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1.1 Plant breeding in the modern era 

Conventional plant breeding has been practiced for hundreds of years by mankind 

benefiting from the available genetic diversity found in nature and is still being vehemently 

pursued today with modern tools and techniques. Darwin writings (published in 1859) and 

Mendel’s discovery of the laws of inheritance laid the scientific foundations of crop plant 

breeding (Borlaug, 1983). Pedigree based breeding approach to estimate the individual’s 

genetic merit has been used by plant breeders since early 1900 (Henderson, 1975; 

Koebner and Summers, 2003; Piepho et al. 2007; Piepho, 2009). This trend has been 

extremely beneficial with the integration of modern agricultural practices in the provision of 

a sustainable supply of novel cultivars and resulted in a tremendous increase in the yield of 

majority of crops (Moose and Mumm, 2008; Prohens, 2011). The famous ‘Green 

Revolution’ is a living example of the recent history where new cultivars were developed 

through selective breeding approaches that could give higher yields and thus, exponentially 

elevating the amount of food production worldwide to serve the global society (Jain, 2010). 

Since the launching  of the ‘Green Revolution’ in the past half century, the world annual 

yield of cereals, coarse grains, roots and tubers, pulses and oil crops has increased from 

1.8 billion tonnes to 4.6 billion tonnes (FAO, 2011). Despite all the miracles and benefits of 

the classical breeding methodology, there are however, some challenges and limitations 

attached to such approach. The predominant limitations include the following: the large 

amount of time required to declare a new variety, arduous and expensive phenotyping, and 

lengthy breeding cycles (Fehr, 1987; Resende et al. 2012). Furthermore, genetic 

evaluations based on conventional pedigree based selection failed to account for individual 

alleles and thus, potentially ignore the ‘Mendelian segregation’ that explains half of the 

genetic variability under (Fisher, 1918) ‘infinitesimal additive model’ and in the absence of 

inbreeding (Avendano et al. 2005, van Raden, 2008). In pursuing the development of this 
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important area of agricultural science in the 20th century, plant breeders’ started selecting 

phenotypically superior plants and crossed these plants to get rather new and improved 

varieties of various crops with desirable traits, better adapted to environmental fluctuations. 

Thus, they potentially started taking advantage of cross-breeding or hybridisation and 

introduced ‘modern’ plant breeding.  This ‘modern’ plant breeding was also manifested 

through mutation breeding, plant tissue culture and other novel selection approaches. 

More recently,thanks to the relatively inexpensive genomic technologies, plant breeding 

entered into a new modern era of genome-based molecular breeding. There is a great 

opportunity for plant breeders and researchers to make use of the available diverse 

genome sequence information for designing novel varieties, better resistant to biotic and 

abiotic stresses (Snowdon and Iñiguez-Luy, 2012). The active use of molecular markers in 

practical plant breeding started in the 1980s (Stuber et al. 1980; Stuber et al. 1982; 

Tanksley et al. 1988). Initially, these markers were used to detect quantitative trait loci 

(QTL) that led to the discovery of few genes responsible for variation in the trait of interest; 

typically a small number of loci were detected for each trait (Soller and Plotkin-Hazan 1977; 

Soller 1978; Paterson et al. 1988, Lander and Botstein, 1989). This practice is still being 

pursued by various labs around the globe. But traditional standard QTL mapping is limited 

by both mapping resolution and capturing the genetic variation (Pasam et al. 2012; Cai et 

al. 2014). The unprecedented availability of cost-effective molecular markers in huge 

quantity due to the unparalleled advancement in high-throughput technologies make it 

easier to detect and exploit DNA polymorphism in various plant species. These DNA 

polymorphisms play an important role in association mapping where molecular markers are 

associated with trait phenotype, and is a promising approach for the dissection of complex 

polygenic traits (Snowdon and Iñiguez-Luy, 2012; Li et al. 2014). Single nucleotide 

polymorphisms (SNPs) are widely used in genomic analyses. SNP markers are considered 
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as the ‘choice of markers’ due to their abundance, stability and genome-wide occurrence. 

Hayward et al. (2012) found that SNP markers can be used effectively to investigate 

genetic diversity in crops with ancient genome duplications, i.e. Brassica napus. 

1.2 Brassica napus L. (Canola/Oilseed rape/Rapeseed) 

Ancient civilisations in Asia and Mediterranean have been reported to have grown Brassica 

vegetables and oilseeds.  In India, their uses, especially Brassica rapa have recorded as 

early as 4000 BC and later on some 2000 years ago, it spread into other Asian territories, 

for example, China and Japan. In Europe, it has been primarily cultivated for its uses as oil 

for lamps since the 13th century and then, during World War II, the production of canola or 

rapeseed increased when the oil was used especially for margarine production (Snowdon 

et al. 2006). From a commercial view point, Brassica napus was first grown in Canada in 

1942 to be used as lubricant for warships and subsequently, in Australia, their cultivation on 

commercial scale has started in 1969. Before the introduction of modern Brassica napus, it 

was considered unsuitable for use as food for either humans or other animals in the 

western world (The Biology of Brassica napus, 2008). 

The Brassica genus belongs to Brassicaceae family (which was formerly known as 

Cruciferae) and consists of approximately 100 species, including Brassica napus L. 

Brassica napus is divided into two subspecies, Swedes (B.napus ssp. napo brassica) and 

(B.napus ssp. napus) that includes winter, spring oilseed, fodder and vegetable rape 

(Snowdon et al. 2006) . Brassica napus L., (AACC, 2n=38) which is also commonly known 

as oilseed rape/rapeseed or canola, ranks among the second largest oilseed crop after 

soybean in the world. Winter-sown canola is also used as a sustainable source of biodiesel 

in Europe (Snowdon and Friedt, 2012). Germany is the second largest producer of canola 

within Europe after France with a total production of 4.8 million tons in 2012. In 2012, 



5 

 

canola was cultivated on 1.306 million hectares in Germany, where the total arable land 

was 12 million hectares (FAO, 2013). 

This allopolyploid was naturally formed only about ~7500 years ago from spontaneous 

inter-specific hybridisations between cabbage (Brassica oleracea CC, 2n=18) and turnip 

rape (Brassica rapa; AA, 2n=20) (Chalhoub et al. 2014) (Figure 1.1). Strong ‘conscious’ 

selection by breeders for important quality traits resulted modern double-low (00) varieties 

with low levels of seed glucosinolate (<30 µmol/g seed) and erucic acid (<2 %). These 

modern breeding materials of rapeseed however, have developed a narrow gene pool in 

response to continuous selection by breeders for some quality traits (Hasan et al. 2006; 

Bus et al. 2011). 

 

Figure 1.1: The Brassica triangle. Brassica napus (2n= 38) arose from spontaneous interspecific 

hybridisation between its two diploid progenitors. Source: Snowdon, (2007). 

 According to Cowling (2007), the effective population size in Australian spring-type canola 

is just Ne =11, that indicates the overall shallow genetic diversity of Brassica napus. Low 
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genetic diversity often leads to high level of biotic and abiotic susceptibility and weak 

response to selection (Kebede et al. 2010; Falconer and Mackay, 1996). The narrow 

genetic pool in Brassica napus poses a great challenge for breeders to not only boost up 

the genetic diversity to withstand environmental fluctuations, but at the same time improved 

productivity and seed quality (Snowdon and Iñiguez-Luy, 2012). Introgression of diverse 

germplasm into elite materials can minimise genetic losses (Haussmann et al. 2004). China 

is the biggest producer of rapeseed, where attempts were made to elevate the genetic 

diversity in Brassica napus through marker-assisted introgressions from the related species 

and thus, to increase heterosis (Zou et al. 2010, Mei et al. 2011, Xiao et al. 2012). 

Development of new heterotic pools in Brassica napus, particularly through marker-assisted 

introgressions of novel germplasm from the diploid progenitors or other exotic gene pools, 

is an astute strategy to overcome this problem (Qian et al. 2005, Basunanda et al. 2007, 

Zou et al. 2010, and Girke et al. 2012). 

Molecular genetic approaches are coupled with the classical genetic analysis to advance 

our understanding of the inheritance of various qualitative and quantitative traits, mapping 

and estimation of the causative genes and their effects and for the identification of DNA-

based markers associated with traits of agronomic importance in modern Brassica breeding 

programmes (Snowdon and Friedt, 2004). Therefore, the use of molecular markers, 

especially in marker-assisted selection (MAS) breeding and other advanced molecular 

breeding plays a key role.  

SNP markers are abundantly found across the genome and can be used in association and 

genome-wide prediction in Brassica napus due to their genome-wide distribution, 

availability and simplicity in scoring their genotype (Snowdon and Iñiguez-Luy, 2012). 
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Figure 1.2: The reference genome of the B. napus ‘Darmor-bzh ’cultivar. Subgenome C has 9 

chromosomes and subgenome A has 10. Circular tracks represent (A) gene density (B and C) 

Transcription states in (B) leaves and (C) roots, (D) DNA transposon density. (E) Retrotransposon 

density. (F) CpG methylation in leaves (green) and roots (brown); both curves are overlapping. (G) 

Centromeric repeats. Homeologous relationship between chromosomes of subgenome A and C 

shown with coloured connecting lines coloured according to the Cn chromosomes. Source: 

Chalhoub et al. (2014). 

Genome-based prediction is a highly promising method to integrate novel, unadapted 

genetic variation effectively in canola breeding (Snowdon and Iñiguez-Luy, 2012). Recently 

genomic prediction has been demonstrated for estimation of testcross performance in 

different crop species, for example, in maize (Albrecht et al. 2011, Zhao et al. 2012), sugar 

beet (Hofheinz et al. 2012) and rye (Wang et al. 2014). 

The recent publication of the reference genome of Brassica napus cv. Darmor-bzh in 

Science (Chalhoub et al. 2014) (Figure 1.2) and the availability of 60k SNP Infinium 
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consortium array (Illumina Inc., San Diego, CA; USA) opens up the opportunities for further 

genomic research in exploring the genetic framework, comparative genomics and better 

understanding the genomic landscape and development of the allopolyploid Brassica napus 

on a population-scale. 

1.3 Genome-wide association studies (GWAS) and its role in molecular plant 

breeding  

Genome-wide association studies (GWAS) have emerged as a powerful approach in 

genetics for the dissection of complex traits. It is  the statistical correlation of molecular 

markers with phenotypic variations in a natural population (Nordborg and Weigel, 2008; 

Mandel et al. 2013; Li et al. 2014). Association mapping also known as linkage 

disequilibrium mapping (LD; non-random association of alleles between loci), is based on 

the exploitation of the historical recombination events occurred in the ancestral population 

during the evolutionary or cladistics phase (Pasam et al. 2012). GWAS is a well-established 

approach in the context of human genetics and has successfully unraveled many positive 

associations between common variants and complex diseases, but is still challenged by the 

‘missing heritability’ problem where perhaps thousands of individuals and millions of 

molecular markers would be required to detect majority of the QTLs. In plant breeding, 

however, the problem of ‘missing heritability’ appears to be less severe because common 

genetic variants explain the major proportion of the phenotypic variations (Brachi et al. 

2011). In tracking the genetic underpinnings of complex traits, various studies of GWAS 

were carried out in different plant species, for example, in Arabidopsis thaliana, rice, maize 

etc. (Atwell et al. 2010, Zhao et al. 2011; Tian et al. 2011; Huang et al. 2012). These 

studies explained much greater proportion of phenotypic variance than that explained in 

human GWAS and hence, GWAS approaches in plant breeding are more successful 

(Brachi et al. 2011). 
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The downside in genome-wide association studies (GWAS) is the ‘spurious or false’ 

associations between genetic markers and the trait of interest. It has already been 

diagnosed that cryptic population structure is one of the main causes of fake causal 

relations (Li, 1969; Lander and Schork, 1994). Prithard et al. (2000) inferred population 

structure based on a Bayesian clustering approach (STRUCTURE). They assumed a model 

with K populations where individuals were assigned to different populations on the basis of 

their genotypes and at the same time estimating the allele frequencies of the population. 

Patterson et al. (2006) introduced a new technique to examine population structure in 

genetic data through the use of principal component analysis (Cavalli Sforza and Feldman, 

2003) that determines the statistically significant ‘axes of variation’. However, all these 

various approaches have had limited success in dealing with this issue effectively (Pritchard 

et al. 2000; Price et al. 2006; Yu et al. 2006). Variation at the DNA level can provide enough 

information about the underlying population structure apart from the conventional 

approaches of pedigree or phenotypic records (Varshney et al. 2005). This knowledge of 

population structure can play an important role in organising the efficient exploitation of 

germplasm in crop breeding (Bus et al. 2011). GWAS has the potential to be used directly 

in plant breeding programmes (Jannink et al. 2010).  

There are some ancestrally conserved regions in the genome with low recombination rate 

that are inherited in a ‘block-like’ fashion and are termed as ‘haplotype-blocks’. These 

haplotype blocks have potential applications in genome-wide association mappings 

(Jeffreys et al. 2001; Stumpf, 2004). Haplotype diversity has been used to exploit genetic 

diversity in different crops, i.e. rice and maize (Cho et al. 2008; Zhang et al. 2013). 

Heterosis or hybrid vigour is a complex phenomenon and is manifested with the improved 

performance of a hybrid compared to its inbred parental lines (Shull, 1908). Hybrid breeding 

has been instrumental in the exploitation of heterosis by plant breeders for improved 
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agronomic traits, especially for seed yield gain and yield stability (Duvick, 1999). Rapeseed 

has well-defined pollination control systems, for example, cytoplasmic male sterility system 

(CMS), genic male sterility system (GMS), etc. and can be used for the efficient production 

of hybrid seed (Buzza, 1995; Renard et al. 1997). A QTL based approach was also used in 

rapeseed to identify chromosomal regions in rapeseed contributing to heterosis for yield 

and its components (Radoev et al. 2008), but this approach has its own limitations, i.e. the 

difficulty to generate segregating populations in some species, low genetic diversity and 

limited recombination, etc. Thus, GWAS can be used effectively to avoid such pitfalls. 

In hybrid breeding system, male inbred lines are crossed with genetically distant female 

lines or ‘testers’ and general combining ability (GCA) is estimated. Information on GCA 

plays an important role in a breeder’s decision making to identify a viable hybrid (Beck et al. 

1990). GCA information has been used recently in various GWAS and genome-wide 

prediction studies (Riedelsheimer et al. 2012; Riedelsheimer et al. 2013; Reif et al. 2012; 

Zhao et al. 2013). Qian et al. (2007) reported that, in canola hybrid breeding, additive gene 

effects are the main contributors to heterosis, rather than specifc combining ability (SCA). 

GCA accounts for additive gene effects.  

1.4 Genomic selection (GS) in the context of plant breeding  

The seminal paper of Meuwissen et al. (2001) paved the way for genomic selection (GS) in 

the context of animal breeding. This trend is also gaining impetus in plant breeding for the 

prediction of unphenotyped materials (Heffner et al. 2009; Jannink, 2010). GS is a major 

step forward in marker assisted selection (MAS), where instead of identifying individual 

genes with larger effects, the effects of high density genetic markers anchored across the 

whole-genome of an organism are simultaneously estimated (Meuwissen et al. 2011; 

Kumar et al. 2012; Zhao et al. 2011 and Asoro et al. 2011). In GS, the genotype of an 

organism is employed to predict the unknown phenotype, as opposed to conventional plant 
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and animal breeding approach where only phenotypic data on the individuals, their close 

relatives and their progenies would be used for the prediction of the genotype of the next 

generation (Meuwissen et al. 2001). Thus, primarily in GS a ‘black box‘approach is followed 

where no prior knowledge regarding the effects of molecular markers is required (Jonas 

and de-Koning, 2013). Through GS, rapid genetic gain due to early pre-selection and high 

prediction accuracy (defined as the correlation between the true observed trait value and 

predicted trait value) can be obtained (Resende et al. 2012; Meuwissen et al. 2001). Unlike 

linkage and association mapping, GS estimates breeding values on the basis of dense 

molecular markers spanning over the whole genome, rather than just estimating the effects 

of individual genes (Jannink et al. 2010). A large number of selected candidates can be 

computationally evaluated without any field trials and thus, dramatically reducing the 

breeding cycle (Lorenz et al. 2011). Goddard and Hayes (2007) further argued that 

because GS has the ability to effectively capture the realised relationship matrix (RRM) 

compared to the average relationship matrix, it predicts breeding values more accurately 

than selection based on only pedigree and phenotype based performance. This ‘RRM’ is 

based on the assumption that a very large number of genes throughout the genome have 

small effects from a common distribution on the trait in question, linking to the ‘infinitesimal 

model’. Various simulations and empirical studies confirm that GS is an optimum way to 

increase genetic gain and speed up the breeding cycle, as compared to QTL derived 

markers and phenotypic selection (Heslot et al. 2012). Various experimental works indicate 

that in the coming time, GS will play an essential role to improve crop breeding (Cabrera-

Bosquet et al. 2012). 

GS utilizes training and validation or breeding populations (Asoro et al. 2011, Zhao et al. 

2011, and Heffner et al. 2009) (Figure 1.3). A training population includes both phenotypic 

and genomic data, whereas the validation population is represented only by genomic data 



12 

 

and the effects for the genetic markers estimated in the training population (Heffner et al. 

2009; Goddard and Hayes, 2007). 

 

Figure 1.3: General diagram of genomic selection (GS) process. It starts with training population 

(genotypes & phenotypes) and finally genomic estimated breeding values based selection. Note: 

This is an example of single model training which is repeated as new phenotype and marker data 

accumulate. Source: Heffner et al. (2009).  

Thus, genomic estimated breeding values (GEBVs) are calculated for non-phenotyped 

individuals using only genomic data from the training population (Meuwissen et al. 2001). 

As the generations increase between the training population and validation population, the 

accuracy of prediction decreases in both traditional pedigrees based Best Linear Unbiased 

Prediction (BLUP) and genomic BLUP (Meuwissen et al. 2001; Sonessen and Meuwissen, 

2009).  

The structure of the training population has an important role in affecting persistency of 

accuracies. If the individuals in the training population are closely related, this means larger 

parts of the chromosomes near the QTLs will be shared among them and ultimately 

enabling the more distant markers to explain QTL variation within the training population. 

As the recombination rates are higher between these distant markers and the QTLs, so the 

predictive value will go down quickly compared to the markers lying in the close vicinity of 
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the QTLs (Sved, 1971; and Bastiaansen et al. 2012).  Various studies have reported higher 

reliabilities of genomic predictions where individuals in the validation population were 

closely related to the training population (Meuwissen, 2009; Habier et al. 2010; Makowsky 

et al. 2011). 

The efficiency of GS is, however, susceptible to various factors, including heritability (h2) 

and genetic architecture of the underlying trait, size and structure of the population 

(Meuwissen et al. 2001; Calus and Veerkamp, 2007; Calus et al. 2008; Goddard, 2009; 

Solberg et al. 2009; and Coster et al. 2010; and Daetwyler et al. 2010).  

The reliability of genome-wide predictions depends on the existence of LDbetween specific 

alleles of SNPs and QTLs (Meuwissen et al. 2001). The stronger the LD, the higher the 

accuracy of GS expected (Calus et al. 2008; Solberg et al. 2008). But over generations, LD 

between QTL and SNP tend to decrease, therefore, re-estimation of SNPs effects become 

important for the reliability of GS in more recent generations (Muir, 2007). As the distance 

between the two markers on a chromosome increases, so does the decay of LD intensity. 

The extent of LD depends on the number of effective population size (Ne) in a population 

(Sved, 1971). In case of lower Ne, the level of kinship among individuals is high, resulting 

stronger LD (Falconer and Mackay, 1996). 

Increase in LD may be due to inbreeding, small population size, population subdivision, 

admixture, low recombination rate and balancing selection, etc. while a decrease in LD may 

be as a result of outcrossing, high recombination rate and high mutation rate and drift (Flint-

Garcia, 2003, Gupta et al. 2005). Therefore, evolutionary changes, mating, population size, 

rate of recombination and selection sweeps have a direct bearing on the rate and the trend 

of LD (Gaut and Long, 2003). For example, in a small population size, drift operates rapidly 

leading to a stronger LD. This stronger LD, however, can be balanced by recombination at 
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equilibrium, causing decay in LD. Therefore, the appropriate choice of marker densityhas a 

close relationship with the effective population size (Lorenz et al. 2011). 

The commonly used LD measures are the D (Lewontin and Kojima, 1960), D’ Lewontin 

(1964) and r2 (Hill and Robertson (1968) and Franklin and Lewontin (1970). However, r2 

(‘the square of the correlation coefficient between the two indicator variables; one 

representing the presence or absence of a particular allele at the first locus and the other 

representing the presence or absence of a particular allele at the second locus’), is  the 

most relevant to GS. In GS, every gene affecting the trait of interest is in LD with at least 

one marker (Hayes et al. 2013; Kumar et al. 2012). LD can be used as an indication to 

determine the optimum marker density required for the higher accuracy of GEBV. In the 

case of high linkage, LD will persist with time, but in the absence of linkage, LD decays 

faster (Mackay and Powell, 2007).  

1.5 Genomic selection as predictive strategy   

Plant breeders are interested in evaluating inbred lines not on their per se performance, but 

by the optimum performance of the hybrids it produces. Inbred lines are crossed with 

genetically distant testers to estimate the general combining ability (GCA). Thus, for the 

accurate GCA prediction of complex traits, information on the parental lines are used 

(Riedelsheimer et al. 2012). Therefore, selection of the best combination of parental lines to 

produce optimum F1 hybrids in crops like rapeseed and maize leads to ‘predictive’ breeding 

programmes based on genome-wide molecular markers (Edwards et al. 2013). The general 

aim of the plant breeders is to introduce new varieties that are cost-effective, sustainable 

and render higher yields with nutritional qualities. The efficient use of genome-wide SNP 

markers can help breeders enhance better productivity. But the real challenge for both plant 

and animal breeders of today is, to effectively correlate these genomic data to traits of 

economic importance by utilising novel algorithms and computational tools (Crossa et al. 
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2010; and Snowdon and Iñiguez-Luy, 2012). GS takes care of the inbreeding in a breeding 

population because genome-wide molecular markers increase the individual information 

available. On the other hand, in classical breeding, information on the relatives is used that 

leads to co-selection of the shared genes and thus, increasing inbreeding (Meuwissen et al. 

2013). The germplasm in hybrid breeding is comprised of different genetically distant 

heterotic pools. These genetic distances can be assessed with molecular markers along 

with a relatively new technique of gene expression profiling known as transcriptome 

analysis. Frisch et al. (2010) showed that the prediction of hybrid performance can be 

determined in a more precise way with the addition of transcriptome data. 

Developing performance prediction statistical models based on multivariate analysis of 

genome-wide molecular markers are of utmost importance to harness the effects of 

genome-wide markers. Nevertheless, selecting an appropriate model to gain enough 

prediction accuracy can both be tricky and challenging (Pérez et al. 2010). In GS, to 

achieve maximum genomic estimated breeding values (GEVB) accuracy, the statistical 

models should have the ability to address many marker effects simultaneously with limited 

phenotypes (Heffner et al. 2011). In breeding value estimation, the addition of polygenic 

effects in the model helps in capturing the effects of small quantitative trait loci which are 

normally unaccounted for by markers having big effects (Goddard and Hayes, 2007). 

According to Zhao et al. (2012), inclusion of epistasis in the genomic model could also 

enhance the prediction accuracy within populations. Different genomic statistical models 

have been reported in various GS studies on plants and animals. The main purpose of 

using these proposed models in GS is to minimise the ‘curse of dimensionality’ due to 

marker effects because the number of molecular markers (p) is always much larger than 

the number of observations or phenotypes (n). This leads to a situation of lack of degrees of 

freedom, therefore, estimation of marker effects through multiple regressions by ordinary 
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least square (OLS) methods is not possible. In such a scenario, penalised regression  

methods for the marker effects are introduced, i.e. ridge regression best linear unbiased 

estimates (RR-BLUP) and Bayesian approaches for the correct estimation of marker effects 

(Pérez et al. 2010).  

There is a distinct difference between RR-BLUP and Bayesian approaches based on their 

prior assumptions. In RR-BLUP, the prior assumption is based on the equal marker 

variance across the whole-genome and this approximates Fisher’s famous ‘infinitesimal 

model’. Bayesian methods are sufficiently flexible to allow a different variance for each 

marker effect, for example, in the case of Bayes A and for Bayes B, where marker effects 

are drawn from a distribution with different variances (Meuwissen et al. 2001). In the RR-

BLUP approach, the genetic effects are assumed to be drawn from a normal distribution, 

while in Bayes B, the effects are drawn from the Student’s t-distribution with lower and 

wider tails than the normal distribution. This enables it to capture the effects from extreme 

genetic values (Pungpapong et al. 2012). Bayes A models variances as an inverse chi 

squared distribution; the conjugate prior to the variance of a normal distribution (Meuwissen 

et al. 2001). 

Using real plant datasets, Crossa et al. (2010) studied wheat (Triticum aestivum) and maize 

(Zea mays) and evaluated Bayesian LASSO (least absolute shrinkage and selection 

operator), BLUP and RKHS (reproducing kernel Hilbert space) methods for GS. They 

reported that the model where molecular data was used along with pedigree data 

performed far better than the model where only pedigree data was used, in terms of higher 

prediction ability for selected economic traits under multi-environmental conditions.  

Hofheinz et al. (2012) reported in sugar beet (Beta vulgaris L.), that the prediction accuracy 

achieved through cross validation in one breeding cycle may not be used as a positive 

indicator to predict accuracy in the subsequent breeding cycle. 
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For polygenic traits that follow closely the pattern of an ‘infinitesimal model’, the use of RR-

BLUP methods is favourable. In contrast, the use of the Bayesian approach is appropriate 

wherever traits controlled by a single or a few genes of larger effects, for example, some 

monogenic resistance traits in plants (Zhang et al. 2009, Albrecht et al. 2011). For the 

effective implementation of GS, different R packages (R Development core team, 2014) 

have also been introduced and developed, i.e. rrBlupMethod6, rrblup, BLR (Bayesian 

Linear Regression) etc. (Piepho et al. 2012; Endelman, 2011; and de los Compos et al. 

2010). In a study, Heslot et al. (2012) compared eleven GS models and assessed the 

accuracy of their predictive ability by using empirical datasets from wheat (Triticum 

aestivum L.), barley (Hordeum vulgare L.), Arabidopsis thaliana (L.), and maize (Zea mays 

L.). They concluded that, there is no single ’all purpose’ GS model or models combination 

to be used as a master model in plant breeding. However, the selection of the statistical 

model depends heavily on the genetic architecture of the trait, population structure and 

molecular marker density (Zhao et al. 2012).  

GS is still not widely adopted in plant breeding as an alternative strategy; this may be due 

to insufficient understanding and the challenges of GS to be used in practical plant breeding 

(Nakaya and Isobe, 2012). However, the availability of sequence information in different 

crops will bring a paradigm shift in the breeding of these crops in the near future. Trends 

towards GS in important crops like Wheat (Triticum aestivum L.), Maize (Zea mays L.) and 

Barley (Hordeum vulgare L.) etc. has already started with higher prediction accuracies 

compared to phenotypic selection or pedigree based selections (Lorenza and Bernardo, 

2009; de los Compos et al. 2009; Crossa et al. 2010; Heffner et al. 2011, Crossa et al. 

2013).  

In comparison to classical hybrid crops like maize, in which genetically distinct heterotic 

pools have been established over many decades of hybrid breeding, there are no such 
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clear heterotic pools available within canola germplasm. Development of new heterotic 

pools within adapted germplasm types, particularly through marker-assisted introgression of 

novel germplasm from the diploid progenitors or other exotic gene pools, is an important 

strategy to overcome this problem (Qian et al. 2005; Basunanda et al. 2007; Girke et al. 

2012; Snowdon et al. 2015). In a hybrid breeding programme, efficient selection of the most 

promising combinations between male and female parental lines is a vital step to avoid 

expensive field testing of poor performing hybrids (Reif et al. 2013). This becomes 

particularly important in crops like canola where the absence of distinct genetic pools 

prohibits an ab initio assumption of heterotic potential between any two potential hybrid 

parents. Various studies have reported methods for optimum exploitation of heterosis in 

crop breeding using both morphological and molecular marker data (Schrag et al. 2006; 

Riedelsheimer et al. 2012). Piepho (2009) described how the performance of untested 

hybrids can also be predicted effectively using genomic selection methodology.  

Technical difficulties associated with the development of male-sterile lines in canola 

generally lead breeders to choose relatively small panels of maternal lines. On the other 

hand, some of the most widely used male-sterility systems have the benefit that all known 

B. napus accessions are restorers, so that testcross performance with available maternal 

lines is an important selection criterion for breeding of pollinators.  

Even in the absence of heterotic pools, genomic prediction of testcross performance is a 

highly promising method in canola breeding to select promising germplasm for 

advancement into male-sterile maternal lines or fertility restorers (Snowdon and Iñiguez-

Luy, 2012). Recently genomic prediction has been demonstrated for estimation of testcross 

performance in various crops, for example in maize (Albrecht et al. 2011; Zhao et al. 2012; 

Windhausen et al. 2012), sugar beet (Hofheinz et al. 2012) and rye (Wang et al. 2014).   
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1.6 Thesis scope and aims 

Genome-based modern predictive breeding approaches in the context of spring-type or 

spring-grown hybrid Brassica napus L. will be described in this thesis. The main objectives 

of this thesis were threefold. First, I explored the population structure and linkage 

disequilibrium decay across both A- and C- subgenomes of spring-type canola based on 

molecular marker data. Then, I aimed to elucidate the genetic underpinnings behind hybrid 

performance in spring-type canola through genome-wide association study (GWAS) and 

haplotype analysis by using both DNA and general combining ability (GCA) information. 

Lastly, genomic prediction of complex agronomic traits related to seed yield and seed 

quality traits to estimate testcross performance in hybrid canola was conducted. My aims in 

particular were: 

(1)  To Explore population structure and the extent of LD decay across both A- and C- 

subgenomes in spring-type canola 

(2) The use of the GWAS approach to trace genomic regions involved in hybrid 

performance bearing candidate genes of pleiotropic effects. 

(3) To investigate the effectiveness of genomic prediction of F1 testcross performance in 

Brassica napus.  

(4) To Examine the effect of training population sample size on the prediction accuracy 

(5) To describe the overall potential of genomic selection in the context of canola hybrid 

breeding. 
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2.1 Genetic material  

The experimental material used in this thesis comprised a diverse population of spring-type 

Brassica napus with double-low seed quality (low erucic acid, low glucosinolate content) 

from a commercial canola breeding programme. The material was carrying introgressions 

from the diploid progenitors of B. napus. Two representative male sterile female testers 

from a pool of testers carrying the Male Sterility Lembke (MSL) sterility system (NPZ 

Lembke, Hohenlieth, Germany) were crossed with a total of 475 pollinators to generate 

seed from 950 F1 hybrids.  

2.2 Phenotype data 

The 950 testcrosses were evaluated at four different locations across Denmark, Germany, 

Poland and Estonia during the 2012 growing season through our commercial partner NPZ 

Lembke, Hohenlieth, Germany. Un-replicated trials were performed in each of the four 

environments within Europe by NPZ Lembke for various traits of commercial importance.  

2.3 Best linear unbiased estimators (BLUEs)  

Best linear unbiased estimator (BLUE) values for each trait using their respective 

phenotype values were generated. The restricted maximum likelihood (REML) method 

was used to estimate variance components assuming a random effect model. BLUE 

values were estimated for each trait, treating genotype as a random effect with locations 

as fixed effect. The Pearson’s correlation coefficient (r) was calculated between all the 

seven traits. 

All calculations were performed using the statistical software package SPSS Statistics for 

Windows Version 22.0 (IBM Corp., Armonk, NY, USA).  
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2.4 Broad sense heritability ( H2) 

Broad sense heritability which is the ratio of genotypic to phenotypic variance was 

calculated for each trait following the method reported in Bekele et al. (2014). 

 
2 2 2 2(%) / ( / ) 100g gH nεσ σ σ = + ×   

 where 
2

gσ  is the genotypic variance, 2
εσ  is the estimated error variance, and  is the 

number of locations. Estimates of error variance were divided by the number of locations. 

2.5 Genotype data 

Each of the 475 pollinator lines and the two testers were genotyped using the Brassica 60k 

SNP Infinium consortium array (Illumina Inc., San Diego, CA; USA). Spring-type canola in 

the form of seed was obtained from our commercial partner NPZ Lembke, Hohenlieth, 

Germany. The seed was grown in the greenhouse of the Department of Plant Breeding, 

JLU Giessen. Upon germination, young leaves from each line were collected carefully. 

Genomic DNA was extracted from young leaf samples collected 20 days after sowing, 

shock frozen in liquid nitrogen and stored at -20°C until further processing. The DNA 

extractions were performed using a BioSprint 96 magnetic bead nucleic acid extraction 

robot (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. After 

fluorometric quantification of DNA concentrations using a Qubit 2.0 fluorometer (Life 

Technologies, Darmstadt, Germany), samples were diluted to 20ng/µl in sterile double 

distilled water, and quality checks of all DNA samples were carried out by gel 

electrophoresis on a 96 capillary Fragment Analyser (Advanced Analytical, Ames, IA, USA). 

Genotyping on the 60k Brassica Illumina SNP array was outsourced to TraitGenetics GmbH 

(Gatersleben, Germany). 

n



23 

 

2.6 In silico SNPs mapping and quality control 

All the called SNPs were mapped to the Brassica napus cv. Darmor-bzh reference genome 

(Chalhoub et al. 2014) using the basic local alignment search tool (BLAST) with no 

mismatches permitted in the flanking oligonucleotides. All SNPs showing multiple BLAST 

hits or a non-random distribution were removed and a total of 28,286 single-position SNPs 

remained. Furthermore, all the SNP markers were removed with the following criteria (a) 

individuals having more than 20 % missing calls and SNP markers having more than 20 % 

missing calls across the whole panel (b) SNPs having less than 0.05 minor allele 

frequencies (MAF). Finally a total of 24,442 ‘unique’, single-copy SNPs were considered for 

the downstream genomic analysis and predictions. 

2.7 Determination of population structure 

In the absence of clearly defined heterotic pools in B. napus, I analysed genetic relatedness 

between the parental lines using the genome-wide SNP data. Principal coordinate analysis 

(PCoA) was performed based on Roger’s genetic distances (Roger, 1972) using the whole 

panel of 24,442 filtered, single copy SNPs.  

Clusters of genetically related individuals were identified using the K-means method, 

following the algorithm of (Hartigan and Wong, 1979). A diagnosis of the optimal number of 

clusters in the dataset was also performed using the method described by (Caliński and 

Harabasz, 1974) and Saitou and Nei (1987). The software SelectionTools (Hofheinz and 

Frisch, 2014; www.uni-giessen.de/population-genetics/downloads) and R (http://www.r-

project.org) were used for the PCA and K-means clustering. 
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2.8 Genome-wide association studies (GWAS)  

2.8.1 General combining ability (GCA) estimates use d in GWAS  

F1 hybrid data on three important traits, including seed yield (dt/ha), flowering time or days 

to onset of flowering (DTF; measured as number of days from sowing until 50% flowering 

plants per plot) and seed oil content (% volume per seed dry weight) was considered during 

my GWAS for their respective trait heterosis. 

Coefficient of variation was shown as a percentage for each trait. Following Becker’s (2011) 

method, general combining ability (GCA) for each pollinator was estimated from the F1 

hybrid BLUE values separately for each trait. In this study, GCA estimates for each 

pollinator were considered in the following GWAS and haplotype analyses instead of per se 

F1 hybrid BLUE values. 

2.8.2 Linkage disequilibrium (LD)  

LD between all pairs of markers was determined by calculating the squared of correlation 

coefficient (r2) using software package TASSEL (Trait Analysis by aSSociation, Evolution 

and Linkage) version 2.1 (Bradbury et al. 2007). A total of 24,442 single positions, unique 

SNPs with MAF ≥ 0.05, were used to calculate chromosome-wide LD. To have a 

meticulous view of the extent of LD decay in both the subgenomes, we measured mean LD 

decay against the physical distance in KB and MB, chromosome-wise. Physical map 

distances for LD decay were divided into 20 different mean intervals ranging from 10 KB to 

20 MB for the purpose of better visualisation. 

LD decay plots against physical map distance were generated in Microsoft Excel for each 

chromosome separately in both A- and C- subgenomes. We followed a standard cutoff 

value of r2= 0.1 for the comparison of LD decay. LD triangle blocks of the significant SNPs 

regions were generated using ‘genetics’ package in R version 1.3.8.1 (Warnes et al. 2012, 
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http://cran.r-project.org/web/packages/genetics/genetics.pdf). In cases of exceptional LD, r2 

> 0.40 (Hatzig et al. 2015), the whole block was surveyed for candidate genes. I also 

reported the number of polymorphic markers per chromosome in each A and C 

subgenomes and calculated SNP density (I divided the total number of SNPs per 

chromosome by its physical distance (bp)). 

2.8.3 Genome-wide association mapping 

The following mixed effects model was used to test associations between the SNP loci and 

the trait. 

� = 	�α	 + 	�β	 + 		μ	 + 	� 

where �  is the vector of phenotype observations, α  is the vector of SNP effects, β is the 

vector of population structure effects, μ is the vector of kinship background effects, � is the 

vector of residual effects, � is the PCA matrix relating � to β, � and 	 are incidence 

matrices relating � to α and μ, respectively (Yu et al. 2006).  

To avoid spurious signals (type I errors) due to subpopulation structure and to increase 

statistical power, we followed P+K method of the mixed effects model approximation where 

the population structure (Q matrix) was substituted by the principal components (P matrix) 

as suggested in Price et al. 2006.  K represents kinship matrix. In this mixed effects model, 

principal components are treated as fixed effects and kinship as random effects (Yu et al. 

2006). Mixed effects model takes into account both population structure and cryptic 

relationships and therefore, renders asmaller number of false positives compared to other 

models used in GWAS (Larsson et al. 2013). All these analyses were conducted using R 

‘GenABEL-package’ (Aulchenko et al. 2007). Quantile-quantile (Q-Q) and Manhattan plots 

for all the association analyses were generated in R package ‘common’ version 0.1.2 by 

Turner, 2014. Positive associations were corrected for multiple testing in each trait using 

the false discovery rate (FDR: p≤ 0.05) following the method of Benjamini and Hochberg 



26 

 

(1995). I used ‘fdr tool’, an R package to determine a significant threshold. All SNPs with a 

−log10 (p-value) > 2.5 were considered as significant.  

My approach was to compare significant signals within different traits on all the 

chromosomes and then identify those SNP loci that were either in closely located regions 

(<500 Kb) or overlapping significant SNPs between the two traits on the same 

chromosomes. I then, investigated for strong LD blocks between or around the close-by or 

overlapping SNPs between the two traits and correlate those SNPs with genomic regions 

contributing to heterosis. I searched for candidate genes in the strong LD regions 

associated with significant SNPs in each of the traits chromosome-wise. Brassica napus 

candidate gene sequences were taken using Brassica napus genome browser 

GENOSCOPE (Chalhoub et al. 2014) and aligned (BLAST) these to the Arabidopsis gene 

database, the Arabidopsis information resource (TAIR). The idea was to search for 

Brassica napus orthologue genes in Arabidopsis. 

2.8.4 Identification of significant SNP haplotype g roups 

I identified SNP haplotype diversity groups or blocks in the flanking regions of significant 

SNPs trait-wise, which could significantly contribute to hybrid performance. The haplotype 

block identification was done in the case of those chromosomes where I had close-by 

located or overlapping significant SNPs associated with candidate genes within strong LD 

regions on both the A- and C- subgenomes. I also calculated haplotype frequencies by 

dividing the number of specific haplotypes found in certain accessions by the total number 

of lines (475). Only haplotype diversity groups with frequency more than 1 % were 

considered and the rest were removed. Finally a significant ‘Welch’ two sample t-tests (p≤ 

0.05) considering unequal variances were carried out between haplotypes within each 

chromosome. All the SNP haplotypes (hereafter referred to as Hap 1, Hap 2, Hap 3 etc.) 

corresponding to their respective phenotype values (GCA in this case) are shown in 
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boxplots using R. At the end, I reconstructed predicted F1 hybrid genotypes from genotypes 

of the significant haplotype groups of the respective male (pollinator) and female (tester) 

parental lines. 

2.9 Genomic prediction 

2.9.1 Phenotype data used in genomic prediction ana lysis 

Seven important agronomic traits in my study were considered for the genomic predictions 

including seed yield (dt/ha), oil yield (dt/ha), seed oil content (% volume per seed dry 

weight), content of total seed glucosinolate (GSL; µmol/g seed), seedling emergence (visual 

observation ranging from a minimum value of 1 to maximum 9), lodging resistance (visual 

observation ranging from a minimum value of 1 to maximum 9) and days to onset of 

flowering (DTF; measured as number of days from sowing until 50% flowering plants per 

plot). 

General combining ability (GCA) estimates were calculated from the F1 hybrid BLUE values 

for each trait following the method of Becker (2011), and were used as a phenotype matrix 

in the following genomic prediction analysis.  

2.9.2 Scenarios for the genomic prediction of breed ing values 

Three independent scenarios based on the population structure were applied to estimate 

marker effects by genomic prediction. In scenario 1 the genomic prediction was performed 

across the whole population (WP). To investigate genomic prediction accuracy separately 

in the different genetic backgrounds of cluster 1 (C1) and cluster 2 (C2), respectively, we 

developed scenario 2 (prediction within C1) and scenario 3 (prediction within C2) (Figure 

2.1). However, we did not directly compare prediction accuracies among these three 

prescribed scenarios due to confounding caused by their different TP and VP sizes, and 

rather reported them separately. Results from predictions within subpopulation C3 alone 
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are not reported due to the very small size of the test and validation populations in this 

case. We, further tested the prediction accuracy across the whole population using a model 

that included the population substructure as a covariate. 

 

Figure 2.1: Schematic illustration of three independent genomic prediction scenarios. Genomic 

prediction across the WP (whole population) and genomic predictions within C1 (cluster 1) and C2 

(cluster 2) separately are represented by dotted circular arrows. 

2.9.3  Genomic prediction using the RR-BLUP mixed m odel  

Genomic prediction accuracies were estimated using the RR-BLUP model described by 

(Whittaker et al. 2000; Meuwissen et al. 2001), assuming the same distribution of marker 

effects across the whole-genome. The following statistical model was used: 

 

where: 

 is a Nx1 vector of phenotype (vector of BLUEs across locations); 
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is the overall mean; 

 is the number of SNPs; 

 is the effect of the marker; 

 is an Nx1 vector of genotypes (coded as 0,-1, +1) of the lines for each marker , and 

variance of  is assumed to be uniformly distributed and is 2 /G mNσ  (Meuwissen et al. 

2001).  

2.9.4 Imputation of genotype data 

Monomorphic SNPs and markers having more than 20% missing data were removed from 

the dataset. The rr-BLUP package in R (Endelman, 2011) was used to estimate genomic 

predictions with the remaining missing data replaced using the default method (mean 

imputation). Genomic prediction accuracy, denoted as rGPA was calculated for each trait as 

the Pearson’s correlation, r(y, ŷ) between the estimated breeding values, ŷ, and observed 

BLUEs values, y, using the rr-BLUP package (Endelman, 2011).  

2.9.5 Model cross validation 

For determination of the optimum composition of training population size, we tested the 

prediction accuracies for each of the seven traits in the whole population under incremental 

increase of the training population from 10% up to 90 % of the 475 lines. Based on the 

results of this test (see below), the training population for all further analyses and scenario 

testing was set up at 70% of the total lines in the given dataset. Hence, in each run, the 

dataset was divided into a random 70 percent training population (TP) containing both 

genotyped and phenotyped data, and 30 percent validation (VP) or prediction population 
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having only SNP data and SNP effects with no consideration of phenotype values. For each 

scenario the data for each trait was cross-validated for 500 iterations and a mean value was 

subsequently considered. 
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Chapter 3: Results 
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3.1 Statistical analysis of the phenotype    

3.1.1 Broad sense heritability and variance compone nts  

Broad sense heritabilities, along with first and second degree statistics for all the traits 

under consideration, are shown in Table 3.1. Heritability values ranged from 32% for 

seedling emergence to 90% of seed oil content. Seed oil content had the highest genetic 

variance and DTF had the lowest. Seed yield, however showed the highest coefficient of 

variation and DTF the lowest. Best linear unbiased estimators (BLUEs) of each trait 

followed approximately the normal distribution expected for quantitative traits. This was 

further confirmed by Q-Q plots drawn individually for each trait using R (Appendix I: 

Supplementary figures. A). The highest genetic variance was observed for seed oil content, 

while seedling emergence had the lowest genetic variance. As expected, a positive 

correlation was observed between oil yield and oil content (r = 0.66) followed by seed yield 

and oil yield (r = 0.57). Highly negative correlation was observed between seed oil content 

and seed GSL (r = -0.34) followed by correlation between seedling emergence and lodging 

resistance (r = -0.03) (Appendix I: Supplementary figures. B). 
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Table 3.1:  First and second degree statistics for seed yield (dt/ha), oil yield (dt/ha), seed oil 

content (%), seed glucosinolate content (GSL; µmol/g), seedling emergence (visual 

observation scale 1-9; good=9), lodging resistance (visual observation scale 1-9; good=9) 

and days to onset of flowering (DTF) in field trials with 950 spring canola F1  testcross 

phenotypes in 4 independent field locations throughout Europe. : genetic variance,
 

: estimated error variance, H2: broad sense heritability. 

Traits Mean Min Max σ 
(SD) σ

2
g σ

2
ε 

CV 

(%) 
H2 

(%) 

Seed yield (dt/ha) 31.17 23.94 38.38 ±1.97 1.56 7.95 6.3 44 
Oil yield (dt/ha) 14.54 4.5 24.55 ±1.38 0.56 0.95 9.5 70 
Seed oil content (%) 48.41 44.08 52.73 ±1.93 1.91 0.81 4 90 
GSL (µmol/g) 9.22 6.91 11.57 ±1.83 1.35 3.12 19.8 63 
Emergence (good=9) 6.66 4.53 08.80 ±0.48 0.048 0.41 7.2 32 
Lodg.resistance (good=9) 7.16 5.05 08.65 ±0.56 0.119 0.47 7.8 50 
DTF  171.26 160.23 182.28 ±1.57 0.808 5.26 0.92 38 
 

3.2 Statistical analysis of the genotype data 

3.2.1 Population structure among pollinators 

The results of the principal component analysis (PCA) based on Roger’s genetic distances 

(Roger, 1972) between the parental inbred lines using SNP markers are shown in Figure 

3.1 (A). The molecular variance explained by the first three principal components comprised 

25.12 %, 18.43% and 8.01%, respectively, making a total of 51.56 %. 

The PCA indicated the existence of subpopulations within the dataset. The K-means 

clustering revealed a tendency to two main clusters and one relatively smaller cluster. This 

assumption was supported by the results of the Caliński-Harabasz (Caliński and Harabasz, 

1974) clustering, which also suggested three optimum clusters, as shown in Figure 3.1(B) 

and Neighbour-joining (NJ) tree in Figure 3.1 (C). These clusters are subsequently referred 

to as cluster 1 (C1; n=286), cluster 2 (C2; n=147) and cluster 3 (C3; n=42), respectively. 

2
gδ 2

εδ
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3.2.2 Distribution of SNP markers and pattern of li nkage disequilibrium decay  

The use of large numbers of molecular markers greatly affects the resolution of genome-

wide LD estimation (Van-Esbroeck and Bownam, 1998). Figure 3.2 shows the distribution 

of polymorphic markers per chromosome. The total number of SNPs on A- subgenome was 

10,944 while on C- subgenome was 13,498. Chromosome A3 on subgenome A carried the 

highest number of SNPs (1637) with an SNP density of one SNP per 17.8 KB while 

chromosome A8 had the least number of SNPs (728) with an SNP density of one marker 

per 25.9 KB. Similarly, on subgenome C, highest number of SNPs (2523) was anchored on 

chromosome C4 with a SNP density of one SNP per 19 KB and C5 with the lowest number 

of SNPs (706) with one SNP per 60 KB (Table 3.2). Population sub-structure along with 

other several factors strongly influences LD (Flint-Garcia et al. 2003). 

 

Figure 3.2:  Distribution of polymorphic SNPs per chromosome in A- and C- subgenomes of spring-

type Brassica napus. 
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Figure 3.1:  (A) Principal component analysis (PCA) among the population of 475 spring-type 

canola pollinators used for the testcross production. The PCA is based on Roger’s distances 

estimated using a subset 3540 single nucleotide polymorphism (SNP) markers. The proportions of 

explained variance of principal components 1 and 2 are given in parentheses. (B) K-means 

clustering of the 475 pollinator lines using the method of Caliński-Harabasz (1974) showing cluster 

1 (C1), cluster 2 (C2) and cluster 3 (C3) respectively. (C) Neighbour-joining tree of the same dataset 

depicting three clusters (C1, C2 & C3). 
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LD was calculated for all the chromosomes individually across A- and C- subgenomes, 

Figures 3.3: (A) and (B). There was a general trend of low mean LD (r2) per chromosome in 

subgenome A compared to subgenome C in spring-type canola and the difference in LD 

per chromosome in both the subgenomes was remarkable (Table 3.2). To have a 

meticulous assessment of the patterns of LD decay, I measured the physical distance at 

which the pair-wise genotypic association in the filtered SNP dataset decays below a 

threshold of r2 = 0.1. LD decay in majority of chromosomes started at ~400 KB regions in 

subgenome A while in C subgenome, it was at 3MB region. In A subgenome, slowest LD 

decay was observed from 4MB-5MB regions (A9) to 8MB-10MB (A8), Figure 3.3: (A). 

Phenomenally low LD decay was observed on C subgenome in the chromosomes C2, C1 

and C4 within 15MB, 15MB and 10MB regions, respectively, Figure 3.3: (B).  
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Figure 3.3:  (A) Individual chromosome decay in subgenome A of linkage disequilibrium (LD) 

expressed as r2 in spring-type Brassica napus in a set of 475 male lines against a physical distance. 

Horizontal ‘Dashed red line’ along the x-axis shows a standard cutoff r2 value of 0.1. (B) Extent of 

LD decay in C- subgenome within each chromosome. 
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Table 3.2:  Summary of the estimated chromosome-wise mean LD decay (r2=0.1) 

employing 24,442 unique, single-copy SNPs within A and C subgenomes, number of SNPs 

per chromosome and SNP density. 

A 
subgenome  

 
Chromosome  

LD decay   
(MB) No. of SNPs  

SNP 
density     

(KB/SNP) 

 A01 0.70-0.80 1044 22.0 
A02 2.00-2.50 811 30.5 
A03 0.20-0.30 1637 17.8 
A04 0.40-0.50 1110 15.5 
A05 0.80-0.90 1203 19.0 
A06 0.80-0.90 1005 24.0 
A07 0.60-0.70 1395 17.0 
A08 4.00-05.0 728 25.9 
A09 4.00-4.50 1018 32.9 
A10 0.70-0.75 993 32.9 

C 
subgenome  

C1 15.0-15.5 2094 18.0 
C2 15.0-15.5 1894 24.0 
C3 2.00-2.50 2103 28.7 
C4 10.0-10.5 2523 19.0 
C5 0.90-0.95 706 60.0 
C6 20.0-20.5 1007 36.9 
C7 10.0-10.5 1280 34.9 
C8 4.00-5.00 1167 32.8 

  C9 3.00-3.50 724 66.9 
 

3.3 Genome-wide association studies (GWAS) 

3.3.1 Association analysis 

GWAS was conducted using mixed effects model accounting for population structure with a 

panel of 24,442 polymorphic SNPs distributed across the whole genome. Manhattan plots 

from all the three traits (GCA for seed yield; GCA for DTF and GCA for seed oil content) 

show various significant peaks on different chromosomes (Figure 3.4: (A), (B) and (C)). 

Quantile-Quantile (Q-Q) plots were generated along with their respective Manhattan plots 
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for all the three traits under study that show reduced inflation of the p-values caused by 

population sub-structure except the most significant markers that deviate the null 

hypothesis of no causative markers.  

A total of 316 significant SNP loci within the three traits under study (GCA for seed yield: 

94, GCA for DTF: 124 and GCA for seed oil content 98) above the genome-wide significant 

p-value threshold of (-log10 2.5) under (FDR: p≤ 0.05) for each trait was observed.  

I found two close-by (<500 KB) located significant SNP loci related to GCA for seed yield 

and GCA for DTF on two different regions on chromosome A3 (Table 3.3) and two close-by 

located SNPs related to GCA for seed yield and GCA for seed oil content on A4 and C3, 

respectively (Table 3.4). Similarly, we identified one significant SNP related to GCA for 

seed yield and GCA for DTF on chromosome A9 (Table 3.5) and 4 overlapping significant 

SNPs related to GCA for seed yield and GCA for seed oil content anchored on 

chromosomes A3, A4, A5 and C3 (Table 3.6). 

3.3.2 Prediction of candidate genes associated with  hybrid performance 

I received significant signals on various chromosomes. For brevity, we report one detailed 

example each from closely located two separate significant SNPs related to GCA for seed 

yield and GCA for DTF on chromosome A3 and one from an overlapping significant SNP 

related to GCA for seed yield and GCA for seed oil content on the same chromosome (A3) 

along with their respective associated B.napus orthologues of Arabidopsis thaliana 

candidate genes. I also report haplotype diversity analyses for each of the two examples on 

chromosome A3.  
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Figure 3.4:  Genome-wide association study of hybrid performance in (A) GCA for seed yield (B) 

GCA for DTF and (C) GCA for seed oil content. In these Manhattan plots, (-log10 p-values on y-axis 

from the mixed model are plotted against the SNP position on the x-axis for each of the 19 spring-

type canola chromosome. The horizontal ‘light blue’ line represents the significant p-value threshold 

under FDR (p≤ 0.05) for each trait. In the right corner of each Manhattan plot, the Q-Q plot for each 

trait indicates the region of inflated p-values (deviation from the 1:1 line).. 



41 

 

 

Table 3.3:  Closely located SNPs between the two traits  

(GCA for seed yield and GCA for DTF) 

Trait Closest SNP ID Chromosome  Position  -log 10 p value  
GCA for seed yield Bn-A03-p6744344 A3 (region1) 6017807 3.372290122 
GCA for DTF Bn-A03-p6898220 A3 (region1) 6179649 3.38391294 
GCA for seed yield Bn-A03-p7501352 A3 (region2) 6799644 2.633281076 
GCA for DTF Bn-A03-p7672403 A3 (region2) 6972869 3.110051589 

 

 

Table 3.4:  Closely located SNPs between the two traits  

(GCA for seed yield and GCA for seed oil content) 

 Trait 
Closely located  
SNP ID Chromosome  Position  -log 10 p value 

GCA for seed yield Bn-A04-p14807150 A4 15257698 3.5375 
GCA for oil content Bn-A04-p14756001 A4 15205214 4.0493 
GCA for seed yield Bn-scaff_18936_1-p922423 C3 3459404 2.5354 
GCA for oil content Bn-scaff_18936_1-p867397 C3 3398494 2.8126 
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Table 3.5:  Overlapping SNPs between the two traits  

(GCA for seed yield and GCA for DTF) 

Trait 
Overlapping  
SNP ID Chromosome  Position -log 10 p value 

GCA for seed yield Bn-A09-p20652846 A9 17583800 2.599219 
GCA for DTF A9 17583800 4.144566 

 

 

Table 3.6:  Overlapping SNPs between the two traits  

(GCA for seed yield and GCA for seed oil content) 

Trait 
Overlapping  
SNP ID Chromosome  Position -log 10 p value 

GCA for seed yield Bn-A03-p26833841 A3 25271758 2.577185685 
GCA for seed oil content   A3 25271758 2.680452323 
GCA for seed yield Bn-A04-p12283561 A4 13272610 2.70748188 
GCA for seed oil content   A4 13272610 3.031950266 
GCA for seed yield Bn-A05-p18161591 A5 16447216 2.532394854 
GCA for seed oil content   A5 16447216 3.382027267 
GCA for seed yield Bn-scaff_17521_1-p299252 C3 21921202 3.139823761 
GCA for seed oil content   C3 21921202 3.449097092 
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Table 3.7:  Closely located significant SNPs associated with candidate genes  

(GCA for seed yield and GCC for DTF) 

Chrom. Trait 
Significant  
SNP ID 

Significant 
SNP position 

-log 10  
p value 

Distance 
from the 
gene (KB) Gene ID ( B.napus) 

Strat 
position 

End 
position 

A.thaliana 
orthologue 
gene 

Gene name  
(A.thaliana) 

A3 

GCA for 
seed 
yield 

Bn-A03-
p6744344 6017807 4.24E-04 19 BnaA03g13220D 5998751 6007985 AT5G51230 

 
EMBRYONIC  
FLOWER 2 

0.975 BnaA03g13230D 6018782 6020213 AT5G51160 

 
Ankyrin  
repeat family  
protein 

 
32.95 BnaA03g13310D 6050759 6052938 AT5G51100 FSD2 

35.3 BnaA03g13320D 6053113 6055294 AT4G00650 
 
FRIGIDA 

47.32 BnaA03g13340D 6065129 6070227 AT5G51060 

 
ROOT  
HAIR DEFECTIVE 2 

A3 
GCA for 
DTF 

Bn-A03-
p6898220 6179649 4.13E-04 180.89 

128.89 
126.53 

          114.52           
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Table 3.8:  Overlapping significant SNP associated with candidate genes  

(GCA for seed yield and GCC for seed oil content) 

Chrom.  Trait 
Significant  
SNP ID 

Significant 
SNP position 

-log 10  
p value 

Distance 
from the 
gene 
(KB) 

Gene ID 
(B.napus) 

Strat 
position 

End 
position 

A.thaliana 
orthologue 
gene 

Gene name 
(A.thaliana) 

A3 

GCA 
for  
seed 
yield 

Bn-A03-
p26833841 25271758 2.65E-03 107.2 BnaA03g49250D 25378962 25382653 AT2G20610 ALF1 

  

 
 
GCA for  
seed oil content   2.09E-03 105.32 BnaA03g48960D 25166439 25167980 AT4G28030 
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Table 3.9:  Comparison of haplotypes with their respective means corresponding GCA and trait (BLUE) values on chromosome A3 

Haplotypes  
GCA for 

seed yield 
GCA for  

DTF 
Seed yield 

(F1:PollinatorsxM1)  
Seed Yield 

(F1:PollinatorsxM2)  
DTF 

(F1:PollinatorsxM1)  
DTF 

(F1:PollinatorsxM2)  
Hap1 -0.637 1.512 31.437 29.629 171.9 173.6 
Hap2 -0.654 0.006 31.573 29.460 170.8 171.7 
Hap3 0.520 -0.523 32.086 31.295 170.7 170.8 
Hap4 -0.750 -0.787 30.441 30.398 170.5 170.5 
Hap5 0.766 -1.180 32.407 31.465 169.6 170.5 
Hap6 0.513 -0.036 31.592 31.774 171 171.5 
Hap7 0.327 -0.170 31.852 31.143 170.7 171.5 
Hap8 0.242 -0.600 31.488 31.336 170.4 170.9 
Hap9 -0.821 -0.450 30.801 29.897 170.7 171 
Hap10 -0.805 -0.535 31.042 29.687 170.4 171 
Hap11 -0.293 0.621 31.073 30.681 171.6 172.2 
‘Dashed lines’ show significant haplotype (Hap5) for GCA for seed yield  
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Table 3.10:  Comparison of haplotypes with their respective means corresponding GCA and trait (BLUE) values on chromosome A3 

Haplotypes  
GCA for 
seed yield 

GCA for 
seed oil 
content 

Seed yield 
(F1:PollinatorsxM1)  

Seed yield 
(F1:PollinatorsxM2)  

Seed oil 
content 
(F1:PollsxM1)  

Seed oil content 
(F1:PollinatorsxM2)  

Hap1 -2.186 -1.131 29.657 28.312 47.4803 47.078 
Hap2 0.351 0.713 31.952 31.089 49.0987 49.148 
Hap3 -1.678 -1.140 30.850 28.134 47.500 47.040 
Hap4 0.0197 1.525 31.391 30.988 49.287 50.583 
Hap5 0.072 0.927 31.415 31.070 49.310 49.365 
Hap6 0.882 0.830 32.399 31.705 49.277 49.203 
Hap7 0.396 1.502 31.795 31.338 49.542 50.283 
Hap8 -0.006 0.188 31.651 30.678 48.962 48.234 
Hap9 0.395 -0.986 32.411 30.718 48.037 46.812 
Hap10 -0.201 -1.784 31.878 30.061 47.403 45.850 
Hap11 -0.564 -0.703 31.233 29.979 48.463 46.950 
Hap12 -0.946 -1.564 30.673 29.775 47.63 46.062 
‘Dashed lines’ show significant haplotype (Hap6) for GCA for seed yield 
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Figure 3.5:  Schematic overview of the candidate genes in strong LD region: (A) Peak of 

transformed (-log10 p-values are shown on chromosome A3 in a region of closely located two 

significant SNPs for the two different traits (i.e. GCA for seed yield and GCA for DTF). (B) This is a 

zoom in figure on chromosome A3 which illustrates two closely located significant SNPs as ‘red dot’ 

(left) and ‘blue dot’ (right) found in close proximities associated with two candidate genes ‘FRI’ and 

‘EMBRYONIC FLOWER 2’. (C) Haplotype of 210.3 Kb in strong LD region. Different colours in the 

triangle block show extent of LD. 
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Figure 3.6:  Schematic overview of the candidate genes in strong LD region: (A) Peak of 

transformed (-log10 p-values are shown on chromosome A3 in a region of overlapping two significant 

SNPs for the two different traits (i.e. GCA for seed yield and GCA for seed oil content). (B) This is a 

zoom in the figure on chromosome A3 which illustrates two overlapping significant SNPs as ‘blue 

dot’ (top) and ‘red dot’ (down) found and associated with two candidate genes ‘ALF1’ and 

‘AT4G28030’. (C) Haplotype of 483.1 Kb in strong LD region. Different colours in the triangle block 

show extent of LD. 
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In the case of GCA for seed yield and GCA for DTF on A3, we found a total of 38 reported 

genes within a region of 210.3 KB with a strong LD (r2=0.82) haplotype block region 

(5,998,751-6,007,985 bp). These genes are involved in different pathways and activities. In 

this region two closest significant SNP loci (GCA for seed yield: Bn-A03-p6744344) and 

(GCA for DTF: Bn-A03-p6898220) with strong LD located at 19 and 35.3 KB away from the 

two important Arabidopsis orthologue candidate genes related to flowering time and yield, 

for example, EMBRYONIC FLOWER 2 (AT5G51230) and FRIGIDA (AT4G00650) 

respectively (Figure 3.5; Table 3.7). Similarly, in the case of GCA for seed yield and GCA 

for seed oil content, we found a total of 65 reported genes (related to different pathways 

and activities) within a region of 483.1 KB with a strong LD (r2=0.58) haplotype block region 

(24,972,803-25,455,931). The significant overlapping SNP between (GCA for seed yield 

and GCA for oil content: Bn-A03-p26833841) located at 105.32 and 107.2 KB away from 

two important Arabidopsis orthologue candidate genes (AT4G28030) and ALF1 

(AT2G20610) related to yield and seed oil content, respectively (Figure 3.6; Table 3.8). 

3.3.3 Haplotype diversity analysis 

In a panel of 475 accessions of Brassica napus, a total of 46 SNP haplotype diversity 

blocks (GCA for seed yield: 11, GCA for DTF: 11) and (GCA for seed yield: 12, GCA for oil 

content: 12) corresponding to their respective calculated GCA values and estimated trait 

(BLUE) values. These haplotype blocks were manually traced within the strong LD (r2> 

0.40) flanking regions of significant SNPs for the three trait heterosis under study. 
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Figure 3.7:  SNP haplotypes. (A) Haplotype diversity block contributing to hybrid performance for 

GCA for seed yield and GCA for DTF on chromosome A3 (B) Reconstruction of the expected F1 

genotypes  from the Hap5 and its respective two mother line (M1 and M2) regions. (C) SNP 

boxplots of each haplotype: Boxplots of Hap5 with ‘orange’ colours correspond to the highest 

phenotype value of GCA for seed yield (left) and lowest phenotype value of GCA for DTF (right). 

The asterisks above the different haplotypes represent significant (p≤ 0.05) differences between the 

‘orange’ box plots and the rest. (p ≤0.05*, p ≤0.01**, p ≤0.001***). 
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Figure 3.8:  SNP haplotypes. (A) Haplotype diversity block contributing to hybrid performance for 

GCA for seed yield and GCA for seed oil content on chromosome A3 (B) Reconstruction of the 

expected F1 genotypes from the Hap6 and its respective two mother line (M1 and M2) regions for 

seed yield and Hap4 and its respective two mother line (M1 and M2) regions for seed oil content. 

(C) SNP boxplots of each haplotype: Boxplots of Hap6 with ‘orange’ colours correspond to the 

highest phenotype value of GCA for seed yield (left) and highest corresponding phenotype value of 

the GCA for seed oil content (right). The asterisks above the different haplotypes represent 

significant (p≤ 0.05) differences between the ‘orange’ box plots and the rest. (p ≤0.05*, p ≤0.01**, p 

≤0.001***). 
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Finally, the significant haplotypes from the pollinators were compared with their 

corresponding haplotype regions from the two testers (mother lines) and predicted F1 

genotypes were reconstructed. 

In the case of GCA for seed yield and GCA for DTF, Hap 5 had the highest corresponding 

GCA value for GCA for seed yield while the lowest corresponding GCA value for GCA for 

DTF with a frequency of 1.47 % (Table 3.9). There was a significant difference (p≤ 0.05) 

between Hap 5 and Hap 1, Hap 2, Hap 9 and Hap 11 for GCA for seed yield and a 

significant difference (p≤ 0.05) between Hap 5 and Hap 1 and Hap 11 for GCA for DTF 

(Figure 3.7: A, B, C). 

While comparing haplotype diversity of GCA for seed yield and GCA for seed oil content, 

Hap 6 had the highest corresponding GCA value (Table 3.10) and was significantly different 

(p≤ 0.05) from Hap 1, Hap 3, Hap 8, Hap 10, Hap 11 and Hap 12 with a haplotype 

frequency of 9.47 %. However, in GCA for oil content, I identified Hap 4 having highest 

corresponding GCA value and was significantly different (p≤ 0.05) from Hap 1,Hap 3,Hap 

8,Hap 9,Hap 10,Hap 11 and Hap 12 with a haplotype frequency of 2.53 % (Figure 3.8: A, B, 

C). 

3.4 Estimation of genomic prediction accuracy for d ifferent traits 

3.4.1 Prediction across whole population 

Figure 3.9 and Table 3.11 shows the accuracies of genomic prediction for the respective 

traits, along with their respective standard errors for testcross performance using the whole 

population (WP) without consideration of population structure. For the seven traits 

considered, the highest prediction accuracy was recorded for seed oil content (rGPA = 0.81) 

followed by oil yield (rGPA = 0.75), seed glucosinolate content (rGPA = 0.61), days to 

flowering (rGPA = 0.56), seed yield (rGPA = 0.45), lodging resistance (rGPA = 0.39) and the 
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least heritable trait, seedling emergence (rGPA = 0.29). Scatter plots showing the 

correlations between true observed trait values and genomic predicted values for all the      

traits are shown in Figure 3.10 (A,B,C,D,E,F,G). 

Table 3.11:  Average genomic prediction accuracies (rGPA) and standard errors (SE) for 

seed yield (dt/ha), oil yield (dt/ha), seed oil content (%), seed glucosinolate content (GSL; 

µmol/g), seedling emergence (visual observation scale 1-9; good=9), lodging resistance 

(visual observation scale 1-9; good=9) and days to onset of flowering (DTF) derived from 

500 iterations of cross-validation across the whole-population. 

Traits 

Seed 
yield 
(dt/ha) 

Oil yield 
(dt/ha) 

Seed oil 
content 
(%) 

GSL  
(µmol/g) 

Seedling 
emergence 
(good=9) 

Lodging 
resistance 
(good=9) DTF 

rGPA ±SE 45±0.002a 0.75±0.001 0.81±0.001 0.61±0.002 0.29±0.002 0.39±0.003 0.56±0.002 

aApproximate standard errors (SE) attached 
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Figure 3.9: Mean genomic prediction accuracies (rGPA ) across the whole test population for  

seedling emergence; SE, lodging resistance; LR,  seed yield; SY,  days to flowering; DTF, seed 

glucosinolate content; GSL,  oil yield; OY and  seed oil content; SOC, respectively. 
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Figure 3.10: Scatter plots showing correlations between true observed mean trait values (observed) 

and genomic predicted (predicted) for the seven traits evaluated under scenario 1. 
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3.4.2 Genomic predictions within subpopulations 

Figure 3.11 (A, B) and Appendix (Table 1 and Table 2) shows the independent prediction 

accuracies within subpopulations C1 and C2, respectively. Interestingly, an improved 

prediction accuracy (rGPA = 0.39) was observed for the low-heritability trait seedling 

emergence within subpopulation C1, the largest subpopulation but also the narrowest in 

terms of genetic diversity. Predictions accuracies also improved for two other traits with low 

to moderate heritability, seed yield (rGPA = 0.47) and DTF (rGPA = 0.59) (Figure.3.11: A), 

Appendix (Table 1). Similarly within the second-largest subpopulation, C2, the prediction 

accuracies improved to rGPA = 0.65 for GSL and rGPA = 0.49 for lodging resistance, 

respectively (Figure 3.11: B), and Appendix (Table 2). For seed oil content and oil yield, I 

observed no improvement in prediction accuracy within subpopulations compared to the 

whole population.  
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Figure 3.11:  (A) Genomic prediction accuracies (rGPA) within cluster 1 (C1) for seedling emergence; 

SE, lodging resistance; LR,  seed yield; SY,  days to flowering; DTF,  seed glucosinolate content; 

GSL,  oil yield; OY and seed oil content; SOC, respectively. (B) Genomic prediction accuracies 

(rGPA) within cluster 2 (C2) for seedling emergence; SE, lodging resistance; LR, seed yield; SY,  

days to flowering; DTF,  seed glucosinolate content; GSL,  oil yield; OY and seed oil content; SOC, 

respectively. 
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3.4.3 Prediction accuracy and training population ( TP) size 

As expected, increasing the size of the TP resulted in the improvement of the genomic 

prediction accuracy for all the traits (Figure 3.12). All the traits showed a plateau of 

prediction accuracy at a TP proportion of 80%, except days to flowering, and only 

insignificant increases in accuracy were observed as the TP size increased from 70% to 

90%. I, therefore optimised my model with an arbitrary TP size of 70% for all subsequent 

analyses and scenario testing. 

 

Figure 3.12:  Influence of the size of the training population (TP; % of whole population size) on the 

genomic prediction accuracy (rGPA) for the seven traits seedling emergence, lodging resistance, 

seed yield, days to flowering (DTF), seed glucosinolate content (GSL), oil yield and seed oil content. 
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Chapter 4:  Discussion 
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4:1 Genome-wide association study (GWAS) in hybrid Brassica napus 

Large scale genome-wide association study was carried out to identify interesting genomic 

regions linked to candidate genes governing hybrid performance across three important 

agronomic traits under study. A mixed effects model approach was used to avoid 

confounding effects caused by cryptic genetic background in the samples. SNP haplotype 

diversity was also investigated in the flanking regions of significant SNPs. I found some 

interesting candidate regions which may have pleiotropic effects and are involved in the co-

regulation of different phenotypes. To the best of my knowledge, this is the first approach 

where GCA estimates are used in association mapping to associate markers with the traits 

controlling hybrid performance in rapeseed. 

4.1.1 Linkage disequilibrium and population structu re 

Optimum genetic diversity is a pre-requisite to genetically improve crops through breeding 

programmes. The overall genetic diversity of spring-type rapeseed in both Canada and 

Australia is low (Fu and Gugel, 2010, Cowling, 2007). This decline in allelic variations may 

be due to the persistent breeding practices in favour of certain agronomic traits. Hybrid 

breeding in spring rapeseed is a better option to enlarge the genetic base and sustainability 

(Bus et al. 2011, Rahman and Kebede, 2012). The diverse gene pools of Brassica rapa and 

Brassica oleracea, the progenitor species of B.napus, could be used as a rich source to 

enlarge the narrow genetic pool of B. napus and also to bolster its resistance capabilities 

via resynthesised B.napus (Rygulla et al. 2007). 

I performed LD analysis using 24,442 unique polymorphic SNP panel across the A and C 

subgenomes, respectively. Certain chromosomes on both the subgenomes i.e. A08, A09, 

C1, C2 and C4 carry long highly conserved LD blocks which suggest an artificial selection 

for some traits of the corresponding regions on these chromosomes. In my study, the 

general pattern of LD was more conserved on C- subgenome than A- subgenome. This is 
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in congruence with the recent study on LD reported in semi-winter type rapeseed by Qian et 

al. 2014. The overall low mean LD in majority of A- subgenome chromosomes indicates 

high recombination rates after the interspecific hybridisation of this alloploid several 

thousand years ago. Keeping in view the genetic diversity of B.rapa, breeders have been 

taking advantage of the fact and try to  introgress new genetic diversity into B.napus 

(Bennett et al. 2012). Similar attempts were also made to boost up the gene pool of 

subgenome C by crossing B.napus to B. Oleracea but have not been so successful (Leflon 

et al. 2010). Chalhoub et al. 2014 argues, that the presence of a large number of 

transposable elements on C- subgenome may cause lower recombination rate and hence a 

big difference in LD decay between the two subgenomes is observed. The two relatively 

large subpopulations in my dataset of spring type rapeseed indicate introgression of 

adapted and exotic materials from its progenitors. Due to its vernalisation requirements, 

winter-type canola germplasm is not suitable to introgress into spring-type canola but 

winter-type canola can still be used as a diverse genetic source to improve spring-sown 

canola especially to increase heterotic potential for seed yield by transferring ‘super alleles’ 

at some specific loci (Quijada et al. 2006). Udall et al. 2004 reported that seed yield in 

spring-type canola can also be improved through introgression of some alleles from 

resynthesised B. napus. 

4.1.2 Association analysis and trait heterosis in Brassica napus 

Association mapping has emerged as a strong method for the dissection of both simple and 

complex trait architectures. In my study, I tried to decipher different interesting genomic 

regions bearing both candidate genes possibly involved in regulating specific traits 

heterosis but also co-regulating two or more different traits. I also show haplotype diversity 

within all the three traits that could be linked to hybrid performance of spring-type rapeseed. 

I followed the LD-block based approach while searching for candidate genes instead of 
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using ‘fixed-window’ approach which is based on a specific genomic region from the 

significant SNP markers on both the sides. The LD-block based approach has advantages 

over ‘fixed-window’ in terms of including true candidate genes (Chen et al. 2012; Courtois et 

al. 2013). I report some of the important candidate genes which have a pleiotropic effect 

and are involved in both co-regulating heterosis for seed yield and DTF components and 

some genes related to fatty acid biosynthesis for oil content and yield production. The 

strong close-by or overlapping signals on various chromosomes, especially on 

chromosome A3 in each trait and their fine mapping with crucial candidate genes suggest 

that these specific regions of the genome on A- subgenome might play an important role in 

hybrid performance of spring-type rapeseed. In this association mapping approach, I 

identified numerous SNP markers significantly associated with traits of interest that could 

be used effectively in future breeding strategies. The candidate genes identified in this 

study appear to have a role in the co-regulations of two or more important and complex 

traits like flowering time and seed yield heterosis. For example, the identification of 

FRIGIDA (FRI) gene in a strong LD region associated with two closely located significant 

SNP loci (Figure 3.5; Table 3.7). This gene is located 35.3 KB away from the significant 

SNP of GCA for seed yield and 114.52 KB away from the significant SNP of GCA for DTF. 

It is a key upstream regulator gene in Arabidopsis thaliana that has an important role in the 

activation of FLOWERING LOCUS C (FLC) gene and thus, inhibits floral transition. Both 

FLC and FRI genes play an essential role in vernalisation requirement and life cycle 

adaptation in different climatic conditions (Stinchcombe et al. 2004; Shindo et al. 2005; 

Werner et al. 2005). Wang et al. 2011 reported to have identified four FRI homologues in 

B.napus, one of which co-localises with a major flowering time QTL on chromosome A3. 

The flowering time genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) have a major 

role in flowering time trait heterosis and they interact epistatically (Moore and Lukens, 



63 

 

2011). Furthermore, it has been reported that mutations within these two flowering time 

genes in A. thaliana may cause changes in the other traits, for example, total number of 

seeds, silique number and floral development etc. (Tienderen et al. 1996; Koornneef et al. 

1998; Alonso-Blanco et al. 1999). Therefore, I postulate that FRI and FLC might have a role 

in the co-regulation of flowering time as well as seed yield heterosis. Similarly, I report 

another candidate gene (EMBRYONIC FLOWER 2), which is just 19 KB away from the 

significant SNP of GCA for seed yield and 180.89 KB away from GCA for DTF in this region 

and is involved in both vernalisation response and flower development in A. thaliana (Figure 

3.5; Table 3.7). Biotic and abiotic stresses can badly affect crop production (Atkinson and 

Urwin, 2012). Abiotic stresses like drought, salinity, heat, cold, and nutrient deficiency could 

reduce crop average yield by more than 50 % (Wang et al. 2003). Salt stress being one of 

the major abiotic stresses hampers the seed yield of Brassica napus (Long et al. 2015). In 

response to biotic stresses (bacteria, fungi, viruses, insects, etc.) and abiotic stresses, a 

cascade of cellular and molecular responses is evoked within the plant that often leads to 

lower growth and yield production (Hammond-Kosack and Jones, 2000; Herm and Mattson, 

1992). Another candidate gene ROOT HAIR DEFECTIVE 2 (RHD2) is found on 

chromosome A3 (Table 3.7) which has a role in root hair elongation and defense response. 

Koscienly and Gulden, 2012 compared open-pollinated and hybrid B.napus genotypes for 

their relationship between different root parameters including root length and area with seed 

yield and reported a strong relationship between them. Similarly, another A.thaliana 

orthologue gene (AT5G51160) found in this area is involved in response to nitrate, nitrate 

transport and cellular response to iron ion starvation (Table 3.7). Nitrate despite being an 

essential nutrient; also plays an important role in breaking seed dormancy by serving as 

signaling molecules and also regulating lateral root development (Almagro et al. 2008, 

Alboresi et al. 2005). It is also involved in regulation of lateral root development (Zhang and 
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Forde, 2002). Therefore, it is also hypothesised that these genes might be indirectly 

involved in affecting and regulating seed yield performance. 

To investigate candidate genes involved in co-regulation of heterosis of both seed yield and 

seed oil content, I report a very important A.thaliana orthologue candidate gene 

(ABERRANT LATERAL ROOT FORMATION 1: ALF1)  which is associated with a 

significant overlapping SNP (Bn-A03-p26833841) in both the traits and is involved in a 

plethora of essential regulations and pathways, for example, unsaturated fatty acid 

biosynthetic process, adventitious root development, defense response, sulfur compound 

biosynthetic process and  glucosinolate biosynthetic process  (Figure 3.6; Table 3.8). 

Unsaturated fatty acids which make up about 93 % (with a density of 0.91 g/cm3) of the 

total fatty acids in B.napus being of great significance for human health (Omidi et al. 2010). 

The binary system of glucosinolate-myrosinate in canola and other members of the 

Brassicaceae make a unique defense system against herbivores and pathogens (Ahuja et 

al. 2011). A better defence system could ultimately boost yield production. I therefore 

believe that this candidate gene might have a pleiotropic role in the co-regulation of both oil 

biosynthesis and yield performance heterosis. 

The effects of drought and water deprivation on B.napus are severe which are 

accompanied by loss of grain and affecting all yield components (Andersen et al. 1996; 

Norouzi et al. 2008). I report another orthologue gene (AT4G28030) of A.thaliana that is 

involved in water transport, response to salt stress and indoleacetic acid biosynthetic 

process (Table 3.8). This gene is in is in the strong LD region with the significant 

overlapping SNP and is located at 105.32 KB away. Water stress also badly affects seed oil 

content and brings changes in the lipid profile (Danesh-Shahraki et al. 2008 and 

Boucherean et al. 1996). Indoleacetic acid is an important constituent of auxin, an essential 

class of phytohormones which has also a role in seed dormancy in A.thaliana (Liu et al. 
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2013). Collectively, my finding on this candidate gene suggests that it has both direct and 

indirect roles in heterosis for both oil biosynthesis and seed yield production. 

4.1.3 Haplotypes and hybrid performance in Brassica napus 

I identified specific haplotype diversity blocks that might contribute to trait heterosis in each 

of my examples. Each haplotype within the strong LD block on each chromosome may be 

considered as one ‘allele’. These ‘heterotic haplotype’ architectures could be used to 

identify common SNP markers that capture the optimum diversity observed in the 

population. In the classical hybrid crops, for example in maize, where decades of hybrid 

breeding shaped a strong heterotic pool. In contrast, canola germplasm lack such strong 

heterotic gene pool. Therefore, to establish a novel heterotic pool within the adapted canola 

germplasm through introgression from either its two diploid progenitor species or exotic 

materials could be an important step. To capture haplotype diversity at the F1 hybrid level 

could be an effective strategy for predictive breeding (Snowdon et al. 2015). The 

identification and reconstruction of expected specific possible F1 genotypes between the 

parental haplotypes of the pollinators and two testers in both of my studied examples might 

have a potential role in heterosis for the three traits. 

In conclusion, the genomic regions, candidate genes and the SNP haplotypes diversity 

groups identified within all the three traits in this study provide interesting information about 

their possible role in the respective trait heterosis. Therefore, these interesting genomic 

regions could be tracked and considered during future marker assisted selection or 

‘precision predictive hybrid breeding’ for the improvement of allopolyploid spring-type 

canola. 
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4.2 Genomic predictions in hybrid Brassica napus 

The first investigation of the potential of genomic selection in B. napus breeding (Würschum 

et al. 2014) investigated a relatively narrow set of winter oilseed rape breeding lines derived 

from 9 elite parental lines that were genotyped with only 253 SNP markers. To my 

knowledge, this study is the first report of testcross performance prediction in this important 

oil crop species. The population size, the represented genetic diversity and the number of 

SNP markers used in my analysis were all considerably larger than the previous study of 

(Würschum et al. 2014).  

I investigated genomic prediction accuracies for seven key agronomic traits, including seed 

yield, oil content and quality related traits using a diverse population of spring-type canola. 

The RR-BLUP method used for the prediction modeling has been shown to be effective in 

accounting for both major and minor effect quantitative trait loci (QTL) in plant breeding 

(Würschum et al. 2013; Reif et al. 2013; Würschum et al. 2014).   

4.2.1 Independent genomic prediction across the who le population 

First, I investigated genomic prediction accuracy for each trait within the whole-population. 

Taking the whole population under consideration, the lowest genomic prediction accuracy 

was estimated for seedling emergence and highest for seed oil content. The low genomic 

prediction accuracy for seedling emergence under scenario 1 may be explained by the low 

heritability and genetic variance for this trait. To increase prediction accuracy in such traits 

as future strategy is  to combine these with other correlated highly heritable traits in a multi-

trait genomic prediction model.  In the case of seed oil content, the prediction accuracy 

remained high across the whole population. This is presumably due to the high heritability 

and the comparatively simple genetic architecture underlying this trait, where a few major 

QTL control maximum phenotypic variance (Wu et al. 2006 and Delourme et al. 2006).  
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Riedelsheimer et al. (2012) and Saatchi et al. (2011) reported that population substructure 

might affect genomic prediction accuracies. In my dataset, implementation of independent 

prediction within subpopulations increased prediction accuracies in specific subpopulations 

for low to moderate heritability traits like seed glucosinolate content, lodging resistance, 

DTF and seedling emergence. This is in line with previous studies that reported higher 

prediction accuracies when genetically closely individuals were used in the TP and VP 

(Habier et al. 2007; Hayes et al. 2009). The most straightforward explanation for such 

improvements might be that these traits are affected by variants at major-effect loci in some 

subpopulations that are rare or absent in the remainder of the materials. For some traits no 

improvement in accuracy was observed within subpopulations. This indicates that a large 

TP, in which the captured diversity strongly represents the diversity in the corresponding 

VP, may overcome the potential disadvantage caused by the use of genetically distant 

individuals in the TP and VP. Adding a covariate to the prediction model which identified the 

clusters in the whole population did not improve the overall prediction accuracy for any trait. 

This scenario may be rather specific for canola, in which modern, adapted breeding pools 

have a particularly narrow genetic basis (Hasan et al. 2006; Cowling et al. 2007; Bus et al. 

2011). The situation is very different in maize or cattle, for example, where genetic 

differentiation among sub-populations or races are highly pronounced and population 

differences in gene and allele content are therefore often decisive (Hayes et al. 2009; 

Habier et al. 2007; Technow et al. 2012). I conclude that adjustment of prediction models 

on a case-by case basis in canola can potentially give a small improvement in prediction of 

specific traits depending on the variance within a given breeding population. 

For the high-value traits of seed oil content, oil yield and seed glucosinolate content, for 

which high heritabilities can be attributed to a better rank correlation among locations, I 

consistently obtained very high prediction accuracies in predictions across the entire 
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population regardless of substructure. This may be further due to the modulating maternal 

influence of the two common male-sterile testers on embryo-related traits like seed size and 

oil content. As noted by (Heffner et al. 2011; Saatchi et al. 2011), using combined training 

populations for hybrid prediction from genetically diverse parental lines can increase 

prediction accuracy compared to predictions based on individuals arising from the same 

heterotic pool. 

4.2.2 Effect of TP sample size on genomic predictio n accuracy 

It has been shown earlier, using both simulation studies (Habier et al. 2007) as well as real 

datasets (Heffner et al. 2011; Saatchi et al. 2011; Zhao et al. 2012), that an increase in the 

training population size has a positive impact on the overall genomic prediction accuracy. In 

predictions across the entire test population a TP comprising 70 % of the overall population 

size (333 lines from 475) was sufficient to accurately predict the performance of the 

remaining lines for testcross performance. With the exception of flowering time, where the 

prediction accuracy still did not achieve a plateau even with 90% TP, only small or 

insignificant increases in accuracy were achieved with a TP proportion greater than 70%. 

The failure to achieve a plateau for flowering time suggests the presence of some 

accessions with distinctly different genetic control of flowering time. From a breeder’s 

viewpoint a smaller TP size is of course advantageous to reduce phenotyping costs. The 

most satisfying solution is the one in which adequate selection gains are achieved without 

surpassing current phenotyping costs. 

4.2.3 Genomic selection prospects in hybrid rapesee d 

At the dawn of canola hybrid breeding, various authors reported considerable heterosis in 

F1 hybrids (Grant and Beversdorf, 1985; Lefort-Buson et al. 1987; Brandle and McVetty, 
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1989). Plant researchers and breeders take advantage of the information on the genetic 

diversity to exploit heterosis in the available gene bank by using cross combinations to 

bring a tangible improvement in important agronomic traits. With the availability of recent 

inexpensive genomic sequence data and Brassica 60k SNP chip array, large scale 

genotyping is no more a limiting factor which dictates and facilitates towards genome-based 

predictive molecular breeding in Brassica napus. Effective integration of multidisciplinary 

research areas is required to get significant improvement in the yield and yield related trait 

performance in this important crop species. Prediction of heterosis is vital in hybrid breeding 

practices. Efficient pre-selection of the optimum combinations between parental lines to 

produce the most promising hybrids is quite challenging. The use of molecular markers (Li 

et al. 2006; Badani et al. 2006; Radoev at al. 2008; Mei et al. 2011) to accelerate the 

differentiation of hybrid pools and investigate the genetic basis of heterosis in canola has 

further increased hybrid performance.  However, levels of yield improvement seen in more 

classical hybrid crops like maize are still to achieve in canola because so far this struggle 

for the development of heterotic pools in canola has made only slow progress due to the 

generally low diversity within the species. The highly complex allopolyploid genome of B. 

napus, with multiple interacting homoeologous copies of almost all the genes (Chalhoub et 

al. 2014), increases the difficulty in prediction of individual gene actions (Hasan et al. 2006).  

The main purpose of genomic selection is the utilization of large and inexpensive DNA 

marker datasets to bring an improvement to the mean performance of a certain population 

(Bernardo and Yu, 2007). Seed yield, seed oil content and other polygenic traits are under 

the influence of complex genetic and biochemical interactions, and hundreds or thousands 

of small-effect QTL might be involved in their expression.  
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From a breeder’s perspective the implementation of genomic prediction is only worthwhile if 

equivalent or greater selection gain can be achieved with equal or reduced time and/or cost 

than using conventional selection methods (generally a multiple-year, multiple-location field 

evaluations). Depending on the selection intensity, the results presented in my study clearly 

demonstrate the value of performance predictions based on high-density SNP markers in 

hybrid canola. Of course, with the integration of additional data on the transcriptome, 

metabolome and epigenome may improve prediction accuracies further in the coming time. 

Therefore, I anticipate that the active uses of system biology approaches into canola hybrid 

breeding practices in the future would be rewarding. Even where little improvement on 

phenotypic selection gain is achieved through genomic prediction, the method is still of 

considerable value for traits like seedling emergence, where the very low heritability 

seedlots generated in multiple maternal environments combined with multi-location field 

evaluations. In such cases an increase in genetic gain might still be achieved if the early 

pre-selection approach enables a shortening of the breeding cycle.  The results of my study 

suggest that prediction of testcross performance in canola breeding, where molecular 

variants are used across the whole genome, taking both large and small QTL effects into 

account, could be a promising avenue for improving important commercial agronomic traits 

without consideration of detailed a priori knowledge of their underlying genetic architecture 

by saving both time and resources. 
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Chapter 5: Summary 

Canola/rapeseed (Brassica napus L., (AACC, 2n=38) is one of the world’s most important 

oilseed crops and is used as human food, i.e. cooking oil and as animal feed. In Europe, 

winter-type canola is also used as a sustainable source of bioenergy. Canola was naturally 

formed ~7500 years ago from spontaneous inter-specific hybridisations between cabbage 

(Brassica oleracea) and turnip rape (Brassica rapa). Recently, the reference genome of the 

B. napus ‘Darmor-bzh ’cultivar was sequenced and published in Science (Chalhoub et al. 

2014) which provides new insights to be explored, to further improve this important oil crop 

in the coming time. 

Commonly used breeding materials of canola have developed a narrow gene pool due to 

continuous strong conscious selection by breeders for quality traits, i.e. low seed 

glucosinolate, low erucic acid, etc. Attempts have been made over the years to boost up the 

genetic diversity of canola through introgression from its progenitor species or other exotic 

materials. Breeders practice hybrid breeding in canola to exploit heterosis for improved 

agronomic traits, especially for seed yield gain and yield stability. Canola is considered to 

have a well-defined pollination control system, for example, cytoplasmic male sterility 

system (CMS), genic male sterility system (GMS), etc. and can be used for the production 

of hybrid seed with optimum success. 

Due to the recent advances in high-throughput genomic technologies, an avalanche of 

inexpensive single nucleotide polymorphism (SNP) markers is now available. These 

genome-wide markers have made molecular predictive breeding possible and lucrative in 

different crop species, i.e. Maize, rice, etc. I used the 60k Brassica SNP Illumina genotyping 

array in my study. After rigorous quality checks, a panel of single position 24,442 

polymorphic SNPs distributed across the whole genome were used in my genomic 
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analyses. First, I investigated the population structure in my dataset using the whole set of 

filtered SNP markers. Based on the K means clustering method, two main clusters along 

with one small cluster were diagnosed. I also explored chromosome-wise linkage 

disequilibrium (LD) decay within both the subgenomes A and C. The general pattern of LD 

was more conserved on C- subgenome than A- subgenome. This was in congruence with 

the previous reported studies in canola.  

Genome-wide association studies (GWAS) have emerged as a useful approach in genetics 

and has been used to correlate molecular markers with phenotypic variations in various 

crop populations. I used the GWAS approach to unravel genomic regions contributing to 

hybrid performance in canola and have identified candidate genes that have pleiotropic 

effects for two or more different traits. It has been reported already (Qian et al. 2007) that in 

canola hybrid breeding, additive gene effects are the main contributors to heterosis. 

General combining ability (GCA) accounts for additive gene effects. Therefore, GCA values 

were estimated for each pollinator in a set of 475 male lines and used in my genomic 

analyses instead of the per se F1 phenotype data. I used a mixed effects model approach 

which effectively accounts for the cryptic population structure. For GWAS, we considered 

three important agronomic traits, i.e. GCA for seed yield, GCA for DTF (days to flowering) 

and GCA for seed oil content. 

On chromosome A3, I found some Arabidopsis orthologue candidate genes with pleiotropic 

effects associated with significant SNP loci related to GCA for seed yield and GCA for DTF. 

For example, FRIGIDA (FRI) and EMBRYONIC FLOWER 2 genes which have been shown 

already in their direct role in flowering time and indirect role in yield related traits. Similarly, I 

reported a very important A.thaliana orthologue candidate gene (ABERRANT LATERAL 

ROOT FORMATION 1: ALF1) significantly associated with an overlapping SNP between 

GCA for seed yield and GCA for seed oil content. This gene is involved in various 
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biochemical pathways, for example, unsaturated fatty acid biosynthetic process, 

adventitious root development, defense response, sulfur compound biosynthetic process 

and glucosinolate biosynthetic process. I also identified significant SNP haplotype diversity 

groups or blocks in the flanking regions of the significant SNPs in each trait that might 

contribute to trait heterosis in each of my examples. At the end, I reconstructed predicted 

F1 genotypes from the genotypes of the significant haplotypes from male lines (pollinators) 

and their corresponding haplotypes on the two tester lines (M1 and M2) in each trait. The 

genomic regions, candidate genes and the predicted F1 hybrid genotypes identified in my 

study provide worthwhile information that could be used in the future hybrid breeding 

strategies.  

My second project focused on the whole-genome prediction of hybrid performance in 

canola instead of identifying individual genes. Genome-wide selection (GS) or genomic 

prediction of unphenotyped germplasms (Meuwissen et al. 2001) is now rapidly making its 

way into plant breeding. In GS, molecular markers are employed across the whole genome 

simultaneously and genomic breeding values (GEBVs) are estimated. Pre-selection of the 

unphenotyped material is made on the basis of these GEBVs. Genomic prediction of test-

cross hybrid performance in canola using widely-tested ridge-regression best linear 

unbiased prediction (RR-BLUP) model was carried out in this study taking seven important 

agronomic traits under consideration. These were seed yield (dt/ha), oil yield (dt/ha), seed 

oil content (% volume per seed dry weight), content of total seed glucosinolate (GSL; 

µmol/g seed), seedling emergence (visual observation ranging from a minimum value of 1 

to maximum 9), lodging resistance (visual observation ranging from a minimum value of 1 

to maximum 9) and days to onset of flowering (DTF; measured as number of days from 

sowing until 50% flowering plants per plot). 
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Based on the observed population stratification in my dataset, I devised three scenarios for 

the genomic prediction. First, I considered the whole population, including all the pollinators 

(475) and then across two main clusters independently. In the whole population scenario, 

the highest prediction accuracy was achieved for seed oil content (rGPA = 0.81) and lowest 

for the least heritable trait, seedling emergence (rGPA = 0.29). No uniform improvement was 

seen in genomic prediction accuracies across individual clusters. The results of my study, 

however, suggest that prediction of testcross performance in hybrid spring-type canola 

breeding, where molecular variants are used across the whole genome, could be an 

efficient and cost-effective breeding approach to improve this important allopolyploid 

species. 
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Chapter 6: Zusammenfassung  

Raps (Brassica napus L., (AACC, 2n=38) zählt zu den weltweit wichtigsten Ölsaaten und 

spielt eine bedeutende Rolle sowohl als Nahrungsmittel - vor allem in Form von Speiseöl – 

wie auch als Futtermittel in der Tierernährung. Zudem wird in Europa Winterraps verstärkt 

als nachwachsender Bioenergierohstoff angebaut. Die Kulturart Raps entstand vor etwa 

7500 Jahren im Zuge einer spontanen interspezifischen Hybridisierung zwischen Kohl 

(Brassica oleracea) und Rübsen (Brassica rapa). Das vor kurzem sequenzierte und in 

Sciene veröffentlichte B. napus Referenzgenom „Darmor-bzh“ (Chalhoub et al. 2014) stellt 

derzeit eine beispiellose Möglichkeit zur Erforschung und Weiterentwicklung dieser 

bedeutenden Ölpflanze dar.  

Durch kontinuierliche, artifiziell gerichtete Selektion auf Qualitätsmerkmale, darunter 

Glucosinolatreduktion und Erucasäurefreiheit im Samen, sind heutige Züchtungspools 

durch eine relativ geringe genetische Diversität charakterisiert. Zahlreiche Versuche 

wurden in der Vergangenheit unternommen, diese reduzierte Diversität durch Introgression 

genetischen Materials aus den Raps-Vorfahren sowie aus exotischen Genotypen zu 

erweitern. Ein enormer Vorteil der Hybridzüchtung im Raps besteht darin, dass unter 

Ausnutzung des Heterosiseffekts wichtige agronomische Merkmale optimiert werden 

können, insbesondere Kornertrag und Ertragsstabilität. Für Raps sind umfassend 

charakterisierte Bestäubungskontrollmechanismen, wie z.B. die cytoplasmatische 

männliche Sterilität (CMS, INRA-Ogura) und andere kerngenisch bedingte männliche 

Sterilitätssysteme (MS) beschrieben und werden für die Produktion von F1-Hybridsorten 

erfolgreich eingesetzt. 

Infolge der ständig fortschreitenden Weiterentwicklung von genomischen 

Hochdurchsatzmethoden ist gegenwärtig eine große Anzahl an Einzelnukleotid-
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Polymorphismus Markern (Single Nucleotide Polymorphism; SNP) verfügbar. Der Einsatz 

dieser genomweiten molekularen Marker ermöglicht die Prädiktion von Qualitäts- und 

Leistungsparametern in Zuchtprogrammen, was bereits in verschiedenen Kulturen 

erfolgreich demonstriert werden konnte, beispielsweise in Mais und Reis. Nach einer 

strikten Qualitätskontrolle ergab sich für unsere genomischen Analysen ein Set aus 24.442 

polymorphen, über das gesamte Genom verteilten SNP-Markern. Zunächst wurde unter 

Verwendung dieses Markersets die Populationsstruktur der Genotypen untersucht. 

Basierend auf der „k means clustering“ Methode konnten zwei große Hauptcluster und ein 

kleines Cluster identifiziert werden. Zudem wurde der Verfall des 

Kopplungsphasenungleichgewichts (Linkage Disequilibrium decay; LD-decay) auf allen 

Chromosomen berechnet. Im Allgemeinen war das LD im C-Subgenom stärker ausgeprägt 

als im A-Subgenom, was im Einklang mit anderen Studien in Raps steht. 

Die Genomweite Assoziationskartierung (Genome-Wide Association Studies; GWAS) 

konnte in den letzten Jahren als nützliche Methode zur Identifikation von Assoziationen 

zwischen molekularen Markern und phänotypischen Merkmalen in verschiedenen 

landwirtschaftlichen Kulturen etabliert werden. Im Rahmen dieser Arbeit wurde dieses 

Verfahren zur Lokalisierung genomischer Regionen angewendet, welche Einfluss auf die 

Hybridleistung in Raps haben. Dabei wurden verschiedene Kandidatengene mit pleiotropen 

Effekten auf zwei oder mehr Merkmale entdeckt. Qian et al. (2007) schlussfolgerten bereits, 

dass hauptsächlich additive Geneffekte an der Ausprägung von Heterosis in Rapshybriden 

beteiligt sind. Dabei werden die additiven Geneffekte durch die Schätzwerte der 

Allgemeinen Kombinationsfähigkeit (General Combining Ability; GCA) repräsentiert. 

Dementsprechend wurden die GCA-Werte für alle 475 Vaterlinien errechnet und anstelle 

der phänotypischen per se Leistung der F1-Hybriden in den genomischen 

Analyseverfahren verwendet. Es wurde ein Gemischtes Lineares Modell verwendet, 
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welches die Populationsstruktur berücksichtigt. Bei den GWAS-Analysen wurden drei 

agronomisch wichtige Merkmale betrachtet: GCA für Kornertrag, GCA für den Blühzeitpunkt 

(Days to Flowering; DTF) und GCA für Ölgehalt im Samen. 

Auf Chromosom A3 konnten mehrere Arabidopsis-orthologe Kandidatengene mit 

pleiotropen Effekten gefunden werden, welche mit SNP Loci assoziiert sind, die mit GCA 

für Kornertrag und GCA für den Blühzeitpunkt in Verbindung stehen. Dazu zählten 

beispielsweise die Gene FRIGIDA (FRI) und EMBRYONIC FLOWER 2, deren direkte Rolle 

für den Blühzeitpunkt sowie indirekte Rolle für ertragsbildende Merkmale bereits 

demonstriert werden konnte. Weiterhin wurde ein wichtiges, A. thaliana-orthologes 

Kandidatengen gefunden (ABERRANT LATERAL ROOT FORMATION 1: ALF1) welches 

mit einem SNP assoziiert ist, der sowohl mit GCA für Kornertrag wie auch GCA für Ölgehalt 

überlappt. Dieses Gen ist in verschiedenen biochemischen Prozessen involviert, 

beispielsweise in der Biosynthese ungesättigter Fettsäuren, der Entwicklung von 

Adventivwurzeln, in Abwehrreaktionen sowie der Biosynthese von schwefelhaltigen 

Verbindungen und Glucosinolaten.  Außerdem konnten signifikante SNP Haplotyp-

Diversitätsblöcke in den flankierenden Regionen der entsprechenden SNPs identifiziert 

werden, die zur Heterosis in den untersuchten Merkmalen beitragen. Schließlich wurden 

die vorhergesagten F1 Genotypen basierend auf den signifikanten Haplotypen der 

männlichen Bestäubungslinien und den entsprechenden Haplotypen der beiden 

Mutterlinien (M1 und M2) für jedes Merkmal rekonstruiert. Die hier identifizierten 

Genomregionen, Kandidatengene und prognostizierten Genotypen der F1-Hybriden liefern 

wertvolle Informationen für zukünftige Hybridzüchtungsstrategien.  

Der Fokus des zweiten Projekts lag auf der genombasierten Prädiktion der Hybridleistung 

in Raps. Genomweite Selektion (GS) bzw. genomische Prädiktion von nicht-

phänotypisiertem Zuchtmaterial (Meuwissen et al. 2001) erhält fortschreitend Einzug in die 
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Pflanzenzüchtung. In der genomischen Selektion werden zahlreiche, über das gesamte 

Genom verteilte molekulare Marker simultan für die Schätzung genomischer Zuchtwerte 

(Genomic Breeding Value; GEBV) genutzt. Die Vorselektion nicht-phänotypisierten 

Zuchtmaterials wird anschließend auf Basis des GEBVs durchgeführt. In dieser Studie 

wurde die Testkreuzungsleistung mittels ridge-regression best linear ubiased prediction 

(RR-BLUP) Modell für insgesamt sieben agronomisch wichtige Merkmale vorhergesagt. 

Diese umfassten den Kornertrag (dt/ha), Ölertrag (dt/ha), Ölgehalt im Samen (Volumen-% 

in der Trockenmasse) und Glucosinolatgehalt im Samen (µmol/g), den Aufgang 

(Bonitierung von 1-9), die Standfestigkeit (Bonitierung von 1-9) und die Dauer bis zur Blüte 

(Anzahl an Tagen bis sich 50% der Pflanzen je Parzelle in der Blüte befanden).  

Basierend auf der im Datensatz beobachteten Populationsstruktur wurden drei 

verschiedene Szenarios für die Durchführung der Genomischen Prädiktion entwickelt. 

Dabei wurde zunächst die gesamte Population aller 475 Bestäuberlinien betrachtet, 

anschließend die beiden großen Hauptcluster separat. In der Gesamtpopulation wurde die 

höchste Prädiktionsgenauigkeit für den Ölgehalt im Samen beobachtet (rGPA = 0.81), die 

geringste Genauigkeit für den Aufgang (rGPA = 0.29), das Merkmal mit der geringsten 

Heritabilität. Eine allgemeine Steigerung der Prädiktionsgenauigkeit bei Betrachtung der 

beiden einzelnen Clustern konnte nicht festgestellt werden. Die Ergebnisse dieser Studie 

zeigen, dass die Vorhersage der Testkreuzungsleistung in Zuchtprogrammen mittels 

genomischer Prädiktion eine effiziente und ökonomische Methode zur Optimierung von 

Sommerraps darstellt. 
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Chapter 8: Appendices 

Appendix I. Supplementary figures. A: Histograms and Q-Q plots of best linear unbiased 

estimators (BLUEs) of each trait 
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Supplementary figures (A) : Trait distribution: a-g) Histograms and h-n) Q-Q plots of best linear 

unbiased estimates (BLUEs) for a,h) seed yield (dt/ha), b,i) oil yield (dt/ha), c,j) seed oil content (%), 

d,k) seed glucosinolate content (GSL; µmol/g), e,l) emergence (visual observation scale 1-9; 

good=9), f,m) lodging resistance (visual observation scale 1-9; good=9) and g,n) days to onset of 

flowering (DTF) in field trials from 8 independent locations. 
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Appendix I. Supplementary figure. B: The Pearson’s correlation coefficients between all 

the seven traits 
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Appendix II: 

Table 1: Average prediction accuracies (rGPA ) and standard errors (SE) for seed yield 

(dt/ha), oil yield (dt/ha), seed oil content (%), seed glucosinolate content (GSL; µmol/g), 

seedling emergence (visual observation scale 1-9; good=9), lodging resistance (visual 

observation scale 1-9; good=9) and days to onset of flowering (DTF) derived from 500 

iterations of cross-validation across the cluster 1(C1). 

Traits 
Seed yield 
(dt/ha) 

Oil yield  
(dt/ha) 

Seed oil 
content 
(%) 

GSL 
(µmol/g) 

Seedling 
emergence 
(good=9) 

Lodging 
resistance 
(good=9) DTF  

rGPA±SE 0.47±0.003a 0.49±0.004 0.68±0.002 0.47±0.003 0.49±0.003 0.2±0.004 0.59±0.003 
aApproximate standard errors (SE) attached  

 

 

Table 2: Average prediction accuracies (rGPA) and standard errors (SE) for seed yield 

(dt/ha), oil yield (dt/ha), seed oil content (%), seed glucosinolate content (GSL; µmol/g), 

seedling emergence (visual observation scale 1-9; good=9), lodging resistance (visual 

observation scale 1-9; good=9) and days to onset of flowering (DTF) derived from 500 

iterations of cross-validation across the cluster 2(C2). 

Traits 
Seed yield 
(dt/ha) 

Oil yield  
(dt/ha) 

Seed oil 
content 
(%) 

GSL 
(µmol/g) 

Seedling 
emergence 
(good=9) 

Lodging 
resistance 
(good=9) DTF  

rGPA±SE 0.30±0.003a 0.69±0.003 0.59±0.004 0.65±0.004 0.16±0.006 0.49±0.005 0.47±0.002 
aApproximate standard errors (SE) attached 
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