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Zusammenfassung

Mitglieder der trxG und PcG Proteinfamilie in Drosophila sind epigenetische Regulatoren,
deren Aktivitaet fuer die Aufrechterhaltung eines ordnungsgerechten Genexpressionsmusters
der homeotischen Gene waehrend der Embryonalentwicklung der Fliege verantwortlich ist.
Beide Proteinfamilien erreichen ihre entgegengesetzten Wirkungsweisen durch
Einflussnahme auf den aktivierten oder reprimierten Chromatinstatus der Zelle. Waehrend
fuer MLL als Saeugerprotein aus der trxG Familie schon nachgewiesen wurde, dass es die
Expresson der Hoxgene beeinflusst, ist Wirkungsweise, Zielgruppe und zellulaere
Lokalisation des zweiten bekannten Saeugetierhomologs TRX2 noch weitestgehend
unerforscht. Der Schwerpunkt dieser Arbeit stuetzt sich deshalb auf die Untersuchung der
Grundfunktionen des Saeugerproteins TRX2 waehrend der Embryonal entwicklung der Maus.
Das Gelingen der Herstellung einer embryonalen Stammzellinie (ES) die einen homozygoten
knock-out des Trx2 Gens traegt, und deren Analyse ergab, dass Lebensfunktionen und
Zdllzykluskontrolle im totipotenten Stadium der ES Zelle durch den Verlust des TRX2
Proteins nicht beeintraechtigt sind. Eine N-terminale Fusionierung von TRX2 an das gelb-
fluoreszierenden Proteins (EYFP) diente ausserdem als Werkzeug, um die subzellulaere
Lokalisation des Proteins in ES Zellen zu studieren. Die Anayse des hypomorphen
Phenotyps von EY FP-Trx2 homozygoten Maeusen ergab, dass intaktes TRX 2 auch waehrend
Spaeter Phasen der embryonalen, foetalen und adulten Entwicklung noetig ist. Diese
Beobachtung wurde weiter durch Injektionsexperimente von Trx2-/- ES Zelen in
Blastocysten unterstuetzt. Schwach chimaere Embryonen, die aus dieser injizierten
Blastozyste hervorgehen, zeigen eine variable aber allumfassende Mitwirkung der knock-out
Zellen bis zum embryonalen Stadium E10.5. Allerdings zeigte sich dann eine zunehmende
Eliminierung der Trx2-/- Zellen bis zum Embryonalstadium E18.5. Sobald die Beteiligung
der -/- Zellen in den untersuchten Embryonen einen bestimmten Grenzwert ueberschritt,
zeigten solch hoch-chimaeren Embryonen einen Phenotyp, der den von Trx2 knock-out
Embryonen widerspiegelt. Durch diese Beobachtung kann gefolgert werden, dass die
fehlerhafte Embryonalentwicklung nicht durch einen Defekt im extraembryonalen Gewebe,
sondern durch das Fehlen von TRX2 im eigentlichen Embryo hervorgerufen wird.

Alle Experimente deuten auf enen kontinuierlichen, zelltypunspezifischen und

zellautonomen Bedarf an TRX2 waehrend der Embryonal entwicklung von Maeusen hin.



E. Einleitung

Die fehlerfreie Expression homeotischer Gene ist fur die Festlegung von Zellidentitéten
entlang der Korperachse eines sich entwickelnden Embryos unbedingt erforderlich. Eine
gestorte Regulation homeotischer Gene fuhrt zur Transformation eines Korpersegments
in ein Anderes. Die maternalen Produkte von Segmentations-, Pair-rule- und Gap-Genen
etablieren spezifische Muster homeotischer Genexpression, welche wahrend der
Entwicklung durch zwei gegensétzliche Regulatorgruppen, der Trithoraxgruppe (TrxG)
und der Polycombgruppe (PcG), aufrecht erhalten werden. PcG-Proteine gelten as
reprimierende Faktoren, wahrend TrxG Proteine verantwortlich fir die Aufrechterhaltung
aktiv expremierter Abschnitte sind. Trx- und Pc-Proteingruppen erwirken den
beobachteten Effekt auf ihre Zielgene vermutlich durch die Einrichtung von
transkriptional permissiven bzw. inhibitorischen Chromatindoménen (Mamoudi und
Verrijzer, 2001; Paro et al., 1998; Pirotta, 1998; Gould, 1997).

Die vorliegende Arbeit befadt sich hauptséchlich damit, die Funktionsweise des
Saugetierproteins TRX2 zu untersuchen. Da grundlegenden Erkenntnisse zur Wirkweise
von TrxG- und PcG-Proteinen aus Forschung an der Fruchtfliege Drosophila
melanogaster stammen, soll zu Beginn dieses Kapitels eine Darstellung der bisher
bekannten Eigenschaften des Drosophila Proteins TRX stehen.

DIE TRX-G IN DROSOPHILA MELANOGASTER

E-1 Trx

Das Trithorax Gen (trx) in D. melanogaster codiert fur ein grof3es Protein (TRX), dessen
kontinuierliche Expression erforderlich fir eine normale Embryonaentwicklung der
Fliege ist (Ingham, 1981; 1985). Trx wurde 1968 von Lewis as Regulator des Bithorax
Proteins entdeckt. Inzwischen konnte gezeigt werden, dal3 trx fur die korrekte
Transkription der homeotischen Gene innerhalb des Antennapedia- und des Bithorax-

Genkomplexes (ANT-C und BX-C) verantwortlich ist. Trx Phanotypen beinhalten



homeotische Transformationen, in denen Korpersegmente die ldentitét meist weiter
anterior gelegener Segmente annehmen. Die meisten Mutationen innerhalb des trx Gens
fihren schon im Zygotenstadium zur Lethalitdt. Einige weniger schwerwiegende
Mutationen erlauben zwar eine Entwicklung zum adulten Tier, allerdings zeigen die
daraus hervorgehenden Mutanten die oben angesprochenen  homeotischen
Transformationen. So entsteht beispielsweise am dritte Thoraxsegment anstatt von
Halteren ein Fliigel paar, das normalerweise im zweiten Thoraxsegment angelegt wird. In
einem anderen Fall transformiert das Segment, welches bei ménnlichen Fliegen
Ublicherweise die Geschlechtsorgane tragt in das anterior gelegene Segment und
entwickelt ein Beinpaar. Namensgebend war allerdings eine fur die bekannten Trx Allele
unubliche bidirektionale Transformation, die durch ein hypomorphes Allel hervorgerufen
wird. In diesem Fall transformiert sowohl das erste als auch das dritte Thoraxsegment
und beide nehmen die Identitét des zweiten Thoraxsegments an, so dal3 Fliegen mit
dreifachem Thorax (trithorax) geboren wurden (Ingham, 1998). Diese bidirektionale
Transformation ist keinesfalls as eine gemeinsame Eigenschaft aller Trx Allele

anzusehen, dennoch bleibt sie als namensgebende Beschreibung erhalten.

Die zytogenetische Region von trx erstreckt sich Gber 40 kb auf dem rechten Arm von
Chromosom 3 (Region 88B) (Mozer and Dawid, 1989; Breen und Harte, 1991). Die 25
kb grof3e Transkriptionseinheit besteht aus 8 Exons, und codiert fir zwei isoforme TRX
Proteine: TRXI (3358 AS) und TRXII (3726 AS). Die beiden Isoformen unterscheiden
sich in 368 N-terminalen Aminosauren, die von den aternativ genutzten Exons 2 und 3
codiert werden (Mazo et al., 1990; Breen und Harte, 1991; Sedkov et al., 1994; Stassen et
al., 1995). Mindestens funf alternativ gespleifite TRX Formen existieren:
Die 10 kb grofRe TRXI codierende mRNA wird den Eizellen maternal beigefiigt
und ist lediglich in 0-3 Stunden aten Embryos nachweisbar (Mozer und Dawid,
1989; Breen und Harte, 1991; Sedkov et al., 1994).
Eine ebenfalls TRXI codierende mRNA, die hauptsachlich in Embryonen des
Blastodermstadiums vorkommt und deren Vorkommen im  weiteren
Entwicklungsverlauf stetig abnimmt, ist 12 kb grof3. (Mozer und Dawid, 1989;
Breen und Harte, 1991; Sedkov et a., 1994).



TRXII wird von einer 14 kb groRen mRNA codiert, die von der embryonaen
Phase der Keimbandverlangerung bis hin zum Puppenstadium vorkommt, und die
einzige wahrend imaginaler Zellproliferation transkribierte RNA Form ist (Mozer
und Dawid, 1989; Breen und Harte, 1991; Sedkov et a., 1994).
Die zygotischen RNAs werden in frihen Entwicklungsstadien ubiquitér transkribiert, in
spéteren Stadien der Embryonalentwicklung ist die trx RNA hauptsachlich im ZNS
nachweisbar (Mozer et a., 1989). Western-Blot-Analysen haben gezeigt, da3 TRXI in
frihen Stadien die Uberwiegende Isoform darstellt, wahrend die TRXII-Isoform im
letzten Drittel der Embryogenese vorherrschend ist. (Kuzin et al., 1994).

E-2 TRX Zielgene und Response-Elemente

Ubereinstimmend mit den phanotypischen Beobachtungen hervorgerufen durch trx
Mutationen, gehdren homeotische Gene wie zum Beispiel Ultrabithorax, Abdominal-A,
Abdominal-B, Antennapedia, Sex combs reduced und Deformed zu den Ziel-Genen von
TRX (Mazo et a., 1990; Breen und Harte, 1993; Sedkov et al., 1994). Neben den
homeotischen Gene sind auch die Gene der Transkriptionsfaktoren engrailed (Breen et
al., 1995) und fork head (Kuzin et a., 1994) von der Wirkweise des TRX Proteins
abhangig.

Weitgehend unbekannt sind nach wie vor die Mechanismen, welche die Bindung der
PcG und TrxG Proteine an ihre Zielgene ermdglichen. Obwohl fir die meisten
charakterisierten PcG und TrxG Proteine keine sequenzspezifische DNA-Bindefahigkeit
bekannt ist, konnten durch genetische und biochemische Untersuchungen DNA-Elemente
identifiziert werden, welche auf PcG und TrxG Proteine reagieren (TrxG und PcG
Response Elements;, TREs und PRES). In den regulierenden Regionen der Gene
ultrabithorax und sex combs reduced wurden TREs und PREs gefunden, die allerdings
keine eindeutige Struktur haben, und nur wenige signifikante DNA-Sequenz-Motive
aufweisen (Gair und Garcia-Bellido, 1990; Chan et al., 1994; Chang et al., 1995;
Gindhart und Kaufmann, 1995). TREs und PREs liegen auf der DNA sehr eng
beieinander (Tillib et a., 1999), aber ihre Wirkweisen koénnen klar voneinander

abgegrenzten DNA-Elementen zugeordnet werden. Diese raumliche Nahe spricht fur



eine direkte Interaktion der regulatorischen Einheiten, aber gegen eine unmittelbare
Konkurrenz der gegensitzlich wirkenden Faktoren um Zielsequenzen. Ubereinstimmend
hiermit stellte sich heraus, dald TRX an spezifischen Stellen polytaner
Riesenchromosomen bindet, und an vielen dieser Stellen mit PC colokalisiert (Chinwalla
et al., 1995).

E-3 Die Proteineund Proteinkomplexe der trx-G
Die Klassifizierung, nach der Genen eine Mitgliedschaft in der trxG zugesprochen wird,
ist variabel. Verschiedene genetische Kriterien wurden bisher verwandt:
Zeigt ein Gen-knock-out einen homeotischen Phanotyp, der einer “loss-of
function” Mutation homeotischer Gene gleicht,
Verstarkt die Mutation eines Genes den Phanotyp einer anderen trxG-Mutante,
Wirkt die Mutation eines Genes dem Phanotyp einer PcG-M utante entgegen,
so wird dieses Gen der trx-Gengruppe zugeordnet.
Die trxG ist eine heterogene Gruppe deren Mitglieder sind an den unterschiedlichen
Regulationsschritten zur Aufrechterhaltung der homeotischen Genexpression beteiligen.
Da sich die Wirkungsweisen von trxG Proteinen signifikant unterscheiden, kann man ein
Modell, in dem ale trxG Genprodukte in einem einzigen Mechanismenkomplex
zusammenarbeiten, ausschlieRen. TrxG Proteine lassen sich in wenigstens drei
funktionale Untergruppen aufteilen:
1. TrxG I: Brahmaund die Verbindung zum Swi/Snf Komplex
2. TrxG Il: GAGA-Faktor und Zeste
3. TrxG Ill: Trx, ashl und ash2 als Histon-modifizierende Faktoren

E-3.1 TrxG I: Brahmaund die Verbindung zum Swi/Snf Komplex

Der Brahma-Proteinkomplex enthdt die trxG Proteine Brahma (BRM) und Moira
(MOR), das Snf5 verwandte Protein SNR1 (Snf5 Related Protein) und vier weitere
Brahma-assozierte Proteine (Brahma Associated Proteins, BAPs) (Dingwall et al., 1995;
Papoulas et al., 1998; Vasguez et al., 1999; Crosby et al., 1999; Kal et al., 2000). Die



oben genannten Drosophila Proteine BRM, MOR und SNR1 zeigen signifikante
Homologien zu Proteinen in Hefe und Saugern (Tamkun et al., 1992; Dingwall et a.,
1995; Papoulas et a., 1998; Crosby et a., 1999). Trotz einer Vertffentlichung, die eine
physikalische Interaktion zwischen TRX und SNR1 dokumentierte (siehe unten), ist TRX
nicht als feste Untereinheit des BRM-Komplexes anzusehen (Papoulas et al., 1998).
Chromatin modellierende Proteinkomplexe katalysieren unter Verbrauch von ATP eine
Mobilisierung der Nukleosomenorganisation in vitro. Auch wenn die Mitglieder der
SWI/SNF Proteinfamilie weitestgehendst als transkriptionale Aktivatoren charakterisiert
worden sind (Sudarnasam und Winston, 2000; Vignali et al., 2000; Narlikar et a., 2002),
gibt es einige Hinwelse darauf, dass manche SWI/SNF Komplexe auch an
transkriptionaler Repression beteiligt sein konnen (Urnov und Wolffe, 2001; Martens und
Winston, 2002). Das Genprodukt des trxG Gens osareguliert die Aktivitét des BRAHMA
Proteinkomplexes durch Interaktion mit BRAHMA, ist aber selbst keine Unterreinheit
des Komplexes (Vazquez et al., 1999). Ein weiteres trxG Gen, kismet, codiert fir ein
Protein, das BRM sehr dhnlich ist, aber nicht mit dem Komplex interagiert (Daubresse et
al., 1999).

Die verbindende Gemeinsamkeit der ersten funktionalen trxG Untergruppe (trxG 1) ist

somit die Fahigkeit Chromatinstruktruren aktiv zu verandern (Chromatin remodeling).

E-3.2 TrxG Il: GAGA-Faktor und ZESTE

GAGA-Faktor, codiert durch das Gen trithorax-like (trl), und ZESTE haben mehrere
Uberraschend &hnliche Wirkungen. Beide sind DNA-bindende Proteine, die homeotische
und andere Gene aktivieren (Biggin et al., 1988) und wirken der durch die Bildung von
Heterochromatin hervorgerufenen Stillegung benachbarter DNA-Regionen (Position
Effect Variegation, PEV) entgegen, da eine Mutation beider Gene diese Effekte verstéarkt
(Farkas et al., 1994; Judd et al., 1995). GAGA-Faktor und ZESTE interagieren aul3erdem
beide genetisch mit Proteinen der Polycomb-Gruppe (Phillips und Shearn, 1990; Strutt et
al., 1997).

GAGA ist zudem eine der vier Untereinheiten des ATP metabolisierenden Chromatin
verdndernden NURF-Komplexes, der als transkriptionaler Aktivator gilt (Tsukiyama et
al., 1995). ZESTE ist zudem an dem genetischen Vorgang der Transfektion beteiligt



(Pirotta, 1991). AulRerdem steht es mit MOIRA im BRM Komplex in physikalischem
Kontakt, um die Aktivitdt des Komplexes zu modulieren indem es Chromatin-
Remodelling zu spezifischen Promtoren lenkt (Kal et al., 2000).

Das von Verrijzer et al. 1999 vorgeschlagene “Looping”-Model geht davon aus, dass die
kooperative Bindung von GAGA-Faktor und ZESTE an multiple Zielsequenzen
innerhalb eines Promotors eine Oligomerisation beider Proteine induziert, die dazu fihrt,
dass sich die DNA des Promotors um dieses Multimer windet, und so eine normale
Formation und Anordnung der Nukleosomen in diesem Promotorabschnitt verhindert.
Stattdessen wird die Bindung von Transkriptionsfaktoren, welche die Ubliche
Nukleosomen-Barriere nicht tberwinden kdnnen, in diese Bereichen gefordert. GAGA
und ZESTE erzeugen somit einen fir Transkriptionsfaktoren leichter zugénglichen DNA-
Protein-Komplex.

Proteine der zweiten funktionalen trxG Untergruppe (trxG 1) teilen die Fahigkeit, die
Topologie der Promotorregionen durch Reorganisation der Nukleosomenstruktur in eine
far Transkriptionsfaktoren offene Region zu verwandeln und in diesem Zustand zu
erhalten.

E-3.3 TrxG Ill: TRX, ASH1 und ASH?2 als histon-modifizierende Faktoren

Die trxG Proteine ASH1 (Absent Small or Homeotic discs) (Tripoulas et al., 1994;
LaJeunesse und Shearn, 1995; Tripoulas et a., 1996), ASH2 (Laleunesse und Shearn,
1995; Adamson und Shearn, 1996) und TRX kommen in drei unterschiedlichen
Proteinkomplexen mit einer Groéf3e von jeweils 2MDa, 0.5MDa und 2MDa vor (Papoulas
et al., 1998).

Der TAC1 Komplex (Trithorax Acetyltransferase Complex 1) besteht aus TRX, der
Antiphosphatase = SBF1, und dCBP, enem Mitglied de  CBP/p300
Histonacetyltransferase (HAT) Proteinfamilie. SBF1 und dCBP colokalisieren mit TRX
an spezifischen Stellen auf polytanen Riesenchromosomen, wie zum Beispiel der
Ultrabithorax Promotorregion, die bekannterweise von TRX reguliert wird. dCBP
Mutationen erzeugen die gleichen negativen Effekte auf ubx Expression und die
Expression eines lacZ Reporters, der unter Kontrolle des ubx Promoters steht, wie TRX

Nullmutationen. Dies bestétigt die grofRe funktionelle Bedeutung dieser Interaktion.



TAC1 acetyliert Histon H4 in vitro und reflektiert damit die HAT-Aktivitdat des
homologen Saugerproteins, CBP (Petruk et a., 2001). Indem TRX die
Histonacetyltransferase CBP Uber die TRES zu regulatorischen Abschnitten der Zielgene
lenkt, kann TRX lokale Acetylierung herbeifihren und so die Bindung der
Transkriptionsmaschinerie ermdglichen. Neuste Ergebnisse weisen darauf hin, dass TRX
selbst eine Histonmethyltransferase (HMT) mit Spezifitét fir Histon H3-K4 sein kénnte
(Czermin et a., 2002).

Obwohl TRX und ASH1 eine weitgehend Uberlappende chromosomale Verteilung
aufweisen, und auch aus embryonalen Drosophila Proteinextrakten co-
immunoprazipitiert werden kénnen (Rozovskaia et a., 1999), ist ASH1 kein Mitglied des
aufgereinigten TAC1 Komplexes. ASH1 konnte somit as Vermittler zwischen dem
TAC1 Komplex und spezifischen TREs dienen. Diese Mdglichkeit wird durch die
Beobachtung gestiitzt, dass der Verlust von ASH1 die Assoziation von TRX mit
Chromatin zerstort. Auferdem konnte fur dCBP und ASH1 eine Interaktion in vitro
nachgewiesen werden (Bantignies et al., 2000). Die Gegenwart einer SET-Doméne
innerhalb von ASH1 flhrte schliefdlich zu seiner ldentifizierung as Histone-
Methyltransferase spezifisch fur H3-K4 und -K9 und fur H4-K20 (Beisdl et al., 2002).
Das ASH2 homologe Protein in Hefe ist Mitglied des SET1-Proteinkomplexes, der
Histon H3 K4 spezifische HMT-Aktivitét aufweist (Roguev et a., 2001).

Die Verbindung zu Histon H3-K4 Methyltransferaseaktivitéat stellt somit die
Gemeinsamkeit aller Proteine in der dritten trxG Untergruppe (trxG I11) dar.

Auch wenn es noch vorstellbar ist, dass im Laufe der weiteren Erforschung von trxG
Proteinen auch andere Wirkweisen als Transkriptionsfaktoren zu Tage treten, so weisen
ale TRX verwandten Proteine bisher eine gemeinsame Strategie auf. Alle erfillen ihre
Aufgaben durch Chromatinmodifikatoren, wie zum Beispiel durch Histon H3-K4
Methylierung und Histonacetylierung, die direkt mit aktivem Chromatin in Verbindung
gebracht werden konnen, oder durch Chromatin-Remodelling, welches die Bindung von

weiteren Transkriptionsfaktoren in transkribierten Regionen erméglicht



E-4 Proteindomanen in TRX

Das Drosophila TRX Protein zeigt eine modulare Architektur und besteht aus
verschiedenen selbststandigen Proteindomanen (Abbildung E-1a). Die herausragenden
Domanen innerhalb TRX sind PHD-Finger und SET-Doméne.

E-4.1 Die PHD-Finger Doméane

Die Plant Homeo Domane (PHD) ist ein Zink-Finger &hnliches Motiv mit einem
einzigartigen Cys,-His-Cys;-Muster, welches sich Uber ca. 50 Aminosduren erstreckt
(Aadand et al., 1995) und sich so faltet, dass zwel Zn2+ lonen auf dhnliche Weise
gebunden werden konnen wie von einer RING-Domane. Die Strukturanalyse enthillt
einen konservierten, Zink-bindenden Kern mit zwei variablen Bogen, welche wohl
Interaktionen mit weiteren PHD-Finger Doménen und deren Liganden vermitteln
(Pascual et al., 2000). M égliche Funktionen von PHD-Fingern beinhalten DNA-Bindung,
Protein-Protein-Interaktion oder zielgerichtetes Binden von Histonmodifikation (Aasland
et a., 1995, O’ Connel, 2001; Schultz, 2001), aber eine eindeutige Funktion konnte dieser
Domaéne noch nicht zugeordnet werden. Auf3er in TRX kommen PHD-Finger in ASH1,
ASH2 und in Mitgliedern der PC-Proteinfamilie, wie z.B. Polycomb-like (PCL), als auch
in vielen anderen Proteinen vor. Allerdings werden fir alle diese Proteine Aufgaben im

Modulieren der Chromatinstruktur vermutet.

[-4.2 Die SET-Doméne

Die SET-Domane (benannt nach den Proteinen, in denen sie zuerst beschrieben wurde:
SU(VAR)3-9, E(Z) und TRX) ist ein 150 Aminosauren umfassendes Motiv, welches in
chromosomalen Proteinen von der Hefe bis zum Menschen auftaucht. Erstmals in trxG
und PcG Familien identifiziert, sind SET-Domanen an PEV, der Stillegung telomerer
sowie zentromerer Gene und moglicherweise sogar am architektonischen Aufbau der
Chromosomen beteiligt (Jenuwein, 2001).

Kurzlich wurde festgestellt, dass SET-Domanen Histonmethyltransferase (HMT)-
Aktivitét besitzen. Humane Proteine wie SUV39H, G9A, SET7, ESET und SET7/9,
Hefeproteine wie CLR4, SET1 und SET2 und Drosophila-Proteine wie E(Z),
SU(VAR)3-9 und ASH1 haben die Fahigkeit, Histone an ihren Lysin-Resten zu
methylieren. Im Histon H3 werden Lysine an folgenden Positionen methyliert 4, 9, 27
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Abbildung E-1: Proteindomaenen in Drosophila TRX and Saeuger TRX2.
(a) Das TRX Protein in Drosophila melanogaster.  (b) Das TRX2 Protein in Saeugern (Fuer eine
detaillierte Beschreibung, siche Text)
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Abbildung E-2: Histon Lysin Methylierung.

Uebersicht ueber bisher bekannte Histon-Methyltransferasen und deren Lysinrestspezifitaet in Histon H3
und Histon H4 (veraendert aus Jenuwein and Lachner, 2002).



und 36, fir Histon H4 ist bisher nur Position 20 bekannt. Obwohl die meisten HMTs
Positionsspezifitét fur nur einen der genannten Aminosaurereste aufweisen, methylieren
manche mehrere unterschiedliche (Lachner and Jenuwein, 2002, siehe auch Abb. E-2).
Wahrend regionale H3-K27 Methylierung in transkriptionel stillgelegtem Euchromatin
(Nielson et a., 2001; Vandel et al., 2001) und in konstitutivem (Jenuwein and Allis,
2001) und fakultativem Heterochromatin (Mermoud et al., 2002; Peters et al., 2002;
Boggs et a., 2002) vorkommt, zeigt H3-K4 Methylierung eine gegensétzliche Verteillung
und korreliert mit aktiven Chromatinabschnitten (Litt et al., 2001). Sie existiert auch in
den transkriptional aktiven Makronuclei von Tetrahymena (Strahl et al., 1999). Nach
mehreren erfolglosen Versuchen mit rekombinantem TRX (Reaet al., 2000), konnte jetzt
auch fur die SET Doméne von TRX, H3-K4 HMT-Aktivitdt nachgewiesen werden
(Czermin et a., 2002).

Die Publikation der SET-Doméanen-Kristallstruktur von SET7/9 (Wilson et al., 2002)
und die Sequenzanalyse der SET-Doméane N-terminal angelagerten Sequenz (Roguev et
al., 2001), machten auf eine besondere Bedeutung dieser preSET-Region aufmerksam.
Durch Bildung einer hydrophoben Rinne erméglicht sie die Bindung der basischen
Histon-Aminosaurenseitenketten und positioniert so das spezifische Lysin direkt im
katalytischem Zentrum der SET-Domane. In TRX wird die preSET-Region ATA2
genannt, es sind aber mindestens vier weitere preSET-Varianten bekannt (Roguev et a.,
2001).

Neben der HMT-AKktivitét als charakteristisches Merkmal, wurden weitere Funktionen
fur die TRX-SET-Doméne ermittelt. So verleiht beispielsweise die SET-Domane von
TRX die Fahigkeit zur Homodimerisierung (Rozowskaia et al., 2000), was durch die
mogliche Verbindung simultan auf unterschiedliche Regionen wirkender TRX Proteine
dazu fuhren kann, die Aktivitdt von gemeinsamen Zielgene zu integrieren. Auch TRX
Bindung von H3, welche durch reprimierende Chromatinveranderung negativ, durch
aktivierende Chromatinveranderung jedoch positiv beeinfluf® wird, wird der SET
Domaéne zugeschrieben (Katsani et a., 2001). Die TRX-SET-Doméne kann auch mit
ASH1 (Rozovskaia et a., 1999, Roguev et a., 2001) und dem Drosophila Homolog des
Hefeproteins SNF5, SNR 1 interagieren, welches als Mitglied des Chromatin-
Remodelling Komplex SWI/SNF gilt (Rozenblat-Rozen et a., 1998).
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E.4.3 DieTAD-Domane

Die TRX Transaktivierungs-Doméne (TAD) liegt im C-terminalen Teil von TRX,
zwischen ATAL1 (der bisher keine Funktion zugeschrieben werden konnte) und der ATA2
Region. Die TAD Doméne vermittelt die TRX-Bindung zu dCBP (Ernst et al., 2001)
innerhalb des 1IMDa grofRen Histonacetyltransferase (HAT)-Komplexes TACL. TAC1
fuhrt H4 spezifische Acetylierung durch und stellt die korrekte Expression von Ubx in
vivo sicher (Petruk et al., 2001). ASH1 kann ebenfalls CBP binden, alerdings durch N-
terminale Sequenzen und die SET-Domane (Bantignies et a., 2000).

E-5 Gegensatzliche Wirkweisen von PcG und trxG Proteinkomplexen

Sowohl trxG als auch PcG Proteine wirken durch Verdnderung der Chromatinstruktur.
Pc-G Proteine sorgen fir die vererbbare Stillegung ihrer Zielgene, indem sie
Heterochromatinbildung veranlassen. Die reprimierende Wirkung von PcG Proteinen
erfolgt durch Histondeacetylierung (ESC/E(Z)) (Tie et al., 2001; van der Vlag und Otte,
1999), H3-K27 Methylierung (Drosophila E(Z)) (Muller et al., 2002) und die Inhibition
von Chromatin-Remodelling durch Behinderung der Nukleosomenerkennung des
SWI/SNF Komplexes als einen nicht-katalytischen Mechanismus (PRC1) (Francis et al.,
2001, Shao et a., 1999). Durch die Entdeckung, dass das PcG Protein Enhancer of Zeste
(E(2)) dlsH3-K27 HMT wirkt (Muller et al., 2002; Czermin et a., 2002), kommt Licht in
das Dunkel der trxG/PcG-Wirkweisen. Die CHROMO Domane von Polycomb (PC,
Untereinheit von PRC) selbst bindet die Methylgruppe am H3-K27 Aminosdurerest und
schafft so eine direkte Verbindung zwischen dem repressiven Effekt von PRC1lund der
durch PcG vermittelten Methylierung (Cao et al., 2002).

Die Prasenz sich dhnelnder Proteinmodule innerhalb der PcG und trxG deutet darauf hin,
dass sowohl positive a's auch negative Regulationsmechanismen dieser Faktoren auf die
Expression homeotischer Gene Gemeinsamkeiten aufweisen. Aufgrund der Details, die
Uber TRX und TrxG Proteine vorliegen und hier zusammengefald sind, konnten TrxG
Proteine den repressiven Effekten von PcG Proteinen direkt durch aktivierende Prozesse,
wie Chromatin-Remodelling (BRM Komplex), H3K4-Methylierung (trxG3) oder
Histonacetylierung (TAC1 Komplex) entgegenwirken.
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Abbildung E-3: Modell zur Wirkungsweise der trxG and PcG Komplexe (veraendert nach Simon and
Tamkun 2002)

Die schematische Darstellung bezeichnet einenNukleosomenabschnitteines Zielgens unter der Kontroll von trxG
und PcG. Die zwei durch trxG hervorgerufenen aktiveirenden Prozesse activating pathways sind im oberen, der
alternative PcG Repressionsweg im unteren Teil gezeigt. Ac = Acetylierung von Hitonen. Me = Methylieruing
von Histonen. Bestimmte Histon-Kodierungen, die im ersten Schritt hervorgerufen wurden, helfen dann
Nukleosomen veraendernde Komplexe (trxG Weg) or PRC1 (PcG Weg), zu rekrutieren, deren Wirkungsweisen
den jeweils angezeigten Genexpressionszustand nach sich ziehen. Vertikale pinkfarbene Symbolezeigen
entgegengesetzte Effekte der Komplexe an. Fuer eine detailliertere Diskussion, siehe Text).



Ein aktuelles Modell zur gegensatzlichen Wirkweise von trxG und PcG Komplexenist in
Abbildung E-3 dargestellt (nach Simon und Tamkun, 2002). Die nukleosom-
modifizierenden Wirkungen dieser Komplexe sind dort mit dem von Jenuwein und Allis,
2001 vorgeschlagene Histon-Code verarbeitet. Der erste Schritt der durch trxG
vermittelten Genaktivierung stellt Histonacetylierung durch TACL dar (Petruk et al.,
2001). Durch den erhohten Acetylierungsstatus wird der Brahma Komplex rekrutiert
(Erleichterte Bindung von SWI/SNF and acetylierte Nukleosomen wurde schon von
Hassan et al., 1999 berichtet. Die Bromo Domane innerhalb BRMs als Modul, fir das
Bindespezifitéat fur acetylierte Histone nachgewiesen wurde, konnte diese Bindung
vermitteln (Dhalluin et al., 1999; Zheng and Zhou, 2002). Ein so iniziiertes Chromatin-
Remodelling fuhrt dazu, dass die DNA leichter zuganglich fur Transkriptionsfaktoren
wird, welche fur die komplette Aktivierung nétig sind (Peterson and Workman, 2000;
Vignali et a., 2000). Ein weiterer Weg wie Aktivierung durch trxG Proteine erreicht
werden kann ist ebenfallsin Abbildung I-3 dargestellt: H3-K4 spezifische HMT Aktivitét
fuhrt zu einem veranderten Histon-Code. Diese Markierung konnte von ISWI, dem ersten
identifizierten H3-K4 bindenden Protein (Kouzarides unvertffentlichte Ergebnisse)
erkannt werden. Auch wenn diese Bindung nicht fir das Gegenstiick in Saugern BRM
gezeigt wurde, liegt die Vermutung nahe, dass auch in diesem alternativen Weg die
Rekrutierung von Proteinkomplexen zur Modifizierung der Nukleosomen ein wichtige
Rolle spielt.

Der erste Schritt auf dem Weg, der PcG Proteine zur Stillegung verschiedener Gene
erfolgt durch Histondeacetylierung via ESC/E(Z) (v.d. Vlag et ., 1999; Tie et a., 2001)
und H3-K27 Methylierung via E(Z) (Miller et a., 2002; Czermin et a., 2002).
Methylierung von H3-K27 erleichtert die Bindung von PRC1 (Rastelli et al., 1993; Cao
et a., 2002), eventuell vermittelt durch die Polycomb CHROMO Doméne (Messmer et
a., 1992). Durch die Bildung solch repressver PRC1 Komplexe wird anderen
modifizierenden Komplexen der Zugang verwehrt (Shao et a., 1999; Franciset al., 2001)
und die betroffene DNA Region wird in einem inaktiven Zustand (Heterochromatin)
gehalten.
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DIE TRX-G IN SAUGERN

Alle Drosophila trxG Proteine haben mindestens ein Gegenstlick in Saugern. Im
Saugergenom gibt es zwel Homologe zum Drosophila trxG Gen Brahma und auch
multiple homologe und analoge Proteine zu ash-l and ash2 (Nakamura et a., 2000;
Huntsman et al., 1999). Trx selbst hat zwel Homologe in Sugern, MII (auch All-1, HRX,
HTRX) und Trx2 (auch M112, M114). Die Ahnlichkeiten in ihrer Aminosiuresequenz und
in der Exon-Intron Struktur zeigen deutlich, das es sich bel diesen beiden Formen um
paraloge Gene handelt (FitzGerald and Diaz, 1999). Die Genduplikation, welche fir die
beiden homologen Trx Kopien in Sdugern verantwortlich war, fand evolutiv gesehen
offenbar nach der Abspaltung der Vertebraten von den Invertebraten statt. Ob diese
Duplikation auch mit der Verviefdtigung der homeotischen Genkomplexe
zusammenfiel, von denen esin den meisten Vertebraten vier paraloge Gruppen gibt, wird
bisher noch diskutiert.

Im Vergleich zum Drosophila trx Gen zeigen sich mehrere konservierte Bereiche, zu
denen auch die PHD-Finger und die C-terminale SET-Doméane gehdren. Abgesehen von
diesen Sequenzen gibt es mehrere Proteindoménen, die ausschliefdich in den
Saugerproteinen vorkommen (figure E-1b). Sowohl MLL als auch TRX2 haben drei AT-
hooks, Doméanen, die sub-nukleare Lokalisation festlegen und auch eine Doméne, die sie
mit der DNA Methyltransferase 1 (DNMT1) haben.

E-6 Proteindoménen exklusiv fur Sauger TrxG

E-6.1 AT-hooks

Diese Doméne ist ein Sequenzmotiv, dass aus 11 konservierten Aminosduren besteht
und in der Lage ist, die kleine Rinne der AT-reichen B-Form der DNA zu binden.
Erstmals wurde diese Domane in chromosomalen Proteinen der High Mobility Group
(HMG) | beschrieben (Huth et al., 1997; Reeves und Nissen, 1990). Ein Asx Bogen und
kationische R/K Borsten, die lateral aus der planaren Architektur des Peptids
hervorragen, tragen zur Stérkung der DNA Bindung bei. Die DNA Bindefahigkeit der
AT-hooks grindet sich eher auf Struktureigenschaften, als auf spezielle
Sequenzeigenschaften.
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E-6.2 DieNTSDoméne

Durch Expression von kleinen MLL Teilsticken in COS-Zellen konnten Nuclear
Transfer Signals (NTS1 und NTS3), und zwei Sequenzabschnitte, die wichtig fir eine
punktformige nukleare Verteilung (Speckled Nuclear Localisation; SNL1 and SNL2)
sind, gefunden werden (Yano et al., 1997). Diese punktférmige Verteilung wird auf die
Assoziation von MLL mit Komponenten der Kernmatrix zurtckgefuhrt, wodurch ihm
eine Rolle in der Modulation der Chromosomenstruktur zugewiesen wurde, welche zur

epigenetischen Erhaltung der Genexpression fhrt (Caslini et al., 2000).

E-6.3 DieMT-Domaéne

Die Existent der etwa 100 Aminosduren umfassenden MT-Doméne in MLL, wurde
erstmalig 1993 von Ma et al. entdeckt. Aul3er in DNMT1 kommt dieses Motiv auch im
Transkriptionsrepressor MeCP1 (Cross et al., 1997), dem methyl-CpG bindenden Protein
MBD1 (Fujita et al. 1999 and 2000) und dem CpG-bindenden Protein hCGBP (Voo et
al., 2000) vor. Es setzt sich aus einem Cystein-reichen Abschnitt zusammen, der von
basischen Aminosauren umgeben ist. Der Cystein-reiche Abschnitt zeichnet sich durch
zwei Kopien der Aminosdurensignatur CGxCxxC aus (wird daher auch CxxC Domane
genannt) und ermdglicht die Unterscheidung von methylierter, hemimethylierter und
unnmethyliereter DNA (Birke et al., 2002).

Innerhalb von MLL ist die MT-Doméne in eine grofRere Region eingelagert, die als
Repressor-Doméne bezeichnet wird, weil sie, durch Fusion an die GAL4 DNA-
Bindedoméne und  artifizielle Rekrutierung an einen Promotor, Transkription
repremieren kann (Zeleznik-Lee et a., 1994; Birke et al., 2002). GAL4 Fusionsproteine
mit der MT-Domane von DNMT1 zeigen ebenfalls repremierende Wirkung (Fuks et al.,
2000). Im Falle der DNMT1 MT-Doméne ist die Repression mit Histondeacetylierung
verknipft, da erstens die durch das Fusionsprotein vermittelte Repression durch einen
HDAC Inhibitor, Trichostatin A (TSA), aufgehoben wurde, aber auch weil die beiden
mittlerweile aufgereinigten DNMT1 Proteinkomplexe HDACI, und HDACII respektive,
beinhalten (Robertson et al., 2000; Rountree et al., 2000).

Das Vorkommen dieser MT-Doméane deutet auf eine Verbindung zwischen der
TRX2/MLL Wirkungsweise und dem Methylierungsstatus des Genoms hin. Mit Hilfe der
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MT-Doméne kénnten TRX2 und MLL die Grenzen zwischen aktivem und inaktivem
Chromatin aufspuren, die durch eine Veranderung in DNA Methylierungsstatus
gekennzeichnet sind. In Analogie zu DNMT1 kénnten sie dort Proteinkomplexe
rekrutieren, und so die Weitergabe von epigenetischen Signalen Uber Generationen

hinweg sichern.

Alle erwéhnten Doménen sind eigenstandig, was darauf hinweist, dass TRX2
verschiedene Chromatin - modulierende Funktionen in Form von modularen
Proteindoménen vereinigt. Die Kombination von AT-hooks, SNL-, NTS- und MT-
Domanen deutet darauf hin, dass das Sauger TRX hauptsachlich auf Response-Elemente
wirkt, die AT-reiche Abschnitte und unmethylierte CpG Inseln umfassen. Dies sind auch
die Charakteristika von aktiven Promotorregionen. Somit konnten MLL und TRX2 die
Aufrechterhaltung der Aktivitdt von vorweg aktivierten Promotoren durch die
chromatinmodifizierenden Mechanismen, wie sie fir ihr Drosophila Homolog

beschrieben sind, gewéhrleisten.

E-7 MLL und seine Bedeutung fuer menschliche Tumoren

Das 400kDa grof3e Saugerprotein MLL (Mixed Lineage L eukemia) zeigt im Verlauf der
embryonalen Entwicklung eine ubiquitdre Expression. Das humane MIl Gen liegt auf
Chromosom 11 in der Region 11923 und spielt durch chromosomale Translokationen in
verschiedenen kindlichen myeloiden and lymphoiden Leukdmieerkrankungen eine Rolle
(Rowley, 1993; Bernard und Berger, 1995; Rubnitz et al., 1996; Look, 1997; Gilliland,
1998). Diese Verbindung fuhrte zu der Annahme, dass MLL in seiner nativen Form eine
wichtige Rolle in der frihen Entwicklung des blutbildenden Systems spielt (Ernst et al.,
2002). Die Region, die an der Translokation beteiligt ist liegt nahe bel Intron 11 und ist
klar eingegrenzt; man nennt sie BCR (break point cluster region). In Translokationen
fusioniert der N-terminale Teil MLLs mit einer Vielzahl von Fusionspartnern (DiMartino
and Cleary, 1999). Da die Fusionspartner keine Gemeinsamkeiten aufweisen, bleibt ihre
Rolle beim krebserregenden Effekt dieser Translokationen unklar. Es scheint, dass die

Kombination zweier Faktoren fir die von MLL hervorgerufene Tumorgenese
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verantwortlich ist. Erstens konnte das Abtrennen des C-terminalen Teils zu einer
dominant-negativen MLL-Form fuhren (Prasad et al., 1994; Schichmann et a., 1994,
1995), was zweitens durch die Addition des Fusionspartners noch verstérkt wird. Das
Leukdmie hervorrufende Fusionsprotein behélt weiterhin die AT-hooks und die MT-
Domane, aber nicht mehr die PHD-Finger und die SET Doméane von MLL. Durch den
Fusionspartner wird die Stabilitdt des Fusionsproteins und /oder eine Plattform fur die
MLL-Dimerisierung geschaffen (Dobson et al., 2000).

E-7.1 Mausmodelle mit mutiertem M1l Gen

Durch die phénotypische Analyse von Mausen, in denen das MIl Gen mutiert wurde,
wird die Hypothese, dass MLL in Saugern eine dhnliche regulatorische Funktion erfillt
wie das Drosophila Protein TRX, bestéarkt. Bisher wurden drel unterschiedliche Knock-
Out Strategien fur das M1l Gen publiziert:

In der ersten Verdffentlichung von Yu et a., 1995 wurde MLL durch das Einflgen einer
lacZ-polyA-Kassette in Exon 3 unterbrochen. Diese Strategie fuhrte zur Produktion eines
stark verkirzten MII-Transkripts, welches direkt hinter dem AT-hook endete.
Heterozygote Tiere waren lebensféhig, zeigten aber einen komplexen Phéanotyp, was
darauf hindeutet, dass MII haploinsuffizient ist. +/- Mausenachkommen waren kleiner als
Wildtyptiere und wiesen eine weibliche Hypofertilitdt, Andmie und eine geringere B-Zéll
Population auf. Segmentale Abnormalitéten traten mit unvollstéandiger Penetranz auf, und
schlossen Skelettmisshildungen und bidirektionale homeotische Transformationen ein.
Sowohl anteriore Transformationen der cervicalen Wirbel C7 nach C6 und Brustwirbel
T3 nach T2 as auch posteriore Transformationen von T13 nach Lendenwirbel L1 und L6
nach Sakralwirbel S1 waren zu beobachten. Auf molekularer Ebene konnten per RNA in
situ  Hybridisierung posteriore  Verschiebungen der hox-c9 und  hox-a7
Expressionsgrenzen festgestellt werden. Bidirektionale Transformationen als auch caudal
verschobene Expression der homeotischen Gene spiegeln den homeotischen Phanotyp
des Drosophila trx Knock-Outs wieder. Embryonale Lethalitét wurde ab E10.5 fur
homozygote Tiere ermittelt. Wahrend das spatiotemporale Anschalten von hox-c9 und

hox-a7 gegen E8.5 normal verlief, so konnte ab E9.0 keinerlei Genexpression mehr
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verzeichnet werde (Yu et al., 1998). Der Verlust der Fahigkeit, die Expression dieser
Gene aufrecht zu erhalten, ist ebenfalls analog zu den in Fliegen beobachteten Effekten.
Im zweiten MIl Allel (Yagi et a., 1998) wurde die Transkription nach Exon 11
unterbrochen, was in +/- Tieren auf3er zu einer leichten Andmie nicht zu einem Phanotyp
fUhrte. -/- Embryos dagegen starben zwischen dem Entwicklungstag E11.5 und E14.5,
wahrscheinlich aufgrund von Odemen. Dies weist auf eine Beteiligung MLLs an der
embryonaen Blutentwicklung hin. Es wurde vorgeschlagen, dass verringerte Hox-Gen-
Expression die Differenzierung hematopoetischer Vorléufer in Mitleidenschaft gezogen
haben konnte, um so den erwdhnten Phanotyp hervorzurufen. Der Grund fir die
Verschiebung des Lethalitétszeitpunkt im Vergleich zum ersten MIl Allel kdnnte in der
unterschiedlichen Knock-Out-Strategie zu suchen sein: Der Austausch der Exons 12-14
durch einen Neomycin Selektionsmarker, fuhrte zur Expression eines N-terminalen
Transkripts, inklusive der AT-hooks und der MT-Domane und kénnte somit noch einige
lebensnotwendige Aufgaben von MLL erfullen. Somit entsteht durch diese Strategie ein
hypomorphes Allel, welches verzogerte embryonale Lethalitét induziert.

Ayton et al. vertffentlichten 2001 das dritte MIl Allel. In diesem Fall wurde MII durch
das Einflgen einer STOP-IRES-lacZ Kassette hinter das flnfte Exon unterbrochen. In
heterozygoten Tieren flhrte dies nur zu milden Skelettdefekten, doch die homozygoten
Embryonen entwickelten sich nie weiter as bis zum 2-Zell Stadium. Der Unterschied in
der Schwere des Phanotyps verglichen mit den beiden vorangegangenen Allelen wird
weiterhin diskutiert, doch konnte er damit erkléart werden, dass das dritte Allel  einen
dominant negativen Effekt hat. Im Gegensatz zum ersten Allel, produzierten Ayton et al.
ein Transkript, das sowohl AT-hooks, as auch die MT-Domane beinhaltet. Beide
Domaénen binden bekannterweise DNA nicht in einer sequenzspezifischen, sondern einer
strukturabhangigen Weise, so dass die Entstehung eines neuen dominant negativen
Repressors vorstellbar ist. Allerdings ist das dritte Allel auch das Einzige, das nicht zu
einem Fusionsprotein zwischen dem unterbrochenen MLL und LacZ bzw. Neomycin
fuhrt. Diese Fusion konnte wie im Falle der echten Translokationsprodukte bei
Leukamien zur Stabilisierung des verkirzten Protein fihren. Auch unsere unpublizierten
Ergebnisse mit einem weliteren, vierten MIl Allel weisen daraufhin, dass es besonders
schwierig ist, MIl -/- Embryonen zu finden. Somit kénnte das MII Allel von Ayton et al.
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tatséchlich den wirklichen Verlust MLLs widerspiegeln. Es mul3 aber erwahnt werden,
dass in keiner der drei Publikationen, das Vorkommen eines verkiirzten Restproteins
erfolgreich untersucht wurde.

Als Zielgene fur MLL konnten die hox Genkomplexe hox-A und hox-C identifiziert
werden: Yu et al. zeigten, dass hox-a7 und hox-c9 Expression durch den Verlust von MlI
im gesamten Embryo beeinflul3t war. Y agi et al. fanden verschobene Expressionsgrenzen
der Gene hox-a7, -c8 und -c9 in unfraktionierten embryonalen Leberzellen von -/-
Embryos. Hanson et al. untersuchten 1999 die Expression der Hox Gene in E10.5 M ouse
Embryonic Fibloblasts (MEFs) und stellten fest, dass hox-c4 bis -c9 und hox-a3 bis -al0
entweder gar nicht mehr oder stark reduziert in MII-/- Zellen expremiert werden.
Interessanterweise scheint in keiner der Untersuchungen die Expression der beiden

anderen hox Genkomplexe, hox-B und hox-D, in Mitleidenschaft gezogen zu sein.

E-8 TRX2

Das MII-Schwestergen, Trx2, liegt auf Chromosom 19 (19913.1) und erstreckt sich tber
eine genomische Region von 35kb. Die 8.5 kb grofe mRNA besteht aus 37 Exons, weist
die gleiche Exon-Intron Struktur wie MIl auf, und wird in ein 280 kDa (2715
Aminosauren) grofles Protein transplantiert. Da heterozygote MIl Mutanten einen
dokumentierten Phanotyp aufweisen (siehe oben), kann davon ausgegangen werden, dass
TRX2 die MIl Mutation nicht kompensieren kann. Dies deutet daraufhin, dass die

Wirkweisen der beiden Proteine zumindest nicht vollstandig Gberlappen.

E-8.1 Beteiligung von TRX2 an humanen Tumor en

Das Trx2 Gen liegt in einer Region, die in soliden humanen Tumoren haufig rearrangiert
oder vervielfdtigt ist (Mitelman et al., 1997). Die deutliche Ahnlichkeit zwischen MlI
und Trx2 im Bezug auf die belbehatene Exon-Intron Struktur des Gens, auf den
modularen Aufbau aus den gleichen Domanen und die Tatsache, dass Trx2 ebenfalls in
einer Region haufiger Rearrangierung liegt, weisen auf eine mogliche Beteiligung von
TRX2 in der Tumorgenese hin. Tatséchlich konnte eine Verviefatigung von Trx2 in
zwel  Pankreastumor-Zellinien und einer Glioblastoma-Zellinie festgestellt werden
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(Huntsman et al., 1999). Schon Experimente in Drosophila zeigten, das die Dosierung der
trx Expression wichtig fur die kontrollierte Hox Genexpression ist (Gould et a., 1990).

E-8.2 Mausmodelle mit mutiertem Trx2 Gen

Stefan Glaser im Labor von Prof. A.F. Stewart analysiert zur Zeit ein Trx2 Knock-Out
Mausmodell. Das mutierte Trx2 Gen wird in diesem Fal nach Exonl unterbrochen.
(siehe auch Ergebnisteil). Heterozygote Tiere sind Iebensfahig, fertil und zeigen keinen
vom Wildtyp abweichenden Phanotyp. Die homozygote Mutation fihrt zu embryonaler
Lethalitét am Entwicklungstag E10.5 und zeigt ein Wachstumsdefizit, das erstmals am
E7.5 zu beobachten ist (figure E-4). Die Gastrulation as einer der Eckpunkte der
embryonalen Entwicklung, die zur Bildung der drei embryonalen Keimblétter (Ekto-,
Meso- und Endoderm) fihrt, findet zwischen E6.5 und E7.0 statt. Der sich im
embryonalen Ektoderm anschlief3ende Vorgang der Neurulation (E7.5-8.0), bildet die
Neuralplatte, die letztendlich zur Entwicklung des Gehirns und des Neurarohrs fihrt.
Der Zeitpunkt E7.5 in der embryonalen Entwicklung ist auch durch die Bildung
extraembryonaler Gebilde gekennzeichnet, die eine wichtige unterstiitzende Rolle fir den
heranwachsenden Embryo  spielen. Organogenese  beginnt um den
Entwicklungszeitpunkkt E8.5; hier wird die Entwicklung aller wichtigen Organsysteme
initiiert. Aus der Tatsache, dass sich der Trx2 Phénotyp erstmals bei E7.5 abzeichnet, 183t
sich moglicherweise schlief3en, dass die Embryonen die Gastrulationsphase normal und
ohne Wachstumseinschrénkungen durchlaufen. Dennoch fuhren entweder eine Stérung
in der Segmentfestlegung wahrend der Gastrulation, oder die verhinderte Durchfihrung
anderer wichtiger morphologischer Umwandlungen, die in den darauffolgenden
Entwicklungsabschnitten (Neurulation oder Organogenese) durchlaufen werden, zu
einem eingeschrankten Wachstum und letztendlich zur Resorption des mutierten
Embryos. TRX2 scheint eine Vielzahl von Auswirkungen auf die essentiellen
Entwicklungen in diesen Stadien zu haben.

Nicht verifizierte und unvertffentlichte Studien mit Hilfe von RNA in situ
Hybridisierung in unserer Arbeitsgruppe konnten zwei mogliche Trx2 Zielgene ermitteln,
Otx2 und Hox-bl. Otx2 spielt eine entscheidende Rolle in der Gehirnentwicklung und
hox-bl ist Mitglied de Hox-B Genkomplexes. Dies weist darauf hin, dass Trx2 ebenso
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E8.5

Abbildung E-4: Phenotyp der Trx2 knock-out Embryonen.

Fuer das Entwicklungsstadium E6.5 and E7.5 sind lacZ Faerbungen des ganzen Embryos gezeigt. Dank der
Eigenschaften der k.o. Kassette, kann das Trx2 k.o. Allel durch lacZ Expression sichtbar gemacht werden.
Wt Embryonen sind weiss (angedeutet durch ein weisses Oval) waehrend heterozygote (angedeutet durch
ein blaues Oval) and homozygote (angedeutet durch ein rotes Oval) Embryonen durch unterschiedlich
starke Blaufaerbung unterschieden werden koennen. Fuer Studie spacterer Stadien sind ungefaerbte
Embryonen gezeigt. Beide, wt und +/- Embryonen wt Groesse, wachrend -/- Embryonen retardiert sind.
Vor E7.5 zeigen Trx2-/- Embryonen keinen abnormalen Phaenotyp. Ab E7.5 sind -/- Embryonen in Groesse
und Entwicklungsstadium mit unterschiedlicher Penetranz retardiert, verglichen mit ihren wt Geschwistern.
Nach E10.5 werden keine -/- Embryonen gefunden. Die hoch retardierten rot umrandeten -/- Embryonen
von E11.5 sind im Prozess der Resorbtion.



wie sein Gegenstiick in - Drosophila und sein Saugerortholog MLL an der Regulation
homeotischer Gene beteiligt ist. Interessanterweise ist bisher noch kein Mitglied des Hox-
B oder de Hox-D Genkomplexes as Zielgen fir MLL beschrieben worden. Dies konnte
zu der Schluf¥folgerung fuhren, dass TRX2 und sein nahe verwandtes Protein MLL in der
Regulation der vier Hox Genkomplexe zusammenarbeiten. MLL reguliert wie bewiesen
hox-A und hox-C, wahrend TRX2 mdglicherweise die Regulation von Hox-B und Hox-D
Ubernimmt. Die Expression der potentiellen Zielgene Otx2 und Hox-b1 wird in Trx -/-
Embryonen zum richtigen Zeitpunkt initiiert, aber eine Aufrechterhaltung der Expression
findet nicht statt (unsere unveroffentlichten Ergebnisse), was wiederum zu der Wirkweise
des Drosophila Proteins TRX, as positiver Faktor zur Aufrechterhatung von
Genexpression, pali.

Zusammenfassend kann man festhalten, dass die trxG Proteine in Sugern, wie auch die
trxG Proteine in Fruchtfliegen, wichtige Rollen in der Aufrechterhaltung von
Expressionsmustern wahrend der Embryonaentwicklung Ubernehmen. Dies wird

wahrscheinlich mittels aktiver oder repressiver Chromatinabschnitte erreicht.

E-9 Zielsetzung der Arbeit

Genetische Studien in Drosophila enthillten und charakterisierten eine neue Art von
Transkriptionsregulatoren, genannt Trithoraxgruppe (trxG). Nur wenig ist alerdings
darliber bekannt, wie trxG Mitglieder in Saugetieren arbeiten. Diese Studie konzentriert
sich auf eins der séugerorthologen Proteine des Grindungsmitglieds der Trithoraxgruppe,
Trithorax. Bemihungen in unserem Labor, die Eigenschaften von Trx2 in Sdugern zu
verstehen, beschrankten sich bisher hauptséchlich auf seine frihen Funktionen wéhrend
der Embryonalentwicklung, da die frihe Lethalitét der Trx2 k.o. Maus Studien spéterer
Funktionen ausschliefRen. Trx2 scheint wahrend der gesamten Embryonal entwicklung
und auch im Adulten ubiquitéar expremiert zu sein. Da Studien an Drosophila-TRX

implizieren, dass es mdglicherweise durch epigentische Regulation eine wichtige Rolle
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als Faktor zur Aufrechterhaltung der Genexpression Ubernimmt, war es eine unserer
Prioritaten, experimentelle Wege zur Erforschung der Trx2 Wirkweisen nach der ersten
embryonalen Krise, (hervorgerufen durch seinen Verlust) zu finden.

Wir wahlten zwe unterschiedliche Wege, um die Beteiligung von Trx2 an
Differenzierung und fétaler Entwicklung zu studieren. Eine ES Zellinie homozygot fur
den k.o. von Trx2 wurde benutzt, um die Auswirkungen des Verlusts von TRX2 auf
Lebensfahigkeit und zelluldre Funktion wahrend des undifferenzierten Zustandes zu
beobachten. Zusdtzlich sollten Studien Uber das in vitro Differenzierungspotential der
Trx2-losen ES Zellen dazu dienen, die Rolle von Trx2 wéhrend des
Differenzierungsprogrammes verschiedenster Zelllinien zu erforschen. Blastozysten-
Injektionen und Analyse der chiméaren Embryonen boten einen Weg, die Funktion von
Trx2 wéahrend spéter Phasen der Embryonal entwicklung auszuleuchten. Da Hinweise aus
Fliegenstudien darauf hindeuten, dass Trx2 eine wichtige Bedeutung in der
Chromatinregulation durch Histonmethylierung spielen, sollte auch posttransationale
Modifizierungsmuster der Trx2 -/- ES Zellen untersucht werden.

In einem zweiten Ansatz wurde durch einen knock-in in den endogenen Lokus von ES
Zellen eine Fusion zwischen Trx2 und einem Fluoreszenzmarker erreicht, um die
Zellbiologie von Trx2 durch ein Verfolgen der subzelluléren Verteilung des Proteins vor

und wahrend verschiedener Differenzierungsstadien zu erforschen.
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Summary

Drosophila trxG and PcG proteins are epigenetic regul ators whose activity is required to
maintain the proper expression pattern of homeotic genes during fly embryonic
development. Both protein families have shown to convey their opposing effects by
influencing the open or repressed states of chromatin. While some mammalian members
of trx-G like MIl have already been proven to have a regulatory influence on expression
of the Hox genes, the action, target genes and localization of the second mammalian
homologue Trx2 remains mostly unexplored. Work in this thesis has focused on the study
of mammalian TRX2 function during mouse embryonic devel opment.

Successful generation and analysis of a knockout Trx2 ES cell line alowed us to
conclude that viability and cell cycle regulation is not altered by loss of TRX2 in the
totipotent state of embryonic stem cells. By an N-terminal fusion of the Enhanced Y ellow
Fluorescent Protein (EY FP) to murine TRX2 we have created a tool to study TRX2 sub
cellular localization in Embryonic Stem (ES) cells. Analysis of the hypomorphic
phenotype of EYFP-Trx2 homozygous mice enabled us to draw conclusions about the
requirement of functional TRX2 in late phases of embryonic, feta and adult
development, an observation that is further supported by blastocyst injection experiments
of Trx2-/- ES cells. Low chimeric embryos display a variable but overall contribution of
Trx2 -/- cells until E10.5, but progressive elimination of knockout cells until E18.5. If the
contribution of -/- cells was about a certain threshold those highly chimeric embryos
reflected the phenotype of Trx2 knockout mice ensuring that the Trx2-/- phenotype is not
caused by a defect in the extraembryonal tissue but in the embryo proper.

All performed experiments indicate that Trx2 is continuously required during

development in a cell-type unspecific and cell-autonomous manner.
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|. Introduction

For a correct determination of cell identities throughout the body axis of the developing
embryo, a faultless expression of homeotic genes is required. Misregulation of members
of this group of genes results in transformation of one body segment into a different one.
Homeotic gene expression is established by the products of segmentation, pair-rule and
gap genes, while two groups of proteins are involved in maintaining the expression
patterns established by these initial regulators. TrxG and PcG. Pc-G proteins act as
maintenance factors for repression, while trxG proteins are responsible for maintaining
the active state of expression. Both PcG and trxG proteins are thought to function by
establishing closed or open chromatin configurations at their target genes. (For reviews
see Mamoudi and Verrijzer, 2001; Paro et a., 1998; Pirotta, 1998; Gould, 1997)

This work will focus on the function of the mammalian protein TRX2, which is
homologous to the founding member of the trx-G in flies. Since work in this field so far
has mainly been performed in the model system Drosophila melanogaster, the chapter
will start by introducing known features about the fly homologue Trx.

TRX-G IN DROSOPHILA MELANOGASTER

-1 Trx

The D. melanogaster trx gene encodes a large protein whose continued expression is
required for proper embryonic development of the fly (Ingham 1981; 1985). Trx was first
discovered by Lewis in 1968 as a regulator of bithorax (Rg-bx) and has shown to be
responsible for correct transcription of the homeotic genes within both the antennapedia-
and bithorax complexes (ANT-C and BX-C). Trx mutant phenotypes include homeotic
transformations in which segments are transformed mainly towards more anterior
identities (Breen, 1999). Most trx alleles are zygotic lethal, some weak trx alleles have
third halteres develop as second thoracic wing, or male genitalia (usually located on T3)
transformed to T2 leg etc. The name Trx itself comes from a hypomorphic trx alele
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whose phenotype displayed bidirectional transformations of both the first and third
thoracic segment into the second thoracic segment so that mutant flies were born with
three thoraxes (Ingham, 1998). This bidirectional transformation is a not a common
feature of all trx aleles, but is rather unusual. Still it remains as the name-giving feature

of the gene.

Trx cytogenetic region spans 40 kb on the right arm of chromosome 3 (region 88B)
(Mozer and Dawid, 1989; Breen and Harte, 1991). The transcription unit of 25 kb
consists of 8 exons that encode for two protein isoforms TRXI of 3358 and TRXII of
3726 amino acid residues. The protein isoforms differ by 368 N-terminal amino acids that
are encoded in the alternatively used exons 2 and 3 (Mazo et a., 1990; Breen and Harte,
1991; Sedkov et a., 1994; Stassen et al., 1995). At least 3 differentially spliced mRNA
forms of trx exist:
The 10 kb mRNA encoding TRXI is maternally supplied to oocytes and is only
present in 0-3 hour embryos (Mozer and Dawid, 1989; Breen and Harte, 1991,
Sedkov et al., 1994).
The 12 kb mRNA aso encodes TRXI and is present mainly in blastoderm
embryos then in decreasing levels throughout development (Mozer and Dawid,
1989; Breen and Harte, 1991; Sedkov et al., 1994).
TRXII is encoded by a 14 kb mRNA that is present from germband elongation
through larval and pupal stages, and the only RNA expressed during imaginal cell
proliferation (Mozer and Dawid, 1989; Breen and Harte, 1991; Sedkov et al.,
1994).
The zygotic RNASs are expressed ubiquitously in early stages of development. In late
stage embryos, trx is preferentially expressed in the CNS (Mozer et al., 1989). Westertn
blot analysis showed that while TRXI is the most prevalent isoform during early stages,
TRXII is predominant during the final third of embryogenesis (Kuzin et al., 1994).
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[-2  TRX target genes and response elements

Consistent with the phenotypic observations for mutant trx alleles, trx target genes
include members of the homeotic family of genes like Ultrabithorax, abdominal-A,
Abdominal-B, Antennapedia, Sex combs reduced and Deformed (Mazo et al., 1990; Breen
and Harte, 1993; Sedkov et al., 1994). Besides homeotic genes, the transcription of the
transcription factors engrailed (Breen et al., 1995) and fork head (Kuzin et a., 1994) is
dependent on trx function.

The way in which the Pc-G and Trx-G products bind their target genes remains still
largely unknown. Even though most of the characterized PcG or trxG proteins seem not
to bind DNA in a sequence dependent manner, genetic and biochemical studies have
identified DNA elements responsive to those proteins (trxG and PcG response el ements;
TREs and PREs). TREs and PREs have been found in the regulatory region of
Ultrabithorax and sex combs reduced, but do not show a simple structure with few
significant DNA sequence motifs (Castelli-Gair and Garcia-Bellido, 1990; Chan et dl.,
1994; Chang et a., 1995; Gindhart and Kaufmann, 1995). TRE and PRE activities can be
ascribed to separable DNA elements, even though they are located in very close vicinity
(Tillib et a., 1999). This proximity suggests some direct interaction, but it argues against
direct competition of the opposing groups for their target sites. Consistent with this
observation is the finding that TRX binds to specific sites on polytene chromosomes and
co-localizes with Pc at many sites (Chinwalla et al., 1995)

-3  Thetrx-G of proteinsand complexes
Classification of a gene as a member of the trxG has been variable and certain genetic
criteria have been used:
A gene shows a homeotic mutant phenotype similar to loss-of function mutations
in homeotic genes
Mutations in a gene enhance the phenotype of other trxG members

Mutations in a gene suppress the dominant phenotype of PcG mutants.
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The trxG is a heterogeneous group of proteins that are involved in the various regulatory
steps to maintain HOM gene function. The range of action of trxG genes is varied and
argues against any model in which all trxG products act together in one complex or
mechanism. The trxG can be divided into at least three functiona subgroups:

1. TrxG I: Brahmaand the Swi/Snf connection

2. TrxG Il: GAGA factor and Zeste

3. TrxG Ill: Trx, ashl and ash2 as histone modifiers

[-3.1 TrxG I: Brahmaand the Swi/Snf connection

The BRM complex contains the trxG proteins Brahma (BRM) and Moira (MOR), the
Snf5 Related Protein SNR1 and four additional Brahma Associated Proteins (BAPS)
(Dingwall et al., 1995; Papoulas et al., 1998; Vasquez et a., 1999;Crosby et al., 1999;
Kal et al., 2000). The three first mentioned complex members show significant homology
to counterparts in yeast and mammals as summarized in figure (Tamkun et al., 1992,
Dingwall et a., 1995; Papoulas et a., 1998; Crosby et a., 1999). Despite a reported
physical association between TRX and SNR1 (see below), TRX is not a subunit of the
BRM complex (Papoulas et al., 1998).

Chromatin remodeling complexes catalyze ATP-dependent alterations in nucleosome
organization in vitro. Even though the SWI/SNF family members are well characterized
as transcriptional activators (Sudarnasam and Winston, 2000; Vignali et al., 2000;
Narlikar et al., 2002), there are some indications that suggest SWI/SNF complexes play
rolesin transcriptional repression (Urnov and Wolffe, 2001; Martens and Winston, 2002).
The trxG gene osa is thought to regulate activity of the BRM complex via interaction
with BRM, but is not a bona fide member of the complex itself (Vazquez et al., 1999).
Another trxG gene, kismet, encodes proteins highly related to BRM, but does not
physically interact with the complex (Daubresse et a., 1999).

The unifying property of trxG | members therefore is their involvement in chromatin

remodelling.
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[-3.2 TrxG Il: GAGA factor and ZESTE

GAGA factor, encoded by the trithorax-like (trl) gene, and Zeste protein perform
surprisingly various but similar modes of functions. Both are DNA binding proteins
activating homeotic and other genes (Biggin at a., 1988). When mutated both are
enhancers of PEV and therefore counteract heterochromatin induced silencing (Farkas et
al., 1994; Judd et al., 1995) and show genetic interactions with PcG proteins (Phillips and
Shearn, 1990; Strutt et al., 1997). GAGA factor has been found to be one of the four
subunits in the ATP-dependent chromatin remodelling complex NURF, a transcriptional
activator that also aters nucleosome structure (Tsukiyama et a., 1995). Zeste
additionally is involved in transvection (Pirotta, 1991) and contacts Moira in the BRM
complex to direct chromatin remodeling to specific promoters and modulate its activity
(Kal et al., 2000).

The model in Verrijzer et al. 1999 for co-operative GAGA binding suggests that binding
of GAGA factor and ZESTE to multiple target sites within a promoter induces
oligomerization of the proteins and wrapping of the promoter DNA around that multimer
in a way that excludes normal nucleosome formation. Instead it allows binding of
transcription factors that are unable to overcome the nucleosome barrier by themselves.
GAGA and ZESTE therefore serve as factors that provide a more accessible DNA-
protein complex.

The trxG 1l is unified by this looping model, in which promoter topology reorganization

leads to the maintenance of an open chromatin conformation.

[-3.3 TrxG Ill: TRX, ASH1 and ASH2 as histone modifiers

The trxG proteins Absent Small or Homeotic discs (ASH1) (Tripoulas et al., 1994;
Laleunesse and Shearn, 1995; Tripoulas et al., 1996), ASH2 (Laleunesse and Shearn,
1995; Adamson and Shearn, 1996) and TRX (see above) are found in three distinct
protein complexes of 2 MDa, 0.5 MDa and 2 MDa size respectively (Papoulas et al.,
1998).

The TRX complex called TACL (for Trithorax Acetyltransferase Complex 1) contains
the antiphosphatase SBF1 and a member of the CBP/p300 family of histone
acetylltrasferases (HATS) called dCBP. SBF1 and dCBP colocalize with TRX at discrete
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sites on polytene chromosomes including at Ubx known to be regulated by TRX.
Mutations in dCBP cause the same negative effects as null trx mutations on Ubx
expression and the expression of lacZ reporter under control of the ubx promoter, which
proves the functional importance of this interaction. Histone H4 specific acetylation has
been shown for TACL in vitro reflecting the HAT activity of mammalian CBP (Petruk et
al., 2001). By targeting CBP acetyltransferase activity to TREs, TRX may increase local
acetylation of nucleosomes and thereby increase accessibility of target genes for the basal
transcription machinery. Recent evidence suggests that TRX protein is a histone
methyltrasferase (HMT) specific for lysine 4 of histone 3 (H3-K4) (Czermin et al., 2002).
Even though TRX and ASH1 exhibit largely overlapping chromosomal distributions and
can be co-immunoprecipitated from Drosophila embryo extracts (Rozovskaia et al.,
1999), ASH1 is not present in the TACL1 complex purified. The suggested function of
ASH1 to target TACL to specific TREs is supported by the observation that a loss of
ASH1 prevents TRX binding to chromatin, and that ASH1 and dCBP physically interact
in vitro ( Bantignies et al., 2000). The presence of a SET domain in ASH1 finally led to
the identification of ASH1 as a HMT specific for K4 and K9 of histone H3 and K20 of
histone H4 (Beisel et a., 2002).

The homologue of ASH2 in yeast is a member of the SET1 complex, which has been
shown to have H3K4 specific HMT activity (Roguev et a., 2001). This observation led to
the proposition that trxG |1l members therfore are unified by histone H3 K4
methyltransferase activity.

Even though it is still conceivable that further identification of trxG member function
include identification as transcription factors in the classical sense, al the trx related
proteins identified so far share a different common mode of action. They all perform their
maintenance functions via chromatin modifications, namely histone H3K4 methylation
and histone acetylation, which are associated with active chromatin, and nucleosome
remodelling to facilitate binding of sequence specific transcription factors in actively

transcribed regions of chromatin.
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[-4  Protein domainsin TRX
The Drosophila TRX protein is composed of a modular structure with various self
contained protein domains (figure I-1a). The most prominent domains in TRX are PHD

fingersand a SET domain.

[-41 ThePHD finger domain

The Plant Homeo Domain (PHD) is a zinc-finger-like motif that has a unique Cys,-His-
Cys, pattern, spanning approximately 50 residues (Aasland et al., 1995). The domain
folds into an interleaved zinc finger which binds two Zn2+ in a similar manner to that of
the RING domain. The structure reveals a conserved zinc-binding core, together with two
variable loops that are likely candidates for interactions between the various PHD
domains and their specific ligands (Pascual et al., 2000). The possible functions of PHD
finger domains include DNA binding, protein-protein interactions or binding of histone
modifications (Aasland et a., 1995, O’ Connel, 2001; Schultz, 2001) but a single unique
function has not been yet documented. Apart from TRX, PHD fingers are also found in
ASH1, ASH2 and Polycomb like (PCL), a member of the PcG of proteins as well as
many other proteins. All these proteins are implicated in modulation of chromatin

structure and gene regul ation.

[-4.2 The SET domain

The SET domain (named after the three proteins in which the motif was first discovered:
SU(VAR)3-9, E(Z) and TRX) is an evolutionary conserved 150-amino acid sequence
motif present in chromosomal proteins from yeast to mammals. First identified in the
trxG and PcG gene family, SET domains are also involved in PEV, telomeric and
centromeric gene silencing and possibly in determining chromosome architecture (for
review see Jenuwein, 2001).

Recently SET domains were found to convey histone lysine MT activity. Proteins like
human SUV39H, GO9A, SET7, ESET and SET7/9, yeast CLR4, SET1 and SET2 and
Drosophila E(Z), SU(VAR)3-9 and ASH1 show histone methylation on lysine residues 4,
9, 27 and 36 in histone H3, and on position 20 in histone H4. Most HMTs display site

selectivity towards one of the mentioned K residues while others perform dual activity to
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Figure I-1: Protein domains in Drosophila TRX and mammalian TRX2.
(a) TRX protein in Drosophila melanogaster. (b) TRX2 protein in mammals (For detailed description
please refer to text).
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Figure I-2: Histone lysine methylation.

Overview of selective site-specificity of currently known HMTases for distinct lysine positions in the
histone H3 and H4 amino termini (tails). (Modified from Jenuwein and Lachner, 2002)



two different sites (for review see Lachner and Jenuwein, 2002) (see also figure 1-2).
While regional H3K9 methylation has been shown to be a feature of transcriptionally
silent euchromatin (Nielson et a., 2001; Vandel et al., 2001) and constitutive (Jenuwein
and Allis, 2001) and facultative heterochromatin (Mermoud et a., 2002; Peters et al.,
2001; Boggs et al., 2001), methylation on H3K4 shows a reciprocal relationship,
correlating with active chromatin domains (Litt et al., 2001) and in transcriptionally
active macronuclel of tetrahymena (Strahl et al., 1999). After several unsuccessful trials
with recombinant TRX (Rea et al., 2000) a very recent publication suggests that also
Drosophila TRX is associated with H3K4 methyltransferase activity.

Recent publication of the crystal structure of SET7/9 (Wilson et al., 2002) and sequence
comparison of the SET N-terminal adjacent regions (Roguev et a., 2001) revealed an
interesting role for the preSET region. By forming a hydrophobic groove the N-terminal
region provides the binding site for the basic side chains of the histone tail substrate and
exactly positions the specific lysine residue into the catalytic center of the SET domain.
The preSET region in TRX is called ATA2 and there are at least four other types of
preSET regions (Roguev et a., 2001).

Besides this HMT activity as a general characteristic of all SET domains, there are also
additional functions for TRX-SET reported. They include self-association (Rozowskaia et
al., 2000) that might operate in linking TRX proteins residing simultaneously on different
mai ntenance elements, so as to integrate the activity of shared target genes. Also, histone
H3 tail binding which is negatively influenced by repressive, but positively influenced by
activating, chromatin marks is attributed to the SET domain (Katsani et al., 2001). TRX-
SET has also been shown to interact with the Drosophila homologue of yeast SNF5,
SNR1, a component of the SWI/SNF chromatin remodeling complex (Rozenblat-Rozen
et a., 1998), and with ASH1 (Rozovskaia et a., 1999, Roguev et al., 2001).

.43 The TAD domain

The TRX transactivation domain (TAD) is located in the C-terminal part of the protein
between ATAL (to which no specific function is assigned) and ATA2. This domain
mediates binding of TRX to dCBP (Ernst et a., 2001) in the 1 MDa histone acetyl
transferase (HAT) complex TACL that also includes the anti phosphatase Sbf5 (Petruk et
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al., 2001). TAC1 acetylates histone H4 tail specifically and is required for correct Ubx
expression in vivo (Petruk et al., 2001). ASH1 has also been reported to bind CBP
however through N-terminal sequences and the SET domain (Bantignies et al., 2000).

-5  Opposing actions of PcG and trxG complexes

Both trx-G and Pc-G proteins act at the level of higher-order chromatin structures. Pc-G
proteins keep target genes stably and heritably inactive by forming heterochromatin
structures. PcG mediated repression involves histone deacetylation (ESC/E(Z)) (Tie et
al., 2001; van der Vlag and Otte, 1999), histone methylation by Drosophila E(Z) and
inhibition of chromatin remodeling by occluding access to nucleosomes for the SWI/SNF
complex (PRC1) as a non-catalytic mechanism (Francis et al., 2001, Shao et al., 1999).
Important clarity is emerging for trxG/PcG action in the identification of the PcG
member Enhancer of Zeste (E(Z)) as a H3 K27 methyltransferase(Mueller et al., 2002;
Czermin et a., 2002). Methylation of K27 provides a binding site for polycomb, a
chromodomain subunit of PRC1 (Cao et al., 2002), thereby linking histone methylation to
Pc-G mediated silencing. Methylation of Lysine 27 correlates with target gene repression
(Cao et a. 2002) while H3 K4 methylation mediated by TRX2 leads to chromatin
activation. Occurance of similar protein modules in PcG and trxG suggests that both
negative and positive chromatin mediated transcriptional regulation of the homeotic
genes by these factors involve common principles. Considering the details known about
TRX and other TrxG protein members summarized in this introduction, the TrxG might
directly antagonize the repressive PcG effects on chromatin structure by applying
activating processes like chromatin remodeling (BRM complex), histone methylation on
H3-K4 (trxG 111) or histone acetylation (TAC1 complex).

The current model for opposing activities of trxG and PcG complexes is summarized in
figure 1-3 (modified after Simon and Tamkun, 2002), which integrates their nucleosome-
modifying roles into the histone code framework introduced by Jennuwein and Allis in
2001. The trxG pathway that leads to gene activation commences with histone acetylation
performed by the TAC1 complex (Petruk et al., 2001). Increased acetylation recruits
binding of the BRM remodelling complex. (Facilitated binding of SWI/SNF to acetylates
nucleosomes has been reported by Hassan et al., 2001). Binding of BRM may be

37



. BRM
TRX?2 complex
deli
(K4-HMT) TACT (remodeling)

complex

(HVAJ: AL Ac

complex

Gene
(HDAC) A OFF
EZ) Me
(K27—HMT) Current Opinion in Genetics & Development

Figure I-3: Model for multistep mechanism of trxG and PcG complexes (modified Simon and Tamkun
2002).

The cartoon depicts a nucleosomal array at a target gene unter trxG /PcG control. The two trxG activating
pathways are shown at the top and the alternative PcG repression pathway is shown below. Ac = acetylation on
histone tails. Me = methylation on histone tails.Distinct histone codes created in the first step then help to attract
either nucleosome remodelling complexes (trxG pathway) or PRC1 (PcG pathway), whose actions produce the
indicated gene expression outcomes. Verticle purple bars indicate opposing effects of complexes. For detailed
discussion please refer to text.



mediated by its bromodomain, a module that has been shown to bind acetylated histones
(Dhadluin et a., 1999; Zheng and Zhou, 2002). Such initiated nucleosome remodelling
renders the DNA more accessible to transcription factors needed for activation (Peterson
and Workman, 2000; Vignali et a, 2000). An alternative pathway of trxG activation in
also indicated in figure I-3: K4 specific HMT leads to a different histone code which is
recognized by the first identified K4 methyl binding protein, 1ISWI (Kouzarides,
unpublished results). This binding has not been shown for the mammalian counterpart
BRM, but it is suggestive to think that recruitment of nucleosome remodelling complexes
isaso involved in this aternative activating pathway.

The first step in the PcG pathway that leads to silencing gene expression features
deacetylation of histones by recruitment through the ESC/E(Z) complex (v.d. Vlag and
Otte, 1999; Tie et al, 2001) and methylation of histone H3 K27 by E(Z) (Mueller et al.,
2002; Czermin et a., 2002). Methylated K27 facilitates binding of PRC1 (Rastelli et al.,
1993; Cao et a, 2002). This recruitment potentially includes recognition of the K27
methylgroup by the PC chromodomain (Messmer et al., 1992). Formation of those
repressive PRC1 complexes prevents access of remodelling complexes (Shao et al., 1999;
Francis et al., 2001) and therefore keeps the DNA region in a closed heterochromatin
State.
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MAMMALIAN TRX-G

All the trxG members of Drosophila have at least one mammalian counterpart. The
mammalian genome has two homologs of the Drosophila trxG gene brahma and also
multiple homologs and anlogs of trx-I and ashl (Nakamura et a., 2000; Huntsman et al.,
1999). TRX has two mammalian homologues named MLL (also called ALL-1, HRX,
HTRX) and TRX2 (also called MLL2, MLL4). The smilarity in their protein sequence
and exon-intron structure clearly indicates that they are paralogous genes (FitzGerald and
Diaz, 1999). It appears that the gene duplication event that lead to the existence of two
homologous gene copies for trx had occurred in evolution after the divergence of
invertebrates and vertebrates. Whether this duplication was linked to the multiplication of
the homeotic complexes of which four paralogous groups exist in most vertebrates,
remains atopic of discussion.

Comparison to the Drosophila TRX protein has revealed multiple conserved regions
including the PHD fingers and the C-terminal SET domain. Additional to those
sequences there are severa protein domains that are unique to mammalian TRX2 and
MLL (figureI-1b). Both MLL and TRX2 have three AT-hooks, domains that define sub
nuclear protein localization and a domain shared with DNA methyltransferase 1
(DNMT1) in the N-terminal half.

-6  Protein domains unique to mammalian TRXG

[-6.1 TheAT-hook domain

The AT hook is an 11-residue conserved sequence motif capable of binding to the minor
groove of AT-rich B-form DNA and was first identified in High M obility Group (HMG)
I chromosomal proteins (Huth et al., 1997; Reeves and Nissen, 1990). An Asx bend and
cationic R/IK bristles that project laterally from the planar backbone of the peptide
contribute to the strength of DNA binding. DNA binding of the AT-hook motif is rather
based upon structural than upon sequence specific properties.
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[-6.2 TheNTSdomains

Expression of small protein segments of MII in cultured COS cells defined two Nuclear
Transfer Signals (NTS1 and NTS3) and two sequence stretches that conferred a speckled
nuclear distribution (SNL1 and SNL2); (Yano et a., 1997). This nuclear speckled pattern
was reasoned to be association of MLL with components of the nuclear matrix,
suggesting a role in modulation of chromatin structure, leading to epigenetic effects on

the maintenance of gene expression (Cadlini et al., 2000).

[-6.3 TheMT domain

The presence of a 100 amino acid domain shared with DNA methyltransferase 1 (MT-
domain) in mammalian MLL was first discovered by Ma et a. in 1993. Apart from
DNMT1 (Yen et a., 1992), this motif is aso found the transcriptional repressor MeCP1
(Cross et al., 1997), methyl-CpG binding protein MBD1 (Fujita et a 1999 and 2000) and
CpG binding protein hCGBP (Voo et al., 2000). It consists of a cysteine-rich core flanked
by patches of basic amino acids. The cysteine-rich part is characterized by the presence
of two copies of the signature amino acid sequence CGxXCxxC (therefore it is also named
CxxC domain). It allows discrimination of methylated, hemi- and unmethylated DNA
(Birke et al., 2002).

In the context of MLL, it is part of a larger section that has been dubbed the ‘ repressor
domain’ because it can repress transcription if it is artificially recruited to promotersin a
fusion with the GAL4 DNA-binding domain (Zeleznik-Lee et al., 1994; Birke et .,
2002). Also GAL4 fusions to the MT domain of DNMT1 have been reported to have a
repressive function (Fuks et al., 2000). At least in the case of DNMTL, this repression
seems to be connected with histone deacetylation firstly since repression in GAL4 fusions
are relieved by trichostatin A (TSA), a known HDAC inhibitor, but also since the two
identified DNMT1 complexes contain histone deacetylase | and |l respectively
(Robertson et al., 2000; Rountree et a., 2000)

The presence of this MT domain involved in either methylating DNA or recognition of
methylated DNA points to a connection between TRX2/MLL function and the
methylation status of the genome. With help of the MT domain, TRX2 and MLL might

be able to sense boundaries of active and inactive chromatin marked by DNA
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methylation and, in analogy to DNMTL, recruit protein complexes that would ensure

transmission of those epigenetic states over cell generations.

All mentioned domains are self-contained, which might indicate that TRX2 behaves as a
modular integrator of different functions relating to chromatin modulation. The
combination of AT hooks, SNL, NTS and MT domains suggests mammalian TRX
targeting to a specific subset of response elements that contain AT-rich DNA and
unmethylated CpGs, an attribute of active promoters. Thereby MLL and TRX could
fulfill their function in maintaining pre-activated promoters in an active transcriptional
state by applying their abilities as chromatin maintenance factors as mentioned for the

Drosophila homolog.

[-7  MLL and itsinvolvement in human cancers

Mammalian MLL (Mixed Lineage Leukemia) is a 400 kDa protein ubiquitously
expressed during embryonic development. The human MIl gene is located to
chromosome 11 in the chromosomal region 11923 and is involved in a variety of
chromosomal translocations in infantile myeloid and lymphoid leukemias (Rowley, 1993;
Liang et a., 1996; Look, 1997; Gilliland, 1998). Due to the association with blood
cancers it was speculated that wt MLL plays an important role in the early development
of the hematopoietic system (reviewed in Ernst et al., 2002). The transocation BCR
(break point cluster region) in the MIl gene is tightly confined around intron 11. In the
trand ocations, the N-terminal part of MLL isfused to a broad diversity of fusion partners
(reviewed in DiMartino and Cleary, 1999). Since there are no common features of these
fusion partners, their role in the tumorgeneric effect of the transocations remains
obscure. It seems that two constituents combine to MIl-mediated tumorigenesis. Firstly,
removal of C-terminal MLL sequences may create a dominant-negative form (Prasad et
al, 1994; Schichmann et al., 1994, 1995) and secondly addition of a fusion partner may
provide a positive contribution. The leukemogenic fusion proteins retain the AThooks,
and MT domain of the MLL protein while PHD and SET domain are excluded from the
fusion. The fusion partner may play roles in stabilization of the fusion protein and/or
offering a platform for MLL dimerization (Dobson et al., 2000).
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[-7.2 MLL mutant mice

The hypothesis that mammalian MLL has a regulatory function similar to Drosophila
trithorax has been supported by the phenotypic analysis of targeted disruptions of the
mouse MII locus. To date three different k.o. strategies for MIl have been published :

In the first publication by Yu et a. in 1995, ablated MLL function was achieved by
introducing lacZ-polyA into exon three of MIl. This knock out design resulted in
truncation of the Mll-transcript behind the three AT hooks. Heterozygous animals were
viable but showed a complex phenotype, implying that the MII gene is haploinsufficient.
Heterozygous pups were growth retarded, and displayed female hypofertility, anemia and
B-cell population reductions. Segmental abnormalities occured with incomplete
penetrance and included sternal malformations and bidirectional axial homeotic
transformations. Anterior transformations of cervica vertebra C7 to C6 and thoracic
vertebra T3 to T2 as well as posterior transformations of T13 to lumbar vertebra L1 and
L6 to sacral segment S1 were reported. At the molecular level posterior shifts of hox-c9
and hox-a7 expression boundaries in E10.5 +/- embryos were detected by RNA in situ
analysis. Bidirectional transformations as well as caudally shifted homeotic gene
expression boundaries recapitul ate the homeotic phenotypes of trx identified in flies.
Homozygous animals were embryonic lethal after E10.5. While spatiotemporal initiation
of hox-a7 and hox-c9 expression around E8.0 was still properly established, expression of
those genes after E9.0 was completely missing (Yu et al., 1998). This failure of
expression maintenance is also analogous to observations for fly trx.

The second mutant Ml| allele (Yagi et al., 1998) was truncated after exon 11, which in +/-
animals results in only a minor anemia, but otherwise wt appearance. -/- embryos died
between E11.5-E14.5 probably due to edema and purpurae which reflects the
hematopoietic involvement of MLL in embryonic development. It was proposed that
reduced hox expression led to retardation of hematopoietic precursor differentiation and
therefore the hematopoietic phenotype. The delayed time of death compared to the first
MIl alele could be explained by the differential targeting design: Replacement of exons
12-14 (recapitulating the BCR in human leukemias) with a neo selection marker leads to
the expression of an N-terminal transcript that includes AT hooks and the

methyltransferase domain and could therefore retain some vital functions of MLL.
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Suggestively though this provides a hypomorphic alele that induces delayed but lethal
embryonic development.

Ayton et a. published the third Mll-allele in 2001. Their mutant MLL transcript is
interrupted after exon five by introduction of STOP-IRES-lacZ. In the heterozygous state,
this mutation causes mild skeletal defects but when homozygous embryos never make it
beyond the 2-cell stage. Discussions about this difference in phenotypic severity
compared to the first two approaches still remain but is explainable by the idea that the
third MII alele creates a dominant negative mutation. In contrast to the first allele, Ayton
produces an Ml transcript that contains AT hooks and MT domain. Both domains are
known to bind DNA not in a sequence specific but in a structural manner so that the
creation of a new dominant negative repressor is conceivable. On the other hand the third
alele is the only one that does not create a fusion between the truncated MIl gene and
lacZ or neomycin respectively which would lead to a stabilisation of the truncated protein
comparable to the situation in chromosomal translocation of human leukemias. Also our
unpublished observations with a fourth allele shows, that retrieval of Ml -/- embryos is
particulary difficult, indicating that the Ayton allele represents the real MIl knock out. It
should be noted though that in neither of the three publications, detection of a truncated
protein was successfully investigated.

Astargets for MLL the hox genes of cluster hox-a and hox-c could be identified: Yu et al.
found that hoxa7 and c9 expression in whole embryos was affected by loss of Mll. Yagi
et al. detected shifted expression boundaries for hox-a7, ¢8 and c9 in unfractionated fetal
liver of MII-/- embryos. Hanson et al. assessed in 1999 the expression of Hox genes in
E10.5 Mouse Embryonic Fibloblasts (MEFs) and found that hox-c4 trough ¢9 and hox-
a3 through al0 were either absent or markedly reduced in MII-/- MEFs. Interestingly in
neither of the investigations, members of the other two hox clusters hox-b and hox-d

seem to be altered.



-8 TRX2

The MII sister gene Trx2 is located on chromosome 19 (19913.1) and spans a genomic
region of 35 kb (Huntsman et al., 1999; FitzGerald and Diaz, 1999). The 8.5 kb mRNA
consists of 37 exons, displays the same exon-intron structure as MIl and expresses to a
280 kDa (2715 amino acids) protein. As heterozygous mutants for MLL show a
documented phenotype (see below), TRX2 cannot compensate for the MLL mutation,
indicating that their functions are at least partially non-overlapping.

[-7.1 Involvement of TRX2 in human cancers

The Trx2 gene maps to 19913.1, aregion of frequent rearrangements or amplification in
solid human tumors (Mitelman et al., 1997). The significant similarity between MLL and
TRX2 including the conserved exon-intron structure, sharing of common domains and
the location of TRX2 to a site of rearrangements, suggested the potential involvement of
this gene in tumorigenesis. Indeed amplifications of the Trx2 gene were detected in two
pancreatic cell lines and one glioblastoma cell line (Huntsman et al., 1999). This
observation isin concordance with former experiments in Drosophila, which showed that

dosage regulation of trx isimportant for hox expression control (Gould, 1997).

[-7.2 TRX2 mutant mice

A Trx2 k.o. mouse is currently being analyzed by Stefan Glaser in the Stewart lab. The
mutant Trx2 alele is truncated after exon one. (For detailed description of the k.o.
strategy please refer to the results section). Trx2 heterozygous animals are viable, fertile
and display no observable phenotype. In the homozygous state the mutation causes
embryonic lethality at embryonic stage E10.5, and is characterized by a general retarded
growth that is first observed at E7.5 (figure 1-4). Gastrulation as a crucia process during
embryonic development, in which the three germ layers (ecto-, endo- and mesoderm) of
the mammalian embryo are being formed, happens between E6.5 and E7.0. In the
subsequent process of neurulation (E7.5 - E8.0) differentiation within the embryonic
ectoderm forms the neural plate that will finally lead to development of brain structures
and the neural tube. Embryonic stage E7.5 is also characterized by development of extra

embryonic structures, which mainly perform important supporting roles for the

45



developing embryo. In organogenesis that starts around E8.5 development of each of the
major organ systems is initiated. The dating of the Trx2 -/- phenotype to E7.5 suggests
that knock-out embryos seem to pass unaffected through the gastrulation stages with
respect to growth rates. But either aborted pattern formation during gastrulation or failure
in important morphological changes (i.e. embryo turning) that take place in subsequent
stages of neurulation or organogenesis leads to the retarded growth and finally resorbtion
of the mutant embryo. TRX2 seems to have a pleiotropic effect on the essential
developmental activities of those stages.

Unverified and unpublished RNA in-situ hybridization studies in our lab have identified
the main head organizer gene otx2 and a member of the mammalian Hox gene
complexes, Hoxb-1, aspotential Trx2 target genes. This dataindicates that TRX2 like its
Drosophila counterpart TRX and its mammalian ortholog MLL is involved in homeotic
and Hox gene complex regulation. Interestingly a member neither of the Hox-b nor of the
Hox-d cluster has ever been identified as targets for the MLL protein. This might lead to
the assumption that TRX2 and its close relative MLL in mammals cooperate to regulate
the four Hox clusters; with MLL regulating Hox-a and Hox-c, while TRX2 is regulating
Hox-b and Hox-d. Expression of both potential target genes is correctly initiated but not
maintained at later stages (our unpublished results). This indicates a further concordance

with observations for Drosophila TRX, which also acts as a positive maintenance factor.

In summary, the evidence so far indicates that mammalian trxG proteins like the fly
counterpart play key roles in the maintenance of expression patterns that are crucial for
embryonic development. The way, in which this group of proteins performs that activity,

probably involves the maintenance of open or repressed chromatin states.
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E8.5

Figure I-4: Phenotype of Trx2 knock-out embryos.

For developmental stage E6.5 and E7.5 whole mount embryos lacZ stainings are shown. Due to the features
of the k.o. cassette the Trx2 k.o. allele can be monitored by lacZ expression. Wt embryos are white (indicated
by white oval) while heterozygous (+/-, indicated by a blue oval) and homozygous (-/- indicated by a red
oval)) embryos can be distinguished by differentially intese blue staining. For the later stages unstained
embryos are shown. Wt and +/- embryos both show wt size while -/- embryos are retarded. Before E7.5
Trx2-/- embryos don't show an abnormal phenotype. From E7.5 on -/- embryos are retarded in size and
developmental stage with varying penetrance compared to their wt and +/- littermates. After E10.5 no intact
-/- embryo is found. The heavyly retarded red cicled -/- embryos of E11.5 are in the process of resorbtion.



-8  Goalsof thisstudy

The power of genetics in Drosophila uncovered an unusua class of transcriptional
regulators termed the trxG. Little is known about how trxG members act in mammals.
This thesis focuses on one of the mammalian orthologues of the founding member of the
trxG, Trithorax. Effortsin our lab to understand the properties of TRX2 in mammals have
been confined to early functions in embryonic development since the early lethality of the
Trx2 k.o. mouse precludes the study of later functions. Trx2 appears to be expressed
ubiquitously throughout development and in the adult. Since the Drosophila studies on
Trx imply that it plays a major role as a maintenance factor for gene expression patterns,
possibly through epigenetic regulation, experimental approaches to examine TRX2 action
after the first embryonic crisis caused by its absence were a clear priority.

We chose to use two different ways to explore the involvement of Trx2 in differentiation
and fetal development. A Trx2 homozygous knock out ES cell line was created to
observe if the loss of Trx2 causes any defects in cell functions and viability in the
undifferentiated state. Additionally, studies of the in vitro differentiation potentials of
Trx2 deficient ES cells should serve as a modd to investigate the role of Trx2 in the
differentiation of various cell lineages while Trx2-/- blastocyst injections and analysis of
chimeric embryos presented a way to study the role of Trx2 during embryonic
development and later stages. Since indications from the fly protein suggest an important
involvement in embryonic development on the basis of chromatin regulation through
histone methylation, the posttransational histone modification patterns of Trx2 -/- ES
cells were examined.

In a second approach, a fusion of Trx2 with a fluorescent marker by knock-in to the
endogenous locus in ES cells was undertaken to examine the cell biology of Trx2 by
following the sub cellular distribution of the protein before and during various

differentiation stages.
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Mat. Material

Mat-1 I nstrumentation
30ml-centrifuge-tubes

37°C room shaker

37°C shaker (Multitron)

8-channel pipet

Agarose gel boxes

Balance (BP4100S)

Balance (Explorer)

Cell culture centrifuge (Multifuge 3 S-R)
Cell culture hood (Herasafe)

Cell culture incubator (Heracell)

Cell culture microscope (CK40)

Cell culture rotor (# 6445)

Centrifuge (Avanti J-30I)

Centrifuge 4°C (Allegra 6)

Centrifuge 4°C rotor (GH3.8)
Centrifuge rotor (JLA-16.250)
Centrifuge rotor (JA-30.50)

Centrifuge Table-Top Mini (5415D)
Digital camera (CAMEDIA C-3040Zoom)
Dissection fine scisors

Dissection foreceps (#5)

Electroporator bacteria cells (# 2510)
Electroporator ES cells (Gene Pulser Xcell)
Fluorescence microscope (BX61)
Fluorescence microscope camera (Cool Shap)
Geiger counter(LB122)

Gel documentation system

Glassware

Hemocytometer

Hybridisation glass tubes

Hybridisation oven

Ice mashine

Intensifying screens

Liquid nitrogen system

Magnetic stirrer (MR3001)

Microwave

PCR mashine (robocycler gradient 96)
Phosphoimager (FLA 3000)
Phosphoimager screens (# 2340)

Corex

Kuehner

Infors

Eppendorf

EMBL workshop
Sartorius

Ohaus

Heraeus

Heraeus

Heraeus
Olympus
Heraeus
Beckman/Coulter
Beckman/Coulter
Beckman/Coulter
Beckman/Coulter
Beckman/Coulter
Eppendorf
Olympus

F.S.T.

neolLab
Eppendorf
BioRad

Olympus
Visitron Systems
Berthold

Biostep

Schott

Neubauer

Sauer

Sauer

Ziegra

Sigma

Cryo Anlagenbau GmbH
Heidolph

Bosch

Stratagene
Fujifilm

Fujifilm
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Pipetaid

Pipettes

Platform horizontal shaker
Platform rocking

Power supply

Protein gel boxes

Protein gel glass plates
Rotating wheel

Scintillation counter

Semi-dry transfer cell blotter
Spectrophotometer (Ultrospec 2100pro)
Spectrophotometer cuvettes
Speed vac (concentrator 5301)
Stereomicroscope (MZ8)
Stereomicroscope (SMZ1500)
Stereomicroscope digital net camera (DN100)
Thermomixer
Translluminator (BioView)
Ultracentrifuge (OptiMAX)
Ultracentrifuge rotor (MLAS8O0)
Vacuum oven (Vacutherm)
Vacuum system

Waterbath

X-Ray cassettes

X-Ray films (BioMaxMR)

M at-2 Disposables
Aluminium foil

Bacteria plates

Cdll culture freezing vials

Cdll culture pipetts (5-, 10-, 25-, 50 ml)
Cell scraper (23cm)

Centrifuge tubes (1.5 ml and 2 ml)
Centrifuge tubes (12-, 15-, 50 ml)
Chromatography paper

Combitips

Cover dlips ( 24 x 60 mm)

Cover dips (£12 mm)

Electroporation cuvettes bacteria 1 mm
Electroporation cuvettes ES cells 0.4 cm
Filters (0.22 nm)

Filters (Steritop 0.22 nm 500ml)

Glass beads (1 mm)

Gloves

Drummond
Gilson

GFL

EMBL workshop
EMBL workshop
Bio-Rad

Bio-Rad
Kisker-Labinco
Beckman/Coulter
Bio-Rad
Pharmacia
Sigma

Eppendorf

Leica

Nikon

Nikon

Eppendorf
Biostep
Beckman/Coulter
Beckman/Coulter
Heraeus

V acuubrand

GFL

Dr. Goos

Sigma

Toppits
Greiner
Nunc
Falcon
Nunc
Eppendorf
Falcon
Whatman
Eppendorf
Marienfeld

Menzdl-Glaeser

Eppendorf
Bio-Rad
Millipore
Millipore
Biospec
Saenger



Inoculation needles

Needles (Microlance)

Nitrocellulose membrane for DNA/RNA transfer (BiodyneB)
Nitrocellulose membrane for protein transfer (Protran)

PCR tubes (0.2 ml thinwalled flat cap)

Saran wrap

Screw-cap tubes

Slides (76 x 26 mm)

Spectrophotometer plastic cuvettes

Syringes

Tissue culture plates (24-well and 6-well)

Tissue culture plates (5-, 10-, 15 cm, 48-well)

Tissue embedding molds (22 mm sguare)

TLC membrane (Polygram CEL 300 PEI)

Ultracentrifuge tubes (polycarbonate thick wall, 16x64 mm)

Mat-3 Chemicals
Acrylamide

Agarose

Ampicillin

APS

Bacto-Agar
Beta-mercaptoethylamine
Bisacrylamide
Bromphenolblue

BSA

CaCl,

Chloramphenicol
Chromiumpotassiumsulfate
Coomassie
Cyclohexemide

DTT

EGTA

Ethidiumbromide
Ferricyanide
Ferrocyanide

Ficoll

G418

Gelatine

Glycine

HCI

Hepes

Hygromycin B

IPTG

Nunc
Becton/Dickinson
Pall

Schleicher + Schuell
Peglab

Toppits

Sarstedt
Menzel-Glaeser
Sarstedt
Becton/Dickinson
Greiner

Falcon
Polysciences Inc.
Macherey-Nagel
Beckman

Sigma
Gibco

Sigma
Sigma
Difco

Sigma
Sigma
Merck
Sigma
Merck
Sigma
Sigma
Merck
Sigma
Biomol
Sigma
Sigma
Sigma
Sigma
Sigma
Gibco

Merck
Merck
Merck
Biomol
Roche
Sigma
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KAc

Kanamycin sulfate
KCl

KH,PO,

KH,Ac
L-Arabinose
L-Cystein

Methyl green
Methylene blue
MgCl,
Milkpowder
Mitomycin

MnCl,

MOPS

Na,HPO,
Na-Citrate

NaCl

NaOAc

NaOH
N-lauroylsarcosine
OCT (tissuetek)
Paraformal dehyde
Pl

RbCl,

Retinoic acid

SDS
Sodiumdeoxycholate
Spermidintrihydrochloride
Sucrose
Tetracycline
Titriplex (EDTA)
Trizma

Urea

XCFF

X-Gal

ZnS0O,

Mat-4 Enzymes markersand nucleotides

1kb ladder

DNAsel

dNTP mix

Klenow large fragment

Prestained protein marker, broad range

Proteinase inhibitor cocktail

Merck
Sigma
Merck
Merck
Merck
Sigma
Sigma
Sigma
Sigma
Sigma
Hairler
Sigma
Sigma
Sigma
Merck
Merck
Merck
Merck
Merck
Sigma
Sacura
Sigma
Sigma
Sigma
Sigma
Bio-Rad
Sigma
Sigma
Sigma
Sigma
Merck
Merck
Merck
Merck
Biomol
Sigma

Gibco

Sigma
Amersham-Pharmacia
NEB

NEB

Sigma
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Proteinase K

Restriction enzymes
RNA polymerase T3/T7
RNAse A

rNTP mix

T4 DNA ligase

Tag and PCR buffer

Mat-5
LB (LuriaBertoni media)

TE (pH 8.0)

Acrylamide-Bisacrylamide mix (30%)
Beta-mercaptoethanol
BioRad protein assay
DMEM (Glutamax)
DMSO

ECL solutions
EN*HANCE

Eosine

Ethanol

Eukitt

FCS

Formamid

Glacia acetic acid
Gluteraldehyde
Glycerol

| sopropanol
L-Glutamine
LIF-ESGRO

Methanol

Non essential amino acids
NP40
Penicillin/Streptomycin

Solutions and common buffers

1%
0.5%
1%

171mM
3.4mM
10mM
1.9mM

10mM
1mM

Merck

NEB

NEB

Sigma
Amersham-Pharmacia
NEB

Roche

bacto tryptone
bacto yeast
NaCl

NaCl

KCI
NaHPO,
KH,PO,

Tris
EDTA (pH 8.0)

Severn Biotech LTD
Sigma
Bio-Rad
Gibco
Sigma
Amersham-Pharmacia
NEN
Sigma
Merck
Fluka
Gibco
Sigma
Merck
Sigma
Merck
Merck
Gibco
Chemicon
Merck
Biochrom
Roche
Gibco
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Phenol/Chlorophorm/I soamylalkohol
Sodium Pyruvate

TEMED

TRI Reagent

Triton-X100

Trypsin/EDTA

Tween 20

M at-6 Radioactive isotopes

Sigma
Gibco
Sigma
Sigma
Sigma
Gibco
Sigma

Amersham-Pharmacia

dATP (redivue desoxyadenosine 5'[a*P)] triphosphate triethylammonium salt, 10mCi/ml)
dCTP (redivue deoxycytidine 5Ta*P] triphosphate triethylammonium salt, 10mCi/ml)
rUTP (Uridine 5[a®P] triphosphate triethylammonium salt, 20mCi/ml)

SAM (S-Adenosyl [L-methyl-*H] methionine, 1mCi/ml)

Mat-7 Antibodies
Anti-beta Actin (monoclonal)
Anti-dimethylH3/K4 (polyclonal)

Anti-mouse | g, horseradish peroxidase, from sheep
Anti-rabbit Ig, horseradish peroxidase, from donkey

M at-8 Kits

Adsvantage-GC cDNA PCR Kit

In situ cell death detection Kit, AP

Plasmid Maxi preparation Kit

Qiaquick PCR purification Kit

Random primed DNA labeling Kit

Western Star protein detection Kit (AP conjugate)

Mat-9 Cdls

BL21

EF14 wt ES cdll line (mouse strain 129)
EF14 2.88 (Trx2 heterozygous knockout)
EMFI

DH10B/pSC101/BAD/Y ZA

TGl

XL1-Blue

Sigma
Abcam
Amersham-Pharmacia
Amersham-Pharmacia

Clontech
Roche
Qiagen
Qiagen
Roche
Tropix

Stratagene

(Frank v.d. Hoeven)
Medicore
Genebridges
Stratagene
Stratagene



Mat-10 Plasmids

cf28-1 Trx2 cDNA clone

Fel3 16 kb Notl fragment of genomic Trx2 locus
pcDNA3hygro modified from Invitrogen

pCRIITopo/CF14 contains 5453-5678 of Trx2 cDNA

PEY FP-N1 Clontech

pGex2TK Amersham pharmacia

X2.2 2.3 kb Xhol fragment of Fel3

X4 4.1 kb Xhol fragment of Fel3

Fel3lacZneo (Frank v.d. Hoeven)

pSVKeoX1 Angrand et a., 1999

pMC-Cre Guetal., 1993

Mat-11 Probes

BES80 600 bp EcoRI/Bgll fragment of cf28-1

CF14 1238 bp EcoRI fragment of pCRII Topo/CF14 plasmid
EYFP 511 bp Pstl/Sall fragment (position 888-1399) of pEY FP-N1
Hygro 632 bp Pstl/Scal fragment (position 2456-3088) of pcDNA3
X4 650 bp Hindll1 fragment of X4 plasmid

Mat-12 Syntyhetic oligos (produced by Biospring)

Orientation of the oligosis5 — 3'. Restriction target site sequences are displayed in italics, PRC primer
(annealing) sequences are displayed in bold.

ET hygro up
ATATCATCACGAACAGTAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAAAA

AGCCTGAACTCACCGCGACG

ET hygro dw
GGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGCTGATTAT

GATCACTATTCCTTTGCCCTCGGACGAGT

E TTTTTGGATCCCAGGCACTACCACCACAGCA
= TTTTTGAATTCTCGGGAAGGGACACTCTCAG

EYFP up
GATCATCCGGTACCCGGCCCTGCGCACGGGCTGCCCCTCCCCCCGCCTCCCCGGCCCCTCTCACG

GTGCCAAGATGGTGAGCAAGGGCGAGGAGCTGTTC
EY FP dw GATCATCCGTCGACCCTTGTACAGCTCGTCCATGCC

Trx2 up GATCATCCCTCGAGAGCGGCGGCGGCGGGCGGCGGCAGT
Trx2 dw GATCATCCGAGCTCCTGAACTCGCGCACCAGCCC

L GGCCCCTCTCACGGTGCCAAGATG

M CTCCGGCATGCAGCCTCGGTTCGG
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M. Methods
WORKING WITH DNA

M-1 Restriction enzyme digestion

Equimolar amounts of DNA fragments are cleaved with a convenient restriction enzyme.
For calculation of the amount of enzyme, the following rule is applied :

1 unit of restriction enzyme cuts 1 ng DNA within 1 hour.

Every enzyme is used with its corresponding buffer in 1x concentration.

The optimal temperature and further information about conditions for every digest is
gathered from the New England Biolabs (NEB) catalogue.

Incubation is at least 2 hours and the reaction volume is usually 20 .

M-2 Ligation

Ligations were set up by mixing vector and insert DNA (insert in three fold molar excess to
vector) in avolume of 15 m with one unit DNA T4 ligase and the buffer suggested by the
supplier. The reaction was incubated at 16°C o/n.

M-3 Transformation
M-3.1 Preparation of heat shock competent cell
2x

salt:  120m MCaCl, buffer: 1x salt

80m M KAc 45mM MnCl,

30% Sucrose 100mM  RbCI

adjust pH with HCI to 5.6 - 5.9, filter sterile and in H,O (prepare fresh each time)
keep at -20°C.

Grow cells on agar plates containing the appropriate selection o/n.
Start overnight culture in the appropriate selection o/n.

Dilute /50 in LB and grow to ODg, 0.35.

Cool céllsin ice water

Spin 3000 rpm at 4°C for 10 min (Allegra 6 rotor GH3.8).
Resuspend pellet in 40 ml ice-cold buffer.

Spin 3000 rpm at 4°C for 10 min.

Resuspend pellet in 20 ml ice-cold buffer and add 500mM DM SO
Divide into 200-m aliquots

Snap freeze in liquid nitrogen, and store at -80°C

M-3.2 Heat shock transformation
Thaw competent cellson ice.
Add about 10ng DNA in5m H,O.
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Leave 15 minonice.

Heat shock 1 min, 40 sat 42°C.

L eave the tubes for 4 min on ice then add 800m LB-media

Leave 30 min at 37°C shaking at 12000 rpm.

Spin down 4000 rpm for 4 min at RT.

Take off 850, resuspend cell pellet in the remaining 150m and plate on agarose plates
containing the appropriate selection marker.

M-4  Mini preparation of plasmid DNA

resuspension buffer: 50mM TrisHCI, pH 8 lysis buffer: 200mM  NaOH
10mM EDTA 1% SDS
100 my/ml RNAse A

neutralization buffer: 3M potassium acetate

Transfer 1 ml of o/n culture into an Eppendorf tube.

Spin 16,000 x g at RT for 2 min, remove supernatant and resuspend the bacterial pellet
in 400m resuspension buffer.

Add 400 i lysis buffer, mix by inverting.

Add 400 m neutralization buffer, mix by inverting.

Leave 15 min at RT to let the RNAse in P1 work, then cool 5 min onice.
Spin at 16,000 x g for 3 min.

Transfer supernatant, containing plasmid DNA, into a 2- ml Eppendorf tube.
Precipitate DNA to remove residual salt by adding 900 ni isopropanol, invert
Spin 16,000 x g at RT for 10 min.

Wash pellet with 70% ethanol

Vacuum dry for 5 min in the speed-vac

Resuspend in 35m H20 or TE and use 1n1 for analytic digests.

M-5 Maxi preparation of plasmid DNA (QIAGEN)

The principle of this method is based on alkaline lysis of the bacterial cell, followed by
binding of the plasmid DNA to an anion-exchange resin under appropriate low-salt and pH
conditions. RNA, proteins and low-molecul ar-weight-impurities are removed by a medium
salt wash. Plasmid DNA is eluted by a high—salt buffer, and then concentrated and desalted
by isopropanol precipitation.

P1 buffer: 50mM Tris-HCI, pH 8 P2 buffer: 200mM  NaOH
10mM EDTA 1% SDS
100 ng/ml RNAse A
P3 buffer: 3M potassium acetate TE: 10mM Tris-HCI, pH 8
ImM EDTA
QBT buffer: 750mM  NaCl
50mM MOPS
15% isopropanol

0.15% triton X-100
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QC buffer: 1M NaCl QF buffer: 1.25M NaCl
50mM MOPS 50mM Tris, pH 8.5
15% isopropanol 15% isopropanol

Inoculate a starter culture of 200 ml LB medium, containing the appropriate selective
antibiotic, and grow o/n at 37°C, shaking 300rpm.

Harvest the bacterial cells by centrifugation 6,000 x g for 10 min at 4°C.

Resuspend the pellet in 10 ml buffer P1.

Add 10 ml buffer P2, mix gently by inverting, then incubate at RT for 5 min

Add 10 ml buffer P3. Mix immediately by inverting, then incubate on ice for 20 min
Spin 20,000 x g, for 30 min at 4°C, and remove supernatant containing plasmid DNA.
Equilibrate the QIAGEN-tip 500 by applying 10 ml QBT buffer, and allow the column
to empty by gravity flow.

Apply the supernatant to the column and let it enter by gravity flow

Wash twice with 30 ml QC buffer then elute DNA with 15 ml buffer QF.

Precipitate DNA by adding 10.5 ml (= 0,7 volumes) isopropanol to the eluted DNA. Mix
and spin at 15,000 x g, 4°C for 30 min.

Wash pellet with 70% ethanol, and spin at 10,000 x g for 10 min.

Dry the pellet and redissolve the DNA in a suitable volume of water or TE.

M-6 DNA precipitation

TE: 10mM Tris-HCI, pH 8
iImM EDTA

Add sodium acetate to afinal concentartion of 0.3M, mix by inverting.
Add to afinal concentration of 70% ethanol, mix by inverting.

Spin 16,000 x g at 4°C for 15 min.

Decant the supernatant and wash pellet with 70% ethanol.

Spin 16,000 x g at 4°C for 15 min, and decant supernatant.

Vacuum-dry pellet and resuspend in an appropriate volume of H,O or TE.

M-7  Phenol-Chloroform extraction

To remove proteins from your DNA mix, the sample has to be phenol extracted. After
adding phenol/chloroform and mixing, proteins will enter the organic phase, while DNA
will stay in the aqueous phase.

Add 1 volume phenol/chloroform/isoamylalkohol (25:24:1) and vortex for 10s.
Spin 16,000 x g a RT for 5 min.
Transfer upper water-layer into new tube and ethanol -precipitate.

M-8 Agarosegel electrophoresis

10x DNA loading buffer: 25% Ficoll TBE: 045M  Tris
100mM  EDTA 045M boric acid
BFB and XCFF imM EDTA pH8
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Molecules of linear or circular DNA become orientated in an electric field and migrate
through a gel matrix (in this case agarose) at rates that are inversely proportional to the size
of the linear fragment. Larger molecules migrate more slowly because of greater frictional
drag and because they find their way through the pores of the gel less efficiently than
smaller molecules. Superhelical, nicked circular and linear DNASs of the same molecular
weight migrate at different rates. The migration speed of these different forms depends
mainly on the agarose concentration in the gel and the concentration of intercalating dye
included.

The gels used in this thesis to analyse plasmid-DNA contain 0.8% agarose and 20ng/ml
ethidium bromide. For all gel-runs with plasmid DNA, 1XTBE was used as running buffer.
DNA samples were mixed with 1x DNA loading buffer. To obtain maximum resolution of
the DNA fragments, gelswererun at 5 V/cm.

M-9 ET cloning

In E.coli, the classical homologous recombination pathway involves RecA as a strand
invasion protein and the RecBCD complex as the major cellular exonuclease. Since
RecBCD also plays a role in recognition and destruction of foreign linear DNA, it is
impossible to introduce a linear fragment of DNA for homololgous DNA engineering.
Hence homologous recombination in E.coli has proven to be a diffecult process.

The alternative to the recA based pathway is ET/Red recombination developed by Zhang et
a. in 1998. Homologous recombination is initiated by either of the two functionally
equivalent protein pairs: RecE/RecT from the Rac phage and Reda/Redb from the | phage
(Zhang et al., 1998; Muyrers et a., 1999). RecE and Reda are 5® 3’ exonucleases, while
RecT and Redb are DNA single strand annealing proteins (Muyrers et al., 2000). They
serve to circumvent both RecA and RecBCD whereas RecBCD- strains can be used.
Alternatively, Rec BCD can be inhibited by expression of the Redg protein so that use of
linearized DNA is possible.

In the fundamental reaction, a linear DNA molecule carrying a selectable marker flaked by
40-60 bp regions of sequence homologous to the desired integration location on a circular
DNA molecule. The recombinogenic, linear DNA fragment can be generated by PCR with
oligonucleotides containing 3' the PCR primer sequence and 5’ the 40-60 bp homology
arm.

ET/Red recombination has proven to be successful in cloning of regular plasmids, BACs
and the E. coli chromosome with a very high efficiency rate. In this thesis ET cloning was
applied to modify the knock out cassette for Trx2 and for the creation of the EY FP-Trx2
targeting cassette.

M-9.1 PCR reaction and recipient plasmid DNA preparation

PCR mix: 10-20 ng template DNA
1nM 5 primer and 3’ primer each
1x PCR reaction buffer (Roche)
0.2mM dNTP
2.5 units Taq polymerase (Roche)

fill up with dH,0 to 50 mi final volume.
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Perform PCR in Stratagene robocycler:

PCR protocol: 3 min 94°C 1min94°C
40 sec 62°C
1min72°C 35 cycles
10 min 72°C

Pool PCR products, add 400 U Dpnl, 1x NEB-buffer4 and fill up with dH,O to 150 m
volume.

Perform Dpnl digest at 37°C for two hoursto remove residual template DNA.

Ethanol -precipitate digestion-mix and resuspend in 10 mi dH,0.

For cotransformation extract recipient plasmid DNA with Phenol/Chlorophorm and
resuspend in in dH,0 at 1 ng/m.

M-9.2 Preparing electro-competent cells
Prepare 10% glycerol with dH20, and cool down for at |east three hours before usage.
Grow 5 ml o/n cultures of DH10B-Y ZA cellsin 5 ng/ml tetracycline.
Make a hole in the lid of an eppendorf tube and dilute o.n culture 1:50 in 1.4 ml fresh
selective medium.
Grow for 2 hrs at 30°C with shaking to an ODg,, of 0.2.
Add arabinose to a concentration of 0.1-0.2%.
Transfer to 37°C and continue growing for about one hour until cells reach log phase
(ODgy= 0.35-0.4).
Spin down the cellsat 11,200 x g for 30 sec at 4°C.
Discard the supernatant, place the tube on ice and resuspend pellet in 1 ml icecold 10%
glycerol.
Spin down the cells at 13,400 x g for 30 sec at 4°C.
Discard the supernatant, place the tube on ice and resuspend pellet in 1 ml icecold 10%
glyceral.
Spin down the cells at 13,400 x g for 30 sec at 4°C.
Discard the supernatant, leaving 20-30 i to resuspend pellet in the remaining solution.
Use cells immediately for best transformation efficiency or snap freeze in liquid N and
store at -80°C.

M-9.3 Electro-Transformation
Precool 1-mm-cuvettes onicefor 5 min.
Thaw electrocompetent and arabinose-induced cells on ice (or use them straight after
preparation). Add 1 ml PCR product (corresponds to 2-3 ng/0.2-0.3 pmol) and 1 mi
recipient plasmid (correspondsto 1 ng/0.1-0.2 pmol).
Co-Electroporate the cellsat 1200 V.
Immediately add 1 ml LB medium and transfer back into eppendorf tube.
Incubate at 30°C for 70 min shaking at 1200rpm.
Spin at 5000 rpm for 2 min, aspirate the supernatant, but leave 100 mi liquid.
Resuspend the cells in the remaining liquid, plate on appropriate antibiotic and incubate
o/n at 37°C.
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M-10 Total RNA extraction
Grow ES on 10-cm-dish to confluency.
Wash once with PBS, then add 1 ml TRI REAGENT™ and collect cell lysate with a
sterile cell scraper. Pass several times through a pipette to form a homogenous lysate.
To ensure dissociation of nucleoprotein complexes, let samples stand for 5 min at RT.
Add 0.2 ml chlorophorm per ml of TRI REAGENT™ used.
Shake vigorously for 15 sec and allow to stand for 2-15 min at RT
Centrifuge at 12,000 x g for 15 min at 4°C. Centrifugation separates the mixture into 3
phases: a organic phase containing protein, an interphase containing DNA, and a
colorless upper agueous phase containing RNA.
Transfer the aqueous phase to a fresh tube and add 0.5 ml isopropanol per ml of TRI
REAGENT™ used and mix.
Allow the sample to stand for ten min at 4°C.
Centrifuge at 12,000 x g for 10 min at 4°C. The RNA precipitate will form a pellet on
the side and bottom of the tube.
Remove the supernatant and wash the RNA pellet by adding 1 ml 75% Ethanol per ml
of TRI REAGENT™ used.
Vortex the sample and centrifuge at 12,000 x g for 5 min at 4°C.
Samples can be stored in ethanol up to one year at -20°C.
Air-dry the RNA pellet. Dissolvein 50 ml RNAse free H,0O, aliquot and store at -80°C.

M-11 DNA extraction from EScdls

lysis buffer: 50mM TrisHCI, pH 8
100mM  EDTA
100mM  NaCl
1% SDS

add fresh just before use 0.5 mg/ml Proteinase K

Remove media from confluent layer of ES cells in 24-well plate. This amount of cells
will yield about 30-40 ng genomic DNA.

Add 500 m lysis buffer and incubate o/n at 37°C.

Take the 500 mi DNA containing cell lysate off the wells and transfer into 1ml-tubes
Mix 5 min on Eppendorf mixer

Add 200 m conc. NaCl (~ 6M) and shake by hand very hard for 2 min

Spin for 5-10 min 16,000 x g at RT.

Take 550 m without top phase and pellet into new tube

Add 400 i isopropanol, mix 2 min on Eppendorf mixer and spin for 2 min 16,000 x g.
Take off supernatant and wash with 70% Ethanol. Spin again for 4 min.

Take off supernatant and drain tube on piece of tissue. Remove residual ethanol with a
pipette and let pellet dry for not longer than 2-5 min. The pellet should still be wet

Then add 100 m TE and incubatefor 2 hrs at 37°C with gentle shaking.

The average DNA concentration should be 0.5-1 ng/mi.

For test digest use 25 m DNA and 20 U enzymein atotal volume of 45 .

For genomic PCR use 1m in 50 m volume. For genomic Southern use 25 m in 45 m
volume.
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M-12 DNA extraction from mouse-tails (yields about 100 ng genomic DNA)

lysis buffer: 50mM Tris-HCI, pH8
100mM  EDTA
100mM  NaCl
1% SDS

0.5mg.ml proteinase K (add freshly before use)

TE: 10mM TrisHCI, pH 8
imM EDTA

Add 400 m lysis buffer to the mouse-tail and incubate at 55°C o/n

Add 400 m phenol/chlorophorm/isoamylalcohol (25:24:1) and incubate in a rotating
wheel for one hour.

Spin 9,300 x g for 10 min at RT.

Transfer supernatant into new tube, add 400 m chlorophorm and incubate again for one
hour in arotating whesl.

Spin 9,300 x g for 10 min at RT.

Transfer supernatant into new tube and add 3M potassium acetate, pH5.5 to 5%.

Mix and add isopropanol to 70-80%. Shake hard by hand to precipitate DNA and let
the DNA sink to the bottom of the tube.

Take off supernatant without disturning the DNA and wash pellet with 70% Ethanol.
Spin 9,300 x g for 5 min at RT.

Discard supernatant. Remove excess liquid by pipetting and air-dry for 2-5 min.
Resuspend DNA pellet in 200 il TE. Store at 4°C.

Use 1 m for genomic PCR, 25 ml for genomic Southern.

M-13 Polymerase Chain Reaction (PCR)

The PCR reaction is classified into 3 major steps :

1. Denaturation of the DNA template

2. Primer annealing

3. Polymerisation

All steps were performed in consecutive cycles in a Sratagene Robocycler PCR mashine.
The PCR product is a double stranded DNA, consisting of the region of the complementary
strain between the flanking primers.

M-13.1 Reaction-mix
PCR mix: 10ng template DNA
1V upstream (5') and downstream (3') primer
1x PCR reaction buffer
0.2mM dNTP
2.5 units Taq polymerase
M-13.2 Protocol

Reaction conditions vary among different experiments, but are usually conformed to the
following cyclic pattern: 1 min initial denaturation at 94°C, 35 cycles consisting of 1 min
denaturation at 94°C, 1 min annealing at the relevant temperatures (depending on the
primer composition) and variable times of extension at 72°C depending on the size of the
PCR product. The last cycle was by 10 minutes of additional extension at 72°C.
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M-13.3

PCR purification (QIAGEN)

To extract the PCR product for further working, the PCR Purification Kit protocol from
QIAGEN was applied.
DNA ranging from 80bp to 10 kb binds to silicaamembrane in the presence of high salt
concentrations. Short oligos (most primers), nucleotides, salts and polymerases pass
through, while the PCR product is eluted with TE or H20.

Add 5 volumes buffer PB to one volume of the PCR reaction and mix.
To bind DNA, apply the sample to the QIAquick column and centrifuge 10,000 x g for

30 sec.

Discard flow-through. To wash add 750 i buffer PE and spin 10,000 x g for 30 sec.

Discard flow-through and spin an additional time at 10,000 x g for 60 sec.
Place QIAquick into a clean 1.5-ml eppendorff tube, add 50 m TE, let stand for 5 min
and spin 10,000 x g for 30 sec to elute DNA.

M-14 Southern analysis
In the southern analysis DNA from a standard agarose gel is transferred onto a nylon
membrane. The membrane can be incubated with a hybridisation probe that binds a specific
DNA fragment. In this case the Southern blot was carried out to verify homologous
integration of the targeting constructs into the genomic Trx2 locus.

M-14.1

50x TAE: 2M
10mM
0.57%

Gel run and southern blotting

TrismaBase 20x SSC: 3M NaCl
EDTA 0.3M sodiumcitrat
glacial acetic acid adjust with NaOH to pH

Digest about 7-10 ng of genomic DNA prepared from ES cells with the desired
restriction enzymes o/n in areaction volume of 45 ni.

Add 1x gel running buffer and load onto a 0.6% TAE gel.

Run gel in IXx TAE o/n at 4°C.

Wash gel threetimes for 25 min in 0.4M NaOH.

Wash gel for 20 minin 20x SSC.

Blot onto a nitrocellulose membrane in 20x SSC o/n.

Mark slots on the membrane and vaccuum dry for 3 hours at 80°C.

M-14.2
Mix:

Radioactive 1kb ladder

mM dGTP, dCTP, dTTP Mix

2y 1kb ladder

1x NEB2

20nCi a®PdATP

fill upwith H,0to 20 m *]

5units DNA Pol | large (Klenow) fragment

Incubate for 20 min at 37°C. *2
Heat inactivate the Klenow enzyme at 65°C for 10 min.
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Figure M-1: Autoradiograph of radioactive 1 kb ladder preparation.

1 kb ladder fragments created by EcoRI digestion contain overhangs that are filled by Klenow
enzyme with radioactively labeled dATP nucleotides. Single 0.1 yl samples were spotted and
separated by thin layer chromatography (TLC). 1*= Sample before Klenow reaction. Free
radioactive nucleotides are not yet incorporated. 2*= Sample after Klenow reaction. Incorporated
nucleotides remain on the origin, left over free nucleotides are separated. 3*= Sample after

precipitation. Free nucleotides are removed. The sample only contains incorporated radioactive
label.

un-incorporated

single —_—
nucleotides

‘ o nucleotides
. - 1ncorporated

in RNA probe

1* 2%

Figure M-2: Autoradiograph of radioactive RNA probe preparation.

T3 polymerase uses radioactively labeled dUTPs to produce a labeled RNA transcript. Single 0.1 yl
samples were spotted and separated by thin layer chromatography (TLC). 1*= Sample before
polymerase reaction. Free radioactive nucleotides are not yet incorporated. 2*= Sample after
polymerase reaction. Incorporated nucleotides remain on the origin, left over free nucleotides are
separated.



Ethanol precipitate and dissolve DNA pellet in 100m TE. Store the ladder at -20°C and use
about 5000 cpm per lanein 1x loading buffer. *3

* = gpot 0.1 i on afilter membrane for TLC, dry, run the TLC with KH,PO, and expose
thefilter for 5 min. The picture must show the pattern displayed in figure M-1.

M-14.3 Radioactive RNA probe

T3 or T7 polymerase reaction is used to transcribe a desired DNA fragment. By adding
radioactive labelled dUTP to the transcription reaction a radioactive RNA-probe is
produced.

Transcription-mix: Ing linearized DNA
1x transcription buffer (Stratagene)
ImM  rATPR, rGTP, rCTP
60 nCi UTP*
5 units RNAsin *1
5 units T3 Polymerase

Incubate at 37°C for 15 min.
Add 5 units RQ-DNAse to destroy the template for transcription. *2
Incubate at 37°C for 15 min.

* = gpot 0.1 m on afilter membrane for TLC, dry, run the TLC with KH,PO, and expose
the filter for 5 min. The picture must show the pattern displayed in figure M-2.

M-14.4 Radioactive DNA probe (random primed DNA labeling kit (Roche)

Denature 50-100 ng DNA fragment containing the desired probe sequence in a9 m
volume by heating to 100°C for 10 min, and subsequent cooling on ice.
Add 25 nM dATP, dGTP and dTTP solution.
Add 1x reaction buffer (Roche).
Add 50 nCi [a**P]dCTP, agueos solution.
Add 2units Klenow enzyme (Roche).
Incubate for 60 min at 37°C.
For precipitation add 50mM EDTA
20mg tRNA
43M NH,Ac
75% Ethanol
Precipitate for 5 min at RT.
Spin 5min 16,000 x g a RT.
Wash pellet with 70% ethanol, dry shortly and dissolvein 100 mi TE.
For denaturing add 0.5M NaOH and leave for 15 min at RT. Use volume according to
about 10’ counts per 100cm® membrane immediately.
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M-14.5 Hybridisation

hybridisation buffer: 7% SDS wash buffer: 20mM NaH,PO, pH 7.2
250mM  NaHPO, pH 7.2 1% SDS
1% BSA 1imM EDTA

1ImM EDTA

Wet the membrane from step M-14.1 in 25mM NaHPO4 and roll it into a glass tube.
Add 10 ml Hybridisation buffer to the tube and pre-hybridise for 30 min in a turning
oven at 72°C for RNA probes, at 66°C for DNA probes.

Dilute the prepared probe (M-14.3 or M-14.4) in 10 ml hybridisation buffer and add to
the membrane in the glass tube.

Place the tube back into aturning oven and hybridize at appropriate temperature o/n.
Replace the probe solution with wash buffer, rinse and wash for 10 min, then 30 min
then 1 hour in the turning oven at appropriate temperature to remove residual unbound
probe.

Expose membrane o/n.

M-15 Northern blotting

10x MOPS: 200mM  MOPS
50mM Na-acetate
10mM EDTA
adjust pH 7.0 with NaOH

50x Denhardt: 1% Ficoll type 400

20x SSC: 3M NaCl
0.3M sodiumcitrat
adjust with NaOH 10N to pH 7

LB stock: 10% Ficoll type 400

1% BSA fraction5 0.1% bromphenolblue
inH,O inH,O

H-Mix: 50% formamid
5x SSC
50mM NaP pH 6.5
8x Denhardt
0.5 mg/ml yeast RNA
1% SDS

RNA sample buffer: 53% formamide Northern gel: 0.8% agarose
6.7% formal dehyde 1x MOPS
1x MOPS 6% formaldehyde
18% L.B. stock

wash bufferd: 2x SSC wash buffer2: 0.2X SSC
1% SDS 0.1% SDS

Use 30ng total RNA (M-10) per lane.

Calculate volume of RNA solution and add 2.35x volume RNA sample buffer.

Leave 15 min at 65°C then put on ice.

Run gel in running buffer (IxXMOPS) at 230 V for two hours.

If desired stain gel in 0.5ng/ml Ethidiumbromide for 30 min, take picture and destain
in H,O for 30 min.

Blot in 10x SSC o/n. Use nitrocellulose membrane BiodyneB.

Rinse membranein 2x SSC.

Air-dry on 3mm paper then vacuum bake for 3 hrsat 80°C.

Wet filter in 5x SSC and transfer to hybridization tube, add 15 ml prewarmed H-Mix
and prehybridize for 1-3 hrsat 42°C in arotating wheel.
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Remove prehybridisation solution and add 15 ml fresh prewarmed H-Mix containing
denatured random primed DNA probe.

Hybredize o/n at 42°C in arotating wheel.

Wash 15 min at RT in wash bufferl, then 2x 20 min at 65°C in wash buffer2.
Exposeto X-Ray film.

WORKING WITH PROTEINS

M-16 Crude protein extracts

buffer E : 20mM HEPES pH 8.0
350mM  NaCl
10% Glycerol
0.1% Tween 20
1% Proteinase inhibitor cocktail (Sigma) add freshly
2mM EDTA add freshly

Remove media from ES cell dish and wash once with PBS.

Add icecold PBS and collect cells with a sterile scraper. Wash plate once with icecold
PBS and add to the collected cells.

Spin 5 min 1000 rpm at 4°C, remove supernatant and resuspend cell pellet in 1 ml
icecold PBS. Transfer to 2ml-Eppendorff tube.

Spin 2 min 5,900 x g, remove supernatant, shock-freeze cells in liquidN. Store at
-80°C.

Add about 500 M ml buffer E to frozen cell pellet (leave cells in ligid N until use)
resuspend carefully and combine cell suspensions from same cell identity.

Transfer solution into plastic via filled to 70% with 1-mm-glass-beads (sterile), close
lid without airbubbles

Bead-beat for 30 sec at 5000 rpm then cool two min on ice. Repeat Six times.
Leaveonice, spin down at 16,000 x g for one min at 4°C.

Take out 800 m supernatant transfer to precooled polycarbonate thick wall
ultracentrifuge tubes (6.5 ml /16x64 mm/Beckmann /355647) on ice.

Add 500 m cold buffer E, mix, spin again and add 500 m supernatant to the
corresponding ultarcentrifuge tube.

Ultarcetrifuge 100,000 x g for 1 hour at 4°C in aMLASO rotor.

Aliquot at 4°C and immediately shock freeze in liquid N. Store at —-80°C. (Use
approximately 40 m protein extract from 10 x 15-m-plates for one small western gel)
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M-17 Nuclear extracts

Nuclel extracion buffer: 15mM  TrisHCIpH 7.5
(200 ml) 60mM  KCI

15mM  NeaCl

5mM MgCl,

05mM EGTA

300mM  Sucrose

1% NP40

add 0.5mM b-mercaptoethanol fresh before use
add 1% proteinase inhibitor cocktail fresh before use

prepare 2 buffers, one containing, the other without NPA4O.

Grow ES cell on gelatinized10 cm plate without feeders.

Trypsinize or collect cells with a sterile cell scraper and spin down cell pellet at 1000
rpm for 5 min (Multifuge 3 SR, rotor 6445).

Put cells on ice and resuspend in 1 ml extraction buffer without NP40 per 2-10 x 10°
cells. Add same volume NP40 buffer and mix carefully, leave on ice.

Leave on ice for 20 min. (Clean nuclel are smooth and refract light. If nuclel are not
released from cells try (i) douncing (loose fitting pestle) and/or (ii) pipetting up/down
repeatedly through a small bore pipette)

Spin down nuclei 1500 rpm for 5 min at 4°C.

Remove supernatant and store nuclei pellet at -80°C.

M-18 Histonelabelling

MEM media: 5% dialysed FCS
2mM L-Glutamine
100 u:m/mlPenicillin/Streptomycin
1000U/ml LIF
48ng/ml L-Cystein
in DMEM without L-Methionine and L-Cysteine (Gibco)

Grow ES cells on feeders. Three days before the planned experiment preplate and split
onto gelatine coated 10-cm-dish.

One day before the labeling experiment, split the cells into fresh compl ete tissue culture
medium. (Set up the split ration to reach 70-80% confluency for labelling. The cultures
should contain 10° to 10’ cells))

On the day of the experiment, replace the culture medium with the minimum volume
MFM (e.g. 3 ml for a 10-cm-dish). Incubate one hour.

Add 200 nCi [*H-methyl]methionine per ml MFM. Incubate eight hours.

Remove radioactive media, wash twice with PBS and nuclel extract. (To equalize cell
numbers for individual cell clones keep a second plate for every clone that you treat the
same way, except leave out radioactivity and trypsinize and count after the eight-hour-
incubation. Equalize cell numbers before nuclei extraction.)

Store the nuclei at -80°C.

Resuspend nuclei pellet in 1x sample buffer and run acetic acid/urea gel as described.
Coomassie stain the gel, take a picture and destain.

Add enhancer solution (“EN*HANCE” by NEN converts b-particle energy into photons)
and gently rock the gel under the hood at RT for one hour.
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Remove enhancer solution, add cold dH,O and gently rock the gel for another 30 min
under the hood at RT to precipitate the fluorescent material inside the gel.

After the precipitation step has been completed, carefylly place the gel onto whatman
paper and dry under heat (80°C) and vacuum on a gel-drying-apparatus.

Place the dried gel against X-ray film (Biomax MR) and expose at -80°C for up to two
weeks.

M-19 Running acrylamide gels

stacking gel: 5% Acrylamide running gel: 5-15%  Acrylamide
125mM  Tris pH 6.8 375mM  Tris pH 8.8
0.1% SDS 0.1% SDS
0.1% APS 0.1% APS
0.1% TEMED 0.04%  TEMED
3X protein loading buffer: 250mM  Tris
25% Glycerol
5% SDS

0.25% Bromphenolblue

Prepare stacking and running gel.

Mix desired amount of protein extract with 3X PLB.

Boil for 4-5 min at 99°C.

Spin shortly and leave at RT until loading.

Load protein samples onto prepared protein gel assembly with a Hamilton pipette and
run gel at 80-150V for one to three hours depending on the protein size you wish to

detect.

M-20 Running Triton-Acid-Urea (TAU) gels

Usage of Triton/Acid/Urea (TAU) gells offers resolution of post-trandationally modified
histone isoforms, which could not be separated in conventional SDS PAGE systems due to
their similaritiesin size and charge.
The urea acts as a denaturing agent and acetic acid helps to separate histones on the basis of
charge. Addition of a nonionic detergent (Triton) permits the simultaneous resolution of
histone variants and isoforms modified post-translationally.

Stacking gel: 0.9M glacial acetic acid Acetic acid/ureagel: 0.9M glacial acetic acid
0.75%  TEMED 0.5% TEMED
6M Urea 6M urea
013%  APS 013%  APS
3.3% Acrylamide 0.37% Triton
0.16% Bisacrylamide 15% acrylamide
inH,O 0.1% bisacrylamide

inH,0O

1x Sample buffer: 5.8M urea Scavenger solution:  2.12M 2-mercaptoethylamine
0.9M glacial acetic acid 2.5M urea
16% glycerol 0.87M glacial acetic acid
0.2% methyl green inH,O

4.8%

2-mercaptoethanol
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Mix components of acetic acid/urea gel and pour into large protein gel apparatus.
Remember that shrinking will occur within the polymerisation process. Overlay with
H,O and polymerize one hour.

Remove layer of H,O and add stacking gel mixture. Save some stacking before addition
of acrylamide/bisacrylamide, to be able to replace shrinked areas. Place a 10-well comb
between plates and insert it to the desired position.

Polymerize for at least two hours at RT.

Fasten the gel assembly to the apparatus and fill both chambers with 1x running buffer
RB (0.9M galcial acetic acid). Connect the power supply in a way that the positive
electrode is placed uppermost. Histones will run towards the negative pole!!!
Preelectrophorese the gel at 130V (constant voltage) until the current no longer falls (4-5
hours). During this time periodically shutt off ther power supply and rinse the wells
usind a disposable syringe (with 27-G needle). Also remove any air bubbles that have
accumulated at the bottom surface of the gel using a pasteur pipette bent into U-shape.
Remove RB from both chambers, add water to the top chamber and rinse the wells. Pour
the water from the chamber and remove excess water.

Distribute scavenger solution evenly throughout the wells, slowly add fresh running
buffer so that it overlays the scavenger. Also fill lower chamber and continue
electrophoresis at 300V for two hours.

Add fresh RB to both chambers and rinse the wells with a syringe filled with RB.
Resuspend nuclel pellet in 1x sample buffer and load on acetic acid/urea gel with a
Hamilton syringe. (Rinse each well again with a syringe filled with running buffer
immediately before loading each sample, to remove any leaching urea.)
Elerctrophoresis the gel at 200V o/n (about 15 hours) at 4°C.

M-21 Coomassie staining of protein gels

Staining solution: 45% methanol Destain solution: 30% methanol

10% glacial acetic acid 10% glacial acetic acid
lg/L Coomassie R250 inH,O
inH,0

Deassemble protein gel assembly and transfer protein gel to a box filled with staining
solution. Incubate for five hours at RT or o/n at 4°C on arocking platform.

Remove staining solution wash once with H,O and add destaining solution. Incubate for
five hours at RT or o/n a 4°C on a rocking platform with occasional renewal of
destaining solution, until the gel has reached the desired stining intensity.

M-22 Standard Western protocol

For detection of standard protein-antibody detections without requirement for extraordinary
sensitivity, this basic western protocol was used. Here polyclonal antibodies against K4-
dimethylated histone H3 were bound by a secondary antibody anti-rabbit peroxydase. The
ECL mix used after the second antibody binding reacts with the peroxydase group and
produces chemiluminescence, which can be detected on a normal Kodak film. Buffers used
are described in the section “western star Kit” and “Nuclei extraction” if not otherwise
mentioned.
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Blocking buffer : 5% milkpowder PBS/Tween: 0.1% Tween
0.1% Tween in PBS
in PBS

If nuclei extract is the desired starting material, use nuclel pellet from one 10-cm-dish.
Add — NP40 buffer to a concentration of 10° cells/mi. Use about 5x 10° cells for loading.
If protein extract is the desired starting material, use desired protein amounts for loading.
Add 3x protein loading buffer and load on alarge Polyacrylamid gel.

Run o/n 80V at 4°C (or 4 hours 175V) until the blue front isjust leaving the gel.

Blot for 45 min, 15V in a semi-dry blotter.

Incubate in blocking buffer for two hours at RT (or o/n at 4°C).

Add primary antibody (K4H3 1:1000, Actin 1:2000) in blocking buffer and incubate for
one hour at RT.

Woash three times five min in PBS/0.1% Tween

Add secondary antibody (anti rabbit 1. 2000) in blocking buffer and incubate for one
hour at RT.

Wash once with PBS/Tween for 10 min, then three times 5 min.

Mix ECL solutions (Amersham) 1:1 and add to cover the membrane completely.
Incubate for 5 min, drain on a piece of tissue and expose to X-ray film for 1-20 min.

M-23 Western-Star-Kit (TROPI X)

Since TRX2 is a protein with very low abundance in the cell, it is hard to detect it with a
standard western protocol. All experiments performed to detect TRX2 with the specific
anti-TRX 2 were done with the TROPIX Western STAR™ protein detection kit.

10x Running buffer : 250mM  Tris Transfer buffer : 50mM Tris
400mM  Glycin 20% Methanol
1% SDS 40mM Glycine
0.1% SDS
Blocking buffer: 0.2% Casein (content of AppliedBiosystems “Western-Star™ Kit”)
0.1% Tween
in PBS
10x Assay buffer: 200mM  TrispH 9.8
10mM MgCl,
Substrate solution: 0.25mM  CDP-Sar® Ready-To-Use (content of “Western-Star™ Kit”)
1x Nitro-Block™ enhancer (content of “Western-Star™ Kit”)

Mix crude protein extracts with 3x protein loading buffer and prepare for loading as
described.

Run a 5% SDS-polyacrylamid-gel for 3 hours at 80V.

Blot semi-dry at 25 V for one hour.

Prepare blocking buffer (cook 200 ml PBS in a microwave, take to cold heating bock,
switch to 200°C and stir gently. Slowly (1 min) add 0.4 g casein powder, leave until
almost dissolved. Make sure it does not boil! Transfer to 4°C and keep stirring for about
30 min. Add Tween after it reached RT and store at 4 °C)

Rinse membrane shortly in PBS, then block o/n at 4°C on arocking platform.

Rinse membrane twice, then wash twice five minin PBS/0.1%Tween.
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Incubate for 1 hrs with primary antibody in blocking buffer

Rinse membrane two times, then wash four times 15 min in PBS/0.1%Tween.

Incubate for 1 hr with secondary goat anti rabbit akaline phosphatase conjugate
(1:5000) (content of “Western-Sar™ Kit”) in blocking buffer.

Rinse membrane two times, then wash two times five min in PBS/0.1%Tween.

Wash two time two min with 1x assay buffer.

Drain membrane by touching a corner on a paper towel, then place on plastic wrap on a
flat surface. Do not let blots dry !

Pipette 3 ml substrate solution onto the blot and incubate for five min.

Drain excess substrate solution and place blot in development folder or wrap in plastic.
Smooth out bubbles or wrinkles.

Image blots by exposing them 30 sec to 30 min to X-ray film.

M-24 Creating a TRX2 specific polyclonal antibody

In the process of creating a specific antibody against the mouse TRX2 protein, aregion in
the N-terminus that shows no homology to any other trx-G family member was choosen.
Thefinal peptide spans amino acid 56-96 (nucleotide 2262-2775 of the Trx2 c-DNA) of
TRX2 and has no overlap with any of the known protein domains.

Primer pair E+F was used to amplify a PCR-product of about 600 bp from the Trx2 c-DNA
clone cF28-1. The EF fragment was cloned BamHI/EcoRI into the expression vector pGex-
2TK which caries an N-terminal Glutathione-S-transferase (GST) tag. After verification of
the new construct by digesting Pstl/Ncol and Hincll, the positive mini-prep clones
(pGexEF) were transformed into the bacterial expression strain TG1 and BL21.

M-24-1 Induction and expression of gex-EF:
- Grow o/n culture of BL21- and TG1-pGexEF at 37°C.
Dilute 1:100 in fresh culture medium and continue growing for about 2.5 hours until
ODgy,0f 0.5 at 37°C.
From rest of o/n culture prepare 30% Glycerol stock and freeze at -80°C
Take 1 ml, spin down pellet, add 50 M H,O and freeze at -20°C
Induce rest of the culture with IPTG 0.5mM transfer to 30°C and continue growing
for about 3 hours until you reached an ODg, of 1.
Take 1 ml, spin down pellet, add 100 m H,O and freeze at -20°C
Add protein loading buffer and load 20 m of induced and un-induced sample on a
15% polyacrylamid protein gel and run at 100V for one hour.
Coomassie stain the gel, transfer onto whatman paper and dry in avacuum gel dryer
for 30 min.

The fusion protein gex-EF has an expected molecular weight of 45.2 kDa (411 amino
acids). In Figure M-2, aband of the expected size isvisible in the induced sample of both
expression strains, that is missing in the un-induced sample. EF-Gex is therefore expressed
in both TG1 and BL21.
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M-24.2 Purification of gex-EF
M-24.2.1 Induction

Grow 4 x 1L o/n culture of BL21 pGexEF at 37°C.

Dilute 1:50 in fresh culture medium and continue growing for 3 hr to OD 0.78 at 37°C.
Chill to 18°C onice (~15min)

Induce with 0.2 mM IPTG + 0.2 mM ZnSO4 for 7 hours at 18°C.

Freeze as pearls after resuspending in 1x PBS

M-24.2.2 Protein extraction
High Sdlt Lysis Buffer: 1.5% N-lauroyl-sarcosine
1x protease inhibitors
1mM EDTA
1.25M NaCl
in PBS
Elution buffer: 50mM HEPESpH 8
300mM  NaCl
0.5mM DTT
0.05% Tween20
10mM reduced glutathione
(adjust to pH 8 with NaOH after adding the reduced glutathione from a 250mM stock in H20)
Storage buffer: 20mM HEPESph 7.5 Column buffer: 0.25M NaCl
150mM  NaCl 0.05% Tween-20
0.05% Tween20 0.5mM DTT
20% Glycerol
Grind the frozen pearls (cells) to afine powder under liquid N, using amortar and
pestle (pre-cooled with N,). The ground cells can be stored frozen at -80° C.
Thaw the ground cells by adding 5 volumes of high salt lysis buffer. 1f ground
cellsare at liquid N, temperature allow them to warm up until they are just starting
to thaw at the edges before adding the lysis buffer. Stir at once with a spatula to
break up clumps. Add astir bar and stir in the cold room for afew minutes (15-30
min).
Sonicate for 6 x 10 sec pulses (with at least 20 sec pauses between) on wet iceto
shear DNA. Use the Branson Sonifier 450D at 70% amplitude with the 10 mm flat
tip immersed 1-2 cm below the surface of the liquid.
Centrifuge extract in Beckmann TY PE 45Ti @ 38, 000 rpm, 4°C for 45 min. Fill
tubes to at least 3/4 full adding buffer if there is not enough extract.
Transfer the supernatant to a 100 mL graduated cylinder.
Add5mM DTT ( fina concentration) to the supernatant.
24.2.3 Affinity chromatography

M-

Wash 3 ml glutathione sepharose (Pharmacia 17-1756-01; 4 ml of slurry contains ~ 3
ml of packed beads) in a50 ml conical tube three times with 25 ml of column buffer.
Sediment resin between washes using the Megafuge 3SR centrifuge; 4000 rpm for 2
min. Pour off the wash buffer taking care not to discard any beads.
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Add high speed supernatants of cell extract to these washed beads and rotate end-over-
end in the cold room for 30min. Sediment the beads.

Wash the beads once with 50 ml of column buffer, then sediment the beads and discard
the supernatant.

Use asmall amount of buffer with a plastic pasteur pipet to transfer al the beadsinto a
disposable column. Wash with 20 CV of Column Buffer With detergent and then with
5 CV of Column Buffer without detergent. Allow all of the buffer to drain through the
column.

Elute fusion protein with Elution Buffer containing 10mM reduced glutathione.

o tocollect afraction:

a) Add 500 ul of elution buffer to the drained bed

b) Collect the flow-through into a 96-deep well plate

C) Repeat stepsa) and b) 25 times!

d) Stop the flow and quickly determine the peak fractions using the Bradford
assay. Collect additional fractions if the peak is not yet eluted from the
column.

Pool the peak fractions (up to atotal of 2.5 ml) then desalt them into storage buffer or
desalt over desalting column on biocad (Pharmacia Hiprep 26-10) pool sample up to
15ml.

M easure the protein concentration of this desalted-pool by A280 and also by the
Bradford assay. Then add glycerol to 20%, fast freeze in liquid N, and store @ -80° C.

The purified peptide was sent for polyclona antibody production in two rabbits (3853g and
38549). Monospecific 1gGs were isolated against the original antigen EF-Gex. (BioGenes)

To test specificity of the newly produced mouse TRX2 antibody, equal concentrations of
protein extracts from TAP tagged TRX2 ES cells, wt ES cells, ES cells heterozygous for
the trx2 k.o, and ES cells homozygous for the trx2 k.o., were separated on a 5%
polyacrylamid protein gel and probed with anti-mTRX2 (3854g 1:300). The result is
displayed in figure M-3. The band detected by anti-TRX2 in TAP-Trx2 cell extracts about
300kDa. The band detected in wt and Trx2 heterozygous extracts is dightly smaller since
the TAP tag of about 10 kDa is missing. The band intensity in the wt sample is reduced to
half in the +/- sample and completely absent in the -/- sample. It was thus concluded that
anti-mTRX2 is specific for TRX2. It does not detect other closely related trx-G family
members like MLL.

Colaborators (Meisterernst et a.) have tested affinity purified 1gG derived from both
rabbits and found that only 3853g works satisfactory in ChIP experiments. Western
experiments performed by me and other 1ab members also confirmed 3853g as the antibody
with highest affinity and specificity to TRX2.

Both antibodies have been aiquoted in 30% glycerol and stored at -20°C.

38539 (400 ng/ml) - use 1:4000 dilution (240ng/ml) — use 1:2000 dilution

38549 (30 ng/ml) - use 1:300 dilution (200ng/ml) — use 1:2000 dilution

Two additional rabbits (4676 and 4675) have been injected with the EF-gex antigen and
bled for antiserum extraction. Aliquots are stored at -80°C.
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Figure M-3: Specific TRX2 antibody (anti-TRX2) raised against the EF fragment

(a) Loaction of the Trx2 specific EF fregament within the TRX2 protein. (b) Protein expression
profile of pGex-EF in the expression strains BL21 and TG1 before and after induction with IPTG.
In both expression strains upon induction a band of the expected size (45.2 kDa) becomes visible
that is invisible in the uninduced state. (¢) Western on crude protein ES cell extracts using the new
anti-TRX2 antibody. The 280 kDa TRX?2 band (indicated by black arrow) is detected in wt and Trx2
heterozygous (+/-) ES cells lower bands are TRX2 degradation products. In TAP-Trx2 ES cells that
carry a TRX2 20 kD N-terminal TAPtag, anti-TRX2 recognizes the corresponding 300kDa band
(indicated by green arrow) while no signal is visible in ES cells deficient for Trx2 (-/-).



WORKING WITH EMBRYONIC STEM (ES) CELLS

M-25 Preparing Mouse Embryonic Fibroblast cells (MEFs, feeders)

All ES cell experiments were performed in feeder dependent 129 cell lines. To maintain
their pluripotency in long-term culture, these ES cell lines should be grown an monolayers
of mitotically inactivated fibroblast cells (Thomas and Capecchi, 1987; Leighton et al.,
1995). Feeder cells are derived from mouse embryonic fibroblast tissue, expanded up to
maximally 15 cell divisions and then inactivated by mitomycin treatment to prevent further
cell divisions.

feeder -media: 10% Fetal Calf Serum
100 u:m/ ml penicillin/streptomycin
2mM L-glutamine

in DMEM high glucose

For cultivation feeder cells are thawn onto 0.1% gelatine coated Falcon plates and
incubated at 37 °C, 5% CO,. Cells were passaged one day after they reached 100%
confluency (roughly every three days) by trypsinization. The original vial purchased by
Medicore was expanded to in total 21 15-cm-dishes before a 2-2.5 hour treatment with 10
ng/ml mitomycin. Those mitomycin treated feeder cells were frozen and upon need plated
in 100% confluency (about 10° cells) one day before seeding the ES célls.

M-25.1 Expanding MEF cells

Thaw original feeder vial onto gelatine coated 10-cm-dish. After one day, the plate
should be 100% confluent. Change media and |eave one more day in the incubator.
Remove media and rinse plates with 1x PBS.

Add 1x trypsin/EDTA (2 ml on a 10-cm-dish, 7 ml on a 15-cm-dish) and leave the plate
at 37°C for 2 min. Immediately add feeder mediato inactivate the trypsin.

Pipet the suspension up and down to remove cell clumps.

Transfer the suspension into a 15-ml-falcon tube containing media and spin 1000 rpm
for 5min at RT (Multifuge 3 SR, rotor 6445).

Aspirate supernatant and resuspend cellsin media. Then split 1/3 and plate on new
gelatine coated dishes.

Repest this procedure until you reach 21 times confluent 15-cm-dishes.

M-25.2 Freezing MEF cells

2x freezing mediaz  50% Fetal Calf Serum
20% DMSO
in DMEM high glucose

Trypsinize cells from a confluent 15-cm-dish as described.

After spinning down in media, resuspend cells from one plate in 0.5 ml media and cool
down onicefor 5min.

Add 0.5 ml 2x freezing media and trasfer to 1-ml freezing vials then freeze at -80°C.
Transfer to liquidN the next day. This vial contains enough feeder cells to cover five
10-cm-dishes.
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M-26 Culturing mouse EScells

Mouse embryonic stem (ES) cells are totipotent cells derived from the inner cell mass of
3.5 day blastocysts. They can be modified and reintroduced into blastocysts, giving rise to
manipulated chimeric animals. (Thompson et al. 1989)

If they are held under certain growth conditions, they can also differentiate to various cell
types. To avoid this, LIF serum is added to the ES medium. It suppresses differentiation, so
that the silencing of genomic regions during the differentiation process is prevented.

ES cell media: 15% Fetal Calf Serum

100 u:m/ ml penicillin/streptomycin
100nM non-essential amino acids
1mM sodium acetate

1M b-mercaptoethanol

2mM L-glutamine

600 U/ml LIF “ESGRO”

in DMEM high glucose

For cultivation ES cells were thawn onto feeder coated 10-cm Falcon plates and incubated
at 37 °C, 5% CO,. After ES cells are thawed it is recommended to passage them every
second day by trypsinization. Reseeding should be calculated in away that the cells reach
100% confluency after 48 hoursin culture.

For long-term storage ES cells are kept in liquid nitrogen in acell density of 5x 10° cellsin
freezing medium containing DM SO as a cryoprotectant. Since DM SO is harmful to cellsit
should contact ES cells as short as possible before and after freezing.

M-26.1 Harvesting ES cells

Remove media and rinse plates with 1x PBS.

Add 1x trypsin/EDTA (2 ml on a 10-cm-dish) and leave the plate at 37°C for 5 min.
Pipet the suspension up and down to remove cell clumps.

Transfer the suspension into a 15-ml-falcon tube containing ES media and spin 1000
rpm for 5 min a RT (Multifuge 3 S-R, rotor 6445).

Aspirate supernatant and resuspend cellsin 3-8 ml of ES media. Then plate out an
appropriate fraction on anew dish. A rough estimate is that a confluent 10cm dish
should yield 1-4 x 10’ cells and approximately 1-5 x 10° cells should be seeded on a
10cmdishin 10 ml media.

M-26.2 Freezing ES cells

2x freezing mediaz  50% Fetal Calf Serum
20% DMSO
in DMEM high glucose

Trypsinize cells from a confluent 10-cm-dish as described.

After spinning down in media, resuspend cells from one plate in 2 ml ES media and
cool down onicefor 5 min.

Add 2 ml 2x freezing media and seperate into 1-ml freezing vials then freeze
immediately at 80°C.

Transfer to liquidN the next day.
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M-27 Preplating

For all western experiments it was desirable to harvest a pure colony of targeted ES cells
without contamination of wt feeder cells. In order to obtain this purity, ES cells cultured on
feeders were pleplated. This preplating event removes feeder cellsto about 90%.

For 10cm-dish add 3 ml trypsin/EDTA remove and add 3 ml again.

Leave plate in the incubator for 15 min.

Add 7 ml ES media and strongly pipet up and down to disrupt cell colonies.

Spin 5 min at 1000rpm and remove supernatant.

Resuspend in 10 ml ES media and transfer the cells onto a gelatine uncoated tissue
culture dish.

Leave in the incubator for 20-30 min

Carefully pipet off the supernatant and transfer ES cells (90% feeder-free) onto a new
0.1% gelatinized dish.

M-28 Electroporation
To transform DNA constructs into ES cells the electroporation method was applied. For
electroporation it is best to use cells that are passaged twice after thawing.

Trypsinize cells from a 10-cm-dish and make sure that it isreally asingle cell
suspension!

After spinning in mediafor 5 min, aspirate the media, and resuspend the cell pellet in 5
ml PBS. Take an aliquot for counting and spin 1000 rpm at RT for 5 min.

During the centrifugation step, count the actual number of cells on a haemocytometer
Aspirate the supernatant and resuspend cell pellet in an appropriate volume of PBS, so
that the fina volume of 800m for the electro execution contains 107 cells.

Use 40 nyg linearized targeting plasmid (for Trx2-/- targeting use Fel3-lacZ-hygro, for
EY FP-Trx2 targeting use X2.2-EY FPneo-trx2) in 50 m PBS. Put linearized DNA into
the gene pulser cuvette (0.4 cm electrode gap) and add 800m cell suspension.

Set Bio-Rad electroporator at 240V, 500n+ and pulse the cells (the pul se time should be
between 5 and 6s.

Transfer the electroporated cells to 60-80 ml media and distribute cell suspension onto
6-8 gelatinized 10-cm-dishes.

M-29. Transformation
M-29.1 Stable transformation
Stable transformatuion in this thesis was applied to target ES cells for the Trx2 k.o and the
EYFP-Trx2 fusion.
Thaw ES céll clone (for Trx2-/- targeting use E14 Trx2+/- clone 2-88, for EY FP-Trx2
targeting use E14 wt clone) onto afeeder coated cell culture dish.
After two passages perform electro-transformation as described.
Plate transformed cells on six 10-cm feeder-coated dishes.
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For Trx2-/- targeting: After 40 hrs change media and add 200 ng/ml hygro, 250 nmg/ml
G418 selection. For EY FP-Trx2 targeting: After 24 hrs change media and add 250 ng/ml
G418 selection

Incubate for 8-10 days with occasional change of selection media.

Pick about 96 undifferentiated coloniesinto feeder containing 48-well-dishes.

After two days, trypsinize and transfer onto new feeder containing 48-well-dishes.

After another two days, split each clone in two: One third stays in the 48-well-dish. Cool
5 min on ice then add 2x freezing media and freeze at -80°C. Transfer the reamining two
thirds trypsinized cell suspension into gelatinized 24-well-dishes containing 800 m ES
selection media. After 3-5 days these wells will be confluent and cells can be used for
DNA extraction.

M-29.2 Transient transfor mation
Transient trasnformation in this thesis was applied to introduce the Cre recombination
plasmid into EY FPneo-trx2 targeted ES cells.

Thaw EY FPneo-trx2 clone #22 and passage twice before collecting 10° cells for
electroporation.

Use 40 ng unlinearized McCre plasmid resuspended in 50 m 1x PBS and perform
electroexecution as described.

After electroporation seed 5-50 x 10° cells per feeder coated plate and incubate for 7-9
days with occasional media change (no selection !).

Pick about 96 undifferentiated coloniesinto feeder containing 48-well-dishes.

After two days, trypsinize and transfer onto new feeder containing 48-well-dishes.
After another two days, split each clone in three: One third stays in the 48-well-dish.
Cool 5 min on icethen add 2x freezing media and freeze at -80°C. One third is
transferred into G418 containing media to check for Cre mediated deletion of the
neomycin selection marker. Transfer the reamining one third trypsinized cell
suspension into gelatinized 24-well-dishes containing 800 m ES media. After 3-5 days
these wells will be confluent and cells can be used for DNA extraction.

M-30 Propidium lodine (Pl) staining of ES cells

staining solution: 1.8M NaCl
0.7M MgCI2

750mMM P
M Tris,pH 7.5
2mg/ml RNAseA (add freshly before use)

Grow ES cells on gelatine coated 10-cm-dishes for two passages.

Collect cells by trypsinisation and resuspend about 10° cellsin 5 ml PBS.

Centrifuge 5 min at 200 x g

Prepare fixing solution by filling 15-ml-falcons with 4.5 ml 70% ethanol. Keep tubes on
ice.

Using a pasteur pipette thoroughly resuspend cellsin 0.5 ml PBS. (It isimportant to
archieve asingle cell suspension!)

Transfer the cell suspension into the tube containing 70% ethanol and fix o/n at 4°C.
Centrifuge the ethanol-suspended cells 5 min at 200 x g. Decant ethanol thoroughly.

79



Suspend cell pellet in 1 ml PI satining solution and incubate 30 min at RT.

Set up and adjust the flow cytometer for excitation (488 nm argon ion laser) with blue
light and detection of Pl emission at red wavelengths (long pass >600 nm filter).
Measure cell fluorescence in the flow cytometer. Use the pulse width-pulse area signa
to discriminate between G2 cells and cell doublets, and gate out the latter.

M-31 Proliferation assay

- Cellsfrom each clone were freshly thawed and expanded to 2x 10-cm-plates on feeders
Preplate confluent dishes and count. Dilute in mediato arate of 10° cells/ml.
Seed each clonein triplicates into gelatine-coated- and feeder-containing-6-well-dishes
(2ml = 2x 10° cells/well). Prepare this set-up five times (once for every day of counting).
One day after plating trypsinize normally and count cells in a hemocytometer. For the
“gplit and count” experiment reseed these cells again onto the same 6-well dish.
From now on count one set-up of plates every day. For the “split and count” experiment
count and reseed same cells every day. On day three transfer onto 5cm-dishes containing
gelatine or fresh feeders respectively, otherwise use same dish for reseeding.
For evaluation of cell numbers take the average of triplicate counts for every time point
and display summary in graphics.

M-32 ES-colony methylene blue staining

staining sol ution: 1% methylene blue
in ethanol

Plate 10 cells of wt, +/- and -/- clones in quadruplicates into 6-well-dishes.

Grow for eight days with occasional media change.

Remove media, wash with PBS and fix cellsfor 5 min in ethanol.

Remove ethanol and replace with staining solution.

Incubate for 10 min at RT, then remove staining solution and wash with PBS or ethanol
for an optimal visualization of the colonies.

M-33 Apoptosis assay
Cleavage of genomic DNA during apoptosis may yield double-stranded, low molecular
weight DNA fragments as well as single strand breaks (“nicks’) in high molecular weight
DNA. Those DNA strand breaks can be identified by labeling free 3’ OH termini with
modified nucleotides in an enzymatic reaction. The Kit performs in three consecutive steps:
1. Labeling of DNA strand breaks, by Terminal deoxynucleotidyltransferase (TdT),
which catalyzes polymerization of labeled nucleotides to free 3'-OH DNA endsin a
templ ate-independent manner (TUNEL reaction).
2. Detection of incorporated fluorescein by anti-fluorescein antibody Fab fragments
from sheep
3. Analysis under fluorescence microscope.

fixation solution: 4% paraformaledehyde
in PBS
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permeabilisation solution: 0.1% Triton X-100 digestion buffer: 3U/mi DNAsel

0.1% sodium citrate 50mM TrissHCI, pH 7.5
inH,O 10mM MgCl,
1mg/ml  BSA
label solution: nucleotide mixture in reaction buffer (content of “In Stu Cell Death Detection Kit")

enzyme solution: Td from calf thymusin storage buffer (10x) (content of “In Situ Cell Death Detection Kit”)

Grow ES céllsin 24-well-plate on coverslips.
Wash with PBS.

Fix air-dried samples with freshly prepared fixation solution for one hour at RT.
Wash with PBS.

Incubate in permeabilisation solution for two min on ice.

For positive control incubate fixed and permeabilized cells with DNAsel in digestion
buffer for 10 min at RT to induce DNA strand breaks, prior to labeling procedures.
Prepare TUNEL reaction mixture by adding 50 m enzyme solution to 450 i label
solution. Mix well to equilibrate components.

Rinse slides twice with PBS.
Take coverslips out of the well, dry by touching a paper towel and place upside down
onto adrop of 50 m TUNEL reaction mixture.

For negative control incubate fixed and permeabilized cellsin 50 i label solution
(without TdT) instead of TUNEL reaction mixture.

Incubate for one hour at 37 °C in ahumidified atmosphere in the dark.

Dip coverslips 3x in PBS

Samples can be analyzed in adrop of PBS under a fluorescence microscope at this state.
Use an excitation wavelength in the range of 450-500 nm and detection in the range of
515-565 nm (green).

M-34 Blastocysteinjection of ES cells

Blastocyts were collected from the uterus of four days pregnant C57/BL 6 females. Targeted
ES cells (Trx2-/- clone #13; EY FPtrx2 clone #70 and #95) grown to confluency on feeder
cells were injected into the inner cell mass and trasferred back into the uterus of
pseudopregnant foster mothers on the fourth day of pregnancy.

All ES cdl injections were performed by the EMBL Transgenic service, according to
standard procedures.
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WORKING WITH TRANSGENIC MICE

M-35 Genotyping

Pups were weaned at three weeks of age to take a 1-cm sample of the tail tip for
genotyping. Tail-DNA extaction was performed according to the protocol in M-11.
Gentyping was based on a PCR strategy (for further details please refer to the results
section)

M-36 Whole mount embryo lacZ staining

fixing solution: 4% Paraformaldehyde transport solution:  PBS/ 0.4% BSA
staining solution :  0.01% Sodium-Deoxycholate

0.02% NP40

2mM MgCl,

8mg Spermidin-trihydrochloride

fill to 30 ml with PBS. Stable at 4°C for several weeks.

10mM  Ferrocyanide add just before use

10mM Ferricyanide add just before use

2mM Xgal add just before use
sucrose solution: 30 % sucrose in PBS

Dissect embryos at RT in transport solution. Transfer all the embryosinto fixing
solution (5-cm-dish) and incubate on ice for 30 min to 1 hour (depending on
developmental stage of the embryo).

Transfer into a 10-cm-dish containing cold PBS to wash.

Transfer embryos into a 5-cm-dish containing freshly prepared staining solution.
Incubate at 37°C o/n. To avoid evaporation and drying out of the embryos place dishes
into abox layed out with wet tissue.

To take pictures wash embryosin PBS twice.

If it is intended to make sectionings of the embryos, incubate them in sucrose solution
o/n at 4°C. Sucrose aso transluscence tissue, so that the blue staining becomes clearer.

M-37 Kryosectioning and staining

M-37.1 Slide preparation

- Dissolve gelatine in H,O to make a 0.5% solution
Coall the solution to RT and add chromium potassium sulfate 0.05%.
Cool the solution to 4°C on ice. (Use this subbing solution immediately)
Wash glass slides twice for 10 min in ddH,0,
then twice for 5 min in subbing solution.
Dry under the hood o/n.
Keep protected from dust at RT for up to three months.
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M-37.2 Embryo preparation and sectioning:

Dissect embryos of desired developmental stage in cold transport solution.

Immediately transfer to embedding molds filled with OCT and freeze samples on a
block of dry ice.

Store frozen embryos at -80°C until sectioning.

Cut 50-nm-sections on a kryostat mashine. Transfer every 10" section of an embryoto a
gelatine subbed glass slide and air-dry, to finally have about 20 sections per embryo.

M-37.3 Fixation and staining:

solution A: 0.2% gluteraldehyde solution B: 2mM MgCl,
5mM EGTA,pH 7.3 0.02% NP40
2mM MgCl, in PBS
in PBS

solution C: Img/ml  X-Gal (dissolved in DMSO)
4mM potassionferrocyanide
4mM potassionferricyanide
in solution B

Fix sectionsin solution A for 15 min at RT.

Wash three times 10 min in solution B at RT.

Stain sections in solution C o/n (up to 20 hours) in the dark.

Wash three times 10 min with solution B, wash once quickly with PBS.
Fix 5minin PFA (4% in PBS).

Wash twice 5 min with PBS.

Counterstain sections with eosin (1/10 diluted in PBS) for 1 min 30 sec.
Dehydrate in 95% ethanol, dip slides eight times in the same 95% ethanol, then dip them
again eight times in 100% ethanol.

Fully dehydrate one min in 100% ethanol.

Mount in Erkitt solution and cover with coverdlip. Store at RT.
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R. Results

R-1 TRX2 KNOCK-OUT IN ESCELLS (TRX2-/-)

Indications from former publications suggest for TRX2 a role in differentiation and
transcriptional control on the chromatin level (see introduction). Since mouse embryonic
stem (ES) cells are a powerful and manageable tool for in vivo cell culture experiments,
they can be used for in vitro differentiation assays that lead to faster results than mouse, it
was decided to create a homozygous knock out of TRX2 in the ES-cell model system.

In order to create an ES cell line that carries a homozygous knock out (k.0.) for the Trx2
gene, work began with modifying an existing Trx2 k.o. cassette. This cassette came from

aprevious project in our lab to create a Trx2 k.o. mouse.

R-1.1 Cloning of targeting construct pFel3lacZ-hygro

The targeting construct Fel3lacZneo that had been successfully used by Frank v.d.
Hoeven to create an ES cell line heterozygous for the Trx2 knockout is depicted in figure
1. The lacZ gene codes for the enzyme b-galactosidase that produces a dark blue color
upon incubation with its precipitating substrate X-Gal (5-bromo-4-chloro-3-indolyl-b-D-
galactopyranoside) and is often used in reporter assays. The neo gene conveys resistance
to kanamycin in prokaryotic cells and to geneticin (G418) in eukaryotic cells.

After homologous integration of the construct into the first intron of the endogenous Trx2
genomic locus, the splice acceptor (SA) ensures splicing of exon one to lacZneo. Then
the polyA signal 3' of lacZ-neo truncates the Trx2 transcript so that the targeted ES cells
do not express TRX2 protein, but display lacZ staining and G418 resistance expressed
from the Trx2 promoter.

To achieve a complete Trx2 knockout, the second Trx2 allele in the diploid mouse
genome had to be targeted. To reach that homozygous state, two different methods were
tested: Heterozygous ES cells containing one copy of the G418 resistance gene were held
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Figure. 1: Features of pFE13lacZneo-Trx2 targeting construct.

Origin of replication (ori), and ampicillin resistance (amp) allows propagation in E.coli

Trx2 endogenous promoter (indicated by black arrow), exonl (Ex1) and intron2 serve as homology arms
for homologous integration of the Notl linearised construct into the endogenous Trx2 locus.

Trx2 transcription is terminated by the SV40 polyadenylation signal (SVpA) resulting in a Trx2 knock-
out since only Ex1 fused to lacZ/neo is being expressed.

Splice acceptor (SA) ensures fusion of Ex1 to the lacZ/neo cassette.

Internal Ribosome Entry Site (IRES) ensures efficient translation of the lacZ/neo gene products.
LacZ/neo expression is regulated by the endogenous Trx2 promoter and therefore mimics the Trx2
expression pattern.

Black rectangles indicate FRT sites (target sites for Flp-recombinase), black triangles indicate loxP sites
(target sites for Cre-recombinase). Flp-mediated recombination exises the complete k.o. cassette
reverting back to the wt situtation. Subsequent Cre-mediated recombination leads to deletion of exon
two, an event that destroys the ORF and thus creates again a knock-out allele.



in increasing concentrations of G418. After massive cell death the ES cells might react to
that selection pressure by duplicating the G418 resistance gene through mitotic
recombination (Nelson et al., 1989; Potter at al., 1987) or chromosomal duplications
(Wasmuth and Hall, 1984; Campbell and Worton, 1981) so that surviving ES cell clones
would carry the targeting construct also on the second alele of Trx2 (Mortensen et al.,
1992). Unfortunately heterozygous Trx2 ES cells were able to tolerate even selection
with up to 2000 ng/ml G418 without significant cell death. Thus it had to be concluded
that the promoter driving the G418 resistance gene in the Fel3lacZneo construct was
simply too strong. Also in severa publications where this method has been successfully
applied for loss of heterozygousity, a mutated version of the G418 resistance gene was
used (Lefebvre et a., 2001).

The second approach to reach homozygousity included targeting of the second allele by a
second round of electroporation. In order to be able to select for the integration of two
different k.o. cassettes into both Trx2 aleles, the neomycin gene in Fel3lacZneo was
replaced by the gene conveying hygromycin resistance. Doubly targeted cells would then
be double resistant to both G418 and hygromycin selection. To achieve the
G418—hygromycin replacement the ET/Red cloning technology (Zhang et al., 1998;
Muyrers et al., 1999) was applied. The cloning strategy for Fel3lacZhygro is described in
figure 2. The oligos EThygro-up and EThygro-dw consist of a 3 PCR primer sequence
and a5 50bp homology arm sequence (figure 2c). A PCR reaction on the hygromycin
template pC-DNA; with those oligos yielded a product (PCRhygro) containing the
hygromycin gene ORF flaked by two homology arms that reconstitute the exact sequence
of the desired integration site in Fel3lacZneo. Dpnl, an enzyme that specificaly
recognizes only methylated restriction target sites and not the unmethylated PCR product
was used to remove residual template DNA. After precipitation (to concentrate the DNA
solution), the linear product PCRhygro and recipient plasmid pFel3lacZneo were
coelectroporated into  electro-competent and  arabinose-induced E.  coli
DH10B/pSC101/BAD/YZA cells. This bacterial strain expresses the ET/Red
recombinases recE, recT and redg under control of the arabinose-inducible BAD
promoter (kindly provided by Zhang -Genebridges-). During the following 70-min-

incubation at 30 °C, these enzymes mediated the replacement of the neomycin coding
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Figure. 2: Cloning strategy for conversion of pFE13lacZneo to pFE13lacZhygro.

(a) Targeting construct pFE13lacZneo as described in Fig.1.  (b) Close up of the LacZ/neo region

pFE13lacZneo. OOO= 5" homology arm sequence for ET recombination (upstream), XXX= 3’homology ar
sequence for ET recombination (downstream). (¢) PCR amplification from the hygromycin templa
pcDNA3 using the oligos EThygro-up and EThygro-dw. The resulting PRC product contains the hygromyc
ORF flanked by the 5’ and 3’ homology arms for ET recombination. The ET/Red recombination event
indicated by two black crosses. (d) Close up of the LacZ/neo region in pFE13lacZhygro after the ET/Rq
recombination event . (e) Newly created targeting construct pFE13lacZhygro.
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Figure 3: Mini digestion confirmes cloning of Fel3lacZhygro

(a) Graphical display of relevant restriction sites EcoRI (E), Xhol (X) and Pvul (P) in Fel3lacZ neo (left)
and Fel3 lacZhygro (right). Restriction sites in which neo and hygro differ are indicated in red. Relevant
restriction fragments are indicated by two-sided arrows in black for Fel3lacZneo and in red for
Fel3lacZhygro. (b) EcoRI, EcoRI/Xhol and Pvul restriction pattern: Additional EcoRI site in hygro
creates 300bp fragment in EcoRI and EcoRI/Xhol digest, additional Pvul site creates 1.7 kb fragment in
Pvul digest (relevant fragments are indicated by red arrow) M marks the kb-marker lane. Fragment sizes
are indicated left of the digestion pattern.



sequence for the hygromycin coding sequence in the targeting cassette of Fel3lacZneo
via the homology arms in PCRhygro (figure 2d);(for detailed description of the Red/ET
recombination process, see method section M-9). The ET expression plasmid was lost
upon o/n incubation of the plated bacteria at 37°C because of their temperature sensitive
origin pSC101.

Mini prep digestions with EcoRI, Pvul and EcoRI/Xhol confirmed the desired
replacement of the G418- with the hygromycin- selection gene in pFel3lacZhygro (figure
3).

R-1.2 Creation of a homozygous Trx2 knock-out ES cell line

In order to achieve the complete k.o. for Trx2, the second targeting construct
Fel3lacZhygro had to be stably introduced into an ES cell line that already carried the
heterozygous Trx2 mutation. Organization of the genomic Trx2 gene locus is displayed
in figure 4. The genomic subclone Fel3 spans the promoter region and the first two exons
of the Trx2 genomic locus (figure 4c). The targeting constructs Fel3lacZhygro and
Fel3lacZneo contain the respective k.o cassette integrated into intron one (figure 4d and
€). Homologous integration of both k.o. constructs into the genomic locus is mediated by
about 8 kb upstream promoter and exon 1 sequences and 6 kb downstream intron one,
exon two and intron two sequences of Fel3 (in figure 4d and e indicated by gray shaded
areas).

For stable transformation of pFel3lacZhygro, the plasmid was linearized and
electroporated into the Trx2-heterozygous ES cell clone 2-88. After double selection in
200 mg/ml hygromycin and 250 ng/ml G418, stable colonies were picked and grown up
for genomic DNA extraction. To confirm desired stable integration of the cassette into
the homologous locus, a southern strategy was developed (in figure 5d clone #6 and #13
are displayed). Probing with a hygromycin fragment confirmed the presence of the
targeting construct lacZ-hygro in the genome. EcoRI digestion revealed a fragment of the
expected size of 12 kb. Correct integration for the 5° side was tested by Pacl/Sall
digestion of genomic DNA and probing of the southern blot with the X4 fragment that
anneals to a 650bp-region 5' of exon one and therefore outside the targeting cassette. In
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Figure. 4: Genomic organization and knock out strategy at the Trx2 locus.

(a) Genomic organization of the Trx2 locus. The integration site for the knock out targeting cassette is
indicated by a red arrow. Region of interest is shaded grey. 1 Unit on the scale = 1kb. (b) Close up of the
region of interest with the indication of genomic restriction sites (italics). (c¢) Notl restriction fragment
termed genomic “Fel3” subclone containing the endogenous promoter (indicated by the black arrow) and
the first two exons of Trx2. X4 and BES80 are DNA probes used for southern blot analysis. Targeting
construct Fel3lacZneo (d) and Fel3lacZhygro (e) are shown with construct specific restriction sites
(normal). Grey shaded areas indicate homology arms used for homologous integration of both targeting
constructs into the genomic Trx2 locus
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Figure. 5: Southern blot strategy and analysis of Trx2 k.o. ES cells.

Two Trx2 specific hybridization probes (X4, BES80) and a hygro specific hybridization probe (hygro) were
used and are indicated in red at their hybridisation sites. Genomic restriction sites (italics) and target
construct specific sites (normal) are shown in green with the resulting size of the digestion fragment
indicated by a two-sided arrow below. (a) Wtallele (b) LacZ hygro targeted allele (e) LacZ-neo targeted
allele (d) Southern digestion pattern of Heterozygous (+/-) Trx2 ES cells and two independent homozygous
(-/-) clones #6 and #13 were digested with indicated enzymes (green) and hybrisized with hybridisation
probes (red). Note that the +/- cells contain one lacZ-neo targeted allele (for detailed description please refer
to text). Background bands are indicated by *.



addition to the 17kb-band corresponding to the targeted allele, the 25kb wt band is till
visible in heterozygous cells while it is completely absent in doubly targeted ES cells. To
further support the assumption that also the 3' side of the construct integrated correctly,
fragment BE 580 (annealing 3' of the polyA signal) was probed onto an EcoRI digested
blot and produced a 12 kb band representing the targeted allele, and a 25 kb band
representing the wt allele which is only present in cells singly targeted with only the
lacZ-neo construct (= heterozygous cells). In order to discriminate between the two
different targeting cassettes (one carrying neo, the other hygro as selection marker), an
enzyme combination digestion (EcoRI/Hindlll) that differentially cuts in the neomycin
and the hygromycin gene was selected and probed with BE5S80. The lacZ-neo allele
creates a 2.9 kb band while presence of the lacZ-hygro allele is reflected by presence of a
3.1kb-band. The wt allele (6kb) was not detectable in both tested -/- cell clones, but both
targeted bands were visible. This indicated that targeting was terminated successfully and
that presence of both k.o. cassettes and absence of awt allele was confirmed.

Southern analysis of DNA extracts from 96 stable transformants revealed a rate of 3% of
homologous integrations. Three clones out of the analyzed 96 were homozygous for the
Trx2 k.o. Two clones (#6 and #13) were thawed from the 48-well-dish, expanded and

frozen for further experiments.

R-1.3 No Trx2 mRNA transcripts are detectablein k.o. ES cells

Even though integration of the k.o. cassette interrupts Trx2 transcription after exonl,
downstream promoters or cryptic splice sites could lead to the production of a truncated
version of the Trx2 gene that could retain some of the natural functions and obscure the
analysis of Trx2 function in k.o. ES cells. To confirm the assumption that a complete
knock-out of Trx2 had been created, Trx2-mRNA transcripts were assayed by Northern
analysis. CF14 is a Trx2 specific probe and does not hybridize with the ortholog of Trx2,
MII, or any other trxG family member (figure 6a).

Total RNA was extracted from wt, Trx2 heterozygous and Trx2-k.o. ES cells. RNA
concentration was determined by OD measurement at 260 nm. Equal amounts of RNA

were loaded and separated by 1% agarose gel electrophoresis. The ethidiumbromid-
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Figure 6: No Trx2 m-RNA trasncript is detected in Trx2 k.o. ES cells.

(a) Localization of the CF14 probe in a nonconserved region of the Trx2 transcript. (b) Northern analysis
of total RNA extracts from wt, Trx2 +/- and Trx2-/- ES cells. Probing with labelled Trx2 specific CF14
probe reveals that no Trx2 m-RNA is produced in -/- ES cells. The 8.5 kb Trx2 m-RNA fragment is
indicated by black arrows. Probing the same blot with an actin probe and ethidium bromide staining of the
28s RNA (EBS) served as internal loading controls.
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Figure 7: No Trx2 protein is detected in Trx2 k.o. ES cells.

(a) Localization of the TRX?2 antibody in a nonconserved region of the Trx2 protein.  (b) Western analysis
of wt and Trx2 -/- ES cell crude protein extracts. Probing with anti-TRX?2 reveals that the 280 kD TRX?2
signal and degradation products are only detected in wt ES cells but absent from Trx2 -/- ES cells.
Coomassie staining of the gel confirmed that same amounts of total protein were loaded (data not shown).
Molecular weight markers in kD are indicated left of the membrane.



stained gel showed non-degraded ribosomal 28sRNA of equal amounts. An actin probe
served as an internal control that also confirmed RNA concentrations previously
measured in the spectrometer.

Probing with the Trx2 specific probe CF14 visualizes the 8.5 kb wt Trx2 RNA fragment
present in wt and heterozygous ES cells. Loss of one Trx2 allele (in +/-) results in an
about 50% reduction of the signal while no Trx2 transcript is detectable in Trx2 -/- ES
cells (figure 6).

Thus the integration of the k.o. cassette interrupts the entire production of full length and
truncated Trx2 transcripts.

R-1.4 No TRX2 protein isdetectablein k.o. ES cells

The need for a proper immunodetection tool lead to the design and recombinant
expression of a TRX2 specific peptide for antibody production (see method section M-
24). Eight earlier attempts to recombinantly express a section of TRX2 failed due to
toxicity in E. coli. Only one TRX2 specific segment could be expressed and purified in
satisfying amounts. This antigen was injected into rabbits for antiserum production.
Affinity purification of the apparently lowly specific serum provided the TRX2 specific
polyclonal antibody anti-TRX2.

Crude protein extracts from ten confluent 15-cm-dishes of wt or Trx2-k.o. ES cells were
prepared and separated on a 5% polyacrylamid gel. After protein transfer the
nitrocellulose membrane was probed with anti-TRX2. As secondary antibody an alkaline
phosphatase conjugated anti-rabbit antibody was used for chemiluminescent detection
(figure 7). No signal in the trx2 k.o. extracts was detectable. Therefore it was concluded
that no TRX2 protein istrandated in ES cells homozygous for the knock-out cassettes.

Northern and western analysis confirmed that indeed the k.o. strategy proved to be

successful. No Trx2 transcript is produced and Trx2 -/- ES cells therefore represent a
potent model to investigate Trx2 function in vivo.
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R-1.5 Basic propertiesof Trx2-/- EScells

The ability to obtain and expand Trx2-/- ES cells aready delivers the conclusion that
these cells are able to survive without any functional Trx2 allele. To examine this in
further detail, we performed several experiments comparing cell cycle distribution,
proliferation rate, rate of apoptosis and colony formation properties between wt ES cells,
Trx2 heterozygous ES cells and ES cells homozygous for the Trx2 k.o. Since during the
course of creation Trx2-/- cells underwent two rounds of targeting and were exposed to
double antibiotic selection during all cell passages, a Trx2+/- clone that had been
processed in exactly the same targeting and selection procedures, but randomly rather
than homologously integrated the second targeting cassette, was taken as a control.

R-15.1 Trx2 -/- EScellsdisplay awt distribution within the cell cycle

The most prominent approach to determine the cell cycle stage is based on measurement
of cellular DNA content. This allows discrimination between cellsin G, versus S versus
G,/M phases. DNA is generally stained with a fluorescent dye and cellular fluorescence
is measured by flow cytometry (Crissman and Steinkamp, 1993; Current protocols,
Interscience). The intensity of fluorescence integrated over the analyzed cell is in
stochiometric relationship to the DNA content and therefore used to determine the cell
cycle stage. Propidium iodine (P1) stains DNA viaintercalation and emits at wavelengths
above 610 nm. Discrimination of cells in particular phases of the cell cycle on the basis
of differences in DNA content gives an insight into the cell’s ability to perform basic

vital functions.

Cells from comparable passage numbers were held in culture for five days (= 2 passages)
before starting the experiment. Figure 8 shows data table and graphical display of the
experiment. The graphs assign the number of cells counted over one specific Pl
fluorescence intensity. Neither Trx2 +/- clone #83, nor Trx2 -/- clone #13 show any

significant difference in cell cycle distribution compared to wt ES cells.
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# of cells | # of cells | Cells in | Cells in Cells in
counted gated Gl1|%] | S[%] | G2-M [%]

wt 10000 8096 30.2 322 37.5
+/- 10000 6946 28.6 31.4 39.1
= 10000 7696 29.9 343 35

Figure 8: Trx2-/- ES cells display a wt distribution within the cell cycle.

Wit, Trx2 +/- and -/- ES cells were Pl stained and sorted by FACS analysis.  (a) Graphical display of
Trx2wt ES cell distribution in the cell cycle.  (b) Graphical display of Trx+/-t ES cell distribution in the
cell cycle (e) Graphical display of Trx2-/- ES cell distribution in the cell cycle. (d) and (e) Overlay of wt
(red) +/- (green) and -/- (pink). X-axis: PI fluorescence intensity in arbitrarily chosen units; y-axis: number
of cells counted.  (f) Table of FACS data. 10000 cells per cell line were counted. Living cells were gated
and seperated into M1, M2 and M3 that indicates progression through cell cycle according to DNA content.
M1= cells in Glor GO; M2= cells in S-phase; M3= G2-M. The same gating parameters were used for all
three cell-lines.



R-1.5.2 Loss of TRX2 protein in k.o. ES cells does not cause a proliferation
defect.

Comparison of cell numbers reached after a certain incubation time provides information
about the proliferative potential of the cell line. The expected average generation time for
ES cellsis approximately 18-24 h.

In the following proliferation assay wt, Trx2+/- and Trx2-/- ES cells from comparable
passage numbers were plated in triplicates on either gelatin-coated or onto feeder-
containing plates, trypsinized and counted after 1-5 days. The raw data valuesin table 1a
and 1b were projected into the graphical display in figure 9 and figure 10 respectively..
For the first experimental approach termed “count-experiment” cells were plated, and one
sample each was counted and discarded every 24 hours for five consecutive days (figure
9). For the second experimental approach termed “ split-and-count-experiment”, cells that
had been counted on day one, were reseeded onto gelatin-coated or feeder-containing
plates respectively. The same cell sample was again counted after 24 hours, again
replated and so on. Trypsinization and reseeding was also performed on five consecutive
days (figure 10).

As a general observation one could conclude that all cells growing on feeders (figure 9a
and 10a) were proliferating faster than cells growing on gelatin-coated-dishes (figure 9b
and 10b). Comparison of the three different cell clones though revealed no difference in
proliferation behavior. All cells proliferated in the expected exponential growth curve.

In the “split-and-reseed-experiment” a general reduction in proliferation rate could be
observed. This reduction can be explained and should be expected simply because the
cells are stressed much more when trypsinized every 24 hours. Aside from these
increased stress conditions, double targeted cells both +/- and -/- additionally display
weaker overall condition caused by higher passage numbers and intense selection
procedures. Therefore both clones have an even lower proliferation rate than wt cells in
the “ split-and-reseed-experiment”. However, no significant difference between +/- and
Trx2 Kk.o.-cells was detectable. Thus no proliferation phenotype caused by the absence of
afunctional Trx2 allelein Trx2-/- ES cells could be concluded.
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day 1 day 2 day 3 day 4 day 5

4 8.4 96 | 176 | 222 | 33 21 48 | 822 | 924
wit 35 7.2 9.1 154 | 261 | 368 | 31 63 | 438 96
4.2 6.3 9.1 16.8 14 | 348 | 37 68 | 576 | 114.6
average 3.9 7.3 93 | 166 | 207 | B49 | 20 60 | 604 | 101
38 6.7 7.6 9.9 17 | 238 | 24 | 415 | 696 | 106.2

+/- ds 24.5 5.2 6.4 9.9 156 | 254 | 375 | 565 | 426 88.2
31.4 6.3 91 12.1 21 259 | 256 56 42 88.2

average 3.1 6.1 1.7 10.6 17.9 25 29 513 | 514 94.2
30 8.0 7.3 12 18 286 | 245 66 40.2 | 106.2
-/- 22.3 6.0 6.6 17.5 188 | 326 | 285 | 675 | 468 81.8

34.7 6.8 9.3 14.6 176 | 28.8 35 64 5/7.6 97.8

average 2.9 6.9 1.7 14.7 18.1 30 293 | 658 | 482 29912

Tablela: Raw datatablefor proliferation assay “Count-experiment”.

Comparing counts of Trx2 wt, +/- and -/- cells cultured on feeder containing (FH) or on gelatine coated (G) plates. Cells were plated
once in triplicates and counted every 24 hours for 5 consecutive days. The raw data table shows the single value for each samle and
the average value from the triplicates (numbers x 10°).



day 1 day 2 day 3 day 4 day 5

G |FH| G | FH| G |[FH| G |FH] G | FH
4 8.4 8.9 19.8 15.8 324 25.7 42.4

Wit 35 7.2 8 12.3 16.8 25.8 34.6 50 67.2 65.4

4.2 6.3 9.2 13.3 14.2 23.8 29.7 63.3 65.2 744

average 3.9 7.3 8.7 15.1 15.3 27.3 30 51.9 66.3 69.9

3.8 6.7 55 9 14 14 16.8 31.2 30 42.6

+/- dS 25 5.2 5 8.9 9.6 14.1 25.2 30 28.2 42.6
3.1 6.3 5.2 10.3 7.3 13.9 16.2 384

average i | 6.1 5.2 9.4 8.1 14 194 B8 29.1 42.6

3 8.0 4.7 11.9 5.9 21.6 11.4 36.6 18.6 40.2

-/ - 2.2 6.0 4.4 13.3 8.5 274 13.8 31.2 24 52.2
35 6.8 5.2 12.9 9.3 24.9 16.2 31.2

average 2.9 6.9 4.8 12.7 7.9 24.6 13.8 33 21.3 46.2

Tablelb: Raw datatablefor proliferation assay. “ Split-and-count-experiment” .

Comparing counts of Trx2 wt, +/- and -/- ES cells cultured on feeder containing (FH) or on gelatine coated (G) plates. Cells were
plated in triplicates and counted after 24 hours. After counting, cells were replated for next day’s counting. This exercise was
performed for 5 consecutive days. The raw data table shows the single value for each samle and the average value from the triplicates
(numbers x 10°).
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Figure9: Lossof TRX2 proteinin k.o. EScellsdoesnot cause a proliferation defect.
Graphical display of the datatable 1a. (@) average valuesfor cells plated on feeders (b) average
valuesfor cells plated on gelatine coated dishes. Counts for wt (blue), +/- (pink) and -/- (yellow)
cellsover 5 days.



120

100

g 80
=
&
2
3 —e— wit trx2
o 60 —m—+/-trx2 ds
S (- trx2
3
N
S
= 40
20
0]
1 2 3 4 5
days after plating
120
100
g 80
~
<
2
= —o— wit trx2
o 6o —m—+/-tre2 ds
) -[- trx2
$
S
N
H
= 40

20

days after plating
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R-1.5.3 Trx2 -/- ES cells display no colony formation defect

Appearance and size of colonies and also numbers of colonies formed by ES cells can
give insights into their differentiation status, proliferation abilities and survival rates
(Joyner, 2000). These basic properties were investigated with respect to the loss of TRX2
protein.

Equal amounts of wt, Trx2+/- and Trx2-/- ES cells were plated in quadruplicates onto
feeder-containing 6-well-plates and grown for eight days with occasional media change.
For better documentation formed colonies were fixed and stained with methylene blue, a
dye that intercalates into DNA. The comparison of methylene blue stained colonies is
shown in figure 11. All tested cell types show the same colony morphology (figure 11b)
and also average colony numbers of about 1200 per well were seen for all cells (figure
11c). It was concluded that Trx2 -/- cells sustain the ability to form colony morphology

undistinguishable from wt colonies.

R-154 Trx2 -/- ES cells display no enhanced rate of apoptosis

Initiation of the apoptotic program in a cell prohibits the propagation of malformed or
misregulated cells (Wyllie et al., 1980). An increased apoptosis rate in exponentialy
growing ES cells is therefore an indication for loss of a vital function or disturbance of
the cell cycle. To investigate if TRX2 isinvolved in any of those processes, we tested -/-
cellsfor increased apoptotic cell death.

To compare apoptosis in wt and -/- ES cells, the TUNEL assay as available in the In Stu
Cell Death Detection Kit (Roche) was used. The principle of the Kit is based on the fact
that cleavage of genomic DNA during apoptosis results in strand breaks (“nicks’). Those
DNA strand breaks can be identified by labeling free 3'OH termini with modified
nucleotides in an enzymatic reaction. The Kit performs labeling of DNA strand breaks,
by termina deoxynucleotidyltransferase, which catalyzes polymerization of fluorescein-
labeled nucleotides to free 3'-OH DNA. Incorporated fluorescein is detected by the anti-

fluorescein antibody Fab and can be taken as a measure for the rate of apoptosis.
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Figure 11: Trx2 -/- ES cells display no colony formation defect.

ES cells from wt (left), Trx2+/- (middle) and Trx2-/- (right) lines were cultured on gelatine-coated 6-well
tissue culture plates and stained with methylene blue after 8 days. (a) The overview shows no difference
in local distribution. (b) The close up shows no difference in morphological appearance. (c) The average
total number of all colonies counted in the well do not indicate a significant difference.



Equal numbers of wt, Trx2+/- and Trx2-/- ES cells were plated onto either gelatin-coated
or feeder-containing dishes and grown for five days with occasional mediachange. After
application of the In Stu Cell Death Detection Kit, incorporation of fluorescein-labeled
nucleotides equivalent to the rate of apoptosis was visualized under the fluorescence
microscope.

A cell sample in which DNA strand breaks were induced by DNAse digestion served as a
positive control, while a cell sample untreated with the reaction mix of the Kit served as a
negative control. Both controls gave the expected signals as documented in figure 12a. In
the positive sample small light dots all over the cell nucleus are evident. In the untreated
negative control cells those signals were completely absent. Gelatin- and feeder-cultured
cells behaved similar.

Figure 12b shows the results for the three different cell clones. In cells cultured on
feeders no apoptosis could be observed. Gelatine-grown cells of all analyzed cell types
show an increased number of apoptotic cells, but again no difference between wt,
heterozygous and k.o. cellsfor Trx2 could be observed.

Therefore the absence of TRX2 protein in ES cells does not cause implementation of the

apoptotic program.

All experiments concerning the basic properties suggest that Trx2-/- ES cells perform all

vital functions and are therefore not distinguishable from wt ES cells by these assays.

At that point we wished to analyze Trx2-/- ES cells for their invitro differentiation
potential, but were confrontet with the problem that the 129 E14 ES cell line used for
targeting has no ability to differentiate in culture, but is instead strongly feeder and LIF
dependent. The differentiation protocols applied caused massive cells death so that in
vitro differentiation of ES cells had to be stalled.
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(a) positive control negative control
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(b) wt +/- Trx2
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Figure 12: Trx2 -/- ES cells display no enhanced rate of apoptosis.

Wt, Trx2 +/- and Trx2 -/- ES cells were cultured on feeder-containing (FH) or on gelatine-coated (G) cover
slips as indicated. (a) Controls. Positive control cells diplay increased apoptotic signals (induced by
DNAse treatment); negative control cells (untreated with the labelling mix) do not display any unspecific
background. (b) Comparison of Trx2 wt, +/- and -/- cells shows the same rate of apoptosis for all cell
lines on gelatine plated cells. Cells plated on feeder cells did not face apoptosis at all.



R-1.6 Blastocyst injections and analysis of chimeric embryos

In order to obtain insights into Trx2 function during mouse embryonic development, we
decided to use Trx2 k.o. cells in blastocyst injection experiments. Injection of genetically
modified ES cellsinto the inner cell mass of wt blastocysts |eads to random integration of
the transgenic ES cells into the embryo proper and progenitors of these cells can locate
anywhere in the chimeric embryo (Bradley et al., 1984). Statistical exclusion of injected
k.o. ES cells from specific regions of the embryo might indicate the importance of the
functional allele in these particular regions. Analysis of the distribution of Trx2 -/- cells
within Trx2-/- chimeric embryos could reveal important requirements for TRX2 during

embryonic development.

Blastocysts from mice were isolated at embryonic day E4.5. After injection of 20-25
transgenic ES cells per blastocyst, 14 blastocysts were reintroduced into the uterus of
pseudopregnant foster mothers (seven into the left and seven into the right uterus arm).
Developing embryos were extracted for analysis at various developmental stages. As a
control Trx2 heterozygous cells (doubly targeted and selected) were injected in parallel.
The Trx2 heterozygous mutation neither has embryonic nor adult phenotypes (our
unpublished results); an overall contribution of +/- cells was therefore expected.

To monitor the distribution of Trx2 -/- and heterozygous cells we used the feature of the
k.o. targeting construct to expresses the lacZ gene under the endogenous Trx2 promoter.
Chimeric embryos were lacZ stained either as whole mount or in sections according to
the size of the embryo at the corresponding developmental stage. Finding of blue-stained
cells within the chimera indicates contribution of cells that express lacZ and therefore
carry one (in Trx2 heterozygous ES cells) or two (in homozygous Trx2 k.o. ES cells)
targeted Trx2 aleles. Analysis of the chimeric embryos was focused on the identification

of organs, tissues or cell typesin which Trx2 -/- cells did not participate.

Table 2 shows a summary of al analyzed embryonic stages and lists the analysis
procedure. Two litters each were analyzed for embryonic stages E8.5 and E9.5 and four
litters each to analyze embryonic stages E10.5 and E18.5. While for E8.5, E9.5 and E10.5
whole mount stainings were still possible, size limitations for the E18.5 embryos required
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Table2: Analysisof chimeric embryos resulting from Trx2 -/- ES cell injectionsinto
blastocysts.



staining of kryosections. The pups from every litter could be separated into 3 different

categories according to the contribution of blue stained -/- cells to the chimeric embryo:

1. Non chimeric embryos (n.c.) were completely white with no contribution of Trx2
-/- blue lacZ-stained cells.

2. Low content chimeras, displayed a minor (up to 50%) contribution of Trx2 -/-
blue lacZ-stained cells.

3. High content chimeras displayed a higher contribution (>50%) of Trx2 -/- blue
lacZ-stained cells.

Injection of control Trx2 heterozygous cells as expected resulted in a homogenous blue
staining all over the embryo, which has a wt appearance (figure 13 and 14 middle panel,
figure 15). That means Trx2 +/- cells contribute to every tissue of the developing embryo
at al stages without compromising vital cell functions. It aso shows that the injection
procedure was performed successfully, that injected ES cells kept their pluripotency and
were therefore able to integrate into the inner cell mass of the host blastocyst. Since the
blue staining reflects endogenous Trx2 expression, this control injection additionally
confirmed previous observations of ubiquitous expression obtained with Trx2-RNA in
situ hybridisations (our unpublished results). TRX2 protein is continuously and
ubiquitously expressed through all analyzed embryonal and fetal stages.

Non-chimeric embryos looked like wt embryos and were neglected in further analysis.

In the low chimeric embryos (figure 13 and 14 right panel) development proceeds
normally. These embryos were examined for Trx2 -/- less tissues (figure 13). At E8.5,
E9.5 and E10.5 blue staining appears spotted all over the embryo. To evaluate the
impression that stainings in posterior (tail) regions were more prominent than in anterior
(brain) regions and to investigate if blue stainings in al structures were not only
superficial, kryosections of the already stained embryos were performed. However in
these 50mm embryonic sections, the contribution of blue-/- cells could not be excluded

from any tissue.
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Figure 13: Trx2 k.o cells are eliminated from the chimeric embryo until E18.5.

LacZ staining of Trx2 wt , +/- and low chimeric Trx2 -/- embryos. Whole mount lacZ staining was
performed for developemental stages E8.5, E9.5 and E10.5 (rows 1-3). For E10.5 additionally (row
4), for E18.5 exclusively (row 5) embryo kryosections were made. LacZ stainings of wt embryos are
shown in the left column, stainings of chimeric embryos rerated by blastocyste injection of Trx2+/-
ES cells are shown in the middle column and display a homogenous contribution of +/- cells to every
tissue of the embryo. Stainings of chimeric embryos created by blastocyst injection of homozygous
Trx2 k.o. ES cells are shown in the right column. Those chimeric embryos display a diverse
distribution of blue -/- cells until E10.5. Elimination of blue cells from the embryos is evident at
E18.5. Unspecific staining in the gut of E18.5 embryos (indicated by blue oval) is due to endogenous
lacZ expression. A close-up of the area marked by a black square is shown in figure 14.



Figure 14: Trx2 -/- cells are only found in mandibular region of E18.5 chimeric embryos.
Mandibular region of kryosectioned embryos at E18.5. Close up of figure 13, in which Trx2 wit,
+/- and low chimeric -/- embryos were dissected and kryosectioned at E18.5. Trx2 -/- cells can
only be detected in osteoclasts and/or macrophages within the mandibular region, while Trx2+/-
cells still homogenously contibute to that region.



From this it was concluded that Trx2 deficient cells still contribute to al tissues around
E10.5. Next we were interested in the requirement for Trx2 in newborn pups. To exclude
cannibalism of retarded litters, pups were examined one day before the natural birth
(E18.5), kryosectioned and stained for lacZ expression: While dispersed blue staining
cells were widely observed in heterozygous chimeras, amost no blue staining was
apparent in Trx2 deficient cell chimeras (figure 13). Again we were not able to observe
tissue specificity in the lack of -/- cells, rather widespread elimination throughout the

embryo.

The last regions in which Trx2-/- lacZ-expressing cells could still be observed at E18.5
include macrophages and/or osteoclasts in cartilaginous areas forming bone. Figure 14
shows the mandibular region in the ventral part of the jaw bone (close from figure 13). In
this ossification center clusters of lacZ expressing cells can be found. These seem to be
the only cell typesin which lack of Trx2 can still be tolerated at the end of embryonic and
fetal development.

Once the proportion of k.o. cells was above a certain threshold (highly chimeric
embryos), the embryos showed a retardation phenotype. In all analyzed stages (E8.5-
10.5) the most affected embryos were around E8.5 (figure 15). After E10.5, high
chimeric embryos were not found (data not shown). We assume high Trx2 -/- cell
contribution causes a similar developmental retardation as the complete k.o. and that
these embryos were resorbed before stage E18.5. The nature of retardation seen in highly
chimeric embryos was very general. We observed an overall reduction in size and
developmental advance without any regional specificity. This observation mirrors the
phenotype of Trx2-/- embryos produced from Trx2 heterozygous crosses (our
unpublished results). In both cases the analysis shows a general retardation in growth and

development from E7.5 on.
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Figure 15: Highly chimeric Trx2 -/- embryos display a retardation phenotype.

Litters created by blastocyst injections with Trx2 k.o ES cells were dissected at developmental stages
E8.5, E9.5 and E10.5. Whole mount lacZ stainings of the litters were performed. As seen in the litter
overview (left column) and in the close up of the blue circled highly chimeric embryos (right
column), development of embryos with a high contribution of Trx2-/- cells in all analyzed
developmental stages is retarded.



R-1.7 Histone methylation in TRX2-deficient ES cells

TRX2 is a candidate transcriptional regulator and contains a SET domain (FitzGerald et
al., 1999). SET domains have been recently identified to convey histone
methyltransferase activity to several proteins (for review see Lachner and Jenuwein,
2002). A very recent publication suggests that Drosophila TRX is associated with H3K4
methyltransferase activity (Czermin et a., 2002). Thus several experiments were

performed addressing the potential role of TRX2 in histone methylation.

R-1.7.1 H3K 4 methylation is unaffected in Trx2 deficient ES cells

To study the potential role of Trx2 in histone H3-K4 methylation, nuclel preparations
from wt and Trx2 -/- ES cells were separated by 15% SDS-PAGE and transferred onto
nitrocellulose membranes. An antibody specific against dimethylated H3-K4 was used to
examine differences in the H3 K4 methylation pattern of the two ES cell lines.

Figure 16 shows that no difference between the wt and Trx2 -/- sample concerning the
signal for H3 K4 methylation was observed. This result suggests that either Trx2 is not a
H3 K4 methyltransferase, or that it is a minor H3-K4 methyltransferase in ES cells and/or
that lack of Trx2 can be compensated by other methyltransferasesin the cell.

R-1.7.2 Histone modification pattern isunaffaected in Trx2 -/- ES cells

To obtain a broader view of histone modifications in ES cells, we decided to separate
nuclear extracts on Triton/Acid/Urea gels (TAU). This kind of separation allows
resolution of post-tranglationally modified histone isoforms. Especially histones with
varying levels of acetylation can be separated due to their charge differences. Since
methyl groups are neutral with respect to electrical charge, unfortunately methylation
states of histones cannot be separated due to lack of charge differences. But since thereis
an observed link between histone acetylation and methylation, changes in the methylation
status could potentially be reflected by a differential acetylation pattern (Reaet al., 2000).
Figure 17 shows the separation of nuclear extracts from wt and Trx2 -/- cellson a TAU
gel. Commercially available (Roche) single histone (H1, H2A, H2B, H3 and H4) samples
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Figure 16: H3K4 methylation is unaffected in Trx2 deficient ES cells.
Comparison of H3K4 methylation in wt and Trx2 -/- ES cells. An antibody specific for H3 di-

methylated at K4 detects same levels of H3K4 methylation in nuclear extracts from wt and Trx2 -/-
ES cells.
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Figure 17: Histones of wt and Trx2 -/- cells display same pattern of posttranslational

modifications.

Nuclear extracts of wt and Trx2 -/- ES cells were separated on a TAU gel. Proteins were visualized by
Coomassie staining. Single histones were loaded as reference alongside. Colored bars mark the
regions in the gel where isoforms of a particular histone should be expected (cyan: H2A, blue: HI;
purple: H3; green: H2B; yellow: H4). Neither in the overview (a) nor in the close up (b) of the histone
H4 region can a change in the pattern of posttranslational modifications be observed.



were run in paralel as controls; regions of the separated isoforms of each histone are
indicated by colored areas.

Neither for histones nor for any other nuclear protein the posttranslational modification
pattern was observably different. No differences between wt and Trx2 -/- samples
concerning the acetylation status could be detected. It seems as if loss of TRX2 protein
has no effect on the total posttranslational protein modification pattern in ES cells.

R-1.7.3 Histone methylation pattern is unaffaected in Trx2 -/- EScells

In order to further investigate the involvement of TRX2 in histone methylation, wt and
Trx2 -/- cells were incubated with the H3-labeled methyl group donor S
adenosylmethionine (SAM). If histone methylation was mediated by TRX2 a difference
between the wt and the -/- cells may be revealed by TAU gel electrophoresis and
autoradiography. Histones can be labeled by either incorporating the radio-methyl-group
of SAM into lysine, arginine or histidine residues of the histone tail or by incorporation
of radiolabeled methionine into the peptide chain. Since only the former is a measure for
the rate of tail methylation, it has to be discriminated from the latter event. To avoid
incorporation of H*into the peptide backbone of proteins during protein synthesis, protein
synthesis was inhibited by addition of cyclohexamide (10 ng/ml) in the culture media
(Gravela et al., 1977; Puga et a., 2000). In the optimal case protein synthesis would be
completely stalled and the autoradiograph of the TAU separation should only display
histone tail methylation.

After 8 hours cells were harvested and nuclei were isolated. Nuclei samples were
subjected to TAU separation, and incorporation of radio labeled methyl groups into
histones was visualized by autoradiography (figure 18). Asindicated by the high levels of
background, protein synthesis had not been completely inhibited by cyclohexamide. By
careful analysis till no difference in H® labeled histones was detected and it could be
concluded that the overall methylation status of the Trx2-deficient ES cells was not
altered.
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Figure 18: Histones of wt and Trx2 -/- ES cells display same pattern of posttranslational
methylation.

(a) Chemical structure of the methylgroup donor S-adenosyl-methionine (SAM). The tritium labelled
(3H) methyl group is indicated in red.  (b) Autoradiograph. Wt and Trx2-/- ES cells were incubated
with H3-S-Adenosylmethionine (SAM) in the presence of cyclohexamide and nuclei extracts were
separated on a TAU gel. Background signal from non-histone proteins may be due to incorporation of
labelled methionine during protein synthesis. As in figure 17, colored bars mark the histone regions in
the gel (cyan: H2A; purple: H1; magenta: H3; green: H2B; yellow: H4). No difference between wt and
Trx2 -/- ES cells concerning the methylation pattern can be observed.



R-2 TRX2 fusion to EYFP (EYFP-TRX2)

Green fluorescent protein (GFP) from jellyfish Aegquorea victoria contains a fluorescent
cyclic tripeptide (fluorophore) whose fluorescence is preserved in chimeric fusions with
other proteins of interest (Chalfie et a, 1994). This fusion protein can be expressed in
many organisms without disturbing the natural function and distribution of the original
protein (Lippincott-Schwartz and Smith, 1997). It offers several advantages over
conventional reporters such as lacZ or alkaline phosphatase, in that its visualization does
not require a chromogenic substrate and can be realized in real time, in vivo and in situ.
This opens numerous possibilities to study intracellular protein localization in the vital
context, which is a worthy tool to investigate dynamic changes of protein distributions
upon cellular processes. By directed mutagenesis of the fluorophore and interacting
amino acids, firstly an enhanced GFP-version (EGFP) that gives a brighter fluorescent
signal (Cormack et al., 1996; Yang et al., 1996), but also EGFP variants like ECFP
(cyan), EYFP (yellow) and EBFP (blue) (Heim and Tsien, 1996; Yang et al., 1998;
Miyawaki et al., 1997) differing in excitation and emission spectra have been created, so
that now also double labeling and therefore co localization of intracellular proteins can be
studied (Ellenberg et al., 1998; Ellenberg et al., 1999).

Since it is our particular interest to study the involvement of TRX2 in differentiation
processes this in vivo imaging technique appeared to be the method of choice. Upon
fusion of TRX2 to a fluorescent partner, we would be able to firstly learn about its
cellular and sub cellular localization in undifferentiated ES cells but also to follow its
distribution over the in vitro differentiation pathway or in terminally differentiated mouse
tissue.

Our choice for the fluorescent fusion partner of TRX2 fell upon the enhanced yellow
version of GFP (EYFP) since it can be combined with fusions to the enhanced cyan
fluorescent protein (ECFP) to perform future co localization studies. EYFP has an
excitation peak of 514 nm and emits at 527 nm, while ECFP is excited at wavelengths of
434 nm to emit light of 474 nm. Their brightness has been reported to allow detection of
8-10 co-localized FP molecules in a small cellular domain like the nucleus (Niswender et
al., 1995).
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Publications about EY FP expressed in transgenic mice (Feng et al., 2000, Hadjantonakis
et al., 2002; Metzger et al., 2002) and EYFP fusions to cellular proteins expressed in
mammalian cell lines (Ellenberg et al., 1998) suggest that EY FP neither has a toxic effect
in the mouse, nor influences the natural behavior of the fusion.

Both N-termina and C-terminal fusions for EY FP have been described (Godwin et al.,
1998, Kanda et al., 1998; Ellenberg et al., 1997; Presley et al., 1997, Drew et a., 2001;
Baumann et al., 1998; Stradal et al., 2001). We choose to fuse EY FP to the N-terminus of
TRX2 since the highly conserved SET domain reaches to the very C-terminus of the
protein. EYFP in a C-terminal fusion was therefore feared to negatively influence the
activity of the SET domain. The N-terminal AT-hooks, SNL and MT domains in contrast
are located in a comfortable distance from the end of the TRX2 protein so that a

functional disturbance of those domains was not expected by the fusion.

R-2.1 Creation of the EYFP-TRX2 fusion in ES cells

In order to study sub cellular localization of the endogenous TRX2 protein in vivo, an N-
terminal knock-in to fuse EYFP to the endogenous Trx2 gene was created. Figure 19a
displays the genomic organization of the endogenous Trx2 locus. The genomic sub clone
Fel3 is a 16 kb Notl restriction fragment of the genomic region and contains the
promoter region and the first two exons of Trx2 (figure 19b and c). This sub clone was
modified in a way that the targeting cassette EY FP-neo (described in detail in the next
paragraph) was cloned just behind the endogenous ATG of the Trx2 gene (figure 19d).
The targeting cassette displayed in figure 20e contains the EY FP coding region, and a
neomycin selection marker flanked by loxP sites followed by a PolyA signal. Expression
of neomycin is driven by both a prokaryotic (b-lactamase promoter blaP) and a
eukaryotic promoter (SV40 early enhancer/promoter region SVe), which allows selection
for homologous recombination in both bacteria and ES cells. EY FP-neo is flaked by two
homology regions XXX and OOO. Region XXX consists of 60 bp of the endogenous
Trx2 promoter region including the starting ATG. Region OOO consists of the first 300
bp of the Trx2 exon one. These regions serve as homology arms to mediate ET/Red

recombination of the targeting construct into Fel3.
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Figure 19: Genomic oragnization of the endogenous Trx2 locus.

(a) Genomic organization of the Trx2 locus. The integration site for the EYFP-fusion targeting cassette is
indicated by a red arrow. Region of interest is shaded grey. 1 Unit on the scale = 1kb. (b) Close up of
the region of interest with the indication of genomic restriction sites (italics). X4 and BES80 are DNA
probes used for southern blot analysis. (e) Notl restriction fragment termed genomic subclone Fel3
contains the endogenous Trx2 promoter and the first two exons. (d) Targeting construct Fel3-EYFP-nco
1s shown with construct specific restriction sites (normal). The targeting cassette EYFP-neo is cloned just
3" of the endogenous Trx2-ATG.
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Figure 20: Cloning strategy for the targeting construct Fel3-EYFP-neo.

(a) PCR amplification of the EYFP coding region from expression plasmid pE-10C-N1 using oligos
EYFPup and EYFPdw.  (b) PCR amplification of the first 100 aminoacids of TRX2 (OOO) from the
genomic subclone X2.2 using oligos Trx2up and Trx2dw.  (¢) Corresponding PCR products to the
reaction in (a) on the left and the reaction in (b) on the right. (d) The plasmid pSVKeoX1 carries the
neomycin resistance (neo) gene flanked by loxP sites (black triangles) as target sites for Cre mediated
recombination. Neo is driven by a the eukaryotic SV40 early enhancer/promoter (white arrow) and the
procaryotic beta-lactamase promoter (black arrow). Relevant restriction sites are indicated.  (e) After
conventional cloning of the two PCR products described in (c) into pSVKeoX1, arises the targeting
cassette EYFP-neo. OO0 and XXX are two homology arms that mediate ET/Red recombination into the
Trx2 genomic subclone Fel3. This recombination event is described in detail in figure 21.



Cloning of this targeting cassette was performed in three steps (figure 20). The first step
included a PCR amplification of the EYFP coding region from the EYFP expression
plasmid pE-10C-N1 (Clontech) using the oligos EYFPup and EYFPdw (figure 20a).
EY FPup contains 5" a Kpnl restriction site, followed by a 60 bp sequence homologous to
the Trx2 promoter region (XXX) including the initiating ATG, and the EY FP upstream
PCR primer sequence not including the initiating ATG. EYFPdw contains 5 a Sall
restriction site followed by the EYFP downstream PCR primer sequence not including
the STOP codon. The second step included a PCR amplification of the first 100 amino
acids of the Trx2 exon 1 not including the initiating ATG from the genomic sub clone
X2.2 that spans the first exon sequence of Trx2 using the oligos Trx2up and Trx2dw
(figure 20b). Trx2up contains 5° a Xhol restriction site followed by the Trx2 upstream
PCR primer sequence not including the initiating ATG. Trx2dw contains 5 a Sacl
restriction site followed by the Trx2 downstream PCR primer sequence. In the third step
corresponding PCR products (figure 20c) were cloned into the vector pSVKeoX1(figure
20d) that contains the neomycin resistance gene and polyadenylation signal flanked by
lox P sites as target sites for Cre mediated recombination (Angrand et al., 1999) to create
the targeting cassette EY FP-neo (figure 20e).

The linear Kpnl/Sacl fragment from EY FP-neo (figure 21a) and the Trx2 genomic sub
clone Fel3 (figure 21b and 19c) were coelectroporated into electro-competent and
arabinose-induced E. coli DH10B/pSC101/BAD/YZA cells to create the targeting
construct Fel3-EY FP-neo by ET/Red recombination via the homology arms XXX and
00O (figure 21c and 19d). For detailed description of the ET/Red recombination
procedure see results section R-1.1 and method section M-9.

In order to achieve a fusion of EYFP and the endogenous TRX2 protein, the targeting
construct had to be stably integrated into the genomic locus. Electroporation of the
linearized Fel3-EY FP-neo targeting vector was carried out into wt E14 ES cells (mouse
line 129). To select for the homologous integration event cells were cultured in medium
containing 250ng/ml G418.

To confirm the correct integration of the targeting construct into the endogenous locus, a
southern strategy was developed (figure 22). Digesting with Sall enzyme and probing of
the southern blot with an EY FP coding region fragment visualized the targeted band at 17
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Figure 21: Creation of EYFP-TRX2 fusion in ES cells.

(a) The EYFP-neo targeting cassette contains the EYFP coding region, a neomycin selection marker (neo)
flanked by loxP sites (=target sites for Cre recombination) followed by a polyadenylation signal (PolyA).
Presence of a prokaryotic beta-lactamase promoter (white arrow) and eukaryotic SV40 early
promoter/enhancer (small black arrow) ensures expression of neo in bacteria and ES cells. OOO and XXX
are two homology arms that mediate ET/Red recombination into the Trx2 genomic subclone Fel3
displayed in (b) Fel3 contains the endogenous Trx2 promoter (indicated by black arrow) and the first two
exons of Trx2. (¢) Fel3-EYFP-neo targeting construct after ET/Red recombination.  (d) After
homologous integration of this targeting construct into ES cells, Cre recombination leads to removal of the
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kb and therefore confirmed the 5 integration side (figure 22d). To identify the correct 3
integration, genomic DNA digested EcoRI/Sall was probed with neo to confirm presence
of the expected 12 kb fragment (figure 22€). Targeting the endogenous Trx2 locus with
the EY FP-neo targeting construct could therefore be successfully confirmed. Southern
anaysis of DNA extracts from 96 stable transformants revealed a 15% rate of
homologous integrations. Positive cell clones still contained the selection cassette
including a polyA signal, and may therefore create a new heterozygous knock out allele
of Trx2.

Only successful deletion of this selection marker by Cre mediated recombination would
create the desired in-frame EY FP-TRX2 fusion. The stable EY FPneoTrx2 clone #22 was
therefore transiently transformed with 40 ng of the Cre expression plasmid Mc-Cre and
plated in low density (5000-50000 cellg/ 10-cm-plate). Clones were picked in duplicates
and plated with and without G418 selection. Clones that were non-resistant to neomycin
were selected and screened for the recombination event by Southern analysis (figure 22f).
In an EcoRI genomic digest probed with the BE580 fragment (annealing 3’ of exon one)
loss of the neo selection marker is documented by an about 1 kb size reduction of the
targeted band.

8% of the analyzed clones showed thereduced = EcoRI fragment size specific for the
neomycin deletion. Two clones (#95 and #70) were thawed from the 48-well-dish,

expanded and frozen for further experiments.
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Figure 22: Southern blot strategy and analysis of positive EYFP-Trx2 targeting in ES cells.

Two Trx2 specific hybridization probes (X4, BES80), an EYFP specific and a neomycin specific
hybridization probe are indicated in red. Genomic restriction sites (italics) and target construct specific
sites (normal) are shown in green with the size of the digestion fragment indicated by two sided
arrows. The wt allele (a), the EYFPneo targeted allele (b) and the EYFPneo targeted allele after Cre
recombimation (¢) are shown. (d) Wt and targeted cells before Cre recombination (clone EY FPneo-
Trx 19&22) were Sall digested and probed with the EYFP probe. Both depicted clones show the
expected 17 kb EYFP signal. (e) Homologous integration of EYFP-neo in clone EY FPneo-Trx2 22 is
confirmed by the 12 kb fragment expected for the neo probe after EcoRI/Sall digestion. (f) Successful
removal of neo upon Cre recombination in clone EYFP-Trx2 70&95) is documented by a 2 kb size
reduction of the 12 kb targeted fragment upon Eco/Sal digestion and probing with BES80.



R-2.2 Sub cellular localization of EY FPtrx2

R-2.2.1 EYFP-TRX2isanuclear protein

Undifferentiated ES cells from the N-terminally labeled EY FP-Trx2 clones #95 and #70
were preincubated with a DNA stain for living cells (Hoechst) and analyzed using
confocal microscopy to explore the distribution of endogenous TRX2 via the YFP
fluorescent signal.

Undifferentiated stable EYFP-Trx2 ES cells show a weak but clearly nuclear yellow
fluorescent signal, which suggests that endogenous TRX2 is a huclear protein (figure 23a
and b). Nucleoli as regions in which transcription of ribosomal genes is performed,
generally do not show that same protein composition as the surrounding nuclear
compartment (for review see Scheer and Hook, 1999) Since the EY FP-Trx2 fluorescent
signal was excluded from nucleoli structures the localization could be regarded as
specific. To further support this assumption and discriminate between auto-fluorescence
and EYFP signal bleaching experiments were performed (data not shown). Since auto-
fluorescence is not bleachable while EYFP fluorescence disappears after a long laser
pulse (Chalfie et al., 1994) the high level of auto fluorescence could be discriminated
from the Trx2 specific EYFP signal.

As additional information about TRX2 sub cellular localization behavior, the confocal
analysis depicted that the EY FP-Trx2 signal was not detectable on mitotic DNA. As seen
in figure 23, EY FP fluorescence is excluded from the nuclei of cells that are currently

involved in mitotic divisions.

R-2.2.2 EYFP-TRX2 fades upon differentiation with RA

Since the initial perspective focused on the involvement of TRX2 in differentiation,
efforts were taken to in vitro differentiate the targeted ES cells and investigate the
dynamics of EY FP-TRX2 during the differentiation process. A very undirected and easy
approach for ES in vitro differentiation was chosen namely deprivation of LIF, addition
of retinoic acid (RA) 10° M to the differentiation media and cultivation of the ES cells
without feeders. Unfortunately at this point it became obvious that survival of the 129
E14 ES cell line chosen for targeting is strictly dependent on feeder cells and that this ES
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Figure 23a: Nuclear localization of EYFP-TRX2 fusion protein in ES cells.

Undifferentiated heterozygous EYFP-Trx2 clone 70 ES cells were alanyzed by confocal
fluorescence micsroscopy. Nuclear DNA staining by the Hoechste dye is shown in the bottom left
picture, while EYFP fluorescence is shown in the top left picture. The merge of both signals and
the transilluminatic view of the cell is shown in the bottom right and top right picture respectively
EYFP-TRX2 displays weak nuclear staining as indicated in the merge. Bright yellow speckles
were identified as unspecific staining by bleaching (not shown).
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Figure 23b: Nuclear localization of EYFP-TRX2 fusion protein in ES cells.

Undifferentiated heterozygous EYFP-Trx2 clone 95 ES cells were alanyzed by confocal
fluorescence micsroscopy. Nuclear DNA staining by the Hoechste dye is shown in the bottom left
picture, while EY FP fluorescence is shown in the top left picture. The merge of both signals and the
transilluminatic view of the cell is shown in the bottom right and top right picture respectively
EYFP-TRX2 displays weak nuclear staining as indicated in the merge. Bright yellow speckles were
identified as unspecific staining by bleaching (not shown).
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Figure 24: EYFP-Trx2 does not colocalize with mitotic DNA.

Undifferentiated heterozygous EYFP-Trx2 ES cells were alanyzed by confocal fluorescence
micsroscopy. Nuclear DNA staining by the Hoechste dye is shown in the bottom left picture,
while EYFP fluorescence is shown in the top left picture. The merge of both signals and the
trasnilluminatic view of the cell is shown in the bottom right and top right picture respectively
Cells depicted in (a) originate from clone EYFP-Trx2 #70 and in (b) from clone EYFP-Trx2
#95.



lineisvery hard if not impossible to differentiate. 80% of the cells detached from the
culture dish within the first 12 hours of RA treatment, but analysis of the remaining 20%
was continued. Figure 25 shows that the specific EY FP-TRX2 fluorescence in surviving
healthy looking ES cells faded completely during a 36-hour differentiation process. To
test whether this reflects the behavior of the endogenous TRX2 protein, a western on ES
cells that carry a TRX2 N-termina proteinA tag was performed. Tagged TRX2
heterozygous ES cells were treated with the same differentiation condition as previously
the EYFP-Trx2 ES cells and crude protein extracts were loaded on a 15% Polyacrylamid
gel to be blotted and probed with an anti-ProteinA antibody. Figure 25c¢ shows that no
decrease in TRX2 protein amounts caused by the differentiation procedure was
observable. It was thus concluded that the disappearance of the fluorescent EY FP-TRX2
signal from differentiated ES cells did not reflect the natural behavior of the TRX2
protein. Removal of EYFP-TRX2 instead is an artificial effect created by the N-terminal
fusion of EYFP to TRX2, which probably results in a modified TRX2 protein version
that is unfavorable to the differentiating ES cell.

These experiments demonstrated that endogenous TRX2 is an exclusively nuclear protein
absent from nucleoli structures, without any particular sub nuclear localization pattern.
TRX2 protein is excluded from mitotic DNA.

R-2.3 Creation of EYFP-Trx2 mice

Since TRX2 was only localized dispersed in undifferentiated ES cells we argued that a
specific localization patterns might only occur in differentiated tissue cells. For the
investigation of this proposition in vitro differentiation protocols of EYFP-Trx2 cells
were tried to achieve. Unfortunately the feeder dependent properties of the ES cell line
used for targeting proved it impossible to differentiate ES cells in a reproducible manner.

To be able to still access information about TRX2 distribution in differentiated tissue, the
creation of amouse line carrying the EY FP-TRX2 fusion protein was decided. Additional

to the easy access to a variety of fully differentiated tissue, the mouse system could also
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Figure 25: The EYFP-TRX2 signal fades upon differentiation with retinoic acid.

(a) Confocal fluorescence analysis of EYFP-Trx2 heterozygous ES cells clone 95 after 1 day of treatment
with 10-OM retinoic acid (RA) under differentiating conditions. (b) The same cell clone after 2 days of
treatment with 10-OM retinoic acid.  (¢) Western analysis performed on crude protein extracts of
heterozygous TAP-TRX2 expressing ES cells probed with ani-Protein A. ES cells were incubated with
either no RA (left lane) in RA 10-9M for 18 hours (middle lane) or 36 hours (right lane). Since no RA
induced diminishing of TAP-TRX2 can be observed, removal of EYFP-TRX?2 from nuclear structures
upon differentiation does not reflect the endogenous behaviour of TRX?2 .



allow overcoming the problem of the weak fluorescent signal in heterozygous cells by
creation of a homozygous EY FP-Trx2 line.

Cells from heterozygous clones EY FP-Trx2#95 and EY FP-Trx2#70 were injected into
blastocysts derived from the mouse line C57BL/6. This specific mouse line alowed
evaluating the germline transmission of the injected cells by hair color. The injected ES
cell clones are derived from mouse line 129, which encodes for the dominant agouti hair
color. If these ES cells contribute to the germline of the chimeric animals backcrosses of
highly chimeric males to C57BL/6 wild type females should produce offspring with
agouti hair color. To obtain germline transmission in blastocyst injection experiments the
injected ES cells must be of exceptionally good quality. All backcrosses produced agouti
hair colored litters indicating that both transgenic clones used gave germline
transmission.

Since the possibility to identify the genotype of breeding progeny by hair color become
too unreliable in further crosses, genotyping of coming litters was based by a PCR
strategy performed on DNA tail preparations. As explained in figure 26a the use of
primer L (annealing in the promoter region) and primer M (annealing in exon one)
produces a fragment of 500 bp for the non-targeted wt Trx2 allele, and a fragment of
1000 bp for the targeted EYFP-Trx2 alele. While presence of both fragments therefore
indicates a heterozygous animal, absence of the 500 bp fragment is characteristic for
homozygous EY FP-Trx2 animals (figure 26b).

The heterozygous EY FP-TRX2 animals resulting from various crosses are without any
apparent phenotype: live span, fertility and behavior is not altered compared to wt mice.
To obtain homozygous EYFP-Trx2 mice, heterozygous animals were crossed.
Unfortunately the F1 generation of heterozygous crosses, failed to breed the expected
Mendelian Ratio of 25% wt, 50% +/- and 25% homozygous pups. Instead only 6%
EY FP-Trx2 homozygous pups survived until breeding age and into adulthood (table 3).
Apparently the EYFP-TRX2 fusion created a hypomorphic allele for Trx2 with very
heterogeneous penetrance that ranges from late fetal lethality to adult viability. Although
the original aim was to use the fusion protein as atool to study Trx2 localization in living
cells, the hypomorphic phenotype presented the possibility to get further insight into Trx2

function and was therefore carefully analyzed.
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Figure 26: PCR based strategy to genotype mice for the EYFP-Trx2 mutation.

(a) Scematic deliniation of the position of primers L. and M within the genomic locus of Trx2. Primer
L anneales to the promoter region 5' of the EYFP coding region, primer M to sequence in the first Trx2
exon (ex1). (b) The wt allele produces a PCR product of 430 bp. It is present in both wt (left lane)
and heterozygous (middle lane) animals. The EYFP targeted allele produces a PCR product of 1450 bp
since it includes the EYFP ORF of 1020 bp. Only this fragment is visible in genomic DNA from EYFP
homozygous animals (right lane).



EY FP #95 EYFP #70 Total
wt pups 55 30% 36 38% 87 33%
+/- pups 104 62% 55 58% 159 61%
EY FP hom pups 13 8% 4 4% 17 6%
# of litters 32 18 50

Table3: Littersfrom heterozygous EY FP-trx2 crosses.
Shown are the breeding results within 1 year between EY FP-trx2 +/- animals divided in +/- mice
generated by blastocyste injection with cloneEY FPtrx2 #95, cloneEY FPtrx2 #70 and total. In Total
50 litters were genotyped to find a rate of only 6% for EY FP homozygous animals instead of the

expected 25%.
stage wt +- EYEP hom hom Total
analyzed phenotype
ES5 8 |23l 23 |eswll 4 |11%]| / 35
E10.5 17 |33%f 15 |30%f 190 |[37%| / 51
E125 o |27l 14 |43l 10 |30%]| / 33
E145 13 319 21 |43l 12 |26%| / 46
E17.5 12 |26%fl 23 |s19%f 11 |24%| 5 | a6% 46
E18.5 17 |30%f 31 |s4%f 8 |14w| 7 | 85w 57
perinatal | / 1 |20l 4 |sowm| 4 |100% 5
death
weaning | 51 |30%|| 104 |e2wll 13 | 8w | 168 168

Table 4: Analyzed embryosto depict embryonic lethality of EYFP hom mice.
Litters from heterozygous crosses of EYFP-trx #95 were extracted and genotyped at various
developmenta stages. Numbers of wt, heterozygous and EY FP homozygous animals within those
litters are listed in total numbers and percent. Until E14.5 no phenotypic abnormalities in EFFP
homozyous animals is found. From E17.5 on EY FP homozygous embryos are significantly smaller
than their litter mates and numbers drop from 25% to 14% (E18.5) and 8% (weaning age),
suggesting that EY FP homozygous pups die perinatally because of reduced size and fittness through

canibalism.




R-2.4 Analysisof the EYFP-Trx2 mutant phenotype

R-24.1 EY FP homozygous embryos arelethal upon birthing

To examine exact time point of embryonic lethality conveyed by the homozygous EY FP-
TRX2 fusion litters from heterozygous crosses have been analyzed at E8.5, E10.5, E12.5,
E145 E175 and E185. Table 4 summarizes the anaysis of all EYFP-TRX2
heterozygous crosses. Only animals derived from blastocyst injections with the clone
EYFP-Trx2 #95 in 50% C57BL/6 genetic background were used.

In litters examined at embryonic day E8.5, E10.5 and E12.5 no size difference between
littermates of the three different genotypes (wt, heterozygous and homozygous) could be
observed. The phenotype firstly appeared at around E17.5 when EY FP-Trx2 homozygous
embryos are significantly smaller than their +/- and wt littermates (figure 26). At E17.5
46%, at E18.5 already 88% of the EYFP-Trx2 homozygous embryos show the observed
growth retardation phenotype. The observed size variations could not be regarded as
normal size heterogeneity within a litter since none of the wt or +/- littermates were ever
growth retarded.

Until E17.5 the numbers of wt, +/- and EY FP-TRX2 homozygous embryos remain within
the expected Mendelian Ratio of 25% / 50% / 25%, respectively. Up to birth EY FP-
TRX2 homozygous numbers drop to 8%. Since these embryos still existed in the uterus
of the mother shortly before birth (E18.5) but only 8% were found in the born litters it
was concluded that reduced size and fitness of the EY FP-Trx2 pups induced cannibalism
by the mother within the a few hours after birth. Four of the five pups which could be
retrieved dead from the cage the morning after birth could be identified as EYFP-TRX2
homozygous embryos, which supported this assumption. Due to the speed and
completeness of cannibalism by the mother it was not possible to genotype more pups
that died perinatally.

It remains a topic of discussion whether the growth retardation in late embryonic
development indicates a specific involvement of Trx2 in growth mechanisms or a non-

specific consequence of generalized loss of gene expression.
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Figure 27: EYFP-Trx2 homozygous embryos at E17.5 and E18.5 display a growth phenotype.
Homozygous EYFP-Trx2 embryos are significantly smaller than their heterozygous (+/-) or wt
littermates at E17.5 (a) or E18.5 (b). Litters were obtained form heterozygous EYFP-Trx2 crosses.



R-2.4.2 Adult EYFP-Trx2 females are hypofertile

The adult EYFP-Trx2 homozygous survivors displayed no obvious phenotype compared
to wt or +/- littermates. Until date no reduced life span (the oldest EYFP-Trx2
homozygous animals are now 22 months of age), size or weight differences could be
observed.

To further investigate whether the exclusive expression of EYFP-TRX2 fusion protein in
homozygous animals affects adult development, the surviving homozygous EY FP-TRX2
mice were tested for fertility by crossing them to wt animals of the same age.

All the tested males bred with a normal frequency (about one litter per month) and gave
rise to normal size heterozygous litters of 5-8 pups. EYFP-Trx2 homozygous females
revealed to be hypo fertile, as documented by prolonged breeding times and reduced litter
sizes. In total only two of the eight homozygous females had one litter each with only
three pups during a breeding period of one year. To examine this reduced fertility
phenotype in further detail females were super ovulated by applying PMSG (pregnant
mare serum gonadotropin) and HCG (human chorium gonadotropin) in an interval of 24
hours into the tail vein, and then bred with wild type males that had proven to be fertile.
While all control heterozygous and wt females became pregnant, none of the
homozygous females did. We concluded that the failure to conceive normally had to rest
in the female reproductive organs and therefore examined the ovaries of super ovulated
females. Examination was carried out by visually scoring for size and number of corpora
lutea that represent ovulated eggs of the extracted ovaries.

Figure 27 shows that ovaries of EYFP-TRX2 homozygous females were not only
generaly smaller but also lacked the expected number of corpora lutea compared to

ovaries from wt females, indicating a failure of ovulation.
All above results demonstrate that the EY FP-Trx2 mutation creates a hypomorphic alele.

The phenotype of EYFP homozygous mice involves perinatal lethality and diversely
severe hypo fertility in the surviving females.
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Figure 28: Ovaries from EYFP-Trx2 homozygous females are retarded.

Ovaries from 40-week old females were extracted and compared for size differences and number of
corpi albae. EYFP-Trx2 homozygous females have generally smaller ovaries and less Corpi albae a
phenotype that could explain the observed hypofertility caused by the sole expression of the modified,
EY FP-targeted version of TRX2 protein..



R-2.5 Trx2 mRNA levelsin EYFP-Trx2 heterozygous ES cells are reduced

To look for a molecular explanation of the EYFP-Trx2 hypomorphic allele a northern
blot analysis on RNA extracts from the two independent EY FP-Trx2 ES cell clones #95
and #70 that went germline was performed. This revealed that MRNA levels of the fusion
transcript are observably reduced compared to wt Trx2 mRNA levels. In figure 29, 30 ng
total RNA from wt, Trx2 +/-, Trx2 -/- and two independent heterozygous EY FP-Trx2 ES
cell clones were separated on formaldehyde containing agarose gel and transferred to
nitrocellulose membrane. Blots were probed with the Trx2 specific hybridization
fragment CF14 and an EY FP specific hybridization fragment while an actin hybridization
probe served as an internal loading control. Additionally double (60 ng) and half (15 ng)
amounts of total RNA from EYFP-Trx2 ES cells were loaded for better comparison. The
signal was quantified by phosphoimager evaluation (figure 29b). 60 ng of total RNA
from EYFP-Trx2 ES cells and 30 ng of wt total RNA led to comparable CF14 signal
intensities. 30 ng of total RNA from Trx2 heterozygous ES cells gave comparable CF14
signal intensities as 30 ng of total RNA from EYFP-Trx2 ES cells. 15 nyg of total RNA
from EYFP-Trx2 ES cells gave halved CF14 signal intensities compared to the signa in
30 ng of total RNA from Trx2 heterozygous ES cells. Since Trx2 mRNA levels in
heterozygous EYFP-Trx2 expressing ES cells are therefore comparable to the Trx2
MRNA levels of ES cells carrying a heterozygous knock-out of Trx2, it was concluded
that only very limited amounts of EYFP-Trx2 mRNA were produced. Probing of the
same blot with an EY FP specific probe though visualized a fragment of similar size as
the fragment visualized by CF14 hybridization, thus confirming that at least a sub-
fraction of EYFP-Trx2 RNA is present in heterozygous EY FP-Trx2 ES cells.

These results suggest that the observed phenotype in EY FP-Trx2 homozygous mice is

probably due to overall reduced TRX2 levels caused by a defect in transcription or RNA
stability.
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Figute 29: Trx2 mRNA levels in EYFP-Trx2 heterozygous ES cells are reduced.

(a) Total ES cell RNA from two heterozygous EYFP-Trx2 clones (#70 & #95) was quantitatively
compared to RNA from wt, Trx2 +/- or Trx2 -/-. 30 yg RNA was loaded for wt, Trx2 +/-, Trx2 -/- and for
the EYFP-Trx2 clones #70 & #95. Additionally double amounts (x2 = 60yg) and half amounts (/2= 15yg)
total RNA of EYFP-Trx2 clones #70 & clone #95 were loaded for better comparison. Actin was used as a
loading control. (b) Phosphoimager quantification of signals detected in (a) supports that CF14
detected Trx2 mRNA levels in heterozygous EYFP-Trx2 cells is reduced to about half. (¢) Probing with
the specific EYFP probe reveals EYFP-Trx2 transcripts exclusively in EYFP targeted ES cells. EY FPtrx2
transcripts run at same position as Trx2 trasncripts, suggesting that targeted RNA is transcribed in full
size and that at least a subfraction of EY FP-Trx2 mRNA is produced..



R-2.6 TRX2proteinisreduced in EYFP-Trx2 heter ozygous ES cells

To confirm that reduced EY FP-TRX2 RNA levels are also mirrored on the protein level,
western blot analysis using the TRX2 specific antibody was performed on ES cell
extracts (figure 30).

Crude protein extracts from wt, Trx2 -/- and the two independent heterozygous EY FP-
Trx2 ES cdll lines were separated by 5% SDS-PAGE, transferred to nitrocellulose and
probed with the specific TRX2 antibody. Probing with an actin specific probe served as
an internal loading control.

Probing with anti-TRX2 detected a highly degraded but Trx2-specific pattern in the wt
sample as well asin EYFP-Trx2 ES cell extracts. Even though the same amount of cells
were extracted and same amounts were |oaded on the gel as confirmed by the comparable
intensities of the actin signals, due to the high level of degradation a quantitative
comparison was very difficult. It seems as if TRX2 protein levelsin EYFP-TRX2 #95 ES
cells is reduced compared to wt cells while the signal reduction is much stronger in
EYFP-TRX2 #70 ES cells. Since this is a subjective measure it can only be assumed that
TRX2 protein levels are reduced in EY FP-TRX2 ES cells compared to wt ES cells.
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Figure 30: TRX2 protein is reduced in EYFP-Trx2 +/- ES cells..

Specific anti-TRX?2 antibody detects the 280 kD TRX?2 signal and degradation products in crude
extracts of wt, and two independent EYFP targeted (clone 70 and clone 95) ES cells. The internal
loading control (ACTIN probe) shows that comparable amounts of total protein were loaded. Even
though a very high grade of degradation obscures the quantification, it seems as if the TRX2 signal in
EYFP targeted ES cells is reduced compared to wt. Molecular weights in kD are indicated left of the
membrane.



D. Discussion

D-1 TRTX2isnuclear and absent from mitotic DNA

Fluorescence microscopy of the EYFP-Trx2 ES cells showed a nuclear localization of the
chimeric protein. The nuclear distribution could be described as diffuse, no specific sub
nuclear pattern was observed. This observation is in contradiction to the performance of
TRX?2's ortholog MLL, which has been reported to localize to discrete nuclear speckles,
a manner accredited to the SNL sequences in the N-terminus of the protein (Yano et al.,
1997; Cadlini et al., 2000; Lee and Skalnik, 2002). Also another SNL containing protein
CGBP (human CpG Binding Protein) shows the nuclear punctuate distribution and is
even co localized to MLL containing speckles (Lee and Skalnik, 2002). MLL and CGBP
associate almost exclusively with transcriptionally active euchromatin, and with the
nuclear matrix suggesting a role in modulation of chromatin structure, leading to
epigenetic effects on the maintenance of gene expression. Even though SNL sequences
are also present in TRX2 this punctuate distribution could not be reproduced for EY FP-
TRX2 in ES cells. Whether this reflects the natural behaviour of TRX2 in the totipotent
context of ES cells or is ascribed to the disturbing presence of the EY FP fusion remains
ambiguous.

Unlike MLL, EYFP-TRX2 fluorescence was aso not found on metaphase DNA, a
comportment shared with CGBP (Cadlini et a., 2000; Lee and Skalnik, 2002). This
disparate sub-cellular localization during cell division suggests that TRX2 (and also
CGBP localization) is a dynamic process that undergoes regulation through the cell cycle

or upon differentiation.
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D-2 TRX2requirement in EScells

Observations from the cell culture experiments performed on TRX2 deficient ES cells
can be summarized with the conclusion that TRX2 is not required for ES cell viability.
Targeting the second allele of Trx2 was successful. Targeting frequencies for the first
allele (performed by v.d. Hoeven) were around 9 % (our unpublished results). The second
allele was targeted with the ssimilar frequency of 3%, taking into account that only one
allele was available for the desired targeting and double knock out. Trx2 knock out ES
cells grew with the same doubling time and cell cycle distribution as +/- and wt cells, are
unobtrusive with respect to apoptosis rates and retain the ability to form wt colonies.
Therefore Trx2 is not required for an essential or apparent cell cycle function in ES cells
that represent embryonic stage E4.5. This conclusion is supported by the mouse knock
out phenotype and blastocyst injection experiments with Trx2 -/- ES cells, since before
E7.5 a phenotypic abnormality of k.o. embryos or high chimeras has not been observed.
However studies in Drosophila have provided evidence for a maternal supply of TRX.
The small 10 kb trx2 mRNA is exclusively found in adult females and 0-3 hour embryos
and was therefore classified as of maternal origin (Mozer and Dawid, 1989; Breen and
Harte, 1991; Sedkov et al., 1994). We therefore have to consider that maternally supplied

Trx2 from the heterozygous oocyte provides some early functions of Trx2.

However the ES cell studies exclude TRX2 as afactor involved in general processes like
the cell cycle or housekeeping-gene regulation. ES cells are totipotent cells derived from
the inner cells mass of the blastocyst. Since also our targeted -/- ES cell line retained the
potential to contribute to many embryonal tissues (proven by the blastocyst injection
experiment), it can be regarded as undifferentiated. Apparently TRX2 is not important for
viability of the cell in an undifferentiated state, but plays an important role in later
developmental stages indicating that it might be differentiation processes that require
TRX2 function. In vitro differentiation studies on Trx2-/- versus wt ES cells are currently

being investigated.
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D-3 EYFP-TRX2 hypomorphic phenotype

EY FP-Trx2 homozygous animals were not born at the expected Mendelian ratios. Also
EYFP-Trx2 female homozygous survivors were infertile. This oberservations could
indicate a toxic effect of the created fusion protein. This toxicity cannot be contributed to
the sole presence of EYFP since no toxic or negative effect for EYFP both in
differentiated mammalian living cells (Ellenberg et a., 1998) or in the mouse itself
(Hadjantonakis et al., 2001, Hadjantonakis et al., 2002; Metzger et a., 2002) has been
reported. The mouse produced from Hadjantonakis, for example, conducts a widespread
and strong expression of EYFP and remains vital and fertile. Also the use of EYFP in
fusion with a protein of interest has proven to leave the wt function of the protein
unaffected. In this context neither C-terminal fusions of a fluorescent protein (Godwin et
a., 1998, Kanda et al., 1998; Ellenberg et a., 1997; Predley et a., 1997, Drew et 4.,
2001) nor N-termina fusions (Baumann et al., 1998; Stradal et al., 2001) make a
difference. The expression of fluorescent proteins in mammalian systems therefore
remains a powerful tool for the study of intracellular processes.

Instead, we conclude that addition of EYFP to Trx2 interferes with either the normal
function of the endogenous TRX2 protein or with the molecular processes for the
production of the protein. Analysis of EY FP-Trx2 transcription and protein levels suggest
a defect with the latter since Trx2 mRNA in EYFP-Trx2 heterozygous ES cells is found
in reduced amounts. However the EYFP-Trx2 mRNA is detectable in +/- ES cells and
also confocal fluorescence microscopy could specificaly detect the presence of the
fluorescent fusion protein, indicating that at least a sub fraction of EYFP-TRX2 is indeed
produced in ES cells. Hence we conclude that the phenotypic impact of the EY FP-Trx2
aleleisat least partly due to reduced mRNA levels. This could be either due to decreased
transcription or decreased RNA processing and/or stability. These matters were not
investigated, however it isworthy noting that Trx2 transcription, like MlII, arisesin a CpG
island, which encompasses the initiating methionine. Hence the EY FP coding region was
inserted into the CpG island, abeit near its C-terminus.

The observation that EYFP-TRX2 is undetectable after differentiation of ES cells (an
observation that is not reflected by the endogenous protein behaviour) could either
indicate that TRX2 in fusion with EY FP retains some abnormal protein features that is
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toxic for the differentiating cell or that upon differentiation the expression changes in a
way that the already impaired EYFP-Trx2 expression is further impaired. In any case,
these features of EY FP-TRX2 precluded insights into the natural sub cellular localization
of TRX2, however did provide a hypomorphic allele for analysis during devel opment.

If the EYFP-Trx2 alele interfered with both mRNA expression and protein function, the
negative influence of the EYFP fusion on the protein level could be an improper folding
mechanism or the interference of the EYFP attachment with N-terminal domains of
TRX2 namely AT hooks, SNL sequences and MTase domain. As mentioned in the
introduction the combined actions of those domains could contribute to the ability of
TRX2 to recognize, bind and therefore maintain previously activated promoter regionsin
an active state. If the EY FP fusion has a negative effect on the function of those domains,
loss of this important TRX 2 feature could lead to the replacement of the impaired protein
version with the wt copy present in heterozygous ES cells and mice. Since aso a
heterozygous k.o. of TRX2 in mice and ES cells has no phenotypic effect (our
unpublished results), presence of the EYFP-Trx2 allele can remain phenotypically
unobtrusive until also the second (wt) copy of Trx2 is lost upon production of

homozygous animals.

The fact that adult survivors that carry a homozygous EY FP-Trx2 allele exist can only be
explained by the presence of a second site mutation or some other kind of adaptation in
those animals that balanced the deleterious alleles to an extent that allows normal
development at least with respect to fundamental vital functions and life span. Still even
in adult EYFP-Trx2 homozygous survivors TRX2 impairment resulted in an irregular
development of the reproductive female organs, so that we decided that unfortunately
aso EYFP-Trx2 homozygous mice could not be drawn to analyse the wt features of
TRX2 protein.

We conclude that the phenotype of EY FP-Trx2 homozygous mice is probably caused by

reduced TRX2 levels due to impaired expression, but cannot exclude a contribution from
impaired TRX2 function due to the N-terminal fusion of EY FP.
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D-4  Continuousneed of TRX2 during development

Our original intention to use the EYFP-TRX2 fusion as atool to study dynamic changes
of TRX2 sub cellular distribution before and during differentiation failed. Hence our
efforts focused on the analysis of the hypomorphic phenotype. While other work so far
has centred on investigating the early functions of TRX during embryonic development,
this hypomorphic Trx2 allele alows insights also into some of the late functions of the
gene. In early development no phenotype was evident while EYFP-Trx2 homozygous
embryos of developmental stage E17.5 and E18.5 were significantly smaller than their
heterozygous and wt littermates. Until E18.5 the numbers of wt, +/- and EYFP hom
embryos remained in the expected Mendelian ratio. After birth EYFP homozygous
numbers drop to 4%. We conclude that reduced size and fitness of the EY FP-Trx2 pups
caused cannibalism by the mother within the a few hours after birth. Whether this
indicates a specific involvement of Trx2 in growth mechanisms or a non-specific
consequence of generalised loss of gene expression remains a topic of discussion but
allows the conclusion that TRX2 is indeed involved in gene expression control during
fetal stages. Breeding of the 4% EY FP-Trx2 homozygous surviving animals revealed that
the males are fertile, whereas the females are hypofertile, an observation that led to the
anaysis of the female reproductive organs. Studies on ovaries of EYFP-Trx2
homozygous females revealed both alack of corporalutea aswell asagenerally reduced
size. The aberrations indicate that TRX2 is also involved in the very late developmental

process of female reproductive organ formation.

The EY FP hypomorphic allele therefore indicates that Trx2 function is not only required
in an early state of development (that is between E7.5 and E9.5 when the -/- embryos
die), but that also at late stages of development suggesting that TRX2 function is broadly

and continuously required.
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D-5 TRX2isrequiredin all cell types

In lower and moderate chimeras for Trx2-/-, Tx2 deficient cells are still observable in all
tissues around E10.5. All the chimeras that show a more or less dispersed finding of -/-
cells appear developmentally inconspicuous indicating that there is a threshold, under
which -/- cell contribution can be tolerated without disturbing normal early embryonic
development. As soon as the number of -/- cells is above this threshold (high content
chimeras and homozygous knock out embryos), animals are retarded as discussed above.
However analysis of later low chimeric, phenotype-less stages show that Trx2-/- cells are
progressively eliminated until birth (E18.5). This points to the presence of developmental

processes in the late embryo that do not tolerate any participation of Trx2 deficient cells.

Supported by analysis of the phenotype of EY FP-Trx2 homozygous survivors (D-4), and
low chimeric Trx2-/- injection chimeras (D-5) we can conclude a broad and continuous
need for Trx2 even in later stages of development without any indication of cell type

specificity.

D-6 IsTRX2required for differentiation processes ?

The last areas in which Trx2-/- lacZ-expressing cells could still be observed by E18.5
include macrophages and/or osteoblasts, in cartilaginous areas forming bone. Bone
development is described as occurring by two different processes: intramembranous (in
membrane) ossification of the facial and cranial bones and endochondra (in cartilage)
ossification characteristic for long bone formation of the axia and limb skeleton.
Intramembranous ossification involves direct osteogenesis from undifferentiated
mesenchyme without any cartilage precursors while endochondral ossification requires a
cartilaginous model resembling the future bone in shape and relative size. In both
processes osteoblasts are the bone-forming cells that form ossification centres by
deposition of collagenous fibres and calcium salts as the organic matrix of the bone
(osteoid). Osteoblasts differentiate from undifferentiated mesenchymal cells; whether in
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the case of endochondral ossification, osteoblasts differentiate from cartilage cells or
simply replace previously removed chondrocytes remains unclear. Although both
ossification methods can be separated in analysis, long bones serve as examples of both
processes. a collar of bone surrounding the cartilage model is laid down by
intramembranous ossification while inner-bone ossification by endochondral pathways
take place. Therefore in most bone developmental processes, intramembranous
ossification isinvolved (Hamilton et al., 1972; Mundlos and Olsen, 1997; Cohen, 2000).
This differentiation process of bone formation is one of the last in mouse development.
First signs of ossification appear around E14.5 in the mandibular and maxillar regions of
the facial skeleton. Only by E19.5 the ossification process is completely termed.
Ossification in long bones of the phalanges is a late event in development starting at
E18.5 and still being continued postnatally (Kaufmann, 1992).

Macrophages are involved in the cellular immune reaction but also play arolein the bone
formation process. Macrophages and their specialized cell-type the osteoclasts, are
responsible for the removal of cartilage cells before their replacement with osteoblasts.
Since TRX2 does not appear to be required in ES cells and TRX2 -/- cells are eliminated
during development, it may be that TRX2 is required for differentiation processes. If so,
then the perdurance of Trx2-/- cells at sites of ossification may reflect the possibility that
cells at these sites are amongst the last areas to require commitment to a differentiated
condition. The fact that TRX2 absence is only tolerated in so far undifferentiated cells,

again indicates that Trx2 plays an important role in tissue differentiation.

Together with the observations of the EY FP hypomorphic phenotype, the results show
that Trx2 is continuously required throughout development. Furthermore the chimeric
analysis failed to show any notable cell-type specificity, so we can conclude that Trx2

function is required in all cell-types, or the lack of Trx2 provokes apoptosis in al cell-
types.
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D-7 Support for the Trx2 k.o. mouse phenotype

As described in the introduction the phenotypic analysis of Trx2 deficient embryos
revealed a retardation in size and developmental stage from embryonic day E7.5 on. The
very genera nature and the timing of that retardation would aso include the possibility
that it was caused by a defect in the extra embryonic tissue. The extra embryonic tissue
more precisely the polar trophectoderm has important assignments in the process of
implantation of the embryo into the uterus wall from embryonic day E4.5 on. Especially
embryonic stage E7.5 (T11) is characterized by the development of extra embryonic
structures like yolk sac, chorion or allantois whose prime role is to provide physiol ogical
and nutritional environment for the developing embryo, but who are also involved in the
supply of red blood cells and primordia germ cells an accomplishment that is crucial for
embryogenesis (Kaufmann and Bard, 1999). Furthermore the extra embryonic visceral
endoderm plays a key role in the developmental patterning of the underlying ectodermal
tissue (epiblast) (Beddington and Robertson, 1998). Gene knockouts that generate an
extra embryonic tissue defect, display phenotypes similar to the one of Trx2 with respect
to timing and embryonic retardations (Zeitlin et a., 1995, Dragatsis et a., 1998;
Yamamoto et al., 1998; Meagler and Brown, 2001).

The -/- ES blastocyst injection experiments exclude the possibility that the Trx2-/-
phenotype is due defects in the extra embryonic tissue. Cells from the inner cell mass of a
blastocyst and therefore also the injected Trx2-/- ES cells can only contribute to the
embryo proper not to the extra embryonic tissue (Kaufmann and Bard, 1999). Extra
embryonic tissue in those embryos is completely formed by wt cells of the host C57BL/6
blastocyst so that the retarded phenotype of chimeras with a high contribution of -/- cells
that is very similar to the phenotype of Trx2 deficient embryos, is entirely caused by the
lack of TRX2 in the embryo itself.

The fact that the high content chimeras mirror the phenotype of knock out embryos
therefore implies that Trx2 function is intrinsic and not due to the lack of Trx2 in extra

embryonic tissue. Thereisacell autonomous need for TRX2 in the epiblast cell.
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D-8 Outlook

D-8.1 IsTrx2involved in in-vitro differentiation ?

In chapter R-1.5 | was able to show that the Trx2 deficient ES cell line did not show a
defect in either proliferation, cell cycle distribution, colony formation or apoptosis rates
and concluded that Trx2 is not an essential gene for the cell in the pluripotent
undifferentiated ES cell state. This observation is raising the question about a possible
Trx2 involvement in differentiation. To investigate this topic, in vitro differentiation of
ES cells can be applied. Possibly the knockout of both Trx2 alleles could be retargeted
into the readily differentiatable, feeder independent, E14 cell line ‘E14-TG2a’ (kindly
provided by Austin Smith). The differentiation capability of k.0. compared to wt cells
can be studied by the application of various differentiation protocols. To follow the
differentiation process in further detail, immunostainings with markers for the different
stages of differentiation can be performed including the staining for termina
differentiation markers like b-Il1-tubulin for neurons or artrial natriuretic factor (ANF)
for cardiac muscle. In addition expression studies on the unverified potential target genes
of Trx2 (otx2 and hoxbl) in Trx2-/- cells at different stages of differentiation would
compliment our previous unpublished observations.

Since the use of the EY FP-tagged TRX2 protein failed to give faithful information about
the cell biology of the protein as described in chapter R-2.2, the Trx2 specific antibody
could serve an aternative tool to study TRX2 sub cellular localization. Even though this
approach would not contain the merits of an in vivo localization system, still questions
about a specific sub-nuclear distribution (comparable to the speckled localization pattern
of CGBP and MLL), potential pattern changes after induction of a differentiation
pathway or the attachment or detachment respectively of TRX2 to DNA during
differentiation could be addressed.

D-8.2 IsTrx2involved in chromatin regulation ?
Since indications from Drosophila suggest that Trx2 acts on target gene expression as a
maintenance factor for active chromatin, the Trx2-/- ES cells also present unique

experimental possibilities for detailed analyses of the chromatin aspect for mammalian
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Trx2. The processing of a specific Trx2 antibody now alows to perform Chromatin
Immuno Precipitation (ChlP) assays on the genomic locus of potential target genes to
learn about the presence or absence of TRX2 at their regulatory regions. Those ChlIP
experiments could comprise the analysis of DNAse hypersensitivity sites in enhancer
regions, the tracking of expression activity and the correlation of TRX2 presence with
both of them. Since Trx has been identified to have HMT activity, studies on the

methylation status of the target chromatin could be a valuable continuative experiment.

D-8.3 Further use of EYFP-Trx2 mice

EYFP homozygous adult survivors dealt with in chapter R2.4 could be used to further
address the differences between the wt and the EY FP-tagged Trx2 allele. An interesting
question could be whether the EY FP homozygous males are able to transmit the EYFP
alele to the F1 generation through the male germline. By crossing them to heterozygous
females we expect a mendelian rate of 50% hom and 50% het offspring. If the actual rate
would be in this range it can be concluded that those males have probably adapted to the
EYFP-Trx2 alele by some stably transmittable process.

EY FP homozygous females could serve as a model system to understand the molecular
reasons for the defect in the development of female reproductive organs. A detailed
analysis of the retarded ovaries of EYFP homozygous females concerning follicular
development and granulosa cell differentiation is suggested.

The existence of mouse lines in our lab that carry other Trx2 aleles (Trx2 k.o. and TAP-
Trx2) opened the possibility to potentially create a spectrum of hypomorphic
combinations upon crossing of those available lines with the EYFP allele. Breedings
between a female heterozygous for the Trx2 k.o. allele and a male homozygous for the
EYFP allele results in 50% offspring that carry a combination of both Trx2 aleles and
should be characterized by a fetal phenotype that is classified between those of both
homozygous variants (lethality between E10.5 and birth). Study on those newly created

phenotypes would allow further insight into Trx2 late function in development.
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ATP
bp
C-terminus
dH20
DMT
DNA
dw
E10.5
ES
etd.
EYFP
H
HAT
HDAC
het
HMT
hom
ICM
K

k.o.
kb
LacZ
min
M
MLL
MRNA
N-terminus/ C-terminus
o/n
ORF
PAGE
Pc-G
PEV
PLB
RNA
rRNA
SAM
Sec
TAU
Trx
TRX
Trx2
TRX2
trxG
up

wt

Abbreviations

adenosine triphosphate

base pairs

carboxy-terminus

distilled water

DNA methyl transferase
desoxyribonucleic acid
downstream

embryonic day 10.5

embryonic stem cell

and others

enhanced yellow fluorescent protein
histone

histone acetyl transferase

histone deacetylase

heterozygous (+/-)

histone methyl transferase
homozygous (-/-)

inner cell mass

lysine

knock-out

kilobases

b galactosidase enzyme

minute/s

mammalian mixed lineage leukemia gene
mammalian mixed lineage leukemia protein
messenger RNA

amino-terminus/ carboxy-terminus
over-night

open reading frame
Polyacrylamid gel electrophoresis
polycomb group of proteins
position effect variegation

protein loading buffer

ribonucleic acid

ribosomal RNA
S-adenosylmethionine

second/s

triton/Acid/Urea

fly trithorax gene

fly trithorax protein

mammalian trithorax 2 gene
mammalian trithorax 2 protein
trithorax group of proteins
upstream

wildtype
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