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Preface

Purpose of this document. This paper documents a modular structure to
be used for models that describe systems evolving in time. It is also intended
as a manual for the modification of existing models. The structure has been im-
plemented as a computer program. The gentle reader is invited to contact the
authors for code and example material. Depending on the demand, introductory
courses can be arranged. Please contact us using the following address:

Johannes Hof f st adt

Institut fur Pflanzenokol ogie

der Justus-Li ebi g- Uni versitat

Hei nrich-Buff-Ring 38

D- 35392 G elden

CGer many

E-mail: johannes. hof f st adt @i 0. uni - gi essen. de

Software requirements. For the current implementation, a Unix operating
system, a FORTRAN 77 compiler and an ANSI C compiler is required. The code
has been tested on the following platforms (i. e., hardware/software combina-
tions):

machine type processor / speed operating system
No-Name PC PentiumPro / 200 MHz Linux 2.0

DEC 3000 AXP Alpha RISC OSF1 3.2

HP Apollo 735 PA 7100 /99 MHz HP-UX 9.0

IBM RS/6000 Power2 / 66 MHz AIX 3.2

SGI Power Challenge 4 MIPS R8000/75 MHz IRIX 6.1

SUN ES 3000 4 UltraSPARC / 250 MHz SUN OS5.1.1
Cray C90 16 vector processors UNICOS 9.0
Fujitsu/SNI VPP300/6 6 vector processors UXP/V 10

The code is equally well suited for scalar and vector computers. We did not try
to adapt the code to parallel computing, because there is no standard language
extension for parallel computers that works on several platforms, and can still
be used on scalar or vector machines. Porting the code to standard PC systems
is possible with some loss of minor features.

Programming languages. The core of the structure has been implemented
in C. We have worked successfully with modules written in FORTRAN and C.

Other compiler languages can also be used for modules, if they support access
to shared variables (like FORTRAN common blocks), and if the created object
files contain the entry addresses of the modules.

We have chosen FORTRAN and C, because they offer shared as well as lo-
cal variables, they are widely used, and the generated code is efficient. This
combination is especially useful when running models on machines with a Unix
operating system, like most state-of-the-art compute servers. They provide a
C-oriented environment with easy access of system and graphics libraries, and
FORTRAN for optimal speed. The compilers are generally prepared for mixing
object code of both languages.



1 Introduction

While our knowledge about the terrestrial part of the global carbon cycle has
increased in the last few years, concepts and questions have accumulated even
quicker. Many processes are considered important, and we have to handle pro-
cesses on rather different time scales within one model.

Accordingly, models become increasingly complicated and difficult to man-
age. Each model is unique in its philosophy and implementation, which is a
major obstacle in model comparison. This is because the overall performance
of models does not help to attribute differences in model behaviour to particular
assumptions. True understanding can probably be achieved only on the level of
underlying processes. To investigate the role of different mathematical formu-
lations of a particular process, we need to test various descriptions of a single
process within the framework of one model.

A modular model structure is therefore required, which supports easy ex-
change of different versions of a process module without changes to the rest of
the model.

The modular structure as presented in this document has been designed for
arbitrary models that describe systems evolving in time, typically using differ-
ential or finite difference equations. A central concept is the linear flow of time,
during which the system state evolves continuously; interrupted only occasion-
ally by the execution of modules. These module calls are due to a given schedule,
and due to dependencies between modules; they may influence the dynamics by
updating coefficients, or may simply output the current system state.

Generally, the system state must be treated and propagated as a whole. Re-
garding the special case of models of the global carbon budget, a common sim-
plification has been to subdivide the system state vector into state vectors of the
grid elements, which are then treated independently. Coupling of grid elements
is then impossible.

In contrast, our structure strives to be generally applicable and must be open
to any coupling between elements of the system state. Adaptation of the above-
mentioned models therefore involves a transformation of the code, so that the
grid elements are always synchronized, and their state corresponds to the same
current time.

What you will gain: The proposed scheme facilitates not only the exchange
of modules, but also the coupling with other models. As a byproduct, your code
will be suitable either for parallelisation or for vectorisation on supercomputers.

What you will lose: Any optimisation may be lost, that relies on modeling one
grid element after another, if pre-calculated results cannot be stored for all grid
elements anymore. This applies especially when bringing the system into equi-
librium for some constant year, and can increase CPU time dramatically. On
the other hand, the demand for CPU time for transient model runs will roughly
stay the same. Memory requirements are bound to increase depending on the
number of grid elements.

Consequently, one can employ this structure only with some reserves in CPU
time and memory left.
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2 The modular model structure

2.1 Modules and interfaces

A module is a subprogram that performs a specific task. For its task it usually
needs some input data and produces some output data (or takes other actions,
according to the particular task). Input and output together form the interface
definition of the module. Task and output are closely connected, and determine
if modules are exchangeable (given that we provide the necessary input).

Otherwise, a module is an entirely independent entity. It can be used in any
context, and will simply do its job. The inner functioning does not matter. Mod-
ules can be treated as black boxes.

A complete interface description of a module consists of stating the input and
output data structures, and it is accompanied by the task description. If mod-
ules from different workers should be interchangeable, then there must be some
agreement on the layout, interpretation, and physical units of these data. Doc-
umentation on this is part of the interface specification.

Input and output data can be internal (shared variables) or external (files).
Therefore, one has at least three classes of modules: initialisation modules read-
ing input data from files; processing modules that perform calculations on inter-
nal data; output modules writing results or diagnostics to files.

Models usually have some kind of spatial resolution, e. g. a surface grid or
box-shaped cells in a volume. Internal data per element are most conveniently
stored in arrays. Modules operate on whole arrays. This keeps the state of the
elements synchronized, and is necessary for exchange of modules and coupling
of submodels.

2.2 The configuration file

A guiding idea in the design has been to be able to ‘switch’ modules on or off
as required by a particular model run. There should be every conceivable free-
dom in the choice of the time points and/or intervals when a module should be
called. Imagine a singular historical event that influences the system through
an input pulse, like *C production by an atomic bomb test, or imagine a period
of time with a different radiative forcing due to volcanic eruptions, after which
the driving forces return to normal values. These examples could be handled
by modules that are called once at a specific point in time, or regularly during a
time interval.

Also, if there are dependencies between modules, such as that module B al-
ways requires module A to run beforehand, it should be possible to state them di-
rectly, rather than having to ‘hard-code’ the calling sequence. Finally, one should
be able to control parameters of a model run without re-compiling. These ideas
led us to the formulation of a configuration file.

The configuration file describes a model run completely, by containing in-
structions for a unique, reproducible sequence of modules, and all relevant con-
trol parameters.
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2.3 The master module

A master module is required which interprets the configuration file, resolves
given dependencies, sets control parameter values, and creates and executes the
calling sequence.

Obviously, the master module needs to know about the memory address of
the entrance point of each module that is linked into the model. It also needs
to know the location of each variable that can be set through an entry in the
configuration file in order to transfer the value. Lists of pointers to memory ad-
dresses are not supported by standard FORTRAN. Thus, the master module is
written in C. This is no disadvantage for the execution speed, since no lengthy
calculations are necessary. Apart from address information, which is provided
by separate files, the master module is independent from the particular model.

2.4 The concept of time

The usual loop structure of models (Fig. 1) consists of (possibly hierarchical) time
loops, and subroutine calls at the beginning and end of a loop. The passage of
time happens at the center of the loops. For the modular structure, the above
arrangement of loops and calls had to be transformed into a clear concept of time,
which is: Module calls become associated with points in time. The continuous
flow of time, realized by integration, is interrupted according to the schedule of
module calls. The alternating calling and integrating is controlled by the master
module.

One may view this mechanism as some kind of alarm clock, which activates
modules according to a schedule during the otherwise undisturbed passage of
model time. For model time, one can choose between a simple calendar with 30-
day months and 360-day years, or a better calendar with 365-day years (but no
leap years). 10° years of model time can be spanned, and the resolution of time
points is one second. However, this can be easily adapted to different needs.

c sonme initialisation e. g. reading input data
do 10 iannum = start, end for every year:
call annprp annual preparation
do 20 imonth = 1, 12 for every month.:
call nonprp monthly preparation
c sonme inner time | oop (containing integration)
call outnmon output at end of month
20 conti nue
call outann output at end of year

10 conti nue

Figure 1: An example for the usual loop structure of models. Subroutine calls
are placed at the beginning or end of a loop. Time actually passes in the inner-
most loop.
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Two-faced time points. We want to be able to call modules either at the be-
ginning of an integration interval (e. g. at the beginning of a month), or at the
end of the interval (e. g. for output of the system state at the end of a month).
This cannot be described using single time points. Rather, we have to split a
time point in two adjacent parts, one of which faces the end of the previous in-
terval, the other faces the beginning of the next interval. We speak of module
calls that happen just before a given point in time, or at (just after’).

For example, one can draw the sequence of module calls according to the
loops in Fig. 1, and add a horizontal time axis. This is shown in Fig. 2 for the
beginning of the model run (first line), and for the end of each year (second line).

The model run begins at midnight, January 1st of the first year with the ini-

tialisation. The annual preparation happens at January 1st of each year, the
monthly preparation happens at the first of each month. Then comes time in-
tegration, which spans an interval, and happens between two points in time.
Afterwards, current time is just before the first of the next month. This is the
point where the monthly output has to be called: just before the first of the next
month. And similarly, annual output has to be called just before January 1st
of the next year. Lastly, the model run itself ends in the final year, just before
January 1st of the following year.
When the calling list for the current time point has been worked through, the
master module has to calculate the time interval until the next call of a module.
This interval can be of varying length, depending on the superposition of calling
‘rhythms’ of the modules. If the interval is not zero, the master module calls a
special integrator module, which propagates the system state through this time
interval.

Time integration. The state of the system is represented by one or more ar-
rays of variables. Models using finite differences add the calculated changes to
the state variables. With continuous models, an integrator has to solve the sys-
tem of first-order differential equations that represents the changes of the state
variables. A numerical integration method is preferred, because only a few mod-
els can be solved analytically.

We have equipped our model with a numerical solver of differential equa-
tions, using the 4th order Runge-Kutta method with fixed time steps, but any

init annual [monthly monthly monthly monthly monthly
: prep. | prep. output prep. output prep.
| integration } integration | >
Jan 1 Feb 1 Mar 1
monthly monthly| annual annual |monthly monthly monthly
prep. output | output prep. | prep. output prep.
| integration } integration | >
Dec 1 Jan 1 Feb 1

Figure 2: Calling sequences of modules as they interrupt the passage of time.
Module calls happen just before a time point (indicated by the date), or just after.
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other method can be used instead. As with all modules, the integrator treats
all cells in parallel, not sequentially, with the side-effect that temporary results
can occupy large amounts of memory (since always the whole arrays are needed).
The chosen method needs only two temporary results per state variable and cell,
which we consider the best compromise regarding speed (due to vectorisation)
vS. memory usage.

Adaptive time steps and predictor-corrector methods could speed up the in-
tegration of individual grid cells with less pronounced dynamics, but this spoils
vectorisability (which depends on parallel treatment of lots of cells).

The system of differential equations. The numerical solver needs to eval-
uate the left-hand sides of the differential equations, which give the derivatives
(or ‘slopes’) of the state variables with respect to time. These differential equa-
tions are conveniently grouped within a second special module. Only the inte-
grator calls this module, and the integrator itself is called only by the master
module (because the master ‘clockwork’ controls time). These three modules are
special in that they cannot be specified in the configuration file like ordinary
modules.

2.5 Files involved, and their relationships

The master module is contained in the file mast er . ¢, which includes definitions
from mast er. h. Information about the particular model is included from three
files:

e vari abl es. h contains a table of variables that can be set within the con-
figuration file. Those variables commonly are: switches for the run-time
behaviour, file names for input and output files, settings for the master
module itself.

* nmodul es. h contains the declaration and the table of all modules.

¢ dat a. h contains the declaration of all shared data between modules.

The file vari abl es. h can easily be modified for a particular model. This is de-
scribed in section 4.6. You are not supposed to write the files modul es. h and
dat a. h manually, but use a generator as described below.

One can simply compile the master module and the modules of a particu-
lar model and link them together. But there are some system-dependent prob-
lems which require specific compiler flags. Therefore, we have provided a rather
generic Makef i | e containing settings for various systems. In the Makefi | e, one
has to modify the list of file names that are to be compiled.

We recommend that you first try out the example model and make sure that it
works, as described in section 3. In the case of problems, we can probably help
if you provide access to your machine.
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Automatically generated files. We have provided an auxiliary C program
called aut ogen, that generates several include files, including nodul es. h and
dat a. h, and an initialisation module i ni t. f, from very simple text files. All
automatically generated files are created in the subdirectory aut o, where the
master module expects to find these files.

We did this for two reasons: first, information about modules and shared
variables should appear only once, not several times in identical copies, where
consistency can become difficult to ensure; secondly, the file nodul es. h consists
of several sections with different structure, which appear obscure for people
without knowledge of C.

The input files used by aut ogen are

e comon. def: a list of shared (common) variables, including type and di-
mension(s);

e const. def: a list of constants (e. g. for array dimensioning, or array ac-
cess), including type and their FORTRAN and C value (which can be dif-
ferent);

¢ nodul es. def : alist of modules, including argument types (which is usually
‘voi d’), and optional pre-processor symbols that can be used for conditional
compilation.

The layout of these files is described in sections 4.3, 4.4 and 4.5. Using them,
aut ogen creates the following files in the sub-directory aut o:

¢ From common. def, two include files per entry (i. e., per variable) are gen-
erated. One is the header file with a C-style declaration of the shared
variable. The other file contains the FORTRAN common block definition,
where the common block has the same name as the variable. The filenames
also correspond to the name of the variable and end with . h and . f, respec-
tively.

Additionally, a file dat a. h is created, which contains #i ncl ude statements
for all . h files, and enables the master module to ‘see’ every shared vari-
able. Even if you do not have C modules that use data from the FORTRAN
parts, you might have an easier time when debugging on some machines.

Finally, a new modulei ni t. f is created which contains initialisation code
for all variables. Numeric variables are set to zero, character arrays are
set to empty strings. This module is not callable by the configuration file,
for the simple reason that it effectively disrupts any model run, and deletes
any assignments in the configuration file. It is optionally called by the mas-
ter module at the beginning (see appendix A), before the configuration file
is parsed. Afterwards, one can safely assume that all variables have ini-
tial values. Alternatively, one can modify this module to set variables to
some special values that are easily spotted (like 88888888 or NaN), in order
to detect forgotten assignments.



¢ From const. def, two include files are generated: arrays. h contains C
pre-processor definitions of the given symbols, using the C values, while
arrays. f contains FORTRAN parameter definitions with the FORTRAN
values. Every module should include these array settings at its top.

* From nodul es. def, the file nodul es. h is generated.

3 The provided ‘package’ and its use

We have put together a package, nodul ar. t ar, containing the parts described
in the previous section. This file can be unpacked using the Unix command

tar xf modular.tar,

which creates the following directory structure in the current directory:

modul ar/ doc/ contains this documentation in printable form

modul ar/ conf/ contains a no-op model with empty modules for tests
of configuration files (see section 5.5)

modul ar / kbnt the example model, which is discussed below

modul ar/tests/  contains a simple test for compatibility of FORTRAN
and C, discussed in appendix B.1

The following refers to the example model, that can be used as a template. It
comes complete with initialisation and output modules, the special differen-
tial equations module, a time integration module using the fixed step 4th order
Runge-Kutta method, the master module, written in ANSI C, and some config-
uration files.

3.1 The example model

The example model is a model of the global carbon cycle on a yearly basis, which
is used for courses in system analysis for graduate students, and is known as
‘Kurs-Biosphédrenmodell’, or short: KBM. It uses a 10° by 10° grid for the ter-
restrial biosphere (158 grid elements, four compartments), and contains a one-
dimensional ocean submodel (Oeschger et al., 1975, A box diffusion model to
study the carbon dioxide exchange in nature, Tellus 27, 168—192). It needs about
150 KB RAM. The directory structure is as follows:

kbm the uppermost directory, which is the working direc-
tory for model runs; contains config files

kbni i nput / contains input files (read-only)

kbm out put/ can be used to store output files

kbm src/ contains the source code of the modules and a Make-
file

kbm src/auto/ contains automatically generated include files
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Some conventions. We use standard FORTRAN 77 with the extension of
lower-case code and i ncl ude statements, supported by all compilers that we
know of. FORTRAN source code may not contain platform-dependent code. (C
source can, but must use conditional compilation.) All variables must be de-
clared, but we don’t usei nplicit none, since not all compilers support this non-
standard directive. We use compiler flags instead (e. g. - u on several systems).
We also don’t use enddo, but numerical labels on do loops.

All floating-point variables in the model code should be declared asr eal , ex-
cept for those where you need at least double precision. Most compilers have
switches to promote single precision to double precision. For C variables, we use
a preprocessor macro named r eal , which is defined to either f| oat or doubl e.
This way we have kept the decision between single and double precision for both
languages in one place, the Makef i | e. Shared variables are accessed from C by
appending an underscore to the name.

Files. From the file nodul es. def, aut ogen builds the table of modules that is
needed by the master module. The generated file is aut o/ modul es. h (listed in
appendix B.4). The modules of the KBM are given in Table 1. Each module is
kept in a separate file with the same name. Those files are:

arcalc.f de. f ocean. f plot.f cgl osum ¢
cld. f filred. f out ann. f prread. f xdvi ew. ¢
clp.f gl osum f peq. f prwit.f

cnpp. f i dummy. f pinit.f timnt.f

Task and interface description are included as comments. The modules use
i ncl ude to access the constant dimensions required to declare the arrays (from
the generated files arrays. f and arrays. h), and the declarations of the shared
variables. The included files exist twice per variable, as FORTRAN-style and as
C-style declarations, and are also automatically generated:

common. def is used to produce include files for the shared variables as seen
from FORTRAN and from C. The variables are given in Table 2 on page 11. Ad-
ditionally, the files aut o/ data. handinit.f are created as described above.

From const . def, the files aut o/ arrays. f and aut o/ arr ays. h are produced.
The constants defined are:

D (2 3
ngrid 158 ph 1 (0) atm 5 (4)
npool 8 pw 2 (1) npp 6 (5)
nbione 17 Ih 3 (2 Ip 7 (6)

Ilw 4 (3) ld 8 (7)

Constants in column (1) define sizes for dimensioning array variables. Columns
(2) and (3) define FORTRAN index values (C index values in parentheses).

This is used for consistent access: we try to avoid ‘magic numbers’ in the source and use sym-
bolic names instead, meaning that we write pool (i,1w) to get the pool ‘litter, woody’ on grid el-
ement i . Later, we can expand and rearrange the pool array without restrictions; if we choose to
have the woody litter at some other index than 4, only this file has to be changed. The same is
true for model runs with different resolution and therefore a different number of grid elements
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Table 1: Modules used in the KBM (in alphabetical order).

arcal ¢ calculates area of grid elements based on latitude of their center
cgl osum C module that calculates global sums of pools and fluxes

cld calculates litter depletion coefficients based on climate

clp calculates litter production coefficients based on stand age

cnpp calculates NPP

de calculates time derivatives of the system state (does not appear in

nodul es. def, since only ti m nt needs to know)

filred readsinput data from files

gl osum  FORTRAN version of cgl osum

i dummy  sets pools to zero, which are used for integrating annual fluxes

infnan  isused to test the treatment of exceptions, and produces overflow,
not-a-number, and illegal memory access

ocean calculates COy uptake by the ocean and the atmospheric COg con-
centration, using an ocean sub-model that contains its own time
integration (Oeschger et al., 1975)

outann  writes global pools and annual fluxes to standard output

peq calculates the equilibrium system state
pi ni t sets the system state to zero (array initialisation)
pl ot creates maps of data during a model run. Maps are displayed in

X11 windows (using C functions defined in xdvi ew. ¢)
prread reads a previously saved system state
prwit writes the current system state to a file
timnt numerical integrator for the system of differential equations

— just change ngri d (and the input files, of course). An additional advantage of having such pa-
rameters as loop bounds comes from optimisation. Compilers know in advance if loop unrolling
is useful, or which vector length to use on vector hardware.

The file vari abl es. h is given in appendix B.5. It contains the definitions
of variables that are required by the master module itself (see section 4.6), the
initial value of the atmospheric CO5 concentration, and some filename variables.

3.2 Compiling the model

Change to the source directory and enter the Unix command
make

which will examine the rules and definitions given in the file Makefi | e. The en-
vironment variable HOSTTYPE is used to decide which platform-specific instruc-
tions should be applied. If the variable is not yet set, you will see instructions
how to do this.

These are the currently recognized HOSTTYPE codes along with the tested
platforms:

ai x IBM RS/6000 running AIX 3.2
cray Cray C90 running UNICOS (vector-parallel)
dec DEC Alpha running OSF1
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hp-ux HP Apollo 735 running HP-UX 9.0

|inux No-name PPro 200 running Linux 2.0 and g77

sgi SGI Power Challenge running IRIX 6.1

sun SUN Enterprise Server 3000 running SunOS 5.1.1

vpp Fujitsu/SNI VPP300 running VPUX 10 (vector-parallel)

make performs the following: building the automatic generator aut ogen from its
C source, then generating the include files, then compiling the modules and link-
ing the object files into an executable. Single precision (REAL*4) is the default.
For most platforms, there is also a double precision target (REAL*8). For this,
say ‘make doubl e’instead of ‘make’. Integer size is not affected. Note that not all
platforms support both: on Linux, g77 lacks an option for automatic promotion
to double precision. And the Cray vectorizes operations only on double precision
data.

We use our HP machines for development and short model runs, and the vector computers for
large model runs. Compiler settings are rather elaborate on these platforms. On the other plat-
forms, the model has been made to work, but just with standard optimisation. If you use different
platforms than the above, you will have to edit the Makefile. This is discussed in appendix B.

3.3 Running the model

Change to the kbmdirectory. Just type kbmto get a short summary how to use
the program. Essentially, you have to specify at least the configuration file that
you want to use. Eight configuration files are provided:

kbrpre.cfg  The model starts with empty pools and runs for 860 years to
reach equilibrium state, which is written to a file.

kbrmpost . cfg The model starts from the previous results and runs from
1860 to 1986 with fossil emissions and ocean turned on.

kbmeq. cfg Same as before, but calculating equilibrium directly. This is
a lot faster than combining the first two.

kbreqc. cfg  Like kbneq. cf g, but the FORTRAN module gl osumis ex-
changed for an equivalent C module, cgl osum Use this to test
array access (especially with double precision) from C.

kbmpl ot.cfg Like kbneqgc. cf g, but adds two X11 windows showing online
maps of NPP and NEP. Just a little gimmick. Check that your
DI SPLAY variable is correctly set.

For instance, use the command
kbm kbreq. cf g

to see the development of the global carbon pools during the industrial period,
ending with about 334 ppm in December 1986.

If you want to examine the calling of the modules, you can use option - v dur-
ing the run, or - n if you just want to see the sequence without actually calcu-
lating anything. You can also activate a stop watch for the modules: option -t
shows the time needed for each module call, and at the end a summary is shown
as a table.
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Table 2: Variables shared between modules of the KBM (for the constants used
for array dimensioning see text). NPP: net primary production; LP: litter pro-
duction; LD: litter depletion.

input data

real t(ngrid) annual mean temperature (° C)

real pp(ngrid) annual sum of precipitation (mm)

real fsoil(ngrid) correction factor for NPP from soil quality
integer ibione(ngrid) biome code (1-17)

real | at (ngrid) latitude of SW corner of grid element (°)
real | on(ngrid) longitude of SW corner of grid element (°)
real ageh(nbi one) mean stand age (herbaceous material)

real agew( nbi one) mean stand age (woody material)

real h(nbi onme) share factor of NPP to herbaceous material
real fossc(1860; 1986) C emissions from fossil sources (Gt C/year)

intermediate results

r eal area(ngri d) area of grid element (m?)

real npph(ngri d) share of NPP to herbaceous material

real nppw( ngri d) share of NPP to woody material

real kl ph(ngrid) LP coefficient for herbaceous material
real kI pw( ngrid) LP coefficient for woody material

real kl dh(ngrid) LD coefficient for herbaceous material
real kl dw( ngri d) LD coefficient for woody material

real pool (ngrid, npool)  system state (g C/m?)

real pgl obal (npool) global sums (g C)

r eal co2 atmospheric COg concentration (ul/1)

r eal m xsm C stored in mixed ocean layer since 1860 (g C)
real deepsm C stored in the deep sea since 1860 (g C)
current time information

integer iannum current year

integer inonth current month

i nteger idoy current day of year (doy)

integer iday current day

integer ihour current hour

integer imnut current minute

i nteger isecon current second

file names

string fgrid input file for data related to grid elements
string fbiome input file for data related to biomes
string ffoss input file for yearly emissions from fossil C
string fpoolr file to read system state from

string fpoolw file to write system state to

time integration control
integer maxdt

maximum step size (sec)
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4 Using the structure with your own model

Now we are going to show the steps one would have to take in using our package
with an existing model.

4.1 Prerequisites

You have to have a partly modular model to begin with. Ideally, your code should
consist of several subroutines, each one dedicated to a particular task, and a
main program that coordinates the calling. What you have to do is to shift all
inter-module communication down to the subroutine level, treat grid elements
in parallel, and to remove most, if not all, knowledge of model details in the main
program. Then you can replace the main program by the master module.

4.2 Change subroutines to modules

For every subroutine, take down its interface definition. What is the task of the
subroutine? What does it expect as input data? What is its output? It is useful
to add this information as commentary lines to the code. Look at the arguments
that the subroutine is called with, if there are any. All of them should be ac-
counted for in the interface description.

If your main program contains other loops (e. g. grid element loops) than time
loops, change this to have those loops down in the subroutines. — This is usu-
ally the main part of the work. It also has the disadvantage of having to store
intermediate results (that are used by the next module, for instance) for all grid
elements in arrays, which is memory-intensive. As already mentioned in the in-
troduction, you will lose much of the code optimisation, that relied on modeling
one grid element at a time, with precalculating invariant expressions, or whole
time courses of fluxes or driving forces; since in general you won’t be able to store
the precalculated information for all the grid elements at once.

When you are clear about the interfaces of all subroutines, each item (array
or scalar) of input or output data has to be noted in the file cormon. def (see be-
low), from which common block and C header declarations are generated later.
Still, you have to fill your subroutines with the necessary i ncl ude statements
to gain access to the data.

In the end you should have subroutines that are called without parameters,
and that share their data according to their interface specification without the
main program seeing anything of this. These subroutines will be called modules
from now on. The main program then contains only calls to modules and the
loop structure for time evolution of the system, and probably some initialisation
of variables at the beginning.

4.3 Create a list of shared variables (cormon. def)

This file may contain comments (starting with 4’) and empty lines. Other lines
are taken as entries for variables and have the form

Variable Type [Dimension-1 [Dimension-2 ...] ]
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Variable is a valid name for FORTRAN and C variables. Type is a valid FOR-
TRAN type. It may not contain blanks. If you use ‘real ’, ‘i nt eger’, or ‘stri ng’
(meaning CHARACTER* 80), aut ogen will produce a corresponding C declaration,
otherwise you cannot use this shared variable in C modules.

No dimensions are given for scalar variables and for strings. Otherwise,
Dimension-n is a valid expression for dimensioning, and may not contain blanks
or tabs. Example (excerpt from the KBM):

# name type di mensi on('s)

B oo oo
area real ngrid

fossc real 1860: 1986

pool real ngrid npoo

i annum i nteger
fgrid string

leads to, for instance, the file aut o/ f ossc. f containing

C auto/fossc.f (generated by autogen)
real fossc(1860:1986)
common /fossc/ fossc

and aut o/ f ossc. h containing

/* autol/fossc.h (generated by autogen) */
#i f def UCASE_OBJECT_NAMES

#define fossc_ FOSSC

#endi f

#i f def LCASE_OBJECT_NAMES

#define fossc_ fossc

#endi f

EXTERN real fossc_[1986-1860+1];

which is explained in appendix B.

4.4 Create a list of constants (const . def)

This file may contain comments (starting with 4’) and empty lines. Other lines
are taken as entries for constants and have the form

Constant Type FORTRAN-Value C-Value

Constant is a valid name for FORTRAN and C variables. Type is either ‘real’
or ‘i nteger’. FORTRAN-Value is the numerical value to be used for arrays. f,
C-Value is the value to be used for arrays. h. The C value will be equal to the
FORTRAN value if it gives the size of the arrays. It will be one less if it is used
as array index.
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Example from the KBM:
# name type fvalue cvalue
npool i nteger 8 8
ngrid integer 158 158
nbi ome integer 17 17
ph i nt eger 1 0
pw i nt eger 2 1

4.5 Create a list of modules (nodul es. def)

This file may contain comments (starting with ‘4’) and empty lines. Other lines
are taken as entries for modules and have the form

Module Type [Switch]

Module is a valid name for FORTRAN and C subroutines. Type is the argu-
ment type in C notation, and may not contain blanks. Switch is an optional pre-
processor symbol, which has to be defined in order to include this module.

The sequence of entries does not matter. There is no limit to the number of
modules, since the array is dimensioned at its initialisation and therefore has
always the correct size.

Example from the KBM:
# name arg preprocessor-switch
arcalc void
cnpp voi d

filred void
timnt int*
pl ot voi d __WANT_X11

Ordinary modules have no arguments (the type is ‘voi d’). The only exception is
tim nt, which takes the number of seconds of integration as a pointer to i nt,
since it is a FORTRAN subroutine, where arguments are passed by reference,
not by value.

The module pl ot requires the X Window System libraries, and is only in-
cluded if the pre-processor symbol _ WANT X11 is defined during compilation
(see the Makefi | e of the KBM).

From nodul es. def, the file aut o/ nodul es. h is created, which provides the
address information about all modules for the master module. No corresponding
FORTRAN file is necessary.

4.6 Create a list of variables (vari abl es. h) for initialisation pur-
poses

vari abl es. h contains a table of variables that can be set from the configuration
file. What variables are these? They are typically those that were initially as-
signed in the former main program, like switches that control model behaviour,
or simply some initial values. They have to be scalar variables.
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You cannot initialize arrays from the configuration file; for this, one has to
use modules (like reading driving forces from files, or reading a temporarily
saved system state for continuing a model run).

It is also possible to put all remaining assignments for scalar variables into
a ‘parameter file’, that is read by some module at the start of the run. On the
other hand, it is desirable to have some assignments located in the configura-
tion file for a particular run, so that all the information necessary to reproduce
the run remains visible in one place, especially when one considers switches, or
input/output file names.

You cannot completely omit variables, since the master module and the time
integration requires some variables to be set (these entries are discussed below).
The layout of the file is rather complex, since it is a complete C declaration file.
An example from the KBM is given in appendix B.

The first fixed part of the file looks like this:

struct {
char name[ 80];
i nt type;
int required,
voi d *addr;

} variable[] = {
{"", 0, 0, NULL },

This defines a structure that is made up from four components:

* nanme: a name of a variable, up to 80 characters long. As with modules,
there needs to be a mapping from a string name to the actual memory lo-
cation of the variable. The string name may not contain the five characters
: =<>" but is otherwise unrestricted.

* type: an integer that represents a data type, where the valid data types
for variables are defined as symbolic constants in the file mast er. h. They
are:

| NTEGER TYPE meaning | NTEGER,
REAL_TYPE meaning REAL,
STRING TYPE  meaning CHARACTER* 80.

The latter is somewhat arbitrary, of course, but it is useful enough for the
single purpose of defining input and output filenames in the configuration
file.

® required: an integer, being either REQUI RED or OPTI ONAL.
* addr: a pointer to the memory location of the variable.

The C variable named vari abl e is declared as an array [ ] of this structure, and
it can be directly initialized. Its size is not specified and depends on the number
of elements that follow in the initialisation.

The first element (with array index 0) is an empty entry. The following array
elements define the variables. After the last entry, the file ends with the second
fixed part
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};
#defi ne NUMBER OF VARl ABLES (si zeof (variabl e)/sizeof (variable[0])-1)

which closes the array initializer, and defines a preprocessor macro which gives
the actual size of the array.

Now to the variable part of vari abl es. h: The master module requires two
variables, and offers several optional settings that are turned off by default.
The provided time integration module t i m nt needs the maximum step size for
integration. Table 3 lists these variables. Their declaration can be found in
mast er . h; only the step size is a shared variable, maxdt _ (requires a trailing un-
derscore), and thus appears in the file common. def. The table in vari abl es. h
must contain at least the following lines:

"First year", INTEGER TYPE, REQUI RED, &first_year},

"Final year", INTEGER TYPE, REQUI RED, &final year},

"Wite core", INTEGER TYPE, OPTIONAL, &wite_core},

"Trap FPE', |NTECGER TYPE, OPTIONAL, &trap_fpe},

"MM DD date format", |NTEGER TYPE, OPTIONAL, &date format},
"Maxi mum step size", |NTEGER TYPE, REQUI RED, &maxdt },

et Nt W o W WY

The first column is again the literal (string) name to be used in the configuration
file, the second column contains the data type, the third controls whether the
variable is REQUI RED or OPTI ONAL, and the fourth entry gives the address of the

variable.

Care must be taken to give optional variables an initial value. This is not part of the look-
up table, but happens either at the initialisation in C (as with data_f ormat = 0; in the master
module — before parsing the configuration file, of course), or using the bl ock dat a modules in
FORTRAN (because dat a assignments are usually not allowed for variables in common blocks,
except from the main program).

4.7 Provide modules for time integration.

At the heart of your main program’s loops usually resides the code that prop-
agates the system forward through time. This code consists of two parts: the
system of differential or difference equations, and the implementation of a nu-
merical or analytical integration method (probably using library calls). With fi-
nite differences, this distinction is not necessary.

For continuous systems, it is useful to separate system-dependent informa-
tion from the system-independent integrator method, especially if the method
needs to evaluate changes more than once. But this is a recommendation only,
since the subroutine that calculates the system equations is not treated like the
other modules, but is exclusively called by the integrator.

Your job is either to modify your dynamics to work with our ti m nt, or to
put your integrator or finite difference routine into your ownti m nt. Regarding
the interface, ti m nt receives a single argument, namely the time interval in
seconds that is to be covered (but see also appendix B.3). The argument is of type
i nt eger, and since FORTRAN passes arguments by reference, C programmers
have to use a pointer, i nt *. The input data is the state of the system prior to
time integration, and the output is the state afterwards.
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Table 3: Variables of the master module and the integrator module, that can be
initialized from the configuration file.

required by mast er:
First year

Final year

optional by mast er :
Wite core

Trap FPE

MM DD date format

First year of the model run. The run starts at Jan-
uary 1 on this year.

Final year of the model run. The master module will
not process events later than ust before’ January 1
of the following year. But the run may stop earlier if
there are no further calling entries of modules.

controls whether program crashes should produce a
cor e file. The signal handler catches signals result-
ing from an illegal instruction (SI G LL), a bus error
(SI GBUS), and a segmentation violation (S| GSEGV). It
is not possible to continue the run, but the handler
can exit cleanly. If you turn on this flag, the han-
dler calls abort () to produce a core dump for post-
mortem debugging. By default, no core is produced,
since the cor e file is usually very large and not too
useful (at least not in batch runs on supercomputer
hosts).

controls whether floating-point exceptions (S| G-PE)
should get caught by the signal handler, which gives
a warning message and stops the run. The default
behaviour is to leave handling to the FORTRAN run-
time library. Depending on the platform and com-
piler settings, these exceptions stop the run with a
traceback, or are silently treated as | NF (infinity)
or NaN (‘not-a-number’ as defined by the IEEE stan-
dard).

if non-zero, changes the interpretation and output of
dates to ‘months first’. Standard behaviour is ‘days
first’.

emphrequired by ti mnt:

Maxi mum step si ze

gives the maximum allowed size of a single time step
in seconds, which has to be determined using trial
and error, or experience. ti m nt needs this since it
does not use adaptive step size control, but uses fixed
steps.
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4.8 Finally: Compilation.

Compile your model without the original main program, but with the C master
module instead. Your main program will be replaced by a suitable configuration
file.

5 The configuration file

The configuration file may contain:

e initial values for some variables
¢ dependencies for modules

¢ explicit time entries for modules

Empty lines, or lines containing only white space (blanks, tabs) and comment
lines (starting with the character #’ in the first column) are ignored.

The file is scanned in two passes: first, all assignments are processed; then
dependencies and explicit time entries are considered. This ensures that START
and END are set before looking at explicit time entries.

The general idea is to use dependencies as much as possible (wherever they
occur). If you have to call modules A, B, C, D in advance to calculating coeffi-
cients for the equations with module E, then make E dependent on A, B, C, and
D. Further on, if C requires B to be called first, make C dependent on B. The
master module will sort out the dependencies. You just have to say explicitly,
that E is to be called once a month, and all others will be called accordingly.

A given sequence in the configuration file determines the calling sequence,
which is modified through dependencies. The calling list is not created com-
pletely (for the whole model run) in advance, but a module re-registers itself
when it is called. The calling algorithm is explained below.

5.1 Assignments for variables

Assignments for variables have the form
String = Value

The string up to the ‘=’ character, not counting leading or trailing white space,
represents a variable and can consist of a description text. White space inside
the text is allowed. The file vari abl es. h defines the connection between text
string and memory location of the variable. The text string may differ from the
name of the variable, but entries in the config file must match the definition in
vari abl es. h literally.

The master module requires that four variables must always be set (see pre-
vious section). The place of the assignment does not matter.
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5.2 Explicit time entries for modules

Explicit time entries have the form
Module name: Start spec. [End spec. Interval spec.]

Either you set a single time point, or you give start, end, and interval specifica-
tion. It is not possible to have start and end only.
A start or end specification can use three different formats:

YEAR implies January 1st, at midnight
DD. M YEAR implies midnight
HHWVBS. DD. MM YEAR

You can switch from DD.MM notation to MM.DD notation using the variable
‘MM DD date format’, see above.

The YEAR can be any signed integer, or it can contain START or END, optionally
followed by +int or - int.

If the time entry is followed by an asterisk (*), this means ‘just before’ the
given time, as discussed in section 2.4. For example, you can write annual out-
put at the end of each year using the entry

outann: 01.01. START+1* END 1y

Older versions of the master module used ‘illegal’ time entries with a day of 31, or a month of 13,
as qust before’ entries. This is detected if one uses the simple calendar, and the user is reminded
to change these old-style entries.

The interval specification is an integer larger than zero, followed immedi-
ately by a unit (no space allowed). Available units are

y year h hour

m month mn minute
nmon  month S second
d day sec second

For example, you may not write 1. 5h or 1h30m n, but you can write 90ni n in-
stead.

5.3 Dependency entries

Dependency entries have the form
Depending module . Independent module [Independent module ...]

This is a similar notation as used in Makefiles. You can specify multiple inde-
pendent modules on the same line, but note that white space is used as delim-
iting character. If module names contain white space, they must be enclosed in
double quotes.

It is not possible to specify that a module should always be followed by an-
other module; the implemented kind of dependency accounts only for the case
that the independent module is called beforehand.
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Redundant dependencies are admitted: at a given pointin time, each module
can only be called once, and repeated registration of modules through dependen-
cies is ignored.

Dependencies leading to recursion will not be detected, so that the process
will eventually crash due to stack growth failure.

5.4 The calling algorithm

In this section you will get an impression how the machinery within the mas-
ter program works. This knowledge is necessary to write complex configuration
files.

The calling sequence is created in two steps. First, only the explicit time en-
tries are considered. They are rearranged to give a preliminary calling sequence
(called sort ed_i ndex) sorted by time stamps. Entries with the same time stamp
are sorted according to the order of appearance in the config file. In the second
step, only the entries belonging to the first time stamp are taken. They are ‘reg-
istered’ in the final calling sequence for this point of time.

Registration is a recursive process that checks first if the module is already
registered; if not, it registers any modules the current one depends on. Finally
the current module is registered and moved in the sorted index to the adequate
position for the next call (which is again sorted by time, and by order of appear-
ance). If the entry does not specify a next call, a time stamp of January 1st, (final
year + 2) is used, which is not reached.

When all entries at the current time are registered, the calling sequence is
complete, and it is executed. Afterwards, the next time stamp in the sorted index
is examined. If it lies before the final time stamp January 1st, (final year + 1),
the run continues, the time interval is calculated, and if non-zero, integration is
called.

Example. Consider the following configuration file, which resembles the ex-
ample in section 2.4:

First year = 2000 run from 2000 to 2050
Final year = 2050

filred: START read files first

annprp: START END 1y annual preparation
monprp:  START END 1m monthly preparation
cnpp: START END 1m calculate monthly NPP
outnon: 01.02. START* END 1m output at end of month
outmon: gl osum needs global sums
outann: START+1* END ly output at end of year
outann: gl osum needs global sums

The resulting table of explicit entries is
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nane first | ast delta
filred 01.01.2000 01.01.2052 0Oy Om
annprp 01.01.2000 01.01.2051 ly Om
monprp 01.01.2000 01.01.2051 Oy 1m
cnpp 01.01.2000 01.01.2051 Oy 1m
outmon 01.02.2000* 01.01.2051* Oy 1m
outann 01.01.2001* 01.01.2051* 1y Om

(Observe that single entries have an interval of zero and a last time entry of the
final year + 2; END entries are replaced by the final year + 1, and the ‘just before’
flag of the first time entry is preserved.)

After creating the sorted index, current time is set to the first time entry
(01.01.2000). From the sorted index and the dependencies, the following call-
ing sequence is generated:

register filred

filred: 01.01.2000 filred next: 01.01,2052
annprp: 01.01. 2000 register annprp » annprp next: 01.01.2001
monprp: 01.01. 2000 register monere » MONprp next: 01.02.2000
cnpp: 01.01. 2000 |-cgster e cnpp next: 01 02.2000
out non: 01.02. 2000* cal ling sequence for
outann: 01.01.2001* time point 01.01.2000

The four modules have been registered for the next call according to the inter-
val specification. For a single call, as with fil red, the next year is set to the
final year + 2, which will never be reached. With each registration, the entry in
the sorted index is removed from the top and inserted again at the appropriate
position, which is 1) before all later entries, and 2) within entries for the same
point in time, the order of first appearance in the config file matters. Therefore,
monpr p remains in front of cnpp, and both are inserted after out non, and before
out ann (see below).

out non: 01.02. 2000* gl osum

monprp: 01. 02. 2000 regeter 2™ out mon 01.03. 2000°

next:

cnpp: 01. 02. 2000 cal ling sequence for
annprp: 01.01.2001
filred: 01.01.2052

For this point of time, there is only a single entry in the sorted index. But when
out non is about to be registered in the calling sequence, the dependency is seen,
and gl osumis registered first. If in turn gl osumdepended on another module,
this other one would be registered before gl osum Registration is a recursive pro-
cess. — Now we skip until just before December 1st:

outmon: 01.12. 2000 gl osum
monprp: 01.12. 2000 register SR Gut mon 01. 01. 2001

next:

cnpp: 01.12.2000 cal ling sequence for

outann: 01.01.2001* time pOI nt 01.12.2000*
annprp: 01.01. 2001
filred: 01.01.2052
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You can see that out non is inserted before out ann, which has been already reg-
istered for 01. 01. 2001*, due to their order of appearance in the config file.

monprp: 01.12. 2000 regi Ster mnere monprp next: 01.01.2001
cnpp: 01.12.2000 [Soster o > Cnpp next: 01.01.2001
outmon: 01.01.2001* cal ling sequence for

outann: 01.01.2001* time point 01.12.2000

annprp: 01.01. 2001
filred: 01.01.2052

Likewise, nonpr p and cnpp are inserted after annpr p, because annpr p precedes
them in the config file.

out mon: 0L 0L, 20017 | 2= gl osum |22 22 gl osum

register outnon
outann: 01.01.2001* +-J ™

I osum t agai
annprp:_0L. 0L, 2001 | E;}?fmaffignl@ .
monpr p:_01. 01, 2001 oo

cnpp: 01.01. 2001 cal ling sequence for
filred: 01.01.2052 time point 01.01.2001*

At this point in time, gl osumis required by both out non and out ann. The rule is
not to register twice, since the dependency of out ann is already satisfied by the
first registration of gl osumin the calling sequence.

5.5 Playing with configuration files

You can create your own config files and try them. Change to the directory conf/
and build the executable like you produced the kbm The model conf contains no
variables, but several empty modules, a to e, and those mentioned in the previ-
ous section (filred,...).

When running the executable conf, you can either use the command line
switch - v for verbose output of calls and the dummy integration in-between, or,
if you are interested in following the internal tables as shown above, you can
turn on debugging output with - d. The latter option causes lots of information
to be written to the error output. Redirect it to a file, or use

conf -d whatever.cfg 2>&1 | nore (ksh or bash)
or
conf -d whatever.cfg >& | nore (csh)

to combine standard output and error output and pass both through the pager
nmor e.

ann out non next: 01.02.2001*
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A Command line switches

Four command line switches are recognized by the master module:

-n (no calling mode). Specifying this option prevents calling of modules. Oth-
erwise, the model runs as usual. The reason for this option is to check the
calling sequence that results from your configuration file without delay due
to real computation.

-t (timing mode). With this option, a simple profiling is activated. At the
end of the run you get a table that lists each module with its CPU time
consumption both in milliseconds and as a percentage. There is also addi-
tional diagnostic output during the model run whenever a module is called.

-v (verbose mode). Using this option, the master module informs about the
current time, calls of modules, and time integration calls. Can be useful to
watch the progress.

-d (debug mode). This requires a preprocessor switch to be set. With de-
bug mode one gets several tables of information while the master module
is scanning the configuration file, and when it established the calling se-
quence, and registers modules for the next call. This option produces lots
of output!

-i (init shared variables). With this option, the master module calls the au-
tomatically generated module i nit which initializes all shared variables
at the beginning of the run.

B Internals

This section contains bits and pieces that you don’t really want to know, if you
can avoid it.

B.1 Porting to a new platform

All that is necessary to add a new platform are a few lines in the Makefi | e. Sup-
pose your platform is called ‘HAL'. In the first section which lists platforms, add
two new Make variables to store your favourite FORTRAN compiler flags. For
single precision, call the variable SP_HAL, for double precision, DP_HAL. Leave
their values empty. Later on, you have to define a new target architecture and
the rules for compilation, called hal - si ngl e and hal - doubl e. It’s easiest to copy
an existing entry and modify it afterwards. Don’t bother with optimisation and
double precision for the beginning.

External names. First, youhave tocheck the external names that are used by
FORTRAN. Change to the directory t est s/ outside of the kb tree. It contains
a FORTRAN subroutine subl and a C main program,
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subroutine subl extern float r;
real r extern int i;
integer i extern void subl();

voi d nmain()
comon /r/ r {
comon /il i subl();

i = 12345;

wite(*, *) "i=",i r = 67890.;
wite(*, *) 'r=",r subl();
end }

(where the () indicate a C function without parameters) and a Makef i | e. If your
FORTRAN compiler is not called f 77, change the Makefile accordingly. Type
make, which compiles both files separately (should work ok) and then tries to link
them to an executable called a. out (this may fail). If you don’t get any errors,
and if running a. out produces

i=0
r=.0

i = 12345
r=67890.0

then FORTRAN and C go very well along. They even use the same names for
external (visible) symbols in the object files. Otherwise, check the names used
in the object files with nm subl. o and nm mai n. 0. Look for ‘subl’, r’, and .
Here is an excerpt of sample output produced on our HP. This may look totally
different on your machine, but what matters is the literal appearance of these
symbols.

Synbol's from subl. o: Synbol s from main. o:
Narme Scope Type Nare Scope Type
subl |extern|entry | subl |undef |code |
r | undef | common | [ | undef |data |
i | undef | commmon | r | undef |data |

Obviously, naming in both object files is identical. With C compilers, symbol
names in object files are the same as in the source code, where mixed case is
allowed and distinguished. With FORTRAN compilers, we know of three cases:

1) the names appear in lower-case as shown above,
2) the names are in lower-case with trailing * ’,
3) the names are in upper-case (Cray only).

Some FORTRAN compilers of the first category have switches to add an under-
score to external names:

compiler switch

f77 (HP-UX) +ppu

f77 (SunOS) -ext_names=underscores
(newer compilers only)

xI f (AIX) - gext name
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The behaviour of the other categories is usually fixed.

A simple solution is to use the C preprocessor for mapping names. We use
names with trailing underscore as default and try to produce these names using
compiler options. If this doesn’t work, we define

LCASE_OBJECT _NAMES
in case 1), and
UCASE_OBJECT_NAMES

in case 3). The include files that are automatically generated contain conversion
code for this mapping. In C modules, you have to write it explicitly. For example,
cgl osum c starts like this:

#i f def UCASE_OBJECT_NAMES
#define cgl osum CGE.OSUM
#endi f

#i f def LCASE_OBJECT_NAMES
#define cgl osum_ cgl osum
#endi f

voi d cgl osum (voi d)

{

You may also check the names used by C, but they should appear in the ob-
ject file unmodified. — Having done this, go back to the kbt src/ directory, and
edit the Makefi | e. Enter the correct name of your FORTRAN compiler, if not
f77, as "FC=frt" or the like (see target vpp-si ngl e); and the compiler switch
that produces underscores goes to the first section of the Makefile, where you
have created entries for your ‘HAL’ machine (see the HP entry, for example). If
you need conversion, add the preprocessor symbol to the CFLAGS as in the target
cray-doubl e.

C mai n() and FORTRAN runtime library. The second step is to check if you
can link FORTRAN object files with a C object file that contains a mai n() func-
tion. Usually, you have to use the FORTRAN compiler for linking, because you
need the FORTRAN run-time libraries, some of which unfortunately expect a
main program in FORTRAN. But as stated in the preface, mixed-language soft-
ware development is not uncommon, and compilers are usually prepared for this
(but the information can be hidden in some arcane manuals).

Go back to the t est s/ directory. Most linkers produce the a. out executable
without errors. Only two of the platforms listed above refused to link at first
attempt: On the DEC Alpha, the f 77 manpage lists the linker flag - nof or _nai n.
On the VPP300, the C mai n() has to be called MAIN__ () instead to make it work
(which is done using the preprocessor compiler option - Dnmai n=MAIN__). On the
SGI, the linker issued a warning that the C mai n replaces an earlier definition,
but this is exactly what should happen, and it works.
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Memory locations. The third step is to check the linker output whether the
C and FORTRAN modules access the same variables in memory. Some C com-
pilers require declaring the FORTRAN common blocks as external C variables
(on SGI and VPP300), others require the opposite. This peculiar situation arises
because there is no C equivalent to a common block. The linker has to choose a
replacement.

The solution was to use the preprocessor again. In the C header files, these
variables are declared as EXTERN, which is defined to be either ext er n or empty.
When using the command line, be sure to use - DEXTERN= and not - DEXTERN, be-
cause the latter sets EXTERN to 1, which produces strange compiler errors).

Double precision. At this stage, single precision should compile, and you can
continue with running the model. For double precision, it should suffice to enter
the correct compiler flag into your DP_HAL variable. Not all compilers have flags
to change the precision. Others let you choose the precision of variables and of
constants independently.

An important issue connected to this precision change is the matter of align-
ment. On 64-bit machines, performances is generally better when double preci-
sion elements reside on 8-byte boundaries. Some compilers offer separate flags
for padding the elements of a common block to various boundaries, but others
just do it silently!

So, if you mix real and integer variables in common blocks, and use au-
tomatic double precision, you are in danger: the FORTRAN compiler might
silently pad all variables to a 8-byte boundary. This introduces ‘holes’ in the
FORTRAN common block that are not present in the corresponding C structure,
and FORTRAN and C variables point to different memory locations.

This is a very good reason for placing each variable in its own common block,
as it is done by our automatic common block generator.

Advanced topics. In the nodul ar/ conf/ directory, you can test exception handling with
nanl. cf g (no core, no special floating-point handling), nan2. cf g (no core, but trapping floating-
point exceptions), and nan3. cf g (drop a core for post-mortem debugging).

Sometimes, the standard handling of floating-point exceptions is adequate, resulting in a
traceback and source line numbers. Other times, exceptions are silently ignored, and the ma-
chine happily continues calculation with values of | NF or NaN; the only indication is the threefold
decrease in execution speed due to taking the exception branches in the mathematical functions.
In this case, the settings in nan2. cf g should notify you that an exception has occurred; unfortu-
nately they cannot produce real debugging information.

Later on, you may want to try the X11 online plots by uncommenting FMODX and the subse-
quent definitions in the Makefile. Probably you must provide an additional include path for the
X11 include files. (This, and other problems, can be discussed in detail via private E-mail.)

B.2 Access of variables in FORTRAN and C

Scalar variables. Consider the scalar FORTRAN variable CO2, which con-
tains the current atmospheric CO5 concentration and resides in the common
block named CQ2. The variable is declared in aut o/ co2. f like

real co2
common /co2/ co2
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(upper or lower case do not matter), and in aut o/ co2. h like this:

#i f def UCASE_OBJECT _NAMES
#define co2_ C2

#endi f

#i f def LCASE_OBJECT NAMES
#define co2_ co2

#endi f

EXTERN real co2_;

(Remember that r eal , which is no valid C data type, is #def i ne’d to be either
fl oat or doubl e when calling the C compiler from the Makefile.)

If you want to access the variable from a FORTRAN module, you only need
to include the declaration, like

subroutine fnod
i ncl ude ’auto/co2.f’

wite (*,*) 'co2 ="',co02
end

From a C module, you have to use the name with trailing underscore,
#i ncl ude "auto/ co2.h"

(substitute name mapping as shown on page 25)
voi d cnod_(voi d)

{

printf("co2 = %\n", co2);
#i f def DBL

scanf ("% f", \&c02 );
#el se

scanf ("% ", \&co02 );
#endi f
}

which is either taken ‘as is’ or mapped to CO2 or c02 by the preprocessor. Note
that co2_ is either declared as single precision (1 oat’) or a double precision
(‘doubl €’) depending on the definition of the preprocessor symbol r eal . This is
no problem for printing, since the format specification ‘% ’ applies to double pre-
cision variables, and single precision variables are promoted. But for input via
scanf, you have to use ‘%’ for single precision and ‘% f’ for double precision.

Array variables. Consider FOSSC( 1860: 1986), a one-dimensional array that
contains the annual emissions of fossil C for the respective year, and the two-
dimensional array POOL( NGRI D, NPOQOL) , which gives the contents of all pools on
all grid elements. The arrays and the common blocks of the same name are de-
clared in aut o/ f ossc. f and aut o/ pool . f like

real fossc(1860:1986)
common /fossc/ fossc
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and

real pool (ngrid, npool)
conmon / pool / pool

(where const . f defines ngri d=158 and npool =8). The corresponding C declara-
tions are kept in aut o/ f ossc. h and aut o/ pool . h:

#i f def UCASE_OBJECT_NAMES
#define fossc_ FOSSC

#endi f

#i f def LCASE_OBJECT NAMES
#define fossc_ fossc

#endi f

EXTERN real fossc_[1986-1860+1];

(in C, the array index always starts with 0, therefore we get 127 elements with
indices 0...126), and

#i f def UCASE_OBJECT_NAMES

#defi ne pool _ POOL

#endi f

#i f def LCASE_OBJECT NAMES

#defi ne pool _ pool

#endi f

EXTERN real pool [npool][ngrid];

where the sequence of indices is reversed, because C uses row-major array stor-
age. Or in other words, pool _is an array of npool (8) elements, each of which
is an array of ngri d (158) elements. In memory, the grid index runs fastest, as
shown for the C values of the indices (FORTRAN values are one larger). A box
represents one value, or four bytes.

1

012 1570 1 2 =ngrid
+|+ ¥

v ¥ ¥y
[ ] LILT L [T 1] (I I T

—— npool=0 ——+—— npool=1 ——+—— npool=2 —— —— npool=7 ——

pool: |

Again, access from FORTRAN is straightforward:

subroutine fnod
i ncl ude ’auto/fossc.f’
i nclude "auto/ pool . f’

wite (*,*) 'fossc(1975)
wite (*,*) ’'pool (29, ph)
end

", fossc(1975)
", pool (29, ph)

This prints the emissions of 1975 and the contents of the pool ‘phytomass, herba-
ceous’ (pool index 1) on grid elment 29. An equivalent C module has to account
for the index shift and the different order of indices:
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#incl ude "auto/ fossc. h"
#i ncl ude "aut o/ pool . h"

(substitute name mapping as shown on page 25)
voi d cnod_(voi d)
{
printf("fossc(1975)
printf("pool (29, ph)

%\n", fossc_[1975-1860]);
%\n", pool _[ph][29-1]);

}

where ph is already defined to be ‘0’, not ‘1’ as in the FORTRAN case.

B.3 Internal representation of time

In the current version of the structure, time points are stored using five inte-
ger values. A single integer cannot hold the time range which is necessary for
biogeochemical models: According to the ANSI standard, a C unsi gned int is
guaranteed to hold at least the value 232- 1, or roughly 4 billion. If we assume
that a granularity of time of one second is fine enough, this could represent 138
years from a reference point onwards, which is too limiting.

Therefore, we have reserved one signed integer for storing the year (this way,
we can capture most of the Earth’s history). Month (0—11) and day of the month
(0-29) are also stored separately, if we ever need to have a precise calendar (Gre-
gorian, for example). A fourth integer value is used to store the seconds of the
day (0-63,999). If the resolution of one second is not enough, we could even use
it to store milliseconds. The fifth value can be 0 or 1, meaning ‘at’ (or just after)
the given point in time, or ‘just before’.

Time intervals are measured in seconds, and they clearly do not fit into a
single integer. We have split intervals in two parts, namely year difference and
remaining seconds. The sign convention is that both are either positive or zero,

or both negative.

The integrator module that accompanies the example model uses a single integer that speci-
fies the interval, that is to be covered, in seconds. When called by the master module, this has to
be taken into account; calls are split so that the integrator never has to cover more than 2 billion
seconds, or roughly 69 years, in one time step.

For models with a large time scale, this is probably too short. As a remedy, the master module
and the integrator could be modified to simply use years, or months, instead of seconds, as unit
for the interval parameter.

B.4 The KBM’s nodul es. h

This section contains the automatically generated file nodul es. h, with some
omissions indicated by [...]. Note that the trailing comma after the last en-
try of the table is allowed according to the ANSI C standard.

/* auto/ nodul es. h (generated by autogen)
* Not e:

* - Nanmes nust be shorter than 32 characters.

* - The Symbol NUMBER_OF MODULES nust al ways give the correct
* nunber of table entries.

* - |Index 0 is not used.

*/
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/* first section: object name translation */

#i f def UCASE_OBJECT_NAMES
#define arcal c_ ARCALC
#define cld_ CLD

#define clp_ CLP

#define cnpp_ CNPP
#define filred_ FILRED
#define cgl osum CG.OSUM
#define gl osum G.OSUM
#define i dumy_ | DUMWY
#def i ne ocean_ OCEAN
#def i ne out ann_ OUTANN
#define peq_ PEQ

#define pinit_ PINT
#define prread_ PRREAD
#define prwit_ PRARIT
#define timnt_ TIMNT
#define plot_ PLOT

#endi f

#i f def LCASE_OBJECT_NAMES
#define arcalc_ arcalc
[...]

#define plot_ plot

#endi f

/* second section: external declaration */

extern void arcalc_(void);
[.--]

extern void prwit_(void);
extern void timnt_(int*);
#ifdef _ WANT_X11__
extern void plot_(void);
#endi f

/* third section: table entries */

struct {
char name[ 32];
void (*addr)();
} rmodule[] =
{
{"", NULL },
{"arcalc", arcalc_},
[...]
{"timnt", timnt_},
#ifdef _ WANT X11
{"plot", plot_},
#endi f
b

#def i ne NUMBER_OF_MODULES (si zeof (nodul €)/ si zeof (modul e[0]) - 1)

/* NUMBER_OF_MODULES is *not* the number of elenents in the

* array, but one less!!! we use only elements [1]

* [ NUMBER_OF_MODULES]. Therefore, array declarations have to
* be made wi th NUMBER OF MODULES+L */
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aut o/ nodul es. h consists of three parts. The first part maps object names to
strings. The second part contains the declaration of all modules, stating that
a module is external (not part of the master module’s code), takes no argument
and returns no value (what a function would normally do).

If you want create your nodul es. h directly, here is an example what you can do. Consider the
following legal, if stupid, module

SUBROUTI NE EMPTY
END

which one would declare in the second part of nodul es. h as

extern void enmpty_(void);

As you can see, the argument list is ‘void’, and the return value is also ‘void’, meaning there is
nothing. The module name enpty_ is used like this, because we assume that module names in
FORTRAN object files are in lower case and with trailing underscore.

After all modules have been declared, the third part of nodul es. h produces a look-up table for
the master module. In this table (an array called nodul e[ ] ), the module name written as a char-
acter string is connected to the calling address of the module in memory. For the dumb module
EMPTY, there would be a line reading

{"empty", &empty_},

(trailing comma included). This associates the string " enpt y" with the address of enpt y_ declared
in the second part above. Please note that the string given here is later used by the master mod-
ule for comparison, and must be matched verbatim by entries in the configuration file. Module
names may not contain the five characters : =<>" and may not start with a digit. They may con-
tain spaces, but then you must use double quotes to enclose the name in the right-hand side of
dependency entries in the config file, since spaces are also used as a separator for the independent
modules. Otherwise, there is no restriction except for the length of the string, currently limited
to 32 characters (including a final zero byte, so that strings may actually be only 31 characters
long).

For example, if you like a more verbose description in the configuration file, you could easily
write

{"Das |l eere Mdul", &enpty_},

and use a very German-looking configuration file entry

Das | eere Mbdul : 02.05.1997

stating that the module is to be called on May 2, model year 1997. However, you should keep in
mind that the string must match literally, except for leading or trailing white space. Given that
the number of modules easily exceeds 50, it is surely better to use the name of the module also
for the string, which will happen automatically if you use nodul es. def and aut ogen. With the
latter, one would simply have a line in nodul es. def looking like

enpty void
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B.5 The KBM’s vari abl es. h

B INTERNALS

This section contains the file vari abl es. h, which is not automatically gener-

ated.

[* variables.h
*

* This file is part of the modul ar structure distribution.
* Johannes Hof fstadt, 28-MAY-1997
*
* This file contains a list of the known variables. It defines a table
* which translates names of variables to their types and addresses.
* The table is al phabetically sorted.
*
* Note:
* - A name can be any description, but nust be shorter than 80 characters.
* - The Symbol NUMBER OF_VARI ABLES nust al ways give the correct number
* of table entries.
* - Index 0 is not used, only elenments [1] [ NUMBER_OF_VARI ABLES .
* - Array declarations have to be made with [ NUMBER OF VARI ABLES + 1].
*/
struct
{
char nanme[ 80];
i nt type;
int required;
/*
uni on {
int *i;
real *r;
char *s;
} addr;
*/
voi d *addr;
} variable[] =
{
{"", 0, NULL },
{ "First year", | NTEGER TYPE, REQUI RED, &first_year },
{ "Final year", I NTEGER TYPE, REQUI RED, &final _year },
{ "Wite core", | NTEGER TYPE, OPTIONAL, &wite_core },
{ "Trap FPE", | NTEGER TYPE, OPTIONAL, & rap_fpe },
{ "MW DD date fornmat", | NTEGER TYPE, OPTIONAL, &date_format },
{ "Maxi mum step size", | NTEGER _TYPE, REQUI RED, &maxdt_ },
{ "Initial value for C2", REAL_TYPE, REQUI RED, &co2_ },
{ "Cell data file", STRING TYPE, REQUI RED, &fgrid_},
{ "Bione data file", STRING TYPE, REQU RED, &fbionme_ },
{ "Fossil enmissions file", STRING TYPE, REQU RED, &ffoss_ },
{ "Read pools fromfile", STRING TYPE, REQUIRED, &fpoolr_},
{ "Wite pools to file", STRING TYPE, REQUIRED, &fpoolw_},

b

#define NUMBER_OF_VARI ABLES (si zeof (variabl e)/sizeof (variable[0]) - 1)

Note that vari abl es. h refers both to internal variables of the master module,
and to shared variables (listed in conmon. def ), which have to be accessed from
C using the trailing underscore.
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C Short description of the master module

At the beginning, the master module creates a list of explicit time entries according to
their sequence in the configuration file. This list is called expl i cit _t abl e. It contains
the module index (in the array nodul e[ ] defined in nodul es. h), the first, next and last
calling times, and the calling interval.

The master module keeps a so-called sort ed i ndex, which is a permutation of the
entries in the explicit table (it contains a sorted list of all entries in the explicit table).
This sorted index reflects the preliminary calling sequence (without dependencies).

When created, the sorted index is filled with all explicit entries, which are sorted ac-
cording to time. Entries belonging to the same time keep the initial sequence of explicit
entries.

An additional table, expl i ci t _i ndex, stores for each module its first appearance in
the explicit table. This information is later used for ordering in the sorted index.

Each time the calling sequence is generated, all entries of the sorted index are pro-
cessed that belong to the first time point. Each entry is registered, which recursively
registers dependencies, and moved in the sorted index to the position that corresponds
to the next call.

The created calling sequence is invoked. Integration is called to arrive at the next
time point until the model run finishes.

Description in more detail (empty () denote C functions):

1. hel I o(): Write starting information (master version, copyright) to stderr.

2. catch_signal s(): If possible, use POSIX-compliant code to catch some signals:
SI GHUP (terminal line hang up) and S| GQUI T (terminal quit signal) are ignored,
so that a model run will survive disconnection from the parent shell. S| GSEGV
(segmentation violation), S| G LL (illegal instruction), S| GBBUS (bus error), and, op-
tionally, SI GFPE (floating-point exception), are treated by a signal handler rou-
tine, nysi g, that either exits cleanly or drops core if post-mortem debugging is
intended, depending on the setting of the config file variable ‘Wite core’. The
treatment of S| GFPE is controlled by the variable ‘Trap FPE, which can be set in
the configuration file.

3. process_args(): Process command line arguments. The command line must at
least contain the name of the configuration file. There are some optional switches,
described in appendix A.

4. read_config file(): Atemporary matrix is allocated to record all dependencies.
The config file is processed line by line using process_config _|ine(). This is
done twice:

In pass 1, lines containing ‘=’ are given to pr ocess_assi gnnent () , which searches
the internal list of variables (defined in var i abl es. h for the left-hand name, and,
if successful, calls assi gn() which assigns the right-hand value via sscanf () to
the address of the variable. Other lines are ignored.

In the second pass, lines containing “: ’ are processed by process_col on_entry(),
which searches the internal list of modules (defined in nodul es. h for the left-hand
module name. However, it has still to sort out whether the line is a dependency or
an explicit time entry. If the right-hand token starts with a digit or with ‘START or
‘END’, control goes to process_explicit_times(),which appends the entry to the
list of explicit entries (explicit_table[]). Otherwise, process_dependency()
adds an entry to the dependency matrix.

process_explicit_times() usesparse_time_entry() togetfirst andlast calling
times, and parse_ti me_i nterval () for the calling interval.
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D

D TROUBLESHOOTING

After the config file has been processed, the dependency matrix is compressed into
a linear list (by conpress_matri x() ) and then de-allocated. (This was originally
intended to reduce permanent memory usage, but batch jobs on super computers
are limited by the maximum memory usage at any point during program execu-
tion. Therefore, dynamic memory handling is unnecessary in this case, and the
program could be simplified.)

At last, the list of explicit time entries has to be sorted. Items in the list are not
moved, a sorted index into the table is used instead (create_sorted_i ndex(),
create_explicit_index()).

. set_fp_exception_handling(): This routine is used only on HP-UX to set the

handling of floating-point exceptions (depending on the variable ‘Trap FPE).

. tine_l oop(): The CPU time counters are cleared, initial time is set, and a loop is

entered in which the current time is set, the calling sequence for the time point is
created. create_cal | i ng_sequence() collects all modules due for this time point
from the sorted explicit time list. The function i 5¢np() is used to compare time
points. A time point precedes another if the year is smaller, or if years are equal,
if the month is smaller, and so on.

Once a module is registered for the calling list (by r egi st er _cal | (), which works
itself recursively through module dependencies), the time entry for the next call is
updated. The function i 5add() is used to add the interval (as given in the explicit
time entry) to the current time. The result is normalized. ‘Just before’ entries are
preserved.

The entry in the sorted index is shifted down to a new position (sorted by time,
and by order of appearance in the config file).

Then the calling sequence is executed. After a check if the final time point has
been reached, the temporal difference to the next time point is calculated by the
function i 5di f f (). If larger than zero, the time integration routine timnt (), a
FORTRAN subroutine, is called to cover the time interval (in seconds). If the in-
terval is larger than 2 billion seconds, t i m nt is called repeatedly, never integrat-
ing more than this limit at once.

. wite_timng_info(): If timing mode has been enabled, summary information

about CPU time usage and percentage are printed for each module.

Troubleshooting

Most problems arise from the use of the configuration file or the creation of the
calling sequence.

Other common mistakes (in the sense that we had had unhappy experiences

with) include different sizes of | NTEGER or REAL variables used by FORTRAN as
opposed to C, so that the master module did not correctly initialize variables.

Several error messages can result from parsing the config file. These are in-

tended to be self-explanatory. Some important ones are:

Unknown nodule "..." in config file, line ...

There is no entry for this module in nodul es. h (spelled in the same way
as given in the configuration file). Either you have misspelled the name
compared to the spelling of the string name in nodul es. h, or the entry is
missing at all.
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Unknown vari abl e inconfig file, line ..
There is no entry for this variable in vari abl es. h (in exactly the same
spelling as given in the configuration file). Same as above.

Assignnent failed in config file, line ..
The right-hand side of the assignment didn’t fit the data type specified
in vari abl es. h. This probably happens only if you try to assign a non-
numerical value to an integer or real variable.

There are nmissing paraneters.
Not every variable that requires an initial value has been set. This error
message is preceded by detailed warnings for each unset variable.

Finally, there are reports of memory allocation problems. Most of these can be
fixed by increasing internal constants in mast er . h, since the master module is
largely written without making use of dynamic memory allocation. Messages
are:

Couldn’t allocate tenmporary dependency matri x!
If allocation fails, which should rarely happen, the only fix is to reduce the
memory usage by other processes on the machine.

Couldn’t allocate tenporary dependency counts!
See above.

Explicit times list full (max ... entries)
The list of explicit time entries is currently not dynamically allocated, but
an array with fixed size (100 entries). You have to increase the preproces-
sor constant NUVBER_OF _EXPLI Cl T_ENTRI ESin nast er . h and recompile.

Dependency list full (max ... entries)!
Increase | NDEX_BUFFER_SI ZE (currently 1000) in mast er . h and recompile.
calling sequence list full (max ... entries)!

Too many modules have to be called at the same point of time. Increase
CALLI NG_SEQUENCE_SI ZE (currently 100) in mast er . h and recompile.

E DMore to come

For the next version, your feedback is needed. What feature would you like to
see? For example, an idea for facilitating batch runs on compute servers would
be to specify a maximum cpu time for the current run. The master module can
monitor remaining cpu time, and since it knows all common blocks (and would
additionally need to know all saved (static) variables), it could dump them and
its internal tables to a file, and resume the run in a subsequent batch job. Com-
ments are welcome.



