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ABSTRACT 

 

The main objective of this study was to improve fermentation of yellow passion fruit (YPF) 

juice by an adequate choice of commercial Saccharomyces yeast strains and nutrient 

supplements. 

Comprehensive information has been gathered on the basis of the experimental results 

obtained from the research on grape wines of the varieties Scheurebe and Sauvignon blanc. 

The study showed that under laboratory conditions, the optimal commercial yeast strains for 

the fermentation of Scheurebe wine are strains VIN13, AWRI R2, EC1118, QA23, VL3, X5 

and X16 and the most effective nutrients are diammonium hydrogen phosphate (DAP), 

Fermaid E blanc (DAP, thiamine, yeast cell walls and ammonium sulphate) and Superstart 

(inactivated yeast and yeast cell walls) at 0.3 g L-1. Yeast strains X5, Alchemy I and II, 

EC1118 and VL3 and/or the nutrient sources of 0.4 g L-1 Fermaid E blanc, 0.5 g L-1 DAP and 

0.3 g L-1 Superstart seemed to be the most effective for the fermentation of Sauvignon blanc 

wine.  

The optimal choice of commercial Saccharomyces yeast strains and nutrient 

supplementations in YPF juice was studied in detail based on the results, which were 

obtained from grape wines. 

YPF puree was used for fermentation trials. The puree has a high acidity (4.0-5.5 % citric 

acid). Therefore, it was diluted by the addition of water, thus this prepared YPF juice showed 

a lower amino nitrogen level. Consequently, there is a need for nutrient supplementation, 

because nitrogen deficiencies are linked to slow and sluggish fermentations and the 

formation of SO2-binding compounds and reduced sulphur compounds.   

The prepared YPF juices were fermented at 20 0C under controlled conditions and the 

fermentation characteristics, fermentation-derived and varietal aromas which impact YPF 

wine quality were investigated. In order to select adequate commercial yeast strains for the 

improvement of YPF wine, five Saccharomyces cerevisiae var. bayanus strains (EC1118, 

AWRI R2, LittoLevure, QA23 and Freddo), seven Saccharomyces cerevisiae strains 

(Sauvignon, VL3, X5, X16, VIN13, 4F9 and LVCB) and two Saccharomyces spp. strains 

(Alchemy I and II) were examined. The results revealed that when 0.5 g L-1 DAP was added 

as sole source of nitrogen in the YPF juice, strains QA23, LittoLevure, EC1118, X5, VL3 and 

Alchemy I and II seemed to be an optimal choice for the YPF wine production. 

Yeast strains EC1118, VL3, X5, Sauvignon, Alchemy I and LittoLevure were then selected to 

study the yeast fermentation behaviour and the production of metabolic compounds as well 

as the volatile thiols in YPF wines. In addition, different nutrient supplements were tested to 

select an appropriate nitrogen source and concentration. The results clearly showed that 

nutrient supplements like Vitamon Combi (DAP and thiamine) and Vitamon Ultra (DAP, 



 

thiamine and yeast cell walls) at the levels normally recommended for grape wine production 

(0.4-0.5 g L-1) were the best nutrient condition to improve the fermentation characteristics 

and the formation of desirable non-volatile and volatile compounds in the YPF wines for most 

yeast strains mentioned above. 

The results also showed that the EC1118 with the addition of 0.25 g L-1  DAP and 0.5 g L-1 

Vitamon Combi appeared to be a high producer of varietal volatile thiols, 3-sulphanylhexanol 

(3SH) and acetic acid 3-sulphanylhexyl ester (3SHA). Nevertheless, it has to be taken into 

account that DAP addition resulted in excessive formation of keto acids by strain X5. Strain 

LittoLevure also formed the highest amounts of 3SHA in the 0.5 g L-1 Vitamon Combi 

treatment. Yeast strain X5 with the addition of Vitamon Combi and Vitamon Ultra at 0.4 g L-1 

also produced the YPF wine having the greatest concentration of 3SH. Neither the yeast 

strains (EC1118 and X5) nor the nutrient sources (Vitamon Combi and Vitamon Ultra) 

influenced the level of 3SHA in YPF wines. Concentrations of 3SH and 3SHA were quite 

beyond their aroma threshold contributing to typical and varietal aromas.  

It can be concluded that certain yeast strains and optimal nutrient supplementations had a 

great impact on successful YPF wine fermentation, minimizing the formation of SO2-binding 

and undesirable volatile sulphur compounds and improving desirable aroma compounds in 

final YPF wine products. Nevertheless, the choice of nutrient supplements and their 

concentrations is yeast strain-dependent. 

This study has an important implication for the YPF wine as well as for the tropical fruit 

winemaking industry, particularly in Thailand, where a better understanding of the nutritional 

requirements of Saccharomyces yeast is necessary to reduce fermentation problems and to 

improve the final product quality. It is worthwhile pointing out that this work is an interesting 

new observation for the YPF wine fermentation, although the fermentation trials were only 

done in the laboratory scale. Thus, some different fermentation parameters as well as volatile 

compounds might be achieved under industrial conditions. Nevertheless, a better 

understanding of the effect of nutrient supplementation on yeast metabolic products as well 

as sensory properties is still required in further work in both the laboratory and pilot scale. 
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MCFA(s) Medium-chain fatty acid(s) 

MeSAc  Thioacetic acid S-methyl ester 

MeSH  Methanethiol 

4,2,2MSB 4-Methoxy-2-methyl-2-sulphanylbutane 

4MSP   4-Methyl-4-sulphanylpentan-2-one   

N  Nitrogen 

NCR  Nitrogen catabolite repression 

n.d.  not detectable  

ng  Nanogram 

n.q.   not quantifiable/ trace 

NOPA   o-Phthaldialdehyde/N-acetyl-L-cysteine spectrometric assay 

OAEtE  Octanoic acid ethyl ester 

2PheEtAc Acetic acid 2-phenyl ethyl ester 

PrEtE  Propionic acid ethyl ester 

sec-1  per second 

3SH  3-Sulphanylhexanol 

3SHA  Acetic acid 3-sulphanylhexyl ester  

SO2  Sulphur dioxide 

SAdiEtE Succinic acid diethyl ester 

TA  Total acidity 

TSS  Total soluble solid 

v/v  volume by volume 

YPF  Yellow passion fruit 
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1. INTRODUCTION 

 

1.1 Statement and significance of the study 

 

Grape wine flavour is formed from up to several hundreds of volatile compounds at 

concentrations ranging from mg L-1 to a few ng L-1 or even less. The olfactory impact 

depends on the concentration type and perception value. There are diverse mechanisms 

involved in the development of the aroma compounds. Varietal aromas have a very high 

impact and are formed by grape metabolism, depending on the variety, as well as soil, 

climate and vineyard management techniques. These compounds occur mainly as non-

volatile precursors in grapes. Glycosylated forms are much more common than free forms, 

especially among the monoterpenes. The bound aroma compounds were released by the 

activity of -glucosidases that occur in grapes and yeasts during the wine making process 

(Rapp, 1998; Ribéreau-Gayon et al., 2006 b). 

Other key varietal compounds are volatile thiols (thiol referring to the SH functional group) 

that derive from non-volatile precursors during the alcoholic process due to the 

bioconservation of yeasts. The volatile thiols, 4-methyl-4-sulphanylpentan-2-one (4MSP) (so-

called 4-mercapto-4-methylpentan-2-one, 4MMP), 4-methyl-4-sulphanylpentan-2-ol 

(4MSPOH) (so-called 4-mercapto-4-methylpentan-2-ol, 4MMPOH), 3-sulphanylhexanol (3SH) 

(so-called 3-mercaptohexanol, 3MH) and acetic acid 3-sulphanylhexyl ester (3SHA) (so-

called acetic acid 3-mercaptohexyl ester, 3MHA) are of particular importance to the wine 

aroma. 4MSP, 4MSPOH and 3SH are released from S-cysteine conjugates (Bouchilloux et al, 

1998; Tominaga et al., 1998 a, 1998 b; Dubourdieu et al., 2006). Swiegers et al. (2005 b) 

reported that 3SHA is formed by yeast from 3SH by the action of the ester forming alcohol 

acetyltransferase during alcoholic fermentation. Volatile thiols have extremely low odour 

thresholds in model solution, e.g. 0.8 ng L-1 4MSP, 55 ng L-1 4MSPOH, 60 ng L-1 3SH     and 

4 ng L-1 3SHA (Swiegers et al., 2005 a, 2005 b; Dubourdieu et al., 2006). These thiols occur 

in nearly all varieties, but they are so-called character impact compounds in Sauvignon blanc, 

Viognier, Scheurebe, Kerner, etc. The 4MSP thiol contributes to flavours in wine that were 

described as blackcurrant, box tree and broom aromas (e.g. in Sauvignon blanc, Muscat d‘ 

Alsace and also sometimes in Riesling). 3SH is mainly responsible for grapefruit and tropical 

fruit nuances and contributes intensively to the bouquet of Gewürztraminer, Muscat d‘Alsace, 

Pinot gris, Riesling, Manseng and botrytized Sémillon (Dubourdieu et al., 2006; Ribéreau-

Gayon et al., 2006 b). 3SHA contributes to boxwood, grapefruit zest and passion fruit aromas 

(Bouchilloux et al, 1998; Dubourdieu et al., 2006; Ribéreau-Gayon et al., 2006 b; King et al., 

2008).  
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Tominaga et al. (1998 a, 1998 b) and Tominaga & Dubourdieu (2000) demonstrated that 

cysteine-S-conjugate -lyases are responsible for the release of the volatile thiols during 

alcoholic fermentation. Research work of Murat et al. (2001 a) and Dubourdieu et al. (2006) 

indicated that yeast strains vary in the ability to release 4MSP, 3SH and 4MSPOH. It could 

be also demonstrated that commercial yeast strains have different enzyme activities for the 

release of thiols. Therefore, specific yeast strains are selected to enhance the varietal 

flavours during wine production. 

S-(Sulphur-)containing compounds, especially volatile thiols, belong to the most important 

aroma compounds in food. They are biosynthesised in various plants, especially in tropical 

fruits, but they are also generated during the fermentation process of alcoholic beverages 

and in the course of the thermal treatment of food. Yellow passion fruit is a typical example of 

a fruit, of which the flavour is established by S-containing compounds (Winter et al., 1976; 

Weber et al., 1994, 1995; Engel, 1999; Blank, 2002; Wakabayashi, 2004). 3SH was firstly 

identified in passion fruit by Engel & Tressl (1991). Thiols and other S-compounds also 

contribute to the flavour of pineapple, lychee fruit, blackcurrant, mango, citrus peel, etc. (Brat 

et al., 2004; Tokitomo et al., 2005). The interest in the biogenesis of these compounds, their 

release from non-volatile precursors by enzymes and their preservation during food 

processing and alcoholic fermentation makes the research on thiols and other S-compounds 

to optimise food quality to one of the most interesting flavour research areas.  

In Thailand, purple, yellow and hybrid variety passion fruits are grown commercially. They 

easily grow at all climate conditions of Thailand. There is a high yield and passion fruits are 

resistant to diseases. The yellow passion fruit is the most cultivated and has some 

advantages in comparison to the purple passion fruit like larger fruits, greater yield, more 

attractive colouring, unique flavour properties and much higher acidity (Vera et al., 2003; 

www.gpo.or.th/rdi/html/passionfruit.html, 2009; www.moac.go.th/builder/bhad/passionfruit. 

php, 2009; www.stou.ac.th/study/sumrit/12-51(500)/page1-12-51(500).html, 2009). Frozen 

juice can be kept without deterioration for one year at 0 ºF (-17.78 ºC) remaining a very 

appealing product (www.hort.purdue.edu/newcrop/morton/passionfruit.html#Storage, 2009). 

Passion fruit is a good source of pro-vitamin A, ascorbic acid, riboflavin and niacin and has 

also a high mineral content. Its distinctive aroma and flavour make it a popular additive to 

many tropical fruit beverages and food blends, especially pineapple wine and juice. Now, 

passion fruit is considered to be the high potential fruit for the food and beverage industry 

with a growing demand, not only as an exotic aroma enhancer but also because of its natural 

and healthy nutritional value. 

It is well-known that S-compounds can also be responsible for certain off-flavours in wine. 

Various research groups tried to detect undesired S-compounds for off-flavours in grape 

wines that mainly occur through yeast metabolism during the fermentation process or in the 

http://www.gpo.or.th/rdi/html/passionfruit.html
http://www.moac.go.th/builder/bhad/passionfruit.php
http://www.moac.go.th/builder/bhad/passionfruit.php
http://www.stou.ac.th/study/sumrit/12-51(500)/page1-12-51(500).html
http://www.hort.purdue.edu/newcrop/morton/passionfruit.html#Storage
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bottled wines during storage (Rauhut, 1996, 2003; Rauhut et al., 2005 a; Ribéreau-Gayon et 

al., 2006 a, 2006 b; Fedrizzi et al., 2007). Intensive research work demonstrated that one of 

the main causes for off-flavours occurring after fermentation is the chosen yeast strain 

(Saccharomyces cerevisiae) and its nutrient requirements and also the nutrient content in the 

grape musts (Henschke & Jiranek, 1991; Rauhut & Kürbel, 1994; Jiranek et al., 1995 a, 1995 

b; Rauhut, 1996; Rauhut et al., 1995, 2000 a, 2000 b). Under nutritionally sufficient 

conditions, hydrogen sulphide (H2S) production is normally matched to biosynthetic demand 

through tight metabolic regulation. A nitrogen deficiency leads to an overproduction of H2S, 

which is reminiscent of rotten eggs, and also other disagreeable volatile S-compounds. The 

intensity and the sensory impression of the resulting off-flavours depend on the qualitative 

and quantitative compositions of the volatile S-substances in the wines. The formation of S-

compounds is also influenced by different requirements of commercial yeast strains for 

certain amino acids and their capability to produce aroma-active S-substances. It could be 

demonstrated that yeast strains differ in their formation of volatile S-compounds (Rauhut & 

Kürbel, 1994; Rauhut et al., 1995, 1997, 2000 a, 2000 b; Rauhut, 2003; Wang et al., 2003; 

Howell et al., 2005; Edwards & Bohlscheid, 2007; Rauhut, 2009). 

Different research groups observed a decrease of nutrients in grape musts due to global 

climate change and lack of water at specific phases during the vegetation period. This is the 

main cause for stuck fermentations and off-flavours due to an accelerated formation of S-

compounds (methanthiol, ethanthiol, dimethyl sulphide, diethyl disulphide and dimethyl 

trisulphide, thioacetic acid methyl ester and thioacetic acid ethyl ester etc.) during the last 

twenty years (Rauhut & Kürbel, 1994; Rauhut et al., 1995, 2005 b; Rauhut, 2009).  

The wine makers are allowed to compensate nutrient deficiencies by the addition of 

ammonium salts, thiamine, yeast cell hulls and inactive dry yeast. Inactive yeasts are more 

and more used to add micronutrients in a yeast-available form. The additions help to avoid 

and to reduce off-flavours, but the additions are not often well-balanced and managed (Pozo-

Bayón et al., 2009 a, 2009 b). Therefore, a lot of research is being conducted to optimize the 

supplementation of nutrients. The addition of nutrients is also effecting the formation of 

higher alcohols and esters that are produced by yeasts during fermentation. These 

compounds are responsible for the fermentation bouquet and the overall flavour of wines. 

For that reason an optimised management for the choice of the yeast strains and the addition 

of nutrient supplements has to be developed to improve also the varietal aroma that can be 

covered and masked by off-flavour S-compounds or by extreme production of unpleasant 

higher alcohols or large amounts of esters like acetic acid ethyl ester (Wang et al., 2003; 

Hernández-Orte et al., 2005, 2006 a; Swiegers et al., 2005 a, 2005 b). A reoccurrence of off-

flavours in wines during storage after treatment and bottling is related to a release of 

unpleasant volatile compounds from non-volatile or volatile precursors like the hydrolysis of 
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thioacetic acid esters to thiols and acetic acid. Rauhut (1996) also reported that an 

accelerated formation of H2S leads to an increase of thioacetic acid esters, which have 

aroma threshold values > 40 mg L-1 (Rauhut, 1993, 1996, 2003; Fedrizzi et al., 2007; Rauhut, 

2009).  

It is a long tradition in grape wine production getting rid of an off-flavour that is caused by 

volatile sulphur-compounds by using aeration or by adding of copper sulphate. In the 

presence of oxygen, H2S and thiols can be oxidised. Thiols (mercaptans) are oxidised to 

disulphides which are also odour active S-compounds. Therefore, the aeration can only be 

used for weak off-flavours. For stronger off-flavours a treatment with copper ions (addition of 

copper sulphate) is a common practice. Unfortunately, copper ions only react with H2S and 

thiols, other S-compounds will remain. Those wines are reduced in their quality causing an 

economic loss for wine producers. An unsolved problem for wine makers is the removal of 

undesirable S-substances in wines, because an aeration or a treatment with copper ions will 

also eliminate or reduce the desirable thiols, which will also be oxidised or react with the 

added copper ions (Rauhut, 1993, 1996, 2003, 2009). Furthermore, there is a tendency to 

avoid additions of fining compounds as much as possible and to force minimal processing in 

wine making (Rauhut, 2003, 2009). 

Finally, it could be pointed out that volatile thiols play a major role in the varietal aroma of 

certain grape varieties as well as in tropical fruits, their juices and wines. It could be also 

indicated that there is an intensive research going on to release thiols in grapes from certain 

varieties, but there is nearly no information about optimising the release of thiols in tropical 

fruit wines. The production of tropical fruit wines will be more and more important for fruit 

wine industry in Thailand, especially the use of passion fruit should be optimised and 

increased. Furthermore, there is a lack of knowledge about how the thiols can be conserved 

after fermentation and how off-flavours caused by undesirable S-compounds can be avoided 

or removed without diminishing the varietal thiols. The optimisation has to be in line with the 

treatments that are allowed by the government for the production of fruit wines in Thailand. 

For example, it is not allowed to use copper sulphate as a fining agent to remove off-flavours 

caused by S-compounds in fruit wines. Therefore, it is extremely important to improve the 

release of thiols and the fermentation conditions to avoid off-flavours in tropical fruit wines, 

especially if further treatments with fining agents are not allowed. 
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1.2 Objectives 

 

The overall objective of this study is focused on the improvement of varietal and important 

aromas in grape wines as well as in yellow passion fruit wine by an optimal choice of yeasts 

and nutrient supplements.  

In particular the improvement of aromas in grape wine and yellow passion fruit wine the 

following objectives are aimed:  

 

 Improving desirable aroma compounds in grape wines from two varieties of 

Sauvignon blanc and Scheurebe by an optimal choice of Saccharomyces 

yeast strains and nutrient supplements to avoid off-flavours by undesired 

thiols due to yeast metabolism under nutrient deficiencies 

 

 The fermentation of passion fruit wine at laboratory scale on the basis of the 

experimental results which were obtained from the research on grape wines 

 

 Recommendations for an adequate choice of commercial yeast strains and/or 

nutrient supplements to improve fermentation characteristics and varietal 

aromas in yellow passion fruit wine 
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2. LITERATURE REVIEW 

 

2.1 Yeasts 

 

Yeasts are defined as unicellular microorganisms classified in the kingdom of fungi, although 

some species with yeast forms may become multicellular through the formation of a string of 

connected budding cells known as pseudohyphae, or false hyphae as seen in most molds 

(Kurtzman & Fell, 2006; Fugelsang & Edwards, 2007). According to the phylogenetic 

diversity, yeasts are shown by their placement in both divisions Ascomycota and 

Basidiomycota, they mostly reproduce asexually by budding, although in a few cases by 

binary fission (Barnett et al., 2000; http://lfbisson.ucdavis.edu/PDF/VEN124%20Section% 

203.pdf, 2001; Boekhout & Phaff, 2003; Jay et al., 2005; Kurtzman & Fell, 2006; Ribéreau-

Gayon et al., 2006 a). They are capable of forming sexual states that are not enclosed in a 

fruiting body (Boekhout & Kurtzman, 1996). From the 100 yeast genera representing 

approximately 678 (Barnett et al., 2000) and 1,500 species, (Kurtzman & Fell, 2006) that 

have been described, 15 species are associated with winemaking (Kurtzman, 1998). 

Regarding the morphology, yeasts can be differentiated from bacteria by their larger cell size 

and their oval, elongated, elliptical, or spherical cell shapes. Typical yeast cells range from 5 

to 8 μm in diameter, although some yeasts can reach over 40 μm. Older yeast cell cultures 

tend to have smaller cells (Barnett et al., 2000; Walker et al., 2002; Jay et al., 2005). Yeasts 

produce many colours of colonies, ranging from creamy, to pink, to red (Jay et al., 2005).  

Yeasts can grow over a temperature range of 10 to 37 °C, with an optimal temperature range 

from 30 to 37 °C, depending on the type of species (S. cerevisiae works best at about 30 °C). 

At temperatures above 37 °C yeast cells become stressed and will not divide properly (Jay et 

al., 2005). They can also grow over wide ranges of acid pH and in up to 21 % ethanol and 

also in the presence of 55-60 % sucrose (Thomas & Ingledew, 1992; Barnett et al., 2000). 

Yeasts are chemoorganotrophs as they use organic compounds as a source of energy and 

do not require sunlight to grow. The main source of carbon is obtained by hexose sugars 

such as glucose and fructose, or disaccharides such as sucrose and maltose (Fugelsang & 

Edwards, 2007). Some species can metabolize pentose sugars like ribose (Barnett, 1975), 

alcohols, and organic acids maltose (Dequin et al., 2003; Jay et al., 2005; Fugelsang & 

Edwards, 2007). Yeasts are very versatile and some are suitable for industrial purposes. 

Furthermore, yeasts are easier and cheaper to harvest than bacteria and large-production is 

not usually liable to evoke the same concern for problems of public health (Barnett et al., 

2000).  

 

http://en.wikipedia.org/wiki/Division_%28biology%29
http://en.wikipedia.org/wiki/Ascomycota
http://en.wikipedia.org/wiki/Basidiomycota
http://lfbisson.ucdavis.edu/PDF/VEN124%20Section%25%20203.pdf
http://lfbisson.ucdavis.edu/PDF/VEN124%20Section%25%20203.pdf
http://en.wikipedia.org/wiki/Chemoorganotroph
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Hexose
http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Fructose
http://en.wikipedia.org/wiki/Sucrose
file:///D:/Drive%20D-Patr/Germany%20Study/Study%20in%20Giessen/Ph.D%20Dissertation/Giessen%20Thesis/Literature,%20Material%20and%20Reference/maltose%20(Fugelsang%20&%20Edwards,%202007;%20http:/en.wikipedia.org/wiki/Yeast,%202009)
file:///D:/Drive%20D-Patr/Germany%20Study/Study%20in%20Giessen/Ph.D%20Dissertation/Giessen%20Thesis/Literature,%20Material%20and%20Reference/maltose%20(Fugelsang%20&%20Edwards,%202007;%20http:/en.wikipedia.org/wiki/Yeast,%202009)
http://en.wikipedia.org/wiki/Pentose
http://en.wikipedia.org/wiki/Alcohol
http://en.wikipedia.org/wiki/Organic_acid
file:///D:/Drive%20D-Patr/Germany%20Study/Study%20in%20Giessen/Ph.D%20Dissertation/Giessen%20Thesis/Literature,%20Material%20and%20Reference/maltose%20(Fugelsang%20&%20Edwards,%202007;%20http:/en.wikipedia.org/wiki/Yeast)
file:///D:/Drive%20D-Patr/Germany%20Study/Study%20in%20Giessen/Ph.D%20Dissertation/Giessen%20Thesis/Literature,%20Material%20and%20Reference/maltose%20(Fugelsang%20&%20Edwards,%202007;%20http:/en.wikipedia.org/wiki/Yeast)
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Yeasts are the most important microorganisms ever exploited by man, because they have 

been used during several thousands of years for the production of a wide range of food 

(Fröhlich-Wyder, 2003). In addition to baking and traditional alcoholic fermentations, yeasts 

are already being used for diverse industrial purposes. Yeasts have been used in several 

applications: (i) the fermentation of lactose to ethanol, to produce lactose-free milk for 

sufferers from lactose intolerance; (ii) the production of various alditols, such as glycerol or 

D-glucitol; (iii) the production of protein from alkanes and paper-pulp waste; (iv) the providing 

of enzymes, such as β-fructofuranosidase (invertase), α- and β-galactosidase and lipase 

(Barnett et al., 2000); (v) the production of compounds for research purposes, such as, novel 

carbon-carbon bonds (Itoh et al., 1989) and methyldiols from aldehydes (Fuganti & Grasselli, 

1985) and (vi) as biocontrol agents because of their antifungal activity (Barnett et al., 2000; 

Fleet, 2007). Cell biomass (food and fodder yeasts) (Boze et al., 1992; Buzzini & Vaughan-

Martini, 2006), production of ingredients, additives and processing aids for food processing, 

such as antioxidants, aromas, colours, flavours and vitamins (Abbas, 2006), yeast probiotics 

(Fleet, 2006), yeast biocatalysts (Strehaiano et al., 2006), are other applications of yeasts. 

On the other hand, the presence and metabolism of yeasts can also have some detrimental 

aspects, such as food and beverage spoilage, food allergens, food safety and yeast-related 

health (Fleet, 1992, 1993; Caruso et al., 2002; Fleet, 2006). 

 

Nomenclature of enological yeasts 

The classification and taxonomies of approximately 678 yeasts and 1,500 species have 

currently been recognized and described by Barnett et al. (2000) and Kurtzman & Fell (2006). 

Those versatile yeasts, 15 genus of Saccharomyces and 19 genera of non-Saccharomyces, 

are associated with winemaking (Fleet, 1998; Kurtzman, 1998; Dittrich & Großmann, 2005; 

Jolly et al., 2006). Yeasts that are present in uninoculated grape juice are named by different 

terms such as natural, native, wild, wine or indigenous yeasts (Soden et al., 1999). S. 

cerevisiae is prevalent on the surface of winery equipment, whereas the indigenous wine 

yeasts on grapes are considered to be non-Saccharomyces species (Fleet & Heard, 1993; 

von Wallbrunn, 2007). Therefore, in wine production, yeast species may be divided into two 

broad groups, i.e. Saccharomyces and non-Saccharomyces groups (Jolly et al., 2006; von 

Wallbrunn, 2007).  

Saccharomyces yeasts are unicellular, globose, and ellipsoid to elongated in shape. 

Multilateral (multipolar) budding is typical for vegetative reproduction (Vaughan-Martini & 

Martini, 1998; Ribéreau-Gayon et al., 2006 a). A number of 16 species is characterized 

under the genus Saccharomyces as excellently proposed by Barnett et al. (2000). 

Nomenclature of Saccharomyces yeasts according to Barnett et al. (2000) with the 

teleomorphic (perfect) names and two anamorphic (imperfect) names is given in Table 2-1. 
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Table 2-1 List of the Saccharomyces yeasts, with their teleomorphic and anamorphic names 

 

Teleomorphic name (sexual state) Anamorphic name (asexual state) 

Saccharomyces barnettii  

Saccharomyces bayanus  

Saccharomyces castellii  

Saccharomyces cerevisiae Candida robusta 

Saccharomyces dairenensis  

Saccharomyces exiguus Candida  holmii 

Saccharomyces kluyveri  

Saccharomyces kunashirensis  

Saccharomyces martiniae  

Saccharomyces paradoxus  

Saccharomyces pastorianus  

Saccharomyces rosinii  

Saccharomyces servazzii  

Saccharomyces spencerorum  

Saccharomyces transvaalensis  

Saccharomyces unisporus  

 

The origin and importance of enological yeasts 

Originally, all wine was made by taking advantage of natural microflora for spontaneous 

fermentation and no deliberate inoculation was made to start the process (Pretorius, 2000). 

At present, it is recognized that wine fermentation involves the development and activity of a 

number of different yeast species that originate from grape. Also the indigenous microbiota 

associated with winery environment participates in these natural wine fermentations (Fleet & 

Heard, 1993; Heard, 1999). Although, grapes have long been considered the primary source 

of indigenous wine yeasts (Fleet & Heard, 1993) and are relatively complete in nutrient 

content, but having a low pH and high sugar content, they exert a strong selective pressure 

on the microbial species such that only a few yeast species and other microorganisms can 

proliferate (Henschke, 1997; Dequin et al., 2003). 

In alcoholic processes, yeasts are responsible for the biotransformation of fermentable 

sugars like glucose, fructose and sucrose into alcohol and carbon dioxide via the process of 

fermentation. They have an enormous impact on wine production (Fleet, 1993; Barnett et al., 

2000; Pretorius, 2000; http://lfbisson.ucdavis.edu/PDF/VEN124%20Section%203.pdf, 2001) 

because: (i) they conduct the alcoholic fermentation; (ii) they can spoil wines during storage 

in the cellar and after packaging and (iii) they affect wine quality through autolysis. During 

http://lfbisson.ucdavis.edu/PDF/VEN124%20Section%203.pdf


 9 

wine fermentation not only hexoses are converted by yeasts to ethanol and carbon dioxide, 

but many compounds are removed from the medium and a large set of by-products are 

formed that influence the sensory properties of wines (Dequin et al., 2003). The fermentation 

of wine is mainly conducted by yeast of the genus Saccharomyces, of which the two 

common species mostly involved are S. cerevisiae and S. bayanus (Pretorius, 2000; 

http://lfbisson.ucdavis.edu/PDF/VEN124%20Section%203.pdf, 2001; Dequin et al., 2003; 

Ribéreau-Gayon et al., 2006 a; Fugelsang & Edwards, 2007). In addition to S. cerevisiae and 

S. bayanus, it is now well established that various species of non-Saccharomyces, such as 

Hanseniaspora (Kloeckera), Candida, Pichia, Metschnikowia, Kluyveromyces, 

Schizosaccharomyces and Issatchenkia can make positive contributions to the fermentation 

of wine from grapes (Fleet, 1998; Pretorius, 2000; Fleet, 2003; Clemente-Jimenez et al., 

2005; Mendoza et al., 2007; Chomsri, 2008; Moreira et al., 2008). 

In traditional winemaking, spontaneous fermentation of grape must is performed by a 

sequential development of different yeast species that originate from the grape and the 

winery equipment, such as Hanseniaspora (Kloeckera) spp., Candida (e.g. C. stellata and C. 

pulcherrima), Brettanomyces (B. anomalus and B. bruxellensis), Cryptococcus, 

Kluyveromyces, Metschnikowia (M. pulcherrima, the perfect form of C. pulcherrima), Pichia 

(P. membranifaciens) as well as species previously assigned to the Hansenula genus, e.g. H. 

anomala, the pink yeast Rhodotorula (Rh. minuta) (Fleet & Heard, 1993; Pretorius, 2000; 

Romano et al., 2006). However, their growth is generally limited to the first three or four days 

of fermentation, after which they die. Subsequently, the most strongly fermenting and more 

ethanol tolerant species of Saccharomyces take over and finish the fermentation process 

(Fleet & Heard, 1993; Martini, 1993). Recently, there has been a re-evaluation of the role of 

non-Saccharomyces yeasts in winemaking (Fleet & Heard, 1993; Ciani & Maccarelli, 1998; 

Heard, 1999). In fact, spontaneous fermentations usually take longer than most winemakers 

are willing to accept and the outcome is always not what was anticipated, because it 

depends not only on the number and diversity of yeasts present in must, but also upon grape 

chemistry and processing protocol (Fugelsang & Edwards, 2007). At one extreme are those 

who continue to use solely indigeneous yeasts, believing that unique contributions of diverse 

yeast species confer a complexity to the wine not seen in inoculated and controlled 

fermentations. Others prefer to begin with native yeasts and later inoculate with a 

commercial yeast starter because the wines produced by inoculation were of consistent 

acceptable quality (Fleet & Heard, 1993; Pretorius, 2000). In the last 30 years, most of the 

wine industry has tended to move away from spontaneous fermentations towards controlled 

fermentations initiated by inoculation that are more reliable and facilitate wine production 

(Dequin et al., 2003; Sablayrolles, 2009).  

 

http://lfbisson.ucdavis.edu/PDF/VEN124%20Section%203.pdf
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Impact of enological yeasts on wine fermentation 

When must is used as a culture medium, selective pressures always favour the yeasts with 

the most efficient fermentative catabolism, particulary strains of S. cerevisiae and perhaps 

strains of closely related species such as S. bayanus (Henschke, 1997; Pretorius, 2000). For 

this reason, S. cerevisiae is the almost universally preferred yeast for initiating alcoholic 

fermentation and is often designed as the ―wine yeast‖ (Fleet & Heard, 1993; Martini, 1993; 

Dequin et al., 2003; Pretorius, 2000). The primary role of wine yeast is to catalyse not only 

the rapid complete and efficient conversion of grape sugars to ethanol, carbon dioxide and 

other minor, but also sensorially important metabolites without the development of off-

flavours (Figure 2-1) (Pretorius, 2000; Swiegers et al., 2005 a). A secondary role concerns 

the modification and/or release of grape-derived components, such as glyco- and cysteine-

conjugate precursors, which enhance the wines‘ varietal character (Howell et al., 2004, 2005; 

Swiegers et al., 2005 a, 2005 b).  

 

 

 

Figure 2-1 A schematic representation of derivation and synthesis of flavour-active 

compounds from sugar, amino acids and sulphur metabolism by wine yeast 

Source: Adapted from Pretorius (2000) and Swiegers et al. (2005 a) and modified 
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Overall, the goal of using a starter culture is to initiate fermentation as quickly as possible 

while limiting the potential for spoilage by establishment of numerical dominancy over native 

species (Fugelsang & Edwards, 2007). The assignment of most of the traditional wine yeast 

strains to a single species does not, however, imply that all strains of S. cerevisiae are 

equally suitable for the various wine fermentations, they differ significantly in their 

fermentation performance and their contribution to the final bouquet as well as production of 

H2S and quality of wine (Jiranek et al., 1995 b; Pretorius et al., 1999; Swiegers et al., 2005 a). 

Sablayrolles (2009) reported that more than 200 different S. cerevisiae strains are currently 

commercially available, with highly diverse fermentation properties.  

Fermentation predictability and wine quality are directly dependent on wine yeast attributes 

that assist in the rapid establishment of numerical and metabolic dominance in the early 

phase of wine fermentation, and that determine the ability to conduct an even and efficient 

fermentation with a desirable residual sugar level. A wide range of factors affect the 

fermentation performance of wine yeasts. Apart from a successful inoculation with the 

appropriate starter culture strain, the physiological condition of such an active dried wine 

yeast, and its ability to adapt to and cope with nutritional deficiency and the presence of 

inhibitory substances, are of vital importance to the fermentation performance (Pretorius, 

2000). The choice of yeast strain used by the winemaker is increasingly motivated by the 

potential impact of that strain on the wine characteristics. The very large number of strains 

commercially available, and many complex mechanisms of interaction between strains, must 

and fermentation conditions make this choice difficult. The potential of yeast strains to 

increase the geographical typicity of a wine remains a matter of debate, but specific strains 

are now widely recognised to be useful: (i) for increasing the fruity character (Torija et al., 

2003 a; Sablayrolles, 2009), (ii) for improving some varietal characters in some wines 

(Delcroix et al., 1994; Murat et al., 2001 a; Swiegers et al., 2005 b, 2006, 2007; King et al., 

2008), (iii) for limiting the production of organic acids or increasing the production of glycerol 

(Scanes et al., 1998), and (iv) for limiting off-flavours, including those due to sulphur (Rauhut, 

1993; Rauhut et al., 1996, 1997) and volatile phenols (Shinohara et al., 2000). The use of 

different Saccharomyces strains for wine fermentations resulted in wines with different 

volatile profiles, through varied relative concentration of acetic acid esters, fatty acid ethyl 

esters, higher alcohols and wine compositions (Henick-Kling et al., 1998; Antonelli et al. 1999; 

Heard, 1999; Howell et al., 2006; Chomsri, 2008; King et al., 2008; Swiegers et al., 2009) as 

well as volatile thiols (Howell et al., 2005; King et al., 2008; Swiegers et al., 2009). Studies 

have also investigated the effect of simultaneous inoculation and coinoculation with yeast 

strains to conduct fermentations of wines ( Großmann et al., 1996; Howell et al., 2005, 2006; 

Chomsri, 2008; King et al., 2008; Viana et al., 2009). 
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2.2 Nitrogen containing compounds in winemaking 

 

Nitrogen containing compounds, e.g. ammonia, amino acids, peptides, polypeptides and 

proteins, are commonly found in living organisms and are important constituents of food. 

They supply the required building blocks for protein biosynthesis. In addition, they directly 

contribute to the flavour of food and are precursors for aroma compounds and colours 

formed during thermal or enzymatic reactions in production, processing and storage of food 

(Belitz et al., 2004). Many microorganisms have the ability to use a variety of nitrogen 

containing compounds as the sole source of all cellular nitrogen (Cooper, 1982). 

Sacchromyces cerevisiae can grow in a wide variety of nitrogen-containing substrates 

(Cooper, 1982; Large, 1986). It preferentially uses simple nitrogen sources such as 

ammonium ions and free alpha amino acids (Cooper, 1982; Henschke & Jiranek, 1993; 

Jiranek et al., 1995 a; Valero et al., 2003). However, the secondary amino acids, such as 

proline and hydroxyproline, are not metabolized to any great extent under usual winemaking 

conditions (Duteurtre et al., 1971; Ingledew et al., 1987). Low molecular weight peptides can 

also be used but grape proteins cannot be used as a source of nitrogen since S. cerevisiae 

lacks significantly of extracellular proteolytic activity. Therefore, the usable nitrogen fraction is 

often referred to as yeast assimilable nitrogen (YAN). The remaining compounds of total 

nitrogen, which includes proline and hydroxyproline, larger molecular weight peptides and 

protein, will be reffered to as yeast non-assimilable nitrogen (YNAN) (Bell & Henschke, 2005). 

The consumption rate and metabolism of nitrogenous compounds depend on the yeast strain, 

its physiological state and the physicochemical properties of the must or wine. S. cerevisiae 

can either directly incorporate amino acids into the proteins, or use them as a source of 

nitrogen by oxidative deamination (except lysine and histidine); alternatively, an amino acid is 

degraded by liberating nitrogen for the biosynthesis of other nitrogenous cell constituents, 

and its carbon structure can be excreted to the wine or be used as a carbon source for the 

biosynthesis of other compounds (Large, 1986). 

Wine is a complex mixture of organic molecules that are present in an extremely wide range 

of concentrations. Of those molecules, nitrogen containing compounds are of great interest 

(Valero et al., 2003). Quantitatively, next to sugars, nitrogenous compounds are the most 

important nutrient substances found in grape must (particularly ammonium ion, amino acids, 

peptides, and small polypeptides) that can be used as nitrogen sources by yeasts (Mauricio 

et al., 1995; Dharmadhikari, 2001; Torija et al., 2003 b). On a dry weight basis, about 10 % of 

yeast weight consists of nitrogen. All the nitrogen used in building cellular material 

(population 108 cells ml-1) during fermentation is taken from the must. It is therefore important 

that the must contains sufficient amounts of nitrogen to support a healthy yeast population 

during fermentation (Dharmadhikari, 2001). Nitrogen containing compounds in must and 
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juice play important roles in fermentations of wine as it is a necessary nutrient for yeast 

growth and metabolism. Nitrogen deficiencies in grape must and juices is one of the principal 

factors limiting growth and sugar attenuation (Hernández-Orte et al., 2006 a), and may result 

in sluggish or stuck fermentations (Salmon, 1989; Kunkee, 1991; Blateyron & Sablayrolles, 

2001; Mendes-Ferreira et al., 2007 a, 2007 b). These compounds are known to be essential 

to the vinification process, not only because they influence growth and metabolic activity of 

the yeasts but also because they affect the formation of higher alcohols, which contribute to 

the aroma of wine and hence to its quality (Mauricio et al., 1995; Valero et al., 2003). Like 

proteins, they also influence clarification, microbial instability (Bell & Henschke, 2005) and 

wine stability, particularly in white wines (Dharmadhikari, 2001). Low levels of yeast 

assimilable nitrogenous compounds have been related to lower fermentation rates, longer 

fermentations (Bely et al., 1990) and cellular activity. Others consider this condition as a 

cause for low resultant biomass concentrations (Bisson, 1991; Cramer et al., 2002; 

Ribéreau-Gayon et al., 2006 a). These compounds are also important fermentation activators, 

since upon their depletion the rate of fermentation can substantially diminish and even cease 

(Lagunas et al., 1982; Salmon, 1989; Manginot et al., 1998). Limiting YAN is thought to affect 

yeast by reducing yeast cell multiplication and by decreasing indirectly the rate of glycolysis 

(Bely et al., 1990). These effects also depend on the nitrogen source, since growth on good 

nitrogen sources such as ammonia, glutamine and asparagine seems to yield relatively 

higher growth rates than on poor ones such as proline and urea (ter Schure et al., 2000).  

Furthermore, numerous studies about the roles of yeast in the development of wine aroma, 

flavour and mouth-feel are becoming more clearly defined, as well as the impact of nitrogen 

on the flavour metabolism of yeasts (Henschke & Jiranek, 1993; Rapp & Versini, 1996; 

Albers et al., 1996; Bell & Henschke, 2005; Hernández-Orte et al., 2005; Swiegers et al., 

2005 a). The limitation of nitrogen can also influence the formation of reduced sulphur 

compounds, such as hydrogen sulphide (Henschke & Jiranek, 1991; Giudici & Kunkee, 1994; 

Jiranek et al., 1995 b; Ugliano et al., 2009) and volatile sulphur compounds (Moreira et al., 

2002). On the other hand, the degradation of some nitrogen compounds contributes to the 

formation of a carcinogenic compound, biogenic amines and ethyl carbamate, which are 

considered to be detrimental to health (Monteiro et al., 1989; Ough, 1991; Zoecklein et al., 

1999; Bell & Henschke, 2005). The influence of the nitrogen source (Bisson, 1991; Monteiro 

& Bisson, 1991; Ough et al., 1991; Monteiro & Bisson, 1992 a, 1992 b; Albers et al., 1996; 

Torija et al., 2003 b; Wang et al., 2003; Hernández-Orte et al., 2006 a, 2006 b), the amount 

and timing of nitrogen addition on wine fermentation and volatile compounds has recently 

been the subject of several studies (Beltran et al., 2005; Rosi et al., 2008). The biological 

aging process has also received some attention in this respect (Mauricio & Ortega, 1997; 

Valero et al., 1999). More recently, a research conducted by Osborne & Edwards (2006) 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WFP-47TF68F-G&_user=4816649&_coverDate=04%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1299325754&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=a1e58f96a7d7256343971e062eb9c69f#bib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WFP-47TF68F-G&_user=4816649&_coverDate=04%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1299325754&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=a1e58f96a7d7256343971e062eb9c69f#bib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WFP-47TF68F-G&_user=4816649&_coverDate=04%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1299325754&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=a1e58f96a7d7256343971e062eb9c69f#bib16
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indicated that many yeast strains inhibited the bacteria during fermentation under high 

nitrogen conditions. Some research also demonstrated the impact of different nitrogen 

sources on the varietal aroma release, production of 3SH increases when urea is substituted 

for diammonium phosphate (DAP) as the sole nitrogen source on the synthetic media and 

grape must complementation with the DAP induces a decrease of 3SH as well (Subileau et 

al., 2008).  

Nitrogen containing compounds in grape juice and wine are consist of an ammonia 

component and a more complex amino-acid based nitrogen component, e.g. amino acids, 

oligopeptides, polypeptides, proteins, amide nitrogen, bioamines, nucleic acids, amino sugar 

nitrogen, pyrazines, vitamins and nitrate (Ough, et al., 1991; Henschke & Jiranek, 1993; 

Mauricio et al., 1995; Zoecklein et al., 1999; Cramer et al., 2002; Dharmadhikari, 2001; Torija 

et al., 2003 b). In grape must and wine, concentrations and compositions of these 

compounds are found in a wide range according to grape variety, rootstock, environment, 

site, seasonal and growing conditions, level of maturity and juice extraction (Huang & Ough, 

1989; Sponholz, 1991; Gockowiak & Henschke, 1992; Monterio & Bisson, 1992 a, 1992 b; 

Spayd & Andersen-Bagge, 1996; Hernández-Orte et al., 1999; Stines et al., 2000; Swiegers 

et al., 2005 a). Table 2-2 lists the individual amino acids commonly found in the whole grape 

and grape juice and Table 2-3 lists concentrations of various nitrogen compounds found in 

grape juice and wine.  

Some research reported that the total nitrogen content of grape juice ranges 40-fold from 60-

2400 mg L-1 and can therefore be growth-limiting (Henschke & Jiranek, 1993; Ribéreau-

Gayon et al., 2006 b). A minimum requirement for nitrogen of 120-140 mg N L-1 has been 

widely reported (Bely et al., 1990; Bisson, 1991; Henschke & Jiranek, 1993; Bell & Henschke, 

2005). Grape juices with yeast assimilable nitrogen (YAN) concentration below 140 mg N L-1 

have a high probability of becoming problem ferments due to inadequate yeast growth and 

poor fermentation activity while a concentration above 400 mg N L-1 YAN leads to increased 

biomass, yeast growth and fermentation performance (Henschke & Jiranek, 1993; Zoecklein 

et al., 1999; Bell & Henschke, 2005). An inadequacy of nitrogen-containing compounds of 

grape juices and must for wine fermentation has often been reported. Ribéreau-Gayon et al. 

(2006 b) described that analytical findings on the extent and frequency of nitrogen 

deficiencies in Bordeaux grape musts from 1996-2006 vintages were 22 % in white must, 49 % 

in red must, 60 % in rosé must and 89 % in botrytized musts. Hence, the assessment of the 

nitrogen requirement for wine yeast should be controlled because it can have an impact on 

yeast growth, fermentation kinetics and the resulting wine. Regarding the variety of these 

nitrogen containing compounds, only some compounds found in musts and wines are 

presented in this review.  
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Ammonium 

The ammonium ion is an important component of must YAN and is one of the most preferred 

yeast nitrogen sources because it is readily assimilated by the yeasts, and serves as the 

primary form of available nitrogen for yeast metabolism (up to 40 %) in grape juice (Cooper, 

1982; Bisson, 1991; Monteiro & Bisson, 1992 a, 1992 b; Henschke & Jiranek, 1993; Bell, 

1994; Ayestarán et al., 1995; Beltran et al., 2004; Vilanova et al., 2007; Boulton et al., 2009). 

It can influence amino acid metabolism by reducing catabolic enzyme levels and transport 

activity through various mechanisms, such as nitrogen catabolic repression (Cooper & 

Sumrada, 1983). It is rapidly consumed at the beginning of the fermentation process. 

Addition of ammonium salt has a significant effect not only on cell population, the 

fermentation rate, the production of alcohol, volatile acidity and pH (Monteiro & Bisson, 1992 

a; Ayestarán et al., 1995; Bely et al., 2003; Mendes-Ferreira et al., 2004; Taillandier et al., 

2007), but also on the formation of metabolic compounds, esters, higher alcohols and volatile 

sulphur compounds (Ayestarán et al., 1995; Bell & Henschke, 2005; Miller et al., 2007; 

Ugliano et al., 2007; Vilanova et al., 2007; Rosi et al., 2008; Ugliano et al., 2009; Boulton et 

al., 2009). Ugliano et al. (2007) reported that overuse of DAP can also stimulate 

overproduction of acetic acid esters, especially acetic acid ethyl ester, resulting in the 

perception of volatile acidity and suppression of varietal character. The ammonium 

concentration of grape berries declines during ripening with an increase in amino acid 

nitrogen, peptide nitrogen and protein (Bell, 1994; Zoecklein et al., 1999; Bell & Henschke, 

2005). The concentration of ammonium widely ranges from 5 to 325 mg N L-1 in grapes (Bely 

et al., 1991; Henschke & Jiranek, 1993; Butzke, 1998; Zoecklein et al., 1999; Carnevillier et 

al., 2000) and from a few mg L-1 to 50 mg L-1 in wine. 

 

Amino acids 

The primary amino acids constitute a major source of YAN for yeast, however, they vary in 

their efficiency as nitrogen sources (Cooper, 1982; Jiranek et al., 1995 a). Most of the 20 

commonly occurring amino acids are found in grapes and musts (Table 2-2). Their 

concentration and composition can vary according to grape variety, cultivation, rootstock, 

region and seasonal conditions, level of maturity and processing techniques. L-arginine and 

L-proline are generally predominant amino acids found in grape and must (Huang & Ough, 

1989; Sponholz, 1991; Gockowiak & Henschke, 1992; Spayd & Andersen-Bagge, 1996; 

Hernández-Orte et al., 1999; Stines et al., 2000; Soufleros et al., 2003; Herbert et al., 2005; 

Boulton et al., 2009). Many studies of amino acids in must and wine have commonly 

presented the L-amino acids. D-amino acids have only been examined in a few studies as 

they have been considered as unnatural amino acids (Brückner & Westhauser, 2003; 

Brückner & Pätzold, 2006; Pätzold & Brückner, 2007). 
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The amino acids in grape juice and must are generally present in the range of 170-4000 

mg L-1, while in wines in the range of 3-4000 mg L-1 (Carnevillier et al., 2000; Ribéreau-

Gayon et al., 2006 b; Boulton et al., 2009). The individual amino acid commonly found in the 

whole grape and grape juice varies significantly (Table 2-2). Arginine is quantitatively the 

most important amino acid utilizable by Saccharomyces in grapes (Monteiro & Bisson, 1992 

a; Henschke & Jiranek, 1993; Bell, 1994; Jiranek et al., 1995 a; Stines et al., 2000; Bell & 

Henschke; 2005; Boulton et al., 2009), due to its catabolism by arginase to form L-ornithine 

and urea, which under appropriate conditions ultimately form glutamate and ammonium, 

respectively, the latter two compounds are precursors for general amino acid biosynthesis in 

yeast (Large, 1986). Arginine is rapidly incorporated by yeast at the start of fermentation and 

subsequently released back into the wine during autolytic cycles (Fugelsang & Edwards, 

2007). L-proline was also found at high concentrations, at 750-2257 mg L-1 of most cultivars 

(Huang & Ough, 1989; Spayd & Andersen-Bagge, 1996; Boulton et al., 2009). However, it is 

only utilised to a limited extent by yeast to the normal anaerobic environment of alcoholic 

fermentation (Duteurtre et al., 1971; Ingledew et al., 1987), therefore it is referred to as yeast 

non assimilable nitrogen (YNAN) (Bell & Henschke, 2005). 

Regarding the metabolism of yeast, a supplement of amino acids in grape juice could 

influence the synthesis of cellular protein and, in turn, affect the biomass and fermentation 

rates (Albers et al., 1998; Salmon & Barre, 1998; Boulton et al., 2009), and shorten 

fermentation time, leading to high alcohol production (Hernández-Orte et al., 2006 a). Jiranek 

et al. (1995 a) demonstrated that the kinetics of the utilization of individual amino acids varied 

between yeast strains. However, arginine, serine, glutamate, threonine, aspartate and lysine 

typically comprised the bulk of the nitrogen consumed. Miller et al. (2007) reported that the 

effect of the amino acid addition in Chardonnay juice on amino acid utilization by yeast varied 

depending on the specific amino acid. The more concentration of amino acid addition in juice 

leads to the greater utilization of leucine, isoleucine, methionine, phenylalnine, tryptophan, 

tyrosine and valine, but the less utilization of histidine, glutamine and alanine by yeast. In 

addition to regulating growth, amino acid availability can also affect many aspects of yeast 

metabolism, including the formation of volatile and non-volatile compounds that are important 

for the organoleptic qualities of wine (Albers et al., 1996; Bell & Henschke, 2005; Garde-

Cerdán & Ancín-Aypilicueta, 2007).  
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Table 2-2 The identity and concentration of amino acids found in the whole grape and/or 
juice at harvest  

 

Amino acid Concentration range (mg L-1) 

Alanine 10 - 227 

Arginine 20 - 2322 

Asparagine 1 - 171 

Aspartic acid 10 - 138 

Citrulline 0.1 - 83 

Cysteine 1 - 8.2 

Glutamine 9 - 4499 

Glutamic acid 27 - 454 

Glycine 1 - 20 

Histidine 5 - 197 

Isoleucine 1 - 117 

Leucine 2 - 160 

Lysine 0.7 - 45 

Methionine 1 - 33 

Ornithine 0.1 - 27.2 

Phenylalanine 2.8 - 138 

Proline 9 - 2257 

Serine 13 - 330 

Threonine 9 - 284 

Tryptophan 0.2 - 11 

Tyrosine 2 - 33 

Valine 7 - 116 

 

Source: Huang & Ough (1989), Sponholz (1991), Henschke & Jiranek (1993), Spayd & 

Andersen-Bagge (1996), Hernández-Orte et al. (1999), Bell & Henschke (2005), 

Boulton et al. (2009)   

 

The non-volatile compounds, glycerol, malic acid and -ketoglutarate have been reported to 

vary according to amino acid, nitrogen source and concentration (Radler, 1993; Albers et al., 

1996). The amino acid uptake of yeast influences the aroma generation during alcoholic 

fermentation (Swiegers et al., 2005 a; Miller et al., 2007). The most aroma compounds 

include higher alcohols, short to medium-chain fatty acids and their ethyl esters and acetic 

acid esters (Lambrechts & Pretorius, 2000; Francis & Newton, 2005). Wines obtained from 
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musts supplemented with amino acids have higher levels of -butyrolactone, isobutanol and 

isobutyric acid (Hernández-Orte et al., 2005). Furthermore, some research showed that the 

presence of methionine in synthetic medium caused no formation of hydrogen sulphide 

(Eschenbruch, 1974; Giudici & Kunkee, 1994), but this compound was formed in the 

presence of cysteine. On the other hand, an experiment carried out by Moreira et al. (2002) 

suggested that the addition of methionine to grape musts enhanced the production of sulphur 

compounds and yeast strains also influence the effect of amino addition.  

 

Peptides 

Peptides are short polymers formed by binding amino acids together through an amide 

linkage or peptide linkage and their hydrolysis results in free amino acids. Peptides are 

denoted by the number of amino acid residues as di-, tri-, tetrapeptides, etc. The term 

―oligopeptides‖ is used for those with 10 or less amino acids. Higher molecular weight 

peptides are called polypeptides and are referred to have molecular weight below 10 kDa 

(Fukui & Yokotsuka, 2003). Peptides can be substances of great biological importance. They 

exhibit multiple interesting functional properties, e.g. as antioxidants, antimicrobial agents, 

surfactants with foaming and emulsifying capabilities (Desportes et al., 2000; Brückner & 

Koza, 2003; Belitz et al., 2004). It is well established that they contribute to bitter, sweet and 

umami tastes, such as bitter peptides in cheese or aspartame and a sweet peptide, which is 

180 times sweeter than sucrose (Ishibashi et al., 1987, 1988; Polo et al., 1992; Turgeon et al., 

1992; Bumberger & Belitz, 1993). They also play a role in the development of some physico-

chemical characteristics, flavours and organoleptic properties of wine, like in other foodstuff 

(Acedo et al., 1994; Desportes et al., 2000).  

Peptides are widespread in nature including in grape must and wines. They are major 

compounds representing together with amino acids the main nitrogen fraction in wines 

(Desportes et al., 2000). Polypeptides constitute a significant proportion of the total nitrogen 

content in wine between 20 % and 90 % (Zoecklein et al., 1999). Analyses carried out by 

Monteiro et al. (2001) revealed that wines contain a large number of distinct polypeptides. 

Yokotsuka et al. (1975) demonstrated that the peptides in the Koshu Japanese juice mainly 

consisted of aspartic acid and glutamic acid, which were about 65 % of all the amino acids 

constituting the peptides. On the other hand, the major amino acids constituting the peptides 

in the wine were glutamic acid, aspartic acid, glycine and proline. Up to now, most of the 

studies conducted on wine peptides have been restricted to the determination of the total 

amino acid composition of wine peptides, the results have been simply obtained by 

investigating the difference between the amino acid content before and after peptides 

hydrolysis. Peptides have been rarely studied because their isolation from wine is quite 
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difficult (Poux & Ournac, 1970; Yokotsuka et al., 1975; Usseglio-Tomasset & Bosia, 1990; 

Moreno-Arribas et al., 1998 a, 1998 b).  

During the first stage of wine fermentation, peptides are assimilated by the yeast together 

with free amino acids. At the end of fermentation, there is an excretion of free amino acids 

and small peptides from the yeast to the wine (Ough et al., 1991; Dizy & Polo, 1996). 

Yokotsuka et al. (1975) showed that compositional changes in peptides occurred during wine 

making, especially fermentation. Some researches demonstrated that peptides could be 

released by yeast during base wine preparation and second fermentation of sparkling wine 

(Martínez-Rodríguez et al., 2002; Moreno-Arribas et al., 1996). The enrichment of wine with 

short peptides and proteins can be made through addition of yeast autolysate which gives 

rounder and fuller wines (Feuillat, 2005). Furthermore, Oganesjanz et al. (2007) briefly noted 

that an increase of nitrogen containing compounds, peptides included, through the addition 

of yeast lysate in wine improves the organoleptic quality, particularly its complexity and 

harmony is enhanced. In wine technology, some peptides have shown to be very effective 

fining agents, at least at the same level as gelatin or soluble poly(vinylpyrrolidone) (PVP) 

(Yokotsuka & Singleton, 1995). 

Among the great number of peptides found in wines, glutathione, a tripeptide -L-glutamyl-L-

cystinylglycine is perhaps the most intensively studied (Duncan & Derek, 1996; Penninckx, 

2002; Roussis et al., 2007). Glutathione is a polypeptide produced by the grapevine and by 

wine yeast at the end of fermentation. It is a strong antioxidant and helps to stabilize aroma 

components and plays an important role as an oxidative buffer, thus impacting wine longevity 

(Zoecklein, 2007). Therefore, it can prevent oxidation of white grape musts (Cheynier et al., 

1986; Singleton, 1987; Cheynier et al., 1989). It is also discussed as an anticarcinogenic 

molecule due to its ready oxidation (Roussis et al., 2007). Cheynier et al. (1989) showed that 

glutathione ranged from 14-102 mg L-1 in grape musts from different varieties. Park et al. 

(2000 a, 2000 b) found this compound up to 1.3 mg L-1 in grape musts and up to 5.1 mg L-1 in 

wines. Du Toit et al. (2007) also detected up to about 35 mg L-1 in wines. Final concentration 

of glutathione in wine was correlated with both total nitrogen and assimilable amino acid 

concentration and an increase of glutathione towards the end of fermentation was observed. 

Lavigne et al. (2007) investigated that glutathione in the wine can be increased through the 

choice of an adequate yeast strain and when the wine is stored on lees. Dubourdieu & 

Lavigne-Cruège (2002) proposed that glutathione seems to play an important role in 

protecting volatile thiols that are responsible for the varietal flavours of wines during the 

ageing of bottled white wines. However, the supplementation of must with glutathione to a 

concentration of more than 50 mg L-1 can lead to unpleasant volatile sulphur compounds 

under certain conditions (Rauhut et al., 2001; Rauhut, 2003).  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-40PRGRX-4&_user=4816649&_coverDate=08%2F15%2F2000&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1306763019&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=c8e05acd5abba5f526997696abefe405#bbib19
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In recent years, the organic nitrogen sources, such as commercial preparations that contain 

yeast derivative products, which also contain lipids and sometimes other nutrients like yeast 

cell wall, yeast extract, have become commercially available (Munoz & Ingledew, 1990; 

Belviso et al., 2004). Inactive yeasts, yeast autolysates, yeast extracts and yeast hulls or 

walls can be included under the generic name of inactive dry yeast (IDY) preparations. Some 

of the compounds released during yeast autolysis like peptides, amino acids and 

mannoproteins, seem to be responsible for the great number of applications attributed to 

these preparations. They can be used as alcoholic fermentation enhancers (Lafon-

Lafourcade et al., 1984; Feuillat & Guerreau, 1996; Pozo-Bayón et al., 2009 a, 2009 b), as 

protective agents to improve active dry yeast rehydration (Caridi et al., 1999; Caridi, 2002) or 

as organoleptic enhancers stabilizing the colour of red wines by using mannoprotein-rich IDY 

preparations (Escot et al., 2001; Doco et al., 2003). In fact, yeast derivatives, particularly 

autolysates, are not completely soluble, and the presence of particulates can be observed 

when they are added to wines. It is composed of yeast cell wall residues that remain in the 

growth medium after the lysis treatment, and their ability to bind aroma compounds is well 

reported in literature (Lubbers et al., 1994 a). Moreover, yeast macromolecules and colloids, 

released in wine during autolysis, can also determine different sensory effects, interacting 

with aroma compounds and modulating their volatility and perception (Lubbers et al., 1994 b). 

Thus, yeast derivatives are used as a source of mannoproteins in winemaking and could 

affect the aroma intensity, wine oxidation, colour and fruity flavours of treated wines. 

Comuzzo et al. (2005) found that the lowest addition of yeast derivatives showed an increase 

in the fruity and flowery perception of some volatile compounds (e.g. esters), while for higher 

amounts the release of some carboxylic acids characterized by cheese-like and unpleasant 

odours was observed. 

Despite the fact that many of these preparations are currently on the market under different 

brands, claiming different wine improvements, scientific information about the chemistry 

behind their use and their action mode is still scarce. Therefore, scientific studies for a better 

characterization of the changes that these preparations induce in wines are required for the 

establishment of better criteria for their enological use. For these reasons, the olfactory 

examination of commercial formulates (to select less odourous and soluble products) and 

preliminary laboratory tests on small scale could be useful tools to control the effects of the 

treatment (Comuzzo et al., 2005). Particular problems are associated with attempts to 

measure peptide in yeasts. Furthermore, wine is a complex matrix and thus many methods 

for the determination of peptides have to be specifically developed for wine analysis. These 

methods and extraction techniques are necessary to remove interfering compounds. The 

applicability, advantages and disadvantages of these methods should be considerably 

appropriate for grape juice and wine (Chomsri, 2008).   

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4H3YB94-1&_user=4816649&_coverDate=12%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1310065999&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=083198476c1c90031d7975de43d24d64#bib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4H3YB94-1&_user=4816649&_coverDate=12%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1310065999&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=083198476c1c90031d7975de43d24d64#bib19
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Table 2-3 Concentration of nitrogen containing compounds found in grape juice and wine 

 

Components 
 

Concentration  
(mg L

-1
) 

References 

Amides in must and wine  
 

10 - 40, 8 - 35 
 

Carnevillier et al. (2000) 
 

Amino acids  
    - grape must and juice  

 
1 - 1130 

 
Boulton et al. (2009), Ferreira et al. (2002)  

    - grape and wine  1000 - 4000 Ribéreau-Gayon et al. (2006 b) 
    - wine  
    - Japanese wine 
 

130 - 590 
405 - 1559 

Carnevillier et al. (2000) 
Yokotsuka et al. (1977) 

Assimilable amino acids in musts   331 - 1375 Fukui & Yokotsuka (2003) 
 

Free amino acids in must 
 

32.5 Bell & Henschke (2005) 

Free amino nitrogen (FAN) 15 - 230 Zoecklein et al. (1999) 
 

Ammonium 
     - grape and must  
     - wine  
 

 
5 - 325, 10 - 120 
3 - 30 

 
Henschke & Jiranek (1993), Carnevillier 
et al. (2000) 
 

Peptides 
     - Chardonnay must  
     - Chardonnay wine  
     - Japanese wine  
 

 
7.6 - 20.3 mg g

-1 

104.8 - 139 
137 - 904 

 
Nakopoulou et al. (2006) 
 
Yokotsuka et al. (1977) 

Glutathione 
     - grape must 
     - wine 
 

 
1.3 - 104  
1 - 35  

 
Cheynier et al. (1989), Park et al. (2000 a, 
2000 b), Du Toit et al. (2007) 
 

Nitrogen compounds  
     - soluble nitrogen compounds 

in must 
     - grape 
     - wine 
 

 
100 - 1000 mg N L

-1
 

 
600 - 2400 mg Kg

-1 

200 -1400 

 
Ribéreau-Gayon et al. (2006 b) 
 
Radler (1993) 
 

Total nitrogen  
     - white wine  
     - red wine 

 
70 - 700 
77 - 377 
 

Ribéreau-Gayon et al. (2006 b) 

Protein 
     - soluble proteins in must  
     - soluble protein in grape juice 
     - grape juice 
     - wine 
 
 

 
93.5 
118 - 800 
1.5 - 100 
8 - 1000 
 
 

 
Bell & Henschke (2005) 
Wigan & Decker (2007) 
Ribéreau-Gayon et al. (2006 b) 
Bisson (1991), Monteiro et al. (2001), 
Ribéreau-Gayon et al. (2006 b) 
 

Ethyl carbamate in wine 
 

1 - 7.7 g L
-1

 Zoecklein et al. (1999), Ribéreau-Gayon 
et al. (2006 b) 
 

Urea in wine  < 1 
 

Ribéreau-Gayon et al. (2006 b) 

Histamine in wine 0 - 11.3 
 

Zoecklein et al. (1999), Ribéreau-Gayon 
et al. (2006 b) 
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Other nitrogen-containing components 

Nitrates (NO3
-) and nitrites (NO2

-) are present in wines at low levels, usually less than 0.3 % 

of the total nitrogen. White table wines were found to have 2.1-53.7 mg L-1 nitrate, while red 

wine had 0.9-41.4 mg L-1 (Ough & Crowell, 1980). Ough & Amerine (1988) found in German 

wines nitrate levels less than 7 mg L-1, and 1.65 mg L-1 in Italian white wines. Field nitrogen 

fertilization of the vines has little effect on the residual nitrate in the grape. Fermentation does 

not alter the nitrate content significantly (Ough & Crowell, 1980). Saccharomyces yeast is 

incapable of utilizing nitrate as a nitrogen source, there are a couple of other yeast species, 

such as Candida and Hansenula, that have this capability (http://biochemie.web.med.uni-

muenchen.de/Yeast_Biol/03%20Yeast%20Metabolism.pdf, 2009). 

Another group of nitrogen compounds present in wines are biogenic amines, which are 

undesirable compounds produced in food mainly through bacterial decarboxylase activity 

(Leitão et al., 2000). It is well known that consumption of food containing high amounts of 

biogenic amines may cause headaches, nausea, cardiac palpitations and digestive problems 

(Silla-Santos, 1996; Anli et al., 2004). These amines more commonly found in wine are 2-

phenylethylamine, putrescine, spermidine, spermine, histamine, tyramine, cadaverine, 

mercaptoethylamine, ethanolamine and serotonin (Lehtonen, 1996; Leitão et al., 2000; 

Lonvaud-Funel, 2001; Caruso et al., 2002; Gardini et al., 2005; Ansorge, 2007). They are 

derived from microbial decarboxylation of the corresponding amino acids or by 

transamination of aldehydes and ketone by amino acid transaminases (Zolou et al., 2003). 

Biogenic amines in wines may come from two different sources, i.e. raw materials and 

fermentation processes (Gardini et al., 2005; Marques et al., 2008). In general, low levels of 

biogenic amines were found in musts and wines, in comparison to other food, however, 

biogenic amines can occur in much higher concentrations (Herbert et al., 2005). 

Nitrogen-containing flavour compounds are also important in enology.  For example, ortho-

aminoacetophenone (O-AAP), the taint compound is responsible for the atypical or untypical 

ageing (UTA) off-flavour observed in some white wines (Rapp et al., 1993). UTA wines lose 

their varietal character and begin to exhibit atypical flavours such as ―acacia blossom‖, ―floor 

polish‖, ―naphthalene‖ (mothballs) and‖ wet towel‖ (Sponholz et al., 2000; Winter, 2003; Bell 

& Henschke, 2005). Methyl anthranilate, also known as methyl 2-aminobenzoate or 

carbomethoxyaniline, is a methyl ester of anthranilic acid or -aminobenzoic acid, which is 

related to the ―foxy‖ taste of labrusca grapes and related hybrids (Rapp & Versini, 1996; 

Rapp, 1998). Additionally, methoxypyrazines, cyclic nitrogen-containing compounds, are 

reported to be responsible for the vegetative, herbaceous, capsicum-like aromas frequently 

noted in wines produced from Cabernet Sauvignon and Sauvignon blanc (Sala et al., 2004 a, 

2004 b; Bell & Henschke, 2005). The nitrogen containing flavour compounds formed during 

fermentation may influence the fermentation bouquet (Ough & Amerine, 1988). 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4NS2GP8-5&_user=4816649&_coverDate=12%2F31%2F2007&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1313651471&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=8668423e997b39d4d91afe208ffbf76e#bbib15
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6S-4D48YNN-3&_user=4816649&_coverDate=09%2F01%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1313625236&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=701aec767e1ca18f401e62f7e061cbcb#bib18
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6S-4D48YNN-3&_user=4816649&_coverDate=09%2F01%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1313625236&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=701aec767e1ca18f401e62f7e061cbcb#bib21
http://en.wikipedia.org/wiki/Ester
http://en.wikipedia.org/wiki/Anthranilic_acid
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 Utilization of nitrogen containing compounds by yeasts 

A broad range of nitrogenous compounds, e.g. amino acids, ammonium, amines, polyamines, 

amides, S-adenosylmethionine, nucleotides and nucleic acid derivatives, vitamins, peptides, 

proteins and trace amounts of nitrates found in grape juice can be metabolized by yeasts 

(Henschke & Jiranek, 1993; Fugelsang & Edwards, 2007). It is well established that yeasts 

preferentially utilize certain nitrogen sources in a mixture and that the pattern of nitrogen 

compounds such as ammonium (inorganic) and amino acids (organic) accumulated depends 

on the nitrogen composition and concentration of the fermentation substrate (Bell & 

Henschke, 2005). Within the complexity of nitrogenous components in must and wine, amino 

acids and ammonium ions are the most important for yeast growth and metabolism (Bisson, 

1991; Valero et al., 2003). These compounds are rapidly accumulated by yeast in the early 

stages of fermentation, during which they fill the biosynthetic pools of amino acids needed for 

protein synthesis and growth, while the surplus is stored in the cell vacuole (Bisson, 1991; 

Salmon, 1996). Cooper (1982) also reported that the consumption rate and metabolism of 

nitrogenous compounds depend on the yeast strain, its physiological state and the 

physicochemical properties of the must or wine. S. cerevisiae can either incorporate amino 

acids into the proteins directly, or use them as a source of nitrogen by oxidative deamination 

(except lysine and histidine), alternatively, an amino acid is degraded by liberating nitrogen 

for the biosynthesis of other nitrogenous cell constituents, and its carbon structure can be 

excreted to the wine or be used as a carbon source for the biosynthesis of other compounds. 

Although, the S. cerevisiae wine yeast is able to assimilate various nitrogen containing 

substrates, the preferred nitrogen sources are ammonium, glutamine and asparagine 

classified as good nitrogen sources (Cooper, 1982; Large, 1986; Henschke & Jiranek, 1993; 

Beltran et al., 2004; Bell & Henschke, 2005). In general, nitrogen sources that favour high 

growth rates are preferentially assimilated because their metabolism readily yields ammonia, 

glutamate or glutamine, which play a central role in nitrogen metabolism (Dickinson, 2004; 

Bell & Henschke, 2005). Yeasts use a mechanism called nitrogen catabolite repression 

(NCR), which mediates the selection of good nitrogen sources by the expression of 

appropriate transport systems (permeases) and the degradation of non appropriate 

permeases (ter Schure et al., 2000; Magasanik & Kaiser, 2002; Bell & Henschke, 2005). 

Ammonia and ammonium serve as the primary form of available nitrogen in yeast 

metabolism in grape juice (Bell & Henchke, 2005; Fugelsang & Edwards, 2007), either by 

conversion of a non-preferred nitrogen source to ammonia or by growth on ammonia itself 

(Grenson et al., 1974). The inorganic nitrogen can be fixed into organic forms through 

reaction with -ketoglutarate to yield glutamate by glutamate dehydrogenase (Figure 2-2). 

Glutamate can be further used by the cell to produce other amino acids important for 

metabolism. As part of the metabolism, degradation of nitrogen-containing compounds as the 
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sole source of nitrogen for yeast growth, leads to the formation of two key nitrogen 

compounds in yeast cell, ammonium and L-glutamate as summarized by Grenson et al. 

(1974) and Large (1986). The reactions outlined in Figure 2-2 show the synthesis of 

glutamate from α-ketoglutarate and ammonia and the synthesis of glutamine from glutamate 

and ammonia. By using different sets of enzymes, these core reactions also allow glutamine 

as the sole source of nitrogen to be converted into glutamate, and for glutamate as the sole 

source of nitrogen to be converted into glutamine (Magasanik & Kaiser, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 Central pathways for nitrogen metabolism 

Source: Adapted from Magasanik & Kaiser (2002) and modified 

 

Figure 2-2 showed that the nitrogenous compounds in the cell are synthesized from either 

glutamate or glutamine. The major pathway for glutamate synthesis is through combination 

of ammonia with α-ketoglutarate, which is synthesized from acetyl CoA and oxaloacetate 

through the early steps of the citric acid cycle. Glutamine is synthesized by the combination 

of ammonia with glutamate. The pathways for utilization of a variety of nitrogen sources, 

including urea, proline and arginine, are also shown. 
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http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-45HWVR3-5&_user=4816649&_coverDate=05%2F15%2F2002&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1314839504&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=05f8df6be940702919d0493f9d9ca786#fig1
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The metabolism of nitrogen-containing compounds, -amino acids, can also make up a 

major group of wine aroma compounds. Several studies have indicated that both the total 

available nitrogen and the balance of amino acids and ammonia can significantly affect the 

production of fermentation-derived volatile compounds, such as higher alcohols or fusel 

alcohol. They can be produced either by the catabolic conversion of the branched-chain 

amino acids (valine, leucine, isoleucine, methionine, and phenylalanine) via the Ehrlich 

pathway or by the anabolic formation of these amino acids de novo from a sugar substrate  

as shown in Figure 2-3 (Äyräpää, 1971; Bell & Henschke, 2005; Ugliano et al., 2007; 

Hazelwood et al., 2008; Ugliano & Henschke, 2009). Higher alcohols are characterized by 

fusel-like odours, and generally thought to contribute to the complexity of wine fermentation 

bouquet. However, when present in very high concentrations they can have a negative 

impact on wine aroma, mainly because they mask fruity characters and can result in a strong, 

pungent smell and taste (Lambrechts & Pretorius, 2000; Swiegers & Pretorius, 2005; Ugliano 

et al., 2007). These alcohols together with acids form esters such as acetic acid ethyl ester, 

acetic acid hexyl ester, acetic acid isoamyl ester (banana-like aroma), hexanoic acid ethyl 

ester, octanoic acid ethyl ester (apple-like aroma), and acetic acid 2-phenylethyl ester (fruity 

and flowery like aroma) during fermentation, which significantly contribute to the pleasant 

fruity aroma of wines and other alcoholic beverages. At low levels, all these compounds 

contribute to perceived wine aroma complexity. However, they have also been considered as 

responsible for off-flavours when present in too high amounts (Romano et al., 2003; Bell & 

Henschke, 2005; Swiegers & Pretorius, 2005; Mendes-Ferreira et al., 2009). Among other 

factors, nitrogen content affects the pattern of both higher alcohols and esters formed during 

fermentation, via regulation of the Erhlich, fatty acid, and ester synthesis pathways (Bell & 

Henschke, 2005; Swiegers & Pretorius, 2005; Mendes-Ferreira et al., 2009) 

However, nitrogen metabolism is depending on many factors. For example, temperature, 

nitrogen deficiency in grape must and timing of nitrogen addition influence the quantity and 

the quality of yeast nitrogen requirements (Beltran et al., 2005, 2007, 2008). S. cerevisiae 

selects nitrogen sources that enable the best growth by the NCR pathway (Magasanik & 

Kaiser, 2002; Bell & Henschke, 2005). Good nitrogen sources such as glutamine, asparagine 

or ammonium decrease the level of enzymes required for utilization of poorer nitrogen 

sources (ter Schure et al., 2000; Beltran et al., 2004). In addition, utilization of nitrogen-

containing compounds by yeasts is depended on not only the yeast strain, its physiological 

state and the physicochemical properties of the must or wine, but also the fermentation 

conditions, e.g. yeasts consume less nitrogen at low temperatures and ethanol inhibits the 

uptake of most amino acids (Bisson, 1991; Valero et al., 2003; Beltran et al., 2007).  

 

 

http://www3.interscience.wiley.com/cgi-bin/fulltext/118818584/main.html,ftx_abs#b2
http://www3.interscience.wiley.com/cgi-bin/fulltext/118818584/main.html,ftx_abs#b2
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Figure 2-3 Formation of higher alcohols from sugar and amino acids by the Ehrlich pathway 

Source: Adapted from Bell & Henschke (2005) and Ugliano & Henschke (2009) and modified 

 

2.3 Odour-active compounds involved in varietal aromas in grape and wines 

 

During the alcoholic fermentation, yeasts do not only convert sugars to ethanol and carbon 

dioxide, they also produce and release a range of minor but sensorially important volatile 

metabolites and aromas that give wine its vinous character, however there are diverse 

mechanisms involved in the development of the aroma compounds. To date, over 700 aroma 

compounds have been identified, an indication of the potential complexity of wine at 

concentrations ranging from mg L-1 to a few ng L-1 or even less (Guth, 1998; Rapp, 1988, 

1998; Lambrechts & Pretorius, 2000; Romano et al., 2003; Swiegers et al., 2005 a, 2005 b; 

Ribéreau-Gayon et al., 2006 b; Fisher, 2007). Consequently, the olfactory impact of the wine 

aroma depends on the concentration, type and perception value. Furthermore, the impact of 

each component on the attractiveness of the wine aroma depends on its specific properties. 

The odouriferous compounds from grapes play a more decisive role in the quality and 

regional character of wines than any other aroma components. These compounds are 

responsible for the varietal aroma of wines (Ribéreau-Gayon et al., 2006 b).  

The varietal aromas are formed by grape metabolism and are depending on the grape 

variety, soil, climate and vineyard management techniques. The glyco-conjugates and S-

cysteine-conjugates, upon hydrolysis by yeast enzymes, can strongly contribute to wine 

varietal character (Strauss et al., 1986, Francis et al., 1992, 1996; Francis & Newton, 2005, 

Swiegers et al. 2005 a, 2005 b; Thibon et al., 2008 b; Rauhut, 2009). Examples of grape-
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derived aroma compounds include hexyl derivatives that elicit fruity and floral aromas and 

some monoterpenes, norisoprenoids, substituted methoxypyrazines and thiols as cysteine 

conjugates as well as fatty acids, carotenoids and phenolic acids which are enzymatically 

cleaved to powerful odour compounds, such as 3-cis-hexanol, -damascenone or 4-

vinylguaiacol, 4MSP, 3SH. The majority of varietal aroma compounds are present in bound 

form, making them non-volatile and hence they have no odour. However, these bound 

compounds can be released or derived during alcoholic fermentation due to bioconservation 

of yeasts (Cole & Noble, 2003; Swiegers & Pretorius, 2005; Swiegers et al., 2005 a, 2005 b; 

Fisher, 2007; Rauhut, 2009). Only a few compact substances, such as the monoterpene 

linalool or the methoxypyrazines, are also present in their free form in the grape and in the 

juice after pressing. The other source for varietal aroma is acid-catalyzed rearrangements of 

odourless or barely volatile compounds yielding highly active odourants, such as cis-rose 

oxide or trans-rose oxide of Gewürztraminer or 1,1,6-trimethyl-1,2-dihydronaphthaline of 

aged Riesling wines (Fisher, 2007). Regarding the variety of varietal aroma compounds, only 

some varietal aromas like monoterpenes and thiols with a pleasant odour are given in this 

review.  The odour-active compounds involved in varietal aroma of wines are shown in Table 

2-4. 

 

Monoterpenes 

The monoterpenes are a diverse class of natural products, which are genuine compounds in 

grape berries (Vitis vinifera) that contribute important floral and citrus characters to wines. 

Usually the concentrations are below the thresholds, but sometimes in some varieties 

monoterpenes may contribute to the varietal bouquet. They are regarded as key impact 

compounds of several white wine varieties, such as Muscat of Alexandria, Morio Muscat, 

Riesling, Scheurebe and Gewürztraminer, as well as are responsible for their characteristic 

floral aroma (Mateo & Jiménez, 2000; Ebeler & Thorngate, 2009). Monoterpenes can be 

divided into three different classes. The first class consists of the free aroma compounds, 

commonly dominated by linalool, geraniol and nerol, together with the pyran and furan forms 

of the linalool oxides. However, depending on how the juice has been treated and on factors, 

which may include climate, many additional monoterpenes can be found in this group, e.g. 

citronellol, α-terpineol, ho-trienol, nerol oxide, myrcenol, the ocimenols plus several other 

oxides, aldehydes and hydrocarbons. In wines, several monoterpene ethyl ethers and acetic 

acid esters have also been found among the free aroma compounds (Mateo & Jiménez, 

2000). Secondly, there are the polyhydroxylated forms of the monoterpenes, or free 

odourless polyols. The most significant features are the polyols. Although these original 

compounds do not contribute to the aroma, some of them are reactive and can break down 

with great ease to give pleasant and potent volatiles such as diendiol (3,7-dimethylocta-1,5-
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diene-3,7-diol), which can give ho-trienol and nerol oxide (Williams et al., 1980; Mateo & 

Jiménez, 2000). Finally, these monoterpenes are the glycosidally conjugated forms. While in 

their glycoside forms, they offer no contribution to the wine‘s flavour. However, when these 

compounds are hydrolyzed back to the sugar and corresponding alcohol, it is this process 

that helps to contribute to the wine‘s flavour. Fisher (2007) reported that the release from 

these glycosidic precursors can be achieved by acidic hydrolysis at low pH or by the 

enzymatic hydrolysis, especially pectinase enzyme as well as yeast strain exhibiting a 

specific -glucosidase side activity. Glycosides are, in most cases, more abundant than the 

unglycosilated forms of individual monoterpenes and polyols (Mateo & Jiménez, 2000). 

Improvements in separations of these compounds obtained with high-resolution capillary GC 

columns in the 1970s and 1980s enabled the identification of over 50 monoterpenes in 

grapes and wines, and the terpene composition is widely used for varietal characterization 

(Schreier, 1979; Marais, 1983; Rapp, 1988, 1998). 

In most cases, the most important compounds are the monoterpene diols, linalool, geraniol, 

nerol, citronellol, ho-trienol and -terpineol (Strauss et al., 1986; Guth, 1997 a, 1997 b; 

Fisher, 2007). Geraniol has an aroma described as rose-like, linalool‘s aroma is described as 

camphorous and nerol oxides as vegetative (Simpson, 1979). The flavour threshold of nerol 

and α-terpineol is three to four times higher than that of linalool (100 μg L-1). The linalool 

oxides have flavour thresholds of 3000–5000 μg L-1 (Rapp, 1988). Besides these compounds, 

several highly odouriferous cyclic ethers and lactones have been identified as key 

compounds that are generated by cyclization of oxygenation products from these 

monoterpene alcohols (Luan et al., 2004). They exist in berry, largely in the skins, principally 

as glycoconjugates with only a small proportion present in the free form and are liberated 

during alcoholic fermentation. Monoterpenes exist in grape juice and must principally as 

mono- and disaccharide terpenes and are released by acidic hydrolysis and various 

glycosidic enzymes of grape and exogenous origin, such as commercial enzyme 

preparations added during the wine making process (Strauss et al., 1986). However, acidic 

conditions present during alcoholic fermentation and storage can catalyze many 

monoterpene rearrangements, yielding new compounds with different aroma quantities and 

intensities (Rapp, 1988; Ebeler & Thorngate, 2009). For example, Rapp (1988) investigated 

that linalool, which is an important floral aroma component of Muscat and Riesling varieties, 

can be transformed to -terpineol, hydroxylinalool, geraniol, or nerol under aqueous and 

acidic conditions. In addition, Da Porto & Battistutta (1995) investigated that the 

concentrations of glycosidically bound linalool, geraniol, nerol and of free geraniol and -

citronellol can be highly correlated with maceration time. 
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Table 2-4 The odour-active compounds involved in the varietal aromas in wine 

 

 

Varietal aromas 

Concentration 

in wine (g L
-1

) 

Aroma threshold 

(g L
-1

) 

 

Aroma descriptor 

Monoterpenes    

cis-Rose oxide 3 - 21 0.2 green, grassy, lychee, rose 

Citronella traces - 12 18 Citronella 

Geraniol 0.91 - 506 30, 130 rose blossom, geranium 

ho-Trienol traces - 127 110 Linden 

Linalool 1.7 - 473 25.2, 50 flower, lavender, rose, lychee 

Nerol 4 - 135 400 Rose 

-Terpineol 3 - 87 400 lily of the valley 

Wine lactone traces - 0.09 0.01 coconut-like, spice (lime) 

C13-norisoprenoids    

-Damascenone traces - 11.9 0.05 apple, rose, honey, lemon balm 

-Ionone 0.032 - 1.95 0.09 violet, flower, raspberry, seaweed 

Vitispriran (E)-6-methylene-2, 

10,10-trimethyl-1-oxaspiro 

[4.5]dec-7-en 

20 -320 

> 800 in port 

wine 

800 balsamic, resinous 

1,1,6-Trimethyl-1,2-

dihydronapthalene 

1 - 59 20 petroleum-like, kerosene-like 

Methoxypyrazines    

3-Isobutyl-2-methoxypyrazine traces - 0.042 0.002 in water green bell pepper, spice, earth 

3-Isopropyl-2-methoxypyrazine 0.035 0.002 in water green bell pepper, earth, raw 

potato, musty 

3-sec-Butyl-2-methoxypyrazine 0.0005 0.001 in water green bell pepper 

 

Source: Francis & Newton (2005), Ribéreau-Gayon et al. (2006 b), Fisher (2007) 

 

More recently, several studies suggest that fermentation yeasts might play a significant role 

in the monoterpene content of wine (Charoenchai et al., 1997; Bell & Henschke, 2005; 

Carrau et al., 2005; Loscos et al., 2007; Ugliano & Henschke, 2009). In addition to -

glucosidase activities, glycosidic activities capable of hydrolysing disaccharide monoterpene 

conjugates have also been identified in some fermentations and wine microorganisms (Bell & 

Henschke, 2005). According to the release of volatile compounds by hydrolysis of non-

volatile glycoconjugates, various yeast species associated with fermentation can produce 

monoterpenes from sugar metabolism, albeit at a low concentration (Carrau et al., 2005). 

This group also revealed that some wine strains of Saccharomyces cerevisiae are capable of 
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significant production under certain conditions. Saccharomyces yeast can produce citronellol 

from geraniol and nerol, the intensity of this transformation depends on the yeast strain used 

(Dugelay et al., 1992; Fernández-González et al., 2003; Fernández-González & Di Stefano, 

2004). Other authors propose a more complex scheme that geraniol was transformed by 

these yeasts into geranyl acetate, citronellyl acetate and citronellol, while nerol was 

transformed into neryl acetate; in addition, geraniol was transformed into linalool and nerol 

was cyclized to α-terpineol at must pH (Di Stefano et al., 1992). Additionally, the YAN and 

oxygen content of the fermentation medium influence monoterpene formation, that high YAN 

(400 mg N L-1) stimulates monoterpene formation, except sesquiterpene (nerolidol and 

farnesol). Bell & Henschke (2005) summarized that some strains of yeast, especially 

Saccharomyces, might contribute to the floral aroma of wine by de novo synthesis of 

monoterpenes, and this effect could be augmented by higher juice nitrogen in combination 

with microaerobic fermentation. 

 

Thiols involved in varietal flavour of wines 

Thiol compounds (referring to the –SH  functional group, the so-called mercaptan) are 

generally viewed as being responsible for a range of off-flavours (Goniak & Noble, 1987; 

Rauhut et al., 1995; Ribéreau-Gayon et al., 2006 b; Rauhut, 2009). However, their major 

contribute to the aroma of certain fruits and aromatic plants has been clearly established. 

Thus specific thiols are involved in the characteristic aromas of fruit such as blackcurrant 

(Rigaud et al., 1986; Píry et al., 1995), grapefruit (Demole et al., 1982; Lehmann et al., 1994), 

passion fruit (Engel & Tressl, 1991; Weber et al., 1994, 1995; Tominaga & Dubourdieu, 2000) 

and guava (Idstein & Schreier, 1985; Steinhaus et al., 2008).  

The first volatile thiol identified in Sauvignon blanc wines was 4MSP (Figure 2-4), which 

elicits aromas like blackcurrant, box tree and broom. Its perception threshold is very low (0.1-

0.8 ng L-1 in water and model solution) (Darriet et al., 1991, 1993, 1995; Murat et al., 2001 a; 

Howell et al., 2004). It is always present in Sauvignon blanc at concentrations higher than the 

threshold (up to 120 ng L-1). However, high concentrations of 4MSP may cause a ―catty‖ note 

in wines (Tominaga et al., 1998 a, 1998 b). Several other odouriferous volatile thiols (Figure 

2-4), e.g. 3SH, 3SHA, 3-methyl-3-sulphanylbutan-1-ol (3MSB) and 4MSPOH have also been 

identified as major contributors to the varietal aromas of Sauvignon blanc wines. The aroma 

of 3SH is redolent of grapefruit and passion fruit as well as reminiscent of other tropical fruit 

flavours, such as citrus zest, lychee and guava. The perception threshold is on the order of 

60 ng L-1 and always present in Sauvignon blanc wine at concentrations of several hundred 

ng L-1, and there may be as much as a few g L-1. The complex odour of 3MSHA is 

reminiscent of boxwood, as well as grape fruit zest and passion fruit. It has a similar 

threshold value like 4MSP at 4 ng L-1 and some Sauvignon blanc wines may contain several 
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hundred of ng L-1. Nevertheless, its concentrations decrease as the wine ages and 3SH is 

formed (Darriet et al., 1995; Tominaga et al., 1998 a, 1998 b; Murat et al., 2001 a; 

Dubourdieu et al., 2006; Ribéreau-Gayon et al., 2006 b). The thiols of 3SH and 3SHA were 

previously identified in passion fruit by other research group as well (Engel & Tressl, 1991; 

Weber et al., 1994, 1995; Tominaga & Dubourdieu, 2000).  

The aroma of 4MSPOH, which is reminiscent of citrus zest, has a more limited organoleptic 

role in wines because its concentrations in wine are rarely over the perception 

threshold    (55 ng L-1). However, its threshold can be reached in a few wines. The less 

odouriferous 3-methyl-3-sulphanylbutan-1-ol (3MSB), which smells like cooked leeks, never 

reaches the perception threshold of 1500 ng L-1 in wine (Dubourdieu et al., 2006; Ribéreau-

Gayon et al., 2006 b). In addition, 4MSP, 3SH, 3SHA and other related thiols have also been 

identified in wines made from other varieties like Merlot, Cabernet Sauvignon (Murat et al., 

2001 b), Petite Arvine, Chenin blanc, Bacchus (Ribéreau-Gayon et al., 2006 b), 

Gewürztraminer, Pinot gris, Riesling, Alsace Muscat, Sylvaner, Pinot blanc, Colombard, 

Semillon, Petit and Grand Manseng (Tominaga et al., 2000), Scheurebe (Guth, 1997 a, 1997 

b) in varying concentrations and can, therefore, have a potential impact on the aroma. In 

Scheurebe wine, 4MSP was found to be the most potent aroma of 42 isolated odourants 

analysed. When each of the 42 odourants were individually excluded from a model wine, the 

absence of 4MSP produced a wine least like the original. Recently, Sarrazin et al. (2007) 

indicated a contribution of the identified and quantified thiols, 2-methyl-3-sulphanylbutan-1-ol, 

3-sulphanylpentan-1-ol, 3-sulphanylheptan-1-ol and probably 2-methyl-3-sulphanylpentan-1-

ol, to the overall aroma of sweet wines made from Botrytis-infected grapes. Table 2-5 

specifies the organoleptic roles of these volatile thiols found in wines.  

In contrast to many tropical fruits, the volatile thiols are not present in their free and odourous 

form in the grape berries, like their odourless cysteine conjugate (Figure 2-5), therefore it 

has been proposed that the wine yeast, Saccharomyces cerevisiae, is responsible for the 

liberation of volatile thiols from the precursors (Darriet et al., 1993, 1995; Tominaga et al., 

1998 c). The precursors to Sauvignon blanc aroma compounds were identified at the 

Bordeaux Faculty of Enology in the 1990s. Darriet et al. (1993) demonstrated that 4MSP was 

released from an odourless must extract, either because of bioconversion by yeast during 

alcoholic fermentation or chemically, in vitro, because of the action of ascorbic acid. 

Tominaga et al. (1995, 1998 c) also identified odourless sulphur-cysteine conjugates as 

precursors for the high odour-active thiols. 
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          (a)              (b)                                          (c) 

                                

            (d)         (e)    

 

Figure 2-4 Odour-active volatile thiols identified in Sauvignon blanc wine  

      (a) 4MSP, (b) 4MSPOH, (c) 3MSB, (d) 3SH, (e) 3SHA   

Source: Adapted from Vermeulen et al. (2003), Ribéreau-Gayon et al. (2006 b) and Grant-

Preece et al. (2010) and modified 

 

Some studies have enabled the identification of S-3-(hexan-1-ol)-glutathione for the first time 

in juice of Sauvignon blanc. The identification of this compound suggests that the S-3-

(hexan-1-ol)-L-cysteine, the precursor of 3SH in grapes, is produced by the catabolism of S-

3-(hexan-1-ol)-glutathione (Peyrot des Gachons et al., 2000, 2002 a, 2002 b; Peyrot des 

Gachons, 2002). It is assumed that S-glutathione transferase is involved in the synthesis of 

the sulphur–glutathione-conjugates, which are probably transported with the help of a 

glutathione-conjugate-pump to the cell vacuole. The sulphur–cysteine-conjugates are almost 

certainly formed through the activity of a γ-glutamyl transpeptidase, which removes glutamic 

acid, and a carboxypeptidase, which eliminates glycine (Wüst, 2003). Tominaga & 

Dubourdieu (2000) suggested that the volatile thiol of 3SH in passion fruit juice is present in 

both free and conjugate form and have also identifed the precursor of 3SH as S-(3-hexan-1-

ol)-L-cysteine, in the form of trimethylsilylated derivatives in passion fruit. These cysteine 

conjugates are probably converted into free thiols either by acid hydrolysis, or by an 

endogenous enzyme, such as a -lyase. 

The 4MSP and 4MSPOH precursors are mainly located in the flesh of berry (approximately 

80 %), while the skin and flesh contain equal amounts of 3SH precursor (Peyrot des 

Gachons et al., 2002 a). Similarly, Murat et al. (2001 b) investigated that a majority (60 %) of 

the 3SH precursor is located in the skins of Cabernet Sauvignon and Merlot grapes. In the 

production of rosé wines made from Cabernet Sauvignon, Cabernet Franc and Merlot, it was 

shown that increased skin contact time (from 0 to 24 hours) correlated with a higher 

extraction of the 3SH precursor, as well as an increased concentration of volatile 3SH 

following yeast fermentation. Additionally, this phenomenon was more marked at higher 

temperatures. In the vinification of Sauvignon blanc, skin contact for 19 hours also increased 
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the concentration of the precursor in the pressed juice, e.g. Cys-4MSPOH content has 

increased by 20 %, Cys-4MSP by 30 % and Cys-3SH by 50 % (Peyrot des Gachons, 2002). 

Regardless of the skin contact temperature, maceration only slightly increases the 

concentrations of Cys-4MSPOH and Cys-4MSP with respect to a non-macerated must 

(pressed immediately off its skins). In addition, low maceration temperature limits the 

increase in Cys-3SH, probably because it decreases extraction from the solids.  

 

 

 

S-3-(hexan-1-ol)-L-cysteine            S-4-(4-methylpentan-2-one)-L-cysteine    S-4-(4-methylpentan-2-ol)-L-cysteine 

 (Cys-3SH)        (Cys-4MSP)                                      (Cys-4MSPOH) 

 

 
Figure 2-5 The sulphur-cysteine conjugates 

Source: Adapted from https://people.ok.ubc.ca/neggers/Chem422A/VARIETAL%20ARO 

MA%20COMPOUNDS.pdf and modified 

 

The release of the volatile thiols was investigated by the use of a cell-free enzyme extract of 

the bacterium Eubacterium limosum that contains carbon-sulphur lyase enzymes. It could be 

shown that carbon-sulphur lyase enzymes can release 4MSP and 4MSPOH from their 

precursor S-4-(4-methlypentan-2-one)-L-cysteine (Cys-4MSP) and S-4-(4-methylpentan-2-

ol)-L-cysteine, respectively. Therefore, it was suggested that a yeast cysteine -lyase 

releases a thiol, pyruvate and ammonium from the corresponding sulphur-cysteine 

conjugates as shown in Figure 2-6 (Tominaga et al., 1995; Peyrot des Gachons et al., 2000, 

2002 a, 2002 b; Peyrot des Gachons, 2002; Wakabayashi, 2004). Although the extraction of 

the cysteine conjugated precursors into the juice appears to be correlated to the final 

concentrations of the volatile thiols present in the wine, only a small and varying proportion of 

the precursor is converted to the active aroma compound during fermentation. Where this 

release has been studied, only 5 % of the potential 4MSP was released during fermentation 

(Tominaga et al., 1995, 1998 c). Peyrot des Gachons (2002) also found that the percentages 

of transformation (4MSP and 4MSPOH precursors into 4MSP and 4MSPOH aroma 

compounds) are very low, e.g. mean values are 1.4 % for Cys-4MSP and 3.0 % for Cys-

4MSPOH. Studies of the formation of the free thiol have shown that a bacterial extract from 

Eubacterium limosum or purified tryptophanase from Escherichia coli cleaves the Cys-3SH 

precursor in vitro (Tominaga et al., 1998 c; Wakabayashi, 2004; Wakabayashi et al., 2004). 
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The bacteria extracts exhibit cysteine-S-conjugate β-lyase activity, therefore the wine yeast 

Saccharomyces cerevisiae is proposed to cleave thiol precursors during grape juice 

fermentation and to release 3SH by a similar mechanism (Figure 2-7) (Tominaga et al., 1998 

c). It has been shown that β-lyase enzyme activity results in the formation of a free thiol and 

an intermediate that spontaneously degrades to pyruvate and ammonia (Davis & Metzler, 

1972). It has been shown that when the thiol precursor of Cys-3SH decreases in 

concentration, 3SH increases during fermentation (Murat et al., 2001 a), however, 0–9 % of 

3SH was released over the course of fermentation. Furthermore, in Cabernet Sauvignon and 

Merlot musts, it was shown that the amount of 3SH released was proportional to the Cys-

3SH concentration present at the start of fermentation, although only 3.2 % of the original 

precursor originally was released as volatile thiols in the must. Therefore, the higher the 

concentration of the cysteine conjugate thiol precursors in the must, the higher the volatile 

thiol concentration in the resulting wine (Murat et al., 2001 a, 2001 b). It has been confirmed 

by Peyrot des Gachons (2002) that the percentage of transformation of 3SH precursor (Cys-

3SH) into 3SH aroma compound is very low, only 4.2 % of 3SH was released. Similarly, 

Dubourdieu et al. (2006) also reported that only a small fraction (1.6 %) of the cysteine-

bound precursor originally present was released as 3SH. 

 

                                                   

S-4-(4-methylpentan-2-one)-L-cysteine       Pyruvate  4-Methyl-4-sulphanylpentan-2-one 

 
Figure 2-6 Release of 4-MSP from the corresponding sulphur–cysteine-conjugate 

Source: Adapted from Rauhut (2009) and modified 

 

It has been shown that, during fermentation, 3SHA is generally formed when acetic acid 

esterifies the 3SH that has been released. Swiegers et al. (2005 b, 2007) investigated that 

3SHA is formed from 3SH by the action of the yeast ester-forming alcohol acetyltransferase, 

encoded by the ATF1 gene. The overexpression of the ATF1 gene in the VIN13 yeast strain 

resulted in a significant increase in the amount of 3SHA produced. This established the link 

between ester production and volatile thiol metabolism in yeast for the first time. On the other 

hand, overexpression of the gene IAH1, which encodes an ester-degrading enzyme, resulted 

in a reduction in the concentration of 3SHA. The ability of different commercial wine yeasts to 

convert 3SH into 3SHA during fermentation was also investigated. Large variations in 3SHA 

β-Lyase 
+  NH3  + 

http://www.springerlink.com/content/h812jl7u1551m4w6/fulltext.html#CR21
http://www.springerlink.com/content/h812jl7u1551m4w6/fulltext.html#CR6
http://www.springerlink.com/content/h812jl7u1551m4w6/fulltext.html#CR39
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concentrations were observed, and in most cases, this did not correspond with the ability of 

the yeasts to release 4MSP. Therefore, it is clear that yeast strain selection is of extreme 

importance in modulating volatile thiol-concentrations in wine. Lilly et al. (2006) also 

suggested that the overexpression of ATF1 in a VIN13 yeast strain resulted in increased 

3SHA concentrations. 

 

 

                                       

S-3-(hexan-1-ol)-L-cysteine          3-Sulphanylhexanol                   Pyruvate 

 

Figure 2-7 The cysteine conjugate form of 3SH, which revealed by a specific -lyase 

Source: Adapted from https://people.ok.ubc.ca/neggers/Chem422A/VARIETAL%20AROMA% 

20COMPOUNDS. pdf and modified 

 

Recently, Roland et al. (2010) suggested that the production of the 3SH in wines seems to 

have two different origins, the first one from precursors naturally occurring in grapes and the 

second one linked to the winemaking technology (hexenal and G3SH pathways). The 

hexenal pathway described by Schneider et al. (2006) implicated sulphur donors during 

winemaking, and glutathione seemed to be one of the producing 3-S-glutathionylhexan-1-ol 

(Glut-3SH) precursor. They demonstrated a new pathway leading to 3SH and 4MSP, starting 

from conjugated carbonyl compounds, alternative to the already biogenetic route known 

release from cysteinylated and gluthationylated precursors present in grapes. It was the first 

demonstration that Glut-3SH can liberate 3SH under model fermentation conditions, where 

the cysteine conjugate is also formed in the process. Therefore, it was suggested that this 

might also occur during fermentation of a grape juice or must (Grant-Preece et al., 2010). It 

was also investigated in the fermentation of Sauvignon blanc that the additions of glutathione 

or hexenal induced significant increases in the production of 3SH and 3SHA of 25 % and 

41 %, respectively (Roland et al., 2010). 

Some research works indicated that yeast strains vary in the ability to release 4MSP, 3SH 

and 4MSPOH. It could be also demonstrated that commercial yeast strains differ in the 

release of the various volatile thiols (Murat et al., 2001 a; Howell et al., 2004; Curtin et al., 

2009; Swiegers et al., 2005 b, 2007, 2009). Therefore, the genetic and physiological 

characteristics of the wine yeast strain have a significant effect on the amount of volatile 

thiols released. In addition, the particular yeast‘s ability to release one thiol does not appear 

+  NH3  + 

β-Lyase 

Fermentation 

javascript:void(0);
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to be linked with its ability to release a second, different thiol. For example, the commercially 

available S. cerevisiae wine strains VL3 and EG8 release more 4MSP and 4MSPOH, but not 

3SH, than strains VL1 and 522d. It has been shown that strains of S. bayanus and their 

hybrids created with S. cerevisiae released even higher concentrations of the thiols (Murat et 

al., 2001 a). Similarly, Masneuf-Pomarède et al. (2002) investigated that S. bayanus var. 

uvarum strains and hybrids S. cerevisiae x S. bayanus var. uvarum were shown to present a 

high ability to release the volatile thiols from their natural precursors. These findings were 

recently confirmed by showing that different commercial yeast strains have variable abilities 

in releasing 4MSP from the Cys-4MSP precursor in model ferments (Howell et al., 2004). 

Commercial wine yeast strains that release even more thiols than VL3 were recently 

identified by Swiegers et al. (2005 b), e.g. the VIN7 strain produced the highest concentration 

of 4MSP and 3MSA and the VIN13 strain produced the highest concentration of 3SH. 

Therefore, these results indicate that the activity of the enzymes involved in the release of 

the different thiols is strain dependent and that by using different strains. The variation of the 

release of the enzymes and of the thiols can be achieved by the use of specific yeast strains. 

Furthermore, separate yeast enzymes may be involved in the formation of different volatile 

thiols, allowing the levels of the aroma compounds to be altered independently (Murat et al., 

2001 a; Dubourdieu et al., 2006). Post-fermentation practices could also affect the impact of 

the thiol aromas, for example aroma intensity is reduced when copper is added to Sauvignon 

blanc wine (Darriet et al., 1995).  

In addition, King et al. (2008) investigated the impact of coinoculating commercial yeast 

strains (VIN7, QA23, VIN13) on the volatile thiols and sensory profile of Sauvignon blanc 

wines. It was indicated that the VIN7/QA23 coinoculated wines were higher in 3SH and 

3SHA than the single-strain and blended wines, although this pattern was not observed for 

the VIN7/VIN13 yeast combination. This demonstrates that coinoculated wines can result in 

increased concentrations of the volatile thiols when certain yeast combinations are used to 

conduct alcoholic fermentation. The ability of yeast to release 4MSP from Cys-4MSP when 

genes encoding putative yeast carbon-sulphur lyases are deleted was recently investigated. 

Four genes expressing putative carbon-sulphur lyase enzymes were involved in the release 

of the volatile thiol 4MSP in a laboratory strain (Howell et al., 2005). This pointed out that the 

mechanism of release probably involves multiple genes and the result showed that deletion 

of the four putative carbon-sulphur lyase genes leads to a decrease in the amount of 4MSP 

released. However, it was not indicated if overexpression of the genes resulted in an 

increase in 4MSP release. Swiegers et al. (2007) demonstrated that the overexpression of 

the Escherichia coli tnaA gene, encoding a tryptophanase with strong cysteine--lyase 

activity, in a commercial wine yeast strain resulted in up to a 25-fold increased release of 

4MSP and 3SH from the precursor in model ferments. In addition, Sauvignon blanc wine 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7K-4JF8H2T-1&_user=4816649&_coverDate=05%2F01%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1329654822&_rerunOrigin=google&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=6c84c0649ea2dd0018e5451864475f77#bib13
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made with this modified yeast displayed an intense passion-fruit aroma, compared with the 

relatively neutral aromas produced by the control strain.  

During the past decade, studies have clearly shown that volatile thiol levels decrease in the 

presence of oxygen during wine ageing and after bottling (Blanchard et al., 2004; Brajkovich 

et al., 2005). Aromatic degradation observed in wines is well documented. During aging, an 

important decrease of 3SH occurs in wine due to the presence of dissolved oxygen. 3SH is 

probably oxidized to its disulphide (Darriet, 2002). Consequently, this thiol could react with 

reactive species present in wine such as polyphenols, e.g. the quinones of catechin and 

epicatechin (Blanchard et al., 2004; Nikolantonaki et al., 2009). In contrast, 4MSP was less 

reactive with these phenolics. Additionally, the presence of free sulphur dioxide enhances the 

stabilization of 3SH and 4MSH in model wine. Recently, the impact of fermentation 

temperature on the concentration of volatile thiols was determined in a model medium and in 

grape juice. It was shown that the concentrations of 4MSP, 3SH, and 3SHA were higher 

when the alcoholic fermentation was conducted at 20 °C compared to 13 °C, irrespective of 

the yeast strain used (Masneuf-Pomarède et al., 2006). In contrast, Swiegers et al. (2006) 

showed that, in model ferments, more 4MSP was released and more 3SH was converted to 

3SHA at lower temperatures (18 °C) compared to higher temperatures (23 and 28 °C) at the 

end of fermentation. However, at the start of fermentation, more volatile thiols were present 

in the warmer ferments. 

It has been shown that viticultural practices like nitrogen feeds (Choné et al., 2006) and 

prefermentation operations such as skin contact (Peyrot des Gachons et al., 2002) modulate 

the amount of thiol precursors in grape must. Fermentation conditions such as temperature 

(Masneuf-Pomarède et al., 2006; Swiegers et al., 2006) also influence the final concentration 

of these thiol aromas in wine. The impact of nitrogen levels during fermentation on the 

release of volatile thiols has not yet been clearly elucidated. There have been little scientific 

researches about the impact of yeast rehydration nutrient, DYNASTART, on the release of 

volatile thiols. Initial results published by Swiegers et al. (2008) revealed that it had a 

significant effect on both volatile thiol release and fermentation ester production. Similarly, 

van der Westhuizen et al. (2008) investigated the impact of yeast strains and nutrition on the 

thiol intensities. It was shown that the rehydration of the X5 yeast strain with yeast 

rehydration nutrient, DYNASTART, can dramatically increase aromatic intensity of varietal 

aromas, particularly the 3SHA (passion fruit), even better than a blend of two yeasts 

commonly expressing high concentrations of volatile thiols. It has been confirmed by Bowyer 

et al. (2008) that DYNASTART enhanced the expression of varietal aromas in Sauvignon 

blanc by an average of 30 % for 4MSP, 55 % for 3SH, and 89 % for 3SHA. In addition, 

Sauvignon blanc wine made with X5 and yeast rehydration nutrient, leaded to significantly 

higher wine preference.   

http://www.springerlink.com/content/h812jl7u1551m4w6/fulltext.html#CR17
http://www.springerlink.com/content/h812jl7u1551m4w6/fulltext.html#CR40
http://www3.interscience.wiley.com/cgi-bin/fulltext/120126142/main.html,ftx_abs#b9
http://www3.interscience.wiley.com/cgi-bin/fulltext/120126142/main.html,ftx_abs#b26
http://www3.interscience.wiley.com/cgi-bin/fulltext/120126142/main.html,ftx_abs#b16
http://www3.interscience.wiley.com/cgi-bin/fulltext/120126142/main.html,ftx_abs#b16
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The research of Subileau et al. (2008) recently investigated the influence of nitrogen 

catabolite repression (NCR) on the modulation of the production of aromatic thiols 

characteristic for Sauvignon blanc wine fermentation. It was revealed that the production of 

3SH is increased when urea is substituted to diammonium phosphate (DAP) as the sole 

nitrogen source on a synthetic medium, similarly, on grape must, complementation with DAP 

induces a decrease of 3SH production. Additionally, it could be concluded that on synthetic 

medium, Cys-3SH enters the cell through at least one identified transporter, GAP1p, whose 

activity is limiting the release of volatile thiols. On grape must, the uptake of the precursor 

through GAP1p is not confirmed, but the effect of addition of DAP, eventually prolonging 

NCR, is shown to decrease thiol production. More recently, Thibon et al. (2008 a) 

investigated the role of NCR in the release of volatile thiols in an enological context. The role 

of three yeast -lyases was revealed and it was demonstrated that Irc7p, a putative 

cystathionine (-lyase), is one of the main proteins catalyzing the 4MSP and 3SH release 

under enological conditions. Moreover, Ure2p/Gln3p proteins mainly control the 

bioconversion of volatile thiols by the transcriptional regulation of the IRC7 gene through the 

general mechanism of NCR. In addition, this finding suggested that the enantiomer balance 

of 3SH may be modulated by activating specifically stereoselective enzymes such as Irc7p.  

 

2.4 Sulphur containing compounds in winemaking 

 

Sulphur (S)-containing compounds occur in a range of chemical combinations in the natural 

environment. Sulphur is present in essential vitamins, coenzymes and amino acids such as 

methionine and cysteine (Richmond, 1973; Rauhut, 1993). It is important for the growth of all 

microorganisms due to the formation of sulphur containing amino acids. It can occur in an 

oxidized state (sulphate) or a reduced form (sulphide). Sulphur is one of the most important 

elements required for biological life, particularly as a component of the amino acids, cysteine 

and methionine as well as a component of vital co-factors (Swiegers & Pretorius, 2005; 

Rauhut, 2009). In S. cerevisiae, the sulphur content ranges from 0.2-0.9 % of the dry weight 

(Maw, 1963 a, 1963 b). The most abundant S-compounds are the amino acids methionine 

and cysteine, which are present in peptides, proteins, tripeptides and glutathione (Hartnell & 

Spedding, 1979; Rauhut, 1993). Other S-compounds, such as thiamine, acetyl-CoA, biotin 

and lipoic acid, represent only a small proportions of the total sulphur. In Sacchromyces spp., 

thiamine ranges from 29-90 g g-1 dry weight of the cells (Maw, 1965; Rauhut, 1993). 

In recent years, the composition in sulphur compounds of wines has become a subject of 

many studies concerning their identification and origin, as well as their character and impact 

on wine quality, especially sensory characteristic of wine (Rauhut & Kürbel, 1994; Rauhut, 

1996; Moreira et al., 2002; Rauhut, 2003; Fedrizzi et al., 2007; Ferreira et al., 2007; Swiegers 
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& Pretorius, 2005; Thibon et al., 2008 a, 2008 b; Rauhut, 2009). This is related to their high 

volatility, reactivity and impact at very low concentrations (Rauhut, 2009). These compounds 

are generally classified as detrimental to wine quality however, new developments in wine 

research allowed the differentiation of a family of these compounds responsible for varietal 

aromas of wines, such as passion fruit, grapefruit, gooseberry, guava, and box hedge 

aromas in wine. Rauhut (1993, 2009) reported that some of these compounds are necessary 

for wine quality, while others are the cause of strong objectionable flavours (rotten eggs, 

cooked cabbage, cauliflower, burnt rubber etc.), even at extremely low concentrations (e.g. 

H2S, methanethiol (MeSH), ethanethiol (EtSH), thioacetic acid-S-methyl ester (MeSAc), 

thioacetic acid-S-ethyl ester (EtSAc). Several studies reported that during alcoholic 

fermentation the wine yeast Saccharomyces cerevisiae is mainly responsible for the 

production of various volatile sulphur compounds, which have an impact on the sensory 

quality of wine (Rauhut, 1993, 1996; Rauhut et al., 1995, 1996; Moreira et al., 2002; 

Swiegers & Pretorius, 2005; Ribéreau-Gayon et al., 2006 b; Swiegers et al., 2006; Rauhut, 

2009). Sulphur compounds in wine can be classified into thiols (mercaptan), sulphides, 

thioesters and heterocyclic compounds. Furthermore, these compounds can become less or 

more attractive or repulsive depending on their absolute and relative concentrations. Sulphur 

aroma compounds in wine were often separated in low and high volatile sulphur substances 

due to the broad range of different boiling points and the need of different analytical methods 

to enrich the sulphur compounds from wines (Rauhut et al., 2005 a, 2005 b; Swiegers & 

Pretorius, 2005; Fedrizzi et al., 2007; Ferreira et al., 2007; Thibon et al., 2008 b).  

Most sulphur containing compounds in wine are produced during alcoholic fermentation by 

the Saccharomyces wine yeast (Rauhut, 2009). Volatile sulphur compounds are formed 

through several pathways involving enzymatic and/or non-enzymatic processes. Yeast 

fermentation biochemistry with sulphate-, sulphite-, sulphur-containing amino acids 

(methionine and cysteine) and oligopeptides (e.g. glutathione) plays a crucial role among the 

enzymatic processes. On the other hand, non-enzymatic processes involve chemical, 

photochemical and thermal reactions during winemaking and storage. Mestres et al. (2000) 

suggested that the development of various sulphur compounds by yeast include (i) the 

degradation of sulphur containing amino acids, (ii) the degradation of sulphur containing 

pesticides and (iii) the release and/or the metabolism of grape-derived sulphur-containing 

precursors.  

In accordance with the new rules for the international nomenclature of chemical compounds 

(IUPAC), the prefix ‗methyl-sulphanyl‘ should replace the prefix ‗methylthio‘ and ‗ethyl-

sulphanyl‘ should replace the prefix ‗ethylthio‘, furthermore the prefix ‗sulphanyl‘ must replace 

the prefix ‗mercapto‘ (Rauhut, 2009).  
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Utilization of sulphur containing compounds by yeasts 

Yeast is able to use various sulphur containing compounds in contrast to many other 

microorganisms due to the sulphur pathway in yeast, which allows it to use various organic 

and inorganic S-compounds as sole sulphur source (Rauhut, 1993, 2009). A source of 

assimilable sulphur is essential for yeast growth. Almost all yeasts utilize inorganic sulphate 

(Maw, 1963 a, 1963 b, 1965). The main sulphur source for yeast during wine making is 

inorganic sulphur as sulphate, which is presents in grape must in a range of 160-400 mg L-1 

or even more (Lemperle & Lay, 1989), because the levels of methionine and cysteine are 

normally very low in grape musts (less than 10 mg L-1) in comparison to other amino acids 

(Henschke & Jiranek, 1991, 1993). Furthermore, sulphur dioxide and elemental sulphur from 

residues of the application of wettable sulphur (fungicide) on grape are also the sulphur 

sources for yeast during the winemaking process. Sulphur dioxide is commonly used due to 

its antimicrobial and antioxidant effects as well as its reaction with ethanal (acetaldehyde) to 

avoid an oxidative character and its inactivation of enzymes (Dittrich, 1987; Romano & Suzzi, 

1993; Ribéreau-Gayon et al., 2006 a; Rauhut, 2009).   

Saccharomyces can metabolize sulphur containing compounds by the sulphate assimilatory 

reduction pathway or sulphate reduction sequence (SRS) pathway, during which sulphate is 

taken up and is used for the biosynthesis of organic sulphur compounds, mostly cysteine, 

methionine, and S-adenosylmethionine (AdoMet) (Thomas & Surdin-Kerjan, 1997; Surdin-

Kerjan, 2003). Research works to investigate sulphur metabolism in S. cerevisiae were done 

by some research groups, which characterized more than 15 genes encoding enzymes of 

the sulphur amino acid pathway (Thomas & Surdin-Kerjan, 1997; Henschke & Jiranek, 1993; 

Surdin-Kerjan, 2003; Wang et al., 2003; Linderholm et al., 2008; Rauhut, 2009). The first 

step of the SRS metabolic pathway involves the transport of sulphate from the medium into 

the yeast cell by sulphate permease. Sulphate is then reduced to sulphide through a series 

of steps using the enzymes ATP-sulphurylase (using two ATP molecules) and sulphite 

reductase. The next step leads to the sequestering of the sulphide: O-acetylserine (from the 

amino acid serine) combines with sulphide to form cysteine, and O-acetylhomoserine (from 

the amino acid aspartate) combines with sulphide to form homocysteine, which can then be 

converted to methionine (Yamagata, 1989; Rauhut, 1993; Jiranek et al., 1995 b; Spiropoulos 

et al., 2000; Henschke & Jiranek, 1993; Rauhut, 2009). Figure 2-8 shows a simplified 

overview on the metabolism of sulphur amino acids and glutathione in Saccharomyces 

cerevisiae. Regarding the variety of sulphur containing compounds, only some compounds 

found in musts and wines are presented in this review.  
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Figure 2-8 Metabolism of sulphur amino acids in Saccharomyces cervisiae  

Source: Adapted from Spiropoulos et al. (2000) and Wang et al. (2003) and modified 

 

(I) aspartate kinase; (II) aspartate semi-aldehyde dehydrogenase; (III) homoserine 

dehydrogenase; (IV) homoserine kinase; (V) threonine synthase; (VI) homoserine O-

transacetylase; (VII) sulphate permeases; (VIII) ATP sulphurylase; (IX) APS kinase; (X) 

PAPS reductase; (XI) sulphite reductase; (XII) serine acetyltransferase; (XIII) O-

acetylhomoserine and O-acetylserine sulphydrylase; (XIV) homocysteine methyltransferase; 

(XV) S-adenosylmethionine synthetase; (XVI) S-adensylmethionine demethylase; (XVII) 

adenosylhomocysteinase; (XVIII) methionyl-tRNA synthetase; (XIX) β-cystathionine synthase; 

(XX) β-cystathionase; (XXI) cysteine synthase; (XXII) γ-cystathionine synthase; (XXIII) γ-

cystathionase; (XXIV) γ-glutamylcysteine synthetase; (XXV) glutathione synthetase; (XXVI) 

γ-glutamyltranspeptidase; (XXVII) cysteinylglycine dipeptidase 
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Hydrogen sulphide and related sulphur compounds 

During wine fermentation, the assimilatory reduction in sulphate by Saccharomyces wine 

yeast (to biosynthesize cysteine and methionine) can lead to the excessive production of the 

HS- ion, which causes the formation of H2S in wine (Jiranek et al., 1995 b; Spiropoulos et al., 

2000; Mendes-Ferreira et al., 2002; Swiegers et al., 2005 a; Mendes-Ferreira et al., 

2009).   It is generally agreed that H2S acts as an intermediate in the biosynthesis of sulphur-

containing amino acids by yeast during fermentation (Jiranek et al., 1995 b; Thomas & 

Surdin-Kerjan, 1997; Surdin-Kerjan, 2003), but it is responsible for the ―reductive‖ off-flavours 

often described as rotten egg and putrefaction in wine  (Henschke & Jiranek, 1991, 1993; 

Rauhut et al., 1995, 1997; Fedrizzi et al., 2007; Rauhut, 2009). Lower levels in young wines 

contribute to the yeast flavour or fermentation bouquet (Monk, 1986; Dittrich, 1987). The 

information on the threshold value for this compound is in the range of 11-80 g L−1 (Amoore 

& Hautala, 1983; Henschke & Jiranek, 1991). Some studies investigated that deficiency of 

nitrogen containing nutrients, especially assimilable amino acids, lead to an overproduction 

of H2S and other undesirable volatile S-compounds (Rauhut et al., 1995; Rauhut, 1996; 

Rauhut et al., 2000 a, 2000 b). The concentration of H2S produced during wine fermentation 

depends on several environmental factors and on nutrients, namely (1) levels of elemental 

sulphur (Schütz & Kunkee, 1977; Thomas et al., 1993) naturally available as sulphate at an 

average concentration of 200 mg L−1 (Rauhut, 1993, 2009) and residues from wettable 

sulpuhr treatment of the vines and other sulphur containing pesticides and their breakdown 

products (Rauhut, 1993, 2003; Henschke & Jiranek, 1993; Bell & Henschke, 2005; Ribéreau-

Gayon et al., 2006 a, 2006 b; Rauhut, 2009), (2) presence of sulphur dioxide (Acree et al., 

1972; Romano & Suzzi, 1993; Ribéreau-Gayon et al., 2006 a) commonly added (50-200 mg 

L−1) to grape must prior to wine fermentation, (3) presence of organic compounds containing 

sulphur (Henschke & Jiranek, 1991; Giudici & Kunkee, 1994; Rauhut, 2009), (4) wine yeast 

strain (Jiranek et al., 1995 b; Rauhut et al., 1995, 1996, 1997; Spiropoulos et al., 2000; 

Mendes-Ferreira et al., 2002, 2009), (5) fermentation conditions, (6) the nutritional status of 

the grape juice, (7) residues of copper ions and storage on lees (Henschke & Jiranek, 1991; 

Rauhut, 1993; Rauhut et al., 1997, 2000 a, 2000 b, 2001; Rauhut, 2003; Bell & Henschke, 

2005; Mendes-Ferreira et al., 2009) and (8) vitamin deficiency (Wainwright, 1971; Tokuyama 

et al., 1973; Wang et al., 2003; Bohlscheid et al., 2007; Mendes-Ferreira et al., 2009). 

However, some strains appear to produce H2S constitutively without being affected by the 

environmental conditions, possibly indicating metabolic defects (Jiranek et al., 1995 b; 

Spiropoulos et al., 2000; Mendes-Ferreira et al., 2002).  

Accumulation of acetaldehyde and the elongator histone complex are suggested as two 

cellular activities that have an impact on sulphide production during anaerobic fermentation 

(Rauhut, 2009). Recent evidence suggests that intracellular glutathione can be degraded to 
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cysteine and ultimately H2S under nitrogen deficit conditions (Elskens et al., 1991, Hallinan et 

al., 1999), this result is in accordance with Rauhut et al. (2001) and Rauhut (2003), who 

investigated that the supplementation of must with a concentration of more than 50 mg L-1 

can lead to unpleasant volatile sulphur compounds under certain conditions. On the contrary, 

Dubourdieu & Lavigne-Cruège (2002) proposed that glutathione seems to play an important 

role in protecting volatile thiols that are responsible for the varietal flavour of white wines 

during the ageing of bottles. H2S is known to be produced directly from cysteine by cysteine 

desulfhydrase when nitrogen is limited (Tokuyama et al., 1973). Insufficiencies in vitamins, 

micronutrients (pantothenic) and vitamin B6 (pyridoxine), essential for the synthesis of 

sulphur containing amino acids, may also contribute to H2S formation (Jiranek et al., 1995 b; 

Spiropoulos et al. 2000; Mendes-Ferreira et al., 2002). Ammonium salts like diammonium 

hydrogen phosphate (DAP) are widely used to compensate nitrogen deficiencies in grape 

must and to practically control H2S formation (Hansen et al, 1994; Rauhut, 2009). However, 

not in all cases its supplementation is effecting H2S production due to other factors, e.g. 

methionine and other nitrogen sources that regulate amino acid transport into the yeast cell 

and sulphur metabolism, especially SRS pathway, which generates H2S (Spiropoulos et al., 

2000; Spiropoulos & Bisson, 2000). Some studies have indicated that DAP is a powerful 

modulator of H2S and other fermentation-derived volatiles, however, depending on yeast 

strain (Jiranek et al., 1995 b; Wang et al., 2003; Hernández–Orte et al., 2006 a; Vilanova et 

al., 2007; Ugliano et al., 2009). Furthermore, the problem of overproduction of H2S is 

relatively easily dealt with through the use of copper, which result in the formation of copper 

sulphide, or aeration resulting in oxidation of the sulphide (Monk, 1986; Rauhut, 2009). 

In addition to hydrogen sulphide and related sulphur compounds, a variety of other thiols 

exist in wine, which are though usually present in only very low concentrations. They 

generally cause undesirable aromas, however, several confer pleasant fruity aromas (Rauhut, 

1993; Darriet et al., 1995; Tominaga et al., 1998 a, 1998 b; Bell & Henschke, 2005; 

Ribéreau-Gayon et al., 2006 b; Swiegers et al., 2005 b; Rauhut, 2009). Nevertheless, the 

important varietal thiols are already reviewed in more details in 2.3 Thiols involved in 

varietal flavour of wines. Many of these S-compounds are formed during fermentation and 

respond to the nitrogen status of the must in a similar manner to H2S (Bell & Henschke, 

2005). It has been well known that hydrogen sulphide is a highly reactive substances, which 

can take part in a range of reactions to generate some sulphur compounds that have an 

impact on the flavour of a wine, such as ethanethiol (ethyl mercaptan), dimethyl sulphide 

(DMS) and polysulphides (dimethyl disulphide, DMDS), dimethyl trisulphide (DMTS) and 

dimethyl tetrasulphide) (Rauhut, 1993; Vermeulen et al., 2003; Bartowsky & Pretorius, 2009; 

Rauhut, 2009). One mechanism for the formation of the polysulphides is believed to involve 

oxidation of the mercaptans. These compounds, which elicit a ―rubber‖ or ―garlic‖ odour 
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cannot be removed by copper fining (Swiegers et al., 2005 a). Goniak & Noble (1987) 

suggested that the mercaptans, including methyl mercaptan (methanethiol, MeSH) and ethyl 

mercaptan (ethanethiol, EtSH), are highly reactive compounds with low aroma thresholds 

and very low boiling points. These mercaptans are observed to form during fermentation in 

association with hydrogen sulphide. Their suppression by DAP suggests that they are 

produced as by-products of yeast metabolism of methionine (Rauhut, 1993). Ethanethiol can 

be formed by the reaction of hydrogen sulphide with ethanol or acetaldehyde, however, this 

could not be confirmed up to now (Rankine, 1963, 1968 a; Amerine et al., 1980; Rauhut, 

1993, 2003). The aroma of EtSH is described as ―onion‖ or ―rubber‖ with a threshold value of 

1.1 µg L-1 in wine (Bartowsky & Pretorius, 2009). Fermentation studies suggest that MeSH, 

which gives wines rotten egg or cabbage aromas, is derived from methionine, cysteine, S-

methylmethionine and sulphate (De Mora et al., 1986; Rauhut, 1993). The odour threshold of 

MeSH is extremely low at 0.02-2 g L-1 in water (Bartowsky & Pretorius, 2009). 

An accelerated high formation of H2S leads to an increase of thioacetic acid esters, MeSAc 

formed in the early phase of fermentation, while EtSAc formed at the end (Rauhut, 2009). 

These thioacetic acid esters were probably produced through the reaction of the thiols and 

acetyl coenzyme A (Matsui & Amaha, 1981; Walker & Simpson, 1993). Rauhut (1996) found 

that the addition of MeSH and EtSH during fermentation leads to the corresponding 

thioacetic acid esters. Matsui & Amaha (1981) supposed that high concentration of 

methanethiol and H2S can hinder the growth of yeasts. It is therefore assumed that the 

formation of thioacetic acid esters is a detoxification process to transform sulphur 

components with a free SH-group, which can inhibit enzymes, to non-affecting compounds 

like the thioacetic acid esters. MeSAc can be detected in normal wine in a concentration up 

to about 20 g L-1 (Leppänen et al., 1979, 1980). Rauhut (1996) demonstrated that more 

than 130 g L-1 could be detected in off-flavour wines. These thioacetic acid esters can 

hydrolyze during wine storage like other acetic acid esters after fermentation due to the 

chemical equilibrium (Rapp, 1998) and leads to free thiols (e.g. MeSH and EtSH)  and acetic 

acid. A treatment of wine with copper sulphate has no effect on the concentration of the 

thioacetic acid esters as it mainly reacts with H2S and thiols (Rauhut, 1996, 2003). However, 

the formation of these thiols and their esters in conjunction with H2S has been observed and 

it was noted that their production was suppressed by DAP in nitrogen responsive strains 

(Rauhut et al., 1996). 

The wine yeast Saccharomyces cerevisiae is mainly responsible for the production of several 

volatile sulphur compounds during the alcoholic fermentation. Therefore, it could be 

demonstrated that yeast strains differ in their formation of sulphur compounds (Rauhut & 

Kürbel, 1994; Rauhut et al., 1996, 1997, 2000 b). The origin of DMS is not clear but it might 

be formed by yeast from cysteine, cystine or glutathione or from dimethyl sulphoxide by a 
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yeast reductase (Rauhut, 1993; Ribéreau-Gayon et al., 2006 b). Some authors described 

DMS as ―corn‖, ―molasses‖ or ―asparagus‖ (Rauhut, 1993; Mestres et al., 2000), others as 

―quince‖ or ―truffle‖, when the concentration in wines is near the olfactory threshold; at higher 

amounts the wine gains aromas related with metallic characteristic (Anocibar Beloqui, 1998). 

It has been shown that DMS level increases during wine ageing and contributes to the 

―ageing bouquet‖ and it could also enhance fruity character in low concentration (De Mora et 

al., 1986, 1987; Rauhut, 1993). The concentration of DMS in wines ranges from 0-474 g L-1 

or even higher, therefore it is well above the odour threshold of 25 g L-1 (white wine) 

(Goniak & Noble, 1987) and 25 g L-1 (red wine) (De Mora et al., 1987).  

Diethyl sulphide (DES) occurs in wine and has a reminiscent of ―cooked vegetables‖, ―onion‖ 

and ―garlic‖ (Goniak & Noble, 1987; Swiegers et al., 2005 a; Bartowsky & Pretorius, 2009). 

Its flavour threshold is 0.92-0.93 g L-1, and its level in wines ranges from 4.1-31.8 g L-1 

(Goniak & Noble, 1987; Swiegers et al., 2005 a). DMDS, which is characterized as cooked 

and intensively onion-like, was determined in white wines at concentrations from traces 

to    2 g L-1 and in red wines from 0.3-1.6 g L-1 (Leppänen et al., 1979, 1980; Swiegers et 

al., 2005 a). These small concentrations of DMDS can be formed from MeSH by oxidation. 

Higher amounts arising from pesticides can occur in sulphurous off-flavour wines. In addition, 

yeasts have the ability to reduce disulphides, such as DMDS, to mercaptans (Swiegers et al., 

2005 a). Diethyl disulphide (DEDS), which was described as reminiscent of garlic and burnt 

rubber, can be produced by the oxidation of two molecules of EtSH. It has a threshold 

of    4.3 g L-1 in white wine and was determined in wine at concentrations from traces to 85 

g L-1 (Goniak & Noble, 1987; Swiegers et al., 2005 a). Thiols can be also oxidized to 

disulphides or trisulphides, which contribute to odours like ―rubber‖ or ―garlic‖. These 

sulphides cannot be removed by copper fining (Maujean, 2001; Swiegers et al., 2005 a).  

Carbon disulphide (CS2), which has a ―sweet‖ and ―ethereal‖ odour, was found from traces to 

10 g L-1 in white wines (Leppänen et al., 1980). In the headspace of some white wines 

levels up to 15-18.9 g L-1 of CS2 were reported. It has no significant influence on the flavour 

of wine as the threshold value is above the level found in wines. Carbonyl sulphide (COS), 

which is an odourless compound, was detected in wine from traces to 2.5 g L-1 (Spedding et 

al., 1983; Mestres et al., 2000). This compound is also unlikely to have an influence on the 

sensory quality of wines, because it is a colourless and odourless gas (Rauhut, 1993; 

Mestres et al., 2000). It is though that both compounds can result from the degradation of 

fungicides like ethylenebisdithiocarbamate and tetramethylthiuramdisulphide (Schmitt, 1987; 

Rauhut, 1993). Additionally, it was postulated that COS can be formed by the reaction of SO2 

and CO2 (Shaw & Nagy, 1981). Table 2-5 lists the sulphur containing compounds, including 

thiols, commonly found in wine (Bell & Henschke, 2005). 
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Table 2-5 The sulphur containing compounds, including thiols, commonly found in wine 

 

S-compounds 

Concentration in 

wine (g L
-1

) 

Aroma threshold 

(g L
-1

) 

 

Aroma descriptor 

Carbonyl sulphide Trace - 2.4 - Odourless 

Carbon disulphide Trace - 18 > 37.8 rubber, chokingly repulsive, 
cabbage 
 

Diethyl sulphide 4.1 - 31.8 0.93 cooked vegetables, onion, garlic 

Diethyl disulphide Trace - 85 4.3 garlic, burnt rubber 

Dimethyl sulphide Trace - 474  25 asparagus, corn, molasses  

low concentration: quince, truffle 

Dimethyl disulphide Trace - 85 20 - 45 cooked cabbage, intense onion 

Hydrogen sulphide Trace - 80 10 - 80 rotten egg, yeast flavour 

Benzothiazole 11 50 Rubber 

Ethanethiol  1.9 -18.7 1.1 onion, rubber, natural gas 

2-Furanmethanethiol 0 - 350 ng L
-1

 1 ng L
-1

 roasted coffee, burnt rubber 

Methanethiol Trace - 16 0.02 - 0.3   cooked cabbage, onion, 

putrefaction 

4-Methylthiazole  Trace - 11 55 green hazelnut 

3-Methylthio-1-propanol 140 - 5000 500 cauliflower, cabbage, potato 

4-Methyl-4-sulphanlypentan-

2-one (4MSP) 

Trace - 40 ng L
-1

 0.8 - 3 cat urine, box tree, blackcurrant, 

broom, passion fruit 

4-Methyl-4-sulphanlypentan-

2-ol (4MSPOH) 

18 - 22 ng L
-1

 55 ng L
-1

 citric, passion fruit, box tree, 

broom 

Acetic acid 3-sulphanylhexyl 

-ester (3SHA) 

1 - 724 ng L
-1

 4 ng L
-1

 passion fruit, grape fruit, citrus 

zest. Riesling-type note 

3-Sulphanylhexanol (3SH) 50 -12822 ng L
-1

 60 ng L
-1

 passion fruit, grape fruit 

3-Sulphanyl-2-methylpropan-

1-ol 

250 - 10000 ng L
-1

 
 

3000 ng L
-1

 fruity, animal, sweat, broth 
 

3-Sulphanyl-3-methylbutan-

1-ol 

20 - 150 ng L
-1

 
 

1500 ng L
-1

 cooked leeks 

Thiophene-2-thiol 0 -11 0.8 burnt rubber, roasted coffee 

Source: Mestres et al. (2000), Bell & Henschke (2005), Dubourdieu et al. (2006) and 

Ribéreau-Gayon et al. (2006 b) 

 

In addition, methionine can be metabolized by yeast through the Ehrlich pathway to form 

sulphur-containing fusel alcohol, methionol or 3-methylthio-1-propanol, which has 

―cauliflower‖ and ―cabbage‖ odours. It was detected in wines and range from 140-5000 µg L-1, 

it and has a threshold of 500 µg L-1 in wines (Rauhut, 1996; Mestres et al., 2000; Bell & 

Henschke, 2005). This compound can be converted further to 3-methylthiopropyl acetic acid 
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ester, which has a ―mushroom‖ or ―garlic‖ odour. It has also been proposed that 4-methylthio-

1-butanol with an ―onion‖ or ―garlic‖ odour and 2-mercapto-1-ethanol with a ―poultry‖ or 

―farmyard‖ odour can be biosynthesised by yeast in the same way by using the amino acids 

homocysteine and cysteine, respectively (Mestres et al., 2000). Some observations suggest 

that concentrations in wine may be influenced by the level of methionone as well as the 

assimilable nitrogen concentrations in the must (Rauhut, 1996; Moreira et al., 2002; Bell & 

Henschke, 2005).   

 

2.5 Passion fruit (Passiflora edulis Sims) 

Passion fruit, Passiflora, is the most important genus in the family Passifloriaceae and it is 

distributed within most of the tropical and sub-tropical regions of the world. Approximately 

460 species of the genus Passiflora have already been described. From these, about 90 % 

have originated from America and close to 150 species occur in Brazil and Ecuador 

(Crochemore et al., 2003). The economical importance of some species is associated to the 

quality of the fruits for consumption and medicinal properties (De Neira, 2003).  

In the last ten years, there has been a great increase in the international consumption of 

tropical fruits. According to FAO, the market for tropical fruit juices, including passion fruit, is 

about US$ 1 billion. This consumption reflects a growing concern with more natural and 

healthy nutrition mainly in Europe and the United States (Sandi et al., 2004). Hawaii, Brazil, 

Colombia, Ecuador, Peru, Australia, Fiji Islands, Kenya, South Africa, Papua New Guinea, 

New Zealand, Venezuela, India, Sri Lanka, Philippines, Taiwan, Brazil, Colombia, Ecuador 

and Peru were the largest producers that supply the major part of the world market, while the 

United States and European countries are the main importers, with a growing demand for the 

products (Loeillet, 1995; Somogyi et al., 1996). There are two important commercial varieties 

of Passiflora edulis Sims, e.g. purple passion fruit (Passiflora edulis) and yellow passion fruit 

or maracuja (Passiflora edulis Sims f. flavicarpa Degner). Because of its more desirable 

flavour and because it is sweeter, the former is preferred for consumption as fresh juice. The 

latter has larger fruits, higher juice yield and more acidity, therefore it is considered better 

suited for processing and is one of the most popular and best known tropical fruits (Martin & 

Nakasone, 1970; Morton, 1987; Bora & Narain, 1997; Chassagne et al., 1999; Deliza et al., 

2005). 

Yellow passion fruit (YPF) has round to oval shape, yellow skin at maturity and produces 

generous amounts of juice or pulp (Muller et al., 1964). It is known for its natural attractive 

colouring, unique flavour properties and medicinal purposes. It has not only high amounts of 

vitamin A, vitamin C, niacin, riboflavin, potassium, dietary fibre, carotenoids and polyphenolic 

compounds (Morton, 1987; De Neira, 2003), but also is the best tropical fruit having a floral, 

fruity and estery aroma with an exotic tropical sulphury note (Engel & Tressl, 1991; Werkhoff 
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et al., 1998; Chassagne et al., 1999; Engel, 1999; Tominaga & Dubourdieu, 2000). It 

contains also several non-nutritive phytochemicals that make it a tasteful and healthy 

addition to the diet. However, its high acidity, especially yellow passion fruit, limits its use as 

an ingredient in the formulation of various preparations such as beverages, ice cream, 

marmalade and cocktails. Passion fruit can be recommended as raw material for production 

of dessert and good quality fruit wine (Czyhrinciw, 1966; Fang et al., 1986; Somogyi et al., 

1996; Deliza et al., 2005; Srisamatthakarn et al., 2010). In addition, it has been used widely 

in folk medicine in South America to treat anxiety, insomnia, asthma, bronchitis and urinary 

infection (Zibadi & Watson, 2004) 

Passion fruit juice is a high acidic food, pH 2.8-4 and total acidity 43-51.1 g L-1, which 

contains the predominance of two organic acids, citric acid (46.3-55 g L-1) and malic acid 

(6.5-10.5 g L-1). It also has total soluble solid 13-14.4 oBrix and contains about 145-152 g L-1 

sugar, including glucose, fructose and sucrose (Jagtiani et al., 1988; Srisamatthakarn et al., 

2010; www.thainutri.com/juicelineframe.htm, 2009). Passion fruit juice provides a good 

source of various nutrients (Table 2-6) such as vitamin C (182 mg Kg-1 of edible portion), 

vitamin A (7000-24100 IU Kg-1 of edible portion) and potassium (2780 mg Kg-1 of edible 

portion) (De Neira, 2003; www.hort.purdue.edu/newcrop/morton/passionfruit.html#Storage, 

2009). Thirteen different carotenoids In passion fruit have been identified, e.g. phytoene, 

phytofluene, δ-carotene (principal carotenoid), neurosporene, β-carotene, lycopene, 

prolycopene, monoepoxy-β-carotene, β-cryptoxanthin, β-citraurin, antheraxanthin, 

violaxanthin, and neoxanthin (Pruthi & Lal, 1958; Cecchi & Rodriguez-Amaya, 1981; Gross, 

1987; Mercadante et al., 1998). Other non-nutritive phytochemicals found in passion fruit are 

polyphenolic compounds, which have been found to have antioxidant activity (Salah et al., 

1995; Rice-Evans & Miller, 1996) as well as anticancer properties (Yoshida et al., 1992; 

Kang & Liang, 1997), however, the flavonoids have not been reported (Talcott et al., 2003). 

The total carotenoid concentration of passion fruit is 932 mg L-1, of which only three 

individual carotenoids, α-carotene, β-carotene as well as β-cryptoxanthin (350, 5250 

and  460 g Kg-1 of edible portion, respectively) had been quantified (De Neira, 2003). Other 

phytochemicals conclusively identified include aroma compounds such as volatile thiols, 

terpenes, fatty acid esters, alcohols, and various other aromatics (Engel and Tressl, 1991; 

Werkhoff et al., 1998; Chassagne et al., 1999; Engel, 1999; Tominaga & Dubourdieu, 2000). 
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Table 2-6 The chemical compositions of the yellow passion fruit (per 100 g of edible portion) 

 

Chemical compounds Concentration range (mg) 

Protein   670 

Total fat   180 

Carbohydrate 14450 

Sugar (g L
-1

) 145 - 152 

Total fibre 0.02 

Calcium 4  

Iron 0.36 

Magnesium 17 

Phosphorus 25 

Potassium 278 

Sodium 6 

Zinc 0.06 

Copper 0.05 

Selenium 0.10 

Vitamin C 18.20 

Thiamine n.d. 

Riboflavin 0.10 

Niacin 2.24 

Food - Folate (g) 8 

Vitamin B6 0.06 

Vitamin B12 (g) n.d. 

Vitamin A (IU) 700 - 2410 

Total carotenoids (mg L
-1

) 932 

-Carotene (g) 35  

-Carotene (g) 525  

Vitamin E n.d. 

Vitamin K (g) n.d. 

Saturated fat 10 

Monounsaturated fat 20 

Polyunsaturated fat 110 

Cholesterol n.d. 

Citric acid (g L
-1

) 46.3 - 55.0  

Malic acid (g L
-1

) 6.5 - 10.5 

 n.d.: not detectable 

Source: Jagtiani et al. (1988), De Neira (2003) 

             www.nutritionanalyser.com/food_composition/?fid=09233 
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Passion fruit is loaded with amino acids such as arginine, aspartic acid, glycine, leucine, 

lysine, proline and threonine. Tyrosine and valine are all found in varying amounts in the 

different varieties of the passion fruit (www.acai-natural-pain-free-health.com/passion-

constituents.html, 2010). It has been determined that passion fruit contains various free 

amino acids (both L-amino acid and D-amino acid) as shown in Table 2-7 and it has been 

reported that yellow passion fruit contained high concentrations of glutamine, glutamic acid, 

aspartic acid, arginine, aspartic acid, glycine, serine and alanine (Brückner & Westhauser, 

2003). 

 

Table 2-7 Quantities of amino acid (AA) enantiomers in yellow passion fruit  

Amino acids L-amino acid (mol L-1) D-amino acid (mol L-1) 

Alanine 975 12.0 

Arginine 752 5.9 

Asparagine 195 n.d. 

Aspartic acid 3,065 16.2 

Glutamine 4,336 n.d. 

Glutamic acid 3,558 17.1 

Glycine 1,317 n.d. 

Histidine 480 n.d. 

Isoleucine 346 n.d. 

Leucine 186 n.d. 

Lysine 356 n.d. 

Methionine 113 n.d. 

Phenylalanine 344 n.d. 

Serine 2,962 17.1 

Threonine 297 n.d. 

Tryptophan 92 n.d. 

Tyrosine 142 n.d. 

Valine 456 n.d. 

n.d.: not detectable 

Source: Brückner & Westhauser (2003) 

 

The powerful volatile constituents of passion fruit have been investigated by several research 

groups over the past decades. They have resulted in the characterization of a broad 

spectrum of volatile constituents in comprehensive reviews (Pruthi & Lal, 1959; Winter & Klöti, 

1972; Casimir et al., 1981; Whitfield & Last, 1986; Shibamoto & Tang, 1990; Werkhoff et al., 

1998). To date, more than 200 components have been identified as components of the 

javascript:void(0);
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flavour in passion fruit like esters;  terpenes and norisoprenoids, which are present in both 

free and glycosylated form; glycosides of benzyl alcohol; 3-methyl-2-buten-1-ol, and 

mandelonitrile (Parliament, 1972; Casimir et al., 1981; Chen et al., 1982; Whitfield & Last, 

1986; Shibamoto & Tang, 1990; Chassagne et al., 1996 a, 1996 b, 1999; Winterhalter, 1990; 

Engel & Tressl, 1983; Brat et al., 2000). Jordán et al. (2000) investigated the aromatic profile 

of yellow passion fruit aqueous essence. Recently, Jordán et al. (2002) reported that the 

most abundant compounds in yellow passion fruit juice and aqueous essence are linalool, 

fatty acid ethyl ester (butanoic, octanol and hexanoic acid ethyl ester). These authors 

reported a total of 62 compounds and some most abundant compounds were identified like 

linalool, octanol, butanoic and hexanoic acid ethyl ester, 3-methyl-2-butanone; lactic acid 

ethyl ester, malonic acid diethyl ester, 3-penten-2-ol, 1,3-dimethyl benzene, and hexanoic 

acid 2-methylbutyl ester. More recently, the enantiomeric compositions of the acetic, 

butanoic, hexanoic and octanoic acid esters of the secondary alcohols 2-pentanol, 2-

heptanol, and 2-nonanol were identified in yellow passion fruits (Passiflora edulis f. flavicarpa) 

and the preparation of these ester via lipase-catalyzed esterification was also investigated 

(Strohalm et al., 2007, 2010).   

Sulphur containing compounds including volatile thiols also play important roles in the flavour 

of yellow passion fruit. These sulphur-containing components possess high odour intensities 

and low threshold values. To date, the presence of 47 sulphur-containing components in this 

fruit has been reported (Werkhoff et al., 1998; Engel, 1999). The 3-(methylthio)hexanol and a 

mixture of cis- and trans-2-methyl-4-propyl-1,3-oxathiane (MPO) were the first 

representatives described as key odorants in the aroma of the yellow passion fruit (Winter et 

al., 1976). Several approaches have been described to synthesize the optical isomers of 3-

(methylthio)hexanol and MPO and to describe their sensory properties in this fruit (Heusinger 

& Mosandl, 1984; Mosandl & Heusinger, 1985; Singer et al., 1986) and it could be 

demonstrated that odour quality of YPF is strongly influenced by chirality. Heusinger & 

Mosandl (1984) investigated that only (S)-3-(methylthio)hexanol has an exotic, fruity odour, 

while the (R)-enantiomer is described as herbaceous and weak. Later, Engel & Tressl (1991) 

described for the first time the presence of 3SH and the esters of acetic, butanoic, and 

hexanoic acid of both 3SH and 3-(methylthio) hexanol. Additionally, these compounds have 

also been expected to be key aromas of the yellow variety.  

In 1994, significant differences were revealed for the enantiomers of the sulphur-containing 

esters (acetic, butanoic and hexanoic acid esters) of 3SH and 3-(methylthio)hexanol, only the 

(R)-configurated esters of 3SH exhibit the tropical fruit notes of yellow passion fruit, whereas 

for 3-(methylthio)hexanol the (S)-esters are more intensive with pronounced sulphury 

character (Weber et al., 1994, 1995). In addition, acetic acid 3-sulphanylhexyl ester (3SHA) 

and butanoic acid 3-sulphanylhexyl ester (3SBA) were shown to be present in yellow passion 

javascript:void(0);
javascript:void(0);
javascript:void(0);
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fruits in almost optically pure form (> 95 % (S)-ester) (Weber et al., 1995). Recently, the other 

35 sulphur-containing flavour components have been identified in yellow passion fruits for the 

first time, such as acetic acid 3-(methylthio)propyl (acetic acid methionyl ester, which  

contributes to herbaceous odour impressions and a typical vegetable-like character), 

butanoic and hexanoic acid methionyl ester (odour threshold 10−20 and 500 g L-1 in water, 

respectively), methyl and ethyl ester of 3-(methylthio)propionic acid (odour threshold 150 and 

300 g L-1 in water, respectively) and the whole series of propyl, butyl, isobutyl, sec-butyl, 

pentyl, 2-methylbutyl, 3-methylbutyl, hexyl, and (Z)-3-hexenyl esters of 3-(methylthio)-

propionic acid (Werkhoff et al., 1998). In general, the 3-(methylthio)propionic acid esters 

have a sulphury, vegetable-like odour, and only hexyl 3-(methylthio)propionic ester with its 

fruity and geranium-like odour note may contribute to the overall olfactory impression. In 

addition, threshold values of 3-(methylthio) esters of propanoic acid in water are significantly 

higher compared with other sulphur compounds. For example, butyl 3-(methylthio)propionic 

acid ester has a taste threshold in water of 1−2 mg L-1. In 2000, 3MSB and acetic acid ester 

of 3MSB (3SMBA) as well as the precursor of 3SH as trimethylsilylated S-3-(hexan-1-ol)-L-

cysteine have been identified in passion fruit for the first time (Tominaga & Dubourdieu, 

2000). This research also suggested that 3SH in passion fruit juices is present in both free 

and conjugate form, additionally both 3SH and 3MSB may be produced in vitro from 

nonvolatile extracts of this fruit by the enzymatic action of a cell-free extract of Eubacterium 

limosum, which has a β-lyase activity on S-cysteine conjugates. More recently, a new simple 

route to (R)-3-sulphanylhexan-1-ol and its immediate derivative (1)-cis-2-methyl-4-propyl-1,3-

oxathiane, which are the main component procedure responsible of the passion fruit aroma, 

has been investigated (Scafato et al., 2009). 

It has been reported that a dry table wine prepared from yellow passion fruit contained 

various volatile substances such as isobutyl alcohol, isoamyl alcohol, active amyl alcohol, 

acetaldehyde, acetic acid ethyl ester and hexanoic acid ethyl ester, etc. (Muller et al., 1964). 

The use of different Saccharomyces yeast strains for passion fruit wine fermentation has 

been shown to result in wines with different fermentation kinetics and the formation of 

secondary metabolites, such as SO2-binding compounds, some organic acids,  acetic acid 

esters, fatty acid ethyl esters and higher alcohols (Srisamatthakarn et al., 2010) However, 

there is little research work on passion fruit wine production as well as improvement of its 

quality, especially the compounds responsible for the typical passion fruit wine aroma still 

need to be investigated. In addition, only little information is available on the improvement of 

passion fruit wine quality by optimal choice of yeasts as well as nutrient supplementation, 

additionally, nearly no information is available to optimize the release and preservation of 

volatile flavours in passion fruit wine during alcoholic fermentation.  
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3. MATERIALS AND METHODS  

 

Raw materials, yeast strains, yeast nutrients, media, chemical reagents, enzymes, devices 

and equipments applied in this study are listed in this section. Yeast cultivation and 

enumeration, analysis methods, and experimental designs are described in the following text. 

 

3.1 Raw materials 

 

3.1.1 Grape musts  

White grape of Scheurebe or Seeding 88 (Vitis vinifera L. cultivar Scheurebe) and Sauvignon 

blanc (Vitis vinifera L. cultivar Sauvignon blanc) were used in this study. It was long assumed 

that Scheurebe was V. vinifera cultivar Silvaner x V. vinifera cultivar Riesling, but DNA 

analysis in the late 1990s ruled out Silvaner as a parent, while confirming Riesling as the 

father. It is widely grown in the Palatinate, Rhein-Hesse and Nahe regions of Germany 

(www.vivc.de/datasheet/dataResult.php?data=10818, 2010). 

Fresh Scheurebe and Sauvignon blanc grape juices were obtained from the Department of 

Grapevine Breeding and Grafting, Geisenheim Research Center, Geisenheim, Germany 

from 2007-2009 harvest seasons. 

 

3.1.2 Passion fruit (Passiflora edulis Sims) puree 

The frozen YPF puree employed for this study is the hybrid breeding variety of Passiflora 

edulis Sims f. flavicarpa Degner. It was obtained from Thai Nutri-Juice Co., Ltd., Thailand 

and kept at -18 oC until use. 

 

3.2 Yeast strains employed for wine making in industry 

 

Eighteen commercial Saccharomyces yeast strains were used in this study (Table 3-1). They 

were obtained from Lallemand, Danstar Ferment AG, Zug, Switzerland; DSM Food 

Specialities, Delft, The Netherlands; Laffort Oenologie, Bordeaux, France; Erbslöh 

Geisenheim AG and La Littorale - Groupe Erbslöh, Geisenheim, Germany; Anchor-Bio 

Technologies, Eppindust, South Africa and AB Mauri, Mauri Yeast Australia, Toowoomba, 

Australia. The enological properties of the commercial yeast strains used in the study are 

shown in Table 3-2. 

 

 

 

 

http://en.mimi.hu/wine/germany.html
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Table 3-1 List of the commercial yeast strains used in the study 

 

Strains Code* 

Saccharomyces cerevisiae (var. bayanus), Lallemand – Lalvin EC-1118 

(Prise de Mousse)TM 

EC1118 

Saccharomyces cerevisiae, Lallemand-Enoferm Simi WhiteTM Simi White 

Saccharomyces cerevisiae (var. bayanus), Lallemand-Enoferm QA23TM 

(YSEO® process) 

QA23 

Saccharomyces cerevisiae, Lallemand–Uvaferm SVGTM SVG 

Saccharomyces cerevisiae (hybrid), Lallemand–Cross Evolution Cross Evolution 

Saccharomyces cerevisiae, DSM-Collection Cépage Sauvignon®  Sauvignon 

Saccharomyces cerevisiae, DSM–Fermicru® 4F9  4F9 

Saccharomyces cerevisiae, DSM–Fermicru® LVCB  LVCB 

Saccharomyces cerevisiae, Laffort–Zymaflore VL3 VL3 

Saccharomyces cerevisiae (breeding), Laffort–Zymaflore X5 X5 

Saccharomyces cerevisiae (breeding), Laffort–Zymaflore X16 X16 

Saccharomyces cerevisiae (hybrid), Anchor-VIN7 VIN7 

Saccharomyces cerevisiae (hybrid), Anchor-VIN13 VIN13 

Saccharomyces spp. (blend), Anchor–Alchemy I Alchemy I 

Saccharomyces spp. (blend), Anchor–Alchemy II Alchemy II 

Saccharomyces cerevisiae (var. bayanus), MaurivinTM AWRI R2 AWRI R2 

Saccharomyces cerevisiae (var. bayanus), La Littorale-LittoLevure 

Sauvignon 

LittoLevure 

Saccharomyces cerevisiae (var. bayanus), Erbslöh-Oenoferm® Freddo Freddo 

 

 * Character abbreviation used throughout the text. 
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Table 3-2 Enological properties of eighteen commercial yeast strains used in the study 

Yeasts Temperature  
(
o
C) 

Nitrogen 
requirement 

Ethanol tolerance 
(% v/v) 

Volatile acidity 
(g L

-1
) 

Glycerol 
(g L

-1
) 

H2S  

(g L
-1

) 

SO2  
(mg L

-1
) 

References 

EC1118 15 – 25 low 18 low to average - low average www.lalvinyeast.com/images/library/EC1118_Yeast.pdf 

Simi White 15 – 30  15 - - low   www.lallemandwine.us/products/yeast_chart.php 

QA23 15 – 32 low 16 < 0.2 low very low low www.lallemandwine.com/catalog/img/catalog/descriptio
n_activity_image_1209025085_QA23 eng.pdf 

SVG 16 – 25 medium 15 low  low low www.lallemandwine.com/catalog/products/view/61 

Cross 
Evolution 

10 – 20 low 16 - - - - www.lallemandwine.us/products/yeast_chart.php 

Sauvignon 12 – 25 - 15 < 0.2 6 - 8 - medium www.dsm.com/en_US/downloads/oenology/CCSauvign
on.pdf 

4F9 15 – 25 - 15.5 < 0.15 5 - 7 low none www.dsm.com/en_US/downloads/oenology/Fermicru_4
F9.pdf 

LVCB 12 – 20 - 15 < 0.2 5 - 7 low none www.dsm.com/en_US/downloads/oenology/FermicruL
VCB.pdf 

VL3 15 – 21 high 14.5 low - low - www.laffort.com/en/quality-management/74 

X5 13 – 20 medium 16 low - low - www.laffort.com/en/products/zymaflore-yeasts/70 

X16 12 – 20 low 16 low - low - www.laffort.com/en/products/zymaflore-yeasts/71 

VIN7 12 – 20 low 15 0.4 – 0.8 5 -7  - very low www.anchorwineyeast.com/envin7.html 

VIN13 15 – 20 low 16.5 < 0.3 5 -7  - very low www.anchorwineyeast.com/envin13.html 

Alchemy I 13 – 20 low to 
average 

15.5 < 0.5 5 -7  - very low www.anchorwineyeast.com/enalch1.html 

Alchemy II 13 – 20 average 15.5 < 0.5 5 -7  - very low www.anchorwineyeast.com/enalch2.html 

AWRI R2 11 – 25 medium 15 < 0.3  -  www.maurivinyeast.com/media/35.pdf 

LittoLevure 13 – 21 - 15 < 0.25 5 - 8 - low www.lalittorale.com/en/oehefe_en.php 

Freddo 13 – 17 low 15 - - - low www.erbsloeh.com/en/datenblatt/Saft/Oenoferm_Fredd
o.pdf 

http://www.dsm.com/en_US/downloads/oenology/CCSauvignon.pdf
http://www.dsm.com/en_US/downloads/oenology/CCSauvignon.pdf
http://www.dsm.com/en_US/downloads/oenology/Fermicru_4F9.pdf
http://www.dsm.com/en_US/downloads/oenology/Fermicru_4F9.pdf
http://www.dsm.com/en_US/downloads/oenology/FermicruLVCB.pdf
http://www.dsm.com/en_US/downloads/oenology/FermicruLVCB.pdf
http://www.erbsloeh.com/en/datenblatt/Saft/Oenoferm_Freddo.pdf
http://www.erbsloeh.com/en/datenblatt/Saft/Oenoferm_Freddo.pdf
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Yeast culture rehydration and preparation 

Active dried yeasts were rehydrated in tap water (1 g per 5-10 ml water) at approximately 35-

40 oC for 10-30 min prior to inoculation at 0.02-0.30 % to the juice following the 

recommendations of the manufacturer indicated on the package.  

 

3.3 Yeast nutrients 

 

Eight commercial yeast nutrients were used in this study (Table 3-3). They were obtained 

from Lallemand, Danstar Ferment AG, Zug, Switzerland; Laffort Oenologie, Bordeaux, 

France and Erbslöh Geisenheim AG, Geisenheim, Germany. 

 

Table 3-3 List of the commercial yeast nutrients used in the study 

 

Yeast nutrient Code* 

Natural inactivated yeast with high glutathione, Lallemand-OptiWhite® OptiWhite 

Blend of inactivated yeast fractions, Lallemand-Fermaid® O Fermaid O 

Blend of diammonium hydrogen phosphate, thiamine, yeast cell walls and 

ammonium sulphate, Lallemand-Fermaid® E blanc 

Fermaid E 

Blend of inactivated yeast and yeast cell walls, Laffort-Superstart®  Superstart 

Diammonium hydrogen phosphate [(NH4)2HPO4], Erbslöh-Vitamon® A DAP 

Thiamine, Erbslöh-Vitamon® B Thiamine 

Blend of diammonium hydrogen phosphate and thiamine, Erbslöh-

Vitamon® Combi 

VCombi 

Blend of diammonium hydrogen phosphate, thiamine, yeast cell walls and 

yeast-stimulating cell parts, Erbslöh-Vitamon® Ultra 

VUltra 

 

 * Character abbreviation used throughout the text. 

 

Nutrient preparation 

Each nutrient was dissolved in water (10-20 times) according to the concentration of each 

experimental plan prior to its addition into juice. Exceptionally, Superstart was dissolved in 

tap water (1 g per 15 ml water) at approximately 35-40 oC following the recommendations of 

the manufacturer indicated on the package prior to its addition into a rehydrated yeast 

suspension prepared before.  
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3.4 Chemical reagents and enzymes 

 

Chemical reagents 

Ammonium sulphate, ammonium, carbon disulphide (CS2), copper sulphate pentahydrate, 

dihydrogen phosphate, disodium hydrogen phosphate dodecahydrate, ethylene diamine 

tetraacetic acid disodium salt dihydrate (EDTA-Na2H2.2H2O), dichoromethane, glucose, 

glycerine, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), hydrochloric acid, L-

cysteine hydrochloride anhydrous, magnesium sulphate heptahydrate, methylene blue, 

potassium dihydrogen phosphate, potassium metabisulphite, sodium hydrogen carbonate, 

sodium potassium tartrate, sodium thiosulphate, starch soluble, sulphuric acid and 

triethanolamine hydrochloride were obtained from Merck KGaA, Darmstadt, Germany. Citric 

acid monohydrate, dithiothreitol, glycine, glutamate dehydrogenase, dimethyl dicarbonate 

(DMDC), 2-oxoglutaric acid disodium salt, phosphooenopyruvic acid monosodium salt 

monohydrate and sodium -hydroxymercuribenzoate (-HMB) were from Sigma-Aldrich 

Chemie GmbH, Schnelldorf, Germany. Acetic acid ethyl ester, acetic acid 2-phenyl ethyl 

ester, benzene acetic acid ethyl ester, butyric acid ethyl ester, cumene, decanoic acid, 

ethanethiol (EtSH), decanoic acid ethyl ester, hexanoic acid hexyl ester, 1-hexanol, lactic 

acid ethyl ester, linalool, 2-methyl butanol, 3-methyl butanol, octanoic acid, 2-pheyl ethanol, 

propionic acid ethyl ester, sodium hydroxide, sodium sulphate monohydrate, succinic acid 

diethyl ester, α-terpineol, MeSAc, tran/cis-linalool oxide and BHA (3-tert-butyl-4-

hydroxyanisole) were from Fluka Chemie GmbH, Buchs, Switzerland.  

2,6-Dimethyl-5-hepten-2-ol (DMH), D-fructose, ethyl alcohol (p.a.), methyl alcohol, sodium 

acetate and Tris-(hydroxymethyl) aminomethane were obtained from Carl Roth GmbH, 

Karlsruhe, Germany. Glycylglycine was from AppliChem GmbH, Darmstadt, Germany. 

Potassium iodide and i-butanol were obtained from Riedel-de Haën, Sigma-Aldrich 

Laborchemikalien GmbH, Seelze, Germany. Iso-butyric acid ethyl ester, acetic acid 3-methyl 

butyl ester, acetic acid 2-methyl butyl ester, DEDS, ethyl methyl sulphide (EMS), hexanoic 

acid ethyl ester, methanethiol sodium salt (MeSH), octanoic acid ethyl ester and thioacetic 

acid S-propyl ester (PrSAc) were obtained from Aldrich Chemical Company Ltd., Gillingham, 

England. DMDS, DMS, DMTS, and 3SH were obtained from Acros Organics, Geel, Belgium. 

EtSAc was from Alfa Aesar GmbH & Co KG, Karlsruhe, Germany. Methyl isopropyl sulphide 

was obtained from Alfa/Chemie Inc., Delaware, U.S.A. Butylmethyl sulphide (MBS), and 

methyl-isopropyl sulphide (i-MPS) were obtained from Lancaster, Walkerburn, England. 

3SHA, 4-methoxy-2-methyl-2-sulphanylbutane (4,2,2MSB) and 4MSP were obtained from 

CHEMOS GmbH, Regenstauf, Germany. 
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Enzymes and media 

Arginase, lactate dehydrogenase and pyruvate kinase were obtained from Fluka, Sigma-

Aldrich Chemie GmbH, Taufkirchen, Germany. Adenosine tripohosphate, glutamate 

dehydrogenase, glycerokinase, L-lactate dehydrogenase, nicotinamide adenine dinucleotide 

and nicotinamide adenine dinucleotide phosphate disodium salt were obtained from Roche 

Diagnostics GmbH, Penzberg, Germany. Aldehyde dehydrogenase was obtained from VWR 

International GmbH, Darmstadt, Germany. Urease was obtained from Serva Electrophoresis 

GmbH, Heidelberg, Germany.  

 

3.5 Fermentation kinetics 

 

Fermentation kinetic was obtained by monitoring carbon dioxide production during yeast 

growth. The amount of carbon dioxide released was determined by weight loss every 1-2 

days.  

 

3.6 Analytical methods 

 

The analytical analyses which were used in the study are described as follows. 

 

3.6.1 Physico-chemical analytical methods 

pH: The pH was analysed by pH meter (pH 526 Multical®, Wissenschaftlich-Technische 

Werkstätten, Weilheim, Germany).  

 

Physico-chemical analytical method with FTIR spectrophotometry: Ethanol, reducing 

sugar, glycerol, tartaric acid, malic acid, lactic acid, total acidity, volatile acidity and pH were 

analyzed by FTIR spectrometry as described in Baumgartner et al. (2001) and Patz et al. 

(1999). They were performed at the Department of Wine Analysis and Beverage Research, 

Geisenheim Research Center, Germany. 

 

Sugar: Residual sugar, reducing sugar and inverted sugar (as glucose) were analysed by 

the Rebelein method according to Iland et al. (1993).  

 

Sulphur dioxide: Free and total sulphur dioxide in wine were determined by the Ripper 

titrametric method according to Zoecklein et al. (1999) and by FIAstarTM 5000 following the 

instructions of the manufacturer. These analysis were performed at the Department of Wine 

Analysis and Beverage Research, Geisenheim Research Center, Germany.  
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Amino nitrogen: A modified procedure from Wylie and Johnson (1961) was used to quantify 

free alpha amino nitrogen (FAN, as mg L-1 glycine), which is assimilable nitrogen. NOPA is 

an o-phthaldialdehyde/N-acetly-L-cysteine spectrometric assay described by Dukes & Butzke 

(1998) and used to detect free α-amino nitrogen (as mg L-1 isoleucine). 

 

Amino acids: They were determined by the Amino Acid Analyzer S433 (Sykam GmbH, 

Eresing, Germany) following the instructions of the manufacturer and were performed at the 

Department of Soil Science, Geisenheim Research Center, Germany. 

 

Metabolic products and amino nitrogen by enzymatic method: Acetaldehyde, glycerol, 

pyruvate, α-ketoglutarate and Ferm-N value (yeast-utilisable/assimilable nitrogen derived 

from amino acids) were determined enzymatically by an UV/VS spectrometer Lambda 2 

(Perkin Elmer GmbH, Überlingen, Germany) and wavelength at 340 nm equipped with a 

refrigerated/heating circulator, Model F25-ME (JULABO Labortechnik GmbH, Seelbach, 

Germany) and controlled at 25 oC isothermic condition according to instructions of 

Boehringer Mannheim GmbH, Germany (1998).  

 

3.6.2 Organic acids using a high performance liquid chromatographic method 

Samples were centrifuged for 3 min at 1300 rpm and then a 5 μL sample was injected into 

the high performance liquid chromatography (HPLC). In some cases, it was necessary to 

dilute the samples 1:2 or 1:5 with ultrapure water (MilliQ, Millipore). Organic acids were 

determined by Hewlett Packard (HP) Series 1100 HPLC (Agilent Technologies) equipped 

with a multiwavelength detector (UV/Visible) according to a modified procedure from 

Schneider et al. (1987). Organic acids were resolved on an Allure® Organic Acids column 

(250 mm x 4.6 mm i.d., 5 μm particle sizes) with a security guard column cartridge C18 (4 x 

3.0 mm, Fa. Phenomenex). The column was operated  at a column temperature of 46 °C 

with diluted sulphuric acid (0.0139 % in ultrapure water) or 0.5 % ethanol (v/v) as eluent at 

the flow rate of 0.6 ml min-1. Eluting compounds were detected by UV absorbance at 210 nm. 
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3.6.3 Gas chromatographic methods 

3.6.3.1 Analysis of esters, higher alcohols, fatty acids and monoterpenes 

Samples were extracted according to the 'Kaltron' method by liquid-liquid extraction with 

1,1,2-trifluorotrichloroethane according to a modified procedure from Rapp et al. 

(1994).   The 10 ml samples were extracted by shaking for 20 min with an addition of 2 g 

NaCl for better extraction, 1188 g L-1 2,6-dimethyl-5-hepten-2-ol as quantification internal 

standard, 112 g L-1 isopropylbenzene as internal standard control and 100 l 1,1,2-

trifluorotrichloroethan (Freon 113 or Kaltron) as extracting solution. The mixture was then 

centrifuged for 8 min at 3000 rpm, dried over anhydrous sodium sulphate (50 mg on glass 

wool) and the supernatant extract was injected into the gas chromatography/mass 

spectrophotometry (GC-MS).  

Aromatic compounds (esters, higher alcohols, fatty acids and terpenes) were analysed by 

gas chromatograph (Hewlett-Packard, HP 5890 Series II) equipped with a cooled injection 

system CIS-3 (Gerstel GmbH, Mülheim an der Ruhr, Germany) and detected by HP 5972 

mass selective detector (MSD) operating in electron impact mode. The chromatographic 

parameters for the analysis of aroma compounds by GC-MS are summarized in Table 3-4.  

 

3.6.3.2 Low boiling point of volatile sulphur containing compounds 

The wine samples are stored at 4 oC before sample preparation. The GC-vials were flushed 

with argon gas and then cold wine samples were pipetted into the GC-vials 

containing       1.7 g NaCl. Regular 10 ml GC-vials filled with 5 ml sample were used as 

headspace sampling vials. Then, 5 l 2,6-di-tert-butyl-4-methyl-phenol (4 mg L-1) as 

antioxidant, 20 l ethylenediamine tetraacetic acid (0.2 g L-1) and 10 l propanal (500 mg L-1) 

as SO2-binding compounds and 10 l internal standard (6 g S L-1 i-MPS and 6 g S L-1 BMS) 

were quickly added into the samples and then analysed by gas chromatography-pulse flame 

photometric detector (GC-PFPD). 

Low volatile sulphur compounds were analysed by an HP 6890 gas chromatograph equipped 

with automatic headspace sampling (Multipurpose Sampler MPS 2) and a cooled injection 

system CIS-4 (Gerstel GmbH, Mülheim an der Ruhr, Germany) then detected by an OI 5380 

pulse flame photometric detector (PFPD) (OI Analytical, USA) according to Rauhut et al. 

(2005 a, 2005 b). The chromatographic parameters for the analysis of low boiling point 

volatile sulphur compounds by GC-PFPD are summarized in Table 3-5. 
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Table 3-4 Chromatographic parameters for the analysis of esters, fatty acids and 

monoterpenes in juice and wine by GC-MS as described in 3.6.3.1 

 

Parameter Specification 

Gas Chromatography HP 5890 Series II equipped with a cooled injection system CIS-3 

Injection 2 l  
Splitless time = 1 min  
Temperature program: 30 oC, rate 12 oC s-1  
                                     230 oC for 4 min 

Column Varian VF-5MS (60 m x 0.32 m i.d., 1 m film thickness) 

Carrier gas Helium (1 ml min-1) 

Temperature program 40 oC, 5 min 
125 oC, rate 3 oC min-1 
200 oC, rate 6 oC min-1, for 14.2 min 

Transfer line 280 oC 

Detector HP 5972 Mass Selective Detector (MSD) 
SCAN mode 

Source temperature 180 oC 

EM-Voltage 2212 

Mass range (m/z) 35 – 250 (3.43 Scans s-1) 

The aroma compounds were identified by the retention time and comparison of the MS signal 

with the standard substances. 
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Table 3-5 Chromatographic parameters for the analysis of low boiling point sulphur 

containing compounds in wine samples by GC-PFPD as described in 3.6.3.2 

 

Parameter Specification 

Gas Chromatography HP 6890 gas chromatograph equipped with headspace sampler 
(Multipurpose Sampler MPS 2) and a cooled injection system 
CIS-4 (Inlet liner: w/wool deactivated) 

Cooled injection system Temperature program: -100 oC, rate 12 oC s-1 
                                       40 oC, rate 12 oC s-1 
                                       180 oC for 8 min 

Injection 1000 l  
Split-ratio = 10:1  
Preheating 60 oC for 45 min 
Syringe 63 oC 

Column SPB-1 Sulphur (Supelco 24158, Bellefonte, PEN, USA) 

(30 m x 0.32 m i.d., 1 m film thickness) 

Carrier gas Helium (Constant flow rate 1.1 ml min-1) 
Average velocity: 20 cm s-1 at 60 oC 

Temperature program 29 oC for 7 min 
180 oC, rate 10 oC min-1 
180 oC for 10.5 min 

Detector HP 5380 pulse flame photometric detector (PFPD) 

Detector temperature 250 oC 

Gas requirements Air: 420 kPa 
Hydrogen 420 kPa 

 

3.6.3.3 Volatile thiols involved in varietal aromas 

 

The volatile thiols were specifically extracted by the reversible combination of the thiols with 

p-hydroxymercuribenzoate (p-HMB) and analyzed with gas chromatography coupled with 

mass spectrometry (GC/MS) according to a modified Ferreira et al. (2007) method.  

50 ml of wine containing 200 ng L-1 internal standard (4,2,2MSB) and 1.25 g L-1 BHA were 

percolated through a LiChrolut EN 500mg SPE cartridge (Merck, Darmstadt, Germany) at a 

maximum flow of 5 ml min-1. The sorbent was previously conditioned with 10 ml of 

dichloromethane, 10 ml of methanol and 10 ml of 13 % ethanol (v/v). The cartridge was then 

rinsed with 50 ml of an aqueous solution containing 40 % of methanol (v/v) buffered with 

TRIS 0.2 M at pH 7.2 and after this, with 5 ml of ultrapure water (MilliQ, Millipore). The 

sorbent was dried by forcing a stream of nitrogen (ca. 50 ml min−1) to pass through the bed 

for 20 min. Thiols were eluted with a 10 ml solution containing 99 % dichloromethane and 1 % 
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methanol (v/v). The samples were purified with liquid-liquid extraction using 3 × 1 ml of an 

aqueous solution of p-HMB (1 mM in a solution of HEPES 0.2 M at pH 10.7). The 3 aliquots 

were combined and the pH of this aqueous phase was brought to 7.5 by the addition of 60 μl 

of HCl 4.6 M. Complexes were then broken with the addition of 450 μl of dithioerythritol 10 

mM in HEPES and free thiols were further extracted twice, with 750 μl of dichloromethane 

each time. The organic phase was collected and dried on anhydrous sodium sulphate and 

gently concentrated by evaporation in a water bath (47 °C) to a final volume of 25 μl.The 

concentrated sample was transferred into a vial and it was analysed within 24 hours. 

The analytical system comprised of a 6890N GC oven (Agilent Technologies, Böblingen, 

Germany) equipped with a cold Injection system 4 (CIS4), a Multi Purpose Sampler 2 (MPS2) 

both from Gerstel (Mülheim an der Ruhr) and a DB-WAX column 30 m x 0.32 mm x 0.25 µm 

(Agilent Technologies, Böblingen, Germany). The detector used was a 5975C mass selective 

detector (MSD) from Agilent Technologies (Böblingen, Germany). The Chromatographic 

conditions are described in Table 3-6. 

3SH, 3SHA, and 4MSP were detected in selected ion monitoring (SIM) mode and the 

quantifier ions were m/z = 134, 116, and 132, respectively, whereas the internal standard 

was detected with the ion m/z = 100 (Ferreira et al., 2007). 

 

Calibration: Riesling wine was dearomatized according to a modified procedure described 

from Fedrizzi et al. (2007). The following modifications were conducted: wine was treated two 

times with 3 g L-1 activated charcoal to remove any sulphur compounds and other main 

volatile compounds and then filtrated. The potassium metabisulphite (KMS) was added 

corresponding to 100 mg L-1 free SO2. Calibration for the thiol analysis was done by adding 

increasing quantities of the three volatile thiol reference compounds (3SH, 3SHA and 4MSP) 

and internal standard (4,2,2MSB ) to the dearomatized wine. For each concentration, the 

volatile thiols were extracted from the wine according to a modified Ferreira et al. (2007) 

method. The retention time windows of selected ion chromatograms of the four thiols 

obtained in the analysis of the dearomatized wine sample spiked with different levels of the 

analytes are demonstrated in Figure A-1. Calibration range, limit of quantification and 

standard deviation for each of the thiols are given below: 

 

      3SH   3SHA  4MSP       

Calibration range (ng L-1)   0-5000   0-500  0-100 

Limit of quantification (ng L-1)   300   50  10  

% Standard deviation    17.5 %   33.0 %  12.2 % 
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Table 3-6 Chromatographic parameters for the analysis of aroma compounds in wine 

samples by GC-MSD as described in 3.6.3.3 

 

Parameter Specification 

Gas Chromatography HP 6890 gas chromatograph (Agilent Technologies, Böblingen, 

Germany) 

Injection 3 l, splitless for 5 min in a CIS4 (Gerstel, Mülheim an der Ruhr) 

CIS4 program Initial temperature: 40 °C 

250 °C, rate 12 °C min-1, hold 5 min 

Column DB-WAX capillary column (J&W, Agilent Technologies)  

(30 m x 0.32 mm i.d., 0.25 μm film thickness) 

Carrier gas Helium (flow rate 1.4 ml min-1) 

Oven temperature 

program 

60 °C for 5 min 

240 °C, rate 3 °C min-1, hold 20 min 

Detector HP 5975C mass selective detector (MSD) 

SIM Mode 

Detector temperature Source 230 oC/ 150 oC 

 
 

3.7 Fermentation trials of Scheurebe grape juice  

 

The fermentation trials of Scheurebe grape juice were performed in two sequential trials as 

follows. 

 

3.7.1 Fermentation of fresh Scheurebe grape juice with two commercial 

Saccharomyces yeast strains and four commercial nutrient sources 

 

In 2008, fermentations were carried out in fresh Scheurebe grape juice. The properties of 

initial grape juice were reducing sugar content 176 g L-1, pH 3.2, ammonium 0.09 g L-1, 

NOPA 193 mg L-1 (as isoleucine), free alpha amino nitrogen 51.9 mg L-1, malic acid 6.1 g L-1, 

tartaric acid 4.4 g L-1, shikimic acid 46 mg L-1, acetic acid 0.12 g L-1, citric acid 0.2 g L-1 and 

total amino acids (without proline) 1314.6 mg L-1 (Table A-1). Two days before preparation of 

grape must, 30 mg L-1 of sulphur dioxide were added into the grape juice as KMS. Duplicate 
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experimental fermentations were carried out in 2.5-liter bottles containing 2.2 L grape juice. 

Two commercial Saccharomyces yeast strains and four different nutrient sources as well as 

without nutrient addition (control) were used in this study, thus giving ten different treatment 

combinations (Table 3-7). Nutrients were added into the grape juice according to an 

experimental design. The yeast cultures were rehydrated following the method described in 

3.2 prior to inoculation of each strain. The bottles were fitted with airlocks and the 

fermentations were carried out at 20 oC in a controlled environment. The progress of 

fermentation was followed by monitoring CO2 production, which was determined by weight 

loss during fermentation. After the weight losses of the samples were constant, wines were 

cold stabilized at below 10 oC for 7 days and racked into previously cleaned bottles.  Then 

potassium metabisulphite (KMS) was added corresponding to 80 mg L-1 free SO2 in finished 

wine and bottled wines were stored at below 15 oC until need. After this, 150 ml wine 

samples, without sulphur dioxide addition, were kept at -18 oC for analysis of SO2-binding 

compounds, glycerol and residual sugar. The experimental plan is demonstrated in Table 3-7. 

The ANOVA for factorial design and DMRT were performed using MSTATC statistical 

program (www.msu.edu/~freed/disks.htm, 1994) to interpret mean differences in mean 

values at the 95 % confidence level. 

 

Table 3-7 Experimental design of yeast inoculation and nutrient supplementation 

       

Saccharomyces yeast strain Nutrient source * 

EC1118 Control (without nutrient) 

 OptiWhite 

 Superstart 

  DAP 

 Fermaid E   

X5 Control (without nutrient) 

  OptiWhite 

 Superstart 

 DAP 

  Fermaid E   

* All the nutrients were added at the concentration of 0.3 g L-1, except control treatment 

 

 

 

http://www.msu.edu/~freed/disks.htm
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3.7.2 Impact of thirteen commercial Saccharomyces yeast strains on fermentation 

characteristics and quality of Scheurebe grape wine  

 

In 2008, fermentation was carried out in fresh Scheurebe grape juice. The composition of 

initial grape juice was reducing sugar content 175 g L-1, pH 3.18, ammonium 0.09 gL-1, 

NOPA 194 mg L-1 (as isoleucine), free alpha amino nitrogen 84.8 mg L-1, malic acid 6.0 g L-1, 

tartaric acid 4.4 g L-1, shikimic acid 46 mg L-1, acetic acid 0.12 g L-1, citric acid 0.20 g L-1  and 

total amino acids (without proline) 1314.6 mg L-1 (Table A-1). Three days before the 

preparation of grape must, 30 mg L-1 of sulphur dioxide were added in grape juice as KMS. 

Experiments were performed in triplicate in 0.75-liter bottles filled with 650 ml of grape juice 

without yeast nutrient addition. Thirteen commercial Saccharomyces yeast strains (EC1118, 

Sauvignon, VL3, X5, X16, VIN13, Alchemy I, Alchemy II, 4F9, LVCB, LittoLevure, AWRI R2 

and QA23) were used in this study. The yeast cultures were rehydrated following the method 

described in 3.2 prior to inoculation. The bottles were fitted with airlocks that enable the 

carbon dioxide to escape then the fermentations were carried out at 20 oC in an incubator. 

The consequent methods were performed as described in 3.7.1. Then 150 ml wine samples 

were kept at -18 oC for the analysis as describe in method 3.7.1. 

The one way ANOVA and DMRT were performed using MSTATC statistical program 

(www.msu.edu/~freed/disks.htm, 1994) to interpret mean differences in mean values at the 

95 % confidence level. 

 

3.8 Fermentation trials of Sauvignon blanc grape juice  

The fermentation trials of Sauvignon blanc grape juice were performed in two sequential 

trials as follows. 

 

3.8.1 Fermentation of fresh grape juice with nine commercial Saccharomyces yeast 

strains and two nutrient sources 

 

The fermentation was carried out in fresh Sauvignon blanc grape juice from the 2008 harvest 

season. Nine commercial Saccharomyces yeast strains and two commercial nutrient sources 

were used in this study, thus giving 18 different fermentation treatments (Table 3-8). 

Properties of initial grape juice were pH 3.10, total soluble solid 17.2 oBrix, reducing sugar 

content 169 g L-1, total acidity 10.1 g L-1, tartaric acid 6.8 g L-1, malic acid 7.0 g L-1, shikimic 

acid 38 mg L-1, citric acid 0.3 g L-1, glycerol 0.3 g L-1, ammonium 0.08 g L-1, free alpha amino 

nitrogen 92.5 mg L-1 and total amino acids (without proline) 1264.6 mg L-1 (Table A-2). The 

experimental fermentations were carried out in 0.75-liter bottles containing 650 ml grape 

http://www.msu.edu/~freed/disks.htm
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juice and all treatments were done in duplicate. Addition of nutrients was performed in the 

grape juice according to an experimental design consisting of two different nutrient sources 

prior to the alcoholic fermentation (Table 3-8). Then 25 mg L-1 of sulphur dioxide were added 

into the grape juice by addition of KMS, and juice bottles were left approximately 12 hours 

before inoculation. The yeast cultures were rehydrated following the preparation described in 

3.2 prior to inoculation of each strain. The bottles were fitted with airlocks and the 

fermentations were carried out at 20 oC in a controlled environment. The following methods 

were performed as described before in 3.7.1. Consequently, 150 ml wine samples were kept 

at -18 oC for the analysis as described in method 3.7.1. The experimental design is shown in 

Table 3-8. 

The ANOVA for factorial design and DMRT were performed using MSTATC statistical 

program (www.msu.edu/~freed/disks.htm, 1994) to interpret mean differences in mean 

values at the 95 % confidence level. 

 

Table 3-8 Experimental design of yeast inoculation and nutrient supplementation in fresh 

Sauvignon blanc grape juice from the 2008 harvest season 

       

Saccharomyces yeast strain Initial nutrient source (0.3 g L-1) 

EC1118 Fermaid E   

 OptiWhite 

Sauvignon Fermaid E   

  OptiWhite 

VL3 Fermaid E   

 OptiWhite 

X5 Fermaid E   

 OptiWhite 

VIN7 Fermaid E   

 OptiWhite 

VIN13 Fermaid E   

 OptiWhite 

4F9 Fermaid E   

 OptiWhite 

LVCB Fermaid E   

 OptiWhite 

AWRI R2 Fermaid E   

 OptiWhite 

http://www.msu.edu/~freed/disks.htm
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3.8.2 Fermentation of fresh grape juice with five commercial Saccharomyces yeast 

strains and four nutrient sources  

 

The fermentation was carried out in fresh Sauvignon blanc grape juice from the 2009 harvest 

season. The properties of initial grape juice were total soluble solid 17.3 oBrix, reducing sugar 

content 190 g L-1, pH 3.19, free sulphur dioxide 2.8 mg L-1, tartaric acid 5.1 g L-1, malic acid 

4.0 g L-1, shikimic acid 22 mg L-1, citric acid 0.2 g L-1, glycerol 0.50 g L-1 , NOPA 164 mg L-1 

(as isoleucine) and total amino acids (without proline) 1782.9 mg L-1 (Table A-2). Five 

commercial Saccharomyces yeast strains and four commercial nutrient sources were used in 

this study, thus giving 20 different fermentation treatments (Table 3-9). Triplicate 

experimental fermentations were carried out in 0.75-liter bottles containing 620 ml grape 

juice. Addition of nutrient was performed in the grape juice according to an experimental 

design prior to the alcoholic fermentation. Then 25 mg L-1 of sulphur dioxide was added in 

grape juice as KMS, and juice bottles were left approximately 12 hours before inoculation. 

The yeast cultures were rehydrated following the method described in 3.2 prior to inoculation 

of each strain. The bottles were fitted with airlocks and the fermentations were carried out at 

20 oC in a controlled environment. The consequent methods were performed as described in 

3.7.1. In addition, 150 ml wine samples were kept at -18 oC for the analysis of sulphur dioxide 

produced by yeast and the other analysis as described in method 3.7.1. The experimental 

design is shown in Table 3-9. 

The ANOVA for factorial design and DMRT were performed using MSTATC statistical 

program (www.msu.edu/~freed/disks.htm, 1994) to interpret mean differences in mean 

values at the 95 % confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.msu.edu/~freed/disks.htm


 
  

 
69 

Table 3-9 Experimental design of yeast inoculation and nutrient supplementation in 

Sauvignon blanc grape juice fermentation 

 

Saccharomyces yeast strain Initial nutrient source 

EC1118 Superstart 0.3 g L-1 

 Fermaid O 0.4 g L-1 

  Fermaid E 0.4 g L-1 

 VUltra 0.4 g L-1 

X5 Superstart 0.3 g L-1 

 Fermaid O 0.4 g L-1 

 Fermaid E 0.4 g L-1 

 VUltra 0.4 g L-1 

VIN7 Superstart 0.3 g L-1 

  Fermaid O 0.4 g L-1 

 Fermaid E 0.4 g L-1 

 VUltra 0.4 g L-1 

Alchemy I Superstart 0.3 g L-1 

 Fermaid O 0.4 g L-1 

 Fermaid E 0.4 g L-1 

 VUltra 0.4 g L-1 

LittoLevure Superstart 0.3 g L-1 

 Fermaid O 0.4 g L-1 

 Fermaid E 0.4 g L-1 

 VUltra 0.4 g L-1 
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3.9 Fermentation trials of yellow passion fruit juice 
 

The fermentation trials of yellow passion fruit (Passiflora edulis Sims f. flavicarpa Degner) 

juices obtained from frozen yellow passion fruit puree were performed in four sequential trials 

as follows. 

 

3.9.1 Influence of fourteen different commercial Saccharomyces yeast strains on 

fermentation characteristics and quality of yellow passion fruit wine 

 

The frozen yellow passion fruit (YPF) puree was used, and its properties are reducing sugar 

content 61.5 g L-1, pH 2.8, NOPA 332 mg L-1 (as isoleucine), malic acid 5.4 g L-1, shikimic 

acid 14 mg L-1, citric acid 38.4 g L-1 and total amino acid without proline 2491.0 mg L-1 (Table 

A-3). The frozen YPF puree was thawed at ambient temperature and diluted by addition of 

hot water until its pH was 3.1-3.2, therefore the reducing sugar content of diluted YPF juice 

was 8.1 g L-1, NOPA was 46 mg L-1 (as isoleucine) and total amino acids (without proline) 

were 207.1 mg L-1 (Table A-3). The sugar content was adjusted to provide sugar quantities of 

200 g Kg-1 juice by addition of beet sugar (sucrose, Südzucker, Mannheim, Germany), and 

0.5 g L-1 DAP was added for nutrient supplementation. The composition of prepared YPF 

juice was inverted sugar content 207 g L-1, pH 3.22, malic acid 0.5 g L-1, citric acid 3.7 g L-1 

and shikimic acid 1 mg L-1. Triplicate experiments were performed in 0.75-liter bottles filled 

with 650 ml YPF juice, and 50 mg L-1 of sulphur dioxide as KMS was added. Juice bottles 

were left approximately 12 hours to suppress undesirable microorganism growth as well as 

to function as an antioxidant. Fourteen commercial Saccharomyces yeast strains (EC1118, 

Sauvignon, VL3, X5, X16, VIN13, Alchemy I, Alchemy II, 4F9, LVCB, LittoLevure, AWRI R2, 

QA23 and Freddo) were used in this study. The yeast cultures were rehydrated following the 

method described in 3.2 prior to inoculation of each strain. The bottles were fitted with 

airlocks that enable the carbon dioxide to escape then the fermentations were carried out at 

20 oC in a controlled incubator. The progress of fermentation was followed by monitoring CO2 

production, which was determined by weight loss during fermentation. After the weight loss 

of the samples were constant, YPF wines were cold stabilized at below 10 oC for 7 days and 

racked into previously cleaned bottles. Then 80 mg L-1 of SO2 was added as KMS in finished 

YPF wine and bottled wines were stored at below 15 oC until need. Then 150 ml YPF wines 

without sulphur dioxide addition, were kept at -18 oC for analysis of SO2-binding compounds, 

glycerol and residual sugar. 

The one way ANOVA and DMRT were performed using MSTATC statistical program 

(www.msu.edu/~freed/disks.htm, 1994) to interpret mean differences in mean values at the 

95 % confidence level. 

http://www.msu.edu/~freed/disks.htm
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3.9.2 Fermentation of yellow passion fruit juice with three commercial Saccharomyces 

yeast strains and five commercial nutrient sources  

 

The properties of frozen yellow passion fruit puree used in this study are reducing sugar 

content 67.1 g L-1, pH 2.77, NOPA 317 mg L-1 (as isoleucine), malic acid 5.9 g L-1, citric acid 

41.3 g L-1 and total amino acid without proline 2491.0 mg L-1 (Table A-3). The frozen YPF 

puree was thawed at ambient temperature and diluted by addition of hot water until its pH 

was 3.1-3.2, then reducing sugar content of diluted YPF juice was 10.7 g L-1, NOPA 

was     43 mg L-1 (as isoleucine) and total amino acids (without proline) were 180.3 mg L-1 

(Table A-3). Then the sugar content was adjusted to provide sugar quantities of 200 g Kg-1 

juice by addition of beet sugar (sucrose, Südzucker, Mannheim, Germany). The composition 

of prepared YPF juice was inverted sugar content 201 gL-1, pH 3.2, malic acid 0.5 g L-1 and 

citric acid 3.8 g L-1. Triplicate experiments were performed in the 1.50-liter bottles filled with 

1.20 L YPF juice. Three commercial Saccharomyces yeast strains and five commercial 

nutrient sources were used in this study, thus giving 15 different fermentation treatments 

(Table 3-10). Addition of nutrients was performed in the YPF juice according to an 

experimental design prior to the alcoholic fermentation and 50 mg L-1 of sulphur dioxide as 

KMS was added. Juice bottles were left approximately 12 hours to suppress undesirable 

microorganism growth as well as to function as an antioxidant. The yeast cultures were 

rehydrated following the method described in 3.2 prior to the inoculation of each strain. The 

bottles were fitted with airlocks and the fermentations were carried out at 20 oC in a 

controlled environment. The consequent methods were performed as described in 3.9.1. 

Then 150 ml of YPF wine samples were kept at -18 oC for the analysis as described in 

method 3.9.1. The experimental plan is shown in Table 3-10. 

The ANOVA for factorial design and DMRT were performed using MSTATC statistical 

program (www.msu.edu/~freed/disks.htm, 1994) to interpret mean differences in mean 

values at the 95 % confidence level. 
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Table 3-10 Experimental design of yeast inoculation and nutrient supplementation in 

prepared YPF juice fermentation 

 

Saccharomyces yeast strain Initial nutrient source (0.4 g L-1) 

EC1118 DAP 

 VCombi 

  VUltra 

 Fermaid E   

 OptiWhite 

Sauvignon DAP 

 VCombi 

 VUltra 

  Fermaid E   

  OptiWhite 

X5 DAP 

 VCombi 

  VUltra 

 Fermaid E   

 OptiWhite 

 

3.9.3 Fermentation of yellow passion fruit juice with five commercial Saccharomyces 

yeast strains and two commercial nutrient sources at two different concentrations  

 

The frozen yellow passion fruit puree was used in this study, and its composition was 

reducing sugar content 50.5 g L-1, pH 2.89, NOPA 296 mg L-1 (as isoleucine), malic 

acid    5.2 g L-1, citric acid 40.5 g L-1 and total amino acid without proline 2491.0 mg L-1 (Table 

A-3). The frozen YPF puree was thawed at ambient temperature and diluted by addition of 

hot water until its pH was 3.1-3.2, therefore reducing sugar content of diluted YPF juice was 

3.65 g L-1, NOPA was 24 mg L-1 (as isoleucine) and total amino acids (without 

proline)   123.1 mg L-1 (Table 4-23 and A-3). Then the sugar content was adjusted to provide 

sugar quantities of 200 g Kg-1 juice by addition of beet sugar (sucrose, Südzucker, Mannheim, 

Germany). The composition of prepared YPF juice was inverted sugar content 170.5 g L-1, 

pH 3.19, malic acid 0.5 g L-1 and citric acid 3.1 g L-1. Experiments were performed in triplicate 

in 1.50-liter bottles filled with 1.20 L YPF juice. Five commercial Saccharomyces yeast 

strains and two commercial nutrient sources at two different concentrations were used in this 

study, thus giving 20 different fermentation treatments (Table 3-11). Addition of nutrients was 
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performed in the YPF juice according to an experimental design (Table 3-11) prior to the 

alcoholic fermentation and 50 mg L-1 of sulphur dioxide as KMS were added. Juice bottles 

were left to settle approximately 12 hours and the yeast cultures were rehydrated following 

the method described in 3.2 prior to inoculation of each strain. The bottles were fitted with 

airlocks and the fermentations were carried out at 20 oC in a controlled environment. The 

consequent methods were performed as described in 3.9.1. 150 ml of YPF wine samples 

were kept at -18 oC for the analysis as described in method 3.9.1. The experimental design is 

shown in Table 3-11. 

The ANOVA for factorial design and DMRT were performed using MSTATC statistical 

program (www.msu.edu/~freed/disks.htm, 1994) to interpret mean differences in mean 

values at the 95 % confidence level. 

 

Table 3-11 Experimental design of yeast inoculation and nutrient supplementation in 

prepared YPF juice fermentation 

 

Saccharomyces yeast strain Initial nutrient source Nutrient concentration (g L-1) 

EC1118 DAP 0.25 

  0.50 

  VCombi 0.25 

   0.50 

VL3 DAP 0.25 

  0.50 

 VCombi 0.25 

  0.50 

X5 DAP 0.25 

  0.50 

 VCombi 0.25 

  0.50 

 Alchemy I DAP 0.25 

  0.50 

 VCombi 0.25 

  0.50 

LittoLevure DAP 0.25 

  0.50 

 VCombi 0.25 

  0.50 

http://www.msu.edu/~freed/disks.htm
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3.9.4 Fermentation of yellow passion fruit juice with three commercial Saccharomyces 

yeast strains and four commercial nutrient sources at two different concentrations  

 

The properties of frozen yellow passion fruit puree used in this study were reducing sugar 

content 43 gL-1, pH 2.85, NOPA 296 mg L-1 (as isoleucine), malic acid 5.3 g L-1, citric acid 

42.1 g L-1 and total amino acid without proline 2491.0 mg L-1 (Table A-3). The frozen YPF 

puree was thawed at ambient temperature and diluted by addition of hot water until its pH 

was 3.1-3.2, thus giving the reducing sugar content of diluted YPF juice of 4 g L-1, NOPA was 

27 mg L-1 (as isoleucine) and total amino acids (without proline) 164.2 mg L-1 (Table 4-28 and 

A-3). Then the sugar content was adjusted to provide sugar quantities of 200 g Kg-1 juice by 

addition of beet sugar (sucrose, Südzucker, Mannheim, Germany). The composition of 

prepared YPF juice was inverted sugar content 170 g L-1, pH 3.18, malic acid 0.5 g L-1 and 

citric acid 2.8 g L-1. Triplicate experiments were performed in 0.75-liter bottles filled 

with    650 ml YPF juice. Three commercial Saccharomyces yeast strains and four 

commercial nutrient sources at two different concentrations were used in this study, thus 

giving 24 different fermentation treatments (Table 3-12). Addition of commercial nutrients 

was performed in the YPF juice according to an experimental design (Table 3-12) prior to the 

alcoholic fermentation and 50 mg L-1 of sulphur dioxide as KMS were added. Juice bottles 

were left approximately 12 hours to suppress undesirable microorganism growth as well as 

to function as an antioxidant. The yeast cultures were rehydrated following the preparation of 

yeast culture described in 3.2 prior to inoculation of each strain. The bottles were fitted with 

airlocks and the fermentations were carried out at 20 oC in a controlled environment. The 

following methods were performed as described in 3.9.1. In addition, 150 ml of YPF wine 

samples were kept at -18 oC for the analysis as described in method 3.9.1. The experimental 

plan is shown in Table 3-12. 

The ANOVA for factorial design and DMRT were performed using MSTATC statistical 

program (www.msu.edu/~freed/disks.htm, 1994) to interpret mean differences in mean 

values at the 95 % confidence level. 
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Table 3-12 Experimental design of yeast inoculation and nutrient supplementation in 

prepared YPF juice fermentation 

 

Saccharomyces yeast strain Initial nutrient source Nutrient concentration (g L-1) 

EC1118 VCombi 0.2 

  0.4 

  VUltra 0.2 

   0.4 

 Fermaid E 0.2 

  0.4 

 OptiWhite 0.2 

  0.4 

VL3 VCombi 0.2 

  0.4 

 VUltra 0.2 

  0.4 

  Fermaid E 0.2 

  0.4 

 OptiWhite 0.2 

  0.4 

X5 VCombi 0.2 

  0.4 

 VUltra 0.2 

  0.4 

 Fermaid E 0.2 

  0.4 

 OptiWhite 0.2 

  0.4 

 

Investigation of volatile thiols in yellow passion fruit wine 

YPF wine samples obtained from the fermentation trials of 3.9.3 and 3.9.4 were selected to 

investigate for volatile thiols in finished products after fermentation. The volatile thiols in YPF 

wine were specifically extracted by the reversible combination of the thiols with -

hydroxymercuribenzoate according to a modified Ferreira et al. (2007) method and analyzed 

by gas chromatography/mass spectrophotometry (GC-MS) within 24 hours as described in 

the method of 3.6.3.3 Volatile thiols involved in varietal aromas. 
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4. RESULTS 

 

The following chapters give an overview on the conducted experiments and the obtained 

results of each fermentation trial (see experimental outline for all fermentation trials in Figure 

A-2). Firstly, investigations on the effects of commercial Saccharomyces strains and nutrient 

supplements on wine fermentative characteristics and quality of Scheurebe grape wines are 

demonstrated in chapter 4.1. Secondly, the obtained results of the growth kinetics, metabolic 

products and wine aromas of Sauvignon blanc grape juice fermented with different 

commercial Saccharomyces yeast strains and nutrient supplements are presented in 

chapter 4.2. The improvement of fermentation kinetics, fermentative characteristics and 

quality of yellow passion fruit wine by optimal choice of commercial Saccharomyces yeast 

strains and nutrient supplements are reported in chapter 4.3. Finally, the results of the 

volatile thiols involved in varietal aromas of finished YPF wine obtained from the experiment 

3.9.3 and 3.9.4 will be reported in chapter 4.4. Each experiment was carried out in duplicate 

or triplicate depending on the experimental plan.  

 

4.1 Effects of commercial Sacchromyces yeast strains and nutrient supplements on 

wine fermentative characteristics and quality of  Scheurebe grape wines    

 

The two experimental results that are described in the following chapters were obtained from 

Scheurebe grape juice fermented with different commercial Saccharomyces yeast strains 

and/or nutrient sources at different concentrations.  

 

4.1.1 Effect of two commercial Saccharomyces yeast strains and four nutrient sources 

on fermentative characteristics, metabolic compounds and wine aromas of Scheurebe 

grape wines 

 

Fermentation was performed in fresh Scheurebe grape juices from the 2008 harvest season. 

Two commercial yeast strains, EC1118 and X5, were used to ferment grape juice 

supplemented with four different nutrient sources; OptiWhite (natural inactivated yeast), 

Superstart (blend of inactivated yeast and yeast cell walls), DAP and Fermaid E (blend of 

diammonium hydrogen phosphate, thiamine, yeast cell walls and ammonium sulphate), and 

no nutrient addition (control). The fermentation kinetics, some metabolic compounds and 

wine aroma in finished wines were examined. 
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Figure 4-1 Growth kinetics of fresh Scheurebe grape juice fermentations with two yeast 

strains and four nutrient sources 

 

The growth kinetics: The result in Figure 4-1 shows that after the inoculation of the 

EC1118 and X5 strains into fresh Scheurebe grape juices, the growth kinetics of the yeast 

strains varied depending on the sources of nutrients added. The EC1118 strain seemed to 

have a slightly longer lag phase than the X5 strain, but the addition of Fermaid E reduced the 

fermentation time from 14 days to 11 days. The addition of Fermaid E also stimulated the X5 

strain to have faster growth kinetics and fermentation time (12 days). All treatments 

completed fermentation after 11-14 days depending on the nutrient source added.  

 

Chemical composition: Figure 4-2 shows that significant differences existed between the 

treatment combinations in term of residual sugar in final wines, but not in glycerol production. 

Without nutrient addition to the juice (control), the EC1118 strain produced wine having high 

residual sugar (1.2 + 0.0 g L-1). Whereas, fermentation with strain X5 in the presence of 

Superstart resulted in the highest residual sugar in the final wine (1.0 + 0.0 g L-1). Addition of 

any kind of nutrients led to decreased residual sugar in the final wine. Nevertheless, residual 

sugar content in all wine treatments was below 2 g L-1 and the wines reached dryness. The 

two yeast strains produced similar amounts of glycerol in wines treated with any source of 

nutrient and in the control treatment ranging from 2.5 + 0.1 to 2.8 + 0.0 g L-1. 
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Figure 4-2 Concentration of residual sugar and glycerol in finished Scheurebe grape wines 

fermented with two yeast strains, four nutrient sources and without nutrient 

Vertical bars represent standard deviations from two fermentation replicates. Means followed 

by different letters on the top of the bar are significantly different (p<0.05) between treatment 

combinations of each compound, whereas means followed by the same letters are not 

significantly different (p>0.05) according to the DMRT test. 

 

Organic acids: Table 4-1 shows the concentration of organic acids found in obtained wines 

fermented with strains EC1118 and X5 with different nutrient sources and without nutrients. 

The results indicate that both yeast strains and nutrient sources only affected the production 

of acetic acid, while the other organic acids were similar among wine treatments. The two 

yeast strains produced high concentrations of acetic acid in the control treatment (0.29 + 

0.00 and 0.29 + 0.01 g L-1, respectively). However, when a nutrient was added they had 

inverse patterns of acetic acid formation. The presence of OptiWhite stimulated the highest 

formation of this acid by strain EC1118 (0.29 + 0.00 g L-1), while strain X5 produced the 

highest amounts in the Superstart treatment (0.27 + 0.00 g L-1). The other organic acid 

concentrations in all wine treatments showed no difference ranging from 1.16 + 0.22 to 1.41 

+ 0.44 g L-1 tartaric acid, 5.04 + 0.17 to 5.25 + 0.35 g L-1 malic acid, 0.12 + 0.00 to 0.17 + 

0.01 g L-1 lactic acid, 45.67 + 0.02 to 47.03 + 0.83 g L-1 shikimic acid 0.21 + 0.00 to 0.28 + 

0.02 g L-1 citric acid. 
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Table 4-1 Concentration of organic acids found in finished Scheurebe wines developed by two yeast strains with four nutrient sources and 

without nutrient 

 

Yeast  Nutrient  Tartaric acid  

(g L-1) 

Malic acid  

(g L-1) 

Lactic acid  

(g L-1) 

Shikimic acid  

(mg L-1) 

Acetic acid  

(g L-1) 

Citric acid  

(g L-1) 

EC1118 Control 1.19 + 0.13 a 5.22 + 0.18 a 0.12 + 0.00 a 47.03 + 0.83 a 0.29 + 0.00 a 0.24 + 0.03 a 

 OptiWhite 1.29 + 0.25 a 5.07 + 0.10 a 0.13 + 0.01 a 46.06 + 1.09 a 0.29 + 0.00 a 0.23 + 0.03 a 

 Superstart 1.30 + 0.16 a 5.15 + 0.05 a 0.14 + 0.00 a 46.51 + 0.15 a 0.22 + 0.02 cd 0.23 + 0.03 a 

  DAP 1.16 + 0.22 a 5.24 + 0.03 a 0.15 + 0.01 a 46.18 + 0.19 a 0.23 + 0.01 cd 0.23 + 0.03 a 

 Fermaid E   1.23 + 0.31 a 5.07 + 0.06 a 0.14 + 0.01 a 46.41 + 0.03 a 0.25 + 0.02 bc 0.26 + 0.03 a 

X5 Control 1.16 + 0.23 a 5.06 + 0.10 a 0.12 + 0.02 a 45.67 + 0.02 a 0.29 + 0.01 a 0.21 + 0.00 a 

  OptiWhite 1.25 + 0.16 a 5.04 + 0.17 a 0.12 + 0.01 a 46.46 + 1.23 a 0.23 + 0.02 cd 0.25 + 0.05 a 

 Superstart 1.17 + 0.11 a 5.25 + 0.35 a 0.13 + 0.00 a 47.01 + 0.65 a 0.12 + 0.02 e 0.28 + 0.02 a 

 DAP 1.41 + 0.44 a 5.05 + 0.00 a 0.14 + 0.02 a 46.39 + 0.11 a 0.27 + 0.00 ab 0.23 + 0.01 a 

  Fermaid E   1.29 + 0.19 a 5.18 + 0.00 a 0.17 + 0.01 a 45.87 + 0.26 a 0.20 + 0.04 d 0.21 + 0.02 a 

Each value shows the mean + standard deviation. 

Values displaying the same letter (only ‗a‘) within the same column indicate no significant difference (p>0.05), whereas those displaying 

different letters are significantly different (p<0.05) according to the DMRT test. 
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SO2-binding compounds: As shown in Figure 4-3, the results show that different 

production of these compounds by the two yeast strains varied depending on the nutrient 

sources, excluding acetaldehyde. Regarding -ketoglutarate, strain EC1118 produced the 

highest amounts in the Superstart treatment (26.3 + 0.5 mg L-1), while the highest production 

by strain X5 was present in the OptiWhite, Superstart and DAP treatments (23.3 + 3.4, 23.6 

+ 1.8 and 24.0 + 2.6 mg L-1, respectively). Straine X5 was the low pyruvate producer (7.8 + 

2.4 to 15.4 + 0.7 mg L-1). On the contrary, strain EC1118 was the high pyruvate producer 

(20.8 + 1.0 to 27.6 + 1.3 mg L-1), but its formation tended to decrease with the addition of 

nutrients, particularly in the Fermaid E treatment. These results show that the addition of 

Fermaid E significantly reduced the formation of these keto acids. Levels of acetaldehyde 

were similar among wine treatments ranging from 38.4 + 0.2 to 48.5 + 2.0 mg L-1. 

 

Sulphur containing compounds: The data in Figure 4-4 indicate wines produced by strain 

EC1118 did not reveal H2S under this trial condition, but the X5 strain produced high 

amounts, particularly in the control and Superstart treatment (2.9 + 0.1 and 3.0 + 0.2 g L-1, 

respectively). There was no statistical difference of dimethyl sulphide formations among 

treatment combinations ranging from 1.1 + 0.1 to 1.9 + 0.5 g L-1. Under this trial condition, 

the other sulphur compounds like ethanethiol, methanethiol, dimethyl disulphide, thioacetic 

acid S-methylester and thioacetic acid S-ethylester were not detected in all wine treatments. 

 

 

Figure 4-3 Concentration of SO2-binding compounds in finished Scheurebe grape wines 

produced by two yeast strains with four nutrient sources and without nutrient 

Vertical bars represent standard deviations from two fermentation replicates. Means followed by 

different letters on the top of the bar are significantly different (p<0.05) between treatment 

combinations of each S-binding compound, whereas means followed by the same letter are not 

significantly different (p>0.05) according to the DMRT test. 
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Figure 4-4 Formation of hydrogen sulphide and dimethyl sulphide in finished Scheurebe 

grape wines produced by two yeast strains with four nutrient sources and 

without nutrient 

Vertical bars represent standard deviations from two fermentation replicates. Means followed by 

different letters on the top of the bar are significantly different (p<0.05) between treatment 

combinations of each S-containing compound, whereas means followed by the same letter are 

not significantly different (p>0.05) according to the DMRT test. 

 

 

Higher alcohols: Commercial yeast strains and nutrient sources significantly affected only 2-

methyl propanol and 3-methyl butanol in the final wines (Table 4-2). The EC1118 strain 

seemed to produce higher concentrations of these alcohols with less response to the nutrient 

source than the X5 strain. However, 2-methyl propanol seemed to be most evident in the 

Superstart and DAP treatments (24.0 + 1.4 and 24.0 + 3.2 mg L-1, respectively), whereas 3-

methyl butanol seemed to be the highest in the Feramid E treatment (164.0 + 5.1 mg L-1). On 

the other hand, strain X5 developed the highest amounts of two alcohols in the Fermaid E 

treatment (22.5 + 2.1 and 156.5 + 2.3 mg L-1, respectively). There were no significant 

differences among wine treatments in respect to 2-methyl butanol and hexanol formations 

ranging from 19.0 + 1.2 to 27.0 + 0.9 mg L-1 and 1627.5 + 161.9 to 2062.0 + 9.3 g L-1, 

respectively. Figure 4-5 shows that both yeast strains and nutrient sources had no significant  

effects on the production of 2-phenyl ethanol ranging from 16.4 + 1.0 to 24.4 + 1.4 mg L-1. 
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Table 4-2 Concentration of higher alcohols found in finished Scheurebe wines developed by 

two yeast strains with four nutrient sources and without nutrient 

 

Yeast  

 

Nutrient  

2-Methyl propanol  

(mg L
-1

) 

Hexanol  

(g L
-1

) 

3-Methyl butanol 

(mg L
-1

) 

2-Methyl butanol  

(mg L
-1

) 

EC1118 Control 22.5 + 3.9 ab 1991.0 + 83.1 a 134.0 + 12.5 bcd 20.5 + 2.2 a 

 OptiWhite 20.0 + 1.2 abc 2011.5 + 116.8 a 132.5 + 6.1 bcd 21.0 + 1.3 a 

 Superstart 24.0 + 1.4 a 1972.0 + 10.0 a 150.5 + 9.6 ab 24.0 + 1.3 a 

  DAP 24.0 + 3.2 a 2062.0 + 9.3 a 142.0 + 12.7 abc 21.0 + 1.5 a 

 Fermaid E   18.5 + 2.4 abc 2039.0 + 137.2 a 164.0 + 5.1 a 23.0 + 1.4 a 

X5 Control 17.0 + 1.5 bc 1826.5 + 109.8 a 113.0 + 9.1 de 21.0 + 2.4 a 

  OptiWhite 17.0 + 2.4 bc 1778.5 + 2.7 a 110.0 + 7.1 de 21.5 + 2.4 a 

 Superstart 21.0 + 5.8 abc 1627.5 + 161.9 a 117.0 + 23.8 cde 22.5 + 5.1 a 

 DAP 15.5 + 0.9 c 1808.5 + 126.5 a 105.0 + 6.6 e 19.0 + 1.2 a 

  Fermaid E   22.5 + 2.1 ab 1913.0 + 10.8 a 156.5 + 2.3 ab 27.0 + 0.9 a 

Each value shows the mean + standard deviation. 

Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05), whereas those displaying different letters are significantly different 

(p<0.05) according to the DMRT test. 

 

 

Figure 4-5 Formation of 2-phenyl ethanol and acetic acid ethyl ester in finished Scheurebe 

grape wines developed by two yeast strains with four nutrient sources and 

without nutrient 

Vertical bars represent standard deviations from two fermentation replicates. Means followed 

by different letters on the top of the bar are significantly different (p<0.05) between treatment 

combinations of each compound, whereas means followed by the same letters are not 

significantly different (p>0.05) according to the DMRT test. 
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Acetic acid esters: As shown in Figure 4-5, the EC1118 strain seemed to produce higher 

amounts of acetic acid ethyl ester (50.3 + 1.5 and 80.2 + 13.7 mg L-1) than the X5 strain and 

was less response to the nutrient sources. In contrast, strain X5 developed high amounts of 

this ester in the Fermaid E and control treatments (72.7 + 3.4 and 60.5 + 0.3 mg L-1). 

Regarding the other acetic acid esters, the two yeast strains produced different amounts of 

these esters depending on the nutrient source (Figure 4-6). Strain EC1118 seemed to 

produce the highest amount of acetic acid 3-methylbutyl ester in the Fermaid E sample 

(691.4 + 38.7 g L-1), followed by the DAP, Superstart and control treatments (637.3 + 135.9, 

587.2 + 6.9 and 532.5 + 24.1 g L-1, respectively), and that of acetic acid 2-phenyl ethyl ester 

in the control and Fermaid E sample (111.7 + 6.7 and 110.3 + 4.5 g L-1, respectively). The 

X5 strain developed high amounts of these esters in the Superstart (571.4 + 58.9 and 106.2 

+ 0.9 g L-1, respectively) and Fermaid E treatments (744.9 + 59.6 and 100.1 + 14.0 g L-1, 

respectively). Nevertheless, addition of Fermaid E resulted in the highest formation of acetic 

acid 2-methylbutyl ester by both strains (30.6 + 2.7 and 36.8 + 4.2 g L-1, respectively). Both 

yeast strains produced similar amounts of acetic acid hexyl ester in wines ranging from 87.8 

+ 14.9 to 110.3 + 3.7 g L-1. 

 

Ethyl and diethyl esters: As shown in Table 4-3, the production of ethyl and diethyl esters 

by the two strains varied significantly depending on the nitrogen sources, except isobutanoic 

acid ethyl ester (iBuEtE).  Concentrations of iBuEtE were similar ranging from 39.0 + 5.3 to 

51.5 + 4.4 g L-1. Strain EC1118 seemed to be the high producer of propionic acid ethyl ester 

(PrEtE), butanoic acid ethyl ester (BuEtE) and lactic acid ethyl ester (LAEtE) with less 

response to the nutrient source. The EC1118 wines had 100.0 + 11.8 to 119.5 + 6.1 g L-1 

PrEtE, 188.5 + 12.5 to 239.5 + 21.6 g L-1 BuEtE and 22.5 + 2.2 to 26.5 + 4.6 mg L-1 LAEtE. 

Nevertheless, concentrations of these esters tended to be lower in the control and OptiWhite 

samples. The highest concentration of LAEtE was produced by strain X5 in the presence of 

Fermaid E (32.5 + 8.0 mg L-1), whereas PrEtE and BuEtE were most evident in the Fermaid 

E as well (92.0 + 1.3 and 202.0 + 28.3 g L-1, respectively). Regarding the succinic acid 

diethyl ester (SAdiEtE), the presence of Superstart promoted the highest formation of this 

ester by both yeast strains (1388.5 + 240.2 and 1539.5 + 41.8 g L-1, respectively). 
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Table 4-3 Concentration of ethyl esters and diethyl ester found in finished Scheurebe wines developed by two yeast strains with four nutrient 

sources and without nutrient 

 

Yeast  Nutrient  PrEtE (g L-1) BuEtE (g L-1) iBuEtE (g L-1) LAEtE (mg L-1) SAdiEtE (g L-1) 

EC1118 Control 100.0 + 11.8 a 223.0 + 18.5 abc 44.5 + 4.8 a 22.5 + 2.2 bc 818.0 + 170.8 d 

 OptiWhite 100.5 + 0.7 ab 188.5 + 12.5 bcd 41.5 + 2.3 a 23.0 + 1.8 bc 1149.0 + 80.7 bc 

 Superstart 111.5 + 9.1 a 237.0 + 5.7 ab 51.5 + 4.4 a 25.5 + 0.9 abc 1388.5 + 240.2 ab 

  DAP 119.5 + 6.1 a 239.5 + 21.6 a 47.5 + 3.5 a 26.5 + 4.6 ab 810.5 + 12.2 d 

 Fermaid E   114.5 + 0.5 a 222.0 + 5.4 abc 48.0 + 1.4 a 25.5 + 1.3 abc 846.5 + 45.5 d 

X5 Control 71.0 + 13.7 c 162.5 + 6.1 d 40.0 + 7.1 a 18.5 + 0.6 c 1311.5 + 78.4 ab 

  OptiWhite 76.0 + 12.7 bc 164.5 + 13.5 d 44.0 + 6.5 a 20.0 + 1.3 bc 1271.5 + 16.3 b 

 Superstart 65.5 + 25.3 c 182.5 + 39.1 cd 48.5 + 13.4 a 21.5 + 2.2 bc 1529.5 + 41.8 a 

 DAP 73.0 + 12.7 bc 170.0 + 26.9 d 39.0 + 5.3 a 21.0 + 0.5 bc 944.0 + 93.1 cd 

  Fermaid E   92.0 + 1.3 abc 202.0 + 28.3 abcd 50.5 + 3.7 a 32.5 + 8.0 a 1269.0 + 4.2 b 

 

Each value shows the mean + standard deviation. Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05), whereas those displaying different letters are significantly different (p<0.05) according to the DMRT test. 
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Figure 4-6 Formation of acetic acid esters in finished Scheurebe grape wines developed by 

two yeast strains with four nutrient sources and without nutrient (*10 = 

concentration of compound times 10) 

Vertical bars represent standard deviations from two fermentation replicates. Means followed 

by different letters on the top of the bar are significantly different (p<0.05) between treatment 

combinations of each acetic acid ester, whereas means followed by the same letters are not 

significantly different (p>0.05) according to the DMRT test. 

 

Medium-chain fatty acids (MCFAs) and their ethyl esters: Table 4-4 shows that the yeast 

strain and the nutrient supplementation significantly affected the formation of hexanoic acid 

ethyl ester (HAEtE) only. The two yeast strains showed different patterns of HAEtE 

production in response to the nitrogen source addition. The EC1118 strain produced the 

highest amount of HAEtE in most treatments (685.5 + 8.0, 690.5 + 6.7, 714.5 + 5.3 and 

724.0 + 9.6 g L-1, respectively), except in the OptiWhite sample. The wine treatments had 

similar concentrations of MCFAs ranging from 7.5 + 0.7 to 9.5 + 0.4 mg L-1 hexanoic 

acid,  7.5 + 0.6 to 9.5 + 0.3 mg L-1 octanoic acid and 1.6 + 0.5 to 2.1 + 0.2 mg L-1 decanoic 

acid. Concentrations of octanoic acid ethyl ester (OAEtE) and decanoic acid ethyl ester 

(DAEtE) were also similar among the wine samples that ranged from 1097.0 + 121.5 to 

1325.0 + 1.3 g L-1 and 383.0 + 33.9 to 453.5 + 19.0 g L-1, respectively. 

 

Monoterpenes: As shown in Figure 4-7, the results show that the two yeast strains and 

nutrient sources did not affect the concentrations of all monoterpenes detected in wines. 

Nevertheless, all monoterpenes tended to slightly increase with the addition of any nutrient 

source. All wine treatments contained 124.4 + 3.4 to 134.2 + 4.0 g L-1 of trans-linalool oxide, 

30.2 + 1.3 to 35.4 + 1.7 g L-1 of cis-linalool oxide, 34.2 + 1.5 to 40.7 + 3.0 g L-1 of linalool 

and 70.0 + 0.8 to 73.1 + 0.2 g L-1 of -terpineol.  
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Table 4-4 Concentration of fatty acids and their esters found in finished Scheurebe wines developed by two yeast strains with four nutrient 

sources and without nutrient 

 

Yeast  Nutrient  Hexanoic acid 

(mg L-1) 

Octanoic acid  

(mg L-1) 

Decanoic acid 

(mg L-1) 

HAEtE  

(g L-1) 

OAEtE  

(g L-1) 

DAEtE  

(g L-1) 

EC1118 Control 9.0 + 0.2 a 9.0 + 0.3 a 2.1 + 0.2 a 685.5 + 8.0 a 1200.5 + 26.5 a 423.0 + 28.4 a 

 OptiWhite 8.5 + 0.6 a 8.0 + 0.0 a 1.7 + 0.1 a 617.0 + 16.7 b 1176.5 + 30.6 a 386.0 + 22.9 a 

 Superstart 8.5 + 0.6 a 8.5 + 0.8 a 1.6 + 0.5 a 690.5 + 6.7 a 1238.5 + 0.7 a 383.0 + 33.9 a 

  DAP 9.5 + 0.4 a 9.5 + 0.3 a 2.0 + 0.0 a 714.5 + 5.3 a 1272.5 + 37.6 a 409.0 + 16.6 a 

 Fermaid E   9.0 + 1.1 a 9.0 + 1.1 a 1.8 + 0.4 a 724.0 + 9.6 a 1325.0 + 1.3 a 428.5 + 52.1 a 

X5 Control 8.0 + 0.2 a 8.0 + 0.0 a 1.7 + 0.1 a 547.0 + 12.2 cd 1127.0 + 2.8 a 453.5 + 19.0 a 

  OptiWhite 7.5 + 0.2 a 8.0 + 0.1 a 1.8 + 0.2 a 531.0 + 9.4 d 1097.0 + 121.5 a 396.0 + 35.8 a 

 Superstart 8.0 + 0.1 a 7.5 + 0.6 a 1.7 + 0.3 a 599.5 + 0.6 bc 1225.0 + 113.4 a 425.5 + 5.9 a 

 DAP 8.0 + 0.2 a 8.5 + 0.5 a 2.0 + 0.1 a 563.5 + 56.8 bcd 1123.5 + 3.6 a 442.0 + 8.4 a 

  Fermaid E   8.0 + 0.2 a 7.5 + 2.2 a 1.6 + 0.7 a 600.5 + 41.7 bc 1189.0 + 18.1 a 412.5 + 31.6 a 

 

Each value shows the mean + standard deviation. Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05), whereas those displaying different letters are significantly different (p<0.05) according to the DMRT test. 
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Figure 4-7 Formation of monoterpenes in finished Scheurebe grape wines developed by two yeast strains with four nutrient sources and 

without nutrient 

Vertical bars represent standard deviations from two fermentation replicates. Monoterpenes displaying “(ns)” show no significant difference 

(p>0.05) between treatment combinations of each monoterpene according to the DMRT test. 

 

1
2
7
.0

3
2
.3

3
0
.2 3

8
.3

4
0
.7

7
0
.0

7
0
.6

1
3
1
.0

1
2
7
.9

3
3
.9

3
3
.4

3
6
.6

3
7
.2

7
1
.2

7
1
.4

1
2
5
.9 1
3
4
.2

3
2
.1

3
3
.3 3
7
.7

3
6
.4

7
1
.0

7
3
.1

1
3
0
.9

1
3
0
.1

3
2
.6

3
3
.3

3
6
.6

3
7
.2

7
2
.8

7
2
.2

1
3
3
.0

1
3
3
.6

3
5
.0

3
5
.4

3
4
.2

3
6
.3

7
2
.0

7
2
.2

1
2
4
.4

0

30

60

90

120

150

EC1118 X5 EC1118 X5 EC1118 X5 EC1118 X5

trans-Linalool oxide (ns) cis-Linalool oxide (ns) Linalool (ns) alpha-Terpineol (ns)

C
o

n
c
e
n

tr
a
ti

o
n

 (


g
 L

-1
)

Control OptiWhite Superstart DAP Fermaid E



 
  

 
88 

4.1.2 Effect of thirteen commercial Saccharomyces yeast strains on fermentative 

characteristics, metabolic compounds and wine aromas of Scheurebe grape wines 

 

Fermentation was performed in fresh Scheurebe grape juices from the 2008. Thirteen 

commercial yeast strains, EC1118, Sauvignon, VL3, X5, X16, VIN 13, Alchemy I, Alchemy II, 

4F9, LVCB, LittoLevure, AWRI R2 and QA23 were used for the fermentation of this grape 

juice. The investigated results of the fermentation kinetics, some metabolic and aroma 

compounds of Scheurebe wines are described below. 

 

Growth kinetics: The result in Figure 4-8 shows significantly different growth kinetics of 

thirteen yeast fermentations.  Sacchromyces strains EC1118, VIN13 and AWRI R2 were the 

strongest and fastest yeast fermenters (13 days) followed by VL3 and X5 (20 days), whereas 

the Alchemy II and QA23 strains were the slowest (35 days). The grape juice fermentations 

with strains Sauvignon, Alchemy I, 4F9, LVCB and LittoLevure resulted in stuck 

fermentations with long fermentation durations ranging from 25 to 35 days and high residual 

sugar concentrations (Figure 4-9), while the other strains successfully completed 

fermentations. Although the fermentation of strain QA23 was very slow, it was completed 

within 35 days with low residual sugar in the final wine.  

 

Chemical compositions: Figure 4-9 shows that the Sauvignon, LVCB and LittoLevure 

strains produced wine having the highest residual sugar (26.3 + 3.3, 24.5 + 3.5 and 25.6 + 

1.8 g L-1, respectively), followed by strains 4F9 and Alchemy I. While, wines obtained from 

the other yeast strains had low amounts of residual sugar reaching dryness (1.2 + 0.2 

to    4.9 + 0.5 g L-1). There was a statistical difference for the glycerol production by the 

inoculated thirteen commercial yeast strains. The EC1118 and X16 strains were the highest 

glycerol producers (4.3 + 0.1 and 4.4 + 0.2 g L-1, respectively) followed by strain VL3 (4.2 + 

0.1 g L-1). In contrast, strains Sauvignon, 4F9 and LVCB were the lowest producers of this 

compound (3.6 + 0.2, 3.7 + 0.2 and 3.7 + 0.1 g L-1, respectively). 

 

Organic acids: Table 4-5 demonstrates that the wines produced by thirteen yeast strains 

had similar concentrations of tartaric, malic and shikimic acids which ranged from 0.85 + 0.08 

to 1.23 + 0.30 g L-1, 4.83 + 0.16 to 5.23 + 0.21 g L-1 and 42.79 + 0.40 to 45.19 + 1.38 mg L-1, 

respectively. However, most yeast strains seemed to degrade approximately 13-20 % malic 

acid from 6.03 g L-1 in initial grape juice. The EC1118 strain produced the highest amounts of 

lactic acid (0.14 + 0.00 g L-1) followed by the AWRI R2, QA23 and VIN13 strains (0.12 + 0.00, 

0.10 + 0.02 and 0.10 + 0.01 g L-1, respectively), whereas strain X16 produced the lowest 
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amount (0.06 + 0.01  g L-1). On the other hand, strain EC1118 and strain VIN13 produced 

lower amount of acetic acid (0.24 + 0.01 and 0.20 + 0.02 g L-1) than the other strains. 

Regarding citric acid, its level was most evident in the VL3 and QA23 wines (0.25 + 0.02 and 

0.25 + 0.06 g L-1, respectively) followed by strains EC1118 and X16 (0.22 + 0.02 and 0.22 + 

0.01 g L-1, respectively), while the other wines had similar low levels. 

 

 
Figure 4-8 Growth kinetics of fresh Scheurebe grape juice fermentations with 13 different 

commercial yeast strains  

 

 
 

Figure 4-9 Concentration of residual sugar and glycerol in finished Scheurebe grape wines 

produced by 13 different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

yeast strains of each compound according to the DMRT test. 
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Table 4-5 Concentration of organic acids found in finished Scheurebe wines developed by 13 yeast strains 

 

Yeast  Tartaric acid (g L-1) Malic acid (g L-1) Lactic acid (g L-1) Shikimic acid (mg L-1) Acetic acid (g L-1) Citric acid (g L-1) 

EC1118 0.90 + 0.09 a 5.18 + 0.46 a 0.14 + 0.00 a 43.27 + 1.00 a 0.24 + 0.01 b 0.22 + 0.02 abc 

Sauvignon 1.00+ 0.15 a 4.99 + 0.10 a 0.08 + 0.02 def 43.57 + 0.42 a 0.39 + 0.02 a 0.19 + 0.01 cd 

VL3 1.00 + 0.18 a 5.01 + 0.06 a 0.08 + 0.02 def 44.52 + 0.77 a 0.37 + 0.01 a 0.25 + 0.02 a 

X5 0.85 + 0.08 a 4.99 + 0.09 a 0.09 + 0.01 cde 42.79 + 0.40 a 0.36 + 0.03 a 0.21 + 0.01 bc 

X16 1.01 + 0.12 a 4.90 + 0.10 a 0.06 + 0.01 f 43.88 + 0.93 a 0.38 + 0.02 a 0.22 + 0.01 abc 

VIN13 0.91 + 0.08 a 5.02 + 0.11 a 0.10 + 0.01 bcd 43.91 + 0.62 a 0.20 + 0.02 b 0.18 + 0.01 d 

Alchemy I 1.02 + 0.18 a 5.04 + 0.19 a 0.07 + 0.01 ef 43.80 + 0.17 a 0.34 + 0.01 a 0.18 + 0.00 d 

Alchemy II 1.23 + 0.30 a 4.83 + 0.16 a 0.08 + 0.01 def 43.83 + 1.00 a 0.37 + 0.02 a 0.19 + 0.01 cd 

4F9 1.20 + 0.24 a 5.03 + 0.21 a 0.08 + 0.01 def 44.00 + 2.25 a 0.36 + 0.04 a 0.19 + 0.00 cd 

LVCB 0.93 + 0.10 a 5.23 + 0.01 a 0.08 + 0.01 def 43.47 + 0.30 a 0.37 + 0.04 a 0.19 + 0.00 cd 

LittoLevure  1.06 + 0.26 a 5.13 + 0.13 a 0.08 + 0.01 def 43.54 + 0.32 a 0.38 + 0.01 a 0.19 + 0.00 cd 

AWRI R2 0.88 + 0.07 a 5.00 + 0.18 a 0.12 + 0.00 b 44.23 + 0.13 a 0.34 + 0.03 a 0.19 + 0.00 cd 

QA23 1.08 + 0.32 a 5.21 + 0.09 a 0.10 + 0.02 bc 45.19 + 1.38 a 0.34 + 0.06 a 0.25 + 0.06 a 

Each value shows the mean + standard deviation. 

Values displaying the same letter (only ‗a‘) within the same column indicate no significant difference (p>0.05) among yeast strains, whereas 

those displaying different letters are significantly different (p<0.05) according to the DMRT test. 
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SO2-binding compounds: As shown in Figure 4-10, strains VL3, X5 and X16 were the 

highest producers of not only -ketoglutarate (32.4 + 1.8, 32.8 + 1.4 and 26.3 + 1.3 mg L-1, 

respectively), but also acetaldehyde (62.7 + 0.4, 65.1 + 3.7 and 62.0 + 7.7 mg L-1, 

respectively), however produced low pyruvate. Strain EC1118 was the highest producer of -

ketoglutarate and pyruvate (27.7 + 1.8 and 29.0 + 3.4 mg L-1), but the lowest producer of 

acetaldehyde (41.9 + 1.1 mg L-1). In addition, acetaldehyde concentration was also most 

evident in the Sauvignon, Alchemy I, 4F9, LVCB and LittoLevure wines (63.1 + 1.4, 55.7 + 

2.7, 56.6 + 6.4, 58.5 + 1.6 and 64.4 + 4.0 mg L-1, respectively). Interestingly, strain VIN13 

seemed to be the lowest SO2-binding compound producer. 

 

Sulphur containing compounds: Figure 4-11 displays some differences among the yeast 

strains in terms of H2S, dimethyl sulphide (DMS) and carbon disulphide (CS2) in the 

Scheurebe wines. The Sauvignon strain was the highest producer of H2S and CS2 (3.4 + 0.6 

and 2.3 + 0.2 g L-1, respectively) followed by strains EC1118, X16 and VIN13, respectively. 

The concentration of CS2 was also most evident in the QA23 wine (2.1 + 0.1 g L-1), but H2S 

was not detectable in this wine. The thirteen yeast strains developed similar amounts of DMS 

ranging from 1.1 + 0.1 to 1.7 + 0.2 g L-1). The other investigated sulphur compounds, 

ethanethiol, methanethiol, dimethyl disulphide, thioacetic acid S-methylester and thioacetic 

acid S-ethylester were not detected in all wine treatments. 

 

 
 

Figure 4-10 Concentration of SO2-binding compounds in finished Scheurebe grape wines 

produced by 13 different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among the 

yeast strains of each compound according to the DMRT test. 

4
1

.9
 c

2
9

.0
 a

2
7

.7
 a

b

6
3

.1
 a

2
2

.6
 c

2
4

.4
 b

6
2

.7
 a

1
2

.9
 d

e

3
2

.4
 a

6
5

.1
 a

1
5

.9
 d

3
2

.8
 a

6
2

.0
 a

1
0

.4
 e

2
6

.3
 a

b

4
1

.5
 c

1
3

.9
 d

e

1
5

.6
 c

5
5

.7
 a

b

2
0

.7
 c

2
2

.4
 b

4
9

.1
 b

c

2
3

.7
 b

c

2
4

.3
 b

5
6

.6
 a

b

2
7

.4
 a

b

2
5

.1
 b

5
8

.5
 a

2
3

.5
 b

c

2
1

.2
 b

c

6
4

.4
 a

2
4

.7
 b

c

2
2

.7
 b

4
7

.7
 b

c

1
4

.7
 d

2
3

.2
 b

4
9

.2
 b

c

2
2

.2
 c

2
1

.0
 b

c

0

20

40

60

80

alpha-Ketoglutarate Pyruvate Acetaldehyde

C
o

n
c
e
n

tr
a
ti

o
n

 (
m

g
 L

-1
)

EC1118 Sauvignon VL3 X5 X16 VIN13 Alchemy I

Alchemy II 4F9 DSM LVCB LittoLevure AWRI R2 QA23



 
  

 
92 

 
 
Figure 4-11 Formation of hydrogen sulphide, dimethyl sulphide and carbon disulphide in 

finished Scheurebe grape wines produced by 13 different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

yeast strains of each compound, whereas means followed by the same letters are not 

significantly different (p>0.05) according to the DMRT test. 

 

Higher alcohols: As shown in Table 4-6, the production of 2-methyl propanol and 3-methyl 

butanol slightly differed among the yeast strains used. Strain EC1118 seemed to be the 

predominant producer of the last two alcohols (28.7 + 3.5 and 153.3 + 16.8 mg L-1, 

respectively). The highest concentration of 2-methyl propanol was also produced by strain 

Alchemy II (29.3 + 6.1 mg L-1), followed by strains X16, 4F9, LVCB and AWRI 2 (24.7 + 0.6, 

25.0 + 6.2, 26.7 + 10.4 and 26.3 + 2.5 mg L-1, respectively). The formation of hexanol and 2-

methyl butanol behaved similarly across the thirteen yeast strains used. They produced 

similar concentrations ranging from 1745.7 + 198.8 to 2187.3 + 126.5 mg L-1 of hexanol and 

18.0 + 3.0 to 26.0 + 4.6 mg L-1 of 2-methyl butanol. Regarding the 2-phenyl ethanol, its 

concentration was most evident in the VL3 wine (24.4 + 1.7 mg L-1) followed by the QA23, 

EC1118 and X16 wines (23.8 + 0.5, 23.3 + 1.6, 23.3 + 1.6 and 23.4 + 0.7 mg L-1, respectively) 

as shown in Figure 4-12.  

 

Acetic acid esters: The results in Figure 4-12 and Figure 4-13 demonstrate significantly 

different formation of acetic acid esters that varied among the commercial yeast strains used. 

The VIN13 strain was the most predominant acetic acid ester producer, except for acetic acid 

ethyl ester. It produced wine containing the highest amounts of acetic acid 3-methylbytyl 

ester, acetic acid 2-methylbytyl ester, acetic acid 2-phenylethyl ester and acetic acid hexyl 

ester ranging from 800.6 + 128.2 g L-1, 49.1 + 4.3 g L-1, 124.1 + 1.5 g L-1 and 136.3 
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acetic acid ethyl ester, while the remaining yeast strains (excluding VIN13) produced similar 

high amounts ranging from 53.3 + 5.1 to 90.0 + 12.0 mg L-1 (Figure 4-12). Strain EC1118 

also seemed to produce high amounts of most acetic acid esters, although slightly lower than 

the formation by strain VIN13. High concentrations of acetic acid 2-phenylethyl ester were 

also evident in the AWRI R2 and VL3 wines (107.4 + 7.2 and 104.1 + 3.4 g L-1, respectively). 

It seemed that there was a positive correlation between the higher concentration of 2-phenyl 

ethanol (Figure 4-12) and the greater acetic acid 2-phenyl ethyl ester formation by strains 

EC1118 and VL3 (Figure 4-13). 

 

Table 4-6 Concentration of higher alcohols found in finished Scheurebe wines developed by 

13 yeast strains 

 

Yeast  2-Methyl propanol  

(mg L-1) 

Hexanol  

(g L-1) 

3-Methyl butanol  

(mg L-1) 

2-Methyl butanol  

(mg L-1) 

EC1118 28.7 + 3.5 a 2187.3 + 126.5 a 153.3 + 16.8 a 25.3 + 3.1 a 

Sauvignon 22.0 + 3.0 abc 1909.0 + 105.0 a 96.3 + 6.1 bc 22.0 + 1.7 a 

VL3 20.7 + 2.3 abc 2033.7 + 108.2 a 113.3 + 11.5 bc 22.7 + 2.3 a 

X5 14.7 + 2.5 c 1885.0 + 115.4 a 94.0 + 15.0 bc 18.0 + 3.0 a 

X16 24.7 + 0.6 ab 2147.0 + 91.8 a 108.7 + 1.5 bc 25.3 + 0.6 a 

VIN13 17.0 + 3.6 bc 1758.0 + 198.6 a 104.0 + 18.5 bc 21.0 + 3.0 a 

Alchemy I 21.7 + 1.5 abc 2031.0 + 45.9 a 105.7 + 4.2 bc 21.3 + 1.1 a 

Alchemy II 29.3 + 6.1 a 2039.3 + 167.3 a 119.7 + 17.6 bc 26.0 + 4.6 a 

4F9 25.0 + 6.2 ab 1745.7 + 198.8 a 96.7 + 18.1 bc 22.3 + 4.7 a 

LVCB 26.7 + 10.4 ab 1863.3 + 306.2 a 102.7 + 32.8 bc 23.7 + 8.4 a 

LittoLevure  20.7 + 8.0 abc 1694.0 + 302.1 a 85.7 + 32.2 c 19.7 + 8.0 a 

AWRI R2 26.3 + 2.5 ab 2088.7 + 113.8 a 118.7 + 11.9 bc 24.7 + 3.1 a 

QA23 20.3 + 4.9 abc 1991.0 + 447.5 a 127.0 + 15.1 ab 22.0 + 4.6 a 

Each value shows the mean + standard deviation. 

Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05) among the yeast strains, whereas those displaying different letters are 

significantly different (p<0.05) according to the DMRT test. 
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Figure 4-12 Formation of 2-phenyl ethanol and acetic acid ethyl ester in finished Scheurebe 

grape wines produced by 13 different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among the 

yeast strains of each compound according to the DMRT test. 

n.q. denotes not quantified or traced 

 

 

Figure 4-13 Formation of acetic acid esters found in finished Scheurebe grape wines 

developed by 13 different yeast strains (*10 = concentration of compound 

times 10) 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

yeast strains of each compound according to the DMRT test. 
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Table 4-7 Concentration of ethyl esters and diethyl ester found in finished Scheurebe wines fermented with 13 yeast strains 

 

Yeast  PrEtE (g L-1) BuEtE (g L-1) iBuEtE (g L-1) LAEtE (mg L-1) SAdiEtE (g L-1) 

EC1118 119.3 + 10.2 a 215.0 + 11.4 abc 58.3 + 5.1 bcd 25.7 + 1.5 a 1467.3 + 88.2 a 

Sauvignon 30.0 + 2.7 cd 263.0 + 17.8 ab 42.7 + 4.2 efg 13.7 + 0.6 de 334.3 + 68.1 d 

VL3 51.3 + 7.0 bc 143.0 + 10.5 de 74.7 + 7.1 a 15.0 + 1.0 cde 1577.7 + 140.0 a 

X5 64.7 + 15.5 b 121.7 + 14.0 e 38.7 + 6.5 fg 15.3 + 0.6 cde 1562.0 + 20.3 a 

X16 48.7 + 2.5 bc 240.3 + 17.0 abc 70.0 + 3.0 ab 14.0 + 0.0 de 1171.7 + 107.9 b 

VIN13 53.3 + 5.5 bc 221.7 + 19.6 abc 33.0 + 3.6 g 16.0 + 2.0 cd 1238.0 + 11.8 b 

Alchemy I 34.3 + 2.1 cd 229.7 + 9.0 abc 44.7 + 0.6 defg 14.3 + 0.6 cde 661.0 + 83.4 c 

Alchemy II 39.7 + 8.5 cd 248.0 + 32.1 abc 56.3 + 7.1 cde 15.7 + 1.5 cde 714.0 + 26.5 c 

4F9 30.3 + 10.2 cd 259.7 + 53.0 ab 46.3 + 11.6 defg 13.7 + 2.1 de 454.3 + 208.8 d 

LVCB 31.0 + 14.8 cd 273.3 + 55.7 a 45.0 + 12.5 defg 14.0 + 2.6 de 377.3 + 121.1 d 

LittoLevure  22.0 + 2.7 d 225.3 + 51.8 abc 35.0 + 12.1 fg 13.0 + 2.0 e 405.7 + 29.5 d 

AWRI R2 52.0 + 6.0 bc 188.0 + 17.1 cd 67.7 + 5.5 abc 18.7 + 0.6 b 740.7 + 57.9 c 

QA23 67.3 + 15.6 b 210.0 + 46.5 bc 48.3 + 6.8 def 17.0 + 1.0 bc 805.0 + 124.9 c 

 

Each value shows the mean + standard deviation from three fermentation replicates. 

Values displaying different letters within the same column are significantly different (p<0.05) according to the DMRT test. 
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Ethyl esters and diethyl ester: The results in Table 4-7 show the difference of these 

compounds among the thirteen yeast strains inoculated. The EC1118 strain was the most 

predominant strain of PrEtE, LAEtE and SAdiEtE productions (119.3 + 10.2 g L-1, 25.7 

+  1.5 mg L-1 and 1467.3 + 88.2 g L-1, respectively). Concentration of SAdiEtE was also 

most obvious in the VL3 and X5 wines (1577.7 + 140.0 and 1562.0 + 20.3 g L-1, 

respectively). Strain LVCB developed the highest amounts of BuEtE (273.3 + 55.7 g L-1) 

followed by strains Sauvignon and 4F9 (263.0 + 17.8 and 259.7 + 53.0 g L-1, respectively), 

while low amounts were produced by the VL3 and X5 strains. The highest concentration of 

iBuEtE was present in the VL3 and X16 wines (74.7 + 7.1 and 70.0 + 3.0 g L-1, respectively) 

followed by the AWRI R2 wine (67.7 + 5.5 g L-1). 

 

Medium-chain fatty acids and their esters: Like the other aroma compounds, 

concentrations of MCFAs and their ethyl esters were significantly influenced by the 

commercial yeast strains inoculated, except for DAEtE as given in Table 4-8. The thirteen 

yeast strains produced similar concentrations of DAEtE ranging from 403.7 + 158.2 to 565.0 

+ 13.2 g L-1. The five strains of Alchemy I and II, 4F9, LVCB and LittoLevure similarly 

developed the highest amounts of not only hexanoic, octanoic and decanoic acids (12.3 + 

0.6 to 14.0 + 1.7 mg L-1, 11.0 + 0.0 to 13.0 + 1.0 mg L-1 and 2.6 + 0.1 to 2.9 + 0.3 mg L-1, 

respectively) but also HAEtE and OAEtE ranging from 949.7 + 72.2 to 988.7 + 68.6 g L-1 

and 1426.7 + 104.9 to 1590.0 + 58.8 g L-1, respectively. Strain Sauvignon also produced 

high amounts of these compounds, except for decanoic acid. High amounts of decanoic acid 

were also present in the VIN13 wine. On the contrary, the VL3 strain tended to be the low 

producer of these compounds, excluding DAEtE.  

 

Monoterpenes: Figure 4-14 demonstrates that the thirteen yeast strains significantly 

affected only the liberation of linalool. The X5, VIN13, Alchemy II and VL3 strains similarly 

released high amounts of linalool (42.6 + 1.7, 42.9 + 2.2, 42.6 + 2.1 and 41.3 + 0.7 g L-1, 

respectively), on the contrary, strains EC1118 and Sauvignon seemed to liberate low 

amounts (36.8 + 1.5 and 36.3 + 1.0 g L-1, respectively). Other monoterpenes, trans-linalool 

oxide, cis-linalool oxide and -terpineol were liberated similarly among all yeast strains that 

ranged from 127.0 + 5.5 to 136.8 + 5.9 g L-1, 31.8 + 2.4 to 34.3 + 0.6 g L-1 and 70.4 + 8.7 

to 79.3 + 6.5 g L-1, respectively.  
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Table 4-8 Concentration of fatty acids and their ethyl esters found in finished Scheurebe wines fermented with 13 yeast strains 

 

Yeast  Hexanoic acid  

(mg L-1) 

Octanoic acid  

(mg L-1) 

Decanoic acid 

(mg L-1) 

HAEtE (g L-1) OAEtE (g L-1) DAEtE (g L-1) 

EC1118 9.0 + 0.0 b 9.3 + 0.6 cd 2.0 + 0.1 abc 698.0 + 10.6 de 1343.0 + 32.0 ab 531.0 + 15.9 a 

Sauvignon 12.7 + 1.5 a 11.0 + 2.0 abc 1.6 + 1.1 c 960.3 + 46.3 abc 1425.7 + 78.2 a 447.3 + 43.5 a 

VL3 7.0 + 0.0 c 7.0 + 0.0 d 1.6 + 0.1 c 488.7 + 26.5 f 1011.7 + 47.1 b 427.0 + 7.2 a 

X5 7.0 + 0.0 c 7.3 + 0.6 d 2.0 + 0.1 abc 482.7 + 37.5 f 1003.3 + 88.9 b 461.3 + 8.3 a 

X16 10.0 + 1.0 b 8.7 + 1.5 cd 1.9 + 0.6 bc 827.3 + 61.0 bcd 1215.3 + 248.5 ab 403.7 + 158.2 a 

VIN13 9.7 + 0.6 b 10.0 + 0.0 bc 2.5 + 0.1 ab 809.0 + 47.3 cde 1443.3 + 59.5 a 565.0 + 13.2 a 

Alchemy I 12.3 + 0.6 a 11.0 + 0.0 abc 2.6 + 0.1 ab 973.0 + 41.6 ab 1440.3 + 137.1 a 432.7 + 50.9 a 

Alchemy II 13.0 + 0.0 a 12.0 + 0.0 ab 2.7 + 0.2 ab 988.7 + 68.6 a 1590.0 + 58.8 a 513.7 + 13.6 a 

4F9 13.3 + 0.6 a 12.7 + 0.6 a 2.9 + 0.3 a 949.7 + 72.2 abc 1433.7 + 262.5 a 513.7 + 84.7 a 

LVCB 13.0 + 1.0 a 12.3 + 0.6 ab 2.7 + 0.3 ab 954.7 + 62.0 abc 1448.3 + 153.0 a 430.7 + 39.0 a 

LittoLevure  14.0 + 1.7 a 13.0 + 1.0 a 2.8 + 0.5 ab 982.7 + 24.9 ab 1426.7 + 104.9 a 479.7 + 141.4 a 

AWRI R2 8.3 + 0.6 bc 9.0 + 0.0 cd 2.0 + 0.1 abc 659.0 + 59.0 e 1260.7 + 9.0 ab 504.7 + 31.7 a 

QA23 10.0 + 2.6 b 9.0 + 3.5 cd 1.9 + 0.9 bc 768.7 + 46.3 de 1276.7 + 135.7 ab 407.0 + 104.5 a 

 

Each value shows the mean + standard deviation. 

Values displaying the same letter (only ‗a‘) within the same column of each factor indicate no significant difference (p>0.05), whereas those 

displaying different letters are significantly different (p<0.05) according to the DMRT test. 
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Figure 4-14 Formation of monoterpenes found in finished Scheurebe grape wines developed by 13 different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means followed by different letters on the top of the bar are 

significantly different (p<0.05) among yeast strains of each monoterpene, whereas means followed by the same letters are not significantly 

different (p>0.05) according to the DMRT test. 
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4.2 Effects of yeast strains and/or nutrient supplements on wine fermentation and 

quality of Sauvignon blanc grape wines 

 

The experimental results which are described in the following chapters were obtained from 

Sauvignon blanc grape juice fermented with different commercial Saccharomyces yeast 

strains and/or nutrient sources at different concentrations. 

 

4.2.1 Effect of nine commercial Saccharomyces yeast strains and two nutrient sources 

on fermentative characteristics, metabolic compounds and wine aromas of Sauvignon 

blanc grape wines 

 

In 2008, fermentation was performed in fresh Sauvignon blanc juices. Nine commercial yeast 

strains; EC1118, Sauvignon, VL3, X5, VIN7, VIN13, 4F9, LVCB and AWRI R2 and two 

nutrient sources; OptiWhite (natural inactivated yeast) and Fermaid E (blend of DAP, 

thiamine, yeast cell walls and ammonium sulphate) at 0.3 g L-1 were used in the 

fermentations. The fermentation kinetics, some metabolic compounds and wine aromas in 

final wines were examined. 

 

The fermentation kinetics: The result shows that all fermentation kinetics had a similar 

pattern among nutrient sources but varied depending on the nine yeast strains used (Figure 

4-15). Strains AWRI R2, X5, VIN13 and VL3 seemed to be the strongest strains and had 

similarly faster growth kinetics and shorter fermentation times (11 days). While strains 

EC1118, LVCB and 4F9 followed similar patterns, they had however a slightly longer lag 

phase. On the other hand, the Sauvignon and VIN7 strains had slow growth kinetics and 

fermentation times (16 days), particularly the latter strain seemed to obtain a sluggish 

fermentation with four days of lag phase after inoculation. Nevertheless, all treatments 

completely finished fermentation depending on the yeast strains. Overall, the addition of 

Fermaid E tended to enhance more effective the fermentation kinetic than OptiWhite. 

 

Chemical composition: Both yeast strain and nutrient source had no influence on the 

concentrations of residual sugar and glycerol in final wines (Figure 4-16). The nine yeast 

strains produced wines having similar amounts of residual sugar and glycerol ranging from 

0.3 + 0.1 to 0.9 + 0.2 g L-1 and 4.5 + 0.0 to 6.3 + 0.1 g L-1, respectively. All yeast strains 

consumed practically almost initial sugar provided and consequently resulted in low amounts 

of residual sugar below 1 g L-1. Nonetheless, strains EC1118, VL3, VIN7 and VIN13 tended 

to produce high amounts of glycerol. 
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Figure 4-15 Fermentation kinetics of fresh Sauvignon blanc grape juice fermentations with 

nine different commercial yeast strains and two nutrient sources 

 

 

Figure 4-16 Concentration of residual sugar and glycerol found in finished Sauvignon blanc 

grape wines fermented with nine yeast strains and two nutrient sources  

Vertical bars represent standard deviations from two fermentation replicates. Compounds 

displaying “(ns)” show no significant difference (p>0.05) among treatment combinations of 

each compound according to the DMRT test. 
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Table 4-9 Concentration of organic acids found in finished Sauvignon blanc wines produced by nine yeast strains with two nutrient sources 

 

Yeast  Nutrient  Tartaric acid  

(g L-1) 

Malic acid  

(g L-1) 

Lactic acid  

(g L-1) 

Shikimic acid  

(mg L-1) 

Acetic acid  

(g L-1) 

Citric acid  

(g L-1) 

EC1118 Fermaid E   3.34 + 0.08 a 5.29 + 0.05 bc 0.19 + 0.00 b 34.03 + 0.19 a 0.29 + 0.00 cde 0.27 + 0.00 b 

 OptiWhite 3.19 + 0.02 a 5.35 + 0.01 ab 0.16 + 0.00 ef 33.06 + 0.07 a 0.30 + 0.00 cde 0.27 + 0.00 b 

Sauvignon Fermaid E   3.14 + 0.16 a 5.16 + 0.05 de 0.16 + 0.00 ef 34.77 + 0.17 a 0.30 + 0.02 cde 0.32 + 0.00 a 

 OptiWhite 3.04 + 0.16 a 5.08 + 0.02 ef 0.12 + 0.00 ij 34.18 + 0.69 a 0.40 + 0.00 b 0.28 + 0.00 b 

VL3 Fermaid E   3.38 + 0.11 a 5.00 + 0.08 fg 0.13 + 0.01 hi 33.80 + 0.63 a 0.29 + 0.00 cde 0.25 + 0.00 b 

 OptiWhite 3.38 + 0.13 a 4.97 + 0.03 g 0.11 + 0.02 j 33.89 + 0.31 a 0.31 + 0.03 cd 0.26 + 0.00 b 

X5 Fermaid E   3.23 + 0.07 a 5.17 + 0.01 de 0.19 + 0.00 b 34.06 + 0.72 a 0.23 + 0.03 ef 0.25 + 0.00 b 

 OptiWhite 3.26 + 0.25 a 5.20 + 0.01 cd 0.15 + 0.00 fg 34.24 + 0.00 a 0.32 + 0.01 cd 0.26 + 0.00 b 

VIN7 Fermaid E   3.54 + 0.21 a 5.19 + 0.02 cd 0.17 + 0.01 cde 33.11 + 0.33 a 0.65 + 0.05 a 0.26 + 0.00 b 

 OptiWhite 2.89 + 0.42 a 5.20 + 0.06 cd 0.18 + 0.01 cd 32.66 + 0.15 a 0.63 + 0.01 a 0.26 + 0.00 b 

VIN13 Fermaid E   3.50 + 0.07 a 5.16 + 0.03 de 0.17 + 0.01 de 33.68 + 0.05 a 0.34 + 0.01 bc 0.27 + 0.00 b 

 OptiWhite 3.25 + 0.34 a 5.15 + 0.04 de 0.12 + 0.02 ij 33.43 + 0.35 a 0.29 + 0.01 cde 0.28 + 0.00 b 

4F9 Fermaid E   3.03 + 0.28 a 5.44 + 0.03 a 0.22 + 0.02 a 33.45 + 0.05 a 0.24 + 0.07 ef 0.26 + 0.00 b 

 OptiWhite 3.26 + 0.33 a 5.44 + 0.07 a 0.16 + 0.01 ef 33.15 + 0.13 a 0.30 + 0.02 cde 0.27 + 0.00 b 

LVCB Fermaid E   2.87 + 0.35 a 5.20 + 0.01 cd 0.22 + 0.01 a 34.12 + 0.10 a 0.19 + 0.07 f 0.26 + 0.00 b 

 OptiWhite 3.04 + 0.04 a 5.41 + 0.00 a 0.17 + 0.01 de 33.25 + 0.14 a 0.25 + 0.01 def 0.26 + 0.00 b 

AWRI R2 Fermaid E   3.16 + 0.10 a 5.36 + 0.08 ab 0.19 + 0.01 b 34.16 + 0.26 a 0.26 + 0.02 def 0.26 + 0.00 b 

  OptiWhite 3.08 + 0.18 a 5.43 + 0.01 a 0.14 + 0.00 gh 34.25 + 0.97 a 0.29 + 0.09 cde 0.27 + 0.00 b 

Each value shows the mean + standard deviation. Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05) among treatments, whereas those displaying different letters are significantly different (p<0.05) according to the DMRT test. 
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Organic acids: The results in Table 4-9 demonstrate that strains 4F9 and AWRI R2 

produced wines containing the highest amounts of malic acid with less response to nutrient 

source (5.44 + 0.03, 5.44 + 0.07 and 5.36 + 0.08, 5.43 + 0.01 g L-1, respectively). Whereas, 

the presence of OptiWhite resulted in high amounts of this acid in the LVCB and EC1118 

wines (5.41 + 0.00 and 5.35 + 0.01 g L-1). The results also showed that strains 4F9 and 

AWRI R2 consumed approximately 22.5 % of malic acid from the initial acid (7.02 g L-1). On 

the other hand, addition of Fermaid E to the juice resulted in the highest level of lactic acid in 

the 4F9 and LVCB wines (0.22 + 0.02 and 0.22 + 0.01 g L-1) and citric acid in the Sauvignon 

wine (0.32 + 0.00 g L-1). Strain VIN7 was the highest acetic acid producer in either the 

Fermaid E or the OptiWhite treatment (0.65 + 0.05 and 0.63 + 0.01 g L-1, respectively). All 

wine treatments had similar concentrations of tartaric and shikimic acid ranging from 2.87 + 

0.35 to 3.54 + 0.21 g L-1 and 32.66 + 0.15 to 34.77 + 0.17 mg L-1, respectively.  

 

SO2-binding compounds: The results show that different productions of -ketoglutarate and 

pyruvate in wines significantly varied depending on the yeast strains and the nutrient sources, 

while that of acetaldehyde were similar (Figure 4-17). The addition of OptiWhite into the juice 

significantly stimulated the highest formation of -ketoglutarate by strains Sauvignon and X5 

(45.8 + 2.3 and 43.1 + 0.3 mg L-1) and that of pyruvate by the VIN7 strain (28.8 + 4.3 mg L-1). 

Nevertheless, the concentration of these keto acids significantly diminished with Fermaid E 

supplementation. Regarding acetaldehyde, its concentrations were similar among the wine 

treatments ranging from 9.1 + 2.4 to 27.2 + 0.0 mg L-1, although strain EC1118 tended to be 

a high acetaldehyde producer.  

 

Sulphur containing compounds: Figure 4-18 demonstrates that the nine yeast strains 

exhibited different production of these compounds in response to the nutrient source. Strain 

VIN7 constantly produced the highest amounts of dimethyl sulphide in both nutrient sources 

(10.3 + 1.0 and 10.6 + 0.2 g L-1, respectively). Carbon disulphide was detected only in the 

Sauvignon, X5, VIN7, VIN13 and LVCB wines, however was most evident in the LVCB wine 

(1.3 + 0.2 and 1.1 + 0.0 g L-1, respectively). Interestingly, strain LVCB also developed the 

highest amount of dimethyl disulphide in the Fermaid E sample (1.0 + 0.3 g L-1). In addition, 

other sulphur containing compounds like hydrogen sulphide, ethanethiol, methanethiol, 

thioacetic acid S-methylester and thioacetic acid S-ethylester were not detected in all 

Sauvignon blanc wines. 
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Figure 4-17 Concentration of SO2-binding compounds in finished Sauvignon blanc grape 

wines fermented with nine yeast strains and two nutrient sources  

 

 

Figure 4-18 Concentration of dimethyl sulphide, carbon disulphide and dimethyl disulphide 

found in finished Sauvignon blanc grape wines produced by nine yeast strains 

and two nutrient sources  

Vertical bars represent standard deviations from two fermentation replicates. Means followed 

by different letters on the top of the bar are significantly different (p<0.05) among treatment 

combinations of each compound according to the DMRT test. Compounds displaying “(ns)” 

show no significant difference (p>0.05) among treatment combinations of each compound 

according to the DMRT test. 

n.d. denotes not detected 
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Higher alcohols: The results in Table 4-10 show that the interaction of the commercial yeast 

strain and the nutrient source did not significantly influence the formation of all five higher 

alcohols in final wines. However, the AWRI R2 and Sauvignon strains considerably tended to 

be higher alcohol producers and the addition of OptiWhite tended to stimulate the higher 

development of these alcohols for the nine yeast strains. The Sauvignon blanc wines had 

similar concentrations of higher alcohols; 17.0 + 1.5 to 47.5 + 6.7 mg L-1 2-methyl propanol, 

103.8 + 14.1 to 176.3 + 33.6 mg L-1 3-methyl butanol, 19.6 + 0.2 to 44.6 + 5.5 mg L-1 2-

methyl butanol, 2573.9 + 402.8 to 3748.5 + 462.0 g L-1 hexanol and 12.1 + 1.4 to 30.3 

+  3.7 mg L-1 2-phenyl ethanol.  

 

Acetic acid esters: Although commercial yeast strains and nutrient sources did not influence 

the formation of higher alcohols, all acetic acid ester productions were significantly different 

among the treatment combinations (Table 4-10 and Figure 4-19). The acetic acid ethyl 

esters in this trial were identified by relative peak area as their concentrations were small and 

out of the limit of quantification (50 mg L-1). Strain VIN7 was the highest acetic acid ethyl 

ester producer without response to the nutrient source (19.3 + 2.5 and 22.3 + 4.7 of relative 

peak area, respectively). The Sauvignon strain seemed to be the predominant producer of 

most acetic acid esters, excluding acetic acid hexyl ester, with less dependence on the 

nutrient source. These wines had the highest amounts of these esters; 444.3 + 32.9 and 

404.6 + 15.7 g L-1 acetic acid 3-methylbutyl ester, 36.4 + 3.4 and 34.0 + 1.1 g L-1 acetic 

acid 2-methylbutyl ester and 80.4 + 0.9 and 83.5 + 7.7 g L-1 acetic acid 2-phenylethyl ester. 

The concentration of acetic acid hexyl ester was most obvious in the VIN7 wines with both 

nutrient sources (144.7 + 12.7 and 128.2 + 9.6 g L-1, respectively), while acetic acid 2-

phenylethyl ester and acetic acid 3- and 2-methylbutyl ester were highest in the Fermaid E 

sample (81.1 + 9.6, 467.7 + 100.9 and 29.7 + 5.5 g L-1, respectively). Strain VIN13 also 

developed the highest amounts of acetic acid 2-methylbutyl ester in both nutrient sources 

(31.1 + 3.7 and 31.6 + 4.2 g L-1, respectively), acetic acid 3-methylbutyl ester in the Fermaid 

E treatment (341.3 + 56.0 g L-1) and acetic acid 2-phenylethyl ester in the OptiWhite sample 

(68.2 + 9.9 g L-1). Overall, most acetic acid esters tended to increase with the Fermaid E 

supplement, however it is strain-dependent.  
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Table 4-10 Concentration of higher alcohols and acetic acid ethyl ester found in finished Sauvignon blanc wines developed by nine yeast 

strains with two nutrient sources 

 
Yeast  Nutrient  2-Methyl propanol  

(mg L
-1

) 

3-Methyl butanol  

(mg L
-1

) 

2-Methyl butanol  

(mg L
-1

) 

Hexanol  

(g L
-1

) 

2-Phenyl ethanol 

(mg L
-1

) 

 Acetic acid ethyl ester 

(relative peak area) 

EC1118 Fermaid E   29.0 + 5.8 a 157.1 + 16.1 a 28.0 + 3.2 a 3411.3 + 311.6 a 21.1 + 0.2 a 12.4 + 0.2 b 

 OptiWhite 23.0 + 9.8 a 111.6 + 28.7 a 22.7 + 7.7 a 2875.4 + 478.2 a 21.8 + 0.2 a 9.5 + 2.1 bcde 

Sauvignon Fermaid E   28.0 + 3.2 a 134.1 + 11.3 a  33.6 + 2.2 a 3209.5 + 196.0 a 20.4 + 2.3 a 7.9 + 0.5 bcde 

 OptiWhite 43.0 + 6.0 a 170.6 + 19.1 a   44.6 + 5.5 a 3448.7 + 245.2 a 30.2 + 1.1 a 7.0 + 1.0 cde 

VL3 Fermaid E   29.5 + 2.1 a 136.5 + 7.8 a   30.4 + 1.6 a 3054.4 + 16.7 a 15.5 + 0.6 a 11.3 + 1.1 bcd 

 OptiWhite 28.0 + 2.5 a 114.1 + 4.6 a   28.4 + 1.7 a 2770.1 + 101.7 a 16.8 + 1.2 a 9.2 + 0.9 bcde 

X5 Fermaid E   24.5 + 2.9 a 118.3 + 13.1 a   27.7 + 3.1 a 2580.1 + 69.1 a 14.8 + 0.9 a 9.2 + 1.4 bcde 

 OptiWhite 30.0 + 1.8 a 122.7 + 2.5 a  32.3 + 0.1 a 2730.2 + 16.3 a 17.1 + 0.2 a 9.0 + 0.6 bcde 

VIN7 Fermaid E   21.5 + 0.6 a 109.3 + 2.4 a  19.6 + 0.2 a 2926.2 + 217.4 a 12.9 + 0.5 a 19.3 + 2.5 a 

 OptiWhite 34.0 + 8.3 a 103.8 + 14.1 a  22.8 + 3.9 a 3467.1 + 271.5 a 12.1 + 1.4 a 22.3 + 4.7 a 

VIN13 Fermaid E   22.5 + 3.6 a 121.1 + 22.1 a   28.7 + 5.7 a 2625.8 + 424.3 a 17.9 + 3.5 a 7.2  + 1.3 cde 

 OptiWhite 23.0 + 5.4 a 113.2 + 23.8 a  29.8 + 6.5 a 2573.9 + 402.8 a 20.2 + 3.1 a 6.7 + 1.6 de 

4F9 Fermaid E   17.0 + 1.5 a 121.3 + 0.5 a   21.4 + 0.0 a 3012.2 + 93.5 a 23.6 + 2.8 a 5.4 + 0.1 e 

 OptiWhite 31.0 + 5.9 a 159.3 + 37.6 a  33.7 + 3.3 a 3569.0 + 692.2 a 30.3 + 3.7 a 8.9 + 3.7 bcde 

LVCB Fermaid E   21.5 + 1.2 a 158.6 + 10.8 a   26.3 + 2.3 a 3349.6 + 123.8 a 24.0 + 0.1 a 8.0 + 0.7 bcde 

 OptiWhite 26.0 + 4.3 a 176.3 + 33.6 a   33.1 + 6.6 a 3748.5 + 462.0 a 30.0 + 3.2 a 9.3 + 1.8 bcde 

AWRI R2 Fermaid E   31.5 + 4.1 a 148.5 + 24.5 a   35.7 + 6.3 a 3497.7 + 217.4 a 24.0 + 0.5 a 7.7 + 1.2 cde  

  OptiWhite 47.5 + 6.7 a 173.2 + 33.6 a 44.3 + 9.0 a 3675.3 + 471.3 a 25.6 + 5.8 a 11.4 + 1.6 bc 

Each value shows the mean + standard deviation. Values displaying the same letters within the same column indicate no significant difference (p>0.05) 

among treatment combinations, whereas those displaying different letters are significantly different (p<0.05) according to the DMRT test. 
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Figure 4-19 Concentration of acetic acid esters found in finished Sauvignon blanc wines 

developed by nine yeast strains with two nutrient sources 

Vertical bars represent standard deviations from two fermentation replicates. Means followed 

by different letters on the top of the bar are significantly different (p<0.05) among treatment 

combinations of each compound according to the DMRT test. 
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Ethyl and diethyl esters: Table 4-11 shows that ethyl and diethyl ester productions differed 

according to treatment combinations of yeast strains and nutrient sources. The formation of 

LAEtE and BuEtE were similar among the wine treatments ranging from 19.9 + 2.3 to 34.9 + 

5.0 mg L-1 and 116.0 + 1.6 to 167.5 + 2.5 g L-1, respectively. Nevertheless, strains VL3 and 

X5 tended to be the high producers of BuEtE, whereas strains EC1118, 4F9, LVCB and 

AWRI R2 tended to develop high amounts of LAEtE. The concentration of iBuEtE was most 

obvious in the AWRI R2 wines with either Fermaid E or OptiWhite addition (163.8 + 6.1 and 

174.4 + 10.7 g L-1, respectively). Strain EC1118 was the highest producer of SAdiEtE in 

both nutrient sources (2268.5 + 67.6 and 2321.6 + 179.9 g L-1, respectively), whereas the 

highest amounts of PrEtE was present in the Fermaid E treatment (188.6 + 21.0 g L-1). A 

high amount of SAdiEtE was produced by strains VL3 and VIN13 in both nutrient sources as 

well (2065.8 + 195.5, 2351.1 + 12.7 and 2044.0 + 273.0, 2040.4 + 191.9 g L-1, respectively). 

It is likely that most ethyl and diethyl esters were considerably more dependent on the yeast 

strain than on the nutrient source. 

 

Monoterpenes: The result shows that the nine yeast strains had similar ability to release -

terpineol in any source of nutrient ranging from 12.5 + 0.8 to 16.3 + 0.1 g L-1 (Table 4-11). 

While the other monoterpenes like trans-linalool oxide, cis-linalool oxide and linalool were 

detected only in trace quantities in all wine treatments (data not shown).  

 

Medium-chain fatty acids and their ethyl esters: The results in Table 4-12 and Figure 4-

20 demonstrate that the formation of OAEtE and DAEtE significantly differed among yeast 

strains and nutrient sources. The formation of MCFAs and HAEtE were similar among the 

wine treatments ranging from 5.5 + 0.1 to 8.0 + 0.1 mg L-1 hexanoic acid, 6.0 + 0.1 to 9.2 + 

0.0 mg L-1 octanoic acid, 1.4 + 0.3 to 3.0 + 0.2 mg L-1 decanoic acid and 339.3 + 29.6 to 

551.3 + 56.3 g L-1 HAEtE. However, strain LVCB tended to be the high producer of 

hexanoic and octanoic acid.  The addition of Fermaid E promoted the greatest production of 

OAEtE and DAEtE by the AWRI R2 strain (1067.7 + 117.5 and 394.5 + 61.8 g L-1, 

respectively). Strain VIN13 with the addition of Fermaid E also produced the highest amount 

of DAEtE (389.3 + 53.7 g L-1). 
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Table 4-11 Concentration of ethyl, diethyl esters and -terpineol found in finished Sauvignon blanc wines developed by nine yeast strains with 

two nutrient sources 

 
Yeast  Nutrient  PrEtE (g L

-1
) BuEtE (g L

-1
) iBuEtE (g L

-1
) LAEtE (mg L

-1
) SAdiEtE (g L

-1
) -Terpineol (g L

-1
) 

EC1118 Fermaid E   188.6 + 21.0 a 157.5 + 14.8 a 75.6 + 9.1 fgh 34.9 + 5.0 a 2268.5 + 67.6 ab 13.0 + 0.1 a 

 OptiWhite 133.3 + 63.6 b 127.9 + 15.2 a 61.5 + 15.5 h 25.6 + 7.0 a 2321.6 + 179.9 a 13.6 + 0.1 a 

Sauvignon Fermaid E   69.7 + 3.7 f 156.1 + 3.9 a 93.1 + 8.3 efg 22.3 + 1.6 a 1118.4 + 122.4 f 15.7 + 0.5 a 

 OptiWhite 75.2 + 12.5 ef 149.5 + 14.7 a 107.5 + 20.3 de 22.6 + 1.7 a 1582.5+  20.4 de 14.4 + 0.4 a 

VL3 Fermaid E   94.6 + 7.3 bcdef 167.5 + 2.5 a 104.6 + 5.1 e 24.7 + 0.9 a 2065.8 + 195.5 abc 14.1 + 0.4 a 

 OptiWhite 85.5 +  15.7 cdef 158.1 +  17.9 a 102.5 + 16.8 ef 20.6 + 0.2 a 2351.1 + 12.7 a 14.0 + 0.9 a 

X5 Fermaid E   113.5 + 5.0 bcdef 158.3 +  3.4 a 131.6 + 8.0 cd 27.7 + 1.1 a 1828.6 + 164.8 cde 14.2 + 0.9 a 

 OptiWhite 112.5 + 8.2 bcdef 159.6 + 8.7 a 139.9 + 8.3 bc 25.2 + 0.7 a 2009.8 + 85.7 abc 14.8 + 0.2 a 

VIN7 Fermaid E   99.2 + 6.5 bcdef 125.5 + 14.2 a 74.6 + 6.6 fgh 23.2 + 1.4 a 1000.9 + 157.1 f 16.3 + 0.1 a 

 OptiWhite 110.8 + 12.6 bcdef 116.0 + 1.6 a 76.1 + 4.9 fgh 28.2 + 3.6 a 1015.4 + 63.4 f 15.1 + 0.6 a 

VIN13 Fermaid E   125.4 + 11.1 bcd 146.7 + 4.9 a 72.2 + 1.5 gh 23.3 + 2.3 a 2044.0 + 273.0 abc  14.4 + 0.2 a 

 OptiWhite 116.0 + 12.4 bcde 138.5 +  4.5 a 70.4 + 1.7 gh 19.9 + 2.3 a 2040.4 + 191.9 abc 14.6 + 1.1 a 

4F9 Fermaid E   113.1 + 5.7 bcdef 131.4 + 13.4 a 74.6 + 11.3 fgh 27.2 + 0.5 a 1822.2 + 261.2 cde 15.1 + 0.2 a 

 OptiWhite 108.3 + 12.7 bcdef 127.9 + 9.3 a 90.8 + 13.4 efg 28.0 + 3.4 a 1884.7 + 177.0 cd 14.1 + 0.4 a 

LVCB Fermaid E   131.1 + 14.6 bc 151.2 + 8.7 a 72.0 + 4.3 gh 30.3 + 0.1 a 1785.4 + 67.2 cde 15.1 + 0.1 a 

 OptiWhite 127.1 + 17.5 bcd 149.0 + 1.0 a 70.7 + 1.2 gh 29.5 + 3.7 a 1945.5 + 32.4 bc 13.8 + 0.6 a 

AWRI R2 Fermaid E   82.8 + 10.8 def 137.6 + 0.5 a 163.8 + 6.1 ab 30.3 + 2.5 a 1744.9 + 36.8 cde 15.1 + 1.4 a 

  OptiWhite 94.5 + 7.1 bcdef 129.5 + 0.3 a 174.4 + 10.7 a 27.6 + 2.6 a 1525.6 + 126.9 e 12.5 + 0.8 a 

Each value shows the mean + standard deviation. Values displaying the same letter (only ‗a‘) within the same column indicate no significant difference 

(p>0.05) among treatment combinations, whereas those displaying different letters are significantly different (p<0.05) according to the DMRT test. 
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Table 4-12 Concentration of fatty acids found in finished Sauvignon blanc wines developed 

by nine yeast strains with two nutrient sources 

 

Yeast  Nutrient  Hexanoic acid 

(mg L-1) 

Octanoic acid 

(mg L-1) 

Decanoic acid 

(mg L-1) 

EC1118 Fermaid E   6.2 + 0.3 a 6.0 + 1.0 a 1.7 + 0.8 a 

 OptiWhite 6.0 + 0.0 a 6.8 + 0.5 a 2.3 + 0.3 a 

Sauvignon Fermaid E   6.6 + 0.5 a 7.9 + 0.3 a 2.9 + 0.0 a 

 OptiWhite 6.8 + 0.0 a 7.0 + 0.3 a 2.1 + 0.6 a 

VL3 Fermaid E   6.8 + 0.4 a 7.2 + 0.4 a 2.4 + 0.2 a 

 OptiWhite 6.3 + 0.7 a 6.6 + 0.5 a  1.9 + 0.6 a 

X5 Fermaid E   6.8 + 0.1 a 7.5 + 1.3 a 2.5 + 0.7 a 

 OptiWhite 6.7 + 0.2 a 8.0 + 0.3 a 3.0 + 0.2 a 

VIN7 Fermaid E   5.5 + 0.1 a 6.0 + 0.1 a 1.7 + 0.6 a 

 OptiWhite 5.9 + 0.2 a 6.1 + 0.0 a 2.0 + 0.1 a 

VIN13 Fermaid E   6.3 + 0.3 a 7.6 + 0.4 a 3.0 + 0.5 a 

 OptiWhite 6.2 + 0.1 a 7.3 + 0.4 a 2.7 + 0.4 a 

4F9 Fermaid E   7.1 + 0.0 a 8.6 + 0.5 a 2.8 + 0.3 a 

 OptiWhite 7.1 + 0.4 a 7.8 + 0.3 a 2.1 + 0.6 a 

LVCB Fermaid E   8.0 + 0.1 a 9.2 + 0.0 a 2.9 + 0.1 a 

 OptiWhite 7.9 + 0.0 a 8.7 + 0.7 a 2.7 + 0.3 a 

AWRI R2 Fermaid E   7.7 + 0.4 a 8.8 + 0.9 a 3.0 + 0.2 a 

  OptiWhite 7.0 + 0.3 a 7.0 + 0.0 a 1.4 + 0.3 a 

 

Each value shows the mean + standard deviation from two fermentation replicates. Values 

displaying the same letter (only ‗a‘) within the same column and factor indicate no significant 

difference (p>0.05) among treatment combinations according to the DMRT test. 
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Figure 4-20 Concentration of fatty acid esters found in finished Sauvignon blanc wines developed by nine yeast strains with two nutrient 

sources 

Vertical bars represent standard deviations from two fermentation replicates. Means followed by different letters on the top of the bar are 

significantly different (p<0.05) among treatment combinations of each compound according to the DMRT test. Compounds displaying “(ns)” 

show no significant difference (p>0.05) among treatment combinations according to the DMRT test. 
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4.2.2 Impact of five commercial yeast strains and four nutrient sources on 

fermentative characteristics, metabolic compounds and wine aromas of Sauvignon 

blanc grape wines 

 

In 2009, wine fermentations were conducted in fresh Sauvignon blanc juices. The 

fermentations were conducted using five commercial yeast strains of Saccharomyces 

(EC1118, X5, VIN7, Alchemy I and LittoLevure) and four commercial nutrient 

sources;       0.3 g L-1 Superstart, 0.4 g L-1 Fermaid O, 0.4 g L-1 Fermaid E blanc and 0.4 g L-1 

Vitamon Ultra (VUltra). The yeast strains and nutrient sources were selected on the basis 

results, which were obtained from the previous trials of Scheurebe and Sauvignon blanc. The 

fermentation kinetics, some non-volatile and volatile compounds in final wines were 

investigated. 

 

The growth kinetics: Figure 4-21 shows that the EC1118 strain appeared to be the 

strongest strain followed by strain Alchemy I, while the LittoLevure seemed to be the weakest 

strain. The EC1118 strain had the fastest fermentation kinetic and duration in any kind of 

nutrient (15 days). Strain Alchemy I followed a similar pattern as strain EC1118, except in the 

presence of Fermaid O that caused slightly longer fermentation duration (16 days). On the 

other hand, strain LittoLevure had a longer lag phase and slow fermentation kinetics and 

times (26 days), particularly in either the Fermaid O or the Fermaid E treatment that seemed 

to result in a sluggish fermentation. However, the addition of Superstart and VUltra enhanced 

the growth kinetic of the latter strain and reduced the duration of fermentation to 21 days. 

Strain X5 tended to follow a similar pattern as strain LittoLevure, but had a slightly faster 

fermentation kinetic and time in respect to the Superstart and Fermaid E treatments (15 and 

24 days, respectively). The VIN7 strain had the slow growth kinetic and long fermentation 

time in the Fermaid O fermentation (24 days), but addition of the other nutrient sources 

enhanced fermentation kinetics and time, particularly in the Superstart fermentation (17 

days). In all cases, Supertart seemed to be the most effective nutrient source to accelerate 

fermentation kinetics, whereas Fermaid O tended to give the inverse response.  

 

Chemical compositions: Commercial yeast strains and nutrient sources significantly 

affected the concentrations of residual sugar, but not glycerol (Table 4-13). The EC1118 and 

Alchemy I strains produced wines having low amounts of residual sugar and attained 

dryness ranging from 1.0 + 0.2 to 2.4 + 0.7 g L-1 and 0.6 + 0.1 to 1.6 + 0.3 g L-1, respectively. 

On the contrary, strain LittoLevure produced wines having high amounts of residual sugar in 

the Fermaid O treatment (7.4 + 0.1 g L-1), followed by the VUltra treatment (4.5 + 0.3 g L-1). 
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The five yeast strains produced similar amounts of glycerol, which ranged from 2.0 + 0.1 to 

2.1 + 0.0 g L-1 without any response to the nutrient source. 

 

 

Figure 4-21 Fermentation kinetics of fresh Sauvignon blanc grape juice fermentations with 

five commercial yeast strains and four commercial nutrient sources 

 

Organic acids: The results show that concentrations of citric acid were similar among the 

wine treatments ranging from 0.25 + 0.00 to 0.27 + 0.01 g L-1 (Table 4-14). When Superstart 

was added, strain EC1118 produced wine having the highest amount of lactic acid (0.31 + 

0.02 g L-1) followed by strain Alchemy I (0.27 + 0.02 g L-1), while the VIN7 produced the 

greatest concentration of acetic acid (1.07 + 0.03 g L-1). Lactic acid was also most evident in 

the LittoLevure wine with the Fermaid O addition (0.30 + 0.09 g L-1). The LittoLevure strain 

produced wine with the highest amount of malic acid in the VUltra and Superstart treatments 

(3.23 + 0.01 and 3.16 + 0.04 g L-1, respectively), shikimic acid in the Fermaid O and Fermaid 

E samples (22.26 + 0.15 and 22.11 + 0.27 mg L-1, respectively) and tartaric acid in the VUltra 

treatment (3.38 + 0.02 g L-1). Strain X5 also produced wine having the greatest concentration 

of tartaric acid in the presence of Fermaid E (3.32 + 0.01 g L-1) and malic acid in the Fermaid 

O and VUltra samples (3.18 + 0.04 and 3.16 + 0.04 g L-1). In addition, the VIN7 seemed to be 

the highest acetic acid producer, but the lowest producer of lactic acid. 
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Table 4-13 Chemical composition of finished wines obtained from fresh Sauvignon blanc 

grape juices fermented with five yeast strains and four nutrient sources 

 

Yeast Nutrient  Residual sugar (g L-1) Glycerol (g L-1)  

EC1118 Superstart 1.0 + 0.2 fgh 2.0 + 0.1 a 

 Fermaid O 2.4 + 0.7 d 2.0 + 0.0 a 

 Fermaid E 2.1 + 0.8 de 2.0 + 0.1 a 

 VUltra 1.5 + 0.1 def 2.0 + 0.0 a 

X5 Superstart 0.5 + 0.2 h 2.0 + 0.0 a 

 Fermaid O 4.3 + 0.6 bc 2.0 + 0.0 a 

  Fermaid E 4.9 + 1.0 b 2.0 + 0.1 a 

 VUltra 0.7 + 0.3 fgh 2.1 + 0.0 a 

VIN7 Superstart 1.2 + 0.1 efgh 2.0 + 0.1 a 

  Fermaid O 3.9 + 0.6 c 2.1 + 0.1 a 

  Fermaid E 3.8 + 0.8 c 2.1 + 0.1 a 

 VUltra 2.1 + 0.2 de 2.0 + 0.0 a 

Alchemy I Superstart 0.8 + 0.1 fgh 2.0 + 0.1 a 

 Fermaid O 1.6 + 0.3 def 2.0 + 0.0 a 

 Fermaid E 0.7 + 0.2 fgh 2.1 + 0.0 a 

 VUltra 0.6 + 0.1 gh 2.0 + 0.0 a 

LittoLevure Superstart 2.5 + 0.4 d 2.1 + 0.0 a 

 Fermaid O 7.4 + 0.1 a 2.1 + 0.0 a 

 Fermaid E 3.9 + 0.3 c 2.1 + 0.0 a 

  VUltra 4.5 + 0.3 bc 2.0 + 0.0 a 

Each value shows the mean + standard deviation from three fermentation replicates .  

Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05) among treatment combinations, whereas those displaying different letters 

are significantly different (p<0.05) according to the DMRT test. 
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Table 4-14 Concentration of organic acids found in finished Sauvignon blanc wines produced by five yeast strains with four nutrient sources 

Yeast Nutrient  Tartaric acid  

(g L
-1

) 

Malic acid  

(g L
-1

)  

Lactic acid  

(g L
-1

) 

Shikimic acid  

(mg L
-1

) 

Acetic acid  

(g L
-1

)  

Citric acid  

(g L
-1

) 

EC1118 Superstart 3.31 + 0.11 abc 3.00 + 0.01 def 0.31 + 0.02 a 20.65 + 0.22 fgh 0.48 + 0.01 ij 0.27 + 0.01 a 

 Fermaid O 3.20 + 0.03 defg 3.07 + 0.02 cd 0.23 + 0.02 bcdef 20.64 + 0.11 fgh 0.57 + 0.01 g 0.26 + 0.01 a 

 Fermaid E 3.28 + 0.07 bcde 3.05 + 0.01 cd 0.25 + 0.03 abcd 20.54 + 0.09 ghi 0.54 + 0.03 gh 0.26 + 0.01 a 

 VUltra 3.26 + 0.03 bcde 3.04 + 0.01 cde 0.22 + 0.00 cdefg 20.37 + 0.06 hij 0.53 + 0.02 gh 0.25 + 0.00 a 

X5 Superstart 3.15 + 0.06 fg 3.02 + 0.01 de 0.23 + 0.01 bcdef 20.70 + 0.08 fgh 0.50 + 0.01 hij 0.25 + 0.01 a 

 Fermaid O 3.05 + 0.03 h 3.18 + 0.04 ab 0.18 + 0.03 efgh 21.27 + 0.16 cd 0.40 + 0.02 k 0.26 + 0.01 a 

  Fermaid E 3.32 + 0.01 ab 3.11 + 0.00 bc 0.21 + 0.06 cdefgh 20.48 + 0.15 hi 0.47 + 0.03 j 0.26 + 0.00 a 

 VUltra 3.16 + 0.04 fg 3.16 + 0.04 ab 0.22 + 0.02 cdefg 20.87 + 0.37 efg 0.42 + 0.03 k 0.27 + 0.01 a 

VIN7 Superstart 3.22 + 0.01 cde 2.84 + 0.01 g 0.16 + 0.02 gh 19.60 + 0.08 k 1.07 + 0.03 a 0.27 + 0.01 a 

  Fermaid O 3.26 + 0.01 bcde 2.95 + 0.02 ef 0.16 + 0.01 gh 20.27 + 0.24 ij 1.03 + 0.01 b 0.27 + 0.01 a 

  Fermaid E 3.22 + 0.03 bcdef 2.96 + 0.00 ef 0.16 + 0.03 gh 20.11 + 0.08 j 1.00 + 0.02 bc 0.27 + 0.01 a 

 VUltra 3.18 + 0.01 efg 2.93 + 0.05 f 0.15 + 0.05 h 20.05 + 0.38 j 0.99 + 0.03 c 0.27 + 0.00 a 

Alchemy I Superstart 3.19 + 0.02 efg 2.95 + 0.03 ef 0.27 + 0.02 abc 20.92 + 0.23 def 0.52 + 0.04 h 0.26 + 0.00 a 

 Fermaid O 3.21 + 0.01 cdef 3.03 + 0.02 cde 0.20 + 0.01 defgh 21.17 + 0.15 de 0.65 + 0.02 ef 0.26 + 0.00 a 

 Fermaid E 3.31 + 0.05 abc 3.02 + 0.02 cde 0.22 + 0.02 cdefg 20.98 + 0.16 def 0.65 + 0.01 ef 0.26 + 0.00 a 

 VUltra 3.30 + 0.15 abcd 3.03 + 0.01 cde 0.24 + 0.03 bcde 20.98 + 0.12 def 0.62 + 0.03 f 0.25 + 0.00 a 

LittoLevure Superstart 3.23 + 0.04 bcde 3.16 + 0.04 ab 0.22 + 0.04 cdefg 21.54 + 0.14 bc 0.66 + 0.01 e 0.26 + 0.01 a 

 Fermaid O 3.10 + 0.02 gh 2.98 + 0.17 def 0.30 + 0.09 ab  22.26 + 0.15 a 0.51 + 0.01 hi 0.26 + 0.01 a 

 Fermaid E 3.18 + 0.01 efg 3.07 + 0.06 cd 0.22 + 0.03 cdefg 22.11 + 0.27 a 0.48 + 0.01 ij 0.26 + 0.00 a 

  VUltra 3.38 + 0.02 a 3.23 + 0.01 a 0.17 + 0.00 fgh 21.79 + 0.11 b 0.72 + 0.01 d 0.26 + 0.01 a 

Each value shows the mean + standard deviation. Values displaying the same letter (only ‗a‘) within the same column indicate no significant difference 

(p>0.05) among treatment combinations, whereas those displaying different letters are significantly different (p<0.05) according to the DMRT test. 
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Figure 4-22 Concentration of SO2-binding compounds found in finished Sauvignon blanc 

grape wines produced by five yeast strains with four nutrient sources   

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations according to the DMRT test.  
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SO2-binding compounds: As shown in Figure 4-22, the productions of these compounds 

by the five yeast strains were significantly different depending on the nutrient source. Strain 

VIN7 produced the greatest amount of pyruvate in most nutrient sources (22.8 + 0.7 to 23.5 

+ 1.5 mg L-1), except in the Fermaid E sample (20.3 + 0.7 mg L-1), and -ketoglutarate in the 

Superstart sample (49.5 + 4.2 mg L-1). The greatest concentration of acetaldehyde was 

produced by strain X5 in the Fermaid O and Fermaid E treatments (24.7 + 2.4 and 24.9 

+  1.7 mg L-1) and by strain EC1118 in the Fermaid E sample (23.1 + 2.4 mg L-1). Moreover, 

the addition of Superstart significantly decreased acetaldehyde formation.  

 

Sulphur containing compounds: Figure 4-23 and 4-24 show that the interaction of five 

commercial yeast strains and nutrient sources significantly only affected the concentration of 

SO2 and CS2. The concentrations of H2S and DMS were not statistically different among all 

treatment combinations that ranging from 3.6 + 1.0 to 5.7 + 1.2 g L-1 and 2.4 + 0.1 to 3.0 + 

0.2 g L-1, respectively. The X5 strain was the dominant SO2 forming producer with less 

response to the nutrient source (26.2 + 0.2 to 28.9 + 4.3 g L-1), while strain EC1118 

produced the greatest amount of this compound in the Fermaid E and VUltra treatments 

(28.6 + 1.9 and 30.7 + 3.8 g L-1, respectively). The addition of Fermaid E promoted the 

greatest production of CS2 by strains LittoLevure and X5 (11.1 + 2.1 and 10.5 + 2.2 g L-1, 

respectively). 

 

 

Figure 4-23 Concentration of total sulphur dioxide found in finished Sauvignon blanc grape 

wines produced by five yeast strains with four nutrient sources   

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations according to the DMRT test.   
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Figure 4-24 Concentration of sulphur containing compounds found in finished Sauvignon 

blanc grape wines produced by five yeast strains with four nutrient sources   

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05), whereas 

those displaying the same letters are not significantly different (p>0.05) according to the 

DMRT test.  
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Figure 4-25 Concentration of higher alcohols found in finished Sauvignon blanc grape wines 

produced by five yeast strains with four nutrient sources   (*10 = concentration 

of compound times 10) 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations according to the DMRT test. 
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Higher alcohols: The influence of five commercial yeast strains on higher alcohol production 

was dependent upon the nitrogen source supplemented (Figure 4-25). Strain EC1118 was 

the high producer of 3-methyl butanol and 2-phenyl ethanol with less response to the nutrient 

source (171.4 + 16.7 to 196.0 + 10.2 mg L-1 and 20.1 + 2.0 to 21.5 + 0.8 mg L-1). Strain 

Alchemy I followed a similar pattern of 3-methyl butanol production (164.4 + 3.2 to 190.6 + 

4.2 mg L-1). Strain LittoLevure was the most hexanol producer in any kind of nutrient (4090.8 

+ 164.3 to 4529.0 + 121.3 g L-1), while the greatest amounts of 2-methyl propanol and 2-

methyl butanol were produced in the Superstart variant (51.2 + 1.6 and 42.1 + 0.9 mg L-1, 

respectively). The Superstart treatment also promoted the highest formation of 2-methyl 

propanol and 2-methyl butanol by strain VIN7 (46.6 + 8.6 and 38.5 + 8.6 mg L-1, respectively).   

 

Acetic acid esters: Figure 4-26 shows that strain Alchemy I was the most predominant 

producer of acetic acid hexyl ester and acetic acid ethyl ester with less response to the 

nutrient source (536.8 + 49.2 to 576.1 + 34.4 g L-1 and 212.8 + 21.1 to 289.4 + 10.5 mg L-1, 

respectively). Strain VIN7 was also the greatest producer of acetic acid ethyl ester in most 

nutrient sources (213.7 + 27.5 to 273.5 + 42.9 mg L-1, respectively) although its concentration 

was slightly lower in the Fermaid O and Fermaid E samples. Acetic acid 3- and 2-methylbutyl 

ester and acetic acid 2-phenyl ethyl ester were also most evident in the Alchemy I wine with 

the Superstart supplementation (2960.8 + 239.2, 115.3 + 6.3 and 410.6 + 4.3 g L-1, 

respectively). The presence of Superstart also stimulated strain EC1118 to produce the 

highest amount of acetic acid 2-methylbutyl ester (103.0 + 16.0 g L-1).  

 

Ethyl and diethyl esters: As shown in Table 4-15, the production of ethyl esters significantly 

differed depending on the yeast strain and the nitrogen source, while succinic acid diethyl 

esters were detected in all wine treatments only in trace quantities (data not shown). Strain 

EC1118 developed the greatest amount of PrEtE in the presence of Superstart (98.8 

+    11.5 g L-1), whereas BuEtE was most evident in the Superstart and Fermaid O samples 

(366.4 + 19.4 and 380.1 + 12.7 g L-1, respectively) and also in the X5 wine with Superstart 

addition (361.1 + 39.5 g L-1).  Strain Alchemy I produced the greatest amount of iBuEtE in 

the Fermaid O and Fermaid E samples (13.5 + 0.5 and 13.3 + 0.8 g L-1, respectively) and 

PrEtE in the presence of Fermaid E (92.5 + 5.2 g L-1). The greatest amount of iBuEtE was 

also produced by strain LittoLevure in the Superstart treatment (12.2 + 0.3 g L-1), while 

LAEtE was most evident in the Fermaid O sample (14.4 + 2.0 mg L-1). Strain VIN7 seemed to 

be the low producer of BuEtE and LAEtE, while the LittoLevure was the low PrEtE producer 

with less response to nutrient source. 
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Figure 4-26 Concentration of acetic acid esters found in finished Sauvignon blanc grape 

wines produced by five yeast strains with four nutrient sources (*10 = 

concentration of compound times 10)   

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations according to the DMRT test. 
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Table 4-15 Concentration of ethyl esters found in finished Sauvignon blanc grape wines 

developed by five yeast strains with four nutrient sources   

Yeast Nutrient  PrEtE  

(g L
-1

) 

BuEtE  

(g L
-1

) 

iBuEtE  

(g L
-1

) 

LAEtE  

(mg L
-1

) 

EC1118 Superstart 98.8 + 11.5 a 366.4 + 19.4 ab 9.6 + 1.3 c 11.0 + 0.8 bcd 

 Fermaid O 80.5 + 5.0 bc 380.1 + 12.7 a 8.8 + 0.5 cd 9.9 + 0.4 bcde 

 Fermaid E 83.6 + 15.7 abc 351.3 + 18.1 abc 9.0 + 2.1 cd 10.4 + 0.5 bcde 

 VUltra 79.5 + 11.1 bc 327.7 + 24.4 c 7.2 + 0.7 de 10.2 + 0.2 bcde 

X5 Superstart 58.2 +  12.5 de 361.1 + 39.5 ab 10.0 + 1.3 bc 10.1 + 0.3 bcde 

 Fermaid O 52.6 + 4.6 ef 326.2 + 19.5 c 10.2 + 0.6 bc 9.3 + 0.1 cde 

  Fermaid E 62.0 + 6.8 de 338.5 + 8.7 bc 9.2 + 0.6 cd 10.0 + 0.4 bcde 

 VUltra 60.4 + 8.6 de 338.4 + 9.3 bc 8.8 + 1.1 cd 10.1 + 0.6 bcde 

VIN7 Superstart 48.4 + 14.5 def 176.9 + 29.1 f 9.3 + 2.2 c 8.5 + 0.4 e 

  Fermaid O 39.3 + 6.9 fg 170.6 + 13.4 f 8.5 + 2.0 cde 8.6 + 0.4 de 

  Fermaid E 47.1 + 6.3 ef 177.6 + 8.4 f 8.9 + 1.4 cd 8.7 + 0.3 de 

 VUltra 50.8 + 9.7 ef 180.8 + 17.7 f 9.0 + 2.0 cd 9.0 + 0.5 de 

Alchemy I Superstart 86.1 + 8.2 abc 325.7 + 17.1 c 9.0 + 0.4 cd 11.0 + 0.3 bcd 

 Fermaid O 84.3 + 1.4 abc 324.7 + 5.0 c 13.5 + 0.5 a 11.3 + 0.0 bc 

 Fermaid E 92.5 + 5.2 ab 325.4 + 10.3 c 13.3 + 0.8 a 12.1 + 0.2 b 

 VUltra 71.1 + 5.2 cd  289.9 + 4.6 c 6.0 + 0.7 e 9.8 + 0.3 bcde 

LittoLevure Superstart 37.6 + 2.6 fgh 336.1 + 11.2 bc 12.2 + 0.3 ab 10.4 + 0.4 bcde 

 Fermaid O 22.9 + 1.7 h 248.1 + 7.0 e 10.0 + 0.3 bc 14.4 + 2.0 a 

 Fermaid E 29.3 + 2.9 gh 264.2 + 5.1 de  10.2 + 0.4 bc 11.7 + 1.9 b 

  VUltra 25.1 + 7.0 gh 259.5 + 11.3 e 8.2 + 1.3 cde 10.1 + 0.3 bcde 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying different letters within the same column are significantly different (p<0.05) 

among treatment combinations according to the DMRT test. 

 

Medium-chain fatty acids and their ethyl esters: Table 4-16 and Figure 4-27 show that 

the EC1118 strain was the greatest producer of MCFAs, hexanoic acid (7.4 + 0.3 to 7.7 

+  0.5 mg L-1), octanoic acid (6.9 + 0.4 to 7.2 + 0.2 mg L-1) and decanoic acid (1.5 + 0.0 to 1.9 

+ 0.1 mg L-1) with less response to the nutrient source. It also developed the highest 

concentrations of HAEtE (876.3 + 14.3 to 959.0 + 39.4 g L-1), OAEtE (999.8 + 101.6 to 

1114.1 + 12.4 g L-1) and DAEtE (485.7 + 45.2 to 536.2 + 64.8 g L-1). The X5 strain was 

also the most forming strain of MCFAs, 7.6 + 0.1 to 8.1 + 0.6 mg L-1 hexanoic acid, 6.4 + 0.1 

to 7.1 + 0.3 mg L-1 octanoic acid and 1.6 + 0.1 to 1.8 + 0.2 mg L-1 hexanoic acid.  The highest 

formation of OAEtE and DAEtE was also most evident in the X5 wines with any source of 
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nutrient (952.1 + 97.4 to 1080.1 + 36.1 g L-1 and 487.9 + 17.4 to 501.2 + 49.4 g L-1, 

respectively). On the other hand, strain VIN7 was the lowest producer of MCFAs and their 

related ethyl esters. 

 

Monoterpenes: Surprisingly, under the condition in this trial, all monoterpenes, -terpineol, 

trans-linalool oxide, cis-linalool oxide and linalool were not detected in all wine treatments 

(data not shown).  

 

Table 4-16 Concentration of medium-chain fatty acids found in finished Sauvignon blanc 

wines developed by five yeast strains with four nutrient sources 

Yeast Nutrient  Hexanoic acid  

(mg L-1) 

Octanoic acid  

(mg L-1) 

Decanoic acid 

(mg L-1) 

EC1118 Superstart 7.6 + 0.2 ab  6.9 + 0.4 a 1.5 + 0.0 bc 

 Fermaid O 7.7 + 0.5 ab 7.0 + 0.4 a 1.7 + 0.2 ab 

 Fermaid E 7.4 + 0.3 ab 7.2 + 0.2 a 1.9 + 0.0 a 

 VUltra 7.6 + 0.2 ab 7.0 + 0.2 a 1.9 + 0.1 a 

X5 Superstart 8.1 + 0.6 a 7.1 + 0.3 a 1.8 + 0.2 ab 

 Fermaid O 7.6 + 0.1 ab 6.4 + 0.1 abc 1.7 + 0.0 ab 

  Fermaid E 7.9 + 0.4 a  6.5 + 0.3 ab 1.6 + 0.1 ab 

 VUltra 7.9 + 0.2 a 6.7 + 0.3 ab 1.7 + 0.1 ab 

VIN7 Superstart 5.2 + 0.4 e 3.8 + 0.4 de 0.8 + 0.2 d 

  Fermaid O 5.3 + 0.3 e 3.9 + 0.3 de 0.9 + 0.3 d 

  Fermaid E 5.4 + 0.1 e 3.9 + 0.3 de 0.8 + 0.2 d 

 VUltra 5.2 + 0.4 e 3.7 + 0.3 de 0.8 + 0.2 d 

Alchemy I Superstart 6.5 + 0.2 cd 5.6 + 0.1 c 1.3 + 0.0 c 

 Fermaid O 5.8 + 0.2 de 4.3 + 0.2 de 0.6 + 0.1 d 

 Fermaid E 5.8 + 0.1 de 4.4 + 0.2 d 0.6 + 0.0 d 

 VUltra 6.6 + 0.2 cd 5.9 + 0.3 bc 1.5 + 0.2 bc 

LittoLevure Superstart 6.7 + 0.2 cd 5.7 + 0.2 c 1.2 + 0.1 c 

 Fermaid O 7.0 + 0.2 bc 5.9 + 0.3 bc 1.3 + 0.1 c 

 Fermaid E 7.0 + 0.3 bc 5.8 + 0.5 bc 1.3 + 0.3 c 

  VUltra 6.9 + 0.3 bc 5.7 + 0.4 c 1.3 + 0.3 c 

Each value shows the mean + standard deviation from three fermentation replicates. Values 

displaying different letters within the same column are significantly different (p<0.05) among 

treatments according to the DMRT test. 
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Figure 4-27 Concentration of fatty acid ethyl esters found in finished Sauvignon blanc grape wines produced by five yeast strains with four 

nutrient sources   

Vertical bars represent standard deviations from three fermentation replicates. Means followed by different letters on the top of the bar are 

significantly different (p<0.05) among treatment combinations according to the DMRT test. 
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4.3 Effects of yeast strains and nutrient supplements on wine fermentation and quality 

of yellow passion fruit wines 

 

The experimental results which are described in the following chapters were obtained from 

four trials of yellow passion fruit (YPF) juice fermented with different commercial 

Saccharomyces yeast strains and/or nutrient sources and concentrations. 

 

4.3.1 Effect of fourteen commercial Saccharomyces yeast strains on fermentative 

characteristics, metabolic compounds and aromas of yellow passion fruit wines 

 

In 2009, the fermentation trial was performed in yellow passion fruit (YPF) juice. Fourteen 

commercial yeast strains; EC1118, Sauvignon, VL3, X5, X16, VIN13, Alchemy I, Alchemy II, 

4F9, LVCB, LittoLevure, AWRI R2, QA23 and Freddo were used in fermentation of this YPF 

trial. These commercial yeast strains were obtained from the basis results of the Sauvignon 

blanc and Scheurebe grape wines. The fermentation kinetics, some metabolic and aromatic 

compounds in obtained YPF wines were investigated. 

 

Fermentation kinetics: The results show that the fourteen commercial yeast strains had 

significantly different fermentation kinetics (Figure 4-28). The VIN13, LVCB and QA23 had 

the fastest growth kinetics and the shortest fermentation times for 20 days, followed by 

strains EC1118, Alchemy I and II, X5, 4F9 and Freddo (21 days). While, strain Sauvignon 

had a long lag phase (5 days) and resulted in a sluggish fermentation kinetic and duration 

(28 days), strain AWRI R2 followed similar pattern, however had shorter lag phase (4 days). 

Nevertheless, the fourteen yeast strains completed fermentations and reached dryness with 

low residual sugar below 4 g L-1 (Figure 4-29). 

 

Chemical composition: As shown in Figure 4-29, strain X16 produced the highest amount 

of glycerol in YPF wine (6.0 + 0.0 g L-1), followed by the LittoLevure and AWRI R2 (5.9 + 0.2 

and 5.7 + 0.1 g L-1, respectively). On the other hand, the EC1118 strain was the lowest 

glycerol producer as well as strain X5 (4.9 + 0.2 and 5.0 + 0.1 g L-1, respectively). The YPF 

fermentations with either Alchemy I or X16 strain had the highest amounts of residual sugar 

(1.5 + 0.2 and 1.3 + 0.0 g L-1, respectively). However, their concentrations resulted in 

dryness. While, the QA23, LVCB, 4F9 and AWRI R2 strains produced YPF wines having low 

amounts of residual sugar (0.3 + 0.1,  0.4 + 0.1, 0.5 + 0.1 and 0.4 + 0.1 g L-1, respectively). 
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Figure 4-28 Growth kinetics of YPF juice fermentations with 14 different commercial yeast 

strains  

 

 

Figure 4-29 Concentration of residual sugar and glycerol in finished YPF wines produced by 

14 different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

yeast strains of each compound according to the DMRT test. 
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Table 4-17 Concentration of organic acids found in finished YPF wines produced by 14 yeast 

strains 

 

Yeast  Citric acid (g L-1) Malic acid (g L-1) Acetic acid (g L-1) 

EC1118 3.63 + 0.04 a 0.68 + 0.01 de 0.29 + 0.02 cd 

Sauvignon 3.67 + 0.02 a 0.91 + 0.11 b 0.22 + 0.01 fg 

VL3 3.67 + 0.02 a 0.74 + 0.03 de 0.26 + 0.01 de 

X5 3.62 + 0.02 a 0.66 + 0.01 ef 0.29 + 0.01 cd 

X16 3.65 + 0.03 a 1.15 + 0.03 a 0.26 + 0.01 de 

VIN13 3.61 + 0.07 a 0.75 + 0.02 d 0.31 + 0.01 c 

Alchemy I 3.62 + 0.03 a 0.55 + 0.01 g 0.39 + 0.01 a 

Alchemy II 3.61 + 0.01 a 0.56 + 0.01 g 0.39 + 0.01 a 

4F9 3.54 + 0.01 a 0.91 + 0.01 b 0.23 + 0.01 fg 

LVCB 3.59 + 0.03 a 0.59 + 0.03 fg 0.35 + 0.01 b 

LittoLevure  3.60 + 0.02 a 0.83 + 0.11 c 0.24 + 0.03 ef 

AWRI R2 3.65 + 0.01 a 0.67 + 0.03 def 0.38 + 0.03 a 

QA23 3.64 + 0.08 a 0.52 + 0.01 g 0.27 + 0.01 de 

Freddo 3.59 + 0.02 a 0.70 + 0.03 de 0.21 + 0.02 g 

 

Each value shows the mean + standard deviation from three fermentation replicates. 

Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05), whereas those displaying different letters are significantly different 

(p<0.05) according to the DMRT test. 

 

Organic acids: The data in Table 4-17 show that concentrations of citric acid were similar 

among the YPF wines ranging from 3.54 + 0.01 to 3.67 + 0.02 g L-1. Whereas, the other 

organic acids like lactic, tartaric and shkimic acid were not detected in all YPF wines. 

Concentrations of malic acid were most evident in the YPF fermentation with X16 (1.15 + 

0.03 g L-1), followed by strains Sauvignon and 4F9 (0.91 + 0.11 to 0.91 + 0.01 g L-1, 

respectively), but less present in YPF wines of Alchemy I, II and QA23. In addition, the X16 

strain produced about two-fold of initial malic acid amounts in the YPF juice, whereas strains 

4F9 and Sauvignon catalyzed approximately 80 %. Strains Alchemy I and II and AWRI R2 

were the highest acetic acid producers (0.39 + 0.01, 0.39 + 0.01 and 0.38 + 0.03 g L-1, 

respectively), while strains Sauvignon, 4F9 and Freddo were the lowest producers (0.22 + 

0.01, 0.23 + 0.01 and 0.21 + 0.02 g L-1, respectively).  
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Figure 4-30 Concentration of SO2-binding compounds in finished YPF wines produced by 14 

different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) between 

yeast strains of each compound according to the DMRT test. 

 

SO2-binding compounds: The results show that fourteen Saccharomyces yeast strains 

produced different concentrations of these compounds in final YPF wines (Figure 4-30). The 

Sauvignon, 4F9 and X16 strain appeared to be the most -ketoglutarate producers in YPF 

wines (313.3 + 22.8, 337.2 + 7.5 and 316.7 + 8.5 mg L-1, respectively). The first strain was 

also the greatest pyruvate producer (121.2 + 18.7 mg L-1) as well strain Freddo (105.6 

+  11.9 mg L-1). While, strain QA23 was the least producer of both keto acids (47.8 + 1.8 and 

9.4 + 0.7 mg L-1, respectively), on the contrary, it produced a great amount of acetaldehyde 

(27.7 + 1.2 mg L-1) in the YPF wine. Nevertheless, the EC1118 and 4F9 strains produced the 

highest concentrations of acetaldehyde (32.0 + 9.3 and 29.1 + 0.5 mg L-1, respectively), 

whereas this compound was least present in the YPF wines from strains Alchemy I and II. 
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Figure 4-31 Concentration of carbon disulphide and thioacetic acid S-methylester found in 

finished YPF wines produced by 14 different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) between 

yeast strains of each compound according to the DMRT test.   

n.d. denotes not detected. 

 

Sulphur containing compounds: Figure 4-31 shows the significant differences of these 

compounds produced by the fourteen yeast strains. The Alchemy II and LittoLevure strains 

were the greatest carbon disulphide producers (27.5 + 1.2 and 23.1 + 1.5 g L-1, 

respectively), while strain AWRI R2 was the lowest producer. The highest amounts of 

thioacetic acid S-methylester were produced by strains VIN13 and LittoLevure (11.6 + 1.7 

and 11.5 + 1.3 g L-1, respectively), followed by AWRI R2, X16, Alchemy II and LVCB (5.6 + 

1.6, 3.2 + 0.4, 3.5 + 0.7 and 2.4 + 0.4 µg L-1, respectively), while other yeast strains did not 

produce MeSAc. In addition, all YPF wines did not reveal the other S-compounds, H2S, DMS, 

DMDS, ethanethiol, methanethiol and thioacetic acid S-ethylester.  

  

Higher alcohols: Figure 4-32 shows that concentrations in YPF wines significantly differed 

depending on the yeast strains used. Strains X16 and AWRI R2 were the highest producers 

of 2-methyl propanol (154.5 + 7.9 and 143.7 + 16.3 mg L-1, respectively), followed by strain 

Sauvignon (131.5 + 1.9 mg L-1). Strain LittoLevure developed the greatest amounts of 3-

methyl butanol, 2-methyl butanol and 2-phenyl ethanol (206.1 + 12.4, 38.0 + 3.2 and 40.2 + 

6.1 mg L-1, respectively). 2-Phenyl ethanol was also most present in the QA23 wine (39.5 + 

2.2 mg L-1) but least amount of 2-methyl propanol (24.8 + 0.8 mg L-1) was detected in this 

wine. The 3-methyl and 2-methyl butanol were also most evident in the AWRI R2 and VIN13 

wines (185.0 + 16.0, 31.6 + 3.2 mg L-1 and 170.7 + 15.3, 33.6 + 3.6 mg L-1, respectively). 
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Figure 4-32 Concentration of higher alcohols found in finished YPF wines developed by 14 

different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

yeast strains of each compound according to the DMRT test. 

 
 
Acetic acid esters: The results in Figure 4-33 show that concentrations of acetic acid ethyl 

ester in YPF wine were out of the calibration standard value, therefore they were present as 

relative peak area. The production of acetic acid ethyl ester was slightly different among 

yeast strains, strains EC1118, X5, VIN13 and Alchemy II tented to be the highest producers 

(relative peak area ranging from 8.8 + 0.0 to 8.9 + 0.5), while strains 4F9 and Freddo were 

the lowest producers. The LittoLevure strain was the most predominant producer of the other 

acetic acid esters, acetic acid 3- and 2-methylbutyl ester, acetic acid 2-phenylethyl ester and 

acetic acid hexyl ester (1729.0 + 188.9, 72.9 + 17.0, 236.7 + 30.6 and 14.1 + 1.4 g L-1, 

respectively). The QA23 and VIN13 followed a similar pattern of these ester productions, 

however in slightly lower amounts, except for the latter ester that they also produced in the 

highest amounts (14.3 + 0.6 and 13.2 + 0.7 g L-1, respectively). 
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Figure 4-33 Concentration of acetic acid esters found in finished YPF wines developed by 14 

different yeast strains (*10 = concentration of compound times 10, whereas /10 

= concentration of compound divides by 10) 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) between 

yeast strains of each compound according to the DMRT test. 

Relative peak area = (peak area of sample)/(Peak area of internal standard) 
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Figure 4-34 Concentration of ethyl esters found in finished YPF wines developed by 14 

different yeast strains ( /1000 = concentration of compound divides by 1000) 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) between 

yeast strains of each compound according to the DMRT test. 

 

Ethyl esters: Figure 4-34 shows that strains Sauvignon, X5 and EC1118 were the greatest 

producers of propionic acid ethyl ester (81.4 + 2.5, 82.4 + 7.2 and 74.6 + 8.4 g L-1, 

respectively), followed by strain VIN13 (70.5 + 2.3 g L-1). The X16 was the highest producer 

of ethyl esters of lactic acid and isobutanoic acid (36.1 + 1.2 mg L-1 and 92.3 + 9.2 g L-1, 

respectively), followed by strain Sauvignon in respect to the former ester (29.0 + 1.6 mg L-1), 

and strain AWRI R2 regarding the latter ester (72.2 + 16.4 g L-1). For butanoic acid ethyl 

ester, the QA23 and Freddo strains were the most predominant producers (230.5 + 4.8 and 

217.8 + 3.3 g L-1, respectively) and were followed by strains LVCB and EC1118 (200.1 + 

6.8 and 189.6 + 7.2 g L-1, respectively), while the Alchemy I and II were the lowest 

producers (87.7 + 3.6 and 92.2 + 1.4 g L-1, respectively). Of all ethyl esters, strain QA23 

produced the least concentration of ethyl esters, except for butanoic acid ethyl ester. 
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Monoterpenes: The results show that fourteen yeast strains released significantly different 

linalool concentrations, but they had similar ability to liberate -terpineol ranging from 12.1 + 

0.2 to 13.2 + 0.6 g L-1 (Figure 4-35). However, cis-linalool oxide and trans-linalool oxide 

were not detected in all YPF wines. Regarding the linalool, strain QA23 was the most 

releasing strain (11.7 + 0.8 g L-1), followed by strains Alchemy II and I and 4F9 (11.4 + 1.8, 

10.0 + 1.0 and 10.1 + 0.9 g L-1, respectively), whereas strains X16 and VL3 were the least 

releasers. 

 

Medium-chain fatty acids and their ethyl esters: The formation of these compounds were 

significantly different among the fourteen commercial yeast strains used (Table 4-18 and 

Figure 4-36). The QA23 was the greatest producer of all MCFAs; hexanoic, octanoic and 

decanoic acid (6.2 + 0.0, 7.3 + 0.6 and 1.6 + 0.1 mg L-1, respectively), and their ethyl esters; 

HAEtE, OAEtE and DAEtE (758.6 + 48.7, 1111.6 + 60.7 and 387.0 + 32.8 g L-1, 

respectively). High concentrations of these compounds were also produced by strains LVCB 

(5.7 + 0.0, 6.3 + 0.0, 1.3 + 0.1 mg L-1 and 564.0 + 5.8, 1004.4 + 19.4, 338.9 + 9.4 g L-1, 

respectively) and Freddo (5.1 + 0.6, 5.3 + 0.6, 1.1 + 0.1 mg L-1 and 485.2 + 4.9, 816.5 + 18.8, 

250.9 + 16.9 g L-1, respectively). On the contrary, strain X16 was the least MCFA and ethyl 

ester producer. 

 

 
Figure 4-35 Concentration of linalool and -terpineol found in finished YPF wines developed 

by 14 different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) between 

yeast strains of each compound, whereas those displaying the same letters are not 

significantly different (p>0.05) according to the DMRT test. 
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Table 4-18 Concentration of fatty acids found in finished YPF wines developed by 14 yeast 

strains 

 

Yeast  Hexanoic acid  

(mg L-1) 

Octanoic acid  

(mg L-1) 

Decanoic acid  

(mg L-1) 

EC1118 4.2 + 0.0 d 3.9 + 0.0 d 0.6 + 0.1 i 

Sauvignon 4.2 + 0.0 d 4.0 + 0.0 d 0.6 + 0.1 hi 

VL3 4.4 + 0.6 cd 4.3 + 0.0 d 0.8 + 0.1 efgh 

X5 4.5 + 0.6 cd 4.7 + 0.6 cd 0.9 + 0.0 cdef 

X16 3.4 + 0.0  e 2.6 + 0.6 e 0.3 + 0.1 j 

VIN13 4.2 + 0.0 cd 4.3 + 0.0 d 0.7 + 0.1 fghi 

Alchemy I 4.1 + 0.0 cd 4.2 + 0.0 d 0.8 + 0.1 defg 

Alchemy II 4.5 + 0.6 cd 4.6 + 0.6 cd 1.0 + 0.1 c 

4F9 4.7 + 0.0 b 4.9 + 0.0 c 0.9 + 0.1 cde 

LVCB 5.7 + 0.0 a 6.3 + 0.0 b 1.3 + 0.1 b 

LittoLevure  4.5 + 0.6 bc 4.3 + 0.6 cd 0.7 + 0.2 ghi 

AWRI R2 4.1 + 0.0 d 3.7 + 0.0 d 0.6 + 0.1 hi 

QA23 6.2 + 0.0 a 7.3 + 0.6 a 1.6 + 0.1 a 

Freddo 5.1 + 0.6 b 5.3 + 0.6 c 1.1 + 0.1 c 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying different letters within the same column are significantly different (p<0.05) 

according to the DMRT test. 

 

 

Figure 4-36 Concentration of fatty acid ethyl esters found in finished YPF wines developed 

by 14 different yeast strains  

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) between 

yeast strains of each compound according to the DMRT test. 
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4.3.2 Effect of three commercial Saccharomyces strains and five different commercial 

nutrient sources on growth kinetics, fermentative characteristics, metabolic 

compounds and aromas of yellow passion fruit wines 

 

The fermentation trial was performed in yellow passion fruit (YPF) juice in 2008. Three 

commercial yeast strains; EC1118, Sauvignon and X5, and five commercial nutrient sources, 

DAP, Vitamon Combi (VCombi), Vitamon Ultra (VUltra), Fermaid E blanc (Fermaid E) and 

OptiWhite at 0.4 g L-1 were used in the fermentation YPF trial. The fermentation kinetics and 

some non-volatile and volatile compounds in final YPF wines were examined. The two S. 

cerevisiae yeast strains; Sauvignon and X5, were chosen from the basis results obtained 

from a previous trial of Sauvignon blanc and Scheurebe grape wines as well as the YPF trial. 

They are considered to have relatively high nitrogen demands and their fermentation 

performances are considered to be more susceptible to nitrogen deficiency. Additionally, they 

also tended to produce wines having desirable fermentative characteristics and quality. 

Whereas, the EC1118 strain was used as a control strain due to its high popularity in wine 

industry and its tendency to produce less undesirable components. 

 

 
Figure 4-37 Fermentation kinetics of YPF juice fermentations with three different commercial 

yeast strains and four different nutrient sources 
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The fermentation kinetics: As shown in Figure 4-37, the EC1118 strain seemed to have 

the fastest growth kinetics and time, while strain Sauvignon had the slowest kinetics, 

however varied depending on the nutrient source. The addition of VCombi, VUltra and 

Fermaid E enhanced strain EC1118 to have a similarly short lag phase and helped to finish 

fermentations after 23 days, on the contrary, in the DAP and OptiWhite samples they 

prolonged the fermentations to finish after 29 days. For strain X5, the fermentation kinetics 

were relatively more responsive to the nutrient source than strain EC1118. Thus, the duration 

of fermentation was shortest in the VCombi treatment (23 days), while addition of other 

nutrients like DAP, VUltra, Fermaid E and OptiWhite, seemed to prolong the fermentation 

time (27, 28, 36 and 43 days of fermentation, respectively). Nevertheless, the YPF 

fermentations with both yeast strains completely finished. The Sauvignon strain tended to 

have inverse behaviour. In all nutrient sources, its fermentations had a long lag phase (5-12 

days) and resulted in sluggish fermentation varying from 36 to 47 days. Nonetheless, all YPF 

fermentations with this strain completely finished as well. 

 

Chemical composition: Three yeast strains produced YPF wines having different amounts 

of residual sugar in response to the nutrient source (Table 4-19). Concentrations of residual 

sugar were most evident in YPF wines produced by strain Sauvignon with the addition of 

VUltra, Fermaid E and OptiWhite (1.5 + 0.2, 1.6 + 0.1 and 1.4 + 0.3 g L-1, respectively), 

followed by with VCombi supplementation (1.1 + 0.2 g L-1). Nevertheless, the three yeast 

strains consumed practically almost the initial sugar concentration provided (201 g L-1 as 

given in 3.9.2) and resulted in low residual sugar below 2 g L-1, which helped to achieve 

dryness in final YPF wines. In addition, there was no significant difference in glycerol 

formation among the treatment combinations ranging from 4.6 + 1.1 to 6.2 + 0.3 g L-1.  

   

Organic acids: The results demonstrate that the commercial yeast strains and the nutrient 

sources significantly affected the concentration of organic acids in YPF wines (Table 4-20). 

Strain Sauvignon synthesized the highest amounts of malic acid in the DAP treatment (1.47 

+ 0.24 g L-1) and acetic acid in the Fermaid E and OptiWhite samples (0.47 + 0.05 and 0.48 + 

0.04 g L-1, respectively). Strain Sauvignon synthesized malic acid approximately 64.7 % in 

the DAP treatment and 39.5 % in the VCombi fermentation, while strain X5 produced 39.5 % 

malic acid in the Fermaid E treatment. The highest amounts of citric acid were present in 

YPF wine of strain X5 with the addition of OptiWhite (3.70 + 0.03 g L-1) and strain Sauvignon 

with the DAP treatment (3.67 + 0.04 g L-1). 
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Table 4-19 Chemical composition of finished YPF wines obtained from frozen YPF juices 

fermented with three different yeast strains and five nutrient sources 

 

Yeast Nutrient  Residual sugar (g L-1) Glycerol (g L-1)  

EC1118 DAP 0.2 + 0.1 ef 4.8 + 0.1 a 

 VCombi 0.4 + 0.2 def 4.9 + 0.0 a 

 VUltra 0.2 + 0.1 f 4.9 + 0.1 a 

 Fermaid E 0.5 + 0.2 cde 4.8 + 0.2 a 

 OptiWhite 0.5 + 0.2 cdef 4.8 + 0.1 a 

Sauvignon DAP 0.7 + 0.2 c 5.9 + 0.1 a 

 VCombi 1.1 + 0.2 b 6.2 + 0.3 a 

  VUltra 1.5 + 0.2 a 5.9 + 0.2 a 

 Fermaid E 1.6 + 0.1 a 6.1 + 0.1 a 

 OptiWhite 1.4 + 0.3 a 5.4 + 0.5 a 

X5 DAP 0.4 + 0.1 def 4.9 + 0.0 a 

  VCombi 0.3 + 0.1 ef 4.8 + 0.1 a 

  VUltra 0.3 + 0.1 ef 4.7 + 0.1 a 

 Fermaid E 0.5 + 0.2 cdef 4.7 + 0.1 a 

  OptiWhite 0.6 + 0.1 cd 4.6 + 1.1 a 

Each value shows the mean + standard deviation from three fermentation replicates. 

Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05) among treatment combinations, whereas those displaying different letters 

are significantly different (p<0.05) according to the DMRT test. 

 

SO2-binding compounds: Figure 4-38 shows that the commercial yeast strains and the 

nutrient sources significantly affected the production of these compounds in YPF wines. In 

the DAP treatment, the greatest concentrations of -ketoglutarate were formed by strain 

Sauvignon (338.1 + 22.9 mg L-1), followed by strain EC1118 (150.2 + 31.5 mg L-1) and that of 

pyruvate by these two strains (62.0 + 14.4 and 61.5 + 6.8 mg L-1, respectively). The X5 

seemed to be the lowest producer of both keto acids with less response to nutrient sources, 

although the production slightly increased in the OptiWhite sample. Nevertheless, the 

addition of VCombi, VUltra and Fermaid E significantly diminished the formation of these 

keto acids. On the other hand, these three nutrient sources stimulated the highest 

acetaldehyde formation in YPF wines by the EC1118 strain (31.6 + 0.2, 29.9 + 0.9 and 30.3 

+ 0.5 mg L-1, respectively). This compound was also most evident in the YPF fermentation 

with strain X5 in the presence of VCombi (29.8 + 1.9 mg L-1). 
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Table 4-20 Concentration of organic acids found in finished YPF wines produced by three 

different yeast strains with five nutrient sources 

 

Yeasts Nutrients Malic acid (g L-1)  Acetic acid (g L-1)  Citric acid (g L-1)  

EC1118 DAP 0.66 + 0.01 cd 0.27 + 0.01 def 3.53 + 0.01 fgh 

 VCombi 0.55 + 0.01 d 0.28 + 0.03 de 3.54 + 0.02 efgh 

 VUltra 0.58 + 0.01 d 0.29 + 0.01 cd 3.55 + 0.02 defgh 

 Fermaid E 0.60 + 0.01 d 0.34 + 0.01 bc 3.58 + 0.05 cdef 

 OptiWhite 0.63 + 0.01 cd 0.38 + 0.01 b 3.57 + 0.01 def 

Sauvignon DAP 1.47 + 0.24 a 0.35 + 0.04 b 3.67 + 0.04 ab 

 VCombi 0.89 + 0.27 b 0.35 + 0.07 b 3.56 + 0.04 defg 

  VUltra 0.74 + 0.01 bcd 0.38 + 0.02 b 3.59 + 0.01 cde 

 Fermaid E 0.72 + 0.03 bcd 0.47 + 0.05 a 3.61 + 0.01 cd 

 OptiWhite 0.62 + 0.04 cd 0.48 + 0.04 a 3.64 + 0.02 bc 

X5 DAP 0.68 + 0.03 cd 0.27 + 0.00 def 3.50 + 0.00 gh 

  VCombi 0.73 + 0.03 bcd 0.22 + 0.01 f 3.59 + 0.02 cdef 

  VUltra 0.80 + 0.04 bc 0.23 + 0.01 ef 3.49 + 0.01 h 

 Fermaid E 0.86 + 0.01 b 0.24 + 0.00 ef 3.60 + 0.01 cd 

  OptiWhite 0.79 + 0.01 bc 0.34 + 0.01 bc 3.70 + 0.03 a 

 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying different letters within the same column are significantly different (p<0.05) 

among treatment combinations according to the DMRT test. 

 

Sulphur containing compounds: The results in Figure 4-39 demonstrate that three 

commercial yeast strains significantly produced different compounds in response to the 

nutrient source. Addition of DAP promoted the greatest production of H2S and CS2 by strain 

EC1118 (7.2 + 1.5 and 19.1 + 2.8 g L-1, respectively), whereas addition of VCombi and 

VUltra resulted in the highest formation of methanethiol (7.3 + 1.0 and 7.4 + 1.0 g L-1, 

respectively). However, methanethiol was either not detected or present in trace quantities in 

the other YPF wine treatments. Strain Sauvignon seemed to be the most predominant CS2 

producer with less response to the nutrient source (15.0 + 1.6 to 21.8 + 3.6 g L-1) and also 

developed a high level of H2S in the presence of DAP (5.3 + 1.2 g L-1). Under the condition 

in this trial, the other sulphur compounds, ethanethiol, dimethyl sulphide, dimethyl disulphide, 

thioacetic acid S-methylester, thioacetic acid S-ethylester, diethyl disulphide and dimethyl 

trisulphide were not detected in all YPF wines. 
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Figure 4-38 Concentration of SO2-binding compounds found in finished YPF wines produced 

by three different yeast strains with five nutrient sources 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations of each compound according to the DMRT test. 
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Figure 4-39 Concentration of carbon disulphide and thioacetic acid S-methylester found in 

finished YPF wines produced by three different yeast strains with five nutrient 

sources 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations of each compound according to the DMRT test. 

n.d. denotes not detected. 

n.q. denotes not quantified or traced.  
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Higher alcohols: Figure 4-40 demonstrates that the Sauvignon strain was the predominant 

producer of higher alcohols, although its production varied depending on the nutrient source. 

It developed the greatest amounts of 2-methyl butanol and 2-phenyl ethanol in the VCombi, 

VUltra and Fermaid E samples (47.5 + 4.9, 50.0 + 2.9, 47.5 + 3.6 mg L-1 and 52.7 + 6.1, 55.0 

+ 0.3, 56.0 + 1.0 mg L-1, respectively). The highest level of 2-methyl propanol was also 

produced by strain Sauvignon in the presence of DAP (143.6 + 23.1 mg L-1), while 3-methyl 

butanol was most evident in the DAP, VCombi, VUltra and Fermaid E treatments (181.5 + 

20.3, 187.3 + 8.0, 197.7 + 10.0 and 195.1 + 11.0 mg L-1, respectively). Addition of DAP 

significantly reduced the formation of 2-methyl butanol and 2-phenyl ethanol for all yeast 

strains, while VCombi, VUltra and Fermaid E decreased the formation of 2-methyl propanol. 

 

 

 

Figure 4-40 Concentration of higher alcohols found in finished YPF wines developed by 

three different yeast strains with five nutrient sources 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations of each compound according to the DMRT test. 
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Figure 4-41 Concentration of acetic acid esters found in finished YPF wines developed by 

three different yeast strains with five nutrient sources (*10 = concentration of 

compound times 10) 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations of each compound according to the DMRT test. 

Relative peak area = (peak area of sample)/(Peak area of internal standard) 
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Acetic acid esters: Figure 4-41 shows that the Sauvignon strain tended to be the greatest 

acetic acid ester producer, excluding the acetic acid hexyl ester, however this depended on 

the nutrient source. Concentrations of acetic acid ethyl ester in YPF wine were out of the 

quantification limit, they were therefore present as relative peak area. Addition of Fermaid E 

promoted the highest formation of acetic acid ethyl ester by strain Sauvignon (10.4 + 0.2 

relative peak area) and followed by strain X5. Strain Sauvignon with the addition of VCombi, 

VUltra and Fermaid E developed the greatest amounts of acetic acid 3-methylbutyl ester 

(947.2 + 113.1, 972.8 + 32.4, 878.9 + 76.3 g L-1, respectively), acetic acid 2-methylbutyl 

ester (60.1 + 6.0, 62.7 + 2.9, 56.4 + 4.2 g L-1, respectively) and acetic acid 2-phenyl ethyl 

ester (208.9 + 27.5, 203.8 + 8.7, 203.3 + 11.3 g L-1, respectively). On the contrary, DAP 

addition significantly reduced the levels of these compounds for all yeast strains. Acetic acid 

hexyl ester was most evident in the EC1118 strain with VCombi treatment, followed by the 

X5 strain with the same nutrient (12.1 + 0.5 and 10.8 + 0.1 g L-1, respectively). 

 

Ethyl and diethyl esters: As shown in Table 4-21, SAdiEtE was detected only in trace 

quantities in all YPF wines (data not shown). The X5 strain was the highest PrEtE producer 

when either Fermaid E or OptiWhite was added to the YPF juices (151.0 + 14.7 and 161.9 + 

12.0 g L-1, respectively).  High production of BuEtE was produced by strain EC1118 in the 

VCombi sample (210.4 + 16.1 g L-1), followed by the DAP and VUltra treatments (181.2 + 

11.0 and 180.4 + 5.1 g L-1, respectively), while strain X5 also developed high amount of this 

ester in the VCombi sample (176.6 + 8.7 g L-1). Addition of DAP promoted the Sauvignon 

strain to develop the greatest amounts of iBuEtE and LAEtE (56.8 + 9.9 and 25.8 + 0.3 g L-1, 

respectively). Strain EC1118 seemed to follow the similar pattern for these ester productions 

in response to DAP addition (23.5 + 1.0 and 14.9 + 1.6 g L-1, respectively). 

 

Medium-chain fatty acids and ethyl esters: As shown in Table 4-22, addition of VCombi 

and VUltra promoted strain EC1118 to develop the greatest amounts of hexanoic, octanoic 

and decanoic acids (5.3 + 0.3 and 4.9 + 0.3 mg L-1, 6.0 + 0.5 and 5.5 + 0.2 mg L-1, and 1.2 + 

0.2 and 1.1 + 0.0 mg L-1, respectively). Hexanoic acid was also most evident in the EC1118 

wine with Fermaid E addition. Strain X5 also produced the highest amounts of all MCFAs in 

the VCombi treatment (5.1 + 0.1, 5.8 + 0.2 and 1.2 + 0.0 mg L-1, respectively), while hexanoic 

and octanoic acid were most evident in the DAP sample (4.9 + 0.1 and 5.4 + 0.2 mg L-1, 

respectively). It also developed the greatest amounts of OAEtE and DAEtE in the VCombi 

(954.3 + 21.2 and 317.5 + 28.4 g L-1, respectively) and the DAP samples (873.3 + 5.7 and 

306.0 + 5.7 g L-1, respectively). Addition of VCombi promoted the highest productions of all 

MCFA ethyl esters by strain EC1118 as well.  
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Table 4-21 Concentration of ethyl esters found in finished YPF wines produced by three 

different yeast strains with five nutrient sources 

 

Yeasts Nutrients PrEtE  

(g L-1) 

BuEtE  

(g L-1) 

iBuEtE  

(g L-1) 

LAEtE  

(mg L-1) 

EC1118 DAP 70.7 + 1.5 ef 181.2 + 11.0 b 23.5 + 1.0 bc 14.9 + 1.6  b 

 VCombi 58.9 + 3.7 f 210.4 + 16.1 a 7.0 + 2.2 gh 8.8 + 0.1 fg 

 VUltra 65.2 + 1.0 ef 180.4 + 5.1 b 5.9 + 0.5 h 8.7 + 0.1 fg 

 Fermaid E 68.7 + 0.9 ef 154.4 + 6.4 cd 7.6 + 0.4 gh 8.5 + 0.1 fg 

 OptiWhite 100.8 + 3.4 c 71.1 + 2.1 h 11.1 + 0.2 efgh 8.3 + 0.2 g 

Sauvignon DAP 70.4 + 22.6 ef 120.8 + 17.2 fg 56.8 + 9.9 a 25.8 + 0.3 a 

 VCombi 67.7 + 1.7 ef 150.2 + 15.1 d 22.8 + 6.2 bc 10.8 + 0.2 c 

  VUltra 76.1 + 1.5 e 121.4 + 5.2 fg 22.6 + 0.4 bc 10.8 + 0.2 c 

 Fermaid E 73.8 + 3.4 ef 106.2 + 5.6 g 26.4 + 2.4 b 10.2 + 0.4 cd 

 OptiWhite 77.4 + 2.5 de 50.4 + 1.1 i 22.9 + 5.2 bc 9.2 + 0.2 fg 

X5 DAP 80.8 + 1.2 de 167.4 + 3.9 bc 14.6 + 0.7 def 10.0 + 0.2 de 

  VCombi 90.7 + 4.1 cd 176.6 + 8.7 b 9.3 + 0.3 fgh 8.7 + 0.1 efg 

  VUltra 121.4 + 4.7 b 141.7 + 2.2 de 12.4 + 1.1 efg 9.1 + 0.1 efg 

 Fermaid E 151.0 + 14.7 a 133.3 + 11.3 ef 16.7 +  2.0 cde 9.5 + 0.1 def 

  OptiWhite 161.9 + 12.0 a 57.2 + 1.5 hi 19.5 + 1.8 cd 8.0 + 0.1 g 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying different letters within the same column are significantly different (p<0.05) 

among treatment combinations according to the DMRT test. 
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Monoterpenes: Concentrations of monoterpenes were significantly different depending on 

the yeast strain rather than on the nutrient source (Figure 4-42). The Sauvignon strain 

seemed to be the most releasing strain of -terpineol (12.2 + 0.3 to 13.1 + 0.1 g L-1) and 

linalool (9.9 + 1.4 to 11.7 + 1.9 g L-1), although linalool was decreased in the DAP treatment 

(7.2 + 0.9 g L-1). High concentrations of these compounds were also released by strain X5 

in the Fermaid E (12.8 + 0.2 and 9.8 + 0.3 g L-1, respectively) and OptiWhite treatment (12.6 

+ 0.7 and 10.8 + 1.1 g L-1, respectively). Other monoterpenes, trans-linalool oxide and cis-

linalool oxide were not detected in all YPF wine treatments. 

 

 

Figure 4-42 Concentration of linalool and -terpineol found in finished YPF wines developed 

by three different yeast strains with five nutrient sources 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations according to the DMRT test.  
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Table 4-22 Concentration of fatty acids and their ethyl esters found in finished YPF wines produced by three different yeast strains with five 

nutrient sources 

 

Yeasts Nutrients Hexanoic acid  

(mg L-1) 

Octanoic acid  

(mg L-1) 

Decanoic acid  

(mg L-1) 

HAEtE  

(g L-1) 

OAEtE  

(g L-1) 

DAEtE  

(g L-1) 

EC1118 DAP 4.1 + 0.2 b 3.8 + 0.2 c 0.5 + 0.2  ef 377.2 + 37.8 e 621.4 + 42.0  d 174.5 + 13.9 f 

 VCombi 5.3 + 0.3 a 6.0 + 0.5 a 1.2 + 0.2 a 634.0 + 84.4 a 921.1 + 94.8 a 286.5 + 32.0 abc 

 VUltra 4.9 + 0.3 a 5.5 + 0.2 a 1.1 + 0.0 ab 581.0 + 17.8 b 817.5 + 44.0  bc 260.2 + 17.3 cd 

 Fermaid E 4.8 + 0.1 a 5.2 + 0.1 b 1.0 + 0.1 bc 570.6 + 23.7 b 773.8 + 70.4 c 242.8 + 22.2 de 

 OptiWhite 3.7 + 0.1 b 3.3 + 0.3 d 0.6 + 0.1 de 342.3 + 8.6 ef 422.2 + 20.3 f 142.5 + 12.3 fg 

Sauvignon DAP 3.5 + 0.4 c 2.8 + 0.5 e 0.4 + 0.1 efg 208.2 + 39.9 hi 335.3 + 89.3 g 116.3 + 37.5 gh 

 VCombi 4.1 + 0.3 b 3.7 + 0.3 c 0.6 + 0.1  de 295.9 + 5.8 fg 536.3 + 52.4 e 138.9 + 31.9 g 

  VUltra 3.8 + 0.2 b 3.2 + 0.0 de 0.4 + 0.0 efg 257.4 + 7.4 gh 427.8 + 18.3 f 117.1 + 7.7 gh 

 Fermaid E 3.6 + 0.0 b 3.1 + 0.0 de 0.4 + 0.0 efg 242.0 + 13.7 h 414.8 + 17.2 f 118.6 + 12.7 g 

 OptiWhite 3.1 + 0.0 d 2.4 + 0.0 f 0.3 + 0.0 g 113.4 + 11.1 j 205.7 + 20.7 h 82.4 + 10.4 h 

X5 DAP 4.9 + 0.1 a 5.4 + 0.2 a 1.0 + 0.1 bc 436.2 + 7.1 d 873.3 + 5.7 ab 306.0 + 5.7 ab 

  VCombi 5.1 + 0.1 a 5.8 + 0.2 a  1.2 + 0.0 a 487.8 + 9.6 c 954.3 + 21.2 a 317.5 + 28.4 a 

  VUltra 4.4 + 0.1 b 4.7 + 0.0 b 1.0 + 0.1 bc 375.3 + 3.6 e 748.5 + 7.9 c 271.3 + 4.9 bcd 

 Fermaid E 4.0 + 0.1 b 4.0 + 0.2 c 0.7 + 0.1 d 307.4 + 21.4 fg 649.6 + 52.1 d 221.0 + 8.8 e 

  OptiWhite 3.4 + 0.0 d 2.9 + 0.0 de 0.5 + 0.1 ef 168.6 + 5.5 i 289.6 + 17.4 g 119.5 + 7.3 g 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying different letters within the same column are significantly different (p<0.05) among treatment combinations according to the 

DMRT test. 
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4.3.3 Effect of five commercial Saccharomyces yeast strains and two different 

commercial nutrient sources at different concentrations on growth kinetics, 

fermentative characteristics, metabolic compounds and aromas of yellow passion fruit 

wines 

 

The fermentation trial was performed in yellow passion fruit (YPF) juice, which was prepared 

from frozen yellow passion fruit puree in 2009. The chemical composition and volatile 

compounds in yellow passion puree and juice used in the fermentation trial were examined 

and the investigated results are given in Table 4-23. 

 

The fermentation trial was performed in prepared YPF juice. Five commercial yeast strains; 

EC1118, VL3, X5, Alchemy I and LittoLevure and two different commercial nutrient sources; 

DAP and Vitamon Combi (VCombi) at two different concentrations; 0.25 and 0.5 g L-1, were 

used for the fermentations of this YPF trial. In the previous YPF trial, the basic understanding 

of commercial yeast strain and nutrient supplementation in YPF wine fermentation were 

examined. Due to the fact that the addition of DAP, that is widely used in fruit wine 

production, to the YPF juice resulted in higher production of keto acids, hydrogen sulphide 

and some higher alcohols in the final YPF wines. Hence, the addition of a nutrient mixture 

containing thiamine (VCombi) with varying concentrations was investigated in order to 

optimize those compounds above.  

This trial was aimed to investigate the effect of two nutrient sources with and without 

thiamine on the fermentation kinetics and performances, some metabolic and volatile 

compounds in final YPF wines. Four Saccharomyces yeast strains, VL3, X5, Alchemy I and 

LittoLevure were chosen on the basis of the results obtained from the previous trial of grape 

wine and YPF wine fermentations because their fermentation performances are considered 

to be more susceptible to nitrogen deficiency and composition. However, they also seemed 

to develop desirable fermentative characteristics and important volatile compounds in the 

final grape and YPF wines under certain conditions. Strain EC1118 has a high popularity in 

wine industry and fruit wine production, additionally it tended to produce less undesirable 

components, thus it was used as a control strain in this YPF fermentation trial. 

 

YPF puree: YPF puree contained high acid namely 40.50 + 0.00 g L-1 citric acid, 5.23 

+   0.00 g L-1 malic acid and had low pH at 2.9 + 0.1 (Table 4-23). The other physico-

chemical composition and aromas were TSS 9.0 + 0.1 0Brix, 53.5 + 3.5 g L-1 inverted sugar 

(as glucose), 296.0 + 0.7 mg L-1 -amino nitrogen/NOPA (as isoleucine), 2491.0 mg L-1 total 

amino acid without proline (Table A-3), 3.9 + 0.1 mg L-1 3-methyl butanol, 938.3 + 67.3 g L-1 

hexanol, 141.6 + 5.9 g L-1 butanoic acid ethyl ester, 48.1 + 1.3 g L-1 linalool and 49.1 
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+   0.5 g L-1 -terpineol. Concentrations of 2-methyl butanol, 2-phenyl ethanol, acetic acid 

ethyl ester, propionic acid ethyl ester, succinic acid diethyl ester and ethyl ester of medium-

chain fatty acids (MCFAs) were detected in trace quantities only (Table 4-23). 

 

Table 4-23 Physico-chemical composition and some aromas of YPF puree and prepared 

YPF juice used in this fermentation trial 

 

Compositions YPF puree Prepared YPF juice 

pH 2.9 + 0.1 3.2 + 0.1 

Total soluble solid (oBrix) 9.0 + 0.1 20.9 + 0.5 

Inverted sugar (g L-1) 53.5 + 3.5 170.5 + 12.1 

NOPA (as mg L-1 isoleucine) 296.0 + 0.7 24.0 + 0.0 

Total amino nitrogen without proline (mg L-1)  2491.0 123.1 

Free SO2 (mg L-1) n.m. 2.6 + 0.2 

Total SO2 (mg L-1) n.m. 6.8 + 0.8 

Citric acid (g L-1) 40.50 + 0.00 3.10 + 0.62 

Malic acid (g L-1) 5.23 + 0.00 0.45 + 0.06 

3-Methyl butanol (mg L-1) 3.9 + 0.1 n.d. 

2-Methyl butanol (mg L-1) traces n.d. 

2-Phenyl ethanol (mg L-1) traces n.d. 

Hexanol (g L-1) 938.3 + 67.3 163.9 + 2.7 

Acetic acid ethyl ester (mg L-1) traces Traces 

Propionic acid ethyl ester (g L-1) traces n.d. 

Butanoic acid ethyl ester (g L-1) 141.6 + 5.9 Traces 

Succinic acid diethyl ester (g L-1) traces n.d. 

hexanoic acid ethyl ester (g L-1) traces n.d. 

octanoic acid ethyl ester (g L-1) traces Traces 

decanoic acid ethyl ester (g L-1) traces Traces 

Linalool (g L-1) 48.1 + 1.3 n.d. 

-Terpineol (g L-1) 49.1 + 0.5 6.9 + 0.3 

 

Each value shows the mean + standard deviation from two sample replicates.  

NOPA denotes free α-amino acid nitrogen  

n.m. denotes not measured 

n.d. denotes not detected 
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Prepared YPF juice: In Table 4-23 and Table A-3, the physico-chemical properties of 

prepared YPF juice were pH 3.2 + 0.1, 3.10 + 0.62 g L-1 citric acid, 0.45 + 0.06 g L-1 malic 

acid,  TSS 20.9 + 0.5  0 Brix, 170.5 + 12.1 g L-1 inverted sugar, 24.0 + 0.0 mg L-1 -amino 

nitrogen/NOPA, 123.1 mg L-1 total amino acid without proline, 163.9 + 2.7 g L-1 hexanol and 

6.9 + 0.3 g L-1 -terpineol. Concentrations of acetic acid ethyl ester, butanoic acid ethyl 

ester, octanoic acid and decanoic acid ethyl ester were only present in trace quantities. 

 

 

Figure 4-43 Growth kinetics of YPF juice fermentations with five different commercial yeast 

strains and two different nutrient sources at two different concentrations 

 

The growth kinetics: As shown in Figure 4-43, the EC1118 and Alchemy I strain appeared 

to have similar fast fermentation kinetic and time, while the LittoLevure seemed to be the 

weakest strain, however the kinetics varied depending on nutrient supplementation. For 

strain LittoLevure, addition of any nutrient source and concentration resulted in the similar 

initial long lag phase for 4 days, but final fermentation times differed depending on the 

nutrient source and level. Strain LittoLevure had the longest fermentation duration in the 

presence of DAP or VCombi at low level (44 and 44 days, respectively). The addition of 

VCombi at both levels (0.25 and 0.5 g L-1) enhanced strain EC1118 to have the fastest 

growth rates and fermentation times (26-27 days), on the contrary the similar nutrient 

addition resulted in slow and sluggish fermentations of strain LittoLevure. The fermentation 

kinetics and durations of strains Alchemy I, VL3 and X5 were accelerated in the high VCombi 
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treatment (26, 29 and 29 days, respectively). A high level of DAP addition also enhanced the 

fast kinetics of strains Alchemy I and EC1118 (27 and 29 days, respectively), whereas both 

levels of DAP addition resulted in slow and sluggish fermentations of strains VL3 and X5 (41 

and 43 days, respectively). However, all YPF fermentations completely finished. In all cases, 

fermentation kinetics seemed to increase and the duration of fermentation decreased in 

response to increased nutrient concentrations, particularly in the VCombi treatment. 

  
Chemical composition: In Table 4-24, the concentration of residual sugar was most 

present in YPF wines produced by strains X5 and Alchemy I with DAP addition (1.0 + 0.2 and 

1.1 + 0.3 g L-1, respectively) and by strain LittoLevure with VCombi treatment (1.1 + 0.1 g L-1). 

In addition, the five yeast strains practically almost consumed the initial sugar provided 

(Table 4-23) and resulted in low residual sugar below 2 g L-1. Some differences existed 

between the YPF wine treatments in term of glycerol production. A low level of DAP 

promoted the VL3 and X5 strains to produce the highest amounts of glycerol (4.8 + 0.5 and 

4.9 + 0.2 g L-1, respectively), while strain Alchemy I produced the greatest level in high 

VCombi treatment (4.7 + 0.4 g L-1).  

 

Organic acids: Table 4-25 shows that all YPF wine treatments had similar amounts of acetic 

acid ranging from 0.20 + 0.00 to 0.33 + 0.05 g L-1. The concentration of citric acid was most 

evident in the YPF wine produced by Alchemy I in the DAP sample at both levels (2.43 + 

0.10 and 2.47 + 0.10 g L-1, respectively) and at high level of VCombi (2.43 + 0.10 g L-1). 

Strain EC1118 also produced YPF wine having a high amount of this acid in the VCombi 

treatment at both levels (2.43 + 0.10 and 2.43 + 0.10 g L-1, respectively). There was a slight 

decrease of citric acid at approximately 20.3-36.4 % in YPF wines. The highest amounts of 

malic acid were produced by strain LittoLevure in the high VCombi and low DAP treatment 

(0.78 + 0.04 and 0.73 + 0.01 g L-1, respectively). 

 

SO2-binding compounds: Figure 4-44 shows that the five yeast strains produced similar 

concentration of acetaldehyde ranged from 15.6 + 0.6 to 24.2 + 0.2 mg L-1. Strain VL3 

produced the greatest amount of -ketoglutarate in the high DAP sample, followed by the low 

DAP addition (272.8 + 5.6 and 251.7 + 6.2 mg L-1, respectively). Strain X5 also produced a 

high amount of this compound in both levels of DAP (246.2 + 3.5 and 245.5 + 5.1 mg L-1, 

respectively) and the highest amount of pyruvate in the low level of DAP addition (156.6 + 

3.7 mg L-1). It is likely that the addition of DAP resulted in excess keto acid production by 

strains VL3 and X5, however concentrations of these keto acids significantly diminished with 

the addition of VCombi to the YPF juice. 
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Table 4-24 Chemical composition of finished YPF wines obtained from YPF juices fermented 

with five different yeast strains with two nutrient sources at two different 

concentrations 

 

Yeasts Nutrients Concentrations  

(g L-1) 

Residual sugar  

(g L-1) 

Glycerol  

(g L-1)  

EC1118 DAP 0.25 0.3 + 0.1 f 4.0 + 0.3 cde 

  0.50 0.4 + 0.2 ef 4.1 + 0.4 bcde  

 VCombi 0.25 0.4 + 0.0 def 3.9 + 0.5 de 

  0.50 0.5 + 0.0 cdef 4.0 + 0.3 cde 

VL3 DAP 0.25 0.8 + 0.2 bc 4.8 + 0.5 ab 

   0.50 0.3 + 0.1 f 4.0 + 0.6 cde 

 VCombi 0.25 0.4 + 0.1 def 4.2 + 0.5 bcde 

   0.50 0.6 + 0.1 cdef 4.5 + 0.4 abcd 

X5 DAP 0.25 1.0 + 0.2 a 4.9 + 0.2 a 

  0.50 0.5 + 0.2 cdef 3.8 + 0.3 e 

  VCombi 0.25 0.7 + 0.2 bcde 4.1 + 0.2 bcde 

   0.50 0.6 + 0.1 cdef 4.3 + 0.1 abcde 

Alchemy I DAP 0.25 1.1 + 0.3 a 4.5 + 0.4 abcd 

  0.50 0.7 + 0.1 bcde 4.5 + 0.2 abcd 

 VCombi 0.25 0.6 + 0.1 cdef 4.2 + 0.5 bcde 

  0.50 0.6 + 0.2 cdef 4.8 + 0.4 ab 

LittoLevure DAP 0.25 0.8 + 0.1 bc 4.0 + 0.3 cde 

  0.50 0.5 + 0.1 cdef 4.7 + 0.4 abc 

  VCombi 0.25 1.1 + 0.1 a 4.4 + 0.5 abcde 

  0.50 0.5 + 0.2 cdef 4.4 + 0.5 abcde 

 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying different letters within the same column are significantly different (p<0.05) 

among treatment combinations according to the DMRT test. 
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Table 4-25 Concentration of organic acids found in finished YPF wines produced by five 

different yeast strains with two nutrient sources at two different concentrations   

 

Yeasts Nutrients Concentrations  

(g L
-1

) 

Citric acid  

(g L
-1

) 

Malic acid  

(g L
-1

) 

Acetic acid  

(g L
-1

) 

EC1118 DAP 0.25 2.13 + 0.10 g 0.51 + 0.01 h 0.27 + 0.05 a 

  0.50 2.37 + 0.20 abc 0.48 + 0.01 hj 0.30 + 0.00 a 

 VCombi 0.25 2.43 + 0.10 ab 0.43 + 0.02 ij 0.33 + 0.05 a 

  0.50 2.43 + 0.10 ab 0.41 + 0.01 j 0.30 + 0.10 a 

VL3 DAP 0.25 1.97 + 0.10 h 0.68 + 0.01 bcd 0.20 + 0.00 a 

   0.50 2.13 + 0.10 g 0.72 + 0.01 bc 0.30 + 0.00 a 

 VCombi 0.25 2.20 + 0.00 efg 0.64 + 0.02 de 0.23 + 0.05 a 

   0.50 2.27 + 0.10 def 0.58 + 0.01 fg 0.30 + 0.00 a 

X5 DAP 0.25 2.20 + 0.00 efg 0.61 + 0.01 ef 0.30 + 0.00 a 

  0.50 2.20 + 0.00 efg 0.64 + 0.02 de 0.30 + 0.00 a 

  VCombi 0.25 2.30 + 0.00 cde 0.69 + 0.01 ef 0.23 + 0.03 a 

   0.50 2.33 + 0.10 bcd 0.54 + 0.01 gh 0.30 + 0.00 a 

Alchemy I DAP 0.25 2.43 + 0.10 ab 0.50 + 0.02 h 0.30 + 0.00 a 

  0.50 2.47 + 0.10 a 0.48 + 0.02 hi 0.30 + 0.00 a 

 VCombi 0.25 2.20 + 0.00 fg 0.61 + 0.01 ef 0.30 + 0.00 a 

  0.50 2.43 + 0.10 ab 0.53 + 0.02 gh 0.20 + 0.00 a 

LittoLevure DAP 0.25 2.00 + 0.00 h 0.73 + 0.01 ab 0.20 + 0.00 a 

  0.50 2.23 + 0.10 efg 0.67 + 0.02 cd 0.20 + 0.00 a 

  VCombi 0.25 2.03 + 0.10 h 0.71 + 0.01 bc 0.23 + 0.05 a 

  0.50 2.03 + 0.10 h 0.78 + 0.04 a 0.27 + 0.04 a 

 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05) among treatment combinations, whereas those displaying different letters 

are significantly different (p<0.05) according to the DMRT test. 
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Figure 4-44 Concentration of SO2-binding compounds found in finished YPF wines produced 

by five different yeast strains with two nutrient sources at two different 

concentrations 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations of each compound, whereas those followed by same letters on the 

top of the bar are not significantly different (p>0.05) according to the DMRT test. 
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Figure 4-45 Concentration of hydrogen sulphide, carbon disulphide, methanethiol and 

MeSAc found in finished YPF wines produced by five different yeast strains 

with two nutrient sources at two different concentrations 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations of each compound according to the DMRT test. 

n.d. denotes not detected 
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Sulphur containing compounds: As shown in Figure 4-45, A high level of DAP addition 

stimulated the Alchemy I, EC1118 and VL3 strains to produce the highest amount of 

hydrogen sulphide (3.5 + 0.2, 3.3 + 0.5 and 3.2 + 0.6 g L-1, respectively), on the contrary 

strain X5 produced the greatest amount in the low DAP sample (3.2 + 0.7 g L-1). The 

highest concentrations of carbon disulphide were produced by strain VL3 in the high DAP 

treatment (19.5 + 2.7 g L-1) and by strain LittoLevure in the low VCombi addition (18.5 

+   2.3 g L-1). For methanethiol, a high level of DAP promoted the highest formation by 

strain Alchemy I (3.5 + 0.1 g L-1) followed by the EC1118 in the low VCombi treatment (3.0 

+ 0.3 g L-1). Methanethiol was not detected in the YPF wines fermented with VL3, X5 and 

LittoLevure strains. The concentration of MeSAc was most evident in the YPF wines of the 

Alchemy I strain in the high DAP sample (9.3 + 1.1 g L-1) followed by the LittoLevure YPF 

wine with the addition of DAP and VCombi at a high level (4.6 + 0.6 and 4.3 + 0.9 g L-1, 

respectively). Nevertheless, this sulphur containing ester was not detected in YPF wines 

from the EC1118, VL3 and X5 strains. Other sulphur compounds, ethanethiol, dimethyl 

sulphide, dimethyl disulphide, thioacetic acid S-ethylester, diethyl disulphide and dimethyl 

trisulphide were not detected in YPF wines. 

 

Higher alcohols: The influence of five commercial yeast strains on the productions of these 

alcohols was dependent upon the nitrogen source and concentration, except for hexanol 

(Figure 4-46). The LittoLevure strain developed the highest amounts of 2-phenyl ethanol in 

both levels of VCombi addition and the high DAP sample (57.7 + 3.6, 54.9 + 4.5 and 54.4 + 

1.1 mg L-1, respectively), while 3-methyl butanol and 2-methyl butanol were most evident in 

the high DAP treatment (224.5 + 52.2 and 46.3 + 12.5 mg L-1, respectively). Addition of DAP 

at either a low or a high level promoted the highest formation of 2-methyl propanol by strain 

VL3 (108.4 + 6.4 and 113.2 + 4.2 mg L-1, respectively) followed by strain EC1118 in the high 

DAP sample (74.0 + 6.3 mg L-1). Whereas, the addition of VCombi at both levels significantly 

reduced the production of this alcohol for all yeast strains. For hexanol, all YPF wines had 

similar amounts ranging from 166.0 + 4.7 to 184.6 + 7.6 g L-1. 
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Figure 4-46 Concentration of higher alcohols found in finished YPF wines developed by five 

different yeast strains with two nutrient sources at two different concentrations 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations of each compound, whereas those followed by same letters on the 

top of the bar are not significantly different (p>0.05) according to the DMRT test. 
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Figure 4-47 Concentration of acetic acid esters found in finished YPF wines developed by 

five different yeast strains with two nutrient sources at two different 

concentrations (*10 = concentration of compound times 10) 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations of each compound according to the DMRT test. 

Relative peak area = (peak area of sample)/(Peak area of internal standard) 
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Acetic acid esters: The five commercial yeast strains produced different amounts of acetic 

acid esters in response to nitrogen supplementation (Figure 4-47), whereas acetic acid hexyl 

ester was not detected in all YPF wines. Concentrations of acetic acid ethyl ester in YPF 

wine were below the detectable limit of the calibration standard value, therefore they were 

present as relative peak area. Addition of DAP at both levels promoted the highest 

production of acetic acid ethyl ester by strain VL3 (12.5 + 0.3, and 12.3 + 0.3 relative peak 

area, respectively) and by strain X5 (10.8 + 1.3 and 11.0 + 0.5 relative peak area, 

respectively). Strain LittoLevure developed the greatest concentrations of acetic acid 3- 

methylbutyl ester in the DAP and VCombi treatments at high level (510.8 + 49.9 and 472.5 + 

45.1 g L-1, respectively) and acetic acid 2-methylbutyl ester in the high VCombi sample 

(34.2 + 6.6 g L-1). Interestingly, it also produced the highest amount of acetic acid 2-phenyl 

ethyl ester in the high VCombi sample (149.3 + 2.5 g L-1) followed by the low VCombi and 

high DAP treatments (132.1 + 6.2 and 123.5 + 8.4 g L-1). Concentration of acetic acid 3-

methylbutyl ester was also most evident in the YPF wine produced by strain VL3 in the 

presence of high VCombi (539.1 + 27.8 g L-1), while strains EC1118, VL3 and X5 also 

developed the greatest amount of acetic acid 2-methylbutyl ester in the same nutrient 

treatment (32.0 + 5.7, 33.6 + 1.3 and 31.1 + 3.5 g L-1). 

 

Ethyl and diethyl esters: The data in Table 4-26 show that the interaction of yeast strain, 

nutrient source and concentration significantly affected the production of ethyl esters. The 

SAdiEtE was present in all YPF wines in trace quantities only. Strain X5 appeared to be a 

high producer of PrEtE with less response to nutrient addition (74.7 + 5.3 to 97.8 + 8.8 g L-1), 

whereas BuEtE was most evident in the high VCombi sample (157.4 + 8.2 g L-1) and LAEtE 

in the high DAP sample (21.4 + 1.0 g L-1). The highest concentration of PrEtE was also 

formed by the Alchemy I in the low VCombi treatment (93.3 + 6.1 g L-1) and by strain VL3 in 

the high DAP addition (89.4 + 5.3 g L-1). The VL3 strain also produced the greatest amount 

of LAEtE in the high DAP sample (21.4 + 0.6 g L-1) and iBuEtE in the DAP treatment at both 

levels (58.0 + 3.8 and 59.2 + 5.9 g L-1, respectively). The concentration of BuEtE was also 

most evident in the YPF wine produced by strain EC1118 in the high VCombi sample (173.3 

+ 42.2 g L-1). In most case, VCombi at both levels significantly decreased the 

concentrations of iBuEtE and LAEtE for most of the yeast strains. 
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Table 4-26 Concentration of ethyl and diethyl esters found in finished YPF wines produced by five different yeast strains with two nutrient 

sources at two different concentrations   

Yeasts Nutrients Concentrations (g L
-1

) PrEtE (g L
-1

) BuEtE (g L
-1

) iBuEtE (g L
-1

) LAEtE (mg L
-1

) SAdiEtE (g L
-1

) 

EC1118 DAP 0.25 63.3 + 2.1 cd 128.0 + 10.7 bcd 14.6 + 2.8 def 11.8 + 0.6 d trace 

  0.50 70.1 + 4.5 bc 146.1 + 9.7 abc 18.7 + 1.8 d 14.3 + 0.7 c trace 

 VCombi 0.25 68.6 + 11.2 bcd 128.5 + 22.8 bcd 6.0 + 1.8 h 7.9 + 0.2 f trace 

  0.50 57.1 + 7.6 cd 173.3 + 42.2 a 5.5 + 1.5 h 8.3 + 0.2 f trace 

VL3 DAP 0.25 71.9 + 2.3 bc 69.3 + 2.9 gh 58.0 + 3.8 a 16.7 + 0.9 b trace 

   0.50 89.4 + 5.3 ab 94.9 + 4.7 efg 59.2 + 5.9 a 21.4 + 0.6 a trace 

 VCombi 0.25 78.5 + 3.9 abc 108.8 + 5.6 def 17.7 + 1.1 d 8.0 + 0.1 f trace 

   0.50 61.5 + 4.4 cd 142.9 + 5.7 bc 14.0 + 1.7 def 8.4 + 0.3 f trace 

X5 DAP 0.25 79.3 + 8.1 abc 73.4 + 5.1 gh 40.7 + 2.0 b  17.3 + 1.3 b trace 

  0.50 92.9 + 1.7 ab 90.6 + 2.7 efg 33.2 + 0.8 c 21.4 + 1.0 a trace 

  VCombi 0.25 97.8 + 8.8 a 120.6 + 12.9 cde 15.8 + 0.4 de 7.9 + 0.1 f trace 

   0.50 74.7 + 5.3 abc 157.4 + 8.2 ab 12.4 + 0.8 efg 8.4 + 0.2 f trace 

Alchemy I DAP 0.25 77.0 + 22.6 abc 66.9 + 10.8 gh 15.3 + 3.0 de 9.8 + 0.2 e trace 

  0.50 57.4 + 20.7 cd 112.4 + 20.0 def 15.9 + 2.6 de 11.1 + 0.6 de trace 

 VCombi 0.25 93.3 + 6.1 ab 82.1 + 8.9 fgh 9.9 + 0.8 fgh 8.4 + 0.3 f trace 

  0.50 60.9 + 19.8 cd 115.4 + 10.5 cde 6.4 + 1.5 h 8.3 + 0.1 f trace 

LittoLevure DAP 0.25 43.3 + 17.4 de 54.2 + 8.4 h 11.2 + 3.0 efg  8.8 + 0.4 f trace 

  0.50 55.6 + 16.4 cd 97.2 + 13.2 efg 16.2 + 2.7 de 10.6 + 0.5 de trace 

  VCombi 0.25 43.1 + 12.3 de 55.8 + 13.8 h 14.8 + 4.0 de 8.8 + 0.4 f trace 

  0.50 25.2 + 2.7 e 76.0 + 18.7 gh 8.9 + 2.5 gh 8.9 + 0.5 f trace 

Each value shows the mean + standard deviation from three fermentation replicates. Values displaying different letters within the same column are 

significantly different (p<0.05) among treatment combinations according to the DMRT test. 
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Medium-chain fatty acids and related ethyl esters: As given in Table 4-27, the results 

show that the production of MCFAs, except for decanoic acid, and MCFA ethyl esters 

significantly differed depending on yeast strains and nutrient supplementation. Strain 

EC1118 developed the highest amounts of hexanoic and octanoic acids in the high VCombi 

sample (4.3 + 0.5 and 3.7 + 0.8 mg L-1, respectively). It also produced the highest amounts of 

HAEtE, OAEtE and DAEtE in both levels of VCombi treatments (369.4 + 87.4 and 412.7 + 

85.9, 384.4 + 45.8 and 480.5 + 80.0, and 120.9 + 29.3 and 139.4 + 39.9 g L-1, respectively). 

The greatest concentrations of these compounds were also present in the YPF wines 

produced by strain X5 in a high VCombi treatment (4.1 + 0.2 hexanoic acid, 3.5 + 0.4 mg L-1 

octanoic acid, 344.8 + 25.5 g L-1 HAEtE, 496.5 + 82.0 g L-1 OAEtE and 139.0 + 7.3 g L-1 

DAEtE). The high VCombi addition also promoted the highest formation of all ethyl esters of 

MCFAs by the strain LittoLevure (369.4 + 87.4, 384.4 + 45.8 and 120.9 + 29.3 g L-1 HAEtE, 

OAEtE and DAEtE, respectively). Whereas, concentrations of decanoic acid in YPF wines 

were similar ranging from 0.10 + 0.0 to 0.23 + 0.1 mg L-1.  

 

Monoterpenes: Figure 4-48 shows that under this trial condition, three yeast strains 

released similar concentrations of linalool and -terpineol without any response to the 

nutrient addition. The YPF wines had similar concentrations of linalool ranging from 3.9 + 0.1 

to 6.1 + 0.2 g L-1 and -terpineol from 8.7 + 0.1 to 10.2 + 0.1 g L-1. Other monoterpenes 

like trans-linalool oxide and cis-linalool oxide were not detected in all YPF wines. 

 

 

Figure 4-48 Concentration of linalool and -terpineol found in finished YPF wines developed 

by five different yeast strains with two nutrient sources at two different 

concentrations 

Vertical bars represent standard deviations from three fermentation replicates. Compounds 

displaying “(ns)” show no significant difference (p>0.05) among treatment combinations of 

each compound according to the DMRT test. 
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Table 4-27 Concentration of fatty acids and their ethyl esters found in finished YPF wines produced by five different yeast strains with two nutrient 

sources at two different concentrations   

Yeasts Nutrients Concentrations  

(g L
-1

) 

Hexanoic acid  

(g L
-1

) 

Octanoic acid  

(g L
-1

) 

Decanoic acid  

(g L
-1

) 

HAEtE  

(g L
-1

) 

OAEtE  

(g L
-1

) 

DAEtE  

(g L
-1

) 

EC1118 DAP 0.25 3.3 + 0.2 de 2.3 + 0.3 def 0.10 + 0.0 a 235.3 + 38.1 bcd 267.4 + 76.7 bcde 71.3 + 18.2 def 

  0.50 3.4 + 0.2 cd 2.5 + 0.3 cde 0.10 + 0.0 a 213.1 + 17.7 bcde 306.6 + 69.5 bcd 78.0 + 14.0 cde 

 VCombi 0.25 3.8 + 0.4 bc 3.1 + 0.5 abc 0.17 + 0.0 a 369.4 + 87.4 a 384.4 + 45.8 ab 120.9 + 29.3 ab 

  0.50 4.3 + 0.5 a 3.7 + 0.8 a 0.23 + 0.1 a 412.7 + 85.9 a 480.5 + 80.0 a 139.4 + 39.9 a 

VL3 DAP 0.25 2.6 + 0.2 e 1.5 + 0.2 g 0.10 + 0.0 a 47.5 + 8.4 h 65.9 + 25.9 h 26.3 + 5.6 gh 

   0.50 2.8 + 0.2 de 1.6 + 0.2 fg 0.10 + 0.0 a 73.3 + 13.2 h 135.9 + 31.2 efgh 39.2 + 3.9 gh 

 VCombi 0.25 3.2 + 0.2 de 2.1 + 0.3 efg 0.10 + 0.0 a 162.6 +  34.9 def 248.8 + 67.7 bcdef 71.9 + 19.0 def 

   0.50 3.7 + 0.0 b 2.9 + 0.2 bcd 0.13 + 0.0 a 243.3 + 23.5 bc 371.9 + 61.9 abc 102.9 + 13.0 bc 

X5 DAP 0.25 2.8 + 0.1 de 1.6 + 0.1 efg 0.10 + 0.0 a 83.3 + 21.6 gh 66.0 + 28.7 h 31.1 + 7.4 gh 

  0.50 2.8 + 0.2 de 1.6 + 0.2 fg 0.10 + 0.0 a 84.1 + 11.4 gh 113.5 + 35.1 fgh 28.9 + 6.2 gh 

  VCombi 0.25 3.4 + 0.1 cd 2.4 + 0.3 cde  0.10 + 0.0 a 265.1 + 35.4 b 313.3 + 61.3 bcd 90.0 + 9.4 cd 

   0.50 4.1 + 0.2 ab 3.5 + 0.4 ab 0.20 + 0.0 a 344.8 + 25.5 a 496.5 + 82.0 a 139.0 +  7.3 a 

Alchemy I DAP 0.25 2.8 + 0.2 de 1.8 + 0.3 efg 0.10 + 0.0 a 113.6 + 13.3 fgh 102.2 + 30.0 gh 24.1 + 1.9 h 

  0.50 3.1 + 0.2 de 2.3 + 0.5 def 0.10 + 0.0 a 166.7 + 26.0 def 206.7 + 35.9 defg 50.5 + 4.1 efgh 

 VCombi 0.25 2.9 + 0.2 de 1.8 + 0.3 efg 0.10 + 0.0 a  150.3 + 9.0 efg 163.7 + 38.7 efgh 42.7 + 5.9 fgh 

  0.50 3.5 + 0.2 bc 2.8 + 0.6 cde 0.13 + 0.0 a 252.0 + 39.8 bc 305.3 + 75.1 bcd 87.1 + 10.6 cd 

LittoLevure DAP 0.25 3.2 + 0.1 de 2.4 + 0.2 def 0.13 + 0.0 a 120.8 + 11.4 fgh 200.7 + 47.7 defgh 53.8 + 10.6 efgh 

  0.50 3.6 + 0.0 b 2.8 + 0.1 bcd 0.13 + 0.0 a 235.3 + 38.1 bcd 267.4 + 76.7 bcde 71.3 + 18.2 def 

  VCombi 0.25 3.2 + 0.2 de 2.3 + 0.3 def 0.13 + 0.0 a 213.1 + 17.7 bcde 306.6 + 69.5 bcd 78.0 + 14.0 cde 

  0.50 3.8 + 0.2 b 3.2 + 0.2 bcd 0.17 + 0.1 a 369.4 + 87.4 a 384.4 + 45.8 ab 120.9 + 29.3 ab 

Each value shows the mean + standard deviation. Values displaying the same letter (only ‗a‘) within the same column indicate no significant difference 

(p>0.05) among treatment combinations, whereas those displaying different letters are significantly different (p<0.05) according to the DMRT test.  
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4.3.4 Effect of three commercial Saccharomyces yeast strains and four different 

nutrient sources at two different concentrations on growth kinetics, fermentative 

characteristics, metabolic compounds and aromas of yellow passion fruit wines 

 

The fermentation trial was performed in yellow passion fruit (YPF) juice, which was prepared 

from frozen YPF puree. The physico-chemical characteristics and volatile compounds in YPF 

puree and prepared YPF juice used in this fermentation trial are given in Table 4-28. 

 

The fermentation trial was performed in prepared YPF juice. Three commercial yeast strains 

of EC1118, VL3 and X5; four commercial nutrient sources of Vitamon Combi (VCombi), 

Vitamon Ultra (VUltra), Fermaid E blanc (Fermaid E) and OptiWhite, and two concentrations 

at 0.2 and 0.4 g L-1, were used in this YPF fermentation trial. This YPF fermentation trial was 

aimed to investigate the impact of yeast strains, nutrient source and concentration on the 

fermentation characteristics, non-volatile and volatile compounds.  

Yeast strains and nutrient sources were obtained from the basis results of previous trials. 

The EC1118 strain has a high popularity in wine and fruit wine industry and is recommended 

for all types of wine. It also tended to produce less undesirable components under certain 

condition as shown in the previous trials. Hence, it was used as a control strain in this YPF 

trial, while the two Saccharomyces yeast strains, VL3 and X5 were chosen as they respond 

to the nutrient supplementation, which affects the fermentation characteristics. Under certain 

conditions, they also developed desirable fermentative characteristics and volatile 

compounds as shown in previous trials. In addition, they have shown to have differences in 

fermentation performances and organoleptic characteristics imparted to wines and also to 

produce low SO2 and H2S, but rather to develop varietal aroma (Eglinton & Henschke, 1996; 

Reynolds et al., 2001; Wang et al., 2003; Howell et al., 2004; Dubourdieu et al., 2006; 

Swiegers et al., 2007, 2009).  

 

YPF Puree: The data in Table 4-28 show that it had high acidity, which comprises mainly 

citric acid 42.10 + 0.00 g L-1 and malic acid 5.25 + 0.00 g L-1, and low pH at 2.9 + 0.1. The 

other chemical properties were TSS 9.0 + 0.1 0Brix, 58.2 + 1.5 g L-1 inverted sugar (as 

glucose), 296.0 + 5.7 mg L-1 -amino nitrogen/NOPA (as isoleucine) and 2491.0 mg L-1 total 

amino acid without proline (Table A-3). Some volatile compounds were 3.9 + 0.0 mg L-1 3-

methyl butanol, 918.3 + 1.9 g L-1 hexanol, 154.2 + 2.6 g L-1 butanoic acid ethyl ester, 47.1 

+ 0.6 g L-1 linalool and 48.0 + 0.2 g L-1 -terpineol. While, 2-methyl butanol, 2-phenyl 

ethanol, acetic acid ethyl ester, propionic acid ethyl ester, succinic acid diethyl ester and 

ethyl ester of medium-chain fatty acids were detected only in trace quantities. 
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Prepared YPF juice: The physico-chemical characteristics of prepared YPF juice were pH 

3.2 + 0.1, 2.80 + 0.07 g L-1 citric acid, 0.51 + 0.01 g L-1 malic acid, TSS 21.0 + 0.6 oBrix, 170.0 

+ 2.8 g L-1 inverted sugar (as glucose), 26.7 + 1.2 mg L-1 -amino nitrogen/NOPA 

and    164.4 mg L-1 total amino acid without proline (Table 4-28). The volatile components 

were 2.2 + 0.3 mg L-1 free SO2 and 6.9 + 0.3 mg L-1 total SO2, 177.7 + 2.8 g L-1, hexanol 

and 7.4 + 0.2 g L-1 -terpineol. Whereas, acetic acid ethyl ester, ethyl ester of butanoic acid, 

octanoic acid and decanoic acid were detected only in trace quantities, but the other aroma 

compounds that can be detected in YPF puree were not detected in the prepared YPF juice. 

 

Table 4-28 Chemical compositions of YPF puree and prepared YPF juice used in this 

fermentation trial 

Composition YPF puree Prepared YPF juice 

pH 2.9 + 0.1 3.2 + 0.1 

Total soluble solid (oBrix) 9.0 + 0.1 21.0 + 0.6 

Inverted sugar (g L-1) 58.2 + 1.5 170.0 + 2.8 

NOPA (as mg L-1 isoleucine) 296.0 + 5.7 26.7 + 1.2 

Total amino nitrogen without proline (mg L-1)  2491.0 164.4 

Free SO2 (mg L-1) n.m. 2.2 + 0.3 

Total SO2 (mg L-1) n.m. 6.9 + 0.5 

Citric acid (g L-1) 42.10 + 0.00 2.80 + 0.07 

Malic acid (g L-1) 5.25 + 0.00 0.51 + 0.01 

3-Methyl butanol (mg L-1) 3.9 + 0.0 n.d. 

2-Methyl butanol (mg L-1) traces n.d. 

2-Phenyl ethanol (mg L-1) traces n.d. 

Hexanol (g L-1) 918.3 + 1.9 177.7 + 2.8 

Acetic acid ethyl ester (mg L-1) traces traces 

Propionic acid ethyl ester (g L-1) traces n.d. 

Butanoic acid ethyl ester (g L-1) 154.2 + 2.6 traces 

Succinic acid diethyl ester (g L-1) traces n.d. 

Octanoic acid ethyl ester (g L-1) traces traces 

Decanoic acid ethyl ester (g L-1) traces traces 

Linalool (g L-1) 47.1 + 0.6 n.d. 

-Terpineol (g L-1) 48.0 + 0.2 7.4 + 0.2 

Each value shows the mean + standard deviation from two sample replicates.  

NOPA denotes free α-amino acid nitrogen.  

n.d. denotes not detected.  n.m. denotes not measured 
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Figure 4-49 Growth kinetics of YPF juice fermentations with three different commercial yeast 

strains and four different nutrient mixtures at two different concentrations 

 

The fermentation kinetics: In Figure 4-49, for strain EC1118, low level of all nutrients as 

well as high OptiWhite addition gave a similar long growth lag phase (4-5 days) and had 

slower growth kinetics than the other fermentations. However, it completely finished 

fermentation faster than the other yeast strains with similar nutrient conditions (25-33 days). 

On the other hand, the addition of high concentration of any kind of nutrient, except for the 

OptiWhite, enhanced the growth kinetics and reduced fermentation times from 25-34 days at 

low nutrient level to 21- 23 days. When any level of OptiWhite was added to the YPF juice, 

strain VL3 and X5 showed a similar long growth lag phase (3 days), followed by slow 

fermentation kinetics and duration, however they finished fermentations after 30-46 days. In 

addition, the fermentation with strain VL3 at high OptiWhite addition seemed to result in stuck 

fermentation with high residual sugar (Table 4-29). While, the supplementation of YPF juice 

with VCombi, VUltra and Fermaid E at either low or high level stimulated the VL3 and X5 

strains to have similar faster growth kinetics, but they had afterwards different durations of 

fermentation in response to the nutrient addition. Strain VL3 had sluggish fermentations in a 

low level of VCombi, VUltra and Fermaid E (37-46 days), but at high level of these nutrients 

significantly decreased fermentation times to 23-36 days. The X5 strain followed similar 

pattern as strain VL3, but had shorter fermentation times in the same nutrient conditions.  
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Chemical composition: As shown in Table 4-29, the data show that the three yeast strains 

produced YPF wines having significantly different amounts of residual sugar in response to 

nutrient source and concentration. The fermentation with strain VL3 at high OptiWhite 

addition resulted in the highest level of residual sugar in YPF wine (10.08 + 0.3 g L-1), 

followed by strain VL3 and X5 at low OptiWhite treatment (2.82 + 0.6 and 3.0 + 0.3 g L-1, 

respectively). While, the EC1118 strain seemed to produce YPF wines having similar low 

amounts of residual sugar in most nutrients (0.30 + 0.2 to 0.50 + 0.1 g L-1), except in the low 

OptiWhite sample (0.75 + 0.2 g L-1). The YPF wines had similar concentrations of glycerol, 

which ranged from 2.8 + 0.2 to 5.6 + 0.4 g L-1.  

 

Organic acids: Yeast strain, nutrient source and concentration significantly affected the 

concentrations of malic and citric acid in YPF wines (Table 4-30). Concentrations of acetic 

acid had no statistical differences among the YPF wine treatments ranging from 0.10 + 0.00 

to 0.43 + 0.07 g L-1. The highest amounts of malic acid were found in the YPF wine of strain 

VL3 at both levels of Fermaid E (0.79 + 0.02 and 0.76 + 0.01 g L-1, respectively) and strain 

X5 in the low Fermaid E treatment (0.77 + 0.01 g L-1). The two strains above can catalyze 

malic acid, particularly strain VL3 produced the highest amounts (32.9-35.4 %). Although 

strain EC1118 seemed to have no capability to produce this organic acid, it produced YPF 

wines having the highest concentration of citric acid in the high Fermaid E and VCombi 

samples (2.73 + 0.05 and 2.70 + 0.00 g L-1, respectively), followed by the samples with low 

level of VCombi and VUltra additions (2.67 + 0.05 and 2.67 + 0.05 g L-1). 

 

SO2-binding compounds: Three yeast strains, nutrient source and concentration 

statistically affected both keto acids but not acetaldehyde (Figure 4-50). There were similar 

concentrations of acetaldehyde among all YPF wines ranging from 24.5 + 0.3 to 30.6 + 0.9 

mg L-1. The addition of OptiWhite at low level stimulated the highest production of -

ketoglutarate by strain VL3 (163.2 + 15.3 mg L-1), followed by strain X5 (142.6 + 5.3 mg L-1), 

and the former strain in the high OptiWhite sample (137.0 + 3.6 mg L-1). The addition of YPF 

juice with OptiWhite at high level resulted in the highest formation of pyruvate by the VL3 

strain (143.0 + 2.9 mg L-1), followed by the same nutrient at low level (126.3 + 5.0 mg L-1). 

Nevertheless, when the other nutrient sources were added, particularly at high level, the 

production of both keto acids significantly decreased. 
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Table 4-29 Chemical composition of final YPF wines obtained from YPF juices fermented 

with three different yeast strains with four nutrient sources at two different 

concentrations 

 

Yeasts Nutrients Concentrations (g L-1) Residual sugar (g L-1) Glycerol (g L-1)  

EC1118 VCombi 0.2 0.32 + 0.1 h 3.9 + 0.7 a 

  0.4 0.30 + 0.2 h 3.5 + 0.7 a 

 VUltra 0.2 0.33 + 0.0 gh 3.5 + 0.8 a 

  0.4 0.33 + 0.0 gh 3.8 + 0.6 a 

 Fermaid E 0.2 0.50 + 0.1 efgh 3.8 + 0.5 a 

  0.4 0.37 + 0.1 fgh 3.9 + 0.2 a 

 OptiWhite 0.2 0.75 + 0.2 cdef 3.8 + 0.9 a 

  0.4 0.45 + 0.1 fgh 4.2 + 0.6 a 

VL3 VCombi 0.2 0.72 + 0.1 cdefg 3.2 + 0.1 a 

  0.4 0.50 + 0.1 efgh 3.9 + 0.8 a 

 VUltra 0.2 0.87 + 0.3 cde 3.5 + 0.6 a 

  0.4 0.65 + 0.2 defgh 3.0 + 1.0 a 

 Fermaid E 0.2 0.62 + 0.0 defgh 4.2 + 0.7 a 

  0.4 0.45 + 0.2 fgh 4.2 + 0.2 a 

 OptiWhite 0.2 2.82 + 0.6 b 5.6 + 0.4 a 

  0.4 10.08 + 0.3 a 5.0 + 0.7 a 

X5 VCombi 0.2 0.47 + 0.2 fgh 3.5 + 0.7 a 

  0.4 0.47 + 0.2 fgh 3.4 + 0.5 a 

 VUltra 0.2 0.42 + 0.2 fgh 3.6 + 0.5 a 

  0.4 0.53 + 0.1 defgh 3.3 + 0.6 a 

 Fermaid E 0.2 1.05 + 0.1 c 2.8 + 0.2 a 

  0.4 0.53 + 0.1 defgh 3.3 + 0.5 a 

 OptiWhite 0.2 3.00 + 0.3 b 3.5 + 0.2 a 

  0.4 0.90 + 0.3 cd 4.8 + 0.5 a 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05) among treatment combinations, whereas those displaying different letters 

are significantly different (p<0.05) according to the DMRT test. 
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Table 4-30 Concentration of organic acids found in finished YPF wines produced by three 

different yeast strains with four nutrient sources at two different concentrations   

 

Yeasts Nutrients Concentrations  

(g L-1) 

Malic acid  

(g L-1) 

Acetic acid  

(g L-1) 

Citric acid  

(g L-1) 

EC1118 VCombi 0.2 0.48 + 0.01 hij 0.27 + 0.08 a 2.67 + 0.05 abc 

  0.4 0.45 + 0.01 j 0.20 + 0.00 a 2.70 + 0.00 ab 

 VUltra 0.2 0.47 + 0.01 hij 0.37 + 0.05 a 2.67 + 0.05 abc 

  0.4 0.46 + 0.00 ij 0.30 + 0.00 a 2.63 + 0.05 bc 

 Fermaid E 0.2 0.50 + 0.00 h 0.37 + 0.05 a 2.37 + 0.07 ef 

  0.4 0.45 + 0.01 j 0.30 + 0.00 a 2.73 + 0.05 a 

 OptiWhite 0.2 0.49 + 0.01 hi 0.37 + 0.06 a 2.40 + 0.00 def 

  0.4 0.50 + 0.02 h 0.27 + 0.05 a 2.47 + 0.05 de 

VL3 VCombi 0.2 0.72 + 0.03 cd 0.27 + 0.06 a 2.20 + 0.00 hi 

  0.4 0.63 + 0.02 f 0.20 + 0.00 a 2.60 + 0.00 c 

 VUltra 0.2 0.74 + 0.03 bc 0.23 + 0.05 a 2.20 + 0.00 hi 

  0.4 0.62 +0.02 fg 0.10 + 0.00 a 2.50 + 0.00 d 

 Fermaid E 0.2 0.79 + 0.02 a 0.23 + 0.05 a 2.43 + 0.05 de 

  0.4 0.76 + 0.01 ab 0.20 + 0.00 a  2.13 + 0.07 i 

 OptiWhite 0.2 0.62 + 0.02 fg 0.43 + 0.07 a 2.40 + 0.00 def 

  0.4 0.61 + 0.04 fg 0.33 + 0.06 a 2.30 + 0.10 fg 

X5 VCombi 0.2 0.70 + 0.02 de 0.17 + 0.05 a 2.47 + 0.05 de 

  0.4 0.59 + 0.01 g 0.20 + 0.00 a 2.43 + 0.07 de 

 VUltra 0.2 0.70 + 0.00 de 0.27 + 0.03 a 2.27 + 0.05 gh 

  0.4 0.62 + 0.01 fg 0.20 + 0.00 a 2.40 + 0.00 def 

 Fermaid E 0.2 0.77 + 0.01 ab 0.23 + 0.03 a 2.27 + 0.06 gh 

  0.4 0.68 + 0.03 e 0.20 + 0.02 a 2.47 + 0.05 de 

 OptiWhite 0.2 0.61 +0.01 fg 0.30 + 0.00 a 2.47 + 0.03 de 

  0.4 0.62 + 0.01 fg 0.30 + 0.00 a 2.40 + 0.00 def 

Each value shows the mean + standard deviation from three fermentation replicates.   

Values displaying the same letter (only ‗a‘) within the same column indicate no significant 

difference (p>0.05) among treatment combinations, whereas those displaying different letters 

are significantly different (p<0.05) according to the DMRT test. 
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Sulphur containing compounds: Figure 4-51 shows that under this trial conditions, 

ethanethiol, dimethyl sulphide, dimethyl disulphide, thioacetic acid of S-ethylester and S-

methylester, diethyl disulphide and dimethyl trisulphide were not detected in YPF wines. 

Strain EC1118 produced H2S in most nutrient treatments, but the highest amount was 

present in the low OptiWhite sample (2.9 + 0.1 g L-1). The greatest amount of H2S was also 

produced by strain X5 in high OptiWhite addition (3.1 + 0.2 g L-1), whereas in the low 

Fermaid E and OptiWhite and high VUltra samples H2S was not detected. Strain X5 

produced the highest amount of carbon disulphide in the low Fermaid E sample (17.1 

+     2.2 g L-1), followed by the high OptiWhite and low VUltra treatments (11.4 + 1.0 and 

10.8 + 0.1 g L-1, respectively). Methanethiol was detected only in the YPF wines produced 

by strain EC1118 with the addition of VUltra and Fermaid E at high level (2.6 + 0.2 and 2.7 + 

0.2 g L-1, respectively). 

 

Higher alcohols: The results in Figure 4-52 show that there were no significant differences 

in the concentration of hexanol among all YPF wines ranging from 177.3 + 2.8 to 193.9 

+   6.4 g L-1. The VL3 strain developed the greatest amount of 2-methyl propanol in the 

OptiWhite sample at low level (112.7 + 8.3 mg L-1) followed by the one at high level (82.7 + 

0.9 mg L-1). While, the EC1118 strain significantly produced the lowest amounts of this 

alcohol (18.5 + 0.9 to 22.4 + 2.6 mg L-1), except in the OptiWhite treatment, but it produced 

the highest amount of 2-phenyl ethanol in the Fermaid E treatments and the high VCombi 

sample (41.2 + 0.4, 40.7 + 2.0 and 41.6 + 1.6 mg L-1). Strain VL3 developed the highest 

amount of 3-methyl butanol in both levels of Fermaid E sample and the low OptiWhite 

treatment (202.3 + 3.0, 205.3 + 32.8 and 196.8 + 12.4 mg L-1, respectively), whereas 2-

methyl butanol was most evident in both Fermaid E levels (52.3 + 1.4 and 51.2 + 8.1 mg L-1, 

respectively). 
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Figure 4-50 Concentration of SO2-binding compounds present in finished YPF wines 

produced by three different yeast strains with four nutrient sources at two 

different concentrations 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) between 

treatment combinations of each compound, whereas those followed by the same letters on 

the top of the bar are not significantly different (p>0.05) according to the DMRT test. 
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Figure 4-51 Concentration of hydrogen sulphide, carbon disulphide and methanethiol 

detected in finished YPF wines produced by three different yeast strains with 

four nutrient sources at two different concentrations 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) between 

treatment combinations of each compound, whereas those followed by the same letters on 

the top of the bar are not significantly different (p>0.05) according to the DMRT test. 

n.d. denotes not detected 
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Figure 4-52 Concentration of higher alcohols present in finished YPF wines developed by 

three different yeast strains with four nutrient sources at two different 

concentrations 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) between 

treatment combinations of each compound, whereas those followed by the same letters on 

the top of the bar are not significantly different (p>0.05) according to the DMRT test. 
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Acetic acid esters: The results demonstrate that these compounds were dependent upon 

yeast strain, nutrient source and concentration (Figure 4-53). It is similar to previous trials of 

YPF fermentations, concentrations of acetic acid ethyl ester were only detected in small 

quantities and out of the limit of quantification (50 mg L-1), thus it was present as relative 

peak area. The addition of OptiWhite at both levels stimulated the highest production of 

acetic acid ethyl ester by strain VL3 (17.0 + 1.3 and 15.3 + 0.7 relative peak area, 

respectively), followed by the low Fermaid E treatment, and by strain X5 at high level of 

OptiWhite (13.7 + 0.8 and 13.6 + 2.0 relative peak area, respectively). The greatest amount 

of acetic acid 2-phenyl ethyl ester was produced by the EC1118 strain in the presence of 

VCombi at high level (145.0 + 11.9 g L-1), followed by the VUltra and Fermaid E treatments 

at high level (101.2 + 4.9 and 101.5 + 6.6 g L-1, respectively). A high level of VCombi 

stimulated the highest production of acetic acid 3-methylbutyl ester and acetic acid 2-

methylbutyl ester by strain EC1118 (672.4 + 70.9 and 43.3 + 0.9 g L-1, respectively), 

followed by strain VL3 at high level of VCombi (519.8 + 53.9 and 32.9 + 3.6 g L-1, 

respectively) and VUltra treatments (558.4 + 45.9 and 35.5 + 2.6 g L-1, respectively). 

 

Ethyl and diethyl esters: As shown in Table 4-31 and Table 4-32, three yeast strains 

significantly produced different ethyl esters concentrations in response to nutrient 

supplementation. Succinic acid diethyl ester was detected only in trace amounts in all YPF 

wines. The addition of VCombi at high level promoted the highest formation of BuEtE by 

strain EC1118 (259.4 + 6.9 g L-1) followed by strain X5 (196.3 + 5.1 g L-1). These two 

strains also produced high amounts of this ethyl ester in the high VUltra sample (180.9 + 

16.1 and 184.4 + 2.0 g L-1, respectively). Supplementation of YPF juice with high OptiWhite 

level promoted the highest formation of iBuEtE and LAEtE by the VL3 strain (53.4 + 12.4 and 

13.0 + 0.5 g L-1, respectively) followed by X5 strain (31.6 + 4.4 and 12.1 + 0.6 g L-1, 

respectively). The greatest concentration of PrEtE was produced by strain VL3 in the high 

OptiWhite sample (143.4 + 3.9 g L-1) and by the X5 strain in the low Fermaid E treatment 

(138.9 + 19.6 g L-1). In most cases, high level of VCombi addition seemed to decrease the 

production of iBuEtE, PrEtE and LAEtE, but to increase BuEtE formation. 
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Figure 4-53 Concentration of acetic acid esters present in finished YPF wines developed by 

three different yeast strains with four nutrient sources at two different 

concentrations (*10 = concentration of compound times 10) 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations of each compound according to the DMRT test. 

Relative peak area = (peak area of sample)/(Peak area of internal standard) 
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Table 4-31 Concentration of butanoic and isobutanoic acid ethyl esters present in finished 

YPF wines developed by three different yeast strains with four nutrient sources 

at two different concentrations 

 

Yeasts Nutrients Concentrations (g L-1) BuEtE (g L-1) iBuEtE (g L-1) 

EC1118 VCombi 0.2 169.9 + 1.7 cd 4.2 + 0.6 g 

  0.4 259.4 + 6.9 a 3.5 + 0.3 g 

 VUltra 0.2 127.5 + 21.1 gh 5.4 + 0.8 fg 

  0.4 180.9 + 16.1 bc 3.6 + 0.9 g 

 Fermaid E 0.2 116.1 + 10.6 hi 6.1 + 0.3 fg 

  0.4 156.4 + 12.2 de 5.7 + 1.0 fg 

 OptiWhite 0.2 62.1 + 5.5 k 14.3 + 1.3 de 

  0.4 59.3 + 8.0 kl 12.3 + 1.6 e 

VL3 VCombi 0.2 104.2 + 9.0 ij 14.4 + 2.9 de 

  0.4 160.1 + 13.6 de 13.2 + 1.3 de 

 VUltra 0.2 103.9 + 18.6 ij 16.5 + 1.0 cde 

  0.4 158.8 + 8.7 de 13.9 + 2.2  de 

 Fermaid E 0.2 87.1 + 7.9 j 21.7 + 2.5 c 

  0.4 129.2 + 14.9 fgh 19.4 + 3.5 cd 

 OptiWhite 0.2 53.0 + 10.3 kl 53.4 + 12.4 a 

  0.4 42.2 + 3.0 l 27.1 + 1.7 b 

X5 VCombi 0.2 143.9 + 2.3 efg 11.6 + 1.5 ef 

  0.4 196.3 + 5.1 b 11.0 + 0.5 ef 

 VUltra 0.2 118.7 + 4.7 hi 13.9 + 1.3 de 

  0.4 184.4 + 2.0 bc 10.4 + 1.2 ef 

 Fermaid E 0.2 105.6 + 15.0 ij 13.0 + 2.3 de 

  0.4 147.4 + 9.9 ef 14.6 + 0.4 de 

 OptiWhite 0.2 59.6 + 6.4 kl 31.6 + 4.4 b 

  0.4 49.3 + 2.0 kl 20.6 + 1.6 c 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying different letters within the same column are significantly different (p<0.05) 

among treatment combinations according to the DMRT test. 
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Table 4-32 Concentration of ethyl esters and diethyl ester present in finished YPF wines 

developed by three different yeast strains with four nutrient sources at two 

different concentrations 

 

Yeasts Nutrients Concentrations  

(g L-1) 

PrEtE  

(g L-1) 

LAEtE  

(mg L-1) 

SAdiEtE  

(g L-1) 

EC1118 VCombi 0.2 66.4 + 2.5 jkl 8.3 + 0.2 h Trace 

  0.4 53.9 + 0.8 l 9.4 + 0.2 efg Trace 

 VUltra 0.2 71.7 + 2.6 ijkl 8.5 + 0.1 gh Trace 

  0.4 59.6 + 6.5 kl 9.0 + 0.1 fg Trace 

 Fermaid E 0.2 73.5 + 8.1 hijk 8.3 + 0.1 h Trace 

  0.4 66.5 + 1.9 jkl 8.9 + 0.2 fg Trace 

 OptiWhite 0.2 81.4 + 12.7 ghij 10.1 + 0.3 cde Trace 

  0.4 85.8 + 18.5 fghi 9.5 + 0.2 def Trace 

VL3 VCombi 0.2 90.9 + 16.8 fgh 9.0 + 0.2 fg Trace 

  0.4 65.4 + 8.4 jkl 9.6 + 0.3 efg Trace 

 VUltra 0.2 95.1 + 14.4 efg 9.2 + 0.1 fg Trace 

  0.4 69.7 + 9.5 ijkl 9.6 + 0.3 efg Trace 

 Fermaid E 0.2 126.4 + 7.6 bc 9.1 + 0.2 fg Trace 

  0.4 102.4 + 15.9 def 9.8 + 0.7 cde Trace 

 OptiWhite 0.2 123.0 + 5.6 bc 13.0 + 0.5 a Trace 

  0.4 143.4 + 3.9 a 10.4 + 0.5 cd Trace 

X5 VCombi 0.2 109.5 + 4.9 cde 9.0 + 0.2 fg Trace 

  0.4 80.6 + 3.5 ghij 9.7 + 0.3 def Trace 

 VUltra 0.2 120.9 + 6.7 c 9.3 + 0.3 fg Trace 

  0.4 93.7 + 2.1 efg 9.6 + 0.3 def Trace 

 Fermaid E 0.2 138.9 + 19.6 ab 8.8 + 0.4 gh Trace 

  0.4 125.7 + 4.1 bc 9.7 + 0.5 def Trace 

 OptiWhite 0.2 118.0 + 13.2 cd 12.1 + 0.6 b Trace 

  0.4 102.6 + 11.5 def 10.7 + 0.2 c Trace 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying different letters within the same column are significantly different (p<0.05) 

among treatment combinations according to the DMRT test. 
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Medium-chain fatty acids and related ethyl esters: As given in Table 4-33 and Table 4-34, 

the three yeast strains developed significant differences of these volatile compounds in 

response to nutrient addition. Strain EC1118 developed the greatest concentration of 

hexanoic, octanoic and decanoic acids in the high VCombi sample (5.8 + 0.4, 4.9 + 0.6 and 

0.37 + 0.07 mg L-1, respectively), followed by the high VUltra treatment (4.9 + 0.3, 4.0 + 0.3, 

0.30 + 0.02 mg L-1, respectively) and the VCombi sample (4.7 + 0.1, 3.7 + 0.3, 0.30 + 0.14 

mg L-1, respectively). It also produced the greatest amounts of HAEtE, OAEtE and DAEtE in 

the high VCombi treatment (830.5 + 67.0, 1101.9 + 46.0 and 324.2 + 15.5 g L-1, 

respectively) and followed by the high VUltra sample (633.8 + 65.4, 872.9 + 62.9, 268.6 + 

14.3 g L-1, respectively).  A high concentration of VCombi also promoted high formation of 

OAEtE and DAEtE by the X5 strain (891.6 + 30.1 and 294.4 + 16.1 g L-1, respectively). 

Overall, strain EC1118 seemed to be the highest producer of MCFAs and MCFA ethyl esters 

in certain nutrient condition, while the VL3 strain was the lowest producer but this varied 

depending on nutrient source and concentration. 

 

Monoterpenes: The results show that three yeast strains liberated similar concentrations of 

-terpineol ranging from 9.4 + 0.4 to 10.6 + 0.2 g L-1 (Figure 4-54). Linalool, trans-linalool 

oxide and cis-linalool oxide were not detected in all YPF wines. 

 

 

Figure 4-54 Concentration of -terpineol present in finished YPF wines developed by three 

different yeast strains with four nutrient sources at two different concentrations 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by the same letters on the top of the bar are not significantly different (p>0.05) 

between treatment combinations according to the DMRT test. 
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Table 4-33 Concentration of fatty acids present in finished YPF wines developed by three 

different yeast strains with four nutrient sources at two different concentrations 

 

Yeasts Nutrients Concentrations  

(g L-1) 

Hexanoic acid  

(mg L-1) 

Octanoic acid  

(mg L-1) 

Decanoic acid 

(mg L-1) 

EC1118 VCombi 0.2 4.7 + 0.1 b 3.7 + 0.3 bc 0.30 + 0.14 b 

  0.4 5.8 + 0.4 a 4.9 + 0.6 a 0.37 + 0.07 a 

 VUltra 0.2 4.2 + 0.4 cd 3.2 + 0.5 bcd 0.23 + 0.04 cd 

  0.4 4.9 + 0.3 b 4.0 + 0.3 b 0.30 + 0.02 b 

 Fermaid E 0.2 4.1 + 0.2 d 3.0 + 0.2 cde 0.20 + 0.01 de 

  0.4 4.5 + 0.3 bc 3.5 + 0.4 bc 0.27 + 0.02 bc 

 OptiWhite 0.2 3.3 + 0.1 e 2.2 + 0.2 fg 0.17 + 0.02 e 

  0.4 2.8 + 0.5 ef 1.7 + 0.5 gh 0.10 + 0.04 f 

VL3 VCombi 0.2 3.2 + 0.2 e 1.9 + 0.2 fg 0.10 + 0.01 f 

  0.4 3.8 + 0.3 d 2.8 + 0.3 cde 0.20 + 0.02 de 

 VUltra 0.2 3.2 + 0.3 e 1.9 + 0.3 fg 0.10 + 0.01 f 

  0.4 3.8 + 0.3 d 2.6 + 0.3 def 0.20 + 0.01 de 

 Fermaid E 0.2 2.7 + 0.1 e 1.5 + 0.1 gh 0.10 + 0.01 f 

  0.4 3.0 + 0.1 e 1.8 + 0.2 fg 0.10 + 0.01 f 

 OptiWhite 0.2 2.5 + 0.2 f 1.3 + 0.1 h 0.10 + 0.01 f 

  0.4 2.4 + 0.1 f 1.3 + 0.0 h 0.10 + 0.01 f 

X5 VCombi 0.2 3.7 + 0.1 d 2.6 + 0.2 def 0.10 + 0.01 f 

  0.4 4.5 + 0.2 cd 3.5 + 0.2 bcd 0.20 + 0.01 de 

 VUltra 0.2 3.2 + 0.2 e 2.1 + 0.3 fg 0.17 + 0.03 e 

  0.4 4.2 + 0.1 d 3.1 + 0.3 cde 0.20 + 0.02 de 

 Fermaid E 0.2 3.2 + 0.0 e 2.1 + 0.1 fg 0.17 + 0.01 e 

  0.4 3.6 + 0.1 d 2.4 + 0.1 efg 0.20 + 0.02 de 

 OptiWhite 0.2 2.8 + 0.1 e 1.6 + 0.1 fg 0.10 + 0.01 f 

  0.4 2.9 + 0.3 e 1.7 + 0.3 gh 0.10 + 0.02 f 

Each value shows the mean + standard deviation from three fermentation replicates.  

Values displaying different letters within the same column are significantly different (p<0.05) 

among treatment combinations according to the DMRT test. 
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Table 4-34 Concentration of fatty acid ethyl esters present in finished YPF wines developed 

by three different yeast strains with four nutrient sources at two different 

concentrations 

 

Yeasts Nutrients Concentrations  

(g L
-1

) 

HAEtE  

(g L
-1

) 

OAEtE  

(g L
-1

) 

DAEtE  

(g L
-1

) 

EC1118 VCombi 0.2 664.5 + 31.5 b 859.6 + 34.2 b 253.6 + 2.8 cd 

  0.4 830.5 + 67.0 a 1101.9 + 46.0 a 324.2 + 15.5 a 

 VUltra 0.2 519.9 + 91.1 de 684.6 + 115.2 de 201.2 + 31.1 efg 

  0.4 633.8 + 65.4 bc 872.9 + 62.9 b 268.6 + 14.3 bc 

 Fermaid E 0.2 502.8 + 42.0 e 634.6 + 23.8 ef 202.2 + 7.2 efg 

  0.4 577.1 + 47.0 cd 758.2 + 49.2 cd 234.3 + 9.1 de 

 OptiWhite 0.2 283.4 + 6.9 ghi 340.1 + 23.7 ij 111.6 + 11.6 jk 

  0.4 273.6 + 12.2 hi 343.7 + 25.7 ij 108.0 + 26.6 jk 

VL3 VCombi 0.2 208.3 + 36.5 ijk 404.5 + 59.1 hi 130.2 + 20.3 ij 

  0.4 363.5 + 15.7 f 707.8 + 67.2 de 234.8 + 13.5 de 

 VUltra 0.2 221.0 + 67.9 ij 394.3 + 53.2 hi 131.1 + 31.2 ij 

  0.4 352.6 + 19.9 fg 669.4 + 22.7 de 204.0 + 5.6 efg 

 Fermaid E 0.2 146.8 + 22.8 jk 286.6 + 38.8 jk 96.6 + 10.3 kl 

  0.4 239.7 + 32.7 i 473.6 + 54.6 gh 135.2 + 8.4 ij 

 OptiWhite 0.2 71.7 + 17.2 l 133.9 + 34.6  lm 67.6 + 7.5 l 

  0.4 54.7 + 11.9 k 101.6 + 14.4 m 71.7 + 1.7 l 

X5 VCombi 0.2 391.4 + 15.1 f 673.0 + 40.4 de 212.0 + 22.0 ef 

  0.4 497.9 + 24.7 e 891.6 + 30.1 b 294.4 + 16.1 ab 

 VUltra 0.2 323.6 + 36.2 fgh 555.5 + 40.6 fg 181.1 + 13.6 fgh 

  0.4 469.5 + 12.4 e 808.6 + 12.2 bc 254.4 + 3.9 cd 

 Fermaid E 0.2 280.4 + 34.7 ghi 455.6 +46.0 h 152.2 + 8.6 hi 

  0.4 330.0 + 56.0 fgh 641.2 + 52.0 ef 172.8 + 49.1 gh 

 OptiWhite 0.2 147.4 + 21.0 k 199.1 + 47.3 kl 106.1 + 16.8 jk 

  0.4 148.9 + 5.0 k 219.3 + 29.3 kl 84.3 + 12.9 kl 

Each value shows the mean + standard deviation from three fermentation replicates. 

Values displaying different letters within the same column are significantly different (p<0.05) 

among treatment combinations according to the DMRT test. 
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4.4 Volatile thiols involved in varietal aromas of yellow passion fruit wines 

 

The volatile thiols involved in varietal aromas detected in YPF wines were selected from the 

trials described in the chapters of 4.3.3 and 4.3.4. These selected YPF wines had desirable 

fermentation characteristics and wine derived fermentation aromas with low undesirable 

metabolites. The volatile thiols detected in YPF wine obtained from chapter 4.3.3 are given in 

Figure 4-55 to 4-56, while those detected in YPF wines obtained from chapter 4.3.4 are 

shown in Figure 4-57. 

Figure 4-55 shows that the 3-sulphanylhexanol (3SH) was identified in the prepared YPF 

juice (498 ng L-1), while acetic acid 3-sulphanylhexyl ester (3SHA) was present in trace 

quantities (data not shown). Commercial Saccharomyces yeast strains had a significant 

impact on the production of 3SH and its ester (3SHA) in YPF wines. The commercial yeasts 

released approximately 7.1-fold to 11.2-fold of 3SH from its precursor in YPF juice but its 

concentrations depended on the yeast strain. At 0.5 g L-1 VCombi addition, strain EC1118 

significantly appeared to be the most effective producer of 3SH and 3SHA in YPF wine 

(5594.0 + 1060.5 and 502.1 + 84.8 ng L-1, respectively). The LittoLevure strain followed a 

similar pattern of the high 3SH liberation (4802.7 + 163.0 ng L-1) as strain EC1118, but 

showed less 3SHA production. Strain VL3 seemed to be the least efficient in 3SH aroma 

release in the YPF wine.  

The EC1118 strain with the addition of 0.25 g L-1 DAP produced the greatest concentration of 

3SH and 3SHA in the YPF wines (8317.8 + 2384.1 and 470.3 + 194.2 ng L-1, respectively) as 

demonstrated in Figure 4-56. The addition of 0.5 g L-1 VCombi also promoted strain EC1118 

to produce the highest amount of both volatile thiols in the YPF wines (5594.0 + 1060.5 and 

502.1 + 84.8 ng L-1, respectively). These volatile thiols seemed to be least obvious in the 

YPF wine produced by strain X5 with the 0.25 g L-1 VCombi supplementation. 
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Figure 4-55 Concentration of 3SH and 3SHA detected in prepared YPF juice and finished 

YPF wines produced by five different yeast strains with the addition of VCombi 

at the high level  

Vertical bars represent standard deviations from three fermentation replicates, except YPF 

juice obtained from two sample replicates. Means followed by different letters on the top of 

the bar are significantly different (p<0.05) among yeast strains according to the DMRT test. 
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Figure 4-56 Concentration of 3SH and 3SHA detected in YPF wines produced by two yeast 

strains with the addition of two nutrient sources at two levels   

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

yeast strains according to the DMRT test. 
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nutrient source had no influence on the 3SHA production ranging from 263.8 + 73.5 to 333.9 

+ 47.5 ng L-1 (Figure 4-57). Nevertheless, 3SHA amounts in YPF wine tended to be higher in 

the VCombi treatment. 

 

 

 

Figure 4-57 Concentration of 3SH and 3SHA detected in finished YPF wines produced by 

two different yeast strains with the addition of VCombi and VUltra at 0.4 g L-1 

Vertical bars represent standard deviations from three fermentation replicates. Means 

followed by different letters on the top of the bar are significantly different (p<0.05) among 

treatment combinations, whereas those followed by the same letters on the top of the bar are 

not significantly different (p>0.05) according to the DMRT test. 
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5. DISCUSSION  
 

This study is focused on the improvement of the fermentation characteristics, varietal and 

important aromas in grape wines as well as in yellow passion fruit (YPF) wine by optimal 

choice of commercial Saccharomyces yeast strains and nutrient supplementations; nutrient 

sources/compositions and concentrations. 

The obtained results from the investigated fermentation experiments of Scheurebe and 

Sauvignon blanc grape wines (chapter 5.1 and 5.2) and YPF wines (chapter 5.3) are 

discussed in the following chapters (see experimental outline for all fermentation trials in 

Figure A-2). 

 

5.1 Effects of commercial Saccharomyces yeast strains and nutrient supplements on 

wine fermentative characteristics and quality of Scheurebe grape wines    

 

The experimental discussions, which are given in the following chapters, comprise five 

Scheurebe grape juice fermentation trials that investigated the effect of commercial 

Saccharomyces yeast strains and nutrient supplementation; nutrient source/composition and 

concentrations, on fermentation kinetics, some metabolic compounds and volatile 

compounds of finished wines (chapter 5.1.1 to 5.1.2).  

 

5.1.1 Effect of commercial Saccharomyces yeast strains and nutrient sources on 

fermentative characteristics, metabolic compounds and wine aroma of Scheurebe 

grape wines 

 

Strain X5 had a longer fermentation time than strain EC1118 in the OptiWhite and control 

fermentation, but the addition of Fermaid E reduced fermentation time (Figure 4-1). 

Nevertheless, all treatments completed fermentation after 11-14 days with low residual sugar 

less than 2 g L-1 (Figure 4-2). It has been reported that nutrient composition in complex 

mixtures affects yeast growth rate and favours higher rates than single compounds. Thus, 

mixtures of amino acids and vitamins give higher growth rates than the most preferred single 

nitrogen sources (Henschke & Jiranek, 1993; Albers et al., 1996; ter Schure et al., 2000; da 

Cruz et al., 2002; Beltran et al., 2004, 2005; Ribéreau-Gayon et al., 2006 a). It is linked to the 

ability of yeast to directly incorporate amino acids into protein, thereby minimising the need to 

maintain an energetically expensive amino acid synthetic capability (Bell & Henschke, 2005). 

In addition, nitrogen metabolism is central to cell growth and regulates other pathways, 

including sugar metabolism in yeast (Bell & Henschke, 2005; Ugliano et al., 2007).  
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Both yeast strain and nutrient source did not affect the formation of glycerol and 

acetaldehyde (Figure 4-2 and 4-3), which were within the normal ranges of concentration in 

wines at 4-15 g L-1 and 75-100 mg L-1, respectively (Rankine & Bridson, 1971; Schreier, 1979; 

Ough & Amerine, 1988; Swiegers et al., 2005 a; Ribéreau-Gayon et al., 2006 b).   

Strain EC1118 produced high amounts of acetic acid in the control and OptiWhite treatments, 

while strain X5 formed high levels in the control and DAP fermentations (Table 4-1). 

According to Bely et al. (2003), increasing nitrogen availability increases NADH production, 

which in turn reduces the need of the yeast cell to produce acetic acid to control redox 

balance. On the contrary, a high production of acetic acid by strain X5 in a high-nitrogen juice, 

as DAP might be related at least in part to a redox balancing reaction in response to high 

glycerol production, which generates a net deficit of NADH (Vilanova et al., 2007). 

Nonetheless, its amounts in these wines were within the normal range at below 0.7 g L-1 

(Corison et al., 1979; Ribéreau-Gayon et al., 2006 b). In addition, they did not undergo 

malolactic fermentation (Ough & Amerine, 1988; Radler, 1993). Concentrations of the other 

acids were similar among the treatment combinations and within the range of the reported 

wine values above.  

 

As shown in Figure 4-3, it is likely that nitrogen in grape juice, including control, was 

sufficient for yeast metabolism of the two yeast strains as concentrations of SO2-binding 

compounds in wines were less than 100 mg L-1 (Rankine, 1968 a, 1968 b; Radler, 1993; 

Ribéreau-Gayon et al., 2006 a). In addition, the supplementation of Fermaid E, which 

contains thiamine, significantly reduced both keto acids. In accordance with some studies, 

thiamine effectively reduces keto acid concentrations by the enzymatic decarboxylation 

(Delfini et al., 1980; Delfini & Vormica, 2001; Ribéreau-Gayon et al., 2006 a; Jackson, 2008).  

Both yeast strain and nutrient source had no influence on the production of dimethyl sulphide 

(Figure 4-4) and its levels in most wines were below the aroma threshold of 25 g L-1 (De 

Mora et al., 1986; Rauhut, 1993; Mestres et al., 2000; Swiegers et al., 2005 a). Although the 

X5 strain produced H2S in the final wine, its formation decreased with the addition of Fermaid 

E, DAP and OptiWhite. In addition, its levels were below the threshold value (50-80 µg L-1), 

which excluded the occurrence of an off-flavour of ―rotten egg‖ (Rauhut, 1996; Bell & 

Henschke, 2005; Rauhut, 2009). In agreement with several studies, addition of nutrient 

decreased the formation of H2S by yeast (Rauhut & Kürbel, 1994; Jiranek et al. 1995 a, 1995 

b; Rauhut et al., 1995, 1997, 2000 a, 2000 b; Mendes-Ferreira et al., 2004, 2009).  

 

The formation of higher alcohols, acetic acid esters, volatile fatty acids and their ethyl esters 

produced by the two yeast strains varied depending on the nutrient sources. Strain EC1118 

developed high amounts of 2-methyl propanol and 3-methyl butanol in most nutrient sources 
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(Table 4-2). This might reflect a less efficient usage of nitrogen, resulting in an increase of 

carbon flux related to branched-chain amino acid metabolism by this strain (Eden et al., 2001; 

Ribéreau-Gayon et al., 2006 a; Carrau et al., 2008). The relationship between higher alcohol 

production and high nitrogen availability was in agreement with earlier studies (Oshita et al., 

1995; Hernandez-Orte et al., 2005; Vilanova et al., 2007). They suggested that at higher 

yeast assimilable nitrogen, sufficient nitrogen is available for amino acid biosynthesis, which 

reduces the surplus of α-keto acids and, hence, the higher alcohols produced. The formation 

of the other higher alcohols was similar among the treatment combinations (Table 4-2 and 

Figure 4-5). Interestingly, concentrations of these higher alcohols were below 300 mg L-1 

that they are usually considered to contribute to a wine‘s aromatic complexity as previously 

reported (Lambrechts & Pretorius, 2000; Clarke & Bakker, 2004; Francis & Newton, 2005; 

Swiegers & Pretorius, 2005; Ribéreau-Gayon et al., 2006 b). In addition, levels of 2-phenyl 

ethanol, which elicits floral and rose-like aromas, in most wines were above the aroma 

threshold of 10 mg L-1 as reported in literatures above.  

The EC1118 strain seemed to be a higher producer of most acetic acid esters, ethyl esters 

and hexanoic acid ethyl ester (excluding succinic acid diethyl ester) than strain X5 with less 

response to nutrient sources (Figure 4-5, 4-6 and Table 4-3, 4-4), while these volatile esters 

produced by strain X5 were most evident in the Fermaid E variant. It has been shown that 

the final concentration of acetic acid esters of higher alcohols is the result of the balance 

between alcohol acyl transferase enzymes promoting acetic acid ester biosynthesis and 

esterase enzymes promoting their hydrolysis (Mauricio et al., 1993; Fukuda et al., 1998; 

Vianna & Ebeler, 2001). Increased nitrogen availability promotes the expression of the ATF1 

and ATF2 genes, which encode the alcohol acyl transferase enzymes (Yoshimoto et al., 

2002). Some studies have also reported that the increase in ester formation is directly related 

to a high nitrogen level (Rapp & Versini, 1991; Beltran et al., 2005; Hernández-Orte et al., 

2006 a). Miller et al. (2007) have suggested that when ammonium was added into the juice, 

the amino acids were not used for cellular structures and growth but, rather, induced the 

production of secondary metabolites like volatile esters. In addition, when Superstart was 

added, high amounts of succinic acid diethyl ester were formed by the two yeast strains. Rosi 

et al. (2008) have also revealed that organic nitrogen like inactive dry yeast promoted yeast 

cells to develop high amounts of esters. 

 

From a wine maker‘s view, the most important esters in wine are acetic acid ethyl ester, 

acetic acid 2-phenyl ethyl ester, acetic acid 3-methylbutyl ester and ethyl esters of medium-

chain fatty acids (Guth, 1997 b; Francis & Newton, 2005; Ribéreau-Gayon et al., 2006 b; 

Sumby et al., 2009). They play a major role in the fruity and floral aroma of young wines and 

also positively influence the general quality of the wine. They were prominent in most 
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EC1118 wines as well as the X5 wine with Fermaid E addition and their levels were above 

the thresholds as reported in literatures above. On the contrary, the concentrations of lactic 

acid ethyl ester in most wines were below the threshold at 50-200 μg L-1, which imparts milk, 

buttery and soapy aromas and mainly increases during malolactic fermentation. 

These findings pointed out that the two yeast strains and nutrient sources did not affect the 

concentrations of most monoterpenes; trans-linalool oxide, cis-linalool oxide, linalool and -

terpineol detected in wines (Figure 4-7). Their concentrations in the wine treatments were 

below their aroma threshold that contributes to varietal aroma (Guth, 1997 b; Ribéreau-

Gayon et al., 2006 b; Sumby et al., 2009).  Großmann et al. (1990) suggested that under 

normal wine making conditions, endogenous -glycosidases have a limited effect on the 

development of terpenes, because their activity reaches an optimum at pH 5 and the 

clarification of juice can also inhibit their activity. 

 

5.1.2 Effect of thirteen commercial Saccharomyces yeast strains on fermentative 

characteristics, metabolic compounds and wine aroma of Scheurebe grape wines 

 
The fermentations of fresh Scheurebe grape juices with thirteen commercial Saccharomyces 

yeast strains; EC1118, Sauvignon, VL3, X5, X16, VIN13, Alchemy I, Alchemy II, 4F9, LVCB, 

LittoLevure, AWRI R2 and QA23 had different fermentation kinetics and chemical 

composition. As demonstrated in Figure 4-8 and 4-9, strains EC1118, VIN13 and AWRI R2 

had the fastest fermentation kinetics and times with low residual sugar (below 2 g L-1) but 

high glycerol levels. On the contrary, the Sauvignon, Alchemy I, 4F9, LVCB and LittoLevure 

strains resulted in sluggish or stuck fermentations with high residual sugar (above 10 g L-1) 

but low glycerol amounts. It is likely that they had extremely higher nutrient demands than 

the other strains as the grape juice was not supplemented with any kind of nutrients, 

although it had high initial nitrogen; 0.09 g L-1 ammonium, 194 mg L-1 free amino nitrogen (as 

shown in 3.7.2) and  1314.6 mg L-1 total amino acid content without proline (Table A-1). It 

was exceptional for the Alchemy II and QA23 strains that they had sluggish and long 

fermentation durations, but finished fermentations with low residual sugar. A sluggish or 

stuck fermentation can be due to nitrogen deficiency, thiamine depletion of the must, CO2 

and ethanol production (Bely et al., 1990; Bisson, 1999, 2000; Julien et al., 2000; Blateyron & 

Sablayrolles, 2001). In addition, a low or lack initial level of nitrogen acts by limiting growth 

rate and biomass formation of yeast which may result in a low rate of sugar catabolism and 

decrease in sugar transport activity by yeast (Salmon, 1989; Bely et al., 1991; Monteiro & 

Bisson, 1991; Salmon, 1996; Alexandre & Charpentier, 1998; Colombié et al., 2005). 

Although the yeast strain strongly influenced the glycerol production under controlled 

conditions as reported in several studies (Radler & Schütz, 1982; Scanes et al., 1998; 
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Antonelli et al., 1999; Remize et al., 1999, 2001; Reynolds et al., 2001; Erasmus et al., 2004), 

its concentrations were within the concentrations reported for the wine.  

Fermentations with strain EC1118 resulted in the highest amounts of lactic acid and keto 

acids but the lowest acetic acid and acetaldehyde productions, whereas citric acid was 

higher in the VL3 and QA23 wines (Table 4-5 and Figure 4-10). Strains VL3, X5, X16, 4F9, 

LVCB and LittoLevure were the highest -ketoglutarate and acetaldehyde producers, while 

strain Sauvignon was the highest producer of acetaldehyde, H2S and CS2 (Figure 4-11). It is 

worth noting that the strains with fast fermentation kinetics and high sugar consumption 

produced the lowest volatile acidity, H2S and acetaldehyde.  

It appears that the ability of a yeast strain to produce H2S is genetically caused as H2S 

production by different wine yeast strains varies under similar conditions (Thornton & Bunker, 

1989; Henschke & Jiranek, 1993; Jiranek et al., 1995 b; Spiropoulos et al., 2000). Berry & 

Watson (1987) proposed that yeasts with low vitality such as in other sluggish or stuck 

fermentations can tend to autolyse faster and release consequently H2S (Henschke & 

Jiranek, 1993). In addition, the ability of yeast strains to produce acetaldehyde is depending 

on the activity of the enzyme involved in its synthesis like alcohol dehydrogenase (Vannini et 

al., 1994; Pérez-Coello et al., 1999; Marks et al., 2003). Nevertheless, it could be confirmed 

that the wine samples had neither malolactic fermentation nor the detectable spoilage of 

vinegar-like odour and the off-flavour of rotten egg (see reported literatures in 5.1.1). These 

compounds had no impact on the quality of the final wines and ranged within the usual 

values in wines. 

 

The use of Saccharomyces yeast strains during fermentation considerably contributes to 

variations in the production of volatile compounds (Antonelli et al., 1999; Pérez-Coello et al., 

1999; Herjavec et al., 2003; Plata et al., 2003; Romano et al., 2003; Swiegers et al., 2005 a; 

Regodón Mateos et al., 2006; Miller et al., 2007; Jackson, 2008). The greatest producer of 

higher alcohol and ethyl ester (excluding isobutanoic acid ethyl ester) was strain EC1118 

(Table 4-6, 4-7 and Figure 4-12). Strains QA23, VL3 and X16 also produced similar high 

amounts of 2-phenyl ethanol (floral and rose-like aromas) at a level above the aroma 

threshold (Clarke & Bakker, 2004; Francis & Newton, 2005; Swiegers et al., 2005 a; 

Bartowsky & Pretorius, 2009; Sumby et al., 2009). The levels of hexanol were similar among 

the thirteen yeast strains. This was supported by Bell & Henschke (2005) who reviewed that 

hexanol is formed from a must-derived precursor, probably hexanal, during must processing, 

since yeast are not able to synthesize it. At low concentration below 300 mg L-1, higher 

alcohols are considered desirable (see previous literatures in 5.1.1). Interestingly, 

concentrations of ethyl and diethyl esters in the final wines were above their aroma 

thresholds, which elicit pleasant floral and fruity aroma as reported in literatures above. 
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The synthesis of acetic acid esters by S. cerevisiae yeasts during the fermentation of wine 

involves the activity of at least three acetyltransferases, namely; alcohol acetyltransferase, 

ethanol acetyltransferase and isoamyl alcohol acetyltransferase (Fukuda et al., 1998; Lilly et 

al, 2000). As seen in Figure 4-12 and 4-13, the most acetic acid ester producer was strain 

VIN13, excluding acetic acid ethyl ester, followed by strains EC1118 and AWRI R2. It is likely 

to have a correlation between high formations of acetic acid esters and fast fermentation 

kinetics and time (Figure 4-8). In accordance with previous studies, the higher levels of 2-

phenyl ethanol seemed to determine the greater production of acetic acid 2-phenyl ethyl 

ester (Nykänen, 1986; Antonelli et al., 1999; Herjavec et al., 2003; Vilanova et al., 2007). 

These wines might impart intensive banana aroma as the levels of acetic acid 3-methylbutyl 

ester were above the aroma threshold at 40 g L-1 (see reported literatures in 5.1.1). The 

concentrations of the other acetic acid esters were within the normal values detected in wine. 

The highest formations of MCFAs and their ethyl esters by strains Alchemy I and II, 4F9, 

LVCB and LittoLevure (Table 4-8) seemed to be responsible for their sluggish or stuck 

fermentation (Figure 4-8). In fact, it was found that MCFAs and their ethyl esters including 

ethanol might inhibit the growth of yeast (Ravaglia & Delfini, 1993; Ribéreau-Gayon et al., 

2006 b). In addition, the high concentrations of MCFAs might be the cause of a greater 

formation of their corresponding ethyl esters, which is in accordance with earlier studies 

(Antonelli et al., 1999; Hernández-Orte et al., 2006 a; Vilanova et al., 2007). Saerens et al. 

(2006) have suggested that the regulatory mechanisms might be active at the level of MCFA 

biosynthesis rather than esterification, but it is also strongly depending on the yeast strains. 

Differences in expression of the ethyl ester synthetic genes EHT1 and EEB1 or regulation of 

the balance between their ester synthetic and esterase activities could be involved. 

Nevertheless, high levels of MCFA ethyl esters detected in most wines may be responsible 

for pleasant fruity and floral aromas (see reported literatures in 5.1.1). 

 

Some differences existed between the yeast strains in terms of linalool (rose, lavender and 

camphorous aromas) liberation. It is likely that strains X5, VIN13, VL3 and Alchemy I were 

the greatest linalool releasing strains, while most yeast strains had a similar ability to release 

-terpineol, trans- and cis-linalool oxide (Figure 4-14). Interestingly, the concentration of 

linalool in most wines might contribute to typical varietal aroma at the perception threshold of 

15-50 g L-1 as reported in previous literatures in 5.1.1. In agreement with several authors, 

some strains of S. cerevisiae posess -glycosidase activity that can release monoterpenes 

from glycoconjugate forms during alcoholic fermentation (Hock et al., 1984; Günata et al., 

1985; Delcroix et al., 1994; Hernández et al., 2003; Carrau et al., 2005; Swiegers & Pretorius, 

2005; Ugliano et al., 2006; Loscos et al., 2007). 
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5.2 Effects of yeast strains and/or nutrient supplements on wine fermentation and 

quality of Sauvignon blanc grape wines 

 

In the following chapters, the obtained results of two fermentation trials of Sauvignon blanc 

grape juice are discussed. The improvement of fermentation characteristics, metabolic 

products and volatile compounds of Sauvignon blanc wine fermentation by optimal choices of 

commercial Saccharomyces yeast strains and nutrient supplementation; nutrient source and 

concentration, are reported in section 5.2.1 to 5.2.2.  

 

5.2.1 Effect of nine commercial Saccharomyces yeast strains and two nutrient sources 

on fermentative characteristics, metabolic compounds and wine aroma of Sauvignon 

blanc grape wines 

 
The fermentation kinetics differed among the nine commercial yeast strains without any 

response to the two nutrient supplementations (Figure 4-15). Strains AWRI R2, X5, VIN13, 

VL3, EC1118 and LVCB had fast fermentation kinetics and durations, whereas strains 

Sauvignon and VIN7 had inverse behaviours with less response to the nutrient source. 

Nonetheless, all fermentations completely finished with similar amounts of low residual sugar 

(below 1 g L-1) and glycerol (Figure 4-16), which were within the range of levels normally 

reported in wines (see previous literatures in 5.1.1). It has been established that strain VIN7 

usually has slow-acting fermentation kinetics, which might be related to its hybrid nature 

(Erasmus et al., 2004; King et al., 2008). Nevertheless, supplementation with Fermaid E 

slightly enhanced faster fermentation kinetics than OptiWhite. It might be due to the fact that 

Fermaid E contains certain nutrient sources, sufficient vitamins and growth factors for cell 

growth and metabolism as discussed before in 5.1.1.  

Some differences existed between the treatment combinations in terms of production and/or 

utilization of organic acids (Table 4-9). The addition of Fermaid E seemed to reduce acetic 

acid formation, except for strain VIN7. This might be due to the fact that this nutrient source 

provided high nutrient availability, and consequently increased NADH production, which in 

turn reduced the need of the yeast cell to produce acetic acid to control redox balance as 

suggested by Vilanova et al. (2007). Although strain VIN7 produced the highest amounts of 

acetic acid, its final wine had no detectable spoilage of vinegar-like odour (Corison et al., 

1979; Ribéreau-Gayon et al., 2006 b). In addition, most wines did not undergo malolactic 

fermentation as well as low concentrations of the other acids had less impact on the quality 

of the final wines as discussed in 5.1.1. 
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It is worth noting that the nine yeast strains showed similar formations of acetaldehyde in 

both nitrogen sources at the levels below the sensory threshold value as previously reported 

in literatures in 5.1.1. The high formation of -ketoglutarate by strains Sauvignon and X5 as 

well as pyruvate by strain VIN7 significantly diminished by the addition of Fermaid E (Figure 

4-17). As discussed in 5.1.1, it might be due to the fact that Fermaid E contains thiamine, 

which is reported to effectively reduce the keto acid formation by decarboxylation. On the 

contrary, this nutrient addition tended to result in high levels of CS2 and dimethyl disulphide 

in the detected wines (Figure 4-18). Nonetheless, the concentrations of these compounds 

detected in all wine samples had no influence on the quality and undesirable sulphur aroma 

(see reported literatures in Table 2.5 and 5.1.1). In addition, these findings indicated that 

strains EC1118, 4F9 and AWRI R2 did not produce detectable CS2 and DMDS.  

 

It is worth noting that the nine yeast strains showed similar formations of all higher alcohols, 

acetic acid esters, ethyl ester of butanoic acid and lactic acid, all MCFAs and hexanoic acid 

ethyl ester in either the Fermaid E or OptiWhite treatment (Table 4-10, 4-11, 4-12 and 

Figure 4-19, 4-20). Besides, the most important aromatic higher alcohol is 2-phenyl ethanol, 

which has a floral fragrance and rose-like aroma (see previous literatures in 5.1.1). Its 

concentrations in most wines were above the aroma threshold at 10 mg L-1, while low 

formation of the other higher alcohols may impart desirable fruity aroma and aromatic 

complexity. Although the esters were directly derived from the corresponding higher alcohol 

through condensation with acetyl-CoA (Bell & Henschke, 2005; Vilanova et al., 2007), the 

production of acetic acid esters in this trial differed from the higher alcohols in response to 

nitrogen supplementation (Table 4-10 and Figure 4-19).  

The result revealed that acetic acid ester production was slightly higher with the addition of 

Fermaid E rather than OptiWhite for most yeast strains. This might be due to the fact that 

Fermaid E provides higher nutrient availability that consequently stimulates the formation of 

the alcohol acyl transferase enzymes promoting acetic acid ester biosynthesis as discussed 

before in 5.1.1. A high concentration of most acetic acid esters in both nutrient sources was 

produced by strain Sauvignon only. This might be related to the distinctive capacity of the 

yeast to assimilate nitrogen and nitrogen sources. The yeasts with greater demand for 

nitrogen produce higher concentrations of esters during the fermentation (Perez-Coello et al., 

1999; Torrea et al., 2003; Hernandez-Orte et al., 2005). It is likely that slow fermentation 

kinetics and time for strain Sauvignon (Figure 4-15) showed its higher nutrient demand and 

resulted in higher production of acetic acid esters in final wines. This finding demonstrated 

that only concentrations of acetic acid 3-methylbutyl ester (banana aroma) were beyond the 

aroma threshold (see reported literatures in 5.1.1). 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4C0TFR8-C&_user=4816649&_coverDate=02%2F28%2F2005&_alid=1393154014&_rdoc=1&_fmt=high&_orig=search&_cdi=5037&_docanchor=&view=c&_ct=8&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=3ad82d4a67aa275befe040023fd3e1a0#bib21
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It should be emphasized that the addition of Fermaid E promoted the formation of ethyl ester 

of propionic acid, octanoic acid and decanoic acid (Table 4-11 and Figure 4-20). As 

discussed in 5.1.1, the increase in volatile ester formation is directly related to nitrogen 

availability and DAP addition at high level. On the other hand, the presence of OptiWhite 

seemed to increase the formation of isobutanoic acid ethyl ester and succinic acid diethyl 

ester, particularly by strains EC1118 and AWRI R2, respectively. Some observations 

reported similar results that concentrations of branched chain esters decrease with an 

increased DAP addition (Ugliano et al., 2007). Rosi et al. (2008) also observed that addition 

of organic nitrogen (yeast extract) stimulated yeast cells to produce high amounts of ethyl 

ester. Interestingly, high levels of these esters detected in the wine samples may contribute 

to the wine flavour of pleasant fruity and floral aroma (see reported literatures in 5.1.1).  

 

Most yeast strains had a similar capability to liberate small amounts of -terpineol in both 

nutrient sources (Table 4-11) and its concentrations were quite below the aroma threshold at 

400 μg L-1 as previously reported in literatures (Table 2-4). In addition, trans-linalool oxide, 

cis-linalool oxide and linalool, were detected only in trace quantities (data not shown).  

Großmann et al. (1990) and Swiegers et al. (2005 a)  have suggested that under normal 

wine making conditions, endogenous -glycosidases from the yeast have a limited effect on 

the development of the juice varietal aroma as discussed before in 5.1.1. 

 

5.2.2 Impact of five commercial yeast strains and four nutrient sources on 

fermentative characteristics, metabolic compounds and wine aromas of Sauvignon 

blanc grape wines 

 

Fermentations of fresh juice with five yeast strains (EC1118, X5, VIN7, Alchemy I and 

LittoLevure) exhibited some significant differences of fermentation characteristics depending 

on the nutrient sources (Superstart, Fermaid O, Fermaid E and VUltra).  

Strains EC1118 and Alchemy I were rather not influenced by the nitrogen source with fast 

fermentation kinetics and times (Figure 4-21). They completely finished fermentations with 

low residual sugar below 3 g L-1 (Table 4-13). In contrast, strains X5, LittoLevure and VIN7 

were more influenced by the nitrogen source, which resulted in sluggish fermentations in the 

Fermaid E and Fermaid O variants. They afterwards finished fermentations with slightly high 

residual sugar (3.8-7.4 g L-1). Nevertheless, Superstart seemed to be the most effective 

nutrient as it accelerated fermentation kinetics and time for all yeast strains. It has been 

suggested that PUFAs (polyunsaturated fatty acids) from inactive dry yeasts (IDY) can act as 

protective agents reducing the osmotic shock of active dry yeasts (ADY) because of the high 

sugar content of juices and helping yeasts to adapt their metabolism to the new conditions 
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(Caridi et al., 1999; Caridi, 2002). Recently, Soubeyrand et al. (2005) showed that IDY could 

release fragments of yeast cell walls that can form micelle-like particles, which consequently 

repair damaged cellular membranes of the yeast and are therefore able to increase the 

fermentation rate. On the other hand, the addition of Fermaid O and Fermaid E gave an 

inverse response, they retarded fermentation kinetics for strains X5, VIN7 and LittoLevure. It 

seemed to reflect their specific behaviour towards nitrogen source and consumption. In 

addition, the use of ammonium salts to increase the nitrogen content of grape must induced 

a repression of amino acid consumption by the yeasts and could reduce the fermentation 

efficiency, but this was strain-dependent (Bely et al., 1990; ter Shure et al, 2000; Beltran et 

al., 2005). The metabolism of nitrogen through the nitrogen transporter permeases, encoding 

GAP1 (the transport of amino acids) and MEP2 (the transport of ammonium), was repressed 

in a nitrogen-rich medium by the nitrogen catabolite repression (NCR) mechanism.  

 

The glycerol and citric acid were not influenced by both yeast strain and nutrient source 

under the conditions of this trial (Table 4-13 and 4-14). There were some differences 

between the variants in the production and/or utilization of the other organic acids. 

Nevertheless, their levels in the wines were within the usual values in wine (see reported 

literatures in 5.1.1). All treatments had no malolactic fermentation because of low lactic acid 

levels. It was exceptional for strain VIN7 that produced excess amounts of acetic acid above 

the detectable spoilage level of vinegar-like character, particularly in the Superstart variant.  

Addition of Superstart resulted in a high formation of -ketoglutarate and pyruvate but a low 

level of acetaldehyde for most yeast strains (Figure 4-22). Pozo-Bayón et al. (2009 a, 2009 b) 

have demonstrated that most IDY products provide amino acids, particularly glutamic acid. 

When glutamic acid is supplied as the sole major source of nitrogen, the -amino group is 

mobilised in transamination reactions resulting in the high production of keto acids (Albers et 

al., 1996). This is shown in Figure 2-2. The addition of Fermaid O, VUltra and Fermaid E 

nonetheless diminished the formation of both keto acids. It might be due to the fact that 

Fermaid E and VUltra contain thiamine, which effectively decrease keto acids as discussed 

before in 5.1.1. There was a positive correlation between high levels of SO2 and a high 

formation of acetaldehyde (Figure 4-22 and 4-23). It was demonstrated that additional 

acetaldehyde is liberated in the presence of excessive quantities of sulphur dioxide in 

fermentation juices (Rankine & Pocock, 1969; Bell & Henschke, 2005; Ribéreau-Gayon et al., 

2006 a). Nevertheless, the concentrations of these compounds detected in all treatments had 

no impact on the quality and stability of the final wines (see reported literatures in 5.1.1). 

The addition of Fermaid E and VUltra into the juice resulted in the highest formation of SO2 

and CS2 by strain EC1118, while H2S and dimethyl sulphide formations were similar among 

treatments (Figure 4-23 and 4-24). Sulphite formation by Saccharomyces yeasts is 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WFP-4JT8DKF-1&_user=4816649&_coverDate=02%2F28%2F2007&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=de90bd57d405562e9c2e2df59e076eb3#bib2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WFP-4JT8DKF-1&_user=4816649&_coverDate=02%2F28%2F2007&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=de90bd57d405562e9c2e2df59e076eb3#bib2
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influenced by the nutrient composition of the grape juice and by the content of sulphate 

(Rauhut, 2009). Strain X5 produced exceptionally high amounts of SO2 in most nutrient 

conditions. It might possibly reflect the specific SO2-forming yeast of this strain. A high 

formation of sulphite can be caused by defects in sulphate uptake and reduction (Figure 2-8). 

It could be demonstrated that in high-sulphite-producing strains sulphate-permease is not 

suppressed by methionine (Henschke & Jiranek, 1991; Rauhut, 1993; Jiranek et al. 1995 a, 

1995 b; Pretorius, 2000; Rauhut, 2009). Nonetheless, levels of these sulphur compounds 

were not the cause of undesirable aromas in the final wines (see literatures in Table 2-5). 

 

The production of higher alcohols was similar for most strains, which produced high amounts 

in the Superstart treatment but decreased with the addition of Fermaid E and VUltra (Figure 

4-25). It is likely that Superstart provided less nitrogen availability and vitamin than the other 

nutrient sources. Surplus of α-keto acids, mainly synthesised from sugars, is consequently 

excreted as higher alcohols because of the shortage of α-amino nitrogen required for the 

transamination step of amino acid biosynthesis (Gutierrez, 1993; Oshita et al., 1995; Wang et 

al., 2003; Betran et al., 2005; Vilanova et al., 2007; Carrau et al., 2008). It was exceptional 

for the high production of individual higher alcohols by strains EC1118, Alchemy I and 

LittoLevure in most nutrient sources. It might nonetheless reflect a less efficient usage of 

nitrogen, which resulted in an increase of carbon flux related to branched-chain amino acid 

metabolism and carbon metabolic wastes including higher alcohols (Ribereau-Gayon et al., 

2006 a; Carrau et al., 2008). The 2-phenyl ethanol, which is the most important higher 

alcohol, was obvious in the EC1118 wines and the VIN7 wines with the Superstart treatment 

at the levels above its aroma threshold. While levels of the other higher alcohols were below 

an undesirable level at 300 mg L-1 (see reported literatures in 5.1.1). 

Strain Alchemy I was the predominant producer of most acetic acid esters with less response 

to the nutrient source, except for acetic acid 2-phenyl ethyl ester (Figure 4-26). Strain VIN7 

followed similar pattern in respect to acetic acid ethyl ester. The formation of acetic acid 

esters tended to increase with Superstart treatment, but decreased with Fermaid E and 

VUltra addition. It was suggested that polyunsaturated fatty acids from IDY like Superstart 

can act as protective agents reducing the stress of the yeasts and helping yeasts to adapt 

their metabolism to the new conditions (Caridi et al., 1999;  Caridi, 2002; Soubeyrand et al., 

2005). Thus, it might enhance yeast activity and metabolism to produce high levels of 

secondary metabolites as acetic acid esters. It is likely that the higher acetic acid ethyl ester 

production can be determined by the greater amount of acetic acid formed. Nevertheless, 

excessive levels of this ester produced by strains EC1118, Alchemy I and VIN7 were above 

the threshold of a positive impact (less than 160 mg L-1), thus it might lead to an unpleasant 

volatile acidity, pungent and nail polish aromas (see reported literatures in 5.1.1).  

http://www.springerlink.com/content/l143g17778657645/fulltext.html#CR41
http://www3.interscience.wiley.com/cgi-bin/fulltext/120756643/main.html,ftx_abs#b57
http://www3.interscience.wiley.com/cgi-bin/fulltext/120756643/main.html,ftx_abs#b57
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The EC1118 strain tended to be the most producer of ethyl ester of propionic acid and 

butanoic acid, MCFAs and their ethyl esters with less response to the nutrient source (Table 

4-15, 4-16 and Figure 4-27). Strain Alchemy I followed similar pattern in respect to propionic 

acid ethyl ester production, while strain X5 produced high amounts of MCFAs and their ethyl 

esters. It seemed that there is a correlation between the high formation of these MCFAs and 

ethyl esters and the fast fermentation kinetics of the two strains above (Figure 4-21). The 

higher metabolic activities might also regulate the metabolic pathways of ester formations as 

suggested by some authors (Henschke & Jiranek, 1993; Albers et al., 1996; Wang et al., 

2003; Hernández-Orte et al., 2005, 2006 a, 2006 b; Miller et al., 2007). The effect of Fermaid 

E on a high formation of ethyl ester of isobutanoic acid and lactic acid by strains Alchemy I 

and LittoLevure was consistent according to some studies (Hernández-Orte et al., 2005; 

Miller et al., 2007; Rosi et al., 2008) and previously discussed before in 5.2.1. The addition of 

Fermaid O also promoted strains Alchemy I and LittoLevure to develop high amounts of 

these esters. Raynal et al. (2009) have reported that Fermaid O released 100 % of amino 

acids to the fermentation juice. As amino acids are precursors of some esters, they might 

increase the level of ethyl esters (Nykänen, 1986; Hernández-Orte et al., 2005, 2006 b; Miller 

et al., 2007).  

The results also demonstrated that the rate of conversion of MCFAs into their corresponding 

ethyl esters is strongly dependent on the yeast strain. Differences in expression of the ethyl 

ester synthetic genes EHT1 and EEB1 or regulation of the balance between their ester 

synthetic and esterase activities could be involved (Hernández-Orte et al., 2005, 2006 a; 

Saerens et al., 2006; Vilanova et al., 2007). Interestingly, concentrations of ethyl esters of 

butanoic acid and MCFAs detected in the wines were above their aroma thresholds, which 

contribute to floral and fruity aromas as previously reported in literatures in 5.1.1. 

 

In general, the final wines of this Sauvignon blanc trial showed small amounts of 

monoterpene precursors, as most monoterpenes, e.g. -terpineol, trans-linalool oxide, cis-

linalool oxide and linalool were not detected. 

 

5.3 Effects of yeast strains and nutrient supplements on wine fermentation and quality 

of yellow passion fruit wines    

 

The following chapters are the outcome of four fermentation trials of yellow passion fruit juice. 

The effects of commercial Saccharomyces yeast strains and/or nutrient sources at different 

concentrations on the fermentation characteristics, metabolite by-products and volatile 

compounds of each fermentation trial are discussed in chapter 5.3.1 to 5.3.4. 
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5.3.1 Effect of fourteen commercial Saccharomyces yeast strains on fermentative 

characteristics, metabolic compounds and aromas of yellow passion fruit wines 

 

Fourteen strains of commercial Saccharomyces yeasts (EC1118, AWRI R2, LittoLevure, 

QA23, Freddo, Sauvignon, VL3, X5, X16, VIN13, 4F9, LVCB, Alchemy I and II) were 

examined with regard to their impacts on the fermentation characteristics and formation of 

metabolic compounds of obtained yellow passion fruit (YPF) wines. The results showed that 

the QA23 strain had a similar fast fermentation kinetic and time as the LVCB and VIN13 

strains (Figure 4-28) and was the lowest pyruvate, α-ketoglutarate and glycerol producer as 

well (Figure 4-29 and 4-30). In contrast, strains VL3, X16, LittoLevure, Sauvignon and AWRI 

R2 had slow and sluggish fermentations. However, all YPF fermentations completely finished 

with low residual sugar at less than 2 g L-1 (Figure 4-29). Commercial yeast strains have 

very different nitrogen demands, and consequently affect the fermentation kinetics and 

characteristics as reported in some studies (Julien et al., 2000; Pretorius, 2000; Blateyron & 

Sablayrolles, 2001; Colombié et al., 2005; Beltran et al., 2005) and previously discussed in 

5.1.2. In addition, a sluggish fermentation can be due to nitrogen deficiency, thiamine 

depletion of the must, CO2 and ethanol toxicity (see reported literatures in 5.2.1). A slow and 

sluggish fermentation seemed to determine the greater formation of glycerol in YPF wines, 

as found in the X16, AWRI R2 and LittoLevure YPF wines (Figure 4-29). Several authors 

have suggested that the two most important functions of glycerol synthesis in yeast are 

related to redox balancing and the hyperosmotic stress response that its formation is 

increased during osmotic stress (Scanes et al., 1998; Swiegers et al., 2005 a; Ribéreau-

Gayon et al., 2006 a; Vilanova et al., 2007). Glycerol concentrations in these YPF wines 

were nonetheless similar to the normal grape wine value (see previous literatures in 5.2.1). 

 

Some differences existed between the treatment combinations in terms of production and/or 

utilization of organic acids (Table 4-17). Although the Alchemy I, II and AWRI R2 strains 

produced high amounts of acetic acid, their finished YPF wines had no detectable spoilage of 

vinegar-like odour (see previous literatures in 5.2.1). In addition, most YPF wines did not 

undergo malolactic fermentation because of no detectable lactic acid. It is worth noting that 

the occurrence of large amounts of citric acid in YPF wines originates from the natural YPF 

juice itself (see reported data in 3.9.1), which was previously reported in the fruit juice 

fermentation by Jitjaroen (2007) and Srisamatthakarn et al. (2010). 

The overproduction of -ketoglutarate and pyruvate by strains Sauvignon and X16 might be 

related to their slow fermentation kinetics and higher nutrient demand (Figure 4-28 and 4-30). 

Some authors have reviewed that when nitrogen is adequate keto acids typically accumulate 

in wine to less than 50-100 mg L-1, when nitrogen is limited, more than 100 mg L-1 can be 
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produced by yeasts (Rankine, 1968 b; Radler, 1993; Hernández-Orte et al., 2005). On the 

contrary, strains 4F9 and Freddo that had fast fermentation kinetics also developed high 

amounts of these keto acids. The reason for this could be an extreme deficiency of vitamins 

in the YPF juice like thiamine and pantothenic acid (Delfini et al., 1980; Bataillon et al., 1996; 

Ribéreau-Gayon et al., 2006 a). In addition, excessive levels of these keto acids might affect 

the stability and quality of YPF wines (see reported literatures in 5.1.1).  

 

There was an inverse correlation between a high acetic acid and a low acetaldehyde 

formation by the EC1118, 4F9 and QA23 strains (Table 4-17 and Figure 4-30). It has been 

reported that acetaldehyde can be converted to ethanol and acetic acid through alcohol 

dehydrogenase enzymes (Pronk et al., 1996; Marks et al., 2003). In addition, the ability of 

yeast strains to produce acetaldehyde is depending on the activity of the enzyme, alcohol 

dehydrogenase, involved in its synthesis (Pérez-Coello et al., 1999; Remize et al., 1999; 

Cheraiti et al., 2005; Regodón Mateos et al., 2006). Nonetheless, its levels in all YPF wines 

were within the reported wine values and it did neither contribute to the green, bruised apple 

and nutty flavours nor led to a wine oxidation (see previous literatures in 5.1.1). 

 

A low level of carbon disulphide in the QA23, X5, 4F9, EC1118 strains might be related to 

their fast fermentation kinetics (Figure 4-28), while the LittoLevure strain had an inverse 

behaviour and high amounts (Figure 4-31). It is likely that a slow and sluggish fermentation 

of strain LittoLevure may lead to a high formation of MeSAc. As discussed before in 5.1.2, 

yeasts with a low vitality such as in sluggish fermentations can tend to autolyse faster, and 

consequently lead to the formation of several sulphur compounds (Berry & Watson, 1987; 

Henschke & Jiranek, 1993). On the other hand, strain VIN13 also developed high amounts of 

MeSAc, although it had a fast growth kinetic, thus some specific genes might be involved. 

Interestingly, MeSAc was not detected in the YPF wines fermented with strains EC1118, 

Sauvignon, VL3, X5, Alchemy I, 4F9, QA23 and Freddo. The concentration of these 

compounds in the YPF wines had no impact on the sulphurous off-flavour (see reported 

literatures in Table 2-5).  

As discussed in the previous trial (5.1.2), the use of different yeast strains during 

fermentation contributed considerably to variations in individual volatile compound formations. 

It seemed that high productions of higher alcohols by strains LittoLevure, AWRI R2, X16 and 

Sauvignon were related to the slow fermentation kinetics (Figure 4-28 and 4-32). On the 

other hand, it can be suggested that the high formation of 2-phenyl ethanol and 2-methyl 

butanol by strains QA23 and VIN13, which had fast fermentation kinetics, might reflect a less 

efficient usage of nitrogen. Thus, it resulted in an increase of carbon flux related to branched-

chain amino acid metabolism and carbon metabolic wastes including higher alcohols 
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(Vilanova et al., 2007; Carrau et al., 2008). Nevertheless, concentrations of these higher 

alcohols in YPF wines might be considered as desirable flavours as their levels were below 

300 mg L-1 (see reported literatures in 5.1.1). In addition, the LittoLevure, QA23 and VIN13 

YPF wines may impart floral and rose aromas because of high levels of 2-phenyl ethanol. 

The LittoLevure strain followed by strains QA23, VIN13, X16 and LVCB was the most 

predominant producer of acetic acid esters in the YPF wines (Figure 4-33). The acetic acid 

ethyl ester is present as relative peak area due to the low detected amounts in the YPF 

wines. It is likely that the higher amounts of higher alcohols were responsible for the greater 

formation of corresponding acetic acid esters as discussed before in the Scheurebe grape 

wine trial (5.1.2). The concentrations of only acetic acid 3-methylbutyl ester in the YPF wines 

were quite above the aroma threshold (banana and fruity aromas) as reported in literatures in 

5.1.1. 

There was a relationship between the high formation of ethyl ester of lactic and isobutanoic 

acid by strains X16, Sauvignon and AWRI R2 (Figure 4-34) and their slow fermentation 

kinetics (Figure 4-28) as well as their distinctive capacities to assimilate nitrogen. It has been 

suggested that the yeasts with greater demand for nitrogen/nutrients produced higher levels 

of esters during fermentation (Perez-Coello et al., 1999; Torrea et al., 2003). On the other 

hand, strains QA23, Freddo and LVCB developed high amounts of butanoic acid ethyl ester, 

MCFAs and their esters (Table 4-18 and Figure 4-34, 4-36), while strains X5 and EC1118 

produced high levels of propionic acid ethyl ester, but they had fast fermentation kinetics. 

The higher metabolic activities of yeasts may also regulate the metabolic pathways of ethyl 

ester formations as suggested by some studies (Albers et al., 1996; Hernández-Orte et al., 

2005, 2006 a, 2006 b; Miller et al., 2007). In addition, the level of MCFA biosynthesis 

seemed to be responsible for the formation of related ethyl esters in the YPF wines as 

discussed in previous trials of grape wines (5.1 and 5.2). The concentrations of most ethyl 

esters detected in YPF wines, except for propionic acid ethyl ester, may impart the fruity and 

floral aromas (see previous literatures in 5.1.1) but levels of MCFAs (soapy and rancid 

odours) were far away from their thresholds.  

 

This finding showed that most yeast strains had a similar ability to liberate -terpineol 

(Figure 4-35). The linalool was most evident in the QA23, Alchemy I and II and 4F9 YPF 

wines. It seemed that the higher metabolic activities of these yeast strains, which had the 

faster fermentation kinetics, stimulated the greater release of linalool. Nonetheless, 

concentrations of these monoterpenes were quite below their perception thresholds as 

reported in the literatures (Table 2-4). 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4C0TFR8-C&_user=4816649&_coverDate=02%2F28%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=cbbff6521615e0e68524f4a0dfe8e691#bib18
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4C0TFR8-C&_user=4816649&_coverDate=02%2F28%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000065244&_version=1&_urlVersion=0&_userid=4816649&md5=cbbff6521615e0e68524f4a0dfe8e691#bib21
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5.3.2 Effect of three commercial Saccharomyces yeast strains and five different 

commercial nutrient sources on growth kinetics, fermentative characteristics, 

metabolic compounds and aromas of yellow passion fruit wines 

 

The YPF juice fermentations with three yeast strains (EC1118, Sauvignon and X5) showed 

some significant differences on the fermentation kinetics, metabolic and volatile compounds 

depending on the nutrient sources (DAP, VCombi, VUltra, Fermaid E and OptiWhite).  

Addition of any source of nutrient, except OptiWhite, into YPF juices seemed to be effective 

to enhance the fermentation kinetics of most strains, except for strain Sauvignon (Figure 4-

37). Nevertheless, all YPF fermentations completely finished with low residual sugar (less 

than 2 g L-1) and similar amounts of glycerol (Table 4-19).  The effect of OptiWhite, which is 

an inactive dry yeast, might be due to the fact that it provides less nitrogen availability to the 

YPF juice. On the contrary, when a nutrient containing DAP was added to the YPF juice, 

resulting in an increase of ammonium nitrogen, Saccharomyces yeasts were possibly able to 

transport ammonium ions across the plasma membrane more easily than another nitrogen 

source (Miller et al., 2007; Boulton et al., 2009). Furthermore, addition of nutrient mixtures 

like VCombi, VUltra and Fermaid E accelerated fermentation kinetics faster than DAP alone 

as discussed before in 5.1.1 and 5.2.1. It can be suggested that under the condition in this 

trial, the impact of one nutrient (e.g. assimilable nitrogen) on the fermentation kinetics during 

alcoholic fermentation is also dependent upon the other nutrients. 

 

It has been demonstrated that malic acid is catalyzed by some strains of S. cerevisiae via 

sugar metabolism (Antonelli et al., 1999; Reynolds et al., 2001; Yéramian et al., 2007). As 

shown in Table 4-20, in the VCombi and DAP treatments strain Sauvignon catalyzed 39.5 to 

64.7 % malic acid. Strain X5 also produced 39.5 % malic acid in the Fermaid E variant. The 

addition of these nutrients probably accelerated the fermentation kinetics and consequently 

regulated the other pathways including organic acid metabolism (Radler, 1993; Bell & 

Henschke, 2005; Ribéreau-Gayon et al., 2006 a; Ugliano et al., 2007). Acetic acid formation 

plays an important physiological role in the intracellular redox balance by regenerating 

reduced equivalents of NADH (Bely et al., 2003; Ribéreau-Gayon et al., 2006 a). Thus, an 

increase of acetic acid production by strain Sauvignon in the Fermaid E and OptiWhite 

variants, which had sluggish fermentations, might control the redox balance of this strain. 

Nonetheless, concentrations of these acids in the YPF wines were similar to the reported 

ranges in a normal grape wine (see literatures above) and these YPF wines did neither 

undergo malolactic fermentation nor had a vinegar-like odour. As previously discussed in 

5.3.1, high amounts of citric acid in YPF wines originate from the natural YPF juice itself (see 

reported data in 3.9.2). 
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As previously discussed in 5.1.1 and 5.2.2, the addition of a nutrient source containing 

thiamine; VCombi, VUltra and Fermaid E, significantly diminished the formation of -

ketoglutarate and pyruvate in the YPF wines (Figure 4-38). Jitjaroen (2007) also 

demonstrated that the fermentation of fruit wines, santol and ma-mao, with DAP plus 

thiamine and Fermaid E reduced the production of keto acids. The excessive formation of -

ketoglutarate by strains Sauvignon and EC1118 in the DAP treatment was quite above the 

normal wine value, thus it might affect the stability and quality of these YPF wines (see 

reported literatures in 5.1.1). There was probably a correlation between the high formation of 

acetaldehyde and the fast fermentation kinetics of strain EC1118 with the addition of VCombi, 

VUltra and Fermaid E (Figure 4-37). Recently, Jitjaroen (2007) reported a similar result that 

the addition of Fermaid E promoted greater yeast growth rates and acetaldehyde production 

in some fruit wines than DAP alone. Nevertheless, levels of acetaldehyde and pyruvate in 

YPF wines were similar to the reported ranges in grape wine. 

Ammonium salts like DAP are widely used to compensate nitrogen deficiencies in the juice 

and to practically control H2S formation (Hansen et al, 1994; Rauhut, 2009). Nevertheless, its 

supplementation is not always effecting H2S production because of other factors, e.g. 

methionine and other nitrogen that regulate amino acid transport into the yeast cell and 

sulphur metabolism, especially the SRS pathway, which generates H2S (Spiropoulos & 

Bisson, 2000; Spiropoulos et al., 2000) and deficiencies in vitamins and micronutrients 

(Wainwright, 1971; Wang et al., 2003). This is largely due to the fact that the regulation of 

sulphur and nitrogen metabolism in yeast is complex (Marks et al., 2003; Bell & Henschke, 

2005). Thus, the high production of H2S by strain EC1118 in the presence of DAP might be 

partially explained (Figure 4-39). Overall, H2S and carbon disulphide formation decreased 

with the addition of a nutrient mixture containing thiamine as well as OptiWhite. Their levels 

in the YPF wines had nonetheless no undesirable sulphur off-flavour (Table 2-5). In contrast, 

the addition of VCombi and VUltra resulted in a high formation of methanethiol (MeSH) by 

strain EC1118. It is derived from methionine, cysteine, S-methylmethionine and sulphate (De 

Mora et al., 1986; Rauhut, 1993). The addition of these nutrient sources might therefore 

provide certain substrates for this strain to liberate high amounts of MeSH under this trial 

condition. However, ongoing research is necessary to prove the effect of nutrient sources on 

the sulphur compound formation in the YPF wines. The odour threshold of MeSH is 

extremely low at 0.02-0.3 g L-1, thus detected levels in these YPF wines may contribute to 

an undesirable aroma of rotten egg or cabbage. 

 

It is well documented that an inverse correlation exists between DAP addition and the 

production of higher alcohols, as pathways leading to the alcohol synthesis are down-

regulated by the addition of DAP (Rapp & Versini, 1991, 1996; Marks et al., 2003; Beltran et 

http://www.springerlink.com/content/h812jl7u1551m4w6/fulltext.html#CR36
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al., 2005; Hernández-Orte et al., 2006 a). This result also showed that the addition of DAP 

significantly decreased the concentration of 2-methyl butanol and 2-phenyl ethanol for most 

yeast strains, but these alcohols increased with other nutrient mixtures (Figure 4-40). On the 

other hand, the DAP addition promoted high formations of 2-methyl propanol and 3-methyl 

butanol, particularly by strains Sauvignon and EC1118. Hernández-Orte et al. (2005) have 

suggested that DAP increases the capacity of the yeast to transform the synthesized -keto 

acids, avoiding their accumulation and later expulsion to the medium after their reduction to 

higher alcohols. In addition, it may also reflect a less efficient usage of nitrogen for these 

strains (see similar discussion in 5.2.2). For instance, strain Sauvignon seemed to be the 

predominant producer of higher alcohols, but their concentrations were within the desirable 

value in grape (see reported literatures in 5.1.1). In addition, high levels of 2-phenyl ethanol 

produced by this strain may elicit floral and rose aroma in YPF wines. 

Strain Sauvignon developed prominent aroma compounds in terms of acetic acid esters 

(excluding acetic acid hexyl ester), linalool and -terpineol with the addition of nutrient 

sources containing thiamine (VCombi, VUltra and Fermaid E) (Figure 4-41 and 4-42). It has 

been reported that acetic acid ester can be derived directly from the corresponding higher 

alcohol through condensation with acetyl-CoA (Nykänen, 1986; Antonelli et al., 1999; 

Herjavec et al., 2003; Vilanova et al., 2007). This result also indicated that there was a 

positive relationship between higher concentrations of higher alcohols and the greater 

productions of corresponding acetic acid esters by strain Sauvignon with the same nutrient 

condition (Figure 4-40 and 4-41). Acetic acid hexyl ester is probably derived from a grape 

precursor, hexyl aldehyde that is modified by yeast metabolism (Boulton et al., 2009). Strains 

EC1118 and X5 with VCombi addition showed high liberation of this ester.  High acetic acid 

3-methylbutyl ester productions in the YPF wines, particularly in the Sauvignon treatments, 

may have an intensive banana aroma (see reported literatures in 5.1.1). The slow 

fermentation time of strain Sauvignon seemed to correspond to high levels of -terpineol and 

linalool. A longer fermentation time may lead to high release of monoterpenes under the 

condition in this trial. However, their concentrations were quite below the perception 

thresholds (Table 2-4). 

 

Likewise, depending on the yeast strain utilized, the formation of ethyl ester compounds 

presented different responses when different nutrients were added to the medium as shown 

in previous studies (Torrea et al., 2005; Miller et al., 2007). Strain Sauvignon with DAP 

addition produced the highest amounts of ethyl esters of isobutanoic acid and lactic acid 

(Table 4-21). The addition of VCombi promoted strain EC1118 to develop the greatest 

concentrations of butanoic acid ethyl ester, medium-chain fatty acids and their ethyl esters as 

well as strain X5 with respect to fatty acids and their ethyl esters (Table 4-22). The propionic 
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acid ethyl ester was most obvious in the YPF wines produced by strain X5 with Fermaid E 

and OptiWhite additions. Similar to earlier studies (Hernández-Orte et al., 2005, 2006 a; 

Miller et al., 2007; Rosi et al., 2008) who suggested that a large pool of ammonium released 

from these nutrient sources was not used for cellular structures and growth of the yeast but 

was rather available to produce high levels of secondary metabolites as ethyl esters. The 

high formation of fatty acids and their ethyl esters by strains EC1118 and X5 (Table 4-22) 

seemed to be related to their fast fermentation kinetics in the same nutrient sources (Figure 

4-37). As discussed in 5.2.2, these nutrients enhanced the metabolic activities of the yeast, 

and might consequently regulate the metabolic pathways of ester formations as well. In 

addition, the higher concentration of fatty acids seemed to determine the greater production 

of corresponding fatty acid ethyl esters. Nevertheless, the rate of conversion is strongly 

dependent on the yeast strain as suggested by some research groups (Antonelli et al., 1999; 

Herjavec et al., 2003; Torija et al., 2003 a, 2003 b; Vilanova et al., 2007). 

The YPF wines produced by most yeast strains with the addition of DAP and VCombi might 

have an odour reminiscent of floral and fruity aromas, as the concentration of ethyl esters in 

these samples were beyond the perception thresholds (see reported literatures in 5.1.1). 

 

5.3.3 Effect of five commercial Saccharomyces yeast strains and two different 

commercial nutrient sources at different concentrations on growth kinetics, 

fermentative characteristics, metabolic and aroma compounds of yellow passion fruit 

wines 

 

The YPF puree had low pH and extremely high acidity, thus it was diluted by the addition of 

water to the optimal value for yeast growth and sensory preferences (Ribéreau-Gayon et al., 

2006 a; Swiegers et al., 2005 a; www.foodsci.purdue.edu/research/labs/enology/Acid 

2007slides.pdf, 2009) as shown in Table 4-23. Concentrations of -amino nitrogen in the 

prepared YPF juice were consequently reduced to approximately 91.9 % and it had a low 

total amino acid and sugar content (Table A-3). The sugar content was then adjusted by 

adding sucrose (beet sugar) giving inverted sugar to 170.5 + 12.1 g L-1. In accordance with 

some authors, numerous higher alcohols and esters are produced during fermentation 

(Francis & Newton, 2005; Ribéreau-Gayon et al., 2006 b).  These compounds were detected 

from traces to below 5 mg L-1 in the YPF puree and prepared juice and below the aroma 

threshold reported in the literatures above, except for levels of linalool that were above the 

perception threshold (15-50 g L-1). In addition, a decrease of the aroma compound 

concentrations in prepared YPF juice was also due to the addition of water to YPF puree. 

The fermentations of prepared YPF juice were examined with regard to the effect of yeast 

strains (EC1118, VL3, X5, Alchemy I and LittoLevure), nutrient sources (DAP and VCombi) 

http://www.foodsci.purdue.edu/research/labs/enology/Acid%202007slides.pdf
http://www.foodsci.purdue.edu/research/labs/enology/Acid%202007slides.pdf
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and nutrient levels (0.25 and 0.5 g L-1) on the fermentation characteristics, non-volatile and 

volatile compounds in the final YPF wine. The result indicated that strains EC1118 and 

Alchemy I had the fastest fermentation kinetics and durations, while strains LittoLevure and 

VL3 resulted in sluggish fermentations depending on the nutrient supplement (Figure 4-43). 

Nevertheless, these yeast strains fermented practically nearly all the initial sugar provided 

(Table 4-23) and resulted in a low residual sugar below 2 g L-1 (Table 4-24). The addition of 

VCombi at a high concentration (0.5 g L-1) seemed to be the most effective condition to 

accelerate fermentation kinetics and time for the five yeast strains. The VCombi contains 

thiamine, which is also a growth factor hence it might help the yeast to adapt its metabolism 

to the new conditions as previously discussed in 5.3.2. The addition of thiamine to the grape 

juice influences the growth rate, the velocity and the kinetic of fermentation (Delfini & 

Formica, 2001; Ribéreau-Gayon et al., 2006 a; Jitjaroen, 2007). On the contrary, strain 

LittoLevure showed slow fermentation kinetic in the VCombi at low level, it might be due to its 

less effective behaviour in relation to nitrogen usage as well as the nitrogen deficiency and 

thiamine depletion of the juice as suggested by some studies (see reported literatures in 

5.2.2 and 5.3.2). 

 

High productions of glycerol by strains VL3 and X5 are probably related to their slow 

fermentation kinetics in the low DAP treatment (Table 4-24 and Figure 4-43). Larsson et al. 

(1998) have suggested that when Saccharomyces yeast cells face nitrogen limitation, 

glycerol synthesis is increased in order that excessive cytosolic ATP can be consumed. In 

addition, glycerol may have a role in oxidative stress resistance, in regenerating cytosolic 

inorganic phosphate and in nitrogen metabolism (Scanes et al., 1998). Even though some 

variations in the glycerol production were observed among the treatments, glycerol levels in 

all YPF wines were within the optimal wine ranges (see reported literatures in 5.1.1). Some 

differences existed among the treatment combinations in terms of citric and malic acid 

concentrations, except for acetic acid (Table 4-25). It might be due to a chemical reaction 

with other substances in the YPF wine. It has been reviewed that many yeasts are able to 

use certain carboxylic acids not only as sources of carbon for growth but also for controlling 

the intracellular pH and contribute therewith to the intracellular charge balance by enhancing 

K+ ion uptake (Walker, 1998; Torija et al., 2003 b). The lactic acid was not detected in all YPF 

wines, thus they did not undergo malolactic fermentation. In addition, concentrations of 

organic acids were similar to the reported values in grape wines and YPF wines in 5.3.1 and 

5.3.2.  
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Excessive amounts of -ketoglutarate and pyruvate in the YPF wines were produced by 

strains X5 and VL3 in the presence of DAP, especially at low levels, but significantly 

diminished with VCombi (DAP plus thiamine) addition (Figure 4-44). It has been suggested 

that when ammonium salts are added as sole major source, they will be converted to 

glutamate and mobilized in transamination reactions in yeasts resulting in the formation of 

other amino acids and keto acids, however depending on the yeast strain (Rankine, 1968 b; 

Albers et al., 1996). As previously discussed in 5.2.2 and 5.3.2, thiamine effectively 

decreased keto acid productions. The result indicated that excessive levels of keto acids 

detected in the YPF wines produced by strains X5 and VL3 in the DAP treatment seemed to 

influence the stability and quality. The acetaldehyde formation in all the YPF wines showed 

no significant difference and was below the sensory threshold (see reported literatures in 

5.1.1). 

Similar to the previous trial, although DAP was added to compensate nitrogen deficiencies in 

the YPF juices, high formations of H2S by most strains were observed (Figure 4-45). Rauhut 

(2009) suggested that some yeast strains are constantly high or constantly low H2S 

producers (see previous discussion in 5.3.2). On the other hand, its production significantly 

decreased when the VCombi was supplemented into the juice at 0.5 g L-1. Regarding CS2, 

the slow and sluggish fermentations of strains LittoLevure and VL3 seemed to affect their 

high productions under similar nutrient conditions. On the contrary, high production of MeSH 

seemed to be related to fast fermentation kinetics of strains EC1118 and Alchemy I under the 

same nutrient conditions (Figure 4-43 and 4-45). It is likely that the accelerated fermentation 

kinetic and yeast activity regulated the liberation of MeSH. In addition, a high formation of 

H2S by both strains in the same nutrient condition might lead to a high production of MeSH 

as well as a high production of MeSAc by the Alchemy I strain. It has been reported that a 

high H2S formation in the early phase of fermentation leads to high amounts of MeSAc 

(Matsui & Amaha, 1981; Rauhut, 1996). Although concentrations of H2S, CS2 and MeSAc 

detected in the YPF wines were below the aroma threshold (Table 2-5), levels of MeSH 

produced by strains EC1118 and Alchemy I under certain nutrient conditions may give a 

reductive off-flavour (odour threshold 0.02-0.3 g L-1) in YPF wines. 

 

The result in Figure 4-46 indicated that hexanol amounts in YPF wines were similar among 

treatments. As previously discussed in 5.3.2, the addition of DAP at high level resulted in the 

highest production of 2-phenyl ethanol, 2-methyl and 3-methyl butanol by strain LittoLevure, 

as well as 2-methyl propanol by strain VL3. As previously suggested in 5.3.2, addition of 

DAP increased the capacity of some yeast strains to transform the synthesized -keto acids, 

avoiding their accumulation, but reduced them to higher alcohols (Beltran et al., 2005; 

Hernández-Orte et al., 2005, 2006 a). In contrast, the addition of VCombi diminished keto 
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acids and reduced concentrations of higher alcohols, except for 2-phenyl ethanol, for all 

yeast strains. The higher alcohol production by wine yeasts appears to be the result of either 

the anabolic formation of amino acids de novo from a sugar substrate or the catabolic 

conversion of the branched-chain amino acids via corresponding keto acids from the Ehrlich 

pathway (Äyräpää, 1971; Rapp & Versini, 1991, 1996; Marks et al., 2003; Bell & Henschke, 

2005; Ribéreau-Gayon et al., 2006 a). The high formation of 2-phenyl ethanol by strain 

LittoLevure with less response to the nutrient supplement might reflect a less efficient usage 

of nitrogen as previously discussed in 5.2.2 and 5.3.2. The levels of higher alcohols in YPF 

wines were below 300 mg L-1, which are usually considered desirable (see reported 

literatures in 5.1.1). 

Even though the YPF wines produced by strains VL3 and X5 in most nutrient supplements 

showed a tendency to develop high amounts of acetic acid ethyl ester, their concentrations 

were below the quantification limit as displayed in relative peak area (Figure 4-47). Strain 

LittoLevure, with the addition of either DAP or VCombi at high level, produced prominent 

acetic acid esters. The addition of high level of VCombi resulted in the greatest formation of 

acetic acid 3-methylbutyl ester by strains VL3 and acetic acid 2-methylbutyl ester for all yeast 

strains. As previously discussed in 5.2.2 and 5.3.2, a high nutrient level promoted a great 

formation of acetic acid esters. It is likely that VCombi, which enhanced the metabolic activity 

of the yeast, also regulated the metabolic pathways of acetic ester production. In addition, 

the high formation of 2-phenyl ethanol by strain LittoLevure in YPF wines yielded a great 

amount of acetic acid 2-phenyl ethyl ester above the aroma threshold in wine (see previous 

literatures in 5.1.1). These YPF wines might also impart an intensive banana aroma as the 

concentrations of acetic acid 3-methylbutyl ester were quite above the threshold.   

 

As demonstrated in Table 4-26, strain X5 produced constantly high amounts of propionic 

acid ethyl ester with less response to the nutrient supplementation. It might be due to an 

efficient behaviour of each strain in relation to the distinctive capacity of nitrogen usage 

(Carrau et al., 2008). High formations of lactic acid ethyl ester by strains VL3 and X5 in the 

high DAP level, isobutanoic acid ethyl ester by strain VL3 in the DAP treatment and butanoic 

acid ethyl ester by strains EC1118 and X5 in a high level of VCombi seemed to be related to 

their fast fermentation kinetics. As previously discussed in 5.3.2, the addition of ammonium 

into the YPF juice, particularly at high level, promoted high formations of ethyl esters. Lactic 

acid ethyl ester is known to be formed from lactic acid and ethanol (Mason & Dufour, 2000; 

Sumby et al., 2009), while lactic acid can be derived from pyruvate, directly reduced by yeast 

lacticodehydrogenases (Ribéreau-Gayon et al., 2006 a). Thus, the addition of VCombi, which 

reduced the formation of pyruvate (Figure 4-44), might be involved in the significant 

decrease of lactic acid ethyl ester production in YPF wines. High concentrations of these 
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ethyl esters detected in certain YPF wines may elicit pleasant fruity and floral aromas (see 

reported literatures in 5.1.1). Likewise, the addition of VCombi at high level, which enhanced 

fast fermentation kinetics and metabolic activities of strains EC1118 and X5, resulted in a 

high production of MCFAs and ethyl esters (Table 4-27). In addition, high levels of MCFAs 

produced by the two strains seemed to be responsible for the greater production of related 

ethyl esters, which is similar to the previous discussion in 5.3.2. Nevertheless, concentrations 

of only ethyl ester of hexanoic acid and octanoic acid were beyond the odour threshold.  

 

Even though the yeast strains with nutritive supplementation had an influence on some 

volatile compounds, they released similar amounts of linalool and -terpineol in the YPF 

wines with no response to the nutrient supplement (Figure 4-48). Their concentrations in the 

YPF wines were quite below the aroma threshold (Table 2-4). A limited effect of endogenous 

-glycosidases on the development of the juice aroma due to its activity is optimum at pH 5 

(Großmann et al., 1990; Swiegers et al., 2005 a) and the clarification of YPF juice might 

inhibit its activity. 

 

5.3.4 Effect of three commercial Saccharomyces yeast strains and four different 

nutrient sources at two different concentrations on growth kinetics, fermentative 

characteristics, metabolic compounds and aroma of yellow passion fruit wines 

 

As previously discussed in 5.3.3, the YPF juice used for the fermentation was diluted by the 

addition of 10-fold water because its natural puree has high acidity (Table 4-28). The YPF 

juice then had a low -amino nitrogen, total amino acid and sugar content (Table 4-28 and 

A-3), and beet sugar was added into the juice resulting in 170.0 + 2.8 g L-1 inverted sugar. 

The yeast nutrient was supplemented according to the experimental plan (Table 3-12) to 

compensate nutrient deficiencies in the YPF juice. The results also indicated that 

concentrations of volatile compounds in prepared YPF juice were detected in small amounts 

below the aroma threshold (see reported literatures in 5.1.1).  

Strain EC1118 had shorter fermentation duration with less response to the nutrient addition 

than strains X5 and VL3 (Figure 4-49). Strain VL3 with the addition of 0.4 g L-1 OptiWhite 

resulted in a slow and stuck fermentation with residual sugar higher than 10 g L-1 (Table 4-

29). It is likely that strains VL3 and X5 were more sensitive to the nutrient source and the 

concentration than strain EC1118, and had a higher nitrogen demand. Nevertheless, the 

VCombi and VUltra at high level seemed to be the most effective to enhance fermentation 

kinetics for all yeast strains in the YPF juice fermentations, while OptiWhite was the least 

effective, particularly at low level. Similar to previous trials, the nutrient mixtures containing 

thiamine and growth factors gave better fermentation kinetics than the single nutrient source 
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(see reported literatures in 5.2.2 and 5.3.2). On the other hand, some yeast strains resulted 

in sluggish or stuck fermentations with the addition of Fermaid E. It might be due to a specific 

nitrogen demand of each yeast strain, nitrogen deficiency, thiamine depletion and an 

excessive clarification of the YPF juice as previously discussed in 5.3.3. Even though both 

yeast strain and nutrient supplement affected fermentation kinetics and residual sugar 

content in the YPF wines, they had no significant influence on the glycerol production (Table 

4-29).  

There were some differences among the treatments in terms of organic acid concentrations 

in the YPF wines, but they had no impact on the quality (Table 4-30). Nevertheless, 

concentrations of these acids in YPF wines were normally within the reported wine ranges 

(see previous literatures in 5.1.1). It was exceptional that high citric acid amounts in the YPF 

wines were originally from the YPF juice itself as previously discussed in the YPF trials. 

 

Similar to previous trials, the addition of OptiWhite at both levels, resulted in excessive 

productions of -ketoglutarate and pyruvate, particularly by strain VL3 (Figure 4-50). Pozo-

Bayón et al. (2009 a, 2009 b) have suggested that the IDY product like OptiWhite can 

release amino acids, particularly glutamic acid that is the donor of nitrogen in several 

biosynthetic pathways of amino acids. An excess of -ketoglutarate can consequently be 

formed as a de-amination product (Albers et al., 1996; Rankine, 1968 b). On the other hand, 

the addition of other nutrient sources containing thiamine significantly reduced the formations 

of both keto acids as previously discussed in several trials. The excessive amounts of both 

keto acids in the YPF wines produced by strains VL3 and X5 with OptiWhite addition might 

affect the stability and quality (see previous literatures in 5.1.1).  Under this trial condition, all 

yeast strains produced similar amounts of acetaldehyde without any response to nutrient 

addition and had no influence on the quality of the YPF wines. 

The result indicated that the YPF juice supplemented with OptiWhite, which is rich in 

glutathione, resulted in high production of H2S (Figure 4-51). Tokuyama et al. (1973) 

suggested that when nitrogen is limited, H2S can be produced by the degradation of 

glutathione and the release of cysteine. In addition, the impact of vitamins or degradation of 

sulphur reserves like glutathione is involved in H2S formation (Eschenbruch, 1974; Henschke 

& Jiranek, 1993; Hallinan et al., 1999; Wang et al., 2003; Edwards & Bohlscheid, 2007). 

Nevertheless, production of H2S significantly diminished when another nutrient source 

containing DAP was added into the YPF juice. It is likely to have a relationship between high 

concentrations of carbon disulphide and sluggish fermentations of strains X5 and VL3 with 

the addition of low Fermaid E level, but the mechanism involved is unclear. Strain EC1118 

with a high level of VUltra and Fermaid E addition produced methanethiol in the YPF wines, 

which seemed to be related to the fast fermentation kinetics. The accelerated fermentation 
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activity of this strain might have regulated the liberation of MeSH. Although levels of H2S and 

CS2 were not high enough to cause a reductive sulphur off-flavour in the YPF wines, levels of 

MeSH in certain EC1118 samples were above its odour threshold (Table 2-5) and might 

impart a reductive odour of rotten eggs. 

 

As shown in Figure 4-52, the effect of the nutrient source at different concentrations on 

higher alcohol production was dependent upon the inoculated yeast strain, except for 

hexanol. Strain VL3 with high OptiWhite addition developed the prominent concentrations of 

2-methyl propanol and 3-methyl butanol. As previously discussed in 5.3.2, higher formations 

of -ketoglutarate by strain VL3 (Figure 4-50) seemed to be responsible for the greater 

amount of these alcohols in the low OptiWhite sample. Higher alcohols can be formed from 

intermediates in branched-chain amino acids via corresponding keto acids from the Ehrlich 

pathway (Bell & Henschke, 2005). On the other hand, the addition of Fermaid E at both 

levels promoted the greatest production of 2-phenyl ethanol by strain EC1118 in the YPF 

wines and 2-methyl butanol by strain VL3. The former compound was also most obvious in 

the high VCombi treatment of strain EC1118. Nevertheless, the effect of the nutrient source 

containing DAP on the high production of some higher alcohols is earlier discussed in 5.3.2 

and 5.3.3. Concentrations of hexanol were not affected from both yeast strain and nutrient 

supplement. Clarke & Bakker (2004) and Bell & Henschke (2005) have suggested that it is 

formed from a must-derived precursor, thus its formation depends largely on the formation of 

its precursor during must processing. It is not greatly influenced by the initial must nitrogen 

content and source. Interestingly, concentrations of 2-phenyl ethanol in the YPF wines, 

particularly in the EC1118 samples, were above the aroma threshold which elicits floral and 

rose odour.  

Although the acetic acid ethyl ester formation was different among the treatments, its 

concentration was below the limit of quantification and had no impact on the aroma of the 

YPF wines (Figure 4-53). Similar to the previous trial, there is probably a correlation between 

the high formation of acetic acid esters, butanoic acid ethyl ester, fatty acids and their ethyl 

esters by strain EC1118 with the high VCombi addition (Figure 4-53 and Table 4-31, 4-33, 

4-34) and its fast fermentation kinetics (Figure 4-49). Ethyl esters can be formed from the 

catabolic activity of alcohol acetyl transferases on ethanol and carboxylic acids (Mason & 

Dufour, 2000; Lilly et al., 2000, 2006). This nutrient condition might enhance the yeast 

metabolic activity as well as regulated the metabolic pathways of these ester formations. 

Moreover, the addition of a high VCombi level, which is DAP plus thiamine, might provide a 

higher proportion of DAP than another nutrient. When a large pool of DAP and ammonium 

was added, the amino acids were not used for cellular structures and growth, but rather 

induced the formation of secondary metabolites like esters (see earlier discussions and 

http://www3.interscience.wiley.com/cgi-bin/fulltext/118896295/main.html,ftx_abs#b20
http://www3.interscience.wiley.com/cgi-bin/fulltext/118896295/main.html,ftx_abs#b20
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literatures in 5.1.1 and 5.3.2). In addition, it seemed that the great concentration of MCFA 

biosynthesis was responsible for the formation of corresponding ethyl esters rather than 

esterification (Saerens et al., 2006, 2008). On the other hand, the high production of ethyl 

ester of isobutanoic acid, propionic acid and lactic acid seemed to be related to the sluggish 

or stuck fermentation of strain VL3 in the OptiWhite treatment followed by strain X5 (Figure 

4-49 and Table 4-31, 4-32). The OptiWhite is an IDY product, which has been reported to 

release a large pool of amino acids into the juice (Pozo-Bayón et al., 2009 b; Raynal et al., 

2009). Amino acids play a direct role as precursors of esters (Hernández-Orte et al., 2005, 

2006 b; Miller et al., 2007), thus high formations of ethyl ester in the OptiWhite sample might 

be observed. In addition, Bowyer et al. (2010) also reported that glutathione, which is rich in 

OptiWhite, can be used as a natural antioxidant for the preservation of wine aromas and 

concurrently delay the appearance of developed characters. Thus, it can be suggested that 

depending on the yeast strain utilized, the formation of acetic acid ester and ethyl esters 

showed different responses when nutrient/nitrogen was added to the medium as 

demonstrated in some studies (Torrea et al., 2003, 2005; Miller et al., 2007). Concentrations 

of acetic acid 3-methylbutyl ester and most ethyl esters in these YPF wines were greatly 

beyond their perception thresholds, which have a reminiscence of banana, floral and fruity 

aromas (see reported literatures in 5.1.1). 

 

Similar to previous YPF trials, the three yeast strains released similar amounts of -terpineol 

in all nutrient conditions of the YPF wines (Figure 4-54). It might be due to the fact that the 

activity of -glycosidase is limited at low pH (pH 5) and the extreme clarification of YPF juice 

might inhibit its activity as well (see previous literatures in 5.3.3). In addition, its levels were 

below the aroma threshold, thus they did not contribute to the varietal aroma (Table 2-4). 

 

5.4 Volatile thiols involved in varietal aroma of yellow passion fruit wines 

 

The concentrations of volatile thiols that contribute to the varietal aroma of grape wines may 

depend considerably on the variety, as well as soil, climate and vineyard management 

techniques (Rapp, 1998; Tominaga et al., 1998 b; Ribéreau-Gayon et al., 2006 b). Some 

research works indicated that commercial yeast strains differ in the ability to release various 

volatile thiols (Murat et al., 2001 a; Howell et al., 2004; Curtin et al., 2009; Swiegers et al., 

2009). In addition, the particular yeast‘s ability to release one thiol does not appear to be 

linked with its ability to release a second, different volatile thiol. This study also clearly 

outlines agreeing with the literatures above, that the choice of commercial Saccharomyces 

yeasts had a significant influence, variable according to the specific commercial yeast strain, 

on the concentration of the typical thiol aromas in the YPF wines. 
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The volatile thiol analysis is a high-sophisticated analytical method and very time consuming. 

Therefore, the YPF wines used for the investigation of volatile thiols were chosen from two of 

four YPF wine trials (4.3.3 and 4.3.4). The selection was based on wines, which showed 

desirable fermentation characteristics and high levels of fermentation-derived compounds 

that impart pleasant fruity and floral aromas, but very low levels of undesirable compounds. 

The results confirmed that high amounts of 3SH and 3SHA can be found as the naturally 

occurring volatile thiols in YPF juice (Engel & Tressl, 1983, 1991; Weber et al., 1994, 1995; 

Tominaga & Dubourdieu, 2000). Although the prepared YPF juice in this study was diluted by 

water addition, these volatile thiols were detected (Figure 4-55). In grapes, 3SH is mainly 

present in conjugate form, while in YPF juice this volatile thiol is present in both free and 

conjugate form (Tominaga & Dubourdieu, 2000). They also demonstrated that the precursor 

of 3SH, S-(3-hexan-1-ol)-L-cysteine, is present in YPF juice as well. In passion fruit juice, the 

conjugates are probably converted into free thiols either by acid hydrolysis or by an 

endogenous enzyme, such as β-lyase.  

The results clearly showed that commercial Saccharomyces yeasts released approximately 

7.1-fold to 11.0-fold of 3SH in YPF wines in comparison to detected 3SH in the YPF juice, 

however this depended on the yeast strain. According to Tominaga & Dubourdieu (2000), 

3SH can be generated by the action of C-S β-lyase from its S-cysteine conjugate in YPF 

juice. As shown in Figure 4-55, the high VCombi addition (0.5 g L-1) induced strain EC1118 

to be the most effective producer of 3SH and 3SHA in the YPF wines. The LittoLevure strain 

seemed to follow a similar pattern of 3SH liberation, but less 3SHA production. Strain VL3 

appeared to be the least efficient in releasing the 3SH aroma. This result confirmed previous 

studies in grape wines (Murat et al., 2001 a; Howell et al., 2005; King et al., 2008; Swiegers 

et al., 2009) that the release and the modulation mechanisms of volatile thiol compounds in 

YPF wines were also yeast strain dependent.  

It has been shown that during fermentation 3SHA is generally formed when acetic acid 

esterifies the 3SH that has been released. Swiegers et al. (2005 b, 2007) found out that 

3SHA is formed from 3SH by the action of the yeast ester-forming alcohol acetyltransferase, 

encoded by the ATF1 gene. Lilly et al. (2006) suggested that the overexpression of ATF1 in 

a VIN13 yeast strain resulted in increased 3SHA concentrations. The present study also 

revealed that a higher concentration of 3SH induced an increased production of 3SHA in 

YPF wines for most yeast strains (6.5 to 9.0 % released 3SHA), except for strain LittoLevure 

(5.0 %). Some specific gene, which encodes an ester-degrading enzyme, might be involved 

(Swiegers et al., 2005 b, 2007).  

 

 



 209 

Interestingly, concentrations of 3SH in YPF wines were between 59-fold and 93-fold (in the 

EC1118 treatment) of the perception thresholds (60 ng L-1), which contribute to grapefruit 

and passion fruit aromas (Tominaga et al., 1998 b; Bell & Henschke, 2005; Francis & Newton, 

2005; Dubourdieu et al., 2006; Ribéreau-Gayon et al., 2006 b). Concentrations of 3SHA 

(boxwood, grape fruit zest, passion fruit aromas) in YPF wines were also above the aroma 

threshold (4 ng L-1) and differed from 57-fold to 125-fold (in the EC1118 treatment).  

To examine the effect of the nutrient source (DAP and VCombi) at different levels (0.25 and 

0.5 g L-1) on the production of volatile thiols, the two yeast strains of EC1118 and X5 were 

used. As demonstrated in Figure 4-56, the result clearly indicated that the low level of DAP 

addition modulated higher 3SH and 3SHA productions by strain EC1118 than the high level. 

This result confirmed the investigation of Subileau et al. (2008) that a complementation with 

DAP induces a decrease of 3SH production. They also concluded that in synthetic medium, 

Cys-3SH enters the cell through at least one identified transporter, GAP1p, whose activity is 

limiting the release of volatile thiols. The uptake of the precursor through GAP1p is not 

confirmed, but the effect of the addition of DAP, eventually prolonging nitrogen catabolite 

repression, is shown to decrease thiol production. On the other hand, the addition of VCombi 

(DAP plus thiamine) at high level tended to enhance higher expression of these thiols in 

strain EC1118. In addition, the nutrient source and concentration had no significant influence 

on the 3SH release in strain X5.  

As discussed above, 3SHA is formed from 3SH by the action of the yeast activity (Swiegers 

et al., 2005 b, 2007), thus higher concentration of 3SH seemed to determine greater 

production of 3SHA in the YPF wines. For instance, the EC1118 strain with the addition of 

low DAP level and high VCombi level resulted in the highest transformation of 3SHA from 

3SH at an average of 5.7 % and 9.0 % respectively. In addition, concentrations of both 3SH 

and 3SHA were quite beyond the aroma threshold, which contributes to the varietal aroma 

(see literatures above and Table 2-5).  

 

As shown in Figure 4-57, commercial Saccharomyces yeast strains significantly had the 

greater impact on the liberation of 3SH in YPF wines than the nutrient source supplemented 

in the YPF juices. The X5 strain liberated higher concentrations of 3SH in the YPF wine in 

either the VCombi or VUltra supplementation (5527.5 + 639.5 and 5206.1 + 397.1 ng L-1, 

respectively) than strain EC1118. The results showed that neither the yeast strain nor the 

nutrient source affected the 3SHA formation ranging from 263.8 + 73.5 to 333.9 + 47.5 ng L-1, 

although the 3SHA amounts tended a little bit to be higher in the VCombi treatment for strain 

EC1118. In contrast to the results described above, the addition of VCombi stimulated the 

EC1118 strain to release higher 3SH amounts than strain X5. It is important to take into 

account that these results were obtained from the lower nutrient level addition (0.4 g L-1 
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VCombi) hence it might influence the ability of the yeast strain in the liberation of volatile 

thiols in final YPF wines. 

Subileau et al. (2008) recently investigated that a complementation with DAP in grape must 

induces a decrease of 3SH production. On the other hand, the addition of DAP, in form of 

VCombi and VUltra, seemed to have no impact on the release of 3SH during YPF juice 

fermentation. It has been suggested by some studies that the particular yeast‘s ability to 

release one thiol does not appear to be linked with its ability to release a second, different 

thiol (Murat et al., 2001 a; Swiegers et al., 2005 b, 2009). In addition, separate yeast 

enzymes may be involved in the formation of different volatile thiols, allowing the levels of the 

aroma compounds to be altered independently (Murat et al., 2001 a; Dubourdieu et al., 2006). 

The genetic and physiological characteristics of each commercial yeast strain might be 

involved (Murat et al., 2001 a; Howell et al., 2005; Curtin et al., 2009; Swiegers et al., 2009).  

Concentrations of 3SH and 3SHA in these YPF wines were far beyond the perception 

thresholds as shown in publications related to grape wines (see earlier literatures above and 

Table 2-5) at about 69-fold to 92-fold and 66-fold to 83-fold, respectively.  

 

The present result clearly confirmed that the presence of larger quantities of varietal volatile 

thiols in YPF wines than in YPF juice is due to the metabolic action of the commercial 

Saccharomyces yeasts. Tominaga & Dubourdieu (2000) also suggested that the conjugates 

in YPF juice are probably converted into free thiols either by acid hydrolysis or by an 

endogenous enzyme like β-lyase. Furthermore, the qualitative and quantitative composition 

of thiol-precursors can affect the concentration of thiols in final wines. 

The structures of 3SH, 3SHA and their cysteinylated precursors in YPF juices have been 

identified (Engel & Tressl, 1983, 1991; Weber et al., 1994, 1995; Tominaga & Dubourdieu, 

2000). A little scientific research carried out the impact of yeast rehydration nutrients such as 

DYNASTART on the increased release of volatile thiols by yeasts in Sauvignon blanc wine 

(Bowyer et al., 2008; Swiegers et al., 2008; van der Westhuizen et al., 2008). However, the 

impact of yeast strains and nitrogen supplementation on the release of volatile varietal thiols 

in YPF wine has not yet been elucidated. Therefore, this study is the first to report the effect 

of commercial Saccharomyces yeast strains and nutrient supplementations on volatile thiol 

production in YPF wines.  

 

 

 

 

 

 



 211 

6. CONCLUSION AND PERSPECTIVES  
 

Yeast fermentation of sugars not only produces ethanol and carbon dioxide but also a range 

of minor but sensorially important volatile metabolites which give the wine the vinous 

character and inhibit the development of off-flavours. These volatile metabolites, which 

comprise esters, higher alcohols, carbonyls, volatile fatty acids and sulphur compounds, are 

derived from sugar and amino acid metabolism. Hence, the assessment of nitrogen 

requirements for wine yeasts should be controlled because it can not only have an impact on 

yeast growth and fermentation kinetics but also on the formation of volatile and non-volatile 

compounds that are important for the organoleptic qualities of the resulting wine. The 

limitation of nitrogen and its sources/composition can also influence the formation of reduced 

sulphur compounds like H2S. 

One of the main objectives in the selection of industrial yeasts for the beverage industry must 

be the understanding of the relationship between the nutrient supplements and the 

production of desirable non-volatile and volatile compounds by different commercial yeast 

strains. Therefore, the main objective of this study is focused on the improvement of 

desirable metabolites, the varietal and important aromas in grape wines from two varieties of 

Sauvignon blanc and Scheurebe as well as in yellow passion fruit wine by the optimal choice 

of Saccharomyces yeast strains and nutrient supplements. In addition, the fermentation trials 

of passion fruit wines were carried out accordingly on the basis of the experimental results 

obtained from the research on grape wines. 

The optimal choice of the required yeast strains and nutrient supplements for the 

fermentation of grape wines and YPF wines were studied in detail. The grape juices and YPF 

juices were fermented at 20 0C under controlled conditions. The growth and fermentative 

behaviours, volatile compound productions and other enological characteristics, which have 

an impact on grape wine and YPF wine properties, were summarized as below. 

 

The fermentation trials of Scheurebe wine: 

 

It was observed that the supplemented nutrient sources (control/without nutrient, OptiWhite, 

Superstart, DAP and Fermaid E) in the fermentations of fresh Scheurebe juice strongly 

modulated the wine composition in a strain-dependent manner (EC1118 and X5). For some 

compounds, the influence of the nitrogen source is relatively similar for the two strains, 

whereas for the other compounds, considerable differences were observed. Nevertheless, 

Fermaid E blanc followed by DAP and Superstart seemed to be the effective nutrients to 

accelerate fermentation kinetics and to promote high formations of important wine aromas, 

but to diminish the formation of SO2-binding compounds for the two strains.  
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The impact of thirteen commercial strains of Saccharomyces yeasts (EC1118, Sauvignon, 

VL3, X5, X16, VIN13, Alchemy I, Alchemy II, 4F9, LVCB, LittoLevure, AWRI R2 and QA23) 

without nutrient addition was evaluated on fermentation characteristics and on the production 

of metabolic compounds of obtained Scheurebe wines. The results clearly indicate some 

differences among the yeast strains used. The VIN13, AWRI R2, EC1118, QA23, VL3 and 

X16 strains produced wines with higher volatile contents; mainly 2-phenyl ethanol, acetic 

acid 2-phenyl ethyl ester, linalool and wine esters and less negative and undesirable 

compounds. It was realized that strain QA23 has to be well observed as it had the slowest 

fermentation, although it completely finished fermentation with low residual sugar.  

 

In conclusion, on the basis of the results obtained with regard to fermentation characteristics 

as well as important and desirable aromas, the optimal choice of commercial 

Saccharomyces yeast strains for the fermentation of Scheurebe wine are strains VIN13, 

AWRI R2, EC1118, QA23, VL3, X5 and X16. The most effective nutrients are Fermaid E 

blanc, DAP and Superstart at 0.3 g L-1. 

 

The fermentation trials of Sauvignon blanc wine:  

 

The effect of the nutrient source (Fermaid E and OptiWhite at 0.3 g L-1) on the fermentation 

kinetics, non-volatile and volatile compounds of the wines was dependent upon the yeast 

strain used (EC1118, Sauvignon, VL3, X5, VIN7, VIN13, 4F9, AWRI R2 and LVCB). The 

results indicated that Fermaid E addition increased the formation of ethyl esters and acetic 

acid esters, but significantly decreased the formation of keto acids for most yeast strains. It is 

worth noting that the nine yeast strains showed similar formations of acetaldehyde, higher 

alcohols, most ethyl esters and -terpineol with less response to the nutrient source.  

Nonetheless, strains EC1118, Sauvignon, VL3, X5 and VIN7 were the most optimal yeast 

strains, thus their behaviour was intensively investigated in further trials.  

 

The fermentation trial with five yeast strains (EC1118, X5, VIN7, Alchemy I and LittoLevure) 

showed that some significant differences with regard to fermentation kinetics, non-volatile 

and volatile metabolic compounds in the wines were depended on the nutrient sources 

(Superstart, Fermaid O, Fermaid E and VUltra). The Fermaid E and VUltra seemed to be the 

most effective nutrients to enhance the fermentation behaviours and the formation of 

desirable metabolic compounds in strains EC1118, X5 and Alchemy I with the lower level of 

volatile acidity and keto acids.  
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Finally, the outcomes clearly indicated the direct influence of commercial yeast strains and 

nutrient supplements on the different fermentation parameters and the formation of important 

wine aromas.  Under laboratory conditions, yeast strains X5, EC1118, Alchemy I and II and 

VL3 and/or the nutrient sources of Fermaid E blanc, DAP and Superstart at high levels 

seemed to be the most effective for the fermentation of Sauvignon blanc wine.  

 

The fermentation trials of yellow passion fruit (YPF) wine:  

 

The following trials investigated the improvement of fermentation properties, important non-

volatile and volatile compounds as well as varietal aromas in the YPF wines by the optimal 

choice of commercial yeast strains and nutrients. This choice was leaned on the results 

obtained from the trials carried out with Scheurebe and Sauvignon blanc wines.  

The optimal fermentation parameters and the formation of metabolic compounds in the YPF 

wines were evaluated for five S. cerevisiae var. bayanus strains (EC1118, AWRI R2, 

LittoLevure, QA23 and Freddo), seven S. cerevisiae strains (Sauvignon, VL3, X5, X16, 4F9, 

VIN13 and LVCB) and two Saccharomyces spp. strains (Alchemy I and II) with the same 

nutrient addition (0.5 g L-1 DAP). The results clearly showed that strains QA23 and 

LittoLevure were the most optimal yeast strains for the production of YPF wines displaying 

more desirable aroma compounds, particularly 2-phenyl ethanol, acetic acid 2-phenyl ethyl 

ester, most of wine esters and linalool but a low level of keto acids and reductive sulphur 

compounds, followed by strains EC1118, X5, VL3, Alchemy I and II. These optimal yeast 

strains were also used for an intensive investigation and a better understanding in further 

trials of YPF wines. 

 

At the mean time, the influence of three yeast strains (EC1118, Sauvignon and X5) and five 

nutrient sources (DAP, VCombi, VUltra, Fermaid E and OptiWhite at 0.4 g L-1) on the 

fermentation behaviour and the formation of non-volatile and volatile compounds as well as 

monoterpenes was also examined. The results demonstrated that supplementation of YPF 

juices with VCombi, VUltra or Fermaid E appeared to be the most effective method to 

stimulate the production of great amounts of important and desirable volatile components, 

mainly wine esters, 2-phenyl ethanol and its ester, but low levels of keto acids for the three 

yeast strains, nevertheless this was slightly yeast strain-dependent. Interestingly, strain 

Sauvignon also released great amounts of linalool and -terpineol in the YPF wines. 
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The effects of yeast strains (EC1118, VL3, X5, Alchemy I and LittoLevure), nutrient sources 

(DAP and VCombi) and nutrient levels (0.25 and 0.5 g L-1) were examined to improve the 

fermentation characteristics, wine aroma compounds  as well as varietal volatile thiols in the 

YPF wines. The results clearly demonstrated that supplementation of YPF juice with VCombi 

(DAP plus thiamine) at a high level appeared to be the most effective way of producing YPF 

wines with accelerated fermentation kinetics, more desirable aromas and a low level of 

reductive sulphur compounds and keto acids for strains EC1118, VL3, X5 and LittoLevure. 

Interestingly, strain EC1118 was the greatest producer of varietal volatile thiols, 3SH and 

3SHA, in 0.25 g L-1 DAP and 0.5 g L-1 VCombi treatments. Strain LittoLevure with 0.5 g L-1 

VCombi  addition also produced high amounts of 3SHA. 

 

The final YPF wine fermentations with three yeast strains (EC1118, VL3 and X5) showed 

some significant differences with regard to the fermentation parameters, non-volatile and 

volatile compounds and volatile thiols depending on different nutrient supplements (DAP, 

VCombi, VUltra, Fermaid E and OptiWhite) at two levels (0.2 and 0.4 g L-1). The results 

revealed that the addition of VCombi and VUltra at 0.4 g L-1 resulted in enhanced 

fermentation behaviours and a high level of desirable aroma compounds, especially 2-phenyl 

ethanol, acetic acid 2-phenyl ethyl ester, but a lower level of higher alcohols, keto acids for 

the three yeast strains. In addition, the X5 strain with the addition of high VCombi or VUltra 

produced the YPF wine having the greatest concentration of 3SH, while concentrations of 

3SHA were similar among the yeast strains and nutrients used.  

 

Finally, the YPF results obtained from YPF fermentations revealed that when 0.5 g L-1 DAP 

was added as sole source of nitrogen in YPF juice, strains QA23, LittoLevure, EC1118, X5, 

VL3 and Alchemy I and II seemed to be the optimal choice for the YPF wine fermentation. 

However, the addition of VCombi at high levels (0.5 g L-1) was the most efficient nutrient 

condition to obtain the best fermentation characteristics and to improve wine aroma and 

varietal volatile thiols in the YPF wines for strains EC1118, LittoLevure, X5, Alchemy I and 

VL3, respectively. The addition of either 0.25 g L-1 DAP or 0.4-0.5 g L-1 VCombi and VUltra 

modulated varietal volatile thiol productions in the YPF wines by strains EC1118 and strain 

X5 as well. Nevertheless, it has to be taken into account that DAP addition resulted in 

excessive formation of keto acids by strain X5. Interestingly, concentrations of volatile thiols 

in YPF wines were quite above the aroma threshold contributing to typical and varietal 

aromas of grapefruit zest and passion fruit. 
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In conclusion, this present study clearly indicated that the use of different commercial 

Saccharomyces strains for grape wine and YPF wine fermentations resulted in wines and 

YPF wines with differing fermentative characteristics and the production of non-volatile and 

volatile compounds that influenced the quality. The nutrients supplemented to the 

fermentations strongly modulated the wine composition in a strain-dependent manner as well. 

This study is particularly relevant considering that in grape wine and tropical fruit wine 

productions, it is simultaneously desirable to achieve low concentrations of SO2-binding 

compounds, high levels of substances that impart pleasant fruity and floral aromas as well as 

varietal aromas. On the other hand, low levels of compounds that can cause off-flavours and 

low levels of metabolites (e.g. MCFAs) that could compromise the yeast fermentative activity 

have to be achieved. 

 

Therefore, the present work is demonstrating that the choice of the yeast strain as well as the 

nutrient support can have a high impact not only on the fermentation activity, but also on the 

composition of volatile and non-volatile compounds. The results may help the winemakers to 

optimize the important and potential fermentation parameters by an adequate choice of yeast 

strains and nutrient supplements to improve wine quality. 

In addition, this study also has important implications for the grape and tropical fruit 

winemaking industry where a better understanding of the nutritional requirements of 

Saccharomyces is necessary to reduce fermentation problems and to improve the final 

product quality. It is worthwhile pointing out that this work is an interesting new observation 

for the YPF wine fermentation, although the fermentation trials were only done in laboratory 

scale. Thus, some different fermentation parameters as well as volatile compounds might be 

achieved under industrial conditions.  

 

Nevertheless, a better understanding of the effects of nutrient supplementation on yeast 

metabolic products as well as sensory properties is still required in further work in both the 

laboratory and pilot scale. 
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8. ADDENDUM 

 

Additional results which are described in this chapter are related to Scheurebe and 

Sauvignon blanc grape juices and YPF juices which were used in different research trials of 

this study.  

In Table A-1, A-2 and A-3 the amino acid concentrations which were detected in the diverse 

juices are listed.  

 
Table A-1 Concentration of amino acids in Scheurebe grape juice used in trials described in 

chapter 3.7.1 to 3.7.2  

Amino acid (mg L-1) Juice 2007 Juice 2008 

Aspartic acid 70.2 62.3 

Threonine 65.7 77.6 

Serine 38.7 51.5 

Asparagine 8.2 9.2 

Glutamic acid 79.2 98.2 

Glutamine 174.8 173.4 

α-Aminoadipic acid n.d. n.d. 

Glycine 2.0 2.8 

Alanine 96.2 92.9 

Citrulline 6.0 10.5 

α-Aminobutyric acid n.d. n.d. 

Valine 16.7 29.4 

Cystine n.d. n.d. 

Methionine 2.7 8.0 

Isoleucine 12.7 27.1 

Leucine 13.4 33.3 

Tyrosine 5.6 8.9 

Phenylalanine 19.4 41.0 

β-Alanine 2.0 2.5 

β -Aminobutyric acid n.d. n.d. 

-Aminobutyric acid 58.8 60.8 

Histidine 11.2 17.6 

Tryptophan 4.0 8.7 

Ornithine 1.1 1.4 

Lysine 3.1 5.7 

Ammonia 54.9 66.4 

Arginine 299.7 425.3 

Proline 256.2 169.4 

Total amino acids 1302.5 1484.0 

Total amino acids (without proline) 1046.3 1314.6 

n.d.: not detectable
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Table A-2 Concentration of amino acids in fresh Sauvignon blanc grape juice used in trials 

described in chapter 3.8.1 to 3.8.2 

Amino acid (mg L-1) Sauvignon blanc juice 

2008 

Sauvignon blanc juice 

2009 

Aspartic acid 70.5 64.0 

Threonine 81.0 90.7 

Serine 47.2 69.8 

Asparagine 3.5 4.8 

Glutamic acid 82.7 158.6 

Glutamine 99.0 128.7 

α-Aminoadipic acid n.d. n.d. 

Glycine 1.9 3.0 

Alanine 138.8 209.7 

Citrulline 11.9 15.1 

α-Aminobutyric acid 0.4 0.4 

Valine 10.7 20.1 

Cystine n.d. n.d. 

Methionine 1.4 1.5 

Isoleucine 7.8 10.3 

Leucine 10.2 15.4 

Tyrosine 3.5 6.4 

Phenylalanine 18.4 18.9 

β-Alanine 1.3 3.5 

-Aminobutyric acid 43.6 90.1 

Histidine 10.8 23.3 

Tryptophan 1.8 2.2 

Ornithine 1.8 2.8 

Lysine 2.2 1.8 

Ammonia 69.9 70.2 

Arginine 544.0 771.8 

Proline 115.4 430.8 

Total amino acids 1380.0 2213.7 

Total amino acids (without proline) 

 

1264.6 

 

1782.9 

 

n.d.: not detectable
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Table A-3 Concentration of amino acids in prepared YPF juice used in YPF trials described 

in chapter 3.9.1 to 3.9.4  

 

Amino acids (mg L-1) 
YPF puree 

Lists of prepared YPF juices  

1st trial a 2nd trial b 3rd trial c 4th trial d 

Aspartic acid 569.3 55.5 47.6 32.0 43.6 

Threonine 13.8 1.1 1.0 0.7 1.0 

Serine 201.3 19.1 16.9 11.1 15.9 

Asparagine 6.1 n.d. n.d. n.d. n.d. 
Glutamic acid 709.8 64.1 54.7 37.7 49.3 

Glutamine 82.7 7.2 7.0 4.2 5.6 

α-Aminoadipic acid n.d. n.d. n.d. n.d. n.d. 
Glycine 7.1 0.7 0.7 0.7 0.8 

Alanine 151.7 14.5 12.6 8.7 11.5 

Citrulline n.d. n.d. n.d. n.d. n.d. 
α-Aminobutyric acid n.d. n.d. n.d. n.d. n.d. 
Valine 32.7 2.7 2.4 1.6 2.2 

Cystine n.d. n.d. n.d. n.d. n.d. 
Methionine 4.0 n.d. n.d. n.d. n.d. 
Isoleucine 17.0 1.6 1.4 1.3 1.3 

Leucine 30.7 2.9 2.5 1.9 2.3 

Tyrosine 16.4 1.3 1.6 1.6 1.3 

Phenylalanine 46.5 4.1 3.6 2.1 3.5 

β-Alanine 8.0 0.6 0.6 0.3 0.7 

-Aminobutyric acid 172.1 16.9 14.9 10.1 13.3 

Histidine 23.5 2.2 1.9 1.3 1.9 

Tryptophan n.d. n.d. n.d. n.d. n.d. 
Ornithine 0.4 n.d. n.d. n.d. n.d. 
Lysine 29.5 2.3 2.0 1.3 1.8 

Ammonia 56.9 6.2 5.4 3.9 5.1 

Arginine 47.0 4.1 3.9 2.4 3.0 

Proline 153.1 12.5 11.2 8.4 11.1 

Total amino acids 2644.1 219.6 191.5 131.6 175.6 

Total amino acids  

(without proline) 
2491.0 
 

207.1 

 

180.3 

 

123.1 

 

164.4 

 

n.d.: not detectable 

a
  amino acid composition in prepared YPF juice for the 1

st
 YPF trial described in chapter 3.9.1 

b
  amino acid composition in prepared YPF juice for the 2

nd
 YPF trial described in chapter 3.9.2 

c
  amino acid composition in prepared YPF juice for the 3

rd
 YPF trial described in chapter 3.9.3 

d
  amino acid composition in prepared YPF juice for the 4

th
 YPF trial described in chapter 3.9.4 
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              a) 3-Sulphanylhexanol (m/z 134)      b) Acetic acid 3-sulphanylhexyl ester (m/z 116)  
        1000 ng L

-1*
      100 ng L

-1* 

 

                                    
   
        c) 4-Methyl-4-sulphanylpentan-2-one            d) 4-Methoxy-2-methyl-2-sulphanylbutane  

  (m/z 132) 40 ng L
-1*

                      (m/z 100) 200 ng L
-1*

 (Internal standard)  

 
Figure A-1 Retention time windows of selected ion chromatograms showing the quantifier 

ion peaks of the four thiols obtained in the analysis of the dearomatized wine 

sample spiked with different levels of the analytes 

 *concentration added to dearomatized wine 

 

 

4,2,2MSB 

3SH 

minutes 

3SHA 

4MSP 

minutes 

minutes minutes 
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Figure A-2 Experimental outline for the fermentation trials of Scheurebe and Sauvignon blanc grape juices and YPF juices 

Scheurebe 

Grape juice 

Fresh juice with two commercial yeast 
strains, four nutrient sources and 
without nutrient (Chapter 3.7.1) 
 

Fresh juice with nine commercial yeast 
strains and two nutrient sources 
(Chapter 3.8.1) 
 

YPF juice with fourteen commercial 
yeast strains and DAP addition 
(Chapter 3.9.1) 
 

Fresh juice with thirteen commercial 
yeast strains (Chapter 3.7.2) 
 

Preliminary trials: Fresh juice with 
different origins, commercial yeast 
strains and/or nutrient supplements 
(data not shown) 

Fresh juice with five commercial yeast 
strains and four nutrient sources 
(Chapter 3.8.2) 
 

YPF juice with five commercial yeast 
strains and two nutrient sources at two 
different levels (Chapter 3.9.3) 
 

YPF juice with three commercial yeast 
strains and four nutrient sources at two 
different levels (Chapter 3.9.4) 
 

YPF juice with three commercial 
yeast strains and five nutrient 
sources (Chapter 3.9.2) 
 

Yellow passion 

fruit (YPF) juice 

Sauvignon blanc 

Preliminary trials: Pasteurized or fresh 
juice with different commercial yeast 
strains and/or nutrient supplements 
(data not shown) 
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