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. . are- four examples of autonomous functional differential
s with time lags which have been used for- ‘modelling. First,
ation with delay in the growth-limiting factor

de) (t). =.Alt) = rn(t) [1 = n(t-1) /K] (1
ed: by the biologist HUTCHINSON [17] in 1948 in order to ex- i
1lations which had been observed in population growth ex-
log{n(tt)/K} and o = rT then 9051t1ve

ngth equ

0501
nts. If we set x(t) :=
ut ons’ +ransform into solutions of
Caflx (E=1))
=1 et
0-
# 0.
Lox(e-1) 18 ¥ T - sxte). 2)
y.-stands for the time between start of cell-production and
£, the platelets into the blood stream. Models of this type
structed by MACKEY and CLASS, LASOTA and WAZEWSKA~CZYZEWSKA
4].:Non11near functions which are not monotonous as in (2)
'.e the dynamics more complicated. See also [7,11,13,22, 27,35].
d MAHAFFY [2,26] developed a model for protein synthesis,
-1

(af)

£ ¢ R. £ is monotonous and has the property
' (NF)

- In eqguations for the density of red blood cells as

a(l + kr(t—11)e(t—11)) - B1m(t)
m(t-rz) - Bze(t) ’
e(t— 3) B3f(t) , i (3)

' ake into account times needed for transcription from DNA-

“and for transport to the ribosomes where substan-’

“gee also [15]. - A model from a different field is

= sin(x(t-T) + w), 058 <1 : o (4)
1on describes the phase- .difference x between a frequency"
4n: ‘the high frequency range and a controlling oscillator
The delay is caused by a low pass ‘filter. -

since the fifties [18]. See also" {107.

" perform- a shift of the  co-"

ase~locked loop.
dels were used
isirescaled and if we



dina; e ; s;y(bstexvn,

X j{important difference between (af) and scalar ODEs is the
vf oscillating solutions, Let K dencte the cone of increa-~
ctions ¢ € C with ¢(-1) = 0. For ${0) > 0 condition .(NF)
he. solution x with Xy = ¢ to decrease as long as x(t~1) > 0.
&4.>. 1. it is not hard to see that x has a first zero z, =

.. Time lag and condition (NF) make x decrease until tlme
”hen the solution realizes that it is no longer posit:.ve. Now
+o increase, reaches a second zero z,, increases until time
. [28,45]. Ve get solutions which are "slowly oscillating"

ense that the distance between any pair of zeros in [0,=)
er: ‘ than the delay T = 1. - By the way, a sharp bound for all
n iof (af) to oscillate is o = 1/e, as one can prove.
11at1ng solutions do not always damp out. For 0 <o < a/2 the
uﬁlon is asymptotlcally stable but for o > 1/2 it becomes
‘, and no ‘slowly oscillatlng solution tends to 0.as t +

The, critical value w/2, and 1/e above too, is determined by

rlzed equation

~oy (t-1)
- placed by its derivat:.ve at £ = 0. As for ODEs, the Ansatz

>‘t ‘leads to a "characteristic equation"

e-.'}‘. =0 .
iutions of which decide about stability [14]. There are coun-
viany of these woharacteristic values". For 0 < a < 1/e, they
uated- in the complex plane as indicated in the figure beldw.
T If o passes the value 1/e the
.real characteristic values join
and bifurcate into a complex
conjugate pair; the other pairs
move to the right [45]. If a -
increases beyond 7/2 the pair
.- with smallest imaginary parts
crosses the imaginary axis at
tiw/z. At o= 571/2, the next

pair crosses at iSin/Z,. . The
»t__*_cetRe Agin(tIm A, ¢ # 0, |Im A[ < 7, are now slowly
g solut:.ons of the linear equation with increasing ampli-
see that there are also many other, more rapidly oscil-

oiutlons, given by the characteristic values with 27 < .
or- the nonlinear equatlons one may now use a Hopf bifur-
héorem in order to obtaln small amplitude rapidly oscilla- :

tions for a close to si/2, 91/2,... and small amplitude




‘proved ? For- a set of decrea51ng odd- functions, £{E) =

‘a1l -E, NUSSBAUM [32] showed uniqueness for SO periodic
stwith xy in'K, o > /2. Under his- conditions there are no
ic'solutlons for o § m/2; the SO periodic orhits for o >

.IQPeItY 7
-x(t - (z +1)) for all t € R (a)

h.z1’= 1s Let Sp denote the set of pairs (¢,9) so that ¢ is

\idefines such a vspecial periodic solution" with perlod 4

try (o) . Existence of special periodic solutions for odd.f

proved earlier by KAPLAN and YORKE [20]. The uniqueness
is by reflnements of a phase- plane method for monotonous £ al-

to KAPLAN and YORKE [21,22].

ht seem surprising that uniqueness and stablllty could not

proved for the monotonous function f£:£ » 1 - eE from HUTCHIN-

wation (1).

st examples of nonuniqueness came fr
£ blfurcatlon at o = /2., If, say, £' < -1 for all & 4 0 close
hen S° leaves the ‘point (n/2,0) in direction of decreasing

ork of CHOW and MALLET- PARET [8] leads to similar diagrams.

om results on the direc~

.nllnear monotonous - functions. w1th multlple S0 perlodlc so-

re constructed by ANGELSTORF [1].
1ce1 experiments with equations like (2) and (4) Sdggested
monotonous. functions f define very complicated sets S. For
dd functions with hump-shaped graph NUSSBAUM constructed a
m.L < s dlstlnt from Sp [32, 33].. In cases con51dered Sp-
nhected set which bifurcates from (n/z 0}, so 5p < S'.

h belong to L share the symmetry {(¢) with the Spe01;1

whlc
olutions but have mlnlmal periods larger than 4.




emark about functlonal differential equations and chaotic in-
1en MACKEY and GLASS proposed equations like (3) as
ertaln physiological control processes,they also expec-
c;trajectories for suitable parameters..This could be pro-
few rather special equations. PETERS [36] did it for step
s as nonlinearities, AN DER HEIDEN and I showed it for equa-
ke“(Z) and (4) with nonlinearities which are smooth but con-
on long intervals, like step functions [16,42]. The proofs
h.and use that chaotic interval maps represent the dynamics
peclal functional differential equations precisely, in a
ion in state space. This should be compared to the simple
t‘chaotlc interval maps with their hump- shaped graphs are

1r§qt1y related to decent ODEs - Poincare”maps and time-one-

ODEs always being one-to-one.

coex;stence of stable equilibrium and periodic motion for the

ocking equation. - If condition (NF) for (ef) does not hold

‘ , like in (4), or if equations like (2) are considered,then
”otﬂclear how to single out a predominant class of solutions
lowly oscillating ones above. Other phenomena come into play.
1na11y describe a result which I obtained recently for model

for a >
. 1 kind bi-
124],,--A periodic solution of the second kind with period
\ sslution x:R + R where x(t. + p) = x(t) + 2n for all t in
‘h looks like a staircase. If real numbers modulo 2n.are
if ed, then X deflnes a periodlc ‘map with values on the circle

e- words "of the second kind" are meant to dlstinguish this
mall“ perlodlc oscillations- on the circle which do not wind
during a period. For. example, SO periodic solutions with va-
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