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If there is one thing the history of evolution has 

taught us it's that life will not be contained. 

Life breaks free, it expands to new territories, and 

crashes through barriers, painfully, maybe even dangerously, 

but, uh...well, there it is. 

Ian Malcolm (Jurassic Park) 
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1 Summary 

Several million years ago, a land bridge between the two American continents started to 

emerge. The appearance and final closure of this Isthmus resulted in a terrestrial connection of 

North- and South America and the separation of the western Atlantic and eastern Pacific oceans. 

The emergence of the Isthmus had considerable consequences on oceanographic, 

environmental, and faunistic conditions on a global as well as on a regional scale. Recently 

conducted studies challenge the widely accepted assumption that the rise of the Isthmus and its 

final closure occurred in Late Pliocene time (i.e. around 3–4 million years ago (Ma) with potential 

breaching of the Isthmus until about 1.8 Ma; ‘common Pliocene model’) and allocate this event 

much earlier, at around 15 Ma (‘new Miocene model’). Due to the emergence and closure of the 

Isthmus, transisthmian sister species (TSS) originated. TSS are defined as species that have 

diverged due to the closure of the Isthmus and are each other’s closest relatives on opposite 

sides of the barrier. However, the TSS concept (i.e. the definition of the term TSS and the 

fulfillment of five criteria regarding biogeographic distributions, morphological similarities, and 

molecular characteristics) is often inconsistently used in biogeographical research. 

Consequently, some studies suffer from an ambiguous and confusing TSS terminology, as well as 

misidentified TSS pairs. However, TSS pairs and the controversially discussed closure of the 

Isthmus of Panama play, among others, a key role in molecular clock calibrations. The 

inconsistency of the TSS concept, the complex and long lasting geological history of the Isthmus 

itself, as well as difficulties in molecular clock approaches may be the reasons why previously 

estimated divergence times for TSS pairs are not conclusive as to the time of final Isthmus closure.  

Thus, it is important to develop an accurate and applicable TSS concept, which offers a precise and 

unambiguous terminology regarding TSS as well as suitable criteria to identify TSS. This might help 

preventing misleading assumptions regarding TSS and it may provide a robust terminology for 

future studies. However, divergence time estimations of correctly identified TSS pairs can 

provide crucial evidence regarding the timing of the Isthmus closure from a biological point of 

view. Therefore, this thesis aims at:  

(i) providing a background to (a) the chronological emergence and final closure of the 

Isthmus of Panama, (b) the ecological consequences of the Isthmus emergence, (c) 

the evolution of transisthmian sister species, and (d) the molecular clock approach; 

(ii) establishing a consistent and unambiguous terminology regarding TSS in respect to 

operative criteria, e.g., the time of TSS divergence or their arrangement in 

phylogenies; 

(iii) identifying and analyzing TSS pairs and -complexes for the present study with respect 

to the applicability of the five TSS criteria proposed; 

(iv) inferring divergence times for the studied species relative to the two models 

proposed for the final closure of the Isthmus; and 

(v) assessing problems associated with divergence time estimations of TSS. 
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To achieve these aims, this thesis combines four in-depth reviews (i) and case studies (ii-v). Due 

to the complex interactions of the various subjects, the reviews should provide the background 

and associated difficulties of each subject. These difficulties are then addressed in the second 

part utilizing practical examples (‘Case Studies’). The development of a suitable TSS concept is 

based on a comprehensive literature search and a thorough analysis of previously applied TSS 

terminologies. Additionally, phylogenetically identified TSS pairs and -complexes of four different 

decapod genera (Sesarma, Panopeus, Eurytium, and Pachygrapsus) are used to evaluate the five 

proposed operational criteria for TSS. Subsequent divergence time estimations are based on TSS 

pairs and -complexes identified before as well as an external molecular clock crustacean rate. 

The obtained divergence times should provide new biological perspectives regarding the time of 

final Isthmus closure. 

The comprehensive literature search revealed 60 terms and derivatives relative to TSS in the 

context of the emergence and closure of the Isthmus of Panama. Although they are often used 

synonymously, from a strict semantic perspective, only a fraction of them can be considered as 

true synonyms. Based on this literature survey, three principles are suggested for terms implying 

a TSS status. Based on these three principles, 13 terms and derivatives could be identified. For 

reasons of comparability, only these terms are recommended to be employed in any study 

concerned with TSS. The criteria-analysis regarding TSS indicated that never all of the five 

operational criteria were fulfilled by the here studied TSS pairs and -complexes. Evidently clear 

confined criteria are difficult to develop, because the complex interrelations within biological 

systems restrain the establishment of certain categories or concepts. Thus, additional and/or 

modified criteria are suggested with respect to their practicability in non-theoretical 

frameworks. However, the development of a TSS identification key with precise characteristics is 

not possible due to the taxonomic and ecological diversity of TSS pairs. The results of the 

subsequently conducted divergence time estimations do not present conclusive evidence in 

favor of either the Miocene or the Pliocene model. In fact, the TSS pair of Pachygrapsus shows 

an early divergence age close to the Miocene model, whereas the TSS complexes of Sesarma and 

the TSS pair A of Eurytium rather point toward the Pliocene model. Moreover, TSS complex A of 

Sesarma and TSS pair A of Eurytium also show evidence for potential re-openings and -closures 

of the Isthmus after 3 Ma. These differences may be due to, for example, the complex and long 

lasting geological emergence of the Isthmus of Panama, missing species or sequences, species 

misidentifications, or the influence of various molecular parameters.  

In conclusion, the major implications of this thesis are (i) to highlight potential lacks of 

knowledge, inconsistencies, and challenges regarding the Isthmus formation, TSS, and the 

molecular clock approach in general (‘State of the Art’), and (ii) to study these difficulties with 

new case studies based on four decapod genera as model organisms in particular (‘Case 

Studies’). 
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2 Zusammenfassung 

Vor mehreren Millionen Jahren begann sich, eine Landbrücke zwischen den beiden 

amerikanischen Kontinenten zu erheben. Die Entstehung und finale Schließung dieses Isthmus 

resultierte in einer Verbindung zwischen dem nord- und südamerikanischen Festland, sowie in 

der Teilung des Meeres in den westatlantischen und ostpazifischen Ozean. Die Entstehung des 

Isthmus hatte erhebliche Konsequenzen für die ozeanografischen, ökologischen und 

faunistischen Gegebenheiten sowohl auf globaler, als auch auf regionaler Ebene. Aktuelle 

Studien stellen die allgemeine Hypothese einer pliozänen Isthmusschließung (d.h. vor ungefähr 

3–4 Millionen Jahren (Mio), mit möglichen Brüchen des Isthmus bis 1,8 Mio; ‘gegenwärtiges 

Pliozän Modell‘) in Frage und datieren dieses Ereignis stattdessen auf etwa 15 Mio (‘neues 

Miozän Modell‘). Die Erhebung und Schließung des Isthmus hatte die Evolution von 

transisthmischen Schwesterarten (TSS) in den nun voneinander getrennten Ozeanen zur Folge. 

Unter TSS versteht man ursprünglich identische Arten, die nach der Schließung des Isthmus 

getrennt voneinander evolvierten und heute gegenseitig ihre nächsten Verwandten auf beiden 

Seiten der Landbrücke darstellen. Die Definition des Begriffs TSS und die Erfüllung von fünf 

Kriterien bezüglich der biogeografischen Verbreitung, der morphologischen Ähnlichkeiten und 

der molekularen Merkmale von TSS (d.h. TSS Konzept) wird in biogeografischen Studien oftmals 

inkonsistent verwendet. Dementsprechend mangelt es einigen Studien an einer deutlichen und 

eindeutigen TSS Terminologie, sowie einer korrekten Bestimmung von TSS-Paaren. Dennoch 

spielen TSS-Paare und die kontrovers diskutierte zeitliche Schließung des Isthmus von Panama 

eine Schlüsselrolle in sog. molekularen Uhr-Analysen. Die Unbeständigkeit des TSS Konzeptes, 

die komplexe und lang andauernde geologische Entstehung des Isthmus, sowie Schwierigkeiten 

in molekularen Uhr-Ansätzen könnten der Grund dafür sein, dass bisherige Divergenz-Zeiten von 

TSS- Paaren oftmals nicht mit der zeitlichen Schließung des Isthmus übereinstimmen.  

Folglich ist es von Bedeutung, ein akkurates und anwendbares TSS Konzept zu entwickeln, 

welches eine präzise und eindeutige TSS Terminologie, sowie passende Kriterien zur 

Identifizierung von TSS bietet. Des Weiteren können errechnete Divergenz-Zeiten von richtig 

bestimmten TSS-Paaren entscheidende Hinweise bezüglich der zeitlichen Schließung des Isthmus 

von einem biologischen Standpunkt aus geben. Deshalb ist das Ziel dieser Arbeit: 

(i) einen wissenschaftlichen Hintergrund zu (a) der chronologischen Entstehung und 

finalen Schließung des Isthmus von Panama, (b) den ökologischen Konsequenzen der 

Isthmus- Entstehung, (c) der Evolution von transisthmischen Schwesterarten und (d) 

dem molekularen Uhr-Ansatz zu geben; 

(ii) eine konsistente und eindeutige TSS Terminologie, sowie anwendbare TSS-Kriterien 

zu etablieren; 

(iii) TSS-Paare und -Komplexe in dieser Studie zu identifizieren und ihre Anwendbarkeit 

auf die fünf postulierten Kriterien zu prüfen; 

(iv) den Zeitpunkt von Divergenz-Ereignissen von TSS zu ermitteln und mit den zwei 

postulierten Modellen der Isthmus-Schließung zu vergleichen; und 

(v) Probleme von TSS Divergenz-Berechnungen herauszustellen und zu analysieren. 
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Um diese Ziele zu erreichen, vereint diese Arbeit vier tiefgreifende Reviews (i) mit Fallstudien (ii-

v). Durch die weitreichenden und komplexen Zusammenhänge der verschiedenen Themen, 

sollen die Reviews den wissenschaftlichen Hintergrund liefern und etwaige Probleme der 

unterschiedlichen Themenbereiche herausstellen. Diese Probleme werden dann im zweiten Teil 

der Arbeit (‘Case Studies’) näher beleuchtet und an praktischen Beispielen analysiert. Die 

Entwicklung eines passenden TSS Konzeptes basiert auf einer umfangreichen Literaturstudie und 

auf der Analyse von bisher verwendeten TSS Terminologien. Zudem werden in dieser Arbeit 

phylogenetisch identifizierte TSS-Paare und -Komplexe vierer Dekapoden-Gattungen (Sesarma, 

Panopeus, Eurytium und Pachygrapsus) verwendet, um die fünf postulierten TSS Kriterien zu 

evaluieren. Die anschließenden Berechnungen von Divergenz-Zeiten basieren auf den zuvor 

identifizierten TSS-Paaren und -Komplexen, sowie auf einer externen molekularen 

Crustacea-Rate. Die erzielten Divergenz-Zeiten sollen einen neuen Hinweis auf die zeitlich finale 

Schließung des Isthmus aus biologischer Sicht erbringen. 

Die umfangreiche Literaturanalyse offenbarte 60 TSS Begriffe und deren Derivate in Bezug auf 

die Entstehung und Schließung des Isthmus von Panama. Obwohl diese Begriffe oftmals 

synonym verwendet werden, können nur wenige im engeren semantischen Sinne als wahre 

Synonyme angesehen werden. Aufgrund dieser Literaturstudie können drei Annahmen einer 

eindeutigen TSS Definition gemacht werden. Basierend auf diesen drei Prinzipien konnten 13 

Begriffe und Derivate identifiziert werden, die als wahre Synonyme bezeichnet werden können. 

Die TSS Kriterien-Analyse zeigte, dass immer nur ein Teil der fünf Kriterien von den analysierten 

TSS-Paaren und -Komplexen dieser Arbeit erfüllt wurde. Augenscheinlich sind strukturierte und 

eindeutige Kriterien schwer zu entwickeln. Der Grund sind die komplexen Beziehungen innerhalb 

biologischer Systeme. So werden zusätzliche bzw. modifizierte, anwendbare Kriterien 

vorgeschlagen. Dennoch ist aufgrund der taxonomischen und ökologischen Diversität von 

TSS-Paaren die Ausarbeitung eines TSS-Identifikationsschlüssels mit konkreten Merkmalen nicht 

möglich. Die Ergebnisse der anschließenden Divergenz-Berechnungen ergaben keine schlüssigen 

Hinweise in Bezug auf eines der beiden Modelle. Vielmehr ergab sich für das Pachygrapsus 

TSS-Paar eine frühe Trennung, die nah am Miozän Modell lag. Im Gegensatz dazu lagen die 

Divergenz-Zeiten der Sesarma TSS-Komplexe und des Eurytium TSS-Paar A näher am Pliozän 

Modell. Außerdem zeigten die Divergenz-Zeiten des Sesarma TSS-Paars A und des Eurytium 

TSS-Paars A Hinweise auf potentielle Wieder-Öffnungen und -Schließungen des Isthmus nach 3 

Mio. Diese unterschiedlichen Divergenz-Ereignisse könnten durch die komplexe und lang 

andauernde Entstehung des Isthmus von Panama, fehlende Arten oder Sequenzen in den 

Berechnungen, oder Einflüsse verschiedenster Parameter in der molekularen Analyse bedingt 

sein.  

Die Hauptanliegen dieser Arbeit sind (i) potentielle Wissenslücken, Ungenauigkeiten und 

Widersprüche bezüglich der Isthmusschließung, der TSS und des molekularen Uhr-Ansatzes im 

Generellen zu beleuchten (‘State of the Art’) und (ii) diese Schwierigkeiten in neuen Fallstudien 

anhand von vier Dekapoden-Gattungen als Modellorganismen zu analysieren (‘Case Studies’). 
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3 Motivation and Research Objectives 

The emergence of the Isthmus of Panama (i.e. the formation of a land bridge between the two 

American continents) and its final closure (i.e. final interruption of the Atlantic and Pacific 

connection) is one of the best studied vicariance events in evolutionary biology. Its emergence 

and final closure have substantial consequences to ocean circulations, global climatic patterns, 

biogeography, ecology, and consequently the evolution of both terrestrial and marine biota. The 

geological and environmental isthmian characteristics observed today are the result of a 

complex and extended process that started several million years ago (Ma). Based on recently 

conducted studies, two models regarding the time of Isthmus closure are discussed: The 

common Pliocene model (i.e. Isthmus closure around 3 Ma) versus the new Miocene model (i.e. 

Isthmus closure around 15 Ma). This vicariance event initiated the evolution of transisthmian 

sister species (TSS; species on opposite sides of the barrier that were separated due to the 

closure of the Isthmus and are each other’s closest relatives). However, the TSS concept (i.e. the 

definition of the term TSS and the fulfillment of five operational criteria to classify species as true 

TSS) is not consistently used in biogeographical studies, resulting in an ambiguous and partly 

confusing terminology as well as in controversial assignments of TSS pairs. The Isthmus debate 

as well as the neglect of the TSS concept is problematic, because they play an essential role in 

molecular clock approaches and divergence time estimations. Therefore, a comprehensive and 

precise understanding of TSS as well as of the chronological Isthmus formation (in particular of 

the timing of the Isthmus closure) is of crucial importance. To study these subjects, the thesis is 

divided into the parts ‘State of the Art’ (Part II) and ‘Case Studies’ (Part III). The part ‘State of the 

Art’ is concerned with the scientific background. Four composed reviews provide an introduction 

and highlight difficulties regarding the Isthmus emergence, the evolution of TSS, and the 

molecular clock approach, which are then addressed in empirical ‘Case Studies’. These case 

studies are concerned with the neglect of the TSS concept in general and the suitability of TSS in 

molecular clock approaches and divergence time estimations in particular. Moreover, by taking 

up the ongoing Isthmus debate, the ‘Case Studies’ aim to investigate the temporal closure of the 

Isthmus from a biological perspective.  

State of the Art 

This part of the thesis presents the background to the subsequent ‘Case studies’ in four 

comprehensive reviews uniting the different topics of this thesis:  

1. The emergence and closure of the Isthmus of Panama (Chapter 4).  

2. The ecological consequences of the Isthmus formation (Chapter 5). 

3. The evolution of transisthmian sister species (Chapter 6). 

4. The molecular clock approach (Chapter 7). 
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Case Studies 

–A Critical View at the Transisthmian Sister Species Concepts– 

Toward an unified definition of transisthmian sister species 

This chapter critically reviews the current literature with respect to the term transisthmian sister 

species (TSS). Terms referring to potential TSS are often used ambiguously and no consistent 

terminology is apparent. In particular, in a strict semantic way, only a fraction of the used terms 

are indeed synonyms in respect to the definition of TSS. The use of imprecise terms may lead to 

erroneous synonyms, redundancy, and eventually to confusing and misleading assumptions. 

Therefore, this part of the thesis aims to clarify the partly confusing and misleading terminology 

regarding TSS to reduce ambiguities and facilitate consistency. In particular, this part: 

1. creates a list of synonyms referring to TSS, based on a comprehensive literature review 

(Subchapter 8.1) and 

2. critically discusses the findings of the terminological survey, and presents 

recommendations for well defined, unambiguous terms (Subchapter 8.2). 

Criteria of TSS pairs and -complexes 

Populations of various marine species were separated by the Isthmus emergence and its final 

closure, and some experienced extinction or speciation events on either side of the Isthmus. 

During these processes, these initially genetically and phenotypically similar populations 

experienced divergent selection in different environments and subsequently evolved into TSS. 

Five assumptions regarding biogeographic distributions, morphological similarities, and 

molecular characteristics were defined to classify species as true TSS. This chapter is concerned 

with the arrangement of the identified TSS pairs and -complexes of this thesis in respect to these 

operative criteria. Therefore, the following questions are addressed:  

1. Do the studied TSS pairs and -complexes of this study meet all five TSS criteria 

(Subchapter 9.1)? 

2. Are the current criteria sufficient to identify TSS (Subchapter 9.2)?  

3. What additional/new set of criteria can be suggested to identify TSS (Subchapter 9.4)? 

–Divergence Time Estimations of Transisthmian Sister Species– 

The emergence and final closure of the Isthmus of Panama was a complex and long-lasting 

vicariance event. However, the time of final Isthmus closure remains controversially discussed 

(see the common Pliocene and new Miocene models mentioned above). In this part of the 

thesis, divergence time estimations for TSS pairs and -complexes of four different decapod 

genera were performed. The objectives of these analyses were:  

1. The molecular studies should point out the problems of divergence time estimations of 

TSS (Chapter 10).  

2. The obtained divergence times of the study are then discussed relative to the two 

models proposed for the final closure of the Isthmus (Chapter 10) 



 

 
 

Part II  
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4 Geological Evolution and Biological Evidences – The Formation of the 

Isthmus of Panama and its Closure  

The emergence of the Isthmus of Panama is the most common vicariance event studied in a 

wide range of scientific fields. Thus, a comprehensive and precisely understanding of the 

chronological Isthmus formation (in particular of the timing of final Isthmus closure) is of 

importance, particularly in evolutionary studies. In this context, the time of Isthmus closure is 

commonly used as calibration point in divergence time estimations of transisthmian sister 

species (TSS; see Chapters 6 and 7). Therefore, this chapter presents a brief summary of the 

isthmian geography and environmental conditions, followed by a review of the two proposed 

models of the Isthmus formation and its time of assumed final closure (‘new Miocene model’ vs. 

‘common Pliocene model’). Subsequently, two major events will be briefly discussed in respect 

to the different chronological assumptions of the Isthmus formation, based on 

paleoceanographic, terrestrial, and marine biogeographic evidences. All data were adjusted to 

the geological timescale (Walker et al. 2012). 

4.1 What is the Isthmus of Panama? 

Definition:  

[Synonyms for the term Isthmus of Panama found in the literature: Isthmus of Darien (Figure 

4-1); Central American Isthmus (CAI); American Isthmus] 

In his book The Isthmus of Panamá, Bidwell (1865) defined the Isthmus as “[…] a narrow neck of 

land which unites the continents of North and South America […]” (p. 7). 

 

Figure 4-1: ‘A New Voyage and Description of the Isthmus of America’, Lionel Wafer, 1697. Historical map of 

the Isthmus of Darien. 
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Indeed, the Isthmus of Panama forms the southern part of a large land bridge (Isthmus), uniting 

North and South America. In this study, the isthmian range of interest is focused on Panama 

(roughly 07°00’N, 82°00’W) ranging from the border of Costa Rica in the west to the border of 

Colombia in the east, including nearby islands (e.g., Bocas del Toro, Coiba, Pearl Islands). In the 

north, the Isthmus is bordered by the western Atlantic (i.e. Caribbean) and in the south by the 

eastern Pacific oceans (Figure 5-2). The Isthmus of Panama is pronounced by diverse vegetation 

zones (from montane habitats to tropical and dry forests, mangroves, estuaries, savannas, and 

grasslands; Marshall 2007). The marine habitats differ considerably between the oceans. The 

around 1 295 km western Atlantic coastline of Panama (Miloslavich et al. 2010) is characterized 

by large coral reefs, calcareous beach sands and shelf sediments, and covers of seagrass beds. In 

contrast, along the around 1 450 km eastern Pacific coast (Palka 2005 and reference therein) 

mangroves and calm sand beaches are prevalent (but see Chapter 5 for details; Figure 5-2). 

The geological and environmental isthmian shapes as we see them today are the result of a 

complex and extended process started several million years ago (Ma). This event had substantial 

consequences to ocean circulation, global climatic patterns, biogeography, ecology, and 

consequently the evolution of both the terrestrial and marine biota (e.g., Coates & Obando 1996 

and references therein). Joseph Cushman (1929) was the first person who found evidence for a 

marine seaway that once connected the western Atlantic and eastern Pacific oceans based on 

foraminiferal assemblages from Venezuela and Ecuador (see Collins 2003).  

Today, various geological (e.g., cores), oceanographical (e.g., marine sedimentary depositions), 

paleontological (e.g., fossils), and biological (e.g., divergence events) proxies are employed in 

numerous studies to investigate the history of Isthmus formation and final seaway closure in 

particular (e.g., Coates & Obando 1996; O’Dea & Collins 2013; and references therein). Recent 

speculations about a complete isolation of the eastern Pacific and western Atlantic around 15 

Ma (Farris et al. 2011; Montes et al. 2012a; b) have led to an intense debate about the temporal 

uplift of the Isthmus of Panama (O’Dea & Collins 2013 and references therein). In fact, new 

geological, geochemical, and geophysical studies challenge the widely accepted opinion that the 

emergence of the Isthmus and its final closure occurred during the Late Pliocene (i.e. 

approximately 3 Ma and described here as the ‘common Pliocene model’; e.g., Jackson et al. 

1996a) and allocate this event much earlier, around 15 Ma (described here as the ‘new Miocene 

model’; e.g., Farris et al. 2011; Montes et al. 2012a; b; for a chronological summary of the events 

see Table 4-2). 

4.2 Chronology of events – The Miocene model  

The emergence and closure of the Isthmus of Panama was not a steady and uniform event, 

rather it consisted of re-openings and -closures spanning over several million years. First 

evidences for an uplift of the Central American arc are dated back to the Late Cretaceous 

(Montes et al. 2012b). Due to the rotation of tectonic blocks between 38–28 Ma, the magmatic 

Campanian-Eocene belt was deformed, and achieved its final formation in the Late Oligocene 
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Figure 4-2: The emergence of the Isthmus of Panama – ‘new Miocene model’ (based on the proposed 
‘Peninsula model’, see text for details; Figure 4-4), during the Late Oligocene – Early Miocene (~25–20 Ma). A 
200 km wide abyssal gap (Atrato Seaway) still connects the western Atlantic and eastern Pacific oceans; light 
gray: shapes of Colombia, Panama, Costa Rica, and Nicaragua as seen today; dark gray: emergent land; dashed 
line: borders of Panama; red area: abyssal to bathyal depths; Ma = million years ago (after Bagley & Johnson 
2014; Montes et al. 2012b). 

(for tectonic details see Montes et al. 2012a, Fig. 9a-d). Estimated divergence ages of palms 

based on molecular studies support an emergence of land masses during that time (Bacon et al. 

2013). During the Late Oligocene (28.1–23.0 Ma), a collision between the southern tip of Central 

America and South America occurred. However, a 200 km wide connection between the oceans 

remained (Farris et al. 2011; Montes et al. 2012b; Figure 4-2). Age estimates of terrestrial 

vertebrate fossils (Kirby & MacFadden 2005) and migration events of salamanders from Central 

to South America (Elmer et al. 2013) pointing toward an increase land uplift around 23 Ma. 

Evidences for a persistent and complete land connection between the continents are based on 

biological studies of saltwater-intolerant frogs (Weigt et al. 2005), freshwater fish (Bermingham 

& Martin 1998), plants (Cody et al. 2010), ash deposits of large terrestrial vertebrates (Campbell 

et al. 2010), and fossils (e.g., Marshall 1985, 1988; Webb 1985) indicating migration and 

spreading events between 16–5 Ma. Geological data support these biological evidences: Keller & 

Barron (1983) argued that a gradual shoaling started around 15 Ma and Montes et al. (2012a; b) 

suggested that 15 Ma the volcanic arc was in such a formation that the water connection 

between the eastern Pacific and western Atlantic was entirely interrupted and the closure of the 

Isthmus completed. 

4.3 Chronology of events – The Pliocene model  

The first collision of Central America with South America occurred in the Late Oligocene (around 

25 Ma), but a major seaway still connected the Atlantic and Pacific oceans (Coates & Stallard 

2013). In contrast, Coates et al. (2004) dated the collision at 14–12 Ma, based on sediment 

analyses. During the Early Miocene (around 17 Ma), the volcanic arc (today’s southern part of 

Central America) was formed (Coates et al. 1992, 2003, 2004). In the Middle Miocene, tectonic 

disturbances triggered the initial uplift of the Panama sill (i.e. deep passage with local highs; 

Figure 4-2), which resulted in major changes of the oceanic conditions (Duque-Caro 1990). 

During this time, the bathyal zone was around 2000 m deep. Extensive collision between the 

Central American arc and South America led to a further shallowing of the oceans resulting in a  
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Figure 4-3: The emergence of the Isthmus of Panama – ‘common Pliocene model’ (based on the proposed 
‘Island model’, see text for details; Figure 4-4), during A) the Middle Miocene (16–15 Ma), B) the Late Miocene 
(7–6 Ma), C) the Late Pliocene (~3 Ma); light gray: shapes of Colombia, Panama, Costa Rica, and Nicaragua as 
seen today; dark gray: emergent land; dashed line: borders of Panama; red area: abyssal to bathyal depths; 
blue area: neritic depths; arrows: marine corridors before Isthmus completion; Ma = million years ago (after 
Bagley & Johnson 2014; Coates & Obando 1996; Coates et al. 2004, 2005). 

first interruption of deep- and intermediate-water connections between the western Atlantic 

and the eastern Pacific (Coates et al. 2004; Coates & Stallard 2013; Duque-Caro 1990; Wright et 

al. 1991; Figure 4-3 B). The bathyal depths during this time range from 1000–500 m, and 

decreased to inner neritic water depth (~150 m) during the Late Miocene (Duque-Caro 1990; 

Schmidt 2007). Furthermore, Roth et al. (2000) and Coates et al. (2003, 2004) provide 

stratigraphic evidences for an intermittent closure of the shallow-water connections and thus of 

a short-lived near-complete Isthmus approximately 11–9 Ma. This hypothesis is in concordance 

with reports of the first terrestrial interchange of raccoons from North to South America (Webb 

1985). Between 9–6 Ma several species of mammals succeeded in crossing the emerging Isthmus 
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in both directions (Marshall 1985, 1988; Morgan 2002; Webb 1985), which then consisted of 

closely spaced islands (Molnar 2008). However, the paleogeographic structure of the emerging 

Isthmus is discussed controversial and either proposed as an ‘Island model’ or a ‘Peninsula 

model’ (Coates & Obando 1996; Kirby & MacFadden 2005; Molnar 2008; Figure 4-4). A further 

reduction of water exchange between the oceans occurred at around 7 Ma (Keigwin 1982a; 

Keller et al. 1989). Around 6 Ma almost all deep water passages had ceased (Coates & Obando 

1996; Figure 4-3). In fact, Kirby et al. (2008) provide evidence for a short-lived strait across the 

Panama Canal Basin during that time. Between 6–4 Ma the oceanic conditions like temperature, 

salinity, and habitats on both sides of the emerging Isthmus changed substantially (e.g., Chaisson 

& Ravelo 2000; Haug et al. 2001; Keigwin 1982; Lear et al. 2003; see Chapter 5 for more details). 

A low water level period between 4.6–3.1 Ma enhanced the further shallowing of the Isthmus 

(Haq et al. 1987). Based on biostratigraphic analyses and correlated divergence time estimations 

of mollusk fossils dating back 3.5 Ma, Coates et al. (1992) assumed that an almost complete 

barrier was formed around 3.7 Ma. However, the exact time of final Isthmus closure is discussed 

controversially (Table 4-1). Divergence times of tropical forest birds between 4–3 Ma (Weir et al. 

2009), changes in salinity, temperature, upwelling, and productivity of both oceans (e.g., Jackson 

& O’Dea 2013; Leigh et al. 2014; and references therein), and the Great American Biotic 

Interchange of vertebrates at about 2.7 Ma (e.g., Coates et al. 1992; Marshall 1988; Webb 2006) 

are pointing toward a final Isthmus closure between 4–3 Ma. Summarizing geological processes 

and biological aspects, Collins (2003) dated the closure back to 4 Ma whereas Coates & Obando 

(1996) assumed an Isthmus closure between 3.1–2.8 Ma. However, they noted that temporary 

breaches of the Isthmus may have occurred. In fact, evidences for several short-lived re-

openings during the Pliocene (3.8 Ma and 3.4–3.3 Ma; Haug & Tiedemann 1998), a shallow 

water connection between the eastern Pacific and Caribbean beyond 3 Ma (Bowen et al. 1998; 

Coates & Obando 1996), a breach of the Isthmus around 2 Ma (Cronin & Dowsett 1996), and 

remaining littoral-neritic breaks until around 1.8 Ma (Keller et al. 1989) are pointing toward a 

final Isthmus closure between 2.5–1.8 Ma (Table 4-1).  

 

Figure 4-4: The two proposed models of Isthmus emergence during the Middle Miocene. A) The Island model. 
B) The Peninsula model (modified after Schmidt 2007). Land masses are highlighted in gray. 
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Table 4-1: Chronological order of isthmian re-openings and -closures.  

Proposed 
Closure (Ma) 

Event Reference 

15.0 Final Isthmus closure Montes et al. (2012a; b) 

11.0–9.0 Short-lived near-complete 
Isthmus 

Coates et al. (2003, 2004);  
Roth et al. (2000) 

9.0–6.0 Several mammal species crossed 
the Isthmus, which consisted of 
closely spaced islands 

Marshall (1985, 1988); Molnar (2008); 
Morgan (2002); Webb (1985) 

4.0 Final Isthmus closure Collins (2003) 

4.0–3.0 Final Isthmus closure Jackson & O’Dea (2013); Weir et al. (2009) 

3.8 Short-lived re-opening Haug & Tiedemann (1998) 

3.7 Almost complete Isthmus Coates et al. (1992) 

3.5–3.1 First complete closure Coates & Obando (1996); Duque-Caro 
(1990); Keigwin (1978, 1982) 

3.4–3.3 Short-lived re-opening Haug & Tiedemann (1998) 

3.1–2.8  Isthmus closure Coates & Obando (1996) 

3.0–2.8  Near closure to surface water Cronin & Dowsett (1996) 

beyond 3.0 Shallow water connection  Bowen et al. (1998);  
Coates & Obando (1996) 

2.7 Great American Biotic 
Interchange of vertebrates  

Coates et al. (1992); Marshall (1988); 
Webb (2006) 

2.0  Breach of the Isthmus Cronin & Dowsett (1996) 

2.5–1.9 Final Isthmus closure Cronin & Dowsett (1996) 

2.4–1.8  Final Isthmus closure Keller et al. (1989) 

Proposed final Isthmus closures are marked in bold. Ma = million years ago. 

4.4 Discrepancies between the models 

4.4.1 Time of collision and Isthmus closure 

There is a large time discrepancy regarding the collision of Central- and South America between 

the two models. The assumption of a collision 25–23 Ma and a closure of the seaway at around 

15 Ma (i.e. Miocene model; Farris et al. 2011; Montes et al. 2012a; b) substantially predates the 

hypothesis of Coates et al. (2004), who suggested a collision at 14–12 Ma and a final Isthmus 

closure around 3.5 Ma (Coates et al. 1992; O’Dea et al. 2007) or rather 1.8 Ma (Keller et al. 

1989), considering re-openings and -closures (Pliocene model). 
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Possible explanations 

Montes et al. (2012a) discussed in particular the deep water passage between the oceans. 

Jackson & O’Dea (2013) concluded that this assumption would be consistent with earlier studies 

by the Panama Paleontology Project (Coates et al. 2004; Coates & Obando 1996). However, they 

argue that “geological data cannot possibly resolve paleogeographic landscapes and seaways on 

the scale of the few 10s of kilometers” (p. 793), in particular when the geological rock record 

suffers from incompleteness.  

4.4.2 Migration- and divergence times of species 

Both models differ considerably in respect to migration events between both the continents and 

oceans. Terrestrial lineages of e.g., palms (Bacon et al. 2013), salamanders (Elmer et al. 2013), 

and the fossil record of vertebrates (Kirby & MacFadden 2005) indicate a biotic exchange 

between North and Central- /South America 31–16 Ma. However, the vast majority of species 

migrated 5–2 Ma, pointing to a stable and constant land bridge (e.g., Pinto-Sánchez et al. 2012; 

Webb 2006). Numerous lineages of marine taxa including Foraminifera, mollusks, bryozoans, 

crustaceans, and fishes began to diverge as early as 20–10 Ma, but there are also numerous 

well-documented examples of biological exchange between the oceans as recently as the 

Pliocene (Lessios 2008, and references therein).  

Possible explanations 

These time differences may result due to the complex geological history of the closure of the 

Isthmus itself (Figure 4-3). Coates & Stallard (2013) pointed out, that there are no indications of a 

stable land connection during the Early Oligocene to Early Miocene, where terrestrial species 

could have migrated from North to South America and vice versa. Furthermore they argued that 

no definite terrestrial vertebrate fossils with South American affinities have been found in the 

current Panama Canal excavations. Jackson & O’Dea (2013) summarized several evidences that 

gene flow between marine species may have persisted long before or even after the final closure 

(i.e. 3 Ma), due to dispersal via e.g., birds (Miura et al. 2012), rafting (De Queiroz 2005), or plate 

movement through the nascent Isthmus region (details see Graham 2003). They also argued that 

yet marginal and narrow water connections are sufficient for the exchange of marine biota 

(Jackson & O’Dea 2013). 

Several authors (Cronin & Dowsett 1996; Keller et al. 1989; Savin & Douglas 1985; Schmidt 2007) 

mentioned also potential breaching events of the Isthmus, which may have caused possible 

marine exchanges between the oceans. In contrast, Collins (1996a) argued that these breaching 

events would have had little effect on divergences of eastern Pacific and western Atlantic marine 

faunas. Coates & Obando (1996) assumed that differences in divergence times may also 

correlate with the specific habitat of the respective organism. Deep water species, for example, 

should have been affected first by the rising Isthmus than shallow water species, which may have 

crossed the Isthmus until just prior to its closure (Frey 2010; Knowlton & Weigt 1998; Miura et al. 

2012; Schubart et al. 1998).  
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4.5 Summary 

Various paleoceanographic, terrestrial, and marine biogeographic data demonstrate precisely 

the evolution of the Isthmus of Panama for both models. However, two key events occurred 

within both models, yet in different time ranges and thus, reflect the uncertainties regarding the 

timing of events of the Isthmus formation. The following table (Table 4-2) presents a summary of 

significant events in relation to the temporal closure of the Isthmus of Panama.  

Table 4-2: Summary of significant events, which are related to the closure of the Panama Isthmus.  

Age (Ma) Event & Interpretation Reference 

Early 
Mesozoic or 
Earlier 

Crustal fragments in southern Mexico and northern Central 
America consolidated; 
Southern regions (incl. Nicaragua, Costa Rica and Panama) 
initially as part of a volcanic arc. 

Coates et al. (1992, 
2003, 2004); Coates & 
Obando (1996); Mann & 
Kolarsky (1995) 

* Late 
Cretaceous 
to Middle 
Eocene 

Magmatic belt, reached about 200 km off South America; 
Cooling events as proxies for a continuous emergence. 

Montes et al. (2012b) 

* 38–28 Segmentation/deformation of the arc started; Almost completed 
in the Late Oligocene (~25 Ma). 

Montes et al. (2012a) 

* 31–16 Molecular studies of palms (Copernicia and Pritchardia) support 
an early divergence age.  

Bacon et al. (2013) 

* 25–23 Geologic collision of Central America with South America; Major 
seaway (200 km wide) between the eastern Pacific and western 
Atlantic remained; (Assumption predates the argument of Coates 
et al. (2004) of a geological collision at 14–12 Ma; see below). 

Coates & Stallard (2013); 
Farris et al. (2011); 
Montes et al. (2012b) 

* 23.6 Salamander (Bolitoglossa) migrations from Central- to South 
America. 

Elmer et al. (2013) 

* 23 Fossils of terrestrial vertebrates indicate that the arc formed a 
peninsula that was connected to North America (note: no 
definite terrestrial vertebrates of this age, with South American 
affinities, have been exhumed in the current Panama Canal 
excavations; Coates & Stallard 2013). 

Kirby & MacFadden 
(2005) 

 

* 19–16 Mammalian fossils suggest a continuous connection between 
Panama and North America. 

Kirby & MacFadden 
(2005) 

~17 Formation of the volcanic arc (forms today the southern part of 
Central America). 

Coates et al. (1992, 
2003, 2004) 

~16 Deep, open oceanic conditions and free water circulation occur 
along the steep continental margins of NW South America.  

Duque-Caro (1990) 

16.1–15.1 Changes in bottom water circulation and sedimentation occurred 
due to tectonic disturbances that triggered the initial uplift of the 
Panama sill. Changes in organic nutrients sea surface 
temperature, sea level rise, and bathyal depths (2000 m). 

Duque-Caro (1990) 

* 16–5 Molecular studies of e.g. saltwater-intolerant frogs, freshwater 
fish, and plants show early migration times.  

Bermingham & Martin 
(1998); Cody et al. 
(2010); Weigt et al. 
(2005)  
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Age (Ma) Event & Interpretation Reference 

* between  
15.4–14.7 

Begin of gradual shoaling (based on deep sea records). Keller & Barron (1983) 

* 15 Configuration of the volcanic arc hampers seawater exchange 
between the eastern Pacific and western Atlantic. 
 (almost)complete closure (note: Coates & Stallard (2013) 
argued that “[…]none of the used proxies [in the study used by 
Montes et al. 2012a] can establish sea level or whether marine 
gaps in the Isthmus were present or not.” p. 804). 

Montes et al. (2012a; b) 

15–12 Widespread shallowing of the Isthmus had created a 
paleogeography arc; Few narrow and deep marine passages 
maintain a marine connection between the oceans. 

Coates & Stallard (2013) 

14–12 Geological collision between South America and the Central 
American arc; Widespread shallowing of the sea around the 
Central American arc (compare 25–23 Ma above). 

Coates et al. (2004) 

13.45–13 

 

Uplift of the sill to middle bathyal depths (1000–500 m); First 
restrictions of deep and intermediate water connections (based 
on fossils of benthic fauna in the Atrato Basin). 

Duque-Caro (1990) 

13 First phase of deep-water blockage of the Central American 
Seaway (CAS; based on the beginning of North Atlantic Deep 
Water (NADW) production). 

Wright et al. (1991) 

12.9–11.8 Abrupt foraminiferal paleobathymetric change from lower to 
middle bathyal depths indicates an uplift of the Panama sill to 
about 1000 m. 

Duque-Caro (1990) 

12.8–7.1 Shallowing of the CAS from bathyal to inner neritic depth (based 
on sedimentological evidence). 

Duque-Caro (1990) 

+
 12–7.5 

 

“Carbonate Crash”, Carbonate dissolution event in the eastern 
Pacific and Caribbean (in the Caribbean, this event was 
terminated 10 Ma); Subsequent shoaling of the CAS prevents 
inflow of less carbonate corrosive Atlantic/Caribbean 
intermediate and deep water into the Pacific. 

Lyle et al. (1995); Roth et 
al. (2000) 

10.7–9.4 Intermittent closure of shallow-water connections and formation 
of a short-lived near-complete land bridge. 

Coates et al. (2003, 
2004); Roth et al. (2000) 

10.4–9.9 Increased abundances of foraminiferal assemblages (Uvigerina, 
Valvulineria) indicate another shallowing step, pointing toward 
an upper bathyal depth. 

Duque-Caro (1990) 

* 10.1–9.1 

 

Earliest terrestrial interchange (racoons) from North to South 
America (dispersal is assumed to have happened along an Island 
arc system). 

Webb (1985) 

+ 
9.3–4 

 

Further steps in the diversification of benthic foraminiferal fauna 
between the eastern Pacific and Caribbean; 

9.3–7.8 Ma: Shoaling of the sill to upper bathyal depths. Shallow-
water connection was open. 

7.8–6.9 Ma: Shoaling of the CAS to 150 m water depth. Pacific-
Caribbean shallow-water connection was restricted. 

6.9–4.0 Ma: The sill shoaled to less than 50 m water depth. 

Duque-Caro (1990) 
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Age (Ma) Event & Interpretation Reference 

* 9.3;  
7.5–5.5 

Raccoons and their allies crossed to South America. Marshall (1985); 
Webb  (1985) 

* 9 

 

Ground sloths (Megalonychidae) crossing to North America.  Morgan (2002) 

Ash deposits of proboscideans, tapirs, camelids, and peccaries 
from Peru pointing toward a migration to South America.  

Campbell et al. (2010) 

* 9–6 Exchange of few strong swimmers (mammals) between North 
and South America  Close spacing of Islands (“Island model”). 

Molnar (2008) 

* 8.2  Two genera of South American sloths crossed northward. Marshall (1985); 
Marshall et al. (1982); 
Webb (1985) 

+ 
8–5 

 

Changes in the neodymium (Nd) and lead (Pb) isotopic 
composition of hydrogenous ferromanganese crusts in the 
Atlantic (Gulf Stream); Diminished supply of eastern Pacific water 
into the Atlantic (850 m water depth).  

Frank et al. (1999) 

* 7.5 Raccoons (Procyonidae) crossed to North America. Marshall (1988) 

7 Shallow water connections > 150–100 m started to become 
restricted. 

Duque-Caro (1990) 

+ 
6.8–6.6 

 

Increasing difference in benthic foraminiferal δ
13

C values 
between eastern Pacific and Caribbean; Termination of deep- to 
intermediate-water exchange through the ocean gateway. 

Keigwin (1982a) 

 

Planktonic foraminiferal assemblages indicate that significant 
upwelling began in the western Caribbean basin; Indication of 
restricted intermediate water flow through the ocean gateway. 

Keller et al. (1989) 

 

7–6.3 Water surface circulation between the eastern Pacific and 
Caribbean was re-established. 

Duque-Caro (1990) 

7–6 Deep water passages between the eastern Pacific and Caribbean 
had vanished. 

Coates & Obando (1996) 

6 

 

Evidence for a short-lived strait across the Panama Canal Basin. Kirby et al. (2008) 

High energy currents or tidal waves passed from the eastern 
Pacific to the Caribbean. 

Collins (1996a) 

Sill depth had decreased to 150 m. Schmidt (2007) 

+ 
6–5 

 

Changes in the physical characteristics of proto-NADW (became 
saltier and warmer as indicated by benthic foraminiferal δ

18
O 

and Mg/Ca); Subsequent restriction of the CAS, first 
enhancement of heat- and salt transport to high northern 
latitudes. 

Lear et al. (2003) 

 

+ 
5–4 

 

Development of an “east-west temperature gradient” in the 
tropical Pacific upper water column; Shoaling of the thermocline 
in the eastern Pacific was linked to the shoaling of the CAS and 
indicates changes in the tropical wind field (and/or changes in 
the amount of NADW-formation that lead to a global adjustment 
of the thermocline; Huang et al. 2000). 

Chaisson & Ravelo 
(2000) 

 

Eolian grain size records indicate a decrease in the trade wind 
strength over the tropical eastern Pacific; These changes are 
attributed to the shoaling of the CAS. 

Hovan (1995) 
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Age (Ma) Event & Interpretation Reference 

5–3 Nineteen terrestrial families of southern mammals crossed the 
Isthmus to the north and 17 placental mammals to the south. 

Leigh et al. (2014); 
Marshall (1988);  
Webb (1985, 2006) 

+ 
4.6 

 

Gradual increase of benthic δ
13

C values at deep Caribbean Site 
999; Enhancement of NADW-formation in the North Atlantic, 
stronger supply of good ventilated water masses into the 
Caribbean.  

Haug & Tiedemann 
(1998) 

 

Distinct increase in the Carbonate preservation at Ceara Rise, 
equatorial western Atlantic; Deepening of the lysocline due to 
enhancement of NADW-formation. 

Tiedemann & Franz 
(1997) 

+ 
4.7–4.2 

 

Caribbean surface salinity increased with respect to the eastern 
Pacific, based on the δ

18
O enrichment of Caribbean planktonic 

foraminifers. Changes in the planktonic foraminiferal fauna 
(higher contents of G. sacculifer) also indicate higher salinity in 
the Caribbean; Restriction of surface water exchange between 
the eastern Pacific and Caribbean; Diminished inflow of low-
salinity Pacific surface waters; Shoaling of the seaway to < 100 m 
water depth. 

Haug et al. (2001); 
Keigwin (1982a);  
Keller et al. (1989) 

+ 
4.6–4.2 

 

Shoaling of the thermocline in the eastern Pacific as indicated by 
multispecies planktonic δ

18
O records; Interpreted to reflect 

changes in the tropical wind field. 

Cannariato & Ravelo 
(1997) 

4.6–3.1 Significant sea-level low-stand period enhanced the shallowing 
of the Isthmus. 

Haq et al. (1987) 

4.5 Caribbean foraminiferal fauna indicates an increase in salinity. 
Increase in endemism and decrease in diversity due to 
adaptations to new environmental conditions. 

Chaisson & Ravelo 
(2000); Keller et al. 
(1989) 

+ 
4.4 

 

The locus of maximum opal accumulation in the eastern Pacific 
abruptly shifted eastward; Reorganization of eastern Pacific 
surface circulation. 

Farrell et al. (1995) 

 

+ 
4.4–4.3 

 

Decrease in planktonic δ
18

O values at Ceara Rise (Caribbean) was 
interpreted to reflect a southward shift of the Intertropical 
Convergence Zone; Changes in the atmospheric circulation 
and/or pole-to equator-temperature gradients were related to 
the shoaling of the CAS. 

Billups et al. (1999); 
Chaisson & Ravelo 
(1997) 

 

+ 
4.4–2.6 

 

The divergence and provinciality of near-shore and open-ocean 
faunas increased significantly. Initiation of the “Great American 
Interchange” of vertebrates over the Central American Isthmus 
at about 2.7 Ma; First indications of a final Isthmus closure. 

e.g., Coates et al. (1992); 
Keigwin (1978, 1982b); 
Lundelius et al. (1987); 
Marshall (1988);  
Saito (1976) 

+ 
4.2 Cooling of Southern Ocean surface waters, based on diatom 

assemblages; Increased heat piracy (trans-equatorial heat 
transport into the North Atlantic) via an enhanced Gulf Stream; 
Stronger thermohaline circulation. 

Whitehead & Bohaty 
(2003) 

 

4–3 Earliest estimates of divergence events for antbirds and 
woodcreepers, which are restricted to tropical forest 
environments. 

Weir et al. (2009) 

3.8; 
3.4–3.3 

Short-lasting re-openings. Haug & Tiedemann 
(1998) 
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Age (Ma) Event & Interpretation Reference 

3.8–3.6 Closure almost completed, though a shallow water connection 
continued beyond 3 Ma most likely until about 2.5 Ma (Coates & 
Obando 1996). 

Coates et al. (1992) 

3.7 Shallow water mollusks indicate a complete closure. The 
occurrence of similar pairs of Late Pliocene gastropods (2.6–1.8 
Ma) on both sides of the Isthmus suggests some interchange 
may still have been possible. 

Coates et al. (1992) 

3.5 

 

Few shallow gaps. Coates & Obando (1996) 

Complete seaway closure (assumption based on data showing 
seasonal variations in seawater temperatures recorded within 
the skeletons of bryozoans). 

O’Dea et al. (2007) 

3.5–2.5 Restriction of the CAS; Water depth too shallow for nearshore 
and inshore organisms to cross (assumption based on genetic 
distances between Kemp’s ridley sea turtle and olive ridley 
turtle). 

Bowen et al. (1998) 

3.2 Major reorganization of the ocean-climate system (northern 
hemisphere glaciations and large-scale Arctic sea ice appeared). 

Bartoli et al. (2005) 

3.1 Divergence events in sea urchins from both sides of the Isthmus 
point toward the restriction of larval exchange. 

Lessios et al. (2001) 

3–2.6 Major exchange of mammals between North and South America. Marshall (1985);  
Webb (1997, 2006) 

Early-Middle 
Pleistocene 

Still some marine connections existed between the Caribbean 
and eastern Pacific (based on gastropod occurrences). 

Beu (2001) 

~3 Possible breach of the Isthmus (trend of decreasing salinity in the 
western Atlantic); Evidence that eastern pacific waters may have 
spilled over the Isthmus during high sea level stand (evidence 
from planktonic foraminifers). 

Cronin & Dowsett (1996) 

2.8–2.5 Trend of increasing salinity (evidence for Isthmus re-closure at 
2.8 Ma) 

Cronin & Dowsett (1996) 

+ 
2.5–1.9 Permanent divergence of eastern Pacific and Caribbean faunas 

and floras; End of sustained surface current flow through the 
gateway. 

Crouch & Poag (1979); 
Gartner et al. (1987); 
Keller et al. (1989) 

2 Possibly another breach of the Isthmus (indications from gross 
trends in salinity and from Atlantic Coastal Plains)  

Cronin & Dowsett (1996) 

+
1.8 

 

Maximum divergence of faunal provinces began; “[…] littoral-
neritic leakage“ (p. 73; Keller et al. 1989) between the oceans 
until 1.8 Ma. 

Keller et al. (1989) 

 

Table from Steph (2005) modified and supplemented. For tectonic processes see Montes et al. (2012a) Fig. 
9a-d; * = chronological events of the Miocene Isthmus closure; + = cited from Steph (2005), p. 1-17; Ma = 
million years ago. 
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5 Ecological Consequences of the Isthmus Formation 

The geological history of the Isthmus of Panama had an immense impact on the environments of 

the divided oceans. These environmental changes influenced the evolution of the biotic fauna 

and flora substantially. Today the western Atlantic and the eastern Pacific environments differ 

notably in several physical and ecological characteristics (e.g., Jackson & Budd 1996; Keigwin 

1982; Lawrence et al. 2006; Maier-Reimer et al. 1990; Rubinoff 1968). Species distribution 

patterns as we see them today can often be explained by extinction events and species 

origination and adaptation processes, which were driven by the changing ecological conditions. 

The understanding of this relationship (environmental changes due to the Isthmus formation – 

species distribution patterns) is important when studying the evolutionary history of species, 

which were separated by the Isthmus of Panama. This chapter is concerned with these changing 

oceanographic and environmental conditions during the Isthmus formation and describes the 

ecological patterns (based on abiotic factors) in both oceans we can observe today. In the 

second part of this chapter the occurrence and distribution of selected species groups in relation 

to the former described environmental conditions on both sides of the Isthmus (biotic 

differences) are summarized.  

5.1 Abiotic changes during the isthmian uplift and patterns today 

The emergence of the Isthmus of Panama and subsequent isolation of the eastern Pacific and 

western Atlantic was a long process, which began in the Middle Miocene (Coates et al. 2005, but 

see Chapter 4). The Isthmus emergence is considered to be the largest and most important 

geological event of the Cenozoic with wide effects on environmental and oceanographic 

conditions on a global (Kameo & Sato 2000 and references therein; Ravelo et al. 2004) and on a 

regional scale (Collins 1996a; Cronin & Dowsett 1996). Prior to emergence of the Panama 

Isthmus, the eastern Pacific and western Atlantic were connected and the westward flowing 

warm Equatorial Atlantic Current (EAC) passed unimpeded into the eastern Pacific (Maier-

Reimer et al. 1990; for details see Chapter 4). Differences in environmental conditions of both 

oceans during the isthmian uplift were marginal (Jones & Hasson 1985; Keigwin 1982a). While 

the shoaling of the Isthmus proceeded, the marine connections between the oceans became 

narrower (Figure 4-3). In the western Atlantic, the EAC was diverted northward and the flow of 

the Gulf Stream was intensified (Berggren & Hollister 1974; Burton et al. 1997). By the end of the 

Pliocene, the oceanographic and environmental conditions between the western Atlantic and the 

eastern Pacific became more developed (Coates & Obando 1996; Teranes et al. 1996). Today, 

several of these conditions differ significantly between the marine systems of the divided oceans 

(e.g., Fuglister 1960; Glynn 1972; Jackson & D’Croz 1997; Wyrtki 1981; see Table 5-3), as well as 

on a regional scale. Therefore, O’Dea et al. (2004) divided the coasts of Panama into four 

ecoregions: The Bocas del Toro and San Blas regions on the Caribbean side, and the Gulf of 

Chiriquí and the Bay of Panama on the Pacific side (Figure 5-1). The authors defined the range of 

the regions as follows: “In the Caribbean, the Bocas del Toro region ranges from the Archipelago 

de Bocas del Toro in north-western Panama along the Golfo de Mosquitos to the exit of the 
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Panama Canal, whereas the San Blas region extends from the Canal eastwards along the Costa 

Arriba to the San Blas Province. On the Pacific side, the Gulf of Chiriquí extends from the border 

of Costa Rica to the central edge of the Azuero Peninsula, whereas the Bay of Panama ranges 

from the southeastern tip of the Azuero peninsula to the Darien” (p. 150, O’Dea et al. 2004, 

citation slightly modified; Figure 5-1).  

 

 

Figure 5-1: Four ecoregions along the Caribbean and eastern Pacific coasts of Panama. The Bocas del Toro and 
San Blas regions are on the Caribbean side. The Gulf of Chiriquí and the Bay of Panama are on the Pacific side 
(modified after O’Dea et al. 2004). 

5.2 Climate and temperature 

The changing environmental and oceanographic conditions due to the isthmian closure had a 

strong impact on the global climate. In the Early to Mid-Pliocene it was characterized by global 

surface temperatures, which were around 3.5 °C warmer than today (Sloan et al. 1996), and a 

stronger thermohaline circulation (Ravelo & Andreasen 2000). During the Late Pliocene the 

global temperature gradually decreased (Ravelo et al. 2004). The main causes for this event are 

still part of debate. Based on ostracods and planktonic foraminiferal studies, Cronin & Dowsett 

(1996) verified that around 3 million years ago (Ma) the oceanic heat flux of the North Atlantic 

increased in northward direction, which in turn, could have essentially influenced the global 

climate (Rind & Chandler 1991). Several studies postulate that the northeastern shift in western 

Atlantic currents (Bartoli et al. 2005; Haug et al. 2001; Haug & Tiedemann 1998) and 

accompanied redirection of warm, saline water to high latitudes (Berggren 1972; Berggren & 

Hollister 1974) had played a fundamental role in the onset of Plio-/Pleistocene glaciation (also 

known as the ‘Panama hypothesis’, Keigwin 1982a). Support for the Panama hypothesis is also 

given by Lunt et al. (2008). Based on an ocean-atmosphere circulation- and an ice sheet model 

they concluded that the Isthmus closure played a role in the onset of Northern Hemisphere 

Glaciation (NHG), although it was not a primary factor. They proposed that a decreasing level of 

P a n a m a

Bocas del Toro
- no upwelling

- low seasonaltiy

- moderate to low productivity

- environmentally heterogeneous

- seagrass, mud, and reef dominated

- no upwelling
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- environmentally homogeneous
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San Blas

- strong upwelling

- very high seasonaltiy
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- environmentally homogeneous

- poor reef development, mangoves dominated

Gulf of Chiriquí
- weak upwelling

- low seasonaltiy
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- environmentally homogeneous

- poor reef development, mangoves dominated
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atmospheric CO2 played a more fundamental role of NHG, as it was discussed by Berger et al. 

(1999). However, Klocker et al. (2005) challenged the assumption that the Isthmus closure and 

subsequent northward heat transport triggered in particular NHG. They argue that the heat 

transport resulted in higher air-temperatures of the (Sub-) Arctic with subsequent retreat of 

perennial snow cover. This assumption is also supported by an earlier study of Berger & Wefer 

(1996) who proposed that the increased heat transport rather postponed the formation of ice 

sheets in the Northern Hemisphere. However, in spite of the temporal accordance of Isthmus 

closure (i.e. Pliocene model) and the intensification of NHG, it is not clear whether the closure 

droved (Berggren & Hollister 1974), delayed (Berger & Wefer 1996) or preconditioned (Driscoll & 

Haug 1998; Haug & Tiedemann 1998) NHG. 

Today, both sides of the Isthmus show substantial seasonal differences in their climate on a 

large, as well as on a regional scale (Figure 5-1). On a large scale, the western Atlantic shores 

experience generally stronger winds, rainfall, and more seasonal variation in cloud cover than 

the eastern Pacific (Glynn 1972). Usually, the wet season starts in May and reaches its climax in 

October or November (Glynn 1972) with high temperatures (Abele 1974). The dry season 

receives its peak from January to April with low temperatures and the occurrence of pronounced 

northeast trade winds (winds of high velocity; Abele 1974; D’Croz & O’Dea 2007; Glynn 1972).  

Changes in sea surface temperatures occurred constantly during the Isthmus formation. In 

general, the western Atlantic was warmer than the eastern Pacific, which reflects modern 

conditions (Groeneveld et al. 2014). The temperature increased in the western North Atlantic 

around 3.5–2.8 Ma by 2–3 °C (Bartoli et al. 2005; Cronin & Dowsett 1996) and again between 

2.4–2.0 Ma, possibly due to a re-closure of the Isthmus (Table 5-1; Cronin & Dowsett 1996). 

Based on foraminiferal Mg/Ca and δ18O measurements, Groeneveld et al. (2014) studied sea 

surface temperatures for glacial-interglacial cycles after the intensification of NHG around 

2.5 Ma. They found that sea surface temperatures varied between 21.1–25.3 °C in the eastern 

Pacific, and between 22.8–27.6 °C in the western Atlantic. The maximum temperatures in the 

eastern Pacific occurred during the interglacial, while minimum temperatures appeared during 

glacial periods. In contrast, maximum temperatures in the western Atlantic occurred during both 

peaks of glacial and interglacial times, while minima were observable during the glacial-

interglacial transition (Groeneveld et al. 2014). Thermocline temperatures varied between 18.3–

21.1 °C, were more stable, and warmer during the transition in the eastern Pacific, whereas they 

were more variable in the western Atlantic (17.3–22.8 °C) and in average 2–3 °C warmer in the 

late glacial periods (Groeneveld et al. 2014). 

Today, water temperatures are pronounced by seasonal changes and differ on a regional scale, 

as well as between both oceans. In general, the sea surface temperatures of the western Atlantic 

are 2–3 °C warmer than in the eastern Pacific and characterized by only little variation during the 

year (Locarnini et al. 2006; O’Dea et al. 2004). 

The year mean temperature on the Caribbean side is 28.2 °C (Glynn 1972). On a more regional 

scale, the mean temperature at Bocas del Toro (western Atlantic) is between 26.5–28.7 °C (Key 

et al. 2013) and for the Bay of Panama 26.6 °C (Glynn 1972). The water temperatures of the 
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Panama Canal entrances on both sides differ around two degrees. However, the Bay of Panama 

is generally affected by upwelling events that may decrease the water temperature within 24 

hours to 15 °C (Glynn 1972). In contrast, during low tides, the water temperature of high tide 

pools can reach maxima of 43 °C.  

The two divided regions of the Pacific coast of Panama, the Bay of Panama (shelf area 

27 175 km2) and the Gulf of Chiriquí (shelf area 13 119 km2, D’Croz & O’Dea 2007), show 

considerably differences in their hydrology. The Bay of Panama is characterized by wind-driven 

upwelling during the dry season. In contrast, the Gulf of Chiriquí shows no evidence for a similar 

process (e.g., D’Croz & O’Dea 2007). However, the Gulf of Chiriquí has a higher freshwater input 

(due to higher rainfall and river discharge) than the Bay of Panama (D’Croz & O’Dea 2007). In 

2007, the mean annual rainfall was 3415.12 mm in the Gulf of Chiriquí and 2158.33 mm in the 

Bay of Panama (D’Croz & O’Dea 2007).  

The open surface water in both regions is pronounced by strong seasonal winds, whereas wind 

rates for the Bay of Panama are generally three times as strong as for the Gulf of Chiriquí during 

the dry season. While northerly winds are intense during the winter in the Bay of Panama (Xie et 

al. 2005), the high mountains in the west of Panama extenuate these winds and the Gulf of 

Chiriquí is less affected (D’Croz & O’Dea 2007). The Gulf Chiriquí is enclosed by land to the north 

and east (and only semi-enclosed to the west). Based on studies regarding surface circulations of 

the eastern Pacific (Kessler 2006), and their own observations, D’Croz & O’Dea (2007) assumed 

that in the Gulf of Chiriquí the surface water enters from the west and replaces wind displaced 

south moving water. In contrast, the Bay of Panama is only open to the south, hence, displace of 

surface water by northerly winds is much more effective. During the wet season, both regions 

are influenced by either southern or as well as northern winds (D’Croz & O’Dea 2007). 

In both Pacific regions warm surface water lies on top of cool deep water. Assuming a 

thermocline by the position of the 20 °C isotherm (D’Croz & O’Dea 2007), the Bay of Panama 

shows a sharp rising thermocline almost to the surface during the dry season, which has cooling 

effects of the surface water. In contrast, the thermocline in the Gulf of Chiriquí rises to about 

30 m and hence, there are no significant cooling effects for the surface water. D’Croz & O’Dea 

(2007) pointed out a significant correlation between surface water temperatures and the 

northern winds, but only in the Bay of Panama. However, during the year the Bay of Panama is 

characterized by changes in the sea surface temperature and a shallow thermocline, whereas 

the Gulf of Chiriquí shows stable surface temperatures but a deep thermocline (D’Croz & O’Dea 

2007). 

5.3 Salinity 

The affection of the deep water circulation around 4–5 Ma due to the continuing closing of the 

Panama Isthmus, resulted in increasing surface salinities of the western Atlantic (Dowsett & 

Cronin 1990; Haug & Tiedemann 1998; Keigwin 1982a). While salinity concentrations decreased 

substantially in the western Atlantic about 3.1–2.8 Ma they increased again between 2.8–2.4 
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Ma, which hint toward a breaching and re-closure of the Isthmus (Cronin & Dowsett 1996; Table 

5-1; see also Chapter 4).  

Today, the western Atlantic and eastern Pacific differ in their salinity concentrations by around 

1–2‰ (35.7–36.5‰ and 34.5–35‰ respectively; Antonov et al. 2006). This difference is mainly 

caused by evaporation in the western Atlantic, the transport of water-vapor over the Isthmus of 

Panama by the trade winds, and subsequent rainfall over the eastern Pacific (Groeneveld et al. 

2014; Mestas-Nuñez et al. 2007). Near the Panama Canal entrances of both oceans, river runoffs 

influence the surface salinity additionally. During the wet season minimum salinity values attain 

18–22‰ in these regions. Moreover, the intertidal zone especially on the Caribbean coast of 

Panama shows strong salinity fluctuations. During the 5-month wet-period, 330 cm of rain can 

fall and changes salinity concentrations in exposed pools by 20‰ in only few hours (Abele 1974). 

In general, during the dry season (January-April) the surface waters around the Panama coasts 

are characterized by high salinity values, whereas low salinities occur during the wet season 

(Abele 1974). D’Croz & O’Dea (2007) measured regional variation in salinity along the Pacific 

coast and salinity concentrations in both regions are influenced by rainfall and river runoffs, 

especially during the wet season. The Gulf of Chiriquí is usually characterized by warm surface 

water, which is low in salinity throughout the year. In contrast, salinity values in the Bay of 

Panama are low only in the wet season. During the wet season, surface water salinity 

concentrations in both regions were 30‰ or less and increase to > 33‰ in deeper regions 

(D’Croz & O’Dea 2007). The Bay of Panama, however, showed more pronounced salinity 

fluctuations in the beginning of the wet season than the Gulf of Chiriquí, with concentrations 

below 29‰. During the dry season, surface water salinity concentrations rise in both regions and 

reach about 32‰ in the Gulf of Chiriquí and above 33‰ in the Bay of Panama, due to the 

displace of the warm and nutrient poor surface water by the transisthmian winds and the 

subsequent upwelling of deep, saline waters (D’Croz & O’Dea 2007).  

Table 5-1: Historical temperature, salinity and sea level changes of the western Atlantic (WA) related to 
re-openings and -closures of the Panama Isthmus between 4–2 Ma. 

Time Interval 
(Ma) 

Panama 
Isthmus* 

Southwestern North Atlantic 
Temperatures 

WA Salinity 
Eustatic 

Sea Level 

2.4–2.0 closed? warm low high 

2.8–2.4 closing cool low  normal low 

3.1–2.8 open warm decreasing high 

3.5–3.1 closing cool  warm normal high 

4.2–3.5 open cool low? high 

*Closing and opening events of the Panama Isthmus refers to surface water (data and table from Cronin & 
Dowsett 1996, table p. 96). Ma = million years ago. 
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5.4 Hydrodynamic forcing 

The western Atlantic and eastern Pacific differ considerably in upwelling events. In general, 

upwelling events bring deep nutrient-rich waters to the surface, reduce sea surface water 

temperatures (extreme local temperature variations from 27–15 °C within 24 hours) and 

increase primary production (Glynn 1972; Teranes et al. 1996 and references therein).  

About 3.65 Ma when the eastern Pacific was no longer influenced by the northward diverted 

EAC (Kameo & Sato 2000) strong seasonal upwelling developed (Wellington & Robertson 2001). 

Upwelling events have stayed constant or increased during time in the low-latitudes of the 

eastern Pacific (Ibaraki 1997; Teranes et al. 1996) and did not change after the closure of the 

Isthmus of Panama (Maier-Reimer et al. 1990). Today, along the Pacific coast these upwelling 

events occur during the dry season from January to April, which show regional variations (O’Dea 

et al. 2004; Teranes et al. 1996; Figure 5-1). Especially the Bay of Panama experiences strong 

upwelling because the low-lying coast is affected by the northerly winds and surface water is 

moved offshore (Glynn 1972; O’Dea et al. 2004; Xie et al. 2005). In contrast, weak upwelling 

occurs along the coasts of Venezuela and Colombia during the wet season (D’Croz et al. 1991; 

Glynn 1972; Jackson & D’Croz 1997). In general, no upwelling events are observable along the 

western Atlantic coasts of the Isthmus (Jackson & D’Croz 1997; O’Dea & Collins 2013; Figure 5-1). 

However, several evidences (e.g., areas of cold temperatures in a general warm Late Pliocene, 

Cronin & Dowsett 1996; faunal indicators of cold waters, Allmon 1993; Allmon et al. 1996; 

evidence for high productivity, Keller & Barron 1983; Carbon and oxygen isotopics, Allmon et al. 

1996; Jones & Allmon 1995) show that the low-latitude of the western Atlantic was pronounced 

by local upwelling events until about 3 Ma before declined (Allmon 2001). In contrast to the 

western Atlantic, no upwelling events occur along the Panama coasts of the eastern Pacific 

during the wet season (D’Croz & O’Dea 2007) and the Bay of Panama and the Gulf of Chiriquí 

show similar hydrological patterns (warm surface waters, intense thermocline, stratification of 

the water column). 

The tides of both sides of the Panama Isthmus show differences in their time-intervals, forecasts, 

and amplitudes. The Bay of Panama is characterized by highly predictable semi-diurnal tides of a 

maximum daily range amplitude of 6 m, whereas the western Atlantic tides are mixed (i.e. semi-

diurnal as well as diurnal), less predictable and characterized by only a slight amplitude (< 2 m). 

Moreover, western Atlantic tides are significantly influenced by local climatic conditions like 

onshore winds during the dry season, which results in unusual high water levels, turbidity and an 

increase of suspended sediments (Abele 1974; Chesher 1972; Glynn 1972; Palka 2005). 

Sea level change is another parameter, which changed substantially in the western Atlantic 

about 3.1–2.8 Ma (high sea level) and again between 2.8–2.4 Ma (low sea level) and supports 

the assumption of a breaching and re-closure of the Isthmus (Cronin & Dowsett 1996; Table 5-1; 

see also Chapter 4). Today, in general the water level of the eastern Pacific along the American 

coast is around 50 cm higher than of the western Atlantic coast (Reid 1961). Around the Panama 

Canal entrances the average sea level on the eastern Pacific side is more than ⅟4 meter higher 
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than on the western Atlantic (Reid 1961). However, the water level on both oceans is fluctuating 

in response to wind and upwelling events (D’Croz & O’Dea 2007). 

5.5 Nutrients and productivity 

When studying nutrient compositions and productivity patterns in marine systems, the so called 

Redfield ratio (Redfield 1934) is an important tool to estimate primary and secondary 

productivity (Thangaradjou et al. 2014). More precisely, the Redfield ratio reflects the nitrogen–

phosphorus relation in a ratio of 16:1, which is considered to be suitable for the growth of 

phytoplankton (D’Croz & O’Dea 2007; Redfield 1958). Additionally, chlorophyll a concentrations 

can be used as an index of marine phytoplankton abundances and productivity patterns 

(Thangaradjou et al. 2014). However, estimations of marine nutrient ratios and their effect on 

chlorophyll distribution can provide evidences for possible growth limitations in phytoplankton 

(Paul et al. 2008). This correlation is important because phytoplankton constitutes the food 

source for herbivorous consumers, which in turn, present the source for different levels of 

carnivorous consumers and, in the end, of top predators. 

In general, high productivity rates are associated with upwelling events. Because of local 

upwelling in the western Atlantic until around 3 Ma (as mentioned above), productivity values 

were high. Several other evidences support this assumption. For example, Allmon et al. (1996) 

studied vertebrate and invertebrate fossils of the eastern Gulf of Mexico. Based on isotopic 

analyses they assumed that during the Pliocene the productivity in the western Atlantic was 

higher than today. Due to the isthmian closure, the environmental and oceanographic conditions 

especially in the Caribbean changed dramatically and the productivity broke down (Allmon 

2001).  

Today, the western Atlantic and the eastern Pacific show differences in their seasonal dynamics 

between nutrients and upwelling processes (D’Croz & O’Dea 2007). Variability occurs also on a 

regional scale. In the eastern Pacific the Gulf of Chiriquí and the Bay of Panama show seasonal 

differences (D’Croz & O’Dea 2007). Generally, during the wet season, both regions show low 

nutrient concentrations near the surface, which increase with depth. During the dry season 

upwelling, nutrient rich water rises from about 40 m to the surface in the Bay of Panama and 

nutrient concentrations increase (see above). Because enriched waters only move upward to a 

level of about 30 m in the Gulf of Chiriquí, nutrient concentrations stay low (D’Croz & O’Dea 

2007). Along the western Atlantic coast, the Bocas del Toro archipelago and the San Blas region 

differ in their nutrient dynamics as well. The Chiriquí Lagoon of the Bocas del Toro archipelago 

has a large nutrient input resulting from freshwater runoffs and high human impact. 

Additionally, half of the lagoon is enclosed by land resulting in “long residence times of the 

water” (p. 423, D’Croz et al. 2005). In contrast, the San Blas region is more oligotroph due to low 

human impact and only small freshwater input. Moreover, this region is pronounced by “open 

coastal zones” (p. 423), thus nutrients are more easily washed away (D’Croz et al. 2005). 

In respect to nitrogen–phosphorus ratios (N:P ratios) both regions show generally values (< 5:1) 

below the Redfield ratio (16:1) near the surface with increasing values by depth. This pattern 
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was observable in both regions during the wet season (no upwelling) down to 50 m depth 

(D’Croz & O’Dea 2007) and nutrients may become depleted by freshwater input due to 

maximum rainfall (Fiedler et al. 1991). However, in the Bay of Panama the Redfield ratio 

increases and shows maximum N:P ratios during the mid-dry season at about 40 m (D’Croz & 

O’Dea 2007). 

Chlorophyll a concentrations are also different in both regions. During upwelling events, high 

chlorophyll a values are observable in the Bay of Panama, while low values occur in both regions 

during the wet no upwelling season (D’Croz et al. 1991; D’Croz & O’Dea 2007). D’Croz & O’Dea 

(2007) assumed that the general low rates of chlorophyll in the upper water level is related to 

limited nitrogen during the entire year in the Gulf of Chiriquí and during the wet season in the 

Bay of Panama. During upwelling events, nutrients and, in turn, chlorophyll concentration 

increased in the Bay of Panama. 

5.6 Summary 

In the southern Caribbean the water temperature is on average 2 °C warmer and the western 

Atlantic waters are around 1‰ more saline than those of the eastern Pacific (Haug et al. 2001; 

Teranes et al. 1996). Reasons for these temperature and salinity differences are higher rates of 

evaporation in the western Atlantic and transport of the moisture-rich air to the eastern Pacific. 

Moreover, the western Atlantic water is more influenced by freshwater due to estuaries and 

poor on nutrients, whereas the eastern Pacific water is influenced by lagoons and rich on 

nutrients (O’Dea et al. 2007). The eastern Pacific coast is pronounced by “interannual and 

seasonal variations in temperature and productivity associated with El Niño events and 

upwelling are great, planktonic productivity is high, corals and seagrasses are rare to absent, and 

suspension feeders overwhelmingly dominate benthic communities. In contrast, the Caribbean 

coast experiences no upwelling, much smaller interannual and seasonal variability, and lower 

planktonic productivity” (p. 5501, O’Dea et al. 2007 and references therein; Figure 5-1). Based on 

these described environmental characteristics of both oceans, the coasts of the western Atlantic 

are considered as more heterogeneous than the eastern Pacific coasts (O’Dea et al. 2007). Based 

on these criteria, the coasts of Panama can be split into four different regions: the Bocas del 

Toro and San Blas regions in the western Atlantic, the Gulf of Chiriquí and the Bay of Panama in 

the eastern Pacific (Figure 5-1; O’Dea et al. 2004). O’Dea et al. (2004) generalized the three main 

environmental differences between the western Atlantic and eastern Pacific. The authors argued 

that these differences do not only occur along the entire coast of each ocean, but also on a 

regional scale, i.e. between regions along the same coast (p. 148):  

1) The coastal waters in the eastern Pacific are substantial more productive than in the 

western Atlantic.  

2) The western Atlantic coast is environmentally more stable than the coast of the eastern 

Pacific. Environmental changes on the Pacific coast occur in different intervals: 

temperature and nutrient levels are influenced by upwelling events on a seasonal time-
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scale. El Niño events intermittently interrupt the normal seasonal cycles on an inter-

annual timescale, which can lead to attenuate upwelling.  

3) The western Atlantic shows a wider range of habitats than the eastern Pacific and is 

ecologically more complex.  

5.7 Biotic differences of the two oceans  

The above described oceanographic changes have a significant impact on habitat structures 

(Heinze & Crowley 1997), which in turn, have an immense influence on faunal composition (see 

below). Cronin & Dowsett (1996) showed that the intervals of Isthmus re-openings and -closures 

led to shallower oceanic thermal gradients than those today, which resulted in wider ranges of 

suitable habitats for marine species. For example, ostracod species were able to disperse to 

middle and high latitudes due to these wider ranges of fitting refuges (Cronin & Dowsett 1996). 

Yet, in the Late Pliocene/Early Pleistocene, differences in faunal patterns existed only on a small 

scale, which were often pronounced due to sedimentation patterns, for example between the 

Bocas del Toro and Limón Basin (Collins et al. 1995). These observations were also noticed by 

Teranes et al. (1996) using δ18O analyses of fossil bivalve shells. In another study, Schneider & 

Schmittner (2006) argue that the emergence of the Isthmus and the accompanying change in 

ocean circulation shifted marine biological productivity patterns in both oceans. The reduced 

flow-through of rich nutrient Pacific surface water led to a decrease of productivity in the 

Atlantic, while the productivity in the eastern Pacific increased.  

Today, the western Atlantic is characterized by sympatric occurring coral reefs, seagrass beds, 

and mangroves. In contrast, the habitat structure in the eastern Pacific differs considerably 

(Figure 5-2). Coral reefs and mangroves occur separately from each other and seagrass beds are 

widely absent (Jackson & D’Croz 1997). The authors pointed out that “in the absence of reefs, 

mangroves and seagrasses are restricted to bays and estuaries, where they are protected from 

the full force of the sea. When reefs are present, mangroves and seagrasses may occur behind 

them anywhere along the coast” (p. 47, Jackson & D’Croz 1997).  

As a result of the different environmental conditions described above, species occurrences and 

abundances along the eastern Pacific and western Atlantic coasts of Panama differ considerably 

(O’Dea et al. 2004). Several paleontological and stratigraphical studies reveal the patterns of 

faunal occurrence, which we can observe today (reviews in Allmon 2001; Budd 2000; Collins & 

Coates 1999; Jackson et al. 1996a). For example, cupuladriids (O’Dea et al. 2004), encrusting 

bryozoans (Cheetham & Jackson 2000), corals (Glynn 1982), sponges (van Soest 1994) and 

benthic foraminiferans (Collins 1999) are more diverse in the western Atlantic than the eastern 

Pacific (list from O’Dea et al. 2004). On the other hand, for example echinoderms, mollusks and 

crustaceans are slightly more diverse in the eastern Pacific (e.g., Abele 1972, 1976; Chesher 

1972; Vermeij 1996).  

The geographic distribution of mollusks and crustaceans in the western Atlantic and eastern 

Pacific is generally controlled by habitat types and, hence, by environmental conditions. In the 

70s, the number of Panama associated mollusks (Bivalvia and Gastropoda) on the eastern Pacific  



5 Ecological Consequences of the Isthmus Formation 

32| 

 

 

Figure 5-2: Panama – Distribution of mangroves, coral reefs and seagrasses. Gray shades: land masses, gray 
line: Panamian border to Colombia (right) and Costa Rica (left), blue lines: rivers, dashed lines show isobaths, 
green shades: mangrove distribution, blue shades: distribution of coral reefs, orange shades: distribution of 
seagrasses. Map modified after D’Croz & O’Dea 2007 (p. 326). For references of the different habitat 
distributions see ‘Ocean Data Viewer A-C’ (Chapter 13).   
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side was estimated by around 4500 species. At that time, the approximately number of mollusk 

species along the western Atlantic coast of Panama was unknown (Olsson 1972). Based on a 

metadata analysis in 2010, Miloslavich and colleagues estimated the mollusks diversity of the 

Caribbean and counted a total of 3032 species. Approximately 587 of these species inhabit the 

western Atlantic coast of Panama, which Miloslavich et al. (2010) described as intermediate 

molluskan richness (less than 1000 species). However, mollusks present the most diverse group 

in the Caribbean. Endemism is around 26% and many endemic species are found among 

Cypraeidae, Marginellidae, Olividae and Columbellidae (Díaz 1995; Miloslavich et al. 2010 and 

references therein).  

Diversity and distribution patterns, as well as extinction and origination events of the marine 

biota on both sides of the barrier are associated with changing environmental and 

oceanographic conditions during the emergence of the Isthmus of Panama (Allmon 2001). 

Intense extinction- and origination events occurred in particular among mollusks in the western 

Atlantic during the Miocene and Pliocene (Allmon 2001; Todd et al. 2002; Woodring 1966), 

which is also observable in the fossil record (O’Dea et al. 2007). For example, from 27 species of 

the genus Strombina in the early Pliocene, only 3 recent species occur in the western Atlantic but 

are abundant in the eastern Pacific (Jackson et al. 1996b). For these strombinids the change of 

temperature due to the Isthmus closure seems a partial explanation for their extinction and 

origination events (Jackson et al. 1996b).  

The change of nutrient availability and productivity, as well as changes in temperature during 

the Isthmus emergence (see above), influenced the occurrence and distribution of mollusk 

species in both oceans and forced morphological changes, for example in suspension- and non-

suspension feeders (e.g., Turritellidae, Marginellidae, Columbellidae; Allmon et al. 1995). There 

are many examples of variation in diversity patterns among molluskan species between both 

oceans today. For example, Vermeij (1996) pointed out that the number of muricid mollusks in 

comparable habitats between the two oceans is slightly higher in the eastern Pacific. More 

precisely, the Pacific coast of Panama contains 61 muricid species, whereas 58 species occur in 

the western Atlantic around Florida, followed by 46 species from the coasts of Venezuela. 

Bivalves show similar patterns, whether lower rates than gastropods, of origination and 

extinction events during the Late Pliocene. For example, chionine bivalves of the family 

Veneridae experienced extinction rates of 82.6% in the western Atlantic and 38.5% in the 

eastern Pacific during the Pliocene (Roopnarine 1996). Due to high origination rates during the 

Pleistocene, the eastern Pacific chionine fauna is more diverse than the western Atlantic fauna 

today. Analog to the strombinid mollusks (Jackson et al. 1996b), morphological patterns of 

chionine bivalves are associated with a decrease in productivity in the Caribbean, i.e. Pacific 

species are larger than their Caribbean relatives (Roopnarine 1996). The same pattern is shown 

among corbulid bivalves (family: Corbulidae). Eastern Pacific species increased in size during the 

Late Neogene, whereas western Atlantic species decreased (Anderson 2001). The author argued 

that these size developments based on nutrient changes, especially a reduction of nutrient 

availability in the western Atlantic, during the emergence of the Isthmus (Anderson 2001; see 

above). Along the eastern Pacific shores dense populations of oysters can be found at mid- and 
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high-tidal levels, which in turn, provide microhabitats for a rich microbiota (Glynn 1972). In 

contrast, the western Atlantic shores at comparable tide-levels harbor only few sessile shelled 

species, though in most regions they are absent (Glynn 1972). 

Crustaceans are the second diverse phylum within the western Atlantic counting approximately 

2916 species (mollusks = 3032 species; Miloslavich et al. 2010). Environmental conditions, in 

particular the abundance of different substrates, influence the composition and richness of 

species in the respective habitats substantially (Abele 1974, 1976; Kinne 1963). For example, the 

feeding grounds and -times of decapods in the intertidal zone are affected by tides. At low tide, 

more feeding grounds are available, which is also reflected in high species abundances (Abele 

1974). Other examples are the mangrove species Panopeus herbstii and Eurytium limosum. 

Abele (1976) pointed out that these widely distributed and mangrove associated species inhabit 

marshes, when mangroves are absent. 

In 1972, Abele studied the decapod fauna of different ecotypes (sandy beach, mangrove, and 

rocky intertidal among others) and compared the decapod diversity between the eastern Pacific 

and western Atlantic in the respective habitat (Table 5-2). A total of 25 decapod species were 

collected in the sandy beach habitat of the eastern Pacific (17 species) and western Atlantic (8 

species) coasts of Panama (Abele 1972). The most abundant species on the eastern Pacific coast 

was the mole crab Emerita rathbunae and accounted for over 50% of all collected individuals. On 

the western Atlantic coast, the most common species was the mole crab Hippa testudinaria 

(50% of all collected individuals; Abele 1972). The faunal assemblage and diversity is related to 

the substrate structure. The sand beaches of the eastern Pacific are quartz based and stabilized 

by mud. This is reflected by burrow-inhabiting species of e.g., Callianassa, Pinnixa, and 

Ambidexter. In contrast, the western Atlantic sand beaches are calcareous and affected by 

shifting due to strong winds and irregular tides during the dry season. Burrow-inhabiting species 

are absent (Abele 1972). 

The red mangrove Rhizophora mangle is predominantly occurring on both coasts of Panama. The 

number of sampled mangrove associated species varies only slightly between the oceans 

(eastern Pacific –20 species, western Atlantic –17 species). The most abundant decapod genera 

on the Pacific side were Petrolisthes and Sesarma, in particular the species Petrolisthes zacae, 

Eurytium tristani, and Sesarma rhizophorae. Abele (1972) mentioned that S. rhizophorae was 

also found in the western Atlantic mangroves, despite the assumption that this species is 

restricted to the eastern Pacific. On the western Atlantic side, the most common decapod 

species were Panopeus herbstii, Merguia rhizophorae, Uca rapax, and Sesarma curacaoense.  

The rocky intertidal comprises a diverse fauna of decapod species. Abele (1972) found 78 species 

in the eastern Pacific and 67 species on the western Atlantic coast of Panama. The most 

common species along the eastern Pacific rocky intertidal were the hermit crabs Clibanarius 

albidigitus and Calcinus obscurus, as well as Xanthodius sternberghii and Petrolisthes armatus. In 

contrast, on the western Atlantic coast, the most abundant decapod species were Calcinus 

tibicen, Paraliomera dispar, Clibanarius antillensis, C. tricolor, Cataleptodius floridanus, and 

Pachygrapsus transversus. 
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Abele (1972) summarized that the eastern Pacific coast is slightly richer in decapod species than 

the western Atlantic if same habitats are compared. Additionally, Abele (1972) realized that an 

increase of (closely related) species is related to an increase of the complexity of the habitat 

(Table 5-2). In his study, Abele (1976) estimated that around 6% of the observed decapods are 

identical between the two sides of the barrier, whereas 45% “have undergone slight 

morphological modifications resulting in the recognition of species-pairs termed geminate or 

analogous species” (p. 263; Table 5-2). 

Table 5-2: Comparison of Panamanian crustacean communities between different habitat types. 

Community 
Number of Species Number of Closely 

Related Species 
Similarity 
Index (%) Eastern Pacific Western Atlantic 

Sandy Beach 17 8 3 pairs 26 

Mangrove 20 17 10 pairs 54 

Rocky Intertidal 78 67 27 pairs 37 

Table and data adapted from Abele 1972 (p. 130) and 1976 (p. 266). 

Based on the abiotic conditions, the fauna of sandy beaches along the western Atlantic coast is 

more restricted in comparison to the eastern Pacific side. Glynn (1972 and references therein, 

but see Dexter 1972) pointed out that “a Pacific beach contained approximately three times as 

many species (n = 41), six times the density of individuals (1434/m2) and nine times the biomass 

(9.13 gm/m2) of an Atlantic beach community” (p. 23). In contrast, species of western Atlantic 

beaches are more uniform distributed. 

Coral reefs shape the widely distributed calcareous sand beaches of the western Atlantic coasts 

of Panama (Glynn 1972). The extensive lava coasts and rarity of reefs in the eastern Pacific offer 

a striking biological and physical contrast to the limestone-coral coast of the Caribbean side. 

These patterns of reef growth and coral distribution is reflected in the more unstable 

environments of the eastern Pacific (see above; Glynn & Colgan 1992 and references therein; 

Porter 1972; Figure 5-2). In contrast to western Atlantic coral reefs, the reefs of the eastern 

Pacific are commonly small, isolated, and characterized by monospecies of Pocillopora, Porites or 

Pavona (Glynn & Colgan 1992). Porter (1972) pointed out that only six hermatypic scleractinian 

coral genera (out of 100) occur in both oceans, and on species level both oceans have probably 

only one species in common (out of 800). In respect to ahermatypic scleractinian coral genera 

the western Atlantic and eastern Pacific have around 20 genera in common (out of 150), and an 

undefined number of species. In general, the western Atlantic coasts of Panama are known as 

the richest coral region within the Caribbean, inhabits around 49 hermatypic and 16 ahermatypic 

scleractinian corals (Porter 1972). In contrast, the coasts of the eastern Pacific harbor around 16 

hermatypic and one ahermatypic scleractinian corals (Porter 1972). 

Earle (1972) reported a total of 195 marine plant species from both sides of the Panama Isthmus. 

Along the western Atlantic coast, 125 species were found and 90 species occurred along the 
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eastern Pacific coasts of Panama. A total of 20 species were common to both oceans and were 

often widely distributed or cosmopolitan. The well-developed seagrass beds in the western 

Atlantic coast of Panama are pronounced by Thalassia testudinum and Halodule wrightii 

(intertidal distribution), as well as Syringodium filiforme and Halophila baillonis (subtidal 

distribution; Earle 1972). In general, the western Atlantic and eastern Pacific differ also in the 

occurrence of algae groups. In the western Atlantic, fleshy algae are predominant within the 

low-tidal level, whereas filamentous algae are more common in the eastern Pacific (Glynn 1972). 

Around 15 species (15%) of green algae occur on both sides of the Isthmus of Panama (Wysor 

2004). However, environmental differences between both oceans are reflected in the diversity 

of certain algae species, for example of the macroalgae family Udoteaceae. The western Atlantic 

inhabits around 34 species of this family, whereas only three species are present in the eastern 

Pacific. Wysor (2004) explained this pattern with “the lack of sandy habitats on the Pacific coast” 

(p. 227). 

5.8 Summary 

Beside the considerably oceanographic differences between the western Atlantic and eastern 

Pacific (see Subchapter 5.1) habitat and biotic differences between the oceans are also well 

pronounced (Figure 5-2). Cronin and Dowsett (1996) pointed out that the closure of the Isthmus 

presents a key event for the biotic evolution and occurrence of species on both sides of the 

Isthmus and for the evolution of transisthmian sister species (TSS) in particular (for a detailed 

discussion about TSS see Chapters 6 and 8). Thus, the following patterns of habitat structure and 

species occurrence can be observed between the western Atlantic and eastern Pacific: 

- Coral reefs, seagrass beds, and mangroves occur sympatrically along the western Atlantic 

coasts, whereas coral reefs and mangroves occur separately from each other and 

seagrass beds are widely absent in the eastern Pacific (Table 5-3; Figure 5-2). 

- Species distribution depends on habitat structure and environmental conditions. Thus, 

e.g., encrusting bryozoans, cupuladriids, corals, sponges, and benthic foraminiferans are 

more abundant in the western Atlantic, whereas mollusks, crustaceans, and echinoderms 

are slightly more diverse in the eastern Pacific (Table 5-3). 
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6 Transisthmian Sister Species 

Terminological terms regarding transisthmian sister species (TSS) are clarified in this chapter and 

the theoretical criteria for determining TSS are outlined. In form of a review this chapter builds a 

theoretical framework for the later ‘Case Studies’. Therefore, the first part of this chapter 

introduces the term TSS, presents a brief overview about the evolution of TSS, and summarizes 

the criteria, which have to be met to attain the status of a TSS. In the second part, these criteria 

will be reviewed and critically discussed in detail. 

6.1 What are transisthmian sister species? 

Note: The term transisthmian sister species (TSS) in not clearly defined and numerous synonyms 

and derivatives referring to TSS are casually used throughout the literature. In Chapter 8 this 

problematic and confusing determination will be discussed in detail. However, the following 

paragraph will briefly summarize and explain the most important terms regarding TSS used in 

this thesis 

Definition: 

[Terms referring to transisthmian sister species and used as false synonyms in this study: 

geminate species; sibling species; sister species; twin species; see Chapter 8 for details]. 

In 1908, David S. Jordan (Jordan 1908) coined the term geminate species for “twin species – each 

one representing the other on opposite sides of some form of barrier” (p. 75). Phylogenetically 

the term sister species refers to species, which are each other’s closest relatives and whose 

evolutionary branches coalesce to a most recent common ancestor (MRCA, Figure 6-1). In the 

isthmian context, these sister species are also known as transisthmian sister species and refer to 

taxa that have diverged as a result of the emergence of the Isthmus of Panama. In almost 

complete isolation, each member of a pair evolved independently on either side of the Isthmus. 

For a clear and unambiguous understanding of the following (sub-) chapters it is crucial to define 

and discriminate between different terms derived from TSS (see Chapter 8 for more details; 

Figure 6-1): 

- Transisthmian sister species pair (TSS pair) – This term refers to TSS as one entity (i.e. 

one representative of the western Atlantic forms a pair with its sibling of the eastern 

Pacific, directly linked to the closure of the Isthmus of Panama). 

- Transisthmian sister species complex (TSS complex) – This term refers to TSS where 

several species on one side of the Panama Isthmus, can represent the putative sister to 

the species on the other side (Collins 1996b). 

- Transisthmian pseudo sister species (pseudo-TSS) – This term refers to TSS originated 

from speciation events, which are not linked to the Isthmus of Panama formation and 

occurred before or even after the final closure (e.g., due to dispersal or extinction 

events; Hurt et al. 2009; Miura et al. 2012). 
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Figure 6-1: Definition of the different terms referring to transisthmian sister species (TSS). green = species of 
the western Atlantic, blue = species of the eastern Pacific; black dashed line = extinction event, gray dashed line 
= Isthmus closure; A: TSS pair; B: TSS complex; C1-C2: Pseudo-TSS – due to extinction (C1), origination after (TSS 
pair A of C2) and before the Isthmus closure (TSS pair B of C2). 

6.2 The evolution of transisthmian sister species 

The closure of the Isthmus of Panama had a direct effect on oceanographic and environmental 

conditions of both oceans and the American continents, as well as on the diversity of the marine 

and terrestrial biota (see Chapter 5). In the marine context, populations of diverse marine taxa 

were separated and experienced one of three outcomes, which are traceable in phylogenetic 

analyses (Figure 6-2): (i) populations of the same species survived on both sides of the Isthmus 

(i.e. TSS evolved), (ii) the population survived on only one side of the barrier (i.e. no evolution of 

TSS), or (iii) the populations on both sides became extinct. Even though most populations only 

survived on one side or their paths ended in extinction numerous TSS evolved. These origination 

events were primarily driven by allopatric divergence, i.e. due to the emerging Isthmus and 

subsequent reproductive isolation between the populations (Lessios 1998; Wiens 2004). 

Diverged populations with initially similar genomes experienced separate evolution in different 

environments. These populations represent a natural experimental setting to study speciation 

processes in general and the mechanisms of genetic drift and natural selection in particular in a 

defined time frame (Lessios 2008; Palumbi 1994; Wiens 2004). 

Isthmus closure
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Figure 6-2: The evolution of TSS. Due to the closure of the Isthmus of Panama, populations of the same species 
A: survived on both sides of the Isthmus (TSS evolved), B: survived on only one side of the barrier (no evolution 
of TSS), or C: became extinct on both sides (black dashed line).  

Today, species distributions and abundances are determined by the different physical 

environments of both oceans (Figures 5-1 and 5-2; for details see Chapter 5). The eastern Pacific 

is characterized by more productive coastal waters and an environmentally unstable coast, 

whereas the western Atlantic is formed by diverse habitats. These differences are reflected by 

the various occurrence of e.g., sponges (van Soest 1994), encrusting bryozoans (Cheetham & 

Jackson 2000), cupuladriids (O’Dea et al. 2004), and benthic foraminiferans (Collins 1999) in the 

western Atlantic (list from O’Dea et al. 2004). Coral reefs show quite different species 

distribution patterns between the western Atlantic and eastern Pacific. These highly diverse 

ecosystems cover large areas in the western Atlantic, whereas coral reefs in the eastern Pacific 

are patchy, less diverse and younger (Budd 2000; Cortés 1997; Glynn 1982; Figure 5-2). These 

characteristics of eastern Pacific coral reefs are the result of extreme temperature, salinity and 

nutrient conditions enduring since the isthmian closure (Cortés 1997; Chapter 5). Another 

example of different biodiversity patterns between the two oceans is represented by seagrass 

beds. Brasier (1975) postulated that the marine seagrass genus Thalassia inhabited frequently 

the bays of the eastern Pacific, but disappeared after final Isthmus closure. Today, seagrass beds 

are widely absent in the eastern Pacific, but very common in the western Atlantic (Jackson & 

D’Croz 1997). On the other hand, mollusks (Roy et al. 2000), crustaceans (Jones & Hasson 1985), 

and echinoderms (Chesher 1972) appear to be diverse in both oceans with a slightly higher 

abundance in the eastern Pacific (e.g., Abele 1972, 1976; O’Dea et al. 2004; Vermeij 1996). 

6.3 The criteria to be a transisthmian sister species pair 

When exactly do species achieve the status of a TSS pair? General assumptions as well as specific 

criteria regarding to biogeographic distribution, morphological similarities, and molecular 

characteristics were defined to classify species as geminates (see Collins 1996b). Specifically 

these criteria are: 

Isthmus closure
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1) Geographic isolation drives speciation processes 

(e.g., Eldredge & Gould 1972; Mayr 1954). 

2) The barrier and the consequentially isolated taxa are of the same age 

(Humphries & Parenti 1999). 

3) TSS distribution ranges are close to the Isthmus 

(Collins 1996b). 

4) Related taxa on either side of the barrier show similarities in their morphology 

(Collins 1996b). 

5) TSS pairs and -complexes within a genus show similar divergence ages 

(Collins 1996b). 

These criteria are discussed in more detail in the following subchapters and resulting problems 

will be highlighted. 

6.3.1 Geographic isolation drives speciation processes 

Geographic isolation is the prevalent cause that drives speciation processes in organisms. The 

Isthmus of Panama, where sporadic gene flow between organisms exists until today, presents an 

outstanding example to study evolutionary processes in a natural environment in general and to 

provide a basis for intensive research on diverse topics on e.g., speciation (Cronin 1985; Jordan 

1908; Mayr 1954), isolating processes (Lessios & Cunningham 1990), and biogeographic patterns 

(Ekman 1967; Vermeij 1978) in particular. Lessios (1998, p. 187) pointed out four reasons why 

the Isthmus of Panama and its resulting TSS is an ideal model to study first stages of geographic 

speciation: 

a) The aspect of time. 

The time of Isthmus emergence and its final closure is very well defined (assuming an 

Isthmus closure around 3 million years ago) and sufficient for species to accumulate 

measurable differentiations. 

b) The efficiency of the barrier. 

The Isthmus of Panama almost completely impeded genetic contact between the marine 

species on both sides of the barrier, likely more effective than any other comparable 

barrier. 

c) Collective separation. 

The simultaneous separation of numerous different species (i.e. species with for example 

different life histories and dispersal abilities) provides comprehensive possibilities to test 

essential factors, which may play a key role in differentiation and speciation processes. 

d) Different environmental conditions. 

The western Atlantic and the eastern Pacific environments differ markedly in several 

ecological parameters (e.g., temperature, salinity, upwelling events; see Chapter 5 for 

details) and have been in place for over 3 million years (My; Cronin & Dowsett 1996; 

D’Croz et al. 1991; Glynn 1972). Thus, the different environmental conditions of both 

oceans provide a useful setting to study adaptation processes of TSS. 
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In summary, the closure of the Isthmus of Panama and the evolution of TSS present an ideal 

setup to study first stages of speciation, even if the observed patterns are not always easy to 

interpret (Lessios 1998). Vermeij (1993) outlined that “Tropical America will continue to be 

perhaps the finest laboratory in which to answer the big questions about what controls 

biological diversity" (p. 1604). 

6.3.2 The barrier and the consequentially isolated taxa are of the same age  

Humphries & Parenti (1999) pointed out that the age of a barrier (like the Isthmus of Panama) 

and the age of the thereby isolated species has to be the same. Indeed, studies that 

concentrated on the evolution of TSS usually assumed that the youngest TSS pair of a phylogeny 

diverged as a direct consequence to the final Isthmus closure (note the discussion about possible 

re-openings and -closures of the Isthmus in Chapter 4) and, therefore, should be of the same age 

as the barrier itself (Collins 1996b). However, there are numerous examples of assumed TSS pairs 

showing dispersed divergence ages (e.g., reviewed in Lessios 2008). These findings result from 

speciation events, which are not directly linked to the Isthmus closure but indicate that species 

have separated long before the final closure or even afterwards. Several studies showed that the 

occupied habitat may have an influence of the species divergence ages. Deep water species, for 

example, should have been affected earlier by the rising Isthmus. Shallow water species, on the 

other hand, may have crossed the Isthmus until just prior to its final closure (Ekman 1967; Frey 

2010; Knowlton & Weigt 1998). This assumption is in accordance with studies on crustacean 

species. Among crustaceans, mangrove and shallow water species show young divergence ages 

(conform to the Isthmus closure at 3 Ma) compared to those which occupy deeper habitats (e.g., 

Knowlton & Weigt 1998; Schubart et al. 1998). Also changing marine physical conditions 

accompanied by the rising Isthmus may have played a role regarding the time of divergent events. 

Species, with low tolerances to changing oceanographic conditions (e.g., salinity, temperature, 

current patterns) might have migrated before the last periods of Isthmus emergence (Duque-Caro 

1990; Hurt et al. 2009). However, there are also descriptions of pseudo-TSS (note that the 

definition of pseudo-TSS in this study differs from Hurt et al. 2009). In their context, these TSS 

are defined to have originated from speciation events before the final Isthmus closure 

accompanied by extinction events. These pseudo-TSS exhibited larger genetic distances and 

therefore an older divergence age, than expected in true geminates (Hurt et al. 2009). 

Extinction events and an incomplete sampling present other sources of questionable TSS pairs. 

For example, if one member of a TSS pair had gone extinct (e.g., the western Atlantic member), 

the phylogeny would prune down and identifies the next most related species to the extinct one 

as the true sibling (Lessios 1998; Figure 6-1 C1). This, in turn, would result in an apparent TSS pair 

with older divergence age (Marko & Jackson 2001). Knowlton & Weigt (1998) pointed out that 

such extinction events and hence delusive TSS pair relations are common and explained it with 

the oceanographic differences between the two oceans (see chapter 5). An example for such a 

scenario are mollusks, which show low numbers of recent TSS pairs, probably due to severe 

extinctions in the Pleistocene (e.g., Marko 2002; Williams & Reid 2004; Woodring 1966). 

Although the fossil record of marine organisms is often poor and contains gaps, it supports the 



 The criteria to be a transisthmian sister species pair 

|45 

 

assumption that TSS status was, however, not enforced by the rising Isthmus alone but also 

driven by extinction events. Bivalves, gastropods (Stanley 1986; Todd et al. 2002) and corals 

(Budd 2000; Budd et al. 1996) present such organisms, which show pronounced pulses of 

extinction. 

On the other hand, there are several examples of species, which show much younger divergence 

ages than the age of the Isthmus, pointing toward speciation events subsequent to the Isthmus 

closure (Lessios 2008). These observations may base on dispersal (Miura et al. 2012; see below), 

continued gene flow between geminate species after the final Isthmus closure, interrupted gene 

flow of different TSS pairs at different times (Lessios 1998), or an additional speciation event of 

one twin member after spatial isolation, which results in the appearance of TSS complexes (e.g., 

Collins 1996b and references therein). 

In summary, the criterion that the age of a barrier is concordant to the age of the isolated 

species may result in misleading assumptions. Different sources of error account for wrong 

determined TSS pairs and divergence ages: 

- Gene flow may have occurred before or after the final completion of the Panama 

Isthmus. 

- Species’ ability and thresholds to adapt to changing environmental conditions. 

- Extinction events may have occurred or the sampling was incomplete. 

Furthermore, it is misleading to assume a simultaneous splitting in all TSS pairs: “Species on 

either side of the Isthmus may have been separated by the same barrier, but the final 

interruption of gene flow may not have occurred at the same time” (p. 188, Lessios 1998). The 

fossil record may give critical evidence for questionable TSS pair relations (De Queiroz 2005) as it 

provides detailed information regarding divergence processes and past- and modern-day 

patterns of (sister) species occurrence (Budd 2000; Jackson et al. 1993). 

6.3.3 TSS distribution ranges are close to the Isthmus  

At the beginning of the 20th century Jordan & Kellogg (1907) noticed the phenomenon that 

related species are closely distributed to the separating barrier. Based on this observation they 

proposed the law of distribution for closely related species: “Given any species in any region, the 

nearest related species is not likely to be found in the same region nor in a remote region, but in 

a neighboring district separated from the first by a barrier of some sort, or at least by a belt of 

country, the breadth of which gives the effect of a barrier” (p. 120). However, there are also 

several examples where TSS show a widespread distribution, which is not directly linked to the 

barrier (e.g., crustaceans, Williams et al. 2001; echinoderms, Lessios et al. 2001; mollusks, Marko 

2002). Such distributions can be explained by extinction (Cunningham & Collins 1994; Keppel et 

al. 2009) and various forms of dispersal- and migration events. Because distribution patterns are 

an important factor to study the evolution and occurrence of TSS, the following paragraph 

reviews this topic in more detail. 
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6.3.3.1 Gene flow in spite of a closed Isthmus 

Transport and migration patterns of aquatic organisms (and in this context of TSS in particular), 

are important factors to understand species distribution, the colonization of new habitats, gene 

flow and, in the end, potential speciation processes (Walther et al. 2015). Movements of 

organisms take place constantly and the occupation of new regions depends on the availability 

of suitable habitats. The following paragraph will focus on migration and dispersal forms more 

closely, in particular on (i) oceano- and geographic modes, (ii) active and passive dispersal, and 

(iii) geological conditions. 

(i) Several studies indicate that after the Isthmus closure, low regions of the Isthmus breached 

(several times) due to salt water incursions, which were enforced by sea level fluctuations 

(Cronin & Dowsett 1996; Haq et al. 1987). Lessios (1998) pointed out that such breaches 

persisted only for short time intervals. For example, foraminiferal assemblages point toward an 

"incipient littoral-neritic leakage" (p. 73, Keller et al. 1989) across the Isthmus between 2.4–

1.8 Ma (Crouch & Poag 1979; Keller et al. 1989). However, re-openings and -closures of the 

Isthmus allowed species to migrate between the oceans beyond ~3 Ma, which is reflected in 

young divergence times of TSS pairs (e.g., Lessios 2008, see Chapters 4 and 10). 

(ii) The movement of individuals to new regions is known as dispersal. Thereby two modes of 

transport can be differentiated: active and passive dispersal. Active dispersal involves self-

generated movements of individuals to new sides, while passive dispersal implies transport by 

external vectors (currents, other organisms, wind, anthropogenic) and is accepted as the more 

common form (Bilton et al. 2001). Active movements are shown in a variety of aquatic species 

like meiobenthic copepods (Fleeger et al. 1995), soft-sediment invertebrates (Butman 1987), and 

reef fish larvae (Montgomery et al. 2001). The covered distances for active dispersal range from 

small scales (centimeters to meters in soft-sediment invertebrates) up to 100 kilometers in reef 

fish larvae (Butman 1987; Montgomery et al. 2001, respectively). 

As mentioned before, passive dispersal is the more common form and can occur due to different 

vectors and on different scales: 

Currents – they provide opportunities for long-distance dispersal in which dispersal distances 

vary widely and depend on oceanographic conditions, species life history strategies and larval 

behavior (Shanks 2009). 

Biotic vectors – eggs, larvae, juveniles and even adult specimens of different invertebrate groups 

(mainly mollusks and crustaceans) are transported by migratory birds (in their guts and 

subsequent dispersion, attached to feathers, bills or legs; Figure 6-3; e.g., Green & Figuerola 

2005; Sousa 1993; Wesselingh et al. 1999) and other animals (Bilton et al. 2001). A study by 

Miura et al. (2012) showed that closely related snails of Cerithideopsis spp. were only recently 

dispersed across the isthmian barrier by migrating shorebirds in both directions. Their molecular 

clock analyses (see Chapter 7) indicated dispersal events from the Pacific to the Atlantic about 

750 000 years ago and from the Atlantic to the Pacific around 72 000 years ago. 
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Figure 6-3: ‘Pride comes before the fall’. Etching from Marcus Gheeraerts, 1567. 

Wind – Vanschoenwinkel et al. (2008) demonstrated that wind is often an underestimated 

dispersal vector and plays an important role in distribution patterns of (freshwater) 

invertebrates, especially where other dispersal vectors are scarce or absent. 

Anthropogenic – this factor has become common on (aquatic) species distribution. Bilton et al. 

(2001) summarized several examples of “human-mediated dispersal” (p. 173) due to e.g., 

introduction of species into a new environment through escapes or releases of species from 

aquariums, culturing farms, and bait fishing, and the development of artificial water channels –

most prominently, the Panama Canal. This freshwater connection between the Caribbean and 

eastern Pacific constitutes a direct migration route between the oceans for several fish species 

(McCosker & Dawson 1975) since its opening in 1914. Yet, only one fish species is known to have 

successfully colonized the other side (Rubinoff & Rubinoff 1968). Furthermore, planktonic and 

fouling organisms have successfully crossed the Isthmus in ballast water of ships or attached to 

their hulls (Chesher 1968; Muirhead et al. 2015; Roy & Sponer 2002). The introduction of 

(nonnative) species into a new environment due to anthropogenic transport can result in critical 

invasions of the introduced species, even to the point of extinction of the native fauna (Clavero 

& García-Berthou 2005) and with dramatic effects on ecology and economy (Hebert et al. 1989; 

Pimentel et al. 2005). In any case, dispersal by humans implies rather recent events (within the 

last 3500 years; Keppel et al. 2009). 

(iii) Beside the classic dispersal patterns discussed above, various marine connections could offer 

alternative ways for genetic exchange between taxa of the western Atlantic and the eastern 

Pacific even after the final Isthmus closure: in the north the Bering Strait (e.g., Gladenkov et al. 

2002) and in the south the Drake Passage (Lessios 2008). However, both water ways were 

presumably insurmountable for tropical organisms, since water temperatures around the Bering 

Strait region decreased during the Pliocene due to Northern Hemisphere Glaciation (Maslin et al. 

1998) and also the Drake Passage cooled down (Hodell & Warnke 1991). 
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Several studies give evidences for genetic contact between several taxa within the last 3 Ma 

through circumglobal migration patterns (e.g., trumpetfishes (Aulostomus) and sea urchins 

(Diadema); Bowen et al. 2001; Lessios et al. 2001, respectively). Thus, potential sister species 

with a member showing a cosmopolitan distribution may not have evolved as a result of the 

emerging Isthmus but rather due to long distance migration routes around the world (Lessios 

1998). 

In summary, the assumption that TSS distribution ranges are close to the Isthmus is not met by 

all TSS. Several authors pointed out that many taxa show broad geographical distributions (see 

above), which are based on different dispersal vectors, oceano- and geographic factors, as well 

as geological conditions. Additionally, extinction events play a significant role in distribution 

patterns and are crucial for biogeographical interpretations (Keppel et al. 2009). 

6.3.4 Morphological similarity between TSS 

Günther (1868) was the first to recognize morphological similarities between fish taxa from both 

sides of the Isthmus. Thus, the assumption arose that TSS in general are very similar in their 

morphology to each other. In fact, the literature is rich of TSS whose status was based merely on 

similar morphological characteristics, e.g., brittle stars and sea urchins (Chesher 1972; Roy & 

Sponer 2002), gastropods, bivalves, and cephalopods (e.g., Aronowsky & Angielczyk 2003; Marko 

& Jackson 2001; Vermeij 1978; Voight 1988), stomatopods and isopods (e.g., Manning 1969; 

Weinberg & Starczak 1989), and fishes (Jordan 1908; Lessios et al. 1995; Rubinoff 1963). 

However, the designation of sister species as geminates, which bases on morphological similarity 

alone is potentially problematic (Collins 1996b). For example, Losos (2009) showed that the 

degree of morphological similarity is not an unambiguous characteristic to determine the degree 

of relatedness in Caribbean lizards. Also Knowlton (1986) and Felder & Staton (1994) showed 

that morphological characters alone are often insufficient to distinguish closely related decapod 

species (Figure 6-4). These observations fit into the general problem of the morphological 

species concept. In their position paper, Meier & Willmann (2000) summarized the main 

objections regarding the morphological species concept (p. 34). They conclude that the 

classification of species, if based on morphological characters alone will result in random and 

unstructured taxonomy. 

TSS complexes, on the other hand, constitute another source of error, because true TSS 

relationships can be easily obscured. Based on molecular analysis, Marko & Moran (2009) 

studied the bivalve genus Acar and found a high cryptic diversity within, which obscured the 

number of postulated TSS pairs. Their results are in accordance with the general paleontological 

perspective that high rates of species diversification occurred after final Isthmus closure. This 

example shows that molecular genetics may uncover patterns in certain studies, which were not 

detectable due to morphological methods, and that phylogenetic relationships between 

potential TSS can be revealed (Figure 6-4 A). On the other hand, if species are too diverse in their 

morphological characteristics, potential TSS pairs will stay undetected. This can happen if taxa 

have diverged long before the completion of the Isthmus (see above) and morphological 

characteristics have become various (Collins 1996b). 
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Figure 6-4: TSS determination based on morphological characters alone may result in misleading and false 
assumptions regarding TSS relationships. A) The species Sesarma sp. (nr. reticulatum) was assumed to be 
closely related to S. reticulatum. Molecular analysis revealed that the species is, in fact, S. curacaoense. B) The 
eastern Pacific species S. sulcatum and S. aequatoriale both belong to the Sesarma TSS complex B of this study. 
Based on a similar morphology, they are easily to confuse. C) The species P. hartii and P. purpureus (Panopeus 
TSS pair) show a very similar morphology. Additional photos of the species are shown in the Appendix (A3). 

In summary, to study TSS on morphological characteristics alone is often problematic. TSS 

complexes or high morphological variation between species can lead to misinterpretations and 

finally to wrong TSS pair designations. Lessios (1998) summarized this problem: “[…] lacking a 

morphological clock, we have no means of estimating the amount of morphological change 

expected to occur in 3 million years” (p. 188). Thus, TSS analyses should not be based on 

morphological comparisons alone rather a combination of different methods should be applied 

to study the relationships between TSS pairs. 

6.3.5 Similar divergence ages between TSS pairs and -complexes 

Molecular analyses are a useful tool to reveal taxonomic relationships and to identify TSS pairs, 

especially where traditional methods like morphological comparisons are less clear (Collins 

1996b; see above). The discovery of a correlation between the elapsed time since species 

separated from their MRCA and the amount of accumulated molecular differences (e.g., 

Gillespie 1991; Nei 1987), has been a huge step forward in molecular biology in general and in 

evolutionary studies in particular. Since the mid-1970s, various methods were developed to 

estimate genetic differences in species, e.g., through protein studies (e.g., Gorman & Kim 1977; 

Nei 1972; Vawter et al. 1980) or DNA comparisons (e.g., Kimura 1980; Knowlton et al. 1993). The 

general assumption is that evolutionary rates of the same protein/gene are similar among 

closely related TSS pairs and thus, divergence times can be compared with each other. This 

allows the identification of simultaneous divergence events between TSS pairs, which in turn, 

can be correlated to respective geological events (e.g., the closure of the Isthmus of Panama; 

Lessios 2008). This so-called ‘molecular clock approach’ offers a possibility to estimate 

divergence times, particularly when other information is unavailable (e.g., due to a poor fossil 
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record; see Chapter 7 for details). Based on similar genetic distances, several authors 

demonstrated simultaneous diversification processes of TSS within the same genus (e.g., 

Bermingham & Lessios 1993). However, many studies have also shown that rates vary 

considerably within taxa and between genes (e.g., due to occupation of different habitats; but 

see Chapter 7 for details). In 2008, Lessios published a review about the emergence of the 

Isthmus of Panama and resulting TSS pairs. In this review, Lessios reports a total of 38 DNA 

fragments, which have been sequenced in numerous different clades (n) of echinoids (n=9), 

crustaceans (n=38), fishes (n=42), and mollusks (n=26). After Lessios (2008) uniformly reanalyzed 

the previous studies he concluded that 34 of the published clades “are likely to have been 

separated at the final stages of Isthmus completion, 73 split earlier and 8 maintained post-

closure genetic contact” (p. 63) due to the high genetic distance observed. For example, TSS 

pairs within bivalves, with the smallest genetic distance, have been separated from each other 

before the Isthmus closure (Marko 2002; but see Lessios 2008, table 4). The reason for the rarity 

of recent true TSS pairs might be related to, amongst others, extinctions of closer related 

lineages in the Pleistocene (e.g., Lessios 2008; Marko 2002; Williams & Reid 2004) or wrong 

assumptions regarding the abruptness and effectiveness of barriers, which geographically and 

genetically isolate species (Collins 1996b). 

In summary, the molecular clock approach allows the dating of divergence events of closely 

related species, assuming relative evolutionary rate constancy through time. These divergence 

events can be correlated to vicariance events, such as the closure of the Isthmus of Panama. The 

prediction that TSS pairs show similar divergence times and rates, which correspond to the 

emergence of the Isthmus of Panama, is questionable for most of the predicted TSS pairs 

(Knowlton & Weigt 1998; Lessios 2008). In the majority of cases, TSS became isolated from their 

MRCA during different time intervals, independent of the Isthmus emergence (Lessios 2008, see 

discussion above). 

6.4 Summary 

The comprehensive review of the five specified criteria revealed that a general classification of 

TSS pairs into the five criteria is not practicable. The fulfillment of such criteria strictly depends 

on the analyzed TSS pair, in particular on their life histories, dispersal and adaptation abilities, 

tolerance thresholds, and preference of habitats. Therefore, only criterion ‘a’ (i.e. Geographic 

isolation drives speciation processes) is naturally met by any TSS pair. However, in Chapter 9, 

these criteria will be analyzed and discussed in respect to the studied TSS pairs and -complexes 

of this study. 
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7 The Molecular Clock 

The so called molecular clock approach is concerned with the dating of divergence events 

between two sister species. If a molecular clock for a particular gene exists and its rate of 

evolution can be obtained, then the unknown divergence times between two species can be 

estimated. On the other hand, the assignation of time to a particular divergence process allows 

inferring rates of molecular evolution. These rates are based on the assumption that divergence 

events of closely related species occurred nearly at the same time. In this context, the closure of 

the Isthmus of Panama constitutes an important calibration point and is the most widely used 

geological event for calibrating the molecular clock. 

This chapter presents a brief overview of the early history of the molecular clock, and the 

advantages and pitfalls of this method are critically reviewed. The last part of this review focuses 

on uncertainties of molecular clock calibrations and the use of the Isthmus of Panama as 

calibration point in particular. 

7.1 The molecular clock — The discovery of the constant ticking 

During the past decades, biologists have used a range of methods to study diversification 

processes of species from a common ancestor. One widely applied method is the molecular clock 

approach. The general concept of this inventive method is to relate the divergence times of taxa 

to the number of fixed mutations (i.e. substitutions) in nucleotide or amino acid sequences (e.g., 

Wilke et al. 2009, p. 25). 

The basic idea of the molecular clock dates back to the sixties, when the scientists Emile 

Zuckerkandl and Linus Pauling (1962) observed that amino acid differences were accumulated in 

an amount, which was roughly proportional to divergence times of the species, estimated from 

fossil evidence. In 1965, Zuckerkandl & Pauling mentioned the molecular clock for the first time. 

They noted that, if their assumptions regarding a molecular clock were true, then “the changes 

in amino acid sequence will, however, be limited almost exclusively to the functionally nearly 

neutral changes” (p. 149, Zuckerkandl & Pauling 1965). This idea was taken by several scientists 

who suggested that neutral changes in sequences and the observed rate constancy can be useful 

tools to estimate divergence times (e.g., Kimura 1968; Sarich & Wilson 1967; Wilson & Sarich 

1969). Based on these observations, the neutral theory of molecular evolution was proposed 

(Kimura 1968). This theory initially predicted that the number of neutral substitutions was 

constant (i.e. substitution rate) and equal to the rate of evolutionary change, regardless of the 

effective population size (Ne). 

However, in 1971, Kimura & Ohta observed heterogeneity patterns in substitution rates of 

amino acids. This led to a modification of the neutral theory of molecular evolution to the nearly 

neutral theory of molecular evolution, where Ne and slightly deleterious substitutions were 

taken into account (Ohta 1972a; b, 1973). Thus, Ne scales inversely with the substitution rate, i.e. 

“it is possible for a large number of alleles with neutral and slightly deleterious mutations to 
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remain transient in a large population for relatively long periods of time before slowly being 

fixed or removed by genetic drift or purifying selection” (p. 707, Crandall et al. 2012). 

7.2 The molecular clock — A controversial debate 

The applicability, in particular the accuracy, of the molecular clock is discussed controversially. 

Numerous publications address problems regarding, for example, different evolution rates of 

genes, rate heterogeneity among different taxonomic groups, body size effects, or the time 

dependency of molecular clocks (e.g., Britten 1986; Bromham & Penny 2003; Ho & Larson 2006; 

Kimura & Ohta 1971; Takahata 2007; Thomas et al. 2006). Moreover, the careless and uncritical 

use of such a powerful tool for divergence time estimations leads additionally to unrealistic 

estimates and brings uneasiness and refusal against the molecular clock within the scientific 

community (Howell et al. 2008; Pulquério & Nichols 2007). Wilke et al. (2009) pointed out that 

this concern (i.e. use of the molecular clock as statistical tool) is often based on the complex 

mathematical background, inflexible software packages, confusing terminology, and a lack of 

credible calibration points/bounds or rates. Despite all the concerns and difficulties regarding 

the molecular clock approach, Takahata (2007; in reference to Bromham & Penny 2003) 

declared that: 

“[…] the molecular clock can put a new timescale on the history of life, thereby allowing 

exploration of the mechanisms and processes of organismal evolution. Similarly, a molecular 

clock is an irreplaceable source of information in evolutionary biology and it would be foolish to 

abandon it altogether […]. Despite inherent fluctuations and various interpretations, the 

molecular clock has become a most useful tool—perhaps the most useful—for studying 

molecular evolution” (p. 4, Takahata 2007). 

This statement seems to be prospective since the molecular clock is a powerful tool in 

evolutionary biology, as long as it is applied with caution and methodicalness. It should be noted 

that the use of the molecular clock does not necessarily implies an exact clock, but an 

approximation of the clock (i.e. estimation of significant errors which affect the clock rate), 

which still can be very useful (Takahata 2007). Nevertheless, this approximation in particular 

presents inconveniences (e.g., Ayala 1997; Ho & Phillips 2009; Pulquério & Nichols 2007). 

7.3 Calibrating the clock — A difficult endeavor 

In general, two main approaches are distinguishable in molecular clock analyses: the relaxed 

molecular clock and the strict molecular clock. On the one hand, there are several theoretical 

and practical studies published demonstrating that molecular clock rates can vary along 

branches of a phylogenetic tree (e.g., Ayala 1997; Bromham & Penny 2003; Drake et al. 1998; 

Takahata 2007; Thomas et al. 2006). These variations are reflected by relaxed molecular clocks 

(i.e. rates are allowed to vary based on several substitution rates along the branches of a 

phylogeny; Wilke et al. 2009). On the other hand, it has been shown that, under certain 

circumstances, variation within a group of species can be constrained (see table 3 in Wilke et al. 
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2009) and thus, a strict molecular clock (i.e. only one substitution rate for all branches of a 

phylogenetic tree) can be applied (Wilke et al. 2009). 

However, some issues should be considered when using the molecular clock approach, such as 

rate heterogeneity (i.e. mutations occur at different rates along the branches of a phylogenetic 

tree), the persistence of ancestral polymorphism (i.e. the amount of heterogeneity that is 

present in an ancestral population before the divergence event), substitutional saturation of the 

data set, the effect of purifying selection (i.e. high short-term mutation rates vs. low long-term 

substitution rates), or the sensible estimation of the prior conditions of the clock values (list 

from Wilke et al. 2009). Moreover, the use of single sequences (hence the possibility of species 

misidentifications), inaccuracy in molecular analyses (amplification or use of different gene 

regions and, perhaps of different species), the inclusion of pseudogenes (see Lessios 2008), or 

algorithms that are not convenient for the data set often complicate molecular clock analyses 

(Bandelt 2008). These problems are widely discussed in the literature and sometimes considered 

and optimized in molecular clock studies (e.g., Hickerson et al. 2003; Wilke et al. 2009). Another 

important issue is that many studies do not address the data together with their model 

selections, resulting in ambiguous conclusions and, in the end, in unreproducible divergence 

times/rates. In fact, several authors pointed out (e.g., Ho et al. 2005; Pulquério & Nichols 2007; 

Wilke 2004, but see Wilke et al. 2009) that difficulties with data sets and misinterpretation of the 

yielded results can affect molecular clock estimates in the same taxon by over 1000%. Other 

issues are biological factors, which may influence molecular clock rates and hinder clock 

calibrations. These biological factors are discussed below in more detail. 

7.4 Biological factors  

In order to understand how rates can be constant, it is important to note that substitution rates 

can be affected by biological variables. Ayala (1999) specified five biological factors that may 

influence the substitution rate within and between lineages (list modified from Wilke et al. 2009, 

p. 34): 

1)  Generation time — shorter generation times accelerate the clock because the time for new 

mutations to be fixed is shortened. This assumption is especially important, if the major source 

of mutations is DNA replication-dependent errors; also see Takahata 2007. 

2)  Effective population size — larger population sizes will slow the clock because the time for new 

mutations to be fixed is increased; also see Woolfit & Bromham 2005. 

3)  Species-specific differences in properties that affect DNA replication — different species may 

have various properties, which in turn, lead to diverse mutation rates; also see Bromham & 

Penny 2003. 

4)  Changes in the function of a protein as evolutionary time proceeds — for example in the case 

of gene duplications, which may result in an acceleration of the mutation rate, and  

5)  Natural selection — adapting patterns and processes differ for every organism and therefore, 

making a precise prediction regarding evolutionary rates unfeasible. 
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Beyond these factors, Wilke et al. (2009) mentioned further variables: 

6)  Body size effect — smaller species lean to have faster rates of molecular evolution; Gillooly et 

al. 2005; Martin & Palumbi 1993, but see Thomas et al. 2006. 

7)  Body temperature — organisms differ in their body temperature, which affects metabolic 

rates. Higher metabolic rates increase the production of oxygen radicals causing DNA damage, 

which in turn, leads to mutations; Bleiweiss 1998; Gillooly et al. 2005, but see Lanfear et al. 

2007, and 

8)  Life history traits — mutation rates of mitochondrial and nuclear genes are supposable higher 

in hermaphrodites than those in gonochorists; Davison 2006; Foltz et al. 2004. 

Most of these predictions are highly hypothetical and several of these variables are 

controversially discussed, disproved or not even been tested in the context of the molecular 

clock (Wilke et al. 2009). As described above, the influence of these variables on substitution 

rates might not be uniform, but gene and taxon specific (e.g., Lanfear et al. 2007; Wilke et al. 

2009). Several studies could not find a relationship between substitution rates and one of these 

variables. For example, Thomas et al. (2006) found no correlation between substitution rate and 

body size in invertebrates, and Kumar & Subramanian (2002) found no significant correlation 

between generation time and substitution rates among diverse groups of mammals. In fact, 

many scientists believe that taxon specific differences are the result of the uneven process of 

natural selection (e.g., Takahata 2007). However, in diverse groups, for example invertebrates, a 

universal molecular clock may be untenable (Thomas et al. 2006), but acts effectively and valid in 

smaller groups, like birds, where biological and life history variation is more constrained (Weir & 

Schluter 2008, see Wilke et al. 2009). In fact, the development of gene-specific molecular clock 

rates (i.e. trait-specific), which can be used for groups of species with similar biological 

requirements, would be a great advantage in the field of evolutionary biology. Therefore, it is 

important to know which variables affect the clock rate to correct for errors a priori (Wilke et al. 

2009). Such potential studies on molecular clock rates are rare. However, an example is given by 

Wilke et al. (2009), who developed a trait-specific clock in invertebrates (i.e. Protostomia clock). 

7.5 Set the clock — Calibration points/bounds and external molecular clock rates 

In general, divergence times are estimated from node depths within a given phylogeny. To 

perform these estimations calibration point(s) or bound(s), or a suitable external molecular clock 

rate (i.e. universal clock rate or taxon- or gene-specific clock rates) are required (Table 7-1). The 

selection of adequate calibration points/bounds or external clock rates, both with high accuracy 

and validity, is not a simple decision, mainly due to a lack of reliable data that can be used to 

calibrate the clock (Andújar et al. 2014; Wilke et al. 2009). In fact, the procedure of clock 

calibration seems to be one of the most sensitive operations to yield conclusive estimations of 

divergence time (Bromham et al. 1999; Bromham & Penny 2003; Ho & Phillips 2009; Pulquério & 

Nichols 2007, see Wilke et al. 2009). 

As discussed above, external molecular clock rates (i.e. one clock rate for all species of a wider 

taxonomic group or specific gene) are rare and affected by numerous factors. However, two 
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examples of external molecular clock rates are the trait-specific Protostomia clock estimated by 

Wilke et al. (2009) and the avian clock (Weir & Schluter 2008; Table 7-1). In this study, a 

‘crustacean clock’ is applied to the data set to estimate divergence times of TSS pairs 

and -complexes, which were separated by the emergence of the Isthmus of Panama. This 

external clock was estimated by Marino et al. (2011) and the substitution rate was obtained 

from divergence time estimations of green crabs, which were separated during the 

Mediterranean Salinity Crisis (MSC). 

Typically, calibration points/bounds are inferred from fossil or biogeographical data (see table 2 

in Wilke et al. 2009). However, these calibration points include (time-dependent) uncertainties 

(Table 7-2). For example, fossils can only provide minimum ages because they are naturally 

younger than the divergence event (Benton & Donoghue 2007; Gandolfo et al. 2008; Hedges & 

Kumar 2004; Ho 2007; Inoue et al. 2009; Marshall 1990, see Wilke et al. 2009). Moreover, the 

problem of potential missing fossil taxa and the difficulties of reliable identification is present 

(Cutler 2000; Doyle & Donoghue 1993). Thus, if fossil data are utilized in molecular clock 

analyses, it is advisable to use them as lower constraints (Heads 2005). 

Table 7-1: Pros and cons of different divergence time estimations. 

 
Calibration Point/Bounds from 

Externally Derived Dates 
External Molecular Clock Rate 

(e.g., Universal, Taxon-or Gene-Specific Clock Rates) 

Pros - Locus-independent approach; 
- Multi-locus analyses possible. 

- No calibration points required. 

Cons - Reliable calibration points rarely 
available; 

- Accuracy of the calibration point often 
difficult to assess; 

- Often only calibration bounds but no 
points available.  

- Only applicable to data sets with strict molecular 
clock behavior; 

- Typically locus-specific and thus only applicable to 
certain genes; 

- Relatively few external clock rates available.  

 

 

Examples - Closure of the Panama Isthmus; 
- Mediterranean Salinity Crisis. 

- Avian clock (Weir & Schluter 2008); 
- Trait-specific Protostomia clock (Wilke et al. 2009). 

Advantages and disadvantages of estimating divergence times from calibration points/bounds (usually 
biogeographical events or fossils) or from external molecular clock rates (table adapted from Wilke et al. 2009, 
p. 29). 

On the other hand, age estimates based on biogeographical data may be imprecisely, because 

divergence processes may be not necessarily associated with particular geographical events 

(Wilke et al. 2009; see Subchapter 6.2 for a discussion about the separation of transisthmian 

sister species (TSS) pairs of the eastern Pacific/western Atlantic as a possible result of the closure 

of the Isthmus of Panama). But even considering that a divergence event and a 

geological/environmental event are linked to each other, further problems may arise (Wilke et 

al. 2009). One of them is related to know the exact age of the employed event (Table 7-2). 

Whereas few geological episodes are dated with high accuracy (e.g., the period of the MSC; 

Krijgsman et al. 1999), others are discussed controversially. That is especially the case for the 
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opening of the Bering Strait (Gladenkov et al. 2002; Marincovich & Gladenkov 1999, 2001) or the 

time of the final closure of the Isthmus of Panama (see Chapter 4 for details; Table 7-2). In fact, 

the closure of the Isthmus of Panama is considered as an important calibration point and a 

widely used geological phenomenon for calibrating the molecular clock of TSS. However, the 

sequence of events leading to the final closure is complex and requires careful consideration 

(see Chapter 4). Two main hypotheses regarding the time of Isthmus closure are discussed 

controversially. The only recently arose ‘new Miocene model’ suggests a final Isthmus closure 

around 15 Ma (e.g., Montes et al. 2012a; b; Subchapter 4.2). In contrast, the ‘common Pliocene 

model’ assumes an Isthmus closure around 2.4–4.0 Ma (Collins 2003; Jackson & O’Dea 2013; 

Keller et al. 1989; Weir et al. 2009; Subchapter 4.3). However, in molecular clock calibrations 

usually an average time of around 3 Ma is used as calibration point. In this already imprecise 

time estimate, possible re-openings and -closures of the Isthmus until about 1.8 Ma (Keller et al. 

1989) are not considered. Though these geological patterns are important, because species 

could have migrated between the western Atlantic and eastern Pacific until the final closure (i.e. 

until the last re-closure around 1.8 Ma). These time discrepancies can result in over- and 

underestimations of divergence ages on a large (Miocene vs. Pliocene model) and on a smaller, 

yet inaccurate (4 Ma vs. 1.8 Ma) extent. Ho (2007) pointed out that “In both cases [fossil and 

biogeographical data], the resulting estimates of divergence times and substitution rates will be 

artificially precise, which has a considerable impact on hypothesis testing” (p. 409). Thus, several 

approaches can be used to obtain more realistic divergence time estimations when using 

imprecisely calibration events. However, the common use of, for example, calibration bounds 

(i.e. time intervals) or multiple calibration points is discussed critically and should be applied 

with consideration (see Ho & Phillips 2009; Andújar et al. 2014 for details, respectively). 

7.6 Summary 

The molecular clock approach is a powerful method to estimate divergence times between 

species. However, the calibration of the clock is a complex and difficult challenge, influenced by 

several factors, e.g., rate heterogeneity, the persistence of ancestral polymorphism, saturation of 

the data set, the effect of purifying selection, used prior conditions of the clock values, an 

insufficient data set, or biological factors (see above). Additionally, difficulties to find accurate 

calibration points/bounds or external clock rates influence divergence time estimations. Although 

controversially discussed, the closure of the Isthmus of Panama is a frequently used vicariance 

event in molecular clock calibration. However, the use of this complex and long lasting event with 

potential re-openings and -closures (between 1.8–4.0 Ma) and the recently arose discussion 

about a potential Miocene closure (around 15 Ma) highlight the uncertainties regarding its 

accuracy. 
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Table 7-2: Selection of biogeographical events, which may be convenient for divergence time estimations. 

Event Time (Ma) References (Selection) 

Connection between Baltic Sea  
and North Sea 

8 000 years ago Björck (1995) 

Significant flooding of the Sunda Shelf  19 600–14 600 years ago Crandall et al. (2012) 

Aldabra Island 125 000 years ago Warren et al. (2003) 

Grande Comore Island 500 000 years ago Warren et al. (2003) 

Lake Victoria 

**Almost completely dried out 

750 000 years ago 

**14 700–15 600  
years ago 

Verheyen et al. (2003) and 
references therein 

Lake Malawi 

Begin of rifting 

*Deep water conditions acquired 

**Almost completely dried out 

***New regression 

 

8.6 

*4.5 

**1.6–1 

***0.42–0.25 

 

Delvaux (1995) 

Lake Ohrid 1.2 (minimum) Wagner et al. (2014) 

Final closure of the Isthmus of Panama 

‘Common Pliocene model’ 

 

*’New Miocene model’ 

 

3–4 (1.8 including re-
openings and -closures) 

*15 

 

Coates & Obando (1996); Cronin 
& Dowsett (1996); Keller et al. 
(1989) 
*Farris et al. (2011) ;Montes et al. 
(2012a; b) 

Galapagos Archipelago (Española Island) ~3 Hall (1983) 

Final disconnection of Japan from mainland 

*Initial disconnection of Japan from 
mainland 

3.5 

*15 

Andújar et al. (2014) 

Gulf of California  4 Moore & Buffington (1968) 

Opening of the Bering Strait 

New age 

*Old age 

 

5.5–5.4 

*4.1–3.1 

 

 Gladenkov et al. (2002);  

*Repenning & Brouwers (1992); 
White et al. (1997) 

Isthmus of Kra Seaway 

(dissected the Thai-Malay Peninsula) 

5.5–4.5  de Bruyn et al. (2005) 

Emergence of the Hawaiian Islands: 
southwestern Islands: Hawaii (youngest), 
Kauai-(oldest); 

northwestern Islands: Nihao (youngest), 
Kure-(oldest) 

southwestern Islands: 
5.1–0.43 

northwestern Islands: 
28–7  

Clague & Dalrymple (1987) 

Carson & Clague (1995);  
Fleischer et al. (1998) 

Strait of Gibraltar (opening) 5.33 Andújar et al. (2014);  
Busack (1986) 

Mediterranean Salinity Crisis (MSC) ~6 
5.98 (begin); 5.33 (end) 

Krijgsman et al. (1999) 
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Event Time (Ma) References (Selection) 

Shallowing and closure of the 
Indonesian Seaway  

9.9–7.5 Kennett et al. (1985);  
Linthout et al. (1997) 

Mid-Aegean trench (separation of the 
western and eastern Aegean archipelago) 

12–9 Papadopoulou et al. (2010) 

 

Max. geological age of Lake Tanganyika 12 Cohen et al. (1993, 1997);  
Schön & Martens (2012) 

Volcanic emergence of Gran Canaria 14.5 Andújar et al. (2014) 

Final closure of the Tethys Seaway 20  Dercourt et al. (1986);  
Hrbek & Meyer (2003) 

Separation of Sardinia from Corsica  20 (begin) – 9 (end)  Ketmaier et al. (2003) 

Opening of Drake Passage 23.5  Barker & Burrell (1977);  
Beu et al. (1997) 

Establishment of the Antarctic Polar Front 25–22 Bargelloni et al. (2000);  
Kennett (1982) 

Age of Lake Baikal 30–20 Karabanov et al. (2004) and 
references therein 

Disruption of Farallon-Pacific Ridge by 
subduction under the N-American Plate 

28.5 Chevaldonné et al. (2002) 

split of Corsica–Sardinia from the Pyrenees/ 
Iberic Peninsula 

29 Ketmaier et al. (2003) 

Separation of New Zealand from Australia-
Antarctica 

85 Andújar et al. (2014) 

Gondwanan fragmentation events: 
*separation of East and West Gondwana 
**separation of Africa and South America 
***separation of Madagascar and India  

 
*165–121 
**101–86 
***88–63  

Vences et al. (2001) 

Selection of possible biogeographical events that can be used as calibration points/bounds in divergence 
time estimations. Events are mixed for terrestrial and aquatic taxa and ordered by time. References are only 
a selection. Asterisks indicate additional events or times in relation to the main event. Ma = million years 
ago. 

 

 

 



 

 
 

Part III 

Case Studies 

–A Critical View at the Transisthmian Sister Species Concepts– 

 

  



 

 

 



 Terminological survey 

|61 

 

8 Toward an Unified Definition of Transisthmian Sister Species 

This chapter of the thesis is a comprehensive study on transisthmian sister species (TSS) and 

focuses on the confusing terminology regarding TSS. The first part of this chapter presents the 

results of the terminological survey regarding derivative and synonymous terms focusing on TSS. 

The second part discusses in detail the results and recommends well defined, unambiguous 

terms and its synonyms. Note that the discussion about TSS is only referring to species, which 

were separated by the emergence of the Isthmus of Panama. 

8.1 Terminological survey 

The term transisthmian sister species and its derivatives are widely used throughout the 

literature, however, no consistent terminology is apparent (Table 8-1). In fact, within one single 

study up to 15 different terms referring to TSS, in context to their evolution due to the 

emergence of the Isthmus of Panama, are used (Knowlton & Weigt 1998; Table 8-1). A 

comprehensive literature search revealed a total of 60 terms and derivatives, which are listed in 

Table 8-1. All of these selected terms are strictly linked to the emergence and closure of the 

Isthmus of Panama. However, often clear definitions of the used terms are missing. 

Table 8-1: List of terms and derivatives referring to TSS. 

Terms and Derivatives for 
Transisthmian Sister Species* 

Definition 
References 
(Selection) 

-geminate species 
-twin species 

“[…] –twin species–each one representing the other 

on opposite sides of some form of barrier.” (p. 75). 

Jordan (1908) 

-geminate complex 

 

“[…] species that were separated have continued to 
evolve independently and diverged from each other 
with time […] These pairs of population, with an 
obvious common origin, have been called 
geminate.” (p. 88). 

Rubinoff & 
Rubinoff (1971) 

-geminate transisthmian Pacific  
sister taxa 
-Panamian transisthmian sister 
lineages 
-Panamian [genus name]     
transisthmian sister lineage 
-transisthmian Panamian [genus 
name] geminates 

“[…] the relative importance of vicariance events in 
shaping the genetic structuring of populations is 
potentially obscured by […] and by the prevalence of 
sibling species complexes […].” (p. 3527). 

Lee & Ó Foighil 
(2004) 

-transisthmian geminate species “This geologic event [emergence of the Isthmus of 
Panama] putatively produced several transisthmian 
geminate species in Centropomus […].” (p. 194). 

Tringali et al. 
(1999) 

-transisthmian geminates 
-transisthmian geminate species 
pairs 

Not defined. Lin & Hastings 
(2011) 
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Terms and Derivatives for 
Transisthmian Sister Species* 

Definition 
References 
(Selection) 

-transisthmian geminate clades 
-transisthmian geminate species 
complexes 
-geminate groups 

“The rise of the Central American Isthmus separated 
many populations of marine organisms, with the 
final closure of the Isthmus of Panama producing 
geminate pairs of similar-looking species (Jordan, 
1908).” (p. 456). 

Alva-Campbell 
et al. (2010) 

-twin species pair “[…] uplift of the Panama Isthmus is generally 
recognized as the prime vicariance event responsible 
for these East Pacific - West Atlantic sister group 
relationships […].” (p. 272). 

de Weerdt & 
Glynn (1991) 
and references 
therein 

-transisthmian sister species 
groups 

Not defined. Schubart et al. 
(1998) 

-daughter species 
-sibling species group/complex 
-species complex 

“[…] daughter species accumulate genetic 
differences without accompanying morphological 
divergence. […]. Such cases are known as ‘sibling 
species’ groups or complexes […].” (p. 1427). 

Mathews et al. 
(2002) 

-amphi-American species 
-species pairs 

Only summary of terms. 

 

Rubinoff (1968) 
and references 
therein 

-sister species 
-sister species pair 
-true sister species 
-transisthmian species 
-transisthmian sister species 
-transisthmian pair 
-transisthmian [species name] 
-transisthmian taxa 
-transisthmian sister taxa 
-transisthmian relatives 
-sibling species 
-sibling species pair 
-conspecifics 
-closest transisthmian relatives 
-pairs of sister species 

“[…] most transisthmian sister-species pairs were 
separated at roughly the same time by final closure 
of the connection between the Caribbean and the 
eastern Pacific (Collins 1996) […].” (p. 2257). 

Knowlton & 
Weigt (1998) 

-transisthmian pair of sister 
-transisthmian pairs of sister taxa 
-pairs of marine sister taxa 

“[…] specifically and unambiguously described as 
each other's closest relatives on the basis of 
morphological criteria.” (p. 1629). 

Knowlton et al. 
(1993) and 
references 
therein 

-geminates 
-geminate pairs 
-geminate clades 
-sister clades 
-true geminate clades 
-transisthmian pairs of species 
-[species names] pair 
-pairs of congeneric species 
-pairs of geminate clades 
-congeneric counterparts 

“[…] ranges of marine species were being sundered 
by an uninterrupted barrier that neither larvae nor 
adults could cross, starting them on a path of 
independent evolutionary trajectories […] Geminate 
species represent initially similar genomes placed 
into separate environments and constitute a natural 
experiment that can tell us much about evolutionary 
divergence and its causes.” (p. 64). 

Lessios (2008) 
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Terms and Derivatives for 
Transisthmian Sister Species* 

Definition 
References 
(Selection) 

-congeneric species 
-congeneric populations 

“The rise of the isthmus split previously continuous 
ranges of many marine taxa and has resulted in pairs 
of closely related marine species, one on each side 
of Central America.” (p. 2734). 

Bermingham & 
Lessios (1993) 

-(molluscan) cousins “[…] Pacific and Atlantic members of a species pair 
whose ancestor existed before final closure of the 
Central American Seaway.” (p. 1603). 

Vermeij (1993) 

-analogous species “[…] disjunct populations have continued to evolve 
independently and have diverged to varying degrees 
with time.” (p. 263). 

Abele (1976) 

-most closest pair 
-closely related congeneric 
species 
-closely related congeneric 
transisthmian geminate species 
-congeneric Panamic 
transisthmian geminate species 
-pair of geminate species 

“[…] population disjunction may be triggered by 
vicariant events, such as the rise of the Isthmus of 
Panama, […], and resulted in large numbers of 
geminate species (Jordan 1908). In the absence of a 
land barrier, gene flow between disjunct marine 
populations may be limited by oceanographic 
features […] combined with reduced dispersal 
capabilities […].” (p. 4085). 

Bernardi & Lape 
(2005) and 
references 
therein 

-pair of Pacific/Caribbean 
geminate species 
-pairs of geminate sister species 

“The separation of a pair of Pacific/Caribbean 
geminate species, for example, may be the result of 
the closure of the Isthmus of Panama some 3.0-2.5 
million years ago (Mya).” (p. 30). 

Wilke et al. 
(2009) 

-paciphile and caribphiles “[…] taxa that formerly lived in the western Atlantic 
part, but now are extinct there and survive in the 
eastern Pacific part […].” (p. 426). 

“Taxa that formerly lived in the eastern Pacific part 
of the Tertiary province, but now are extinct there 
and survive in the present Caribbean province […].” 
(p. 426). 

Woodring 
(1966) 

List of terms and derivatives referring to the term transisthmian sister species, used in the literature. All 
expressions are strictly linked to the emergence and closure of the Isthmus of Panama; *Note: Terms and 
derivatives are listed only once, i.e. identical terms used in different studies are not considered. 

Terms and derivatives referring to TSS are often used as synonyms (e.g., Knowlton & Weigt 

1998; Lessios 2008). However, in a strict semantic way only a fraction of the 60 terms and 

derivatives are true synonyms in respect to the definition of TSS (Table 8-2). Based on the here 

presented results, I suggest the three following criteria, which have to be met to consider terms 

referring to transisthmian sister species as true synonyms: 

A) Term must imply the connection to the emergence and closure of the Isthmus of 

Panama. 

B) Term must clear define that species of interest originated from a common ancestor. 

C) Term must include that species of interest occur on opposite sides of the Isthmus of 

Panama. 
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Table 8-2: List of true synonyms referring to the term TSS. 

True Synonyms for Transisthmian Sister Species (TSS) 

– One TSS Pair – – Several TSS Pairs – 

- Transisthmian geminates 

- Transisthmian geminate species 

- Transisthmian geminate species pair 

- Transisthmian sister taxa 

- Transisthmian pair 

- Transisthmian pair of sister 

- Transisthmian pair of sister taxa 

- Transisthmian Panamian [genus name] geminates 

- Geminate transisthmian Pacific sister taxa 

- Pair of Pacific/Caribbean geminate species 

- Closely related congeneric transisthmian geminate species 

- Congeneric Panamic transisthmian geminate species 

- Amphi-American species  

- Transisthmian geminate species pairs 

- Transisthmian geminate species complex 

- Transisthmian geminate clade 

- Transisthmian sister species group 

- Transisthmian pairs of sister taxa 

 

 

Total # of true synonyms: 13 Total # of true synonyms: 5 

Term definitions 

Transisthmian: trans– going across; isthmian– relating to an Isthmus (here: Isthmus of Panama); 

(i.e. on both sides (western Atlantic and eastern Pacific) of the Isthmus of Panama). 

Geminates: “-twin species- each one representing the other on opposite sides of some form of barrier.” 
(p. 75, Jordan 1908). 

Species: refers here to the lowest taxonomic rank. It can contain one or more individuals of the same or of 
different organisms. 

Species group: “[…] encompasses all nominal taxa at the ranks of species and subspecies” (Article 45.1, ICZN 
1999). 

Pair: two individuals forming a unit. 

Species complex: “[…] a cluster of closely related isolates whose individual members may represent more 
than one species” (p. 449, Fegan & Prior 2005). 

Clade: “[…] ancestor (an organism, population, or species) and all of its descendants” (p. 28, Cantino & De 
Queiroz 2010). 

Taxa (singular: taxon): “taxonomic units of extant or extinct animals” (Article 1.1, ICZN 1999). 

Congeneric: “Congeneric species, that is species belonging to the same genus, can be regarded as a special 
case of closely related organisms for which the phylogenetic distance is based on traditional morphological 
characters and is the lowest that can be measured between clearly distinguishable organisms. […] different 
congeneric pairs are not expected to have the same divergence time neither the same evolutionary rate and 
pattern but their evolutionary divergence may be considered as minimized […]” (p. 309, Gissi et al. 2008). 

Amphi-American: amphi– on both sides; American– of the American continent (incl. Central- and South 
America); i.e. occurrence in both, western Atlantic and eastern Pacific, oceans. 

For references of the respective synonyms, see Table 8-1.  

http://en.wikipedia.org/wiki/Species_complex
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Based on the three suggested criteria and the general term definitions (see above and Table 

8-2), 13 (regarding one TSS pair) and 5 (regarding several TSS pairs) derivatives of the term 

transisthmian sister species can be considered as true synonyms. 

8.2 Discussion 

8.2.1 Terminology of transisthmian sister species 

Irrespective of any scientific field the use of a precise and unambiguous terminology is crucial, in 

particular when dealing with complex and challenging relationships (e.g., Envall 2008; Lourenço 

et al. 2014; Nelsen et al. 2014). However, often terms are not used adequately and applied as 

synonyms, even though most of them “are far from being [true] synonyms” (p. 2, Lourenҫo et al. 

2014). The term transisthmian sister species is a considerable example to highlight this problem. 

Numerous terms and derivatives with ambiguous meanings originated during the last decades by 

increasing numbers of studies focusing on the evolution of TSS. As presented in Table 8-1, 

remarkable 60 terms and derivatives synonymising TSS were found in the literature. However, 

many terms imply a broad and unspecific meaning, e.g., twin species, sister species or geminate 

species, which can cause problems since those terms are not per se linked to specific 

assumptions or conditions, e.g., as to the Isthmus of Panama (Tables 8-1 and 8-2). However, 

these terms are used as synonyms by most authors, although only a fraction (13 regarding one 

TSS pair and 5 regarding several TSS pairs) of the 60 terms and derivatives can be considered as 

true synonyms (Table 8-2). Only these synonyms match the three suggested criteria highlighted 

above. In contrast, using several undefined and non-synonymous terms throughout a study can 

result in confusion. For example, Knowlton & Weigt (1998) used 15 different terms in their 

publication referring to TSS, but only one definition was given: “[…] most transisthmian sister 

species pairs were separated at roughly the same time by final closure of the connection 

between the Caribbean and the eastern Pacific […]” (p. 2257, see Table 8-1). However, in general 

their definition is clear and does not raise any questions. In contrast, terms like conspecifics or 

sibling species are, in a strict semantic way, imprecise and should be avoided, even though the 

reader could figure out their meanings due to the stories background. Thus, if several terms are 

used in a study they should be selected in relation to the respective context. In his publication 

“The law of geminate species”, the Ichthyologist D. S. Jordan (1908) defined the term geminate 

species for sister species, which originated from a common ancestor. Although Jordan did not 

define the term exclusively for the Isthmus of Panama, he is often cited in studies dealing with 

species on both sides of the Isthmus (e.g., Rubinoff & Rubinoff 1971). In contrast, other studies 

do not mention the Isthmus in their definition at all (e.g., Abele 1976; Mathews et al. 2002; 

Table 8-1). Lourenҫo et al. (2014) pointed out that complex stories and “large numbers of studies 

has led to considerable variation in their context and how terms have been applied, but also to 

the introduction of additional terms by some authors [e.g., analogous species by Abele 1976; 

(molluscan) cousins by Vermeij 1993; congeneric counterparts by Lessios 2008]” (p. 2). Another 

strategy is to avoid the term TSS and its derivatives, as done by McCartney et al. (2000). They 

basically used the phrases Caribbean-, Atlantic- or Pacific species to describe relationships 

among TSS, which results in a clear and unambiguous description. However, this practice is not 
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suitable for all cases and can easily lead to intricateness, especially within complex stories. Note 

that the word transisthmian is a general term for ‘across an Isthmus’ and can be linked to any 

kind of Isthmus (e.g., Isthmus of Kra – Thailand, Isthmus of Tehuantepec – Mexico, Isthmus of 

Chignecto – Canada). Thus, it should be defined to which Isthmus transisthmian sister species 

refer to. 

8.2.2. Two special cases focusing on confusing terms 

8.2.2.1 Phylogenetic conditions 

Often, TSS relationships are not clear dissolved within a phylogenetic tree and are represented 

as polytomies. This pattern might be due to an insufficient or incomplete dataset, resulting in 

low node supports and, hence, in a poor resolution of the evolutionary branches (i.e. soft 

polytomy). On the other hand, species can originate simultaneously from a common ancestor, 

resulting in true polytomies within the phylogenetic tree (i.e. hard polytomy; Lin et al. 2011 and 

references therein). These cladogenetic events (hard polytomies) are represented by often more 

than one potential twin. In any case, these circumstances have to be considered and an accurate 

term defined. In this study, the phylogeny of the divergence time estimation of Panopeus (Figure 

10-7) represents a soft polytomy, presumably due to an insufficient dataset (see Subchapter 

10.4.1). However, the TSS relationship within that phylogenetic tree is described as TSS complex, 

pointing out that several species on one side of the Isthmus, can represent the putative sister to 

the species on the other side (see definition in Subchapter 6.1). Other reasons for the 

occurrence of TSS complexes are speciation events on one side of the Isthmus, subsequent to 

divergence events due to the Isthmus closure (Collins 1996b; see below). Such speciation of one 

twin member results in the appearance of so called cryptic species complexes (e.g., Lessios 1979, 

1981; Lessios & Cunningham 1990; Rubinoff & Rubinoff 1971; Vawter et al. 1980; Weinberg & 

Starczak 1989). However, in a strict sense the expression cryptic is incorrect, because by 

definition it means that very similar looking but yet distinct species are concealed under the 

same species name. Also important is to distinguish between transisthmian sister species pairs 

and groups. It makes a difference if two species (one on each side of the Isthmus) or a group of 

species (more than one species on the other side of the Isthmus) are their closest relatives. 

8.2.2.2 Time of Isthmus closure and species distribution 

Due to the complexity of the Isthmus emergence until its final closure it is essential to be very 

precise when using terms referring to TSS. The evolution of TSS and, hence this term, is 

commonly associated with the Isthmus closure (i.e. Isthmus of Panama). However, several 

studies have shown that many TSS pairs diverged long before or even after the final Isthmus 

closure (e.g., Hurt et al. 2009; Lessios 2008; Miura et al. 2012; but see Subchapter 6.3.2 for 

detailed references). The results of the divergence time estimations in this study present 

different divergence ages among and even within the four decapod genera (but see Chapter 10 

for details). It may be an idea to differentiate between several times of divergences, i.e. well 

expressed terms, which refer to the species’ separation long before, during or even after the 

final Isthmus closure. For example, Hurt et al. (2009) applied the term pseudo-TSS in their study 
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to point out that divergence events may have taken place before and unrelated to the Isthmus 

closure accompanied with species extinctions. Collins (1996b) already recognized that: “[…] 

definition does not necessarily assist in recognition. For any particular pair of species it is difficult 

to imagine how it could be proven that the divergence is the result of the emergence of the 

Isthmus” (p. 311). He suggested that a “combination of a phylogenetic hypothesis and the 

biogeographic distributions of the species in questions should clarify the geminate relationships” 

(p. 313). In fact, divergence times can depend on the species occupied habitat (Frey 2010; 

Knowlton & Weigt 1998; but see Chapter 6 for more details) or changing environmental and 

abiotic conditions (Duque-Caro 1990; Hurt et al. 2009). However, to define TSS in view of their 

habitat preference or tolerances to changing conditions can be a solution, but probably not always 

convenient. 

8.3 Summary 

The use of only few terms, but as many as necessary, can be a feasible way to avoid confusion 

and ambiguities in a study, especially when using true synonyms. Moreover, the applied terms 

should be clear defined in the beginning of each study. Some terms may be more useful (e.g., 

referring to the time of divergence) than others (e.g., referring to physiological tolerance 

thresholds). 

In this thesis, terms and derivatives that refer to transisthmian sister species were well defined in 

the beginning and used consistently throughout the chapters (see Chapter 6). Moreover, used 

terms referring to TSS, which were used as false synonyms (geminate species; sibling species; 

sister species; twin species) were declared as those, also in the beginning of this thesis. However, 

due to the estimated divergence times in this study (Chapter 10), terms and derivatives have to 

be renewed: 

- Transisthmian sister species pair (TSS pair) – refers to TSS representing one unity (i.e. 

one representative of the western Atlantic forms a pair with its sibling of the eastern 

Pacific). 

This term implies TSS origination due to the Isthmus emergence and closure, but without 

any time assumptions. The Isthmus closure is assumed only as a reason for TSS 

origination regardless of species habitat occupations, distribution patterns or tolerance 

thresholds. Based on the divergence time estimations in this study, it would be more 

accurate to distinguish between divergence events before, during, and after the final 

Isthmus closure. Based on the complex and long lasting emergence of the Panama 

Isthmus, specific time thresholds for the respective terms are not confined and should be 

determined in each study separately. Thus, the following terms are suggested: 

- Pre-transisthmian sister species pair (Pre-TSS pair) 

i.e. pre– pre- (Latin): before (the Isthmus closure) 

The term pre points out that TSS diverged before the closure of the Isthmus. 
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- Inter-transisthmian sister species pair (Inter-TSS pair) 

i.e. inter– interval: a period of time between events. 

The word interval implies a time-component, which appropriate describes the 

emergence and closure of the Panama Isthmus as a complex and long lasting event with 

several re-openings and -closures (e.g., Cronin & Dowsett 1996; Haug & Tiedemann 

1998). Because the time of Isthmus emergence and its final closure is still under debate 

(Bacon et al. 2015 and references therein), a specific time-interval is not proposed. 

- Post-transisthmian sister species pair (Post-TSS pair) 

i.e. post – posterior: later 

The term posterior points out that TSS diverged after the closure of the Isthmus. 

Note that these terms also do not include any specific factor like habitat occupations, 

distribution patterns or tolerance thresholds of the TSS. These factors should be used as 

parameters to explain the different divergence times. It would be confusing, if terms are defined 

relative to those multifaceted factors. Moreover, the new defined terms cannot be precisely 

distinguished from each other, because they overlap in the temporal aspect. However, these 

new defined and combined terms provide more clarity in reference to time. 

- Transisthmian sister species complex (TSS complex) – refers to TSS where several 

species on one side of the Isthmus can represent the putative sister to the species on the 

other side (Collins 1996b). 

This term does not imply time assumption. It may be useful to add the above supposed 

adjectives pre-, inter-, and post- to integrate time. Derivatives of this term (e.g., 

transisthmian geminate species complexes, geminate complex, or sibling species 

complex; see Table 8-1) can be find in the literature. However, the term transisthmian 

sister species complex was not used before. But especially this new composition implies 

every important aspect, which is missing within the other forms (for single word 

definitions see Table 8-2): (i) transisthmian geminate species complexes – redundant 

information that species are separated by a barrier and missing information about 

species relationship, (ii) geminate complex – does not imply sister species relationship, 

(iii) species complex – information regarding the Isthmus and relationship status are 

missing. 

- Transisthmian pseudo sister species (pseudo-TSS) – refers to TSS originated from 

speciation events, which are not linked to the Isthmus formation. This term can be used 

as a true synonym for Post-TSS pair (see above). 

This term implies TSS origination independent of the Isthmus formation and without any 

time assumptions. The sister species occur on both sides of the Isthmus and may 

originated due to a variety of events e.g., extinction (Lessios 1998), dispersal (Miura et al. 

2012), habitat occupations and distribution patterns (Frey 2010; Knowlton & Weigt 

1998), tolerance thresholds (Hurt et al. 2009), or repeated speciation event of one sibling 
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(Collins 1996b; see Chapter 6 for details). As mentioned above, Hurt et al. (2009) already 

used this term in their study to refer to divergence events that may have taken place 

before and unrelated to the Isthmus closure. However, this study expands the term and 

suggests a more general meaning. 
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9 Criteria of Transisthmian Sister Species Pairs and -Complexes 

In this chapter, the here studied TSS pairs and -complexes are analyzed in respect to the five 

suggested criteria, which evaluate species as true TSS (see Subchapter 6.3). These five criteria 

refer to biogeographic distribution, morphological similarities, and molecular characteristics. 

Each TSS pair or -complex of this study is analyzed according to these criteria (Table 9-1). Note, 

due to the thematic broad overlap of the different chapters, the following paragraphs contain 

already results, which will be discussed in principle in Chapter 10. For a detailed list of the here 

studied TSS pairs and -complexes see Subchapter 10.1. 

9.1 The TSS pair and -complex evaluation 

9.1.1 Geographic isolation drives speciation processes 

This first assumption is fulfilled by all TSS pairs and -complexes (Table 9-1). As pointed out in 

Subchapter 6.3.1, geographic isolation is the prevalent cause that drives speciation processes in 

organisms. Thus, this criterion is naturally met by all TSS pairs and -complexes. 

9.1.2 The barrier and the consequentially isolated taxa are of the same age 

For the second criterion, the TSS pairs and -complexes were evaluated in respect to three 

assumptions: (i) an Isthmus closure around 15 Ma (Miocene model), (ii) an Isthmus closure 

around 3 Ma (Pliocene model), and (iii) re-openings and -closures until about 1.8 Ma (Table 9-1). 

The upper range of the 95% high posterior density interval (HPD; interval which contains 95% of 

the age distribution of all trees) of the Pachygrapsus TSS pair shows a divergence time close to 

the Miocene model (13.54 Ma). However, the mean value of the MRCA is 9.56 Ma (Table 10-6). 

These observations are still valid, if corrections for ancestral polymorphism are taken into 

account (13.29 Ma and 9.31 Ma, respectively; Table 10-6). Assumption (ii) is met by both 

Sesarma complexes and TSS pair A of Eurytium. While Sesarma complex A and Eurytium TSS pair 

A match the 3 Ma assumption quite well (3.03 Ma and 2.91 Ma, respectively), the mean 

divergence time of Sesarma complex B slightly exceeds the assumption of a Pliocene closure 

(4.36 Ma). If corrected for ancestral polymorphism (i.e. 4.11 Ma), the divergence age is close to 

the upper bound of the Pliocene model (i.e. 4 Ma). However, the lower range of the 95% HPD is 

within the range of assumption (ii) (3.27 Ma; Table 10-6). The lower ranges of the 95% HPDs of 

Sesarma complex A (2.37 Ma) and Eurytium TSS pair A (1.95 Ma) are within the range of 

assumption (iii) (Table 10-6), even if corrected for ancestral polymorphism (2.12 Ma and 1.70 

Ma, respectively). The remaining TSS pair B of Eurytium shows a young divergence time (mean 

value 0.63 Ma) and thus, none of the three time assumptions applies to it (Table 10-6). 
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Figure 9-1: Comparisons of morphological similarities between the species of the identified TSS pairs 
and -complexes. A) Sesarma TSS complex A; B) Sesarma TSS complex B; C) Eurytium TSS pair A; D) Eurytium TSS 
pair B; E) Panopeus TSS complex; F) Pachygrapsus TSS pair. Left arranged species are associated with the 
western Atlantic; right arranged species are associated with the eastern Pacific. The specimens are shown in 
dorsal view. The scale bar represents 1 cm. Note that the drawing of S. crassipes is adapted from Abele (1992). 
Additional photos of the species are shown in the Appendix (A3). Photos of P. transversus and P. socius are by 
courtesy of C. D. Schubart. 

9.1.3 TSS distribution ranges are close to the Isthmus 

The validation of this third criterion is difficult. However, all species are distributed along the 

western Atlantic and eastern Pacific coasts, yet they are not exclusively occur within the Isthmus 
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and bordering countries (Tables 10-1 – 10-3). The southernmost species of the western Atlantic 

(Pachygrapsus transversus) inhabits the coasts of southern Brazil and the northernmost 

distributed species (Sesarma reticulatum) the intertidal of Massachusetts. In the eastern Pacific 

the southernmost species (Panopeus purpureus, Eurytium tristani, and Pachygrapsus socius) 

occur along the coast of Peru and the northernmost species (P. socius) in the Gulf of California. 

In fact, none of the studied TSS pairs and -complexes show an exclusive distribution close to the 

barrier. Therefore, all species of the TSS pairs and -complexes are evaluated as not closely 

distributed (Table 9-1). 

9.1.4 Morphological similarity between TSS 

The aspect of morphological similarity is fulfilled by almost all studied TSS pairs and -complexes. 

The species S. reticulatum and S. rhizophorae of the Sesarma TSS complex A are very similar to 

each other (Figure 9-1 A). Based on only this characteristic alone, they would be certainly 

classified as a true TSS pair. Although the western Atlantic species S. crassipes is only pictured as 

a drawing (Abele 1992), this specimen looks very similar to its potential eastern Pacific 

geminates (Figure 9-1 B). All species of the Panopeus complex are very similar to each other. 

Note that from a morphological point of view the unidentified eastern Pacific species Panopeus 

sp. seems identical to P. purpureus (Figure 9-1 E). In contrast, the species of both TSS pairs of 

Eurytium show no similarities among each other. This is not surprising, since the potential twin 

species of both TSS pairs belong to the genus Panopeus (see Chapter 10 for detailed discussion; 

Figure 9-1 C, D). Although P. socius and P. transversus (Pachygrapsus TSS pair) show differences 

in their color pattern, their general morphology is very similar (Figure 9-1 F).  

9.1.5 Similar divergence ages between TSS pairs and -complexes 

Only the TSS pairs and -complexes in the genera Sesarma and Eurytium are comparable. The two 

identified TSS complexes of the genus Sesarma show different mean divergence ages (2.88 Ma 

compare to 4.21 Ma; Table 10-6). Though, the 95% HPDs show low range of overlap (2.37–3.71 

Ma compare to 3.27–5.56 Ma; Table 10-6). In contrast, TSS pairs A and B of the genus Eurytium 

show different divergence ages. The average difference between both pairs is more than 

fourfold (2.91 Ma compare to 0.63 Ma; Table 10-6). 

9.2 Discussion 

In this chapter TSS pairs and -complexes were analyzed in respect to the five proposed criteria, 

which have to be fulfilled to determine species as true TSS (see Subchapter 6.3). The aim of this 

analysis was to clarify the following questions: 

1. Do the studied TSS pairs and -complexes of this study meet all five TSS criteria? 

2. Are the current criteria sufficient to identify TSS? 

3. What additional/new set of criteria can be suggested to identify TSS? 
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9.2.1 Geographic isolation drives speciation processes 

This assumption is met by all TSS pairs and -complexes used in this study (Table 9-1). Mayr 

(1954) and other early on naturalists pointed out that geographic isolation is the predominant 

factor driving speciation processes in organisms. The Isthmus of Panama acts as an ideal model 

to study these processes in TSS. In particular the reasons are: (i) assuming an Isthmus closure 

around 3 Ma or earlier, enough time has passed to accumulate differentiations between the 

species, (ii) gene flow between the species is almost complete suppressed, and (iii) several 

species where separated roughly at the same time but differ in their life histories, dispersal 

abilities or preferred habitats, which all play an important role in speciation processes (see 

Chapter 6 and Lessios 1998 for details). If species are assumed to be TSS they originated from a 

common ancestor and occurred in habitats on either side of the Isthmus. Hence, they evolved 

separately and experience patterns of speciation, based on the reasons mentioned above. 

9.2.2 The barrier and the consequentially isolated taxa are of the same age 

The fulfillment of the second criterion depends on the respective assumption: (i) an Isthmus 

closure around 15 Ma (Miocene model), (ii) an Isthmus closure around 3 Ma (Pliocene model), 

and (iii) re-openings and -closures until about 1.8 Ma. Only the upper range of the 95% HPD of 

the Pachygrapsus TSS pair (P. socius/P. transversus) is close to the determined age of the 

Miocene model (13.54 Ma). Thus only one TSS pair (out of six TSS pairs and -complexes) shows a 

suitable divergence time in respect to the second criterion under assumption (i). The second 

assumption (i.e. Pliocene model) is met by three (out of six) TSS pairs and -complexes (both 

Sesarma complexes and TSS pair A of Eurytium; Table 9-1). Assuming several Isthmus 

re-openings and -closures as proposed by Cronin & Dowsett (1996) and Keller et al. (1989), the 

final closure is to set around 1.8–1.9 Ma (assumption (iii)). Two (out of six) TSS pairs 

and -complexes are within this range (lower range of the 95% HPD of Sesarma complex A (2.37 

Ma) and the average divergence time of the Eurytium TSS pair A (1.95 Ma); Table 10-6). Thus, 

Sesarma complex A and Eurytium TSS pair A both met assumptions (ii) and (iii) (Table 9-1). 

However, as discussed above, the emergence and closure of the Panama Isthmus was a complex 

event, taking place over several million years. It would be inaccurate to determine a particular 

time of closure, and therefore it would be more conscientious to assume ranges (Lessios 1979), 

as shown for Sesarma complex A and Eurytium TSS pair A. On the other hand, even if TSS and the 

Isthmus have the same age (e.g., Sesarma complex A and Eurytium TSS pair A), it can be a 

coincident and species have diverged due to other factors, independent of the Isthmus 

emergence, e.g., due to dispersal (Miura et al. 2012) or extinction events (e.g., Williams & Reid 

2004; but see Chapter 6). A similar but yet different factor is pointed out by Lessios (1998): 

“Species on either side of the Isthmus may have been separated by the same barrier, but the 

final interruption of gene flow may not have occurred at the same time” (p. 188), for example 

due to “differences in mode of dispersal, habitat preferences, physiological tolerances, and 

vagility of adults and larvae“ (p. 189, Lessios 1998). 
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9.2.3 TSS distribution ranges are close to the Isthmus 

Criterion three is difficult to assess – what does apply as close? Collins (1996b) defined close as 

“adjacent to the barrier” (p. 312). In this respect the studied TSS pairs and -complexes cannot be 

evaluated as closely distributed (Tables 10-1 – 10-3). The here studied species are not 

cosmopolitan, but their distribution ranges extend within the entire western Atlantic, yet up the 

eastern U.S. coast (P. occidentalis, S. reticulatum) and down to the coasts of Brazil (P. 

transversus, E. limosum, P. hartii, S. crassipes, S. curacaoense). Similar patterns are apparent 

along the eastern Pacific coast. The species distribution show ranges from north (Bay of 

California; P. socius) to south (Peru; P. socius, E. tristani, P. purpureus). Thereby, this pattern is 

not restricted to specific genera, but rather one species of each TSS pair or -complex shows such 

a wide distribution. This distribution pattern is not an exception to the here studied species, but 

also appears in several TSS of other studies e.g., marine fishes, gastropods, bivalves, and other 

crustacean genera (Banford et al. 2004; Hastings 2000; Duda & Kohn 2005; Marko 2002; Marko 

& Moran 2009; Thiercelin & Schubart 2014, respectively). Species which have a planktonic larvae 

stage in their reproduction cycle, show high dispersal ability. This might be one reason for large 

distribution ranges (Marko & Moran 2009). Moreover, birds or ships are also possible disperser 

for larvae (see Subchapter 6.3.3), which are then offered new open niches to occupy. Collins 

(1996b) pointed out that cosmopolitan species are not necessarily separated by the Isthmus 

closure, and that distribution via a circumglobal route might be another factor (Lessios 2008). 

However, a variety of other dispersal- and migration factors, oceano- and geographic conditions, 

as well as extinction events can play a role in large distribution patterns of TSS (but see chapter 6 

for a detailed review). In general, Collins (1996b) argued that enough time has passed since an 

assumed Isthmus closure around 3 Ma for species to disperse. Thus, it would be peculiar if 

distributional ranges of recognized TSS are generally restricted to the isthmian barrier. 

9.2.4 Morphological similarity between TSS 

Most of the here studied TSS pairs and -complexes show a similar morphology. In general it is 

supposed, that closely related decapod species are not easily to distinguish based on 

morphological characters alone (Cuesta & Schubart 1998). In reference to the closure of the 

Isthmus of Panama and subsequent evolution of TSS, Abele (1976) pointed out that about 6% of 

decapods are morphologically identical, whereas around 45% show “slight morphological 

modifications” (p. 263). He linked this observation to environmental adaptations of the species. 

For example, Schubart et al. (2001) showed that specimens of the crab genus Brachynotus, 

which were genetically not distinguishable but lived in different depths, represented “different 

ecophenotypes” (p. 45). Similar results were also found by Spivak & Schubart (2003) in the crab 

genus Cyrtograpsus. Hence, if TSS inhabit niches on each side of the Isthmus that are similar in 

their structure, it might be that these species develop similar morphological shapes, which “[…] 

may reflect phenotypic plasticity or convergence and not genetic similarity” (p. 864, Reuschel & 

Schubart 2006). In general, morphological studies in crustaceans are predominantly done on 

larvae (Anger 2001), whereas morphological studies in adult specimens are more rare (Schubart 

& Cuesta 1998) and need to be intensified. 
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Morphological similarities within Panopeidae: The Panopeidae are merged into the superfamily 

Xanthoidea and thus, share a significant characteristic – their “extreme morphological similarity” 

(p. 182, Martin & Abele 1986; Schubart et al. 2000a; Thoma et al. 2014; Figures A3-14 – A3-36). 

This trait is not observable within the Eurytium TSS pair A (E. limosum/Panopeus sp.) and TSS 

pair B (E. tristani/P. occidentalis). This is not surprising because one twin of each TSS pair belongs 

to the genus Panopeus (see Chapter 10 for detailed discussion). In contrast, the specimens of the 

TSS pair/complex of Panopeus show a high degree of morphological similarity (Figure 9-1). 

However, as in most species groups, consistent and common characteristics are missing for 

decent discriminations (Martin & Abele 1986), also in larval morphology (e.g., Rodríguez & Paula 

1993). Within the Panopeidae, species identifications based on either molecular or 

morphological characters differ considerably and result in disparate sister species relationships 

(Schubart et al. 2000a). The authors argue that these similarities between closely related sister 

species may base on independent adaptations to similar environments or cessation of 

morphological evolution in key characters (Schubart et al. 2000a). 

Morphological similarities within Pachygrapsus: The family Grapsidae is recognized as 

“morphologically homogenous” (p. 472) in both, adult and larvae specimens (Schubart 2011 and 

references therein). However, differences in the color pattern are observable between the 

studied TSS P. transversus and P. socius (Figures 9-1, A3-37, A3-38). The previously assumption 

that P. transversus is distributed along the coasts of the western Atlantic as well as eastern 

Pacific (Poupin et al. 2005; Rathbun 1918) was disproved by Schubart et al. (2005). In 1998, 

Cuesta & Schubart showed distinct differences in morphological characteristics (coloration of the 

outer face of the chela in adult specimens) as well as evidences obtained from molecular data 

between eastern Pacific and western Atlantic populations. In 2005, Schubart and colleagues 

officially changed the name of all representatives of eastern Pacific P. transversus to P. socius 

based on a comprehensive analysis of morphological and molecular data. 

Morphological similarities within Sesarma: Within the studied Sesarma TSS complex A (S. 

rhizophorae/S. curacaoense, S. reticulatum) and TSS complex B (S. crassipes/S. sulcatum, S. 

aequatoriale) morphological similarities are apparent (Figures 9-1, A3-4 – A3-12). The endemic 

Jamaican populations of Sesarma are morphologically well analyzed (e.g., Schubart & Koller 

2005). These species show a great variety in their morphology and can be distinguished on 

morphological characters alone, specifically due to their shape of the carapace, and the male’s 

chelae and pleon (Reimer et al. 1998; Schubart & Koller 2005 and references therein; Türkay & 

Diesel 1994). A recently conducted study by Thiercelin & Schubart (2014) showed that closely 

related species within the Sesarmidae can also be distinguished due to morphological 

differences in their gonopods. 

9.2.5 Similar divergence ages between TSS pairs and -complexes 

Several studies have shown that in the majority of cases, TSS became isolated from their MRCA 

during different time intervals and often uncorrelated to the Isthmus closure (e.g., Lessios 2008 

and references therein; see Chapter 6 and discussion above). Assuming a constant substitution 

rate within the same gene among related species groups, in his comprehensive comparison of 
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numerous TSS pairs Lessios (2008) pointed out that most of the species were separated from 

each other “[…] during different time intervals, even in cases in which morphological divergence 

would suggest otherwise” (p. 74). This pattern is not only well pronounced in TSS pairs 

and -complexes among different genera, but also within the same genus. Focusing on the TSS 

pairs and -complexes in this study, only the two Sesarma TSS complexes show overlaps in their 

divergence time ranges (2.37–3.71 Ma compare to 3.27–5.56 Ma; Table 10-6), and thus, similar 

divergence times can be presumed. In contrast, divergence times of the two Eurytium TSS pairs 

differ considerably (Table 10-6). These differentiations can base on various factors (e.g., complex 

history of the Isthmus emergence and closure with potential re-openings and -closures, high 

dispersal capability of the species, or simply an incomplete dataset), which were discussed in 

detail in the previous sections. However, which of these factors accord to the studied TSS pairs in 

this study remains uncertain. Assuming the unlikely fact that the specimens of the Eurytium TSS 

pair B are true geminates (see discussion above), their very young divergence ages point toward 

possible dispersal events. In their study, Miura et al. (2012) showed that two dispersal events 

(via birds) occurred across the isthmian barrier successfully long time after the Isthmus 

completion (750 000 and 72 000 years ago). Although this example refers to marine gastropods, 

similar scenarios can be supposed for crustaceans as well (e.g., Green & Figuerola 2005 and 

references therein). A recently developed Bayesian computation method by Hickerson et al. 

(2006) that “tests for simultaneous divergence” (p. 2435) can be a useful tool to analyze 

obtained divergence times of TSS pairs. However, due to a small intraspecific dataset, this 

approach was not applicable in this study. 

9.3 Summary 

Even though none of the here studied TSS pairs and -complexes fulfills all five criteria (Table 9-1), 

the TSS are, however, suitable for divergence time estimations. First of all, the time of Isthmus 

closure is not considered in the analyses. The divergence time estimations base on an external 

crustacean rate (Marino et al. 2011; see Chapter 10) which in turn, was estimated according to 

the Mediterranean Salinity Crisis. This geological event is well dated and, in contrast to the 

Isthmus closure, there is no doubt about the chronological progression. Moreover, the studied 

crab genera are distributed within the littoral zone (mangroves, rocky shores and shallow water) 

along the coasts of both oceans. It is the general assumption that species of those habitats 

reflect the time of Isthmus closure best (e.g., Knowlton & Weigt 1998). Another important 

advantage is the occurrence of several TSS pairs and -complexes and a comprehensive dataset 

for most of the genera (Table 10-4). Thus, the divergence times of the studied TSS pairs 

and -complexes can be compared among each other, independent of a defined time of Isthmus 

closure and disregarded of possible re-openings and -closures of the Isthmus. In any case, the 

here presented results draw conclusions on the time of Isthmus closure, in respect to the 

debated Miocene- and Pliocene models. 
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9.4 Criteria revised 

Based on the TSS pair and -complex evaluation in this chapter, it is advisable to refine and 

replace the five criteria in respect to their practicability in non-theoretical frameworks. Thereby 

it should be noted that clear structured and confined criteria are difficult to establish. More 

precisely, the analyses showed that based on complex and active interrelations within biological 

systems, TSS can hardly be forced into specific categories or concepts. Thus, it is not possible to 

develop a TSS identification key for scientists. However, different factors should be considered in 

the process of TSS identification. Therefore, the following improvements are suggested: 

1) The barrier and the evolved TSS pairs and -complexes do not necessarily have to have 

the same age. However, well-defined and unambiguous terms should be used, which 

refer to the respective time of species isolation (before, during or after Isthmus 

completion, see Chapter 8). Therefore it is necessary to define the time of presumed 

Isthmus closure (Pliocene vs. Miocene model, consideration of possible re-openings 

and -closures). 

2) The distributional ranges of TSS pairs and -complexes should be within the Atlantic and 

Pacific oceans, with a focus on the western Atlantic and eastern Pacific. Note that, 

however, some species show cosmopolitan distribution. Especially in these cases, other 

separation events than the Isthmus closure (e.g., migration via a circumglobal route) 

should be considered. 

3) Morphological characteristics can be a useful tool to obtain evidences regarding possible 

TSS pairs. However, such method should never be used alone, but can be a strong 

approach combined with molecular analyses. 

4) TSS pairs and -complexes within a genus can show different divergence ages. In these 

cases, possible reasons should be pointed out. 
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10 Divergence Time Estimations of Transisthmian Sister Species 

This chapter is concerned with a brief summary of the studied genera and identified 

transisthmian sister species (TSS) pairs and -complexes of the four decapod genera Sesarma Say, 

1827 (family Sesarmidae), Panopeus H. Milne Edwards, 1834, Eurytium Stimpson, 1859 (both 

family Panopeidae), and Pachygrapsus Randall, 1840 (family Grapsidae). Moreover, it focuses on 

the results of the phylogenetic analyses and subsequent divergence time estimations of the 

studied TSS pairs and -complexes. 

Note: For detailed descriptions regarding the applied methods for the molecular analyses as well 

as species and locality information see Appendices A1, A2 and A3, respectively. 

10.1 Studied species 

Crustaceans that inhabit littoral environments are promising candidates for divergence time 

estimations to receive evidences for the time of seaway closure between North- and South-

America. Several studies show that organisms of shallow coastal water habitats reflect the final 

time of the Isthmus closure best (e.g., Knowlton & Weigt 1998; Lessios 2008 and references 

therein). These species are assumed to be the last that were able to cross the Isthmus before all 

salt-water connections were restricted. Based on transisthmian sister species (TSS) pairs 

and -complexes of four decapod genera, the controversially discussed time of Isthmus closure is 

studied. 

10.1.1 Sesarma Say, 1817 

Systematic classification 

Class: Malacostraca 

Order: Decapoda 

Infraorder: Brachyura  

Superfamily: Grapsoidea 

Family: Sesarmidae 

Genus: Sesarma 

The genus Sesarma consists of 18 well-described (Ng et al. 2008; Schubart & Santl 2014) and 

additionally one undescribed species, which is assumed to be related to S. reticulatum and 

hereafter referred to as Sesarma sp. (nr. reticulatum) (Figure 10-1; Zimmerman & Felder 1991). 

Ten out of 19 species are endemic to the Caribbean island Jamaica (Diesel et al. 2000; Diesel & 

Schubart 2000; Schubart & Santl 2014), whereas the others are well distributed along the 

eastern Pacific (EP) and western Atlantic (WA) coasts of North-, Central- and South-America 

(Tables 10-1 and A2-1). Sesarma species are typical inhabitants of soft-sediment littoral 

environments like mangroves and marshes (Schubart & Koller 2005; (Tables 10-1 and A2-1), 

although endemic Jamaican species are distributed in creeks and streams, as well as in caves and 

even terrestrial habitats (Schubart et al. 1998; Schubart & Santl 2014; Table A2-1). 
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Figure 10-1: Morphological observation of Sesarma sp. (nr. reticulatum). The species (middle) is assumed to be 
related to S. reticulatum (left). However, morphological observations as well as molecular analysis point toward 
a relation to S. curacaoense (left). Note that the dark color of S. reticulatum bases on light conditions. The scale 
bar represents 1 cm. Additional photos of the species are shown in the Appendix (A3). 

Within the genus, two TSS complexes are postulated (Schubart et al. 1998; Table 10-1): Complex 

A: S. rhizophorae from the EP is either the sister of S. reticulatum, S. curacaoense or Sesarma sp. 

(nr. reticulatum), all from the WA (Table 10-1; Figure 10-2); Complex B: S. crassipes from the WA 

is either the sister of S. sulcatum or S. aequatoriale, both from the EP (Table 10-1; Figure 10-2). 

Tables 10-4 and 10-5 present an overview of the missing taxa, the total number of species, which 

occur in the WA and EP, and the number of WA and EP taxa, which were used in this study. 

The following characteristics emphasize Sesarma for a good case study taxon: 

– two defined TSS complexes 

– well studied ecology of the genus 

– complete and comprehensive sampling of all American representatives, which are known to 

inhabit the coasts of the EP and WA (Tables 10-4 and 10-5). 

Note: The recently new described species Sesarma abeokuta n. sp. (Schubart & Santl 2014) was 

not included in the phylogenetic analyses of this study, since sequences are only available for the 

partial ND1 gene for NADH1 dehydrogenase subunit 1 (EMBL molecular database 

HF678402-HF678413; Schubart & Santl 2014). However, this species radiated from the endemic 

Jamaican S. dolphinum and, therefore, would have been clustered within the endemic Jamaican 

species complex (Schubart & Santl 2014). 
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Table 10-1: TSS complexes of the genus Sesarma Say 1817. 

TSS Species 
Complex; 

Author1; Ocean 
UGSB/Prep. # Habitat Occurrence 

Species Complex A Sesarma 
 

S. rhizophorae 
Rathbun, 1906; EP 

9716, 11988 / 
18149, 19530 

2
common in burrows in mangrove swamps, 

mud, salinity range 20-27 ppt. 

2
Costa Rica, Panama 

(common along the 
Pacific coast)  

S. reticulatum 
(Say, 1817); WA 

11975 / 19519; 
6
EU329170 

 

2
eulittoral region of Spartina marshes, 

burrows in red mangrove swamps, in wood 
holes near mud flats, intertidal areas along 
stream banks and well-drained salt-marshes, 
estuarine habitats of low salinity (salinity 
range: 2-35 ppt; prefers 16 ppt). 

2
Massachusetts, North 

Carolina, Florida 

S. curacaoense 
de Man, 1892; WA 

11969, 11970 / 
19514, 19515 

2
brackish, estuaries, common in mangrove 

swamps and among clumps of oysters and 
rocks on a mud substrate. 

2
Florida, Cuba, Puerto 

Rico, Jamaica, Curaçao, 
Trinidad, Panama, Brazil 

4
Sesarma sp. (nr. 

reticulatum); WA  
11983-11986 / 
19525-19528 

3
coastal habitats, estuaries, in burrows, fresh 

and salt marshes, prefers salinities under 
12 ppt (salinity range: 1-15 ppt), but also 
found in hypersaline habitats. 

4
Florida 

Species Complex B Sesarma  

S. crassipes 
Cano, 1889; WA 

5
AJ225859 

2
river mouths and estuaries, sometimes with 

surface salinity of 0 ppt. 

2
Costa Rica, Brazil 

S. sulcatum 
Smith, 1870; EP 

12108 / 19618; 
5
AJ225880 

2
mangrove swamps, estuaries, burrows above 

the banks of brackish water rivers, prefers 
salinities around 22 ppt (occurred although in 
very low salinity water of 4-6 ppt). 

2
El Salvador, Mexico, 

Nicaragua, Costa Rica, 
Panama, Colombia 

S. aequatoriale 
Ortmann, 1894; EP 

11636 / 19300; 
5
AJ225883 

2
semiterrestrial, brackish water streams, 

rivers, mangroves, under rocks and debris, 
common around lower salinities (salinity 
range: 0-22 ppt).  

2
Costa Rica, Mexico, 

Panama, Ecuador 

 

Assumed TSS complexes of the genus Sesarma Say, 1817 with habitat description and occurrences; EP = 
eastern Pacific, WA = western Atlantic, UGSB = University Giessen Systematics and Biodiversity collection, Prep. 
# = DNA isolation number; 

1
Ng et al. (2008); 

2
Abele (1992) and references therein; 

3
Zimmerman & Felder (1991) 

and references therein; 
4
from the field collection of C. D. Schubart (coll.: C.D. Schubart, D.I. Felder, R.B. 

Landstorfer 8
th

 April 2008; see Table A2-1 for details); 
5
(Schubart et al. 1998); 

6
Mahon & Neigel (2008). 

10.1.2 Panopeus H. Milne Edwards, 1834 / Eurytium Stimpson, 1859 

Systematic classification 

Class: Malacostraca 

Order: Decapoda 

Infraorder: Brachyura 

Superfamily: Xanthoidea 

Family: Panopeidae 

Genera: Panopeus / Eurytium 
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The genera Panopeus and Eurytium both belong to the genus-rich family Panopeidae. Species of 

these genera are regarded to be highly abundant along the tropical, subtropical and temperate 

coasts of North-, Central- and South-America (Felder & Martin 2003; de Souza et al. 2013; Tables 

10-2, A2-2, A2-3). The species inhabit the marine intertidal and shallow subtidal, as well as 

oligohaline and freshwater estuarine environments (Schubart et al. 2000a). The genus Panopeus 

consists of 16 well-described species (note, Ng et al. (2008) assigned 17 species to the genus 

Panopeus. However, since 2009/2010 the status of P. turgidus is invalid and is now allocated to 

the genus Eurypanopeus; Ng & Davie 2015). The genus Eurytium is composed of only four 

species (Ng et al. 2008). Proposed TSS pairs and -complexes of Panopeus and Eurytium are based 

on the comprehensive phylogenetic analyses of this study. 

Within the genus Panopeus, one TSS pair is assumed (Table 10-2; Figure 10-7): P. hartii from the 

WA is the sister to the unidentified species Panopeus sp. (#16142) from the EP. On the other 

hand, low node supports (Figure 10-7) support also the assumption of a TSS relationship 

between P. purpureus (EP) and P. hartii. 

In contrast to recently conducted studies (Thoma et al. 2014), the following two TSS pairs of the 

genus Eurytium are assumed here (Table 10-2; Figure 10-8): TSS pair A: The WA species E. 

limosum is the sister to the unidentified EP species named here as Panopeus spp. (#19756-57, 

#19760-63; Table 10-2; Figure 10-8). TSS pair B: E. tristani from the EP is the sister to P. 

occidentalis (#19871) from the WA (note, the identification of the species P. occidentalis 

(#19871) is probably correct, based on morphological observations (Figure A3-32 D). The other 

individuals of P. occidentalis cluster within the remaining Panopeus species, though unevenly 

distributed among the phylogeny; Figure 10-4). Tables 10-4 and 10-5 present an overview of the 

missing taxa, the total number of species, which occur in the WA and EP, and the number of WA 

and EP taxa, which were used in this study. 

The following characteristics emphasize Panopeus as well as Eurytium as good case study taxa: 

– several assumed TSS pairs 

– comprehensive sampling of almost all representatives (Tables A2-2 and A2-3). 
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Table 10-2: TSS pairs and -complex of the Panopeidae Panopeus H. Milne Edwards, 1834 and Eurytium 
Stimpson, 1859. 

TSS Pair; 
Author1; Ocean 

UGSB/Prep. # Habitat Occurrence 

TSS Pair/Complex Panopeus 
 

P. hartii 
Smith, 1869; WA 

11599 / 19631 
10

large boulders, intertidal 
pool, subtidal rocky shore 

2
Florida to Brazil 

Panopeus sp.; EP 7794 / 16142 - 
11

Costa Rica 

P. purpureus 
Lockington, 1877; EP 

7787, 9691-9694 / 
16137, 18125-18128 

3
coastal lagoon and estuaries, 

10
mangroves 

2
Mexico to Peru 

TSS Pair A Eurytium  

E. limosum 
(Say, 1818); WA 

9697-9704, 11586 / 
18131-18138, 19743; 

9
ULLZ4012 

4
estuaries and mangroves, 

7
when mangroves are absent in 

marshes (temperate USA) 

4,7,9
from eastern US coast to 

Brazil 

Panopeus spp.; EP 12258, 12259, 12263, 
12264, 12266, 12267/ 
19756-19757, 19760-

19763 

11
soft mud river bank, soft 

ground in general 

11
Ecuador 

TSS Pair B Eurytium  

E. tristani 
Rathbun, 1906; EP 

9695 / 19862 
5
mangroves 

5
Panama, 

8
El Salvador, Peru, 

Colombia, Ecuador, 
9
Nicaragua 

P. occidentalis 
Saussure, 1857; WA 

11620 / 19871 
8
intertidal of sandy beaches, 

mangroves, 
2
under rock and 

rubble 

6,2
North Carolina to Florida, 

Southern Gulf of Mexico, 
Central America, The West 
Indies, northern South America, 
Guianas, Brazil; Bermuda 

Assumed transisthmian sister species (TSS) pairs and -complex of the genus Panopeus H. Milne Edwards, 1834 
and Eurytium Stimpson, 1859, with habitat description and occurrences; EP = eastern Pacific, WA = western 
Atlantic, UGSB = University Giessen Systematics and Biodiversity collection, Prep. # = DNA isolation number; 
1
Ng et al. (2008); 

2
Plotnick et al. (1988); 

3
Hendrickx (1996); 

4
Guimarães & Negreiros-Fransozo (2002) and 

references therein; 
5
NMNH (catalogue numbers USNM 155281, 155282); note: the holotype of E. tristani 

(catalogue number USNM 32366) was found by Rathbun (1906) on the western Atlantic coast of Costa Rica); 
6
Bertini et al. (2004); 

7
Abele (1976); 

8
gbif.org; 

9
Thoma et al. (2014); 

10
NMNH (catalogue numbers USNM 

221947, 256590); 
11

from the field collection of C. D. Schubart (coll.: T. Poettinger, 29
th

 April 2011; see Tables 
A2-2 and A2-3 for details). 

10.1.3 Pachygrapsus Randall, 1840 

Systematic classification 

Class: Malacostraca 

Order: Decapoda 

Infraorder: Brachyura  

Superfamily: Grapsoidea 

Family: Grapsidae 

Genus: Pachygrapsus 
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The genus Pachygrapsus is a worldwide distributed decapod genus and can be found along 

tropical, subtropical and temperate coasts (Cannicci et al. 1999; Flores & Negreiros-Fransozo 

1999; Tables 10-3 and A2-4). Pachygrapsus consists of 14 well-described species (Ng et al. 2008) 

and inhabits caves and cervices of rocky intertidal shores as well as mangroves (Abele et al. 

1986; Cuesta & Schubart 1998; Tables 10-3 and A2-4). Within the genus, one TSS pair is 

proposed (Schubart 2011; Schubart et al. 2005; Table 10-3; Figure 10-10): P. transversus from 

the western Atlantic (WA) is the sister to P. socius from the eastern Pacific (EP). Based on the 

unavailability of cytochrome c oxidase subunit I (COI) sequences, the results from Ip et al. (2015) 

are employed as template for the species arrangement in the phylogenetic tree (Figure 10-9). 

Tables 10-4 and 10-5 present an overview of the missing taxa, the total number of species, which 

occur in the WA and EP, and the number of WA and EP taxa, which were used in this study. 

The following characteristics emphasize Pachygrapsus for a good case study taxon: 

– one clear defined TSS pair 

– well studied ecology of the TSS 

– complete sampling of almost all WA and EP representatives (Tables 10-4 and A2-4). 

Note: The species Pachygrapsus transversus is well studied. P. transversus was supposed to 

occur along the eastern Pacific coast, on both sides of the Atlantic, as well as in the 

Mediterranean Sea (Crocetta et al. 2011; Schubart et al. 2005). However, detailed studies by 

Schubart et al. (2005) revealed that the eastern Pacific representatives of P. transversus 

represent a separate taxon, namely P. socius (which was formerly regarded as a junior synonym 

of P. transversus, Ng et al. 2008). Therefore, P. transversus and P. socius are considered as TSS 

pair. 

Table 10-3: TSS pair of the genus Pachygrapsus Randall, 1840. 

TSS Pair; 
Author1; 
Ocean 

UGSB/Prep. # Habitat Occurrence3 

TSS Pair Pachygrapsus 
 

P. socius 
Stimpson, 1871; 
EP 

9125, 9126, 9131 / 
17515, 17516, 17521 

4
intertidal, on wharfs and sea walls, red 

mangrove swamps, in holes and crevices 
from Gulf of California to 
Galápagos and Peru 

P. transversus 
(Gibbes, 1850); 
WA 

9134-9136 / 
 17524-17526 

2
intertidal, (sub-) tropical rocky shores 

(for adults); 
5
sabellariid worm reefs and 

mytilid mussel beds (for juveniles) 

from Florida to southern Brazil, 
from Israel (Mediterranean) to 
the mouth of the Congo River 
(eastern Atlantic) 

Assumed transisthmian sister species (TSS) pair of the genus Pachygrapsus Randall, 1840, with habitat 
description and occurrences; EP = eastern Pacific, WA = western Atlantic, UGSB = University Giessen 
Systematics and Biodiversity collection, Prep. # = DNA isolation number; 

1
Ng et al. (2008); 

2
Cuesta & Schubart 

(1998) and references therein; 
3
Schubart et al. (2005) and references therein; 

4
Abele et al. (1986) and 

references therein; 
5
Flores & Negreiros-Fransozo (1999). 
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Although species of each genus are well sampled, few taxa are missing in the datasets (Table 

10-4). Within the genus Sesarma, the species S. abeokuta n. sp. (Schubart & Santl 2014) is not 

included in the analyses. As mentioned above (Subchapter 10.1.1) this species is endemic to 

Jamaica and radiated from the endemic Jamaican S. dolphinum. Thus, the deficiency of this 

taxon should have no significant influence on the results of the divergence time estimations. The 

dataset of the genus Panopeus is missing three taxa: P. boekei, P. convexus, and P. diversus. 

Whereas the former species occurs in the WA (Plotnick et al. 1988), the latter two are common 

along the EP coasts of Chile (Plotnick et al. 1988) and the Gulf of California (Garth 1960), 

respectively. The deficiency of these species has to be considered in respect to divergence time 

estimations (see Subchapter 10.4). Within the genus Pachygrapsus, three species are not 

included in the dataset, of Ip et al. (2015): P. corrugatus, P. loveridgei, and P. propinquus. The 

occurrence of all three species is not limited to either the EP or the WA coasts. In fact, P. 

corrugatus occurs from the Caribbean to the South Atlantic (Fransen 2015a). P. loveridgei 

inhabits the coasts of St. Helena and Ascensión (both are oceanic islands in the South Atlantic; 

Fransen 2015b) and P. propinquus occurs at the east coast of India (Sahoo et al. 2008). 

Additionally, in the comprehensive Grapsidae phylogeny of Schubart (2011) P. corrugatus is the 

sister species to P. plicatus and nested with distance to the species of interest. Thus, the results 

of the divergence time estimations should not be essentially influenced by the deficiency of 

these species. 

Table 10-4: Missing species in the phylogenetic studies. 

Sesarmidae Panopeidae Grapsidae 

Sesarma Panopeus Pachygrapsus 

S. abeokuta n. sp. 
(Jamaica; Schubart & Santl 2014) 

P. boekei 
(Caribbean, Lesser Antilles; 
Plotnick et al. 1988) 

P. corrugatus 
(Bahamas, Cuba, St. Paul (UK), Ascensión, 
Puerto Rico, Virgin Island; Fransen 2015a) 

 P. convexus 
(Chile; Plotnick et al. 1988) 

P. loveridgei 
(St. Helena, Ascensión; Fransen 2015b)  

 P. diversus 
(Gulf of California; Garth 1960) 

P. propinquus 
(east coast of India; Sahoo et al. 2008) 

Missing taxa in the phylogenetic studies of the crab genera Sesarma, Panopeus, and Pachygrapsus. Localities of 
occurrence and the respective references are in brackets. 

10.2 Phylogenetic analyses and divergence time estimations 

The phylogenetic studies of this thesis are twofold. First, a phylogenetic analysis of each genus 

was conducted to identify and confirm TSS pairs and -complexes. Second, divergence time 

estimations of the supposed TSS pairs and -complexes were performed. Based on molecular 

clock analyses the time of species separation was determined and analyzed in respect to the 

chronologically emergence and closure of the Isthmus of Panama. For detailed information 

regarding the conducted phylogenetic analyses and divergence time estimations see Materials 
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and Methods (Appendix A1). An overview of the used dataset for phylogenetic analyses and 

divergence time estimations is given below (Table 10-5). 

Table 10-5: Species used in phylogenetic analyses and divergence time estimations. 

 Sesarmidae Panopeidae Grapsidae 

 
Sesarma Panopeus Eurytium Pachygrapsus3 

Phylogenetic Analysis     

Total # Species within Genus1 19* 16 4 14 

Total # Species Used in this Study  18* 13** 4 112 

Total # Specimens Used in this Study 32 78*** 14 112 

# Western Atlantic Species Used in 
this Study (Total # of WA Species) 

14 
(15) 

11*** 
(12***) 

1 
(1) 

22 
(3) 

# Eastern Pacific Species Used in this 
Study (Total # of EP Species) 

4 
(4) 

3*** 
(5***) 

3 
(3) 

22 
(2) 

# Species not Associated with WA/EP 
Used in this Study (Total #) 

- 
1 

(1) 
- 

72 
(9) 

Length of Alignment COI / 16S (bp) 1 136 / 642 1 184 / 638 2 2472 

Divergence Time Estimation 
    

# of Species 18* 3 6 4 

# of Specimens 32 10 22 8 

# Postulated TSS Pairs / Complexes 
2 

complexes 
1 pair 2 pairs 1 pair 

Length of Alignment COI / 16S (bp) 1 136 / 642 
1 184 / 

638 
555 / 638 687 / - 

Overview of the number (#) of species used in phylogenetic analyses and divergence time estimations of the 
genera Sesarma, Panopeus, Eurytium, and Pachygrapsus; WA = western Atlantic; EP = eastern Pacific; TSS = 
transisthmian sister species; 

1
Ng et al. (2008); 

2
Phylogenetic topology adapted from Ip et al. (2015), based on 

five genes; 
3
due to few available sequences, only divergence time estimations based on COI sequences were 

conducted; *incl. Sesarma sp. (nr. reticulatum); **excl. Panopeus spp. from the WA and EP; ***incl. Panopeus 
spp.; note: species of other genera are not included in this overview. 
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10.3 Results 

This subchapter is divided according to the four studied genera: Sesarma, Panopeus, Eurytium 

and Pachygrapsus. It highlights the results of the phylogenetic analyses and divergence time 

estimations. An overview of the obtained results of the divergence time estimations is given in 

Table 10-6. 

10.3.1 Phylogenetic studies of the genus Sesarma 

The topology of the phylogenetic analysis of the genus Sesarma (COI (TrN+I+G) + 16S (TrN+G); 

relaxed clock; Yule process; ngen: 50 million; log: 1000; burnin: 5000) is identical to the topology 

of the divergence time estimation (COI (HKY+G) + 16S (HKY+G); strict clock; Yule process; ngen: 

20 million; log: 1000; burnin: 2000). Thus, only the divergence time tree is shown below (Figure 

10-2). The divergence time tree represents a maximum clade credibility tree with node ages, 

branch supports, and the 95% highest posterior density (HPD) for specific nodes (i.e. interval 

which contains 95% of the age distribution of all trees; Table 10-6). For detailed information 

about the molecular analyses see Appendices A1.2.7 and A1.2.8).  

For divergence time estimation the COI substitution rate (i.e. 0.98% per million years; My-1) 

according to Marino et al. (2011) was established. The substitution rate for 16S rRNA (inferred 

from the COI rate) was 0.58% My-1 (Table A1-4). The phylogenetic tree (Figure 10-2), including all 

taxa of the genus Sesarma, which are known to occur in the eastern Pacific (EP) and western 

Atlantic (WA) includes three well-supported monophyletic lineages (clades A-C). The taxonomic 

arrangement coincides with previous findings by Schubart et al. (1998). The molecular analysis 

revealed that the undescribed species Sesarma sp. (nr. reticulatum) is identical to the species S. 

curacaoense (clade B) and not to S. reticulatum as previously assumed due to morphological 

observation (see above; Figures 10-1 and 10-2). Clade A contains only endemic Jamaican crabs, 

which are supposed to separate from their marine ancestors at around 4.5 million years ago 

(Ma; +/- 0.42; Schubart et al. 1998). The most recent common ancestor (MRCA) of the Jamaican 

clade in this study originated around 5.13 Ma (95% HPD: 4.27–6.02 Ma) and therefore, shows a 

slightly higher mean divergence age as suggested by Schubart et al. (1998). The second clade 

(clade B) includes the TSS complex S. rhizophorae (EP) and its WA sister species S. reticulatum 

and S. curacaoense (species complex A; Table 10-1; Figure 10-2). Their MRCA occurred 3.03 Ma 

(95% HPD: 2.37–3.71 Ma; silhouette A). Clade C includes also a TSS complex: S. crassipes (WA) 

and its EP sister species S. sulcatum and S. aequatoriale (species complex B; Table 10-1; Figure 

10-2). Their MRCA occurred 4.36 Ma (95% HPD: 3.27–5.56 Ma; silhouette B). Mean divergence 

times corrected for ancestral polymorphism are 2.78 Ma (species complex A) and 4.11 Ma 

(species complex B; Table 10-6). 
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Figure 10-2: Divergence time tree of the genus Sesarma, based on a combined data set (COI, 16S). Maximum 
clade credibility tree: (COI (HKY+G) + 16S (HKY+G); strict clock; Yule process; ngen: 20 million; log: 1000; burnin: 
2000); branch supports (red), node ages (black), numbers in brackets present the 95% high posterior density 
intervals (HPD; interval which contains 95% of the age distribution of all trees). Crustacean silhouettes (A and 
B) present the time of species divergence of the Sesarma TSS complex A (silhouette A) and the Sesarma TSS 
complex B (silhouette B); A: 3.03 Ma (95% HPD: 2.37–3.71 Ma), B: 4.36 Ma (95% HPD: 3.27–5.56 Ma). Species 
framed in green are associated with the western Atlantic and species framed in blue are associated with the 
eastern Pacific. Ma = million years ago; Note that the drawing of S. crassipes is adapted from Abele (1992). For 
information about the species code see Subchapter A1.2.6. 
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10.3.2 Phylogenetic studies of the family Panopeidae  

The topology of the phylogenetic analysis of the family Panopeidae represents a Maximum-

likelihood tree (COI (GTR+G) + 16S (GTR+G); relaxed clock; 1 000 bootstrap runs; Figure 10-4). 

The composition of the here analyzed dataset bases on the comprehensive Xanthoidea 

phylogeny of Thoma et al. 2014 (p. 92; Figure 10-3). However, the dataset was complemented 

with numerous additional species and sequences (Tables A2-2, A2-3, A2-5). Note that based on 

the tree dimension, Figure 10-4 shows only the contour of the phylogenetic tree. Detailed 

information regarding the relationships of Panopeus and Eurytium are represented in Figures 

10-5 and 10-6. 

 

Figure 10-3: Subset of interest of the comprehensive Xanthoidea phylogeny of Thoma et al. 2014 (p. 92). This 
phylogenetic section was used as template and complemented with own species and sequences for the 
conducted molecular analysis (Figure 10-4). The Maximum-likelihood tree bases on a combined data set of six 
genes (1 000 bootstrap runs). 



10 Divergence Time Estimations of Transisthmian Sister Species 

92| 

 

 

Figure 10-4: Overview of the phylogenetic Panopeidae tree, based on the comprehensive Xanthoidea 
phylogeny of Thoma et al. 2014 (p. 92) and complemented with numerous additional species and sequences. 
Detailed descriptions of the phylogenetic relationships of Panopeus and Eurytium are represented in Figures 
10-5 and 10-6. Clade A (green) represents the subset for the divergence time estimation of Panopeus. Clade B 
(blue) represents the subset for the divergence time estimation of Eurytium. Species of other genera than 
Panopeus and Eurytium are named Misc. (‘miscellaneous’) within this phylogeny. 

Figure 10-4 represents an overview of the phylogenetic Panopeidae tree. The tree includes 13 

species (out of 16) of the genus Panopeus and all 4 representatives of the genus Eurytium. 

Figures 10-5 and 10-6 are detailed subsets of the Panopeidae tree. In general, the node supports 

within the tree are weak (green and purple stars, supports < 0.5 are not shown). The genera 

Panopeus and Eurytium are not as well separated as in the phylogeny of Thoma et al. (2014). 

Assuming correct species identifications both genera are paraphyletic (note, monophyly of 

Eurytium in Thoma et al. 2014). Clade A (Figure 10-5) consists of only Panopeus species and 

contains the TSS pair P. hartii (WA) and Panopeus sp. (EP; Table 10-2). Detailed information 

about this relationship and divergence time estimations are outlined below (Subchapter 

10.3.2.1). In this study species of clade A are closer related to Eurypanopeus and Eucratopsis as 

to species of clade B (Figure 10-5). However, node supports for the species arrangement are low. 

Clade B is paraphyletic and contains all species of Eurytium and several Panopeus taxa (Figure 

10-6). Two TSS pairs can be identified: TSS pair A consisting of E. limosum (WA) and Panopeus 

spp. (EP) and TSS pair B consisting of E. tristani (EP) and P. occidentalis (WA; Table 10-2).  
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Figure 10-5: The upper subset of the Panopeidae tree represents a Maximum-likelihood tree (COI (GTR+G) + 
16S (GTR+G); relaxed clock; 1 000 bootstrap runs, best scoring tree), based on a combined data set (COI, 16S). 
Clade A (green frame) is monophyletic and contains the TSS pair P. hartii (WA) and Panopeus sp. (EP). Node 
supports are labeled by colored stars (purple: 0.5-0.69, green: 0.7-0.89, blue: 0.9-0.99, red: 1). Node supports 
lower than 0.5 are not shown. For information about the species code see Appendix A1.2.6. 
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Figure 10-6: The lower subset of the Panopeidae tree represents a Maximum-likelihood tree (COI (GTR+G) + 
16S (GTR+G); relaxed clock; 1 000 bootstrap runs, best scoring tree), based on a combined data set (COI, 16S). 
Clade B (blue frame) is paraphyletic and contains all species of Eurytium and several Panopeus taxa. Clade B 
includes the Eurytium TSS pair A (E. limosum, WA and Panopeus spp., EP) and Eurytium TSS pair B (E. tristani, EP 
and Panopeus occidentalis, WA). Node supports are labeled by colored stars (purple: 0.5-0.69, green: 0.7-0.89, 
blue: 0.9-0.99, red: 1). Node supports lower than 0.5 are not shown. For information about the species code 
see Appendix A1.2.6. 

10.3.2.1 Divergence time estimation of the genus Panopeus 

For the divergence time estimation of the genus Panopeus, a strict clock, the HKY+G model of 

evolution, and the COI substitution rate of Marino et al. (2011) (0.98% My-1) were employed. The 

substitution rate for 16S rRNA (estimated by the program BEAST) is 0.66% My-1 (Table A1-4). The 

dataset of the tree (Figure 10-7) bases on clade A of the phylogenetic Panopeidae tree (Figure 

10-5). 
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Figure 10-7: Divergence time tree of the genus Panopeus, based on a combined data set (COI, 16S). Maximum 
clade credibility tree: (COI (HKY+G) + 16S (HKY+G); strict clock; Yule process; ngen: 20 million; log: 1000; burnin: 
2000); branch supports (red), node ages (black), numbers in brackets present the 95% high posterior density 
intervals (HPD; interval which contains 95% of the age distribution of all trees). Crustacean silhouettes (A and 
B) present the time of species divergence of the Panopeus TSS pair (silhouette A) or rather the Panopeus TSS 
complex (silhouette B), see text for details; A: 0.28 Ma (95% HPD: 0.11–0.49 Ma), B: 0.48 Ma (95% HPD: 0.29–
0.7 Ma). Species framed in green are associated with the western Atlantic and species framed in blue are 
associated with the eastern Pacific. Ma = million years ago; for information about the species code see 
Appendix A1.2.6. 

The divergence time tree shows very low node supports especially for the deeper nodes and 

thus, a polytomy of the tree may be accepted (Figure 10-7). The taxonomic arrangement is 

disordered: Species of P. purpureus are arranged with unidentified Panopeus species (Panopeus 

spp.). Two possible divergence ages are described here: First, P. hartii and Panopeus sp. 

separated 0.28 Ma (95% HPD: 0.11–0.49 Ma; Figure 10-7, silhouette A). In respect to the 

assumed polytomy, the resulting TSS composition is a complex, consisting of P. hartii and P. 

purpureus/Panopeus spp. The MRCA of this arrangement occurred around 0.48 Ma (95% HPD: 

0.29–0.7 Ma; Figure 10-7, silhouette B). Due to young divergence times, corrections for ancestral 

polymorphism were negligible (Table 10-6). Note that according to Thoma et al. (2014), P. hartii 

is far related to P. purpureus. 
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10.3.2.2 Divergence time estimation of the genus Eurytium 

For the divergence time estimation of the genus Eurytium, a strict clock, the HKY+G model of 

evolution, and the COI substitution rate of Marino et al. (2011) (0.98% My-1) were employed. The 

substitution rate for 16S rRNA (estimated by the program BEAST) is 0.51% My-1 (Table A1-4). The 

dataset of the tree (Figure 10-8) bases on clade B of the phylogenetic Panopeidae tree (Figure 

10-6). 

 

 

Figure 10-8: Divergence time tree of the genus Eurytium, based on a combined data set (COI, 16S). Maximum 
clade credibility tree: (COI (HKY+G) + 16S (HKY+G); strict clock; Yule process; ngen: 20 million; log: 1000; burnin: 
2000); branch supports (red), node ages (black), numbers in brackets present the 95% high posterior density 
intervals (HPD; interval which contains 95% of the age distribution of all trees). Crustacean silhouettes (A and 
B) present the time of species divergence of the Eurytium TSS pair A (silhouette A) and the Eurytium TSS pair B 
(silhouette B); A: 2.91 Ma (95% HPD: 1.95–3.97 Ma), B: 0.63 Ma (95% HPD: 0.18–1.19 Ma). Species framed in 
green are associated with the western Atlantic and species framed in blue are associated with the eastern 
Pacific. Ma = million years ago; for information about the species code see Appendix A1.2.6. 

  



 Results 

|97 

 

The divergence time tree shows high node supports for all the important branches (branches, 

which resolve TSS relationships; Figure 10-8). The tree is paraphyletic and includes all species of 

the genus Eurytium, as well as species of the genus Panopeus (Figure 10-8). The two TSS pairs 

(TSS pair A and B) identified above (Figure 10-6) are well-supported. TSS pair A consists of E. 

limosum (WA) and its EP sister species Panopeus spp. (#19756-67, 19760-63; Table 10-2; Figure 

10-8). Their MRCA occurred 2.91 Ma (95% HPD: 1.95–3.97 Ma; silhouette A). TSS pair B consists 

of E. tristani (EP) and its WA sister species P. occidentalis (# 19871; Table 10-2; Figure 10-8). They 

were separated from each other around 0.63 Ma (95% HPD: 0.18–1.19 Ma; silhouette B). Mean 

divergence times corrected for ancestral polymorphism are 2.66 Ma (TSS pair A) and 0.38 Ma 

(TSS pair B; Table 10-6). 

10.3.3 Phylogenetic studies of the genus Pachygrapsus 

The phylogenetic topology of the genus Pachygrapsus is adapted from the comprehensive 

Grapsidae phylogeny of Ip et al. (2015) (Figure 10-9). Their tree represents a Bayesian consensus 

topology, composed of five genes (total length of alignment is 2 247bp; Table A1-4). Eleven out 

of 14 Pachygrapsus species are included in their analysis. Pachygrapsus represents a polyphyletic 

group within the Grapsidae (Ip et al. 2015). However, all studied WA and EP representatives 

form an independent group (including the Japanese species P. minutus) with high node supports 

(Ip et al. 2015; Figure 10-9). The phylogenetic analysis revealed one TSS pair: P. socius from the 

EP and P. transversus from the WA (Figure 10-9, red frame). 

 

 

 

Figure 10-9: Subset of the Bayesian consensus Grapsidae phylogeny of Ip et al. 2015 (p. 6). This phylogenetic 
section was used as template and complemented with own species and sequences for the divergence time 
estimation (Figure 10-10). Dashed branches indicate that these species were excluded from the subsequent 
divergence time estimation. The supposed TSS pair P. socius (EP) and P. transversus (WA) is framed in red. 

For the divergence time estimation of the genus Pachygrapsus, a strict clock, the HKY+G model 

of evolution, and the COI substitution rate of Marino et al. (2011) (0.98% My-1) were employed. 

Due to missing 16S sequences, the analysis bases on COI sequences alone (Tables 10-5, A1-4, 

A2-4). Species with dashed branches were excluded from the subsequent divergence time 

estimation (Figure 10-9). 
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Figure 10-10: Divergence time tree of the genus Pachygrapsus, based on COI. Maximum clade credibility tree: 
(COI (HKY+G); strict clock; Yule process; ngen: 20 million; log: 1000; burnin: 2000); branch supports (red), node 
ages (black), numbers in brackets present the 95% high posterior density intervals (HPD; interval which 
contains 95% of the age distribution of all trees). Crustacean silhouette presents the time of species divergence 
of the Pachygrapsus TSS pair: 9.56 Ma (95% HPD: 6.11–13.54 Ma). Species framed in green are associated with 
the western Atlantic and species framed in blue are associated with the eastern Pacific. Ma = million years ago; 
for information about the species code see Appendix A1.2.6. 

The divergence time tree shows high node supports for all branches (Figure 10-10). The TSS pair 

consists of P. socius (EP) and its WA sister P. transversus (Table 10-3; Figure 10-10). Their MRCA 

originated 9.56 Ma (95% HPD: 6.11–13.54 Ma). The mean divergence time corrected for 

ancestral polymorphism is 9.31 Ma (Table 10-6). 
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10.4 Discussion 

The emergence and final closure of the Isthmus of Panama was a complex and long-lasting 

geographical event, which only recently came into focus of an international and interdisciplinary 

debate (Hoorn & Flantua 2015; Montes et al. 2015; O’Dea & Collins 2013). The main issue of this 

dispute focuses on the time of Isthmus closure. Two models are predicted: the ‘new Miocene 

model’ (i.e. Isthmus closure around 15 million years ago; Ma) and the ‘common Pliocene model’ 

(i.e. Isthmus closure around 3 Ma; see Chapter 4 for details). In general, independent of the 

model and based on the complex process of the Isthmus emergence, the time of the final 

closure cannot be precisely determined. Indeed, several studies found evidence of several re-

openings and -closures (e.g., Cronin & Dowsett 1996; Haug & Tiedemann 1998), pointing toward 

a final closure around 1.9–1.8 Ma (Cronin & Dowsett 1996; Keller et al. 1989). In this study, 

divergence time estimations of transisthmian sister species (TSS) pairs and -complexes were 

performed in four different decapod genera. The aims of these analyses were twofold: 

1. The molecular studies should point out the problems of divergence time estimations of 

TSS. 

2. The obtained divergence times of the study are then discussed relative to the two 

models proposed for the final closure of the Isthmus. 

10.4.1 Problems of divergence time estimations of TSS 

In general, divergence time estimations of TSS can be influenced by a number of molecular and 

biological/geological factors (see Chapters 6 and 7 for details). In respect to molecular 

parameters these are, for example, rate heterogeneity, the persistence of ancestral 

polymorphism, saturation of the data set, inclusion of pseudogenes, used prior conditions of the 

clock values, inaccurate calibration points/bounds or external clock rates, or an insufficient data 

set. Divergence time estimations may also be influenced by bio- and geological factors like, for 

example, the complex history of the Isthmus emergence, the possibility of re-openings 

and -closures, and the dispersal capability of species (Lessios 2008). To avoid these factors and 

reduce the uncertainties in divergence time estimations as much as possible, different 

approaches should be considered. 

10.4.1.1 (External-) Substitution rates 

Among others, the protein coding cytochrome c oxidase subunit I (COI) gene and the non-coding 

ribosomal subunit 16S rRNA gene (16S) are widely used in phylogenetic analyses and divergence 

time estimations in particular (Schubart 2009; Schubart et al. 2000b). However, to calibrate the 

molecular clock, the time of closure of the Isthmus of Panama is frequently used as calibration 

point. For that matter, an Isthmus closure at around 3 Ma is generally assumed (see Chapters 4 

and 7). Based on several uncertainties regarding this assumption (see discussion below and 

Chapter 4 for details), an external COI molecular clock crustacean rate (0.98% My-1), which was 

estimated by Marino et al. (2011) was applied. This rate bases on the Mediterranean Salinity 

Crisis (MSC) around 6 Ma ago (Krijgsman et al. 1999; Table 7-2), and thus, it is independent of 
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the time of Isthmus closure. In turn, this rate can be used to estimate divergence times of TSS 

pairs and -complexes of crustaceans and may gain evidences on the time of Isthmus closure. 

The external COI substitution rate of Marino et al. (2011; 0.98% My-1) is comparable with other 

COI crustacean rates (note that most of them base on an Isthmus calibration) in the literature. 

For Alpheus two very similar substitution rates are found: 1.1-1.3% My-1 using 3.0–3.5 Ma as 

isthmian calibration bound (Knowlton et al. 1993; K2P), and 0.7% My-1 using 3 Ma as isthmian 

calibration point (Knowlton & Weigt 1998; K2P). In previous studies of the crab genera Sesarma, 

the COI substitution rate was 0.83-1.17% My-1 using 3.1 Ma as isthmian calibration point 

(Schubart et al. 1998; K2P). 

The estimated substitution rates for 16S rRNA of the genera Sesarma, Panopeus, and Eurytium 

were 0.58%, 0.66%, and 0.51% My-1, respectively. These estimates are slightly higher if 

compared to rates obtained for other crab genera: 0.45% My-1 using 3.0–3.5 Ma as isthmian 

calibration bound for Uca (Sturmbauer et al. 1996; K2P), and 0.27-0.68% My-1 using 3 Ma as 

isthmian calibration point for the species Petrolisthes armatus (Stillman & Reeb 2001; HKY). 

Schubart et al. (1998) estimated a substitution rate for Sesarma as well and obtained a rate of 

0.33-0.44% My-1, based on the Isthmus of Panama as calibration point (3.1 Ma; K2P). 

The applied external COI substitution rate of Marino et al. (2011) is comparable to those of other 

studies (see above). In contrast, the estimated 16S substitution rates of this study are slightly 

higher compared to those found in the literature (see above). The observed differences among 

the 16S substitution rates may be explained by the chosen substitution model. Models with 

gamma distribution and invariable sites show an increased substitution rate (Wilke at al. 2009; 

see Subchapter 10.4.1.3). Estimated 16S substitution rates in this study base on the applied 

HKY+G model and are compared to substitution rates, which base on the K2P model (see above). 

This might be a reason for the slightly higher 16S substitution rates obtained in this study. 

Moreover, Schubart et al. (2000b) pointed out that comparisons of 16S substitution rates, which 

were estimated from different lengths and locations of the gene, have to be handle with caution 

because the “highly conserved and more variable regions” (p. 826) can have an influence of the 

rate. In fact, the sequences within the 16S alignments of this study are not uniform, but differ in 

length and completeness (Appendix A2). This may “result in an upwardly biased estimate of 

divergence” (p. 826, Schubart et al. 2000b) because informative regions may be missing. In 

contrast, this observation could not be confirmed for the COI gene (Lessios 2008). Knowlton et 

al. (1993) showed that their substation rate for COI is comparable to other COI rates, although 

the analyzed DNA regions differed among the studies. However, it should be noted that the 

sequences within the COI alignments in this study varied partially in their lengths (Appendix A2). 

This can cause problems in tree topologies (i.e. wrong species arrangements or very low node 

supports) and hence, in divergence time estimates). However, Lessios (2008) pointed out that 

certain variations within substitution rates are unproblematic. Indeed, varying 16S rates in (non 

transisthmian) species has also been shown by Hiller et al. (2006) in porcellanids and Wares 

(2001) in barnacles. Based on this assumption, the range of variation of the obtained 16S 

substitution rates in this study might be considered comparable to rates in the literature. 
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The similarity of different COI substitution rates inferred from the closure of the Isthmus of 

Panama (i.e. based on the assumption of the Pliocene model) compared to the crustacean rate 

inferred from the MSC indicates that the Isthmus of Panama is not per se an ineligible calibration 

point. However, several factors make the Isthmus inappropriate for divergence time estimations 

of TSS: (i) since the time of final Isthmus closure is unknown, the assumption of a 3 Ma Isthmus 

closure is inherently problematic and includes a source of error, (ii) often the youngest TSS pair 

is equalized to the assumed age of Isthmus closure. In turn, divergence times of all other nodes 

in the tree are then based on this assumption, which may result in wrong divergence times. 

Moreover, it is defective to assume that the youngest TSS pair in the tree has diverged due to 

the Isthmus closure. There are several other factors, which can play a role in species separation 

events (see Chapter 6), (iii) the defined calibration point of 3 Ma in many studies is too inflexible. 

The emergence and closure of the Isthmus of Panama was not a uniform event, but a complex 

and long lasting process. To account for this condition it is more precisely to use (at least) 

calibration bounds with a defined time interval, and (iv) the application of the Isthmus as 

calibration point includes per se a circular argument, when testing for the time of Isthmus 

closure. However, if the Isthmus of Panama has to be used as calibration point (i.e. alternative 

calibration events, fossils or external clocks are not available), it would be more accurate to 

assume an upper and lower bound than to apply calibration points (i.e. application of a time 

interval instead of a fixed time; see Wilke et al. 2009 and references therein for detailed 

discussion; Chapters 4 and 7). 

As mentioned above, the external COI substitution rate of Marino et al. (2011) is comparable to 

those of other studies. However, Ho (2007) criticized that external molecular clock rates (e.g., 

the avian clock rate of 2% My-1), are widely applied without the awareness of the corresponding 

uncertainties. However, I am aware that the applied external crustacean rate may account for 

certain errors in the divergence time estimations of this study. For example, the clock calibration 

by Marino et al. (2011) bases on a relaxed clock assumption and the calibration point of 5.59 Ma. 

To obtain a single substitution rate, Marino et al. (2011) used the average of all yielded 

substation rates inferred from the relaxed clock analyses. Unfortunately, they did not specify the 

confidence interval and thus, the included error cannot be considered here. Additionally, their 

calibration point reflects the earliest evidence of Atlantic–Mediterranean isolation (Krijgsman et 

al. 1999). As discussed above a calibration bound, which corrects for temporal uncertainties, 

would have been more appropriate. 

10.4.1.2 Dataset 

For the accuracy of molecular clock calibrations, several sequences of each species should be 

used to include a large range of haplotypes, because intraspecific variation can influence 

molecular clock estimations (Schubart et al. 2000b). Unfortunately, few datasets of this study 

suffer from low specimen/sequence numbers (Tables A2-1 – A2.4) and/or missing taxa (Table 

10-4), which may influence species relationships and, in the end, divergence times of TSS pairs 

(Andújar et al. 2014; Craig et al. 2004). For example, the datasets of the genera Panopeus and 

Pachygrapsus suffer from missing taxa, which may be relevant in respect to phylogenetic 
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relationships and species arrangements. Within the genus Panopeus, one western Atlantic 

species (P. boekei) and two eastern Pacific species (P. convexus and P. diversus) are missing 

within the phylogenetic study (Table 10-4). Unfortunately, there is none phylogeny available in 

the literature, which could reveal the phylogenetic relationship of the three missing taxa to the 

other species of this genus. Thus, the obtained phylogenetic relationships within this genus and, 

hence, assumed TSS pairs and their divergence times, have to be analyzed with consideration. 

Within the genus Pachygrapsus, one essential species is missing in the here performed 

phylogenetic analysis (P. corrugatus; Table 10-4). This species is widely distributed within the 

western Atlantic and was also found along the coast of the United Kingdom. However, in the 

phylogeny of Schubart (2011), P. corrugatus appears to be the sister to P. plicatus, a 

cosmopolitan species with a main distribution in the tropical Indo Pacific. Both species are not 

closely clustered to the proposed TSS pair. The other two missing species of Pachygrapsus (Table 

10-4) are distributed along the east coast of India and the southern Atlantic Ocean. Thus, it is 

reasonable to assume, that the missing species would not have significantly influence the 

divergence time estimation of the identified TSS pair (P. transversus/P. socius) in this study. 

10.4.1.3 Substitution model 

The influence of the selected substitution model on divergence times is low, resulting in similar 

average clock rates (table 3 in Wilke et al. 2009). However, Wilke et al. (2009) pointed out that 

substitution models with gamma distribution and invariable sites (Γ+I) show an increased 

substitution rate. This is important to consider, if external substitution rates are applied in own 

analyses (i.e. and potentially other substitution models are used), or if divergence time 

estimations from different models are compared with each other (see above). Lessios (2008) 

criticized the common approach to compare transisthmian species by their genetic distance and 

to equal the smallest genetic distance with the closure of the Isthmus. He argued that this 

method will possibly result in questionable divergence times, as shown for mollusks (Lessios 

2008 and references therein). In this study, the HKY+G substitution model was used in the 

divergence time estimations. This substitution model was also applied by Marino et al. (2011). 

Hence, the introduce error rate should be negligible. 

10.4.1.4 Ancestral polymorphism 

Another source of error includes the aspect of ancestral polymorphism. Ancestral polymorphism 

plays a significant role in divergence time estimations of species. In mollusks, Wilke et al. (2009) 

found that ancestral polymorphism results in overestimations of divergence times of 10-70% in 

young (around 1 Ma) and 2-9% in old (around 5 Ma) events. However, the influence of ancestral 

polymorphism is widely ignored in divergence time studies (Edwards & Beerli 2000; Hickerson et 

al. 2003, 2006). Corrections for ancestral polymorphism in this study are problematic. The 

population datasets of the analyzed genera are insufficient to calculate the value of ancestral 

polymorphism correctly (see Appendix A2). However, based on the estimations of ancestral 

polymorphism in mollusks by Wilke et al. (2009), an average value of 5% per million years was 

chosen for all decapod genera in this study. Thus the average value for ancestral polymorphism 

for the studied genera is about 250 000 years (Table 10-6). 
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10.4.1.5 Other parameters 

As mentioned above, several additional parameters may influence divergence times of TSS: (i) 

Saturation of the data set can be excluded for all genera, based on the test for substitutional 

saturation (Xia 2013; see Appendix A1.2.7), (ii) pseudogenes can be excluded for all datasets in 

this study, and (iii) the used prior conditions (Appendices A1.2.7 and A1.2.8; Table A1-4) were 

suitable for the conducted phylogenetic analyses and divergence time estimations. Obtained ESS 

values in Tracer were well above 200 for each dataset (Rambaut & Drummond 2009). Additional 

parameters like dispersal capability of the studied species, missing sequences, and species 

misidentifications, which may have an influence of the results of the divergence time estimations, 

are discussed below. Although various statistical models are developed for different approaches 

of divergence time estimations to yield most realistic estimates (e.g., Hickerson et al. 2003, 

2006; Huelsenbeck et al. 2000; Tavaré et al. 2002), none of these models could have been 

applied here, because of insufficient datasets. 

10.4.2 Evidences for the time of Isthmus closure 

10.4.2.1 Phylogenetic studies of the genus Sesarma 

The phylogenetic analysis of the genus Sesarma revealed three monophyletic clades (clades A-C; 

Figure 10-2). Clade A consists of only (semi-)terrestrial Jamaican crabs, which originated from a 

marine ancestor around 5.13 Ma (95% HPD: 4.27–6.02 Ma). Schubart et al. (1998) dated their 

divergence time at around 4.5 Ma (+/- 0.42). This slight discrepancy may base on the different 

approaches, which were used to estimate the divergence times. Schubart et al. (1998) estimated 

the divergence times based on sequence divergences between the species and assumed an 

isthmian closure at 3.1 Ma. In contrast, divergence time estimations in this study base on an 

external substitution rate, which was inferred from the MSC, under the HKY+G substitution 

model. However, note that the 95% HPD falls within the estimated divergence time of Schubart 

et al. (1998). If the here estimated divergence time is corrected for ancestral polymorphism (i.e. 

4.88 Ma, 95% HPD: 4.02–5.77 Ma; Table 10-6) divergence times of both studies are similar. 

Divergence time estimations were performed for two Sesarma TSS complexes (complex A and 

complex B; Figure 10-2), which were identified due to the former conducted phylogenetic 

analysis. Complex A consists of S. rhizophorae (EP) and the potential TSS S. curacaoense and S. 

reticulatum (WA). Complex B consists of S. crassipes (WA) and the potential TSS S. sulcatum and 

S. aequatoriale (EP). Both TSS complexes were also found by Schubart et al. (1998). 

The development of TSS complexes (i.e. several species on one side of the Isthmus can represent 

the putative sister to the species on the other side) may base on additional separation events 

followed by incomplete lineage sorting on one side of the barrier, as pointed out by Reuschel & 

Schubart (2006). The divergence times of both complexes fall within the time range of the 

Pliocene model. The average divergence time of 3.03 Ma (TSS complex A) matches exactly the 

Pliocene assumption (slightly younger if corrected for ancestral polymorphism). Although, the 

average divergence time of TSS complex B (4.36 Ma; 4.11 Ma if corrected for ancestral 

polymorphism) is slightly older than 3 Ma, the proposed upper bound of the Isthmus closure is 
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around 4 Ma (Collins 2003; Jackson & O’Dea 2013; Weir et al. 2009; Table 4-1). Thus, the 

estimated divergence time fits well into the time range of a Pliocene Isthmus closure. Anyway, it 

has to be noticed that different parameters (e.g., imprecise corrections for ancestral 

polymorphism, or an incomplete dataset) may account for overestimations of the divergence 

times (see above). However, in general the obtained divergence times of both Sesarma TSS 

complexes reflect the time of Isthmus closure of the ‘common Pliocene model’. Assuming re-

openings and -closures of the Isthmus until around 1.8 Ma (Keller et al. 1989), the 95% HPD of 

TSS complex A (2.37–3.71 Ma, 2.12–3.46 Ma if corrected for ancestral polymorphism) indicates 

that TSS may have been separated from each other during this time. However, as mentioned 

before the emergence and closure of the Isthmus of Panama was a complex and long lasting 

event and thus, precise times of the final closure cannot be determined. 

10.4.2.2 Phylogenetic studies of the family Panopeidae 

The phylogenetic analysis of the Panopeidae based on a subset of the comprehensive 

Xanthoidea phylogeny by Thoma et al. (2014) (Figures 10-3 and 10-4). The taxonomic 

arrangement in this study differs to the species arrangement of Thoma et al. (2014) 

considerably. The different species arrangement may occur due to the complement of the 

dataset with numerous of own species and sequences. Differences on an intra-specific level (i.e. 

species are not clustered together but are widely distributed within the phylogenetic tree, e.g., 

P. americanus, P. rugosus, P. occidentalis) may be due to misidentifications or, more likely, due 

to an incomplete dataset. Particularly for the species in question either COI or 16S sequences are 

missing and thus, genetic information is only available for one of the genes (Tables A2-2 and 

A2-3). Andújar et al. (2014) pointed out that missing sequences can result in wrong species 

arrangements. On a genus level, the genera Panopeus and Eurytium are also not well separated. 

Whereas Eurytium is monophyletic in Thoma et al. (2014), here both genera are paraphyletic 

(Figures 10-5 and 10-6). 

In respect to the studied TSS pairs and -complex, species arrangements differ between both 

studies (i.e. Thoma et al. 2014 vs. this study). In the phylogenetic analysis of this study, one 

Panopeus TSS pair (P. hartii/Panopeus sp.) can be identified within clade A (Figure 10-5). 

However, node supports are low, which are even more pronounced in the divergence time tree 

(Figure 10-7). Thus, assuming a polytomy of this clade the TSS pair A changes to a TSS complex 

consisting of P. hartii (WA) and Panopeus spp./P. purpureus (EP). The reason for this TSS complex 

is probably the inadequate dataset of P. hartii (missing 16S sequence and only short COI 

sequence; Table A2-3). However, the MRCA of this here presented complex occurred at around 

480 000 years ago (95% HPD: 0.29–0.7 Ma). For this young age, corrections for ancestral 

polymorphism are negligible. Two explanations for such a young age can be supposed. First, the 

species arrangement is wrong (i.e. evidences are given by low node supports and an incomplete 

dataset of P. hartii; see discussion above). Moreover, in the study of Thoma et al. (2014) P. hartii 

and P. purpureus are far arranged from each other. Second, assuming an accurate species 

arrangement, recent dispersal events may have occurred. Recent dispersal events (< 1.8 Ma) 

between both sides of the Isthmus have been shown by Miura et al. (2012) in mollusks, 
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McCartney et al. (2000) in sea urchins, and by Lessios (2008, and references therein) in different 

species groups. Additional species of P. hartii and a completion of the dataset could bring light 

into the here presented pattern. 

The genus Eurytium occurs to be paraphyletic in the here presented phylogeny and contains two 

TSS pairs (Figure 10-6, clade B). The species E. limosum (WA) and E. tristani (EP) are not closely 

related to each other in this study, as postulated by Thoma et al. (2014). In fact, TSS pair A 

consists of E. limosum (WA) and the species Panopeus spp. (EP). Panopeus spp. (#19756-67, 

19760-63) are unidentified species. It remains uncertain, if Panopeus spp. can be considered as 

Panopeus, or if they may be undescribed species of Eurytium. However, TSS pair A shows a 

divergence time of 2.91 Ma (95% HPD: 1.95–3.97 Ma) and thus, it matches the time frame of the 

assumed Pliocene model (i.e. Isthmus closure around 3 Ma). However, the lower range of the 

95% HPD interval of TSS pair A reflects also the time of possible isthmian re-openings 

and -closures (Cronin & Dowsett 1996; Keller et al. 1989). TSS pair B consists of E. tristani (EP) 

and P. occidentalis (#19871; WA; Table 10-2; Figure 10-8). They were separated from each other 

around 0.63 Ma (95% HPD: 0.18–1.19 Ma). It is surprising that P. occidentalis (#19871) occurs to 

be the sister to E. tristani. The reason may be that the missing COI sequence of P. occidentalis 

(#19871) results in a misleading species arrangement (Andújar et al. 2014; Table A2-3). 

Comparing the datasets of all specimens of P. occidentalis in this study it becomes apparent that 

P. occidentalis (#19872) shows a missing 16S sequence and the specimens P. occidentalis 

(#19870, #19873) show missing COI sequences (Table A2-3). The remaining specimens of P. 

occidentalis (#16150, #16167) show a complete dataset. Thus, it is surprising that P. occidentalis 

(#16150) clusters to P. rugosus and P. americanus (which themselves have incomplete datasets, 

see Table A2-3), and that P. occidentalis (#16167, #19870) as well as P. occidentalis (#19872, 

#19873) each clustering together (Figure 10-8). The low divergence age of TSS pair B supports 

this assumption. Furthermore, no differences were observable in the morphological 

comparisons between all specimens of P. occidentalis (Figures A3-32 – A3-33). 

Based on only morphological comparisons, Martin & Abele (1986) pointed out: “Systematically, 

the genus Panopeus H. Milne Edwards has a long-standing reputation as a problem group” (p. 

183). However, the young age of the MRCA of the here presented TSS pair B (0.63 Ma) may have 

three reasons. First, P. occidentalis (#19871) is misidentified. However, morphological 

comparisons do not support such an assumption (Figures A3-32 – A3-33). Second, the species 

arrangement is wrong of the above discussed reasons (incomplete dataset). Third, assuming an 

accurate species arrangement, recent dispersal events may have occurred. Similar to the 

discussion of P. hartii (see above), a completion of the dataset could bring light to the here 

observed pattern. 

10.4.2.3 Phylogenetic studies of the genus Pachygrapsus 

The phylogenetic analysis of the genus Pachygrapsus based on a subset of the comprehensive 

Grapsidae phylogeny by Ip et al. (2015) (Figure 10-9). Their species arrangements are in well 

accordance with the topology of the phylogenetic analysis of Schubart (2011). 
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Pachygrapsus represents a polyphyletic group within the Grapsidae (Ip et al. 2015; Schubart 

2011). However, all studied WA and EP representatives form a monophyletic group with high 

node supports (Figure 10-10). Due to missing 16S sequences of the supposed TSS pair (P. socius, 

EP and P. transversus, WA), the divergence time analysis bases on COI sequences alone (Table 

A2-4). P. corrugatus is the only missing WA species of this genus (see above; Table 10-4). 

Because of the unavailability of COI sequences for P. corrugatus (as well as the Japanese species 

P. minutus), these species could have not been included in the divergence time estimation of this 

study. Anyway, in the comprehensive 16S Grapsidae phylogeny of Schubart (2011), P. corrugatus 

appears to be the sister species to P. plicatus, which in turn, is arranged far apart from the 

studied TSS pair (see also Ip et al. 2015). Thus, it is most likely that P. corrugatus would not have 

had influenced the result of the divergence time estimation. The MRCA of the studied TSS pair P. 

socius (EP) and P. transversus (WA) occurred 9.56 Ma (95% HPD: 6.11–13.54 Ma; Table 10-6; 

Figure 10-10). This time of divergence matches the proposed time range of a temporary near-

complete Isthmus around 11–9 Ma (Coates et al. 2003, 2004; Roth et al. 2000; see Chapter 4; 

Table 4-2). In fact, the estimated divergence time of the here studied TSS pair is reasonable, if 

set into context to different studies. In contrast to Montes et al. (2012a; b), who postulated an 

Isthmus closure around 15 Ma, Keller & Barron (1983) as well as Coates & Stallard (2013) 

proposed a gradual shoaling of the Isthmus between 15–12 Ma. Coates & Stallard (2013) pointed 

out that a complete interruption of water exchange around 15 Ma is unlikely, rather narrow 

marine connections persist. Moreover, several studies indicate migration events of terrestrial 

and freshwater species between North- and South America during 5–16 Ma (Bermingham & 

Martin 1998; Cody et al. 2010; Marshall 1985, 1988; Morgan 2002; Webb 1985; Weigt et al. 

2005). The estimated divergence time and the 95% HPD of the TSS pair indicates a much earlier 

separation of the species, compared to the TSS pairs and -complexes of the other studied 

genera. In contrast, Schubart (2011) assumed a divergence age of P. socius/P. transversus 

around 3 Ma. In his study, Schubart (2011) equalizes the habitat preference of Pachygrapsus 

(upper intertidal) with the general assumption that species of shallow water environments were 

the last, which have crossed the Isthmus before the final closure (i.e. 3 Ma; Knowlton & Weigt 

1998; see Chapter 4). However, Schubart (2011) also pointed out that “changes in current 

regimes and water temperature already took place a few million years earlier […] and some 

species may thus have diverged before 3 Mya, depending on their ecology […]” (p. 477, Schubart 

2011). 

10.4.2.4 Incongruence of achieved divergence times 

The obtained divergence times of the here studied TSS pairs and -complexes are not concordant 

to each other and thus, do not point unambiguously toward a Miocene or a Pliocene closure of 

the Isthmus. In fact, the yielded results reflect the general pattern, which is observable in the 

literature. Several identified TSS pairs of aquatic as well as terrestrial species show divergence 

times much older than 3 Ma (e.g., Anker et al. 2007; Knowlton & Weigt 1998; Lessios 2008 and 

references therein; Marko 2002; see Chapters 4 – 6). In contrast, divergence time estimations of 

several TSS pairs in various studies resulted in young divergence ages, pointing toward re-
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openings and -closures of the Isthmus or dispersal events (e.g., Lessios 2008 and references 

therein; Miura et al. 2012; Stillman & Reeb 2001). Even though the Isthmus of Panama was 

avoided as calibration point in the here performed divergence time estimations, fossils would 

have been theoretically another possibility to calibrate the molecular clock, although they 

include specific uncertainties (see Chapter 7). In general, the fossil record of crustaceans is highly 

influenced by environmental conditions and the former species way of life (Plotnick et al. 1988). 

For example, “[…] preservational models developed in cold, nutrient rich areas may not be 

applicable to the low organic matter, carbonate environments of epeiric seas” (p. 40, Plotnick et 

al. 1988). On the other hand, calcified exoskeletons, and (semi-) infaunal or widely distributed 

species, like the genus Panopeus, should provide good fossil records. In fact, Plotnick et al. 

(1988) pointed out that xanthid crabs show a large fossil record that reaches back to the 

Palaeocene. However, fossils for the here studied genera were not available to this study. 

10.5 Summary 

The here studied TSS pairs and -complexes of the four decapod genera Sesarma, Panopeus, 

Eurytium, and Pachygrapsus do not present clear evidence for either the Miocene or the 

Pliocene model. In fact, the TSS pair of Pachygrapsus shows an early divergence age close to the 

Miocene model, whereas the TSS complexes of Sesarma and the TSS pair A of Eurytium rather 

point toward the Pliocene model. Moreover, TSS complex A of Sesarma and TSS pair A of 

Eurytium also show evidence of potential re-openings and -closures of the Isthmus after 3 Ma 

(Table 10-6). The TSS pair of Panopeus shows such a young divergence age that recently 

dispersal events should be considered. However, based on several factors that may have 

influenced the TSS arrangement and divergence time estimations (e.g., missing species or 

sequences, and misidentifications), the obtained results should be interpreted with care, in 

particular for the TSS pair of Panopeus and the TSS pair B of Eurytium (see discussion above). 
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11 Conclusion 

11.1 A critical view at the transisthmian sister species concepts 

11.1.1 Toward an unified definition of transisthmian sister species 

1. The comprehensive study of the term transisthmian sister species (TSS) resulted in several 

conclusions regarding the responsible and structured use of this term and its synonyms. It 

should be considered that terms used in a study, should be clear and unambiguous defined 

in the beginning. To avoid confusion a minimal number of different terms should be used. 

Moreover, common terms should be applied and general (e.g., sister species, species pairs), 

complex (e.g., transisthmian pairs of sister taxa, closest transisthmian relatives), and unusual 

terms (e.g., daughter species, congeneric counterparts, analogous species) avoided. Hard 

(cladogenetic event) and soft polytomies within the phylogenetic tree can provide evidence 

for true or misleading TSS relationships. In this context, habitat preferences and distribution 

ranges of the studied TSS pairs and -complexes may provide further evidence for TSS 

relationships. 

2. In this study, three terms (and their synonyms) were defined in the beginning of this thesis, 

based on the species composition: 

A) Transisthmian sister species pair (TSS pair) – term that refers to TSS representing one 

unity. 

B) Transisthmian sister species complex (TSS complex) – term that points out an unresolved 

TSS relationship, containing several species. 

C) Transisthmian pseudo sister species (pseudo-TSS) – term that implies that separation 

events occurred independently of the Isthmus formation. 

After the here presented divergence time estimations, the term TSS pair had to be revised 

and divided into more precise terms in respect to the time of assumed Isthmus emergence. 

Thus, the following three new terms were proposed to distinguish between TSS divergence 

events before, during and after assumed Isthmus completion, respectively: 

- Pre- transisthmian sister species pair (Pre-TSS pair) 

- Inter- transisthmian sister species pair (Inter-TSS pair) 

- Post- transisthmian sister species pair (Post-TSS pair) 

Thus, these overall five terms should be sufficient to describe any time-depending pattern of 

TSS in respect to the Isthmus closure, without developing new and additional terminology 

that may increase confusion. 

3. Only a part of the used TSS synonyms in the literature is believed to comprise the true 

meaning of the term transisthmian sister species. Thus, the three following criteria have to 

be met to consider terms as true synonyms: 
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A) Term must imply the connection to the emergence and closure of the Isthmus of 

Panama. 

B) Term must clear define that species of interest originated from a common ancestor. 

C) Term must include that species of interest occur on opposite sides of the Isthmus of 

Panama. 

4. The terminology discussion and the introduction of new terms were important for several 

reasons. To decrease ambiguity and facilitate consistency in biological studies, which are 

concerned with TSS, it is necessary to avoid redundant terms. Moreover, the proper use of 

terms referring to the respective context between TSS and the Isthmus of Panama facilitate 

the understanding of a study. We should be aware that many terms, which are used as 

synonyms for TSS, are semantically distinct and should not be misused. 

5. Perhaps, some readers disagree with the emphasized need to reduce the usage of terms 

regarding TSS and evaluate this discussion as excessive. However, I agree with Nelsen et al. 

(2014), who believed that improved and classified definitions “should make (these) terms 

more accessible to and better understood by both researchers and the general public” (p. 

461). 

11.1.2. Criteria of TSS pairs and -complexes 

1. The five proposed criteria, which categorize species into TSS are only partly fulfilled by each 

studied TSS pair or -complex in this study: 

1) All TSS pairs and -complexes experienced speciation processes through geographic 

isolation, independent if the closure of the Isthmus itself was the driving force or not. 

2) Some of the studied TSS pairs and -complexes show overlaps in their estimated 

divergence times compare to the Isthmus of Panama. This might be a coincidence 

because several factors can cause or influence species divergences. The fact that the 

divergence time estimations show similar ages can result in misleading conclusions. 

3) Distributional ranges of recognized TSS are generally not restricted to the Isthmus region 

and its bordered countries. In fact, most TSS show a wide distributional pattern. 

4) Several studies show that morphological similarity can base on environmental 

adaptations and are forced by similar habitat structures. Therefore, a TSS determination 

which only bases on morphological characteristics is insufficient and may result in 

misleading TSS pair classifications. However, the representatives of the TSS pairs 

and -complexes in this study (except for TSS pair A and B of Eurytium) are 

morphologically similar. 

5) It is common that TSS pairs and -complexes show different divergence times. Different 

factors can play a role, e.g., the complex history of the Isthmus emergence and closure, 

or high dispersal capability of the species. 
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2. As discussed above, only a part of the five proposed criteria is fulfilled by the studied TSS 

pairs and -complexes. Nevertheless, they are suitable to conduct divergence time 

estimations because of several reasons. An external substation rate (Marino et al. 2011) is 

available for the studied TSS pairs and -complexes, which was estimated independent of the 

Isthmus closure. Moreover, the species are inhabitants of mangroves and the shallow water, 

which reflect the time of final closure best. Furthermore, several TSS pairs and -complexes 

could have been identified in most genera and a comprehensive dataset is available. 

3. If studying TSS in context to the emergence and closure of the Isthmus of Panama, several 

factors may be helpful to choose suitable TSS pairs. Species with high dispersal ability (e.g., 

species with strong shell, operculum, sticky eggs, and high tolerance to freshwater) should 

be avoided. Likewise, species with confined distribution ranges should be preferred in 

contrast to cosmopolitan species. Furthermore, shallow water species should be used (e.g., 

mangrove associates, high intertidal species), because they reflect the time of final Isthmus 

closure best. 

4. The five criteria, which define species as TSS have to be reconsidered. However, the 

establishment of a clear confined TSS concept is difficult to assess and it is not possible to 

develop a significant TSS identification key. Nevertheless, different factors should be 

considered and taken into account when identifying TSS: 

1) The barrier and the evolved TSS pairs and -complexes can be of different age. 

2) The distributional ranges of TSS pairs and -complexes are within the Atlantic and Pacific 

oceans, with a focus in the western Atlantic and eastern Pacific. 

3) Morphological characteristics should be used combined with molecular analyses. 

4) TSS pairs and -complexes within a genus can show different divergence ages. 

11.2 Divergence time estimations of TSS 

1. The following TSS pairs and -complexes of the four studied decapod genera Sesarma, 

Panopeus, Eurytium, and Pachygrapsus have been identified due to phylogenetic analyses: 

 Sesarma: Two TSS complexes 

- TSS complex A: S. rhizophorae (EP) / S. curacaoense and S. reticulatum (WA). 

- TSS complex B: S. crassipes (WA) / S. sulcatum and S. aequatoriale (EP). 

 Panopeus: One TSS pair, or rather -complex (if polytomy of the tree is accepted) 

- TSS pair: P. hartii (WA) / Panopeus sp. (#16142; EP). 

- TSS complex: P. hartii (WA) / Panopeus spp. and P. purpureus (EP). 

Note that within the genus Panopeus, one western Atlantic species (P. boekei) and two 

eastern Pacific species (P. convexus and P. diversus) are missing in the phylogenetic study. 

Thus, TSS relationships may be different (and hence divergence time estimations) if missing 

species would have been included.  
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 Eurytium: Two TSS pairs 

- TSS pair A: E. limosum (WA) / Panopeus spp. (EP). 

- TSS pair B: E. tristani (EP) / P. occidentalis (WA). 

Note that Panopeus spp. is unidentified, thus it may also belong to another, yet undescribed 

species of Eurytium. Due to a missing COI sequence of P. occidentalis (#19871) the species 

arrangement might be wrong and thus, P. occidentalis is probably not the true TSS of E. 

tristani. 

 Pachygrapsus: One TSS pair 

- TSS pair: P. socius (EP) / P. transversus (WA). 

2. Divergence time estimations of the identified TSS pairs and -complexes resulted in none 

clear trend for either the Miocene or the Pliocene model. The Miocene model was supported 

by the upper bound of the 95% HPD interval of Pachygrapsus (13.54 Ma). The Pliocene 

model was supported by both TSS complexes of Sesarma (2.37–3.71 Ma; 3.27–5.56 Ma) and 

the TSS pair A of Eurytium (1.95–3.97 Ma). Re-openings and -closures (< 2.5 Ma) were 

supported by the lower bounds of TSS complex A of Sesarma (2.37 Ma) and TSS pair A of 

Eurytium (1.95 Ma). The TSS complex of Panopeus shows a young divergence time (0.29–

0.7 Ma), which may point toward a recent dispersal event. 

3. Divergence time estimations of TSS pairs and -complexes in this study are influenced by a 

number of parameters, which have to be considered when interpreting the results. For 

example, the datasets of this study suffer particularly from missing sequences. This may 

influence species relationships and, in the end, divergence times of TSS pairs 

and -complexes. Thus, achieved results should be interpreted with care, in particular for the 

TSS pair of Panopeus and the TSS pair B of Eurytium (see above). However, divergence times 

are also influenced by ancestral polymorphism. Due to an insufficient dataset, ancestral 

polymorphism for the specific genera could not have been estimated and thus, an average 

value is used, which was taken from the literature. Unfortunately, fossils for the here studied 

species were not available. They could have given additional evidence for the time of species 

divergence. Although an external molecular clock crustacean rate was applied, which bases 

on the Mediterranean Salinity Crisis, the substitution rate includes uncertainties a priori (e.g., 

imprecise calibration point, use of a relaxed clock). 

4. When studying the geological processes of the Isthmus of Panama, including divergence time 

estimations of species, it is crucial to remember few factors. For example, the time of final 

Isthmus closure is not resolved and thus, the use of the Isthmus as calibration point 

comprises additional uncertainties for divergence time estimations. Therefore, the use of an 

external substitution rate, which is estimated independent of the time of Isthmus closure, 

should be favoured if possible. For divergence time estimations, a time interval (i.e. no 

defined time of closure, better upper and lower bounds) or a relaxed molecular clock should 

be chosen, if an external substitution rate is not available. Moreover, the emergence and 

closure of the Isthmus of Panama was a complex and long lasting geological event with 

probably several re-openings and -closures. 
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12 Outlook 

The first part of this study focused on the transisthmian sister species (TSS) concept. The 

definition of the term transisthmian sister species is comprehensively discussed and the 

importance for a general and consistent terminology expressed. Whereas future studies may 

follow the suggested recommendations, which are mainly based on the time of TSS divergence, 

additional or more specific terms may be proposed with respect to, e.g., ecological or species-

specific life history parameters. Additionally, future studies may focus on the five proposed 

operative criteria to classify species as TSS, which were not applicable for the here studied 

decapod species, and may develop practical principles for other species groups. 

The second part of this study was concerned with divergence time estimations of the identified 

TSS pairs and -complexes of four decapod genera in order to highlight challenges of divergence 

time estimations of TSS. Additionally, the obtained divergence times were evaluated with 

respect to the controversially discussed ‘common Pliocene model’ and the ‘new Miocene 

model’. This thesis pinpoints several factors that can influence the species arrangement of a 

phylogenetic tree and thus the divergence time estimations of TSS. Future studies may 

complement the dataset of this thesis with new fragments and additional sequences or species. 

Based on a comprehensive dataset statistical models can then be employed, which, e.g., relax 

the clock in divergence time estimations (Huelsenbeck et al. 2000), or estimate and compare 

ancestral TSS population sizes (Hickerson et al. 2003). 

The divergence time estimations in this study were based on an external substitution rate, which 

was estimated from the Mediterranean Salinity Crisis, and do not conclusively reject either 

model of the Isthmus closure. However, the obtained divergence times and 16S substitution 

rates in this study correspond to the results found in the literature. In a next step, external 

substitution rates, which are inferred from other geological events (see Table 7-2), can be tested 

for their suitability to estimate divergence times of TSS. Moreover, this thesis was only 

concerned with mangrove and intertidal TSS pairs and -complexes of the four decapod genera. 

By using TSS pairs of additional taxa such as mollusks or fishes, which differ in e.g., their habitat 

preference (e.g., inhabitants of deep water or benthic organisms) the here presented results 

could be complemented and compared with respect to the inferred divergence times, in order to 

find further evidence for the temporal emergence and closure of the Isthmus of Panama. 
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A1 Materials and Methods 

A1.1 Materials 

A1.1.1 Sources of animal tissues 

This study is based on in alcohol-preserved voucher specimens of the four decapod genera 

Sesarma, Panopeus, Eurytium, and Pachygrapsus, which are on loan with courtesy of the 

Senckenberg Museum Frankfurt, Germany, from the collections of PD Dr. Schubart from the 

University of Regensburg as well as on sequences, obtained from the National Center for 

Biotechnology Information (NCBI). Photos, a detailed description, and information about the 

obtained sequences are listed for most analyzed specimens in Appendices A2 and A3. 

Although specimens of the phylum Mollusca were collected on a field trip to the western 

Atlantic and eastern Pacific coasts of Panama (permit: Resolución DGOMI-PEFC N°17), only the 

voucher decapod specimens were analyzed in this study. However, the field trip took place in 

March 2012 in cooperation with Dr. Aaron O’Dea from the Smithsonian Tropical Research 

Institute (STRI). Field trips were undertaken to mangroves, shallow coastal waters, and flat coral 

reefs near Veracruz and the Naos Marine Laboratory (STRI), (eastern Pacific coast), as well as to 

the Galeta Marine Laboratory (STRI) and Colón at the western Atlantic coast. Mollusk samples 

were conserved in 100% ethanol (EtOH), exported to Germany, and stored at the University 

Giessen Systematics and Biodiversity collection (UGSB). 

A1.1.2 Chemicals 

Chemicals used in this study. Manufacturer, location of principal office, and country are in 

brackets. 

- Agarose (Lonza, Kaiserslautern, GER) 

- Bovine Serum Albumin (BSA) (New England Biolabs GmbH, Frankfurt a.M., GER)  

- Cetyl Trimethyl Ammonium Bromide (CTAB) (Carl Roth GmbH + Co. KG, Karlsruhe, GER)  

- Chloroform (Carl Roth GmbH + Co. KG, Karlsruhe, GER) 
- Double distilled water (ddH2O) (Carl Roth GmbH + Co. KG, Karlsruhe, GER) 

- Ethylene-diamine-tetraacetic acid (EDTA) (Carl Roth GmbH + Co. KG, Karlsruhe, GER) 

- Ethanol (EtOH) (Carl Roth GmbH + Co. KG, Karlsruhe, GER) 

- Magnesium chloride 2.5 mM (MgCl2) (Carl Roth GmbH + Co. KG, Karlsruhe, GER) 

A1.1.3 Solutions 

All solutions were prepared using ddH2O and stored in gas-tight bottles or screw cap tubes. Stock 

solutions were diluted according manufactures instructions or protocols. When solutions were 

not self-prepared manufacturers names are add in brackets. 

 Agarose gel, 1% 
- 1 g Agarose 
- 100 ml 0.5x TBE buffer 
- 10 µl 0.5 µg/µl GelRedTM 
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 CTAB precipitation buffer (Cetyl Trimethyl Ammonium Bromide) 

- 1% CTAB 

- 0.05 M Tris base 

- 0. 01 M EDTA 

add ddH2O up to 100 ml 

 CTAB/NaCl solution, 5% 
- 5% CTAB 
- 0. 5 M NaCl 

add ddH2O up to 100 ml 

 Exchange buffer, pH 8.0  
- 20 mM Tris base 
- 0. 1 M EDTA 

add ddH2O up to 100 ml 

 DNA Marker Phi X 174 DNA – HaeIII Digest, 1 µg/ml (New England Biolabs GmbH) 

 dNTP solution 20 mM (Promega) 
- 200 µl 100 mM dATP (20 mM) 
- 200 µl 100 mM dCTP (20 mM) 
- 200 µl 100 mM dGTP (20 mM) 
- 200 µl 100 mM dTTP (20 mM) 

add 9.2 ml ddH20  

 EDTA (Ethylene-diamine-tetraacetic acid), 0.2 M (Carl Roth GmbH + Co. KG) 
- 7.44 g Diaminoethane-tetraacetic acid 

add ddH2O up to 100 ml 

 GelRedTM (Biotium Inc.) 

 Loading Dye 
- 95 ml 95% Formamid deion  
- 3.72 g 10 mM EDTA 
- 0.01 g Bromphenolblue 

 NaCl solution, 5 M 
- 29.22 g 5 M NaCl 
- 100 ml ddH2O 

 NaCl in 1xTE, 1 M 
- 20 ml 5 M NaCl 
- 10 ml 10x TE 

add 70 ml ddH2O up to 100 ml 

 TE buffer, 10x 
- 10 ml 1 M Tris pH 8.0 
- 5 ml 0.2 M EDTA 

add 85 ml ddH2O up to 100 ml 

 TMAC (Tetramethylammonium chloride), 0.5 M (Carl Roth GmbH + Co. KG) 

- 0. 548 g TMAC 

- 10 ml ddH2O 
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 TBE buffer, 5x 
- 54 g Tris base 
- 27 g boracic acid 
- 3.73 g 0.2 M EDTA pH 8.3 

add ddH2O up to 1000 ml 

 Thermopol reaction buffer, 10x (New England Biolabs GmbH) 
- 200 mM Tris-HCl 
- 100 mM (NH4)2SO4 
- 100 mM KCl 
- 20 mM MgSO4 
- 1% Triton X-100 
- pH 8.8 

 Turner lyses buffer, pH 8.0 
- 20 mM Tris base (TRIZMA) 
- 0.1 M EDTA 
- 0.5% SDA (Sarkosyl) 

add ddH2O up to 1000 ml 

A1.1.4 Enzymes 

Enzymes used in this study are listed below. Manufacturer, city, and country are given in 

brackets. For more information about buffers and sources of the enzymes see manufacturer 

protocols. 

 Proteinase K (New England Biolabs GmbH, Frankfurt a.M., GER)  

 Taq DNA polymerase (New England Biolabs GmbH, Frankfurt a.M., GER)  

A1.1.5 Consumable material 

The consumable material used in this study is listed below. The manufacturer, city, and country 

are given in brackets. 

 Collecting tubes 
- 2 ml microtubes (Sarstedt, Nümbrecht, GER) 
- 7 ml tube with white cap (Sarstedt, Adelaide, AUS) 
- 30 ml Nalgene wide-mouth jars, translucent (MAGV GmbH, Rabenau-

Londorf, GER) 
- 50 ml centrifuge tubes (VWR International GmbH, Darmstadt, GER) 
- 60 ml Nalgene polypropylene wide-mouth jars, translucent (MAGV 

GmbH, Rabenau-Londorf, GER) 
- 250 ml Nalgene polypropylene wide-mouth jars, translucent (MAGV 

GmbH, Rabenau-Londorf, GER) 

 Gloves 
- Nitrile (Meditrade, Kiefersfelden, GER) 
- Latex (Meditrade, Kiefersfelden, GER) 

 Modeling clay, black (to adjust specimens under the digital microscope)  

 Parafilm® (Carl Roth GmbH + Co. KG, Karlsruhe, GER) 
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 Pipet tips (Starlab, Hamburg, GER) 
- 0.1 – 10 µl 
- 0.1 – 20 µl 
- 10 – 100 µl 
- 50 – 200 µl  
- 1000 µl 

 Reaction tubes 
- 0.2 ml PCR reaction tubes (Peqlab Biotechnologie GmbH, Erlangen, GER) 
- 0.5 ml reaction tubes (MAGV GmbH, Rabenau-Londorf,) 
- 0.5 ml safe lock reaction tubes (MAGV GmbH, Rabenau-Londorf,) 
- 1.5 ml reaction tubes (MAGV GmbH, Rabenau-Londorf,) 

 Sand, black (to adjust specimens under the digital microscope) 

A1.1.6 Lab equipment 

The following lab equipment was used to conduct molecular analyses. The manufacturer, city, 

and country are given in brackets. 

 Centrifuges 
- Biofuge pico (Thermo Fisher Scientific Inc., Waltham, USA) 
- Eppendorf centrifuge 5415 D (Eppendorf AG, Hamburg, GER) 

 Digital Camara (Canon Deutschland GmbH, Krefeld, GER) 
- Powershot A70 

 Gel chamber and slides (Life Technologies, Grand Island, NY, USA) 
- Horizon 58, Gibco BRL Horizontal Gel Electrophoresis Apparatus  

 Keyence (Keyence Deutschland GmbH, Neu-Isenburg, GER) 
- Digital microscope VHX 2000 

 NanoDropTM (Thermo Fisher Scientific Inc., Waltham, USA) 
- 2000 UV-Vis spectrophotometer 

 Pipettes – Reference, Multipette plus (Eppendorf AG, Hamburg, GER) 
- 0.1 – 2.5 µl (Reference) 
- 0.5 – 10 µl (Multipette plus) 
- 0.5 – 10 µl (Reference) 
- 2 – 20 µl (Reference) 
- 10 – 100 µl (Reference) 
- 50 – 200 µl (Reference) 
- 100 – 1000 µl (Reference) 

 Power supplies (Consort Group, Ottawa, USA) 
- Electrophoresis Power Supply E 835 / E802  

 Scale (Kern & Sohn GmbH, Balingen-Frommern, GER) 
- Kern ABS 

 Shaker and heating block (Eppendorf AG, Hamburg, GER) 
- Thermomixer comfort  
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 Thermocycler (Eppendorf AG, Hamburg, GER) 
- Mastercyler pro S  

 UV Illuminator (Biometra, Göttingen, GER)  
- TI 1 

 Vortex (IKA® –Werke GmbH & Co. KG, Staufen, GER) 
- MS2 Minishaker 

A1.1.7 Oligonucleotides 

Oligonucleotides (primers) and their target genes used in this study are listed in Table A1-1. All 

primers were synthesized by Metabion GmbH (Planegg/Steinkirchen, GER). Slightly modifications 

of the COI primers COL6, COR722b and COH1b are based on the oligonucleotide sequences 

LCO1490 and HCO2198 published by Folmer et al. (1994), and the primer COIa from Palumbi et 

al. (1991), respectively. The primer sequences of COL6, COH1b, COL8, and COH16 for the COI 

gene were all modified by Schubart (2009) in respect to molecular analyses of crustaceans. The 

used primer COR722b for the COI gene was modified by Wilke & Davis (2000). The specific 

primer pair 16L2/16HLeu for the 16S gene in crustacean analyses was designed by Schubart et al. 

(2002) and by Schubart (2009), respectively. 

Table A1-1: Oligonucleotides used for molecular analysis.  

Primer 
Pair 

Direction Sequence 5’ → 3’ Gene 
Attached 

Primer 
Position 

Expected 
Fragment 

Length 
(bp) 

TM 

(°C) 

COL6 
COR722b 

forward 
reverse 

TYTCHACAAAYCATAAAGAYATYGG 
TAAACTTCAGGGTGACCAAAAAATYA  

COI 
17 

700 
658 

60 
61 

COL6 
COH1b 

forward 
reverse 

TYTCHACAAAYCATAAAGAYATYGG 
TGTATARGCRTCTGGRTARTC  

COI 
17 

1318 
1276 

60 
57 

COL8 
COH16 

forward 
reverse 

GAYCAAATACCTTTATTTGT  
CATYWTTCTGCCATTTTAGA  

COI 
529 

1504 
955 

49 
51 

16L2 
16HLeu 

forward 
reverse 

TGCCTGTTTATCAAAAACAT 
CATATTATCTGCCAAAATAG  

16S 
638 

1308 
650 

50 
50 

Abridgment of the IUB code for mixed base sites: N = G, A, T, C; H = A, T, C; W = A, T; R = A, G; Y = C, T. 
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A1.1.8 Computer programs 

Programs used for data-, graphic-, sequence- and phylogenetic-analyses are listed below in 

alphabetic order. The function of the respective program is given in brackets.  

 Bio Edit v7.1.3.0, Hall (1999) (sequence alignment) 

 BEAST v1.7.5, Drummond et al. (2012) (Bayesian evolutionary analysis) 
- BEAUti (creating BEAST input files) 
- StarBEAST (*Beast), Heled & Drummond (2010) (phylogenetic analysis) 
- TreeAnnotator (summarizing the information in a sample of trees) 

 DAMBE v5.3.64, Xia (2013) (test for substitutional saturation) 

 FigTree v1.3.1, Rambaut (2009) (viewing trees and sum up information produced by 
TreeAnnotator) 

 Gimp v2.8.4, 2014 (image processing program) 

 Inkscape v2, 1991 (image processing program) 

 jModeltest v0.1.1, Posada (2008) (estimating evolution models) 

 Keyence Software (Digital Imaging Processing System) 

 MEGA v5.1, Tamura et al. (2011) (sequence alignment) 

 Microsoft Office Excel, 2007 (spreadsheet program, data sorting and handling) 

 NanoDrop 2000 Software (concentration measurement program) 

 RAxML v7.7.1 Stamatakis et al. (2008) (Maximum-likelihood analysis) 

 Remote Capture (Digital Imaging Processing System) 

 Tracer v1.5, Rambaut & Drummond (2009) (analyzing results from Bayesian analyses) 

A1.2 Methods of molecular biology 

A1.2.1 DNA extraction from crustacean tissue 

The basic principle of a molecular phylogenetic analysis is the efficient extraction of DNA. DNA 

extraction followed a slightly modified protocol for DNA isolation of mollusks (Wilke et al. 2006), 

including a CTAB-based purification step as established by Doyle & Doyle (1987). CTAB (Cetyl 

trimethylammonium bromide) acts as a detergent, separating the DNA from remaining proteins 

and polysaccharides, which would inhibit the subsequent enzyme 

reactions. CTAB binds to the DNA and forms a CTAB/nucleic acid complex 

under low-salt conditions (< 0.6 M NaCl) but interact with proteins and 

polysaccharides when salt conditions are high (> 0.7 M NaCl) facilitating 

DNA isolation. Muscle tissue of a walking leg (pereiopod) of ethanol-

preserved decapod specimens was carefully removed with a scalpel and 

tweezers (Figure A1-1). In this step it was important to avoid 

contamination due to pieces of the crustacean’s exoskeleton, which 

could inhibit the isolation, DNA amplification or sequencing procedures. 

Figure A1-1: Extraction 
of muscle tissue from a 
walking leg. 



 Materials and Methods  

|151 

 

The DNA isolation contains of the following steps: 

Tissue preparation (extraction of the alcohol) 

1. Drop extracted muscle tissue in 0.5 ml reaction tube, filled with 300 µl exchange buffer. 

Soak for 5-10 minutes. 

Denature of proteins 

2. Transfer tissue into fresh 0.5 µl reaction tube, filled with 200 µl Turner lysis buffer + 3 µl 

Proteinase K (20 µg/µl).  

3. Incubate in water bath at 55 °C for at least 3 hours.  

Dissolving the proteins  

4. Spin up to 8000 rounds per minute (rpm), stop immediately. 

5. Add 35 µl 5 M NaCl + 35 µl 5% CTAB/NaCl solution. Mix gently by hand. 

6. Add 270 µl chloroform (under the flue; chloroform denatures the contained proteins). 

Mix gently by hand for 2-3 minutes. 

7. Spin for 5 minutes at 9000 rpm (phase separation). 

8. Transfer aqueous phase (upper phase) into new reaction tube. 

9. Add 270 µl CTAB precipitation buffer. Mix gently by hand for 1 minute. 

10. Precipitate at room temperature for 45 minutes. 

Precipitation and washing of the DNA 

11. Spin for 15 minutes at 12000 rpm. Discard supernatant. 

12. Re-suspend pellet in 100 µl 1 M NaCl/TE + 1 µl RNase (10 mg/ml). 

13. Incubate at 65 °C for 5-10 minutes. 

14. Ethanol precipitation: add 250 µl ice-cold 100% EtOH. Mix gently by hand. 

15. Precipitate at -20 °C for at least 3 hours. 

16. Washing of the DNA: Spin for 5 minutes at 12000 rpm. Discard supernatant. 

17. Re-suspend pellet in 300 µl ice-cold 70% EtOH. 

18. Spin for 5 minutes at 12000 rpm. Discard supernatant. 

19. Repeat the washing treatment (steps 17 and 18). Discard remaining ethanol with a 

pipette.  

20. Air dry DNA pellet for ~10 minutes at room temperature. 

21. Re-suspend DNA pellet in 30 µl ddH2O. 

DNA concentrations were measured with a NanoDropTM 2000 (Subchapter A1.2.2). The DNA was 

stored at -20 °C for further applications. 
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Figure A1-2: Overview of methods used in this study. DNA was extracted from a walking leg of crustacean 
specimen and the yielded DNA concentration was measured with a NanoDropTM 2000. Certain gene fragments 
were amplified via polymerase chain reaction, checked by agarose gel electrophoresis and directly sequenced 
(see text for detailed description of the methods). 
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A1.2.2 NanoDropTM 2000  

The NanoDropTM 2000 UV-Vis spectrophotometer (in the following refers to NanoDrop) is a 

common tool in molecular biology to quantify the purity of isolated DNA by measuring the ratio 

of ultraviolet light (UV) absorbance of nucleic acids at 260 nm. The ratio of the absorbance at 

260 and 280 nm (A260/280) is then used as an indicator for the purity of the nucleic acid sample 

(Gallagher & Desjardins 2007). For highly purified DNA, the A260/280 is around 1.8. However, lower 

A260/280 ratios can indicate that the DNA is contaminated by proteins or other substances from 

the isolation procedure, which absorb light at 280 nm. Insufficient attention during the 

measurement process (e.g. not properly cleaned up surfaces of the NanoDrop) can also affect 

the sample accuracy and purity. 

Based on the Lambert-Beer Law A = εcl (this law relates the amount of absorbed light to the 

concentration of the substance through which the light is moving), where A is the absorbance at 

a particular wavelength, ε is the extinction coefficient, c is the concentration of the DNA, and l is 

the path length (i.e. the gap between two optical surfaces; Gallagher & Desjardins 2007) the 

NanoDrop software automatically calculates the DNA concentration of the measured sample: 

c (µg ml⁄ ) =
A260

0.020
 

The above equation assumes 1 mm and 0.2 mm paths. The extinction coefficient ε represents 

here the specific absorption coefficient at a wavelength of 260 nm and has units of 

(µg/ml)−1cm−1. The value of ε for double-strand DNA (dsDNA) is 0.020 (µg/ml)−1cm−1. Thus, using 

these variables, an A260 of 1.0 indicates 50 µg/ml dsDNA (Gallagher and Desjardins 2007). In this 

study the NanoDrop measurement was used to verify the success of the performed DNA 

isolation and to determine the adequate volume of DNA template used in the subsequent 

polymerase chain reactions (Subchapter A1.2.3). Following the manufactures protocol: 

Measurement preparation 

1. Open the NanoDrop software and select the “nucleic acids” module. 

Measurement adjustment 

2. Perform a blank measurement. Load 1 µl of the substance in which sample is dissolved 

(in this study: ddH2O) onto the pedestal, close the arm and select the “blank” button on 

the screen (the result should be zero). 

3. Clean both optical surfaces with a common laboratory paper. 

Measurement of sample 

4. Pipette 1 µl of the sample onto the pedestal. 

5. Close the arm of the NanoDrop and select the “measure” button on the screen. 

6. The pedestal automatically adjusts the sample at both a 0.2 mm and 1 mm path length. 

7. Clean both optical surfaces with a common laboratory paper. 

8. Measurements and calculations are automatically transferred into an excel-sheet. 
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A1.2.3 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) is a commonly used method to manifold a short, well-

defined part of a DNA strand (i.e. amplification of a specific gene fragment) in vitro (Saiki et al. 

1988). This technique was performed to amplify fragments of two mitochondrial markers 

(mtDNA), cytochrome c oxidase subunit I (COI) and the 16S rRNA (16S). These two mtDNA 

fragments have high mutation rates and are extensively used in evolutionary studies on 

freshwater and marine crabs (e.g., Harrison 2004; Knowlton & Weigt 1998; Lessios 2008; 

Morrison et al. 2004; Schubart et al. 1998). The basic principle of a PCR is based on a recurring 

cycle of three steps – denaturation, annealing, and elongation (Table A1-3): 

Denaturation: The PCR-solution is heated up to 95 °C during the main cycles. Thus, the 

complementary strands of the template DNA denature into two single strands (ssDNA). 

Annealing: Due to a primer-depending temperature reduction, the primers bond 

complementary to the DNA. This is the initial location where the polymerase starts to attach 

further complementary nucleotides.  

Elongation: The temperature increases to 72 °C (or accordant to the temperature optimum of 

the used polymerase). The polymerase attaches further nucleotides to the respective ssDNA 

until an exact double-strand replica of the template DNA is formed. Regions of nucleotides and 

DNA, which are not entirely complementary break off. 

Due to the replication of these three steps, the number of copied DNA-molecules increases 

exponentially. The cycle (denaturation, annealing, and elongation) is repeated between 30 and 

40 times. The duration of the single steps depends on the length of the expected gene fragment. 

For all enzymatic reactions in this study the Thermus aquaticus DNA-polymerase (taq-

polymerase) was used. The taq-polymerase was first isolated from a heat stable bacteria-strain, 

inhabiting 70 °C hot springs (Chien et al. 1976). This DNA-polymerase shows an optimal 

enzymatic activity at 72 °C and a synthesis rate (i.e. extension rate; the DNA polymerase 

assembles the four deoxynucleotides, dATP, dCTP, dGTP, and dTTP, into a complementary 

polynucleotide chain in 5’ to 3’ direction) of about 60 nucleotides/second (Innis et al. 1988; Saiki 

et al. 1988). Despite missing a 3’ to 5’ proofreading exonuclease, the taq-polymerase performs 

highly accurate DNA synthesis in vitro. During a single cycle of DNA replication, the error rate for 

base substitutions is 1/9 000 polymerized nucleotides and frameshift errors occur at a frequency 

of 1/41 000 (Tindall & Kunkel 1988). In general, the fidelity of DNA synthesis depends on the 

used dNTPs and MgCl2 concentration as well as the pH (Eckert & Kunkel 1990). To yield 

synthesized DNA of sufficient quality, the authors suggest utilizing low concentrations of dNTPs 

and MgCl2. 
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For all simultaneous PCR reactions a standard mastermix was prepared on ice, including all 

required reagents (except for the DNA template). Amongst others, tetramethylammonium 

chloride (TMAC) is a salt, which acts as a catalyzer for the PCR reaction, and the availability of 

bovine serum albumin (BSA) leads to stabilization and higher activity patterns of the enzymes. 

Table A1-2 shows the reagents and their respective volumes of the mastermix, calculated for 

one PCR reaction tube with a total volume of 20 µl. 

Table A1-2: Reagents of a standard mastermix for a 20 µl PCR. 

Reagent Volume (µl) 

10x Thermopol buffer 2 

MgCl2  1.4 

dNTPs 1.4 

Primer 1 forward 1.4 

Primer 2 reverse 1.4 

ddH2O  10.6 

TMAC (0.5 M) 0.2 

BSA (10 mg/ml) 1.2 

Taq-polymerase  0.4 

Total reaction volume 20.0 

 

Always 20 µl of the mastermix were pipetted into a 2 µl PCR reaction tube (conducted on ice). In 

general, 3 µl of the respective DNA template was added to each PCR reaction tube. To control 

for contamination, a negative control was prepared for every conducted PCR. Therefore, 3 µl 

ddH20 was added instead of the DNA template. The PCR settings base on the length of the 

expected fragment, the optimum temperature of the polymerase, and the melting temperature 

of the used oligonucleotides. An overview of the used PCR conditions is listed in Table A1-3. To 

verify the success of the PCR, a small volume of each PCR sample was pipetted on a 1% Agarose 

gel (Subchapter A1.2.4). 

  



Appendix A1 

156| 

 

Table A1-3: PCR programs used in this study for the COI and 16S gene fragments. Identical initial step and final 
cycle were performed for all PCR reactions. 

Initial Step                                    Denaturation 94 °C for 240 s 

Main Cycles 

Primer 
Pair 

Fragment Length 
(bp) 

Gene 
Denaturation Annealing Elongation 

Temperature and Duration 

COL6 
COR722b 

658 COI 
95 °C 

for 45 s 
50 °C 

for 45 s 
72 °C 

for 75 s 

COL6 
COH1b 

1276 COI 
95 °C 

for 45 s 
50 °C 

for 45 s 
72 °C 

for 75 s 

COL8 
COH16 

955 COI 
95 °C 

for 45 s 
50 °C 

for 45 s 
72 °C 

for 75 s 

16L2 
16HLeu 

650 16S 
95 °C 

for 45 s 
48.0 °C 
for 60 s 

72 °C 
for 60 s 

 
Replication of 40 cycles for each PCR reaction 

 
Final step                                       Elongation 72 °C for 300 s 

Holding temperature at 10 °C 

PCR programs used in this study for the COI and 16S gene fragments. Identical initial step and final cycle were 
performed for all PCR reactions; s = seconds. 

A1.2.4 Agarose gel electrophoresis 

The agarose gel electrophoresis is a method to separate nucleic acids by size (Aaij & Borst 1972). 

The separation is performed by using an agarose matrix, consisting of pores in different sizes. 

These pores act like a filter and determine the migration of the negatively charged nucleic acid 

molecules through the agarose matrix via an electric field. The negative charged DNA moves 

from the cathode (-) to the anode (+). Thereby, the migration of the DNA molecules is 

reciprocally proportional to the logarithm of their fragment length (i.e. short DNA molecules 

move faster and migrate further than large ones; Helling et al. 1974). The quality of fragment 

separation is based on their length and the concentration of the agarose. Because the pore size 

(and hence the density of the agarose matrix) correlates to the agarose concentration, higher 

concentrations will lead to a more efficient separation of small molecules. 

 

  



 Materials and Methods  

|157 

 

 

 
 

 

 

Figure A1-3: GelRed (A) is structurally closely related to the highly 
controversially discussed ethidium bromide (B). It consists of two 
ethidium subunits, bridged by a linear spacer. Both reagents interact 
with the nucleic acids and fluorescent when exposed to UV light. 

In this study, the lengths of the amplified fragments are between 490bp and 1300bp (see 

Chapter A2). To verify the success of the PCR, 1% agarose gels were prepared to separate the 

amplified PCR fragments. A DNA marker was applied as size reference. Commonly, nucleic acids 

are enriched with ethidium bromide (EtBr) to detect the fragments in the agarose matrix under 

ultraviolet (UV) light. Instead of EtBr, which is discussed controversial regarding its toxicity (e.g., 

Karib et al. 1954; Murilla et al. 2002; Quillardet & Hofnung 1988; Saeidnia & Abdollahi 2013), the 

agarose gel in this study was enriched with the intercalating fluorescent nucleic acid agent 

GelRed, which also binds to the nucleic acids (Figure A1-3). When exposed to UV light, it will 

fluoresce with a red-orange color. The DNA in the agarose gels was stained by adding 10 µl 

GelRed per 100 ml agarose gel. The gel chamber was filled with an adequate volume of 5x TE 

buffer. 0.5 µl running buffer (6x loading dye solution) was added to each 3 µl DNA sample (as 

well as to the negative control). Each template solution and 3 µl of DNA marker (0.5 µg/µl, DNA 

ladder, 100bp) were loaded into a separate well of the gel. Electrical current (~120 mV) was 

applied for approximately 30 minutes. The gel was exposed to UV light, pictures were taken with 

a digital camera and analyzed. 

A1.2.5 DNA sequencing 

The aim of DNA sequencing is to determine the nucleotide order of a given DNA fragment. In this 

study, DNA sequencing is based on the chain-termination method (‘Sanger sequencing’), which 

was developed by Sanger et al. in 1977. This technique is based on sequence extensions of 

ssDNA templates and forced chain termination by specific nucleotides. These dideoxynucleotides 

(ddNTPs) are modified deoxynucleotides (dNTPs) which lack a 3’–OH group (marked in red in 

Figure A1-4). The general idea of Sanger sequencing is based on this missing hydroxyl group (–

OH), which is essential for the phosphodiester bond between two nucleotides in DNA 

elongation. Due to this missing link, the DNA-polymerase aborts the DNA synthesis when a 

ddNTP is embedded. 

DNA sequencing is performed in four independent reactions, which only differ in their 

dNTP/ddNTP composition. Thus, for each reaction DNA-polymerase, primers (which are the 

same as in the PCR reaction), and three of the four ‘normal’ dNTPs (dATP, dCTP, dGTP, and dTTP) 

are mixed. Additionally, the respective missing nucleotide is added in form of a fluorescently 

labeled ddNTP (ddATP, ddCTP, ddGTP, or ddTTP). All four reaction samples are simultaneously 

A 

B 
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electrophoresed in parallel lanes and the DNA fragments are separated by their size. The DNA 

sequence can then, for example, be directly read of the autoradiogram of the sequencing gel. 

DNA sequencing was performed on an ABI 3730xl DNA analyzer (Life Technologies) using the Big 

Dye Terminator Kit (Life Technologies) by the company LGC Genomics GmbH (Berlin, Germany). 

Each fragment was sequenced in forward and reverse direction. DNA samples, the according 

primer pairs and the ordering form had to be prepared in advance. Therefore, around 20 µl of 

each DNA sample was pipetted into a well of a 96-well plate and 10 µl of the relevant primer’s 

stock solution (100 µM/µl) was provided. The online order was filled out following the 

companies’ instruction. DNA purification with EXO/SAP was carried out by LGC Genomics. The 

samples were picked up by a delivery service at Giessen University. The generated sequences 

were downloaded from the company’s online order system (www.lgcgenomics.com) and saved 

for further analyses. 

 

A 

 

 

B 

Figure A1-4: A) Deoxynucleotide (dNTP) and B) Dideoxynucleotide (ddNTP) used in Sanger sequencing. Due to 
the missing 3’-hydroxyl group (–OH) in the dideoxynucleotide (marked in red), the DNA-polymerase ceases the 
DNA synthesis when a ddNTP is incorporated in the growing polynucleotide chain. 

A1.2.6 DNA alignments 

Forward and reverse sequences of each specimen were aligned using the Clustal W algorithm 

implemented in the program Bio Edit (Hall 1999), chromatograms and alignments were checked 

and corrected by eye and saved as consensus sequence. One single alignment (consisting of the 

consensus sequences) for each gene fragment and genus was purpose-built and saved. The files 

were edited by hand in MEGA (Tamura et al. 2011) to create a uniform matrix block (i.e. all 

sequences have to have the same length) for the subsequent Bayesian analysis. The 

abbreviations used for the sequence names based on the first letter of the genus name and the 

first two letters of the species name, followed by the UGSB (collection number) or the prep. # 

(preparation number) code, e.g., Srh11660 = Sesarma rhizophorae, UGSB collection number: 

11660; Srh19318 = Sesarma rhizophorae, preparation number: 19318. 

A1.2.7 Phylogenetic analysis 

For phylogenetic analyses, a data set of 32 specimens (1-6 representatives) of 18 species of the 

mangrove crab genus Sesarma from both sides of the Isthmus of Panama was analyzed (Tables 

10-5 and A2-1). A single analysis of the genera Panopeus and Eurytium was performed, which 

based on 78 specimens (1-8 representatives) of 14 species of the mud crab genus Panopeus and 
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14 specimens (1-8 representatives) of 4 species of the mud crab genus Eurytium (Tables 10-5, 

A2.2, A2.3). The Panopeidae dataset composition in this study bases on the comprehensive 

phylogenetic analysis of Xanthoidea by Thoma et al. (2014) and was complemented with own 

species and sequences (Tables A2.2 and A2.3; Figures 10-3 and 10-4). Because of missing 

sequences, the phylogenetic topology of the crab genus Pachygrapsus was taken from Ip et al. 

(2015). Their analysis included 11 specimens (1 representative each) of 11 species (Table 10-5). 

Final sequence lengths of the COI and 16S alignments were 1 136bp/642bp for Sesarma and 

1 184bp/638bp for Panopeus/Eurytium (Table 10-5). A 12bp region (position 365-376) of the 16S 

Sesarma alignment was excluded prior to the phylogenetic analyses due to alignments 

ambiguities. This procedure is commonly performed in phylogenetic analysis for short 

ambiguous regions of the 16S gene (e.g., Harrison 2004; Schubart et al. 2000b; Stillman & Reeb 

2001). No regions of ambiguity in the COI alignment and no occurrence of pseudogenes 

(translocated copies of the 16S gene in the nuclear genome; Schubart et al. 2000b) were 

observed in any of the studied datasets. The topology of Pachygrapsus was taken from the 

phylogenetic analysis of Ip et al. (2015). Their analysis bases on five genes with a total alignment 

length of 2 247bp. The optimal model of DNA sequence evolution was selected under the Akaike 

Information Criterion (AIC; Posada & Crandall 1998) implemented in the program jModeltest 

v0.1.1 (Posada 2008; COI: TrN+I+G, GTR+G, GTR+G; 16S: TrN+G, GTR+G, GTR+G for the species 

Sesarma, Panopeus, and Eurytium, respectively). The subsequent test for substitutional 

saturation (Xia et al. 2003) performed for all COI datasets using the program DAMBE v5.3.64 (Xia 

2013), revealed no substantial saturation. 

Phylogenetic analyses were performed differently for each family. For Sesarma, a Bayesian 

Inference (BI) phylogenetic analysis in BEAST v1.7.5 (uncorrelated lognormal relaxed clock; 

speciation yule process; 50 million generations (Ngen), log every 1000 tree (log)) was performed 

(Table A1-4). Maximum-likelihood (ML) analysis for the Panopeidae dataset was carried out 

using RAxML 7.7.1 (Stamatakis et al. 2008; 1000 bootstrap runs; Table A1-4). The best scoring 

tree was selected. Convergence of parameters and their effective sample size (ESS > 200) were 

confirmed in Tracer v1.5 (Rambaut & Drummond 2009) for each analysis. For the Sesarma 

dataset, 5000 trees were discarded as burn-in and a maximum clade credibility tree was 

computed with TreeAnnotator v1.7.5. (Drummond et al. 2012). All phylogenetic trees were 

visualized with FigTree v1.3.1 (Rambaut 2009). For Pachygrapsus, Ip et al. (2015) conducted ML 

(RAxML) and BI (MrBayes) analyses of the grapsid crabs based on five genes. Both of their 

analyses yielded the same topology, which is shown in Figure 10-9. 

A1.2.8 Divergence time estimations 

Divergence time estimations based on TSS pairs and -complexes identified from the phylogenetic 

analyses, which were performed before (see Subchapter A1.2.7). Data sets for divergence time 

estimations contain 32 specimens of 18 species of the mangrove crab genus Sesarma, 10 

specimens of 3 relevant species of the mud crab genus Panopeus, 22 specimens of 6 relevant 

species of the genus Eurytium, and 8 specimens of 4 relevant species of the crab genus 

Pachygrapsus (Table 10-5). Final sequence lengths of the COI and 16S alignments were 
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1 136bp/642bp for Sesarma, 1 184bp/638bp for Panopeus, 555bp/638bp for Eurytium, and 

687bp of the COI fragment for Pachygrapsus (Table 10-5). To avoid rates that involve calibrations 

based on the Isthmus closure, the marine crustacean rate for COI (0.98% My-1) of Marino et al. 

(2011) was applied. This substitution rate bases on the Mediterranean Salinity Crises (5.59 Ma, 

upper bound where the isolation from the Atlantic was established; Krijgsman et al. 1999), under 

the HKY+G model. The substitution rate for 16S rRNA was independently calculated by the used 

program. 

The optimal model of DNA sequence evolution was selected under the Akaike Information 

Criterion (AIC; Posada & Crandall 1998) as well as under the Bayesian Information Criterion (BIC; 

Schwarz 1978) implemented in the program jModeltest v0.1.1 (Posada 2008; COI: HKY+G; 16S: 

HKY+G, for all species). In order to decide whether the use of a strict clock is appropriate for the 

data, the COI coefficient of variation (COV) was analyzed. COV values close to zero denote a 

clock-like evolution among lineages, whereas larger values indicate a higher variation of rates 

among branches. The COV values of the uncorrelated lognormal relaxed clock were slightly 

different than zero for Sesarma, Panopeus, Eurytium, and Pachygrapsus (COV = 0.0592, 95% 

HPD: 0.0374-0.0809; 0.194, 0.0-0.5271; 0.21, 0.0-0.6069; 1.548, 0.537-2.3942; respectively). 

Alternatively, to validate the support for a strict clock a Bayes factor (BF) analysis (log10 Bayes 

factors) using tree likelihoods of both strict and relaxed lognormal clock analyses in Tracer v1.5 

(1000 bootstrap replicates; log10 Bayes factor strict vs. relaxed) was also conducted for each 

genus. Kass & Raftery (1995) suggested thresholds for deciding in favor of or against a strict 

clock: 0-3 (positive support), 3-6 (strong support), and > 6 (decisive support). The BF values for 

Sesarma, Panopeus, Eurytium, and Pachygrapsus were 0.4, 0.063, 0.1, and 1.85, respectively. 

Thus, both clock tests suggest that a strict clock may be appropriate for all to analyze COI 

datasets. 

Divergence time estimations were performed slightly different for each dataset (Table A1-4). For 

the genus Sesarma, the software StarBEAST (*BEAST; Heled & Drummond 2010) was used to 

obtain an ultrametric species tree. For the Panopeidae and Pachygrapsus datasets, BI 

phylogenetic analyses in BEAST v1.7.5 were performed. The input files of all datasets were 

prepared using the interface BEAUti v1.7.5 (Drummond et al. 2012; Table A1-4) with two 

separate alignment partitions (COI and 16S; note that only COI was analyzed for Pachygrapsus), 

whose substitution models and clocks were unlinked (strict clock; speciation yule process; Ngen 

20, log 1000). Convergence of parameters and their effective sample size (ESS > 200) were 

confirmed in Tracer v1.5 (Rambaut & Drummond 2009). Accordingly, 2000 trees of each run 

were discarded as burn-in. A maximum clade credibility tree was computed with TreeAnnotator 

v1.7.5 and visualized with FigTree v1.3.1 (Rambaut 2009) for each analysis. 

  

http://www.sciencedirect.com/science/article/pii/S1055790313001802#b0110
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Table A1-4: Used parameters for phylogenetic analyses and divergence time estimations. 

 Sesarma Panopeus Eurytium Pachygrapsus 

Phylogenetic Analysis 

Program (Analysis) Beast 
(Bayesian analysis) 

2
RAxML 

(Maximum-likelihood analysis) 

Phylogenetic 
topology adapted 
from Ip et al. 2015 

Model of Evolution 
(COI/16S) 

TrN+I+G/TrN+G GTR+G/GTR+G 

Clock Model Uncorrelated 
lognormal relaxed 

clock 
Relaxed clock 

Tree Prior Speciation Yule process - 

Ngen (Mio) 50 1 000 bootstrap runs 

Log 1 000 - 

Burnin  5 000 - 

ESS Values All > 200 - 

Remark - Best scoring tree was selected 

 

Divergence time estimations  

Program *Beast Beast Beast Beast 

Model of Evolution 
(COI/16S) 

HKY+G/HKY+G HKY+G/HKY+G HKY+G/HKY+G HKY+G / - 

Clock Model Strict clock Strict clock Strict clock Strict clock 

Substitution Rate [%]
-1

 
(COI) 

0.98
1
 0.98

1
 0.98

1
 0.98

1
 

Substitution Rate [%]
-1

 
(16S) 

0.58 0.66 0.51 - 

Tree Prior Speciation Yule 
process 

Speciation 
Yule process 

Speciation 
Yule process 

Speciation Yule 
process 

Ngen (Mio) 20 20 20 20 

Log 1 000 1 000 1 000 1 000 

Burnin 2 000 2 000 2 000 2 000 

ESS Values All > 200 All > 200 All > 200 All > 200 

Overview of the parameters used for the phylogenetic analyses and divergence time estimations for the genera 
Sesarma, Panopeus, Eurytium, and Pachygrapsus; 

1
Marino et al. 2011; 

2
Stamatakis et al. 2008.
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A3 Photo Tables of the Specimens 

A3.1 Genus Sesarma Say, 1817 

 

Figure A3-1: Three specimens of Sesarma aequatoriale Ortmann, 1894. A, Prep. #19298; B, Prep. #19299; C, 
Prep. #19300. Specimen of Sesarma ayatum Schubart, Reimer & Diesel, 1998. D, Prep. #19314. The specimens 
are shown in dorsal and ventral views. The scale bar represents 1 cm.  
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Figure A3-2: Three specimens of Sesarma ayatum Schubart, Reimer & Diesel, 1998. A, Prep. #19315; B, Prep. 
#19316; C, Prep. #19317. Specimen of Sesarma bidentatum Benedict, 1892. D, Prep. #19312. The specimens 
are shown in dorsal and ventral views. The scale bar represents 1 cm. 



 Photo Tables of the Specimens 

|181 

 

 

Figure A3-3: Specimen of Sesarma bidentatum Benedict, 1892. A, Prep. #19313. Three specimens of Sesarma 
buettikoferi De Man, 1883. B, Prep. #19302; C, Prep. #19303; D, Prep. #19304. The specimens are shown in 
dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-4: Specimen of Sesarma cookie Hartnoll, 1971. A, Prep. #19513. Three specimens of Sesarma 
curacaoense De Man, 1892. B, Prep. #19512; C, Prep. #19514; D, Prep. #19515. The specimens are shown in 
dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-5: Specimen of Sesarma dolphinum Reimer, Schubart & Diesel, 1998. A, Prep. #19529. Two 
specimens of Sesarma fossarum Schubart, Reimer, Diesel & Türkay, 1997. B, Prep. #19307; C, Prep. #19308. 
Specimen of Sesarma jarvisi Rathbun, 1914. D, Prep. #19301. The specimens are shown in dorsal and ventral 
views. The scale bar represents 1 cm. 
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Figure A3-6: Specimens of Sesarma meridies Schubart & Koller, 2005. A, Prep. #19520; B, Prep. #19521; C, Prep. 
#19522; D, Prep. #19523. The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-7: Specimen of Sesarma meridies Schubart & Koller, 2005. A, Prep. #19524. Three specimens of 
Sesarma rectum Randall, 1840. B, Prep. #19309; C, Prep. #19310; D, Prep. #19311. The specimens are shown in 
dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-8: Specimens of Sesarma sp. (nr. reticulatum). A, Prep. #19525; B, Prep. #19526; C, Prep. #19527; D, 
Prep. #19528. The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-9: Specimen of Sesarma reticulatum (Say, 1817). A, Prep. #19519. Three specimens of Sesarma 
rhizophorae Rathbun, 1906. B, Prep. #19530; C, Prep. #18151; D, Prep. #19318. The specimens are shown in 
dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-10: Specimens of Sesarma rhizophorae Rathbun, 1906. A, Prep. #18142; B, Prep. #18144; C, Prep. 
#18145; D, Prep. #18146. The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-11: Specimens of Sesarma rhizophorae Rathbun, 1906. A, Prep. #18147; B, Prep. #18148; C, Prep. 
#18149; D, Prep. #18150. The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-12: Specimen of Sesarma rubinofforum Abele, 1973. A, Prep. #19319. Specimen of Sesarma sulcatum 
Smith, 1870. B, Prep. #19297, #19641. Two specimens of Sesarma verleyi Rathbun, 1914. C, Prep. #19516; D, 
Prep. #19517. The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-13: Specimen of Sesarma verleyi Rathbun, 1914. A, Prep. #19518. Two specimens of Sesarma 
windsor Türkay & Diesel, 1994. B, Prep. #19305; C, Prep. #19306. The specimens are shown in dorsal and 
ventral views. The scale bar represents 1 cm. 
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A3.2 Genus Eurytium Stimpson, 1859 

 

Figure A3-14: Specimen of Eurytium affine (Streets & Kingsley, 1877). A, Prep. #19748. Legs of Eurytium 
limosum (Say, 1818). B, Prep. #18131; C, Prep. #18132; D, Prep. #18134; E, Prep. #18135; F, Prep. #18137; G, 
Prep. #18138. The specimen and legs are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-15: Specimen of Eurytium limosum (Say, 1818). A, Prep. #19743. Legs of Eurytium tristani Rathbun, 
1906. B, Prep. #19862. Specimen of Eurytium tristani Rathbun, 1906. C, Prep. #11618. The specimens and legs 
are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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A3.3 Genus Panopeus H. Milne Edwards, 1834 

 

Figure A3-16: Specimens of Panopeus sp. A, Prep. #16138; B, Prep. #16139; C, Prep. #16140; D, Prep. #16141. 
The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-17: Specimens of Panopeus sp. A, Prep. #16142; B, Prep. #16143; C, Prep. #16144; D, Prep. #16145. 
The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-18: Specimens of Panopeus sp. A, Prep. #16146; B, Prep. #16147; C, Prep. #16148; D, Prep. #16149. 
The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-19: Specimens of Panopeus sp. A, Prep. #19625; B, Prep. #19754; C, Prep. #19755; D, Prep. #19756. 
The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-20: Specimens of Panopeus sp. A, Prep. #19757; B, Prep. #19758; C, Prep. #19759; D, Prep. #19760. 
The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-21: Specimens of Panopeus sp. A, Prep. #19761; B, Prep. #19762; C, Prep. #19763; D, Prep. #19764. 
The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-22: Specimens of Panopeus sp. A, Prep. #19765; B, Prep. #19863; C, Prep. #19864; D, Prep. #19865. 
The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-23: Two specimens of Panopeus sp. A, Prep. #19866; B, Prep. #19867. Specimen of Panopeus 
africanus A. Milne-Edwards, 1867. C, Prep. #19624. Specimen of Panopeus americanus De Saussure, 1857. D, 
Prep. #19242. The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-24: Three specimens of Panopeus americanus De Saussure, 1857. A, Prep. #19752; B, Prep. #19753; 
C, Prep. #19623. Specimen of Panopeus austrobesus Williams, 1983. D, Prep. #16151. The specimens are shown 
in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-25: Specimens of Panopeus austrobesus Williams, 1983. A, Prep. #16152; B, Prep. #16153; C, Prep. 
#16154; D, Prep. #16155. The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-26: Three specimens of Panopeus austrobesus Williams, 1983. A, Prep. #16156; B, Prep. #16157; C, 
Prep. #16158. Specimen of Panopeus bermudensis Benedict & Rathbun, 1891. D, Prep. #19745. The specimens 
are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-27: Two specimens of Panopeus bermudensis Benedict & Rathbun, 1891. A, Prep. #19746; B, Prep. 
#19747. Legs of Panopeus chilensis H. Milne Edwards & Lucas, 1843. C, Prep. #19246, #19627. Specimen of 
Panopeus convexus A. Milne-Edwards, 1880. D, Prep. #19240, #19630. The specimens are shown in dorsal and 
ventral views. The scale bar represents 1 cm. 
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Figure A3-28: Specimen of Panopeus hartii Smith, 1869. A, Prep. #19631. Two specimens of Panopeus herbstii 
H. Milne Edwards, 1834. B, Prep. #19749; C, Prep. #19750. Specimen of Panopeus lacustris Desbonne, in 
Desbonne & Schramm, 1867. D, Prep. #16159. The specimens are shown in dorsal and ventral views. The scale 
bar represents 1 cm. 
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Figure A3-29: Specimens of Panopeus lacustris Desbonne, in Desbonne & Schramm, 1867. A, Prep. #16160; B, 
Prep. #16161; C, Prep. #16168; D, Prep. #16169. The specimens are shown in dorsal and ventral views. The 
scale bar represents 1 cm. 
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Figure A3-30: Specimen of Panopeus lacustris Desbonne, in Desbonne & Schramm, 1867. A, Prep. #19233. 
Specimen of Panopeus meridionalis Williams, 1983. B, Prep. #19632. Two specimens of Panopeus obesus Smith, 
1869. C, Prep. #19633; D, Prep. #19634. The specimens are shown in dorsal and ventral views. The scale bar 
represents 1 cm. 
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Figure A3-31: Specimens of Panopeus obesus Smith, 1869. A, Prep. #19232; B, Prep. #19234; C, Prep. #19635; 
D, Prep. #19236. The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-32: Specimens of Panopeus occidentalis De Saussure, 1857. A, Prep. #16150; B, Prep. #16167; C, 
Prep. #19870; D, Prep. #19871. The specimens are shown in dorsal and ventral views. The scale bar represents 
1 cm. 
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Figure A3-33: Two specimens of Panopeus occidentalis De Saussure, 1857. A, Prep. #19872; B, Prep. #19873. 
Specimen of Panopeus purpureus Lockington, 1877. C, Prep. #16137. The specimens are shown in dorsal and 
ventral views. The scale bar represents 1 cm. 
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Figure A3-34: Legs of Panopeus purpureus Lockington, 1877. A, Prep. #18125; B, Prep. #18126; C, Prep. #18127; 
D, Prep. #18128. The legs are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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Figure A3-35: Specimen of Panopeus sp. A, Prep. #19626. Two specimens of Panopeus rugosus A. Milne-
Edwards, 1880. B, Prep. #19751; C, Prep. #19744. The specimens are shown in dorsal and ventral views. The 
scale bar represents 1 cm. 
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Figure A3-36: Specimens of Panopeus simpsoni Rathbun, 1930. A, Prep. #19637; B, Prep. #19638; C, Prep. 
#19639. The specimens are shown in dorsal and ventral views. The scale bar represents 1 cm. 
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A3.4 Genus Pachygrapsus Randall, 1840 

 

Figure A3-37: Specimens of Pachygrapsus socius Stimpson, 1871. A, Prep. #17513; B, Prep. #17514; C, Prep. 
#17515; D, Prep. #17519; E, Prep. #17521; F, Prep. #17523. The specimens are shown in dorsal view. The scale 
bar represents 1 cm. Photos of P. socius are by courtesy of C. D. Schubart (University of Regensburg). 
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Figure A3-38: Specimens of Pachygrapsus transversus (Gibbes, 1850). A, Prep. #17527; B, Prep. #17528; C, 
Prep. #17530. The specimens are shown in dorsal view. The scale bar represents 1 cm. Photos of P. transversus 
are by courtesy of C. D. Schubart (University of Regensburg). 
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