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Abstract. We determine the fundamental groups of symmetrizable algebraically simply
connected split real Kac–Moody groups endowed with the Kac–Peterson topology. In
analogy to the finite-dimensional situation, because of the Iwasawa decomposition G =
KAU+, the embedding K ↪→ G is a weak homotopy equivalence, in particular π1(G) =
π1(K). It thus suffices to determine π1(K), which we achieve by investigating the
fundamental groups of generalized flag varieties. Our results apply in all cases in which
the Bruhat decomposition of the generalized flag variety is a CW decomposition —
in particular, we cover the complete symmetrizable situation; furthermore, the results
concerning only the structure of π1(K) actually also hold in the nonsymmetrizable two-
spherical case.

1. Introduction

The structure of maximal compact subgroups in semisimple Lie groups was investi-
gated by Cartan and, later, Mostow. In [30], Mostow gives a new proof of a Cartan’s
theorem stating that a connected semisimple Lie group G is a topological product of
a maximal compact subgroup K and a Euclidean space, implying in particular that G
and K have isomorphic fundamental groups. Subsequent case-by-case analysis provided
the isomorphism types of these maximal compact subgroups — which in the split real
situation turn out to be all classical — and their fundamental groups. Tables of the
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maximal compact subgroups can be found in [16, p. 518], their fundamental groups in
[36, 94.33].

Starting in the 1940’s, Dynkin diagrams introduced in [6] have been used to describe
the structure of simple Lie groups. In this article, we present a uniform result which makes
it possible to determine the fundamental group of any algebraically simply connected
split real simple Lie group — and, more generally, any algebraically simply-connected
semisimple split real topological Kac–Moody group — directly from its Dynkin diagram.

In [39, Thm. 1], Tits for every generalized Cartan matrix A provides a functor GA :
cRings→ Groups from commutative rings into groups. Let Π be the Dynkin diagram of
A.

Definition 1.1. We set G(Π) := [GA(R), GA(R)] and refer to this group as the algeb-
raically simply-connected semisimple split real Kac–Moody group of type Π.

Kac–Moody groups endowed with the Kac–Peterson topology have been studied exten-
sively by the second author together with Glöckner and Hartnick in [10] and with Hartnick
and Mars in [14]. Our result is applicable to those Kac–Moody groups whose Bruhat
decompositions are CW decompositions and for which the embedding K ↪→ G is a weak
homotopy equivalence.

In order to fix notations, let G = G(Π) be the algebraically simply-connected split real
semisimple Kac–Moody group associated to an irreducible diagram Π = (V,E) endowed
with the Kac–Peterson topology (for definitions, see Section 2). Let K = K(Π) be the so-
called maximal compact subgroup of the topological group G(Π), i.e., the subgroup fixed
by the Cartan–Chevalley involution θ of G(Π). We stress that in the infinite-dimensional
non-Lie case this topological group K is not a compact group, only a k-group, in fact a
kω-group.

Given the Dynkin diagram Π = (V,E) with a fixed labelling λ : {1, . . . , n} =: I → V ,
we define a modified diagram Πadm with vertex set V and {iλ, jλ} ∈ V × V edge if and
only if ε(i, j) = ε(j, i) = −1, where ε(i, j) denotes the parity of the corresponding Cartan
matrix entry. To each connected component Π̄adm of Πadm we then assign a colour as
follows: Let Π̄adm be coloured red (denoted by r) if it contains a vertex iλ such that
there exists a vertex jλ ∈ V satisfying ε(i, j) = 1 and ε(j, i) = −1; let Π̄adm be coloured
green (g) if it is not red and consists only of an isolated vertex; and blue (b) else.

One can then read off the isomorphism type of π1(G(Π)) from the coloured diagram
Πadm as specified in the following theorem.

Theorem. Let Π be an irreducible Dynkin diagram such that the Bruhat decomposition
of G(Π) provides a CW decomposition (i.e., such that the conclusion of Proposition 3.7
holds) and such that the embedding K ↪→ G(Π) is a weak homotopy equivalence (i.e.,
such that the conclusion of Theorem A.15 holds). Let n(g) and n(b) be the number of
connected components of Πadm of colour g and b, respectively. Then,

π1(G(Π)) ∼= Zn(g) × Cn(b)
2 .

In particular, this statement holds in the symmetrizable case.

While in the classical finite-dimensional Lie case, one has a topological Iwasawa
decomposition G = K ×A×U+ with A and U+ contractible, implying π1(K) ∼= π1(G),
it is currently unknown whether the corresponding Iwasawa decomposition in the general
Kac–Moody case is also topological. However, using a fibration result by Palais (see
Proposition A.13), in the appendix, Hartnick and the second author prove that the
isomorphism between the fundamental groups still exists in the general symmetrizable
case, therefore reducing the problem to the computation of π1(K).
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Isomorphism types of π1(G(Π)) for selected
indefinite Dynkin diagrams.2

Π Πadm coloured by γ π1(G(Π))

E10

b

b

b

b

b

b

b

b

b

b

π1(E10) ∼= C2

X

r r r

r r g

r g r

b r r

b b b

b π1(G(X)) ∼= Z2 × C2
2

In [9, Sect. 16], the group Spin(Π, κ) — where κ denotes a so-called admissible colour-
ing of the vertices of Π — is defined as the canonical universal enveloping group of a
Spin(2)-amalgam A(Π, Spin(2)) = {G̃ij , φ̃iij | i 6= j ∈ I} where the isomorphism type

of G̃ij depends on the (i, j)- and (j, i)-entries of the Cartan matrix of Π, as well as the
values of κ on the corresponding vertices.

It is shown in [9, Sect. 17] that there exists a finite central extension Spin(Π, κ) →

2Dynkin diagram LaTeX styles kindly provided by Max Horn at [18].
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K(Π) which implies that the subspace topology on K(Π) inherited from the Kac–Peterson
topology on G(Π) defines a unique topology on Spin(Π, κ) that turns the central extension
into a covering map. The resulting group topology on Spin(Π, κ) is called the Kac–
Peterson topology on Spin(Π, κ).

In the simply-laced case, there is a unique nontrivial admissible colouring κ and the
corresponding group Spin(Π) := Spin(Π, κ) double-covers K as shown in [9]. We prove
here that in the simply-laced case Spin(Π) is simply connected which then implies that
π1(K) ∼= C2.

The strategy of proof in the simply-laced case is to study fibre bundles of the form

Spin(3)→ Spin(Π)→ Spin(Π)/Spin(3)

arising from embeddings of Spin(3) along subdiagrams of type A2, which yield exact
sequences of the form

{1} = π1(Spin(3))→ π1(Spin(Π))→ π1(Spin(Π)/Spin(3))

and establishes the equivalence of simple-connectedness of Spin(Π) with the simple-
connectedness of Spin(Π)/Spin(3).

A key to the proof both in the simply-laced and in the general case is the computation
of the fundamental groups of generalized flag varieties — that is, spaces of the form G/PJ
for a parabolic subgroup PJ of G corresponding to an index subset J ⊆ I. It turns
out that the aforementioned space Spin(Π)/Spin(3) is a universal covering space of an
appropriately chosen generalized flag variety. In general, we prove the following theorem.

Theorem. Let Π be an irreducible Dynkin diagram such that the Bruhat decomposition
of G(Π) provides a CW decomposition (i.e., such that the conclusion of Proposition 3.7
holds), let I be the index set of the Dynkin diagram, let J ⊆ I, and let PJ be a parabolic
of type J . Then a presentation of π1(G/PJ ) is given by〈

xi; i ∈ I | xix
ε(i,j)
j = xjxi, xk = 1; i, j ∈ I, k ∈ J

〉
.

In particular, this statement holds in the 2-spherical and in the symmetrizable case.

We refer to [40] for the analog result in the finite-dimensional situation.
In order to determine π1(K) in the general case, we compute subgroups of π1(K)

corresponding to the index sets of connected components of Πadm using the above theorem
and covering maps of the type K/KJ → K/(K ∩T )KJ where T is a maximal split torus
of G(Π) and KJ is the subgroup of fixed points of a Levi factor of PJ with both T and PJ
invariant under the Cartan–Chevalley involution. We then show that π1(K) is a direct
product of appropriately chosen such subgroups.

In a very similar way, the fundamental group of Spin(Π, κ) is determined, establishing
the following theorem.

Theorem. Let Π be an irreducible Dynkin diagram such that the Bruhat decomposition
of G(Π) provides a CW decomposition (i.e., such that the conclusion of Proposition 3.5
holds). Let n(g) be the number of connected components of Πadm of colour g. Let n(b, κ)
be the number of connected components of Πadm on which κ takes the value 1 and which
have colour b. Then

π1(Spin(Π, κ)) ∼= Zn(g) × Cn(b,κ)
2 .

In particular, this statement holds in the 2-spherical and in the symmetrizable case.

Acknowledgements. The research leading to this article has been partially funded by
DFG via the project KO 4323/11. The authors thank J. Grüning and two anonymous
referees for various helpful remarks on earlier versions of this article.
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2. Split-real Kac–Moody groups

In [21, §1.3], with every generalized Cartan matrix A = (aij)1≤i,j≤n ∈ Zn×n Kac

associates a quadruple (gC(A), hC(A),Ψ, Ψ̌) of a complex Lie algebra gC(A), an abelian
subalgebra hC(A) and linearly independent finite subsets Ψ = {α1, . . . , αn} ⊆ hC(A)∗

and Ψ̌ = {α̌1, . . . , α̌n} ⊆ hC(A) called simple roots and simple coroots, respectively, such
that αj(α̌i) = aij . Associated with such a quadruple is a Lie algebra generating set
{e1, . . . , en, f1, . . . , fn} ∪ hC(A). The complex Lie algebra gC(A) is called the complex
Kac–Moody algebra associated with A, and hC(A) its standard Cartan subalgebra.

Since aij ∈ R, one can analogously define a quadruple (gR(A), hR(A),Ψ, Ψ̌) where
gR(A) is a real Lie algebra that embeds naturally into gC(A) as the real form given
by the involution induced by complex conjugation. One refers to gR(A) as the split
real Kac–Moody algebra associated with R and to hR(A) as its standard split Cartan
subalgebra.

Let Q ⊆ hR(A)∗ be the group generated by Ψ and Q±, the subsemigroups generated
by ±Ψ, respectively. For k ∈ {C,R} and α ∈ hk(A)∗ define the root space

gkα := {X ∈ gk(A) | ∀H ∈ hk(A)∗ : [H,X] = α(H)X}.

The set ∆ of hk(A) roots in gk(A) is defined as ∆ := {α ∈ Q \ {0} | gkα 6= {0}}. One has
the root space decomposition

gk(A) = hk(A)⊕
⊕
α∈∆

gkα.

The set ∆ decomposes as a disjoint union into the subsets ∆± := ∆ ∩ Q± called
positive (respectively negative) roots. The restriction of the Lie bracket on gR(A) to

u± :=
⊕
α∈∆±

gkα

turns u+ and u− into Lie subalgebras of gR(A).
For i = {1, . . . , n} define the fundamental root reflection σi ∈ GL(hR(A)∗) by

σi(λ) := λ− λ(α̌i)αi.

Then the Weyl group of gR(A) is defined as W := 〈σ1, . . . , σn〉 ≤ GL(hR(A)∗) and forms
a Coxeter system together with the set of fundamental root reflections. Finally, define the
set of real roots Φ := W.Ψ ⊆ ∆ and Φ± := ∆± ∩ Φ, the positive (respectively negative)
real roots.

The construction in [39] of GA(R) (see Definition 1.1) provides a representation of
GA(R) on gR(A) by Lie algebra automorphisms, which is denoted by

Ad : GA(R)→ Aut(gR(A)),

and referred to as the adjoint representation of GA(R). Since the subgroup Ad(G(Π)) of
G(Π) under this representation preserves the commutator subalgebra g′R(A), one obtains
an adjoint representation

Ad : G(Π)→ Aut(g′R(A))

for G(Π). The kernels of the adjoint representations of GA(R) and G(Π) are given by
the respective centres.
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An element X ∈ gR(A) is ad-locally-finite if for every element Y ∈ gR(A) there
exists an ad(X)-invariant finite-dimensional subspace W with Y ∈ W . As pointed out
in [27, p. 64], this implies that ad(X)|W is a (finite) matrix in some basis of W , so the
exponential exp(ad(X)) can be defined in the ususal way. By [39, (KMG5), p. 545] and the
uniqueness properties of GA(R) established in [39, Thm. 1], exp(ad(X)) ∈ Ad(GA(R)).
Let FgR(A) and Fg′R(A) be the subsets of ad-locally-finite elements of the respective

algebras. The maps exp : FgR(A) → Ad(GA(R)) and exp : Fg′R(A) → Ad(G(Π)) given

by X 7→ exp(ad(X)) can be lifted to exponential functions exp : FgR(A) → GA(R) and
exp : Fg′R(A) → G(Π).

For X ∈ hR(A) ⊆ FgR(A), one has

ad(X)(ei) = [X, ei] = αi(X)ei, Ad(exp(X))(ei) = eαi(X) · ei,

ad(X)(fi) = [X, fi] = −αi(X)fi, Ad(exp(X))(ei) = e−αi(X) · fi,
(1)

cf. [25, Sect. 6.1.6], [39, (KMG5), p. 545].
The same constructions apply also to C instead of R. Since hC(A) ⊆ FgC(A), one can

define TC := exp(hC(A)). Note that exp(hR(A)) =: AR ( TR := TC ∩ GA(R). There is
a unique Lie group topology on TR in which TR ∼= (R×)n and AR = T ◦R

∼= (R>0)n. The
centre of GA(R) is contained in TR.

The intersection T := G(Π) ∩ TC is called the standard split maximal torus of G(Π);
again, AR ∩ T is of finite index in T and T contains the centre of G(Π).

The Lie algebra gR(A) admits a unique involution θ which maps ej to fj for all
j = 1, . . . , r and acts as −1 on hR(A). There exists a unique involutive automorphism
θ : GA(R) → GA(R) such that θ(exp(X)) = exp(θ(X)) for all X ∈ FgR(A), and this
involutive automorphism is called the Cartan–Chevalley involution of GA(R). We denote
by KA(R) := GA(R)θ ⊂ GA(R) the fixed point subgroup of this involution and define
K(Π) := KA(R) ∩G(Π).

Let α ∈ Φ be a real root. Then gRα is one-dimensional and consists of ad-locally-finite
elements. One can therefore define the root group Uα := exp(gRα) ⊆ GA(R). Each root
group Uα carries a unique Lie group topology such that Uα ∼= R as topological groups.
Root groups corresponding to positive real roots are called positive root groups, root
groups corresponding to negative real roots are called negative root groups.

Define the positive (respectively negative) maximal unipotent subgroup U± ofGA(R) as
the group generated respectively by the positive and negative root groups. One has U± ⊆
G(Π). The groups U± are normalized by TR and intersect TR trivially. In particular, they
intersect the centres of GA(R) and G(Π) trivially and hence embed into both Ad(GA(R)
and Ad(G(Π)).

If α ∈ Φ+, then −α ∈ Φ− and the group Gα := 〈Uα, U−α〉 ≤ G(Π) is isomorphic to
SL2(R). The groups Gα with α ∈ Φ+ are called the rank-1 subgroups and the groups
G1 := Gα1 , . . . , Gn := Gαn are called the fundamental rank-1 subgroups of G(Π).

One can show that the pair ((Uα)α∈Φ, T ) defines an RGD system for G(Π). For details
concerning RGD systems, we refer the reader to [1, Chap. 8].

Recall that the generalized Cartan matrix A is called 2-spherical, if aijaji ≤ 3 for
all i 6= j ∈ I; in other words, if the orders of the products σiσj are always finite. The
generalized Cartan matrix A is symmetrizable if it is the product of a symmetric and a
diagonal matrix. These notions are also applied to any and all objects that are derived
from A such as the (extended) Weyl group, the Kac–Moody group, their buildings, etc.

Definition and Remark 2.1. The Kac–Peterson topology on GA(R) equals the finest
group topology on GA(R) such that the natural embeddings (Uα ↪→ GA(R))α∈Φ and



P. HARRING, R. KÖHL

TR ↪→ GA(R) are continuous when TR and the root groups Uα are endowed with their
Lie group topologies.

The Kac–Peterson topology is kω by [14, Prop. 7.10] and, in particular, Hausdorff.
Moreover, for every α ∈ Φ+, it induces the unique connected Lie group topology on Gα
and on TR by [14, Cor. 7.16]

For more details on the Kac–Peterson topology, see [14, Chap. 7].

Notation 2.2. Throughout this paper, let G := G(Π) := [GA(R), GA(R)] be the algeb-
raically simply connected semisimple split real Kac–Moody group associated to an irre-
ducible generalized Dynkin diagram Π = (V,E) with (bijective) labelling λ : {1, . . . , n} =:
I → V . Let K := K(Π) be the maximal compact subgroup of G, i.e., the subgroup fixed
by the Cartan–Chevalley involution θ.

Denote by B := B+ the positive Borel subgroup of the twin BN -pair of G, by T
the standard split maximal torus, and by W the Weyl group of G with generating set
S = {σi}i∈I . For each σi ∈ S, take si ∈ G to be a fixed representative of order 4 for σi.

The group W̃ := 〈si | i ∈ I〉 ≤ G is called the extended Weyl group. By [5, Cor. 1.7], one
has an Iwasawa decomposition G = KB.

The groups G and K are always endowed with the subspace topologies induced by the
Kac–Peterson topology on GA(R) and G/B with the quotient topology.

Unless specified more explicitly, the symbol J will always denote an arbitrary subset
of the index set I, the symbol ΠJ the subdiagram of Π corresponding to J , the symbol
GJ the subgroup G(ΠJ ) of G, and the symbols KJ and BJ the intersections GJ ∩K and
GJ ∩B, respectively. This is consistent with the notation for the fundamental rank one
subgroups: one has G(Πi) = Gi = Gαi .

Remark 2.3. Due to the structure theory of RGD systems (cf. [1, Chap. 8], most notably
the fact that restricting an RGD system to a subdiagram again yields an RGD system),
for each fundamental rank one subgroup Gi there exists an (abstract) isomorphism
γi : SL(2,R) → Gi with the following properties. Let BSL(2,R) be the group of upper
triangular matrices in SL(2,R) and let U±β denote the canonical root subgroups of
SL(2,R). Then,

• γi(U±β) = U±αi .

• γi(BSL(2,R)) = Bi.

• For each x ∈ SL(2,R), γi((x
t)−1) = (γi(x))θ, and hence

• γi(SO(2,R)) = Ki.

By [14, Cor. 7.16], the restriction of the Kac–Peterson topology to any spherical
subgroup H of G coincides with its Lie topology. That is, the groups Gi inherit their
Lie group topology from the topological Kac–Moody group G. By the classical theory of
Lie groups this yields the existence of a diffeomorphism γi with the desired properties;
in particular, γi is an open map.

Definition 2.4. Using the Bruhat decomposition G =
⊔
w∈W BwB ([1, Thm. 6.56,

Rem. (1)]), let

δ : G/B ×G/B → W

δ(gB, hB) = w ⇐⇒ g−1h ∈ BwB

be the Weyl distance function on G/B, and let lS be the length function that associates
to each element the (unique) length of a corresponding reduced expression in S. Let ≤
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be the strong Bruhat order on W . Recall that for w1, w2 ∈ W one has w1 ≤ w2 if there
exist reduced expressions si1 · · · silS(w1)

of w1 and sj1 · · · sjlS(w2)
such that the former is

a (not necessarily consecutive) substring of the latter.
For w ∈W and a chamber gB ∈ G/B, define

Cw(gB) := {hB ∈ G/B | δ(gB, hB) = w},

C≤w(gB) :=
⋃
v≤w

Cv(gB)

and
C<w(gB) := C≤w(gB) \ Cw(gB).

In particular, one has Cw(B) = BwB/B and C≤σ(B) = B〈s〉B/B for σ ∈ S with

representative s ∈ W̃ ⊆ G in the extended Weyl group W̃ . A set C≤σ(gB) is called a
σ-panel.

Moreover, for a subset {σi}i∈J ⊆ S with representatives {si}i∈J ⊆ W̃ define PJ to
be the standard parabolic subgroup corresponding to the index set J : that is, PJ :=
B〈{si}i∈J 〉B.

Throughout this paper, Cw(gB) and C≤w(gB) will always be endowed with the
subspace topologies induced by G/B.

Lemma 2.5. Let σi 6= σj ∈ S. Then the following hold:

(a) Pi = GiB = KiB. In particular, C≤σi(B) = KiB/B.

(b) BsisjB = BsiBBsjB. In particular, C≤σiσj (B) = KiBKjB/B.

Proof. Assertions (a) and (b) follow from [1, Rem. 8.51] and [1, Rem. (2) after Thm. 6.56],
respectively, and the Iwasawa decomposition Gi = KiBi. �

3. The fundamental group of the generalized flag variety G/PJ

For a moment, let Π be an irreducible simply-laced diagram distinct from A1, and
let G = G(Π) and K = K(Π) be as in the preceding section. Moreover, let Spin(Π)
be the double cover of K(Π) constructed in [9, Lem. 16.18] (see Definition 4.6 below).
By construction, any A2-subdiagram of Π yields an embedding Spin(3) ↪→ Spin(Π) and,
since Spin(3) inherits the Lie topology from the Kac–Peterson topology on Spin(Π) by
[14, Cor. 7.16], one obtains a locally trivial fibre bundle

Spin(3)→ Spin(Π)→ Spin(Π)/Spin(3)

by [32] (see Proposition A.13). It will turn out in Section 4 below that Spin(Π)/Spin(3)
is a universal covering space of the generalized flag variety G/PJ where J ⊂ I equals the
set consisting of the two types involved in the chosen A2-subdiagram. The fundamental
group of Spin(Π) then follows from the homotopy exact sequence

{1} = π1(Spin(3))→ π1(Spin(Π))→ π1(Spin(Π)/Spin(3)) = 1.

This motivates our interest in the fundamental group and covering theory of generalized
flag varieties G/PJ .

Throughout this section, let J ⊆ I, letWJ be the subgroup of W generated by {σi}i∈J ,
and let WJ ⊆ W be a set of representatives of the cosets in W/WJ that have minimal
length in the coset they define.
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Lemma 3.1 (Bruhat decomposition). One has G/PJ =
⊔
w∈WJ BwPJ/PJ .

Proof. This follows immediately from [1, Thm. 6.56, Rem. (1)]. �

Lemma 3.2. Let G be a topological group and H1 ≤ H2 subgroups of G and endow G/Hi
with the quotient topology. Then the following hold:

(a) The projection map π : G→ G/H1 is continuous and open.

(b) The canonical map ψ : G/H1 → G/H2 is continuous and open.

Proof. This is a standard exercise for topological groups. �

Definition and Remark 3.3. For w ∈W , define the following restrictions of the cano-
nical map ψ : G/B → G/PJ :

• ψw : BwB/B → BwPJ/PJ ,

• ψw̄ :
⋃
x≤w BxB/B →

⋃
x≤w BxPJ/PJ .

Since ψ is continuous, the same holds for the two restrictions. The space
⋃
x≤w BxB/B

is compact by [14, Cor. 3.10] and so ψw̄ is a quotient map.

Lemma 3.4. Let G be 2-spherical or symmetrizable and let w ∈WJ . Then the canonical
map ψw is a homeomorphism.

Proof. By Remark 3.3, ψw̄ is a quotient map. One has ψ−1
w̄ (BwPJ/PJ ) = BwB/B:

Let x ≤ w such that BxPJ/PJ = BwPJ/PJ . Then x ∈ BwPJ = BwWJB where the
equality holds since by definition of WJ one has l(ww′) = l(w) + l(w′) for all w′ ∈ WJ

which implies Bww′B = BwBw′B. The Bruhat decomposition of G yields x ∈ wWJ

and hence, l(x) ≥ l(w). This implies x = w.
Now, since BwB/B is open in its closure

⋃
x≤w BxB/B in G/B (see [14, Prop. 5.9]

plus Corollary B.8), the preceding observations yield that ψw is an injective quotient map
and therefore a homeomorphism. �

Lemma 3.5. Let σi ∈ S. Then each panel C≤σi(B) is homeomorphic to the 1-sphere S1.

Proof. The panel C≤σi(B) is a subbuilding of G/B corresponding to the RGD system
{Gi, Uαi , U−αi , T ∩Gi}. By Remark 2.3, one has Gi ∼= SL(2,R), T ∩Gi ∼= TSL(2,R) and
U±αi ∼= U±α where TSL(2,R) denotes the subgroup of diagonal matrices and U±α denote
the canonical root subgroups of SL(2,R). This implies that C≤σi(B) is homeomorphic

to the building SL(2,R)/BSL(2,R) ' P1(R) ' S1. �

Definition 3.6. Following [35, Chap. 8], a CW complex is a triple (X,E, χ), where X
is a Hausdorff space, E is a family of cells in X, and χ = {χe | e ∈ E} is a family of
maps, such that

(a) X =
⊔
e∈E E.

(b) For k ∈ N, let X(k) ⊆ X be the union of all cells of dimension ≤ k. Then for

each (k + 1)-cell e ∈ E, the map χe : (Dk+1, Sk)→ (e ∪X(k), X(k)), is a relative
homeomorphism, i.e., it is a continuous map and its restriction Dk+1 \ Sk → e is
a homeomorphism.

(c) If e ∈ E, then its closure cl e is contained in a finite union of cells in E.

(d) X has the weak topology determined by {cl e | e ∈ E}, i.e., a subset A of X is
closed if and only if A ∩ cl e is closed in cl e for each e ∈ E.

For k ∈ N, let Λk be an index set for the k-dimensional cells, so that X(k) \X(k−1) =⊔
λ∈Λk

eλ and set χλ := χeλ . This map is called the characteristic map of eλ.
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Proposition 3.7. Let G be 2-spherical or symmetrizable. Then for each w ∈W , the set
Cw(B) = BwB/B is a cell of dimension l(w) that is open in its compact closure C≤w(B)
in G/B. For each subset J ⊆ I, the Bruhat decomposition G/PJ =

⊔
w∈WJ BwPJ/PJ

is a CW decomposition.

Proof. The first statement is immediate by [14, Cor. 3.10 and Prop. 5.9] plus Corol-
lary B.8; see also [24, pp. 170–171]. Furthermore, [14, Prop. 5.9] combined with Corol-
lary B.8 states that the Bruhat decomposition of G/B is a CW decomposition. By Lem-
ma 3.4, G/PJ is composed of cells that are homeomorphic to cells in G/B, so composing
the characteristic maps of the latter cells with the canonical map ψ : G/B → G/PJ yields
characteristic maps for the cells in G/PJ .

For the closure-finiteness, let BwPJ/PJ be a cell in G/PJ . Since ψ is continuous and
restricts to a homeomorphism BwB/B → BwPJ/PJ , it maps clBwB/B surjectively
onto clBwPJ/PJ . Now, clBwB/B =

⋃
x≤w BxB/B, which implies that

clBwPJ/PJ =
⋃
x≤w

BxPJ/PJ =
⋃
x≤w
x∈WJ

BxPJ/PJ ,

where the last equality holds since WJ ⊆ PJ . This proves that clBwPJ/PJ is contained
in a finite union of cells.

It remains to show that G/PJ has the weak topology determined by the cell closures.
For w ∈ W and a representative w̃ ∈ WJ of minimal length of wWJ , one has

BwPJ/PJ = Bw̃PJ/PJ . Let ew := BwPJ/PJ = Bw̃PJ/PJ and e′w := BwB/B. Let
ēw = cl ew =

⋃
x≤w̃ BxPJ/PJ and ē′w := cl e′w =

⋃
x≤w BxB/B.

Let A be a closed subset of G/PJ and let ew, w ∈ WJ , be an arbitrary cell. Then
ψ−1(A) is closed in G/B since ψ is continuous, so ψ−1(A)∩ ē′w is closed in ē′w since G/B
is a CW complex. Now,

ψ−1(A) ∩ ē′w = ψ−1(A) ∩ ψ−1(ēw) = ψ−1(A ∩ ēw) = ψ−1
w̄ (A ∩ ēw).

Since ψw̄ is a quotient map by Remark 3.3, this implies that A ∩ ēw is closed in ēw.
Now, let A be a subset of G/PJ such that A ∩ ēw is closed in ēw for all w ∈ WJ .

Since for each w ∈ W one has ew = ew̃ for any minimal-length representative w̃ ∈ WJ

of wWJ , in fact A ∩ ēw is closed in ēw for all w ∈ W . Therefore, ψ−1
w̄ (A ∩ ēw) is closed

in ē′w for all w ∈ W . Since ψ−1
w̄ (A ∩ ēw) = ψ−1(A) ∩ ē′w, the fact that G/B is a CW

complex implies that ψ−1(A) is closed in G/B. Since ψ is open by Lemma 3.2, it follows
that A is closed in G/PJ . This proves that G/PJ is a CW complex. �

The preceding result combined with the following lemma (which is a consequence of
[29, Chap. 7, Thm. 2.1]) will allow us to efficiently compute the fundamental group of a
generalized flag variety in Theorem 3.15 below.

Lemma 3.8. Let X be a CW complex with only one 0-cell x0. For each λ ∈ Λ2, let
fλ : [0, 1] → S1 be a loop whose homotopy class generates π1(S1) and whose image

γλ := χλ ◦ fλ under χλ is a loop in X(1) starting at x0. Then

〈[χµ], µ ∈ Λ1 | [γλ], λ ∈ Λ2〉

is a presentation of π1(X,x0), where the brackets denote the respective homotopy classes

in X(1).

Next, we study the characteristic maps of the CW decomposition of a generalized flag
variety explicitly.
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Notation 3.9. Define R : [0, 1]→ SO(2,R), s 7→
(

cos(sπ) − sin(sπ)
sin(sπ) cos(sπ)

)
.

Lemma 3.10. R induces a continuous, surjective map R̃ : [0, 1] → SL(2,R)/BSL(2,R)

which maps the interior (0, 1) homeomorphically onto its image and maps the boundary
{0, 1} surjectively onto its image.

Proof. Let {x0} :=
〈 (

1 0
)ᵀ〉 ∈ P1 where P1 denotes the real projective line, modelled

as the subset of one-dimensional subspaces of R2. Since each one-dimensional subspace in
P1 \{x0} contains exactly one element in the upper half circle R([0, 1]) ·

(
1 0

)ᵀ
while x0

contains the two boundary points corresponding to R(0) and R(1), one has a surjection
from [0, 1] onto P1 given by t 7→

〈
R(t) ·

(
1 0

)ᵀ〉
which maps (0, 1) bijectively onto

P1 \ {x0}. Since SL(2,R) acts transitively on the real projective line P1 with BSL(2,R)

being the stabilizer of x0 :=
〈 (

1 0
)ᵀ〉

, one has a bijective correspondence gB 7→ gx0

between SL(2,R)/BSL(2,R) and P1. This yields the desired surjectivity and bijectivity

properties of R̃. Continuity is clear, as well as the fact that the restriction to the interior
is a homeomorphism. �

Definition 3.11. Let D1 = [0, 1] be the 1-dimensional unit disc and note that D2 '
D1 ×D1. For i, j ∈ I, let γi, γj be as in Remark 2.3. Let p : G→ G/B be the canonical

projection. Define χi : D1 → G/B and χ(i,j) : D1 ×D1 → G/B by

• χi(s) := p(γi(R(s))) = γi(R(s)) ·B,

• χ(i,j)(s, t) := p(γi(R(s))γj(R(t))) = γi(R(s))γj(R(t)) ·B.

The following lemma was inspired by [34, Chap. 10, second Prop. of 6.8]; see also [20,
§2.6, p. 198].

Lemma 3.12. Let G be 2-spherical or symmetrizable. Then the maps defined above are
characteristic maps for the following cells:

(a) χi for Cσi(B) = BsiB/B,

(b) χ(i,j) for Cσiσj (B) = BsisjB/B.

Proof. (a) One has to show that χi([0, 1]) ⊆ C≤σi(B) and that χi is a continuous map
which maps (0, 1) homeomorphically to Cσi(B). The first assertion is clear, since by
Lemma 2.5 one has C≤σi = GiB/B.

By Lemma 2.5, one has Cσi(B) = {kB | k ∈ Ki \ (Ki ∩ B)}. Let k ∈ Ki \ (Ki ∩ B).
Then γ−1

i (p−1(kB)) = γ−1
i (k) · BSL(2,R) ∈ SL(2,R)/BSL(2,R) \ BSL(2,R). By Lemma

3.10, there exists a unique s ∈ (0, 1) satisfying R(s)BSL(2,R) = γ−1
i (k)BSL(2,R). Hence, s

is the unique preimage of kB under χi. This yields the desired bijectivity property. The
continuity properties are clear.

(b) Since by Lemma 2.5 (b) one has C≤σiσj (B) = KiBKjB/B, it is clear that

χ(i,j)([0, 1] × [0, 1]) ⊆ C≤σiσj (B). For the injectivity of the restriction, let (s, t), (s̃, t̃) ∈
(0, 1)2 such that χ(i,j)(s, t) = χ(i,j)(s̃, t̃). Then

γi(R(s))γj(R(t))B = γi(R(s̃))γj(R(t̃))B,

⇐⇒ (γi(R(s̃)))−1γi(R(s))γj(R(t))B = γj(R(t̃))B ∈ Cσj (B).

This implies R(s̃)−1R(s) ∈ BSO(2,R), since otherwise the left expression is in Cσiσj (B),
contradicting Cσiσj (B) ∩ Cσj (B) = ∅. Since s, s̃ ∈ (0, 1), one obtains s̃ = s. It follows

that χj(t) = χj(t̃), hence t = t̃ by (a).
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For the surjectivity, note that by Lemma 2.5(b), one has Cσiσj (B) = BsisjB/B =
BsiBBsjB/B. Let xixjB be an arbitrary element of Cσiσj (B) with xi = b1sib2 ∈ BsiB
and xj ∈ BsjB. By (a), there exists an s ∈ (0, 1) with γi(R(s))B = b1siB ∈ Cσi(B).
Hence, there exists a b ∈ B with (γi(R(s))b = b1sib2 = xi. Again by (a), there exists a
t ∈ (0, 1) with γj(R(t))B = bxjB ∈ Cσj (B). This yields

χi,j(s, t) = γi(R(s)) · γj(R(t))B

= xib
−1 · bxjB

= xixjB.

This proves that χi,j maps (0, 1)×(0, 1) bijectively to Cσiσj (B). The continuity properties
are clear. �

Notation 3.13. For i, j ∈ I, let ε(i, j) := (−1)αj(α̌i), where αj(α̌i) = aij is the (i, j)-
entry of the Cartan matrix A of Π.

Lemma 3.14 ([9, Rem. 15.4(1)]). Let ei := γi(−I) ∈ Gi with γi as in Remark 2.3 and

kj ∈ Kj . Then eikjei = k
ε(i,j)
j .

Theorem 3.15. If the Bruhat decomposition satisfies the conclusion of Proposition 3.7,
then a presentation of π1(G/PJ ) is given by

〈
xi; i ∈ I | xix

ε(i,j)
j = xjxi, xk = 1; i, j ∈ I, k ∈ J

〉
.

In particular, this statement holds in the 2-spherical and the symmetrizable case.

Proof. By Lemma 3.4 and Proposition 3.7, the Bruhat decomposition

G/PJ =
⊔

w∈WJ

BwPJ/PJ

is a CW decomposition where each cell BwPJ/PJ has dimension l(w). The characteristic
maps of the 1-cells BsiPJ/PJ and 2-cells BsisjPJ/PJ are given by the compositions
χ̃i := ψsi ◦ χi, respectively χ̃(i,j) := ψsisj ◦ χ(i,j) (ψsi and ψsisj denoting the canonical
homeomorphisms from Lemma 3.4).

Lemma 3.8 gives a presentation of π1(G/PJ ). The generating elements are given by
the homotopy classes xi := [χ̃i] of the characteristic maps of the 1-cells — namely, the
cells BsiPJ/PJ where i ∈ I \ J . For the homotopy classes xk with k ∈ J , note that
γk(R(t)) ∈ Gk ⊆ PJ , and so χ̃k(t) = γk(r(t)) · PJ = PJ which implies xk = [χ̃k] =
1π1(G/PJ ). This yields the desired generating set as well as the trivial relation xk = 1
for i ∈ J .

To obtain the set of relators, for k = 1, . . . , 4 let ϕk : [0, 1]→ [0, 1]× [0, 1] where

ϕ1(t) = (t, 0),

ϕ2(t) = (1, t),

ϕ3(t) = (1− t, 1),

ϕ4(t) = (0, 1− t).

Then the concatenation ϕ := ϕ1 ∗ϕ2 ∗ϕ3 ∗ϕ4 is a loop in the relative boundary ∂([0, 1]×
[0, 1]) ' S1 which generates its fundamental group. Moreover, for each characteristic map
χ̃(i,j) of a 2-cell, one has χ̃(i,j)(ϕ(0)) = χ̃(i,j)((0, 0)) = ψsisj (χ(i,j)(0, 0)) = ψsisj (B) =
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PJ where PJ is the unique 0-cell of the CW complex. Therefore, Lemma 3.8 implies that
the set of relators is given by {[χ̃(i,j) ◦ ϕ] | σiσj ∈WJ , l(σiσj) = 2}. Now,

[χ̃(i,j) ◦ ϕ] = [χ̃(i,j) ◦ ϕ1] · [χ̃(i,j) ◦ ϕ2] · [χ̃(i,j) ◦ ϕ3] · [χ̃(i,j) ◦ ϕ4],

where χ̃(i,j)(s, t)=αi(R(s))αj(R(t))·PJ with R(0)=ISO(2,R), R(1)=−ISO(2,R)∈BSO(2,R)

which implies

[χ̃(i,j) ◦ ϕ1] = xi,

[χ̃(i,j) ◦ ϕ3] = x−1
i ,

[χ̃(i,j) ◦ ϕ4] = x−1
j .

Moreover,

(χ̃(i,j) ◦ ϕ2)(t) = αi(−I)αj(R(t)) · PJ
= αi(−I)αj(R(t))αi(−I) · PJ , since αi(−I) ∈ PJ
= αj(R(t))ε(i,j) · PJ by Lemma 3.14.

Since R(t)−1 = R(1− t), this yields [χ̃(i,j) ◦ ϕ2] = x
ε(i,j)
j . One therefore obtains

[χ̃(i,j) ◦ ϕ] = xi · x
ε(i,j)
j · x−1

i · x
−1
j .

This proves the assertion. �

Lemma 3.16. Let Π be irreducible simply-laced distinct from A1 and ∅ 6= J ⊂ I =
{1, ..., n}. Then π1(G/PJ ) ∼= C2

n−|J|.

Proof. For each generator xh in the presentation of Theorem 3.15, one has x2
h = 1. Recall

that λ denotes the labelling map I → V of the vertex set of Π. Since Π is connected,
one has a minimal path (i1, . . . , im = h)λ in Π such that i1 ∈ J . If m = 1, one has
xh = 1 by the presentation above. Let xi1 , . . . , xim−1

have order ≤ 2. Since Π is

simply-laced, ε(m − 1, h) = −1 = ε(h,m − 1) which implies xhx
−1
im−1

x−1
h x−1

im−1
= 1 and

xim−1
x−1
h x−1

im−1
x−1
h = 1. Multiplying these expressions yields x2

h = 1.

Since each generator has order ≤ 2, the relations show that the group is abelian. One
concludes that π1(G/PJ ) ∼= C2

n−|J|. �

4. The fundamental groups of G(Π) and Spin(Π, κ)

The Iwasawa decomposition G = KAU+ implies that K acts transitively on the
generalized flag varieties G/PJ . In this section, we describe the generalized flag varieties
and suitable covering spaces as coset spaces of K and its various spin covers defined in
[9]. This will then allow us to compute the fundamental group of K and its various spin
covers via locally trivial fibre bundles and homotopy exact sequences.

Lemma 4.1. The canonical map ψ : K/(K ∩ PJ ) → G/PJ is a homeomorphism. In
particular, there exists a homeomorphism G/PJ → K/(K ∩ T )KJ .

Proof. Bijectivity follows from the product formula for subgroups since G = KPJ . By
Lemma 3.2, the map ψ̃ : G/(K ∩ PJ ) → G/PJ is continuous, so the same holds for its
bijective restriction ψ : K/(K ∩ PJ )→ G/PJ .
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In order to show that ψ is closed, let P := PJ and let P̃ := PJ ∩ K. Consider the
commutative diagram

K/P̃

G/P̃ G/P

ψ
ι

ϕ

where ι denotes the canonical embedding and ϕ denotes the canonical map from G/P̃ to
G/P . Since K is closed in G by [8, Sect. 3F], the map ι is closed. By Lemma 3.2, ϕ is
open.

Let XP̃ ⊆ K/P̃ be a closed subset of K/P̃ and suppose that ψ(XP̃ ) = XP is
not closed in G/P . Then the complement CG/P (XP ) is not open in G/P , hence the

complement C
G/P̃

(ϕ−1(XP )) = ϕ−1(CG/P (XP )) is not open in G/P̃ . Therefore,

ϕ−1(XP ) is not closed in G/P̃ . This yields that XP̃ = ψ−1(XP ) = ι−1(ϕ−1(XP ))

is not closed in K/P̃ , a contradiction.
For the second claim, since PJ = GJB and θ(PJ ) ∩ PJ = GJT , one has PJ ∩ K =

KJ (K ∩T ). Furthermore, GJ is normal in GJT which implies KJ (K ∩T ) = (K ∩T )KJ .
The claim follows. �

The key advantage of the description of a generalized flag variety as a K-coset space
lies in the fact that K ∩ T is a finite group. It is therefore straightforward to write down
covering spaces of generalized flag varieties via the following well-known basic observation
from covering theory.

Lemma 4.2. Let ϕ : X → Y be a continuous, open, surjective map between Hausdorff
topological spaces. If all fibers are finite and of constant cardinality, then ϕ is a covering
map.

This readily applies in our setting.

Lemma 4.3. The canonical map ψ : K/KJ → K/(K∩T )KJ is a covering map of degree

2n−|J|.

Proof. By Lemma 3.2, ψ is continuous, open and surjective.
By [8, Lem. 3.20 and the discussion after Prop 3.8], the group T̃ := (K ∩T ) has order

2n. Note that one has TJ∩TI\J = {1}, since the Kac–Moody group G being algebraically

simply connected implies T ∼= TJ×TI\J . Now, for k ∈ K one has ψ−1(kT̃KJ ) = {ktKJ |
t ∈ T̃}, and since TJ ∩TI\J = {1}, one has ktiKJ 6= ktjKJ for ti 6= tj ∈ T ∩KI\J . This
yields

|ψ−1(kT̃KJ )| = |{ktKJ | t ∈ T̃}| = |{ktKJ | t ∈ T ∩KI\J}|

= |T ∩KI\J | = |TI\J ∩KI\J | = 2n−|J|.

Lemma 4.2 now shows that ψ is a covering map. �

Definition 4.4 ([9, Def. 16.2]). Let Πadm be the graph on the vertex set V with edge
set

{{i, j} ∈ V × V | i 6= j ∈ I, ε(i, j) = ε(j, i) = −1},

where ε(i, j) denotes the parity of the corresponding Cartan matrix entry, as defined in
Notation 3.13.
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An admissible colouring of Π is a map κ : V → {1, 2} such that

(a) κ(iλ) = 1 whenever there exists j ∈ I \ {i} with ε(i, j) = 1 and ε(j, i) = −1,

(b) the restriction of κ to any connected component of the graph Πadm is a constant
map.

Define c(Π, κ) to be the number of connected components of Πadm on which κ takes the
value 2. For a subgraph Πadm

J of Πadm that is a union of connected components of Πadm

let κJ be the corresponding restriction of κ.

Definition 4.5. Let be the colouring γ : V → {r, g, b} of Πadm that to each connected
component Π̄adm of Πadm assigns a colour as follows. Let Π̄adm be coloured red (denoted
by r) if it contains a vertex iλ such that there exists a vertex jλ ∈ V satisfying ε(i, j) = 1
and ε(j, i) = −1; let Π̄adm be coloured green (g) if it is not red and consists only of an
isolated vertex; and blue (b) else.

We refer to the introduction for a discussion of various examples.

Definition and Remark 4.6. As recalled in the introduction, in [9, Def. 16.16] the
spin group Spin(Π, κ) with respect to Π and κ is defined as the universal enveloping

group of a particular Spin(2)-amalgam {G̃ij , φ̃iij | i 6= j ∈ I} where the isomorphism

type of G̃ij depends on the (i, j)- and (j, i)-entries of the Cartan matrix of Π as well
as the values of κ on the corresponding vertices. The group K(Π) can be regarded as
(being uniquely isomorphic to) the universal enveloping group of an SO(2,R)-amalgam

{Gij , φiij | i 6= j ∈ I} where each G̃ij covers Gij via an epimorphism αij . By [9, Lem.
16.18] there exists a canonical central extension ρΠ,κ : Spin(Π, κ) → K(Π) that makes
the following diagram commute for all i 6= j ∈ I:

G̃ij Spin(Π, κ)

Gij K(Π)

τ̃ij

αij ρΠ,κ

τij

.

Here, τ̃ij and τij denote the respective canonical maps into the universal enveloping
groups.

By [9, Prop. 3.9], one has

ker(ρΠ,κ) = 〈τ̃ij(ker(αij)) | i 6= j ∈ I〉Spin(Π,κ).

Each connected component of Πadm that admits a vertex iλ with κ(iλ) = 2 contributes

a factor 2 to the order of ker(ρΠ,κ) so that Spin(Π, κ) is a 2c(Π,κ)-fold central extension
of K(Π).

In particular, this implies that the subspace topology on K(Π) defines a unique
topology on Spin(Π) that turns the extension into a covering map. The resulting group
topology on Spin(Π, κ) is called the Kac–Peterson topology on Spin(Π, κ).

In the case of an irreducible simply-laced diagram Π, the only admissible colourings are
the (trivial) constant colouring V → {1} (that every diagram admits) and the constant
colouring κ : V → {2}; we define the spin group Spin(Π) with respect to Π as Spin(Π) :=
Spin(Π, κ).

Before turning to the general case, we will first consider the simply-laced case and
formulate and prove the corresponding simplified versions of the main theorems.
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Lemma 4.7. Let Π be irreducible simply-laced distinct from A1 and let {i, j} ⊆ I be the
index set of an A2-subdiagram of Π. Then the spaces Spin(Π)/Spin(Πij) and K/Kij are
homeomorphic.

Proof. From [9] (exact references below) it follows that the kernel of the covering map
Spin(Π) → K coincides with the kernel of the covering map Spin(Πij) → Kij and is
equal to the group Z := {±1Spin(Π)} (for the definition of −1Spin(Π), see below). This is
a consequence of the following facts regarding an irreducible simply-laced diagram Π (all
referring to [9]):

• There is an epimorphism Spin(2)→SO(2,R) with kernel {±1Spin(2)} (see [Thm. 6.8]).

• In Spin(Π), all elements τ̃ij(φ̃
i
ij(−1Spin(2))) coincide (see [Lem. 11.7]).

• Let −1Spin(Π) := τ̃ij(φ̃
i
ij(−1Spin(2))) for an arbitrary pair i 6= j ∈ I. Then

1Spin(Π) 6= −1Spin(Π) (see [Cor. 11.16]).

• Spin(Π) is a 2-fold central extension of K(Π) (see [Thm. 11.17]).

Hence, the 2-fold covering map ϕ̃ : Spin(Π) → K(Π) induces a continuous bijective
map ϕ : Spin(Π)/Spin(Πij) → (Spin(Π)/Z)/(Spin(Πij)/Z) → K/Kij . One has a
commutative diagram

Spin(Π) K

Spin(Π)/Spin(Πij) K/Kij

ϕ̃

π1 π2

ϕ

.

Since ϕ̃ is open as a covering map and π2 is open by Lemma 3.2, it follows that ϕ is a
homeomorphism. �

Lemma 4.8. Let Π be irreducible simply-laced distinct from A1 and ∅ 6= J ⊂ I =
{1, . . . , n}. Then K/KJ is simply connected.

Proof. K/KJ is connected since K is generated by connected groups isomorphic to

SO(2,R). Hence by Lemma 4.3 it is a nontrivial cover of K/(K ∩T )KJ of degree 2n−|J|.
The claim now follows from Corollary 3.16 and Corollary 4.1. �

The following proposition provides our main result in the simply laced case.

Proposition 4.9. Let Π be irreducible simply-laced distinct from A1. Then Spin(Π) is
simply connected with respect to the Kac–Peterson topology. In particular, π1(G) ∼= C2.

Proof. By [19, 4.2.4], for a closed subgroup H of a topological group G, the projection
p : G → G/H is a principal H-bundle. By Lemma A.13, this bundle is locally trivial if
H is a (closed) Lie group (note that, by [17, Thm. 5.11], every locally compact subgroup
of a topological group is closed). Since locally trivial bundles admit local cross sections,
[37, Cor. in Sect. 7.4] implies that, if H is a closed Lie group, then p : G → G/H is a
fibre bundle with fibre H. This yields a locally trivial fibre bundle

Spin(Πij)→ Spin(Π)→ Spin(Π)/Spin(Πij).

By [15, Chap. 4], this yields the homotopy long exact sequence

π4(Spin(Π)/Spin(Πij))→ π3(Spin(Πij))→ π3(Spin(Π))→ π3(Spin(Π)/Spin(Πij))

→ π2(Spin(Πij))→ π2(Spin(Π))→ π2(Spin(Π)/Spin(Πij))

→ π1(Spin(Πij))→ π1(Spin(Π))→ π1(Spin(Π)/Spin(Πij))

(2)
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from which one extracts the exact sequence

{1} = π1(Spin(Πij))→ π1(Spin(Π))→ π1(Spin(Π)/Spin(Πij)).

By Lemmas 4.7 and 4.8, one has π1(Spin(Π)/Spin(Πij)) ∼= π1(K/Kij) = {1} and so by
exactness π1(Spin(Π)) = {1}.

The second assertion follows from the fact that π1(G) ∼= π1(K) by Corollary A.15 and
the fact that Spin(Π) is a 2-fold central extension of K by [9, Thm. 11.17]. �

We will now return to the case of a general irreducible Dynkin diagram Π.

Notation 4.10. For a subset J ⊆ I let

HJ :=
〈
xi; i ∈ J | xix

ε(i,j)
j = xjxi, ; i, j ∈ J

〉
.

Lemma 4.11. Let J ⊆ I be the index set of a connected component Πadm
J of Πadm.

Then the following hold:

(a) If Πadm
J has colour r, then HJ ∼= C

|J|
2 .

(b) If Πadm
J has colour g, then |J | = 1 and HJ ∼= Z.

(c) If Πadm
J has colour b, then |HJ | = 2|J|+1.

Proof. (a) If Πadm
J has colour r, then there exist i ∈ J, j ∈ I \ {i} with ε(i, j) = 1 and

ε(j, i) = −1. This implies xixj = xjxi and xjx
−1
i = xixj which yields x2

i = 1. Now,

if {iλ, kλ} is an edge in Πadm, then xix
−1
k x−1

i x−1
k = 1 = xkx

−1
i x−1

k x−1
i . Multiplying

these expressions shows that x2
i = 1 implies x2

k = 1. Since Πadm
J is connected, this yields

x2
k = 1 for each k ∈ J . Commutativity then follows from the relations of HJ .

(b) By definition, nodes of colour g are isolated in Πadm.
(c) Let Πsl

J be the simply laced Dynkin diagram with vertex set Jλ and edge set

{{i, j} ∈ J×J | {i, j} edge in Πadm}. Let T̃ := K(Πsl
J )∩T (Πsl

J ) where T (Πsl
J ) denotes the

standard maximal torus of G(Πsl
J ). Then by Lemma 4.3 and Proposition 4.9, Spin(Πsl

J )→
K(Πsl

J ) → K(Πsl
J )/T̃ is a universal covering map where K(Πsl

J ) → K(Πsl
J )/T̃ has degree

2|J| and Spin(Πsl
J ) → K(Πsl

J ) has degree 2 according to [9, Thm. 11.17]. Since we have

π1(K(Πsl
J )/T̃ ) ∼= HJ by Theorem 3.15 and Lemma 4.1, this implies |HJ | = 2|J|+1. �

Proposition 4.12. Let J1 t · · · t Jk = I be the index sets of the connected components
of Πadm. If the Bruhat decomposition satisfies the conclusion of Proposition 3.7, then

π1(G/B) ∼= HJ1
× · · · ×HJk .

Proof. By Theorem 3.15, π1(G/B) ∼= HI where

HI =
〈
xi; i ∈ I | xix

ε(i,j)
j = xjxi, ; i, j ∈ I

〉
as defined in 4.10. For J ⊆ I, let

RJ :=
{
xix

ε(i,j)
j x−1

i x−1
j | i, j ∈ J

}
, (3)

the set of relators of HJ . Let

Rc :=
⋃

iλ,jλin different
conn. components

{xixjx−1
i x−1

j },
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the set of commutators of pairs of generators from different connected components of
Πadm. Then

HJ1
× · · · ×HJk ∼=

〈
xi; i ∈ I

∣∣∣ k⋃
l=1

RJl ∪R
c
〉

=: H.

Let πHI and πH be the canonical homomorphisms from the free group 〈xi; i ∈ I〉 to HI
and H, respectively. It suffices to show that

⋃k
l=1RJl ∪R

c ⊆ kerπHI and RI ⊆ kerπH .

It is clear that a relator xix
ε(i,j)
j x−1

i x−1
j ∈ RI with iλ and jλ in a common connected

component is contained in
⋃k
l=1RJl ⊆ kerπH , so let xix

ε(i,j)
j x−1

i x−1
j ∈ RI with iλ

and jλ in different connected components of Πadm. Then one has (ε(i, j), ε(j, i)) ∈
{(1, 1), (1,−1), (−1, 1)}. If ε(i, j) = 1, then xix

ε(i,j)
j x−1

i x−1
j ∈ Rc ⊆ kerπH , so let

ε(i, j) = −1 and ε(j, i) = 1. Then jλ is contained in a connected component Πadm
Jm of

colour r, and by Lemma 4.11, 〈xl; l ∈ Jm | RJm〉 = HJm
∼= C

|Jm|
2 .

This implies that xj has order 2 in HJm , hence x2
j ∈ 〈〈RJm〉〉〈xi;i∈I〉, the normal

closure of RJm in the free group.

Since 〈〈RJm〉〉〈xi;i∈I〉 ⊆ kerπH , one obtains x2
j ∈ kerπH . Since xjxix

−1
j x−1

i ∈ Rc ⊆
kerπH and ε(i, j) = −1, one therefore has

πH(xix
ε(i,j)
j x−1

i x−1
j ) = πH(xjxix

−1
j x−1

i · xix
ε(i,j)
j x−1

i x−1
j ) = 1H .

Conversely, it is clear that
⋃k
l=1RJl ⊆ RI ⊆ kerπHI , so let xixjx

−1
i x−1

j ∈ Rc with

iλ and jλ in different connected components. As above, we can assume that ε(i, j) = −1

and ε(j, i) = 1. Since xjx
ε(j,i)
i x−1

j x−1
i ∈ kerπHI , this implies

πHI (xixjx
−1
i x−1

j ) = πHI (xjx
ε(j,i)
i x−1

j x−1
i · xixjx

−1
i x−1

j ) = 1HI .

This proves the assertion. �

Theorem 4.13. Let Π be an irreducible Dynkin diagram such that G(Π) satisfies the
conclusions of Proposition 3.7 and of Theorem A.15. Let n(g) and n(b) be the number of
connected components of Πadm of colour g and b, respectively. Then

π1(G(Π)) ∼= Zn(g) × Cn(b)
2 .

In particular, this statement holds in the symmetrizable case.

Proof. By Theorem A.15, π1(G) ∼= π1(K), so it suffices to prove that π1(K) is of
the given isomorphism type; note that Theorem A.15 has only been established in the
symmetrizable case. Let J ⊆ I. The diagram

K K/KJ

K/(K ∩ T ) K/(K ∩ T )KJ

ϕ

p q

ψ

,

with all maps being the respective canonical maps, commutes. Since the maps are
continuous by Lemma 3.2, one obtains a commutative diagram of induced homomor-
phisms

π1(K) π1(K/KJ )

π1(K/(K ∩ T )) π1(K/(K ∩ T )KJ )

ϕ∗

p∗ q∗

ψ∗

,
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where p∗ and q∗ are injective, because p and q are covering maps (see Lemma 4.3). By
Theorem 3.15 and Lemma 4.1, π1(K/(K ∩ T )) and π1(K/(K ∩ T )KJ ) can be identified
with HI = 〈xi; i ∈ I | RI〉 and 〈xi; i ∈ I | RI ∪ {xj | j ∈ J}〉, respectively (RI as in
(3) in the above proof), where ψ∗ corresponds to the canonical homomorphism between
these groups as the proof of Theorem 3.15 shows.

For the index set Jm of a connected component of Πadm, let J̄m := I \ Jm. Then by
Proposition 4.12,

〈
xi; i ∈ I | RI ∪ {xj | j ∈ J̄m}

〉 ∼= ( k∏
i=1

HJi

/ k∏
i=1
i 6=m

HJi

)
∼= HJm .

Summing up, one obtains a commutative diagram

π1(K) π1(K/KJ̄m)

∏k
i=1HJi HJm

ϕ∗

p∗ q∗

πm

,

having replaced p∗ and q∗ from above with the corresponding monomorphisms.

By Lemma 4.3, the covering K/KJ̄m → K/KJ̄m(K ∩ T ) has degree 2n−|J̄m| = 2|Jm|.

This implies that H̃m := q∗(π1(K/KJ̄m)) is a subgroup of HJm of index 2|Jm|. The

isomorphism type of H̃m is uniquely determined by this index and Lemma 4.11. One has

H̃m ∼=


{1}, if Πadm

Jm has colour r,

2Z ∼= Z, if Πadm
Jm has colour g,

C2 if Πadm
Jm has colour b.

Again by Lemma 4.3, the covering K → K/(K ∩ T ) has degree 2n, so p∗(π1(K)) is

a subgroup of index 2n of
∏k
i=1HJi . The commutative diagram above implies that

π1(K) ∼= p∗(π1(K)) ⊆ π−1
m (H̃m). Since this holds for the index set of every connected

component of Πadm, one has p∗(π1(K)) ⊆ H̃1 × · · · × H̃m. But the latter is a subgroup

of index 2|J1| · · · · · 2|Jm| = 2n of
∏k
i=1HJi , so equality holds. This proves the assertion.

�

Theorem 4.14. Let Π be an irreducible Dynkin diagram such that G(Π) satisfies the
conclusion of Proposition 3.7. Let n(g) be the number of connected components of Πadm

of colour g. Let n(b, κ) be the number of connected components of Πadm on which κ takes
the value 1 and which have colour b. Then

π1(Spin(Π, κ)) ∼= Zn(g) × Cn(b,κ)
2 .

In particular, this statement holds in the 2-spherical and the symmetrizable case.

Proof. By [9, Thm. 17.1], the map ρΠ,κ : Spin(Π, κ) → K is a 2c(Π,κ)-fold central

extension. Let J be the index set of a connected component of Πadm and let J̄ := I \ J̄ .

Let UJ̄ := 〈G̃ij | i 6= j ∈ J〉Spin(Π,κ).
Since ρΠ,κ(UJ̄ ) ⊆ KJ̄ , one has a continuous induced map

ρJΠ,κ : Spin(Π, κ)/Spin(ΠJ̄ , κJ̄ )→ K/KJ̄
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making the following diagram commute, where ϕ̃ and ϕ denote the respective canonical
maps:

Spin(Π, κ) Spin(Π, κ)/UJ̄

K K/KJ̄

ϕ̃

ρΠ,κ ρJΠ,κ

ϕ

.

Each fiber of ρJΠ,κ has cardinality

|{xUJ̄ | x ∈ ker ρΠ,κ}| = | ker(ρΠ,κ)/(UJ̄ ∩ ker(ρΠ,κ))|

= 2c(Π,κ)−c(ΠJ̄ ,κJ̄ ) by Remark 4.6.

Since ρΠ,κ is open as a covering map and ϕ is open by Lemma 3.2, it follows from

Lemma 4.2 that ρJΠ,κ is a covering map.
From here the proof is analogous to the proof of Theorem 4.13, after extending the

commutative diagram at the beginning of the latter proof:

Spin(Π, κ) Spin(Π, κ)/UJ̄

K K/KJ

K/(K ∩ T ) K/(K ∩ T )KJ

ϕ̃

ρΠ,κ ρJΠ,κ

ϕ

p q

ψ

.

One obtains that π1(Spin(Π, κ)) ∼=
∏k
i=1H

′
Ji where each H ′Jm is a subgroup of index

2c(Π,κ)−c(ΠJ̄m ,κJ̄m ) of

H̃m ∼=


{1}, if Πadm

Jm has colour r,

2Z ∼= Z, if Πadm
Jm has colour g,

C2 if Πadm
Jm has colour b.

Since Πadm
J̄m

is the union of all connected components except Πadm
Jm , one has c(Π, κ) −

c(ΠJ̄m , κJ̄m) ∈ {0, 1}, depending on whether κ is constant 1 or 2 on Πadm
Jm . This implies

H ′m ∼=


{1}, if Πadm

Jm has colour r,

Z, if Πadm
Jm has colour g,

C2 if Πadm
Jm has colour b and κ ≡ 1 on Πadm

Jm ,

{1}, if Πadm
Jm has colour b and κ ≡ 2 on Πadm

Jm .

This proves the assertion. �

Now all theorems from the introduction have been proved.
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A. Maximal unipotent subgroups of Kac–Moody groups
and applications to Kac–Moody symmetric spaces

T. HARTNICK, R. KÖHL

Throughout this appendix, we fix a symmetrizable generalized Cartan matrix A with
underlying diagram Π. We consider the corresponding algebraically simply-connected
semisimple split real Kac–Moody group G := G(Π) = [GA(R), GA(R)] as given by
Definition 1.1. As in Section 2, we also denote by KA(R) ≤ GA(R) the fixed point
subgroup of the Cartan–Chevalley involution θ and set K := K(Π) = KA(R) ∩ G. We
equip all of these groups with the restrictions of the Kac–Peterson topology.

The goal of this appendix is to relate the topology of G to the topology of K. Our
main result (see Theorem A.15 below) asserts that the inclusion K ↪→ G is a weak
homotopy equivalence. This implies in particular that π1(G) ∼= π1(K) and thus allows
the computation of π1(G) by the methods presented in the main part of the article.

In the spherical case, the subgroup K < G is even a deformation retract and hence the
inclusion K ↪→ G is a homotopy equivalence, as a consequence of the topological Iwasawa
decomposition of G. This decomposition also implies that the associated Riemannian
symmetric space G/K is contractible.

While real Kac–Moody groups also possess an Iwasawa decomposition, it is currently
unknown whether this decomposition is topological. To establish our main result, we thus
have to work with a certain central quotient G of G, for which the topological Iwasawa
decomposition was established in [8]. We will show that the image K of K in G is a
strong deformation retract and that the reduced Kac–Moody symmetric space G/K is
contractible. Since the finite-dimensional central extension G → G is a Serre fibration
by a classical result of Palais [32], this will allow us to deduce the desired result about G
and K.

A.1. The topological Iwasawa decomposition

Let us denote by Ad : GA(R) → Aut(gR(A)) and Ad : G(Π) → Aut(g′R(A)) the adjoint
representations of GA(R) and G = G(Π), respectively. We recall from [8] that the
quotient map G→ Ad(G) factors as

G
p1−−→ G

p2−−→ Ad(G), (4)

where G is uniquely determined by the fact that T := p1(T ) ∼= (R×)rk(A) is a torus and
p2 has finite kernel. The group G is referred to as the semisimple adjoint quotient of G,
and we equip it with the quotient topology with respect to the Kac–Peterson topology on
G. We will denote by U± the positive, respectively negative maximal unipotent subgroup
of G(Π) as introduced in Section 2. Also recall from Section 2 that AR := exp(hR(A)) ≤
GA(R) and set A := AR ∩G.

Lemma A.1 (Iwasawa decomposition). Multiplication induces continuous bijections

KA(R)×AR × U+ → GA(R) and K ×A× U+ → G.

Proof. This follows from [23, Prop. 5.1(a)]. �

A more refined statement has been established in [8] for the semisimple adjoint quotient
G of G. To state this result, denote by

G
p1−−→ G

p2−−→ Ad(G)

the canonical quotient maps from (4) and set K := p1(K), T := p1(T ) ∼= (R×)rk(A),

A := p1(A) = T
o

and U+ := p1(U+). Equip these groups with their respective quotient

topologies and note that p1 restricts to a bijection between U+ and U+.
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Theorem A.2 (Topological Iwasawa decomposition, [8, Thm. 3.23]). Multiplication in-
duces homeomorphisms

K ×A× U+ → G and U+ ×A×K → G.

Since A is contractible, in order to show that K is a deformation retract of G it will
suffice to show that U+ is contracible. We thus need to understand the topology induced
by the Kac–Peterson topology on the standard unipotent subgroups.

A.2. The Kac–Peterson topology on U±

We now turn to the study of the restriction of the Kac–Peterson topology to the standard
maximal unipotent subgroups U− and U+. Recall from Section 2 that the Weyl group
W is a Coxeter group, so elements of W can be represented by reduced words in the
generators s1, . . . , sr. Given such a reduced word w = (si1 , . . . , sir ) in W with corres-
ponding simple roots αi1 , . . . αir we define positive roots β1, . . . , βr by

β1 := αi1 , β2 := si1(αi2), . . . , βr := si1si2 · · · sir−1
(αir ). (5)

We then set Uw := Uβ1
· · ·Uβr ⊂ U+ and define a map

µw : Uβ1
× · · · × Uβr → Uw, (x1, . . . , xr) 7→ x1 · · ·xr.

It is established in [4, Sect. 5.5, Lem.] that the map µw is a bijection for every reduced
word w, and that its image Uw depends only on the Weyl group element represented by
w, but not on the chosen reduced expression. Since GA(R) is a topological group, the
bijection µw is continuous. In fact, one can show that µw is a homeomorphism. A proof
of this fact was sketched in [14, Lem. 7.25]; since openness of the maps µw is crucial for
everything that follows, we fill in the details of this sketch here.

Lemma A.3. For every reduced word w the map µw is a homeomorphism onto its image.

Proof. We argue by induction on the length m of w and observe that the case m = 1
holds by definition. Since the linear functionals α1, . . . , αr are linearly independent,
there exists an element X ∈ hR(A) (see Section 2) such that αi1(X) = 0 and αj(X) < 0

for all j ∈ {1, . . . , î1, . . . , r}. It follows that β1(X) = αi1(X) = 0 and βk(X) < 0 for
all k = 2, . . . ,m. Indeed, since the word w is reduced, none of the positive real roots
β2, . . . , βm equals αi1 , and since nαi1 is not a root for any n ≥ 2 (cf. [21, Prop. 5.1]),
each of them contains at least one other positive simple root as a summand. Now for
j ∈ {1, . . . ,m} and Y ∈ gβj we have ad(X)(Y ) = βj(X)(Y ), and thus

lim
t→∞

Ad(exp(tX))(Y ) =

{
Y, j = 1,
0, j > 1.

We conclude that if xj ∈ Uβj , then

lim
t→∞

exp(tX)(x1 · · ·xm) exp(−tX) = x1,

where the convergence is uniform on compacta. This shows that the map

π1 : Uw → Uβ1
, x1 · · ·xm 7→ x1

is continuous, and hence the map

Uw → Uβ1
× Uβ2

· · ·Uβm , x1 · · ·xm 7→ (x1, x2 · · ·xm) (6)
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is continuous. Now let w′ = (ri2 , . . . , rim) and let β′2 = si1(β2), . . . , β′m := si1(βm).
Now by Axiom (RGD2) of an RGD system (see [1, Chap. 8]) there exists an element
g ∈ GA(R) such that gUβjg

−1 = Uβ′j for all j = 2, · · · ,m, and by induction hypothesis

we have a homeomorphism

µw′ : Uβ′2 × · · · × Uβ′m → Uw′ , (x2, . . . , xm) 7→ x2 · · ·xm.

Conjugating the inverse of this homeomorphism by g−1 we obtain a homeomorphism

Uβ2
· · ·Uβm → Uβ2

× · · · × Uβm .

Composing this homeomorphism with the map (6) now provides the desired continuous
inverse to µw. �

To describe the topology on U+ we recall that there exist several distinct but related
partial orders on W which in different places in the literature are referred to as the
Bruhat order on W . In the sequel we will consider the following version; here ` denotes
the length function with respect to the generating set {s1, . . . , sr}.

Definition A.4. The weak right Bruhat order on W is the partial order ≤w defined as

w1 ≤w w2 :⇐⇒ `(w2) = `(w1) + `(w−1
1 w2), (w1, w2 ∈W ).

According to [4, p. 44] we have w1 ≤w w2 if and only if there exists a reduced word
(ri1 , . . . , ri`(w2)

) for w2 such that w1 = ri1 · · · ri`(w1)
.

Recall that for the strong Bruhat order ≤ one has w1 ≤ w2 if there exists a reduced
word (ri1 , . . . , rim) for w2 and a reduced word (rj1 , . . . , rjl) for w1 such that (rj1 , . . . , rjl)
is a substring of (ri1 , . . . , rim) (not necessarily consecutive). By definition,

w1 ≤w w2 =⇒ w1 ≤ w2,

but the converse is not true. An important difference between the weak right Bruhat
order and the strong Bruhat order is that (W,≤) contains a cofinal chain, i.e., a totally
ordered subset T ⊂ W such that for every w ∈ W there exists t ∈ T such that w ≤ t,
whereas for the weak right Bruhat order, such a cofinal chain does not exist. In fact,
given w1, w2 ∈W there will in general not exist an element w3 ∈W with w1 ≤w w3 and
w2 ≤w w3.

Note that if w1 ≤w w2, then we can choose a reduced word (ri1 , . . . , ri`(w2)
) for w2

such that w1 = ri1 · · · ri`(w1)
. Thus if we define β1, . . . , β`(w2) as above then we have a

commuting diagram

Uβ1
× · · · × Uβ`(w1)

//

��

Uβ1
× · · · × Uβ`(w2)

��
Uw1

// Uw2

,

where the horizontal maps are inclusions, and the vertical maps are homeomorphisms.
In particular, we have a continuous inclusion ιw2

w1 : Uw1 ↪→ Uw2 , hence we may form the
colimit

lim
→

((Uw)w∈W , (ιw2
w1

)w1≤ww2
)

in the category of topological spaces. We emphasize that in view of the previous remark
the system ((Uw)w∈W , (ιw2

w1)w1≤ww2
) is not directed, hence this colimit is not a direct

limit.
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Proposition A.5. The kω-space U+ is given by the colimit

U+ = lim
→

((Uw)w∈W , (ιw2
w1

)w1≤ww2
)

both in the category of topological spaces and in the category of kω-topological spaces.

Proof. The corresponding statement in the category of sets is established in [4, Thm. 5.3].
For the topological statement see [14, Prop. 7.27]. �

In view of the applications to Kac–Moody symmetric spaces that we have in mind we
recall that U± are subgroups of the commutator subgroup G of GR(A); in particular we

can consider their images U
±

:= p1(U±) under the map p1 : G → G from (4). In this
context, we will need the following fact.

Proposition A.6. The map p1 induces homeomorphisms U± → U
±

.

Proof. By [14, Prop. 7.27] the map T ×U+ → TU+ is a homeomorphism and the kernel
of p1 is contained in T . The latter implies that p1 restricts to a continuous bijection
U+ → U+, and the former implies that this bijection is open. �

A.3. Dilation structures on U±

Definition A.7. Let U be a topological group. By a dilation structure on U , we mean
a family of maps (Φt : U → U)t∈R with the following properties:

(a) Each Φt is a continuous automorphisms of the topological group U .

(b) (Φt)t∈R is a 1-parameter group, i.e. Φ0 = Id and Φs+t = Φs ◦ Φt for all s, t ∈ R.

(c) If we define Φ−∞ : U → U by Φ−∞(u) := e, then the map

[−∞,∞)× U → U, (t, u) 7→ Φt(u)

is continuous.

Remark A.8. Note that if a topological group U admits a dilation structure, then it is in
particular contractible. Indeed, if we define Ψt := Φt/(t−1), then

Ψ : [0, 1]× U → U, (t, u) 7→ Ψt(u)

is continuous with Ψ0 = Φ0 = Id and Ψ1 = Φ−∞, hence a contraction to the identity.

Dilation structures on finite-dimensional simply-connected nilpotent Lie groups play
a major role in conducting analysis on such groups, see, e.g., [11]. Not every finite-dimen-
sional simply-connected nilpotent Lie group admits a dilation structure, but if U is the
unipotent radical of a minimal parabolic subgroup of a semisimple Lie group, then such
a dilation structure always exists. The methods of [25] allow one to extend this result to
the Kac–Moody setting.

Following [21, §3.12], we define the fundamental chamber of hR(A) as

C := {h ∈ hR(A) | ∀1 ≤ i ≤ n : αi(h) ≥ 0} ⊂ hR(A).

Since the family (αi)1≤i≤n is linearly independent, there exists

X0 ∈ C such that αi(X0) = 1 for all 1 ≤ i ≤ n.
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Indeed, by the linear independence of (αi)1≤i≤n the solution space for the system of n−1
linear equations ∀2 ≤ i ≤ n : α1(x) − αi(x) = 0 has strictly larger dimension than the
solution space for the system of n linear equations ∀1 ≤ i ≤ n : αi(x) = 0.

We now define a 1-parameter subgroup of AR by at := exp(tX0) and denote by

ϕt := Ad(at) ∈ Aut(u+)

the associated automorphism of the Lie algebra u+ =
⊕
α∈∆+

gkα. Similarly we denote by

Φt := cat |U+ ∈ Aut(U+)

the restriction of the conjugation-action of at on GA(R) to U+. Note that if X ∈ u+ is
ad-locally finite, then

Φt(exp(X)) = exp(ϕt(X)).

From (1) and the defining property of X0 one deduces that for every positive root α with
height |α|

∀Y ∈ gα : ϕt(Y ) = et|α|Y.

It follows that for all positive roots α, one has

Φt(xα(s)) = exp(tX0) · xα(s) · exp(−tX0) = xα(et|α|s) (7)

(see [39, (4), p. 549]), where {xα(s) | s ∈ R} ∼= (R,+) is the root subgroup of GA(R)
corresponding to the root space gα. As a consequence, if one endows each of the root
subgroups {xα(s) | s ∈ R} with the natural topology of R, then Φt contracts each of
them. We are now in a position to reproduce the following result and proof by Kumar.

Theorem A.9 ([25, Prop. 7.4.17]). The family (Φt)t∈R defines a dilation structure on
U+.

Proof. Let w be a reduced word and write w = si1 · · · sir ∈W with corresponding simple
roots αi1 , . . . αir . Recall that multiplication induces a homeomorphism

Uβ1
× · · · × Uβr → Uw,

where the roots β1, . . . , βr are given by

β1 := αi1 , β2 := si1(αi2), . . . , βr := si1si2 · · · sir−1
(αir ).

Given an element xβ1
(y1)xβ2

(y2) · · ·xβr (yr) ∈ Uw by (7) one has

Φt(xβ1
(y1)xβ2

(y2) · · ·xβr (yr)) = xβ1
(et|β1|y1)xβ2

(et|β2|y2) · · ·xβr (et|βr|yr).

Setting Φ−∞(u) := e for all u ∈ U+, we deduce that the map

Φ|Uw : [−∞,∞)× Uw → Uw, (t, u) 7→ Φt(u)

is continuous and that Φ0 = IdUw . Combining this with Proposition A.5, one deduces
that the map

Φ : [−∞,∞)× U+ → U+, (t, u) 7→ Φt(u)

is continuous, hence a dilation structure. �

Recall that U+ is isomorphic to U− under the Cartan–Chevalley involution of GA(R),
which maps at to a−t. Thus if we define Φ−t := ca−t |U− then we obtain the following.
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Corollary A.10. The family (Φ−t )t∈R defines a dilation structure on U−.

Combining this with Remark A.8 and Proposition A.6, we can record the following.

Corollary A.11. The topological groups U+ and U− are contractible. Consequently, the

groups U
+

and U
−

are contractible.

A.4. Homotopy groups of real-split semisimple Kac–Moody groups

Corollary A.12. The subgroup K < G is a deformation retract. In particular, the
inclusion iK : KA(R) ↪→ GA(R) is a homotopy equivalence and thus induces isomor-
phisms (iK)∗ : πn(K)→ πn(G) for all n ≥ 0.

Proof. We have established in Corollary A.11 that U+ is contractible, and A is contrac-
tible since it is homeomorphic to Rrk(A). The assertion now follows from Theorem A.2.
�

Since it is currently unknown whether the Iwasawa decomposition of G is also a
topological decomposition, the strategy of the above proof can not be applied to G.
However, using the following result of Palais [32, Sect. 4.1, Cor.], one can still obtain an
isomorphism between the fundamental groups of G and K.

Proposition A.13 (Palais). Let G be a topological group and let H < G be a subgroup
which is homeomorphic to a Lie group. Then the fibration H ↪→ G → G/H is locally
trivial, in particular a Hurewicz fibration, hence there is a long exact sequence of homotopy
groups

· · · → π2(H)→ π2(G)→ π2(G/H)→ π1(H)→ π1(G)→ π1(G/H)→ π0(H)→ π0(G).

Recall that the kernel of the quotient map G → G is homeomorphic to (R×)cork(A).

In particular, it has 2cork(A) connected components, whereas its higher homotopy groups
vanish. Applying Proposition A.13 to the diagram of fibrations

(R×)cork(A) // G // G

(Z/2Z)cork(A)

OO

// K //

OO

K

OO

we thus obtain the following.

Corollary A.14. There is a commutative diagram with exact rows

0 // π1(G) // π1(G) // (Z/2Z)cork(A) // 0

0 // π1(K) //

OO

π1(K) //

OO

(Z/2Z)cork(A)

∼=

OO

// 0

.

Moreover, for n ≥ 2 there are isomorphisms πn(GA(R)) ∼= πn(G) and πn(KA(R)) ∼=
πn(K).

Combining this with Corollary A.12 we deduce the following.
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Theorem A.15. For every n ≥ 0 the inclusion K ↪→ G induces isomorphisms

πn(K) ↪→ πn(G),

hence is a weak homotopy equivalence. In particular, π1(G) ∼= π1(K).

A.5. Kac–Moody symmetric spaces and causal contractions

We conclude this appendix with an application to the results obtained so far to Kac–
Moody symmetric spaces. By [8], the homogeneous spaces GA(R)/KA(R) and G/K
carry the natural structure of topological reflection spaces, and the same holds for their
quotients Ad(GA(R))/Ad(KA(R)) and Ad(G)/Ad(K). The topological reflection space
X = G/K is called the unreduced Kac–Moody symmetric space of type A, and the
topological reflection space X = Ad(G)/Ad(K) = G/K is called the reduced Kac–Moody
symmetric space of type A.

Corollary A.16. The reduced symmetric space X is contractible.

Proof. In view of the topological Iwasawa decomposition, the orbit map at the basepoint
o = eK

U+ ×A→ X , (u, a) 7→ ua.o

is a homeomorphism. Since U+ and A are contractible, this implies contractability of X .
�

The proof of Theorem A.9 can be used to provide an explicit contraction for X '
U+ ×A, using the contraction by conjugation with suitable elements of the torus TR on
the group U+ and the standard contraction on the finite-dimensional real vector space
A. It turns out that this contraction has interesting additional properties. Recall from
[8, Sect. 7] that the symmetric space X admits future and past boundaries ∆+

‖ and ∆−‖
that both carry a simplicial structure which turns them in the geometric realizations of
the positive and negative halves of the twin building of GA(R). Following [8, Sect. 7],
a causal ray is a geodesic ray of X whose parallelity class equals a point in ∆+

‖ and a

piecewise geodesic causal curve is the concatenation of a finite set of segments of causal
rays that can be parametrized in such a way that the walking direction always points
towards the future boundary. Given x, y ∈ X , we say that x causally preceeds y (in
symbols x � y) if there exists a piecewise geodesic causal curve from x to y.

Since both conjugation by elements of TR and the standard contraction of the vector
space A preserve geodesic rays and the future and past boundaries (cf. [8, Sect. 7]), the set
of piecewise geodesic causal curves of X , and hence the causal pre-order �, are invariant
under the given contraction.

Corollary A.17. The reduced symmetric space X is causally contractible, i.e., it admits
a contraction that preserves �.

B. The Bruhat decomposition is a CW decomposition

J. GRÜNING, R. KÖHL

Let G be a Kac–Moody group endowed with the Kac–Peterson topology and let T
be the standard maximal torus and U+, U− the standard unipotent subgroups. [22,
Thm. 4(a)] asserts without proof that the multiplication map

U+ × T × U− → U+TU−
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is a homeomorphism with respect to the Kac–Peterson topology. In this note, we provide
a proof in the symmetrizable case that makes use of this fact in the two-spherical case ([14,
Prop. 7.31]), of the embedding of Kac–Moody groups constructed in [28, Thm. 3.15(2)],
and of the fact that the Kac–Peterson topology is kω. Among the various consequences of
this result is that the Bruhat decomposition of a symmetrizable topological Kac–Moody
group is a CW decomposition.

Recall that a k-space (alternatively, compactly generated space) is a topological space
X in which a set C ⊂ X is closed if and only if its intersection C ∩K with any compact
subset K of X is compact. That is, a k-space is a topological space X whose topology is
coherent with the family of all compact subspaces of X. A kω-space is a topological space
X whose topology is coherent with respect to a countable ascending family of compact
subspaces. By (3) of [7] any kω-space is a k-space.

Proposition B.1 ([33, Cor.]). A continuous proper map f : X → Y from a topological
space X to a k-space Y is closed. In particular, a continuous injection ι : X → Y into
a kω-space Y =

⋃
n∈N Ym with compact Ym such that for each m ∈ N the pre-image

ι−1(Ym) is also compact is a topological embedding, i.e., it is a homeomorphism onto its
image.

Proof. The first statement is exactly [33, Cor.]. The second statement is an immediate
consequence of the first, since a kω-space is a k-space in which any compact subset K of Y
is contained in some Ym of the ascending family (Ym)m∈N of compact subsets (statement
(3) of [7]). �

Remark B.2. The authors thank T. Hartnick and S. Witzel for various lively discussions
concerning the correct formulation and application of Proposition B.1. Moreover, they
thank S. Witzel for suggesting to make use of the concept of proper maps.

A subgroup of a Kac–Moody group is bounded if it lies in the intersection of two
spherical parabolic subgroups of opposite signs. In other words, it is bounded if and
only if it stabilises a point the Davis CAT(0) realization of each half of its twin building.
The maximal bounded subgroups of a Kac–Moody group have been determined in [3,
Thm. 4.1].

Proposition B.3. Let G be a split real Kac–Moody group. Then the Kac–Peterson topo-
logy τKP on G equals the finest group topology τMB on G such that the embeddings of the
maximal bounded subgroups, each endowed with its Lie group topology, are continuous.

Proof. By [26, Lem. 4.3], the Kac–Peterson topology τKP on G induces the Lie group
topology on its maximal bounded subgroups. A fundamental SL2(R) is bounded and, in
particular, embeds as a closed subgroup into a maximal bounded subgroup. Therefore,
its subspace topology equals its Lie group topology; by [14, Prop. 7.21] the topology
τKP equals the finest group topology on G such that the embeddings of the fundamental
SL2(R) Lie subgroups is continuous, whence τKP is finer than or equal to the final group
topology τMB with respect to the embedded maximal bounded subgroups. Again, since
by [26, Lem. 4.3] the Kac–Peterson topology on G induces the Lie group topology on its
maximal bounded subgroups, the two described topologies actually coincide. �

Corollary B.4. Let G be a split real Kac–Moody group endowed with the Kac–Peterson
topology and let (Gi)i∈I be a finite family of Lie-subgroups of G such that each funda-
mental SL2(R) is contained in at least one of the Gi. Then the Kac–Peterson topology
on G equals the finest group topology on G such that the embeddings of the (Gi)i, each
endowed with its Lie group topology, are continuous.
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Proposition B.5 (cf. [13, 1.5, 1.10], [28, Thm. 3.15(2)]). Any symmetrizable topological
Kac–Moody group endowed with the Kac–Peterson topology admits a continuous injective
group homomorphism into a simply laced topological Kac–Moody group with closed image
with respect to the Kac–Peterson topology.

Proof. By [28, Thm. 3.15(2)] for any symmetrizable Kac–Moody group G there is an
injective group homomorphism ι : G → H into a simply laced Kac–Moody group H
embedding each fundamental rank-1 subgroup Gαi ∼= SL2(R) diagonally into the direct
product

ni∏
j=1

Hαi,j ∼= SL2(R)ni

of a suitable (finite) family of fundamental rank-1 subgroups Hαi,j of H.
The restriction of this map to any fundamental rank-1 subgroup Gα of G is continuous

with respect to the Lie group topology on Gα and the Kac–Peterson topology on H.
Hence, by universality (see [14, Prop. 7.21]), the map ι : G → H is continuous with
respect to the Kac–Peterson topology on both G and H.

One has
ι(G) =

⋂
σ

Fix(ϕσ),

where ϕσ is the automorphism of H given by

Hαi,j → Hαi,σ(j)

for some σ = (σ1, . . . , σN ), where σi ∈ Sym(ni) acts by permuting the factors of the
direct product

∏ni
j=1Hαi,j

∼= SL2(R)ni . Since the automorphisms ϕσ are continuous

with respect to the Kac–Peterson topology on H, the group ι(G) is a closed subgroup of
H. �

The embedding ι : G→ H corresponds to an embedding of the twin building ∆G of G
into the twin building ∆H of H such that ∆G =

⋂
σ Fix(ϕσ) (with the ϕσ now considered

as twin building automorphisms) and the additional property that two chambers of ∆G

are opposite in ∆G if and only if they are opposite in ∆H .
Indeed, this is immediate from an argument along the lines of descent in buildings

(cf. [31]). The automorphisms ϕσ act on the twin apartment defined by the fundamental
chambers c+, c− of ∆H and, by definition, the fixed substructure is isometric to a twin
apartment of ∆G. The claim then follows from the fact that G acts transitively on the
twin apartments of ∆G.

In particular, this embedding

∆G = (∆+
G,∆

−
G, δ
∗
G)→ ∆H = (∆+

H ,∆
−
H , δ

∗
H)

of twin buildings induces an embedding of opposite geometries

Opp(∆G) = {(c, d) ∈ ∆+
G ×∆−G | δ

∗
G(c, d) = 1}

→ Opp(∆H) = {(c, d) ∈ ∆+
H ×∆−H | δ

∗
H(c, d) = 1}.

Specialising to the embedding of a fundamental rank-1 subgroup Gαi ∼= SL2(R) of G
diagonally into the direct product

ni∏
j=1

Hαi,j ∼= SL2(R)ni



FUNDAMENTAL GROUPS AND FLAG MANIFOLDS

of a suitable (finite) family of fundamental rank-1 subgroups Hαi,j of H, one obtains an

embedding of the real projective line S1 (the building of type A1) diagonally into a suitable
product

(
S1)ni of real projective lines (the building of type A1

ni = A1 ⊕ · · · ⊕ A1︸ ︷︷ ︸
ni

).

This in turn yields an embedding of the corresponding opposites geometries of pairs of
distinct points of S1 with adjacency relation given by the complete relation (the opposite
geometry of type A1 of diameter 1), respectively, of ni-tuples of pairs of distinct points
of S1 with adjacency relation given by equality in all up to at most one component (the
opposite geometry of type A1

ni of diameter ni).
Refer to [12, Sect. 4.3] for more details, some examples, and applications of the opposite

geometry. The most striking application of the opposite geometry is a proof of [38,
Thm. 13.32] via its simple connectedness and Mühlherr’s generalization to Kac–Moody
groups3; see also [2].

The following result follows immediately from the preceding discussion.

Proposition B.6. Let ι : G → H be the injective group homomorphism from Proposi-
tion B.5, let ∆G = (∆+

G,∆
−
G, δ
∗
G) → ∆H = (∆+

H ,∆
−
H , δ

∗
H) be the induced embedding of

twin buildings, and Opp(∆G) = {(c, d) ∈ ∆+
G × ∆−G | δ

∗
G(c, d) = 1} → Opp(∆H) =

{(c, d) ∈ ∆+
H ×∆−H | δ

∗
H(c, d) = 1} the resulting embedding of opposite geometries. Given

(c+, c−) ∈ Opp(∆G), for all n ∈ N exists m ∈ N such that the intersection of Opp(∆G)
with the ball of radius n in Opp(∆H) around (c+, c−) is contained in the ball of radius
m in Opp(∆H) around (c+, c−).

Corollary B.7. Let G be a topological Kac–Moody group endowed with the Kac–Peterson
topology. If it is two-spherical or symmetrizable, then the multiplication map ϕ : U+ ×
T × U− → G is a homeomorphism onto its image.

Proof. The two-spherical case is [14, Prop. 7.31]. In the symmetrizable case, note that
Proposition B.1 is applicable since the Kac–Peterson topology is kω by [14, Prop. 7.10].
Consequently, the injection from Proposition B.5 yields a topological embedding ι : G→
H, provided one can find kω-decompositions G =

⋃
nGn and H =

⋃
mHm such that

each intersection Hm∩ ι(G) lies in some ι(Gn). (Indeed, ι−1(Hm) is closed by continuity
of ι, so it is compact once it lies inside some compact set Gn, which is equivalent to
Hm ∩ ι(G) ⊂ ι(Gn).)

For G and H, choose kω-decompositions making use of Corollary B.4 and kω-de-
compositions of the fundamental subgroups Gαi ∼= SL2(R) of G and the corresponding
subgroups

∏ni
j=1Hαi,j

∼= SL2(R)ni of H into which the Gαi embed diagonally, endowed
with their Lie group topology. That is,

X1 := X1
1 , X2 := X1

1X
2
2 , X3 := X1

1X
2
2X

3
3 , . . . , Xt := X1

1 · · ·Xt
t , . . .

where each of the Xt
t is the ball of radius t around 1 of the maximal bounded subgroup

Xt endowed with some suitable metric inducing its Lie group topology, with X ∈ {G,H}
and lower index t taken modulo the total number of maximal bounded subgroups.

By construction, each Hj
j intersects ι(G) in some compact subset of a fundamental

subgroup Gαi of G with respect to the Lie group topology. In other words, each Hj
j ∩ι(G)

lies in some ι(Gkk). Forming finite products of such sets and using Proposition B.6 one
concludes that Ht∩ι(G) = (H1

1 · · ·Ht
t )∩ι(G) lies in some suitable product Gt = G1

1 · · ·Gtt;
that is, the injective homomorphism ι : G→ H indeed is a topological embedding.

3A manuscript that has never been published and unfortunately seems to be lost. To
the second author’s dismay he has lost his copy that he once owned.
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Since ι restricts to maps ι|UG+ : UG+ → UH+ , ι|UG− : UG− → UH− , ι|TG : TG → TH , one

can conclude that the diagram

UG+ × TG × UG− G

UH+ × TH × UH− H

ϕG

ι|
UG

+
×ι|TG×ι|UG− ι

ϕH

commutes, which proves that the map ϕG is a homeomorphism onto its image, since ϕH

is a homeomorphism onto its image by [14, Prop. 7.31]. �

Corollary B.8. Let G be a topological Kac–Moody group endowed with the Kac–Peterson
topology. If it is two-spherical or symmetrizable, then the associated twin building with
the quotient topology is a strong topological twin building.

Proof. The two-spherical case is [14, Thm. 1]. In the symmetrizable case it follows by
replacing [14, Prop. 7.31] with Corollary B.7; cf. the discussion after [14, Thm. 1]. �

Corollary B.9. Let G be a topological Kac–Moody group endowed with the Kac–Peterson
topology. If it is two-spherical or symmetrizable, then the Bruhat decomposition of a
symmetrizable Kac–Moody group is a CW decomposition.

Proof. This is a restatement of Proposition 3.7 from the main text. Its proof heavily
relies on Corollary B.8. �

Corollary B.10. Let G be a topological Kac–Moody group endowed with the Kac–Peter-
son topology. If it is two-spherical or symmetrizable, then the coset model, the group
model, and the involution model of the reduced Kac–Moody symmetric space are pairwise
homeomorphic with respect to their internal topologies.

Proof. The two-spherical case is [8, Prop. 4.19]. In the symmetrizable case, it follows
from [8, Prop. 4.19] and Corollary B.7. �
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