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The role of miR-154 in early lung 
development 

 

1 Introduction 
 

1.1  The Lung 
 

In all mammals and terrestrial vertebrates, the lung is responsible for the vital gas 

exchange between blood and air. The Human lung lies within the thoracic cavity and is 

divided into two by the mediastinum. The left lung is comprised of two lobes, and the 

right lung has three lobes. From the outside, the lung is surrounded by the visceral 

pleura, which closely fits the lung. The visceral pleura lies within the parietal pleura, 

which is attached to the thoracic cavity. The thin fluid filled space between the two 

pleurae is called the pleural cavity. The diaphragm is a skeletal muscle, which lies 

caudally on the lung and separates the thoracic and the abdominal cavity. It performs 

inhalation and exhalation by contraction and relaxation. The human lung has a dual 

blood supply. The vasa privata are arteries that branch off the aorta and supply lung 

tissue with oxygen. The vasa publica serve the whole organism. They transport systemic 

oxygen-poor blood to the lung, where it is oxygenated and conduct the oxygen rich 

blood back to the heart. In that way, the lung provides essential oxygen to the body. 

Functionally, the lung can be subdivided into the conducting and respiratory zones. 

Nose, pharynx, larynx, trachea, bronchi, bronchioles and terminal bronchioles are 

considered as conducting airways. The trachea constitutes the connection between 

pharynx and lung. It consists of cartilaginous rings, which are joined by fibrous 

connective tissue and smooth muscle. The inside of the trachea is lined with pseudo 

stratified ciliated columnar epithelium and mucine-secreting goblet cells. The mucus 

helps to intercept foreign particles, which then are transported upwards to the larynx and 

pharynx to be coughed up or swallowed. The cricoid cartilage serves to connect the 
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trachea to the larynx. Dorsally the trachea divides into the right and left primary 

bronchus. The average tracheal diameter lies in between 8 and 12 mm. As the right lung 

comprises three lobes, the right main bronchus further divides into three lobar bronchi. 

Accordingly, the left does into two. The lobar bronchi further subdivide, the right into 

10 and the left into 9 segmental bronchi. The next divisional unit is called bronchiole 

and is characterized by the loss of cartilage and goblet cells. Here the average diameter 

is less then 1 mm. Each bronchiole is divided into 4 to 5 terminal bronchioles. As the 

number of goblet cells is reduced in the further course, the number of Club-cells, also 

known as Clara cells, increases. These cells secrete surfactant-like proteins, or Clara cell 

secretory protein, CCSP, and lysozyme, which serve unspecific immune defense. Elastic 

fibers prevent the lumen from collapsing, which was before achieved by cartilage tissue.  

At this point the respiratory zone begins. This functional unit is responsible for 

sufficient gas exchange and consists of respiratory bronchioles, alveolar ducts and the 

alveoli. The respiratory bronchioles and the ducti alveolaris connect the alveolar sacs to 

the conductive system. Their wall already shows isolated alveoli. Alveoli account for 

roughly 70% of lung surface. For this exchange a huge surface is obligatory. In human, 

lung surface comprises about 100 square meters. About 300 million alveoli perform 

90% of blood oxygenation and release of carbon dioxide. Alveoli have a roundish form 

with a diameter of approximately 200 μm, which fluctuates depending on inhalation and 

exhalation. Alveoli consist of two types of alveolar cell. 95% of the surface is made up 

of alveolar epithelial cells type I (AECI, or Pneumocytes type I), which form the 

structure of alveoli and represent the epithelial side of the air-blood-barrier. These cells 

are flat and extraordinary thin, sometimes only 25nm. This facilitates the exchange of 

carbon dioxide and oxygen between alveoli and blood. The passive diffusion is 

dependent on partial pressure levels. Alveolar epithelial cells type II (AECII, also 

Pneumocytes type II) only constitute about 5% of the alveolar surface. However, they 

account for 60% of all alveolar epithelial cells. AECII are able to give rise to AECI by 

mitosis and therefore play an important role in injury repair.  Moreover, they are 

involved in immune defence. Here the secretion of products, such as surfactant protein 

A and D (SPA, SPD) play an important role. Those proteins are able to bind pathogens, 

which are then destroyed by alveolar macrophages. The surface active agent (surfactant) 

is composed of phospholipids, cholesterol and proteins in a ratio of 10:1:1 and functions 

in preventing the alveoli from collapsing at the end of expiration and in increasing 
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pulmonary compliance by reduction of surface tension (Macklin 1954; Pison et al. 

1994; Hoffman and Ingenito 2012). 

Expansion and collapse of the alveoli during respiration mean great stress for the 

alveolar structure. The framework of AECI and AECII cells is therefore strengthened by 

extracellular matrix (ECM) and interstitial fibroblasts. Collagen types I and III, elastin, 

fibronectin, laminin and glycosaminoglycans (GAGs) are major components of the 

ECM (Pelosi et al. 2007). Myofibroblasts (also known as alveolar smooth muscle cells) 

are located at the tip of new forming septa and synthesize elastin. Lipofibroblasts are 

situated at the base of septa and strike through their lipid-filled cytoplasm. They are also 

involved in generating ECM proteins and assist the AECII cells in the production of 

surfactant (McGowan and Torday 1997; Vaccaro and Brody 1978).  

 

1.2  Embryonic lung development 
  

Morphologically there are some differences between mouse and human lung. Although 

the mice lung is also divided into two, the right side consists of a cranial, a medial, a 

caudal and an accessory lobe and the left lung only comprises one single lobe. 

Embryonic lung development in mice is a very well documented process and therefore 

presents itself as suitable basis for developmental research. A rough overview will be 

pictured in the following:  

 
Figure 01. Overview of embryonic lung development. 

Depicted are the embryonic and the four subsequent histological stages of embryonic 

lung development in mice from E8.0 to P30. 
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During embryonic day 9 (E9) until E 11.5 the primitive lung anlage arises from the 

ventral wall of the foregut, an endodermal tube, which is surrounded by mesenchyme 

and mesothelium. Here the laryngotracheal groove forms, initiating the emergence of 

the laryngotracheal diverticulum. This protrusion further separates dorsoventrally 

building the primitive trachea and the first two bronchial branches. Foregut, or 

embryonic esophagus, and trachea separate from each other, as more branching at each 

side of the first bronchial branches takes place (Spooner and Wessells 1970). The 

epithelial elements of trachea and lung derive from dorsal esophageal endoderm. Distal 

lung mesenchyme emerges from somatopleura. In contrast, splanchnic mesoderm gives 

rise to trachea-bronchiolar mesenchyme. Visceral pleura later on arises out of the 

mesothelium, which is associated with lung buds (Brown and James 2009). Both 

mesoderm and endoderm express regulatory molecules, such as homeobox transcription 

factors (Hox), retinoic acid (RA) and other growth factors or transcription factors. 

Those orchestrate the further organogenesis. NKX2.1 (thyroid transcription factor 1, 

TFT1) for instance has been recognized as fundamental to early lung development. It is 

an early marker of lung endoderm, which is also expressed in emerging thyroid and 

brain. Although Nkx2.1 knock out mice are able to grow trachea and lung buds, 

branching morphogenesis is diminished and endodermal as well as epithelial 

differentiation are lacking (Minoo et al. 1999).  

The consecutive development can be differentiated into four histological stages: The 

pseudoglandular stage starts with embryonic day 11.5 (E11.5) and lasts until E16.5. It is 

than followed by the canalicular stage, which spreads from 16.5 to 17.5. The third 

(saccular) stage occurs from E17.5 to postnatal day 5 (P5) and merges into the alveolar 

stage. By the end of P30, all histological stages are completed.  

During the pseudoglandular stage intense epithelial branching forms a gland like lung 

structure. The epithelium and mesenchyme are the two main germ layers of the 

developing lung. The epithelium is organized in basal, ciliated, secretory and 

neuroendocrine cells. Endothelial, chondrocytic, smooth muscle, nerve and lymphatic 

cells are found in the mesenchyme. At this time point the fluid-filled terminal 

bronchioles are still incapable of gas exchange. In the canalicular stage the conducting 

airway system further extends. Here respiratory bronchioles and alveolar ducts emerge.  

At the cellular level, the epithelial airway cells develop into immature alveolar type I 

and type II cells (AEC I and II). This enables the epithelium to perform gas exchange 
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for the first time. At about the same time, lipofibroblasts (LIF) arise in the mesenchyme 

and the capillary and lymphatic systems begin to form. 

Further landmarks in sufficient lung function are reached within the saccular stage. Here 

apoptosis and further differentiation of the mesenchyme lead to a considerable thinning 

of the interstitium (Kresch et al. 1998). AECII start to efficiently produce surfactant and 

further air sacs arise. Also, lymphatic and capillary vessels further evolve. 

The alveolar stage is the last step of lung development. Here a further subdivision of air 

sacs into alveoli takes place. This process, also known as alveolarization or 

alveologenesis, signifies an enormous increase of gas-exchanging surface. 

 

1.3 Epithelial Mesenchymal crosstalk 

 
During early lung development a number of signaling molecules orchestrates the 

epithelial-mesenchymal crosstalk. These are attributed great importance in organ 

patterning and differentiation.  In the following section a selection of key regulators is 

presented.  

 

1.3.1 Fgf10/Fgf9 

 
Fgf10 is a member of the fibroblast growth factor (Fgf) family. These signaling 

molecules can be found amongst vertebrates and invertebrates. They influence 

processes such as limb development, brain patterning and branching morphogenesis 

(Beenken and Mohammadi 2009).  Fgfs can be differentiated into 23 subgroups on the 

basis of protein sequence homology. The growth factors bind specifically to their 

respective receptors, thus activating them. These fibroblast growth factor receptors 

(Fgfrs) are transmembrane tyrosine kinase receptors, which can be subdivided into four 

groups (Fgfr1 – Fgfr4) (Ornitz and Itoh 2001).  

The molecular structure of each growth factor is determinant for its binding specificity 

and functional mechanism. The sequence variations of the N- and C-terminal tails of the 

ligands are, for example, responsible for their different biology (Mohammadi, Olsen, 

and Ibrahimi 2005). Moreover, the constitution of the Fgfs heparan sulphate 
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glycosaminoglycan (Hsgag) binding site (Hbs) determinates whether the growth factor 

acts in a paracrine or endocrine manner (Goetz et al. 2007). 

 

In 1998, Min et al. (Min et al. 1998) underlined the crucial role of Fgf10 in lung 

development. The absence of Fgf10 during organogenesis in mice resulted in an 

incomplete development of the distal lung, larynx and trachea. The animals died shortly 

after birth.  Moreover, the lack of Fgfr2IIIb, which mainly mediates the effects of 

Fgf10, led to disrupted lung development (De Moerlooze et al. 2000). For proper lung 

development, the presence of Fgf10 expression and dosage of Fgf10 expression level is 

vital. Mice with only 20% expression of Fgf10 compared to wild type animals (WT) 

grew hypo-plastic lungs with reduced vascular development, diminished alveolar 

smooth muscle cell formation and inhibited formation of secondary septae. Moreover, 

the authors revealed epithelial differentiation defects by evaluating the presence of cells 

positive for epithelial cell markers. Surfactant proteins A, B and C (SpA, SpB, SpC) and 

thyroid-specific transcription factor (Ttf-1or Nkx2.1) played the overriding role here. 

The observed reduction of marker positive cells in the mutant group was attributed to 

Fgf10’s impact on peripheral epithelial progenitor amplification. Most mutant animals 

died within the first 24-48 hours after birth (Ramasamy et al. 2007; Warburton et al. 

2008). 

 

In 1997, Bellusci at al. reported the presence of Fgf10 during early lung development. 

Fgf10 RNA is already detectable at E9.75. At E11.5 high levels of Fgf10 expression 

could be located in the mesenchyme at the very distal tips of all lung lobes, except the 

right cranial lobe. During bud outgrowth into the mesenchyme, increased Fgf10 

expression levels were found in the region where the next bud was forming. This 

suggests, that cells in the mesenchyme adjacent to the mesothelium influence branching 

morphogenesis. They secrete Fgf10, which binds to the epithelial cells expressing 

Fgfr2b (Bellusci, Grindley, et al. 1997). Subsequently Park et al. could outline Fgf10’s 

ability to chemotactically guide the nearby epithelium to the formation of buds, as 

epithelial tips migrate and proliferate toward Fgf10 (Park et al. 1998). Lü et al. could 

identify target genes of Fgf10 during the period of bud formation. In response to local 

application of Fgf10, they discovered an up-regulation of genes associated with cell 

rearrangement and migration, as well as inflammatory processes and lipid metabolism 
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(Lu et al. 2005). Also, Fgf10 is involved in controlling the mitotic spindle angle via a 

Ras-regulated Erk1/2 signaling pathway. It is therefore essential for the general shaping 

the of the lung tube (Tang et al. 2011). More recent investigations suggest, that Fgf10 

has a regulatory function for the differentiation of epithelial progenitor cells. In a 

bronchopulmonary dysplasia (BPD) simulating mouse model, Chao et al. observed 

altered emergence of AECII cells due to reduced Fgf10 expression (Chao et al. 2017). 

 

Another Fibroblast growth factor involved in branching morphogenesis is Fgf9. 

Although Fgf9 and Fgf10 belong to the same protein family, there are some differences 

between them. In opposition to Fgf10, Fgf9 is only temporary expressed in the 

bronchial epithelium. At E10.5 it can be detected in both the visceral pleura and the 

bronchial epithelium. However, in further development (At E12.5 and E14.5) Fgf9 

expression only persists in the visceral pleura. Moreover, it has only poor affinity to 

Fgfr2IIIb and rather activates Fgfr2IIIc. These two receptors are located differently. 

Fgfr2IIIb is usually expressed in the epithelium, whereas Fgfr2IIIC is expressed in lung 

mesenchyme. Therefore, Fgf9 signals from pleura and epithelium towards the 

mesenchyme and thus vice versa to Fgf10, which signals from mesenchyme to 

epithelium via Fgfr2IIIb (Colvin et al. 1999). Colvin at al. examined Fgf9’s influence 

on lung development in 2001. The authors observed lung hypoplasia in Fgf9-null mice, 

which died shortly after birth. The lungs showed decreased mesenchyme and branching 

of airways. However, the formation of distal airspace and the differentiation of alveolar 

epithelial cell types I and II stayed intact. In addition, the authors highlighted the 

complementary roles of Fgf10 and Fgf9 during lung organogenesis, as Fgf9 controls the 

amount of lung mesenchyme and thereby the amount of Fgf10 expression (Colvin et al. 

2001). In 2011, Yin, Wang and Ornitz presented Fgd9’s different modes of action 

depending on its localization. Epithelial expressed Fgf9 functions in epithelial 

proliferation. Mesothelial expressed Fgf9, in contrast, stimulates mesenchymal 

proliferation by affecting Wnt2a expression and mesenchymal Wnt/b-catenin signaling, 

but not Fgf10 signaling (Yin, Wang, and Ornitz 2011).  

 

The Fgf-Fgfr pathway itself is tightly regulated. One of the key modulators is the 

Sprouty family (Spry). Those molecules inhibit Fgf-induced MAPK (mitogen-activated 

protein kinase) activity in a highly cell and context dependent manner and are triggered 
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by the Fgf cascade itself (Cabrita and Christofori 2008). Four Sprouty genes (mSpry1-4) 

are known in mice. Spry 2 can be found within the embryonic lung epithelium, whereas 

Spry 4 is expressed in the mesenchyme. Overexpression of Spry2 leads to a decrease in 

branching morphogenesis and epithelial cell proliferation (Mailleux et al. 2001; Tefft et 

al. 2002). Vice versa Tefft et al. reached a 72% gain of branching by reduction of 

mSpry2 expression level (Tefft et al. 1999).  

 

1.3.2 Tgf-ß/Bmp family 
 

The Tgf-ß superfamily is involved in many developmental processes. Proliferation, 

transformation, apoptosis, as well as extracellular matrix (ECM) deposition and 

remodeling are to be mentioned here in particular (Sporn and Roberts 1990). The Tgf 

family comprises three isoforms: Tgf-ß1, 2 and 3. Moreover there are structurally 

related polypeptides such as Bmp. Tgf-ß ligands activate the signaling pathway by 

binding to the Tgf-ß receptor type II (Tgf-ßr2 or TßrII). TßrII recruits a Tgf-ß receptor 

type I (Tgf-ßr1, also known as activin-like kinase (Alk-1)). This in turn mediates signals 

within the cell via second messenger proteins (Smads) or in a smad-independent 

manner. Both activation of type I receptor and Smad proteins is due to phosphorylation 

(Chen et al. 1998; Massague 1998). Smad2 and Smad3 proteins activated by the Tgf-ß 

receptor type I form an oligomer with Smad4. This Smad complex is able to enter the 

nucleus and alter DNA transcription (Heldin, Miyazono, and ten Dijke 1997). Smad7 

has been identified as an inducible antagonist of Tgf-ß signaling. It competitively binds 

the Tgf-ß1 receptor more stable and thereby prevents Smad2 and Smad3 activation 

(Nakao et al. 1997).  

 

The presence of Tgf-ß1, 2 and 3 in embryonic mouse lung and of Tgf-ß receptor type I 

and II in embryonic rat lung were documented previously (Pelton et al. 1991; Zhao and 

Young 1995; Zhao and Shah 2000). Tgf-ß2 is mainly expressed in the distal epithelium, 

whereas Tgf-ß3 can be temporarily found in the proximal epithelium of the respiratory 

tract and in the lung mesothelium at all stages (Millan et al. 1991). Furthermore, Tgf-ß 

signaling has been identified as a key player in fetal lung morphogenesis, injury repair 

and remodeling. It has also been linked to lung pathologies such as bronchopulmonary 

dysplasia (BPD) and pulmonary fibrosis (Zhao et al. 2002; Gauldie et al. 2003; Jankov 
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and Keith Tanswell 2004). Knock out of each Tgf-ß1, 2 and 3 caused either abnormal 

lung morphogenesis or inordinate post-natal lung inflammation (Kulkarni et al. 1993; 

Sanford et al. 1997; Shi et al. 1999). 

Various studies have determined Tgf-ß signaling as inhibiting to airway branching 

during early lung development. Correspondingly down regulation of either Tgfßr2 or 

Smad2, Smad3 or Smad4 and over expression of Smad7 caused intensified branching 

morphogenesis (Zhao et al. 1996; Zhao et al. 1998; Zhao et al. 2000). Interestingly 

however, diminished Tgf-ß signaling in late lung development (P7 – P28) equally 

caused impaired alveolarization (Chen et al. 2005). During late human lung 

development TGF-ß signaling was found involved in formation of airway and alveolar 

epithelium as well as vascular and airway smooth muscle emergence (Alejandre-

Alcazar et al. 2008). 

In 2008, Chen et al. examined the effects of TßrII abrogation in epithelium and 

mesenchyme during early and late lung development. At E11.5 TßrII is only expressed 

in airway epithelial cells, later at E14.5 the receptor was localized within epithelium and 

mesenchyme. Postnatally TßrII was detected in septal structures at P14. No significant 

changes in lung phenotype were found in mice with epithelial lack of TßrII function 

during early lung development. However, abolished TßrII expression in epithelium 

during post-natal alveogenesis caused changes in cell composition. The authors 

observed a noticeable reduction of Aqp5 positive cells representative for the AECIs, but 

unimpaired presence of SpC positive cells, reflecting the AECII population. Apart from 

cell differentiation, diminished proliferation was discovered at days P14 and P28. 

Remarkably, mesenchymal knock out of TßrII expression during early lung 

development resulted in significant decrease of terminal branching. Therefore, 

embryonic lung branching is affected by mesenchymal instead of epithelial TßrII 

mediated signaling (Chen et al. 2008). In summary, the adequate expression of TGF-ß 

in the respective developmental stages appears to be essential for regular organogenesis. 

At different times both overexpression and deficiency lead to pathological changes in 

this process (Saito, Horie, and Nagase 2018). 

 

Tgf-ß signaling itself is regulated in multiple ways. One of the most striking positive 

modulator is the auto- or cross induction of Tgf-ß isoforms (Kim et al. 1990; Bascom et 

al. 1989). On the downside, Tgf-ß activity can be regulated extracellularly, as its 
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precursor molecules have to be activated by cleavage before becoming signaling ligands 

(Miyazono, Ichijo, and Heldin 1993). Moreover, Smad6 and Smad7 inhibit the signaling 

pathway. Smad7 expression was found provoked by Tgf-ß1 itself (Nakao et al. 1997), 

but also by mechanical stress (Topper et al. 1997) and cross talk with epidermal growth 

factor (Egf) (Afrakhte et al. 1998). 

 

Bone morphogenetic proteins (Bmps) are Tgf-ß related growth factors. They orchestrate 

the morphogenesis of various tissues, including the lung. The Bmp family comprises 

over 20 ligands. It was originally discovered as inductor for cartilage and bone 

formation (Hogan 1996; Reddi and Reddi 2009). Similar to Tgf-ß ligands Bmp ligands 

bind heteromeric serine/threonine kinase receptors. The binding activates Bmp receptor 

type II, which in turn activates Bmp receptor type I via phosphorylation. Receptor-

bound Smad proteins are subsequently activated by Bmp receptor type I. Smad1, Smad5 

and Smad8 are known Bmp specific second messengers.  If they are in active state, 

these form complexes with already mentioned Smad4. The further signaling cascade is 

carried out just like the Tgf-ß signaling pathway (Massague 1998; Shi and Massague 

2003).   

Four Bmps were found present in embryonic mouse lung, namely Bmp3, Bmp4, Bmp5 

and Bmp7. Bmp5 is expressed in the mesenchyme of mouse lung from E10.5 until at 

least E16.5 (King et al. 1994). Sountoulidis et al investigated the activation of Bmp4 

pathway during lung development and adult lung tissue repair. During the 

pseudoglandular stage the Bmp pathway was mainly involved in vascularization and 

airway smooth muscle formation. When branching comes to completion, the Bmp 

pathway activity rises in airway and alveolar epithelium. The activity level reaches its 

peak around birth, thereupon returning to a lower level. Furthermore, a reactivation of 

Bmp pathway was observed after lung tissue injury in adult mouse lung. In addition, the 

authors underlined Bmp’s crucial role for managing and sustaining the pool of alveolar 

and epithelial progenitor cells (Sountoulidis et al. 2012). 

To this day, three Bmp type I receptors, Alk2, Alk3 and Alk6, have been discovered. 

Alk3, also known as Bmpr-Ia, is expressed in distal epithelial cells throughout lung 

development (E12.5, E14.5 and E14.5). Mice with Alk3 knock out died early (E7.5 – 

E9.5.) before lung organogenesis (Mishina et al. 1995). Arrogations of Alk3 in lung 

epithelium from E7.5, E17.5 or E18.5 were all followed by respiratory distress. All 
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animals died after birth. However, mice with postnatal Alk3 knock out developed 

morphologically normal lungs. Mice with an early Alk3 knock out grew lungs with 

enlarged airspace and lack of saccular formation. This phenotype was accompanied by 

abnormal distal cell proliferation, differentiation and apoptosis. On the genetic level, 

Ccsp, SpC and Aqp5 expression levels were found significantly reduced. A late knock 

out of Alk3 resulted in significant epithelial apoptosis and diminished surfactant 

secretion (Sun et al. 2008).  

Bragg et al. investigated Bmp4’s effects on the branching program. On the one hand, 

the authors injected Bmp4 directly into the lumen of embryonic lung explants; on the 

other hand, they added Bmp4 only to the surrounding medium. Interestingly 

proliferation and branching morphogenesis were not affected by the injection, whereas 

the addition of Bmp4 to the medium enhanced branching processes (Bragg, Moses, and 

Serra 2001). Bmp4 addition to cultured embryonic lung endoderm, which was isolated 

at E11.5, led to diminished outgrowth. Correspondingly, the reduction of endogenous 

produced Bmp4 via antagonist Noggin resulted in increased budding. Moreover, it 

could be highlighted, that Bmp4 counteracts Fgf10 –induced growth of lung endoderm 

(Weaver, Dunn, and Hogan 2000). Bellusci et al. located high levels of Bmp4 

expression in the tips of distal bud epithelium and nearby mesenchyme and investigated 

the influence of modified Bmp4 expression on lung organogenesis.  The over expression 

of Bmp4 in the distal epithelium of transgenic lungs led to outgrowth of significantly 

smaller lungs with cystic terminal air sacs and enhanced cell death in the mesenchyme. 

Furthermore, the epithelial cell differentiation was investigated at E16.5 and E18.5. This 

revealed limited expression levels of SpC in the transgenic mice lungs (Bellusci et al. 

1996). The interaction of Bmp and its antagonists in lung development has also been 

investigated in several studies. One of these antagonists is Follistatin-Like 1 (Fstl1). 

Mice with lack of Fstl1 grew dysplastic lungs with hypoplastic tracheal rings, irregular 

shaped lobes, enlarged proximal bronchioles and enclosed distal sacs. The animals also 

presented disrupted limb- and axial skeleton patterning and died shortly after birth, due 

to respiratory distress (Sylva et al. 2011). The Overexpression of Gremlin, another Bmp 

antagonist, caused a disruption of proximal-distal lung patterning (Lu et al. 2001).  
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1.3.3 Pdgfs 
 

Platelet-derived growth factors belong to a family of growth factors, which have been 

subject to intense research over the last decades. Five ligands, Pdgf-a, Pdgf-b, Pdgf-c, 

Pdgf-d and Pdgf-ab, have been investigated so far. They form either homodimers (aa, 

bb, cc or dd) or heterodimeres (ab) and act via two receptors. Pdgf receptor types α and 

ß are transmembrane Tyrosinkinase receptors. Their extracellular activation with Pdgf 

ligands is followed by dimerization and autophosphorylation (Claesson-Welsh, 

Ronnstrand, and Heldin 1987; Heldin 1997). Although Pdgfrs are expressed in most 

cells, there is a notable high expression in fibroblasts and smooth muscle cells. The 

Pdgf-signaling pathway is involved in many crucial biological processes. Besides 

development of organs like the kidney or eye, it has also been found involved in lung 

organogenesis.  

In 1996, Bostrom et al. examined Pdgf-a null mice. The animals died during 

embryogenesis or shortly after birth. The mutant mouse lungs showed emphysema, 

associated with a lack of alveolar septation due to loss of alveolar myofibroblasts 

(Bostrom et al. 1996). Furthermore, the authors created an experimental setup with mice 

lacking Pdgfr-α. These animals developed smaller lungs, however early branching 

morphogenesis appeared to be intact (Bostrom, Gritli-Linde, and Betsholtz 2002). The 

dysplastic lung phenotype of Pdgf-a (-/-) mice was further investigated in 1997. Lindahl 

et al. concluded, that the failure of alveogenesis in mutant mice is linked to insufficient 

spreading of Pdgf-Ra+ cells, which are progenitors to tropoelastin-positive alveolar 

smooth muscle cells (Lindahl et al. 1997). Li and Hoyle overexpressed Pdgf-a in mouse 

lung epithelium. They recognized an increase of mesenchymal cells, dilated airspaces 

and a decreased number of bronchioles at E16.5. At E18.5 the transgenic mice showed 

thickened mesenchyme, lacking deposition of elastin within the parenchyma and still 

cuboidal respiratory epithelium. Hence, the usual down regulation of Pdgf-a is 

necessary for the transition from canalicular into saccular stage of lung development (Li 

and Hoyle 2001).   

Moreover, PDGF signaling has been linked to certain human lung diseases. Amongst 

pulmonary arterial hypertension (PAH) and lung cancer, pulmonary fibrosis was one of 

the main topics. Abdollahi et al., for instance, found that PDGF-signaling is substantial 
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in the pathogenesis of lung fibrosis and pathway inhibition. Therefore, it might in turn 

become a therapeutic option (Abdollahi et al. 2005).  

 

1.4  MicroRNAs 

 
In the past decade, small non-coding mRNA strands have aroused the particular interest 

of research. These microRNAs (miRNAs) are about 21 nucleotides long and are 

increasingly associated with lung development. In general, this family of regulatory 

molecules is attributed an important role in post-transcriptional gene expression, 

developmental timing, growth control and differentiation. In 1993 Lee, Feinbaum and 

Ambros discovered the first microRNAs. It were transcripts of lin-4, which negatively 

regulate lin-14 (Lee, Feinbaum, and Ambros 1993). Later, Reinhart et al. revealed the 

role of a microRNA, let-7, in developmental timing in C. elegans. Both over and under 

expression of let-7 caused irritation of developmental processes (Reinhart et al. 2000). 

Micro RNAs can be found in viruses, eukaryotes, fungi, plants and animals (Cullen 

2011; Lee et al. 2010; Molnar et al. 2007; Huang et al. 2012; Ambros 2001). 

Approximately 50% of all protein-coding genes are influenced by miRNAs in 

mammals. As miRNAs regulate a broad number of processes they themselves are 

regulated in a tight and dynamic manner (Krol, Loedige, and Filipowicz 2010). All so 

far known miRNAs are catalogued in an online accessible data base called miRBase 

(Griffiths-Jones et al. 2006).  

 

1.4.1 MicroRNA biogenesis 
 

In 2004 Rodriguez et al. identified the genomic localization and context of 232 

mammalian microRNAs. Roughly 39% were found within introns of protein-coding 

genes and about 28% were found located in non-coding introns and exons (Rodriguez et 

al. 2004). The first transcript of miRNAs arises within the nucleus. Here, RNA 

Polymerase II or RNA Polymerase III transcribe miRNA genes or introns (Lee et al. 

2004). The resulting pri-miRNA consist of a 33 base-pair hairpin stem with two single-

stranded flanking regions at the 5’ and 3’ end and a terminal loop (Winter et al. 2009).  
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Next, the microprocessor complex performs cleavage of the pri-microRNA into around 

70 nucleotide long pre-microRNA (Kim 2005). This enzyme complex consists of 

Drosha, an RNase III enzyme, and Pasha, also known as DGCR8 (DiGeorge critical 

region 8) protein (Lee et al. 2003; Gregory et al. 2004). Pasha precisely binds the pri-

miRNA, thus defining the cleavage site at which Drosha cleaves 11 base pairs off the 

hairpin stem (Han et al. 2004; Han et al. 2006; Zeng and Cullen 2003 2005). In contrast, 

the emergence of microRNAs out of small nuclear RNAs (snoRNA) is not dependent on 

Drosha, but Dicer processing (Hutzinger et al. 2009). The correctly processed pre-

microRNAs are thereupon exported from the nucleus into the cytoplasm. The 

transferring complex comprises Exportin-5 and Ran-GTP, which also withdraw the pre-

microRNAs from nuclear degradation (Yi et al. 2003 Y., Macara, I. G. & Cullen, B. R., 

2003; Bohnsack, Czaplinski, and Gorlich 2004 K. & Gorlich, D., 2004). In the 

cytoplasm, the pre-microNRA passes further processing. This is mainly performed by 

the RLC, RISC loading complex, which is composed of RISC (RNA-induced silencing 

complex), the RNase Dicer, the double-stranded RNA binding protein TRBP and 

Argonaute2 (Ago2) (Gregory et al. 2004 T. P., Cooch, N., Shiekhattar R., 2005). RISC 

itself contains a single-stranded microRNA or small interfering RNA (siRNA), which 

complementary binds the target miRNA (McManus et al. 2002). MiRNAs that reveal a 

high degree of complementarity within the hairpin stem are first cleaved by Ago2, 

before Dicer-mediated cleavage (Diederichs and Haber 2007). The RNase III Dicer then 

carries out the main-cleavage. The loop of the pre-miRNA is cut off, giving rise to a 

roughly 22-nucleotide miRNA duplex with two protruding nucleotides at each 3’ end 

(Ketting et al. 2001). Bernstein et al. underlined the vital role of this endonuclease in 

miRNA processing. The deletion of the enzyme in mice caused lethality in early 

development (Bernstein et al. 2003). As cleavage is executed, Dicer and TRBP 

dissociate from the miRNA double-strand.  

The unwinding of the duplex is performed by helicases. Yet there was no universal 

helicase found responsible. In mice p68 in complex with let-7 unwind the double-strand 

(Salzman, Shubert-Coleman, and Furneaux 2007). Although the separation of the 

duplex gives rise to two different mature miRNAs, mostly only one strand is loaded into 

RISC (Schwarz et al. 2003). This leads to the differentiation into functional (miRNA) 

and passenger strand (miRNA*)(Czech and Hannon 2011). The latter is degraded after 

the unwinding. Unlike the passenger strand, functional strands, which will be 
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incorporated into RISC, usually have a less stable 5’ end (Khvorova, Reynolds, and 

Jayasena 2003 A. & Jayasena, S. D., 2003). The current nomenclature divides 

microRNAs into 3-prime (‘3p) and 5-prime (‘5p) strands, since both are in principle 

functional. MicroRNA processing and maturation are regulated in many ways.  A few 

will be presented in the following. 

1.4.2 Regulation of microRNA 
 

MicroRNAs are regulated at levels of transcription, processing and decay. There are 

many parallels between the regulation of miRNA transcription and the transcription of 

protein-coding genes. Both mostly have promoter regions comprising transcription 

factor binding sites (TATA box sequences) and a binding site for RNA polymerases. 

This indicates a gene expression regulation of miRNAs by transcription factors 

(Corcoran et al. 2009). Proto-oncogene c-Myc and cellular tumor antigen p53 for 

instance are positive effectors of microRNA transcription (O'Donnell et al. 2005; He et 

al. 2007).  

Apart from direct stimulation and inhibition of microRNA expression, regulating 

feedback loops have been found participating in those processes. The reciprocal 

negative feedback loop in C. elegans is just one representative example. Here HBL-1 

(Hunchback like-1) a target of let-7, antagonizes the expression of its own repressor, let-

7 (Roush and Slack 2009). 

Regulation of microRNA processing is another common control mechanism. P53, 

which has already been mentioned as direct initiator of transcription, can also intervene 

at levels of miRNA processing. P53 was observed facilitating the maturation of growth 

suppressive miR-16-1, miR-143 and miR-145 by interacting with Drosha. 

Correspondingly inactivation of p53 led to a slowdown of miRNA processing (Suzuki 

et al. 2009). Davis et al. revealed another Drosha-dependent regulation of miRNA 

processing. They found increased mature miR-21 levels promoted by TGF-ß and BMP 

signaling due to interaction of downstream signaling molecules, SMADs, and the 

Drosha microprocessor complex (Davis et al. 2008). 

Besides Drosha, Dicer plays an important role in processing microRNA maturation. Ma 

et al. showed that a component of Dicer, the helicase domain DExD/H-box, might 

disturb Dicer functionality. This was concluded, as removal of DExD/H-box led to an 

increased processing activity of Dicer (Ma et al. 2008). Moreover, Dicer expression can 
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be reduced by miRNAs. Let-7 microRNA, for instance, targets Dicer mRNA. This can 

be considered as an auto regulatory negative feedback loop, which regulates miRNA 

processing (Forman, Legesse-Miller, and Coller 2008). Furthermore, protein factors are 

able to diminish maturation of specific microRNAs. Lin-28 codes for a RNA-binding 

protein, that facilitates the transcription of insulin like growth factor 2 (IGF-2). This 

protein was investigated and exhibited the ability to selectively inhibit the pri-miRNA 

processing of let-7g microRNA (Viswanathan, Daley, and Gregory 2008).  

Control of microRNA decay is a further way to regulate activity levels. Although 

miRNA degradation has not been as well examined as biogenesis, microRNAs are 

generally considered as stable molecules. Krol et al. observed the half-lives of a number 

of micro RNAs. Due to the inhibition of miRNA transcription or processing, certain 

miRNAs lasted many hours or even days (Krol et al. 2010; van Rooij et al. 2007). 

Another study examined the turnover of roughly 200 miRNAs. Most of them showed 

half-life periods greater than 24 hours. However 61 miRNAs were degraded within the 

first 12 hours (Marzi et al. 2016). Several developmental and controlling processes 

involve fluctuating activity levels of miRNAs, therefore miRNA decay is occasionally 

being expedited. This was observed in neuronal cells during dark adaption of mice 

retina, and human post-mortem brain tissue (Krol et al. 2010; Sethi and Lukiw 2009). 

Katoh et al. determined the role of poly(A) polymerase GLD-2 in stabilizing 

microRNAs (Katoh et al. 2009). Vice versa deadenylation of miR-122 caused its 

accelerated turnover (Katoh, Hojo, and Suzuki 2015).  

 

1.4.3 MicroRNA functional mechanisms  
 

The functional unit around the specific microRNA is named RISC - RNA-induced 

silencing complex. It is composed of Dicer, an Argonaute protein (AGO), the P-body 

protein PW182, the human immunodeficiency virus trans activating response RNA-

binding protein (TRBP), the fragile X mental retardation protein (FMPR1) and a 

specific miRNA (Redfern et al. 2013; Liu et al. 2005; Chendrimada et al. 2005; Jin et al. 

2004). This complex acts in three different ways: mRNA target cleavage, mRNA 

deadenylation and translational repression. In mammals, microRNAs are usually 

thought to be more active in inhibiting translation than degradating their targets. 

However, Farh et al. observed a reduction of target mRNAs, due to an increase of 
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microRNAs (Farh et al. 2005). Moreover, Vasudevan et al. revealed a switch of 

miRNAs from translational repressor to activator under conditions of serum starvation. 

Those findings suggest, that functional mechanisms are dependent on the individual 

microRNAs, their specific targets and cell background (Vasudevan, Tong, and Steitz 

2007 Y & Steitz, J. A., 2007). 

Most target mRNAs are imperfectly base-paired within their three-prime untranslated 

region (3’-UTR). However, with nucleotides 2 to 8, also known as the seed region, 

miRNAs bind their targets complementary (Bagby et al. 2009). For the target cleavage 

the RISC complex needs to almost perfectly complementary base-pair with an 

encountered mRNA, which is then degraded (Carthew and Sontheimer 2009; Song et al. 

2004).   

The exact mechanics of miRNA-mediated translational repression are not yet 

understood. However, it is known, that both 5’-cap and poly(A) tail are needed for 

accurate translation, and therefore are potential targets of translational repressors. 

Mathonnet et al revealed the prevention of the 5’-cap recognition during translation by 

microRNAs. As the 80S ribosomal complex assembly is dependent on cap recognition, 

translation initiation was found inhibited (Mathonnet et al. 2007). Moreover Argonaute 

proteins, Ago1 and Ago2, both have been found involved in translational repression in 

Drosophila. Ago1-RISC shortens the poly(A) tail of its mRNA targets in a ATP-

dependent manner. Whereas Ago2 comprises a cap-binding domain and therefore 

competes with eIF4E, an eukaryotic initiation factor of translation, in binding eIF4G, 

also disrupting the initiation process (Iwasaki, Kawamata, and Tomari 2009). 

Deadenylation of mRNA is mediated by glycine-tryptophan protein of 182 kDA, 

GW182 proteins. Deadenylases CCR4 and CAF1 are recruited by the cobroxy-terminal 

part of GW 182 proteins, which also interacts with the poly(A) binding protein (PABP) 

(Chekulaeva and Filipowicz 2009 W. & Parker R,, 2009). The deadenylated mRNAs 

are commonly less stable and will be digested by exonucleases (Chen et al. 2009 D., 

Xia, Z., Shyu, A. B., 2009). 
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1.5  Role of microRNAs in early lung development and disease 
 

1.5.1 Current knowledge of miR-154 

 

Since the first verification of microRNAs in 1993 there has been a great increment in 

knowledge about the function and impact of these regulatory molecules. The role of 

microRNAs in developmental processes and their role in human diseases are two fields 

of interest that have become subject of intense scientific research. Thereby the need for 

decrypting the physiologies of specific microRNAs is constantly growing. 

MicroRNA-154 (miR-154) is a 22-nucleotide long RNA molecule, which has already 

been linked to certain diseases and alterations in lung structure. The coding gene for 

miR-154 is located at human chromosome 14q32.31 and mouse chromosome 12F2. The 

miR-154 family is part of a cluster – the second largest human microRNA cluster (Seitz 

et al. 2004). The stem loop sequence and the sequences for the functional (miRNA) and 

passenger strand (miRNA*) of miR-154 are identical in the genomes of  “Homo 

sapiens” and “Mus musculus”: 

 

 

 

RNA molecule  Sequence  

Stem loop GUGGUACUUGAAGAUAGGUUAUCCGUGUUGCCUU

CGCUUUAUUUGUGACGAAUCAUACACGGUUGACC

UAUUUUUCAGUACCAA  

miR-154-5p (miR-154) UAGGUUAUCCGUGUUGCCUUCG 

miR-154-3p (miR-154*) AAUCAUACACGGUUGACCUAUU 

 

 

So far miR-154 has been subject to a number of studies, most of which investigated 

miR-154s role in human diseases. MiR-154 was, inter alia, found involved in small cell 

lung carcinoma (Lin et al. 2015), glioblastoma (Yang et al. 2016), hepatocellular 

carcinoma (Pang et al. 2015), colorectal cancer (Xin, Zhang, and Liu 2014), prostate 

cell cancer (Formosa et al. 2014), (Zhu et al. 2013) and pulmonary fibrosis (Milosevic 

et al. 2012). Prior to the clinical value of miR-154, Lagos-Quintana et al. examined 

Table 1 
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microRNA expression levels in mouse brain (midbrain, cortex and cerebellum), heart, 

liver, small intestine and colon. They detected 34 novel microRNAs and localized miR-

154 expression in midbrain mouse tissue (Lagos-Quintana et al. 2002). Two years later, 

Suh et al. analysed several microRNAs in human embryonic stem cells by cDNA 

cloning. Here miR-154* was identified amongst fifteen other microRNAs for the first 

time (Suh et al. 2004). In 2007, Williams et al. compared expression levels of 

microRNAs, which are potentially involved in human and mouse lung development. 

They found significant similarities of certain microRNA expression levels between 

human and mouse. Amongst others, miR-154 is first highly expressed at P1 in both 

human and mouse lung, however shows diminished expression levels at P14 and P60. 

The further analysis of those microRNAs, which are highly expressed shortly after birth, 

revealed adjacent genomic locations. MiR-134, miR-154, miR-299, miR-323, miR-337 

and miR-370 are all located within the Gtl2-Dio3 domain at human chromosome 

14q32.31, or mouse chromosome 12F2.  Notably, two clusters within the Gtl2-Dio3 

domain are only expressed from the maternal chromosome.  One cluster is situated 

within a retro transposon-like gene, namely Rtl1. The miRNA-containing gene (Mirg) is 

located 150 kb further upstream and comprises the other cluster, which includes miR-

154. 

In addition, the authors applied in situ hybridization in order to detect the spatial 

expression of microRNAs. The perceived presence of miR-154 was concordant with the 

expression levels determined by RT-PCR. In fetal mouse lung, miR-154 was observed 

throughout epithelium and stroma. In adult mouse lung however, miR-154 is expressed 

especially within alveolar and airway epithelium (Williams et al. 2007).  

 

1.5.2 MicroRNAs in early lung development 

 

Future studies have revealed microRNAs as important modulators in embryonic 

development. The complete loss of Dicer, which implies a lack of microRNA 

processing, led to lethality of mouse embryos before gastrulation (Bernstein et al. 2003). 

Harris et al. abrogated Dicer in the mouse lung epithelium. As a consequence, Mutant 

mice showed large epithelial pouches compared to WT mice. This phenotype was 

observed before increasing epithelial cell death. Thus Dicer appears to be vital for 
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epithelial branching morphogenesis, independently of its role in cell survival (Harris et 

al. 2006).  

Not only was the general influence of microRNAs, represented by Dicer activity, 

investigated, but also the function of single microRNAs. So for instance the 

overexpression of the miR-17-92 cluster, which caused increased proliferation and 

inhibition of differentiation in lung epithelial progenitor cells (Lu et al. 2007). Also, 

microRNA-142-3p was found to influence proliferation and differentiation of 

mesenchymal cells during lung development (Carraro et al. 2014). MiR-127 (Bhaskaran 

et al. 2009), the miR-200 family (Benlhabib et al. 2015), miR-124 (Wang et al. 2015), 

miR-375 (Wang et al. 2013), miR-221 and miR-130a (Mujahid, Nielsen, and Volpe 

2013) are, amongst others, further examples for microRNAs  associated with early lung 

development. However, the total number of investigated microRNAs is still quite 

manageable compared to the hundreds of known human microRNAs (Bentwich et al. 

2005).  

1.5.3 MicroRNAs in lung disease 
 

As the lung mediates the essential gas exchange between outside air and blood, 

pathologies of this organ are associated with high mortality. Although therapeutic 

treatments have improved over the last decades, most are still imperfect. Hence there is 

an eager scientific interest in detailed understanding of lung diseases. Various 

microRNAs are already known to be involved in human pathologies. Here lung-, liver- 

and kidney diseases, but also infectious diseases and Sickle Cell disease are to be 

mentioned (Ha 2011). In addition, changes in MicroRNA expression levels have been 

found related to lung diseases such as adenocarcinoma, small and non-small cell lung 

cancer, cystic fibrosis, idiopathic pulmonary fibrosis and inflammatory lung diseases 

like asthma and chronic obstructive pulmonary disease (COPD) (Haigl et al. 2014; 

Nadal et al. 2013; Perry, Adcock, and Chung 2015; Szymczak, Wieczfinska, and 

Pawliczak 2016; Li et al. 2016).  

With the growing understanding of specific microRNA-mediated processes, the interest 

in transforming this knowledge into promising clinical application increases steadily. 

Liang et al. identified miR-26a as a therapeutic option in idiopathic pulmonary fibrosis 

(Liang et al. 2014). The same applies for miR-199a-5p and idiopathic cystic fibrosis 

(Zhang et al. 2015). Moreover microRNAs could act as biomarkers in lung disease 
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(Vencken, Greene, and McKiernan 2015). MiR-92a-2 for instance, was perceived as 

such for small cell lung cancer (Yu et al. 2017), or miR-145-5p, miR-338-3p and miR-

3620-3p for chronic obstructive pulmonary disease (Wang, Huang, et al. 2016). Lanford 

et al. achieved a long-lasting depression of viral load in hepatitis C virus (HVC) 

infected chimpanzees by treatment with locked nucleic acid complementary to miR-122 

(Lanford et al. 2010). These findings give an insight of the therapeutic potential of 

microRNAs.  

 

1.5.3.1    IPF 

 

In 2012 Milosevic et al. examined the function of 43 up-regulated microRNAs in 

idiopathic pulmonary fibrosis (IPF). Twenty-four of these, including miR-154, are 

located within the chromosome 14q32 cluster. Half of the up-regulated microRNAs 

within the 14q32 cluster belong to the miR-154 family. The stimulation of normal 

human lung fibroblast (NHLF) with Tgf-ß1, a key regulator of lung fibrosis, caused up-

regulation of seven microRNAs. These were equally found in up-regulated in IPF and 

also belong to the miR-154 family. In order to understand the effects of those up-

regulated microRNAs, the authors transfected NHLFs with miR-154, as a representative 

of the miR-154 family. They observed increased migration and proliferation. Also, the 

transfection led to an up-regulation of the Wnt pathway activators and a down-

regulation of pathway inhibitors. Moreover, the miR-154 dependent proliferation could 

be prevented by transfecting NHLFs with Icg-001 or Xav939, both inhibitors of the 

Wnt/ß-Catenin pathway. Consequentially Milosevic et al. assumed, that miR-154 might 

alter NHLF proliferation through the Wnt/ß-Catenin pathway (Milosevic et al. 2012).  

 

1.5.3.2   Lung cancer 

 

Cazzoli et al. examined the presence of 742 microRNAs in 30 samples of patient 

plasma, in order to identify potential biomarkers for lung adenocarcinoma and lung 

granuloma. MiR-154-3p was amongst the fourteen most promising microRNAs, which 

were further evaluated.  Thereby the authors observed up-regulation of miR-154-3p in 

both lung adenocarcinoma and lung granuloma (Cazzoli et al. 2013). 
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One year later Huang et al. recognized an association of miR-154-5p expression levels 

with smoking and lung cancer. They analyzed the microRNA expression within the 

serum samples of smokers, lung-cancer patients and non-smokers. Interestingly, miR-

154-5p was, concurrently with let-7i-3p, down regulated in smoker and lung-cancer 

serum. However, the differences between these two groups were not statistically 

substantiated. Via target gene prediction, five promising targets of miR-154-5p were 

identified. ABCC9, ROS, ATG7, TNFAIP3 and CUL2 are all associated with 

morphogenesis and metastasis of lung cancer, suggesting that miR-154-5p is linked to 

the emergence of cigarette-smoke induced lung cancer (Huang et al. 2014). 

As miR-154 has been described as tumor suppressive in colorectal (Xin, Zhang, and Liu 

2014) and prostate cancer (Zhu et al. 2013),  Lin et al. explored miR-154’s value in the 

suppression of non-small cell lung cancer (NSCLC). Compared to normal lung cells, 

miR-154 was generally down regulated in NSCLC tissue. In addition, low expression 

levels of miR-154 were found associated with advanced tumor progression (TNM 

staging, tumor size and metastasis) and reduced survival rates. Subsequently, the 

authors transfected A549 (adenocarcinomic human alveolar basal epithelial) cells with 

miR-154 and recognized inhibited cell proliferation, colony formation, cell migration 

and invasion, as well as induction of cell cycle arrest and apoptosis. Furthermore, the 

over expression of miR-154 caused a reduction of N-cadherin, vimentin and increased 

E-cadherin expression, indicating a regulatory role of miR-154 in epithelial to 

mesenchymal transition (EMT). In vivo, mice with high miR-154 expression showed 

significantly smaller tumors in comparison to controls with lower miR-154 levels, 

suggesting a inhibitory role of miR154 in NSCLC tumor growth (Lin et al. 2015). 

Based on these results the authors could determine zink finger E-box binding homebox 

2 (ZEB2) as specific target of miR-154 in NSCLC. Down regulation of ZEB2 in NSCLC 

cells resulted in changes similar to the effects of overexpressing miR-154. Especially 

EMT is affected by miR-154 mediated targeting of ZEB2, which results in inhibited 

migration and invasion of NSCLC cells (Lin et al. 2016).  Zhou at al. identified another 

target of miR-154 in NSCLC cells, namely high mobility group A2 protein (HMGA2) 

and equally observed the cancer-suppressing effects of miR-154. MiR-154 therefore 

might be considered as potential agent for the treatment of NSCLC (Zhuo et al. 2016). 
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2 Material and Methods 
 

2.1 Transgenic mice 
 

Mice given by J. Whitsett were selected to generate Control and Experimental 

genotypes. We chose the CCSP-rtTA, Clara Cell Secretory Protein, promoter to 

selectively target the airway epithelium, as previously described (Perl, Zhang, and 

Whitsett 2009).  In combination with the tet(O)mir154 transgene, this allowed us to 

perform a doxycycline-inducible overexpression of miR-154 in this specific tissue layer. 

Moreover, we aimed to generate equal numbers of Control and Experimental pups 

within the same litter. The crossing mates were chosen accordingly. In this way, all 

pups would be exposed to the exact same conditions. Therefore, a Tg(CCSP-

rtTA)/?;Tg(tet(O)miR-154/+ female and a male with the same genotype were crossed. 

(Figure 01) shows all potential genotypes of pups that might result from this mating.  

 

 
 

X

Generation of experimental and control embryos

Tg(CCSP-rtTA)/?  ;Tg(tet(o)miR-154)/+

Control

Experimental

possible genotypes 

Tg(CCSP-rtTA)/?  ;Tg(tet(o)miR-154)/+

Tg(CCSP-rtTA)/Tg(CCSP-rtTA)  ;Tg(tet(o)miR-154)/Tg(tet(o)miR-154)
Tg(CCSP-rtTA)/Tg(CCSP-rtTA)  ;Tg(tet(o)miR-154)/+
Tg(CCSP-rtTA)/Tg(CCSP-rtTA)  ;+/+

Tg(CCSP-rtTA)/+  ;Tg(tet(o)miR-154)/Tg(tet(o)miR-154)
Tg(CCSP-rtTA)/+  ;Tg(tet(o)miR-154)/+
Tg(CCSP-rtTA)/+  ;+/+

+/+  ;Tg(tet(o)miR-154)/Tg(tet(o)miR-154)
+/+  ;Tg(tet(o)miR-154)/+
+/+  ;+/+
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 Figure 02. Design of mice crossing scheme.  

(A) Two mice heterozygous for both the Tg(CCSP-rtTA) and tet(O)mir-154 operon 

were identified as ideal mates for the generation of a preferably balanced litter. (B) List 

of possible pup genotypes sorted into experimental and control group. 

 

As a vaginal plug was approved, embryonic life was set to E0.5. From E7.5 until the 

sacrifice at E18.5 the pregnant mice were fed with Doxycycline food (Altromin 

Spezialfutter, Lage, Germany). The food was exchanged every second day. 

At E18.5 the lungs were harvested. Therefore, the abdomen and thorax of the pregnant 

mouse were opened and the embryos were removed within the amniotic sac. For the 

collection of embryonic lungs, the amniotic sac was opened and the mouse thorax was 

cut along the sternum and beneath the undermost ribs. The mediastinal organs, heart, 

lung, esophagus and thymus, were removed together by pulling the heart ventrally. 

Then heart, esophagus and thymus were separated neatly from the lung. The left lobe of 

each lung was separated for histology and therefore stored in 4% paraformaldehyde 

(PFA) for either 24 hours at room temperature or up to seven days at 4°C. For gene 

analysis, the remaining parts were placed in Eppendorf tubes filled with QIAzol 

(Qiagen, Hilden, Germany), which were temporary stored in liquid nitrogen and later at 

-80°C. The tip of each mouse tail was kept for genotyping analysis.  

 

2.2 Genotyping 
 

For the analysis of genotypes, we used the tissue of the collected animal tails. These 

were put into Eppendorf tubes with 200 μl Viagen (Viagen Biotech Inc, Los Angeles, 

CA 90010, USA) and 2 μl protein kinase K. The samples were incubated overnight at 

56°C and 1400 rpm using the Thermomixer comfort (Eppendorf AG, Hamburg, 

Germany). The next day deactivation was run at 85°C for 45 minutes.  

In order to detect the Tg(tet(O)miR-154) transgene, two primer sequences were used. 

The forward primer (SB034F) sequence reads: 5’-TGT TAC GGT GGG AGG CCT 

AT-3’. The reverse primer (SB034R) sequence is: 5’-GCG GGA TTT GGT ACT GAA 

AA-3’. The PCR protocol was run as described in the table (see below). Step two to 

four were repeated for a total of 30 cycles.  
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Each PCR tube contained 4,3 μl H20, 5,5 μl Qiagen Master Mix (Qiagen, Hilden, 

Germany), 0,1 μl of each primer and 1 μl DNA template. 

For verification of the CCSP-rtTa allele three primers were used. The primer for the 

CCSP promoter (P1, SB009R) is: 5’-ACT GCC CAT TGC CCA AAC AC-3’; the 

primer for the SP-C promoter (P2, SB009F) reads: 5’-GAC ACA TAT AAG ACC CTG 

GTC A-3’; and the primer for the rtTA coding sequence (P3, SB009C) states: 5’- AAA 

ARC TTG CCA GCT TTC CCC-3’. A mix of 4,4 μl H20, 0,5 μl 25mM MgCL2, 0,1 μl 

25 mM dNTPs, 5 μl Qiagen Master Mix, 0,1 μl taq polymerase, 0,1μl of each primer 

and 1μl DNA template were pipetted into the PCR tubes. The PCR was then carried out 

as shown in the table below. Step two to four were repeated 29 times, 30 cycles in total. 

PCRs were performed with Thermal Cycler C1000 (Bio Rad Labratories Inc, Hercules, 

California, USA). The samples were further analyzed via capillary electrophoresis with 

QIAxcel (Qiagen, Hilden, Germany), which also digitalized the gel electrophoresis 

results (see figure 05). Based on the genotyping the probes were divided into a Control 

and an Experimental group respectively. 

 

 

Examined 

alleles 

Primers PCR protocol 

Tet(O)-

miR154 

forward:  

5’-TGT TAC GGT GGG AGG CCT AT-3’ 

 

reverse:  

5’-GCG GGA TTT GGT ACT GAA AA-3’ 

Step Temp. Time 

1 94 3 min 

2 94 30 sec 

3 57 30 sec 

4 72 1 min 

5 4 Hold 

CCSP-rtTa P1:   

5’-ACT GCC CAT TGC CCA AAC AC-3’ 

P2:   

5’-GAC ACA TAT AAG ACC CTG GTC A-3’ 

P3:    

5’- AAA ARC TTG CCA GCT TTC CCC-3’ 

Step Temp. Time 

1 94 5 min 

2 94 30 sec 

3 58 30 sec 

4 72 30 sec 

5 72 5 min 

6 4 Hold 

	

Table 2 
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2.3 RNA isolation  
 
After the harvest, the lung lobes were placed into QIAzol (Qiagen, Hilden, Germany) 

filled Eppendorf tubes, which were then frozen in liquid nitrogen and thereupon stored 

at -80°C. For RNA extraction, the lobes were thawed on ice, placed into gentleMac 

tubes (Miltenyi Biotec, Bergisch Gladbach, Germany) and covered with 700 μl QIAzol. 

The samples were homogenized using gentleMACS Dissociator (Miltenyi Biotec, 

Bergisch Gladbach, Germany) and centrifuged for 5 minutes at 2000 RPM. The 

supernatant was pipetted into new Eppendorf tubes and 140 μl Trichlomethan was 

added. The tubes were shaken strongly for 15 seconds. Afterwards the liquid was 

moved into Phase Lock tubes (5 Prime, Hilden, Germany), incubated for 3 minutes and 

then centrifuged at 4°C and 12RCF for 15 minutes.  The phase above the Lock Gel was 

pipetted into RNeasy mini Columns (Qiagen, Hilden, Germany) meanwhile measuring 

the pipetted volume. The phase beneath the Lock Gel was discarded. 1.5 times of the 

previously dertermined volume was added to the samples in ethanol. Probes were then 

washed following the kit instructions of RNeasy Mini Kit (Qiagen, Hilden, Germany). 

The concentration of RNA was detected with nanodrop 2000c (Peqlab, VWR, Erlangen, 

Germany) using 1 μl of isolated RNA. 

 

2.4  Reverse Transcription Quantitative PCR  

2.4.1 Synthesis of cDNA 
 

The RNA stored at -80°C was thawed on ice. Then genomic DNA elimination was 

carried out, using 2 μl DNA wipeout buffer, 2 μg of template RNA and 10 μl RNAse-

free water. Probes were incubated for 2 minutes at 42°C, afterwards put on ice 

immediately. Further on 1μl of reverse transcriptase, 4μl RT buffer and1μl RT Primer 

Mix were added to the PCR tubes. Reverse transcription was carried out using 

QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany). The material was 

incubated at 42°C for 50 minutes and 3 minutes  at 95°C, which was performed by 

Thermal Cycler C1000 (Bio Rad Laboratories Inc, Hercules, California, USA). For 

qPCR, samples were diluted to a concentration of 3ng/μl with RNase free water and 

stored at -20°C. 
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2.4.2  Real time PCR 
 

For qPCR, the SYBR green System (Invitrogen, life technologies, Carlsbad, USA) was 

used with a LightCycler 480 (Roche, Basel, Switzerland). The genes to be examined 

were pipetted in triplets using 2 μl cDNA and 18μl Mastermix. The Mastermix consists 

of 0,4 μl of each, forward and reverse, primer, 7.2 μl H2O and 10 μl SYBR green. Hprt 

was used as housekeeping gene. The LightCycler preformed 45 cycles consisting of pre-

incubation (2 minutes at 55°C and 5 minutes at 95°C), amplification (5 seconds at 95°C, 

10 seconds at 60°C and 10 seconds at 72°C) and melting curves. For further analysis, 

the cycle threshold values, or CT values, were entered into an Excel evaluation sheet, 

which calculated the p-values and standard deviation. Outliers within the triplets, which 

differed more than 2 cycles, were removed from calculations. For final results ddCT 

values were used. Also, T-test was calculated using Prism (Graphpad, La Jolla, CA 

92037 USA). 

  

For the analysis of gene expression of the Fgf10 and Tgf-ß signaling pathways, and for 

examination of epithelial cell and myofibroblast markers, the following mouse primers 

were used: 
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Mouse	primers:	Fgf10	signaling	

Gene 
 

Forward sequence Reverse sequence 

Hprt	
	

CCTAAGATGAGCGCAAGTTGAA	 CCACAGGACTAGAACACCTGCTAA	

Fgf10	
	

ATGACTGTTGACATCAGACTCCTT	 CACTGTTCAGCCTTTTGAGGA	

Fgfr2b	
	

CCTACCTCAAGGTCCTGAAGC	 CATCCATCTCCGTCACATTG	

Fgfr1b	
	

TGGGTCGGTGCGGAGATCGT	 ACGGACAACAACAAACCAAACCCT	

Etv4	
	

CAGACTTCGCCTACGACTCA	 GCCATAACCCATCACTCCAT	

Etv5	
	

GCAGTTTGTCCCAGATTTTCA	 GCAGCTCCCGTTTGATCTT	

Spry2	
	

GAGAGGGGTTGGTGCAAAG	
	

CTCCATCAGGTCTTGGCAGT	

Spry4	
	

GTGGAGCGATGCTTGTGAC	 CACCAAGGGACAGGCTTCTA	

Bmp4	
	

GAGGAGTTTCCATCACGAAGA	 GCTCTGCCGAGGAGATCA	

N-myc	
	

CCTCCGGAGAGGATACCTTG	
	

TCTCTACGGTGACCACATCG	

 

 
 

Mouse	primers:	Epithelial	markers	
Gene 

 
Forward sequence Reverse sequence 

Nkx1.2	
	

AAAACTGCGGGGATCTGAG	 TGCTTTGGACTCATCGACAT	

SpB	
	

AACCCCACACCTCTGAGAAC	
	

GTGCAGGCTGAGGCTTGT	

SpC	
	

GGTCCTGATGGAGAGTCCAC	
	

GATGAGAAGGCGTTTGAGGT	

Cc10	
	

GATCGCCATCACAATCACTG	
	

CAGATGTCCGAAGAAGCTGA	

Epcam	
	

TGTCATTTGCTCCAAACTGG	 GTTCTGGATCGCCCCTTC	

Aqp5	
	

TAA	CCT	GGC	CGT	CAA	TGC	 GCC	AGC	TGG	AAA	GTC	AAG	AT	

 

Table 3 

Table 4 
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Mouse	primers:	Tgf-ß	signaling	

Gene 
 

Forward sequence Reverse sequence 

Tgf-ß1	
	

TGGAGCAACATGTGGAACTC	
	

CAGCAGCCGGTTACCAAG	

Tgf-ß3	
	

GCAGACACAACCCATAGCAC	
	

GGGTTVTGCCCACATAGTACA	

Pai-1	
	

AGGATAGGATCGAGGTAAACGAGAGC	
	

GCGGGCTGAGATGACAAA	

Smad7		
	

AAGTGTTCAGGTGGCCGGATCTCAG	
	

ACAGCATCTGGACAGCCTGCAGTTG	

IL-1ß	
	

TGTAATGAAAGACGGCACACC	 TCTTCTTTGGGTATTGCTTGG	

 

 

	
Mouse	primers:	Myofibroblast	markers	

Gene 
 

Forward sequence Reverse sequence 

Pdgfr-α		
	

TGCAAATTGACATAGAAGGAGAAG	 GCCCTGTGAGGAGACAGC	

Pdgf-a	
	

TGAGGTTAGAGGAACACCTG	 TCTCACCTCACATCTGTCTC	

Elastin	
	

CCACCTCTTTGTGTTTCGCT	 CAAAAGAGCACACCAACAATCA	

Acta2	
	

ACTCTCTTCCAGCCATCTTTCA	
	

TAGGTGGTTTCGTGGATGC	

Fgf9	
	

TGCAGGACTGGATTTCATTTA	 CCAGGCCCACTGCTATACTG	

Fgfr4	
	

GGAAGGTGGTCAGTGGGAAG	 CTCTTGCTGCTCCAGGATTG	

 
 
 
 
 
 
 
 
 
 

Table 5 

Table 6 
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2.5  Quantitative PCR for miR154-3p/-5p  
 

Isolation of small RNAs was performed with a MirVana MiRNA Isolation Kit (Life 

Technologies, Carlsbad, USA). Thereupon retro transcription was performed with the 

Reverse Transcription Kit (Applied Biosystems, Foster City, California, USA) running 

the following program: 16°C for 30 minutes, 42°C for 30 minutes and 85°C for 5 

minutes. 1 μl of each product of retro transcription was then used for Quantification of 

miRNA levels, based on TaqMan Micro RNA Assays (Life Technologies, Carlsbad, 

USA). U6 expression levels functioned as reference gene. LightCylcer 480 run a 

program of 40 cycles each consisting of 10 minutes at 90°C, 15 seconds at 95°C, 60 

seconds at 60°C and 30 seconds at 40°C. 

Data were analyzed as described above.  

 

2.6  Fixation of lungs 
 

After the harvest the left lobes were placed into 4% PFA overnight at 4°C. The 

following day they were stored in phosphate-buffered saline (PBS) for 24 hours at 4°C. 

On the third day, the lobes were put into 30%, 50% and 70% ethanol for 2 hours each 

and overnight at 100% ethanol, all at room temperature. The lobes were then brought 

into Xylol until they became transparent (about 40 minutes). Afterwards, the samples 

were placed into Xylol-wax (Xylol to paraffin ratio was one-to-one) for 2 hours and in 

paraffin overnight, both at 60°C. The left lobes were then fixed in paraffin blocks with 

the Leica EG 1150 H embedding machine (Leica, Wetzlar, Germany). The paraffin 

blocks were cooled with Leica EG 1150 C (Leica, Wetzlar, Germany). For histological 

staining the blocks were cut in 5 μm sections using Leica RM 2235 (Leica, Wetzlar, 

Germany). 

 

2.7  Immunohistochemistry/ Immunofluorescence 

2.7.1 Hematoxylin Eosin staining  
 

Slides with sections of 5 μm thickness were deparaffinized as following: The object 

carriers were dived into Xylol three times for 10min. Then plunged into 100%, 95%, 

70%, 50% and 30% ethanol for 2 minutes each. Afterwards immersed into MiliQ for 
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another 2 minutes. The slides were then stained with Hematoxylin (Carl Roth, 

Karlsruhe, Germany) for 1-3 minutes and afterwards cleaned under running tap water. 

The staining intensity was controlled under the microscope.  

The staining process continued by diving the slides into the Eosin resolution (Thermo 

Scientific, Kalamazoo, MI-USA) for 2 minutes. Finally, the slides were dipped 6 times 

into 80% and 100% ethanol each and cover slipped with Pertex (Histo Lab Products 

AB, Västra Frölunda, Sweden)  

 

2.7.2  Acta2 staining  
 

The deparaffination was carried out as mentioned above. Afterward the slides were 

washed three times for 5 minutes in PBST (PBS + 0,1% Tween20). The block mix 

consisting of PBS, 3% BSA (bovine serum albumin solution) and 0,4% Triton-X was 

applied. The samples were then incubated at room temperature for 60 minutes. As the 

block mix was discarded, the primary antibody was pipetted on the samples.  The 

antibody concentration was 1:200. The probes were therefore incubated at room 

temperature for 60 minutes.  Before covering the slides with ProLong Gold antifade 

reagent with DAPI (Life Technologies, Carlsbad, USA) they were washed three times 

for 10 minutes with PBST at the AT stirrer and once for 5 minutes with PBS. 

Pictures were taken with Leica fluoresce microscope, Leica DM5500 B (Leica, Wetzlar, 

Germany). 5 images in 40x magnification per lung were analyzed for alveolar 

myofibroblast quantification with ImageJ (Wayne Rasband, NIH, Bethesda, Maryland, 

USA). Statistical evaluation was performed with Prism (Graphpad, La Jolla, CA 92037 

USA). 

 

2.8  Alveolar morphometry  
 

A Leica DM600B microscope was used to generate total scans of hematoxylin and 

eosin (HE; see above) stained, 5mm thick, lung sections. The scans were then analyzed 

with Qwin V3 software (Leica, Wetzlar, Germany) in order to determine the mean 

linear intercept (MLI; in μm), mean air space (in %) and mean septal wall thickness (in 

μm). Tissue borders, as well as bronchi and blood vessels were manually marked and 

excluded from calculations. Non-stained areas were recognized as air space, whereas 
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stained parts were recorded as lung tissue. The average values for MLI, mean air space 

and septal wall thickness were statistically evaluated with Prism (Graphpad, La Jolla, 

CA 92037 USA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 03. Methodical procedure alveolar morphometry at E18.5. 

Scans of E18.5 lungs were uploaded into Leica’s Qwin V3 software after Hematoxylin 

and Eosin staining. (A) E18.5 lung after manual exclusion of lung borders: yellow areas 

are registered as air space. Blue areas are recognized as septal lung tissue. (B) Lung at 

E18.5 before processing with Qwin V3. 

 

 

2.9  In-vitro lung culture  
 

Prior to the execution of the experiment, 50 μl Fetal Bovine Serum (ATCC 20-2030, 

Manassas, USA) and 5 ml of Penicillin (10.000 U/ml)/Streptomycin (10 mg/ml) (PAN 

Biotech, Cat-No. P06-07005, Aidenbach, Germany) were added to DMEM medium 

which already contains glutamine. 

A B 
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WT E11.5 lungs were dissected under Leica M125 C microscope (Leica, Wetzlar, 

Germany) and placed in a glass petri dish with 10 μl of DMEM to keep them 

moisturized. Multi-well plates were prepared with 500 μl DMEM medium (Thermo 

Fisher Scientific, Waltham, USA) and Whatman Nuclepore membrane filters (GE 

Healthcare, Solingen, Germany). The explants were placed carefully on the membrane 

filters and treated either with Morpholino vivo miR-154 (Gen Tools, Oregon, USA) or 

scrambled sequences (Geng at al. 2011). For the experimental group 4 μl of 0.5mM 

morpholino solution were added to 500 μl DMEM medium to obtain 4 μM end 

concentration of morpholino for the incubation of lung. 4 μl of scrambled sequences 

were added to the medium of the control group. Lungs were cultured on air-liquid 

interface at 37˚C for 72 hours. After 24 hours, 48 hours and 72 hours of culturing 

photos were taken with Leica MZ 125 (Leica, Wetzlar, Germany) and Spot imaging 

software (Diagnostic Instruments Inc, Sterling Heights, USA). Based on the images the 

buds were counted later on and p values were calculated using Prism (Graphpad, La 

Jolla, CA 92037 USA).    

With completion of the 72 hours the lungs were collected, placed into QIAzol (Qiagen, 

Hilden, Germany) and stored at -80°C. For gene analysis RNA isolation and qPCR, as 

well as quantitative RT PCR were performed as described above. 
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3 Aims of the study 
 

 

In the context of organogenesis research, microRNAs have gathered increasing interest 

in the recent decades. A substantial number of these small non-coding RNAs have 

already been linked to early lung development (Jiang et al. 2013; Carraro et al. 2009; 

Bhaskaran et al. 2009). One of those is miR-154, a member of the largest human 

microRNA cluster, which has previously been detected to be highly expressed in 

neonatal mouse lung (Williams et al. 2007). Until now however, only little is known 

about the effects of this specific microRNA. Therefore, we aimed to investigate the role 

of miR-154 during the organogenesis of the lung. We approached this objective in two 

ways. First we overexpressed miR-154 during E7.5 until E18.5 and secondly we 

blocked miR-154 at E11.5 for 72 hours. 

 

 

By means of our experimental inquiries we aimed to answer the following questions: 

 

1.) Does miR-154 overexpression during embryonic lung development lead to changes 

in gene expression and morphology of the lung? 

 

2.) Does in-vitro blockade of miR-154 during embryonic lung development lead to 

changes in gene expression and morphology of the lung?  
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4 Results 
 

As only very little is yet understood about the role of miR-154 in lung organogenesis, it 

was our main interest to examine the effects of this certain microRNA during the early 

developmental process of the lung. Therefore, we designed two experimental 

approaches, a gain and a loss of function model. In the first one, we overexpressed miR-

154 in a Tg(CCSP-rtTA)/+;Tg(tet(O)miR-154)/+ mouse model from E7.5 until E18.5, 

and analyzed the effects on morphology and gene expression. The second experimental 

setup was created in order to determine the effects of a blockade of miR-154 during in 

vitro culture. Here wild type lungs were harvested at E11.5 and grown for 72 hours. 

Throughout the culture we used a Morpholino treatment to block miR-154 in the 

experimental group. 

In the following the results of both approaches will be presented. Therefore, the section 

is divided into two parts. At first, the observed effects of overexpressing miR-154 

during the time period of E7.5 until E18.5 will be presented. The second part deals with 

the blocking of miR-154 from E11.5 for 72 hours.  

 

 
4.1 Overexpression of miR-154 in Tg(CCSP-rtTA)/+;Tg(tet(O)miR-

154)/+ mice (E7.5 - E18.5) 
 

The experimental set up for the gain of function model was designed to generate 

significantly increased epithelial expression levels of miR-154 during the early stages of 

embryonic lung organogenesis. We aimed to raise miR-154 expression from E7.5 until 

E18.5. This time period comprises the embryonic stage, the pseudoglandular stage 

(from E11.5 to 16.5), the canalicular stage (from 16.5 to 17.5) and partially the terminal 

saccular stage (beginning E17.5) of lung development.  

 

For the implementation of our strategy, mice heterozygous for both Tg(CCSP-rtTA) and 

Tg(tet(O)miR-154) were crossed. Figure 02 shows all possible genotypes that may 

result from this crossing. Also, the classification to either the Control or Experimental 

group is illustrated. The pictured mating was the one with the highest potential to 
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generate equal amounts of both experimental and control samples within the same litter. 

Thus, we could apply the exact same treatment to all of our samples.  

The miR-154 transgene, which we used, was previously analyzed by Gianni Carraro 

Figure 04 A-C. After installation into the mouse genome, the miR-154 transgene is 

located adjacent to Snx19. Gianni Carraro proved, that in comparison with wild types, 

the mice carrying the miR-154 gene showed no significant alteration of Snx19 

expression. Consequently, the installation of the miR-154 transgene itself does not 

significantly affect the natural processes in our transgenic mice (Figure 04).  The 

transgene comprises an tet(O) operon, the miR-154 gene and a poly(A) tail. The 

presence of this transgene can be verified with gel electrophoresis. The corresponding 

band is located between 300 and 400 base pairs (Figure 05).  
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Figure 04. Design of transgenic mouse line. 

(A) MiR-154 transgene composes a tet(O) operon, the miR-154 transgene and a poly A 

tail. (B) MiR-154 transgene is located adjacent to Snx19 in transgenic mice. (C) Snx19 

expression is not significantly altered due to gene insertion in transgenic mice. (D) 

Timeline of experimental set up: The pregnant mice were fed with doxycycline food 

from E7.5 to E18.5 in order to induce miR-154 overexpression. (E) MiR-154-3p and 

miR-154-5p are both significantly overexpressed in the experimental group at E18.5. 

 

 

The Tet-On system, we used, is designed to induce overexpression of target genes in the 

presence of an effector. The binding of doxycycline causes a conformational switch in 

the reverse-rtTA variant, which is then able to bind the tet operator (tet(O)). The 

following activation of the P-tet promoter allows the expression of the downstream 

located gene (Das, Tenenbaum, and Berkhout 2016). After the mating, the desired 

overexpression of microRNA 154 is reached by feeding doxycycline food to the 

pregnant mother from E7.5 until E18.5. 

  

4.1.1 Verification of miR-154 overexpression in transgenic mice 
 
 
In our experimental set up all embryonic lungs were harvested at E18.5. Thereupon, we 

examined the genotype of every pup for the CCSP-rtTA and miR-154 alleles. By 

selective gene amplification and gel electrophoresis, the CCSP promoter allele was 

detected at 500 base pairs. The alleles for miR-154 could be verified at 465 base pairs 

for wild type and at 231 base pairs for the mutant genotype. On the basis of these 

results, all animals were classified as Control or Experimental. Figure 05 shows an 

example of the genotyping of both Control and Experimental pups. All Controls are 

homozygous for the wild type alleles of either the CCSP promoter or the Tg(tet(O)miR-

154), or both. Mice with these genotypes are unable to respond to the doxycycline food. 

In contrast, the animals within the Experimental group carry both transgenes. These 

animals might be homo- as well as heterozygous for Tg(tet(O)miR-154). 
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In order to confirm the sufficient overexpression of miR-154 at E18.5, we performed a 

quantitative PCR, using U6 as housekeeping gene. Control as well as Experimental 

group comprised five animals (n=5). The experimental group showed highly significant 

expression levels for miR-154-5p (p = 0.0004). Likewise, miR-154-3p was significantly 

higher expressed (p < 0.0001) in the experimental group. In contrast, the expression of 

both miR-154-3p and miR-154-5p were attenuated in the control group. We therefore 

assumed a sufficient overexpression of miR-154 (results shown in Figure 04 E). 

 

 

 

 
 

 

 

 



 

 

39  

Figure 05. Exemplary genotyping of an experimental and a control mouse at E18.5. 

(A) Gel electrophoresis of a Control group mouse: Only one band was detected for the 

CCSP-rtTA transgene in WT mice. The presence of the miR-154 wild type gene was 

detected with the band at 465 base pairs. (B) Gel electrophoresis of an Experimental 

group mouse (heterozygous): The mutant shows bands for the CCSP-rtTa transgene at 

500 base pairs and a band for the miR-154 transgene at 231 base pairs, as well as a band 

for the miR-154 wild type gene. (C) Expected band sizes for CCSP-rtTA and miR-154. 

(D) Primer sequences for miR-154 and CCSP-rtTA. 

 

 

4.1.2 Overexpression of miR-154 leads to thinning of alveolar septa and 

alveolar simplification 
 

The explanted lungs showed no macroscopic differences in terms of size and number of 

lobes. Moreover the surface structure of all lungs appeared regular. As the experimental 

setting was confirmed with the quantitative RT-PCR, we subsequently focused on the 

microscopic differences in phenotype. Therefore, the Hematoxylin and Eosin (H&E) 

staining was carried out. 

The first impression of the H&E staining was a distinct difference in lung structure. The 

epithelial overexpression of miR-154 in the Experimental group appeared to lead to 

an emphysematous phenotype with thinned alveolar septa and extended alveoli. We 

thereupon aimed to objectify these observations by alveolar morphometry. For this more 

precise analysis of phenotypic differences, hematoxylin and eosin stained slides were 

scanned and uploaded to Qwin V3 software. Here the mean linear intercept (MLI, in 

μm), the airspace (in %) and mean septal wall thickness (in μm) could be determined. 

The MLI is a parameter of volume-to-surface ratio and reports the mean free distance in 

the airspaces. It may however not be considered as measure for “alveolar size” 

(Knudsen et al. 2010).   
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 Figure 06. Overexpression of miR-154 leads to altered lung morphology at E18.5 

A) Overexpression of miR-154 during E7.5 until E18.5 and related Hematoxylin/Eosin 

staining of control (a, c) and experimental lungs (b, d) at E18.5. (B) Corresponding 

alveolar morphometry at E18.5 discloses increased MLI (a), significant elevation of 

airspace (c) and significantly decreased septal thickness (b). 
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Congruently with our observations, the experimental group showed significantly 

reduced septal wall thickness (p = 0.0190) and significantly extended airspace (p = 

0.0179) compared to the controls. The average septal thickness within the experimental 

group was 7.26 μm, the average airspace was 74.7%. Within the control group we 

measured an average septal thickness of 8.7μm and 64.4% average airspace. The mean 

linear intercept was almost significantly higher (p = 0.0513) in the experimental group, 

with an average of 44.3 μm compared to only 30.7 μm within the control group.  

 

 

4.1.3  miR-154 overexpression causes down regulation of alveolar 

myofibroblast markers 
 
To uncover the mechanism behind the observed phenotype, we performed several RT-

qPCRs for gene analysis. Hereby we put our focus on Fgf10 and Tgf-ß signaling 

pathways, which are known to be orchestrating lung development. We also investigated 

the expression levels of epithelial cell markers, which would presumably give us an 

impression of tissue composition. Moreover, we were highly interested in the 

expression of alveolar myofibroblast (AMF) markers. These cells are known to be 

crucial for alveolar septation (Kim and Vu 2006). Each of our examined groups, 

Experimental and Control, comprised five animals (n =5). 

 

Fibroblast growth factor 10 (Fgf10) is known to have crucial impact on embryonic lung 

development. It mediates its effects mainly through transmembrane Tyrosine kinase 

receptors Fgfr2b and Fgfr1b. In the experimental group Fgf10 and Fgfr1b are both 

down regulated, whereas Fgfr2b is slightly up regulated. Etv4 and Etv5, both 

transcription factors acting downstream of Fgf10 are equally down regulated within the 

experimental group. Interestingly Fgf10 signaling modulators Spry2 and Spry4 are 

differently expressed. Spry2, which can be found in embryonic lung epithelium, is up 

regulated, whereas the mesenchymal located Spry4 is down regulated. Moreover, we 

found Bmp4, a counter actor of Fgf10, up regulated. Also, Nmyc, another important 

gene in developing lung patterning, is up regulated.  
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Subsequently we analyzed the epithelial cell markers of the transgenic and wild type 

mice to draw an image of epithelial cell composition. We found elevated expression 

levels for SpB, a cell marker for alveolar epithelial cell type two (AECII) and an 

indicator for sufficient surfactant production. SpC, another marker for alveolar epithelial 

cell type two, as well as Aqp5, which is recognized as a marker for alveolar epithelial 

cell type one (AECI), were equally up regulated. The epithelial cell adhesion molecule 

(EpCam) is a transmembrane glycoprotein, which acts as cell-to-cell adhesion molecule 

in the epithelium. Interestingly, we found a highly significant up-regulation of Epcam (p 

= 0.0031), which might indicate a general increase of Epithelium, as well as an 

alteration of mesenchymal to epithelial ratio.  CC10, the marker for secretory Club cells 

and Nkx2.1, an early marker of lung endoderm, were down regulated in the 

experimental group.  

Furthermore, we were interested in potential changes of Tgf-ß signaling. This signaling 

pathway is a setscrew in numerous developmental processes including lung 

organogenesis. Signal mediating transforming growth factor beta 1 and 3 (Tgf-ß1; Tgf-

ß3) were both down regulated in transgenic mice. Also, we found Smad7, an inducible 

antagonist of Tgf-ß signaling, down regulated.  Pai-1, short for plasminogen activator 

inhibitor-1, is an important regulator of extra cellular matrix balancing (Kutz et al. 

2001) and acts downstream of Tgf-ß. It is also it’s strongest inducer and was found up 

regulated in our analysis. The same applies for IL-1, which codes for a pro 

inflammatory messenger substance and is therefore used as inflammatory marker. 

Most strikingly, the examination of markers for alveolar myofibroblast revealed a 

general down-regulation. Within the experimental group, all of the investigated genes, 

apart from Elastin, showed this trend. This is particularly noteworthy, as alveolar 

myofibroblasts have a major impact on alveolar septation and therefore might be 

accountable for the observed phenotype.  

Pdgf signaling, which is linked to lung organogenesis, usually shows high expression in 

fibroblasts and smooth muscle cells. Here we found Platelet-derived growth factor a, 

Pdgf-a, and Pdgfr-α, the related transmembrane Tyrosine kinase receptor, both 

significantly down regulated (p = 0.0358; p = 0.0408). Alpha-actin-2 (Acta2), also 

known as alpha smooth muscle actin (α-SMA), is a marker for smooth muscle cells and 

was slightly down regulated. Moreover, we detected a significant down regulation (p 

=0.0198) of Fgf9, which is known to be involved in branching morphogenesis. The 
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expression levels of Fgfr4, a Fgf receptor, which has been linked to formation alveolar 

septa (Weinstein et al. 1998) presented itself equally down regulated within the 

experimental group. The only up regulated gene in this set was Elastin, the coding gene 

for the key component of elastic fibers. 
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Figure 07. Overexpression of miR-154 from E7.5 to E18.5 leads to changes in gene 

expression of Fgf10, epithelial markers, Tgf-ß signaling and AMF markers. 

(A) In Fgf10 signaling five out of nine genes were found down regulated. These 

comprised Fgf10, Fgfr1b, Etv4, Etv5 and Spry4. Contrary alterations were disclosed for 

Fgfr2b, Spry2, Bmp4 and Nmcy. None of the observed changes were significant. 

(B) The examination of epithelial markers revealed significantly higher expression 

levels for Epcam (p=0.0031), accompanied by elevated SpB, SpC and Aqp5 expression. 

Only Nkx1.2 and Cc10 were found down regulated. (C) Most analyzed genes involved 

with Tgf-ß-signaling showed reduced expression. This applied for Tgfß1, Tgfß3 and 

Smad7. Only Pai-1 and inflammatory marker IL-1b were up regulated. (D) A 

concordant trend was found regarding the expression of alveolar myofibroblast markers. 

All genes, apart from Elastin, were found down regulated. The expression levels of 

Pdgfr-α (p=0.0408), Pdgf-a (p=0.0358) and Fgf9 (p=0.0198) were significantly 

reduced. 

 
 

4.1.4 The quantity of alveolar myofibroblasts is not altered by epithelial 

overexpression of miR-154 in E18.5 lungs 
 

As we disclosed significant alterations of expression levels within the alveolar 

myofibroblast fraction, we decided to perform an Alpha-actin-2 (Acta2) staining. The 

quantification of the alveolar myofibroblasts (AMF) in both Experimental and Control 

group could potentially reveal further clarity. A changed presence of AMFs could be the 

cause of the phenotype in question. The Alpha-actin-2 protein is known to be a specific 

marker for alveolar myofibroblasts and also gives a hint to the location of muscle cells 

in blood vessels and bronchi. Thus the staining allowed us to evaluate any differences in 

AMF and smooth muscle presence.  

At first sight there were no obvious alterations in smooth muscle actin expression. 

Control and Experimental group revealed equal occurrence of smooth muscle in bronchi 

and blood vessels. At higher magnification, we counted the stained alveolar 

myofibroblasts at the tip of alveolar septa. These are vital for secondary septation of 
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alveoli. The experimental group showed slightly more AMFs in average. The disparity 

of 19.25 AMFs in the Experimental group to only 17.25 in the Control group was 

however not significant.  

 

 
Figure 08. Presence of AMFs is not significantly altered in lungs with epithelial 

overexpressed miR-154 at E18.5 

(A) Alpha-actin-2 stained lungs at E18.5 in 20x and 40x magnification. Bronchi and 

vessels appear to contain similar amounts of muscle cells in Control (a) and 

Experimental (c) organs. The number of AMFs in alveolar areas of Control (b) and 

Experimental (d) lungs in 40x magnification did likewise show no differences at first 

sight. (B) The quantification of AMFs confirmed this assumption. The Control group 

showed 17.25 AMFs in average. The Experimental lungs contained slightly more: 

19.25 AMFs in average. 
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4.2  Blockade of miR-154 during in vitro lung culture  
 

The remarkable changes in lung structure and gene expression, which we observed due 

to the overexpression of miR-154, further encouraged our interest in what potential 

alterations a loss of miR-154 during early lung development might have.  In our second 

experimental set up we therefore explanted wild type lungs at E11.5. These were 

cultured in two different treated groups on an air-liquid interface at 37°C for 72 hours. 

Thereby the Experimental group (n = 4) was treated with morpholino solution. This 

contains nucleic-acid analoga with the ability to block miR-154. The Control group (n = 

4) was exposed to an equivalent amount of scrambled sequences. As with the first 

experimental approach, we focused on lung phenotype and genetic alterations. 

Therefore, we took pictures of the growing organs every 24 hours. These formed the 

basis for the analysis of lung phenotypes. After 72 hours, the organs were collected for 

further examination. We thereupon isolated the RNA of all cultured lungs for the 

examination of gene expression. The following Figure 09 gives an overview of the 

experimental setup and different treatments of the harvested lungs. 
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Figure 09. Experimental setup for lung culturing in vitro, starting from E11.5. 

(A) Pups were collected from the mother at E11.5 and stored in PBS. Embryonic mice 

lungs were dissected under a microscope and placed in DMEM to keep them 

moisturized until all lungs were harvested. (B) Lungs were randomly separated into 

experimental and control group and thereafter placed on to an air-liquid interface. This 

way the explants had access to air and the nutritious medium simultaneously. Culturing 

was performed for 72 hours at 37°C. 

 

4.2.1 Morpholino reduces miR-154 expression in embryonic mouse lung 
For a start, we aimed to verify the functionality of the used morpholino solution. We 

therefore collected all lungs after 72 hours of culturing and isolated the RNA. 

Subsequently we performed a quantitative PCR in order to compare the expression 

levels of miR-154-3p and miR-154-5p in both Experimental (n =4) and Control group 

(n=4). 

 

 

  
 

Thereby U6 was used as housekeeping gene. Strikingly, we discovered an almost 

significant attenuation of miR-154-5p expression and a highly significant reduction of 

miR-154-3p expression level (p = < 0.0001) in the morpholino treated group. These 

Figure 10. Expression of miR-154 in 

in-vitro cultured lungs treated with 

morpholino vs. control from E11.5 

for 72 hours. 

Quantitative RT-PCR reveals 

diminished incidence of both strands 

of miR-154 in the morpholino treated 

group.  MiR-154-3p is significantly 

(p=0.0001) reduced in the 

experimental group. The presence of 

miR-154-5p is almost significantly 

decreased (p=0.0533). 
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results confirm the sufficient function of the morpholino solution and thus the blockade 

of miR-154 in the Experimental group. Results are presented in figure 10. 

 
 

4.2.2 Morpholino treatment causes reduced branching morphogenesis 

 

 

As the reliability of the applied morpholino solution was proven, we concentrated on the 

morphological differences between both groups. Therefore, we analyzed the pictures 

taken in the course of the culturing. These were manufactured every 24 hours in 5x and 

10x magnification. 

At T0, immediately after the harvest, all lungs showed roughly 8 buds. After 24 hours 

(T1) we could determine the first changes in branching morphogenesis. The control 

group (n=4) had an average bud number of 14, whereas the morpholino group (n=4) had 

only 11.25 buds in average. At T2, 48 hours after the explant, the trend proceeded and 

we recognized significant (p = 0.232) differences in the number of buds. Here the 

average bud quantity within the control group was 25.25. The morpholino group only 

showed an average of 18.5 buds.  Another 24 hours later (T3), 72 hours after the 

harvest, the control group had 35.5 buds in average. Whereas the morpholino treated 

lungs only developed an average number of 25.25 lung buds. This deviation is 

statistically significant with a p value of 0.0001. 
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4.2.3 Blockade of miR-154 leads to increased expression of Fgf10 and Tgf-ß 

signaling as well as increased expression of epithelial and alveolar 

myofibroblast markers 
 

The pertinent macroscopic and morphologic alterations caused by blocking of miR-154 

encouraged us to further investigate miR-154 effects in detail. Therefore, we followed 

the approach we performed with the gain of function model and examined the gene 

expression of major signaling cascades and cell markers - Fgf10 and Tgf-ß signaling, 

along with the epithelial markers and markers for alveolar myofibroblasts after 72 hours 

(T3). Both Control and Experimental group comprised four animals (n = 4).  

Interestingly, we observed a general overexpression of all genes linked to the Fgf10 

signaling. The gene for the main ligand, Fgf10 itself, was highly significant (p = 

0.0074) up regulated. The tyrosine kinase receptors Fgfr2b and Fgfr1b (p = 0.0316; p = 

Figure 11. Analysis of in vitro lung culturing from E11.5 for 72 hours. 

(A) Branching morphogenesis of cultured lungs. 

(1,2) Images of explanted lungs in 5x magnification at E11.5 before treatment (0 hours 

cultured). Pictures of control (a, b) and morpholino (c, d) lungs in 5x and 10x 

magnification after 24 hours of in vitro culture.  Control (e, f) and morpholino (g, h) 

captured in 5x and 10x magnification after 48 hours. (i-l) Lungs after 72 hours of in 

vitro culture. Images show control and morpholino lungs respectively in 5x and 10x 

magnification. 

(B) Comparative presentation of lung growth (morpholino vs. control). 

(a) At E11.5 both groups show lungs with eight lung buds in average. (b) After one day, 

the control lungs present 14 buds in average, whereas the morpholino treated lungs 

show only 11.25. (c) Another 24 hours later the differences become statistically 

significant (p= 0.0232). Here, the morpholino lungs count only 18.5 buds, whereas the 

controls grow 25.25 in average. (d) After 72 hours the trend reaches its peak with 

p=0.0001. Until now, the control lungs developed an average amount of 35.5 buds. In 

contrast the morpholino treated specimens grew only 25.25 buds over all. 

The experimental group was treated with a miR-154 blocking morpholino solution.  
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0.053) and the transcription factors Etv4 and Etv5, which act downstream of Fgf10, 

were also up regulated. The same applies for the genes of epithelial expressed Fgf10 

modulator Spry2 and Fgf10 antagonist Bmp4. Moreover, we observed an up regulation 

of Nmyc. Congruent with the up regulation of Fgf10 signaling, we determined an up 

regulation of all analyzed epithelial cell markers. SpB, the marker for alveolar epithelial 

cells type two (ACEII) and functioning surfactant production, was significantly (p = 

0.0005) up regulated. In addition, the markers Aqp5, which represents the Pneumocytes 

type one, or AECI, and SpC, the primary marker for AECII, were up regulated. We also 

recognized a significant elevation of gene expression for the epithelial cell-to-cell 

adhesion molecule (Epcam; p= 0.0465) and the marker for protein secretory Club cells, 

Cc10 (p = 0.0497). 

The analysis of Tgf-ß signaling revealed an overexpression of most genes linked to the 

signaling pathway. Only IL 1ß, coding for an inflammatory signaling molecule, was 

significantly (p= 0.0468) down regulated. Remarkably, IL-1ß was the only gene of all 

25 examined, which was reduced in expression. Apart from that, we found transforming 

growth factors beta 1 and 3 (Tgf-ß1; Tgf-ß3) up regulated, Tgf-ß3 almost significant (p = 

0.0533). Furthermore, the Tgf-ß antagonizing Smad7, as well as plasminogen activator 

inhibitor-1 (Pai-1) showed increased expression levels. 

Just like the general overexpression of Fgf10 signaling associated genes, the 

overexpression of epithelial markers and the genes related to Tgf-ß signaling, the 

markers for alveolar myofibroblasts were likewise generally overexpressed in the 

morpholino treated group. Platelet-derived growth factor a, Pdgf-a, and Pdgfr-α, the 

transmembrane Tyrosinkinase receptor, were both up regulated. Pdgf-a was almost 

significantly (p = 0.068) and Pdgfr-α was in fact significantly (p = 0.0478) over 

expressed. Also, Elastin and Acta2, or alpha smooth muscle actin (α-SMA), were 

significantly up regulated (p = 0.0026; p= 0.0211). Furthermore, we found the Fgf 

signaling related genes Fgf9 (p = 0.0217) and Fgfr4 up regulated in the experimental 

group. 
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Figure 12. Blockade of miR-154 leads to up regulation of Fgf10 signaling, epithelial 

markers, Tgf-ß signaling and AMF markers after 72 hours of in vitro culture. 

(A) Genetic analysis of Fgf10 signaling indicated a general up regulation of all 

investigated genes. Fgf10 (p= 0.007), itself, Fgfr2b (p= 0.031) and antagonist Bmp4 (p= 

0.010) were significantly higher expressed. Not significant, but equally orientated were 

the expression levels of Fgfr1b, Etv4, Etv5, Spry2 and Nmyc. 

(B) All investigated epithelial markers showed elevated expression. SpB (p= 0.0005), 

Cc10 (p= 0.049) and Epcam (p= 0.046) were significantly raised. Nkx2.1, SpC, and 

Aqp5 were also higher expressed within the morpholino group. 

(C) Apart from Il-1ß, which was significantly down regulated (p= 0.048), all other 

investigated genes, Tgfß1, Tgfß3, Smad7 and Pai-1, involved with Tgf-ß signaling were 

overexpressed.  

(D) The general trend of up regulation was also found with regard to the expression of 

alveolar myofibroblast markers. Unexceptional, all six genes were higher expressed in 

the morpholino treated lungs. Pdgfr-α  (p= 0.047), Elastin (p= 0.002), Acta2 (p= 0.021) 

and Fgf9 (p= 0.021) were found significantly raised. 
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4.3 Summary of findings 
 

The knowledge about miR-154’s involvement in early lung development is still quite 

limited. Therefore, we developed two experimental approaches with the aim to answer 

the questions mentioned below: 

 

1.) Does miR-154 overexpression during embryonic lung development lead to changes 

in gene expression and morphology of the lung? 

 

2.) Does in-vitro blockade of miR-154 during embryonic lung development lead to 

changes in gene expression and morphology of the lung? 

 

In both of our set ups we revealed severe alterations of lung phenotype. Due to the 

epithelial overexpression of miR-154 from E7.5 to E18.5 the lungs presented thinned 

alveolar septa and extended sacculi. The alveolar morphometry revealed significant 

reduced septal thickness (in μm) and magnified percentage airspace in the Experimental 

group. The mean linear intercept was nearly significantly increased. Upon these 

observations, we scrutinized several groups of genes to detect changes explaining the 

phenotype. The most striking alterations were found amongst the alveolar myofibroblast 

markers. As an alteration of AMF presence and functionality could well be considered 

responsible for the appearance of the Experimental lungs, we decided to carry out an 

Acta2 staining. However, the count of relevant AMFs did not reveal significant 

differences between Experimental and Control lungs.  

In order to answer the second question, we performed of a blocking of miR-154. In the 

course of a three-day culture the Experimental lungs grew significantly fewer lung buds. 

After we had proven the functionality of the applied morpholino solution, we took a 

closer look at gene expression. Notably, the expression of all genes belonging to the 

Fgf10 and Tgf-ß pathways were elevated. Moreover, the markers for epithelial cells and 

alveolar myofibroblasts were equally raised.  

The answers to both of our questions suggest a vital role of miR-154 during lung 

organogenesis. The alteration of miR-154 presence was followed by changes in lung 

phenotype and gene expression levels in each of the two time periods.  
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5 Discussion 
 

In this study, we were able to perceive miR-154’s impact during the process of early 

lung organogenesis in mice. This was approached following two concepts. On the one 

hand, we overexpressed miR-154 during prenatal days E7.5 until E18.5 in the 

epithelium, on the other hand we reduced miR-154 activity levels during the time period 

in between E11.5 + 72 hours in vitro.  

The overexpression of miR-154 led to strikingly altered lung morphology and gene 

expression levels. The experimental group presented lungs with significantly increased 

airspace, elevated mean linear intercept and thinned alveolar septa. On the genetic level, 

we found changes indicating miR-154’s influence on two pathways, which are known to 

be essential to lung organogenesis; the Fgf10 and Tgf-ß signaling pathways.  

Furthermore, the expression levels of epithelial and myofibroblast cell markers were 

affected, indicating a change in cell composition. 

In our second approach - the blockade of miR-154 in vitro - we also observed 

remarkably altered lung development. Here, too, genetic expression levels were 

modified. The Experimental group presented a general elevation of the genetic 

expression of Fgf10 and Tgf-ß signaling. The Epithelial- and myofibroblast cell markers 

were also higher expressed in these lungs compared to the Control group. Moreover, we 

could show increasing differences in the formation of lung buds throughout the lung 

culturing. Lungs lacking miR-154 showed a significant reduction of lung bud 

outgrowth. 

The interpretation and target-oriented development of our further strategy is quite a 

complex effort.  As micro RNAs are regulatory molecules with the ability to regulate 

gene expression, the identification of potential targets is the main step towards a further 

understanding of the role of miR-154.  

So far miR-154 has been linked to several cancer entities. Although micro RNAs might 

play different roles in different organisms and biological processes, their molecular 

structure remains the same independent of their localization. Therefore, the targets 

identified in other studies should also be considered as potential targets of miR-154 in 
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early lung development. The investigation of the current literature provided indications 

to some of these potential targets. 

 

5.1  MiR-154 might target Tgf-ß signaling and Smad7  
 

So far miR-154 has been subject to several studies on human carcinomas, but only little 

attention has been paid to its role during early lung development. However the studies 

on prostate-, colorectal-, hepatocellular -, skin squamous cell-, breast - and lung 

carcinoma, as well as glioblastoma have revealed different target genes and potential 

functions of miR-154 (Zhu et al. 2013; Xin, Zhang, and Liu 2014; Pang et al. 2015; 

Chen and Gao 2018; Xu et al. 2016; Lin et al. 2016; Zhao et al. 2016). 

Interestingly, several publications outline a relationship between miR-154 and Tgf-ß 

signaling. Lin at al. determined ZEB2, Zinc finger E-box binding homeobox 2, as a 

direct target of miR-154 in non-small cell lung cancer (NSCLC). The expression of 

ZEB2, which is known to be a regulator of epithelial-mesenchymal transition (EMT), 

was decreased on both messenger RNA and protein levels by overexpressing miR-154. 

Therefore the authors concluded that miR-154 alters EMT by targeting ZEB2 (Lin et al. 

2016). Strikingly, ZEB2 was initially characterized as a transcriptional regulator of the 

transforming growth factor (Tgf-ß) signaling pathway. It impedes Tgf-ß signaling, by 

interacting with Smad proteins (Verschueren et al. 1999; Postigo et al. 2003). 

Previously to Lin et al. Gururajan et al. drew another connection between miR-154 and 

the regulation of EMT and TGF-ß signaling. They investigated the role of miR-154* 

and miR-379 in metastatic prostate cancer. Both members of the DLK1-DIO3 mega-

cluster were found elevated in the serum of patients suffering from this disease.  In the 

fate of the study both microRNAs could be identified as inducers of EMT in prostate 

cancer cells. Thus, an experimental knockdown of miR-154* in cancer cells resulted in 

morphological, biochemical and functional EMT alterations. Strikingly, TGF-ß 

signaling was, among others, revealed as one of the target pathways, which were 

controlled by the investigated microRNAs. Also SMAD7, a known inhibitory regulator 

of the TGF-ß pathway, was identified as a target of miR-154* (Gururajan et al. 2014). 

Further reference for an interaction of miR-154 and Tgf-ß signaling was indicated by a 

more recent investigation. Wang et al. described the mutual influence of Hdac3 

(Histone deacetylase 3) and the miR-17-92 cluster on alveolar epithelial cell 
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remodeling. Due to a loss of Hdac3 in genetically modified mice, the authors observed 

an overexpression of several micro RNAs of the Dlk1-Dio3 cluster. Furthermore they 

identified the Tgf-ß pathway as one of the targets of both clusters (Wang, Frank, et al. 

2016). Since miR-154 is a member of the investigated Dlk1-Dio3 cluster, these findings 

reinforce the assumption that miR-154 targets Tgf-ß signaling. 

 

 

5.2 MiR-154 possibly alters lung organogenesis through targeting Tgf-ß 
signaling 

 

With regard to branching morphogenesis and alveolarization the reciprocal 

communication between epithelium and mesenchyme via mediators, such as Tgf-ß, Wnt 

and fibroblast growth factors (Fgfs) has to be taken into account particularly (Morrisey 

and Hogan 2010).  

The Tgf-ß signaling cascade itself is a recognized setscrew in both branching 

morphogenesis and late lung development. The right concentration at the right time is 

crucial and can easily lead to pathological developments if variations occur. As 

recognized in prior examinations, the down regulation of Tgf-ß signaling mediators 

Tgfßr2, Smad2, Smad3 or Smad4 led to enhanced branching morphogenesis in early 

lung development. Equal alterations were observed in cause of the overexpression of 

inhibitory Smad7 (Zhao et al. 1996; Zhao et al. 1998; Zhao et al. 2000; Chen et al. 

2008). Conversely, these findings suggest, that Tgf-ß signaling is inhibitory for early 

branching processes.  

If we link this existing knowledge to the assumption, that miR-154 targets Tgf-ß 

signaling, a blockade of this specific microRNA should result in diminished lung 

branching. In our present study, we explanted mice lungs at E11.5, significantly reduced 

the presence of miR-154-3p through a specific morpholino treatment and cultured the 

specimens for 72 hours. In point of fact, the morpholino treated lungs presented 

significantly reduced lung bud outgrowth compared to the Control group. Our 

observations at the level of gene expression were concordant to this phenotype. Here, 

the miR-154 blockade led to an overexpression of most Tgf-ß pathway genes. 
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Moreover, our investigations go hand in hand with the studies of Serra, Pelton and 

Moses. The authors cultured E11.5 lungs in the presence and absence of Tgf-ß in 

different concentrations. Lungs cultured in a medium with and without artificial 

addition of 100 ng Tgf-β1/ml are shown in Figure 13. In comparison with the Control 

group, the lungs with artificially added Tgf-ß1 grew considerably less lung buds during 

the course of the examination (Serra, Pelton, and Moses 1994). The distinct similarity of 

phenotypes reinforces the assumption of a common underlying mechanism. Not only  

the arftificial addition of Tgf-ß, but also the blockade of miR-154 seems to result in 

unphysiologically high levels of Tgf-ß and therefore diminished bud outgrowth. 

 

At later stages of lung development Tgf-ß signaling plays a different role. Alejandre-

Alcazar et al. found airway and alveolar epithelium formation, as well as the emergence 

of vascular and smooth muscle cells dependent on TGF-ß- signaling (Alejandre-Alcazar 

et al. 2008). In our gain of function approach miR-154 was overexpressed in the 

epithelium from E7.5 to E18.5. Compared to the loss of function model, the genetically 

Figure 13. Branching morphogenesis of in 

vitro lung cultured lungs in the presence 

and absence of Tgf-ß1. 

 

(+) Lungs were cultured in medium 

containing additional 100 ng Tgfβ1/ml. 

(-) Samples were grown in medium without 

artificially added Tgf-ß.  

Pictures of he growing lungs were taken at 0 

hours, 14 hours 24 hours and 48 hours after 

the treatment. 

 

In comparison with the controls, all lungs 

treated with Tgf-ß show diminished 

branching from hour 14 onwards (adapted 

from Serra, Pelton, and Moses 1994). 
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and morphological analysis presented a similar situation. In both experimental 

approaches the expression of Tgf-ß signaling behaved equally dichotomous to the 

presence or absence of miR-154. Here, Tgf-ß1 and Tgf-ß3 expression were diminished 

in consequence of the epithelial overexpression of miR-154. Since the observed 

reduction of Tgf-ß signaling was relatively small, it could also be due to biological 

diversity and not the overexpressed miR-154. However, the thinned alveolar septa and 

increased airspaces can be considered as a precursor stage of impaired alveolarization. 

All the more so, since the emphysematous phenotype of our experimental group is 

comparable to results of other studies. Chen et al. analyzed lungs of mice with a 

deficiency for Smad3, an essential downstream mediator of Tgf-ß signaling. This 

reduction of Tgf-ß signaling led to similar emphysematous lung morphology with 

dysfunctional alveolarization (Chen et al. 2005). Therefore, an inhibitory function of 

miR-154 on Tgf-ß signaling seems to be plausible.   

 

In conclusion, our experimental approaches showed equal effects on Tgf-ß signaling 

during lung organogenesis. In both experimental setups miR-154 activity was found 

diametrically opposed to Tgf-ß expression and both approaches resulted in concomitant 

lung phenotypes.  On the one hand, reduction of miR-154 lead to increased expression 

of Tgf-ß signaling during early lung development and a congruent phenotype with 

impaired branching. On the other hand, the overexpression of miR-154 in lung 

epithelium results in reduced Tgf-ß expression levels and a phenotype with thinned 

alveolar septa and increased airspace.  

 

 

5.3  MiR-154 might influence branching morphogenesis via alteration of 
Fgf10 and Bmp4 expression levels 

 

 

As mentioned above, lung organogenesis is manly orchestrated by the crosstalk between 

mesenchyme and epithelium. One of the main facilitators is the fibroblast growth factor 

10 signaling pathway. Fgf10 is an acknowledged key player in branching 

morphogenesis and has been intensively investigated over the past years. The outgrowth 

of lung buds during the organogenesis is crucially mediated by signaling between lung 

epithelium and its surrounding mesenchyme. Thereby mesenchymal expressed Fgf10 
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stimulates endoderm proliferation and bud formation by binding to epithelial expressed 

Fgfr2b (Bellusci, Grindley, et al. 1997).  Moreover, Fgf10 was found able to guide the 

adjacent epithelium to bud outgrowth by chemo taxis (Park et al. 1998). Due to previous 

studies on Bmp4 and Fgf10 during lung organogenesis, Weaver, Dunn and Hogan 

established a model for the interplay of these two factors during branching 

morphogenesis. In short, this model suggests that mesenchymal expressed Fgf10 is 

responsible for proliferation and chemotaxis for the underlying epithelium and thus bud 

extension. In contrast Bmp4 inhibits lateral bud outgrowth and is therefore limiting the 

formation of further branching (Weaver, Dunn, and Hogan 2000). 
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Figure 14. Model of growth factors orchestrating branching morphogenesis 

during early lung development 

 

Pictured are the expression of Shh in the endoderm, Fgf10 in the mesenchyme (green) 

and Bmp4 (brown) in the distal endoderm. The black arrow represents the outgrowth 

and direction of movement of the endoderm. Fgf10 activity is depicted through the 

green arrow. 

(A) In the early stages of bud outgrowth Bmp4 is only sparsely expressed in the distal 

endoderm, whereas Fgf10 is highly active in the opposing mesenchyme.  The 

endodermally expressed Shh drives cell proliferation via Ptc1 (Patched1), but also 

attenuates Fgf10 expression (Bellusci, Furuta, et al. 1997). (B) Bmp4 expression 

intensifies in the further course of bud outgrowth. In contrast, Fgf10 expression is 

diminished and decentralized to more lateral areas of the mesenchyme. (C) The 

formation of a lateral bud (bracket) is induced by the lateralized Fgf10 expression and a 

lack of Bmp4 expression in the adjacent endoderm. (D) Further longitudinal outgrowth 

of the bud tip is impeded by the appreciably high expression of Bmp4 in the distal 

endoderm. (E) Further dichotomous branching is induced by the laterally enhanced 

expression of Fgf10 and will be limited by increasing activity of Bmp4 in the 

underlying endoderm (adapted from Weaver, Dunn, and Hogan 2000). 

(F) Blockade of miR-154 during in vitro lung culturing results in overexpression of 

Bmp4. Higher Bmp4 levels might therefore be accountable for reduced bud outgrowth 

and branching morphogenesis, as observed after 72 hours of culture. 

 

 

The authors observed this reduction of branching through Bmp4 in cultured lungs 

during the exact same time period in which we performed the in vitro blockade of miR-

154. Our treatment equally led to a constrained outgrowth of lung buds. Furthermore, 

we could disclose significantly elevated expression levels for Bmp4 in the loss of 

function approach. Higher levels of Bmp4 seem to be a further conceivable reason for 

the limited budding in the experimental group. Interestingly, we also detected elevated 

expression levels for all other investigated genes linked to Fgf10 signaling. However, 

the localization of overexpressed Fgf10 and Bmp4 remains unknown, as the qPCR was 

performed on whole lungs.  Current experiments on morpholino treated and in vitro 
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cultured lungs from E14.5 show lungs with elongated lung buds and a lack of 

branching. These, yet unpublished, data strengthen the assumption of miR-154 being 

implicated in branching regulation via Fgf10 and Bmp4. An investigation of 

mesenchymal and epithelial expressed signaling molecules could potentially uncover 

more details about the impact of miR-154 at different stages of lung development.  

 

 

5.4  MiR-154 might be involved in alveolarization through Pdgf-a 
expression and AMF functionality 

 

The process of alveologenesis is closely related to Platelet-derived growth factor a 

(Pdgf-a), as could be shown by Bostrom et al. For their investigation, the authors 

created a mouse line with a complete lack of Pdgf-a. These mice developed increasing 

emphysematous lungs, with constantly narrowing septae, over the period from P4 to 

P19. By performing an α -Smooth muscle actin staining, the authors recognized a lack 

of alveolar myofibroblast, which was proven essential for the process of alveolar 

septation (Bostrom et al. 1996).  

As the mouse line, we used is capable of the production of Pdgf-a, we did not expect 

any equally extreme phenotypes, as were found by Bostrom et al.. However, the 

overexpression of miR-154 in the epithelium from E7.5 to E18.5 resulted in a 

phenotype, which likewise showed significantly reduced septal thickness and a 

significantly increased air space. Moreover, we revealed a significant reduction of Pdgf-

a and Pdgfr-α expression levels and a reduction of Acta2, a marker for α-Smooth 

muscle cells. Although the thereupon-preformed α-SMA staining did not disclose any 

differences in alveolar myofibroblast presence, the functionality of the existing AMFs 

remains uncertain. Therefore a potential involvement of miR-154 with Pgdf-a signaling 

and AMF quality should not be ignored, but subject to further exploration. 
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5.5 Limitations of Study 
 

Although our investigation is based on a mature concept, there are obvious limits to the 

informative value and interpretability of our results. As limitations are a part of every 

scientific study, we will discuss some of ours in the following. 

5.5.1 Limitations of loss of function approach 

5.5.1.1 Potential toxic effect of morpholino solution 

The significant difference in bud outgrowth we observed in our loss of function model 

has to be critically scrutinized. If the addition of a substrate to the culture medium leads 

to an impairment of organogenesis, its toxicity is always a possible reason. In spite of 

the elevated gene expression levels and the reduced levels of miR-154, a small 

uncertainty about the emergence of this phenotype remains.  

 

5.5.2 Limitations of gain of function approach 

5.5.2.1 Different extend of overexpression due to genotype 

In our gain of function approach, we divided the animals into two groups. Depending on 

their ability to respond to the doxycycline food and therefore overexpress miR-154, the 

mice were either sorted into the Experimental or Control group. The genotypes 

examined were pivotal for this decision. All controls were equally unable to respond to 

the doxycycline and can therefore be considered as “identical”. Animals within the 

Experimental group, in contrast, can be homozygous and heterozygous for the miR-154 

transgene. The combination of alleles might however be determinant for the extent of 

miR-154 expression. In 2013 Danopoulos et al. investigated the effects of Fgfr2b-ligand 

signaling on mouse limb development. The authors could show a dependency of gene 

dosage on the allelic constellation. Animals homozygous for the transgene presented a 

more pronounced phenotype, in this case diminished limb outgrowth, than the 

heterozygous animals (Danopoulos et al. 2013). Differences in gene expression within 

our Experimental group therefore seem imaginable.  
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5.5.2.2 Uncertain differentiation between effects of miR-154-3p and miR-154-5p 

In both of our experimental setups, we observed interesting alterations of lung 

development on the presence of miR-154. Moreover, in both of our approaches we were 

able to show the sufficiency of our envisaged alterations of miR-154 expression. 

Subsequently to the feeding of doxycycline miR-154-3p and miR-154-5p were 

significantly overexpressed. Likewise, miR-154-3p was significantly reduced during the 

lung culturing in our loss of function approach. Here we could also verify an almost 

significant reduction of miR-154-5p. However, these outcomes imply that our 

observations cannot be attributed to one or the other of the two miR-154 molecules.  

 

5.5.2.3 QPCR on whole lungs 

In our gain of function approach, we successfully overexpressed miR-154 during the 

time period from E7.5 to E18.5. Due to the Tg(CCSP-rtTA) transgene this enhanced 

expression was restricted to the proximal and distal lung epithelium. For gene analysis, 

we performed a qPCR using the whole lungs collected at E18.5. In this way, we were 

able to analyze the effects of the epithelial overexpressed miR-154 on the whole organ. 

However, no statement can be made about the distinct impacts of the overexpression on 

epithelium and mesenchyme.  

 

5.5.3 Lack of investigations at the protein level 
 

Our investigations allowed new insights to the role of miR-154 in means of phenotype 

and gene expression. However, miR-154’s impact on a protein level remain uncertain. 

To fully understand miR-154’s regulatory functions, an investigation of protein 

expression would be helpful. This is particularly advisable, as most micro RNAs are 

known to regulate gene expression in three different ways: mRNA target cleavage, 

mRNA deadenylation and translational repression. The identification of suppressed or 

enhanced expression of proteins could deliver further clarifications towards the 

interaction of miR-154 with protein biosynthesis and the resulting phenotype. 
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5.5.4 Limited transferability from mouse to human 
 

Besides the fundamental understanding of molecular biological processes, the higher 

goal of animal experiments is usually the transfer of this knowledge to humans. Animal 

experiments are therefore an integral part of research today, precisely because in many 

cases it is difficult to carry out comparable experiments on humans or with human 

tissue. In many cases this transfer of knowledge form animal to human has been 

successful and we benefit from it today. The establishment of blood transfections, but 

also the development of therapeutic approaches for Parkinson’s disease and pacemakers 

are some of the most popular examples. Unfortunately, however, the transferability is 

often limited. More recently this has become an issue in lung research too. In early 2019 

Danopoulos et al. published a paper dealing with the varying impacts of Fgf ligands on 

lung organogenesis between human and mouse. The authors investigated the expression 

of FGF7, FGF9 and FGF10 and the corresponding receptors in human lung tissue 

during fetal development. Moreover, they examined the effect of these ligands on the 

branching morphogenesis of in vitro cultured human lung tissue. All of these ligands 

have earlier been recognized as having a major effect on organ maturation. The human 

to mouse comparison revealed comparable results for FGF7 and FGF9. However, there 

were striking variations in the impact of FGF10 on mouse and human tissue. In mice, 

Fgf10 induces epithelial branching. Contrary to this, the authors determined expansion 

and formation of cysts in human lung explants as a result of FGF10 application 

(Danopoulos et al. 2019). The elaboration of these clear differences is an excellent 

example of the partially limited transferability of findings from animal experiments to 

humans, which may also apply for our own results.  

 

 

5.6  Future perspectives  
 

 

At this stage of research on miR-154, the knowledge about the exact mechanisms during 

lung development is still very limited. Thus, it is not entirely clear how miR-154 might 

be regulated, or how the interactions with tightly regulated signaling pathways, such as 

Tgf-ß or Fgf10, take place. 
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It will be thrilling to further investigate miR-154’s role in early lung development and 

thereby identify further direct targets of this specific microRNA. A couple of future 

perspectives will be given in the following.  

 

5.6.1 Further experimental approaches  
 

In this study, we were able to highlight some of miR-154’s effects at two different time 

points of lung development. Taking in account, that the organogenesis of the lung as a 

dynamic process, during which miR-154 is equally dynamically expressed (Williams et 

al. 2007), it would be instructive to repeat our experimental set up at different time 

stages. In this way, it will be possible to draw a continuous picture of the morphological 

and genetic alterations caused by overexpression or blocking of miR-154.  

With regard to branching morphogenesis a further examination of both the Fgf10 and 

Bmp4 crosstalk, as well as Tgf-ß signaling appears to be crucial. Quantifying and 

locating Fgf10- and Bmp4- activity in the mesenchyme and epithelium could give 

further insight in the regulatory mechanisms of miR-154 during branching 

morphogenesis. A qPCR on FACS sorted cells would be a knowledge-bringing method 

to begin with.  In order to further evaluate miR-154s role in Tgf-ß signaling a 

phosphosmad staining for Smad signaling molecules would be useful.  

To understand the formation of the phenotype we observed in the gain of function 

model, another look at the alveolar myofibroblasts could be informative. Although there 

were no significant differences in AMF presence, the high diversity in genetic 

expression of AMF markers might indicate yet undiscovered correlations. Therefore, it 

will be thrilling to further investigate the functionality of these cells, as they are known 

to have a high impact on alveolar septation. 

As micro RNAs are recognized regulatory molecules of post-transcriptional gene 

expression (Chekulaeva and Filipowicz 2009), it would be highly interesting to examine 

the implications of miR-154 on a protein level through western blotting. This could not 

only fortify the genetically observed changes, but also give further insight to the 

involvement with the mentioned signaling pathways or even give a hint to other direct 

targets of miR-154.  
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5.6.2 Identifying further miR-154 targets in early lung development 
 

The potential range of miR-154 targets seems to be wide. Therefore, a detection of 

Smad7 and Zeb2 proteins during lung development could be a starting point. This 

investigation might strengthen the hypothesis of miR-154 equally targeting these 

inhibitory molecules during organogenesis, as was previously observed in cancer 

research (Gururajan et al. 2014; Lin et al. 2016).  

A more recent study on miR-154 identified it as tumor suppressive in glioblastoma. 

Zhao et al. did not only determine an inhibition of EMT by overexpressing miR-154, but 

also revealed the 3’ untranslated region, 3’UTR, of Wnt5a as direct target of miR-154 

(Zhao et al. 2017). The Wnt/ß-catenin pathway is known to be involved in lung 

organogenesis at several stages (Cohen et al. 2008; Caprioli et al. 2015). Therefore, 

another regulatory function of miR-154 during lung development through targeting 

Wnt-signaling is conceivable. 

Recently our working group has also uncovered further, yet unpublished, details 

regarding the targets of miR-154. In a gain of function approach, we increased the 

proportion of miR-154 in the cytoplasm of mouse epithelial lung cells (MLE12-cells) 

via transfection. These biotinylated microRNAs bound potential mRNA targets by base 

paring in the cytoplasm. Streptavidin magnetic beads then bound the “miR-target” 

complexes, which enabled the purification, washing and analysis of bound RNA 

molecules. The gene array identified 338 potential targets. In a second gain of function 

experiment, the overexpression of miR-154 in transgenic mice, we could observe 

several down-regulated genes. The intersection of these two approaches narrowed the 

number of potential targets down to 37. These 37 refined targets comprised yet 

unexplored genes, but also well-known ones. Especially Caveolin-1 (Cav1) aroused our 

attention. It has previously been characterized as regulatory in Tgf-ß signaling against 

the background of idiopathic pulmonary fibrosis.  The examinations of Cardenas et al. 

uncovered the role of miR-199-5a in bleomycin induced IPF. The authors revealed a 

Tgf-ß mediated activation of lung fibroblasts due to miR-199-5a targeting Cav1 (Lino 

Cardenas et al. 2013). This link between Cav1 and Tgf-ß signaling makes a further 

examination of this potential target of miR-154 highly sensible, particularly as miR-154 

was awarded a profibroctic role in IPF (Milosevic et al. 2012). 
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5.6.3 Regulation of miR-154 
 

In our experimental set up miR-154 was either unphysiologically strongly overexpressed 

or blocked completely, as in most approaches investigating the effects of microRNAs. 

Until now a lot of attention has been paid to the potential and actual targets of these 

regulatory RNA strands. In order to transfer the knowledge gained in the artificial 

context of studies to a physiological level, it will be equally necessary to understand 

how the specific microRNAs are regulated themselves. This way an induction or 

suppression of microRNAs in “naturally” living organisms could be achieved and 

maybe even be taken to clinical application.  

Figure 15. Genetic pull down of miR-154 target genes. 

(A) MLE-12 cells were transfected with biotinylated miR-154. These cytoplasmatic 

localized miRs base pair with target mRNAs and are marked with Streptavidin 

magnetic beads. These were purified, washed and analyzed via gene array. In total 338 

potential targets were identified. (B) Overexpressed miR154 in transgenic mice led to 

down regulation of certain genes. The genes identified through the pulldown and those 

down regulated after overexpression revealed 37 intersecting potential target genes. (C) 

List of refined targets (Data generated by Gianni Carraro). 



 

 

69  

 

6 Summary (English) 

 
Since the discovery of the first regulatory RNA strands in 1993, the number of known 

micro RNAs has steadily increased. However, the function of the individual molecules is 

often unknown. The aim of our study was to investigate the role of microRNA 154 in 

embryonic lung development. Our strategy included two opposing experimental 

approaches: A “gain of function” and a “loss of function” experiment. In both 

approaches, we analyzed the lung morphology and the changes at the genetic level. 

For the gain of function approach, we designed a mouse line that overexpressed miR-

154 in the pulmonary epithelium upon doxycycline food application. We induced this 

process from embryonic day 7.5 until organ harvest (at E18.5). Using quantitative PCR 

we were able to prove the successful overexpression. As a consequence of epithelial 

miR-154 overexpression a phenotype with thinned alveolar septa and elongated sacculi 

was observed microscopically. In alveolar morphometry we found a significant 

reduction of septal thickness (in μm) and a significant increase of airspace. The 

parameter for volume-to-surface ratio (MLI) was also increased. Searching for the 

genetic correlate for this phenotype, we focused on four gene groups related to lung 

development: The signal cascades of the cytokines Fgf10 and Tgf-ß, as well as the 

marker genes for epithelial cells and alveolar myofibroblasts (AMF). AMFs are 

important mediators of alveolar separation.  In our analysis, their marker genes showed 

a significant down regulation. However, the subsequent Acta2 staining did not reveal 

any difference in AMF presence.  

For the loss of function approach, we blocked miR-154 with a morpholino solution. We 

explanted embryonic lungs at E11.5 and cultivated the organs in vitro for 72 hours. 

Morphologically, the lungs of the experimental group showed a significantly reduced 

formation of lung buds. Gene analysis of Fgf10 and Tgf-ß signaling, but also the gene 

markers of epithelial cells and AMFs showed a trend towards overexpression.  
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7 Zusammenfassung (Deutsch) 
 

Seit der Entdeckung der ersten regulatorischen RNA-Stränge im Jahr 1993 nimmt die 

Anzahl bekannter Micro-RNAs stetig zu. Die Funktion der einzelnen Moleküle ist 

jedoch häufig unbekannt. Ziel unserer Studie war es die Rolle der microRNA 154 in der 

frühen embryonalen Lungenentwicklung herauszuarbeiten. Unsere Strategie dabei 

umfasste zwei gegensätzliche experimentelle Herangehensweisen: Ein „Gain -“ und ein 

„Loss of function“ Experiment. In beiden Ansätzen analysierten wir die Morphologie 

der Lungen und die Veränderungen auf genetischer Ebene. 

Für den „Gain of function“ Ansatz designten wir eine Mauslinie, die miR-154 bei 

Applikation von Doxycyclin-Nahrung im Lungenepithel überexpremierte. Wir 

induzierten diesen Prozess von Embryonaltag 7.5 bis zur Organentnahme (E18.5). 

Mittels quantitativer PCR konnten wir die erfolgreiche Überexpression beweisen. Als 

Folge der epithelialen miR-154 Überexpression zeigte sich mikroskopisch ein Phänotyp 

mit verdünnten Alveolarsepten und elongierten Sacculi. Passend dazu fanden wir in der 

Alveolarmorphometrie signifikant verschmälerte alveoläre Septen (in μm) und einen 

signifikant erhöhten Anteil an Luft im Gewebe. Auch der Parameter für das Volumen-

Oberflächen-Verhältnis (MLI) war erhöht. Auf der Suche nach dem genetischen 

Korrelat für den vorliegenden Phänotypen fokussierten wir vier Gengruppen, die im 

Zusammenhang mit der Lungenentwicklung stehen: Die Signalkaskaden der Zytokine 

Fgf10 und Tgf-ß, sowie die Markergene für Epithelzellen und Alveolarmyofibroblasten 

(AMF). AMFs sind als wichtige Mediatoren der Alveolarseparation bekannt.  Die 

Expression dieser Genmarker war in unserer Analyse signifikant reduziert. Die 

anschließenden Acta2 Färbungen unterschieden sich jedoch nicht hinsichtlich der 

Anwesenheit der AMFs.  

Für den „Loss of function“ Ansatz blockierten wir die miR-154 mit einer Morpholino-

Lösung. Dazu explantierten wir embryonale Lungen an E11.5 und kultivierten die 

Organe für 72 Stunden in-vitro. Morphologisch zeigten die Lungen der 

Experimentalgruppe eine signifikant verminderte Ausbildung von Lungenknospen. Die 

Genanalyse des Fgf10 und Tgf-ß Signaling, aber auch die Genmarker der Epithelzellen 

und AMFs zeigte einen Trend zur Überexpression.   
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