) = {𝑝}. In
this case 𝛾 is a trajectory between 𝑞 and 𝑝.

A uniformly oriented polygon in Σ consisting of finitely many hy-
perbolic points and trajectories between them is called a hyperbolic
cycle.

The dynamics of any planar dynamical system, that is, one on the
plane or the 2-sphere, are quite restricted, as the Poincaré-Bendixson
Theorem tells us.

Theorem 2.26 (Poincaré–Bendixson). The 𝛼- and 𝜔-limits of any
trajectory of a vector field on ℝ2 or 𝑆2 are either

• a singular point,
• a closed trajectory, or
• a connected uniformly oriented cycle composed of finitely many

hyperbolic points and trajectories connecting them.

The key ingredient of the proof is the Jordan Curve Theorem. Its
important consequence for our argument and the treatment of convex
surfaces is that is shows that there is no trajectory that ‘spirals against
itself’, i.e. is contained in its own 𝛼- or 𝜔-limit set and is neither constant
nor a closed trajectory.

We already saw that the vector field 𝑋 does not have closed trajector-
ies. A vector field 𝑋 that directs the characteristic foliation of a sphere
in a tight contact manifold does not have hyperbolic cycles, cf. [Gei08,
Section 4.6.4] or Section III.4. Consequently, all trajectories emanate
at and tend to singular points.
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II. Families of characteristic foliations

3. Conditions on convexity
Consider an oriented closed surface Σ in the contact manifold (𝑀, 𝜉),
𝜉 = ker 𝛼, and choose a tubular neighbourhood (−1, 1) × Σ. We
observed in Corollary I.9.3 that whether Σ is convex is a condition
on its characteristic foliation 𝜉Σ with respect to 𝜉. We would like to
understand these conditions and express them as conditions on a vector
field 𝑋 directing the characteristic foliation 𝜉Σ.

3.1. The classic setting
Let us start with a recapitulation of the underlying theory due to
Giroux.

By Corollary I.9.3 the surface Σ is convex if and only if there is a
𝜕𝑧-invariant 1-form 𝛽 + ℎ d𝑧 on (−1, 1) × Σ. Let Ω be a positive area
form on Σ. Rescaling the 1-form 𝛽 + ℎ d𝑧 we can assume that 𝛽 = 𝜄𝑋Ω.
Observation 3.1. By inequality Equation II.3 the condition on the
𝜕𝑧-invariant 1-form 𝛽 + ℎ d𝑧 being a contact form is

0 < (𝛽 ∧ dℎ + ℎ d𝛽) .

With
𝛽 ∧ dℎ = 𝜄𝑋Ω ∧ dℎ = −𝑋(ℎ) Ω

and d𝛽 = divΩ(𝑋) ⋅ Ω we can write this condition as

0 < ℎ divΩ(𝑋) − 𝑋(ℎ) . (II.4)

The set Γ = {ℎ = 0} is a dividing set of Σ, cf. Definition I.8.3. In
points of Γ, the contact condition implies 0 < −𝑋(ℎ0). In particular,
the vector field 𝑋 points out of {ℎ > 0} and into {ℎ < 0}.

As the divergence divΩ(𝑋) does not depend on the choice of vector
field 𝑋 in singular points of 𝜉Σ, cf. Observation 2.11, the function ℎ
needs to be positive in positive singular points and negative in negative
singular points. Consequently, the dividing set Γ = {ℎ = 0} has to
separate negative from positive singular points.

Definition 3.2. A trajectory that emanates at a negative hyperbolic
point and tends to a positive one is called retrograde connection.
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Lemma 3.3. A surface Σ whose characteristic foliation 𝜉Σ contains
a retrograde connection between hyperbolic points is not convex.

Proof. Let 𝛾 be trajectory from a negative hyperbolic point 𝑞− to a
positive one 𝑞+. Assume that Σ is convex. Then the contact structure
𝜉 can be written as the kernel of 𝛽 + ℎ d𝑧, 𝛽 ∈ Ω1(Σ), ℎ ∈ 𝒞∞(Σ) in a
tubular neighbourhood of Σ. As 𝑞− is a negative singular point, ℎ(𝑞−) <
0 and similarly, ℎ(𝑞+) > 0. Hence, along 𝛾 there is a point 𝑞 with ℎ(𝑞) =
0. There, the characteristic foliation points out of {ℎ < 0} and into
{ℎ > 0} in violation of the contact condition, cf. Observation 3.1.

We will observe that in our situation, where all surfaces we consider
are spheres, the existence of retrograde connections is the only obstruc-
tion to convexity. Central to the argument is the following statement.
It can be found in [Theorem 4.8.5 Gei08].

Theorem 3.4. Let Σ be an oriented surface in a contact manifold
(𝑀, 𝜉) and 𝑋 a vector field on Σ that directs its characteristic foliation
𝜉Σ. Then Σ is a convex surface if and only if there is a collection Γ𝐶
of circles such that

1. every curve in Γ𝐶 is transverse to 𝜉Σ,
2. there is a positive area form Ω𝐶 on Σ such that divΩ𝐶

(𝑋) ≠ 0
on Σ ∖ Γ𝐶 and along all curves of Γ𝐶, the vector field points out
of {divΩ𝐶

(𝑋) > 0}.

If there is such a collection of curves together with a volume form then
one constructs a smooth function ℎ on Σ that agrees with sign div(𝑋)
away from Γ and interpolates in between. With this function 𝛽 + ℎ d𝑧
will be an ℝ-invariant contact form on ℝ×Σ implying that Σ is convex.

If Σ is convex, then a dividing set Γ is such a collection of curves. In
other words, there is a positive area form Ω𝐶 such that the divergence
of 𝑋 with respect to Ω𝐶 is positive on {ℎ > 0}, negative on {ℎ < 0}
and vanishes along Γ = {ℎ = 0}, cf. [Gei08, Chapter 4.8].

Let Σ be a sphere in a contact manifold (𝑀, 𝜉) and its characteristic
foliation 𝜉Σ be directed by a vector field 𝑋 that has no retrograde
connection. We will assume for now that all singular points lie isolated
and observe later how this assumption can be relaxed.
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In a first step we will construct a collection of curves Γ𝐶 that are
transverse to 𝑋 and separate positive from negative singular points and
thereafter see how to rescale Ω to obtain an area form Ω𝐶 satisfying
the divergence condition of Theorem 3.4.

The following lemma is a construction explained in [Gei08, Chap. 4.8]
adapted to our needs.

Lemma 3.5. Let Σ ≅ 𝑆2 be an oriented sphere in a tight contact 3-
manifold (𝑀, 𝜉). If the singular points of the characteristic foliation 𝜉Σ
are isolated and there are no retrograde connections, then there is a
subset 𝑆+ of Σ that contains all positive singular points and no negative
singular point and its boundary components are transverse to 𝜉Σ.

Proof. Pick disjoint disc neighbourhoods around all sources of 𝑋 as in
Corollary 2.20 and denote their union by 𝑆1. Its boundary is transverse
to 𝑋 and 𝑋 points out of 𝑆1.

If there is a positive half-hyperbolic point 𝑞 ∈ Σ whose stable separat-
rix emanates in 𝑆1, we like to join it to 𝑆1 by a band around its stable
separatrix whose boundary components are transverse to 𝑋. To do
that consider a half-disc 𝐷 inside a rectangle 𝑅 = [−𝛿𝑥, 𝛿𝑥] × [−𝛿𝑦, 𝛿𝑦]
as in Construction 2.23. Without restriction assume that the stable
separatrix 𝛾 of 𝑞 contains the point (𝛿𝑥, 0). Denote the right side
{𝛿𝑥} × [−𝛿𝑦, 𝛿𝑦] of the rectangle by 𝐶. That 𝛾 emanates at a point in 𝑆
implies that 𝛾 crosses 𝜕𝑆1 and consequently the inverse of the Poincaré-
map 𝑃𝜕𝑆1,𝐶 is defined in an open neighbourhood of (𝛿𝑥, 0). Shrinking
𝛿𝑦 (and thus the rectangle 𝑅 and the half-disc 𝐷) we may assume the
Poincaré-map to be defined on 𝐶1 ≔ {𝛿𝑥} × [−2𝛿𝑦, 2𝛿𝑦]. Inside the
long flow box to 𝐶1 we can join 𝐶 and 𝜕𝑆1 by two arcs transverse to 𝑋
that bound a band 𝐵. Finally, rounding the four corners of the union
𝐷 ∪ 𝐵 ∪ 𝑆1 of the half-disc, the band and 𝑆1 we obtain a new subset
𝑆2 of Σ that contains only positive singular points and its boundary
𝜕𝑆2 is transverse to 𝑋. In particular, the vector field 𝑋 points out of
𝑆2 along 𝜕𝑆2.

Iterate this process until after 𝑘 steps for some 𝑘 ∈ ℕ there are no
positive half-hyperbolic points of 𝑋 left that lie outside 𝑆𝑘 and that
have stable separatrices that emanate at points in 𝑆𝑘.

Consider now a positive hyperbolic point 𝑞 ∈ Σ such that both stable
separatrices emanate in 𝑆𝑘. As there are no hyperbolic cycles, cf.
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Section 2.4, there has to be such hyperbolic points unless there are
no positive hyperbolic points at all. Similar to the construction for
the half-hyperbolic point, we can connect a rectangular neighbourhood
of 𝑞 to 𝑆𝑘 using two bands 𝐵1 and 𝐵2 with boundaries transverse
to 𝑋 around the two stable separatrices of 𝑞. Round the corners of
𝑅 ∪ 𝐵1 ∪ 𝐵2 ∪ 𝑆𝑘 and denote the new set by 𝑆𝑘+1.

Iterate over all positive half-hyperbolic and hyperbolic points: As
there is no retrograde connection, all stable separatrices of positive
singular points have to emanate at positive points and hence at points
in 𝑆𝑛 for some 𝑛 ∈ ℕ.

There are only finitely many isolated singular points on the compact
surface Σ, so after finitely many iterations we arrive at a set that we
denote by 𝑆+ that contains all positive singular points, no negative
singular points is such that the vector field 𝑋 points out of 𝑆+ along
its boundary 𝜕𝑆+.

Similarly, we construct a subset 𝑆− ⊂ Σ that contains all negative
singular points and is such that 𝑋 points into 𝑆− along its boundary
𝜕𝑆−.

Consider a point 𝑞 in the complement of 𝑆+ and 𝑆−. The trajectory
𝛾 through 𝑞 emanates at a singular point and hence at a point in 𝑆+. It
also tends to a singular point and hence to a point in 𝑆−. Consequently,
Σ ∖ (𝑆− ∪ 𝑆+) is foliated by arcs of trajectories of 𝑋 and hence is a
collection of annuli.

Observation 3.6. The divergence divΩ(𝑋) of 𝑋 is a smooth function on
Σ. Consequently, it is positive in a neighbourhood of a positive singular
point of 𝑋. Choosing the neighbourhoods in Section 2.3 sufficiently
small, we may assume that in those neighbourhoods the divergence is
strictly positive on the discs, half-discs or rectangles around positive
singular points and strictly negative on the neighbourhoods around
negative singular points.

As in [Proposition 4.8.7 Gei08] we want to rescale Ω by a positive
function that grows sufficiently fast along the trajectories of 𝑋 to
ensure that the divergence of 𝑋 with respect to the rescaled area form
is positive on the set 𝑆+.
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II. Families of characteristic foliations

Lemma 3.7. Under the hypotheses of Lemma 3.5 there is a positive
area form Ω+ that coincides with Ω outside a neighbourhood of 𝑆+ such
that on the set 𝑆+ the divergence divΩ+

(𝑋) of the vector field 𝑋 with
respect to Ω+ is positive.

Proof. We can construct Ω+ iteratively, following the construction of
the sets 𝑆𝑘 in the proof of Lemma 3.5. Take Ω1 = Ω and assume that
for some 𝑘 ∈ ℕ we already constructed an area form Ω𝑘 that coincides
with Ω outside a neighbourhood of 𝑆𝑘 and is such that divΩ𝑘

(𝑋) > 0
on 𝑆𝑘. Consider the construction of the set 𝑆𝑘+1. It is contained in
the union of 𝑆𝑘, the neighbourhood of a singular point that we will
denote by 𝑁, and a band 𝐵 inside a flow box 𝑉. Let 𝑓∶ 𝑉 → ℝ+ be
a positive function that grows sufficiently fast along the flow box to
ensure div𝑓Ω𝑘

(𝑋) > 0 on 𝑉, cf. Equation II.2. We may choose 𝑓 to be
identically 1 near the end of the flow box 𝑉 that lies in 𝑆𝑘 and constant
near the other end, that lies in 𝑁 as on those sets we already have
divΩ𝑘

(𝑋) > 0. Extend 𝑓 to a function 𝐹∶ Σ → ℝ+ on all of Σ that is
identically 1 outside a small neighbourhood of 𝑉 ∪ 𝑁 and is constant on
𝑁. For Ω𝑘+1 ≔ 𝐹 ⋅ Ω𝑘 we verify divΩ𝑘+1

(𝑋) > 0 on 𝑆𝑘 as Ω𝑘+1 = Ω𝑘,
there. On 𝑁, the area form Ω𝑘+1 is a constant, positive multiple of
Ω𝑘 which in turn coincides with Ω on 𝑁. As we assumed divΩ(𝑋) > 0
on 𝑁, this implies that divΩ𝑘+1

(𝑋) > 0. In points of the flow box 𝑉,
the fact that we chose 𝑓 to grow fast enough along trajectories of 𝑋
implies that the divergence of 𝑋 with respect to Ω𝑘+1 is positive there
as well. Hence, 𝑋 has positive divergence with respect to Ω𝑘+1 on
𝑆𝑘+1 ⊂ 𝑆𝑘 ∪ 𝑉 ∪ 𝑁.

Similarly, we find a positive area form Ω′ that is a constant multiple
of Ω+ outside a neighbourhood of 𝑆− such that divΩ′(𝑋) < 0 on 𝑆−.

As already mentioned, the complement 𝐴 of 𝑆− ∪ 𝑆+ is a collection
of annuli that are foliated by arcs of trajectories of 𝑋. As described
in [Chapter 4.8 Gei08] we can modify Ω′ near those annuli to another
area form Ω𝐶 such that the divergence of 𝑋 with respect to Ω𝐶 vanishes
exactly along the spines of the annuli in 𝐴. Then the spines Γ𝐶 of these
annuli satisfy the hypotheses of Theorem 3.4 together with Ω𝐶 and Σ
is hence a convex surface.
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3.2. Conditions on neighbourhoods
So far we considered the classic case assuming that all singular points
of 𝜉Σ are isolated. In fact, inspecting the adaptation of the proofs
given in the last section we only used this property to obtain standard
neighbourhoods of the singular points. In the construction of the sets
𝑆+ and 𝑆−, cf. Lemma 3.5, we did not rely on the assumption that
each of these neighbourhoods contains only a single singular point.

Definition 3.8. 1. We call an embedded disc 𝐷 ≅ 𝐷2 in Σ whose
boundary 𝜕𝐷 is transverse to 𝑋 and has the property that the
divergence of 𝑋 with respect to an area form Ω is positive on 𝐷
a positive elliptic neighbourhood with respect to Ω. Simil-
arly, if the divergence is negative, we call 𝐷 a negative elliptic
neighbourhood.

2. Let 𝑅 ≅ [−1, 1] × [−1, 1] be a rectangle in Σ such that all four
sides are transverse to 𝑋. Write 𝑋 in the induced coordinates
as 𝑎(𝑥, 𝑦) 𝜕𝑥 + 𝑏(𝑥, 𝑦) 𝜕𝑦. If the divergence of 𝑋 with respect
to Ω is positive on 𝑅 and 𝑏(𝑥, 𝑦) > 0 for 𝑦 > 0 and 𝑏(𝑥, 𝑦) < 0
for 𝑦 < 0 and 𝑎(−1, 0) > 0 and 𝑎(1, 0) < 0, then we call 𝑅 a
positive hyperbolic neighbourhood with respect to Ω. The
two trajectories through the points (−𝛿𝑥, 0) and (𝛿𝑥, 0) are the
separatrices of the neighbourhood 𝑅.
Similarly, a rectangle 𝑅 with negative divergence and opposite signs
in the conditions on 𝑎 and 𝑏 is a negative hyperbolic neighbourhood.

3. Let 𝒟 be a half-disc inside 𝐷2∩{𝑥 ≤ 0}∪[0, 1]×[−1, 1] ⊂ [−1, 1]×
[−1, 1]. Let 𝐷 ⊂ 𝑆2 be a half-disc, i.e. there are neighbourhoods
𝑈𝐷 of 𝐷 ⊂ 𝑆2 and 𝑈𝒟 of 𝒟 ⊂ ℝ2 and a diffeomorphism of these
that sends 𝐷 to 𝒟. Assume that the boundary of 𝐷 consists of the
smooth curves 𝑐𝑒 and 𝑐ℎ = {1} × [−1, 1] that are both transverse
to 𝑋. If the divergence of 𝑋 with respect to Ω is positive on 𝐷, and
we have, for 𝑋 = 𝑎(𝑥, 𝑦) 𝜕𝑥 + 𝑏(𝑥, 𝑦) 𝜕𝑦 as above, that 𝑏(𝑥, 𝑦) > 0
for 𝑦 > 0 and 𝑏(𝑥, 𝑦) < 0 for 𝑦 < 0 and 𝑎(1, 0) < 0, then
we call 𝐷 a positive half-hyperbolic neighbourhood with
respect to Ω. The special half-disc 𝒟 ⊂ ℝ2 will serve as a model
for these neighbourhoods. The trajectory through (𝛿𝑥, 0) is the
separatrix of 𝐷.
Again, we call a half-disc 𝐷 with negative divergence and reversed
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II. Families of characteristic foliations

signs in the conditions on 𝑎 and 𝑏 a negative half-hyperbolic
neighbourhood.

As the divergence of a vector field with respect to any given area
form is a smooth function and non-zero in the singular points, each of
the neighbourhoods of isolated singular points that we constructed in
Section 2.3 is a neighbourhood of one of the types in Definition 3.8
provided the neighbourhood is chosen sufficiently small. Notice that
we relaxed the condition that each neighbourhood should only contain
a single, isolated singular point.

With the same construction as in the proof of Lemma 3.5, iterating
over the standard neighbourhoods instead of over the singular points,
we obtain a more general statement.

Corollary 3.9. Let Σ ≅ 𝑆2 be an oriented sphere in a tight contact 3-
manifold (𝑀, 𝜉). If there are finitely many elliptic, hyperbolic and
half-hyperbolic neighbourhoods with respect to a positive area form
Ω on Σ that contain all singular points of 𝜉Σ and if 𝜉Σ has no
retrograde connections, then there is a subset 𝑆+ of Σ that contains all
positive singular points and no negative singular point and its boundary
components are transverse to 𝜉Σ.

Then we can construct a positive area form Ω𝐶 and collection of
curves Γ𝐶 as above and apply Theorem 3.4 without changes. Summing
up, we showed the following sufficient condition on convexity.

Proposition 3.10. Let Σ ≅ 𝑆2 be an oriented sphere in a tight contact
3-manifold (𝑀, 𝜉). If there are finitely many elliptic, hyperbolic and
half-hyperbolic neighbourhoods with respect to a positive area form Ω
on Σ that contain all singular points of 𝜉Σ and if 𝜉Σ has no retrograde
connections, then Σ is a convex surface.

4. Families of vector fields
We will be dealing with smooth 𝑆𝑘 × [−1, 1]-families 𝑋𝑠

𝑧 , (𝑠, 𝑧) ∈
𝑆𝑘×[−1, 1], of vector fields on 𝑆2 that direct the characteristic foliations
of the level spheres {𝑧} × 𝑆2 inside (𝑆3, 𝜉𝑠) as explained in Section 1.
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We will refer to a smooth family of vector fields also as a parametric
vector field.

Definition 4.1. Let 𝑈 be an open neighbourhood of some (𝑠0, 𝑧0) ∈
𝑆𝑘 ×[−1, 1] in 𝑆𝑘 ×[−1, 1]. Let us call a smooth map 𝜄 ∶ 𝑈 ×𝑀 → 𝑆2

such that for each (𝑠, 𝑧) ∈ 𝑈 the restriction 𝜄𝑠
𝑧 of 𝜄 to {(𝑠, 𝑧)} × 𝑀 is

an embedding of the manifold 𝑀 (potentially with boundary) into 𝑆2 a
parametric embedding of 𝑀.

Denote by 𝑀𝑠
𝑧 the image of 𝑀 under 𝜄𝑠

𝑧. This defines a family of
embedded submanifolds.

Any family 𝑀𝑠
𝑧 of embedded submanifolds that arises as the image of

a parametric embedding will be called smooth family of submanifolds.

We will also want to consider rectangles or half-discs that are mani-
folds with corners.

Definition 4.2. Let 𝑅 ⊂ ℝ2 be a compact subset. We will call a
parametric embedding of a small neighbourhood 𝑉 of 𝑅 in ℝ2 also a
parametric embedding of 𝑅. A family 𝑅𝑠

𝑧 of compact subsets that is the
image of a parametric embedding of 𝑅 we will call smooth family.

Let us observe how concepts and constructions from Section 2 can
be carried over to the parametric situation.

4.1. Regular points and trajectories

A cross section 𝐶 ⊂ 𝑆2 of a vector field 𝑋 is an open submanifold of
codimension 1, i.e. an embedded interval, that is transverse to 𝑋.

Definition 4.3. A parametric cross section of a parametric vector
field 𝑋𝑠

𝑧 on 𝑆2 is a smooth family 𝐶𝑠
𝑧 , (𝑠, 𝑧) ∈ 𝑈, of embedded intervals

(−1, 1) that such for each (𝑠, 𝑧) ∈ 𝑈 the interval 𝐶𝑠
𝑧 is transverse to 𝑋𝑠

𝑧.

Example 4.4. If 𝑞 ∈ 𝑆2 is a regular point of 𝑋𝑠0𝑧0 for some (𝑠0, 𝑧0) ∈
𝑆𝑘 ×[−1, 1] then there is a cross section 𝐶 of 𝑋𝑠0𝑧0 through 𝑞, i.e. an open
embedded interval transverse to the vector field. The cross section 𝐶
will be transverse the vector fields 𝑋𝑠

𝑧 for (𝑠, 𝑧) in a small neighbourhood
𝑈 of (𝑠0, 𝑧0). Hence the constant family 𝐶𝑠

𝑧 ≔ 𝐶 is a parametric cross
section defined on 𝑈.
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II. Families of characteristic foliations

Parametric cross sections allow us to construct parametric flow boxes,
analogously to Corollary 2.4.

Construction 4.5. Let 𝛾∶ [0, 𝑇 ] → 𝑆2 with 𝑇 > 0 and 𝛾(0) ≠ 𝛾(𝑇 ) be
an arc of a trajectory of the vector field 𝑋𝑠0𝑧0 on 𝑆2 for some (𝑠0, 𝑧0) ∈
𝑆𝑘 × [−1, 1]. Let further 𝐶𝑠

𝑧 be a parametric cross section defined on a
neighbourhood 𝑈 of (𝑠0, 𝑧0) such that 𝐶𝑠0𝑧0 contains the point 𝛾(0).

We can regard the parametric vector field 𝑋𝑠
𝑧 alternatively as a single

smooth vector field 𝒳 on the manifold 𝑆𝑘 × [−1, 1] × 𝑆2 that is tangent
to each of the spheres {(𝑠, 𝑧)} × 𝑆2.

To the parametric cross section 𝐶𝑠
𝑧 there is a parametric embedding

𝜄 ∶ 𝑈 ×(−1, 1) → 𝑆2 of (−1, 1). It defines an embedding of 𝑈 ×(−1, 1)
into 𝑆𝑘 × [−1, 1] × 𝑆2 by (𝑠, 𝑧; 𝑡) ↦ (𝑠, 𝑧; 𝜄𝑠

𝑧(𝑡)), where 𝜄𝑠
𝑧 again denotes

the restriction of 𝜄 to {(𝑠, 𝑧)} × (−1, 1).
In other words, a parametric cross section 𝐶𝑠

𝑧 defines a cross section
𝒞 of the vector field 𝒳 on 𝑆𝑘 × [−1, 1] × 𝑆2.

Then ̂𝛾 ∶ [0, 𝑇 ] → 𝑆𝑘 ×[−1, 1]×𝑆2, 𝑡 ↦ (𝑠0, 𝑧0, 𝛾(𝑡)) is a trajectory
of 𝒳 on 𝑆𝑘 ×[−1, 1]×𝑆2 and 𝐶𝑠

𝑧 defines a cross section 𝒞 of 𝒳 through
̂𝛾(0).
Hence we can construct a long flow box 𝐹∶ 𝑈 × [0, 𝑇 ] × (−𝜀, 𝜀) →

𝑆𝑘 × [−1, 1] × 𝑆2 of 𝒳 for a potentially smaller neighbourhood 𝑈 of
(𝑠0, 𝑧0), cf. Corollary 2.4 and Remark 2.5. In these coordinates, the
vector field 𝒳 is given as 𝜕𝑡, the [0, 𝑇 ]-coordinate. In particular, for each
fixed (𝑠, 𝑧) ∈ 𝑈 the restriction 𝐹 𝑠

𝑧 of 𝐹 to {(𝑠, 𝑧)}×[0, 𝑇 ]×(−𝜀, 𝜀) maps
into {(𝑠, 𝑧)} × 𝑆2. As 𝐹 defines local coordinates on 𝑆𝑘 × [−1, 1] × 𝑆2,
hence so do its restrictions 𝐹 𝑠

𝑧 on {(𝑠, 𝑧)} × 𝑆2 ≅ 𝑆2. Hence we may
regard the composition pr𝑆2 ∘𝐹∶ 𝑈 × [0, 𝑇 ] × (−𝜀, 𝜀) → 𝑆2 of 𝐹 with
the projection pr𝑆2 of 𝑆𝑘 × [−1, 1] × 𝑆2 to 𝑆2 as a flow boxes that
depend on a parameter (𝑠, 𝑧) ∈ 𝑈.

These parametric coordinates will be called parametric flow box.

Remark 4.6. Regarding the parametric vector field 𝑋𝑠
𝑧 as a single vector

field 𝒳 on 𝑆𝑘 × [−1, 1] × 𝑆2 we observe that both the flow time map as
well as the Poincaré map, cf. Definition 2.6, are smooth with respect
to the parameters 𝑠 and 𝑧.
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4.2. Singular points and neighbourhoods

In Section 2.3 we saw that we can find standard neighbourhoods of
singular points of a vector field 𝑋 with respect to a given area form Ω,
cf. also Definition 3.8. These were closed discs, half-discs or rectangles
whose boundary components are transverse to the vector field 𝑋 and
satisfy the condition that the divergence of 𝑋 with respect to Ω is
non-zero.

4.2.1. Elliptic neighbourhoods

Definition 4.7. A smooth family 𝐷𝑠
𝑧 of closed discs such that each

disc 𝐷𝑠
𝑧 ≅ 𝐷2 is an elliptic neighbourhood with respect to Ω for 𝑋𝑠

𝑧,
cf. Definition 3.8, is called a smooth family of elliptic neighbour-
hoods.

Lemma 4.8. To a, possibly degenerate, elliptic singular point there is
smooth family of elliptic neighbourhoods.

Proof. Let 𝑞 ∈ 𝑆2 be an elliptic singular point of 𝑋𝑠0𝑧0 for some (𝑠0, 𝑧0) ∈
𝑆𝑘 × [−1, 1].

Then there is a elliptic neighbourhood 𝐷 ⊂ 𝑆2 of 𝑞 that is a closed
disc whose boundary is a cross section to 𝑋𝑠0𝑧0 , i.e. transverse to the
vector field. Transversality is an open condition, so there is a small
neighbourhood 𝒰 of (𝑠0, 𝑧0) in 𝑆𝑘 × [−1, 1] such that 𝜕𝐷 is transverse
to all 𝑋𝑠

𝑧 , (𝑠, 𝑧) ∈ 𝒰. The divergence divΩ 𝑋 depends smoothly on 𝑋,
so there is a possibly smaller neighbourhood of (𝑠0, 𝑧0), still denoted
by 𝒰, such that the divergence of 𝑋𝑠

𝑧 on 𝐷 is still positive.
Hence the constant family 𝐷𝑠

𝑧 ≔ 𝐷, (𝑠, 𝑧) ∈ 𝒰, is a smooth family of
elliptic neighbourhoods.

Remark 4.9. Each neighbourhood 𝐷𝑠
𝑧 may contain multiple singular

points. However, as 𝐷𝑠
𝑧 is a disc with boundary transverse to the vector

field 𝑋𝑠
𝑧 that does not contain closed trajectories, it has to contain at

least one singular point.
We may regard 𝐷𝑠

𝑧 as an open submanifold 𝐷 with boundary inside
𝑆𝑘 × [−1, 1] × 𝑆2. The vector fields 𝑋𝑠

𝑧 , regarded as a single vector
field 𝒳 on 𝑆𝑘 × [−1, 1] × 𝑆2, are transverse to 𝜕𝐷. Hence these vector
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fields allow us to define a collar of 𝜕𝐷 inside 𝐷 that is tangent to the
slices {(𝑠, 𝑧)} × 𝑆2.

Definition 4.10. An embedding 𝜄 of 𝐷2 into 𝑆2 such that the radial
directions 𝜕𝑠

𝑟 coincide with the vector field 𝑋𝑠
𝑧 on {𝑟 > 1/2} will be

called collared with respect to 𝑋𝑠
𝑧.

A parametric embedding 𝜄𝑠
𝑧 such that each embedding 𝜄𝑠

𝑧 is collared
with respect to 𝑋𝑠

𝑧 will be called a collared parametric embedding.

4.2.2. Hyperbolic neighbourhoods

Definition 4.11. A smooth family 𝑅𝑠
𝑧 of rectangles such that each rect-

angle 𝑅𝑠
𝑧 ≅ [−1, 1] × [−1, 1] is a hyperbolic neighbourhood with respect

to Ω for 𝑋𝑠
𝑧 is called a smooth family of hyperbolic neighbour-

hoods.

Lemma 4.12. To a, possibly degenerate, hyperbolic singular point there
is a smooth family of hyperbolic neighbourhoods.

Proof. Let again 𝑋𝑠
𝑧 , (𝑠, 𝑧) ∈ 𝑆𝑘 × [−1, 1], be a smooth family of vector

fields on 𝑆2 and let 𝑞 ∈ 𝑆2 be a hyperbolic singular point of 𝑋𝑠0𝑧0 for
some (𝑠0, 𝑧0) ∈ 𝑆𝑘 × [−1, 1].

The contact condition implies that the linearisation of 𝑋𝑠0𝑧0 in 𝑞 has a
non-vanishing eigenvalue. As in Construction 2.16 pick local coordinates
𝑥 and 𝑦 of 𝑆2 near 𝑞 such that in 𝑞 = (0, 0), 𝜕𝑥 and 𝜕𝑦 lie in the two
eigenspaces of 𝑋𝑠0𝑧0 such that the eigenvalue to 𝜕𝑦 is non-zero.

Write the vector fields 𝑋𝑠
𝑧 near 𝑞 in these local coordinates as

𝑎𝑠
𝑧(𝑥, 𝑦) 𝜕𝑥 + 𝑏𝑠

𝑧(𝑥, 𝑦) 𝜕𝑦. That the eigenvalue of 𝑋𝑠0𝑧0 to 𝜕𝑦 does not
vanish implies that 𝜕

𝜕𝑦𝑏𝑠
𝑧(𝑥, 𝑦) ≠ 0 in (𝑠0, 𝑧0) and 𝑞 = (0, 0).

Apply the Implicit Function Theorem to obtain neighbourhoods 𝒰′

of (𝑠0, 𝑧0) in 𝑆𝑘 × [−1, 1] and 𝑉𝑥 and 𝑉𝑦 of 0 in ℝ together with a
smooth function 𝜂∶ 𝒰′ × 𝑉𝑥 → ℝ such that 𝑏𝑠

𝑧(𝑥, 𝑦) = 0 exactly for
𝑦 = 𝜂(𝑠, 𝑧, 𝑥) for all (𝑠, 𝑧) ∈ 𝒰′ and (𝑥, 𝑦) ∈ 𝑉𝑥 × 𝑉𝑦.

We obtain a coordinate function 𝑦 − 𝜂(𝑠, 𝑧, 𝑥) that we can comple-
ment by its orthogonal complement with respect to Ω. This defines
coordinates of 𝑆2 on a neighbourhood 𝑉 of 𝑞 that smoothly depend on
(𝑠, 𝑧) ∈ 𝒰′. Denote them again by just 𝑦 and 𝑥 and write the vector
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fields 𝑋𝑠
𝑧 again as 𝑎𝑠

𝑧(𝑥, 𝑦) 𝜕𝑥 + 𝑏𝑠
𝑧(𝑥, 𝑦) 𝜕𝑦 in these new coordinates.

Then 𝑏𝑠
𝑧(𝑥, 𝑦) = 0 exactly for 𝑦 = 0.

We can now proceed as in Construction 2.18. Along the line 𝑉𝑥 ×{0},
the vector field is parallel to 𝜕𝑥, i.e. 𝑋𝑠

𝑧 = 𝑎𝑠
𝑧(𝑥, 0) 𝜕𝑥. Since 𝑞 is an

isolated singular point of 𝑋𝑠0𝑧0 , there are points (−𝛿𝑥, 0) and (𝛿𝑥, 0) such
that 𝑎𝑠0𝑧0(±𝛿𝑥, 0) ≠ 0. By continuity there is some 𝛿𝑦 > 0 as well as
some smaller neighbourhood 𝒰 ⊂ 𝒰′ of (𝑠0, 𝑧0) such that the two arcs
{±𝛿𝑥} × (−𝛿𝑦, 𝛿𝑦) are transverse to all vector fields 𝑋𝑠

𝑧 for (𝑠, 𝑧) ∈ 𝒰.
Along the two arcs [−𝛿𝑥, 𝛿𝑥] × {±𝛿𝑦} the functions 𝑏𝑠

𝑧 are non-zero
by construction of the local coordinates and the arcs are consequently
transverse to vector fields 𝑋𝑠

𝑧 .
For each (𝑠, 𝑧) ∈ 𝒰 consider the rectangle 𝑅𝑠

𝑧 ≔ [−𝛿𝑥, 𝛿𝑥] × [−𝛿𝑦, 𝛿𝑦]
given in the coordinates 𝑥 and 𝑦. Remember that the coordinates
depend on (𝑠, 𝑧) and hence so do the rectangles 𝑅𝑠

𝑧. The sides of the
rectangles 𝑅𝑠

𝑧 are, as we just saw, transverse to 𝑋𝑠
𝑧 .

The divergence of 𝑋𝑠0𝑧0 does not vanish in 𝑞. As the divergence
depends smoothly on both the point and the parameter (𝑠, 𝑧), we may,
by choosing 𝛿𝑥, 𝛿𝑦 and 𝒰 sufficiently small, assume that the divergence
of each vector field 𝑋𝑠

𝑧 , (𝑠, 𝑧) ∈ 𝒰, does not vanish in any point of 𝑅𝑠
𝑧.

Then the rectangles 𝑅𝑠
𝑧, (𝑠, 𝑧) ∈ 𝒰, are a smooth family of hyperbolic

neighbourhoods.

Remark 4.13. By construction, the 𝜕𝑦-component of any 𝑋𝑠
𝑧 vanishes

along {𝑦 = 0} in the coordinates of 𝑅𝑠
𝑧. The sign change of the 𝜕𝑥-

component of 𝑋𝑠
𝑧 along {𝑦 = 0} mandates the existence of singular

points in 𝑅𝑠
𝑧.

Definition 4.14. We will call an embedding of a hyperbolic neighbour-
hood collared if in neighbourhoods of the sides {±1} × (−3/4, 3/4) the
vector fields 𝜕𝑠

𝑥,𝑧 in 𝑥-direction coincide with either 𝑋𝑠
𝑧 or −𝑋𝑠

𝑧.

Observation 4.15. Let 𝑅𝑠
𝑧, (𝑠, 𝑧) ∈ 𝑈, be a positive hyperbolic neigh-

bourhood. By construction, for each (𝑠, 𝑧) ∈ 𝑈 the only trajectories
that tend to points in 𝑅𝑠

𝑧 are the two separatrices, i.e. the trajectories
through the points (±1, 0). Hence all trajectories through points (±1, 𝑦),
𝑦 ≠ 0, leave 𝑅𝑠

𝑧. They can only do so through the top 𝑡 and the bottom
𝑏, i.e. the cross sections 𝑡 ≔ (−1, 1) × {1} and 𝑏 ≔ (−1, 1) × {−1}.
Consequently, the Poincaré maps 𝑃 + between 𝑙+ ≔ {−1} × (0, 1) and
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𝑟+ ≔ {1} × (0, 1) and 𝑡 and 𝑃 − between 𝑙− ≔ {−1} × (−1, 0) and
𝑟− ≔ {1} × (−1, 0) and 𝑏 are defined.

The trajectories of 𝑋𝑠
𝑧 that pass through the closed interval 𝐶 that

is the complement of 𝑃 +(𝑙+) ∪ 𝑃 +(𝑟+) in 𝑡 emanate at points in 𝑅𝑠
𝑧

and trajectories that pass to points in 𝑡 close to 𝐶 pass through points
in 𝑙+ or 𝑟+ close to the separatrices, cf. Figure 4.1.

All the cross sections 𝑙±, 𝑟±, 𝑡 and 𝑏 are parametric and the Poincaré
maps depend smoothly on the parameter. Hence the endpoints of 𝐶 in
𝑡 also depend smoothly on (𝑠, 𝑧).

𝑟+𝑙+

𝑙− 𝑟−

𝑡

𝑏

𝐶

Figure 4.1.: A hyperbolic neighbourhood around a degenerate hyperbolic point

4.2.3. Half-hyperbolic neighbourhoods

Definition 4.16. A smooth family 𝐷𝑠
𝑧 of half-discs 𝒟, cf. Defini-

tion 3.8, such that each 𝐷𝑠
𝑧 is a positive half-hyperbolic neighbourhood

with respect to Ω for 𝑋𝑠
𝑧 is a smooth family of positive half-hyper-

bolic neighbourhoods if every 𝐷𝑠
𝑧 satisfies the additional conditions

that
1. there are no singular points of 𝑋𝑠

𝑧 in {𝑥 ≥ 0, 𝑦 ≠ 0} and that
2. the only trajectory 𝛾 of 𝑋𝑠

𝑧 with 𝛼(𝛾) ∈ 𝐷𝑠
𝑧 passes through

(1, 0) ∈ 𝐷𝑠
𝑧.
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4. Families of vector fields

We can find such families using analogous constructions as for elliptic
and hyperbolic neighbourhoods, applied to a singular point 𝑞 that is
half-hyperbolic.

Notice that the half-hyperbolic neighbourhoods that we construct
around an isolated half-hyperbolic point only contain singular points,
if at all, along {𝑦 = 0} and hence satisfy the additionally imposed
conditions.

Corollary 4.17. To a, possibly degenerate, half-hyperbolic singular
point there is a smooth family of half-hyperbolic neighbourhoods.

Definition 4.18. An embedding of a half-hyperbolic neighbourhood
is collared if it is an embedding of the half-disc 𝒟 such that in
neighbourhoods of 𝑐𝑒 and {1} × (−3/4, 3/4) ⊂ 𝑐ℎ the vector fields 𝜕𝑠

𝑧,𝑥
coincide with either 𝑋𝑠

𝑧 or −𝑋𝑠
𝑧.

Observation 4.19. Let 𝐷𝑠
𝑧, (𝑠, 𝑧) ∈ 𝑈, be a positive half-hyperbolic

neighbourhood. Denote its two smooth boundary components by 𝑒 and
ℎ, where ℎ is the one that contains the separatrix 𝛾 of 𝐷𝑠

𝑧. Denote the
complement of 𝛾 ∩ ℎ in ℎ by ℎ+ and ℎ−.

Then the Poincaré maps 𝑃 + between ℎ+ and 𝑒 and 𝑃 − between ℎ−

and 𝑒 are defined. The trajectories of 𝑋𝑠
𝑧 that pass through the closed

interval 𝐶 that is the complement of 𝑃 +(ℎ+) ∪ 𝑃 −(ℎ−) in 𝑒 emanate at
points in 𝐷𝑠

𝑧. Again, the end points of this interval depend smoothly
on the parameter.
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We observed in Chapter II that whether a sphere {𝑧}×𝑆2 in 𝑆3 is convex
with respect to the contact structure 𝜉𝑠 is a property of its characteristic
foliation and phrased the conditions in terms of elliptic and (half-)
hyperbolic neighbourhoods and their separatrices. In particular, we saw
that retrograde connections between singular points are the obstructions
to convexity.

Our goal thus is to deform the contact structures 𝜉𝑠 such that no
vector field 𝑋𝑠

𝑧 that directs the characteristic foliation of {𝑧} × 𝑆2 with
respect to 𝜉𝑠 has a retrograde connection. We develop a parametric elim-
ination deformation that applies to whole neighbourhoods (Section 2).
Applying it to neighbourhoods that are leaves in a graph (Section 4)
this deformation can be used achieve our goal (Section 5). This process
is aided by a complexity valuation (Section 3) that resembles the order
of degeneracy of singular points.

1. Finite number of neighbourhoods of singular
points

A single vector field on a surface generically only has finitely many
singular points. This is a basic result about transversality of smooth
sections to the zero section. Considering parametric families of vector
fields, we can still archive transversality to the zero section of the
tangent space, however, counting dimensions, this will not imply isolated
singular points of the individual vector fields.

Passing to 𝑘-th jet extensions for sufficiently large 𝑘 and applying
Thom transversality to these with respect to a suitably crafted sub-
manifold of the 𝑘-th jet space, Bruce [Bru86] shows the statement for
families.

Theorem 1.1 ([Bru86, Lemma 1.6., Application 2.2.]). Let 𝑀 and 𝒫
be compact manifolds and denote by 𝔛𝒫(𝑀) the space of smooth vector
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III. Parametric elimination

fields on 𝑀, parameterised by 𝒫. For a residual set of such sections
𝒳∶ 𝑀 × 𝒫 → 𝑇 𝑀, the individual vector fields 𝑋𝑝 ≔ 𝒳|𝑀×{𝑝} have
isolated singular points.

As is the case for Thom transversality for sections of the tangent
bundle, its proof yields a relative statement.

Corollary 1.2. Let 𝑋𝑠
𝑧 be a parametric vector field on 𝑆2 and 𝑈 ⊂ 𝑆2

an open subset such that the all vector fields 𝑋𝑠
𝑧 have only isolated

singular points in 𝑈.
Then there is a parametric vector field 𝑌 𝑠

𝑧 on 𝑆2, arbitrarily 𝒞∞-close
to 𝑋𝑠

𝑧 that coincides with 𝑋𝑠
𝑧 on 𝑈 and is such that all vector fields 𝑌 𝑠

𝑧
have only isolated singular points.

Remember that we wrote contact forms for the contact structures 𝜉𝑠

on [−1, 1]×𝑆2 as 𝛽𝑠
𝑧+𝑢𝑠

𝑧 d𝑧 and defined our parametric vector field using
𝛽𝑠

𝑧 = 𝜄𝑋𝑠
𝑧
Ω with an area form Ω on 𝑆2. Conversely, given a parametric

vector field 𝑌 𝑠
𝑧 , we obtain dual 1-forms 𝛾𝑠

𝑧 by 𝜄𝑌 𝑠
𝑧

Ω for which, as the
contact condition is 𝒞1-open, the forms 𝛼𝑠

𝑡 ≔ (1 − 𝑡)𝛽𝑠
𝑧 +𝑡𝛾𝑠

𝑧 +𝑢𝑠
𝑧 d𝑧 are

all contact forms on [−1, 1]×𝑆2 for 𝑡 ∈ [0, 1], provided 𝑌 𝑠
𝑧 is sufficiently

close to 𝑋𝑠
𝑧 .

As for 𝑧 close to {−1, 1} the vector fields 𝑋𝑠
𝑧 have only two singular

points, this perturbation can be done relative to the boundary of
[−1, 1]×𝑆2, i.e. the family 𝛼𝑠

𝑡 is stationary in 𝑡 close to 𝜕([−1, 1] × 𝑆2).
Hence we can apply the parametric and relative version of Gray’s
Stability Theorem (Corollary I.5.3) to obtain a parametric isotopy of
𝜉𝑠 such that the perturbed contact structures induce vector fields on
𝑆2 that all have only isolated singular points.

Hence, to each (𝑠, 𝑧) ∈ 𝑆𝑘 × [−1, 1] there is a finite number of
disjoint smooth families of elliptic, hyperbolic and half-hyperbolic
neighbourhoods whose union covers all singular points of 𝑋𝑠

𝑧 . As the
parameter space 𝑆𝑘 × [−1, 1] is compact, we find a finite number of
smooth families of neighbourhoods 𝒩𝑖, 𝑖 = 1, … , 𝑘, that are defined on
open subsets 𝑈𝑖 of 𝑆𝑘 × [−1, 1] such that for each (𝑠, 𝑧) ∈ 𝑆𝑘 × [−1, 1]
the union of all neighbourhoods 𝑁𝑠

𝑖,𝑧 for which (𝑠, 𝑧) ∈ 𝑈𝑖 contains all
singular points of 𝑋𝑠

𝑧 .
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2. Elimination of (neighbourhoods of) singular
points

Suppose we are given a finite collection of neighbourhoods of all singular
points as in the previous section. Then Proposition II.3.10 tells us that
all those spheres {𝑧} × 𝑆2 are convex with respect to 𝜉𝑠 whose vector
fields 𝑋𝑠

𝑧 have no retrograde connection between two (half-)hyperbolic
neighbourhoods.

In this section we will discuss a homotopy of families of contact
structures that eliminates both a hyperbolic and an elliptic neighbour-
hood. As will be explained in Section 5, this operation will allow us to
get rid of all retrograde connections. This elimination homotopy is a
parametric version of Giroux’s ‘Elimination Lemma’, cf. [Gir91]. Its
proof is inspired by the proof of the Elimination Lemma by Fuchs as
presented in [Gei08, Lemma 4.6.26].

2.1. Situation

Consider our smooth family of vector fields 𝑋𝑠
𝑧 , (𝑠, 𝑧) ∈ 𝑆𝑘 × [−1, 1],

on 𝑆2. Let (𝑠0, 𝑧0) ∈ 𝑆𝑘 × [−1, 1] and 𝑈 an open neighbourhood and
suppose there are a family of positive elliptic neighbourhoods 𝐷𝑠

𝑧 as
well as a family of positive hyperbolic neighbourhoods 𝑅𝑠

𝑧, (𝑠, 𝑧) ∈ 𝑈,
disjoint from 𝐷𝑠

𝑧, such that for each (𝑠, 𝑧) ∈ 𝑈 the trajectory 𝛾𝑠
𝑧 of

the vector field 𝑋𝑠
𝑧 through the point (−1, 0) ∈ 𝑅𝑠

𝑧, a separatrix of 𝑅𝑠
𝑧,

emanates at a point in 𝐷𝑠
𝑧.

Remark 2.1. As we can shrink our neighbourhoods along the flow of the
vector fields 𝑋𝑠

𝑧 it suffices to require that 𝐷𝑠
𝑧 and 𝑅𝑠

𝑧 contain disjoint
sets of singular points.

To the family 𝐷𝑠
𝑧 there is a collared parametric embedding 𝜂𝑠

𝑧 of 𝐷2

into 𝑆2 and to 𝑅𝑠
𝑧 there is a collared parametric embedding 𝜌𝑠

𝑧 of a
neighbourhood of [−1, 1] × [−1, 1] in ℝ2 into 𝑆2.

The embeddings 𝜌𝑠
𝑧 induce coordinates [−1, 1] on the ‘left’ side of the

rectangles 𝐿𝑠
𝑧 ≔ {−1} × [−1, 1] ⊂ 𝑅𝑠

𝑧. The arcs 𝐿𝑠
𝑧 form a parametric

cross section that intersects each trajectory 𝛾𝑠
𝑧 in the point 0 ∈ 𝐿𝑠

𝑧.
To these coordinates of the parametric cross section we find, after

shrinking 𝑈 if necessary, a parametric flow box 𝐹∶ 𝑈 × [−𝑇 , 0 ] ×

61



III. Parametric elimination

(−𝜀, 𝜀) → 𝑆2 around the trajectory 𝛾𝑠0𝑧0 such that for time 𝑡 = 0,
the (−𝜀, 𝜀)-coordinate corresponds with the coordinates on 𝐿𝑠

𝑧, i.e.
𝐹(𝑠, 𝑧; 0, (−𝜀, 𝜀)) = (−𝜀, 𝜀) ⊂ 𝐿𝑠

𝑧, and such that the time 𝑡 = −𝑇 side
of the flow box is contained in 𝐷𝑠

𝑧, i.e. 𝐹(𝑠, 𝑡; 𝑇 , (−𝜀, 𝜀)) ⊂ 𝐷𝑠
𝑧, for all

(𝑠, 𝑧) ∈ 𝑈.

2.2. Adjusting the coordinate neighbourhoods

Rescaling the 𝑦-coordinate of the embedding 𝜌 and hence the 𝑦-coordin-
ate in the rectangles 𝑅𝑠

𝑧, in 𝐿𝑠
𝑧 and in the flow box, we may assume

that 𝜀 = 3/4. Denote the intersections points of 𝐹(𝑠, 𝑧; ∙, ±1/2) with
𝜕𝐷𝑠

𝑧 by 𝑝𝑠
𝑧 and 𝑛𝑠

𝑧 ∈ 𝜕𝐷𝑠
𝑧 ≅ 𝑆1, respectively. After shrinking 𝑈 and

modifying the embedding of the parametric elliptic neighbourhood as
described below we can assume 𝑝𝑠

𝑧 = 𝜋
6 and 𝑛𝑠

𝑧 = −𝜋
6 .

Construction 2.2. Let us assume that 𝑝𝑠0𝑧0 ≠ −𝜋
6 . Note that both 𝑝𝑠

𝑧
and 𝑛𝑠

𝑧 smoothly depend on (𝑠, 𝑧). Shrinking 𝑈, we guarantee that
𝑝𝑠

𝑧 ≠ −𝜋
6 for all (𝑠, 𝑧) ∈ 𝑈. Then 𝑎𝑠

𝑧 ∶ 𝜗 ↦ 𝜗 + (𝜋
6 − 𝑝𝑠

𝑧) is a smooth
map that sends 𝑝𝑠

𝑧 to 𝜋
6 . If 𝑝𝑠

𝑧 = 𝜋
6 , then 𝑛𝑠

𝑧 is in 𝑆1 ∖ {𝜋
6 } ≅ (0, 2𝜋).

There is a smooth family 𝑏(𝑛) ∶ [0, 2𝜋] → [0, 2𝜋] of diffeomorphisms of
the interval [0, 2𝜋] that sends 𝑛 ∈ (0, 2𝜋) to 5𝜋

3 . The composition 𝑐𝑠
𝑧 of

𝑎𝑠
𝑧 with 𝑏(𝑎𝑠

𝑧(𝑛𝑠
𝑧)) sends 𝑝𝑠

𝑧 to 𝜋
6 and 𝑛𝑠

𝑧 to −𝜋
6 .

Pick a smooth step function 𝑔∶ [0, 1] → [0, 1] that is identically 0 on
[0, 1/3], identically 1 on [2/3, 1] and strictly monotone in between. Then
we may compose each embedding 𝜂𝑠

𝑧 of the elliptic neighbourhoods 𝐷𝑠
𝑧

with the map (𝑟, 𝜗) ↦ 𝑔(𝑟) 𝜗 + (1 − 𝑔(𝑟)) (𝑐𝑠
𝑧)−1(𝜗). This yields again

a collared parametric embedding of an elliptic neighbourhood that is
such that 𝑝𝑠

𝑧 = 𝜋
6 and 𝑛𝑠

𝑧 = −𝜋
6 .

Finally, let us consider the flow box between the rectangles and the el-
liptic neighbourhood. Denote the flow time map from 𝑦 ∈ (−1/2, 1/2) ⊂
𝐿𝑠

𝑧 to the cross section 𝜕𝐷𝑠
𝑧 with respect to 𝑋𝑠

𝑧 by 𝑇 𝑠
𝑧 (𝑦). In the flow

box 𝐹 𝑠
𝑧 , these are the 𝑡-coordinates of the intersection of the flow box

𝐹 𝑠
𝑧 with 𝜕𝐷𝑠

𝑧. We may rescale the 𝑡-coordinate in all flow boxes such
that 𝑇 = 5/2, i.e. that each 𝐹 𝑠

𝑧 , (𝑠, 𝑧) ∈ 𝑈, is defined on a neigh-
bourhood of [−5/2, 0] × [−1/2, 1/2], such that 𝜕𝐷𝑠

𝑧 intersects 𝐹 𝑠
𝑧 in the

points (−3+√1 − 𝑦2, 𝑦) ∈ [−5/2, 0]×[−1/2, 1/2] and such that 𝐹 stays
collared near {𝑡 = 0} ⊂ 𝐿𝑠

𝑧 and near 𝜕𝐷𝑠
𝑧.
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(−3, 0)

𝑇 (𝛿, 1
2 − 𝜀)

Figure 2.1.: Constructing the half-disc 𝑁 by merging neighbourhoods of sin-
gular points and a long flow box

2.3. Merging neighbourhoods of singular points

As for each (𝑠, 𝑧) ∈ 𝑈 all three coordinate charts, the elliptic neigh-
bourhood 𝜌𝑠

𝑧, the flow box 𝐹 𝑠
𝑧 and the hyperbolic neighbourhood 𝜂𝑠

𝑧
are collared near their common points, we are able to merge their
domains and obtain a parametric embedding 𝜄𝑠

𝑧 of a neighbourhood of
𝑁0 ≔ 𝐷2(−3, 0) ∪ [−3 + √

2/2, 0] × [−1/2 × 1/2] ∪ [0, 2] × [−1, 1] ⊂ ℝ2

that coincides with 𝜂𝑠
𝑧 on 𝐷2(−3, 0), coincides with 𝜌𝑠

𝑧 on [0, 2]× [−1, 1]
and coincides with 𝐹 𝑠

𝑧 on their complement. Here, 𝐷2(−3, 0) ⊂ ℝ2

denotes the closed 2-disc of radius 1 centred at (−3, 0).
The vector field 𝑋𝑠

𝑧 is parallel to the boundary of 𝜄𝑠
𝑧(𝑁0) along the

arcs [−3 + √
2/2, 0] × {±1/2}, points into 𝜄𝑠

𝑧(𝑁0) along {2} × [−1, 1] and
points out of 𝜄𝑠

𝑧(𝑁0) along all other parts of its boundary. If we restrict
the domain of the flow box 𝐹 𝑠

𝑧 to the trapezium 𝑇 between the points
(−3 + √

2/2, ∓1/2) and (𝛿, ±(1/2 − 𝜀)) for some small 𝜀 > 0 and 𝛿 > 0,
all four sides of 𝐹 𝑠

𝑧 (𝑇) will be transverse to the vector fields 𝑋𝑠
𝑧 .

In the hyperbolic neighbourhoods 𝑅𝑠
𝑧, the vector fields 𝑋𝑠

𝑧 are by
construction only tangent to the 𝑥-direction along {𝑦 = 0} and in
the collar. Consequently, we may restrict the domain of 𝜂𝑠

𝑧 to 𝑅 ≔
[𝛿, 2]×[−1/2+𝜀, 1/2−𝜀] while preserving the property that each smooth
component of 𝜂𝑠

𝑧(𝜕𝑅) is transverse to 𝑋𝑠
𝑧 for all (𝑠, 𝑧) ∈ 𝑈.

Merging the domains of 𝜌𝑠
𝑧, 𝐹 𝑠

𝑧 and 𝜂𝑠
𝑧 we obtain a parametric em-

bedding 𝜄𝑠
𝑧 of 𝑁 ≔ 𝐷2(−3, 0) ∪ 𝑇 ∪ 𝑅 ⊂ ℝ2 such that each smooth

component of the piecewise smooth boundary 𝜄𝑠
𝑧(𝜕𝑁) is transverse to

the vector field 𝑋𝑠
𝑧 for each (𝑠, 𝑧) ∈ 𝑈, cf. Figure 2.1.
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Consider 𝜄𝑠0𝑧0(𝑁). The vector field 𝑋𝑠0𝑧0 points out of 𝜄𝑠0𝑧0(𝑁) along
the curves 𝜄𝑠0𝑧0(𝜕𝐷2(−3, 0) ∩ 𝜕𝑁) and 𝜄𝑠0𝑧0(𝜕𝑇 ∩ 𝜕𝑁), as well as along
𝜄𝑠0𝑧0([0, 2]×{−1/2 +𝜀, 1/2 −𝜀}). Consequently, we can round the corners
(−3 + √

2/2, ∓1/2) and (0, ±(1/2 − 𝜀)) of 𝑁, cf. Construction II.2.19, i.e.
there is a closed neighbourhood 𝑁 ′ of 𝑁, coinciding with 𝑁 away from
those corners such that the boundary of 𝑁 ′ comprises only two smooth
components, one being {2} × [−1/2 + 𝜀, 1/2 − 𝜀], such that both smooth
components of 𝜄𝑠0𝑧0(𝜕𝑁 ′) are transverse to 𝑋𝑠0𝑧0 .

To ease our constructions in the future, consider 𝑁″, the intersection
𝑁 ′ ∩ [−4 + 𝜀′, 3] × [−1, 1] for some small 𝜀′ > 0. For 𝜀′ sufficiently
small, the set 𝑅 is a tetragon such that all four smooth components
of 𝜄𝑠0𝑧0(𝜕𝑅) are transverse to 𝑋𝑠0𝑧0 . Shrinking 𝑈, we can assume that
𝜄𝑠
𝑧(𝜕𝑁″) is likewise transverse to 𝑋𝑠

𝑧 for all (𝑠, 𝑧) ∈ 𝑈.
Pick an (orientation preserving) diffeomorphism 𝑟 of open neighbour-

hoods of [−4, 3]×[−2, 2] and 𝑁″ that satisfies 𝑟([−4, 3] × [−2, 2]) = 𝑁″

and that
• preserves the 𝑥-axis, i.e. 𝑟([−4, 3] × {0}) = [−4 + 𝜀′, 3] × {0},
• maps the rectangles 𝐸 ≔ [−4, −1] × [−2, 2] into 𝐷2(3, 0) ∩ 𝑁″

and [−3, −2] × [−1, 1] into the disc around (−2, 0) ∈ 𝑁″ with
radius 1/2, i.e. the region that contains the singular points of the
vector fields 𝑋𝑠

𝑧 in the elliptic neighbourhoods,
• maps 𝐹 ≔ [−1, 1] × [−2, 2] into the trapezium 𝑇,
• and satisfies 𝑟(𝐻) = 𝑅 for 𝐻 ≔ [1, 3] × [−2, 2].
The composition of 𝜄𝑠

𝑧 with 𝑟 is a parametric embedding of the
rectangle [−4, 3] × [−2, 2] ⊂ ℝ2.

On the trapezium 𝑇 ⊂ 𝑁″ ⊂ ℝ2, all vector fields 𝑋𝑠
𝑧 , (𝑠, 𝑧) ∈ 𝑈,

were parallel to the 𝜕𝑥-direction of ℝ2. Hence we may assume that,
writing the vector fields 𝑋𝑠

𝑧 in the coordinates 𝜕𝑥 and 𝜕𝑦 of 𝑟 ∘ 𝜄𝑠
𝑧

as 𝑋𝑠
𝑧 = 𝑋𝑠

1,𝑧𝜕𝑥 + 𝑋𝑠
2,𝑧𝜕𝑦, the 𝜕𝑦 component 𝑋𝑠

2,𝑧 is strictly positive
on 𝐹 ∩ {𝑦 > 0} and strictly negative on 𝐹 ∩ {𝑦 < 0}. Remember that
𝑋𝑠

2,𝑧 < 0 on 𝐻 ∩{𝑦 < 0}, and 𝑋𝑠
2,𝑧 > 0 on 𝐻 ∩{𝑦 > 0} by construction.

Since 𝜄𝑠
𝑧(𝜕𝑅) is transverse to 𝑋𝑠

𝑧 , we can choose 𝑟 such that also
𝑋𝑠

2,𝑧 < 0 on [−4, −1] × [−2, −1] and that 𝑋𝑠
2,𝑧 > 0 on [−4, −1] × [1, 2]

and, further, that 𝑋𝑠
1,𝑧 < 0 on both [−4, −3] × [−1, 1] and [5/2, 3] ×

[−1, 1].
For the elimination process we restrict 𝑈 to a product 𝐷0 × 𝐼0 of the

closure of an open interval around 𝑧0 ∈ [−1, 1] and the closure of an
open neighbourhood around 𝑠0 in 𝑆𝑘 such that 𝐷0 × 𝐼0 ⊂ 𝑈.
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Figure 2.2.: The rectangle 𝑅𝑠
𝑧 and some trajectories of a vector field 𝑋𝑠

𝑧

2.4. Neighbourhood for elimination

Denote the parametric embedding that we constructed in the last
section by 𝜄𝑠

𝑧 and denote the image of [−4, 3] × [−2, 2] under 𝜄𝑠
𝑧 by 𝑅𝑠

𝑧.
Write Ω𝑠

𝑧 for the pull-back of the area form Ω to [−4, 3] × [−2, 2]. The
vector fields 𝑋𝑠

𝑧 , (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0, have the following properties.

N1: On the segment 𝑎 ≔ [−1, 3] × {0} the vector field 𝑋𝑠
𝑧 is parallel

to 𝜕𝑥.

N2: The 𝜕𝑦-component 𝑋𝑠
2,𝑧 of 𝑋𝑠

𝑧 is positive on [−4, −1] × [1, 2] as
well as on [−1, 3] × (0, 2] and negative on [−4, −1] × [−2, −1] as
well as on [−1, 3] × [−2, 0).

N3: It is 𝑋𝑠
1,𝑧 < 0 on [−4, −3] × [−1, 1] and on [5/2, 3] × [−1, 1].

N4: There are no singular points of 𝑋𝑠
𝑧 in [−4, 3] × [−2, 2] outside of

[−3, −1] × [−1, 1] ∪ 𝑎 and all singular points are positive.

N5: The divergence of 𝑋𝑠
𝑧 with respect to Ω𝑠

𝑧 is positive on both 𝐸
and 𝐻.

Additionally we ensured that

A1: all trajectories of 𝑋𝑠
𝑧 through points in 𝐹 intersect 𝐸 in negative

time.
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2.5. Contact forms of normal form

In the elimination process we will deform the contact structures in 𝜕𝑧
direction. It is therefore beneficial to obtain control over the contact
forms in 𝜕𝑧 direction. Suitable contact forms 𝛽𝑠

𝑧 + 𝑢𝑠
𝑧 d𝑧 have the

following property.

A2: The function 𝑢𝑠
𝑧 is positive and is constant on 𝐸 and 𝐻.

Lemma 2.3. If 𝜄𝑠
𝑧, (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0, is a parametric embedding of

[−4, 3] × [−2, 2] satisfying properties (N5) and (A1) and 𝑈 ⊆ 𝐷0 × 𝐼0
any open subset, then there is an isotopy of the parametric contact
structures 𝜉𝑠, supported in any neighbourhood of 𝑈 ⊂ 𝑆𝑘 × [−1, 1] and
any neighbourhood of 𝑅𝑠

𝑧 ⊂ 𝑆2 that
1. does not change the vector fields 𝑋𝑠

𝑧 that the contact structures
induce on 𝑆2,

2. is such that after the isotopy the contact structures satisfy property
(A2) on 𝑅𝑠

𝑧 for (𝑠, 𝑧) ∈ 𝑈 and
3. for (𝑠, 𝑧) in the complement of 𝑈 where 𝛽𝑠

𝑧 + 𝑢𝑠
𝑧 d𝑧 satisfied

property (A2) before the deformation, the contact forms will also
do so after the deformation.

Proof. As first step, let us observe that we find a smooth family of
functions 𝑓𝑠

𝑧 on 𝑆2, that are identically 1 outside a neighbourhood of
the image of [−4, 3] × [−2, 2] under 𝜄𝑠

𝑧, such that the vector fields 𝑓𝑠
𝑧 𝑋𝑠

𝑧
have positive divergence on all of [−4, 3] × [−2, 2].

In Section II.2.2 we saw that for a smooth function 𝑓 we have
divΩ(𝑓𝑋) = 𝑋(𝑓) + 𝑓 divΩ(𝑋), cf. Equation (II.1) on page 35. Hence,
pick a smooth family of positive functions 𝑓𝑠

𝑧 , (𝑠, 𝑧) ∈ 𝐼0 × 𝐷0, on
[−4, 3] × [−2, 2] that take the value 1 on 𝐸, grow sufficiently fast along
the trajectories of 𝑋𝑠

𝑧 in 𝐹 such that 𝑋𝑠
𝑧(𝑓𝑠

𝑧 ) > −𝑓𝑠
𝑧 divΩ𝑠

𝑧
(𝑋𝑠

𝑧) and that
take a constant value 𝑐 ∈ ℝ on 𝐻. (To see that we can construct a
family of function 𝑓𝑠

𝑧 that is smooth in (𝑠, 𝑧), consider the vector fields
𝑋𝑠

𝑧 again as a single vector field 𝒳 on 𝑆𝑘 × [−1, 1] × 𝑆2.)
Property (N5) together with the fact that 𝑓𝑠

𝑧 is constant on both 𝐸
and 𝐻 guarantees that divΩ𝑠

𝑧
(𝑓𝑠

𝑧 𝑋𝑠
𝑧) > 0 on 𝐻 ∪ 𝐸.

Extend 𝑓𝑠
𝑧 ∘ (𝜄𝑠

𝑧)−1 to a smooth family of functions on 𝑆2, again
denoted by 𝑓𝑠

𝑧 , such that each 𝑓𝑠
𝑧 is constantly 1 outside a small

neighbourhood of 𝜄𝑠
𝑧([−4, 3] × [−2, 2]). Consider the rescaled contact
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forms 𝑓𝑠
𝑧 (𝛽𝑠

𝑧 + 𝑢𝑠
𝑧 d𝑧). They induce the vector fields 𝑓𝑠

𝑧 𝑋𝑠
𝑧 on 𝑆2 that

have positive divergence on the image of 𝜄𝑠
𝑧.

That the divergence is positive implies that the forms d(𝑓𝑠
𝑧 𝛽𝑠

𝑧) are
positive area forms on 𝑅𝑠

𝑧. Consequently, there is a sufficiently large
𝜆 ∈ ℝ such that in the compact sets 𝑅𝑠

𝑧, (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0, the 1-forms
𝑓𝑠

𝑧 𝛽𝑠
𝑧 + 𝜆 d𝑧 are contact forms:

(𝑓𝑠
𝑧 𝛽𝑠

𝑧 + 𝜆 d𝑧) ∧ d(𝑓𝑠
𝑧 𝛽𝑠

𝑧 + 𝜆 d𝑧)

= (𝑓𝑠
𝑧 𝛽𝑠

𝑧 + 𝜆 d𝑧) ∧ (d(𝑓𝑠
𝑧 𝛽𝑠

𝑧) −
d

d𝑧(𝑓𝑠
𝑧 𝛽𝑠

𝑧) ∧ d𝑧)

= (−𝑓𝑠
𝑧 𝛽𝑠

𝑧 ∧
d

d𝑧(𝑓𝑠
𝑧 𝛽𝑠

𝑧) + 𝜆 d(𝑓𝑠
𝑧 𝛽𝑠

𝑧)) ∧ d𝑧 .

As the contact condition is open, the forms 𝑓𝑠
𝑧 𝛽𝑠

𝑧 + 𝜆 d𝑧 are contact
forms in sufficiently small open neighbourhoods 𝑁𝑠

𝑧 of 𝑅𝑠
𝑧. Pick a

smooth family of bump functions 𝜙𝑠
1,𝑧 ∶ 𝑆2 → ℝ that take the

value 1 on 𝑅𝑠
𝑧 and vanish outside 𝑁𝑠

𝑧 . Additionally, let 𝜙2 ∶ 𝑆𝑘 ×
[−1, 1] → ℝ be a smooth bump function that takes the value 1 on 𝑈
and vanishes outside a small neighbourhood of 𝑈. Denote by 𝜙𝑠

𝑧 the
product (𝑠, 𝑧; 𝑞) ↦ 𝜙𝑠

1,𝑧(𝑞) 𝜙2(𝑠, 𝑧). Then for 𝑡 ∈ [0, 1] the forms

𝛼𝑠
𝑡 ≔ 𝑓𝑠

𝑧 𝛽𝑠
𝑧 + ((1 − 𝑡𝜙𝑠

𝑧)𝑢𝑠
𝑧 + 𝑡𝜙𝑠

𝑧𝜆) d𝑧

are contact forms on [−1, 1] × 𝑆2 as convex combinations of contact
forms with coinciding 1-forms 𝑓𝑠

𝑧 𝛽𝑠
𝑧, cf. Observation I.7.3. Outside of

𝑁𝑠
𝑧 , the contact forms 𝛼𝑠

𝑡 are stationary in 𝑡.
By the relative and parametric version of the Gray stability theorem

(Corollary I.5.3) to the family of contact structures 𝜉𝑠
𝑡 ≔ ker 𝛼𝑠

𝑡 there
is a parametric isotopy 𝜓𝑠

𝑡 of [−1, 1] × 𝑆2 such that

𝑇 𝜓𝑠
𝑡 (𝜉𝑠) = 𝜉𝑠

𝑡 ,

or equivalently, if we denote by (𝜓𝑠
𝑡 )∗ the pullback with its inverse,

(𝜓𝑠
𝑡 )∗𝛼𝑠 = 𝜇𝑠

𝑡𝛼𝑠
𝑡

for some smooth family of positive functions 𝜇𝑠
𝑡 . This isotopy is sta-

tionary outside the sets 𝑁𝑠
𝑧 .
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Denote by 𝑓𝑠 the map (𝑧; 𝑞) ↦ 𝑓𝑠
𝑧 (𝑞). As the functions 𝑓𝑠 are positive,

the forms 𝛼𝑠
𝑡/𝑓𝑠 are also contact forms for the contact structures 𝜉𝑠

𝑧
and

1
𝑓𝑠 𝛼𝑠

𝑡 = 𝛽𝑠
𝑧 + ((1 − 𝑡𝜙𝑠

𝑧)
𝑢𝑠

𝑧
𝑓𝑠

𝑧
+ 𝑡𝜙𝑠

𝑧
𝜆
𝑓𝑠

𝑧
) d𝑧 . (III.1)

These contact forms all induce the vector fields 𝑋𝑠
𝑧 on 𝑆2. For 𝑡 = 1,

(𝑠, 𝑧) ∈ 𝑈 and on 𝑅𝑠
𝑧 the contact form 𝛼𝑠

𝑡/𝑓𝑠 is given as 𝛽𝑠
𝑧 + 𝜙𝑠

𝑧𝜆/𝑓𝑠
𝑧 d𝑧

and the function 𝜙𝑠
𝑧𝜆/𝑓𝑠

𝑧 = 𝜆/𝑓𝑠
𝑧 is positive on 𝑅𝑠

𝑧 and constant on
both 𝐸 and 𝐻.

If 𝑢𝑠
𝑧 is positive on 𝑅𝑠

𝑧 and constant on 𝐸 and 𝐻 for some (𝑠, 𝑧) ∉ 𝑈,
the convex combination (1 − 𝜙𝑠

𝑧) 𝑢𝑠
𝑧/𝑓𝑠

𝑧 + 𝜙𝑠
𝑧𝜆/𝑓𝑠

𝑧 is again positive and,
as 𝑓𝑠

𝑧 is constant on 𝐸 ⊍ 𝐻, also constant on both 𝐸 and 𝐻.

If we are just looking at a region where the divergence is positive, we
can, with the same argument, but without rescaling the contact forms,
obtain a similar statement.

Corollary 2.4. Let 𝐷𝑠
𝑧, (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0, be an parametric embedding

of a disc in 𝑆2 such that the contact forms in 𝐷𝑠
𝑧 are given as 𝛽𝑠

𝑧 +𝑢𝑠
𝑧 d𝑧

with 𝑢𝑠
𝑧 > 0 and d𝛽𝑠

𝑧 > 0, i.e. the divergence of the vector fields 𝑋𝑠
𝑧

induced by the contact forms is positive. Let further 𝐾 ⊂ 𝐷0 × 𝐼0 be
the closure of an open subset.

Then there is a parametric contact isotopy Ψ𝑠
𝑡 that is stationary

outside small neighbourhoods of 𝐾 and 𝐷𝑠
𝑧 that

1. does not change the vector fields 𝑋𝑠
𝑧 that the contact structures

induce on 𝑆2,
2. is such that after the isotopy the contact forms in a neighbourhood

of 𝐷𝑠
𝑧 are given by 𝛽𝑠

𝑧 + ℎ𝑠
𝑧 d𝑧 with ℎ𝑠

𝑧 > 0 and ℎ𝑠
𝑧 is constant

on 𝐷𝑠
𝑧 for (𝑠, 𝑧) ∈ 𝐾.

3. For all (𝑠, 𝑧) ∉ 𝐾 where 𝑢𝑠
𝑧 was constant on 𝐷𝑠

𝑧, ℎ𝑠
𝑧 is also

constant on 𝐷𝑠
𝑧.

Additionally, ℎ𝑠
𝑧 may be chosen arbitrarily large on 𝐷𝑠

𝑧.

2.6. Parametric Elimination

Theorem 2.5 (Parametric Elimination). Let 𝐷0 ⊂ 𝑆𝑘 be a closed
disc, 𝐼0 ⊂ [−1, 1] a closed interval and 𝑅𝑠

𝑧, (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0, be a
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parametric embedding of [−4, 3] × [−2, 2] via 𝜄𝑠
𝑧 such that there the

contact forms are of the form 𝛽𝑠
𝑧 + 𝑢𝑠

𝑧 d𝑧 that satisfies property (A2)
and that the vector fields 𝑋𝑠

𝑧 that are induced on 𝑆2 by the contact
forms satisfy the conditions (N1) to (N5).

Then there is, for any 𝐼1 ⊊ 𝐼0 that is the closure of an open interval
and any 𝐷1 ⊊ 𝐷0 that is the closure of an open disc, a parametric
contact isotopy Ψ𝑠

𝑡 that is stationary outside the 𝑅𝑠
𝑧 such that after the

deformation the contact forms
1. satisfy condition (A2) on 𝑅𝑠

𝑧 for (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0
and induce vector fields 𝑌 𝑠

𝑧 that
1. satisfy the conditions (N1) to (N5) in 𝑅𝑠

𝑧 for all (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0
and

2. have no singular points in 𝑅𝑠
𝑧 for (𝑠, 𝑧) ∈ 𝐷1 × 𝐼1.

Proof. We seek a parametric isotopy Ψ𝑠
𝑡 of contact structures on

[−1, 1] × 𝑆2 that is stationary away from the neighbourhoods 𝑅𝑠
𝑧 and

changes the induced family of vector fields 𝑋𝑠
𝑧 .

Remember that these vector fields arose as follows. We wrote the
contact forms 𝛼𝑠 as 𝛽𝑠

𝑧 + 𝑢𝑠
𝑧 d𝑧 on [−1, 1] × 𝑆2, where 𝛽𝑠

𝑧 were 1-forms
on 𝑆2. In particular, the 𝛽𝑠

𝑧 arise as the pull-back of 𝛼𝑠 under the
embedding 𝑆2 ≅ {𝑧} × 𝑆2 ⊂ [−1, 1] × 𝑆2. The contact forms 𝛽𝑠

𝑧 + 𝑢𝑠
𝑧 d𝑧

induce the vector fields 𝑋𝑠
𝑧 on 𝑆2 by 𝜄𝑋𝑠

𝑧
Ω = 𝛽𝑠

𝑧.
Let us assume for a moment that we found a parametric isotopy

Ψ𝑠
𝑡 of contact structures as required. It is, in particular, a parametric

diffeotopy of [−1, 1] × 𝑆2. Consider, for some (𝑠, 𝑧) ∈ 𝑈, the vector field
𝑌 𝑠

𝑧 that the contact form (Ψ𝑠,−1
1 )∗𝛼𝑠 of the deformed contact structure

𝑇 Ψ𝑠
1(𝜉𝑠) = ker(Ψ𝑠,−1

1 )∗𝛼𝑠 induces on 𝑆2 embedded as {𝑧} × 𝑆2. It is
given by

𝜄𝑌 𝑠
𝑧

Ω = (𝜄𝑧)∗(Ψ𝑠,−1
1 )

∗
𝛼𝑠

= (Ψ𝑠,−1
1 ∘ 𝜄𝑧)

∗
𝛼𝑠 ,

where 𝜄𝑧 ∶ 𝑆2 → [−1, 1] × 𝑆2 is the embedding 𝑞 ↦ (𝑧, 𝑞). Con-
sequently, the vector field 𝑌 𝑠

𝑧 coincides with the vector field that the
original contact form 𝛼𝑠 induces on 𝑆2 embedded as Ψ𝑠,−1

1 ({𝑧} × 𝑆2).
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Hence, to find Ψ𝑠
𝑡 , we will deform the spheres {𝑧} × 𝑆2 inside 𝑅 as

graphs over their original embedding such that the contact forms 𝛼𝑠

induce vector fields 𝑌 𝑠
𝑧 on these that satisfy the required conditions. We

will construct a suitable parametric function 𝑔𝑠
𝑧, (𝑠, 𝑧) ∈ 𝑆𝑘 × [−1, 1],

on 𝑆2 that is identically 0 outside the 𝑅𝑠
𝑧, (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0, and write

𝑗𝑠
𝑧 ∶ 𝑆2 → [−1, 1] × 𝑆2

𝑞 ↦ (𝑧 + 𝑔𝑠
𝑧(𝑞); 𝑞) .

Then we define Ψ𝑠
𝑡 as the inverse of

Ψ𝑠,−1
𝑡 ∶ [−1, 1] × 𝑆2 → [−1, 1] × 𝑆2

(𝑧; 𝑞) ↦ (𝑧 + 𝑡 𝑔𝑠
𝑧(𝑞); 𝑞) .

A quick calculation yields that

(𝑗𝑠
𝑧)∗(𝛽𝑠

𝑧 + 𝑢𝑠
𝑧 d𝑧) = 𝛽𝑠

𝑧+𝑔𝑠
𝑧

+ 𝑢𝑠
𝑧+𝑔𝑠

𝑧
d𝑔𝑠

𝑧 .

Hence, the vector fields 𝑌 𝑠
𝑧 that the contact forms 𝛽𝑠

𝑧 + d𝑧 induce on
the deformed spheres are given by

𝜄𝑌 𝑠
𝑧

Ω = (𝑗𝑠
𝑧)∗(𝛽𝑠

𝑧 + d𝑧) = 𝛽𝑠
𝑧+𝑔𝑠

𝑧
+ 𝑢𝑠

𝑧+𝑔𝑠
𝑧

d𝑔𝑠
𝑧 = 𝜄𝑋𝑠

𝑧+𝑔𝑠𝑧
Ω + 𝑢𝑠

𝑧+𝑔𝑠
𝑧

d𝑔𝑠
𝑧

and we can write 𝑌 𝑠
𝑧 as

𝑌 𝑠
𝑧 = 𝑋𝑠

𝑧+𝑔𝑠
𝑧

+ 𝑍𝑠
𝑧 ,

where the vector fields 𝑍𝑠
𝑧 are defined by 𝜄𝑍𝑠

𝑧
Ω = 𝑢𝑠

𝑧+𝑔𝑠
𝑧

d𝑔𝑠
𝑧. Write the

area form Ω in the coordinates 𝑥 and 𝑦 on 𝑅𝑠
𝑧 as 𝑎𝑠

𝑧 d𝑥 ∧ d𝑦. Then 𝑍𝑠
𝑧

takes the form

𝑍𝑠
𝑧(𝑥, 𝑦) =

𝑢𝑠
𝑧+𝑔𝑠

𝑧(𝑥,𝑦)(𝑥, 𝑦)
𝑎𝑠

𝑧(𝑥, 𝑦)
(

𝜕𝑔𝑠
𝑧

𝜕𝑦 (𝑥, 𝑦) 𝜕𝑥 −
𝜕𝑔𝑠

𝑧
𝜕𝑥 (𝑥, 𝑦) 𝜕𝑦) .

Let 𝜑∶ 𝑆𝑘 × [−1, 1] → [0, 1] be a smooth bump function that is
constant 0 outside 𝐷0 × 𝐼0 and takes the value 1 on 𝐷1 × 𝐼1. Let us
make the ansatz

𝑔𝑠
𝑧(𝑥, 𝑦) ≔ 𝜑(𝑠, 𝑧) ⋅ 𝑔1(𝑥) ⋅ 𝑔2(𝑦) .
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Construction of 𝑔1 and 𝑔2
Pick 𝑔1 ∶ ℝ → ℝ as a smooth non-negative bump function that
vanishes outside [−4, 3] and is constantly 1 on [−7/2, 5/2].

Define a smooth function 𝑔2 ∶ ℝ → ℝ that vanishes outside
[−2, 2], satisfies 𝑔2(0) = 0 and 𝑔′

2(𝑦) < 0 for 𝑦 ∈ [−1, 1] and 𝑔′
2(0) =

−2 max((𝑎𝑠
𝑧/𝑢𝑠

𝑧) 𝑋𝑠
1,𝑧) as in Figure 2.3. The maximum is taken over

all (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0 and all (𝑥, 0) with 𝑥 ∈ [−1, 3].

−1−2

1 2

Figure 2.3.: The function 𝑔2

This function might be chosen arbitrarily 𝒞0-close to zero to ensure
that the product 𝜑 𝑔1 𝑔2 is sufficiently small. In particular, to guarantee
that Ψ𝑠,−1

𝑡 is an embedding, it suffices to ensure

0 <
d

d𝑧(𝑧 + 𝜑(𝑠, 𝑧) 𝑔1(𝑥) 𝑔2(𝑦))

= 1 +
𝜕𝜑
𝜕𝑧 (𝑠, 𝑧) 𝑔1(𝑥) 𝑔2(𝑦) .

This is satisfied, provided that 𝑔2 is sufficiently small.

Verification We ensured that the maps Ψ𝑠,−1
𝑡 are embeddings and the

deformation hence can be applied as described. Let us observe that we
can use this deformation to achieve the required conditions.

(N1) The vector fields 𝑋𝑠
𝑧 are parallel to 𝜕𝑥 along the segment

𝑎 = [−1, 3] × {0}. The 𝜕𝑦-component of 𝑍𝑠
𝑧 amounts to

𝑍𝑠
2,𝑧(𝑥, 𝑦) = −

𝑢𝑠
𝑧+𝑔𝑠

𝑧(𝑥,𝑦)

𝑎𝑠
𝑧(𝑥, 𝑦)

𝜕𝑔𝑠
𝑧

𝜕𝑥 (𝑥, 𝑦)

= −
𝑢𝑠

𝑧+𝑔𝑠
𝑧(𝑥,𝑦)(𝑥, 𝑦)

𝑎𝑠
𝑧(𝑥, 𝑦)

𝜑(𝑠, 𝑧) 𝑔2(𝑦) 𝑔′
1(𝑥) .
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For 𝑦 = 0, this vanishes as 𝑔2(0) = 0. Consequently, the 𝜕𝑦-component
of each vector field 𝑌 𝑠

𝑧 vanishes along the segment 𝑎.

(N2) For 𝑥 ∈ [−4, 5/2] and 𝑦 > 0, the 𝜕𝑦-component of 𝑍𝑠
𝑧 is non-

negative, as 𝑢𝑠
𝑧 and 𝑎𝑠

𝑧 are positive, 𝑔′
1(𝑥) ≥ 0 and 𝜑(𝑠, 𝑧) 𝑔2(𝑦) ≥ 0. By

property (N2), the 𝜕𝑦-component of 𝑋𝑠
𝑧 is positive on [−4, −1] × [1, 2]

and on [−1, 5/2] × (0, 2], hence the same holds true for the sum 𝑌 𝑠
𝑧 =

𝑋𝑠
𝑧+𝑔𝑠

𝑧
+ 𝑍𝑠

𝑧 .
Analogously, the 𝜕𝑦-component of 𝑌 𝑠

𝑧 is negative on [−4, −1] ×
[−2, −1] and on [−1, 5/2] × [−2, 0).

(N3) The 𝜕𝑥-component of 𝑍𝑠
𝑧 amounts to

𝑍𝑠
1,𝑧(𝑥, 𝑦) =

𝑢𝑠
𝑧+𝑔𝑠

𝑧(𝑥,𝑦)

𝑎𝑠
𝑧(𝑥, 𝑦)

𝜕𝑔𝑠
𝑧

𝜕𝑦 (𝑥, 𝑦)

=
𝑢𝑠

𝑧+𝑔𝑠
𝑧(𝑥,𝑦)

𝑎𝑠
𝑧(𝑥, 𝑦)

𝜑(𝑠, 𝑧) 𝑔1(𝑥) 𝑔′
2(𝑦) .

Both 𝑢𝑠
𝑧 and 𝑎𝑠

𝑧 are positive and 𝜑(𝑠, 𝑧) 𝑔1(𝑥) ≥ 0. For 𝑦 ∈ [−1, 1],
𝑔′

2(𝑦) < 0, and hence 𝑍𝑠
1,𝑧 ≤ 0. As by property (N3) the 𝜕𝑥-component

𝑋𝑠
1,𝑧 is negative on [−4, −3] × [−1, 1] and on [5/2, 3] × [−1, 1], this is

also true for the 𝜕𝑥-component 𝑌 𝑠
1,𝑧 of the sum 𝑌 𝑠

𝑧 = 𝑋𝑠
𝑧+𝑔𝑠

𝑧
+ 𝑍𝑠

𝑧 .

(N5) In a point (𝑥, 𝑦) ∈ 𝐸 we have

divΩ𝑠
𝑧
(𝑌 𝑠

𝑧 ) Ω𝑠
𝑧 = d(𝛽𝑠

𝑧+𝑔𝑠
𝑧

+ 𝑢𝑠
𝑧+𝑔𝑠

𝑧
d𝑔𝑠

𝑧)
= d𝛽𝑠

𝑧+𝑔𝑠
𝑧

+ d𝑢𝑠
𝑧+𝑔𝑠

𝑧
∧ d𝑔𝑠

𝑧

and since 𝑢𝑠
𝑧 are constant on 𝐸, d𝑢𝑠

𝑧 = 0, and

= d𝛽𝑠
𝑧+𝑔𝑠

𝑧
=

1
𝑎𝑠

𝑧+𝑔𝑠
𝑧

divΩ𝑠
𝑧+𝑔𝑠𝑧

(𝑋𝑠
𝑧+𝑔𝑠

𝑧
) d𝑥 ∧ d𝑦 .

The divergence of 𝑋𝑠
𝑧+𝑔𝑠

𝑧
is positive in (𝑥, 𝑦) ∈ 𝐸 by property (N5) and

the functions 𝑎𝑠
𝑧 are positive. An analogous argument shows that the

divergence of 𝑌 𝑠
𝑧 is positive on 𝐻.
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(N4) Property (N2) implies that there are no singular points for 𝑥 ∈
[−1, 5/2] and 𝑦 ≠ 0 as well as on [−4, −1]×[1, 2] and [−4, −1]×[−2, −1].
Property (N3) excludes singular points on [5/2, 3] × [−1, 1] and on
[−4, −3] × [−1, 1].

Consider the rectangle [5/2, 3] × [1, 2]. There, 𝑋𝑠
2,𝑧 > 0 and 𝑍𝑠

2,𝑧 < 0
as 𝑔2 < 0 and 𝑔′

1 < 0. However, choosing 𝑔2 sufficiently small, we can
ensure that 𝑌 𝑠

2,𝑧 = 𝑋𝑠
2,𝑧 + 𝑍𝑠

2,𝑧 is still positive. Likewise, we can choose
𝑔2 such that 𝑌 𝑠

2,𝑧 < 0 on [5/2, 3] × [−2, −1].
We verified that the divergence of 𝑌 𝑠

𝑧 is positive on 𝐸. Hence any
singular point in 𝐸 is positive.

Consider

(Ψ𝑠,−1
1 )

∗
(𝛽𝑠

𝑧 + 𝑢𝑠
𝑧 d𝑧)

= (𝛽𝑠
𝑧+𝑔𝑠

𝑧
+ 𝑢𝑠

𝑧+𝑔𝑠
𝑧

d𝑔𝑠
𝑧) + 𝑢𝑠

𝑧+𝑔𝑠
𝑧
(1 +

𝜕𝜑
𝜕𝑧 (𝑠, 𝑧) 𝑔1 𝑔2) d𝑧

and write these contact forms as 𝜇𝑠
𝑧 + ℎ𝑠

𝑧 d𝑧. The condition that Φ𝑠,−1
𝑡

are embeddings implies 1 + 𝜕𝑧𝜑(𝑠, 𝑧) 𝑔1𝑔2 > 0 and hence ℎ𝑠
𝑧 > 0. We

showed that 𝑌 𝑠
𝑧 is parallel to 𝜕𝑥 along 𝑎 = [−1, 3] × {0}, hence 𝜇𝑠

𝑧
is a multiple of d𝑦 there, and so is its derivative ̇𝜇𝑠

𝑧 in 𝜕𝑧-direction.
Consequently, in singular points (𝑥, 0) with 𝑥 > −1 the form 𝜇𝑠

𝑧 ∧ ̇𝜇𝑠
𝑧

vanishes and the contact condition for 𝜇𝑠
𝑧 + ℎ𝑠

𝑧 d𝑧 implies

0 < −𝜇𝑠
𝑧 ∧ ̇𝜇𝑠

𝑧 + 𝜇𝑠
𝑧 ∧ dℎ𝑠

𝑧 + ℎ𝑠
𝑧 d𝜇𝑠

𝑧

= ℎ𝑠
𝑧 d𝜇𝑠

𝑧

as 𝜇𝑠
𝑧 = 0 in singular points of 𝑌 𝑠

𝑧 . Then ℎ𝑠
𝑧 > 0 implies d𝜇𝑠

𝑧 > 0 and
the singular point (𝑥, 0) is positive.

No singular points in 𝑅𝑠
𝑧 for (𝑠, 𝑧) ∈ 𝐷1 ×𝐼1: There are no singular

points outside 𝐸 and [−1, 5/2] × {0}. Let us first consider the set
[−1, 5/2] × {0}. There, the 𝜕𝑥-components 𝑌 𝑠

1,𝑧 of the deformed vector
fields 𝑌 𝑠

𝑧 satisfy

𝑌 𝑠
1,𝑧 = 𝑋𝑠

1,𝑧+𝑔𝑠
𝑧(𝑥,0) +

𝑢𝑠
𝑧+𝑔𝑠

𝑧(𝑥,0)

𝑎𝑠
𝑧(𝑥, 0)

𝜕𝑔𝑠
𝑧

𝜕𝑦 (𝑥, 0) .
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For 𝑦 = 0, the function 𝑔2 vanishes and hence 𝑧+𝑔𝑠
𝑧 = 𝑧. The function

𝑔1 is identically 1 for 𝑥 ∈ [−1, 5/2]. Consequently, 𝑌 𝑠
1,𝑧 amounts to

𝑌 𝑠
1,𝑧 = 𝑋𝑠

1,𝑧 +
𝑢𝑠

𝑧(𝑥, 0)
𝑎𝑠

𝑧(𝑥, 0)
𝜑(𝑠, 𝑧) 𝑔′

2(0) .

For (𝑠, 𝑧) ∈ 𝐷1 × 𝐼1 we have 𝜑(𝑠, 𝑧) = 1 and as

𝑔′
2(0) = −2 max((𝑎𝑠

𝑧/𝑢𝑠
𝑧)𝑋𝑠

1,𝑧) ,

the 𝜕𝑥-component of 𝑌 𝑠
𝑧 is given by

𝑌 𝑠
1,𝑧 = 𝑋𝑠

1,𝑧 − 2
𝑢𝑠

𝑧(𝑥, 0)
𝑎𝑠

𝑧(𝑥, 0)
max((𝑎𝑠

𝑧/𝑢𝑠
𝑧)𝑋𝑠

1,𝑧) < 0 .

On the subsets [−4, −1] × [−2, −1] and [−4, −1] × [1, 2] of 𝐸 there
are no singular points. To make sure that there will be no singular
points in their complement, i.e. on [−4, −1] × [−1, 1], even though 𝑔′

2(𝑦)
might be quite small we can make the effect of the deformation on the
vector fields stronger by enlarging 𝑢𝑠

𝑧 on 𝐸: On 𝐸, the divergence of
the vector fields 𝑋𝑠

𝑧 is positive, as are the functions 𝑢𝑠
𝑧. We can apply

Corollary 2.4 to a small neighbourhood of 𝐸 to make 𝑢𝑠
𝑧 arbitrarily

large on 𝐸. Denote the changed functions by 𝑈𝑠
𝑧 . This deformation

does not change the vector fields 𝑋𝑠
𝑧 and 𝑈𝑠

𝑧 are constant on 𝐸 and
𝑈𝑠

𝑧 = 𝑢𝑠
𝑧 on 𝐻, so it does not change properties (N1) to (N5) of the

vector fields 𝑌 𝑠
𝑧 . It does also not change the property that there are no

singular points for (𝑠, 𝑧) ∈ 𝐷1 × 𝐼1, 𝑥 ∈ [−1, 3] and 𝑦 = 0 as

−2
𝑈𝑠

𝑧 (𝑥, 0)
𝑎𝑠

𝑧(𝑥, 0)
max((𝑎𝑠

𝑧/𝑢𝑠
𝑧)𝑋𝑠

1,𝑧) ≤ −2
𝑢𝑠

𝑧(𝑥, 0)
𝑎𝑠

𝑧(𝑥, 0)
max((𝑎𝑠

𝑧/𝑢𝑠
𝑧)𝑋𝑠

1,𝑧) .

The value of 𝑔′
2(𝑦) < 0 on [−1, 1] is bounded from above by a negative

constant 𝑐. Hence, if we choose 𝑈𝑠
𝑧 sufficiently large on 𝐸 then for

(𝑥, 𝑦) ∈ [−7/2, −1] × [−1, 1] the 𝜕𝑦-component of 𝑌 𝑠
𝑧 is negative as the

following calculation shows.

𝑌 𝑠
1,𝑧(𝑥, 𝑦) = 𝑋𝑠

1,𝑧+𝑔𝑠
𝑧(𝑥,𝑦) + 𝑍𝑠

𝑧

= 𝑋𝑠
1,𝑧+𝑔𝑠

𝑧(𝑥,𝑦) +
𝑈𝑠

𝑧+𝑔𝑠
𝑧(𝑥,𝑦)

𝑎𝑠
𝑧(𝑥, 𝑦)

𝜕𝑔𝑠
𝑧

𝜕𝑦 (𝑥, 𝑦)
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= 𝑋𝑠
1,𝑧+𝑔𝑠

𝑧(𝑥,𝑦) +
𝑈𝑠

𝑧+𝑔𝑠
𝑧(𝑥,𝑦)

𝑎𝑠
𝑧(𝑥, 𝑦)

𝑔′
2(𝑦)

< 𝑋𝑠
1,𝑧+𝑔𝑠

𝑧(𝑥,𝑦) + 𝑈𝑠
𝑧+𝑔𝑠

𝑧(𝑥,𝑦)
𝑐

𝑎𝑠
𝑧(𝑥, 𝑦)

< 0

As there are no singular points of 𝑌 𝑠
𝑧 on [−4, −7/2] by property (N3),

this implies that 𝑌 𝑠
𝑧 does not have singular points in [−4, 3] × [−2, 2]

for (𝑠, 𝑧) ∈ 𝐷1 × 𝐼1.

(A2) Apply the deformation that we described so far. Verifying
property (N4) we saw that after the deformation, the contact forms are
given by 𝜇𝑠

𝑧 + ℎ𝑠
𝑧 d𝑧, where ℎ𝑠

𝑧 is given by

ℎ𝑠
𝑧 = 𝑢𝑠

𝑧+𝑔𝑠
𝑧
(1 + 𝜕𝑧𝜑(𝑠, 𝑧) 𝑔1 𝑔2) > 0 .

This function is no longer constant on 𝐸 and 𝐻. As we verified that the
divergence of 𝑌 𝑠

𝑧 is positive on both 𝐸 and 𝐻, we can apply a further
deformation as in Corollary 2.4 to guarantee that the contact forms
are given by 𝜇𝑠

𝑧 + 𝐻𝑠
𝑧 d𝑧 such that 𝐻𝑠

𝑧 are constant on 𝐸 and 𝐻. As
this deformation does not change the vector fields 𝑌 𝑠

𝑧 , it preserves the
properties (N1) to (N5) and the fact that the vector fields 𝑌 𝑠

𝑧 have no
singular points in [−4, 3] × [−2, 2] for (𝑠, 𝑧) ∈ 𝐷1 × 𝐼1.

Let us have a look at the effects of the deformation of Theorem 2.5.

Remark 2.6. Even if we started with elliptic and hyperbolic neigh-
bourhoods that contained isolated hyperbolic points, unless they are
non-degenerate we cannot guarantee that we do not create many more
singular points inside 𝐸 or along the 𝑥-axis in 𝐻. We could apply a
second deformation that ensures all singular points are isolated, possibly
destroying the property that there are only singular points outside 𝐸
along the 𝑥-axis, there would still many, possible degenerate, singular
points. We deal with these intricacies by considering neighbourhoods
of singular points instead.

Observation 2.7. There is some small 𝜀 > 0 such that for 𝜑(𝑠, 𝑧) < 𝜀
there are no singular points in [−4, 3]×[−2, 2] outside 𝐸 and {𝑦 = 0}∩𝐻.
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In particular, the elliptic and hyperbolic neighbourhoods that we used
are still elliptic and hyperbolic neighbourhoods.

For any value of 𝑧, the rectangle [−4, 3] × [−2, 2] is, after rounding
two corners and arranging div > 0, cf. Lemma 2.3, a half-hyperbolic
neighbourhood. Enlarging it along the flow lines near 𝐸 makes sure
that it contains the rectangle [−4, 3] × [−2, 2].
Remark 2.8. Conversely, a half-hyperbolic neighbourhood can be used
for an elimination deformation.

Let 𝐷𝑠
𝑧, (𝑠, 𝑧) ∈ 𝑈, be a positive half-hyperbolic neighbourhood.

Restricting to a rectangle inside the half-disc that we may parametrise
with [−4, 4] × [−2, 2], we obtain a neighbourhood 𝑅𝑠

𝑧 that satisfies
the conditions (N1) to (N4). In addition, its the divergence of the
vector fields 𝑋𝑠

𝑧 is positive on 𝑅𝑠
𝑧. Hence, there is a deformation of the

contact forms 𝛽𝑠
𝑧 + 𝑢𝑠

𝑧 d𝑧 in a neighbourhood of 𝑅𝑠
𝑧 as in Corollary 2.4,

such that 𝑢𝑠
𝑧 is positive and constant on each 𝑅𝑠

𝑧. In particular, this
neighbourhood satisfies condition (A2) and we can apply Theorem 2.5.

We will need to perform the elimination on overlapping sets and use
a partial elimination as follows.
Observation 2.9. If for some (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0 the vector fields 𝑋𝑠

𝑧 on 𝑅𝑠
𝑧

satisfy the conditions (N2), (N3) and (N4) only on {−1, 3} × [−2, 2],
then we can still perform the deformation, but the vector field 𝑋𝑠

𝑧
after the deformation will satisfy (N2), (N3) and (N4) again only on
{−1, 3} × [−2, 2] and there will be critical points on [−1, 3] × [−2, 2]
even if (𝑠, 𝑧) ∈ 𝐷1 × 𝐼1.

3. Complexity
Deformations as in Section 2 may reduce the number of retrograde
connections of a given vector field 𝑋𝑠

𝑧 by removing one of the hyperbolic
points. A priori, however, we cannot ensure that this deformation does
not create new retrograde connections for either 𝑋𝑠

𝑧 or a vector field
nearby.

Let us introduce a complexity valuation on vector fields and the
chosen collection of neighbourhoods that measure how far a given
sphere {𝑧} × 𝑆2 is from being convex with respect to 𝜉𝑠 and how far
our collection of neighbourhoods is from recognising it. We will present
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3. Complexity

an iterative way to deform the contact structures 𝜉𝑠 and to modify the
collections of neighbourhoods that decreases the complexity until all
spheres are convex with respect to all contact structures.

The complexity will depend on the choice of parametric neighbour-
hoods 𝑁𝑠

𝑧,𝑖, 𝑖 = 1, … , 𝐾, defined on open sets 𝑈𝑖 ⊂ 𝑆𝑘 × [−1, 1], that
cover the singular points of all 𝑋𝑠

𝑧 , (𝑠, 𝑧) ∈ 𝑆𝑘 × [−1, 1].

Definition 3.1. A finite number of parametric neighbourhoods 𝑁𝑖,
𝑖 = 1, … , 𝐾, is simple if whenever a singular point 𝑞 of a vector
field 𝑋𝑠

𝑧 is contained in both 𝑁𝑖 and 𝑁𝑗, all singular points of 𝑁𝑖 are
contained in 𝑁𝑗 or all singular points in 𝑁𝑗 are contained in 𝑁𝑖.

Let us assume for now that our collection of neighbourhoods 𝑁𝑖 is
simple.

To an isolated singular point 𝑞 of a vector field 𝑋 we might assign the
maximal number of singular points that vector fields close to 𝑋 have
that are close to 𝑞. For non-degenerate singular points, this will be 1 as
these vary smoothly with the parameter, for birth-death singularities
this might be 2, for example. We want to associate a similar count to
the neighbourhoods that contain the singular points.

Consider a neighbourhood 𝑁𝑠
𝑧,𝑖, (𝑠, 𝑧) ∈ 𝑈𝑖 and associate to it the

length of the longest string of neighbourhoods 𝑁𝑖1
, … , 𝑁𝑖𝑚

such that
• 𝑁𝑠

𝑧,𝑖𝑗
∩ 𝑁𝑠

𝑧,𝑖 contains singular points for all 𝑗 = 1, … , 𝑚 and
• for every 𝑗 ≠ 𝑗′, 𝑁𝑠

𝑧,𝑖𝑗
∩ 𝑁𝑠

𝑧,𝑖𝑗′
does not contain singular points.

Denote this count by 𝑑𝑠
𝑧,𝑖. It is at most equal to the number 𝐾 of

all neighbourhoods and at least 1 for neighbourhoods that do contain
singular points. For (half-hyperbolic) neighbourhoods that do not
contain singular points, this count is 0.

To any given parameter (𝑠, 𝑧) ∈ 𝑆𝑘 × [−1, 1] let us assign the sum of
all indices of its neighbourhoods of singular points. A singular point
might be contained in multiple neighbourhoods 𝑁𝑠

𝑧,𝑖, so let us take

̌𝑑 ∶ 𝑆𝑘 × [−1, 1] → ℕ
(𝑠, 𝑧) ↦ min

𝐽
∑
𝑗∈𝐽

𝑑𝑠
𝑧,𝑗 ,

where 𝐽 ⊂ {1, 2, … , 𝐾} are the indices of neighbourhoods such that all
singular points of 𝑋𝑠

𝑧 are contained in ⋃𝑗∈𝐽 𝑁𝑠
𝑧,𝑗.
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III. Parametric elimination

As the neighbourhoods 𝑁𝑖 are defined on open sets 𝑈𝑖 in the para-
meter space 𝑆𝑘 × [−1, 1], the maps 𝑑𝑗 ∶ (𝑠, 𝑧) ↦ ̌𝑑𝑠

𝑧,𝑗 are not upper
semi-continuous and neither is the map ̌𝑑. Instead, let us consider
𝑑 ≔ lim sup ̌𝑑, which is.

Definition 3.2. The map 𝑑∶ 𝑆𝑘 × [−1, 1] → ℕ0 will be called
complexity of the vector fields 𝑋𝑠

𝑧 together with a chosen set of simple
neighbourhoods 𝑁𝑠

𝑧,𝑖.

Example 3.3. Consider a family 𝑋𝑡, 𝑡 ∈ (−1, 1), of vector fields on an
open disc 𝐵 such that for 𝑡 < 0 there are two non-degenerate singular
points, an elliptic 𝑒𝑡 and one hyperbolic ℎ𝑡, for 𝑡 = 0 there is a single
half-hyperbolic singular point 𝑞 and for 𝑡 > 0 there are no singular
points. This phenomenon occurs generically in 1-parametric families of
vector fields, cf. [Sot74].

Let there be, for 𝑡 ∈ (−𝜀, 𝜀), a half-hyperbolic neighbourhood 𝑁
around 𝑞 that contains all singular points of 𝑋𝑡. Assume that for
𝑡 < −𝜀/2 we find an elliptic neighbourhood 𝐸 around 𝑒𝑡 and for 𝑡
in a slightly larger open set we find a hyperbolic neighbourhood 𝐻
around ℎ𝑡, cf. Figure 3.1. These three together form a collection of
neighbourhoods that contain all singular points of the vector fields 𝑋𝑡.

To the neighbourhood 𝐸 we associate for any 𝑡 < −𝜀/2 the order
1 as there is exactly one neighbourhood, 𝐸, that contains singular
points of 𝐸. The same is true for the hyperbolic neighbourhood 𝐻. For
𝑡 ∈ [−𝜀/2, 0) the only neighbourhood that contains all singular points
of 𝑁 is 𝑁 itself, so again its order is 1. For 𝑡 ∈ (−𝜀, −𝜀/2), the longest
string of neighbourhoods that contain the two singular points 𝑒𝑡 and ℎ𝑡
of 𝑁 consists of both 𝐸 and 𝐻. Consequently, the order of 𝑁 is 2. For
𝑡 > 0 the longest string of neighbourhoods that contain the singular
points of 𝑁 is empty as there are no singular points, and 𝑁 has order 0.

In total the sum of the orders ̌𝑑 is 2 on 𝑡 ∈ (−1, −𝜀/2), 1 on [−𝜀/2, 0]
and 0 otherwise. The complexity 𝑑 hence evaluates to

𝑡 ↦

⎧{{
⎨{{⎩

2, 𝑡 ∈ (−1, −𝜀/2]
1, 𝑡 ∈ (−𝜀/2, 0]
0, 𝑡 ∈ (0, 1) .
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4. Graph of singular points

𝑒𝑡 ℎ𝑡

𝑡

0

𝜀
2

−𝜀
2

−𝜀

−1

𝐸𝑡
𝐻𝑡

𝑁𝑡

2

1

0

𝑑

𝑞

Figure 3.1.: Neighbourhoods of singular points and their order 𝑑 for a 1-
parametric family of vector fields. The horizontal direction depicts
the surface the vector fields are defined on.

Notice that unlike the order of degeneracy, that we could also define in
this case, the surface of maximal order is not 𝑋0 but only close to it. The
reason is that, just looking at the neighbourhoods instead of singular
points, we do not distinguish the situations on 𝑋𝑡 for 𝑡 ∈ (−𝜀/2, 0).

4. Graph of singular points
We saw that we can apply an elimination deformation to two neigh-
bourhoods of singular points that are connected by a separatrix of the
hyperbolic neighbourhood. We will see that we can indeed find such
suitable pairs.

Definition 4.1. Let 𝑋𝑠
𝑧 be a vector field and 𝑁𝑖 a collection of neigh-

bourhoods that are defined in (𝑠, 𝑧) and that are such that each singular
point of 𝑋𝑠

𝑧 is contained in exactly one 𝑁𝑖. To the pair define a
graph 𝐺𝑠

𝑧 whose vertices are all neighbourhoods 𝑁𝑖 that contain singu-
lar points and whose edges are the (finitely many) unstable separatrices
of positive (half-)hyperbolic neighbourhoods and the stable separatrices
of negative (half-)hyperbolic neighbourhoods.
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III. Parametric elimination

We will show that this graph does not contain cycles by contradiction:
If there is a graph 𝐺𝑠0𝑧0 that contains a cycle, then the contact structure
𝜉𝑠0 is isotopic to an overtwisted contact structure.

4.1. Closed Legendrian curves

Assume that there is a cycle Δ ⊂ 𝐺𝑠0𝑧0. As a first step, let us observe
that we can find an isotopy of 𝜉𝑠0 such that there is a closed Legendrian
curve on {𝑧0} × 𝑆2 that agrees with Δ away from some singular points.
This argument is based on arguments in [Gei08, Section 4.6.4] that
shows that starting from to a hyperbolic cycle, cf. Section II.2.4, we
find a closed trajectory after perturbation of the contact structure. As
Δ is a more general cycle we will construct a closed Legendrian curve
that will meet singular points of the characteristic foliation of {𝑧0}×𝑆2.

Definition 4.2. A smooth curve in a contact manifold that is in every
point tangent to the contact structure is a Legendrian curve.

Observation 4.3. Let Σ ⊂ (𝑀, 𝜉) be a surface in a contact manifold
and let 𝑋 be a vector field that directs its characteristic foliation. A
smooth curve 𝑐 ∶ [0, 1] → Σ ⊂ 𝑀 is a Legendrian curve precisely if
it is parallel to a vector field 𝑋, i.e. in all points 𝑐(𝑡) that are not
singular points of 𝑋, ̇𝑐(𝑡) is a multiple of 𝑋𝑐(𝑡).

The following statement appears in the proof of [Theorem 4.6.33
Gei08] with a slightly different proof.

Lemma 4.4. Let 𝑞 be a non-degenerate hyperbolic point of the vector
field 𝑋 and let 𝛾0, 𝛾1 be two trajectories of 𝑋 that lie in two different
separatrices of 𝑞. Let 𝑈 be any open neighbourhood 𝑈 of 𝑞 and 𝑔0 ∈ 𝛾0∖𝑈
and 𝑔1 ∈ 𝛾1 ∖ 𝑈 two points on the two trajectories. Then there is a
vector field 𝑌 that vanishes outside 𝑈 and is 𝒞∞-close to the zero section
as well as a smooth curve 𝑐 defined on [0, 1] that is parallel to 𝑋 + 𝑌
and satisfies 𝑐(0) = 𝑔0 and 𝑐(1) = 𝑔1.

Proof. If the trajectories 𝛾0 and 𝛾1 lie in both stable or both unstable
separatrices, take 𝑌 to be the zero vector field. To construct 𝑐, follow
the trajectory 𝛾0 from 𝑔0, use a chart of the stable or unstable manifold
around 𝑞 and then follow 𝛾1 until 𝑔1. Finally reparameterise to [0, 1].
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4. Graph of singular points

Let us hence assume that 𝛾0 lies in a stable separatrix and 𝛾1 in
an unstable one. Pick two disjoint cross section 𝐶0 and 𝐶1 through
points 𝑝0 ∈ 𝛾0 and 𝑝1 ∈ 𝛾1 such that both are contained in 𝑈 and are
parameterised by (−𝛿, 𝛿) such that 𝛾𝑖 intersects 𝐶𝑖 in 0, 𝑖 = 0, 1. By
the Grobman–Hartman theorem, cf. Theorem II.2.14, we can choose
𝐶0 so small that the Poincaré-map 𝑃 from 𝐶0 to 𝐶1 is defined on one
connected component of (−𝛿, 0)∪(0, 𝛿). Let us assume that 𝑃 is defined
on (0, 𝛿) and that 𝑃((0, 𝛿)) ⊂ (0, 𝛿) ⊂ 𝐶1.

Pick a small flow box 𝑉0 ≅ (−𝛿, 𝛿) × [0, 𝛿𝑦] with coordinates 𝑥
and 𝑦 around 𝛾0 starting from 𝐶0 such that 𝐶0 ≡ (−𝛿, 𝛿) × {0} and
{0} × [0, 𝛿𝑦] ⊂ 𝛾0. Let 𝜙0 be a bump function, supported inside 𝑉0
such that 𝜙0 is constantly 1 in a neighbourhood of (0, 𝛿𝑦/2). Define
the vector field 𝑋0 to be 𝜙0 𝜕𝑥 in the coordinates of 𝑉0 and identically
0 outside 𝑉0.

Likewise, pick another flow box 𝑉1 ≅ (−𝛿, 𝛿) × [−𝛿𝑦, 0] around 𝛾1
such that (−𝛿, 𝛿) × {0} ≅ 𝐶1 and {0} × [−𝛿𝑦, 0] ⊂ 𝛾1. This is possible
provided 𝛿𝑦 was chosen sufficiently small. Choose again a bump function
𝜙1 that is supported inside 𝑉1 and is constantly 1 on a neighbourhood
of (0, −𝛿𝑦/2) and define 𝑋1 ≔ 𝜙1 𝜕𝑥.

Denote (−𝛿, 𝛿) × {𝛿𝑦} ⊂ 𝑉0 by 𝐶′
0 and (−𝛿, 𝛿) × {−𝛿𝑦} by 𝐶′

1. By
construction the Poincaré-map with respect to 𝑋 between 𝐶0 and 𝐶′

0
is the identity. With respect to the vector field 𝑋 + 𝜀𝑋0 for some
small 𝜀 > 0 the Poincaré-map between 𝐶0 and 𝐶′

0 sends 0 to some
𝜏0 > 0. The Poincaré-map between 𝐶′

0 and 𝐶′
1 sends 𝜏0 to some 𝜏1 > 0.

If 𝜀 was chosen sufficiently small, there is some 𝜆 > 0 such that the
Poincaré-map with respect to 𝑋 +𝜀𝑋0 −𝜆𝑋1 between 𝐶′

1 and 𝐶1 sends
𝜏1 back to 0, cf. Figure 4.1.

The vector field 𝑌 ≔ 𝜀𝑋0−𝜆𝑋1 vanishes outside 𝑈 and the trajectory
through 0 ∈ 𝐶0 passes through 0 ∈ 𝐶1. Thus, the points 𝑔0 and 𝑔1 lie
on the same trajectory with respect to 𝑋 + 𝑌 and we may take the
segment of this trajectory between 𝑔0 and 𝑔1 to be the curve 𝑐 after a
reparameterisation. Choosing 𝜀 small yields a small 𝜆 and we can find
𝑌 arbitrarily 𝒞∞-close to the zero section.

Observation 4.5. Pick a bump function 𝜑 on [−1, 1] that takes the
value 1 on {𝑧0} and vanishes outside a small neighbourhood. The
1-forms 𝛽𝑠0𝑧 + 𝑡 ⋅ 𝜄𝑌Ω + 𝑢𝑠0𝑧 d𝑢 are contact forms for all 𝑡 ∈ [0, 1] and
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III. Parametric elimination

𝐶1

𝐶2

Figure 4.1.: Constructing a smooth Legendrian arc near a hyperbolic singular
point

𝑧 ∈ [−1, 1], provided that 𝑌 was chosen sufficiently close to zero. Hence
the Gray stability theorem, cf. Proposition I.5.1, yields a contact isotopy
of 𝜉𝑠0 such that the deformed contact structure induces the vector field
𝑋 + 𝑌 on {𝑧0} × 𝑆2. Consequently, the curve 𝑐 is a Legendrian for the
deformed contact structure.

Lemma 4.6. Let 𝑞 be a positive non-degenerate elliptic singular point
of 𝑋 and 𝛾0 and 𝛾1 two trajectories of 𝑋 that emanate at 𝑋. Let 𝑈
be an open neighbourhood of 𝑞 and 𝑔0 ∈ 𝛾0 ∖ 𝑈 and 𝑔1 ∈ 𝛾1 ∖ 𝑈 be two
points on the two trajectories. Then there is a contact isotopy of 𝜉𝑠0

such that the deformed contact structure admits a Legendrian curve 𝑐
with 𝑐(0) = 𝑔0 and 𝑐(1) = 𝑔1.

This is [Lemma 4.6.23 Gei08]. It is proved by finding a closed disc
around 𝑞 with div(𝑋) > 0, constructing a characteristic foliation on it
that also has positive divergence and has trajectories that join 𝛾0 and
𝛾1, and then applying Gray stability.

Lemma 4.7. Let 𝑁 be a positive hyperbolic neighbourhood for 𝑋
and 𝛾0 and 𝛾1 two trajectories of 𝑋 with 𝛼- or 𝜔-limit in 𝑁. Let
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4. Graph of singular points

further 𝑔0 ∈ 𝛾0 ∖𝑁 and 𝑔1 ∈ 𝛾1 ∖𝑁 be two points on the two trajectories.
Then there is a contact isotopy of 𝜉𝑠0 such that the deformed contact
structure admits a Legendrian curve 𝑐 with 𝑐(0) = 𝑔0 and 𝑐(1) = 𝑔1.

Proof. Let us first consider the case that the 𝛼- or 𝜔-limits 𝑞0 = (𝑥0, 0)
and 𝑞1 = (𝑥1, 0) in 𝑁 of the trajectories 𝛾0 and 𝛾1, respectively, are
different points.

Then for ̄𝑥 ≔ (𝑥0 + 𝑥1)/2 the point ( ̄𝑥, 0) ∈ [−1, 1] × [−1, 1] ≅ 𝑁
lies between 𝑞0 and 𝑞1. Pick a bump function 𝜑(𝑥, 𝑦) that is supported
inside 𝑁 and takes the value 1 on the segment 𝑎 between 𝑞0 and 𝑞1.
Define 𝑓∶ [−1, 1] × [−1, 1] → ℝ by (𝑥, 𝑦) ↦ 𝜀𝜑(𝑥, 𝑦)( ̄𝑥 − 𝑥) for some
𝜀 > 0 By Sard’s Theorem there is an arbitrary small 𝜀 > 0 such that
for 𝑋 + 𝑓𝜕𝑥 all singular points on the segment between 𝑞0 and 𝑞1 are
non-degenerate. The vector field 𝑋 + 𝑓𝜕𝑥 also has no singular points
outside {𝑦 = 0}. For 𝜀 > 0 sufficiently small we find a contact isotopy
of 𝜉𝑠 such that the perturbed contact structure induces the vector field
𝑋 + 𝑓𝜕𝑥 on {𝑧0} × 𝑆2.

The trajectories through 𝑔0 and 𝑔1 will tend to non-degenerate sin-
gular points 𝑞′

0 and 𝑞′
1 in the segment 𝑎. The set {𝑦 = 0} is parallel

to 𝑋 + 𝑓𝜕𝑥 and hence a Legendrian curve. Applying Lemma 4.4 and
Lemma 4.6 to 𝑞′

0 and 𝑞′
1 and the segment of {𝑦 = 0} between them we

find further perturbations of 𝜉𝑠 such that there is a single Legendrian
curve that runs from 𝑔0 close to 𝑞′

0, along {𝑦 = 0}, close to 𝑞′
1, and to

𝑔1.
In case 𝑞0 = ( ̄𝑥, 0) = 𝑞1 apply the same deformations, taking care to

pick 𝜀 > 0 sufficiently small such that 𝑞′
0 and 𝑞′

1, which will not be the
same point, are still contained in 𝑁.

Lemma 4.8. Let 𝑁 be a positive elliptic neighbourhood for 𝑋 and 𝛾0
and 𝛾1 two trajectories of 𝑋 that emanate at points in 𝑋. Let further
𝑔0 ∈ 𝛾0 ∖ 𝑁 and 𝑔1 ∈ 𝛾1 ∖ 𝑁 be two points on the two trajectories.
Then there is a contact isotopy of 𝜉𝑠0 such that the deformed contact
structure admits a Legendrian curve 𝑐 with 𝑐(0) = 𝑔0 and 𝑐(1) = 𝑔1.

Proof. There are perturbations of 𝑋 that are arbitrarily 𝒞∞-small and
supported inside 𝑁 such that all singular points in 𝑁 are non-degenerate.
They still are all positive.
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III. Parametric elimination

The graph 𝐺 of singular points inside 𝑁, i.e. the set comprising the
singular points and the unstable separatrices of the hyperbolic singular
points, is connected: We find a closed set 𝑆+ that contains 𝐺 such
that 𝜕𝑆+ is transverse to 𝑋, cf. Lemma II.3.5. All trajectories through
points in 𝜕𝑆+ pass through 𝜕𝑁 in positive time and all trajectories
through points in 𝜕𝑁 emanate at singular points in 𝑁 and hence pass
through 𝜕𝑆+. The Poincaré map from 𝜕𝑆+ to 𝜕𝑁 is hence defined
everywhere and surjective, hence 𝜕𝑁 being connected implies that 𝜕𝑆+

is connected. Consequently, the graph 𝐺 was connected.
Pick a path in 𝐺 between the points 𝛼(𝛾0) ≕ 𝑞0 and 𝛼(𝛾1). Iteratively

applying Lemma 4.4 and Lemma 4.6 gives us a Legendrian curve 𝑐
between 𝑔0 and 𝑔1.

Lemma 4.9. Let 𝑁 be a positive half-hyperbolic neighbourhood for 𝑋
and 𝛾0 and 𝛾1 two trajectories of 𝑋 with 𝛼- or 𝜔-limit in 𝑁. Let
further 𝑔0 ∈ 𝛾0 ∖𝑁 and 𝑔1 ∈ 𝛾1 ∖𝑁 be two points on the two trajectories.
Then there is a contact isotopy of 𝜉𝑠0 such that the deformed contact
structure admits a Legendrian curve 𝑐 with 𝑐(0) = 𝑔0 and 𝑐(1) = 𝑔1.

Proof. Depending on whether 𝛼(𝛾0) and 𝛼(𝛾1) lie in the hyperbolic part
{0, 1} × [−1, 1] or in its elliptic complement, applying either perturb-
ations of Lemma 4.7, or Lemma 4.8, or both again yields a contact
structure 𝜉𝑠 for which there is a Legendrian 𝑐 that only contains singular
points of 𝑁 as required.

The five lemmata imply that if the graph 𝐺𝑠0𝑧0 has a cycle Δ, then
there is an isotopy of 𝜉𝑠0 to a contact structure that admits a closed
Legendrian curve. It will in general contain singular points of the
characteristic foliation.

4.2. Thurston–Bennequin invariant and singular points

A closed Legendrian curve 𝑐 in an oriented contact 3-manifold (𝑆3, 𝜉)
has a tubular neighbourhood that is (orientation preserving) con-
tactomorphic to (𝑆1 × ℝ2, ker(cos 𝜗 d𝑥 − sin 𝜗 d𝑦)), cf. [Gei08, Ex-
ample 2.5.10], and is called standard neighbourhood. Let us use the co-
ordinate 𝜗 to parameterise the Legendrian curve 𝑐. Let Σ ≅ {𝑧0}×𝑆2 ⊂
𝑆3 be a surface that contains 𝑐.

84



4. Graph of singular points

As described in [Jän12, Section IV.3] consider a tubular neighbour-
hood of the curve 𝑐 in Σ that is embedded into the standard neigh-
bourhood of 𝑐. For each point of the Legendrian 𝑐 we obtain an angle

̌𝜙 ∶ [0, 2𝜋] → 𝑆1 that the contact planes form with the tangent space
of Σ with respect to the coordinates of the standard neighbourhood and
define a lift 𝜙∶ [0, 2𝜋] → 𝑆

1
≅ ℝ.1 Along the curve 𝑐 a vector field 𝑋

on Σ that defines the characteristic foliation is a positive multiple of
the vector field − sin(𝜙(𝜗)) 𝜕𝜗 where 𝜕𝜗 = ̇𝑐.

In singular points 𝑐(𝜗) of 𝑋, the tangent space of Σ and the contact
plane coincide, so they enclose an angle of 0 or 𝜋. In these points,
the lift 𝜙 is an integral multiple of 𝜋, i.e. 𝜙(𝜗) = 𝑘𝜋 for some 𝑘 ∈ ℤ.
The parity of 𝑘 indicates the sign of the singular point, it is even in
positive singular points and odd in negative ones. Combining this and
the sign of − sin(𝜙(𝜗)) 𝜕𝜗 we can read off the level sets of 𝑘𝜋 of 𝜙 from
the vector field 𝑋 along 𝑐.

The difference 𝜙(2𝜋) − 𝜙(0) is an integral multiple of 2𝜋 and the
multiplicity counts the twisting of the contact framing relative to the
surface framing along 𝑐. It does not depend on the orientation of 𝑐. In
a simply connected contact manifold this multiplicity does not depend
on the Seifert-surface of 𝑐 and it is called the Thurston–Bennequin
invariant tb(𝑐) of 𝑐, cf. [Gei08, Section 3.5.1].

For homologically trivial closed Legendrian curves in tight contact
manifolds, the Bennequin inequality, cf. [Gei08, Section 4.6.5], implies

tb(𝑐) ≤ −𝜒(Σ𝑐),

where 𝜒(Σ𝑐) is the Euler characteristic of a Seifert surface Σ𝑐 of 𝑐.
In our case the contact structure 𝜉 is isotopic to a tight contact

structure, hence itself tight, Σ is a sphere and the embedded Legen-
drian 𝑐 consequently an unknot and we have a disc as Seifert surface.
Consequently, the inequality implies

tb(𝑐) ≤ −1 .

If 𝑐 contains no singular points, then tb(𝑐) = 0, contradicting the
inequality. If all singular points of 𝑐 are of the same sign, then 𝜙

1This is the negative of the angle considered in [Jän12, Section IV.3].
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III. Parametric elimination

only ever intersects the same level set 𝑘𝜋 and hence again 2𝜋 tb(𝑐) =
𝜙(2𝜋) − 𝜙(0) = 0. Consequently, 𝑐 must contain both positive and
negative singular points.

As 𝑐 arose out of a cycle Δ of a graph 𝐺𝑠
𝑧, all its trajectories between

positive and negative singular points emerge at negative points and
tend to positive ones. Assume that 𝑐(𝜗0) and 𝑐(𝜗1) are adjacent
singular points on 𝑐, 𝜗0 < 𝜗1, and 𝑐(𝜗0) is a negative singular point,
i.e. 𝜙(𝜗) = (2𝑘 + 1)𝜋. Then for any 𝜗 ∈ (𝜗0, 𝜗1) the vector field 𝑋
in 𝑐(𝜗) points in the direction of ̇𝑐(𝜗) and hence − sin(𝜙(𝜗)) should
be positive, i.e. 𝜙(𝜗) > (2𝑘 + 1)𝜋. Thus 𝜙(𝜗1) = (2𝑘 + 2)𝜋. In an
analogous fashion, we see that if 𝑐(𝜗0) was positive and 𝑐(𝜗1) negative,
then again 𝜙(𝜗1) = 𝜙(𝜗0) + 𝜋.

This implies that any closed Legendrian curve 𝑐 that arose from a
cycle Δ has tb(𝑐) > 0, which is impossible.

Summing up, this shows the following statement.

Theorem 4.10. Every graph 𝐺𝑠
𝑧 does not contain cycles, it is hence a

forest.

We will see that leaves of this graphs comprise neighbourhoods that
can be used in an elimination deformation.

5. Strategy for elimination

Let us now observe how to find a sequence of elimination deformations
that in the end leaves us with a family of contact structures with respect
to which all spheres {𝑧} × 𝑆2 are convex.

We start with a family of vector fields 𝑋𝑠
𝑧 on 𝑆2 for which we can

assume, cf. Section 1, that each has only finitely many singular points.
Choose a finite number of parametric elliptic and (half-)hyperbolic
neighbourhoods 𝑁𝑖, 𝑖 = 1, … , 𝐾, on 𝑆2, each defined on an open set
𝑈𝑖 ⊂ 𝑆𝑘 × [−1, 1] that each contain at most one singular point of each
𝑋𝑠

𝑧 and together cover all singular points of the vector fields 𝑋𝑠
𝑧 , cf.

Section II.4.2.
This collection is simple, cf. Definition 3.1, so let 𝑑∶ 𝑆𝑘 × [−1, 1] →

ℕ0 be the complexity of the vector fields 𝑋𝑠
𝑧 together with this collection
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of neighbourhoods that we defined in Section 3. It is upper semi-
continuous and hence attains its maximum 𝑑 on the compact parameter
space and its pre-image 𝒦 is closed in 𝑆𝑘 × [−1, 1] and thus compact.

Lemma 5.1. If 𝑑 = 2, then every vector field 𝑋𝑠
𝑧 belongs to a convex

surface.

Proof. Every vector field 𝑋𝑠
𝑧 on 𝑆2 has at least two singular points. As

there are no closed trajectories, there must be a positive and a negative
singular point and these are contained in different neighbourhoods.
Consequently, there are exactly two neighbourhoods, one positive and
one negative. If one of these was (half-)hyperbolic, one of its separatrices
has to connect back to the same neighbourhood, creating a cycle, but
a cycle cannot exist.

Hence for each vector field there are exactly two elliptic neighbour-
hoods that contain all singular points. In particular, there are no
retrograde connections and {𝑧} × 𝑆2 is convex with respect to 𝜉𝑠.

Let us assume 𝑑 > 2.

5.1. Step 1: Find possible deformations

Consider a parameter (𝑠0, 𝑧0) ∈ 𝒦. There is a collection of neighbour-
hoods 𝑁𝑗, 𝑗 ∈ 𝐽 ⊂ {1, … , 𝐾}, such that each singular point of 𝑋𝑠0𝑧0 is
contained in exactly one 𝑁𝑗. To the collection associate the graph 𝐺𝑠0𝑧0.

Choose a collection 𝐽 ⊂ {1, … , 𝐾} with the fewest neighbourhoods
possible, i.e. with |𝐽| minimal. As the collection is simple, this is
equivalent to choosing the largest neighbourhoods, i.e. those that contain
the most singular points of 𝑋𝑠0𝑧0 .

Let us first consider the case that the graph 𝐺𝑠0𝑧0 has edges. As it is
a forest, there are leaves, i.e. vertices of order 1.

A leaf cannot be a hyperbolic neighbourhood, as each of these has
two edges. It can be a half-hyperbolic neighbourhood. It can also
be an elliptic neighbourhood that is connected to a (half-)hyperbolic
neighbourhood via a separatrix.

Let us consider these cases separately. As before, we will restrict
ourselves to the case of positive neighbourhoods, the negative ones can
be treated analogously with signs reversed.
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III. Parametric elimination

Elliptic connected to a hyperbolic Let 𝐸 be a positive elliptic
neighbourhood that is a leaf and is connected to a hyperbolic neigh-
bourhood 𝐻 whose other separatrix is not connected to another elliptic
point that is a leaf. We only consider stable separatrices of positive
neighbourhoods, so 𝐻 is a positive neighbourhood.

Denote the open set on which 𝐸 is defined by 𝑈𝐸 and the domain
of 𝐻 by 𝑈𝐻. There is a neighbourhood 𝑈 ⊂ 𝑈𝐸 ∩ 𝑈𝐻 of (𝑠0, 𝑧0) such
that both 𝐸 and 𝐻 are defined on 𝑈 and are connected by a separatrix
𝛾 of 𝐻. By Section 2 there is a smaller open neighbourhood, let us
call it 𝑈 again, such that we can apply an elimination deformation
inside any product 𝐷0 × 𝐼0 ⊂ 𝑈 where 𝐷0 is the closure of an open
neighbourhood of 𝑠0 and 𝐼0 the closure of an open neighbourhood of
𝑧0. It eliminates all singular points of 𝑋𝑠

𝑧 inside a neighbourhood 𝑅
of the singular points of 𝐸 ∪ 𝐻 for all (𝑠, 𝑧) that are contained in the
closures 𝐷1 × 𝐼1 of a smaller open disc around 𝑠0 and a smaller open
interval around 𝑧0.

After the deformation, the neighbourhoods 𝐸 and 𝐻 will not be
elliptic and hyperbolic neighbourhoods, respectively, anymore. Hence
we construct a modified collection of neighbourhoods for the deformed
vector fields.

Lemma 5.2. We can modify our collection of neighbourhoods to obtain
a simple collection of neighbourhoods for the vector fields 𝑋𝑠

𝑧 after the
elimination.

Proof. Let us first consider those neighbourhoods 𝑁𝑖 that are no longer
elliptic or (half-)hyperbolic neighbourhoods for the vector fields 𝑋𝑠

𝑧
after the elimination. These are the neighbourhoods 𝐸 and 𝐻, but also
all other neighbourhoods that contain singular points of 𝐸 ∪ 𝐻, but
not all of them.

Case 1: In the most basic case there are, for all (𝑠, 𝑧) in the interior
𝑈𝐼 ≔ int(𝐷0 × 𝐼0), no other neighbourhoods that contain singular
points of 𝐸𝑠

𝑧 and 𝐻𝑠
𝑧 . We can find a half-hyperbolic neighbourhood

𝑁 that is defined for each (𝑠, 𝑧) in the interior int(𝐷0 × 𝐼0) ≕ 𝑈𝐼 and
that contains the rectangle 𝑅 in which the elimination takes place, cf.
Observation 2.7. As there are no singular points in 𝑁 for (𝑠, 𝑧) ∈ 𝐷1×𝐼1,
we may restrict the domain 𝑈𝐼 of 𝑁 to 𝑈𝑁 ≔ 𝑈𝐼 ∖ (𝐷1 × 𝐼1).
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There is a neighbourhood 𝑈𝜕 of the boundary of 𝐷0 × 𝐼0 inside
𝐷0 × 𝐼0 such that the sets 𝐸𝑠

𝑧 and 𝐻𝑠
𝑧 are still elliptic and hyperbolic

neighbourhoods, respectively, for all (𝑠, 𝑧) ∈ 𝑈𝜕 after the elimination,
again Observation 2.7. Restrict the open sets 𝑈𝐸 and 𝑈𝐻 on which the
neighbourhoods 𝐸 and 𝐻, respectively, are defined by removing from
these sets the closure of an open ball 𝐵𝐼 that contains 𝐷1 × 𝐼1 and is
such that 𝜕𝐵𝐼 ⊂ 𝑈𝜕. Finally add the half-hyperbolic neighbourhood 𝑁
to the collection 𝑁𝑖 of neighbourhoods.

This is a collection of neighbourhoods for the vector fields 𝑋𝑠
𝑧 after

the elimination and it is simple if the collection was simple before.

𝐷1 × 𝐼1

𝐵𝐼 𝑈𝜕

Figure 5.1.: The relevant sets in the parameter space inside 𝐷0 × 𝐼0 to an
elimination deformation

Case 2: Consider the case that there is an additional neighbourhood
𝑁𝑖, defined on 𝑈𝑖, that contains a strict subset of singular points of
either 𝐸𝑠

𝑧 or 𝐻𝑠
𝑧 for all (𝑠, 𝑧) ∈ 𝑈𝐼 ∩ 𝑈𝑖. It suffices to restrict its domain.

We do not have to add an additional neighbourhood as all its singular
points after the elimination are already contained in 𝐸, 𝐻 or 𝑁.

Case 3: The next case to consider is that there is a neighbourhood
𝑁𝑖, defined on 𝑈𝑖 that contains all singular points of 𝐸𝑠

𝑧 and 𝐻𝑠
𝑧 for

all (𝑠, 𝑧) ∈ 𝑈𝐼 ∩ 𝑈𝑖. Notice that 𝑁𝑖 also contains the separatrix 𝛾 for
these (𝑠, 𝑧). Otherwise 𝛾 would be a separatrix of 𝑁𝑖 and form a cycle
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III. Parametric elimination

by connecting back to 𝑁𝑖, which cannot happen, cf. Section 4. Hence,
after eventually enlarging it along the flow lines of 𝑋𝑠

𝑧 we may assume
that 𝑁𝑖 contains the rectangle 𝑅. Consequently, 𝑁𝑖 is also an elliptic or
(half-)hyperbolic neighbourhood after the elimination without further
changes.

Notice that there can be no neighbourhoods as before that contain
only some singular points of 𝐸𝑠

𝑧 and some singular points of 𝐻𝑠
𝑧 as the

collection was assumed to be simple.
Case 4a: Assume that there is a neighbourhood 𝑁𝑖, defined on 𝑈𝑖,

that contains for every (𝑠, 𝑧) ∈ 𝑈𝐼 ∩ 𝑈𝑖 all singular points of 𝐸𝑠
𝑧 , not

those of 𝐻𝑠
𝑧 , and also other singular points.

We will see later, in Lemma 5.7, the we ensure that there is no
(half-)hyperbolic neighbourhood 𝑁𝑖 that contains all singular points 𝐸
but not those of 𝐻.

Hence 𝑁𝑖 is an elliptic neighbourhood. Restricting its domain may
result in some singular points not being contained in any neighbourhood.
If we add the half-hyperbolic neighbourhood 𝑁, then our collection
is no longer simple. Instead, we may construct a new neighbourhood
by joining 𝑁𝑖 and 𝐻𝑠

𝑧 along a neighbourhood of the separatrix to 𝛾 as
follows.

Consider, within 𝑈𝐻, an open set 𝑈𝑁𝛾 for which the trajectory 𝛾
emanates at singular points that are contained in 𝑁𝑖. (This is the
case for all 𝑈𝐼 and we may assume 𝑈𝐼 ⊂ 𝑈𝑁𝛾.) As we find collared
parametric embeddings to the neighbourhoods, we may construct a
new neighbourhood 𝑁 ′

𝑖 by adding to 𝑁𝑖 the neighbourhood 𝐻 together
with a neighbourhood of the separatrix 𝛾 by merging along the collars.
It is a half-hyperbolic neighbourhood defined on 𝑈𝑖 ∩ 𝑈𝑁𝛾. Add this
neighbourhood to our collection and restrict the domain of 𝑁𝑖 by
removing 𝐷0×𝐼0, the closure of 𝑈𝐼. We found sufficient neighbourhoods
for all (𝑠, 𝑧) ∈ 𝑈𝐼 ∩ 𝑈𝑖. As its complement, 𝑈𝐼 ∖ 𝑈𝑖, may be non-
empty, also add the neighbourhood 𝑁. This results in a collection of
neighbourhoods for the vector fields 𝑋𝑠

𝑧 after the elimination that is
again simple.

Case 4b: Assume that there is a neighbourhood 𝑁𝑗, defined on 𝑈𝑗,
that contains for every (𝑠, 𝑧) ∈ 𝑈𝐼 ∩ 𝑈𝑗 all singular points of 𝐻𝑠

𝑧 , not
those of 𝐸𝑠

𝑧 , and also other singular points. The neighbourhood 𝑁𝑗
is hyperbolic or half-hyperbolic. Then, analogue to the previous case,
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we construct a new neighbourhood 𝑁 ′
𝑗 . It will be a half-hyperbolic

neighbourhood if 𝑁𝑗 was hyperbolic and an elliptic neighbourhood if
𝑁𝑗 was half-hyperbolic.

Case 5: Assume there are an elliptic neighbourhood 𝑁𝑖 and a
(half-)hyperbolic neighbourhood 𝑁𝑗, defined on 𝑈𝑖 and 𝑈𝑗, such that
𝑁𝑖 contains the singular points of 𝐸, 𝑁𝑗 contains the singular points of
𝐻, and both of them also contain other singular points.

There is an open set 𝑈𝑁𝛾 on which 𝛾 tends to singular points that
are contained in 𝑁𝑗. Likewise, there is an open set 𝑈𝛾𝑁 on which 𝛾
is a separatrix of the (half-)hyperbolic neighbourhood 𝑁𝑗. As before,
construct new neighbourhoods 𝑁 ′

𝑖 and 𝑁 ′
𝑗 .

The make sure our collection stays simple, we construct a third new
neighbourhood where 𝛾 connects 𝑁𝑖 and 𝑁𝑗. There is an open set
𝑈𝑁𝛾𝑁 for which 𝛾 connects 𝑁𝑖 and 𝑁𝑗. Similar to the previous case,
we construct a new neighbourhood 𝑁 ′

𝑖𝑗 by merging 𝑁𝑖 and 𝑁𝑗 along a
neighbourhood of 𝛾, add it to the collection and restrict the domains
of both 𝑁𝑖 and 𝑁𝑗. We can define the neighbourhood 𝑁 ′

𝑖𝑗 on the open
set 𝑈𝑁𝛾𝑁 ∩ 𝑈𝐼.

Restrict the neighbourhoods 𝑁𝑖 and 𝑁𝑗 by removing 𝐷0 × 𝐼0 from
their domains of definition as before and add the neighbourhoods 𝑁 ′

𝑖 ,
𝑁 ′

𝑗 , and 𝑁 ′
𝑖𝑗 to the collection. Then this is a simple collection for the

vector fields 𝑋𝑠
𝑧 after the elimination.

Case 6: Assume that there are two elliptic neighbourhoods 𝑁𝑖1
and

𝑁𝑖2
that contain the singular points of 𝐸 and two (half-)hyperbolic

neighbourhoods 𝑁𝑗,1 and 𝑁𝑗,2 that contain the singular points of 𝐻.
Follow the construction from the previous case and construct new
neighbourhoods 𝑁 ′

𝑖,1, 𝑁 ′
𝑖,2, 𝑁 ′

𝑗,1, and 𝑁 ′
𝑗,2 as well as all possible ways

to merge these, 𝑁 ′
𝑖1,𝑗1

, 𝑁 ′
𝑖1,𝑗2

, …, and add them to the collection,
restricting the domains of the old neighbourhoods as before.

Case 7: Let there be a neighbourhood 𝑁𝑖, defined on 𝑈𝑖, that, for
different (𝑠, 𝑧) ∈ 𝑈𝐼 ∩ 𝑈𝑖, belongs to different cases. As the boundary
of 𝑁𝑖 is a parametric cross section and both 𝐸𝑠

𝑧 and 𝐻𝑠
𝑧 necessarily

contain singular points, the subsets of 𝑈𝑖 ∩ 𝑈𝑖 belonging to the different
cases are open. Hence we may treat 𝑁𝑖 as a finite number of sets,
each defined on a subset of 𝑈𝑖, and apply the constructions of the
appropriate case.

In the general case, there will be multiple sets 𝑈𝑖 that each belong
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to one of the cases mentioned above and we may iterate over them,
applying the constructions described above.

Lemma 5.3. The elimination homotopy does not increase the com-
plexity 𝑑 anywhere. Additionally, for any (𝑠, 𝑧) ∈ 𝐵𝐼 ∩ 𝒦 such that
in the collection of neighbourhoods before the elimination there is no
neighbourhood 𝑁𝑖, defined in (𝑠, 𝑧), that contains singular points of
both 𝐸𝑠

𝑧 and 𝐻𝑠
𝑧 , the elimination homotopy decreases the complexity 𝑑.

Proof. Denote the complexity valuation 𝑑 and the map ̌𝑑 before the
deformation by 𝑑𝑜𝑙𝑑 and ̌𝑑𝑜𝑙𝑑, respectively.

For (𝑠, 𝑧) outside 𝐷0 × 𝐼0 or in the boundary of 𝐷0 × 𝐼0 we not
change the vector fields 𝑋𝑠

𝑧 nor the collection of neighbourhoods, so
the complexity remains.

Let us first consider the case that (𝑠, 𝑧) is contained in the interior of
(𝐷0 × 𝐼0) ∖ 𝐵𝐼. The neighbourhoods 𝐸 and 𝐻 are defined in (𝑠, 𝑧) and
we did not change the collection of neighbourhoods except adding 𝑁.
Consequently, the minimal sum of the orders 𝑑𝑠

𝑧 over all neighbourhoods
that cover all singular points did not increase and ̌𝑑(𝑠, 𝑧) ≤ ̌𝑑𝑜𝑙𝑑(𝑠, 𝑧).
In fact, the order 𝑑𝑠

𝑧 of 𝑁 after the elimination is at least the sum of
those of 𝐸 and 𝐻, so ̌𝑑(𝑠, 𝑧) = ̌𝑑𝑜𝑙𝑑(𝑠, 𝑧).

Consider the case (𝑠, 𝑧) ∈ 𝐵𝐼. After the elimination there are no
neighbourhoods 𝑁𝑖 that contain a strict subset of the singular points
in the half-hyperbolic neighbourhood 𝑁. Consequently, the order 𝑑𝑠

𝑧
of 𝑁 after the elimination is 1 where 𝑁 is defined, i.e. outside 𝐷1 × 𝐼1.
Let 𝐽0 be a collection of neighbourhoods before the elimination such
that ∑𝑗∈𝐽0 𝑑𝑠

𝑧,𝑗 is minimal and such that ⋃𝑗∈𝐽0 𝑁𝑗 contain all singular
points of 𝑋𝑠

𝑧 .
If the singular points of 𝐸𝑠

𝑧 and 𝐻𝑠
𝑧 are contained in two different 𝑁𝑗0

and 𝑁𝑗1
, then the collection 𝐽1 that consists of 𝐽0 with 𝑁 but without

𝑁𝑗0
and 𝑁𝑗1

is a collection of the neighbourhoods after the elimination,
contains all singular points of 𝑋𝑠

𝑧 and has ∑𝑗∈𝐽1 𝑑𝑠
𝑧,𝑗 < ∑𝑗∈𝐽0 𝑑𝑠

𝑧,𝑗.
Hence ̌𝑑(𝑠, 𝑧) < ̌𝑑𝑜𝑙𝑑(𝑠, 𝑧).

If 𝐽0 contains a single neighbourhood 𝑁𝑗0
that contains the points of

both 𝐸𝑠
𝑧 and 𝐻𝑠

𝑧 then this neighbourhood is still defined in (𝑠, 𝑧) after
the elimination and hence 𝐽0 is also a collection of neighbourhoods
after the elimination and ̌𝑑(𝑠, 𝑧) ≤ ∑𝑗∈𝐽0 𝑑𝑠

𝑧,𝑗 = ̌𝑑𝑜𝑙𝑑(𝑠, 𝑧).
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We have seen that ̌𝑑 ≤ ̌𝑑𝑜𝑙𝑑 everywhere. This implies 𝑑 ≤ 𝑑𝑜𝑙𝑑. On
the complement of 𝒦, the map ̌𝑑 is strictly smaller than on 𝒦. Together
with the fact that ̌𝑑 < ̌𝑑𝑜𝑙𝑑 on an open set 𝑉 intersected with 𝒦 this
implies 𝑑 < 𝑑𝑜𝑙𝑑 on 𝑉 ∩ 𝒦.

In fact, what we showed is the following.

Corollary 5.4. The elimination homotopy does not increase the com-
plexity 𝑑 anywhere. Additionally, the elimination homotopy decreases
the complexity for any (𝑠, 𝑧) ∈ 𝐵𝐼 ∩ 𝒦 such that

• in the collection of neighbourhoods before the elimination there
is no neighbourhood 𝑁𝑖, defined in (𝑠, 𝑧), that contains singular
points of the half-hyperbolic neighbourhood 𝑁𝑠

𝑧
if either

1. there are neighbourhoods 𝑁𝑗, defined in (𝑠, 𝑧), that each contains
a strict subset of the singular points of 𝑁𝑠

𝑧 and that together
contain all singular points of 𝑁𝑠

𝑧 , or
2. if (𝑠, 𝑧) ∈ 𝐷1 × 𝐼1.

The first condition was satisfied by the neighbourhoods 𝐸𝑠
𝑧 and 𝐻𝑠

𝑧 .

Lemma 5.5. There is an open neighbourhood 𝑉 ⊂ 𝑆𝑘 × [−1, 1] of
(𝑠0, 𝑧0) such that the elimination homotopy decreases the complexity 𝑑
for every (𝑠, 𝑧) ∈ 𝑉 ∩ 𝒦.

Proof. Denote the complexity valuation 𝑑 and the map ̌𝑑 before the
deformation by 𝑑𝑜𝑙𝑑 and ̌𝑑𝑜𝑙𝑑, respectively.

We saw in the proof of Lemma 5.3 that in particular for (𝑠, 𝑧) ∈
𝐷1 × 𝐼1 the value of ̌𝑑 decreases if there is no neighbourhood 𝑁𝑖 that
is defined in (𝑠, 𝑧) and covers all singular points of both 𝐸𝑠

𝑧 and 𝐻𝑠
𝑧 .

If there are such neighbourhoods 𝑁𝑖1
, … , 𝑁𝑖𝑚

such that (𝑠0, 𝑧0) ∉ 𝑈𝑖𝑗

for all 𝑗 = 1, … , 𝑚 then 𝑉 ′ ≔ 𝐵𝐼 ∖∪𝑚
𝑗=1𝑈𝑖𝑗

is open and contains (𝑠0, 𝑧0).
Let us assume (𝑠0, 𝑧0) ∈ 𝑈𝑖𝑗

for some 𝑗. By construction of the 𝑑𝑠
𝑧

there is an open neighbourhood 𝑊 of (𝑠0, 𝑧0) such that the order 𝑑𝑠
𝑧 of

𝑁𝑖𝑗
is at least 2 since both 𝐸𝑠

𝑧 and 𝐻𝑠
𝑧 exist on 𝑊 and they contain strict

subsets of singular points. After the elimination, this count decreases
in 𝑈𝐼 ∩ 𝑊.

Take 𝑉 to be an open ball in the open set 𝑉 ′ from above intersected
with all finitely many such neighbourhoods 𝑊.
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III. Parametric elimination

The restrictions given in terms of neighbourhoods that cover all
singular points may seem worse than it actually is. Those parameter
sets that are excluded here are those, where we already collected
singular points into one neighbourhood with reduced order. Those
bigger neighbourhoods will be dealt with as whole neighbourhoods in a
further step.

We will want to cover all of 𝒦 with these open sets. Notice that the
fact that 𝐸 is a leaf for 𝑋𝑠0𝑧0 does not mean it is a leaf for vector fields
𝑋𝑠

𝑧 nearby. Problems could arise if for any parameter (𝑠, 𝑧) we tried to
eliminate the singular points of 𝐸 along two different separatrices that
connect to two different hyperbolic neighbourhoods.

We can prevent this if we chose the neighbourhoods 𝐷0 × 𝐼0 in the
parameter space sufficient small. Endow the parameter space 𝑆𝑘 ×
[−1, 1] with an arbitrary metric. As we constructed the neighbourhoods
at the beginning of this section we can choose the domains 𝑈𝑖 of the
(half-)hyperbolic neighbourhoods 𝑁𝑖 sufficiently small to ensure that
for each parameter (𝑠0, 𝑧0) that lies in the closure of 𝑈𝑖 no elliptic
neighbourhood 𝐸 that intersects 𝑁𝑖 is a leaf with respect to any other
separatrix, i.e. one that is not contained in 𝑁𝑖 for (𝑠, 𝑧) close to (𝑠0, 𝑧0).
We will preserve this property if we choose 𝐷0 × 𝐼0 sufficiently small
as follows.

Construction 5.6. The sets 𝑈𝐸 and 𝑈𝐻 on which the sets 𝐸 and 𝐻 are
defined is open, as is the set 𝑈𝛾 of parameters such that the trajectory
𝛾 of 𝐻 with respect to 𝑋𝑠

𝑧 , (𝑠, 𝑧) ∈ 𝑈𝛾, emanates at a point in 𝐸.
Consequently, there is some 𝛿 > 0 such that the open ball 𝐵𝛿(𝑠0, 𝑧0) of
radius 𝛿 around (𝑠0, 𝑧0) in 𝑆𝑘 × [−1, 1] is contained in 𝑈𝐸 ∩ 𝑈𝛾 ∩ 𝑈𝐻.

Denote by 𝑁𝑗 all (finitely many) (half-)hyperbolic neighbourhoods
that intersect 𝐸 for some parameters except those that also intersect
𝐻. These are defined on open sets 𝑈𝑗 and (𝑠0, 𝑧0) ∉ 𝑈𝑗 for all 𝑗. Hence
𝑈 ≔ 𝑆𝑘 × [−1, 1] ∖ ⋃𝑗 𝑈𝑗 is open and contains (𝑠0, 𝑧0).

Choose 𝐷0 × 𝐼0 inside 𝐵𝛿/3(𝑠0, 𝑧0) ∩ 𝑈.

Half-hyperbolic Let 𝑁 be a half-hyperbolic neighbourhood that is
a leaf for 𝐺𝑠0𝑧0. There is a neighbourhood 𝑈 ⊂ 𝑆𝑘 × [−1, 1] of (𝑠0, 𝑧0)
such that 𝑁 is a half-hyperbolic neighbourhood for all (𝑠, 𝑧) ∈ 𝑈.
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5. Strategy for elimination

To the neighbourhood 𝑁 we may, just as in the previous case, apply
the elimination deformation in a neighbourhood of (𝑠0, 𝑧0) with the
following changes: We do not need to introduce new neighbourhoods
and there is no need to find a radius-𝛿/3 disc.

Corollary 5.4 implies again that the complexity does not increase.
On a subset of 𝐷1 × 𝐼1 we find again, cf. Lemma 5.5, an open set 𝑉
such that the complexity decreases on 𝑉 ∩ 𝒦 as in the previous case.

Elliptic connected to a hyperbolic connected to an elliptic Let
𝐸1 be a positive elliptic neighbourhood that is a leaf and is connected
to a (positive) hyperbolic neighbourhood 𝐻 whose other separatrix is
connected to an elliptic neighbourhood 𝐸2 that is another leaf.

There is an open ball 𝐵𝛿(𝑠0, 𝑧0) of radius 𝛿 around (𝑠0, 𝑧0) such that
this situation persists for all (𝑠, 𝑧) in this ball. Let 𝑈 be an open set
such that there are no half-hyperbolic neighbourhoods that contain the
singular points of 𝐸1 or 𝐸2 and not those of 𝐻, cf. Construction 5.6,
such that 𝑈 is also contained in the open ball of radius 𝛿/3 around
(𝑠0, 𝑧0).

Then we find, similar to the construction in Section 2, a disc shaped
neighbourhood 𝑁 that contains all singular points of 𝐸1, 𝐻 and 𝐸2
that is defined on a neighbourhood 𝑈.

We want to replace the neighbourhoods 𝐸1, 𝐻, and 𝐸2 by 𝑁 on 𝑈.
Using a construction analogous to Lemma 5.2 produces a collection of
neighbourhoods that is simple and contains 𝑁.

Analogous to Lemma 5.3 and Lemma 5.5 we see that this decreases
the complexity for those points in 𝑈 for which there is no neighbourhood
𝑁𝑖 that contains all singular points of 𝐸1, 𝐻 and 𝐸2.

Elliptic connected to half-hyperbolic Let 𝐸 be a positive elliptic
neighbourhood that is a leaf and is connected to a half-hyperbolic
neighbourhood 𝐻 via its trajectory 𝛾.

A neighbourhood of 𝐸, 𝛾 and 𝐻 is an elliptic neighbourhood and we
can treat this case in the same way as the previous one.

There are no edges If the graph 𝐺𝑠0𝑧0 has no edges, then all neigh-
bourhoods are elliptic. Consider a positive elliptic neighbourhood 𝐸+
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III. Parametric elimination

that is a disc and a trajectory through a point 𝑞 ∈ 𝜕𝐸+. It tends to a
singular point that lies in a negative elliptic neighbourhood 𝐸−

𝑞 .
The same is true for the trajectory through any other point 𝑝 ∈ 𝜕𝐸+.

As the Poincaré map between 𝜕𝐸+ and 𝜕𝐸− is defined on open sets
and is a local diffeomorphism, all trajectories tend to the same negative
elliptic neighbourhood 𝐸−.

As these sets are subsets of 𝑆2, there consequently cannot be more
neighbourhoods that are not contained in either 𝐸+ or 𝐸−. Hence

̌𝑑(𝑠0, 𝑧0) = 2.
There is an open neighbourhood of (𝑠0, 𝑧0) such that both 𝐸+ and

𝐸− are defined. For a potentially smaller open neighbourhood 𝑈 there
are no singular points of any 𝑋𝑠

𝑧 , (𝑠, 𝑧) ∈ 𝑈, outside 𝐸+ and 𝐸−. Hence
̌𝑑(𝑠, 𝑧) = 2 on 𝑈 and consequently 𝑑(𝑠0, 𝑧0) = 2.

5.2. Step 2: Perform deformations

To every point (𝑠, 𝑧) of the set 𝐾 ⊂ 𝑆𝑘 × [−1, 1] on which 𝑑 attains its
maximum we find, as described in the first step, operations that are
modifications of our collection of neighbourhoods and isotopies of the
contact structures 𝜉𝑠 that decrease the complexity on 𝑉(𝑠,𝑧) ∩ 𝒦 for
some open set 𝑉(𝑠,𝑧) in 𝑆𝑘 × [−1, 1].

The sets 𝑉(𝑠,𝑧) cover the compact set 𝒦. Pick a finite cover of 𝐾,
i.e. a finite number of points (𝑠𝑖, 𝑧𝑖), 𝑖 = 1, … , 𝑛, such that the 𝑉(𝑠𝑖,𝑧𝑖)
cover 𝐾.

To each point (𝑠𝑖, 𝑧𝑖) we associated a modification. We will perform
these one by one in the order given by 𝑖.

Let us observe first that Construction 5.6 indeed suffices to guarantee
that two overlapping modifications operate along the same separatrices.

Lemma 5.7. Let 𝐸 be a leaf of 𝐺𝑠0𝑧0 that is an elliptic neighbourhood
and connected to a (half-)hyperbolic neighbourhood 𝐻, and 𝐷0 × 𝐼0
the closure of an open neighbourhood of (𝑠0, 𝑧0) as in Step 1. If for
any (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0 there is a (half-)hyperbolic neighbourhood 𝑁 that
contains the singular points of 𝐸, then it will also contain the singular
points of 𝐻.
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5. Strategy for elimination

Proof. Assume that there exists a (half-)hyperbolic neighbourhood 𝑁,
defined in (𝑠, 𝑧) ∈ 𝐷0 × 𝐼0, that contains the singular points of 𝐸 but
not those of 𝐻.

By Construction 5.6 we chose 𝐷0 × 𝐼0 disjoint from any (half-)
hyperbolic neighbourhoods that already existed before performing any
modifications of this iteration by Construction 5.6.

We do not create hyperbolic neighbourhoods. Hence there is a
modification, around the point (𝑠1, 𝑧1) ∈ 𝒦, say, that produced the
half-hyperbolic neighbourhood 𝑁. Consider the vector field 𝑋𝑠

𝑧 before
any modifications of this step. Denote, with respect to the vector field
𝑋𝑠

𝑧 , the separatrix of 𝐻 that connects to 𝐸 by 𝛾0 and the separatrix
that is used in the modification to (𝑠1, 𝑧1) by 𝛾1.

The elliptic neighbourhood 𝐸 is a leaf for both (𝑠0, 𝑧0) and (𝑠1, 𝑧1).
There are radii 𝛿0 > 0 and 𝛿1 > 0 such that 𝛾0 connects to 𝐸 for all
parameters in 𝐵𝛿0

(𝑠0, 𝑧0) and such that 𝛾1 connects to 𝐸 for all para-
meters in 𝐵𝛿1

(𝑠1, 𝑧1). In particular, the distance of (𝑠0, 𝑧0) and (𝑠1, 𝑧1)
is larger than min{𝛿0, 𝛿1}. On the other hand, (𝑠, 𝑧) ∈ 𝐵𝛿0/3(𝑠0, 𝑧0)
and that 𝐻 is defined in (𝑠, 𝑧) implies (𝑠, 𝑧) ∈ 𝐵𝛿1/3(𝑠1, 𝑧1) which is a
contradiction by the triangle inequality.

This implies that whenever two modifications overlap, they are modi-
fications along the same separatrix or one modification completely
contains the other.

Consider two modifications that overlap both in the parameter space
and on 𝑆2. If one modification does not deform the contact structures
𝜉𝑠, then we could apply them both without restrictions. So assume that
both modifications deform the vector fields 𝑋𝑠

𝑧 , i.e. are both elimination
deformations on the rectangles 𝑅1 and 𝑅2, say, defined on the closed
sets 𝐷1

0 × 𝐼1
0 and 𝐷2

0 × 𝐼2
0 , respectively, in the parameter space. Assume

that we want to apply the deformation on 𝑅1 before the one on 𝑅2.

Same trajectory Consider the case that these are eliminations to
the elliptic and hyperbolic neighbourhoods 𝐸1 and 𝐻1, and 𝐸2 and
𝐻2, respectively, and that neither does 𝐸1 nor 𝐻1 contain all singular
points of 𝐸2 ∩ 𝐻2 nor does 𝐸2 or 𝐻2 contain all singular points of
𝐸1 ∪ 𝐻1.
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III. Parametric elimination

Case 1: Assume that on all (𝐷1
0×𝐼1

0 )∩(𝐷2
0×𝐼2

0 ) the neighbourhoods
𝐸1 and 𝐸2 contain the same singular points. Using the flow of the
vector fields near the sides of the rectangle 𝑅1 that are cross sections we
archive that both {−4}×[−2, 2] and [−4, 1]×{±2} ⊂ 𝑅1 are contained
in 𝑅2. Applying the elimination to 𝑅1 will then preserve the properties
(N2), (N3), and (N4), cf. Section 2, on [−4, −1] × [−2, 2] ⊂ 𝑅2 needed
for the elimination there.

The hyperbolic neighbourhoods are connected to the elliptic ones
by the same separatrix. Wherever the two hyperbolic neighbourhoods
overlap, their 𝜕𝑥-coordinates on {𝑦 = 0} are multiples of each other
and the 𝜕𝑦-coordinate is orthogonal with respect to Ω, cf. Section II.4.2.
Hence we can guarantee in any case, even if the singular points of 𝐻2 are
a strict subset of the singular points of 𝐻1, that the elimination on 𝑅1

preserves the conditions (N1), (N2), (N3), and (N4) on [−1, 3]×[−2, 2] ⊂
𝑅2.

Case 2: If the singular points of 𝐸1 are a strict subset of those of
𝐸2, then [−4, −1]×[−2, 2] ⊂ 𝑅1 is contained in 𝑅2 and we can proceed
as in the previous case.

Case 3: Consider the case that the singular points of 𝐸2 are a strict
subset of those of 𝐸1. Arrange as before that [−4, −1] × [−2, 2] ⊂ 𝑅2 is
contained in 𝑅1. If the singular points in 𝐻2 are not a subset of those
in 𝐻1, cf. Figure 5.2, then then performing the elimination on 𝑅1 will
destroy the properties (N2), (N3), and (N4) of 𝑅2 on [−4, −1] × [−2, 2].
We can still perform the elimination on 𝑅2, cf. Observation 2.9. On
(𝐷1

1 ×𝐼1
1 )∩(𝐷2

0 ×𝐼2
0 ) the part [−4, −1]× [−2, 2] of 𝑅2 does not contain

any singular points after the elimination on 𝑅1 and 𝑅2 is a half-
hyperbolic rectangle, cf. Figure 5.3. The partial elimination will hence
still eliminate all singular points of 𝑅2 on (𝐷1

1 × 𝐼1
1 ) ∩ (𝐷2

1 × 𝐼2
1 ).

If the singular points in 𝐻2 are a subset of those in 𝐻1, then we can
arrange 𝑅2 ⊂ 𝑅1. The singular points of 𝑅2 are already eliminated by
the deformation on 𝑅1. Hence we may restrict the deformation on 𝑅2.
On the set 𝑈1

𝜕 the elimination on 𝑅1 preserves the property that 𝐸1

and 𝐻1 are elliptic and hyperbolic neighbourhoods. On a potentially
smaller neighbourhood 𝑈 ⊂ 𝐷1

0 × 𝐼1
0 of the boundary of 𝐷1

0 × 𝐼1
0 , the

sets 𝐸2 and 𝐻2 will still be elliptic and hyperbolic neighbourhoods,
respectively, and the trajectory of 𝐻2 will still connect to 𝐸2. Hence
restrict the deformation on 𝑅2 to (𝐷2

0 × 𝐼2
0 ) ∖ 𝑈 by choosing the bump
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𝐸1

𝐸2

𝐻2
𝐻1

𝑅1

𝑅2

Figure 5.2.: Overlapping deformations on different neighbourhoods along the
same trajectory

𝑎
𝐸 𝐻

𝐹

𝑅1

Figure 5.3.: The rectangle 𝑅2 after the first elimination in the situation of
Figure 5.2
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𝐷1
1 × 𝐼1

1

𝐵1
𝐼

𝑈𝜕

𝑉 2

𝑈

𝐵2′

𝐼

Figure 5.4.: Choosing 𝐵1
𝐼 sufficiently large ensures 𝑉 2 ⊂ 𝐵1

𝐼 ∪ 𝐵2′

𝐼

function 𝜙(𝑠, 𝑧) accordingly. Let us denote all sets with respect to this
restricted elimination with the index 2′. To the restricted domain of
elimination 𝐷2′

0 ×𝐼2′
0 , we get again a neighbourhood 𝑈2′

𝜕 of its boundary
as well as an open ball 𝐵2′

𝐼 as mentioned in Case 1 of Step 1.
Let us observe that we may perform this restriction such that we

still reduce the complexity on (𝑉 1 ∩ 𝑉 2) ∩ 𝒦, where 𝑉 𝑖 should denote
the open sets on which the deformation on 𝑅𝑖 shall decrease 𝑑. Denote
the parameter around which we constructed the deformation to 𝑅2 by
(𝑠2, 𝑧2) and call the open sets on which 𝐻1 and 𝐸1 are defined by 𝑈1

𝐻
and 𝑈1

𝐸, respectively. If (𝑠2, 𝑧2) does not lie in 𝜕𝑈1
𝐻 ∩ 𝜕𝑈2

𝐸, then 𝑉 2

is disjoint from both 𝑈1
𝐻 and 𝑈2

𝐸 and the restricted elimination on 𝑅2

still decreases the complexity on 𝑉 2 ∩ 𝒦.
So assume that (𝑠2, 𝑧2) ∈ 𝜕𝑈1

𝐻 ∩ 𝜕𝑈2
𝐸. The restricted elimination

on 𝑅2 decreases the complexity on a ball 𝐵2′
𝐼 that in general does not

contain 𝑉 2. The elimination on 𝑅1 decreases the complexity on the set
𝐵1

𝐼 . The construction of the latter was independent of the deformation
of the vector fields, it determines the collection of neighbourhoods after
the elimination. We could haven chosen 𝐵1

𝐼 as large as we wanted
inside 𝐷1

0 × 𝐼1
0 . Hence, enlarging 𝐵1

𝐼 and choosing 𝐵2′
𝐼 sufficiently large

ensures that 𝐵1
𝐼 ∪ 𝐵2′

𝐼 contains the open set 𝑉 2, cf. Figure 5.4.
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Performing both eliminations will hence still decrease complexity on
(𝑉 1 ∪ 𝑉 2) ∩ 𝒦.

Larger neighbourhoods Let again the deformation on 𝑅1 and 𝑅2

be constructed from elliptic and hyperbolic neighbourhoods 𝐸1 and
𝐻1, and 𝐸2 and 𝐻2.

Case 4: Assume that 𝐸2 contains singular points of both 𝐸1 and
𝐻1. Then it has to contain the separatrix of 𝐻1 that connects to 𝐸1

as otherwise it would be a cycle in 𝐺𝑠
𝑧. As our collection is simple, the

neighbourhood 𝐸2 additionally contains all singular points of both 𝐸1

and 𝐻1. Then 𝑅1 is contained in 𝑅2 and we apply both deformations
without changes.

If 𝐻2 contains some singular points of both 𝐸1 and 𝐻1 then it
contains them all and likewise contains the separatrix connecting 𝐻1

and 𝐸1. Arrange 𝑅1 ⊂ 𝑅2 and we are able to apply both deformations.
Case 5: Let 𝐸1 or 𝐻1 contain the singular points of both 𝐸2 and

𝐻2. In these cases, restrict the domain of the deformation on 𝑅2 as
in Case 3. Notice that the neighbourhood 𝐸1 or 𝐻1 is defined on
a neighbourhood of the set that we remove from the domain of the
deformation. The elimination to 𝑅2 did not assume to decrease the
complexity on this set, so we do not have to do any changes to ensure
the complexity decreases as wanted.

Deformations to half-hyperbolic neighbourhoods Consider the
case that the deformation to 𝑅1 is an elimination to a half-hyper-
bolic neighbourhood 𝐻1 and the one to 𝑅2 is again an elimination to
the elliptic and hyperbolic neighbourhoods 𝐸2 and 𝐻2, respectively.

By construction, cf. Construction 5.6 and Lemma 5.7, the half-
hyperbolic neighbourhood 𝐻1 contains singular points of both 𝐸2 and
𝐻2. Consequently, it contains all singular points of 𝐸2 and 𝐻2 and we
proceed again as in Case 5.

That this still reduces the complexity on the open set 𝑉 2 follows as
in Case 3. We used the fact that we decrease 𝑑 on 𝐵1

𝐼 . Let us remark
that a priori an elimination to a half-hyperbolic point only decreases
complexity inside 𝐷1 × 𝐼1. This does not pose a problem here, as on all
of 𝐷2

0 × 𝐼2
0 , where we planned to deform on 𝑅2, both neighbourhoods
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𝐸 and 𝐻 exist. This satisfies condition 1 of Corollary 5.4 and implies
that the deformation to 𝑅1 does decrease 𝑑 on 𝐵1

𝐼 ∩ (𝐷2
0 × 𝐼2

0 ) ∩ 𝒦.
The situation that the deformation to 𝑅2 is constructed from a half-

hyperbolic neighbourhood and that to 𝑅1 is to a pair of elliptic and
hyperbolic neighbourhoods and the situation that both are constructed
from half-hyperbolic points are treated in analogue ways.

General case In general, there may be points in (𝐷1
0×𝐼1

0 )∩(𝐷2
0×𝐼2

0 )
that belong to different cases. Because the boundaries of all neighbour-
hoods involved are cross sections and hence disjoint from all singular
points, all parameters (𝑠, 𝑧) that belong to Cases 2–5 form connected
components in the complement of those (𝑠, 𝑧) that belong to Case 1.

Consequently, the adjustments can be made by iterating over the
cases we described. As we do only finitely many deformations in this
iteration, only finitely many neighbourhoods of deformations intersect
and we can choose appropriate adjustments.

Apply deformations After we made all deformations compatible,
we can now construct a new collection of neighbourhoods for the
deformed vector fields and then apply all deformations. The complexity
𝑑 decreases on all of 𝒦.
Remark 5.8. Every tree in the forest 𝐺𝑠

𝑧 has, if it has edges, at least
two leaves. Hence we can exclude one specific leaf from being used in
an elimination, or, more generally, from any modification that involves
only one leaf.

Remember from Example II.1.3 that the characteristic foliations of
all spheres agrees with those with respect to (𝑆3, 𝜉𝑠𝑡) on the northern
hemisphere. These hemispheres contain a single singular point that is
a source. Every time this singular point is contained in a leaf, exclude
this leaf from the modifications.

Consequently, all deformations of the vector fields 𝑋𝑠
𝑧 happen relative

to of the contact all happen relative to the hemisphere. The isotopies
of the contact structures 𝜉𝑠 happen outside the hemisphere 𝑆− of 𝑆3

on which they already agree with 𝜉𝑠𝑡.
Remark 5.9. For 𝑧 in a neighbourhood of {−1, 1}, all vector fields 𝑋𝑠

𝑧
also agreed with the vector fields 𝑋𝑠𝑡

𝑧 that are induced by 𝜉𝑠𝑡. Each of
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these has exactly one source, one sink and all trajectories emanate at
the source and tend to the sink, cf. Example II.1.3. In particular, we
every collection neighbourhoods of these has a complexity of 𝑑(𝑠, 𝑧) = 2
and these spheres will not be part of any modification. This ensures
that the isotopy of contact structures is relative to 𝑆𝑘 × {−1, 1}.

5.3. Step 3: Iterate
The construction decreases the maximal value of 𝑑. If the maximum
value of 𝑑 is still larger than 2 repeat it to further decrease 𝑑. As 𝑑
takes finite values, this terminates after finitely many steps.

If 𝑑 takes the value 2 on all (𝑠, 𝑧) ∈ 𝑆𝑘 × [−1, 1], all spheres {𝑧} × 𝑆2

are convex with respect to all contact structures 𝜉𝑠.

6. The dividing curves of the spheres
For any vector field 𝑋𝑠

𝑧 that directs the characteristic foliations of the,
now convex, sphere {𝑧} × 𝑆2 with respect to 𝜉𝑠 we can find a dividing
curve, cf. Definition I.8.3 and Section II.3.1. The vector fields 𝑋𝑠

𝑧
agree with 𝑋𝑠𝑡

𝑧 on the northern hemisphere and there is a only a single
singular point that is positive. Consequently, for each vector field 𝑋𝑠

𝑧
we find a dividing curve that is contained in the southern hemisphere.

This allows us to apply the deformations starting from Section I.10
and conclude the proof of Theorem I.2.1.
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