
Development of a Parallel Multigrid Field
Solver for Large-Scale Particle-in-Cell

Applications

Inauguraldissertation

zur Erlangung des Doktorgrades
der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Michael Becker
geboren am 13. November 1987 in Gießen

Institut für Theoretische Physik
Justus-Liebig-Universität Gießen

Oktober 2018





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Technical and Scientific Background . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Particle-in-Cell Method by the Example of PlasmaPIC 7
2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Particle Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Solution of Maxwell’s Equations . . . . . . . . . . . . . . . . . . 8
2.1.3 Field Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Particle Movement . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Interaction with Boundaries . . . . . . . . . . . . . . . . . . . . . 11
2.1.6 Monte Carlo Collisions . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Numerical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Parallelizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Further Features of PlasmaPIC . . . . . . . . . . . . . . . . . . . . . . . 14

3 Fundamentals of Multigrid 15
3.1 Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Finite Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Conventional Methods to Solve Large Sparse Systems of Linear

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Smoothing Properties of Basic Iterative Solvers . . . . . . . . . . 19

3.2 The Multigrid V-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Variable Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Alternative Multigrid Variants . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Parallelizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.1 Order-Independent Smoothing . . . . . . . . . . . . . . . . . . . 35
3.7.2 U-Cycle vs. Coarse Grid Agglomeration . . . . . . . . . . . . . . 35

3.8 Alternative Linear Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 36

i



4 Development of a Parallel Multigrid Field Solver 41
4.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Adjustments to the Standard Algorithm . . . . . . . . . . . . . . . . . . 42

4.2.1 Arbitrary Grid Sizes . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Arbitrary Geometries . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 The Coarse Grid Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Measures for Efficient Parallel Performance . . . . . . . . . . . . . . . . 56

4.4.1 Utilizing Red-Black Ordered Gauss-Seidel Smoothing . . . . . . . 56
4.4.2 Coarse Grid Agglomeration . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Determination of Optimal Parameters . . . . . . . . . . . . . . . 57

4.5 Practical Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Integration into PlasmaPIC . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Assessment of Capabilities and Performance 61
5.1 Solving Generic Elliptic PDEs . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Textbook Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Performance within PlasmaPIC . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Influence of Network Speed . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Weak Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.3 Strong Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.4 Influence of the Field Solver’s Accuracy . . . . . . . . . . . . . . 82

5.3 Comparison with the SOR Method . . . . . . . . . . . . . . . . . . . . . 87
5.4 Comparison with PETSc . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusions 93

Appendix 97

References 101

Danksagung 107

Eidesstattliche Erklärung 109

ii



List of Figures

1.1 Principle of a radio-frequency ion thruster . . . . . . . . . . . . . . . . . 3
1.2 Interplay between theory, experiment and simulation . . . . . . . . . . . 5

2.1 Principle of the particle-in-cell method . . . . . . . . . . . . . . . . . . . 8
2.2 Particle-in-cell algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Application of the domain decomposition method . . . . . . . . . . . . . 13
2.4 Sectional view of the RIT-1.0 . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Illustration of the effect of over-relaxation . . . . . . . . . . . . . . . . . 19
3.2 The Gauss-Seidel method applied to the model problem . . . . . . . . . 20
3.3 One-dimensional grid hierarchy . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Illustration of the V-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Three-dimensional restriction with 27-point full weighting . . . . . . . . 24
3.6 Linear, bilinear and trilinear interpolation on a three-dimensional grid . 25
3.7 Illustration of the W-cycle (µ = 2), analogous to figure 3.4. . . . . . . . 26
3.8 Full multigrid (FMG) scheme with ν = 1 . . . . . . . . . . . . . . . . . . 27
3.9 One-dimensional restriction with Neumann boundary conditions . . . . . 29
3.10 2D model problem for the FAS V-cycle . . . . . . . . . . . . . . . . . . . 32
3.11 Coarsening of a two-dimensional square sub-grid . . . . . . . . . . . . . 34

4.1 One-dimensional restriction and prolongation for cell-centered coarsening 43
4.2 Example of a one-dimensional grid hierarchy with alternating coarsening

strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Possible combinations of how a fine and a coarse grid can be aligned in 2D 44
4.4 Variations of how a coarse-grid point can lie within the fine grid . . . . . 45
4.5 Example of how trilinear interpolation is performed in the case of cell-

centered coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Simple model Poisson problem to demonstrate the necessity and effec-

tiveness of the modifications to the geometric multigrid method presented
hered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Course of the residual norm over 20 V-cycle iterations on the model
problems for the three approaches . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Reconstruction of a not further specified object’s surface on coarser grids,
as done for the field solver . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Example for the non-zero structure of the matrices A, L, and U for a
three-dimensional finite-difference problem. . . . . . . . . . . . . . . . . 55

iii



iv List of Figures

5.1 Textbook efficiency of an iterative multigrid solver over 60 V-cycles for
the model Poisson problem with varying number of pre- and post-smoothing
steps (npre,npost) on a grid of size 10253 . . . . . . . . . . . . . . . . . . 62

5.2 Behavior of the unmodified textbook geometric multigrid solver for a
domain with irregular boundaries . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Behavior of the error norm for the model problem . . . . . . . . . . . . . 65
5.4 Shapes of the domains used for the model elliptic PDEs . . . . . . . . . 65
5.5 Decrease of the residual of the four additional elliptic partial differential

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Scaling of the residual reduction rate for the solution of the five model

PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7 Detailed view of the

∥∥r10
∥∥ / ∥∥r0

∥∥ curve of figure 5.6(a) and comparative
plot of d`irr(N)/h` for the same range of grid sizes . . . . . . . . . . . . . 69

5.8 Analysis of the runtime of a single V-cycle for the RIT-1.0 system . . . . 72
5.9 Analysis of the runtime of a single V-cycle for the RIT-2.5 system . . . . 73
5.10 A simple test of the network performance for bidirectional communication 75
5.11 Weak scaling of the multigrid field solver within PlasmaPIC . . . . . . . 78
5.12 Average runtime on systems of fixed size (1003, 2003, 3003, 4003) over

10, 000 time steps of field solver and particle operations plotted against
the number of processors . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.13 Speedup of both the field solver and the particle operations . . . . . . . 81
5.14 Evolution of the number of particles, the average kinetic energy, the

maximal change in the electric potential over one time step, and the net
energy deposited into the system over 106 time steps, as observed for the
RIT-1.0 (high accuracy) . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.15 Power deposition into the simulated plasma by the electromagnetic fields
induced by the coil that is wrapped around the thruster . . . . . . . . . 83

5.16 Evolution of the number of particles, the average kinetic energy, the
maximal change in the electric potential over one time step, and the net
energy deposited into the system over 106 time steps, as observed for the
RIT-1.0 (low accuracy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.17 Sectional view of the ion density ni and the electrostatic potential Φ
inside the RIT-1.0 after 106 time steps, simulated with high accuracy of
the field solver and low accuracy . . . . . . . . . . . . . . . . . . . . . . 85

5.18 Deviation from the values obtained from a simulation run with rtol = 10-8

of the considered quantities for rtol = 8 · 10-3, rtol = 10-3, rtol = 10-4, and
rtol = 10-6, all plotted against the simulation time step . . . . . . . . . . 86

5.19 Weak scaling of the SOR field solver within PlasmaPIC . . . . . . . . . 87
5.20 Cumulative CPU time used for the SOR weak scaling measurements,

plotted against the total system size for 153, 203, 253, and 303 grid points
per processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.21 Weak scaling of both the SOR solver and the multigrid solver for 153,
203, 253, and 303 grid points per processor . . . . . . . . . . . . . . . . . 89

5.22 Improvements made by the multigrid solver in comparison to the original
SOR solver, depicted by the metrics of runtime ratio and relative runtime
savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.23 Weak scaling of the implemented PETSc solver for 153, 203, 253, and 303

grid points per processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



5.24 Advantage of using the multigrid solver developed for this thesis over a
solver from an external software suite, depicted by the metrics of runtime
ratio and runtime savings . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 Cross-sectional views of the ion density in a RIT-2.5 simulation after
3 · 106 time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.1 Comparison of two simulations of the RIT-2.5, differing only by the num-
ber density n0 of the neutral background gas . . . . . . . . . . . . . . . 98

A.2 Sectional views of the ion density ni, the electron density ne, and the
electrostatic potential Φ after 3 · 106 time steps in a simulated RIT-2.5
(low density of neutral gas) . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.3 Sectional views of the ion density ni, the electron density ne, and the
electrostatic potential Φ after 3 · 106 time steps in a simulated RIT-2.5
(high density of neutral gas) . . . . . . . . . . . . . . . . . . . . . . . . . 100

v





Chapter 1

Introduction

The simulation of low temperature plasmas requires a particle-based approach, for which
the movement and interaction of individual charged particles is modeled. For this,
the forces on the particles need to be calculated. This is done by a so-called field
solver module, which calculates the electromagnetic fields emerging from the present
charge distribution and external sources such as electrodes and electric currents through
conductors by solving Maxwell’s equations.

1.1 Motivation

Depending on the range of application, the implementation of a field solver can be a
difficult and complex task. While a wide range of methods for the numerical solution
of the emerging partial differential equations exists, their computational costs mostly
increase disproportionately with the size of the considered system. Such a behavior is
generally undesirable because it results in parts of the simulation becoming increasingly
dominant regarding their runtime, which is ultimately a bottleneck for the simulation
of larger systems.
A large simulation domain further requires an efficient parallelization of every part of
the program to cut down the otherwise excessive runtimes. For this, the field solver
is the most critical component because the electromagnetic fields at every point are
affected by the properties of the entire rest of the domain.

For the further development of PlasmaPIC, a 3D plasma simulation tool developed
at the University of Gießen, a new field solver is needed to allow for progress to-
wards the simulation of increasingly larger plasma discharges such as those inside radio-
frequency ion thrusters. Since all other program parts already scale appropriately due
to their localized character, this is the only significant algorithmic bottleneck limiting
PlasmaPIC’s applicability.
The fundamental requirements for this new solver are that the underlying solution pro-
cess scales linearly with the size of the system and that it is sufficiently parallelizable in
order to ensure a relatively constant runtime if the number of processors used for the
simulation is scaled up proportionally to the system size.

Such characteristics are prominently featured by the class of multigrid methods, which
use a hierarchy of nested grids with varying mesh size to improve the convergence of

1



2 1 INTRODUCTION

the solution process.
Hence the goal of this thesis can be formulated: The development and implementation
of a suitable parallel multigrid method that can be used as PlasmaPIC’s field solver.

The effort of developing a solver specifically tailored for PlasmaPIC instead of imple-
menting an external library or software suite such as the well-known PETSc is justified
by the possibilities this approach opens up. Not only can the solver be optimized specif-
ically for PlasmaPIC by using the same data structures, it can also be controlled and
adjusted with the greatest flexibility.

1.2 Technical and Scientific Background

Satellites and other spacecraft rely on propulsion systems to manipulate their orbital
parameters. Based on the principle of recoil, a propellant is accelerated and ejected to
generate thrust, which is used for orbital maneuvers or position and attitude control.
Many satellite missions, including the International Space Station (ISS), regularly re-
quire orbital correction to either counteract perturbations caused by lunar and solar
gravity or to compensate the atmospheric drag in low Earth orbits.
Since the task of transporting additional weight in the form of fuel to space is first and
foremost expensive, fuel efficiency is a matter of great interest. Chemical thrusters,
while being a proven, sophisticated and reliable technology, are characterized by the
fact that the energy used to generate thrust is stored in the propellant. The maximum
exhaust velocity is therefore limited by the chemical processes in the combustion cham-
ber, typically to 3 to 4 km/s [1].
Electrically powered propulsion systems on the other hand transfer electrical energy,
generated, e. g., by solar cells, to the propellant and are therefore able to achieve much
higher exhaust velocities of up to 100 km/s. The propellant mass is thus used much
more efficiently, although the achievable thrust levels generally by far don’t reach those
of chemical thrusters due to mass flow and energy restrictions. If the desired adjust-
ments to the spacecraft’s orbital parameters don’t have to be made in a very short
time frame, electric propulsion, however, is usually the superior concept. Since many
approaches allow for the thrusters to principally operate for very long periods of time
(i. e., non-stop for multiple years), the cumulative thrust levels can even surpass those
of chemical thrusters, which enables application even to interplanetary and deep space
missions.

Aside from experimental designs, industry and academia focus mostly on research and
development of ion thrusters, which are based on accelerating ions in electrostatic fields.
Here, Xenon is usually the propellant of choice, as it offers many favorable properties,
i. e., low ionization energy, high atomic mass and non-corrosive behavior. Since it’s a
rather rare trace gas in Earth’s atmosphere and therefore expensive to obtain, finding
viable alternatives is a matter of increasing interest.
Hall-effect thrusters (HET) consist of a vessel in the shape of a cylinder ring that is
open at one end. A constant radial magnetic field and an electric field between the
anodic backplate and an electron emitting cathode (neutralizer) at the open end are
established. The electrons form an azimuthal Hall current, causing them to effectively
be trapped in the vessel and ionizing the propellant gas entering through a gas inlet at
the anode. The electric field then accelerates the ions out of the vessel. The so formed
ion beam neutralizes itself by pulling the respective amount of electrons, emitted by the



1.2 Technical and Scientific Background 3

neutralizer, with it.
Hall-effect thrusters distinguish themselves by producing comparably high thrusts at a
given power level. Their design is furthermore rather simple and is thereby considered
to be very reliable regarding the fail-safety of their electronics.

Gridded ion thrusters generate a plasma discharge inside a vessel and extract the ions
through a biased grid system. Here, too, a dedicated neutralizer then emits an equal
amount of electrons to prevent charging of the spacecraft. Various approaches on how to
generate the plasma exist. For ion thrusters of Kaufman type, a hollow cathode inside
the discharge chamber emits electrons, which are accelerated towards the innermost
extraction grid. At high enough kinetic energy, these electrons can partake in electron
impact ionization of the gaseous propellant, thus creating and sustaining a plasma (direct
current, DC ). A constant axial magnetic field (perpendicular to the grids) is generally
used to lengthen the electrons’ path in order to maximize the collision probability before
contact with a wall or a grid. Additionally, the newly freed electrons can also reach the
required energy for further ionizations.

The concept of radio-frequency ion thrusters (RIT) was first proposed in 1962 by H.W.
Löb [2] and has been under investigation at the University of Gießen ever since. Here,
the electrons are not accelerated between electrodes, but by an oscillating electric field
induced by the alternating magnetic field of a coil wrapped around the discharge cham-
ber (cf. figure 1.1). This can easily be described for an idealized set-up, where the
coil is assumed to be cylindrical and long and end effects are neglected: Under these
conditions, the magnetic field B can be expressed as

B(t) = µ0 nc I0 exp (i ω t) ez (1.1)

Xe0

−+

∼

E

Xe+

e−
coil

extraction
system

RF-generator

Figure 1.1: Principle of a radio-frequency ion thruster



4 1 INTRODUCTION

with the vacuum permeability µ0, the number of coil turns per unit length nc, the coil
current I0 and the applied angular frequency ω.
Faraday’s law of induction,

∇×E = −∂B
∂t

, (1.2)

is then solved by the azimuthal electric field

E(r, t) = − i ω r
2

Bz0 exp (i ω t) eϕ . (1.3)

A direct consequence of this electrodeless method to sustain a so-called inductively
coupled plasma (ICP) is that the lifetime of the thruster is only limited by the grid
system. In a Kaufman thruster on the other hand, the electron emitting hollow cathode
is directly exposed to the plasma, allowing for plasma etching to take place.
The lack of an electron emitter can be considered as a downside, as it complicates the
ignition process. Since the heating mechanism, electron impact ionization, relies on free
electrons to exist, they have to be created otherwise. However, it’s possible to, e. g.,
utilize the neutralizer for this purpose by deactivating the voltage of the grid system.

Two or three grids are generally used to extract the ions. The screen grid has direct
contact with the plasma and is positively biased on the order of one kilovolt compared
to the rest of the spacecraft. Ions passing it are accelerated towards the accel grid
at either ground (space) potential for two-grid systems or low-negative potential for
three-grid systems. The decel grid can be used to positively influence thruster lifetime
by preventing the backstreaming of electrons and charge-exchanged ions. However,
the lifetime of the extraction system is primarily restricted due to erosion of the accel
grid by high-energy ions deviating from their ideal trajectory. Since this is caused by
collisions with the neutral gas or other ions (with possible charge exchange), it can
hardly be prevented completely. For this reason, the accel grid is generally designed to
be significantly thicker than the other grids.
Nevertheless, the reported maximal periods of operation for gridded ion thrusters (.
5 · 104 h [3]) exceed those of Hall-effect thrusters (∼ 104 h [4]) many times over, which
is attributed to erosion of the discharge chamber of HETs by energetic ions.
The grid system is furthermore an effective barrier for the unionized propellant gas, as
a neutral particle entering an aperture is likely to be reflected back into the discharge
chamber by diffuse reflection on a grid surface (free molecular flow regime). Positive ions
on the other hand have a transmission coefficient very close to one because the extraction
system’s ion optics are designed to support a narrow range of trajectories. Consequently,
a very high mass utilization efficiency of the propellant is possible (. 90 % [5]), although
the actual degree of ionization is very low (∼ 1 %).

The Child-Langmuir law

j =
4

9
ε0

(
2 e

mi

)1/2 U3/2

d2
(1.4)

and the breakdown voltage between two grids limit the ion flow j through an aperture
of the extraction system (here, U is the voltage between screen and accel grid and d is
the distance between them; mi is the ion mass). For this reason, and to adapt to the
different demands for propulsion systems, gridded ion thrusters are designed in various
sizes, allowing for the number of grid apertures to vary greatly. Thus, the thrust range
for which a thruster can be used varies likewise.



1.2 Technical and Scientific Background 5

The radio-frequency ion thrusters developed in Gießen have the diameter of their dis-
charge chamber (in cm) in their name. The original RIT-10 was both miniaturized
(RIT-2.5 [6]) and scaled up (RIT-35 [7]), leading to a total thrust range of 50µN to
several hundred N of the RIT family.

For the purpose of optimizing the design of a given RIT, further insight into the proper-
ties of the plasma is required. Since diagnostic methods are either invasive (and therefore
a complicated matter, especially for the small thrusters) or limited to characteristics
that are accessible from outside the thruster (positional and energetic distribution of the
ion beam, currents on the grids, temperatures, etc.), simulations are a viable alternative.

Experiment

Simulation

Theory

Figure 1.2: Interplay between theory, experiment and simulation

Scientific simulations are universally carried out to improve the understanding of how
fundamental physical processes affect a broader context and to help interpret exper-
iments for which, as in RITs, detailed information is hardly accessible. In the vast
majority of cases, they also offer a faster and cheaper approach at designing and pre-
dicting new experimental setups. For this reason, they are generally not referred to as a
part of either theoretical or experimental methods but as a distinct branch (figure 1.2).
In the scope of his PhD thesis, Robert Henrich developed a powerful 3D plasma sim-
ulation tool, PlasmaPIC, capable of modeling the discharges in small thrusters of µN
range in a reasonable time frame, facilitated by massive parallelization [8].
In order to simulate the low temperature plasmas present in a RIT, it utilizes the
particle-in-cell (PIC) method, which is described in chapter 2 in further detail.

PlasmaPIC’s great capabilities reach a limit when it comes to scaling the problem
(i. e., the RIT) up to larger sizes. Since for a three-dimensional code, increasing the
characteristic length of a problem equates to cubic scaling of the total system size, al-
gorithmic scaling quickly becomes a dominant issue. If not all incorporated algorithms
scale linearly with the system size (i. e., optimal), the additional computational costs
can’t always be balanced by utilizing more parallel processes and the total runtime is
affected negatively. Linearly scaling algorithms on the other hand, if properly paral-
lelized, can then be utilized to keep the simulation’s total runtime constant. I. e., a
doubling in system size can be compensated by running the simulation on twice as
many processors. Since the eligible high-performance computing clusters can generally



6 1 INTRODUCTION

be expected to grow in size, increasingly large systems can therefore be simulated in
the years to come.
The development of a new field solver that ensures this parallel performance of Plasma-
PIC can therefore be understood as both an immediate improvement to current simu-
lations and an anticipatory measure.

1.3 Outline

In the following chapter, the particle-in-cell method is introduced and explained by the
example of PlasmaPIC. The fundamentals of the multigrid methodology are then laid
down in chapter 3, whereas the adjustments and modifications that were made to enable
its application in PlasmaPIC are described in chapter 4. The performance of the final
parallel multigrid field solver is then evaluated in chapter 5.



Chapter 2

The Particle-in-Cell Method by the
Example of PlasmaPIC

The approaches to simulate a plasma can be categorized into two groups: fluid and ki-
netic models [9]. A fluid model, such as magnetohydrodynamics, describes the plasma
as a continuum, using distribution functions that therefore need to be available. For
low-temperature plasmas, such as those produced in a RIT, this is not the case, as the
continuum approach breaks down.
Kinetic models on the other hand treat the plasma as a collection of particles with
individual velocities. Here, either a continuous particle velocity distribution function is
produced by solving a kinetic equation (e. g., the Boltzmann, Vlasov or Fokker-Planck
equation) or the movement and interaction of individual simulated particles is tracked
explicitly. For the latter variant to be practicable, the number of simulated particles
usually needs to be much smaller than the number of particles in the actual plasma.
This is achieved by introducing so-called super-particles, each representing numerous
real particles, carrying their collective charge and mass.
These particle-based approaches can then again be grouped into particle-particle and
particle-mesh methods [10]. The former approach involves calculating the forces be-
tween every pair of particles, which results in excessive computational costs as the
number of simulated particles increases.
PlasmaPIC utilizes the latter approach, alternatively called particle-in-cell (PIC ). Here,
a mesh covers the simulation domain, defining cells and grid points (cf. figure 2.1). In-
stead of calculating the inter-particle forces directly, a discrete vector field is associated
with the grid points and the force on each particle is calculated based on interpola-
tion from its surrounding grid points. The movement of the particles is then simulated
by updating position and velocity while advancing on discrete time steps ∆t. After
consideration of boundary effects and direct collisions, a new vector field can be calcu-
lated from the particles’ distribution of position and velocity. For the direct collisions,
PlasmaPIC utilizes Monte Carlo collisions, extending the method to a particle-in-cell
Monte Carlo collision approach (PIC-MCC ) [8].

In the following, the algorithm of one fundamental PIC cycle is described with an em-
phasis on the specific approaches of PlasmaPIC. The subsequent sections then provide
a discussion of the numerical constraints of the PIC method and its parallelizability,
as well as a comprehensive description of the features of PlasmaPIC not mentioned

7



8 2 THE PARTICLE-IN-CELL METHOD

Figure 2.1: Principle of the particle-in-cell method: The particles are moving continuously
through the grid cells

beforehand.

2.1 Algorithm

The procedure of a PIC simulation can be described as the processing of a number of
modules of mutual dependency in cyclic succession, where a new time step is defined
by an additional cycle through every module (figure 2.2).

2.1.1 Particle Weighting

Starting from a predefined distribution of particles with individual position and velocity,
the electric charge density ρ and current density j are calculated for the grid points
by assigning individual contributions of the particles. For this, various approaches
are possible, with the simplest and computationally cheapest being the nearest-grid-
point (NGP) method, where a particle’s charge is assigned to the grid point within
closest proximity. In contrast to this zero-order weighting, PlasmaPIC utilizes first-
order weighting, where every particle is weighted linearly to the eight grid points that
define the corners of the cell it’s positioned in. This approach greatly reduces the
statistic noise generated by a particle traversing a cell by preventing a sudden change
of the associated grid point. Higher-order weighting schemes involving even more grid
points per particle generally result in further improved accuracy but are rarely used due
to the additional computational costs.

2.1.2 Solution of Maxwell’s Equations

After the particle weighting, discretized fields for both charge (density) and current
(density) are available and can be used to solve the Maxwell equations in order to
derive the electromagnetic fields that define the force on every particle.



2.1 Algorithm 9

∆t

Particle movement
Interaction

with boundaries

Monte Carlo collisions

Particle weighting
Solution of Maxwell’s

equations

Field interpolation

Figure 2.2: Particle-in-cell algorithm

A well-known expression for the electric field satisfying Maxwell’s equations is

E(r, t) = −∇Φ(r, t)− ∂

∂t
A(r, t) , (2.1)

which is a motivation to separate the solution into independently calculatable electro-
static and an electrodynamic components of the electric field [11]. Φ is the electrostatic
potential, A the magnetic vector potential. The electrostatic term,

Eel.stat.(r, t) = −∇Φ(r, t) , (2.2)

can then be found by solving the Poisson equation,

∆Φ(r, t) = −ρ(r, t)

ε0
, (2.3)

and calculating the potential difference over two cells.

For the electrodynamic part, PlasmaPIC utilizes the common approach for inductively
coupled plasmas of assuming the relevant physical quantities to be varying harmonically
in time with the applied angular frequency ω [11, 12]:

Eel.dyn.(r, t) = Ê(r) ei ω t (2.4)
B(r, t) = B̂(r) ei ω t (2.5)
A(r, t) = Â(r) ei ω t (2.6)
j(r, t) = ĵ (r) ei ω t . (2.7)

The complex amplitudes are then time-independent and the simple relation

Eel.dyn.(r, t) = −i ωA(r, t) (2.8)

holds. The amplitudes are furthermore only calculated once every RF cycle and subse-
quent values are determined by multiplication with the exponential term.
Equation (2.8) implies that in principle, the Biot-Savart law can be used to calculate
the (electrodynamic) electric field for every grid point:

Ê(r) = −i ω µ0

4π

∫
d3r′

ĵ (r′)
|r − r′| . (2.9)



10 2 THE PARTICLE-IN-CELL METHOD

The total current density of a RIT system consists of contributions of both the electric
current through the coil and moving charges in the plasma. Because the mobility of
the electrons in the plasma is much higher than that of the ions, the ion current can
furthermore be neglected:

ĵ (r) = ĵ coil(r) + ĵ plasma(r) ' ĵ coil(r) + ĵ e(r) . (2.10)

However, as for each grid point to be calculated the current density ĵ of every other grid
point and of the (discretized) coil is needed, the computational costs are still immense.
Instead, equation (2.9) is only used to determine the boundary conditions.

The Coulomb gauge (∇ ·A = 0) allows Ampère’s circuital law to be rearranged:

∇×B = µ0 j + µ0 ε0
∂E

∂t
(2.11)

−∆Â = µ0 ĵ + i ω µ0 ε0 Ê (2.12)(
∆ + µ0 ε0 ω

2
)
Ê = i ω µ0 ĵ . (2.13)

Due to its complex properties, equation (2.13) can be separated into a system of six
independent equations, that are, like Poisson’s equation (equation (2.3)), elliptic partial
differential equations, which can be solved using the same numerical techniques.
By neglecting the term µ0 ε0 ω

2 � 1, all relevant equations have Poisson form (in the
mathematical sense) and can therefore even be solved in the same way.

The magnetic field B can then be calculated using

B̂(r) =
i

ω
∇×Ê(r) . (2.14)

How to efficiently solve equation (2.3) and equation (2.13) is the central task of this
work. After the fundamentals of the multigrid methods are introduced in chapter 3,
chapter 4 describes the adjustments made to develop a highly efficient field solver.

2.1.3 Field Interpolation

The electric and magnetic fields need to be interpolated to every particle position.
This is done complementary to the particle weighting scheme to avoid self-acceleration,
i. e., via linear interpolation from the eight grid points within closest proximity.

2.1.4 Particle Movement

In order to update the particles’ position and velocities, the two first-order differential
equations

m
dv

dt
= F and (2.15)

dr

dt
= v (2.16)

are replaced by the finite-difference equations

m
vnew − vold

∆t
= F old and (2.17)

rnew − rold
∆t

= vnew . (2.18)



2.1 Algorithm 11

This is the commonly used leap-frog method, which is time-centered and second-order
accurate [9].
Furthermore, since the Lorentz force

F = q (E + v ×B) (2.19)

is not only dependent on the fields E and B and the electric charge q, but also on the
particles’ velocity, it needs to be used carefully to preserve accuracy. One way to achieve
this is to use Boris’ method [13], for which the respective particle is first accelerated for
half of the time step according to the electric field. The intermediate velocity vector
is then rotated by the magnetic field, before the particle is accelerated again by the
electric field till the end of the time step.

2.1.5 Interaction with Boundaries

If the path between old and new position of a particle intersects with a boundary, a
particle-boundary interaction must be carried out. Dependent on the type of boundary,
various effects are possible. A striking particle can either increase the surface charge of
a dielectric at the position of impact or be absorbed by a conducting material, where
the object’s overall charge remains unchanged (equipotential boundary) or increases
(conductor or current driven). Either way, the particle itself is removed from the simu-
lation, just as if it leaves through an exit.
However, secondary electron emission, which generates new particles, is possible with a
predefined probability.

2.1.6 Monte Carlo Collisions

PlasmaPIC utilizes Monte Carlo collisions to describe the interaction between the
plasma species and the neutral background gas. By this, essential plasma features
like electron heating, the production of new ion-electron pairs via electron impact ion-
ization, and energy losses through transfer to the neutral gas are enabled to take place
in the simulation.
The neutral gas is assumed to be unaffected by the plasma, so that its distribution
function (to be specified in the input card) doesn’t change over time.

The probability Pcoll of a plasma particle striking a neutral gas particle is given by

Pcoll = 1− exp (−n(r)σ(E) v∆t) . (2.20)

Here, n(r) is the number density of the background gas and σ(E) is the sum of all
cross sections for collisions at the kinetic particle Energy E. Instead of applying the
straightforward approach of comparing every particles value of Pcoll with a random
number between zero and one to check for collision, the null collision process is used in
PlasmaPIC [14].
It essentially involves calculating a maximum number of collisions Nmax which might
occur inside a cell, randomly choosingNmax particles from the cell, and checking for each
of those particles, if and what type of collision takes place. By only examining a fraction
of the total number of particles, the required computations are reduced significantly.
Particles that undergo a collision are ultimately assigned a new velocity vector.



12 2 THE PARTICLE-IN-CELL METHOD

For a plasma that is sustained at such low pressures as in a RIT, interactions between
charged particles, e. g., elastic Coulomb collisions or electron-ion recombination, don’t
need to be considered. The relevant interaction modes are elastic scattering, excita-
tion, and ionization for electron-neutral collisions and elastic scattering for ion-neutral
collisions (possibly including charge exchange).

2.2 Numerical Constraints

The accuracy of a PIC simulation depends on a few fundamental parameters: the length
of a time step ∆t, the size of a grid cell ∆x and the number of simulated particles per
Debye length ND.

The highest temporal frequency of a plasma is commonly associated with the plasma
frequency

ωp =

(
e2 ne
ε0me

)1/2

. (2.21)

To resolve it, the time step needs to be appropriately small. A simple assessment
provides the relation ωp ∆t < 2.
However, practical applications require a stricter limit [9, 15], often set to

ωp ∆t . 0.2 . (2.22)

The smallest distance of interest is the Debye length,

λD =

(
ε0 kB T

ene

)1/2

, (2.23)

for which
∆x ≤ λD (2.24)

is a sufficient condition [15], although it’s possible to successfully conclude a simulation
with a looser requirement for the cell size, e. g., ∆x ≤ 3.4λD [10].

The number of simulated particles per Debye length ND, if chosen too small, is not only
directly correlated with numerical noise but also impedes the shielding characteristics
of the plasma and produces unphysical heating [15]. A widely accepted range for ND is
10 to 100 [10] but large deviations to higher values are necessary under certain circum-
stances [16].
Furthermore, ND directly affects the ratio of real to simulated particles and the number
of particles per cell and therefore the computational costs for most of the PIC modules.

2.3 Parallelizability

PlasmaPIC is parallelized by utilizing the domain decomposition method, which is the
standard approach to partition problems that are defined on a spatial domain. The
program is started on a (possibly very large) number of processors, each of which is
assigned a (cuboidal) sub-space as its own local simulation domain. With the exception
of the field solver, every implemented PIC module can be processed almost entirely in-
dependent on each sub-space, so that the computations necessary for the simulation are



2.3 Parallelizability 13

Figure 2.3: Application of the domain decomposition method

distributed very efficiently. In order to exchange boundary information to connect the
numerous subdomains, the message passing interface (MPI) [17] is used. This commu-
nication standard for parallel computing provides the syntax and semantics for various
library implementations that can be used for inter-process communication. Applica-
tions that utilize MPI can be designed to be scalable to both system size and number of
involved processes on distributed memory architectures such as many high-performance
computing clusters.
MPI further supports non-blocking send- and receive-operations to allow for messages
to be exchanged while computations that are not immediately dependent on other pro-
cesses’ data are simultaneously performed. By this, it’s possible for applications to
completely hide the communication process so that the total runtime is not influenced
by it. However, this is naturally only possible if the amount of information to be ex-
changed isn’t too high compared to the number of potential concurrent computations
and if the hardware available for communication (e. g., an InfiniBand network) can
handle the data throughput in time.

Out of the six modules described in section 2.1, three don’t require any communication
at all because the preceding modules already made all necessary data available: The
field interpolation process transfers data associated with the grid points into the grid
cells, and the interactions of the particles with boundaries and the neutral background
gas are restricted to the respective cell.
Weighting the particles’ charge and current to the grid on the other hand is not possible
without some communication because a grid point is assigned contributions of particles
from the neighboring eight cells, which can, in principle, belong to up to eight different
processes.
With the particle mover, communication needs to take place when particles are moved
to a position outside of the process-local subdomain. The neighboring process then
needs the six values for position and velocity of every crossing particle.

The module that requires the most communication is the field solver. While the other
parts of PlasmaPIC show practically ideal scaling behavior for a wide range of setups,
this can only be achieved for relatively large subdomains here, where the ratio of com-
munication to computation (determined by the ratio of surface area of the subdomain
to its volume) is favorable [8].
This becomes clear by acknowledging the fact that the electric potential at an arbitrary



14 2 THE PARTICLE-IN-CELL METHOD

Figure 2.4: Sectional view of the RIT-1.0. Left: Generated from a CAD file. Right:
Representation in PlasmaPIC [8].

position depends on charge distribution and boundary conditions of the whole simula-
tion domain, so that simply exchanging boundary information can hardly be sufficient
when done in a single step.
An efficient parallelization is therefore a significant requirement for the field solver de-
veloped in the context of this work.

2.4 Further Features of PlasmaPIC

For the purpose of setting the right general conditions, PlasmaPIC incorporates a direct
simulation Monte Carlo (DSMC) tool to separately model the neutral gas. In princi-
ple, this allows for a number density distribution to be found so that every grid cell
is assigned an individual value. Since the variations in density inside the discharge
chamber of a RIT have shown to be rather small [8], the assumption of a homoge-
neous distribution with Maxwellian velocity distribution was justified, which reduces
the computational costs of the MCC module.

It’s furthermore possible to import (multiple) arbitrarily shaped geometries, created
by using an external CAD program, to define the boundaries. For this, PlasmaPIC
reads the predefined files and maps the triangular representation of surfaces onto the
structured Cartesian grid.

Thus, PlasmaPIC is not limited to the simulation of radio-frequency ion thrusters, but
is able to model a broad range of applications, including direct-current (DC) discharges,
conductively coupled plasmas (CCP) and, of course, inductively coupled plasmas (ICP).



Chapter 3

Fundamentals of Multigrid

This chapter outlines the fundamentals and applications of the multigrid methods. The
derivations are generally based on vertex-centered discretization, where the grid points
are positioned at the vertices of the (cubical) cells into which the domain of interest
is divided. This approach (as opposed to cell-centered discretization where each cell
holds a single grid point at its center) is justified because it is the literature standard
for outlining the multigrid basics and it is already utilized by PlasmaPIC throughout
all modules. The multigrid methods can, however, be applied to cell-centered grids as
well and without fundamental differences.

3.1 Preparations

The following remarks are based on the Poisson equation

∆u(r) = −f(r) (3.1)

with the Laplace operator ∆ and the real-valued functions u(r) and f(r) on IR3 (of
which f is given) to provide an example for the general numerical solution of elliptic
partial differential equations.
Finding the solution of

∆Φ(r) = −ρ(r)

ε
, (3.2)

namely the electric potential Φ(r) for a given charge distribution ρ(r) and permittivity
ε, is the fundamental problem of electrostatics.

3.1.1 Finite Differences

The second derivative of a smooth (one-dimensional) function u(x) can be approximated
on a Cartesian grid with discrete values ui and mesh size h by

∂2u(x)

∂x2
≈ u(x− h)− 2u(x) + u(x+ h)

h2
=
ui−1 − 2ui + ui+1

h2
, (3.3)

15



16 3 FUNDAMENTALS OF MULTIGRID

which can be derived by adding the two Taylor approximations to third order u(x0+∆x)
and u(x0 −∆x) [18, 19]:

u(x0 ±∆x) = u(x0)±∆xu′(x0) +
1

2
∆x2 u′′(x0)± 1

6
∆x3 u′′′(x0) +O(∆x4) (3.4)

u′′(x0) =
u(x0 + ∆x)− 2u(x0) + u(x0 −∆x)

∆x2
+O(∆x2) . (3.5)

The so-called truncation or discretization error due to approximating the continuous
space by a finite grid is therefore of order O(∆x2) = O(h2).
Alternatively, this can be obtained via the second derivative of a simple polynomial
interpolation of u(x) with its neighboring grid points u(x−h) and u(x+h) (three-point
approximation for the second-derivative).

Consequently, the three-dimensional Laplace operator can then be depicted as

∆u(x, y, z) ≈ 1

h2
(u(x− h, y, z) + u(x, y − h, z) + u(x, y, z − h)

+u(x+ h, y, z) + u(x, y + h, z) + u(x, y, z + h) (3.6)
− 6u(x)) .

Applying this to Poisson’s equation then yields

1

h2
(ui-1jk + uij-1k + uijk-1 − 6uijk + ui+1jk + uij+1k + uijk+1) = −fijk (3.7)

as its general discrete form and

1

h2
(Φi-1jk + Φij-1k + Φijk-1 − 6 Φijk + Φi+1jk + Φij+1k + Φijk+1) = −ρijk

ε
(3.8)

in particular for the electrostatic case.
A solution is acceptable only if equation (3.7) is satisfied for every grid point (i, j, k)
that is not part of the boundary conditions.
A straightforward approach is to merge the above expression for all grid points to a
linear system of equations

Au = b , (3.9)

which describes the Poisson equation for

ui′ ⇔ uijk or Φijk and (3.10)

bi′ ⇔ fijk or
ρijk
ε

(3.11)

and where the rows of the (sparse) quadratic matrix A have a form similar to

1

h2

 −1 . . . −1 . . . −1 6 −1 . . . −1 . . . −1 . . . . . .
. . . −1 . . . −1 . . . −1 6 −1 . . . −1 . . . −1 . . .
. . . . . . −1 . . . −1 . . . −1 6 −1 . . . −1 . . . −1

 ,

dependent on how the grid points are assigned to elements of u and b. Assuming
lexicographic ordering of the grid points in a three-dimensional grid, the matrix consists
of exactly seven diagonals that contain non-zero entries. Grid points that don’t need
to satisfy equation (3.7) (or equation (3.8)) can furthermore be included by modifying



3.1 Preparations 17

their respective row in the matrix. For example, a fixed value Φ for the electric potential
(Dirichlet boundary condition) can be accounted for by replacing its row in the matrix
with that of the identity matrix (multiplied by 1/h2 for consistency) and setting the
element in the right-handed side vector to h-2 Φ.

Methods to solve these kinds of systems, derived from approximating derivatives by
finite differences, are consequently called finite difference methods (FDM ).

It’s evident that a direct matrix inversion, even though theoretically possible, is not a
viable option to obtain the solution u, as A-1 would generally be dense and impractically
large even for relatively small grids.
For example, the inverse matrix for a system of 100 × 100 × 100 grid points usually
requires 7.3 TByte of memory (in double precision arithmetic) and it takes on the order
of 1012 operations for the respective matrix-vector multiplication, that, due to the dense
nature of the inverse, can hardly be parallelized.
In fact, even if A-1 were to be obtainable at no cost and to be stored in a practicable
way, the number of arithmetic operations to calculate u by matrix-vector multiplication
(O(n2) for n grid points) would still be higher than with many numerical methods.

3.1.2 Conventional Methods to Solve Large Sparse Systems of Linear
Equations

The actual methods of solution for this type of problem can be classified into two cate-
gories: direct and iterative.
Direct methods, with Gaussian elimination being a prominent example, are used to
determine an exact (up to machine precision) solution in a finite number of arithmetic
steps. Efficient implementations often use variations of the fast Fourier transform or
the method of cyclic reduction, and require at least O(n log n) operations (n being the
system size), which is nearly optimal for small systems, but are not generally applicable
as they require certain types of boundary conditions or specific system sizes [20]. Fur-
thermore, they are hardly possible to parallelize as they require the whole set of data
for computation.

Iterative methods on the other hand gradually improve an approximation of the exact
solution starting from an initial guess. However, as the approximation converges to the
exact solution, machine precision is generally achievable as well.
The basic iterative methods arise from applying

uijk :=
1

6

(
ui-1jk + uij-1k + uijk-1 + ui+1jk + uij+1k + uijk+1 − h2 fijk

)
, (3.12)

which is just a conversion of equation (3.7), repeatedly to every grid point (boundary
conditions barred).
For the Jacobi iterative method, the new value for each grid point is calculated using
only the values for the respective neighboring grid points that were obtained at the
previous iteration, so

um+1
ijk :=

1

6

(
umi-1jk + umij-1k + umijk-1 + umi+1jk + umij+1k + umijk+1 − h2 fijk

)
(3.13)

is used for the (m+ 1)th iteration.
The number of iterations (sweeps over the whole grid) required to reach a given accuracy



18 3 FUNDAMENTALS OF MULTIGRID

is dependent on the number of grid points per dimension, i. e., for a three-dimensional
cubic grid of size n = N × N × N , convergence is obtained after O(N2) iterations
[21]. Since every iteration requires O(n) operations, the overall computational cost is
O(n1+2/d), and accordingly, O(n5/3) in three dimensions.

By using the updated values of neighboring grid points as soon as they are calculated, the
Gauss-Seidel method is applied. This implicates that the outcome of a single iteration
depends on the order in which the grid points are swept through, which enables different
variations of the method like symmetric Gauss-Seidel (alternate between ascending and
descending order) or red-black Gauss-Seidel (“color” the grid in a checkerboard pattern,
so a “red” point is surrounded by “black” points and vice versa, then first update the
red points and use their new values for the black points).
Assuming a sweep to be in lexicographic order, each calculation can be expressed by

um+1
ijk :=

1

6

(
um+1
i-1jk + um+1

ij-1k + um+1
ijk-1 + umi+1jk + umij+1k + umijk+1 − h2 fijk

)
. (3.14)

Like the Jacobi method, the Gauss-Seidel method converges after O(n1+2/d) operations
(O(n5/3) in 3D), but generally twice as fast [21].

Both methods can be expanded by a simple modification. Instead of using the output of
equation (3.13) or (3.14) to update a grid point, it is effectively used as an intermediate
value ũm+1

ijk . The difference between intermediate and old value, ∆um→m+1
ijk = ũm+1

ijk −
umijk, is then weighted with a factor ω (relaxation parameter) before it is added onto the
old value:

um+1
ijk := umijk + ω∆um→m+1

ijk (3.15)

While the weighted or damped Jacobi method usually employs 0 < ω < 1 to either allow
convergence for systems that are diagonally dominant to a lesser extent or to selec-
tively damp certain error modes (see section 3.1.3 for further discussion), the weighted
Gauss-Seidel method, primarily referred to as successive over-relaxation (SOR), greatly
improves the convergence rate for 1 < ω < 2 [22] (cf. figure 3.1). In fact, by using the
optimal relaxation parameter, only O(N) iterations are needed for convergence, result-
ing in O(n1+1/d) (O(n4/3) in 3D) overall operations [23].
Analogous to equation (3.14), the updating process for the SOR method can be ex-
pressed by

um+1
ijk := (1− ω) umijk +

ω

6

(
um+1
i-1jk + um+1

ij-1k + um+1
ijk-1 + umi+1jk + umij+1k

+umijk+1 − h2 fijk
)
.

(3.16)

The optimal relaxation parameter for the SOR method can generally be found by sys-
tematic trial and error. An analytic expression exists for rectangular grids with homo-
geneous boundary conditions in one, two, or three dimensions [24]:

ωopt =


2

1+sin( π
M−1)

1D; size n = M

2

1+
√

1− 1
4 [cos( π

M−1)+cos( π
N−1)]

2
2D; size n = M ×N

2

1+
√

1− 1
9 [cos( π

M−1)+cos( π
N−1)+cos( π

L−1)]
2

3D; size n = M ×N × L
(3.17)

Both the 2D and 3D expression reduce to

ωopt =
2

1 + sin
(

π
M−1

) (3.18)



3.1 Preparations 19

um
um+1
GS uexact

ω

Figure 3.1: Illustration of the effect of over-relaxation. The improvement made by the
Gauss-Seidel method is weighted by a factor ω > 1 in order to decrease the difference to
the exact solution.

for a square or cubic grid respectively.

3.1.3 Smoothing Properties of Basic Iterative Solvers

By monitoring the development of the solution vector during the iterative process, an
important property of the aforementioned solvers can be observed. Provided that the
right-handed side of the discretized Poisson equation (equation (3.7)) isn’t too oscilla-
tory along successive grid points (i. e., the mesh size is small enough to resolve the curve
properly), the exact solution can be expected to be a relatively smooth curve. If the
initial guess for the solution vector isn’t smooth to begin with, this generally changes
after just a few iterations, so that a smooth curve slowly aligns to the exact solution.
Briggs, Henson and McCormick [20] provide a simple example to visualize this:
In order to solve the linear system Au = 0 representing Poisson’s equation on a one-
dimensional grid of size n+1 = 65 with boundary conditions u0 = un = 0, one or a
linear combination of multiple Fourier modes vj = sin

(
j k π
n

)
(0 ≤ j ≤ n, 1 ≤ k ≤ n-1)

is chosen as the initial guess for the approximate solution v. The integer j donates the
vector component, k is the wavenumber of the respective Fourier mode.
Since the exact solution is trivial for this special case, the error e = u−v is simply −v.
By testing the basic iterative methods with various different initial guesses, the following
statements of general validity can be made:

1. Initial guesses constructed with low wavenumbers (from this point on referred
to as high-frequency/small-wavelength or oscillatory error modes) converge sub-
stantially faster than those constructed with high wavenumbers (low-frequency or
smooth error modes).

2. In linear combinations of Fourier modes with diverse wavenumbers, the high-
frequency/small-wavelength modes are “smoothed out” quickly, while errors of
longer wavelength remain nearly unchanged.

3. Which wavenumbers can be labeled low-frequency and high-frequency depends on
the grid size. For example, a smooth error on 64 grid points can appear oscillatory
on 32 grid points.

4. The SOR method’s smoothing properties are inferior to the other methods, as it
primarily aims to eliminate smooth errors more efficiently by “overshooting” [25].

Figure 3.2(a) shows the development of the maximum error for the model problem for
vj = sin

(
2 j π
n

)
, vj = sin

(
16 j π
n

)
, and vj = 1

2

[
sin
(

2 j π
n

)
+ sin

(
16 j π
n

)]
during the first



20 3 FUNDAMENTALS OF MULTIGRID

� �� �� �� �� �� �� 	� 
� �� ���
���

���

���

���

��


���

���

������������

�
��

���
��
��

���������

���

����

����

���

���

���

����

����

���

���

���

� �� �� �� �� �� 	�
����

����

���

���

���

�

�

��

� � �

���

�

�

����������

����

����

���

���

���

����

����

���

���

� �� �� �� �� �� 	�
����

����

���

���

�

��

��

��

���

��

�

����������

(a)

(b) (c)

Figure 3.2: The Gauss-Seidel method applied to the model problem: (a) Maximum error
of the model problem with initial guesses v2, v16, and (v2 + v16)/2 plotted against the
iteration number. Note that v2 + v16 would asymptotically approach the v2 curve. (b)
Approximation to trivial solution after one iteration, plotted against grid point index j.
(c) Approximation after ten iterations.
These figures were recreated analogous to figure 2.3 and 2.9 in [20].



3.2 The Multigrid V-Cycle 21

100 iterations of the regular Gauss-Seidel method. Figures 3.2(b) and (c) show the
actual approximate solution after one and ten iterations.

For every problem on which the basic iterative methods described here can be ap-
plied, the error of the approximate solution can be decomposed into high-frequency and
low-frequency components. The inability to efficiently eliminate the latter is a major
disadvantage, but the resulting smoothing property is a cornerstone to the multigrid
methods.

3.2 The Multigrid V-Cycle

A smooth error on a grid Ωh with mesh size h appears more oscillatory when projected
onto a grid Ω2h with doubled mesh size 2h. Hence the motivation behind the multigrid
approach is to utilize the efficient elimination of high-frequency errors by the basic iter-
ative solvers on different length scales. If the problem can be restricted to a coarser grid
without losing substantial information, convergence can be accelerated significantly, and
furthermore if this concept can be transferred to even coarser grids.
Such a hierarchy of grids with decreasing point density can easily be constructed
for structured grids, as the next coarser grid solely consists of the points with even-
numbered indices in every direction on the respective finer grid, so that the total number
of grid points reduces by a factor of 2 (1D, figure 3.3), 4 (2D), or 8 (3D).

h

2h

4h

Figure 3.3: One-dimensional grid hierarchy

Coarse-grid acceleration had been proposed even before the first digital computers were
developed (1935 [26]) and was first properly described by R.P. Fedorenko in 1961 [27]
as an actual multigrid method.
Further progress on the subject is mainly attributed to A. Brandt [28], who then pi-
oneered the development of advanced methods for solving PDEs and other problems
with large numbers of unknowns.

One way to achieve the multigrid acceleration described above is the so-called correc-
tion scheme procedure, for which the problem Au = b with initial guess/approximate
solution v is reformulated using the residual

r = b−Av (3.19)

and the error
e = u− v . (3.20)

For an iterative process, r approaches 0 as v approaches the exact solution u and is
(unlike e and u) easily computable.
A straightforward derivation then gives the residual equation

A e = r , (3.21)



22 3 FUNDAMENTALS OF MULTIGRID

h

2h

4h

8h

16h

32h

Figure 3.4: Illustration of the V-cycle. The pattern is traversed from left to right; the
nodes in the left arm denote pre-smoothing, those in the right arm post-smoothing. The
tip of the “V” marks the solution process on the coarsest grid (32 times the finest mesh
size in this case). The line sections denote restriction on the left and prolongation on the
right arm.

where only e is unknown. The solution of this linear system of equations coincidentally
solves the original problem via equation (3.20).
For the correction scheme, the following strategy is used: First, the high-frequency er-
rors are eliminated by applying one of the basic iterative solvers (smoothing/relaxation).
The updated residual is then projected onto a coarser grid (restriction), where it is used
as the right-handed side of a new linear system of equations A2h u2h = b2h. Logically,
the consistent initial guess is the zero vector.
By proceeding recursively, error modes of increasing wavelength can be suppressed until
a reasonably small system is reached that can be solved to no noteworthy costs.
The so-obtained error is thereon interpolated back to the respective finer grid (inter-
polation/prolongation) where it is added onto the current approximate solution as a
correction. Additional smoothing can now be used to compensate any new errors aris-
ing from restriction and prolongation.

Since the whole process starts at a fine grid and migrates along a hierarchy of coarser
grids, it can be represented by a simple diagram showing the schedule in which the
different grid levels are visited. Because the pattern resembles the letter “V” (figure 3.4),
this basic routine is called V-cycle. The number of iterations for pre- and post-smoothing
usually doesn’t surpass three.

The correction scheme is commonly applied if the PDE that is supposed to be solved is
discretized to a structured grid. Multigrid methods capable of handling unstructured
grids are briefly discussed in section 3.5.

The affiliated algorithm and the individual components of the multigrid V-cycle are
further elaborated in the following.

3.2.1 Algorithm

The correction scheme V-cycle can be put in concrete terms by using pseudo-code, as
shown in algorithm 1.



3.2 The Multigrid V-Cycle 23

Algorithm 1 Correction Scheme V-Cycle
1: function V-Cycle(`, vh, bh)
2: if ` = `max then
3: vh := Solve(vh, bh)
4: else
5: for i := 1, npre do
6: vh := Smooth(vh, bh)
7: end for
8: rh := bh −Ah vh
9: b2h := Restrict(rh)

10: v2h := 0
11: v2h := V-Cycle(`+ 1, v2h, b2h)
12: vh := vh+ Prolongate(v2h)
13: for i := 1, npost do
14: vh := Smooth(vh, bh)
15: end for
16: end if
17: return vh

18: end function

Here, the finest grid is identified by the integer ` being zero.
The functions Restrict(rh) and Prolongate(v2h) could basically be described by
operators I2h

h and Ih2h that transform vectors into their coarse-grid and fine-grid coun-
terpart.

If any smooth error components remain after a V-cycle, it can be applied again, i. e., as
an iterative solver.

More details on the respective subroutines, especially concerning three-dimensional
structured grids, are given in the following.

Smoothing

For smoothing, a suitable iterative solver (usually one of those described in subsection
3.1.2) is applied for a small number of iterations npre or npost respectively. The sufficient
number of sweeps depends on the actual problem and is subject to optimization, but
npre is generally chosen to be not smaller than npost.

Calculation of Residuals

In terms of the expressions used in subsection 3.1.2, equation (3.19) can be rewritten as

rijk :=
1

h2
`

(6uijk − ui-1jk − uij-1k − uijk-1 − ui+1jk − uij+1k − uijk+1) + fijk (3.22)

for the 3D Poisson equation. Since all values that are used were previously calculated,
the order in which the grid points are swept through is of no further importance.



24 3 FUNDAMENTALS OF MULTIGRID

1
8

1
16

1
16

1
16

1
16

1
16

1
16

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
64

1
64

1
64

1
64

1
64

1
64

1
64

1
64

Figure 3.5: Three-dimensional restriction with 27-point full weighting. The black node
marks the only grid point matching the coarse grid. The weighting factor is given for each
node.

Restriction

Because the coarsening strategy to generate the hierarchy of grids generally involves
doubling the mesh size, each point on a coarse grid has a geometrically corresponding
point on the next finer grid (cf. fig 3.3).

The simplest method to project a vector vh onto a vector v2h is therefore a direct
injection of these fine-grid vector components into the respective coarse-grid vector
components:

v2h
j := vh2j (1D). (3.23)

However, a more robust alternative is full weighting,

v2h
j :=

1

4

(
vh2j-1 + 2 vh2j + vh2j+1

)
(1D), (3.24)

for which the surrounding grid points are considered as well via algebraic weighting.

For higher dimensions, not only the nearest neighboring points are considered for full
weighting, but also those that define the smallest square or cube around the coarse grid
point. The weighting factors are assigned depending on position, i. e., the central point
has the maximum weighting factor, the four (2D) or six (3D) nearest neighbors half
of that and the next nearest neighbors a quarter. For the three-dimensional case, this
is visualized in figure 3.5. Calculating a coarse-grid value in 3D therefore involves 27
fine-grid values with weighting factors 1

8 (1×), 1
16 (6×), 1

32 (12×), and 1
64 (8×).

This approach has the remarkable quality that every fine-grid point is weighted to



3.2 The Multigrid V-Cycle 25

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
4

1
4

1
4

1
4

1
2

1
2

1

Figure 3.6: Linear, bilinear and trilinear interpolation on a three-dimensional grid. Note
that the shown grid section is shifted compared to figure 3.5.

the same extent, because every point without corresponding coarse grid counterpart is
weighted multiple times.
Full weighting can be attenuated to half weighting by ignoring the furthermost neighbors
in order to trade accuracy for speed.

Prolongation

In order to apply the coarse-grid correction, linear interpolation is generally used, as it
is quite effective and normally produces a sufficiently smooth function.
Since the PDE is discretized onto a structured grid, this simply implies calculating the
mean value of the geometrically nearest coarse grid points:

vh2j := v2h
j

vh2j+1 :=
1

2

(
v2h
j + v2h

j+1

)
.

(1D) (3.25)

In two and three dimensions, this expands to bilinear and trilinear interpolation (cf.
figure 3.6).

Solving

Since the coarsest grid in the hierarchy can be chosen to be almost arbitrarily small,
the algorithm’s runtime complexity is of minor importance. Instead, methods to solve
linear systems have to be evaluated for their performance regarding small systems.



26 3 FUNDAMENTALS OF MULTIGRID

h

2h

4h

8h

Figure 3.7: Illustration of the W-cycle (µ = 2), analogous to figure 3.4.

Literature on the subject therefore often encourages a direct solver [19, 20, 29]. However,
as the coarseness of the grid also increases the truncation error, which adds to the errors
introduced via restriction and prolongation, the coarse grid solution actually doesn’t
need to be exact, but appropriately accurate. Hence, iterative solvers, if efficient, are a
viable option, also because they are comparably easy to implement.

3.2.2 Derivatives

The basic V-cycle can be modified for various benefits, not only limited to the number
of pre- and post-smoothing steps. To improve the convergence behavior of one iteration,
the recursive self-calling of the V-cycle routine can be extended to form the so-called
µ-cycle. On the other hand, if no initial guess is available, it can be beneficial to start
the solution process on the coarsest grid level.

µ-Cycle

If the number of smoothing steps necessary to eliminate certain error modes surpasses
a limit or another V-cycle would be needed to achieve a given convergence threshold, it
can be faster to use the self-calling of the V-cycle function on coarser grid levels another
time. By replacing line 11 in the pseudo-code algorithm above (algorithm 1) with

for i := 1, µ do
v2h := µ-Cycle(µ, `+ 1, v2h, b2h)

end for
and renaming the function to µ-Cycle(µ, `, vh, bh), the µ-cycle is generated. It shifts
the computational load towards the coarser grids by recursively calling itself µ times and
greatly improves the convergence rate of a single iteration, although not automatically
run-time till convergence.
As can be deduced from figure 3.7, the number of times the coarsest grid is visited
doubles with every additional grid level, practically limiting the µ-cycle to µ ≤ 2, which
leaves the V- and the W-cycle (named analogously).

However, it’s noteworthy that a value for µ can be assigned to each grid level individu-
ally, allowing further optimization.

Nested Iteration

In absence of an eligible initial guess (including the zero vector), it’s advisable to start
the solution process on the coarsest grid. A simple, yet often sufficient, approach is to



3.2 The Multigrid V-Cycle 27

Algorithm 2 Full Multigrid V-Cycle
1: function FMG(ν, `, vh, bh)
2: if ` = `max then
3: vh := 0
4: vh := Solve(vh, bh)
5: else
6: b2h := Restrict(bh)
7: v2h := FMG(ν, `+ 1, v2h, b2h)
8: vh := Prolongate(v2h)
9: for i := 1, ν do

10: vh := V-Cycle(`, vh, bh)
11: end for
12: end if
13: return vh

14: end function

solve the problem on the coarsest grid and to prolongate the solution to the increasingly
finer levels, on each of which only some additional smoothing is performed.
This implicates that in this case, a coarse grid solution is not a correction for the next
finer grid, but is rather a rough approximation to the actual solution, being of the same
order of magnitude of a physical quantity as the exact solution.

Full Multigrid

By combining nested iteration and the V-cycle, a powerful algorithm capable of solving
many problems in a single run arises.
The simple smoothing described above is replaced by a whole V-cycle (or a multitude
of) that starts on the current grid level, efficiently providing an accurate solution to the
problem on the corresponding degree of discretization (figure 3.8).

With the V-cycle being established, the algorithm is rather simple (algorithm 2). It
includes the restriction of the fine-grid right-handed side vector to the coarser grids,
hence the initial call should be FMG(ν, `max, vh, bh).
Here again, the parameter ν that indicates the number of V-cycle iterations on every
level can be assigned individually and is subject to optimization.

h

2h

4h

8h

16h

Figure 3.8: Full multigrid (FMG) scheme with ν = 1



28 3 FUNDAMENTALS OF MULTIGRID

3.3 Boundary Conditions

Up to this point, a grid point was considered to be surrounded by and its numeric
value to be dependent on other grid points. Since computations can only be performed
on a finite grid, some grid points consequentially define the sides of the (box-shaped)
domain and need to be treated differently. Their finite-difference equations, deviating
from equation (3.7), must correspond to the boundary conditions needed for a unique
solution to a physical differential equation (boundary value problem). Most commonly,
either Dirichlet or Neumann boundary conditions are used.
For Dirichlet boundary conditions, the solution of the differential equation on the do-
main Ω, u, has to comply with a given function g on the boundaries ∂Ω:

u(r) = g(r) ∀ r ∈ ∂Ω. (3.26)

Neumann boundary conditions on the other hand only define the normal derivative of
u on ∂Ω:

∂u(r)

∂n
= g(r) ∀ r ∈ ∂Ω. (3.27)

It is further possible to enforce both types simultaneously (Cauchy boundary conditions)
or as a linear combination of the form

c1 u(r) + c2
∂u(r)

∂n
= g(r) ∀ r ∈ ∂Ω (3.28)

with constants c1 and c2 (Robin boundary conditions). However, since there is generally
no physical reason to use the latter two with Poisson’s equation, they are ignored in the
further course of this work.
Additionally, it must be pointed out that neither type can be used to straightforwardly
model boundary conditions at infinity, e. g.,

u(r) = 0 for r →∞ . (3.29)

Overcoming this limitation without introducing significant inaccuracies is often a critical
part of the numerical solution process.

While the finite-difference equation for Dirichlet boundary points is exceptionally sim-
ple,

uijk = gijk (3.30)

with gijk often being a constant, the counterpart of equation (3.7) for Neumann bound-
ary conditions depends on the side of the domain on which the respective point is
located. For a point on the side in negative x direction (with index i = 0), this is

u0j-1k + u0jk-1 − 6u0jk + 2u1jk + u0j+1k + u0jk+1 = −h2 f0jk + 2h g0jk . (3.31)

Here, the central difference

∂u(i h, j h, k h)

∂x
=
ui+1jk − ui-1jk

2h
+O(h) (3.32)

was used.



3.4 Variable Coefficients 29

Figure 3.9: One-dimensional restriction with homogeneous Neumann boundary condi-
tions. The outermost points on the coarser grid “see” the next fine grid point in inward
direction mirrored to outside the domain.

These considerations can be adapted to all non-transfer grid operations of the multigrid
V-cycle. For homogeneous Neumann boundary conditions (∂u(r)

∂n = 0), the correspond-
ing full weighting restriction operation is given by

v2h
0 :=

1

4

(
2 vh0 + 2 vh1

)
(1D), (3.33)

where the weighting factor of vh1 is doubled compared to equation (3.24) and the (non-
existant) point at i = −1 is left out [20]. A simple visualization is given in figure 3.9.

In order to avoid ambiguities, the boundary conditions discussed here are referred to as
domain boundary conditions in the further course of this thesis, in contrast to irregular
boundary conditions imposed by points of fixed value distributed over the whole grid
(additional Dirichlet boundary conditions).

3.4 Variable Coefficients

In its general form, the electrostatic Poisson equation allows for various different di-
electric media to be present by letting the relative permittivity εr be dependent on
r:

∇ [εr(r)∇Φ(r)] = −ρ(r)

ε0
. (3.34)

The one-dimensional discrete system resulting from this,

εi+ 1
2

Φi+1−Φi
h − εi− 1

2

Φi−Φi−1

h

h
= −ρi

ε0
(3.35)

εi+ 1
2

Φi+1 −
(
εi− 1

2
+ εi+ 1

2

)
Φi + εi− 1

2
Φi−1 = −h2 ρi

ε0
, (3.36)

requires the relative permittivity to be defined between the grid points, i. e., at position
i− 1

2 and i + 1
2 . It’s therefore common practice to define a variable coefficient such as

εr as a cell-centered quantity. In two and three dimensions, however, this still requires
additional averaging. For example, the value εi+ 1

2
j k needed in the three-dimensional

case can be calculated via

εi+1 j k =
1

4

(
εi+ 1

2
j− 1

2
k− 1

2
+ εi+ 1

2
j− 1

2
k+ 1

2
+ εi+ 1

2
j+ 1

2
k− 1

2
+ εi+ 1

2
j+ 1

2
k+ 1

2

)
, (3.37)

where the available cell-centered values are used.
The general variable coefficient problem ∇ [a(r)∇u(r)] = −f(r) then consequently has
the discrete form

1

h2
(c1 ui−1 j k + c2 ui j−1 k + c3 ui j k−1

+c4 ui+1 j k + c5 ui j+1 k + c6 ui j k+1 − c7 ui j k) = −fi j k
(3.38)



30 3 FUNDAMENTALS OF MULTIGRID

with precalculatable coefficients c1, . . . , c7, equivalent to equation (3.7).

A simple approach to extend a multigrid method’s capabilities to the solution of variable
coefficient differential equations is to average the fine-grid coefficients of cells that match
the same coarse-grid cell.
However, compared to a constant coefficient problem, the convergence rate can generally
be expected to be inferior, because the numerical effects of varying coefficients are the
same as those encountered with non-uniform grids, where smoothing is not equally
effective over the whole grid and the interpolation routines need to be adapted [20].

3.5 Alternative Multigrid Variants

The multigrid correction scheme used up to this point is limited to linear problems on
structured grids. Since the idea to use a multilevel hierarchy to solve a problem is too
elemental, other variants were developed to widen the range of application.

The full approximation storage scheme (FAS ) introduced by A. Brandt in 1977 [28] is
similar to the correction scheme in that it uses the same basic operators and is applicable
to µ-cycle and FMG as well.
One FAS V-cycle requires more arithmetic operations than with the correction scheme,
because the coarse system is solved for the full approximation u2h = I2h

h vh+e2h instead
of only the error e2h (algorithm 3).

This enables the treatment of problems for which the residual equation (3.21) has no
solution, i. e., nonlinear problems, with A being a nonlinear operator.
Another positive feature is the fact that every grid holds an actual approximation to the
fine grid solution, which on the one hand allows visualization of the multigrid progress

Algorithm 3 FAS V-Cycle
1: function FAS_V-Cycle(`, vh, bh)
2: if ` = `max then
3: vh := Solve(vh, bh)
4: else
5: for i := 1, npre do
6: vh := Smooth(vh, bh)
7: end for
8: v2h := Restrict(vh)
9: rh := bh −Ah vh
10: b2h := A2h v2h+ Restrict(rh)
11: v2h := FAS_V-Cycle(`+ 1, v2h, b2h)
12: e2h := v2h− Restrict(vh)
13: vh := vh+ Prolongate(e2h)
14: for i := 1, npost do
15: vh := Smooth(vh, bh)
16: end for
17: end if
18: return vh

19: end function



3.5 Alternative Multigrid Variants 31

throughout a single iteration (cf. figure 3.10; not possible when using the correction
scheme) and on the other hand is a valuable prerequisite for an adaptive grid approach.
Problems that require a high level of discretization only on a limited subset of a given
domain (e. g., because the solution varies over multiple magnitudes) can benefit from
a global coarse grid that is only refined on local patches where a high resolution is
needed. This can be implemented using the FAS method and appropriate strategies for
transferring data at fine-grid edges.
A further logical step is the development of adaptive mesh refinement methods, for
which the solution process is started on a very coarse grid that is subsequently refined
where an evaluation of the current solution indicates inflated errors [30].

The inapplicability to linear systems based on highly unstructured grids or systems
without any underlying geometric grid led to the development of algebraic multigrid
(AMG) [31, 32, 33].
This method uses multigrid principles, but is independent of the problem geometry,
as it produces coarse-grid equations and inter-grid transfer operators directly from the
system matrix A. Hence the underlying problem doesn’t have to be of geometric nature
at all.
Assuming conventional, classical, AMG, the following coarsening strategy is used: For
each line i of A, the non-zero values aij , i 6= j, are grouped into strongly and weakly in-
fluencing the solution ui, dependent on how the absolute value compares to aii. Coarse-
grid points (C-points) are then selected based on the premise that each fine-grid point
(F-point) that is not a C-point should only be strongly influenced by C-points or other
F -points that are in turn strongly influenced by at least one C-point themselves. By
avoiding C-points being strongly dependent on other C-points, this produces a subset
of the fine grid suitable to be used for further computation.
The interpolation of the error e from C- to F -points is performed using the interpolation
operator Ih2h: (

Ih2he
)
i

=


ei , if i C-point.∑

j∈Ci
ωij ej , if i F -point. (3.39)

Here, Ci is the set of C-points strongly influencing i, called coarse interpolatory set. The
interpolation weights ωij are calculated from both the aij that indicate strong influence
and weak influence.
The restriction operator is then

I2h
h =

(
Ih2h

)T
(3.40)

and the coarse-grid matrix is given by

A2h = I2h
h Ah Ih2h , (3.41)

the so-called Galerkin condition [20]. A correction scheme V-cycle can then be applied
analogously.
Algebraic multigrid is generally the most flexible multigrid method and can, once es-
tablished, be used as a black-box solver for linear systems represented by certain classes
of sparse matrices. However, the classical, geometric, multigrid methods can be imple-
mented without explicitly storing the system matrix and require less arithmetic opera-
tions per V-cycle.



32 3 FUNDAMENTALS OF MULTIGRID

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.10: 2D model problem for the FAS V-cycle: The Poisson equation with Dirichlet
boundary conditions is solved on a square with side length a (discretized to 129× 129 grid
points) for the potential Φ(x, y) = sin

(
9
5π

x
a

)
+ sin

(
2π y

a

)
. Starting with a zero guess (a),

notable changes emerge only after a couple restriction steps, when smoothing affects a
wider range. On grid level 3 (17 × 17 grid points), the current approximation before (b)
and after (c) smoothing are clearly distinguishable and further progress to grid level 4 (d)
improves it even more. The exact solution (e) on level 5 (5× 5 grid points) is then passed
on to the finer grids, where the approximation is smoothed out (f, g, h).



3.6 Complexity 33

3.6 Complexity

Following Briggs et al. [20], the computational cost to calculate new values for the finest
grid (one smoothing sweep) is assumed to be one work unit (WU). The total work done
on the grid incorporates pre- and post-smoothing ((npre+npost)WU) and restriction and
interpolation (both amounting a relatively fixed fraction χ of one WU) and is therefore
proportional to a work unit. Accordingly, the work done on the first coarsened grid is
more or less exactly 1/2d times the work done on the finest grid, because the number
of grid points is reduced by this fraction.
To simplify the following considerations, npre and npost are set to 1 and χ is neglected.
The total computation cost for a V-cycle on ` grids is then 2 (1 + 2-d + 2-2d + · · · +
2-(l−1)d)WU, because the coarsest grid is chosen to be small enough for the solution
process to be negligible in this consideration. No matter how large the finest grid is
and how many grid levels are therefore used, this series doesn’t exceed an upper bound
given by the geometric series:

∞∑
i=0

2-i d =
1

1− 2-d
=


2 for d = 1.

4

3
for d = 2.

8

7
for d = 3.

(3.42)

The computation cost of a V-cycle is therefore a constant multiplicative of a work unit
and scales linearly with the system size n.
Similarly, a simple full multigrid cycle with ν = 1 takes only up to 2 (1 − 2-d)-1 (1 +
2-d + 2-2d + · · ·+ 2-(l−1)d)WU < 2 (1− 2-d)-2 WU for completion, since a V-cycle started
on a coarse grid costs 2-d of a V-cycle on the next finer grid, and hence the same O(n)
scaling behavior is achieved for a cycle.

However, one cycle is not generally sufficient for a converged solution, so further con-
siderations are needed.
Convergence theory shows that an appropriately set up V-cycle reduces the error by a
convergence factor bound γ < 1, that is independent of the mesh size h [20]. To reduce
the error of a zero initial guess (O(1)) on a grid of size n = Nd to the order of the
discretization error (O(h2) = O(N -2)),

ν = O(logN) (3.43)

iterations are needed, since
γν = O(N2) (3.44)

needs to be satisfied.
Using the V-cycle iteratively therefore results in computation costs of O(n logN) arith-
metic operations to reach convergence.

FMG on the other hand has the potential to efficiently reduce every error component
throughout the progression from the coarsest to the finest grid. It can be shown that
for sufficiently small γ, only O(1) iterations of the last V-cycles (meaning those on the
finest grid) are needed, which results in O(n) costs [20].
In other words, the initial guess FMG provides for the finest grid enables optimal
behavior of the algorithm.



34 3 FUNDAMENTALS OF MULTIGRID

Figure 3.11: Coarsening of a two-dimensional square sub-grid. The ratio of inner to outer
grid points decreases.

3.7 Parallelizability

For solving partial differential equations on spatially discretized domains, the domain
partitioning method is the natural choice for parallelization, especially for iterative
solvers. Assuming MPI utilization, the grid is partitioned into subsets of preferably
equal size, each of which is assigned to an individual MPI process. Every process can
then perform calculations on its local grid, but needs to communicate with the processes
holding the neighboring subdomains to exchange boundary data. Since MPI allows non-
blocking communication, for a single iteration, a properly adjusted solver first calculates
the values of the (inner) grid points that don’t depend on data held by other processes,
while concurrently exchanging information with its neighbors, before the outer grid
points can be swept through. Nonetheless, communication is a major performance
bottleneck, since further parallelization of a given problem only increases the amount
of boundary data that needs to be transferred. It’s therefore necessary to minimize the
surface area of the individual subdomains to maximize the ratio of computation and
communication, i e., to preferably use square (2D) or cubic (3D) subdomains for their
surface-to-volume ratio.
For the optimal case, the time needed to send and receive the boundary values equals the
time needed to calculate new values for the inner grid points. This, of course, depends
on the specific hardware, i. e., the network connection (latency and bandwidth), the
CPU (computational power and cache size), and the random access memory (latency
and bandwidth).

For the multigrid methods, this approach is still valid, but leads to some drawbacks.
As the coarsening of the grids proceeds along the grid hierarchy, the ratio of inner to
outer grid points decreases (cf. figure 3.11) and thus communication time increasingly
dominates overall runtime, with latency becoming relevant. In practice, high perfor-
mance requirements arise for the network connection, and perfect parallelization, where
a program running on Np cores is Np times faster than when running on one core, is
hardly ever achievable.
Nevertheless, it is a method without any considerable alternatives and can be optimized
greatly [34].

However, multigrid variants that shift the computational load towards the coarser grids,
i. e., the W-cycle, become less desirable and are only applied if there’s a very clear
advantage over multiple V-cycles in the serial case.



3.7 Parallelizability 35

3.7.1 Order-Independent Smoothing

For obvious reasons, the domain partitioning method doesn’t fit well with lexicographi-
cally ordered Gauss-Seidel smoothing. Other methods, like weighted Jacobi or red-black
Gauss-Seidel are better suited, since the former needs updated boundary values only
once at the beginning of an iteration and the latter enables processing the boundary
values at an arbitrary point throughout a sweep.
One iteration of the parallel red-black Gauss-Seidel method involves updating the inner
red grid points, while the black boundary values are exchanged with the neighboring
processes. This enables calculating the new values for the outer red points, which then
can be exchanged while the inner black points are updated. Afterwards, the update
of the outer black grid points can proceed, using the previously received red boundary
values.
By this, the total amount of transferred data is the same as with the Jacobi method,
although an additional communication step is used.

3.7.2 U-Cycle vs. Coarse Grid Agglomeration

By coarsening the grids as much as possible, as it’s preferable with serial computation,
parallel multigrid solvers can experience a huge performance cut because communica-
tion eventually cannot be hidden completely, so the calculation process is interrupted
by waiting times. This can actually deteriorate the parallel performance so much that
additional cores only worsen the performance, or even that the program runs faster on
a single core (without any communication) than in a parallel environment.
This is particularly the case if the number of processes approaches or even surpasses
the total number of grid points, which is within easy reach considering massive paral-
lelization and very coarse grids.

There are two strategies to overcome the issue: First, the coarsest grid can be chosen
to be significantly finer than usual to restrict calculations to the few grid levels where
parallelization is effective. Since this approach effectively cuts off the tip of the “V” in
graphical representations like figure 3.4, it is called U-cycle. The coarse-grid solution
process then takes place on a grid of non-negligible size, so the solver’s overall perfor-
mance is again influenced by the choice of the direct or iterative solver used on the
coarsest grid. Although this affects the optimal runtime complexity in the serial case,
it can still be used to achieve great parallel scaling behavior [35].
Second, the coarser grids can be completely transferred to a subset of the involved pro-
cesses, so that the problem can be treated by an efficient parallel environment (coarse
grid agglomeration). By this means, it’s possible to process every coarse grid on the
number of processes that provides the fastest computation. However, this is generally
not the best approach, because in that case, the data of whole grids needs to be trans-
ferred over the network, which takes a significant amount of time itself. It’s therefore
advisable to reduce the number of involved processes only if the benefit of better on-grid
performance clearly outweighs the additional communication costs.

It’s noteworthy that while the U-cycle aims for better aggregate Mflop/s rates, the
method of coarse grid agglomeration accepts temporarily idle cores to achieve faster
runtime.



36 3 FUNDAMENTALS OF MULTIGRID

3.8 Alternative Linear Solvers

Multigrid methods, if applicable, are generally considered to be the fastest algorithms
for solving large sparse systems of equations, but often fail due to limited capabilities
in smoothing efficiently or projecting the problem to coarser grids. Additionally, a
multilevel method for a given problem might not even be available. For these reasons,
an optimal and effective multigrid solver can’t be used in many practical cases [36].
Under such circumstances, another class of algorithms is generally used: the Krylov
subspace methods [22, 37, 38, 39, 40].
These methods utilize that the solution u of the linear system Au = b of size n (A
being nonsingular) is an element of a Krylov subspace

Km(A, b) = span
{
b, A b, A2b, . . . , Am−1b

}
(3.45)

of order m ≤ n (see, e. g., [22] for the proof) and can further be written as

u = p(A) b , (3.46)

where p is a polynomial of a degree not exceeding n - 1.
A Krylov subspace method approaches u iteratively by calculating an approximation
um ∈ Km(A, b) on iteration m that fulfils a certain condition upon the resultant resid-
ual rm = b − Aum. The subsequent iteration then builds upon this and constructs
a new approximation in the Krylov subspace of order m+1. Using exact arithmetic,
this ultimately leads to the exact solution after a maximum of n iterations, although
this is hardly possible for practical cases. The process is usually sensitive regarding
rounding errors, so only a limited, but generally sufficient accuracy can be reached after
a comparably small number of iterations.
It’s furthermore possible to adopt an initial guess u0 6= 0. The solution is then sought
on the affine subspace u0 +Km(A, r0).
A valuable property of the Krylov methods is that the resulting algorithms’ math-
ematically most complex operations are simple matrix-vector multiplications, mostly
involving only A.

The imposed condition on the residual rm is usually formulated as an orthogonal pro-
jection,

rm = b−Aum ⊥ Lm , (3.47)

with Lm being another, appropriate, subspace of dimension m. The various different
Krylov subspace methods arise from the choice of Lm (for the most generally used and
well known methods, Lm is either Km or AKm) and the utilization of special properties
of the matrix A that simplify the construction of orthogonal vectors. A good choice of
Lm enables finding an accurate approximation rather quickly, after m� n iterations.

A prime example here is the conjugate gradient method (CG) [41], which uses the proper-
ties of symmetric positive definite matrices to construct a set of mutually A-conjugate
vectors P = {p0, . . . ,pn-1} that form a basis for IRn, so that the solution u can be
expressed as

u = u0 +

n−1∑
i=0

αi pi . (3.48)



3.8 Alternative Linear Solvers 37

It can be shown that span {P } = Km(A, r0).
The method is based on the observation that for positive definite matrices A, solving
the system Au = b for u is equivalent to minimizing the function

f(u) =
1

2
uTAu− bTu . (3.49)

This is done by a successive one-dimensional minimization,

um+1 = um + αm pm , (3.50)

where αm is chosen such that it satisfies

f(um + αm pm) = min
α∈IR

f(um + αpm) , (3.51)

namely

αm =
rTm pm
pTmApm

. (3.52)

By requiring the vectors of P to be mutually A-conjugate, rTm+1 pj = 0 for j =
0, 1, . . . ,m can be derived, which in turn enables constructing them via

pm+1 := rm+1 +

m∑
i=0

βm,i pi (3.53)

with

βm,i = −rTm+1Api
pTi Api

, (3.54)

starting from
p0 := −∇f(u0) = r0 . (3.55)

The mutual A-conjugacy further gives rTm+1 rj = 0, j = 0, 1, . . . ,m, which leads to
βm,i = 0, i = 0, 1, . . . ,m− 1 and confirms Lm = Km.
Some final transformations then simplify the coefficients αm and βm to

αm =
rTm rm
pTmApm

and (3.56)

βm =
rTm+1rm+1

rTmrm
. (3.57)

A more detailed derivation of the conjugate gradient method can be found, among oth-
ers, in [22].
The resulting algorithm features relatively few operations per iteration and is exemplar-
ily specified in algorithm 4.

A variety of other Krylov subspace methods are based on the conjugate gradient method
and aim to generalize its concept of using conjugate vectors for systems that are not
necessarily positive definite or symmetric. This is generally achieved at the expanse of
the convergence rate and increases the number of computational steps per iteration, so
being able to work with a symmetric positive definite matrix is a great advantage.
The biconjugate gradient method (BiCG) utilizes a second, related, Krylov subspace,
Km(AT , b̃), to replace the orthogonal sequence of residuals rm by two mutually orthog-
onal sequences, so that r̃Ti r̃j = 0 and p̃Ti A p̃j = 0 for i 6= j. The method is applicable



38 3 FUNDAMENTALS OF MULTIGRID

Algorithm 4 Conjugate Gradient Method
1: function CG(A, u0, b)
2: r0 := b−Au0

3: p0 := r0

4: for m := 0, 1, . . . , n do
5: αm := rTm rm

pTmApm
6: um+1 := um + αm pm
7: rm+1 := rm − αmApm
8: if Converged(rm) then
9: return um+1

10: end if
11: βm :=

rTm+1rm+1

rTmrm
12: pm+1 := rm+1 + βm pm
13: end for
14: end function

to general square (non-symmetric) matrices, but is considered to be quite unstable. For
improved stability, the biconjugate gradient stabilized method (BiCG-STAB) is used,
which introduces additional efforts to minimize the residuals.
By imposing the condition rTi A rj = 0 for i 6= j, i. e., that the residuals are not only
mutually orthogonal, but also A-conjugated, the conjugate residual method is found,
which is very similar to the conjugate gradient method both in algorithm and conver-
gence properties. The additional computational costs allow for the method to be used
on symmetric (indefinite) matrices [37].

Another family of Krylov methods is spawned by the approach of minimizing the norm
of the residual r on a Krylov subspace at every step of the iterative process. The most
prominent example here is the generalized minimal residual method (GMRES) [42] for
general (unsymmetric) matrices.
Here, the Arnoldi iteration [43] is used to form an orthonormal basis V = {v1, . . . ,vm}
of Km, so that the approximation um can be written as

um = u0 + Vm ym , (3.58)

where the n ×m matrix Vm is defined by the columns v1, . . . ,vm and the coefficients
ym form a vector of dimension m. In order to determine the components of ym, the
transformation

‖rm‖ = ‖b−Aum‖ = ‖‖r0‖ e1 −Hm ym‖ (3.59)

is used (derivation, e. g., in [22]), so the goal is reformulated as minimizing the right-
handed side expression, which is a linear least squares problem. The coefficients of
the (m+1) × m upper Hessenberg matrix Hm are given by the Arnoldi iteration and
e1 = (1, 0, . . . , 0)T ∈ IRm+1 .
The computational costs of the GMRES method increase with every iteration by an
additional scalar product and every basis vector has to be kept available. Hence, there’s
a practical limit on the number of feasible iterations, which encourages using a restarted
version of the algorithm, where the still insufficient approximation um is used as the
initial guess of a new GMRES run.
Other minimal residual methods are tailored for either special matrices (MINRES [44])
or increased robustness (deflated GMRES [45]).



3.8 Alternative Linear Solvers 39

An in-depth convergence analysis of the Krylov subspace methods (e. g., [22, 37, 38])
leads to the general conclusion that their convergence rate strongly depends on the
condition number κ of the system matrix A. I. e., the rate at which one iteration
improves the approximation (minimizes the error) compared to the respective previous
one is a decreasing function of the condition number

κ(A) =

∣∣∣∣λmax(A)

λmin(A)

∣∣∣∣ ≥ 1 (3.60)

(for normal matrices; λmax and λmin are the extreme eigenvalues of A). This implies
that a small condition number (close to one) is a preferable property of A.
However, since A defines the linear system, decreasing the condition number to im-
prove convergence is only achievable by reformulating the whole problem. This is done
by applying the Krylov subspace method of choice to a preconditioned system of the
following forms:

M -1
L Au = M -1

L b (3.61)
AM -1

R ũ = b , u = M -1
R ũ (3.62)

M -1
L AM

-1
R ũ = M -1

L b , u = M -1
R ũ . (3.63)

Solving these systems is referred to as left, right, and symmetric preconditioning, re-
spectively.
Upon inclusion in a Krylov method’s algorithm, the operations M -1

L A, AM
-1
R , and

M -1
L AM

-1
R are almost never performed explicitly. Instead, M -1

L and M -1
R are applied to

a given vector and the regular matrices ML and MR don’t actually need to be known
at all. In fact, only the effects of applying M -1

L and M -1
R to a vector, i. e., the resulting

vector, need to be known, so the preconditioner can in principle be implemented in a
completely matrix-free fashion.
Once the preconditioner is established, the unpreconditioned algorithm needs to be
edited only slightly. As an example, algorithm 5 shows the (left) preconditioned conju-
gate gradient method.
However, for such Krylov methods that require A to have special properties, e. g., be-
ing symmetric positive definite, the preconditioner matrix usually must have the same
properties.

To reduce the condition number, a preconditioner effectively approximates A-1 to a
practical extent, i. e., within reasonable additional efforts. It is therefore often based on
a method that itself can be used to solve the linear system, but is altered to only yield
a rough approximation of the exact solution. Thus, for example, the LU decomposition
(a derivative of Gaussian elimination and therefore a direct method) that factorizes A
into the product of a lower and an upper triangular Matrix L and U so that the linear
system can be solved by simple forward and backward substitution, is reduced to an
incomplete LU factorization, where only a limited number of matrix elements (usually
those matching the sparsity pattern of A) are calculated. This, of course, results in
an inaccurate solution for itself, but can enable a Krylov subspace method to converge
within a greatly reduced number of iterations.
It is furthermore possible to utilize the stationary iterative solvers described in subsec-
tion 3.1.2 and even multigrid methods as preconditioners by imposing an insufficient
tolerance.
Actually, good iterative convergence up to an insufficient limit is often observed for



40 3 FUNDAMENTALS OF MULTIGRID

Algorithm 5 Preconditioned Conjugate Gradient Method
1: function PCG(A, u0, b)
2: r0 := b−Au0

3: p0 := M -1
L r0

4: z0 := p0

5: for m := 0, 1, . . . , n do
6: αm := rTm zm

pTmApm
7: um+1 := um + αm pm
8: rm+1 := rm − αmApm
9: if Converged(rm) then
10: return um+1

11: end if
12: zm+1 := M -1

L rm+1

13: βm :=
rTm+1zm+1

rTmzm
14: pm+1 := zm+1 + βm pm
15: end for
16: end function

multigrid cycles. Therefore, a multigrid method that fails to converge on its own might
nevertheless be an excellent preconditioner. In fact, for solving elliptic PDEs like the
Poisson equation, multigrid methods are almost always the best choice.

Which combination of Krylov subspace method and preconditioner is going to perform
the best for a given problem is nevertheless a complicated matter, as theoretical pre-
dictions are rare and not necessarily reliable [37].



Chapter 4

Development of a Parallel Multigrid
Field Solver

For the parallel field solver required by PlasmaPIC, a three-dimensional geometric multi-
grid solver was written from scratch. This chapter presents the general properties of the
implemented algorithm and emphasizes the customizations made to fit in to the pre-set
particle-in-cell environment.

4.1 Challenges

While a lot of the basic settings, like grid size and domain partitioning, are predefined
by the PlasmaPIC framework, they also need to work flawlessly on the solver. It’s clear
that the process on which the particle operations for a certain subdomain are processed
and where the respective charge array is calculated is best suited to represent that sub-
grid in the field solver as well. Hence, the assignment of a process’s location and of the
neighboring processes is in the range of responsibilities of PlasmaPIC.
The size of the global grid is dictated by the simulated problem and the discretization
necessary for the expected plasma density. The field solver therefore needs to be able
to handle any given grid, which is not a straightforward transposition with multigrid,
since this affects the coarsening strategy.

Another critical obstacle is the geometrical representation of arbitrarily shaped objects
in PlasmaPIC either as irregular (Dirichlet) boundary conditions on the grid or as cells
with a relative dielectric permittivity larger than one. By applying the standard meth-
ods described in chapter 3, an object’s shape is not automatically projected onto the
coarser grids and without a proper strategy it can vanish completely due to insufficient
resolution. This generally deteriorates convergence behavior up to the point of actual
divergence.

In addition, the performance of a multigrid solver in a particle-in-cell environment can’t
be expected to reach that of a variant designed to solve a continuous problem where
the right-handed side vector b is given by a smooth forcing function f(x, y, z). The
inevitable fluctuations in the charge distribution, caused by weighting a finite number
of particles to the grid, force the potential to be oscillatory as well, hence the attempts
to smooth its approximation during a V-cycle are obstructed [46].

41



42 4 DEVELOPMENT OF A PARALLEL MULTIGRID SOLVER

The exact solution should still follow a rough course that can be described by a smooth
approximation and that is mappable to the coarser grids, but textbook efficiency is not
necessarily within the realm of possibility.

All of this needs to be implemented with the capability of massive parallelization. Since
the field solver is otherwise a limiting factor, proper parallel scaling must be achieved.

4.2 Adjustments to the Standard Algorithm

From here on, the finest grid in the hierarchy will be identified by ` = 0. Any coarser
grid up to ` = `max > 0 then has the regular mesh size

h` = 2` · h0 . (4.1)

For simplification, the following considerations are mostly based on a one-dimensional
grid, but can easily be expanded to two or three dimensions.

4.2.1 Arbitrary Grid Sizes

Building a hierarchy of refining (vertex-centered) grids is comparably easy when starting
from an existing coarse grid, because the number of points in every direction on the
respective finer grid can then be chosen to be one less then double the number of grid
points on the parental coarse grid:

Nfine = 2 ·Ncoarse − 1 . (4.2)

Whereas coarsening a given fine grid is delicate due to the fact that by far not every
number Nfine has an associated (natural) number Ncoarse that follows

Ncoarse =
(Nfine + 1)

2
. (4.3)

Since this limits the coarsening process to grid sizes that follow the sequence Ncoarsest ·
(2n−1), where the number of grid points on every level above the coarsest grid is divid-
able by 2n−1 (which is a common prerequisite in the pertinent literature), the standard
(vertex-centered) coarsening is not an adequate approach to deal with arbitrarily sized
grids.
Since there’s no single right way to solve this problem (a projection of a fine grid to a
coarse grid and the inverse operation need to exist; neither method nor grid size is set
in stone, although the usual doubling in mesh size is proven to be a robust concept),
even a very simple approach can be expected to be sufficient.
Considering this, the standard strategy for cell-centered multigrid methods is promis-
ing. Here, two (1D), four (2D) or eight (3D) cells are directly merged by averaging the
respective grid values. The center (and therefore the grid point’s position) of the new,
larger, cell then doesn’t align with the original fine grid, but the mesh size doubles nev-
ertheless. The prolongation of coarse-grid values back to the fine grid then consequently
is plain linear (1D) bilinear (2D) or trilinear (3D) interpolation (cf. fig 4.1).

Cell-centered coarsening relies on every grid size being divisible by two, which again is
a significant limitation.



4.2 Adjustments to the Standard Algorithm 43

Figure 4.1: One-dimensional restriction (top) and prolongation (bottom) for cell-centered
coarsening.

However, alternating both coarsening strategies is entirely possible, so that vertex-
centered coarsening is used if the number of grid points is odd and cell-centered coars-
ening otherwise [47, 48].
In order to preserve the position of the domain boundaries, a minor modification to
cell-centered coarsening has to be made: The outermost points on the left and right
side, respectively, are kept unchanged and only the inner grid points are merged. As
a consequence, the distance between the outermost grid points and their neighbors in
inward direction on the respective coarse grid is smaller than the regular mesh size h`,
which has to be accounted for on all grid operations (restriction, prolongation, smooth-
ing, solving on coarsest grid). A simple, one-dimensional, example for this, including
alternating coarsening concepts, is given in figure 4.2.

By using this alternation strategy, the number of grid points N `
gp on grid level ` > 0 is

given by

N `
gp = ceil

(
N0

gp − 1

2`
+ 1

)
, (4.4)

which coincides with successively halving even numbers and using equation (4.3) on odd
numbers.
The irregular distance d`irr, ` > 0, between the two outermost grid points on each side,
respectively, is given by

h0 h0

h1
3
4h1

7
8h2 h2

11
16h3

11
16h3

Figure 4.2: Example of a one-dimensional grid hierarchy with alternating coarsening
strategy. If the number of grid points is even, cell-centered coarsening is used instead of
vertex-centered coarsening. Between the first two and the last two grid points, respectively,
the distance is smaller than the regular mesh size, which doubles on every successive grid.



44 4 DEVELOPMENT OF A PARALLEL MULTIGRID SOLVER

Figure 4.3: Possible combinations of how a fine (black) and a coarse (blue) grid can be
aligned in 2D when using the mixed coarsening strategy. Top left: 9 × 9 → 5 × 5 grid
points. Top right: 10 × 9 → 6 × 5 grid points. Bottom left: 9 × 10 → 5 × 6 grid points.
Bottom right: 10 × 10 → 6 × 6 grid points. Note that the irregular distances between
coarse grid points can deviate from the depicted if the fine grid already has them.

d`irr = h` ·



1 , if ` = 0.

d`−1
irr + 1

2
, if ` > 0 and N `−1

gp odd.

d`−1
irr + 1

2

2
, if ` > 0 and N `−1

gp even.

(4.5)

In the two- and three-dimensional case, a fine grid can consist of an even number of
grid points in one direction and an odd number in another one, thus both coarsening
schemes have to be mixed. This increases the number of possibilities of how the fine and
the coarse grid points align and affects both restriction and prolongation. A coarse-grid
point can then be located directly on a fine-grid point, or in between two, four, or eight
(only in 3D). Figure 4.3 illustrated this for the two-dimensional case.

The Restriction Scheme

The algebraic weighting described in section 3.2 can be derived the following way: The
coarse-grid point “touches” eight fine-grid cells, each of which with eight vertices. The
associated values of these eight fine-grid points are used to find an average value for the
respective cell. Further averaging of these eight new cell-centered values then yields the



4.2 Adjustments to the Standard Algorithm 45

1
8

1
32

1
8

1
16

1
16

1
16

1
16

1
16

1
16

1
32

1
16

1
16

1
32

1
32

1
32

1
32

1
32

1
32

1
8

1
16

1
8

1
8

1
16

1
16

1
16

1
8

1
16

1
16

1
16

1
16

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

Figure 4.4: Variations of how a coarse-grid point can lie within the fine grid. In each
case, the weighting factors for restriction are given.

coarse-grid value. The various weighting factors are obtained by combining these two
steps and merging multiple occurrences.
When using the mixed coarsening approach, the coarse-grid point may "touch" fewer
fine-grid cells. In fact, there are eight different ways of how the fine and the coarse grid
can align (relevant examples are given in figure 4.4). By using the same two steps of
averaging on only the connected cells, the unique weighting factors for each variant can
be determined.
Furthermore, this procedure offers the possibility to adequately handle the restriction at
irregularities in mesh size, which occurs at Neumann domain boundaries (cf. figure 4.2).
Here, the cell-centered values obtained after the first step are calculated the same way,
but are then weighted based on their distance to the coarse-grid point.

The Prolongation Scheme

Similarly to the restriction scheme, the increased number of possibilities of how a pair
of fine and coarse grids can align necessitates a modification of the interpolation from
the coarse to the fine grid.
The significant change is that a fine-grid point within a coarse-grid cell is now no longer
necessarily centered between two, four, or eight coarse-grid points, but can be located
anywhere reachable by shifts of quarter the coarse mesh size in any spatial direction.
Consequently, the weighting factors for linear, bilinear, and trilinear interpolation change
according to the respective distances. An example is given in figure 4.5.
Furthermore, irregular distances can can now easily be taken into account.



46 4 DEVELOPMENT OF A PARALLEL MULTIGRID SOLVER

9
64

3
64

3
64 1

64

27
64

9
64

9
64

3
64

Figure 4.5: Example of how trilinear interpolation is performed in the case of cell-centered
coarsening. Other variations including linear and bilinear interpolation to fine-grid points
on the edges or sides of the coarse-grid cell are possible, if the fine grid has an odd number
of grid points in at least one direction.

The Poisson Equation

The introduction of irregular distances between grid points affects the discretization of
partial differential equations in general and therefore of Poisson’s equation as well.
Since for equation (3.7) to be applicable, a constant distance h is needed, so a more
general formulation has to be used. Assuming the point ui−1 is at distance p · h from
ui and ui+1 is at distance q · h (p, q < 1), the required expression can be derived using
central differences for both derivatives:

(∆u)i =

ui+1−ui
q h − ui−ui−1

p h
1
2 (p+ q)h

(4.6)

=
1

h2

[
2

p (p+ q)
ui−1 −

2

p q
ui +

2

q (p+ q)
ui+1

]
. (4.7)

The full equivalent to equation (3.7) then is

(∆u)ijk =
1

h2

[
2ui-1jk

px (px + qx)
+

2uij-1k
py (py + qy)

+
2uijk-1

pz (pz + qz)

+
2ui+1jk

qx (px + qx)
+

2uij+1k

qy (py + qy)
+

2uijk+1

qz (pz + qz)

−
(

2

px qx
+

2

py qy
+

2

pz qz

)
uijk

]
= −fijk ,

(4.8)



4.2 Adjustments to the Standard Algorithm 47

which leads to

uijk :=

(
1

px qx
+

1

py qy
+

1

pz qz

)-1

·
(

ui-1jk
px (px + qx)

+
uij-1k

py (py + qy)

+
uijk-1

pz (pz + qz)
+

ui+1jk

qx (px + qx)
+

uij+1k

qy (py + qy)
+

uijk+1

qz (pz + qz)

−1

2
h2
` fijk

) (4.9)

for the Gauss-Seidel method. The calculation of the residual and an SOR iteration is
done analogously.

The same approach as for equation (4.8) can be used to include variable coefficients.
Compared to equation (3.38), the coefficients c1, . . . , c7 are firstly calculated by weighted
average and secondly multiplied by those in the above equation. Overall, the coefficients
therefore remain calculatable at initialization.

4.2.2 Arbitrary Geometries

Introducing irregular Dirichlet boundary conditions in the form of fixed-value grid points
is a straightforward approach for the standard iterative solvers such as SOR, as they can
be implemented by simply not calculating new values for the respective grid points. For
a geometric multigrid solver on the other hand, the existence of a hierarchy of coarser
grids complicates the matter.

Three approaches to handle irregular boundaries shall be discussed here in the context
of a simple model problem: Two opposing sides of a grid consisting of 64 × 64 × 64
grid points define a plate capacitor at constant voltage (0V and 100V). The remaining
domain boundaries are defined as homogeneous Neumann. At the center of the grid,
a spherical charge distribution of -1mC/m3, optionally enclosed by a spherical shell of
variable thickness on a fixed potential of 50V, is located.

First, a multigrid method where the irregular boundaries (the spherical shell in the
model problem) are only accounted for on the finest grid is considered. Here, the
smoothing process is limited to the non-boundary points and the residual is assumed
to be zero for the boundaries. The restriction process is then applied to all residual
values, independent on whether a point defines a boundary or not. Upon prolongation
from the coarse grids, corrections are only added to non-boundary points.
The approach is then tested without a shell, with a thin shell, and with a thicker shell.
Figure 4.7(a) shows the development of the Euclidean norm of the residual values over 20
V-cycles with two pre- and two post-smoothing steps, respectively. It can generally be
expected that the lower the value of ‖r‖ is, the better the approximation to the exact
solution. Without irregular boundaries, the residual norm decreases rapidly and the
approximation even approaches machine precision (recognizable by the eventual bend
in the curve). With boundaries, however, the solution process diverges, independent of
the shell’s thickness.

For the second approach, coarse grid points are marked as boundary points if their re-
spective position in the finest grid coincides with one. For purely vertex-based coarsen-
ing, this is easily done by comparing each coarse-grid point with the respective matching
point on the finest grid. If cell-centered coarsening is used, which is the case for 64 grid



48 4 DEVELOPMENT OF A PARALLEL MULTIGRID SOLVER

�
��
��
��
��
��
��
��
	�

�
���

�

��

��

��

��

���

���

�
��
��
��
��
��
��
��
	�

�
���

�
��
��
��
��
��
��
��
	�

�
���

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.6: Simple model Poisson problem to demonstrate the necessity and effective-
ness of the modifications to the geometric multigrid method presented here. Between two
capacitor plates, a spherical homogeneous charge distribution is either enclosed within a
thick or a thin shell (defined by Dirichlet boundary points), or not further influenced. (a-c)
Cross-sectional view of the exact solution for the electric potential for the three cases. (d-f)
Approximate solution after one V-cycle of a geometric multigrid approach that only maps
the irregular boundaries to the coarser grids, applied to a zero initial guess. (g-i) Same as
(d-e), but the system size is increased from 643 to 653. (j-l) Approximate solution after
one V-cycle of the approach described here.



4.2 Adjustments to the Standard Algorithm 49

points per direction, the coarse-grid points don’t necessarily align with the finest grid.
Here, the fine-grid points that surround a coarse-grid point’s position in the domain
need to be considered.
Since the point density decreases with every additional grid level, this approach doesn’t
completely conserve the shape of the boundaries over the grid hierarchy.
As shown in figure 4.7(c), the residual norm decreases steadily, but the gradient of the
curve depends strongly on the irregular boundaries. The convergence rate is better for
the case where a thick shell is used, which can be explained by a better representation
of the boundaries on the coarser grids. As expected, the results are identical to the first
approach with no shell.
The convergence rate of this approach is further dependent on the specific coarsening
scheme. With 64 × 64 × 64 grid points, cell-centered coarsening is used on every grid
level. By increasing the system size to 65×65×65 grid points, vertex-based coarsening
is enforced. In this case, the reduction of the residual norm, shown in figure 4.7(d), is
generally better, but still dependent on the thickness of the shell.
A closer investigation of the approximate solution after one V-cycle further reveals that
the charges inside the shell are not completely shielded from the outside during the
solution process, which is recognizable by a short drop of the potential at the outer
surface of the shell (figs. 4.6(d,e,g,h)).

An algebraic multigrid solver could principally be used to circumvent the problem of
handling irregular boundaries. However, by using the coarsening strategy described in
section 3.5, every boundary point would be transferred to every coarse grid, because its
value in the solution vector is not influenced by any other grid points. Although resolv-
ing this issue is feasible by using a customized algorithm, the additional computational
effort only adds to the list of disadvantages compared to geometric multigrid meth-
ods, along with generally poor parallel performance. Therefore, a further sophisticated
strategy is needed to adjust geometric multigrid to this issue.

In a cell-centered multigrid approach, McAdams et al. [49] set whole cells, defined by
eight vertices, as boundaries and pass this property to a cell on a coarser grid if any
of its eight parental cells is a boundary. In iteratively called V-Cycles, the arising ge-
ometrical discrepancies lead to highly oscillatory or divergent behavior that can only
be overcome by massive additional smoothing along the boundaries, thus devaluing the
approach as a pure solver, limiting it to being used as a preconditioner.
For their adaptive mesh refinement solver, implemented as part of a fluid dynamics code
for astrophysical applications, Guillet et al. [50] reconstruct the fine-grid boundaries by
assigning a mask value m, −1 ≤ m ≤ 1, to the cell-centered grid points. In this con-
figuration, the boundary surface is defined by the cell faces, so a point’s value of m is
either −1 (boundary) or +1 (non-boundary) on the finest grid. On the coarser grids, m
is averaged from the eight parental grid points; a value m ≤ 0 indicates a boundary and
m > 0 otherwise. If a point is then part of a boundary, its neighboring non-boundary
points use its m value to determine the actual boundary position and use the second
order boundary reconstruction by Gibou et al. [51] to calculate an individual boundary
value via linear extrapolation.
Here again, small and thin structures may not appear on the coarse grids, because aver-
aging evens out the values of m, making them overall positive. On complex geometries,
this results in divergence, which the authors propose to overcome by enforcing boundary
conditions to coarse points that mark a local minimum in the distribution of m, which
then, however, negatively affects the convergence rate.



50 4 DEVELOPMENT OF A PARALLEL MULTIGRID SOLVER

� � � � � �� �� �� �� �� ��
����

���

���

���

����

����

����

����

����

�����
���	�����

||�
��

||

���������

�	�
�������
�	��������
���������

� � � � � �� �� �� �� �� ��
����

���

���

���

����

����

����

����

����

�����
���	�����

||�
��

||

���������

�	�
�������
�	��������
���������

� � � � � �� �� �� �� �� ��
����

����

���

���

���

���

���

���� �����
���	�����

||�
��

||

���������

�	�
�������
�	��������
���������

� � � � � �� �� �� �� �� ��
����

����

���

���

���

���

���

���� �����
���	�����

||�
��

||

���������

�	�
�������
�	��������
���������

� � � � � �� �� �� �� �� ��
����

����

���

���

���

���

���

����

||�
��

||

���������

�	�
�������
�	��������
���������

�����
���	�����

� � � � � �� �� �� �� �� ��
����

����

���

���

���

���

���

����

||�
��

||

���������

�	�
�������
�	��������
���������

�����
���	�����

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Course of the residual norm over 20 V-cycle iterations on the model problems
for the three approaches. (a) First approach (643 grid points). (b) First approach (653 grid
points). (c) Second approach (643 grid points). (d) Second approach (653 grid points). (e)
Third and final approach (643 grid points). (f) Third approach (653 grid points).

Many other approaches utilize the finite volume method [52, 53, 54, 55, 56]. Here, the
discrete system representing the respective partial differential equation is derived by
evaluating fluxes through the surface of finite volumes (cells) enclosing each grid point.
For example, the Poisson equation is first transformed by applying a volume integral,∫

cell
∇2u(r) dV = −

∫
cell

f(r) dV , (4.10)



4.2 Adjustments to the Standard Algorithm 51

which is then converted to a surface integral using the divergence theorem:∫
S
∇u(r)n dS = −

∫
cell

f(r) dV . (4.11)

On a Cartesian grid with mesh size h, equation (3.7) follows if

(∇u)ijk =
ui-1jk − 2uijk + ui+1jk

2h
ei +

uij-1k − 2uijk + uij+1k

2h
ej

+
uijk-1 − 2uijk + uijk+1

2h
ek

(4.12)

is used. Along with cell-centered multigrid, this formalism allows for irregular bound-
aries to be evaluated on the coarse grids by treating them as additional interfaces that
restrict the cell volume if they cut through a coarse-grid cell.
While this can be used to perfectly conserve the shape of an embedded boundary, it
also introduces a lot of challenges. If the boundary’s surface is not smooth, e. g., be-
cause it is aligned with the finest grid (which is the case in PlasmaPIC), evaluating the
passing fluxes can become quite complex. Additionally, the grid point may no longer
be centered in the considered volume, which invalidates equation (4.12), or be located
outside of it.

In the context of this work, a different approach, the third one discussed here, is cho-
sen that similarly aims to reconstruct the exact shape of boundaries, but with finite
differences. First, like for the second approach, if the coarse-grid points are spatially
located in the same position as points on the finest grid, which is only the case if the
number of grid points on the finest grid is odd in every direction, one is marked as
a boundary point if (and only if) the matching point is already marked as such. If
the coarse points are displaced relative to the finest grid, this is done if all of the two,
four, or eight surrounding fine-grid points are boundaries. This prevents the boundaries
from becoming increasingly dominant along the different grid levels and maximizes the
number of non-boundary points.
Second, the use of a regular mesh size in the used routines is diminished by introducing
varying distances to the discretized Laplace operator of grid points that are located next
to a boundary point on the coarse grids. By counting the steps of length h0 it takes to
reach the boundary on the finest grid, the actual distance is obtained and can be used
for calculation. Furthermore, the property of a grid point of neighboring a boundary
is passed on to a matching point on the next coarser grid, which prevents boundaries
from not being resolved, as long as the reason for this to occur is the boundary being a
thin layer (one-dimensional thinness). In other words, a boundary must stretch beyond
the size of a coarse-grid cell in at least two dimensions or otherwise small features can
still end up not being resolved. Here again, a displacement of the coarse-grid points
relative to the finest grid is accounted for; in this case by counting half-steps h0/2 to a
boundary or a line of length h0,

√
2h0, or

√
3h0, that connects two boundary points.

A coarse-grid point can therefore be marked as being in close proximity to a bound-
ary even though all its neighboring points on the coarse grid are regular non-boundary
points. In this case, the respective neighbor’s value vijk cannot be used for calculation
and it’s simply assumed to be zero. This is supported by the fact that the coarse-grid
system A2h u2h = b2h solves for the error of the fine-grid system (correction scheme),
which is zero on Dirichlet boundaries.
In this manner, the geometry of fixed boundaries can be conserved with adequate ac-
curacy for every calculation (cf. figure 4.8).



52 4 DEVELOPMENT OF A PARALLEL MULTIGRID SOLVER

Figure 4.8: Reconstruction of a not further specified object’s surface on coarser grids, as
done for the field solver. The colored area indicates how the boundary is perceived by the
grid points located outside of it.

Similarly to subsection 4.2.1, the subroutines need to be adapted accordingly, using the
same formulas.

This method of accounting for an interface that doesn’t align with the grid was first
described by G.H. Shortley and R. Weller in 1938 [57, 58] (for two-dimensional grids).
They applied it to the Gauss-Seidel method, which they additionally sped up by starting
the solution process on coarse grids and gradually refining the obtained solution. They
therefore also utilized a premature multigrid technique, best described as a variation of
the nested iteration method, where the smoothing process on each grid is pursued until
convergence is reached.
For them, however, the interface was defined by a continuous function not aligning with
the finest grid and further implications for the various multigrid routines were naturally
not considered.

Restriction and prolongation are kept unchanged except for the Dirichlet boundary
conditions where the residual r = b−Av is zero (because the error is zero). The values



4.3 The Coarse Grid Solver 53

for the right-handed side vector b of matching coarse-grid points are directly assumed
to be zero as well, without weighting in the surrounding grid points. By this, a sharp
distinction between regular and Dirichlet points is achieved. Since the respective fine-
grid points are fixed, interpolating a coarse-grid correction is distorting and therefore
not performed as well.

As shown in figures 4.7(e) and (f), this third approach consistently reduces the residual
norm at a rate very similar to the case without irregular boundaries (for which all three
approaches produce the same values). This is independent of both the thickness of the
shell in the model problem and the coarsening scheme.
This is achieved by thoroughly separating the inside and the outside of the spherical
shell (indicated in figs. 4.6(j) and (k)), or, more generally, the two sides of a thin object.

4.3 The Coarse Grid Solver

The following considerations are solely based on the number of floating point operations
needed to perform a task and ignore memory allocation and accesses, assuming similar
consequences.

Assembling the system matrix A for the coarsest grid is barely more difficult than for
the finest grid, as the integer values 1 and 6 in equation (3.7) are simply replaced by
coefficients for equation (4.8). Hence the matrix A has the same non-zero structure
that is independent of the right-handed side vector b. It is therefore possible to use
an arbitrary method for solving sparse linear systems, including direct methods such
as variations of Gaussian elimination (decomposition methods) and even direct matrix
inversion (and subsequent multiplication of the inverse with b).
Since only b changes for successive iterations of the particle-in-cell method, the process
of assembling the matrices associated with a solution method only has to be performed
once and therefore carries no significant computational weight. Using the inverse matrix
to solve the coarse system of n unknowns therefore only consists of calculating n scalar
products of n-dimensional vectors (2n2 floating point operations in total).
An alternative, and widely used for this purpose, is LU decomposition, a modification of
Gaussian elimination. Here, the system matrix A is factorized into an upper triangular
matrix U and a lower triangular matrix L, so that

A = LU . (4.13)

The solution of the linear system Ax = b is then calculated by first using forward
substitution to solve

L z = b (4.14)

for z and then backward substitution to solve

U x = z . (4.15)

Element m of the vectors z and x is calculated using

zm = bm −
m−1∑
i=1

`m,i zi and (4.16)

xm =
zm −

∑n
i=m+1 um,i xi

um,m
(4.17)



54 4 DEVELOPMENT OF A PARALLEL MULTIGRID SOLVER

(the elements on the main diagonal of either L or U can be chosen to be one), which
amounts to 2n2 − n floating point operations in total once L and U are known (less
than multiplication with the inverse of the system matrix).

However, since only an approximation of finite accuracy is strictly required, an iterative
method such as SOR can offer competitive behavior. A single iteration involves eight
multiplications and seven additions (using u as the solution vector again):

uijk := (1− ω)uijk + ω

(
1

px qx
+

1

py qy
+

1

pz qz

)-1

·
(

ui-1jk
px (px + qx)

+
uij-1k

py (py + qy)
+

uijk-1
pz (pz + qz)

+
ui+1jk

qx (px + qx)
+

uij+1k

qy (py + qy)

+
uijk+1

qz (pz + qz)
− 1

2
h2
` fijk

)
.

(4.18)

So even if the coefficients introduced in section 4.2 are used for every grid point, one
sweep over all coarse-grid points only involves 15n floating point operations. The
computational work required for solving the coarsest system with LU decomposition
can therefore be equated to a certain number of SOR iterations, as shown in table 4.1.

Size of coarsest grid flops (LU) SOR iterations (equiv.)
3× 3× 3 1, 431 3.5
4× 4× 4 8, 128 8.5
5× 5× 5 31, 125 16.6
6× 6× 6 93, 096 28.7
7× 7× 7 234, 955 45.7
8× 8× 8 523, 776 68.2
9× 9× 9 1, 062, 153 97.1

10× 10× 10 1, 999, 000 133.3

Table 4.1: Number of floating point operations and equivalent number of SOR iterations
on various coarsest grids

Empirically, fewer SOR iterations are necessary for the outcome of a V-cycle to be indis-
tinguishable from one where a direct solver was used for the coarsest grid (which means
that the interpolation process introduces an error larger than that of the approximative
solution).
Additionally, LU decomposition is an inherently sequential algorithm and parallelizing
it is quite a complex task [59].
However, since the concept of coarse grid agglomeration in principle allows for the coars-
est grid to be solved on a single core, both SOR and LU decomposition can be further
optimized for this case by exploiting lexicographic ordering of the grid points.
The special structure of A, being sparse with non-zero entries only on the main and six
secondary diagonals, affects the properties of both L and U . By associating element i′

of the vectors x and b with grid point (i, j, k) via

i′ = i+ j ·Ni + k ·Ni ·Nj , (4.19)

where Ni and Nj are the number of grid points in x- and y-direction, the secondary
diagonals are defined by the matrix entries amo with o = m ± 1, o = m ± Ni, and



4.3 The Coarse Grid Solver 55




=




·




A = L · U

Figure 4.9: Example for the non-zero structure of the matrices A, L, and U for a three-
dimensional finite-difference problem. The system size is n = 4 · 4 · 4 = 64 and no Dirichlet
boundaries exist on the grid. The outermost secondary diagonals of A define the bandwidth
of L and U .

o = m ±Ni ·Nj . The non-zero entries of L are then limited to the elements `mo with
o ≥ m − Ni · Nj (and of course o ≤ m). Analogous to this, the non-zero entries of U
are confined to the band defined by o ≤ m+Ni ·Nj and o ≥ m (cf. figure 4.9).
This allows for the forward and backwards substitutions to be implemented much more
efficiently regarding both number of floating point operations and memory usage. Be-
cause the number of non-zero entries in every line of L and U is then at most Ni ·Nj+1,
solving for x therefore involves exactly 2NiNj · (2n−NiNj − 1) +n floating point op-
erations (which equals to 4n5/3 − 2n4/3 + n− 2n2/3 for cubic grids).

While this is still not competitive with SOR for large systems (O(n5/3) compared to
O(n4/3)), the computational efforts for completion on small systems are nevertheless
reduced so much that it’s a matter of how accurate the SOR method needs to be for it
to be faster (cf. table 4.2).

Size of coarsest grid flops (LU) SOR iterations (equiv.)
3× 3× 3 819 2.0
4× 4× 4 3, 616 3.8
5× 5× 5 11, 325 6.0
6× 6× 6 28, 656 8.8
7× 7× 7 62, 671 12.2
8× 8× 8 123, 264 16.0
9× 9× 9 223, 641 20.5

10× 10× 10 380, 800 25.4

Table 4.2: Number of floating point operations after optimization for processing on a
single processor and equivalent number of SOR iterations on various coarsest grids

For the SOR method, using only one core for solving the coarsest grid enables the
abandonment of the alternation between red and black colored grid points and replacing
it with sweeping in ascending order, which leads to slightly faster convergence.
However, for both the sequential and parallel case, the analytical expression for the
optimal relaxation parameter ωopt (equation (3.17)) is unlikely to be the best choice,
firstly because point-individual coefficients are used to handle irregular distances and



56 4 DEVELOPMENT OF A PARALLEL MULTIGRID SOLVER

secondly because Dirichlet boundary conditions may effectively reduce the system size.
For example, if the discharge chamber of a RIT is defined by Dirichlet points, its interior
is shielded from the rest of the domain and the volume of interest only covers a subsection
of the whole grid. In this case, the best value for ω is actually smaller than ωopt [60]
and can only be found by systematic trial and error.
For small systems such as the coarsest grid, this is a simple task and can be done in a
further negligible amount of time, once during initialization (if SOR is used in the first
place).

Following the considerations above, the SOR iterative method was chosen for the par-
allel case and specialized sequential variants of both SOR and LU decomposition were
implemented. The user can then either chose directly (and set a desired accuracy for
the SOR solver) or let the benchmark module described in the following section find
the fastest approach.

4.4 Measures for Efficient Parallel Performance

A standard approach to parallelize FDM solvers that is utilized here as well is the use of
ghost nodes that each process allocates specifically to hold the boundary information of
its neighbors. Their values are only updated during the communication phase and are
only used to calculate new values for the process’s outer grid points. The allocated grids
of the respective processes therefore overlap, so the overall memory consumption actu-
ally increases the more processes are used. Since this doesn’t really affect performance,
it’s rather insignificant.

A simple, yet valuable, modification to decrease the required bandwidth per commu-
nication step is to use single-precision floating-point data types instead of the double-
precision data types used otherwise. This effectively halves the transmission time of
every sent message, therefore enabling a more convenient ratio of communication and
computation time, which comes in handy especially when progressing to the coarser
grid levels.
The influence on the solver’s precision is consequently negative, but shows to be negli-
gible for the relatively high tolerances of PlasmaPIC (further discussed in chapter 5).
However, if high accuracy is needed, the data type for communication can simply be
switched back to double-precision.

Further far-reaching measures that were implemented to improve parallel performance
are discussed in the following.

4.4.1 Utilizing Red-Black Ordered Gauss-Seidel Smoothing

Although their smoothing properties are similar, the (weighted) Jacobi method has
the disadvantage of requiring twice as much memory as the Gauss-Seidel method at
implementation because the outcome of every iteration has to be collectively preserved
for every calculation of the next iteration.
As pointed out in, for example, [61], using the correction scheme in combination with
red-black ordered Gauss-Seidel smoothing entails some additional advantages over other
methods that are easy to utilize:



4.4 Measures for Efficient Parallel Performance 57

After a full sweep over both colors, the residual r = b−Av of the black points is auto-
matically zero, which results from the unweighted Gauss-Seidel method being equivalent
to successively setting each component of the residual to zero and the black points only
being dependent on the red points. Therefore, only half of the residuals have to be
calculated.
For the restriction step, this implies that of the maximal number of 27 fine-grid points,
only 13 have a non-zero residual. Since only the residuals are used to calculate the
coarse-grid right-handed side vector for the correction scheme, this can be taken advan-
tage of to reduce the computational effort and number of memory accesses by approxi-
mately half.
Similarly, the prolongation process only needs to be applied to the black fine-grid points,
because the red values are updated in the first post-smoothing step without being used
themselves.

By applying all of this, another feature becomes apparent: The residual of the red
points can be stored in the same memory location as the respective components of the
vector v, because these values aren’t used again afterwards. This implies that out of
the three vectors that are held for each grid, v, b, and r, only two need to actually be
allocated, which reduces the memory consumption significantly. Usable values for the
red grid points are simply produced again at the first post-smoothing sweep.

4.4.2 Coarse Grid Agglomeration

As already briefly discussed in section 3.7, two problems arise at parallelizing the multi-
grid algorithm. First, the domain partitioning method cannot be used without proper
adjustments if the number of parallel threads approaches the number of grid points on
the coarser grid levels, resulting in zero assigned points for certain threads. Second,
with decreasing system size along the different grid levels, the ratio of computation and
communication shifts to the disadvantage of computation, which leads to increasingly
poorer parallel performance, as the communication can hardly be hidden by simultane-
ous calculations.
Both problems can be solved by the method of coarse grid agglomeration, which essen-
tially boils down to the realization that program runtime can actually be improved by
a decrease of parallelism. Between certain successive grid levels, to be specified at ini-
tialization of the solver, the inter-grid transfer operators, restriction and prolongation,
additionally transfer all needed data to a subset of the involved processes.
This subset is chosen in a way that the processes are evenly spread among the allocated
computational nodes to utilize maximal bandwidth, unless they fit on a single node, in
which case the communication can take place without the use of the cluster network.

Since this method requires whole coarse-grid vectors to be sent over the network, which
reduces performance, it shouldn’t be applied to every fine-to-coarse transition. On which
grid levels and to how many processes this redistribution of the problem is performed
is therefore a critical issue for optimization.

4.4.3 Determination of Optimal Parameters

There’s a variety of parameters that each influence the parallel performance of the
multigrid solver and that all have to be set at initialization: It has to be determined on



58 4 DEVELOPMENT OF A PARALLEL MULTIGRID SOLVER

which grid levels the number of participating processes is reduced (and therefore how
often this occurs), what the actual number of processes that are then used is, and of how
many grid levels the multigrid hierarchy is supposed to consist of. The latter matters for
the parallel case because using one or two grids less than possible can actually improve
the runtime of a V-cycle if the saved communication time surpasses a certain limit.

The optimal configuration depends on the hardware, i. e., how the communication speed
(influenced primarily by network latency and bandwidth) compares to computational
power (dependent on CPU speed, cache size, memory bandwidth), but also on more
variable parameters, like the number of cores available or the size of the finest grid.
Therefore, the setup has to be reevaluated every time any of the aforementioned factors
changes, even if the program is restarted on a different number of cores.

Since the relationship between hardware and program performance is not a seizable and
quantifiable property, actual runtime measurements need to be used to determine an
optimal configuration of how many processes are involved on each grid level and how
many grids are used. A sophisticated benchmark module was written based on the
following considerations:
Ignoring the point that a grid of a certain size is unsuited to be processed by too many
processes, the total number of possible ways to distribute Np processes over Ng grids in
a way so that the finest grid is assigned the total number of processes and every coarse
grid in the hierarchy is assigned not more than its affiliated fine grid is given by

Np∑
i(Ng-2)=1

· · ·
i3∑
i2=1

i2∑
i1=1

i1 =
1

(Ng − 1)!

Ng−1∏
i=1

(Np + i− 1) (4.20)

forNg > 2, which approachesNNg−1
p for largeNp. For example, 1000 processes handling

a 5-grid hierarchy can be distributed in approximately 4 · 1010 ways, which illustrates
that not every possible configuration can be tested for performance.
Instead, a number of restrictions must be applied to vastly reduce the number of config-
urations to be tested by skillfully excluding unfavorable configurations. This primarily
involves limiting the number of processes per grid level on coarse grids N `

p to cubic num-
bers (of the form N `

p = N3) and cubic-like numbers (of the form N `
p = N2 · (N − 1)),

which then for the mostly cubical simulation domains enforces the use of local sub-grids
with favorable ratio of surface to volume (and therefore communication to calculation).
Other exclusion criteria that are implemented in the benchmark deal with the size of
the process-local grids. I. e., configurations enabling local grids on any grid level to
fall below or above a certain size limit are rejected for testing, as they deviate too far
from the optimal relationship between communication and calculation. Similarly, the
transition from one set of processes handling a fine grid to another set handling the
next coarser grid is only allowed for significantly differently sized sets of processes.

To further increase the benchmark’s efficiency, the remaining configurations are not
tested individually. Since the time for on-level operations (smoothing, calculating the
residual and solving on the coarsest grid) and transfer operations (restriction and pro-
longation) can be expected to vary only with the number of involved processes on the
respective grids, redundant measurements can be minimized by identifying a subset
of configurations which contains every viable combination of process numbers for fine-
to-coarse transitions, and subsequently using the results of corresponding partial time
measurements to estimate V-cycle runtimes for all remaining configurations.



4.5 Practical Limitations 59

Hence the most time-consuming parts of the benchmark, initializing and running dif-
ferent variants of coarse grid agglomeration, are reduced to a convenient minimum.

The resultant benchmark can then be conveniently called as part of the program’s
initialization. It’s outcome, however, is not absolute in that numerous configurations
can be comparably fast and fluctuations due to peaks in the network load or activation
of random system processes can cause a decisive lag.

4.5 Practical Limitations

The multigrid solver described here is designed for solving the Poisson equation on
cuboidal grids that are similarly sized in each direction of space. Large deviations of
this assumption not only affect the benchmark as described above, but also lead to a
premature stop of the coarsening process, as the smallest practicable grid size is achieved
in one or two, but not all, directions. An extreme case here would be the simulation of a
long, thin, (cylindrical) plasma vessel, where the vessel’s interior can only be resolved on
a very small number of coarse grids. In such a case, and if performance is an issue, a more
sophisticated coarsening approach involving directional coarsening or semi coarsening
(leading to individual mesh sizes hx, hy and hz) needs to be implemented.

On another note, the applied approach to handle arbitrarily shaped irregular boundaries
does not allow for the full multigrid method to be used effectively. As described in
subsection 3.2.2, this variant first projects the right-handed side vector b of the system
Au = b onto the coarsest grid and improves the solution obtained there on increasingly
finer grids. This is merely possible in the presence of boundary points because the
restriction process (algebraic weighting of up to 27 fine-grid values) is then impeded by
the values of the boundaries being zero.
In contrast, restricting the residual r near boundaries is unproblematic, as the respective
values for the residual can be expected to be small after the smoothing process and the
residuals of boundary points are always zero.
Therefore, the full multigrid method (with optimal algorithmic scaling) can’t be used to
its full potential. Instead, V-cycles are used iteratively and the solution of the respective
previous time step of the PIC simulation is utilized as the initial guess. If the electric
potential of the simulated plasma doesn’t fluctuate too strongly and the V-cycles are
properly tuned regarding pre- and post-smoothing, the preferable optimal algorithmic
behavior can be achieved nevertheless.

4.6 Integration into PlasmaPIC

The multigrid solver is designed to fit into the modular framework of PlamsaPIC. Upon
initialization, it is passed the information about global and local grid size and the posi-
tion of the respective thread in the partitioned domain, which is then used to allocate
the required memory. The coefficients used by the various multigrid subroutines are
subsequently calculated based on the boundary characteristics provided by PlasmaPIC.
The user can furthermore provide a suitable configuration for the coarse grid agglom-
eration via the input card or let the benchmark described in subsection 4.4.3 find an
“optimal” distribution of the involved threads to the coarse grids.



60 4 DEVELOPMENT OF A PARALLEL MULTIGRID SOLVER

During the actual simulation, the multigrid module gets passed the updated charge
distribution of every new time step and performs a sufficient amount of V-cycles, start-
ing with the solution of the respective previous time step as the initial guess for the
electrostatic potential. The number of V-cycles and pre- and post-smoothing steps is
dynamically adjusted by using the convergence criterion

‖r‖
‖b‖ ≤ rtol , (4.21)

with ‖·‖ being the Euclidean norm of the vectors r and b and rtol being the relative
convergence tolerance, arbitrarily specifiable in the input card. rtol should typically be
small, e. g., 10-5, but a sufficient value is generally dependent on the problem.

Similarly, equation 2.13 is solved once in each RF cycle.



Chapter 5

Assessment of Capabilities and
Performance

As discussed in section 4.1, there are some properties of the particle-in-cell method that
possibly have a negative impact on the convergence behavior and parallel scaling of a
multigrid solver. In order to thoroughly demonstrate the capabilities of the developed
solver, performance tests are therefore applied to both generic problems with irregular
boundaries and actual plasma simulations. The results are then compared to com-
putations performed with the previously used SOR method and the PETSc software
suite [62, 63, 64].

5.1 Solving Generic Elliptic PDEs

The convergence behavior of an iterative solver is usually investigated by calculating
some norm (often the Euclidean norm ‖·‖2) of the residual vector rm = b − um after
each iteration m. The residual reduction factor ‖rm‖ /

∥∥rm−1
∥∥ is then a measure for

the quality of the solver.
Usage of this approach is justified by the general unavailability of a better alternative,
i. e., the actual error em = uexact − um.

For the purpose of setting a reference, an “ideal” problem is first considered.

5.1.1 Textbook Case

The Poisson equation

∆u1(r) = −f(x, y, z)

= 5 sin (5π x) + cos (2π y) + (z2 − z − 0.5) e-(z−0.5)2
(5.1)

is solved for u1 on a cubic grid representing the unit cube with Dirichlet domain bound-
aries and with no additional geometry to be considered. The fixed values for the bound-
ary conditions are chosen such that an analytical solution for u1 exists:

u1(r) = − 1

5π2
sin(5π x)− 1

4π2
cos(2π y) +

1

4
e-(z−0.5)2 ∀ r ∈ ∂Ω. (5.2)

61



62 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

� �� �� �� 	� 
� ��
����
����
����
����
���
���
���
���
���
����

������
��	���

||�
��

||

���������

������
������

������
������
��	�	�

� �� �� 	� 
� �� ��
���

���

��


���

��

���

���

��


||�
��
�

�||
��

�||
��

��
��

�||

���������

������
��	���
��
�
�

������
��	�	�

������
��
�	�

� �� �� �� 	� 
� ��
����
����
����
����
���
���
���
���
���
����

||�
��

||

���������

������
��	���

������
������

������
������
��	�	�

� �� �� 	� 
� �� ��
���

���

��


���

��

���

���

��


||�
���

�||
��

�||
��

��
��

�||

���������

������
��	���
��
�
�

������
��	�	�

������
��
�	�

� �� �� �� 	� 
� ��
����
����
����
����
���
���
���
���
���
����

||�
��

||

���������

������
��	���

������
������

������
������
��	�	�

� �� �� 	� 
� �� ��
���

���

��


���

��

���

���

��


||�
���

�||
��

�||
��

��
��

�||

���������

������
��	���
��
�
�

������
��	�	�

������
��
�	�

� �� �� �� 	� 
� ��
����
����
����
����
���
���
���
���
���
����

||�
��

||

���������

������
��	���

������
������

������
������
��	�	�

� �� �� 	� 
� �� ��
���

���

��


���

��

���

���

��


||�
���

�||
��

�||
��

��
��

�||

���������

������
��	���
��
�
�

������
��	�	�

������
��
�	�

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.1: Textbook efficiency of an iterative multigrid solver over 60 V-cycles for the
model Poisson problem (equation (5.1)) with varying number of pre- and post-smoothing
steps (npre,npost) on a grid of size 10253. (a) The course of the total residual norm ‖r‖2.
(b) The course of the residual reduction factor ‖rm‖2 /

∥∥rm−1
∥∥
2
. (c) and (d) Same as (a)

and (b), but with a thin-walled hollow sphere as an additional irregular boundary interface
embedded in the domain. (e) to (h) Same as (a) to (d), but with single-precision floating
point communication. All calculations were performed on 192 processes.



5.1 Solving Generic Elliptic PDEs 63

For grid sizes where equation (4.3) can be applied sufficiently often (i. e., for those of the
form (2n + 1)3, (3 · 2n + 1)3 etc. for not too small integer values of n), this is a problem
that can be treated by the textbook vertex-based multigrid method described in section
3.2 without further adjustments. Moreover, the multigrid field solver developed here
reduces to a parallelized version of that method and can therefore be used to measure
“textbook” efficiency.
Absolute values obtained this way are of little significance because they are problem-
dependent. A qualitative assessment on the other hand is valid much more universally.

Figures 5.1(a) and (b) show the course of the residual norm and the residual reduc-
tion factor over 60 V-cycle iterations on 10253 grid points for calculations with varying
number of smoothing steps, starting with the zero vector as initial guess. After the
first few iterations, the residual drops at a relatively constant rate until a maximum
accuracy (for calculations with double-precision floating-point arithmetic) is reached.
The residual norm then approaches a constant value and the reduction factor increases
to approximately one (within very small fluctuations). While the gradient of the se-
ceding parts of the curves in figure 5.1(a) depends on the number of smoothing steps,
the benefit of an additional step decreases the more smoothing steps are used. This
corresponds to the observation that the smoothing process only effectively eliminates
errors of specific frequency modes, while other modes remain relatively unaffected (cf.
subsection 3.1.3).
The comparably poor performance over the first iterations can similarly be attributed to
insufficient smoothing, as the V-cycle is not effective as long as the initial high-frequency
errors are not properly reduced.
A very similar performance can be observed if an additional boundary object, “activat-
ing” the modifications based on the Shortley-Weller discretization scheme, is added to
the grid. For a thin hollow sphere spanning the whole domain, this is shown in figures
5.1(c) and (d). With the exception of the very first iteration with a low number of
smoothing steps, the residual reduction rate is generally (slightly) better than in the
previous case (which can be attributed to the system size being effectively reduced).
This demonstrates that the multigrid solver is capable of handling these kinds of prob-
lems without deterioration of convergence. Deactivating the respective features leads
to the behavior illustrated in figure 5.2. Here, the resultant vectors of the iterative
process diverge from the exact solution unless a tremendous amount of smoothing steps
is applied.

This first model problem can also be used to investigate the influence of the radical
measure of using single-precision floating-point numbers for inter-process communica-
tion. Figures 5.1(e) to (h) were created analogously to figures 5.1(a) to (d) with the
only difference being the data type of the communication buffers. This change most
obviously affects the maximum accuracy of the iterative process, which is significantly
worse. Up until the point of stagnation, however, the convergence behavior is nearly
identical to that of the prior case, which justifies the switch made in order to better
utilize the limited bandwidth for communication, as long as the required accuracy of
the obtained solution allows it.

Another relationship worth being considered is the one between residual r and error
e. Since an analytical solution to equation (5.1) is available, this can be done exem-
plary for the model problem. Figures 5.3(a) and (b) show the curves corresponding
to figures 5.1(a) and (b). The error norm drops steadily until a maximum accuracy



64 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

� �� �� �� 	� 
� ��
����
����
���
���
���
���
���
����
����
����
����

������
������
��������

||�
��

||

���������

������
��	�	�
������

� �� �� �� 	� 
� ��

�

�

�

�

	




�
������
������

��	�	�
��������

������
������

���
��

���
��

���
��

��
��
���

���������

Figure 5.2: Behavior of the unmodified textbook geometric multigrid solver for a domain
with irregular boundaries. The problem is the same as the one used for figure 5.1(c) and
(d) and the curves were generated analogously.

is reached. A striking difference to the residual norm’s behavior is that this minimal
value is reached after far fewer iterations, which indicates that the maximum possible
accuracy, limited by the so-called discretization error resulting from discretizing a con-
tinuous problem, is reached before the effects of the limited machine precision start to
manifest. This relation is not universally valid. For a much further refined grid, the
discretization error can be expected to be smaller than the one introduced by finite-
precision arithmetic.
The residual norm on the other hand decreases independently of the discretization error
as the iterative process converges to a solution that is slightly off the analytically exact
solution uexact.
The respective plots for communication with single-precision floating-point numbers
(figure 5.3(c) and (d)) are almost congruent to their double-precision counterpart, ex-
cept for minor fluctuations. The maximum accuracy here is therefore still better than
the limit caused by the discretization process, which further justifies the use of low-
precision communication.

5.1.2 Convergence

Although Poisson’s equation is a fundamental form for elliptic partial differential equa-
tions, applicability and convergence behavior of a solution method don’t necessarily
conform universally, especially in three dimensions. For this reason, a number of other
elliptic PDEs are considered and analyzed analogously:

∆u2 + c · u2 = −f(x, y, z) (5.3)

∆u3 + 2
∂u3

∂x
+
∂u3

∂y
= −f(x, y, z) (5.4)

−(x+ 2z) ∆u4 − e−(x2+y2)∂u4

∂x
+ ln z

∂u4

∂y
+ 2x · u4 = −f(x, y, z) (5.5)

ex
∂2u5

∂x2
+ (y3 +

1

2
)
∂2u5

∂y2
+ 2 cos(z)

∂2u5

∂z2
− x∂u5

∂z
= −f(x, y, z) . (5.6)

Since the left handed side for each of these PDEs is altered compared to equation (5.1)
and the error norm is not further considered, an analytical solution is neither available



5.1 Solving Generic Elliptic PDEs 65

� �� �� �� 	� 
� ��
����

����

����

���

���

���

���

���

���

||�
��

||

���������

������
��	���

������
������

������
������
��	�	�

� �� �� �� 	� 
� ��
����

����

����

���

���

���

���

���

���

||�
��

||

���������

������
��	���

������
������

������
������
��	�	�

� �� �� 	� 
� �� ��
���

���

��


���

��

���

���

��


||�
��

�||
��

�||
��
�
��

�||

���������

������
��	���
��
�
�

������
��	�	�

������
��
�	�

� �� �� 	� 
� �� ��
���

���

��


���

��

���

���

��


||�
��

�||
��

�||
��
�
��

�||

���������

������
��	���
��
�
�

������
��	�	�

������
��
�	�

(a)

(b)

(c)

(d)

Figure 5.3: Behavior of the error norm for the model problem. (a) Course of ‖e‖2 over
60 iterations. (b) Course of the error reduction ‖em‖2 /

∥∥em−1
∥∥
2
. (c), (d) Same, but with

single-precision floating-point numbers used for communication.

nor required. The boundary conditions can therefore be assigned an arbitrary value,
e. g., u(r) = 0 ∀ r ∈ ∂Ω.
Each PDE is solved both on a cubic domain and on an embedded irregular domain of
individual shape. Graphical representations of those shapes are given in figure 5.4. For
simplification, only the (2, 2)-smoothing case is considered.
In figure 5.5(a), the residual norm of the approximate solution for u2 (the Helmholtz
equation) is plotted against the iteration number for various values of c, spanning over
multiple magnitudes. It’s notable that the maximal accuracy is reached after increas-
ingly fewer iterations the less the Laplace operator influences the solution, i. e., the
larger the constant c is. For c = 0, equation (5.3) is identical to the Poisson equation.
Introducing irregular boundary conditions furthermore only vaguely alters the outcome
of this approach, as can be seen in figure 5.5(b).

Ω1 Ω2 Ω3 Ω4 Ω5

Figure 5.4: Shapes of the domains used for the model elliptic PDEs



66 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

� � �� �� �� �� �� �� �� �� ��
���

����
����
����
���
���
���
���
��

����

����
����
����
����
���


||�
��

||

���������

��
����
����
����
���	

� � �� �� �� �� �� �� �� �� ��
���

����
����
����
���
���
���
���
��

����

����
����
����
����
���


||�
��

||

���������

��
����
����
����
���	

� � �� �� �� �� �� �� �� �� ��
����

����

����

���

���

���

���

��	

����

||�
��

||

���������

����������������	

������������������	

����������������	

������������������	

����������������	

������������������	


(a) (b)

(c)

Figure 5.5: Decrease of the residual of the four additional elliptic partial differential
equations. (a) The iterative development of the residual of u2 for varying values of the
constant c in a cubic domain of size 10253 (50 iterations, (2,2)-smoothing). (b) Equivalent
to (a), but the effective domain is reduced to smaller cube that is wedged inside the original
domain (cf. figure 5.4). (c) Course of the residuals of u3, u4 and u5 with and without their
respective irregularly shaped boundary interfaces.

Moreover, this observation holds true for u3, u4 and u5, as shown in figure 5.5(c). All
used PDEs converge similarly using V-cycles with (2,2)-smoothing, relatively indepen-
dent of the shape of the boundary interface.

5.1.3 Scalability

Since the overall residual norm depends on the system size, it doesn’t make sense to
analyze the scaling behavior of how its absolute value decreases over multiple V-cycle
iterations. Its relative reduction over several iterations on the other hand can be com-
pared and analyzed over an arbitrary range of system sizes.
Since the increasing system size allows for more and more grid levels to be used, an
additional grid is introduced whenever coarsening the coarsest grid yields a system of
at least 3× 3× 3 grid points (with the outermost grid points being defined as Dirichlet
boundary points, this implies a minimal system size of 53).
For each of the elliptic PDEs (5.1) and (5.3) to (5.6), the ratio of the residual norm
‖rm‖ after m = 1, m = 2, m = 5, and m = 10 iterations to the initial norm

∥∥r0
∥∥ is



5.1 Solving Generic Elliptic PDEs 67

� ��� ��� ��� ��� ���� ����
�����
�����
�����
����
���

���	
����
����
����
����
����
����
���
���

�
	���
	��
	�

||�
���

�||
��

�||
��

��
�||

�

�
	�

� ��� ��� ��� ��� ���� ����
�����
�����
�����
����
���

���	
����
����
����
����
����
����
���
���

||�
���

�||
��

�||
��

��
�||

�

�
	���
	��
	��
	�

� ��� ��� ��� ��� ���� ����
�����
�����
�����
����
���

���	
����
����
����
����
����
����
���
���

||�
���

�||
��

�||
��

��
�||

�

�
	���
	��
	��
	�

� ��� ��� ��� ��� ���� ����
�����
�����
�����
����
���

���	
����
����
����
����
����
����
���
���

||�
���

�||
��

�||
��

��
�||

�

�
	���
	��
	��
	�

� ��� ��� ��� ��� ���� ����
����
���

���	
����
����
����
����
����
����
���
���

�
	���
	��
	��
	�

||�
���

�||
��

�||
��

��
�||

�

(a) (b)

(c) (d)

(e)

Figure 5.6: Scaling of the residual reduction rate for the solution of the five model PDEs.
(a) Equation (5.1). (b) Equation (5.3). (c) Equation (5.4). (d) Equation (5.5). (e) Equa-
tion (5.6). For each, the ratios

∥∥r1∥∥ / ∥∥r0∥∥, ∥∥r2∥∥ /∥∥r0∥∥, ∥∥r5∥∥ / ∥∥r0∥∥ and
∥∥r10∥∥ / ∥∥r0∥∥ are

plotted against the number of grid points per spatial direction N . The total system size is
n = N3.



68 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

calculated for systems as small as 203 up to comparably huge systems of with 12003 grid
points. This choice of size range is based on applicability of the multigrid method uti-
lizing multiple grid levels and usage of a reasonable amount of computational resources
and time.
The five residual ratios are then plotted against the number of grid points per spatial
direction (figure 5.6).

Several observations can be made for every PDE:
While an averaged curve, obtained by calculating mean values over larger intervals of
N , would produce a remarkably constant course of the residual norm ratios, the ac-
tual curve, incorporating every grid size, shows strong fluctuations, specifically between
neighboring data points, where one may lie below the local average and the next above.
The relative magnitude of these fluctuations is furthermore enhanced by subsequent
iterations, so that they can be examined best using the

∥∥r10
∥∥ / ∥∥r0

∥∥ ratio. In this case,
and for the PDEs investigated here, sudden jumps over four orders of magnitude can
be observed.

However, a closer examination over a shorter range of N reveals the residual norm
ratio to actually be subject to several concurrent quasi-oscillations with distinguished
periodicity. The top half of figure 5.7 depicts a cutout of the

∥∥r10
∥∥ /∥∥r0

∥∥ curve of
figure 5.6(a) in appropriate detail. At 26, 50, and 98 grid points per spatial direction
respectively, an additional grid is introduced, which is indicated by the three vertical
lines. With the exception of u5, which generally shows a reduced convergence rate and
pure alternating jumps between "good" and "bad" residual reduction, this holds true
for the other PDEs as well.
While the lines’ positions on the x-axis coincide with local maximums of the norm ratio
curve, this is not necessarily a correlation, since other maximums of strong manifestation
exist (although the subsequent maximums are smaller) and suppressing the introduction
of a new grid only changes the height of the maximum (not shown).

Rather, the deviation from a relatively constant minimal value is related to the abun-
dance and the values of the irregular distances d`irr between the two outermost grid
points in every direction on the coarse grids, as introduced in chapter 4. The bottom
half of figure 5.7 shows the values of d`irr(N)/h` for the systems examined in the top half.
While the values jump between 1 and 0.75 on grid level ` = 1, they increase linearly
on the coarser grids until the value 1 is reached, after which the number of grid points
increases by one and the irregular distance is reset to the minimal value.
Whenever all grids align perfectly so that no irregularities are necessary (which is the
case for systems with 4 · 2Ng−1 + 1, 5 · 2Ng−1 + 1, and 6 · 2Ng−1 + 1 grid points per
dimension under these prerequisites), a local minimum is reached. Another minimum
can be found directly inbetween those, where only the coarsest grid doesn’t align with
the other grids.
The highest local maximums on the other hand can be found right after the minimums,
coinciding with the minimal values of d`irr on every grid. In these cases, cell-based coars-
ening is used throughout all grids, which indicates that although the two variants are
not applicable to the same systems, vertex-based coarsening can be considered superior.

These observations imply that the mixed-coarsening approach described in subsection
4.2.1 thus fails to completely eliminate this consequence of arbitrary grid sizes. How-
ever, since the fluctuations of the (absolute) residual norm only surpass one order of
magnitude after numerous iterations, this can be considered as acceptable.



5.1 Solving Generic Elliptic PDEs 69

�� �� �� �� ��
�

�

�

�

�

������ ����������� �����������
�����	����� �����
���	�

��
� ���
��

��
�

�����

�����

�����

�����

����

����

����
||�
���

� �||
��

�||
��

��
�||

Figure 5.7: Top: Detailed view of the
∥∥r10∥∥ / ∥∥r0∥∥ curve of figure 5.6(a). Up to N = 26

grid points per spatial direction, a total of three grid levels are used. At N = 26, 50, 98,
an additional grid is introduced respectively.
Bottom: Comparative plot of d`irr(N)/h` for the same range of grid sizes. The lines for the
various grid levels ` are stacked by a constant offset of one. However, the maximal value
for each line is one.
For both graphs, the x-axis is offset by one so that the vertical grid lines coincide with
values divisible by four.



70 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

Apart from these effects, the multigrid solver shows remarkably constant reduction rates
over all investigated system sizes, that are furthermore easily one order of magnitude
per iteration (with the exception of u5, for which it is still acceptable), which is generally
considered to be textbook efficiency of a multigrid method.
Combined with the availability of a sufficiently accurate initial guess, this characterizes
the solver to reach a desired accuracy within a number of iterations independent on
the system size, which is a prerequisite to scale optimally (cf. section 3.6). Since a
V-cycle’s computational costs are directly proportional to the system size (in the serial
case), it’s therefore foremost the matter of efficient parallelization that determines the
performance in the practical case (i. e., on a parallel computer).
In order to combine such an evaluation with the application within a PIC simulation,
it is postponed to the following section.

5.2 Performance within PlasmaPIC

Domain partitioning methods for solving partial differential equations in parallel can
never scale perfectly for every system. Rather, the speedup reached with a certain
number of processor cores always depends on the system size. A very small system
might be solved the fastest on a single core, i. e., the speedup of adding another core
could be smaller than one. For a larger system on the other hand, additional cores
should generally improve runtime, until a threshold is reached, at which communication
costs surpass computation (assuming non-blocking communication) and the speedup
deteriorates. It is therefore desirable to find and utilize a “sweet spot”, at which an
optimal number of cores works on a given system size.
This approach at investigating the dependency of the performance on the number of
cores is commonly referred to as strong scaling.
While this is a suitable method to optimize the utilization of resources to reduce runtime
for a given system, its conclusions have only vague meaning in respect of performance
for systems of other size. Varying the system size for a set number of cores is of
minor interest because it’s clear that the effects of parallelizing the problem diminish as
the ratio of computation to communication shifts favorable and the complexity of the
underlying algorithm becomes more influential.
Instead, the so-called weak scaling has more significance. Here, both processor count
and total system size are scaled up simultaneously, such that the system size per core
remains constant. In this context, a perfectly parallelized algorithm that scales linearly
with system size finishes computation in constant runtime, independent of the respective
system. Such a behavior, although being a theoretical ideal, is the ultimately desired
outcome for the multigrid solver developed in the context of this thesis. While both
strong and weak scaling of the solver, among other characteristics, are investigated in the
following subsections, the latter therefore represents the solver’s central requirements
the best.

5.2.1 Influence of Network Speed

The computations for this thesis were primarily performed on a cluster that utilizes the
InfiniBand technology for fast inter-process communication. Although generally prefer-
able to slower alternatives like simple Ethernet connections, this is an especially crucial



5.2 Performance within PlasmaPIC 71

part of the hardware for the multigrid solver. Considering that a parallel multigrid
method necessarily either deviates from the optimal ratio of (ideally hidden) commu-
nication to computation or sends the data of whole grids between intersecting sets of
processes (both of which is utilized in the solver described here and an “optimal” config-
uration can be found with the benchmark), any measurements of parallel scaling have
to be considered in the context of the specific hardware that was used.

In order to assess how different hardware configurations influence performance, the
runtime of a single V-cycle with two pre- and two post-smoothing steps was measured
on four different setups, of which three only vary in the CPU type and the associated
number of cores per node:

HPC CPU Cores/node Network
LOEWE-CSC AMD “Magny-Cours” Opteron 6172 24 InfiniBand
LOEWE-CSC Intel Xeon Ivy Bridge E5-2670 v2 20 InfiniBand
LOEWE-CSC Intel Xeon Broadwell E5-2640 v4 20 InfiniBand

Yacana Intel Xeon Ivy Bridge E5-2630 v2 12 Ethernet

Table 5.1: Comparison of the various cluster setups used for this thesis

For each, the runtime of a V-cycle during a PlasmaPIC simulation was measured on
multiples of 24 processes on two different systems, namely the RIT-1.0 (100× 100× 97
grid points) and the RIT-2.5 (233 × 233 × 220 grid points). A preceding run of the
benchmark module was furthermore used to determine a configuration of coarse grid
agglomeration.
Additionally, the time spent on every individual grid and on the transfer operations
between the grids was measured separately to provide further insight into what share
of the total time is spent where and how this distribution develops if the number of
processes is increased.

The left columns of diagrams in figures 5.8 (RIT-1.0) and 5.9 (RIT-2.5) show these
measurements as stacked column graphs. On the right, the coarse grid agglomeration is
visualized by associating the grid levels with the respective number of cores used there.
All configurations have in common that the finest and the second finest grid are pro-
cessed by the full number of cores used in the respective case and that the solution of
the coarsest grid system is obtained by a single core (illustrating the effectiveness of
the measures described in section 4.3). The total number of grids, however, fluctuates
between six and seven for the RIT-1.0 and seems to be explicitly dependent on the
network connection for the RIT-2.5, indicating that there are various agglomeration
configurations with similar performance and that it’s computationally cheaper to use
less grids and solve on a larger coarsest grid if the network speed is rather slow.
For the Ivy Bridge/Ethernet configuration, the V-cycle runtime actually worsens if more
than 24 processors (two nodes) are used on the RIT-1.0 system. The extra time needed
by higher processor counts is mostly (but not exclusively) spent on the coarser grids,
where communication is more expensive in relative terms.
An apparent difference between the calculations on the two systems is that for this num-
ber range, the benefit of adding more cores quickly diminishes with the RIT-1.0, whereas
runtime keeps decreasing with the RIT-2.5, where the local subdomains are larger. This
is a clear indication that for simulations of the RIT-1.0, the network reaches its limits
and communication dominates runtime. The fact that overall runtime for a V-cycle



72 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

M
ag
ny

-C
ou

rs
/I
nfi

ni
B
an

d
Iv
y
B
ri
dg

e/
In
fin

B
an

d
B
ro
ad

w
el
l/
In
fin

B
an

d
Iv
y
B
ri
dg

e/
E
th
er
ne

t

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���
�
�
�
�
�
�
�
�
	


��
��
��

��
��

��

� �� � � �� � � �� �
� �� � � �� � �

��
��

�� 	� ��
�

��
�

��
�

�	
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
��

�� �� �� �� �� �� ��
�

�� �� �� �� �� ��

�
�

�� �� �� �� �� �� �� � �� � � � �

� � � � � � � � � � � � �

� � � �

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

�

�

�
���

��
�	

��

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���
�

�

�

�

�

�

��
��

��

� �� � � �� � � �� �
� �� � � �� � �

��
�	 �� 
� ��
�

��
�

��
	

�

�

��
�

��
�

��
�

�	
	

��
�

��
�

��
�

��
�� ��

�	
�� �� �� �� �� �� �	 �	 �	 ��
�

��

	
�� ��

�
	 �� 	 �� �� �� 	 �� 	 �� ��

�
� �

�
� � � � � � � � � � �

� �

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

�

�

�
���

��
�	

��

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���
�

�

�

�

�

�

�

�

��
��

��

� �� � � �� � � �� �
� �� � � �� � �

��
�	

�� 
� ��
�

��
�

��
	

�

�

��
�

��
�

��
�

�	
	

��
�

��
�

��
�

��
��

�� �� �� �� �� �� ��
�

��
�

��
�

��
�

�� ��
�

�	
�

	 �
�� �	 �	 �� 	 	 �	 �	 	 �� � �	 ��

� �
� � � � � � � 	 � � � 	 �

� � �

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

�

�

�
���

��
�	

��

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���
�

�

��

��

��

��

��
��

��

��
�������	

� �� � � �� � � �� �
� �� � � �� � �

�� �	 �� 
� ��
�

��
�

��
	

�

�

��
�

��
�

��
�

�	
	

��
�

��
�

��
�

�� ��
�� ��

��
�� �� �� ��
�

��
�

��
�

��
�

��
�

��
�

�	
�

� �
	 	

�
	 	 ��

� � � � � � �

� � � � �

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

�

�

�
���

��
�	

��

��
�������	

Figure 5.8: Analysis of the runtime of a single V-cycle for the RIT-1.0 system. Left
side: Time spent on the different grid levels and respective transfer operations for various
numbers of processors, measured on four different hardware configurations. Right side: The
respective associated distribution of how many processors are used for the calculations on
each grid level.



5.2 Performance within PlasmaPIC 73

M
ag
ny

-C
ou

rs
/I
nfi

ni
B
an

d
Iv
y
B
ri
dg

e/
In
fin

B
an

d
B
ro
ad

w
el
l/
In
fin

B
an

d
Iv
y
B
ri
dg

e/
E
th
er
ne

t

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���
�

��

��

��

��

���

���

���

���
��
��

��
� �� � � �� � � �� �
� �� � � �� � �

��
�	 ��


� ��
�

��
�

��
	

�

�

��
�

��
�

��
� �	

	
��
� ��

�
��
�

	
��

�	
�	 �	 �� �� �� ��
�

��
�

��
� ��

�
��
� ��

�
��
�

�
	

�
�� �� �� �� �� �	 �	 �	 �	 �	 �	 �	

�

�� �� �� �� 	 	 �	 �� �� 	 �� 	

� � � � � � � � � � � �

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

�

�

�
���

��
�	

��

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���
�

��

��

��

��

��

��

��

	�

��
��

��

� �� � � �� � � �� �
� �� � � �� � �

�� �	 ��

� ��
�

��
�

��
	

�

� ��

�
��
�

��
�

�	
	

��
�

��
�

��
�

�� �� ��
�	 �� �� ��

��
��

��
�

��
�

��
�

��
� ��

�
�	
�

	 �� �	
�� �� �	 �� �� �� �	 �	

�	 �	
�	

��

� � �
�� � 	 �	 	 	 �� ��

�� ��
	

��

� � � � � � � �
	 	

�
	

� � �

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

�

�

�
���

��
�	

��

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���
�

��

��

��

��

��

��

��

	�


�

��
��

��

� �� � � �� � � �� �
� �� � � �� � �

�� �	 ��

� ��
�

��
�

��
	

�

�

��
�

��
�

��
� �	

	
��
� ��

�
��
�

�� �� ��
�	

�	 �� �� �� ��
�

��
�

��
� ��

�
��
� ��

�
��
�

� �� �	 �
�� �� �	 �� �	 �	 �	 �	 �	 ��

�

� � � �
�	 	 	 �	 �� � �� �	 �	 ��

� � � � � � � � � �

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

�

�

�
���

��
�	

��

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���
�

��

��

��

��

��

��

��

	�

��
��

��

��
�������	

� �� � � �� � � �� �
� �� � � �� � �

�� ��
�� 	� ��
�

��
�

��
�

�	
� ��

�
��
� ��

�
��
�

��
�

��
�

��
�

��
��

�� �� �� �� �� ��
��

��
�

��
��

�� ��
��

�
�

��
��

�� �� �� ��
�

��
�

�
� �

�

� �
�

� � � � � � ��

�� �� �� 	� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

�

�

�
���

��
�	

��

��
�������	

Figure 5.9: Analysis of the runtime of a single V-cycle for the RIT-2.5 system. The
graphs were created analogous to figure 5.8. The RIT-2.5 system is approximately 12.3
times larger than the RIT-1.0 system.



74 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

further remains relatively constant and that the time spent on the second finest grid
quickly approaches that on the finest points towards latency being the limiting factor.
Overall, the finest grid isn’t processed much faster than in one millisecond for either
hardware configuration.

By increasing the number of processors, the size of the individual subdomains shrinks
(the volume is inversely proportional to the number of sub-cells). While the surface area
of a subdomain doesn’t decrease proportionally to its volume, it decreases nevertheless
and a sole dependency on the bandwidth per processor would result in further reduced
runtimes. A significant latency on the other hand sets a lower limit for communication
time that is relatively independent of the message size.
Although the InfiniBand network offers very low latencies of principally under one mi-
crosecond [8], various factors can introduce an additional overhead. These may include
the numerous memory accesses to prepare buffers and to initiate (non-blocking) commu-
nication, the protocol overheads of the MPI implementation and further difficulties in
the realization of bidirectional communication of every process with (up to) six neigh-
boring processes. In fact, since of those six neighbors, most are usually located on
different nodes, the number of outgoing messages from one node is quite high, surpass-
ing the number that fits into the queue pair cache of the InfiniBand connects [65]. The
resulting cache misses cause a significant overhead [66].

Figure 5.10 shows the result of three simple network performance tests. In the case
that only two processes communicate with each other, they can utilize the network
bandwidth very efficiently and large data transfer rates are possible if an appropriate
message size is chosen. Small messages on the other hand need at least 1.7 · 10-5 s to
be delivered.
If all processes of a node send and receive messages with a partner-process, the trans-
mission time varies widely for short messages and the maximum data throughput is
significantly smaller than for the prior case. While the latter is simply a consequence
of more processes sharing the same bandwidth, the former has a direct impact on the
field solver’s performance. Although the minimum transmission time is very similar to
the case of only two processors communicating, the actual program runtime is primarily
affected by the maximum time. Particularly if communication is slow at one point in
the network even for only a short period of time, this affects all other processes, as
they eventually have to wait to receive updated values for their own calculations. This
indirect synchronization of all processes without a special rendezvous point is an un-
avoidable necessity of parallel computation.
The minimum transmission time further increases as a stepwise constant function where
the width of the constant intervals is exactly 64 kB. This indicates that messages larger
than a maximum transfer unit (MTU ) are partitioned by the MPI implementation and
then sent piecewise [67]. The curve then aligns more and more with that of the average
transmission time.
If each process communicates with more than one partner-process (four in the case
being), the curve for the minimum transmission time becomes smoother and the time
for one transmission step further increases. Small messages then require up to 10-4 s.
Since on each grid level, smoothing and calculating the residual require a total of nine
communication steps for the V-cycle configuration used above (two, for red and black
points separately, for each smoothing step and one to calculate the residual values), this
provides an explanation for the lower limit of the runtime of the V-cycle on the finest
grids of approximately 1ms.



5.2 Performance within PlasmaPIC 75

� � �� ��� �
 ��
 ���
 �	
����

����

����

����

����
��

���

���������	������

�
�
�
	�

� � �� ��� �
 ��
 ���
 �	
����

���

���

���

���

���

�
	�

�

�	
��

��
��

��
�

���������	������

�
�
�
	�

� � �� ��� �
 ��
 ���
 �	
����

����

����

����

����

��
���

���������	������

�
��
�
	�
��

��� ��	� �
�� ���� ���� �	��
���
���
���
���
���
���
���
���
���
���

��
��

��

��

����
	������

� � �� ��� �
 ��
 ���
 �	
����

����

���

���

���

���

�
	�

�

�	
��

��
��

��
�

���������	������

�
��
�
	�
��

� � �� ��� �
 ��
 ���
 �	
����

����

����

����

����

��
���

���������	������

�
��
�
	�
��

� � �� ��� �
 ��
 ���
 �	
����

����

���

���

���

���

�
	�

�

�	
��

��
��

��
�

���������	������

�
��
�
	�
��

Figure 5.10: A simple test of the network performance for bidirectional communication.
Top: One processor sends and receives a message to and from a processor on a different
node. The time to complete this process is plotted against the message size in the left
graph. In the right graph, the associated data throughput is plotted against the message
size. Middle: All 24 processes of one node send and receive messages to and from a
distinct partner-process on another node. The left diagram further contains a zoomed
inset with linear axis scaling. Bottom: All 24 processes of one node communicate with
four processes on another node, respectively, for a total of 96 bidirectional communication
channels (graphs analogous).
Note that the total number of simultaneously sent messages differs for the three cases.



76 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

It is further noteworthy that the measurements of the runtime of a single V-cycle do
not reflect the pure strong scaling of the multigrid solver. Firstly because a V-cycle
represents only one iteration of the solution process, which stops only after meeting
the convergence criterion, and secondly because gradually increasing the number of
processes by 24 consequentially changes the aspect ratios of the individual subdomains,
which affects the ratio of data to be exchanged and data to be processed locally.

5.2.2 Weak Scaling

Investigating weak scaling has relevance mostly for parallelized algorithms that ideally
have O(n) scaling. If the time to solution then shows to deviate from constant although
the system size per processor is fixed, the algorithm is either not scaling linearly or
communication costs somehow increase. Both can be the case for PlasmaPIC’s multi-
grid solver, as a larger plasma discharge may have slightly different properties (i. e., the
electric potential may change more from one time step to the next, which influences
the quality of the initial guess for the first V-cycle) and the multigrid approach with
coarse grid agglomeration isn’t limited to a constant message size between neighboring
processes.
Unfortunately, the hardware configuration can affect the outcome, too. If all processes
are located on the same computational node (i. e., on the same motherboard), inter-
process messages don’t need to be sent over the cluster network and a potential com-
munication overhead is smaller. Similarly, if the processes are distributed over only two
nodes, a comparatively large number of neighboring processes don’t need to use the
network to exchange information and the remaining send/receive operations can utilize
the network bandwidth more efficiently than if more nodes are used.

In order to best measure the scaling behavior of the multigrid solver, simulating actual
RITs is furthermore not a suitable approach. First, not every characteristic length of a
RIT component grows proportionally in size if the diameter of the discharge chamber is
increased, e. g., the wall thickness. Second, larger thrusters typically have more (and es-
pecially not larger) grid apertures, whose total number, however, doesn’t scale directly.
Third, the general physical conditions required for stable operation, e. g., neutral gas
pressure and coil current, vary with the thruster’s size and are likely to have an impact
on the field solver’s task. Keeping them constant for the sake of comparability on the
other hand wouldn’t result in meaningful simulations anyway.
In order to best capture the true scaling behavior of the multigrid solver (and, inciden-
tally, the other PIC modules), a hollow cubic box, serving as plasma discharge chamber,
is the better choice. For the setup used here, the walls have a fixed electric potential
and a coil is wrapped around the whole domain.
In addition to keeping the system size per processor constant, the shape of the individ-
ual subdomains is preserved as well to avoid a shift in the ratio of communication to
computation. By consistently using only cubic sections of the equally cubic simulation
domain, the number of processes used to obtain a weak scaling data point is then lim-
ited to cube numbers so that 3× 3× 3, 4× 4× 4, etc. subdomains are used.
The only remaining degree of freedom then is the system size per processor.

A disadvantage of weak scaling is that a communication overhead may be a constant
addition to the total runtime and therefore not apparent. Optimizations with the goal of
eliminating or at least reducing it may then not appear necessary even if they are eligible.



5.2 Performance within PlasmaPIC 77

For this, strong scaling generally provides better insight but it is possible to compare
the weak scaling curves of measurements with varying system size per processor.

Following the above explanations, weak scaling measurements were performed with 33,
43, . . . , 153 processes on systems with the suitable size to provide exactly 153, 203,
253, 303, 353, and 403 grid points per processor. For each combination, the runtime
of the field solver module was measured over 10, 000 time steps of the simulation and
then converted to the runtime of a single time step. The corresponding average time
for the various particle operations, involving loops over all particles in the respective
subdomain, additionally serves as a reference value.
All computations were performed on nodes with AMD Magny-Cours CPUs, which al-
lowed for the most cores to be available simultaneously to a single user on LOEWE-CSC
at the time of the measurements.
Coincidentally, this CPU type is relatively slow compared to the Intel CPUs that are
available alternatively. Combined with the InfiniBand network, this minimizes the ratio
of communication (due to high bandwidth) to computation (due to slow CPUs) among
the available hardware configurations and therefore offers a "best case scenario" where
communication bandwidth only plays a relatively minor (but non-negligible) role. How-
ever, while weak scaling (and especially strong scaling) on a faster CPU may be worse
due to communication becoming a performance bottleneck more quickly, it is important
to point out that the performance for every individual measurement won’t deteriorate.

Figure 5.11 shows the results of these measurements with individual graphs for each
curve (in ascending order by system size per processor).
A first and obvious observation is that runtime is not constant but increases towards
larger systems/more cores. While this is not the pursued outcome, various properties
of the displayed curves relativize this deviation from the ideal at least to some degree.
For all curves, including those associated to the particle operations, a cutoff towards
the smaller systems that are computed by relatively low numbers of processors can
be observed. This is an indication of increased efficiency regarding the utilization of
the network bandwidth (with more neighboring subdomains processed on the same
node). Neglecting this effect still leaves a general increase in runtime for all curves,
which demonstrates that even the particle operations don’t scale perfectly. This can
partially be explained by the increasing characteristic length of the plasma vessel, due
to which the mean free path of the particles increases as well. Since the relative share
of particles undergoing particle-wall interactions decreases, the total particle number
increases disproportionately.
However, the possibility that communication additionally causes an increasing overhead
toward the largest systems can’t be ruled out.

Within each curve, the gradient increases furthermore consistently after the 6th to 7th

data point (more apparent for the field solver curves). Moreover, at that point, a short
interval of relatively constant runtime ends and the general trend towards linear increase
starts.
Since the respective system size at that point is different for every graph, this is unlikely
to be connected to an increasing workload per processor. In fact, the parameters that
the solver dynamically adjusts during the simulation, namely the number of V-cycles
nV and the number of smoothing steps nsmooth = npre + npost (logged separately),
barely change over the course of the weak scaling measurements. For the 303 grid
points per processor case, they are given in table 5.2. Here, the number of V-cycles



78 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

��� ������� ������� ������� ������� ������� ������� �������

�

��

	�

��

��

���
�
��������������������
�	������������������

����

��
��

��

���������	�

��������������
��������� �������

����

��� ������� ������� ������� ������� ������� �������

�

��

	�

��

��

���

���
������������� ��������

���� ������������

��������

��
��

��

���������	�

���� ���������
����������!�������

����

� ����� ����� ����� ����� ����� �����

�

��


�

��

�

���

���

�
�
������������� ��������
	����� ������������

��������

��
��

��

���������	�

���� ���������
����������!�������

����

��� ������� ������� ������� ������� �������

�

��


�

��

�

���

���

�
�

���
	������������ ��������
������ ������������


���	�������

��
��

��

���������	�

���� ���������
����������!�������

����

��� ������� ������� ������� �������

�


�

�

���

���

���
	������������ ��������
������ ������������


��� ����	�������

��
��

��

���������	�

���� ���������
����������!�������

��� ������� ������� ������� ������� ������� �������

�


�

��

���

���

���

�
�

���

������������! �������
����!���� �������

����
��� ����	�������

��
��

��

���������	�

����!�������� 
����������"�������

Figure 5.11: Weak scaling of the multigrid field solver within PlasmaPIC, generated by
measuring the cumulative time to solution over 10, 000 time steps. Each graph displays
the measurements corresponding to a single time step for a distinctive number of grid
points per processor. The 13 data points were consequently generated by computations on
successive cube numbers of processors, ranging from 27 to 3375. For comparison purposes,
the time PlasmaPIC spends on the particle operations is displayed as well.



5.2 Performance within PlasmaPIC 79

Cores System size nV npre npost
27 903 2.00 2.00 2.00
64 1203 2.00 2.00 2.00
125 1503 2.00 2.00 2.00
216 1803 2.02 2.02 1.98
343 2103 2.00 2.00 2.00
512 2403 2.01 2.03 1.99
729 2703 2.03 2.07 1.97
1000 3003 2.03 2.21 1.99
1331 3303 2.00 2.15 2.04
1728 3603 2.02 2.13 1.98
2197 3903 2.03 2.18 1.98
2744 4203 2.05 2.23 1.97
3375 4503 2.04 2.26 2.00

Table 5.2: Average values for the dynamically adjusted parameters of the multigrid solver
at 303 grid points per processor

remains very constant and the number of smoothing steps (then roughly proportional
to computational workload) overall increases by marginal 6.5 % over a range of system
sizes that vary by a factor of 125.
Given that the runtime approximately doubles between the calculations on 216 and
3375 cores, this can’t be the main contributing factor.

Rather, the increase can be associated with the change in the number of processors used.
A crucial property of the InfiniBand network of LOEWE-CSC is that it is configured
as a 2:1 blocking fat-tree. In that case, several compute nodes are connected to the
same network switch and can communicate with the full network bandwidth. However,
with 2:1 blocking, the number of communication channels to the rest of the network is
only half that between node and switch level. If all nodes connected to a switch send
messages to nodes on different switches, these messages therefore need to be queued,
implicating that for two separate messages of same length it can take twice as long for
one to be delivered than for the other. Additionally, the network bandwidth becomes a
partially shared resource, meaning that communication-heavy compute jobs started by
different users may interfere with each other performance-wise.
For a problem that is parallelized using the domain decomposition approach, such a
blocking network won’t affect performance in that runtime shows a sharp increase when
the number of processors is scaled up. Considering that each process has up to six neigh-
boring processes with which it communicates bidirectionally and that received messages
can be used directly to continue with calculations, communicating with a single pro-
cessor to which it has reduced bandwidth can easily be compensated for by the time it
takes to fully process the other neighbors’ messages. As more and more neighbors are
not connected to the same network switch, the performance therefore worsens.
To confirm this conclusion, the weak scaling test would have to be repeated on a cluster
with a non-blocking network with otherwise similar capabilities, which was unfortu-
nately not available for this thesis.

However, these weak scaling measurements show that by using the multigrid field solver,
PlasmaPIC’s overall runtime won’t be dominated by it, independent of system size and
number of processors.



80 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

� ��� ���� ���� ���� ���� ���� ���� ����
����

����

����

���

���

���
��

���

�����

��	���
�������
�������������

���������������

� ��� ���� ���� ���� ���� ���� ���� ����
����

����

����

���

���

���

����������������

��
���

�����

��
����������
������	����

� ��� ���� ���� ���� ���� ���� ���� ����
����

����

����

���

���

���

����������������

��
���

�����

��
����������
������	����

� ��� ���� ���� ���� ���� ���� ���� ����
����

����

����

���

���

���

����������������

��
���

�����

��
����������
������	����

Figure 5.12: Average runtime on systems of fixed size (1003, 2003, 3003, 4003) over 10, 000
time steps of field solver and particle operations plotted against the number of processors

5.2.3 Strong Scaling

While not being as relevant to the goal of this thesis as weak scaling, measurements
of the strong scaling behavior offer a different perspective on the performance of the
multigrid field solver.
Using the same box-shaped plasma discharge chambers as for the weak scaling tests,
runtime of both field solver and particle operations were measured on four different
systems (1003, 2003, 3003, 4003 grid points) for cube numbers of processors in the range
from 1 to 3375. Due to the limited memory size of a single compute node, the minimal
number of processors had to be increased step by step, so the largest system could only
be simulated on at least 64 processors. The results are displayed in figure 5.12.

As already observed in section 5.2.1, the field solver’s runtime quickly approaches a con-
stant value for small systems. It furthermore surpasses that of the particle operations,
which keeps decreasing for all configurations.
For the larger systems, the scaling behavior is generally better. This can be visualized
by rescaling the runtime plots to a reference value, generating a unitless speedup value
for each data point (figure 5.13). For comparability reasons, the reference value for each
system is the respective data point measured with 64 processors. This is a distinction
from the standard approach, where speedup is the ratio of runtime on one core to that



5.2 Performance within PlasmaPIC 81

�� �� ��� ��� ��� ���� ���� ��	�

�

��

���
���������������

��
��
��

��
��
	��
�

��
��
�


��


�����

��	���
�������
�������������
�����
���

�� �� ��� ��� ��� ���� ���� ��	�

�

��

���
����������������

��
��
��

��
��
	��
�

��
��
�


��


�����

��
����������
������	����
������

�� �� ��� ��� ��� ���� ���� ��	�

�

��

���
����������������

��
��
��

��
��
	��
�

��
��
�


��


�����

��
����������
������	����
������

�� �� ��� ��� ��� ���� ���� ��	�

�

��

���
����������������

��
��
��

��
��
	��
�

��
��
�


��


�����

��
����������
������	����
������

Figure 5.13: Speedup of both the field solver and the particle operations. The reference
value is chosen to be at 64 processors for all four systems.

on Np cores.
In theory, the expected ideal speedup as a function of the number of processors is a
simple linear function with a gradient of 1, i. e., the same problem would be solved twice
as fast on two processors than on one and eight times faster on 512 processors than on
64. In practice, however, and if the underlying algorithm is relatively independent of
communication, speedup values greater than these expected values can be achieved.
This is due to the fact that with more processors, increasingly larger portions of the
fixed-size problem fit into the respective CPU caches, allowing for increasingly efficient
computational operations.

Such characteristics, exceeding the expected results, can be observed for the particle
operations in PlasmaPIC, as shown in figure 5.13, and were already described in [8].
Only for the 1003 system the increase in speedup eventually deteriorates.
The multigrid field solver on the other hand is far more dependent on communication
and caps at a constant speedup whose value increases with system size. Only on the
largest system, communication is not the determining factor and speedup values greater
than the expected are achieved (on less than 2000 processors).
This fundamental difference between the performances of the field solver and the particle
operations that can’t be observed by only measuring weak scaling illustrates a significant
algorithmic imbalance within PlasmaPIC: The particle operations benefit more from



82 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

��� ������� ������� ������� ������� �������
���

�������

�������

�������

�������

�������
�
�


��
�
��
��
�
���

	�
�

���������

�	�������
�
���

��� ������� ������� ������� 	������ �������

�

�

��

��

��

��

�
	

���


�
��
��
��
�
�

���������

�
�������
�����

��� ���	��� ���	��� ���	��� ���	��� ���	���

���

���

���

���

���

�
��

��∆
Φ
���

�

���������
��� ���	��� ���	��� ���	��� ���	��� ���	���

�����

�����

����

����

����

����

����

����

∆�
�∆

� �
�
�

���������

(a) (b)

(c) (d)

Figure 5.14: Evolution of the number of particles (a), the average kinetic energy (b),
the maximal change in the electric potential over one time step (c), and the net energy
deposited into the system (d) over 106 time steps, as observed for a simulation of the
RIT-1.0 for which the accuracy of the multigrid field solver is very high.

using more processors and the communication-heavy field solver is ultimately still the
bottleneck of overall strong scaling. However, the process of choosing an appropriate
number of processes for a given simulation can be simplified to only considering the
expected runtime of the particle operations, as the field solver basically always completes
in minimal time.
This is especially important for simulations for which the number of particles is higher
than in the cases discussed here (higher neutral gas density and/or higher power input).
While the workload for the particle operations is directly proportional to the number
of particles (electrons and ions) and therefore to the densities ne and ni as well, the
field solver’s runtime is mostly dependent on the mesh size ∆x, which only needs to be
scaled with n-1/2e (cf. equations (2.23) and (2.24)).

5.2.4 Influence of the Field Solver’s Accuracy

At the start of every PlasmaPIC simulation, a value for rtol, the multigrid field solver’s
convergence criterion (equation (4.21)), is read from the input card. Principally, a



5.2 Performance within PlasmaPIC 83

��� ���
��� ���
��� ���
��� 	��
��� ���
���

����

����

����

����

����

����

����

�

�
��
��
��



���

	

���
�

���������

Figure 5.15: Power deposition into the simulated plasma by the electromagnetic fields
induced by the coil that is wrapped around the thruster. The target value defined in
the input card is 0.16 W. The curve is stepwise constant because the coil current is only
adjusted every RF period (T = 0.2µs =̂ 26, 667 time steps).

simulation runs smoothly for a wide range of rtol, with the lower limit resulting from
the finite machine precision. I. e., if rtol is set too small, an iterative process may never
complete because the stop criterion is unreachable.
The upper limit on the other hand is determined by the effects the accuracy has on
the behavior of the simulated plasma. An inaccurate solution for the electric potential
results in unphysical acceleration of the charged particles which not only violates the
conservation of energy over a single time step but may ultimately invalidate the whole
simulation.
Since the pursued accuracy directly affects the field solver’s runtime, it is however
desirable to use a value that is both close to the upper limit and far enough away from
it to allow for a stable and physically accurate simulation.

In order to investigate the influence of the field solver’s accuracy on PlasmaPIC as
a whole, simulations of both the RIT-1.0 and the RIT-2.5 were started with various
different values for rtol. By comparing certain quantities with what can be observed for
high-accuracy runs, an appropriate value can then be found.

Figure 5.14 shows the evolution of four different quantities over the course of 106 time
steps for the case of high accuracy (rtol = 10-8, RIT-1.0): the number of particles in the
simulation domain (electrons and ions, separately), the average kinetic energy of the
particles, the maximal change in the electric potential on any grid point compared to
the respective previous time step, and the net energy lost or added to the system per
RF cycle.
The shape of all displayed curves is related to the process of establishing a stable plasma
discharge from a homogeneous charge distribution. At first, many electrons and ions
strike the various surfaces in the domain and are removed from the simulation. After the
plasma sheath has formed and the amount of power that is deposited into the plasma
is gradually being increased (cf. fig 5.15), their total number rises again. How strong
the average kinetic energy and the electric potential further fluctuate depends on the



84 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

��� ������� ������� ������� ������� �������
���

�������

�������

�������

�������

�������

�������
�
�


��
�
��
��
�
���

	�
�

���������

�	�������
�
���

��� ������� ������� ������� 	������ �������

�

�

��

��

��

��

�
	

���


�
��
��
��
�
�

���������

�
�������
�����

��� ���	��� ���	��� ���	��� ���	��� ���	���
�

�

��

��

��

�
��

��∆
Φ
���

�

���������
��� ������� ������� 	������ ������� �������

����

���


���	

����

����

����

����

����

���

���

∆�
�∆

� �
�
�

���������

(a) (b)

(c) (d)

Figure 5.16: Evolution of the number of particles (a), the average kinetic energy (b),
the maximal change in the electric potential over one time step (c), and the net energy
deposited into the system (d) over 106 time steps, as observed for a simulation of the
RIT-1.0 for which the accuracy of the multigrid field solver is very low.

deposited power as well. The distance between successive maximums and minimums
depends on the frequency of the alternating coil current (the charged particles are
accelerated and decelerated twice per RF period).
The bottom right curve describes the difference between the energy deposited into the
plasma and the energy "lost" due to interactions with a wall (particles and their energy
are removed from the simulation; only their charge may reside on surfaces) or the
neutral background gas (ionization, excitation, charge exchange) and is only supposed
to be zero once a stable plasma discharge is achieved and the particles’ mean kinetic
energy over one RF period remains constant. The state of the plasma can then be
described as a dynamic equilibrium, where the number of particles being removed from
the simulation is equal to the number of particles generated from the neutral background
gas by ionization (over one RF period).

Repeating the same simulation with a high value for rtol yields the curves displayed
in figure 5.16. Here, rtol was set to 8 · 10-3. Simulations started with a greater value
aborted prematurely due to particles leaving the simulation through domain boundaries
that were not defined as exit planes (which can only happen if they are accelerated strong



5.2 Performance within PlasmaPIC 85

enough to pass through a wall element).
The reduced accuracy seems to primarily affect approximately the first 105 time steps.
There is an additional maximum in the number of particles and their kinetic energy, as
well as significantly bigger changes in the electric potential. Since this coincides with a
net loss of energy, unphysical processes must occur in the simulation.
However, after this initial phase, the system reaches an equilibrium state that is very
similar to that achieved with rtol = 10-8. As shown in figure 5.17, even the distribution
of particles and the electrostatic potential are very similar, so there is no clear indication
that the state of the simulated plasma is actually a result of unphysical accelerations.
Only the total number of particles stabilizes at a visibly higher value. Setting rtol to
10-3 fixes this discrepancy and the simulated plasma’s state of equilibrium is relatively
equivalent. This indicates that the field solver’s accuracy may be lowered after a certain
number of time steps without affecting the outcome, which is a potential approach for
future optimizations.

Figure 5.18 shows for four higher values of rtol how the various quantities deviate from
a run with rtol = 10-8. Apart from the net energy influx, for which the value of a sta-
tionary plasma is ideally zero, all curves represent the relative deviation as percentage
values.
While the general assumption that the results align closer with the high-accuracy simu-
lation the lower rtol is chosen holds true, the general long-term behavior of the simulation
at rtol = 10-3 is already very close to that case. Although deviations in the low single-
digit percentage range can be observed, this is unlikely to affect the overall ability of

���

��
�����

��������

��������

	�������

��������
�
	���	���������

����

����

����

����

����

����
����
���	����

Figure 5.17: Sectional view of the ion density ni (top) and the electrostatic potential Φ
(bottom) inside the RIT-1.0, simulated with high accuracy of the field solver (left) and low
accuracy (right). The depicted scales are simultaneously valid for the left and right side.
Both simulations result in the asymmetric density distribution described in [8].



86 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

��� ������� ������� 	������ 
������ �������
���

���

���

��

�

�

��

��

�	
��
	�

��

	

��
	�

��
��

��
��

�

��
�����

��������
⋅����

���������⋅����

���������⋅����

���������⋅����

��
��������	�������

��� ������� ������� 	������ 
������ �������
���

���

���

��

�

�

��

�	
��
	�

��

	

��
	�

��
��

��
��

�

��������

��������
⋅����

���������⋅����

���������⋅����

���������⋅����

�������
���
	

��� ������� ������� 	������ 
������ �������

����

���

�

��

���

�	
��
	�

��

	

��
	�

��
��

��
��

�

�	�������

��������
⋅����

���������⋅����

���������⋅����

���������⋅����

����
	��	�������������������

��� ������� ������� 	������ 
������ �������
����

���

�

��

���

�	
��
	�

��

	

��
	�

��
��

��
��

�

�	�������

��������
⋅����

���������⋅����

���������⋅����

���������⋅����

����
	���	�����������	��

��� ������� ������� ������� 	������ �������
�	�

���

���

���

�

��

��

�	
��
	�

��

	

��
	�

��
��

��
��

�

�
�������

������
�	⋅����

������
��⋅����

������
��⋅����

������
��⋅����

������	����
������
��

��� ������� ������� ������� 	������ �������
�����

�����

����

����

����

�
��
��	


�
��
��

��
��

�

�����	
��

������
�	⋅����

������
��⋅����

������
��⋅����

������
��⋅����

∆��∆


(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Deviation from the values obtained from a simulation run with rtol = 10-8

of the considered quantities for rtol = 8 · 10-3, rtol = 10-3, rtol = 10-4, and rtol = 10-6, all
plotted against the simulation time step. (a) The total number of electrons in the system.
(b) The total number of ions. (c) The average kinetic energy of the electrons. (d) The
average kinetic energy of the ions. (d) The maximal change in the electric potential from
one time step to the next. (e) The net energy influx, calculated by subtracting the energy
of conversion events PlasmaPIC doesn’t keep further track of from the energy deposited
by the electromagnetic fields induced by the coil current.
The displayed ranges of values are chosen such that the stable behavior to which the
simulated plasma settles after approximately 5 · 106 time steps is shown in appropriate
detail. This entails not fully covering the initial fluctuations of the low-accuracy runs.



5.3 Comparison with the SOR Method 87

��� 
��!��� ��!��� ��	!���

�

	�


�

��

�

���

�	�
����������������������
�
������������������

	�������

��
��

��

���������	�

��������������
���������� ��������

��� ���"��� ���"��� ���"��� 	��"��� 	��"��� 
��"���

�


�

��

��

�	�

���

��
	������������ ��������
������ ������������

��
��

��

���������	�

���� ���������
����������!��������


���	�������

� � ��� � ��� 	 ��� 
 ��� � ��� � ���
�

��

���

���

���

���

	��

	��
����������������������
	������������������

��
��

��

���������	�

��������������
������������������

	�����������

��� 	��#��� ���#��� ��#��� ���#��� ���#���
�

���

	��


��

���

���

��

���

������������! �������
������!���� �������

��
��

��

���������	�

����!�������� 
����������"��������

����
���	�������

Figure 5.19: Weak scaling of the SOR field solver within PlasmaPIC, generated by mea-
suring the cumulative time to solution over 10, 000 time steps. The measurements were
performed completely analogous to those for the multigrid solver (figure 5.11), but only up
to 303 grid points per processor. The displayed timings correspond to a single time step.

PlasmaPIC to mirror a real plasma, considering that simplifying assumptions made to
model a physical problem always introduce some form of error.
However, a more accurate solution of the field solver can always be enforced so that its
accuracy can be further investigated and possibly ruled out as a problem.

For the RIT-2.5, the initial fluctuations of the considered quantities are generally bigger
and a value of rtol of not more than 10-4 must be chosen. Whether this is a trend for
increasingly larger systems or simply an advantage of such a small system as the RIT-1.0
remains to be investigated.

5.3 Comparison with the SOR Method

Before the development of the multigrid solver, a parallel red-black SOR solver was
used as PlasmaPIC’s field solver. Motivation for this was the relatively simple imple-
mentation and the method’s applicability to small systems. In order to demonstrate
the improvements made by the switch, the weak scaling measurements discussed above
were performed for the SOR method as well, using the same systems and the same



88 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

convergence criterion.
Figure 5.19 shows these measurements for up to 303 grid points per processor. It’s
evident that using larger local grids doesn’t offer further insights, as the field solver’s
runtime surpasses that of the particle operations after the first two data points (< 100
processors) with 303 grid points per processor.

The shape of the measured curves are in very good compliance with what can be ex-
pected when parallelizing a O(n4/3) algorithm. Weak scaling imposes a relation of
proportionality between n and the number of processors Np, so ideally, the solver scales
with

O(n4/3 · 1

Np
) = O(n1/3) . (5.7)

The original O(n4/3) scaling can further be reproduced by adding up the CPU time used
by the individual processes (figure 5.20). This consequentially produces linear curves
for the particle operations.

Figure 5.19 demonstrates the absolute necessity of a solver with proper scaling behavior.
While SOR is very competitive for the smallest systems, its workload then quickly
increases and passes that of the particle operations. A direct comparison with the

��� ���!��� ��!��� ��	!���

�

���

	��


��

���
����������������������

�
��

�

�
	�
��
�
��

�
	�

��
���

���������	�

��������������
���������� ��������

���� 	���

��� ���!��� ���!��� ���!��� 	��!��� 	��!��� 
��!���

�

���

	��


��

���

���

��
	���������������������

�
��

�

�
	�
��
�
��

�
	�

��
���

���������	�

��������������
���������� ��������

���� 	��� 
���

� �!��� �!��� 	!��� 
!��� �!��� �!���

�

���


��

���

��

����

����
����������������������

�
��

�

�
	�
��
�
��

�
	�

��
���

���������	�

��������������
���������� ��������

���� ���� 	���

��� 	��!��� ���!��� ���!��� ��!��� ���!���

�

���

��

�	��

����

	���

	���

���������������������

�
��

�

�
	�
��
�
��

�
	�

��
���

���������	�

��������������
���������� ��������

����
���	�������

Figure 5.20: Cumulative CPU time used for the SOR weak scaling measurements, plotted
against the total system size for 153, 203, 253, and 303 grid points per processor. Each
data point represents the time needed for one time step (calculated by averaging the time
for 10, 000 time steps).



5.3 Comparison with the SOR Method 89

��� ������� 	������ �������

�

��

��

��

	�

���

���
��
��

��

���������	�

��
��������
�����������

��� ������� ������� ������� ������� ������� �������

�

��

��

	�


�

���

���

���

�	�

��
��

��

���������	�

�����������
�����������

� ����� ����� ����� ����� ����� �����
�

��

���

���

���

���

���

��
��

��

���������	�

�
	��������
�����������

��� ������� ������� 	������ 
������ �������
�

���

���

���

���

���

	��

��
��

��

���������	�

�����������
�����������

Figure 5.21: Weak scaling of both the SOR solver and the multigrid (MG) solver for
153, 203, 253, and 303 grid points per processor. The multigrid solver is faster for every
considered system size.

� ��� ���� ���� ���� ���� ���� ����
���

���

���

��	

��


���

���

���

��	

�
��

�
�
	�
��
�


��
�
�
��

�

�����

�������
�������
�������
�������

� ��� ���� ���� ���� ���� ���� ����
��

��

��

��

��

��

	�

	�


�


�

���

�
��

	

��
��
�	
��

��
��

�

�����

�������
�������
�������
�������

Figure 5.22: Improvements made by the multigrid solver in comparison to the original
SOR solver, depicted by the metrics of runtime ratio (left) and relative runtime savings
(right).



90 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

multigrid solver (figure 5.21) furthermore shows that not only was the scaling behavior
improved vastly by the new solver, the total runtime also benefits for every measurement,
even for systems as small as 453 grid points (computed with 27 cores). This was not
a requirement for the multigrid solver but adds to the list of advantages over other
solvers.
For figure 5.22, the runtime measurements of the two methods were further compared
directly by displaying their ratios (left graph) and the percentage of the runtime of the
SOR solver that is saved by the switch to the multigrid solver.

5.4 Comparison with PETSc

The widely used PETSc (Portable, Extensible Toolkit for Scientific Computation) soft-
ware suite, developed by the Argonne National Laboratory, offers a wide range of data
structures and routines for the direct and iterative numerical solution of partial differen-
tial equations. Like the multigrid solver developed in the scope of this thesis, it supports
MPI and aims to be generally scalable but has the advantage of being applicable more
universally.
For the solution of linear systems such as those arising from discretizing the Poisson
equation, it provides the tools to assemble parallel vector and (sparse or dense) matrix
objects, which can then be used in conjunction with numerous Krylov subspace meth-
ods and preconditioners (discussed in section 3.8).
Particularly, it allows for the linear system to be set up without further arrangements
for a specific solution method and the combination of Krylov subspace method and
preconditioner, including all additional configuration parameters, can be chosen at run-
time.
This is beneficial for problems for which a suitable approach is not initially known or
for optimizing the solution process in time-critical applications.

In order to assess PETSc’s capabilities as PlasmaPIC’s field solver, it therefore not only
has to be implemented using the provided interfaces, a specific solution method also
needs to be found. For this, the wide range of available Krylov subspace methods and
preconditioners was systematically tested for performance on three of the cubic plasma
vessels used for the weak scaling tests in this thesis. In all three cases, the lowest
runtime was achieved with the flexible GMRES method, preconditioned with classical
algebraic multigrid. This result is in accordance with the general consensus that the
Poisson equation is solved most efficiently with a multigrid method.
As any multigrid method, the algebraic multigrid preconditioner implemented in PETSc
is configurable with a vast variety of options, including the smoothing method, the
number of smoothing steps, and the choice of coarse grid solver. The extensive tests
revealed that the choice of these options only affects the number of total iterations if
they add a significant overhead to a V-cycle (i. e., if the number of smoothing steps
surpasses three or an elaborate smoother is used) and the plainest choice of options
(i. e., one pre- and one post-smoothing step of block Gauss-Seidel) results in the lowest
runtimes.

The choice of the Krylov subspace method is furthermore not a vital factor for per-
formance, as other methods such as the conjugate gradient method or the generalized
conjugate residual method achieve convergence in the same number of iterations (as



5.4 Comparison with PETSc 91

��� ���"��� ��"��� ��	"���
�

��

���

���

	��

	��


��

	���

������������� ��������
������� ������������

����

��
��

��

���������	�

���� ���������
����������!����������

����

��� ���!��� ���!��� ���!��� 	��!��� 	��!��� 
��!���
�

��

���

���

	��

	��


��
	���������������������
�������������������

��
��

��

���������	�

��������������
���������� ���������

	��� 
���

� �!��� �!��� 	!��� 
!��� �!��� �!���
�

��

���

���

���

���

	��

	��
����������������������
	������������������

��
��

��

���������	�

��������������
���������� ���������

���� ���� 	���

��� 	��$��� ���$��� ��$��� ���$��� ���$���
�

��

���

���

	��

	��


��

���� �������"!����� �
����� "����!�������

��
��

��

���������	�

��� "��������!
����������#� ��������

����
���	�������

Figure 5.23: Weak scaling of the implemented PETSc solver for 153, 203, 253, and 303

grid points per processor.

long as the algebraic multigrid preconditioner is used) and perform close to the used
method runtime-wise. It is, however, necessary to speed up convergence. While the
algebraic multigrid method eventually does converge by itself, the addition of a Krylov
method reduces the number of iterations significantly.

With an efficient PETSc solver being implemented, the weak scaling measurements
previously done for the multigrid and SOR solver (that were developed specifically for
PlasmaPIC) were performed a third time. The results are shown in figure 5.23. Again,
the runtime of the particle operations serves as a reference.
Several observations can be made from these measurements. First, although the number
of iterations remains very constant throughout the wide range of system sizes (between
three, for the smaller systems, and four for the larger ones), the runtime is not even
close to being constant but increases significantly. Second, while the smallest systems
take longer to be solved the more grid points per processor are used (which is expected),
the respective largest systems are solved in a very similar amount of time although they
deviate by a factor of eight in size (2253 compared to 4503). As a consequence, the
PETSc solver actually performs worse than the SOR solver for 153 and 203 grid points
per processor.
A direct comparison with the multigrid solver, analogous to figure 5.22, is given by
figure 5.24. While both SOR and the PETSc solver perform worse than the multigrid



92 5 ASSESSMENT OF CAPABILITIES AND PERFORMANCE

� ��� ���� ���� ���� ���� ���� ����
���

���

���

��	

��


���

���

���
�
��
��

��
�

��

��
�	

��
��

�

�����

�������
�������
�������
�������

� ��� ���� ���� ���� ���� ���� ����
��

��

��

��

	�

	�


�


�

���

�
��

	

��
��
�	
��

��
��

�

�����

�������
�������
�������
�������

Figure 5.24: Advantage of using the multigrid solver developed for this thesis over a solver
from an external software suite, depicted by the metrics of runtime ratio (left) and runtime
savings (right).

solver for all measurements, the order in which the curves can be ranked as performing
best compared to the multigrid solver is reversed, i. e., PETSc performs better relatively,
if the number of grid points per processor is high.
In fact, the developers recommend at least 10, 000 unknowns per processor, which cor-
responds to subdomains with approximately 223 grid points.

There are various reasons for PETSc’s comparatively poor weak scaling which can be
supported by the above observations and by a review of the log files generated by the
PETSc environment.
The fact that the runtime on large numbers of processors is relatively independent of
the number of grid points per processor indicates that not necessarily the size of the
messages sent between the processors is the problem but rather their total number.
The queuing of messages to be sent from a node could then be a contributing factor,
more so if the number of communication steps per iteration is higher than for the other
methods. The log files actually report a severe imbalance in the execution time of the
communication routines of the order of a factor of ten.
The various routines called by the algebraic multigrid preconditioner further show a sim-
ilar load-imbalance, which can be caused by the number of irregular Dirichlet boundaries
not being fully reduced when the coarse grid systems are generated or by an inefficient
execution of the coarse grid agglomeration approach.
The PETSc developers (personal communication, May to June 2018) further suggest
insufficient memory bandwidth and low network latency as possible causes.

Nevertheless, the multigrid solver developed in the scope of this thesis shows to be far
less restricted by these possible hardware problems and meets the requirements that
were set as the main goal.



Chapter 6

Conclusions

Within the scope of this thesis, a parallel geometric multigrid field solver with great
scaling capabilities was developed. This completes the efforts to optimize all algo-
rithms used in PlasmaPIC, the 3D plasma simulation tool developed at the University
of Gießen, towards applicability on (in theory) arbitrarily sized systems.

Multigrid methods, in general, spread the solution process over a hierarchy of increas-
ingly coarser grids in order to efficiently reduce short- and long-range error components
alike. By this, a powerful class of algorithms arises that offers the capability to solve a
linear system of size n in O(n) operations.

The multigrid solver developed for PlasmaPIC distinguishes itself by being able to
solve second order elliptic partial differential equations with variable coefficients on ar-
bitrarily sized systems with irregular Dirichlet boundaries, while being parallelized very
efficiently.
This is achieved firstly by combining the coarsening schemes of cell-centered and vertex-
centered multigrid and applying the Shortley-Weller discretization scheme to the hier-
archy of coarse grids and secondly by utilizing the concept of coarse grid agglomeration
to prevent ineffective communication involving too many processors for a given set of
data. A fast benchmark module further optimizes parallel performance for any new
problem and hardware.

Thorough measurements of the weak scaling behavior show that by increasing the num-
ber of processors used for computation proportionally to the system size, the solver’s
runtime and therefore the time the simulation needs to progress by one time step can be
kept almost constant. This is a crucial prerequisite for future simulations of large-scale
plasma discharges such as those present in the radio-frequency ion thrusters (RITs) that
are developed and investigated at the University of Gießen. Neither the previously used
SOR field solver nor a solver based on the PETSc software suite achieved a similar
performance, both regarding scaling behavior and runtime on any specific system size.
While the former is restricted by its algorithmic scaling, the latter brought the network
for inter-process communication of the used HPC cluster to its limit.
For example, a simulation of a RIT-1.0 on 96 processors that formerly took 36 hours
to complete 106 time steps with the SOR solver is now approximately 44% faster (20
hours). In this case, the number of simulated time steps per second increased from 7.6
to 13.7.

93



94 6 CONCLUSIONS

���

���	����

���	����

���	����

���	����

���	����
�
	���	���������

���

��������

��������

��������

��������

��������
�
	���	���������

Figure 6.1: Cross-sectional views of the ion density in a RIT-2.5 simulation after 3·106 time
steps. Two simulations were run in order to demonstrate the influence of the density n0 of
the neutral background gas (Xenon). Top: n0 = 2.5 · 1019 m-3. Bottom: n0 = 5 · 1019 m-3.
The plane displayed on the left side, respectively, divides the domain into halves with
respect to the y-axis. The plane on the right side corresponds to a slice perpendicular to
the z-axis.

As expected, a similar comparison for the RIT-2.5 yields a far more significant per-
formance improvement. Here, using the SOR solver leads to a total runtime of 136
hours on 1331 processors (2.0 time steps per second). The multigrid solver reduces the
runtime by a factor of 4.6 to 29 hours (9.5 time steps per second). The increase in
total runtime despite the nearly identical ratio of the total system size to the number
of processors compared to the simulation of the RIT-1.0 can be attributed to, among
other reasons, a disproportional increase in the total number of simulated particles.

The progress made here qualifies PlasmaPIC as a valuable tool for analyzing and op-
timizing RITs. Its application is further only limited by the available computational
power.
However, since a large plasma discharge can be expected to take longer to form a dy-
namic equilibrium than a small one, the number of time steps that need to be simulated
increases as well. This can’t be compensated by using better-scaling algorithms and em-
phasizes the necessity to further improve and optimize PlasmaPIC.
For instance, the simulation of a RIT-2.5 reaches a dynamic equilibrium after close to
1.8 · 106 time steps, which is approximately three times more than it takes for the RIT-
1.0. Moreover, the computations performed in the scope of this thesis were mostly set
up such that relatively small plasma densities emerged as the dynamic equilibrium. In
practice, however, RITs need to operate at higher densities in order to generate a signif-



95

icant thrust. This is achieved by higher pressures of the neutral gas and by increasing
the power that is supplied to the plasma by inductive coupling.
As shown in figure 6.1, this affects not only the total number of charged particles in the
simulation, but also their distribution. A brief discussion and a more detailed visual-
ization of the plasmas generated from two different neutral gas densities can be found
in the appendix.
Overall, future simulations of plasma discharges are likely to require disproportionally
more particles in the domain of interest. Since this affects the particle operations (di-
rect proportionality of the computational work) more than the field solver (the mesh
size of the discretized domain ∆x that dictates the system size n should be inversely
proportional to the square root of the electron number density ne), the latter’s relative
share of the total runtime should further decrease and a simulation’s practical feasibility
remains foremost a matter of available computational resources.





Appendix

Simulation of the RIT-2.5: Influence of the
Neutral Gas Density

Two simulations of the RIT-2.5 were carried out, one with a neutral gas density n0 of
2.5 · 1019 m-3 (which corresponds to a pressure of 10.4mbar at a temperature of 300K),
the other with double that value. All other configuration options influencing the plasma
were kept the same. Particularly, the target value for the electric power deposition was
set to 0.8W and the frequency of the alternating coil current to 2.86MHz.

Figure A.1 shows a comparison of the development of various simulation parameters
over 4 · 106 time steps. As can be expected, a higher gas pressure also increases the
plasma density due to higher ionization rates. Similarly, the average kinetic energy
of both electrons and ions decreases due to a higher abundance of potential collision
partners, which restricts the acceleration by the electromagnetic fields.
A higher neutral gas density furthermore reduces the coil current that is necessary to
reach the same power deposition. This is directly connected to the total number of
charged particles that are accelerated by the electromagnetic fields. Since the kinetic
energy of more particles is being increased, the individual energy transfer must reduce
on average. Therefore, the magnitude of the electromagnetic fields induced by the coil
current is decreased.

In good agreement with the observations made in [8], the density of the background gas
also affects the distribution of the densities ni and ne of the ions and electrons. At low
density of the neutral gas, a torus-shaped maximum of ni and ne evolves around the
centered z-axis of the RIT. At higher density on the other hand, the particles distribute
more evenly and form a wide maximum at the center of the plasma vessel. Sectional
views of the distributions of ni, ne, and the electrostatic potential Φ are shown in
figures A.2 and A.3.

97



98 APPENDIX

��� ������� ������� ������� �������
�������

�������

�������

�������

�������

�������

�
�


��
�
��
��
�
���

	�
�

���������

�	�������
�
���

��� ������� ������� ������� �������
�������

�������

�������

�������

�������

�
�


��
�
��
��
�
���

	�
�

���������

�	�������
�
���

��� ������� ������� ������� �������
�

�

�

�

	

��

��

��

�
	

���


�
��
��
��
�
�

���������

�
�������
�����

��� ������� ������� ������� �������
�

�

�

�

	

��

��

��

�
	

���


�
��
��
��
�
�

���������

�
�������
�����

��� ���	��� ���	��� ���	��� ���	���

���

���

���

���

���

���

�

�
��
��
��



���

	

���
�

���������
��� ���	��� ���	��� ���	��� ���	���

���

���

���

���

���

���

�

�
��
��
��



���

	

���
�

���������

��� ���	��� ���	��� ���	��� ���	���
���

���

���

���

���

���

���

�
��
	��

��
��



���
�

���������
��� ���	��� ���	��� ���	��� ���	���

���

���

���

���

���

���

���

�
��
	��

��
��



���
�

���������

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.1: Comparison of two simulations of the RIT-2.5, differing only by the number
density n0 of the neutral background gas. Left column of diagrams: n0 = 2.5 · 1019 m-3.
Right column: n0 = 5·1019 m-3. Various parameters are plotted against the simulation time
step: (a) and (b) Total number of ions and electrons in the simulation. (c) and (d) Average
kinetic energy of the particles. (e) and (f) Power deposition. (g) and (h) Amplitude of the
coil current.



APPENDIX 99

���

���	����

���	����

���	����

���	����

���	����
�
	���	���������

���

���	����

���	����

���	����

���	����

���	����
�	���������������
���

����

����

����

����

����

����

����
����
���	����

Figure A.2: Sectional views of the ion density ni (top), the electron density ne (middle),
and the electrostatic potential Φ (bottom) after 3 ·106 time steps in a simulated RIT-2.5. A
power of 0.8W is deposited into the plasma by an alternating current (2.86MHz) through
the external coil. The density of the neutral background gas (Xenon) is 2.5 · 1019 m-3.



100 APPENDIX

���

��������

��������

��������

��������

��������
�
	���	���������

���

��������

��������

��������

��������

��������
�	���������������
���

����

����

����

����

����

����

����

����
����
���	����

Figure A.3: Sectional views of the ion density ni (top), the electron density ne (middle),
and the electrostatic potential Φ (bottom) after 3 ·106 time steps in a simulated RIT-2.5. A
power of 0.8W is deposited into the plasma by an alternating current (2.86MHz) through
the external coil. The density of the neutral background gas (Xenon) is 5 · 1019 m-3.



References

[1] D.M. Goebel and I. Katz. Fundamentals of Electric Propulsion: Ion and Hall
Thrusters. JPL Space Science and Technology Series. John Wiley & Sons, 2008.

[2] H.W. Löb. Ein Elektrostatisches Raketentriebwerk mit Hochfrequenzionenquelle.
Astronautica Acta, VIII(1):49, 1962.

[3] J. L. Van Noord. Lifetime assessment of the NEXT ion thruster. 43rd
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007.

[4] O.A. Mitrofanova, R.Y. Gnizdor, V.M. Murashko, A. I. Koryakin, and A.N.
Nesterenko. New generation of SPT-100. 32nd International Electric Propulsion
Conference, Wiesbaden, Germany, 2011.

[5] J. R. Brophy. NASA’s Deep Space 1 ion engine (plenary). Review of Scientific
Instruments, 73(2):1071–1078, 2002.

[6] D. Feili, B. Lotz, S. Bonnet, B.K. Meyer, H.W. Loeb, and N. Puetmann. µNRIT-
2.5 - A new optimized microthruster of Giessen University. 31st International
Electric Propulsion Conference, Ann Arbor, MI, USA, 2009.

[7] K.H. Groh, H.W. Loeb, J. Mueller, W. Schmidt, and B. Schuetz. RIT-35 Rf-ion
thruster - design and performance. 19th International Electric Propulsion Confer-
ence, Colorado Springs, USA, 1987.

[8] R. Henrich. Development of a Plasma Simulation Tool for Radio Frequency Ion
Thrusters. PhD thesis, Justus-Liebig-Universität Gießen, 2013.

[9] C.K. Birdsall and A.B. Langdon. Plasma Physics via Computer Simulation. Series
in Plasma Physics and Fluid Dynamics. Taylor & Francis, 2004.

[10] R.W. Hockney and J.W. Eastwood. Computer Simulation Using Particles. CRC
Press, 1988.

[11] Y. Takao, N. Kusaba, K. Eriguchi, and K. Ono. Two-dimensional particle-in-cell
Monte Carlo simulation of a miniature inductively coupled plasma source. Journal
of Applied Physics, 108, 2010.

[12] B.W. Yu and S. L. Girshick. Modeling inductively coupled plasmas: The coil
current boundary condition. Journal of Applied Physics, 69(656), 1991.

[13] J. P. Boris. Relativistic plasma simulation-optimization of a hybrid code. Proceeding
of Fourth Conference on Numerical Simulations of Plasmas, 1970.

[14] V. Vahedi and M. Surendra. A Monte Carlo collision model for the particle-in-cell
method: applications to argon and oxygen discharges. Computer Physics Commu-
nications, 87(1):179 – 198, 1995.

101



102 References

[15] D. Tskhakaya, K. Matyash, R. Schneider, and F. Taccogna. The particle-in-cell
method. Contributions to Plasma Physics, 47(8-9):563–594, 2007.

[16] M.M. Turner. Kinetic properties of particle-in-cell simulations compromised by
Monte Carlo collisions. Physics of Plasmas, 13(3):033506, 2006.

[17] L. Clarke, I. Glendinning, and R. Hempel. The MPI message passing interface
standard. In K.M. Decker and R.M. Rehmann, editors, Programming Environments
for Massively Parallel Distributed Systems. Monte Verità (Proceedings of the Centro
Stefano Franscini Ascona), pages 213–218. Birkhäuser Basel, Basel, 1994.

[18] M.N.O. Sadiku. Numerical Techniques in Electromagnetics, Second Edition. Tay-
lor & Francis, 2000.

[19] N. Köckler. Mehrgittermethoden: Ein Lehr- und Übungsbuch. SpringerLink :
Bücher. Vieweg+Teubner Verlag, 2012.

[20] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial: Second
Edition. Society for Industrial and Applied Mathematics, 2000.

[21] U.M. Ascher and C. Greif. A First Course on Numerical Methods. Computational
Science and Engineering. Society for Industrial and Applied Mathematics, 2011.

[22] C. Kanzow. Numerik linearer Gleichungssysteme: Direkte und iterative Verfahren.
Springer-Lehrbuch. Springer Berlin Heidelberg, 2007.

[23] D.M. Young. Iterative methods for solving partial difference equations of elliptic
type. Transactions of the American Mathematical Society, 76(1), 1954.

[24] S. Yang and M.K. Gobbert. The optimal relaxation parameter for the SOR method
applied to the Poisson equation in any space dimensions. Applied Mathematics
Letters, 22(3):325 – 331, 2009.

[25] W. Hackbusch. Multi-Grid Methods and Applications. Springer Series in Compu-
tational Mathematics. Springer Berlin Heidelberg, 2013.

[26] R.V. Southwell. Stress-calculation in frameworks by the method of "systematic
relaxation of constraints". I and II. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 151(872):56–95, 1935.

[27] R. P. Fedorenko. A relaxation method for solving elliptic difference equations.
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 1(5):922–927, 1961.
Engl. translation published in USSR Computational Mathematics and Mathemati-
cal Physics, 1(4):1092 - 1096, 1962.

[28] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathemat-
ics of Computation, 31(138):333–390, 1977.

[29] A.M. Bruaset and A. Tveito, editors. Numerical Solution of Partial Differential
Equations on Parallel Computers. Lecture Notes in Computational Science and
Engineering. Springer Berlin Heidelberg, 2006.

[30] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrody-
namics. Journal of Computational Physics, 82(1):64–84, 1989.

[31] A. Brandt, S. F. McCormick, and J. Ruge. Algebraic multigrid (AMG) for sparse
matrix equations. In D. J. Evans, editor, Sparsity and its Applications, pages 257–
284. Cambridge University Press, Cambridge, UK, 1984.



References 103

[32] A. Brandt. Algebraic multigrid theory: The symmetric case. Applied Mathematics
and Computation, 19(1):23 – 56, 1986.

[33] J.W. Ruge and K. Stüben. Algebraic multigrid. In S.F. McCormick, editor, Multi-
grid Methods, volume 3 of Frontiers in Appied Mathematics, pages 73–130. Society
for Industrial and Applied Mathematics, Philadelphia, 1987.

[34] F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde. Parallel geometric multi-
grid. In A.M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Dif-
ferential Equations on Parallel Computers, volume 51 of Lecture Notes in Com-
putational Science and Engineering, pages 165–208. Springer Berlin Heidelberg,
2006.

[35] D. Xie and L.R. Scott. The parallel U-cycle multigrid method. In Proceedings of
the 8th Copper Mountain Conference on Multigrid Methods, 1997.

[36] A. Brandt and O.E. Livne. Multigrid Techniques: 1984 Guide with Applications
to Fluid Dynamics, Revised Edition. Classics in Applied Mathematics. Society for
Industrial and Applied Mathematics, 2011.

[37] Y. Saad. Iterative Methods for Sparse Linear Systems. Other Titles in Applied
Mathematics. Society for Industrial and Applied Mathematics, second edition,
2003.

[38] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Applied
Mathematical Sciences. Springer International Publishing, 2016.

[39] R. Barrett, M.W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods. SIAM, 1994.

[40] I. C. F. Ipsen and C.D. Meyer. The idea behind Krylov methods. American Math-
ematical Monthly, 105:889–899, 1997.

[41] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49(6):409–436,
1952.

[42] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 7(3):856–869, 1986.

[43] W.E. Arnoldi. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Quarterly of Applied Mathematics, 9(1):17–29, 1951.

[44] C.C. Paige and M.A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM Journal on Numerical Analysis, 12(4):617–629, 1975.

[45] J. Erhel, K. Burrage, and B. Pohl. Restarted GMRES preconditioned by deflation.
Journal of Computational and Applied Mathematics, 69(2):303–318, 1996.

[46] R. Hrach, M. Lahuta, Z. Pekarek, and J. Simek. Multi-dimensional codes for
particle modelling of plasma-solid interaction at higher pressures. Czechoslovak
Journal of Physics, 56(Suppl. 2):990–995, 2006.

[47] C. Vuik, J. J. I.M. van Kan, and P. Wesseling. A black box multigrid preconditioner
for second order elliptic partial differential equations. In European Congress on
Computational Methods in Applied Sciences and Engineering, ECCOMAS, 2000.



104 References

[48] S. Bergler. Multigrid methods for arbitrary mesh sizes with application to quantum
chemistry. Diploma thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg,
2007.

[49] A. McAdams, E. Sifakis, and J. Teran. A parallel multigrid Poisson solver for fluids
simulation on large grids. Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 65–74, 2010.

[50] T. Guillet and R. Teyssier. A simple multigrid scheme for solving the Poisson
equation with arbitrary domain boundaries. Journal of Computational Physics,
230(12):4756–4771, 2011.

[51] F. Gibou, R. P. Fedkiw, L.-T. Cheng, and M. Kang. A second-order-accurate
symmetric discretization of the Poisson equation on irregular domains. Journal of
Computational Physics, 176(1):205–227, 2002.

[52] H. Johansen and P. Colella. A Cartesian grid embedded boundary method for Pois-
son’s equation on irregular domains. Journal of Computational Physics, 147:60–85,
1998.

[53] P. Schwartz, M. Barad, P. Colella, and T. Ligocki. A Cartesian grid embedded
boundary method for the heat equation and Poisson’s equation in three dimensions.
Journal of Computational Physics, 211:531–550, 2006.

[54] M. Oevermann and R. Klein. A Cartesian grid finite volume method for elliptic
equations with variable coefficients and embedded interfaces. Journal of Compu-
tational Physics, 219(2):749–769, 2006.

[55] L. Botto. A geometric multigrid Poisson solver for domains containing solid inclu-
sions. Computer Physics Communications, 184, 2013.

[56] D. Trebotich, M.F. Adams, S. Molins, C. I. Steefel, and C. Shen. High-resolution
simulation of pore-scale reactive transport processes associated with carbon seques-
tration. Computing in Science & Engineering, 16(6):22–31, 2014.

[57] G.H. Shortley and R. Weller. The numerical solution of Laplace’s equation. Journal
of Applied Physics, 9(5):334–348, 1938.

[58] N. Matsunaga and T. Yamamoto. Superconvergence of the Shortley-Weller approxi-
mation for Dirichlet problems. Journal of Computational and Applied Mathematics,
116(2):263–273, 2000.

[59] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-optimal
parallel and sequential QR and LU factorizations. SIAM Journal on Scientific
Computing, 34(1):A206–A239, 2012.

[60] J. F. Schäfer. Algorithmen zur numerischen Lösung der Poisson-Gleichung. Bach-
elor’s thesis, Justus-Liebig-Universität Gießen, 2014.

[61] M. Stürmer. Optimierung von Mehrgitteralgorithmen auf der IA-64 Rechnerar-
chitektur. Diploma thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg,
2006.

[62] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dal-
cin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes,
K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web page.
http://www.mcs.anl.gov/petsc, 2016.

http://www.mcs.anl.gov/petsc


References 105

[63] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L. C. McInnes,
K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc users manual.
Technical Report ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016.

[64] S. Balay, W.D. Gropp, L. Curfman McInnes, and B. F. Smith. Efficient manage-
ment of parallelism in object oriented numerical software libraries. In E. Arge,
A.M. Bruaset, and H.P. Langtangen, editors, Modern Software Tools in Scientific
Computing, pages 163–202. Birkhäuser Press, 1997.

[65] A. Cohen. A performance analysis of 4X InfiniBand data transfer operations. In
Proceedings International Parallel and Distributed Processing Symposium, 2003.

[66] S. Sur, M. J. Koop, and D.K. Panda. High-performance and scalable MPI over
InfiniBand with reduced memory usage: An in-depth performance analysis. Pro-
ceedings of the ACM/IEEE SC2006 Conference on High Performance Networking
and Computing, 2006.

[67] H. Subramoni, S. Chakraborty, and D.K. Panda. Designing dynamic and adaptive
MPI point-to-point communication protocols for efficient overlap of computation
and communication. In International Supercomputing Conference, pages 334–354,
2017.





Danksagung

An dieser Stelle möchte ich mich bei all jenen bedanken, die mich in so vielerlei Hinsicht
bei der Arbeit an dieser Dissertation unterstützt haben.
Zunächst ist dabei Herr Professor Dr. Christian Heiliger zu nennen, der sich bereit
erklärt hat, meine Doktorarbeit zu betreuen und damit ein Projekt weiter zu fördern,
das außerhalb seines eigentlichen Fachgebiets liegt. Nichtsdestotrotz waren unsere Be-
sprechungen und Diskussionen immer ergiebig und führten zu neuen Ansätzen, eröffneten
neue Perspektiven oder brachten mich dazu, eine bestimmte Richtung verstärkt wei-
terzuverfolgen.
Mein weiterer Dank gilt Herrn Dr. Robert Henrich, der mit seiner Arbeit an PlasmaPIC
gewissermaßen die Grundvoraussetzungen für mein Promotionsprojekt geschaffen und
auch in anderen Aspekten wertvolle Vorarbeit geleistet hat. Bei Fragen zur Perfor-
manceoptimierung und zur strategischen Vorgehensweise bei der Implementierung war
er immer ansprechbar und brachte seine eigene Expertise ein.
Bei Detailfragen zur Arbeit mit HPC-Clustern und zum parallelen Programmieren mit
MPI konnte ich zudem mehrfach auf die Hilfe von Herrn Dr. Michael Feldmann zurück-
greifen, der sein Wissen bereitwillig geteilt hat.
Desweiteren möchte ich mich auch bei den restlichen Mitgliedern der AG Heiliger -
sowohl bei den aktuellen wie auch bei den ehemaligen - für die zuvorkommende, freund-
liche und heitere Arbeitsatmosphäre bedanken.
Außerdem bedanke ich mich bei meinen Korrekturlesern für ihren Einsatz.
Abschließend möchte ich mich ganz herzlich bei meiner Familie für die ausdauernde
Unterstützung während meines gesamten Studiums bedanken.

107





Eidesstattliche Erklärung

Ich erkläre: Ich habe die vorgelegte Dissertation selbständig und ohne unerlaubte fremde
Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe.
Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen
sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kennt-
lich gemacht.
Ich stimme einer evtl. Überprüfung meiner Dissertation durch eine Antiplagiat-Software
zu.
Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe
ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der “Satzung der Justus-
Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis” niedergelegt
sind, eingehalten.

(Ort, Datum) (Unterschrift)

109


	Title Page
	Table of Contents
	List of Figures
	Introduction
	Motivation
	Technical and Scientific Background
	Outline

	The Particle-in-Cell Method by the Example of PlasmaPIC
	Algorithm
	Particle Weighting
	Solution of Maxwell's Equations
	Field Interpolation
	Particle Movement
	Interaction with Boundaries
	Monte Carlo Collisions

	Numerical Constraints
	Parallelizability
	Further Features of PlasmaPIC

	Fundamentals of Multigrid
	Preparations
	Finite Differences
	Conventional Methods to Solve Large Sparse Systems of Linear Equations 
	Smoothing Properties of Basic Iterative Solvers

	The Multigrid V-Cycle
	Algorithm
	Derivatives

	Boundary Conditions
	Variable Coefficients
	Alternative Multigrid Variants
	Complexity
	Parallelizability
	Order-Independent Smoothing
	U-Cycle vs. Coarse Grid Agglomeration

	Alternative Linear Solvers

	Development of a Parallel Multigrid Field Solver
	Challenges
	Adjustments to the Standard Algorithm
	Arbitrary Grid Sizes
	Arbitrary Geometries

	The Coarse Grid Solver
	Measures for Efficient Parallel Performance
	Utilizing Red-Black Ordered Gauss-Seidel Smoothing
	Coarse Grid Agglomeration
	Determination of Optimal Parameters

	Practical Limitations
	Integration into PlasmaPIC

	Assessment of Capabilities and Performance
	Solving Generic Elliptic PDEs
	Textbook Case
	Convergence
	Scalability

	Performance within PlasmaPIC
	Influence of Network Speed
	Weak Scaling
	Strong Scaling
	Influence of the Field Solver's Accuracy

	Comparison with the SOR Method
	Comparison with PETSc

	Conclusions
	Appendix
	References
	Danksagung
	Eidesstattliche Erklärung



