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1. INTRODUCTION

IN DIFFERENTIAL delay equations

(1) = fx(t = 1)) (1)
and
() = —ox() + fx(t - 1)), >0, )
with a continuous function f: R— R, the condition
xf(x) <0 forallx #0 3)

makes it possible to single out a class of solutions which play a major role—“slowly oscillating”
solutions. These are solutions which have all their zeros in some unbounded interval spaced
at distances larger than the delay d = 1. In some cases [13] it can be proved that initial
functions ¢: [—1,0]— R of slowly oscillating solutions form an open and dense set in the
space C of continuous functions on [—1,0]. For properties of slowly oscillating periodic
solutions, see, e.g., Nussbaum’s survey [10], and [12]. Slowly oscillating solutions may also
be turbulent, or “chaotic”. A first example, with f discontinuous, was found by Peters [11].

In the case of equation (1), condition (3) represents negative feedback: A deviation from
Ehe equilibrium x =0, say x(t —1)> 0, is followed by a move in the opposite direction
x(1) <0).

Howex)fer, there are equations (1, 2) which are closely related to applications, and wherg
the negative feedback condition (3) is only true in a certain neighbourhood of x = 0. Furumochi
[3] studied equation

() = — sin (x(t — 1) + @) (4)

with 0 < & = sin w, 0 < w < &, which models phase-locked loop control of high frequency
generators, see, e.g., [2].
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Equations of Lasota and Wazewska [5, 6], Mackey and Glass [4, 8] for the density of red
blood cells transform into type (2) with hump functions as nonlinearities. For example,
f(x) = g(x + xo) where g(x) = (cx)® ™, ¢ > 0, xo = g(x0), see [6].
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The same type of equation may be used to gmodel the respiratory system [4, 8], and simple
neuronal networks with delayed inhibitory effects [1].

All these examples have in commop that there are large domains in parameter space where
no workable class of solutions (like the slowly oscillating ones above) has been found, and
where nothing is known about specific solutions—periodic ones or “periodic solutions of the
second kind” as defined in [3]. Numerical experiments indicate that solutions become highly
irregular, certainly not slowly oscillating (4, 8]. An example of an der Heiden, with f discon-
Eil}uous, shows periodic solutions with more complicated oscillatory behavior; compare also

1].

In this paper we study equation (1) in a case where condition (3) does not hold globally:
f will be a function with zeros at x = —1 and x =0, with f<0 forx< -1, 0<fin (-1,0),
f<0 for x>0. All solutions considered are bounded, x(f) € (—3,2), so that our example
may be regarded as close to equation (4).

We prove chaotic behavior in the sense of Li and Yorke [7] for a Poincare map which
describes the behavior of solutions in the state space C. Chaos is caused by a periodic orbit




0y C C around the equilibrium x = ~1 where (3) is violated, and by a solution which is
homoclinic with respect to o, and hits o, precisely at a finite time ¢.

One may think of this situation in R%, as depicted in figure 3.
A similar structure should also exist in case of the original equation (4), and for the red

blood cell equation.
The approach presented here extends to equations without any nontrivial slowly oscillating

solution, at the cost of more tedious calculations. It can also be modified as to apply to
examples with decay term (o> 0 in equation (2)) which correspond to the red blood cell
equation. A joint paper with U. an der Heiden on this is in preparation.

2. NOTATION

C denotes the space of continuous functions ¢:[—1,0]— R, with supremum-norm. A
solution of equation (1) is either a continuous function x: [—1, ©) —R which is differentiable
for >0 and satisfies (1) for t> 0, or a differentiable function x: R— R which satisfies (1)
everywhere. For ¢ — 1 in the domain of a solution x, x, denotes the element in C given by
x(s):=x(t+s), -1 < s=<0.

3. THE EQUATION (f)
We consider equation
() = et = 1) ®

for a smooth function f=f;,0 < 6 < 1072, with the following properties:

(=-2 forx<-1-6
strictly increasing from —2to2on[—1 = §, =1 + §]
with (-1 +x) = ~f(—1 —x) for|x|<d
=2 for-1—-6<x<-9
fxX){ =—f(-1+x) for|x|<é
=-2 foré<x<1-96
strictly increasing from —2to —~lon{l — 4,1 + 9]
with f(1 +x) — 3/2=3/2 —f(1 —x) for|x| <o
L=—-1 forx>1+36

Existence, uniqueness and continuous dependence on bounded intervals for the initial value
problem
() = f(x(t— 1)) fort>0, x=¢€&C

follow from the formula

x(t) = x(n) = J;

1
fox fort€n,n+1], nEN,
-1



The choice of a nonlinearity f which is constant on long intervals (compared to the §-
neighborhoods where f is not constant) is influenced by an observation which goes back to,
at least, Glass and Mackey [4]. For step functions in (1) or (2), periodic solutions are easy
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to find and to compute. For our smooth nonlinearity it will also be possible to explicitly
compute certain solutions. Moreover we shall describe solutions in terms of just one real
coordinate. This idea—how to introduce coordinates and how to get finite-dimensional Poin-
care maps for some differential delay equations—comes from an unpublished study (1978) of
the equation %(¢) = —sgnx(¢—~1) where we showed that initial functions of slowly
oscillating solutions are dense in C.

4. PERIODIC SOLUTION AND POINCARE MAP

Let us look at initial functions which define solutions oscillating around the equilibrium
x(t) = —1 for some time. Define D to be the set of all p € C with the following properties:
®(0) = —1, and @(—v) = —1 for exactly one —v <0, -1 +d2< —~ v <~ ;¢ =2in (—6/2,0)
and ¢=—-21in (v ~062, - v +62),p<s—1-6 in(—v+682, - 82),-1+6<p=-—4in
(=1, — v — 82).
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The projection V: ¢— v maps D continuously onto [6,1 ~ &/2] but is not injective.

By our choice of the function f we see that the solution x with X9 = @ € D increases with
slope 2 on (0,1 —v ~ 6/2).



On(1-v=-902,1-v+ 62), we have

x()=x(1-v—-082)+ ft flx(s — 1)) ds
10— a2
-1
=... + f fp(s)) ds
~-v — 812

' 1
=, +j f(-2(s +v) = 1) ds
-v — 812

=... +p(t—1+v)
where

p(t): = J:S/zf(—Zs —1)ds for |t| = /2.

Obviously, p does not depend on ¢ € D. We have 0<p <34.
1
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On (1 — v + 62, 1 — 8/2), x decreases with slope —2 from
x(1-v+682)=x(1—v~082)+pd2)=x(1—-v— 8/2).
After that, x(f) =x(1 — /2) — p(t — 1) on (1— §/2,1). This follows from x(f) =f2(t — 1) -
D in (1 - 8/2,1), with f(—1 +x) = — f(~1 —x) for [x] <.
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If we assume that V(g) =v € [1/2 + 8/2,3/4 — §/8] = : I, then Wwe can say more: l1-v-=
8/2 > §/2 so that in particular x passes through the 8/2-neighborhood of ¢t =0 with slope 2.



Also, max |x|[0,1] =x(1 — v) < ~ §, and x(1 — &2) < —1 — & so that there is exactly one
a € (0, 1) with x(a) =— 1, and x passes with slope —2 through the §/2-neighborhood of a. In

fact, a = 2 — 2v for obvious symmetry reasons.
We can now compute x on [1,2] and find that x(f) =x(1) — p(t — 1) in [1,1+ 62], x(1 +

82)<—1-6 andr=2o0n[1+62,1+a—-0} Byx(1)=—1-2(1—a—-872) - p(0) and
p < 6, it follows that there is a first s > 1 (namely s = 1 + (1 — a)) such that x(s) = —~1. We
have s >1 + 6/2.
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, It is easily seen that x; € D again, and V(x;) =s —a=2—2a =2 — 2(2 — 2v) = 4V(¢) ~
The calculation shows in particular that for ¢ € D with V(@) = 2/3 and

Pt)=~-13-6+p(t+1), —1l<t<—-1+67

() = -2, ~1+82<t<s-13-62
@)= =53+ 8~ p(t+173),~1/3- 62<t<~1/3+ 82
P =2, ~13+82<t<0

we have x; = @ so that we obtain a periodic solution of equation (f) with period 4/3 and values
in (—5/3, —1/3). From now on we denote this periodic solution by y.
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We have alsp proved that on D N V~}(J) the “Poincare map” given by P = x;,

s the first positive time where x;, € D
for the solution x of equation (f) with xo = ¢,

is well defined. Moreover we have

LEMMA 1. For F:ID2v—> 4v—-2E€R,VOP=FOV.

P
/ DAV'(D) ————— = D

273
Fig. 10.

In order to use V as a coordinate we have to restrict P to a one-dimensional subset in C.

LEMMA 2. V is injective on P(D NV~Y(I)) = : Dp. We have V(Dp) = F(I) =[26,1 - 6/2] D
L (V|Dp)™!is continuous on V(Dp).

Proof. Injectivity: Let v = V(¢), @ = Py for some y €D N V7'(J). Then FV(y)) = V(p),
or V() = Flv. Note that on F(I) all iterated inverses F n € N, exist. But for all p €
DNV with V(¢) = Flo, @=Py. Hence @ is uniquely determined by v.—Next,
V(Dp) = Vo P(D NV~I(])) = F(V(D N V(D) = F(I). —Continuity follows from
(V|Dp)™Y(v) = =P 0 po F(v) where p:I— D N V(I is defined by p(w) =, ¥ = ~
1+ 8in[-1, —w— &2), w@) = —2(t+w) — Lin[-w — 82, ~w + 82],p=~1—4in
[=w + 82, —6/2], y(f) = 2t — 1 in [~8/2, 0]; compare the first part of this proof.

It follows that Vp : = V|Dp is a homeomorphism of Dp NV7!(1) = (VIDp) ") = VE'(D)
onto I, and injective on Dp. We get the following commutative diagram:

P
Yalit! De
1 —w R
F

Fig. 11.



Of course, V3'(I) contains the initial value y, of the periodic solution which is a fixed point
of P.

The iterates F ", n € N, on F(I) permit to continue all @ € Dp to functions on Ry which
satisfy equation (f) for ¢ < 0, and withx,—o0, : = {y,|t € R} as ¢~ —o. We shall not use such
backward extensions explicitly. But they show that the periodic orbit o, is unstable, and that
a special solution which we shall obtain in the next section is in fact homoclinic with respect
to oy.

leley are constructed as follows: Let @ € Dp be given. Then ¢ = P@ where § ED N
Vi(I), and V(9) = F}(V(g)) € I. By Lemma 2 we may replace ¢ by an element ¢; € Dp
such that V(1) = V(&). Then @ = Px{1, x! the solution with initial value ¢, and s the first
positive time such that x) €D. We have s; > 1. Set x(f): =xI(t+s) on [-s —
1,0],s-1: =— s1, and proceed by induction. This yields a solution x : R — R, xy = ¢, and a
decreasing sequence s, — —® as n — o« such that x,_, € Dp, Px,_, =x,_,,,, V(x:_,) =
F"(V()) for all n € N. Since F"v—2/3 = V(y) as n — o for all v € F(I), continuity of
V! implies x,_, — ypas n— o, and x, — 0, as t — — .

Let us already mention here that backward continuation of solutions is in no way unique
for equation (f). This will be crucial for proving chaos in the sense of Li and Yorke.

5. HOMOCLINIC SOLUTION AND EXTENSION OF POINCARE MAP

Let J denote the closed g-neighborhood of v = 1/2 + 1/48, with 0 < £ < 1073, J is contained

in 7, and P maps V5'(J) onto V3!(K) where K denotes the 4¢-neighborhood of 1/12; K C F(I).
This follows from the commutative diagrams in the last section. We have X N I = .

LEMMA 3. For all ¢ € V3'(K) there is a first s > 0 such that for the solution x of equation
(f) with xo =@, x; € Dp. Furthermore, V(x,) = 2 — 16 V().

Before proving this let us note some consequences: The solution x of equation (f) with xo
= V5'(1/12) satisfies V(x;) = 2/3 (and x, € Dp), therefore x, = yo. Since x can be continued
to a solution on R with x, — o, as  — —oo, it is homoclinic with respect to the periodic orbit
Oy.

Lemma 3 says that the commutative diagram of the last section extends to the one below
if we use the old definition of P also on V5'(K) and if we set F(v): =2 — 16v on K:

P
VETIUVE(K) De
UK R
F
Fig. 12.

F maps K onto a compact interval L C I which contain

i s V(yp) = 2/3 in the interior and
satisfies L N J = J, see figure 13.

Proof of Lemma 3. We compute solutions which start in Vai(K). Let p€Dp, V() =V



€ K be given. Consider the solution x of equation (f) with xo =¢. We begin as in Section
4: Since v € K, 1 —v — 6/2 > 1/2, and x increases with slope 2 from x(0) = —1 to —1 +
2(1 —v — 6/2) > 6 in the time interval (0, 1 ~ v — &/2). In particular x(1/2) = 0. For ¢ in the
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interval of length & following 1 — v — &2, x(¢) = x(1 — v — 82) + p(t — 1 + v). Further,
¥=-~2in (1~ v+ 82,1 - 82) andx(t) =x(1 ~6/2) — p(t — 1) in the 6/2-neighborhood of
F=1 We have x(1+62)=x(1-v—-082)-2(v—-6)=1—-4v+d and § =x =<1 -6
in (1/2 +6/2,1 + 6/2) as is easily checked.

Fig. 14.

Next, equation (f) and x(¢ ~1) € [~ 1 +8/2, — 6/2] imply that x increases again with slope
2 on the interval (1 + &/2, 3/2 — 6/2) to the value x(3/2 —=6/2) =2 — 4v — 6> 1. There exists
exactly one time #, in (1 + 8/2, 3/2 — &/2) such that x(1) = 1. We find

t1=2U+1

and x = 2 in the 8/2-neighborheod of t.
In the &/2-neighborhood of 3/2, x(¢) =2 — 4v — 6 + p(t — 3/2).



Proof of this: For those ¢,

t t-1
x(2) — x(3/2 —&/2) = j #(s)|ds = fox
32 ~ 62 12 - 612
t — 3/

=LH f(2(s—1/2))|ds=J’ 2f(2s)|ds

12— 61 —6/2

2t -3 2 -3
= f(s)2|ds = — f f(=1+ 5)/2|ds
s -5

t =3

2t -3 2
= A(—1 —=5)/2 |ds =f f(—1 —25)|ds
é

-6

= p(t = 3/2).

Consequently, x(3/2 +6/2) =x(3/2 — 62) =2 ~4v - 6>1+ 5. By equation (f) and by
x(t—=1)E(5,1-6) fort-1€ 12+ 62,4~-82), x = -2in 32 + &2, 1, + 1 — /2).
Hence x(t; +1 - 82) =x(32+ 82) = 2(1 +1-32-8)=1-8v + 6<1 - 6.

Therefore there is a unique £, €(3/2 + 6/2,t; + 1 ~ §/2) with x(t,) = 1, and we have ¥ =
-2 in the 8/2-neighborhood of #,.

' AN

712 |

' 2 f+1-8/2

Fig. 15.

We find t, = 2 — 2v.
In the 6/2-neighborhood of t;, + 1,

x(t)—x(t1+1)—6/2)=jt J'c=ft_1f0x

o+ 1~ 672 1= 82

=J'_1 f(2(s-—t1)+1)ds=ft—l—nf(2s+1)ds
1 o1 - 5/2

1 -

=q(t—1-1t)



where g(f) : =[“snf(2s + 1) ds for |f| < /2. By our assumption on f, =26 < ¢ < 0.
Hence x(f, +1 + 6/2) = 1 — 8v + 6+ q(8/2) = 6> 0.
Next, x = —1in (f, +8/2 + 1,8, ~ 8/2+ 1). Consequently x(t, — 6/2 +1) = — 4v +25+

q(6/2).
From our assumptions on & and &, x(f, —~8/2 + 1) < — 4. So there is exactly on zero z of x
in ( +68/2 + 1, t, = 82 + 1), and ¥ = —1 in the J-neighborhood of z. We find

z=3~ 60+ 382 + q(52).

\ z 1, =321

T

Fig. 16.

Next, we have for t €(f, — 82 + 1,5, + 82 + 1),

x(0) = x(ty - 2+ 1) = f

ty -

'L 2(s - 1) s
82

=f’—1_’2f(1—2s)ds
-6

from which it follows that
x(t; + 82 + 1) = g(82) + x(t, — 612 + 1) =—dv + 28+ 29(62) > -1+ o.

x(t—1)€[5,1— 8] fort E[L+82+1,z-6+1] givesk = —2inf[e +82+1, z— 8
+ 1]. Therefore

x(z—6+1)=4p+286-2<-1-0.
This implies the existence of a unique ; €(z,z — &+ 1) such that x(z3) = —1. We compute

;=12 — 4v + 38/2 + q(6/2).

From f(x) =— f(—x) for |x] < d and x = —1 in the 8-neighborhood of z we infer x(z +
1+8) =x(z+1-8)=4v~2+28<—1~ 5 (Fig. 17 below).
x(t—1)€[-1+ 8, -8 givesk =2on[z+1+ 8,t;— &8/2 + 1). Hence

x(ts—6/2+1)=4u+25—2+2(t3—z—36/2)=—1+8u—6>—1+ d.
It follows that there is a unique s* €[z + 1+ 6,8~ 82 + 1] such that x(s*) = —1, and we
have % = 2 in the &/2-neighborhood of s*. Moreover, x(z+1+ ) =x(z+1—1) for el =

z +1 — t3, and consequently s* —#; = 2(z+1-1t)=1-4v, compare figure 18 below.
X+ is not in Dp since k| < 2 in the whole S-neighborhood of z + 1. Butxe € D (Proof:



Shows* —1=z+ 6,5 — 62 =s* — 1), and V(x;) =s* — ;€ L. So we find a first § > 0 with
Xs € Dp for the solution £ with ¥y = x,». Set s:= s* + § and observe

V(P(xs)) = F(V(x)) =4(1 — 4v) =2 =2 — 160.

Remark. One might ask why our nonlinearity f is not simply constant for x > 4. The reason
is that in examples of that kind, where calculations do not become too lengthy, the Poincare
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Fig. 17.

operator is not one-to-one on the analogue of Vz!(K) but maps such set to the single point

yo. This means that o, attracts the whole domain of the Poincare map—a situation which
should not be called chaotic.

z+l

\ 1 .

25
Fig. 18.



6. CHAOS

Letg: A— Bbeamap, A CB. A point x € A is called a periodic point of g with period
p iff glx is defined for j=1,..,p;gx #x forj=1,..,p —landglx = x.

THEOREM. There is a number n = n(P) such that for all p > #, P has periodic points of period
p. In particular, there are countably many different periodic orbits of equation (f).

There exists an uncountable set S which is invariant with respect to P, contains no periodic
point and has the following property:

lim sup >0
m—> o forallp, Y €ES; p# Y
liminf { [P"@—p™yli{ =0
lim sup >0 forall p € Sandall
m~ o periodic points ¢ of P.

Proof. (a) There exists n = n(F) such that for all integers p = n there is a periodic point
v € I of F with period p. Proof: Choose n such that

(FID™(K) C L forallp =n. (%)

(Note that all interated inverses of F |I are defined on F(/) O K.) Every map
(FI)™? o (F|K)™! with p = n has a fixed point v, € L. The period of v, is p + 1: Suppose it
isj<p. ByFf ~'v,€JCI and F' = 4in [, the orbit of v, with respect to F is then contained
in I and different from v = 2/3, contradiction.—If the period were p then L 3 v, =Ffy, €
K, contradicting K N L = .

(b) We prepare the application of arguments due to Li and Yorke [7] and Marotto [9]
which will imply chaos for our map F. The main difference to the situation considered in
[7, 9] is that F is not a self-mapping of its domain.

Define X as the intersection of the decreasing sequence of compact sets given by Xp : =
JUKand X, 41: ={x € X,,|F" *x € IUK} for m in No. Then

¥ € X for all x € [ U K with F"x € X for some m € Np (6)
We set [:= () L,andK:= (\ K, where Loz=L,Lm+1:={x€Lm|F’"”xEIUK}
me N m & Ng

for all m € No, Ko:= K, Kp+1: =X € Kn|/F"*'x€IUK} forallm € No.
_Land K are nonempty since 2/3 € L and 1/12 € K. All sets L, K, X are compact. We have
LNK=g, LURCX, FX)CX )

With n as in (5), L CF"*%K). Proof: v € L gives v = Fw for some w € K. Then
(FID™w €L, or (F|I)™"w =Fu with some u € K. Hence v =Fw = F** 2. v € L implies u
€ K, compare (6). ) s )

K c F**¥L). Proof: v € K implies w =(FI)™""WweEL, orv=F"’wByv€EK,w
€ L; hence v €F" * %(L). L -

L C F"*¥L). Proof: v € L gives v = Fu where u € K. u=F"""w with w € L gives
v=F"*2y Byv € L, w & L; consequently v €F" *2AL). ) o o

It follows that the continuous map H : =F" t2. XX sat_lsﬁe's LC H(K), K C Ii(L7), L
C H(L). We can now use the argument in [9, p. 208]—which is a generalization 0 (7, p.
991]—to obtain the existence of an uncountable set § C X which is invariant with respect to



F, contains no periodic point and has the property that

lim sup >0 .

m—> forallv,w ES;v #w )
liminf \|F™ — F™w| {=
lim sup >0 forall v € Sandall

m— o periodic points w € X,

Since X contains all periodic points of F in I U K we may replace “w € X in (7) by “w
eluUK”.

The proof of (7) requires another version of Lemma 3.2 [9] which reads:

“Let X C R be compact and nonempty, let H : X — X be continuous. Let (Ci)x e N, DE @
sequence of nonempty compact subsets of X with H(C) DC , 1 for all k € N,. Then there
is a nonempty compact set C C C such that for all x € C and all &k € Ny, Hx €Cr.”

This follows exactly as Lemma 3.2 [9], or as Lemmas 0 and 1 in [7].

(c) Application of V yields the assertions on P.
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