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1. Introduction 
 

1.1. Problems of infectious diseases 

 

The optimism and clinical confidence associated with the development of antimicrobial 

agents from the 1940s onwards has been tempered by the emergence of new diseases, such as 

AIDS and infections associated with transplantation and cancer therapy, and by the 

widespread development of antibiotic resistance. Despite many advances, infectious diseases 

continue to account for about a quarter of all deaths worldwide (Mandell and Bennett, 2000). 

Indeed, the dramatic increase in drug-resistant microbes, combined with the lag in 

development of new antibiotics, the rise of megacities with severe health care deficiencies, 

environmental degradation, and the growing ease and frequency of cross-border movements 

of people and produce have greatly facilitated the spread of infectious diseases (Nicoll and 

Murray, 2002). Regaining the upper hand in the struggle against microbes requires 

multidisciplinary efforts which include expanding the use of vaccines to prevent infection 

(Mackay and Rosen, 2001), developing new antimicrobial agents (Byarugaba, 2004), 

improving surveillance for emerging microbial threats (Nicoll and Murray, 2002), teaching 

the correct use of antimicrobial therapy (Critchley and Karlowsky, 2004), developing 

adjunctive immunotherapies (Roilides and Pizzo, 1992), and conducting new basic research 

on the mechanisms of pathogenesis and drug resistance (Casadevall, 1996). 

In the early 20th century, antibody-based (serum) therapy was used to treat a variety of 

bacterial infections, including those cased by Corynebacterium diphtheriae, Streptococcus 

pneumoniae, Neisseria meningitides, Haemophilus influenzae, group A streptococcus, and 

Clostridium tetani (Casadevall and Scharff, 1994; 1995). By the 1930s, serum therapy was a 

standard treatment for lobar pneumonia. However, when antimicrobial chemotherapy was 

discovered in the mid-1930s, serum therapy for bacterial infections was rapidly abandoned. 

Antimicrobial chemotherapy had important advantages over serum therapy: it was more 

effective and less toxic. The immediate side effects of serum therapy included fevers, chills, 

and allergic reactions (Feinberg, 1936; Rackemann, 1942). Other disadvantages of serum 

therapy included the need to establish a precise diagnosis before selecting serum, lot-to-lot 

variation of serum, and the need for considerable physician production (Casadevall, 1996). In 

1975, hybridoma technology provided the means to generate unlimited amounts of 

monoclonal antibodies (MAbs) (Kohler and Milstein, 1975). In recent years, major advances 

have been made in the techniques used to generate human antibodies and humanize murine 
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monoclonal antibodies (Wright et al., 1992). The juxtaposition of three recent developments 

makes the reintroduction of antibody-based therapies an option for serious consideration. 

First, because of advances in technology, human antibody reagents can be synthesized; thus 

the toxicities traditionally associated with serum therapy can be avoided. Second, the 

emergence of new pathogens, the reemergence of old pathogens, and the increased prevalence 

of drug-resistant microorganisms have caused the effectiveness of existing therapeutic options 

to decline. Third, the difficulties involved in treating infections in immunocompromised 

patients suggest the need for adjunctive immunotherapy (Casadevall, 1996). However, both 

chemotherapy and immunotherapy are only therapeutic but not prophylactic. Indeed, the 

development of vaccines has been one of the most important contributions of immunology to 

medicine and public health. Based on stimulation of humoral and cellular immune responses 

against the corresponding pathogen, the field of vaccinology has experienced success in 

developing a long term prophylaxes for a variety of infectious disease agents by either 

historical use of traditional approaches of attenuated or inactivated microorganisms, protein 

subunits, toxoids or capsular polysaccharides (Hilleman, 2000; Makela, 2000) or recent 

introduction of  gene-based vaccines (Page, 2002). 

 

1.2. Vaccines  

 

More than 70 bacteria, viruses, parasites, and fungi are serious human pathogens (Mackay and 

Rosen, 2001). Vaccines are available against some of these agents and are being developed 

against almost all the other bacteria and viruses and about half of the parasites. The first 

successful human vaccine experiment carried out by Edward Jenner approximately 200 years 

ago demonstrated that inoculation of a boy with cross-reactive cow-pox virus protected him 

against two successive infections with small pox virus (Sharma and Khuller, 2001). Since 

then, the majority of vaccinologists have focused on the development of vaccines. The major 

breakthrough, occurring a hundred years later, was the preparation by Pasteur, of rabies 

vaccine, which is based on the intentional attenuation of the pathogen (Allen, 2002). 

This paved the way for the development of a big series of viral and bacterial vaccines. These 

conventional vaccines are based on the entire disease-causing microbial agent and consist of 

the killed or live attenuated organism that does not lead to infection but is capable of inducing 

protective immunity. They include also the detoxified toxins of some toxin secreting bacteria, 

which are effective in preventing the pathology of the bacterial infection (Loosmore et al., 

1990). The existing conventional vaccines have the ability to eradicate or drastically 
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diminishe incidence and morbidity of a large number of infectious diseases including major 

killers such as smallpox, polio and diphtheria (Mackay and Rosen, 2001). 

In spite of these tremendous achievements, there are several crucial drawbacks incurred by 

the current procedures for vaccine preparation. First, microbes that cannot be grown or can be 

grown only with difficulty in vitro pose a special problem to vaccine development. These 

include several viruses (HBV and HCV), bacteria like Mycobacterium leprae, and to a degree 

Chlamydia pneumoniae, and many parasites, of which the Plasmodia causing malaria are 

most important in this context (Makela, 2000). Second, the difficulty of ascertaining adequate 

killing or attenuation of the vaccine preparation, and the hazard which may be caused by 

exposure of both the vaccinees and those involved in vaccine production. This consideration 

is of particular consequences in case of fatal incurable diseases such as AIDS (Arnon and 

Ben-Yedidia, 2003). Third, the risk of reversion into their original pathogenic forms 

especially in immunocompromised individuals and infants. Moreover, it is possible that some 

live vaccine strains can be transmitted from the vaccinee to an unvaccinated individual 

(Hansson et al., 2000). 

New approaches are, therefore, being considered for vaccine development, which are not 

based on the entire organism. These include the use of recombinant DNA technology for the 

production of relevant microbial protective protein antigens in bacterial, yeast, plant or animal 

cells for vaccine preparation (Goldfarb et al., 1994; Diminsky et al., 1999) or production of 

live vaccines by introducing the relevant gene(s) into the genome of an adequate vector such 

as vaccinia virus (Oh et al., 2003) or Salmonella (Angelakopoulos and Hohmann, 2000). 

More recently, naked DNA vaccines strategy was applied. It consists of plasmid DNA into 

which the relevant gene(s) of the microbial agent can be inserted (Ulmer et al., 1993; Wang et 

al., 1993). In addition, the utilization of synthetic peptides which constitute the relevant 

protective epitopes of viruses, bacterial toxins or parasites, was used for eliciting neutralizing 

immune response towards the disease-causing agent (Tam, 1996; Tourdot et al., 1997). A 

novel means, called synthetic recombinant vaccines, based on synthetic oligonucleotides, 

which code for the relevant epitope(s) that are inserted into an appropriate vector, for the 

expression of this external epitope. This approach may allow the inclusion of more than one 

epitope in the desired vaccine (Klavinskis et al., 1989; Newton et al., 1989). Although 

vaccines are traditionally administered to healthy individuals to prevent infection, the rabies 

vaccine was used therapeutically more than a century ago to avoid deleterious effects on the 

nervous system after exposure to the virus (Wilde et al., 1989; 1996). Recently, attention has 

been given to the development of vaccines that can be used to stimulate immune defenses in 
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patient populations after they have been infected with a pathogen or even after they developed 

a disease (Seder and Hill, 2000; Sela et al., 2002; Vandepapeliere, 2002). Such therapeutic 

vaccines have also been referred to as ‘pharmaccines’ or ‘theraccines’ (Vandepapeliere, 

2002). Recently, the use of therapeutic vaccines has been extended to cover a variety of 

chronic, but not acute, diseases such as AIDS, tuberculosis, peptic ulcer, as well as different 

kinds of  cancer diseases and autoimmune diseases where a definite success in developing a 

drug/vaccine against multiple sclerosis and hopes for myasthenia gravis, lupus and diabetes 

(Sela et al., 2002).  

 

1.2.1. Virus-based vaccine vectors  

 

Vaccines based on live viruses have traditionally been highly effective and relatively easy to 

produce. For example, the elimination of smallpox was accomplished through mass 

vaccination with the live vaccinia virus, a mildly pathogenic animal virus related to smallpox. 

Live attenuated poliovirus developed by Sabin was also responsible for the drastic reduction 

of the disease all over the world. The live attenuated vaccines are well tolerated and 

immunogenic and led to effective vaccine against additional infectious diseases, e.g. yellow 

fever (Co et al., 2002), mumps (Cusi et al., 2001), and others. These vaccines are usually 

produced by attenuation of the pathogen by physical means or by selection of naturally 

occurring mutants that lead to infection with abortive replication of the pathogen, while 

retaining its immunogenicity (Polo and Dubensky, 2002). Using molecular biology and DNA 

manipulation methods, it has also been possible to express protective proteins in adequate live 

vectors and thus design live vaccines against various pathogens. Thus, the development of 

reverse genetics systems for the recovery of viruses from cDNA has made it possible to 

rapidly generate recombinant attenuated derivatives of these viruses by either point mutations 

or by attenuating hazardous sequences that are included in the vaccine (Skiadopoulos et al., 

2002). Live vaccines can be derived also using genetic engineering techniques since cloning 

procedures enable the generation of live viruses from plasmid DNA copies containing the 

whole virus genome. Vaccine candidates can thus be designed by site-directed mutagenesis, 

gene insertions or deletions and by generation of chimeric viruses (Agabov et al., 1998). In 

addition, engineered viruses may bear a phenotype that facilitates the immune response 

towards it, for example, expression of cytokines by recombinant RSV (Bukreyev et al., 2000). 

Gene-based delivery of antigens, and in particular application of virus-derived vectors, offers 

several potential advantages over traditional vaccine technologies. These include, most 
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notably, high-level production of authentic protein antigens directly within cells of the 

immunized host, potential adjuvanting effects from the viral delivery system itself and the 

possibility of efficient delivery of antigen directly to components of the immune system, such 

as antigen-presenting dendritic cells (DCs) (Polo and Dubensky, 2002; Makela, 2000). 

 

1.2.2. Bacterial-based vaccine vectors  

 

The potential of live, attenuated bacteria as vaccines and vectors has long been recognized 

and offers a number of advantageous in terms of convinience and immunogenicity compared 

with vaccines composed of inactivated organisms or antigen subunits. For example, simple 

modes of inoculation (e.g. oral) may confer protection following a single dose, presumably 

due to the limited ability of the vector to replicate in vivo. During the course of replication, the 

vector may potentially express many of the immunogens seen during natural infection, 

including mucosal immune responses that are not normally elicited by systemically 

administered vaccines. It is estimated that 90% of human infectious diseases are initiated at 

mucosal surfaces (Kraehenbuhl and Neutra, 1998). Attenuated bacteria may also be 

genetically engineered to express single or multiple heterologous antigens, providing potential 

protection against more than one pathogen. Finally, live bacterial vaccines can be inexpensive 

to manufacture (Trach et al., 1997; 2002) and practical for large-scale distribution (Lockman 

et al., 1999). 

Advances in the production of live attenuated bacteria expressing heterolougous antigens as 

vaccines have been greatly facilitated by the development of an increasing number of live 

vaccine vectors. The empirical development of early bacterial vaccines against typhoid fever 

(Salmonella typhi Ty21a) (Germanier and Furer, 1975) and tuberculosis (Mycobacterium 

bovis-BCG) (Guleria et al., 1996), for example, resulted in vaccines bearing randomly 

generated and undefined mutations. The progressive elucidation of microbial biosynthetic 

pathways hastened the development of second-generation vaccines and vectors that were 

rationally attenuated by the disruption of genes encoding known metabolic functions. 

Attenuated bacteria bearing mutations in biosynthetic genes, however, may be affected in 

their ability to colonize and replicate in vivo, diminshing their utility as vectors. To address 

the issue, highly atenuated strains bearing genes associated with virulence, such as phoP and 

virG, were created (Sansonetti et al., 1991; Homann et al., 1996). The effectivnes of 

virulence-attenuated mutants was based on the notion that such strains would replicate 

normally in vivo, producing superior vaccines and vector candidates. 
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While a number of attenuated microorganisms show promise as potential vector plateforms, 

only a relative few have been evaluated in humans. In addition to issues of immunogenicity, a 

key concern associated with the use of live attenuated bacteria is safety (Trach et al., 2002). A 

vector should be safe for the vaccinated host and the environment as a whole, including 

unvaccinated contacts exposed to the vaccine vector. Bacterial vaccine vectors candidates that 

have been conducted for use in preclinical studies include attenuated strains of Salmonella, 

Shigella, Listeria, Mycobacterium and Vibrio. 

 

1.2.2.1. Listeria vector vaccines    

 

Listeriosis is an invasive infection caused by L. monocytogenes. Acquired immunity is 

multifactoral, involving phagocytes and several T-cell subpopulations (Kaufmann, 1993; 

Shan et al., 1995). Following invasion of the host through the gut, Listeria is found in large 

numbers in the cytosole of splenic APCs, such as macrophages, where the bacteria actively 

replicate. In the cytosole, Listeria antigens are processed by the host’s endogenous MHC 

Class I pathway and presented to CD8+ T-lymphocytes. The ability of L. monocytogenes to 

elicit protective CD8+ T-cell immune response in animals has spurred interest in developing 

the system as a live bacterial vector for use in humans. 

Although outbreaks of listeriosis are relatively uncommon, the organism may nevertheless 

cause death, particularly in people who are immunocompromised or pregnant. For these 

reasons, the development of Listeria vector candidates for use in humans has proposed with 

caution. One promising candidate is a L. monocytogenes auxotrophic mutant bearing deletions 

in alanin racemase (daI) and D-amino acid aminotransferase (dat), two genes required for the 

biosynthesis of bacterial cell walls (Thompson et al., 1998). This approach has the advantage 

of attenuating a virulent strain and reducing the potential of the mutant to revert to a wild type 

phenotype. Deletion of daI and dat resulted in a listerial strain that was highly attenuated in 

mice. While intravenous or intraperitoneal immunization of mice with a sublethal dose of the 

daI dat double-mutant failed to provide protection against virulent challenge, the addition of 

D-alanin to the inoculum was sufficient to allow the mutant to survive long enough to elicit 

protective CTL responses against lethal challenge. More recently, the first human safety study 

of a virulence attenuated L. monocytogenes vaccine (LH1196) was reported. The vaccine 

candidate was an orally-administered strain of L. monocytogenes bearing deletions in actA 

and plcB genes necessary for cell-to-cell spreading and escapes from the secondary vacuoles, 

respectively. Volunteers receiving up to 109 cfu shed vaccine organisms for approximately 4 
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days and showed no serious adverse effects, although two volunteers receiving higher vaccine 

doses manifested temporary elevation in selected liver enzymes following immunization 

(Angelakopoulos et al., 2002). All volunteers receiving the higher vaccine doses elicited 

cellular immune responses as shown by the production IFN-γ in ELISPOT assays. 

While the uses of attenuated Listeria in several applications have been described, the most 

promising results have been shown in situations where cellular immune responses are 

required. Recombinant Listeria secreting genetic fusions of Hly to lymphocytic 

choriomeningitis virus (LCMV) NP have been shown to elicit significant MHC Class I-

restricted immune responses in mice (Goosens et al., 1995). Immunized animals were 

protected against subsequent challenge with virulent strains of LCMV that establish chronic 

infection in unimmunized mice. Protection corresponded to the presence of NP118-126-specific 

CD8+ T cells. The effective use of Listeria vectors may also be dependent, however, upon the 

expression of heterologous antigens in appropriate intracellular compartments. This was 

suggested by results in mice immunized with a virulent strain of Listeria expressing either a 

secreted or a nonsecreted form of the LCMV NP118-126 epitope genetically fused to 

dihydrofolate reductase. Immunised animals elicted NP118-126 specific CTL responses of 

similar magnitude regardless whether the fusion protein was secreted or non-secreted. 

Furthermore, immunization of mice with either form of the fusion protein was equally 

efficient at eliciting the production of NP118-126-specific memory T- and provides protective 

immunity against LCMV challenge. In spite of these similarities, however, only mice 

immunized with Listeria expressing the secreted form of the NP118-126-DHFR fusion protein 

were protective against a lethal dose of Listeria whereas mice immunized with Listeria 

expressing the non-secreted form of the NP118-126-DHFR fusion protein showed no specific 

resistance to lethal challenge (Shen et al., 1996). These results demonstrate that infection with 

Listeria produces discordance between the production of immune CD8+ T cells to the 

passenger antigen and protection against the vector. 

The ability of L. monocytogenes to stimulate a vigorous CD8+ T cell response may also have 

potential as a therapy against some forms of cancer, since experimental evidence suggests that 

MHC Class I-restricted CD8+ lymphocytes may be a critical mediator of an effective 

antitumor response (Paterson and Ikonomidis, 1996). A recent study showed that a 

recombinant strain of L. monocytogenes inhibited tumor growth in a murine cancer model. 

Tumorogenic cells transduced with the influenza virus NP antigen were injected in mice to 

generate visible, subcutaneous tumors. Immunization of these mice with L. monocytogenes 

expressing NP inhibited tumor growth and ultimately stimulated the regression of 
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macroscopic tumors (Pan et al., 1995). Moreover; this NP-expressing Listeria vector was also 

capable of conferring CD8+ T-cell protection against a lethal challenge of renal carcinoma 

cells expressing NP. 

 

1.2.2.1.1. Listeria delivery of plasmid DNA 

 

The ability of L. monocytogenes to enter the host cell cytosole after phagocytosis and deliver 

plasmid DNA directly to the cytoplasm makes it an attractive DNA delivery candidate to 

induce cellular immune responses. An early vaccine candidate, L. monocytogenes ∆2, was 

constructed by deleting lecithinase activity, which significantly inhibited cell-to-cell spread by 

the bacterium (Dietrich et al., 1998). In an infected cell, ∆2 was designed to express in vivo 

controlled bacteriophage cytolysin that lysed the Listeria cell wall and released the plasmid 

DNA into the host cell cytosole. Cultured mouse macrophages infected with ∆2 expressing a 

fluorescent marker was evident in cultures three days post-infection. Bone marrow derived 

macrophages infected with ∆2 harboring an expression vector encoding a model epitope were 

able to stimulate an ovalbumin OVA 257-264-specific CTL clone to secrete IL-2.  

The use of attenuated Listeria for genetic immunization has several advantages over the direct 

injection of naked DNA, including oral administration, a natural tropism for APCs and the 

presence of recognized immunomodulatory components that may enhance the host’s immune 

response to a vectored antigen (Goosens et al., 1995).    

 

 1.2.3. Vaccines and T cells 

 

The ultimate goal of a vaccine is to develop long-lived immunological protection, whereby 

the first encounter with a pathogen is ‘remembered’, which leads to enhanced memory 

responses that either completely prevent reinfection or greatly reduce the severity of disease. 

Specialized cells known as memory T and B cells, and long-lived effector B cells (plasma 

cells), which constitutively secrete high-affinity ‘neutralizing’ antibodies, are the basis of 

immunological memory. The memory T-cell compartment consists of both CD4+ and CD8+ 

T-cells that can rapidly acquire effector functions to kill infected cells and/or secrete 

inflammatory cytokines that inhibit replication of the pathogen. Effector CD4+ T cells also 

help B-cell responses and enhance CD8+ T-cell development, through the activation of 

antigen presenting cells (APCs) or secretion of cytokines, such as interleukin-2 (IL-2), IL-4 

and IL-5. In some situations, protective immunity can be mediated by just one of the branches 
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of the immune system such as by antibodies or CD8+ T cells but for optimal control of 

pathogens, both the humoural and cellular immune responses need to be mobilized (Zajac et 

al., 1998). 

 

1.2.3.1. Stages of T-cell responses 

 

The path towards memory T-cell development continues to be delineated, but there are  

clearly three stages that T cells pass through as they differentiate into memory cells (Ahmed 

and Gray, 1996). The first stage, the ‘expansion’ phase, is initiated in the lymphoid tissues, 

where encounter with antigen induces naive T cells to clonally expand and differentiate into 

effector T cells, known as T helper (TH) cells or cytotoxic T lymphocytes (CTLs) for CD4+ 

and CD8+ T cells, respectively. Through the combined abilities of CD4+ and CD8+ effector 

T cells to secrete inflammatory cytokines and kill infected cells, a typical acute viral or 

intracellular bacterial infection can be resolved within days. Over the weeks that follow 

pathogen clearance, the majority (>90%) of effector T cells die, and this second stage is often 

referred to as the ‘death’ phase or contraction period which acts as a safeguard to prevent 

excessive immunopathology by limiting the duration of T cell responses. The surviving T 

cells enter the third stage, the ‘memory’ phase, in which the number of memory T cells 

stabilizes, and these cells are maintained for long periods of time.  

 

1.2.3.2. T-cell differentiation 

 

 Recent studies of CD8+ T cells have shown that the link between the commitment to clonal 

expansion and effector-cell differentiation is remarkably tight; the same duration of antigenic 

stimulation (2–24 hours) that drove naïve CD8+ T cells to proliferate was sufficient for them 

to commit to differentiate into effector cells that could secrete IFN-γ, tumour-necrosis factor 

(TNF) and IL-2, and kill infected cells (Mercato et al., 2000; Kaech and Ahmed, 2001; van 

Stipdonk et al., 2001). These data indicate that naïve CD8+ T cells are developmentally 

programmed to clonally expand and differentiate into CTLs after brief encounter with antigen. 

Even though CTL effector properties were acquired after as little as 2–24 hours of 

stimulation, it remains to be determined whether the quality of effector properties is affected 

by the duration of antigenic stimulation in vivo. It seems that T cells that are activated under 

different conditions, such as with heat-killed bacteria or in the presence of high concentrations 

of IL-2 or IL-15, might develop suboptimal and/or altered effector CD8+ T-cell functions 
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(Lauvau et al., 2001; Manjunath et al., 2001). The programmed development of CD8+ T cells 

has several advantages. First, it alleviates the need for prolonged confinement of CTLs to the 

lymphoid organs, which allows their migration to peripheral sites of infection and/or 

inflammation to remove infected cells. Second, it might also considerably affect the number 

of memory CD8+ T cells that are generated, because the size of the memory T-cell pool is 

directly correlated to that of the effector-cell population (Vijh and Pamer, 1997; Busch et al., 

1998; Murali-Krishna et al., 1998). In several models of acute viral and bacterial infection, 

the number of effector CD8+ T cells peaks 2–3 days after the infectious pathogen is cleared. 

If each CD8+ T-cell division was regulated strictly by antigen contact, the number of effector 

CTLs would peak earlier and reach a lower maximum, and consequently, less memory CD8+ 

T cells would be generated (Kaech et al., 2002b). 

A similar type of developmental program might also drive the differentiation of activated 

CD4+ T cells, but the formation of effector CD4+ T cells might be influenced to a greater 

extent than for CD8+ T cells by extrinsic factors, such as the duration of antigen exposure and 

the types of cytokines that are present (Kundig et al., 1996; Iezzi et al., 1998; 1999; Jelley-

Gibbs et al., 2000; Langenkamp et al., 2000). Unlike naive CD8+ T cells, which commit to 

effector and memory T-cell development within 24 hours of stimulation, naive CD4+ T cells 

required more than 48 hours of continual antigenic stimulation to commit to the formation of 

polarized TH1 or TH2 effector phenotypes in vitro (that is, the secretion of IFN-γ or IL-4, 

respectively). Even after 48 hours, a large proportion of the CD4+ T cells did not develop 

effector properties (that is, they were non-polarized) (Iezzi et al., 1999). Nonpolarized CD4+ 

T cells produced IL-2, but little or no IFN-γ or IL-4 (Langenkamp et al., 2000; Iezzi et 

al.,2001). So, it seems that naive CD8+ T cells commit to effector-cell differentiation more 

readily than CD4+ T cells. As described above, this might result from the apparent differences 

between CD4+ and CD8+ T cells in their activation requirements or the rates at which their 

thresholds for activation are reached.  

 

1.2.3.3. T cell migration 

 

As naïve T cells differentiate into effector cells, their migration patterns are altered. Effector 

T cells have a reduced potential for homing to lymph nodes owing to decreased expression of 

lymph-node-homing receptors, such as CC-chemokine receptor 7 (CCR7) and L-selectin 

(CD62L) and a greater capacity to migrate to inflamed tissues owing to increased expression 

of chemokine receptors such as CCR5 and CCR2. The expression pattern of CD62L on 
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activated T cells is triphasic and seems to be regulated by the duration of antigenic 

stimulation. Initially, TCR stimulation induces the rapid shedding of CD62L from the T-cell 

surface by proteolytic cleavage, but within 24–48 hours, CD62L is re-expressed (Chao et al., 

1997). However, if TCR stimulation continues, the locus that encodes CD62L becomes 

transcriptionally silenced and surface expression of CD62L becomes fixed at a low level for 

an extended period of time (Chao et al., 1997; Oehen and Brduscha-Riem, 1998; Teague et 

al., 1999).  

After ~24 hours of antigenic stimulation, the levels of CD62L and CCR7 remained high on 

activated CD4+ T cells, and these cells retained lymph-node-homing properties, whereas 

migration to peripheral sites, such as the peritoneum and lungs, was inefficient (Iezzi et al., 

2001). However, if the exposure to antigen was sustained over several days, the T cells lost 

surface expression of these receptors and trafficking to the lymph nodes was markedly 

reduced (Langenkamp et al., 2000; Sallusto et al., 1999; Iezzi et al., 2001).  

 

1.2.3.4. Lineage of memory T cells 

 

The precise lineage by which memory cells arise remains unresolved (Murali-Krishna et al., 

1998; Sprent and Surh, 2002). Conventionally, two models have been proposed for the 

generation of memory cells. The first is the linear differentiation model, which predicts that 

memory cells are the progeny of effector CTLs that escape activation induced cell death 

(AICD) (Jacob and Baltimore, 1999; Opferman et al.,1999; Hu et al.,2001) as the activated 

CD8+ T cells seem to be programmed to develop into memory T cells, because CD8+ T cells 

that were stimulated briefly (~24 hours), proliferated and differentiated into CTLs without 

further antigenic stimulation but surprisingly, these cells continued to develop into long-lived, 

protective memory CD8+ T cells (Mercado et al., 2000; Kaech and Ahmed, 2001). Therefore, 

the instructive program that guides effector CD8+ T-cell development is sufficient to guide 

the formation of memory CD8+ T cells termed “effector memory T cells”. 

The other view is that memory cells can directly arise from naive cells without passing 

through an effector-cell stage (non-linear differentiation), for example when naive T cells 

receive weak antigenic stimulation towards the end of an immune response and these memory 

cells are referred to as “central’memory T cells” (Langenkamp et al., 2000; Iezzi et al., 2001; 

Lauvau et al., 2001; Manjunath et al., 2001).  If naive cells come under the influence of IL-15 

shortly after activation, they differentiate into central memory-like cells. On the other hand, if 

they encounter sufficiently high doses of IL-2, they differentiate into fully fledged effector 
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cells. Thus, effector differentiation is not required to generate central memory cells, at least in 

vitro. Moreover, if differentiated effector cells, generated either in vitro or in vivo, are 

cultured in IL-15, they too can revert to memory-like cells (Manjunath et al., 2001). The 

difference between memory cells generated with IL-15 from naive cells vs. those generated 

from effector cells is that while the former express (CD62L) L-selectin and CCR7, the latter 

have lost these markers indicating that memory cells generated from naive cells resemble 

central memory cells while those generated from effector cells resemble effector memory 

cells. Therefore, it is important to consider that memory T-cell development might occur in a 

non-linear fashion and that it can result in qualitatively different memory T-cell subsets 

(Langenkamp et al., 2000; Campbell et al., 2001). Different priming conditions, for example, 

the duration of antigenic stimulation and the type of cytokines present might affect the 

formation of these subsets (Kaech et al., 2002a). 

 

1.2.3.5. Immunological characters of naive versus memory T cells  

 

Comparisons between naive and memory T cells have begun to reveal the physiological basis 

for the heightened recall responses of memory T cells. First, as a consequence of clonal 

expansion during the primary infection, experiments in mice have shown that there can be a 

substantial increase (~1000-fold) in the precursor frequency of antigen-specific T cells in 

immune animals compared with naive animals (Busch et al., 1998; Murali-Krishna et al., 

1998; Whitmire et al., 1998; Bousso et al., 1999). Second, as naive T cells differentiate into 

memory cells; their gene-expression profile is reprogrammed by changes in chromatin 

structure and the profile of active transcription factors (Agarwal and Rao, 1998). For example, 

the genes that encode interferon-γ (IFN-γ) and cytotoxic molecules, such as perforin and 

granzyme B, are not expressed in naive CD8+ T cells, but are constitutively expressed in 

effector and memory CD8+ T cells (Yang et al., 1998; Bachmann et al., 1999; Teague et al., 

1999; Veiga-Fernandes et al., 2000; Grayson et al., 2001). Although the synthesis of these 

proteins occurs in an ‘on–off’ fashion that is regulated by antigen contact, elevated levels of 

the messenger RNA transcripts endow memory CD8+ T cells with the capacity to produce 

larger quantities of these proteins more rapidly than naive T cells (Slifka et al., 1999; 

Badovinac et al., 2000; Kaech and Ahmed, 2001). Third, memory CD8+ T cells express a 

different pattern of surface proteins that are involved in cell adhesion and chemotaxis from 

naive T cells, which allows memory T cells to extravasate into non-lymphoid tissues and 

mucosal sites (Moser and Loetscher, 2001). This enables memory T cells to survey peripheral 
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tissues where microbial infections are generally initiated. Fourth, memory T-cell populations 

are maintained for a long time due to homeostatic cell proliferation, which occurs at a slow, 

yet steady, pace. Interestingly, the rate of this homeostatic cell division must equal the rate of 

cell death, because the number of memory CD8+ T cells remains relatively constant over time 

(Murali-Krishna et al., 1998; Homann et al., 2001). So, it is the increased number of antigen-

specific T cells, and their faster responses, anatomical location (that is, near the sites of 

microbial entry) and longevity that collectively explain how memory T cells confer long-term 

protective immunity. 

 

1.3. Interactions of Listeria monocytogenes with mammalian host cells and tissues 

 

Listeria monocytogenes is a ubiquitous, rapidly growing, gram-positive bacterium with an 

unusually broad ecological niche and host range. Infection of humans and animals has been 

traced to contaminated foods and can lead to serious, often fatal disease. In humans, disease is  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.1. Schematic representation of the cell infectious process by L. monocytogenes and the bacterial 
factors involved. Adapted from Tilney and Portnoy (1989). 
 
 

most common among pregnant women, newborns,  and  immunocompromised individuals 

(Schlech, 2000). These clinical features are due to the unique properties of L. monocytogenes 

to be able to cross three barriers, the intestinal barrier, the fetoplacental barriers and the blood 

brain barrier (Cossart and Lecuit, 1998). Bacteria cross the intestinal barrier, and via the 
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lymph and blood proceed to the liver and spleen where the infection is normally stopped by 

the non-specific defenses of the host, in particular neutrophils. In the immunocompromised 

host, bacteria multiply  in  the  hepatocytes  and  finally  reach  the  brain  and  the  placenta.  

Listeria  is  thus a bacterium  able to  infect many  cell types  and  tissues  where  it is  always 

intracellular due to its capacity to trigger its own phagocytosis in cells which are normally 

nonphagocytic (Cossart, 2002). The different phases of Listeria infection in eukaryotic host 

cells were shown schematically in Fig.1.1. Entry into mammalian cells is mediated by at least 

two bacterial factors: internalin A (InlA) and B (InlB). Escape from the vacuole requires 

expression of listeriolysin O (LLO), a pore-forming toxin which in some cells can function 

synergistically with or be replaced by a phosphatidylinositol-specific phospholipase C (PI-

PLC). Intracellular movement requires expression of ActA, and lysis of the two-membrane 

vacuole is performed by a lecithinase (PLC-B). PI-PLC is synthesized in an active form 

whereas PC-PLC is produced as an inactive precursor. A bacterial zinc-dependant 

metalloprotease and a host cell cysteine protease are required to cleave off part of the 

precursor and activate the phospholipase (Marquis et al., 1997). 

 

1.3.1. Entry into cells 

 

Host  cell  infection  begins  with  the  internalisation  of  the  bacteria  either  by  

phagocytosis in the case of macrophages or induced phagocytosis (invasion) in the case of 

normally non-phagocytic cells. Bacterial invasion starts by the interaction with the plasma 

membrane which progressively enwraps the bacterium. This process usually refers to as the 

‘zipper’ mechanism in contrast to the ‘trigger’ mechanism used by Salmonella or Shigella 

(Finlay and Ruschkowski, 1991; Isberg and Tran Van Nhieu, 1994; Adam et al., 1995; 

Swanson and Baer, 1995; Mengaud et al., 1996). Following internalization, bacteria reside 

within membrane-bound vacuoles for about 30 min before lysing the membrane. However, 

significant levels of internalization by non-professional phagocytic cells is often mediated by 

one or more bacterial surface proteins, collectively named internalins, of which internalin A 

and B are the best characterized (Braun and Cossart, 2000). Internalin A promotes binding 

and internalization by E-cadherin, the human receptor for internalin A, whereas internalin B 

binds to the Met receptor tyrosine kinase and mediates internalization via PI3-kinase 

activation (Cossart, 2001). As evidenced by the residual level of entry of a ∆inlAB mutant, 

other mechanisms of entry exist. InlA and InlB are two members of the internalin multigene 

family which contains five other members; InlC, InlC2, InlD, InlE and InlF and it was 
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anticipated that these genes could also play a role in entry, but this does not seem to be the 

case (Engelbrecht et al., 1996; Domann et al., 1997; Dramsi et al., 1997). A recent report 

indicates that ActA, the protein involved in actin polymerization, could also participate in 

invasion (Alvarez-Dominguez et al., 1997). 

 

 1.3.2. Escape from a vacuole 

 

Upon phagocytosis by macrophages, there are a number of possible fates awaiting a 

bacterium (Duclos and Desjardins, 2000). In the case of L. monocytogenes, internalized 

bacteria are either killed or escape into the cytosol. Mutants that fail to escape from a vacuole 

may survive in tissue culture cell lines, but do not grow (Lety et al., 2002). The pore-forming 

protein listeriolysin O (LLO) is largely responsible for mediating escape from the vacuole, 

and is consequently an essential determinant of pathogenicity (Vazquez-Boland et al., 2001b). 

Mutants lacking LLO fail to escape from a vacuole in most cells, and synthesis of LLO by 

other organisms such as Bacillus subtilis is sufficient to mediate escape from a vacuole 

(Bielecki et al., 1990). Thus, it is clear that the role of LLO is to mediate vacuolar escape 

from a phagosome and from a secondary vacuole formed upon cell-to-cell spread (Gedde et 

al., 2000). In addition to LLO, L. monocytogenes secretes two phospholipases C (PLCs) that 

contribute to escape: a phosphatidylinositol- specific PLC (PI-PLC) and a broad-spectrum 

PLC (PC-PLC) that is synthesized as a proenzyme activated by a secreted L. monocytogenes 

metalloprotease (Vazquez-Boland et al., 2001b). Mutants lacking both PLCs show a marked 

defect in vacuolar escape, and in human epithelial cells such as HeLa cells, PC-PLC and 

metalloprotease mediate escape from a vacuole in the absence of LLO (Marquis et al., 1995). 

The precise mechanism by which L. monocytogenes escapes from a vacuole is not clear but is 

consistent with the following model: upon phagocytosis, the L. monocytogenes containing 

vacuole acquires markers of a maturing endosome/ phagosome and acidifies to an average pH 

of 5.9 (Alvarez-Dominguez et al., 1997; Beauregard et al., 1997). Agents, such as 

bafilomycin that block acidification, inhibit vacuolar perforation and bacterial escape (Conte 

et al., 1996; Beauregard et al., 1997; Glomski et al., 2002). It was proposed that LLO 

insertion into the phagosomal membrane has two functions: one is to dissipate the pH gradient 

and thereby halt the maturation of the phagosome, and the other is to act as a channel for the 

passage of proteins from the vacuole (Portnoy et al., 2002). The bacterial phospholipases 

and/or host vacuolar constituents then pass through the channel and act on the vacuole, 

leading to its dissolution.  
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1.3.3. Compartmentalization of LLO activity 

 

LLO is one of 23 members of the cholesterol-dependent family of cytolysins (CDCs) secreted 

by gram-positive bacteria (Billington et al., 2000). The best characterized of the CDCs are 

perfringolysin O (PFO) and streptolysin O (SLO), which are normally secreted by 

extracellular pathogens and presumably act on cells from outside. Replacement of LLO with 

PFO in L. monocytogenes results in a strain that is able to escape from a vacuole, albeit at a 

reduced efficiency, but that kills the infected cells from within (Jones and Portnoy, 1994). 

Thus, LLO is apparently unique in that it acts in a vacuole, but does not kill the host cell upon 

growth in the cytosol. The properties of LLO as a vacuole-specific lysin can be exploited to 

deliver macromolecules to the cytosol of macrophages either by incorporation of LLO into 

acid sensitive liposomes or by expression of recombinant proteins in Escherichia coli 

expressing LLO (Lee et al., 1996; Higgins et al., 1999). A PEST-like motif has been 

identified recently close to the N-terminus of mature LLO protein (Rechsteiner and Rogers, 

1996; Decatur and Portnoy, 2000; Lety et al., 2001). Two different hypotheses were evolved 

explaining the role of PEST-like sequence in compartmentalization of LLO activity. The first 

was postulated by Decatur and Portnoy (2000) who found that removal of the PEST-like 

sequence does not affect LLO activity or vacuolar escape, but results in a strain that is 

extremely toxic to infected host cells suggesting that this motif may target eukaryotic proteins 

for phosphorylation and/or degradation by the proteasome, and may generally represent sites 

of protein-protein interactions (Decatur and Portnoy, 2000; Lety et al., 2001). In contrast, 

Charbit A. and co-workers were recently confirmed that the PEST-like sequence allows 

efficient disruption of the phagosomal membrane and the ∆PEST mutant remained trapped 

within phagosomes of bone marrow-derived macrophages (Lety et al., 2001). However, both 

of them have agreed with that the deletion of this motif did not affect the secretion and 

haemolytic activity of LLO but abolished in vivo bacterial virulence. Moreover, a recent study 

was postulated the absence of correlation between the PEST score in the N-terminus of LLO 

and the susceptibility of the protein to protease degradation (Lety et al., 2002).  

LLO is unique among the CDCs in that it has a pronounced acidic pH optimum. Mutation of a 

single LLO residue (L461T) results in an increase in LLO activity at neutral pH and leads to a 

100-fold loss in virulence (Glomski et al., 2002). This mutation does not affect escape of L. 

monocytogenes from a vacuole, but causes premature permeabilization of infected host cells 

after about five bacterial generations. Thus, the acidic pH optimum of LLO as well as the 

PEST-like sequence restricts LLO activity to a vacuolar compartment. Surprisingly, 
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transcription and synthesis of LLO continues in the host cytosol (Bubert et al., 1999; Moors et 

al., 1999). However, a number of other potential mechanisms may be in place to prevent 

toxicity to the infected host. For example, PC-PLC secretion is acid dependent and occurs 

preferentially in host vacuoles (Marquis and Hager, 2000), although this is yet to be 

documented for LLO.  

 

1.3.4. Growth in the cytosol 

 

Intracellular pathogens can be broadly divided into those that grow within a modified vacuole 

of the host cell (Duclos and Desjardins, 2000) and those like L. monocytogenes that grow in 

the host cytosol. There is compelling evidence to suggest that the cytosol is a favorable 

environment for bacterial growth: Bacillus subtilis expressing LLO or E. coli precoated with 

LLO can escape from a vacuole and grow in the cytosol of tissue culture cell lines (Bielecki et 

al., 1990; Monack and Theriot, 2001). However, it was recently shown that an L. 

monocytogenes hexose phosphate transporter was virulence-regulated and necessary for 

growth on glucose-6-phosphate and optimal cytosolic growth (Chico-Calero et al., 2002). 

Thus, although nonpathogens can grow in the cytosol under some circumstances, 

intracytosolic bacteria have clearly evolved specific mechanisms to enhance intracellular 

growth. In addition most intracytosolic bacterial pathogens like L. monocytogenes have 

evolved mechanisms of actin-based motility to spread from cell to cell (Goldberg, 2001). 

When free in the cytosol, L. monocytogenes replicates and induces the polymerization of host 

actin filaments and uses the force generated by actin polymerization to move, first 

intracellularly and then from cell to cell. These filaments rearrange within 2 h into long comet 

tails left behind in the cytosol while the bacteria move ahead at a speed of approximately 0.3 

mm/second (Tilney and Portnoy, 1989; Dabiri et al., 1990; Theriot et al., 1992). Remarkably, 

a single bacterial protein, ActA, is responsible for mediating actin nucleation; actin based 

motility, and is necessary for pathogenicity. ActA-minus mutants escape normally from 

vacuoles, but grow in the host cytosol as microcolonies and do not spread from cell to cell or 

form plaques in tissue culture cell monolayers (Tilney and Portnoy, 1989). The ActA protein 

provides multiple binding sites for host cytoskeletal components, thereby acting as a scaffold 

to assemble the cell’s actin polymerization machinery (Cameron et al., 2000). It was then 

clear that ActA was sufficient to induce actin polymerisation and movement. However, since 

bacteria dropped in pure actin do not polymerize actin, it became obvious that ActA was a 

recruiting factor that allowed actin to polymerize. While a deletion analysis was providing 
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evidence that the N-terminal part of ActA, called ActA-N (the first 233 amino acids) was 

sufficient for its activity on the bacterial surface (Lasa et al., 1995), the first ActA ligand was 

identified (Chakraborty et al., 1995). It is a protein called VASP (for vasodilator phospho-

protein). VASP is a substrate for cGMP-dependent kinases and is found in locations where 

actin is polymerizing, in particular at the leading edge of locomoting cells. VASP is also a 

ligand of profilin, an actin-sequestering protein which can also induce actin polymerisation by 

binding, as an actin-profilin complex to the actin filament barbed ends. It was then shown that 

VASP binds to the central part of ActA which is dispensable, establishing that VASP together 

with the central part of ActA stimulates a process that is really generated in the N-terminal 

part of ActA. ActA-N contains a dimerisation site (Mourrain et al., 1997). The key 

experiment was performed by the group of Mitchison that succeeded to fractionate cell 

extracts and demonstrate that the critical factor for the polymerisation process is a protein 

complex which when added to bacteria and actin can induce an “actin cloud” around the 

bacteria (Welch et al., 1997). This Arp2/3 complex contains seven proteins of which two are 

actin-related proteins which may act as the two first monomers in the actin nucleation process. 

Recent experiments have shown that purified ActA-N in the presence of purified Arp2/3 

complex can stimulate actin polymerisation and also branching of the actin filaments. The 

interesting discovery that came afterwards is that in mammalian cells, the normal ligands of 

the Arp2/3 complex are proteins of the Wasp/NWasp/ Scar family (Machesky and Insall, 

1998). These proteins upon a signal, such as interaction of a ligand with its receptor, may bind 

to a GTP-bound small GTPase at the plasma membrane and can then recruit the Arp2/3 

complex which itself becomes activated and able to polymerize actin into a branched filament 

network. Thus ActA and Wasp family proteins are both activators of the actin nucleator 

Arp2/3 complex. The parallel between ActA and Wasp family proteins also lies at the level of 

the primary structure. It thus appears that the bacterial ActA mimics mammalian Wasp 

proteins (Skoble et al., 2000; Boujemaa-Paterski et al., 2001). An important study was the in 

vitro reconstitution of Listeria motility which requires in addition to actin and Arp2/3 

complex, cofilin, capping protein, alpha-actinin and also VASP and profilin which accelerate 

the movement (Loisel et al., 1999).  

 

1.3.5. Cell to cell spread 

 

When moving bacteria contact the plasma membrane, they induce the formation of bacterium 

containing protrusions. Contact between these protrusions and neighbouring cells results in 
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the internalization of the protrusion. In the newly infected cell, the bacterium is surrounded by 

two plasma membranes which must be lysed to initiate a new cycle of multiplication and 

movement. Lysis of the double membrane is mediated by a phospholipase C synthesized by L. 

monocytogenes called phosphatidylcholine-specific phospholipase C (PC-PLC). Thus, once 

Listeria has entered the cytoplasm, it can disseminate directly from cell to cell, circumventing 

host defences such as circulating antibodies and complement. This ability to disseminate in 

tissues by cell-to-cell spreading provides an explanation for the early observation that 

antibody is not protective and that immunity to Listeria is T cell-mediated (Cossart and 

Lecuit, 1998). 

 

1.3.6. The virulence gene cluster of L. monocytogenes 

 

Most of the genes coding for the virulence factors which are discussed above are clustered on 

a 10 kb region of the chromosome. This virulence locus consists of three transcriptional units 

(Fig. 1.2.).  The  central  position  is  occupied  by  the  hly  monocistron ,  encoding  a  pore-  

 
 

 
Fig.1.2. Schematic representation of the virulence gene cluster (vgc) of L. monocytogenes (italic), its 
corresponding proteins, and its regulation by prfA. The direction of transcription is indicated by 
arrows. 
 

forming listeriolysin O (Cossart et al., 1989; 2001). Downstream from hly and transcribed in 

the same orientation is a 5.7-kb operon comprising three genes: mpl,  actA  and  plcB,  

encoding a zinc  metalloenzyme, a surface  protein  ActA, a  zinc-dependent phospholipase C 

respectively (Vázquez-Boland et al., 1992). Upstream and divergent from hly lies the plcA-
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prfA operon that encodes plcA, a phosphatidylinositole-specific phospholipase C. The second 

gene encodes the prfA protein which is a member of the CAP/FnR family of transcriptional 

activators and has a critical helix-turn-helix motif similar to that of CAP (Sheehan et al., 

1996). All known virulence genes, in addition to prfA protein itself, are under the either 

absolute or partial control of the pleiotropic activator protein PrfA (Mengaud et al., 1991; 

Chakraborty et al., 1992).  Therefore, prfA, like hly and actA, is absolutely indispensable for 

Listeria pathogenicity. PrfA is the only virulence activator identified to date in Listeria and is 

the main switch of a regulone comprising virulence-associated loci scattered throughout the 

listerial chromosome, including members of the internaline multigene family (Goebel et al., 

2000). A number of environmental and growth-phase dependent signals modulate expression 

of the virulence regulon via PrfA. The activating signals include high temperature (37 °C) 

(Leimeister-Wächter et al., 1992), stress conditions (Sokolovic et al., 1990), sequestration of 

extracellular growth medium components by activated charcoal (Ripio et al., 1996), contact 

with host cells (Renzoni et al., 1999) and the eukaryotic cytoplasmic environment (Bubert et 

al., 1999; Freitag and Jacobs, 1999; Moors et al., 1999; Renzoni et al., 1999). This model 

predicts a regulatory mechanism involving allosteric activation of PrfA by a putative low 

molecular weight cofactor, the levels of which would depend on the environmental conditions 

sensed (Ripio et al., 1997; Vega et al., 1998). PrfA activation leads to the synthesis of more 

PrfA protein by positive feedback, mediated by a PrfA-dependent promoter, which governs 

the synthesis of a bicistronic plcA-prfA mRNA (Vega et al., 1998; Mengaud et al., 1991). 

This 10 kb virulence region is, however, absent from the non-pathogenic species such as L. 

innocua, L. welshimeri and L. gray but is present, with the same genetic structure and at an 

identical position, in the chromosome of L. ivanovii (Gouin et al., 1994; Chakraborty et al., 

2000). In contrast to well-characterized pathogenicity islands, the Listeria virulence gene 

cluster is rather small and has the same GC content as the rest of the chromosome (Cossart 

and Lecuit, 1998). The inlAB operon is located in another region. InlAB was the first 

identified internalin locus to be identified which was discovered by screening a bank of 

transposon mutants for defective internalization in epithelial cell monolayers (Gaillard et al., 

1991). Since then, a number of other internalin loci have been found in L. monocytogenes and 

L. ivanovii, and there is evidence that they are also present in nonpathogenic species such as 

L. innocua (Gaillard et al., 1991). All these loci form a multigene family exclusive to Listeria, 

encoding proteins with a characteristic domain containing a variable number of leucine-rich 

repeats (LRRs). There are two subfamilies of internalins. One consists of large proteins (70–

80 kDa) which are attached via their C-terminal regions to the bacterial cell wall. This group 
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is exemplified by the inlAB-encoded InlA and InlB polypeptides and includes at least six 

other members (inlC2, inlD, inlE, inlF, inlG and inlH), all found in L. monocytogenes 

(Dramsi et al., 1997; Raffelsbauer et al., 1998). The other group includes proteins generally 

much smaller in size (25–30 kDa), which lack the C-terminal cell-wall anchor region and are 

released into the extracellular medium. The prototype is InlC (or IrpA) from 

L. monocytogenes (Engelbrecht et al., 1996; Domann et al., 1997) but the remaining members 

of this group (i-InlC, i-InlD, i-InlE, i-InlF and i-InlG) have all been identified in L. ivanovii 

(Engelbrecht et al., 1998; González-Zorn et al., 2000). The known internalin loci usually 

comprise from two up to several inl genes, forming ´internalin islets´. The only exceptions are 

the inlC and inlF genes, which lie alone in the L. monocytogenes chromosome (Vazquez-

Boland et al., 2001a). 

 

1.3.7. Listeriosis model of systemic infections  

 

L. monocytogenes is a food-borne pathogen (Farber and Peterkin, 1991). Although ingestion 

of these bacteria is likely to be a very frequent event, given their ubiquitous distribution and 

the high frequency of contamination of raw and industrially processed food, L. 

monocytogenes is an uncommen cause of severe illness in the general human population. Host 

susceptibility plays a major role in the presentation of clinical disease upon exposure to L. 

monocytogenes. Human infection with L. monocytogenes typically occurs in 

immunocompromised individuals (Schuchat et al., 1991), justifying its classification as an 

opportunistic pathogen. In immunocompetent people, infection with L. monocytogenes may 

be accompanied by flu-like symptoms, and spontaneous resolution is common. Groups at risk 

are neonates, the elderly, as well as the adults with illness that compromise the immune 

system like chronic liver disease and AIDS. Pharmacologically immunocompromised adults, 

such as transplant recipients or patients suffering from autoimmunity, and adults treated with 

chemotherapy due to cancer are also concerned (Lorber, 1997). In these individuals, L. 

monocytogenes can cause severe invasive infections, which frequently end in a fatal course of 

meningoencephalitis. An additional frequent form of invasive listeriosis is septicemia (Lorber, 

1997). However, recent epidemiological studies have provided compelling evidence that a 

febrile gastroenteritis syndrome may be the main clinical manifestation of L. monocytogenes 

infection, which is also found in immunocompetent adults upon ingestion of high doses of 

bacteria (Salamina et al., 1996; Dalton et al., 1997; Aureli et al., 2000). 
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Another form of clinical presentation is foetomaternal listeriosis (Klatt et al., 1986). This 

results from invasion of the foetus via the placenta and develops as chorioamnionitis. Its 

consequence is abortion or the birth of a baby with generalized infection, a clinical syndrome 

known as granulomatosis infantiseptica and characterized by the presence of 

pyogranulomatous microabscesses disseminated over the body and a high mortality. The 

infection is usually symptomatic in the mother or may present as a mild flu-like syndrome. 

The pathogenesis of listeriosis in humans is still poorly understood. Most of the available 

information is derived from interpretation of epidemiological, clinical, and histopathological 

findings or by extrapolation of observations made in experimental infections in animals, 

particularly in the mouse model which has long been used as a tool to study a rapidly 

appearing CD8+ T cell-dependent immune response (Mackaness, 1962). As contaminated 

food is the major source of infection, the gastrointestinal tract is thought to be the primary site 

of entry of L. monocytogenes into the host. The clinical course of infection usually begins 

about 20 h after the ingestion of heavily contaminated food in cases of gastroenteritis (Dalton 

et al., 1997), whreas the incubation period for the invasive disease is generally much longer, 

around 20 to 30 days (Linnan et al., 1988; Riedo et al., 1994). 

Before reaching the intestine, the ingested bacteria have to withstand the adverse environment 

of the stomach. A significant number is probably destroyed by the gastric acidity (Schlech et 

al., 1993). The portal of entry and the mechanism of intestinal translocation used by L. 

monocytogenes are controversial (Marco et al., 1997; Jensen et al., 1998). However, recent 

data favours the view that the translocation of L. monocytogenes is a passive non-specific 

process with no preference for enterocytes or M cells (Pron et al., 1998) but with, however, a 

preferential site of early multiplication in the phagocytic cells underlying the Peyer’s patches. 

This result is in agreement with the early observation that bacteria survive and even replicate 

in resident phagocytes of the lamina propria (Mackaness, 1962). 

Following translocation, bacteria, via the lymph and the blood, reach the spleen and liver. In 

the latter organ, most of the bacteria are killed by the Kupffer cells, though a fraction reachs 

the hepatocytes, the principal site of bacterial replication in the liver (Cousens and Wing, 

2000), where they induce apoptosis with concomitant release of chemoattractants which leads 

to an influx of neutrophils (Conlan and North, 1991; Rogers et al., 1996). These phagocytic 

cells ingest bacteria or apoptotic hepatocytes and contribute to the rapid clearing of the 

infection before a complete sterilization is achieved by the immune response. The step of 

bacterial multiplication in the liver appears critical for the establishment of a ‘successful’ 

infection (Cossart and Lecuit, 1998). 2 to 4 days after infection, influx of neutrophils 
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gradually changes to infiltrating macrophages and T lymphocytes to form the characteristic 

granulomas (Mandel and cheers 1980; Heymer et al., 1988). These granulomas are the 

histomorphological correlate of cell-mediated immunity and presumably act as the true 

physical barriers that confine infectious foci (portnoy, 1992). Between day 5 and day 7 post-

infection, bacteria start to disappear from mouse organs until their complete clearance as a 

result of activated macrophages and a specific immune response primarily involving CTLs 

and a Th1-biased CD4+ T cell response (Harty et al., 1992; Geginat et al 1998; Gregory and 

Liu 2000). 

Although it may be hazardous to extrapolate these data to human listeriosis, the scenario of 

the human infection is believed to begin by ingestion of contaminated food (Schlech et al., 

1983). Bacteria then reach the gastrointestinal tract and cross the intestinal barrier. In the 

cases of the immunocompromised host or the pregnant woman, bacteria multiply 

unrestrictedly in the hepatocytes from which they further disseminate haematogeneously to 

the brain and placenta (Cossart and Lecuit, 1998). 

 

1.4. Host immune response to Listeria infection  

1.4.1. The innate response to Listeria infection 

 

The innate immune response to Listeria involves a coordinated interaction between many cell 

types and the production of numerous cytokines. These responses have been most clearly 

studied in SCID (severe combined immunodeficient) mice, devoid of B and T cells, which 

allow for the dissection of these innate responses. These components are necessary in 

immunocompetent mice to control infection prior to the development of T cell immunity 

(Edelson and Unanue, 2000).  

Neutrophils play a key role in the early control of Listeria growth, appearing at sites of 

infection within the first 24 hours. The importance of neutrophils was demonstrated by 

several investigators using monoclonal antibodies to deplete these cells from the host during 

infection (Rogers and Unanue, 1993; Czuprynski et al., 1994a; 1994b). Mice depleted of 

neutrophils succumbed to an early lethal infection, with large bacteria-laden foci in the liver 

parenchyma. Rogers et al. demonstrated that Listeria infection of hepatocytes both in vitro 

and in vivo resulted in apoptosis of the hepatocytes and in the release of neutrophil 

chemoattractants (Rogers et al., 1996). Neutrophils migrating into the liver removed apoptotic 

hepatocytes through release of proteases and destroyed the released bacteria through surface 

phagocytosis. Indeed, activated neutrophils can produce a variety of cytokines (IL-1b, IL-6 
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and TNF-α), chemokines [macrophage inflammatory protein 1a (MIP-la), MIP-1b and MIP-

2], and other soluble factors (leukotriene B4) that modulate the activities of both resident and 

immigrating cell populations (Seebach et al., 1995). 

Recent experiments indicate that the initial elimination of Listeria taken up in the liver is not 

solely a function of immigrating neutrophils; Kupffer cells also play a prominent role. Mice 

depleted of Kupffer cells by pretreatment with liposome-encapsulated dichloromethylene 

diphosphonate exhibited an approximate 75% decrease in the number of Listeria recovered in 

the liver 10 min post-infection (Gregory and Wing, 1998). These findings suggest that the 

majority of Listeria initially recovered in the liver is bound to Kupffer cells. Experiments 

demonstrating reduced blood clearance in mice pretreated i.v. with sugars or neoglycoproteins 

suggest that clearance in at least some cases is mediated by the interaction of lectins expressed 

by Kupffer cells and carbohydrate residues on the surface of the bacteria (Ofek and Sharon, 

1988). In addition to playing a major role in blood clearance, Kupffer cells are a significant 

factor in host resistance to both primary and secondary listerial infections of the liver (Pinto et 

al., 1991; Samsom et al., 1997). Kupffer cells can inhibit the proliferation of Listeria in the 

liver directly by phagocytosing and killing the organisms, or indirectly by promoting the 

biological response of other cell populations. Indeed, Kupffer cells can express intercellular 

adhesion molecule 1 (ICAM-1; CD54) and vascular cell adhesion molecule 1 (VCAM-1; 

CD106), and produce a variety of soluble factors such as interleukin 1b (IL-1b), IL-6, tumor 

necrosis factor a (TNF-α), nitric oxide and leukotrienes: all of which can promote the 

infiltration, localization, and/or antimicrobial activity of neutrophils (Decker, 1990; Essani et 

al., 1995). A similar role in trapping blood-borne pathogens was evaluated in macrophages 

located in the marginal zone of the spleen (Aichele et al., 2003). 

Also critical during early infection is the interaction between Listeria organisms, 

macrophages and NK cells (Unanue, 1997a). Infection of macrophages with Listeria (or 

exposure to heat-killed Listeria) results in macrophage production of TNF-α and IL-12, two 

key cytokines of the innate immune system. These two cytokines together synergize to cause 

NK cell secretion of IFN-γ. In combination with TNF-α, IFN-γ  leads to full macrophage 

activation. Activated macrophages display increased levels of class II MHC molecules and 

become listericidal through the production of free radicals (Bancroft et al., 1991; Beckerman 

et al., 1993). Macrophage activation is clearly necessary for immunity to Listeria, as 

pharmacologic inhibition of nitric oxide production or the gene targeting of inducible nitric 

oxide synthase and NADPH oxidase results in the inability of mice or macrophages to control 

infection (Beckerman et al., 1993; Shiloh et al., 1999). Recently, a report has also 
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demonstrated that splenic CD8α+ dendritic cells produce IFN-γ in response to Listeria 

infection in the absence of NK cells, potentially serving as an alternative source of IFN-γ  

(Ohteki et al., 1999). It should also be stated that the cytokines IL-1 and IL-6 play a necessary 

role during the early immune response to Listeria infection. Their role has been associated 

with the neutrophil response (Unanue, 1997a; 1997b). Just recently a novel cytokine, Eta-1 

(osteopontin), has been shown to play a role during the very early phase of listeriosis (Ashkar 

et al., 2000). Thus, there exists during the early phase of the infection interplay among IL-1, 

IL-6, Eta-1, TNF-α and IL-12. Like macrophages, dendritic cells have the ability to 

phagocytose L. monocytogenes at the early stages of infection and produce a variety of 

proinflammatory cytokines like TNF-α, IL-1, IL-6. and IL-8 as well as IL-12 and IL-18 

production (Guzman et al., 1995; van Deuren et al., 1995; Kolb-Maurer et al., 2003) .  

Beside its role as a natural killer cell activator, IL-12 is a major Th1-promoting factor 

(Macatonia et al., 1995; Gorak et al., 1998). IL-12, in combination with IL-18, induces IFN-

γ production by T cells. Both IL-12 and IFN-γ are required for the generation of protective 

Th1 immune responses against the intracellular bacteria (Yang et al., 1997; Sugwara, 2000). 

A critical role for IL-18 has recently been described in L. monocytogenes infected mice 

(Neighbors et al., 2001). Infection was greatly exacerbated by a monoclonal antibody against 

the IL-18 receptor. Moreover, IL-18 was required for the subsequent release of nitric oxide 

from the macrophage in response to L. monocytogenes infection. IL-18-dependent NO 

production may be a major mechanism of bacterial clearance. 

 

1.4.2. The adaptive response to Listeria infection 

1.4.2.1. The T cell response 

 

The adaptive immune response to Listeria is dependent on the presence of T lymphocytes. 

Because the organism is present in both phagosomes and the cytosol of professional antigen-

presenting cells during infection, epitopes derived from Listeria proteins are presented by 

MHC class I and class II molecules as well as by the class Ib molecule H2- M3 (Pamer et al., 

1991; Safley et al., 1991; Sanderson et al., 1995; Sijts et al., 1996; Busch et al., 1997;  Darji 

et al., 1998). Presentation of Listeria antigens (often bacterial secreted proteins) primes both 

CD4+ and CD8+ T cells. This results in the full clearance of organisms from the host and 

provides a pool of memory T cells capable of a more rapid secondary immune response to the 

bacteria. Listeria-specific CD4+ and CD8+ T cells can both independently provide resistance 

to infection although the effector mechanisms used in each case are still not fully elucidated. 
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It is clear that both CD4+ and CD8+ T cells are activated in an Ag-specific fashion following 

infection with L. monocytogenes (Harty et al., 1996). However, a large body of evidence 

involving specific T cell subset depletion (Mielke et al., 1989) and experiments performed in 

mice deficient in CD4+ and/or CD8+ T cells (Roberts et al., 1993; Kaufmann and Ladel, 

1994; Ladel et al., 1994) indicates that CD8+ T cells are the most effective mediators of 

antilisterial immunity. 

 

1.4.2.1.1. CD8+ T cell effector mechanisms 

  

Activated CD8+ T cells are capable of elaborating a diverse array of effector functions. 

Following Ag-specific stimulation, CD8+ T cells produce a broad range of cytokines 

including IFN-γ and TNF-α (Douglas et al., 1998). The ability of activated CD8+ T cells to 

carry out in vitro cytolysis is well documented. Following ligation of the TCR-αβ by the 

appropriate MHC class I-peptide complex, the CD8+ T cell induces its target to undergo 

programmed cell death (PCD) (Mielke et al., 1989). Two independent pathways account for 

the majority of in vitro target cell lysis by CD8+ T cells (Kagi et al., 1994). One is a perforin-

dependent pathway, mediated by granzymes, which are serine proteases found in the 

cytoplasmic granules of activated CD8+ T cells that gain access to the cytoplasm of the target 

cell and induce PCD by activation of the caspase cascade. Although the mechanism(s) by 

which perforin and granzymes are involved in cytolysis remain controversial (Froelich et al., 

1996; Shi et al., 1997), the dependence of some cytolytic activity on perforin is clear (Kagi et 

al., 1994; Kojima et al., 1994; Lowin et al., 1994; Walsh et al., 1994). The other pathway by 

which CD8+ T cells are capable of efficient in vitro cytolysis is dependent upon interactions 

between CD95 ligand (CD95L, Fas ligand) on the activated CD8+ T cell and CD95 on the 

target cell. Ligation of CD95, in some cell types, leads to intracellular signaling events that 

also activate the caspase cascade and induce PCD (Nagata, 1997). 

 

1.4.2.1.2. H2-Kd-restricted recognition by T cells 

 

Four major Listeria-derived epitopes of CD8+ T cells presented by H2-Kd have been 

identified. Attempts to quantitate the presentation of these peptides by infected cells have 

been made. Two of the peptides derive from p60, a constitutively secreted protein of Listeria: 

p60 (residues 449-457) is presented at a high density by infected cells but is subdominant 

based on the size of the T cell population specific for this peptide; in contrast a stronger T cell 
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response is specific for p60 (residues 217-225), even though this epitope is presented at a 

lower level. A third epitope derives from LLO (residues 91–99); although presented in 

smaller amounts than the p60 epitopes, it dominates the T cell response. The fourth epitope is 

from a secreted metalloprotease, mpl (residues 84–92). A major contribution in understanding 

the response to Listeria has been made by following the development of the CD8+ T cell 

response to these four peptides, an accomplishment made by Eric Pamer’s laboratory (Busch 

et al., 1998; 1999) using the MHC tetramer approach developed by Davis and Altman 

(Altman et al., 1996). 

Pamer’s group developed four tetramers that were shown to recognize CD8+ T cells specific 

for the Listeria-derived epitopes described above. Following primary infection, the T cell 

populations specific to each epitope increased albeit in different amounts. The largest number 

of cells was specific to LLO91–99, reaching about 1.4% of all CD8+ cells in the spleen at day 7 

post-infection, while the response to the subdominant epitopes (p60 449–457 and mpl 84–92) were 

about 0.05%. The T cell response to the p60 217–225 epitope was intermediate, at 0.25%. 

These responses all declined noticeably by day 35. A secondary challenge resulted in the 

expansion of all of these T cell populations but cells specific for the two major epitopes 

proliferated most dramatically: 17% of all CD8+ spleen cells recognized LLO91–99, while 

about 4% were specific to p60217–225. The T cell populations again contracted after the 

secondary infection was resolved; however they persisted at a level higher than that seen after 

the initial primary infection. Therefore, the burst and subsequent decline of the response to 

each epitope occur in parallel, despite the wide range in the size of the T cell populations 

specific for these four epitopes. A point to be noted in the overall studies from Listeria is the 

lack of correlation between the quantity of MHC–peptide display by the antigen-presenting 

cell and the magnitude of the T cell response. This could indicate that a number of regulatory 

mechanisms are present or that the magnitude of the response is dependent on the existing 

TCR repertoire prior to stimulation (Busch et al., 1998; 1999).  

 

1.4.2.1.3. H2-M3-restricted recognition by T cells 

 

Other antigenic components in the anti-Listeria response are the bacterial peptides presented 

by H2-M3. Presentation of peptides by this molecule requires the presence of N-formyl-

methionine at their amino termini. Consequently, it was expected that bacteria-derived 

peptides could be selected by this special class I molecule and presented to T cells. Several 

Listeria-derived peptides presented by H2-M3 have been identified (Gulden et al., 1996; Lenz 
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et al., 1996; Princiotta et al., 1998). A recent paper (Kerksiek et al., 1999) followed the T cell 

response to one of these peptides by using MHC tetramer technology. An important finding 

was that these T cells expanded rapidly during primary infection, peaking at days 5 –7 post-

infection. In comparison, the response to the LLO91–99 peptide (presented by Kd) peaked on 

days 7–9. Surprisingly, however, the H2-M3-restricted T cell response to a secondary 

infection was rather small compared with the vigorous recall response to the LLO peptide 

described previously.  

 

1.4.2.2. Role of humoral immunity in Listeria infection 

 

In the past few years provocative studies showing the role of antibody in protection against 

some intracellular pathogens have been reported, most notably to Cryptococcus neoformans 

(Yuan et al., 1995). Protective mAbs were shown to recognize the capsular polysaccharide of 

the organism, with protection depending on epitope specificity and isotype of the mAb (Yuan 

et al., 1995; Nussbaum et al., 1997).  

The human humoral immune response directed against proteins of Listeria monocytogenes 

have been examined in both healthy individuals and listeriosis patients. Two major targets for 

an antibody response were found in individuals that did not suffer from listeriosis: 

listeriolysin O (LLO) and internalin-related protein (IrpA). In contrast, the humoral response 

in listeriosis patients appears to be more heterogeneous and included LLO, IrpA, InlB, and 

ActA as major targets (Grenningloh et al., 1997) indicating that these proteins can be used to 

probe for and identify listerial infections in patients and, in particular, to assess the incidence 

of innocuous infection by pathogenic listeria in the general population. 

There are at least four potential mechanisms for antibody mediated protection against 

intracellular pathogens: firstly opsonization of the pathogen when it is present in the 

extracellular space, leading to complement activation and/or increased phagocytosis; secondly 

binding to key surface molecules on the pathogen, preventing entry into host cells; thirdly 

neutralization of toxins elaborated by the pathogen in the extracellular environment; fourthly 

antibody action at an intracellular location inside of a pathogen-containing phagocyte (Cossart  

and Lecuit, 1998). It should be noted that on some occasions polyclonal antisera can fail to 

have a protective effect whereas a mAb of a defined specificity and isotype can be shown to 

provide protection. That is to say, natural infection may not result in the production of 

protective antibodies. This means that studies employing serum transfers (as was the case for 
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Listeria) should not be taken as evidence that no role exists for antibody in the context of a 

particular organism. 

Two recent reports (Edelson et al., 1999; Ochsenbein et al., 1999) have demonstrated a 

surprising role for natural antibodies and for anti-LLO antibody in the context of Listeria 

infection. Ochsenbein et al. showed that naive C57BL/6 mice possess low but detectable 

levels of Listeria-specific natural IgM in their serum (reactive to Listeria surface components 

at a titer of 1:16) although there was no detectable Listeria-specific IgG (Ochsenbein et al., 

1999). Mice lacking antibody production (µMT mice) as expected did not have this natural 

anti-Listeria IgM and the early dissemination of Listeria was characterized in these antibody-

deficient mice compared with wild-type counterparts after a high dose intravenous infection.  

Recent work of Edelson et al; has involved antibody neutralization of the Listeria pore-

forming toxin LLO. Mice were passively treated with mouse anti-LLO mAb and then infected 

with Listeria. Antibody treatment resulted in significantly lower bacterial titers in the spleen 

and liver at both six hours (titers were 1 log lower) and two days (2–3 logs) post-infection; 

increased survival after a lethal challenge also resulted (Edelson et al., 1999). Increased 

survival was also seen in SCID mice, indicating that the antibody could work in the absence 

of B and T cells although antibody-treated SCID mice still developed a chronic Listeria 

infection, demonstrating the need for T cells for full Listeria clearance. Protection by mAb 

depended on toxin neutralization, as a non-neutralizing mAb did not affect Listeria resistance. 

Authors suggested that LLO was neutralized either extracellularly or within the phagosomes 

of infected cells. However, older studies in which anti-Listeria serum was taken following 

infection or immunization with killed bacteria and then transferred to naive animals did not 

demonstrate protection against Listeria infection (Osebold and Sawyer, 1957; Mackaness, 

1962; Cheers and Ho, 1983). The ability of mAb to provide resistance over serum antibody 

has been explained to be due to a low abundance of serum Ab to protective Ags, or as a result 

of serum Ab being of an inappropriate isotype to mediate resistance (Edelson et al., 1999). 

 

1.5. Cholesterol-binding cytolytic protein toxins 

 

Cholesterol-binding cytolysins (CBCs) are a large family of 50- to 60-kDa single-chain 

proteins produced by 23 taxonomically different species of gram-positive bacteria from the 

genera Streptococcus, Bacillus, Clostridium, Listeria and Arcanobacterium (Billington et al., 

2000). Apart pneumolysin, which is an intracytoplasmic toxin, all the other toxins are secreted 

in the extracellular medium. Among the species producing CBCs, only L. monocytogenes and 
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L. ivanovii are intracellular pathogens which grow and release their toxins in the phagocytic 

cells of the host. CBCs are lethal to animals and highly lytic toward eukaryotic cells, 

including erythrocytes. Their lytic and lethal properties are suppressed by sulfhydryl-group 

blocking agents and reversibly restored by thiols or other reducing agents. These properties 

are irreversibly abrogated by very low concentrations of cholesterol and other 3-

hydroxysterols (Alouf, 2000). Membrane cholesterol is thought to be the toxin-binding site at 

the surface of eukaryotic cells. Toxins molecules bind as water-soluble monomers to the 

cholesterol-containing lipid bilayer of eukaryotic cells. Upon binding they oligomerize into 

arc- and ring-shaped structures comprising about 50–80 toxin molecules followed by the 

generation of large oligomeric transmembrane pores (15–30 nm diameter) leading to cell lysis 

(Bhakdi et al., 1985; Bayley, 1997; Rossjohn et al., 1998; 1999; Shepard et al., 1998; Alouf 

and Palmer, 1999; Gilbert et al., 1999; Mitchell, 1999). The exception to this is found in the 

Listeria monocytogenes CBC, listerolysin O, which lyses phagosomal membranes but not the 

cell membrane due to its low pH activity optimum at around pH 5.5 (Geoffroy et al., 1987). 

As for other bacterial membrane-damaging proteins, a key function of CBCs is likely to 

enable access to free iron in host cells for bacterial growth purposes. In many cases cytolysin 

production is upregulated by low environmental iron (Alouf, 2000).  

Thirteen structural genes of the toxins have been cloned and sequenced to date. The deduced 

primary structure of the proteins shows obvious sequence homology particularly in the C-

terminal part and a characteristic common consensus sequence containing a unique Cys 

residue (ECTGLAWEWWR) near the C-terminus of the molecules (except pyolysin and 

intermedilysin) known as the Trp-rich loop and shown to be involved in cholesterol and 

membrane binding (Nakamura et al., 1995; Rossjohn et al., 1998; Jacobs et al., 1999). 

However, another Cys residue outside this undecapeptide and closer to the C-terminus occurs 

in ivanolysin. Genetic replacement of the Cys residue in the consensus undecapeptide by 

certain amino acids demonstrated that this residue was not essential for toxin function. Other 

residues in the undecapeptide have been mutagenized, particularly the Trp residues. One of 

these Trp appeared critical for lytic activity (Alouf, 2000).  

 

 

1.5.1. Pneumolysin  

 

Pneumolysin (PLY) is an important virulence factor from the pathogenic bacterium S. 

pneumoniae. The pneumococcus is responsible for many serious diseases such as bacterial 
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meningitis, pneumonia and otitismedia which cause significant mortality and morbidity of 

human populations worldwide. Various pneumococcal proteins allow efficient propagation of 

bacterium within the host, including pneumolysin (PLY), hyaluronatelyase (SpnHL) 

(Jedrzejas et al., 1998a; 1998b; Li et al.,2000) and pneumococcal surface protein A (PspA) 

(Jedrzejas et al., 2000). 

Pneumolysin is a 53-kDa protein produced by all clinical isolates of the pathogen (Paton et 

al., 1986; 1993). Unlike other pneumococcal antigen, this molecule is not surface exposed. It 

is a cytoplasmic enzyme that is released due to the action of surface pneumococcal autolysin. 

The virulence properties of pneumolysin are therefore directly dependent on the action of 

autolysin. Pneumolysin has several distinct functions, especially in the early pathogenesis of 

pneumococcal infection. The enzyme is cytotoxic to ciliated bronchial epithelial cells, slows 

ciliary beating in organ culture, and disrupts tight junctions and the integrity of the bronchial 

epithelial monolayer (Steinfort et al., 1989; Rayner et al., 1995). Due to pneumolysin 

function, the ability of ciliated bronchial cells to clear mucus from the lower respiratory tract 

is reduced, which facilitates the spread of pneumococcal infection. In addition, pneumolysin 

interactions with alveolar epithelial cells and pulmonary endothelial cells probably cause 

alveolar edema and hemorrhage during pneumococcal pneumonia. Pneumolysin action during 

pneumococcal infection disrupts the alveolar-capillary boundary, which produces an alveolar 

flooding providing nutrients for bacterial growth and facilitates penetration through the 

epithelium into the pulmonary interstitium and ultimately into the blood stream (Rubins and 

Janoff, 1998). The virulence and multiple function of pneumolysin, especially in early stages 

of infection by pneumococci, are crucial to the pneumococcal colonization of a host 

(Jedrzejas, 2001). For pneumolysin, its membrane pore assembly consists of 30 to 50 

monomeric pneumolysin molecules with the assembly diameter of 35 to 45 nm (Rubins and 

Janoff, 1998). 

Although the structure of PLY is not known, it is expected to be similar to the structures of 

CBC molecules from other bacterial organisms that have been structurally elucidated by X-

ray crystallography. Of these CBC molecules, the structure of perfringolysin (PFO) from 

Clostridium perfringens probably is the most similar to that of PLY, based on the high 

sequence similarity of 60% (Feil et al., 1996; Rossjohn et al., 1997). The PFO molecule was 

divided into four domains. Three domains are arranged in a row, giving an elongated shape. 

Domain 3 is covalently connected to the N terminal domain 1 and packed laterally against 

domain 2. Membrane interaction of the monomer appears to be mediated by domain 4, while, 

oligomerization involves several sites scattered throughout the sequence. The Trp-rich region 
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around the conserved Cys residue within domain 4 is assumed to conformationally adapt to 

cholesterol, and domain 3 is envisaged to move across the “hinge” by which it is connected to 

domain 1 (Jedrzejas, 2001). 

 

1.5.1.1. Immunomodulatory effects of pneumolysin 

 

Cholesterol binding cytolysins were shown to possess, at its sublytic doses, a regulatory 

activity in target cell networks. As mentioned before, Listeriolysin O elicits IL-1, IL-6, IL-10, 

IL-12, TNF-α (Nishibori et al., 1996), chemokines (IL 8, monocyte  chemotactic protein-1) 

expression, adhesion molecules (ICAM-1, E-selectin), NF-κB nuclear translocation (Kayal et 

al., 1999) and induction of apoptosis of mouse dendritic cells (Guzman et al., 1996). On the 

other hand, the immunomodulatory effects of pneumolysin are reflected by the stimulation of 

human IL-1 and TNF-α release in vitro (Hackett and Stevens, 1992; Houldsworth et al., 

1994) and in vivo (Shanley et al., 1996); and complement activation (Bhakdi and Tranum-

Jensen, 1985). Pneumolysin binds to immunoglobulin Fc fragment, leading to classical 

complement pathway activation in absence of pneumolysin-directed antibodies. Activation 

could divert complement away from intact bacteria and thereby leading to inflammation. 

Pneumolysin also shares limited sequence homology to C-reactive protein involved in acute-

phase response to infection or injury (Mitchell et al., 1991; Paton et al., 1984). 

Moreover, the cytotoxic effects of pneumolysin can directly inhibit phagocyte and immune 

cell function, which leads to suppression of the host inflammatory and immune responses. 

Low concentrations of pneumolysin are able to inhibit human neutrophil and monocyte 

respiratory bursts, chemotaxis, bactericidal activity, and production of lymphokines and 

immunoglobulins (Rubins and Janoff, 1998). The striking effects of pneumolysin on the host 

cell upon exposure to S. pneumoniae were recently investigated with the aid of cDNA 

microarrays to identify genes which are responsive to S. pneumoniae in a pneumolysin-

dependent and -independent fashion in THP-1 human monocytic cell line. Of 4133 genes 

evaluated, 142 were found to be responsive in a pneumolysin-dependent fashion, whereas 40 

were found to be responsive independent of pneumolysin. Genes that were up-regulated in 

cells exposed to the virulent type 2  S. pneumoniae strain relative to those exposed to the 

isogenic strain, which does not express pneumolysin included genes encoding proteins such as 

mannose binding lectin-1, lysozyme, α-1 catenin, cadherin-17, caspases 4 and 6, macrophage 

inflammatory protein-1β (MIP-1 β), interleukin 8 (IL-8), monocyte chemotactic protein 3 

(MCP-3), IL-2 receptor-β (IL-2R-β), IL-15 receptor-α (IL-15R-α), interferon receptor-2, and 
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prostaglandin E synthase. Down-regulated genes included those encoding complement 

component receptor 2/CD21, platelet-activating factor acetylhydrolase, and oxidized low-

density lipoprotein receptor 1 (OLR1). Pneumolysin-independent responses included down-

regulation of the genes encoding CD68, CD53, CD24, transforming growth factor β2, and 

signal transducers and activators of transcription 1 (Rogers et al., 2003). Recent report showed 

that pneumolysin is recognized by Toll-like receptor 4 which mediates innate immune 

response to pneumococcal infection (Malley et al., 2003). 

 

1.6. Regulation of iron uptake and storage in L. monocytogenes  

 

The essential nature of iron for virtually all organisms is a double-edged sword that requires a 

careful balancing act to ensure survival. On the one hand, iron is a required cofactor of many 

enzymes involved in the maintenance of basic metabolic functions such as electron transport. 

On the other hand, interaction of free oxygen with iron leads to the Fenton reaction, which 

results in the production of oxygen radicals that can cause severe damage to the majority of 

cellular biomolecules (Touati, 2000). Due to these two opposing phenomena, it is perhaps no 

surprise that organisms have developed tightly regulated systems for both uptake and 

sequestration of iron. Within the context of mammalian systems this is accomplished in part 

through the action of iron binding molecules such as transferrin, heme and lactoferrin (Otto et 

al., 1992; Nuijens et al., 1996). In addition to protecting cells from the harmful effects of 

oxygen radicals, the ability to sequester iron also limits bacterial growth within the 

mammalian host. This is evidenced by extensive epidemiological data suggesting that there is 

a strong link between the iron status of the host and susceptibility to a number of bacterial 

pathogens (Wanachiwanawin, 2000; Collins, 2003). In light of the requirement for iron and 

the stiff competition for this nutrient, it is no surprise that successful pathogenic 

microorganisms have developed intricate systems that allow them to acquire and store iron 

within the bacterial cell. In fact, genes that encode factors involved in these processes are 

often considered to be virulence factors and have been the subject of intense study by 

numerous groups (Braun, 2001). Intrinsic to the ability to acquire iron is the fact that 

microbes must also be able to sense and respond to changing iron concentrations within the 

environment. This is crucial to help maintain the homeostatic relationship between having 

enough iron to grow and avoiding iron toxicity. In a number of organisms, this regulation is 

accomplished by the ferric uptake regulator (Fur) protein (Crosa, 1997). Found in both gram-

negative and gram-positive bacteria, Fur functions by binding to promoter regulatory 
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elements, called Fur boxes, in an iron-dependent manner. Typically, Fur-regulated promoters 

are repressed under iron-replete conditions and derepressed under iron-depleted conditions. 

Moreover, it is critically important for infecting bacteria to have the ability to store iron 

intracellularly while in an iron-rich environment and utilize the stored iron under iron 

depleted conditions. Micro-organisms have developed two types of iron storing proteins: 

ferritins and bacterioferritins (Andrews, 1998). The former contain iron, whereas the latter 

contain heme. Amongst prokaryotes, ferritins have been isolated from Bacteroides fragilis 

(Rocha et al., 1992), Escherichia coli (Hudson et al., 1993), Helicobacter pylori (Frazier et 

al., 1993) and Campylobacter jejuni (Wai et al., 1995, 1996). In addition, ferritin-encoding 

genes have been found in the genomes of Haemophilus influenzae, Clostridium 

acetobutylicum, Thermotoga maritima, Archaeoglobus fulgidus, Mycobacterium tuberculosis 

and Vibrio cholerae (Andrews, 1998). However, the complete genome sequences of Bacillus 

subtilis, Methanococcus jannaschii and Mycoplasma pneumoniae do not contain a ferritin-

encoding gene. This indicates that the iron storage system varies amongst bacterial species. 

Evidence to demonstrate the contribution of ferritin to protection against oxidative stress has 

also been provided by analysis of a ferritin-deficient mutant of Cam. jejuni (Wai et al., 1996). 

In E. coli, however, a mutation in the ferritin-encoding gene (ftnA) confers no sensitivity to 

oxidative stress on the cell (Abdul-Tehrani et al., 1999). 

In eukaryotes, Ferritins are polymers of 24 identical or similar subunits forming a spherical 

protein shell where up to 4500 iron atoms can be sequestered (Harrison and Arosio, 1996; 

Polidoro et al., 2002). They mainly composed of two subunit types, termed H and L. The 

ferritin H subunit has a potent ferroxidase activity that catalyses the oxidation of ferrous iron, 

whereas ferritin L plays a role in iron nucleation and protein stability (Orino et al., 2001). An 

unusual dodecameric ferritin has been isolated from the gram-positive bacterium Listeria 

innocua (Bozzi et al., 1997). L. innocua ferritin is an oligomeric, spherical protein complex 

containing up to 50–100 iron atoms per oligomer and the functional properties of an authentic 

ferritin (Ilari et al., 2000). It binds and incorporates iron as an authentic ferritin, although its 

sequence and structure are related to the DNA-binding proteins designated DNA-binding 

proteins from starved cells (Dps) that are expressed by bacteria under conditions of oxidative 

or nutritional stress (Almiron et al., 1992; Pena and Bullerjahn, 1995; Yamamoto et al., 

2000). The apoferritin shell of L. innocua does not contain 24 subunits like all ferritins, but is 

characterized by the dodecameric assemblage described for the Dps protein from E. coli 

(Bozzi et al., 1997; Grant et al., 1998). Each subunit contains one high affinity iron-binding 

site that resembles known ferroxidase sites (Ilari et al., 2000). The way of iron incorporation 
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by the dodecameric ferrirtin in Listeria innocua was recently investigated (Stefanini et al., 

1999). The polypeptide chain that assembles into the unusual dodecameric shell of Listeria 

innocua apoferritin lacks the ferroxidase centre characteristic of H-type mammalian chains, 

but is able to catalyse both Fe (II) oxidation and nucleation of the iron core. A cluster of five 

carboxylate residues, which correspond in part to the site of iron core nucleation typical of L-

type mammalian ferritins, has been proposed to be involved in both functions. Interestingly, 

the iron ligands in Listeria ferritin are conserved in the Dps proteins and belong to the group 

of amino acids forming the so-called DNA-binding signature, an observation in line with the 

recently reported iron binding capacity of a neutrophil-activing dodecameric protein from H. 

pylori (Tonello et al., 1999). At variance with the Dps proteins, Listeria ferritin does not 

appear to bind DNA (Bozzi et al., 1997). Hebraud M. and Guzzo J. have recently reported 

that the main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-

like proteins. Its N-terminal sequence shared a complete sequence identity with a Listeria 

innocua non-heme iron-binding ferritin.  The purification of this protein revealed a native 

molecular mass of about 100-110 kDa which indicates a polypeptide composed of six 18 kDa-

subunits (Hebraud and Guzzo, 2000). As a part of the Listeria spp. genome project, the 

ferritin gene ( fri) has been identified at 970,638 bp in the 3,010,209 bp L. innocua 

chromosome and at 979,044 in the 2,944,528 bp L. monocytogenes chromosome (Glaser et 

al., 2001). 

 

1.7. Aim of this work 

 

In the first part of this study, due to the need for highly purified cytolysins in performing 

several biological and immunological assays, listeriolysin O (LLO) and pneumolysin (PLY) 

were expressed in the non-pathogenic species Listeria innocua followed by their purification 

by ion exchange chromatography.  

In the second part,  a novel Listeria monocytogenes ferritin (Frm) was identified as a target of 

the humoral response following infection of mice with pathogenic Listeria monocytogenes but 

not with the non-pathogenic Listeria innocua. A Listeria monocytogenes ∆frm mutant lacking 

the entire frm gene was generated in order to simplify identification of the role of this novel 

protein during Listeria infection as well as in mediating protection against reactive oxygen 

intermediates (ROI).    

In the third part, the suitability of some Listeria mutants to be used as live vaccines against 

the corresponding virulent pathogen or as a carrier for introducing heterologous antigen into 
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animals and humans was investigated. Two categories of mutants were tested, the first 

includes the isogenic Listeria monocytogenes mutant strains that harbour either a specific 

deletion within the actin nucleator gene (actA) and/or multiple deletions within the actA and 

phosphlipase B (plcB) genes. The second category includes a recombinant of the non-

pathogenic Listeria innocua harbouring the complete virulence gene cluster (vgc) from the 

wild type Listeria monocytogenes. The attenuation of these mutants, their ability to survive in 

mouse listeriosis model and to induce a protective as well as inflammatory T- cell mediated 

immunity was tested.   

In the fourth part, the question if replacement of  listeriolysin O (LLO) with another related 

cholesterol-binding cytolysin can maintain the listerial capacity to escape the host cell vacuole 

and gain access into the cytosole as well as to induce a protective antilisterial immunity was 

addressed. In this respect, prokaryotic shuttle vector harbouring the coding region for 

pneumolysin downstream from the hly promoter and regulated by prfA was constructed and 

transformed into the isogenic Listeria monocytogenes deletion mutant EGD-e∆hly. The ability 

of the mutant to express and secret pneumloysin into the extracellular environment, its 

intracellular survival both in vitro and in vivo as well as induction of humoral and cellular 

responses to this mutant was examined.    

Finally, the role of the putative PEST-like sequence in listeriolysin O in mediating induction 

of protective antilisterial immunity was analysed by studying the intracellular survival of L. 

monocytogenes mutant, lacking the PEST like sequence, both in vitro and in vivo as well as its 

ability to induce production of an effector and protective cellular antilisterial response. 
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2. Materials and Methods  
 

2.1. Bacterial strains and plasmid vectors 

 

Bacterial strains as well as plasmid vectors used during this work are shown in tables 2.1. and 

2.2. respectively with their specific features as well as their resources and/or references. 

 

 

Table 2.1. Bacterial stains. 

Strain Genotype/phenotype Resource/Reference 

Escherichia coli: 

INVαF' F' endA1, recA1, hsdR17(rk
-,mk

+), supE44, thi-1, 

gyrA96, relA1, F80lacZ∆ M15, ∆ (lacZYA-

argF)U169.  

Life technologies co.,  
Karlsruhe 
 

DH5αTM F-Φ80∆lacZ∆M15,∆(lacZYA-argF)U169,deoR 

recA1,endA1,hsdR17(rk-,rk+),phoA,supE44,λ-thi-1, 

gyrA96, relA1. 

Life technologies co.,  
Karlsruhe 
 

XL2-Blue RecA1, endA1, hsdR17, SupE44, thi-1, gyrA96, 

relA1, lac [F1 lacIqZ∆M15 Tn10 (TetR) Amy 

CamR]. 

Stratagene co.,  
Amsterdam; Holland 
 

Listeria monocytogenes: 

EGD-e Serotype 1/2a Mackaness, 1962 
 

EGD-e∆hly2 Deletion of amino acids 61 to 420 coding 
nucleotides in hly gene. 

Guzman et al., 1995 
 

EGD-e∆actA2 Deletion of amino acids 31 to 425 coding 
nucleotides in actA gene. 

Chakraborty et al., 

1995 

EGD-e∆actA 

∆plcB 

Deletion of amino acids coding nucleotides starting 
from aa 31 in actA to aa 264 in plcB. 

Darji et al., 2003 
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Strain Genotype/phenotype Resource/Reference 

Listeria innocua 

L. innocua Serotype 6a NCTC 11288 Francis and Stewart, 
 1997 

L. innocua + 

pUvBBAC::vgc  

Serotype 6a NCTC11288 harboring a 6, 6 kb 

fragment encoding the prfA virulence gene cluster 

(prfA-plcA-hly-mpl-actA-plcB) of L. 

monocytogenes on a BAC-based shuttel vector 

(pUvBBAC). 

Hain et al., unpublished 

 

Table 2.2.  Plasmid vectors. 
APR = Ampicillin resistant, KmR  = Kanamycin resistant, EmR = Erythromycin resistant, CmR = 
Chloramphenicol resistant, MCS = multiple cloning site, origin (ori) = origin of replication, ts = 
temperature sensitive. 
 

Plasmid Features 
Antibiotic 

resistance 
Reference 

pCR®2.1-

TOPO® 

lacZα,M13-andT7-Primer binding 

position,MCS,colE1-Origin 

ApR, KmR Invitrogen co., 
Groningen; Holland 
 

pERL3 lacZα,MCS,ermC,ColE1-origin,pAMβ1-

origin 

EmR Leimeister-Wächter et 
al.,1990 
 

pERL3-503 prfA and hly genes from L. 

monocytogenes in pERL3 

EmR Darji et al., 1995 

pAUL-A LacZa`,MCS,ermC,pMPa-origin,orits from 

pE194 

EmR Chakraborty et al.,  
1992 
 

pSOG304 Shuttel vector E. coli-L. monocytogenes, 

ErmC  from pE194,ColE1 from 

LITMUSTM, pIP501-Replicon without 

copR, prfA gene from L. monocytogenes 

EmR Otten S., unpublished 

pSOG306  promoter and signal peptide of hly gene 

from L. monocytogenes in pSOG304 

EmR Otten S., unpublished 
 

pPL2 Shuttel vector E. coli-L. monocytogenes, 

MCS,ComC ,col p15A ori,RP4 oriT,U153 

integrase, L. monocytogenes p60 promoter

CmR Lauer, et al. 2002 
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Plasmid properties 
Antibiotic 

resistance 
Reference 

pUvBBAC 

Shuttel BAC-based Gm+ve/Gm-ve vector , 

MCS, LacZα, single-copy mini-F replicon 

in Gm-ve host, low-copy pIP501 replicone 

in Gm+ve host, lox-sites for chromosomal 

integration of BAC-recombinant 

 

EmR,CmR Hain et al., 
unpublished 
 

 

 

In this work, the Escherichia coli host for pCR®2.1-TOPO®, pERL3-503, pSOG304, as well 

as pSOG306 plasmid vectors was INVαF' while DH5αTM  and XL2-Blue was the host for 

pAUL-A and pPL2 plasmid vectors respectively. 

 

2.2. Chemicals and biochemicals 

 

Standard chemicals purchased from Amersham Pharmacia Biotech (Freiburg), Boehringer 

Mannheim (Mannheim), Life Technologies (Karlsruhe), Merck (Darmstadt), New England 

Biolabs (Schwalbach), Roth (Karlsruhe), Serva (Heidelberg) und Sigma-Aldrich 

(Deisenhofen) were used during this work. Synthetic oligonucleotides were purchased from 

Sigma-ARK scientific (Steinheim).  Enzymes for restriction digestion from New England 

Biolabs and MBI Fermentas (St. Leon-Rot) as well as Taq-Polymerase from Life 

Technologies were used. 

 

2.3. Culture media, supplements, buffers and solutions 

2.3.1. Culture media 

 

E. coli strains were grown in Luria-Bertani (LB) medium (Sambrook et al., 1989). LB 

medium consists of: 

1.0 % [w/v] tryptone                                        10 g 

0.5 % [w/v] yeast extract                                   5 g 

0.5 % [w/v] NaCl                                               5 g            (H2O ad 1000 ml) 
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L. monocytogenes EGD-e, L. innocua wild type strains as well as  its mutant derivatives were 

grown in Brain Heart Infusion (BHI) medium containing 37.0 g  brain heart infusion (Difco 

co., Augsburg) in 1.0 l H2O. For preparing LB and BHI agar medium, 1.5% [w/v] 

bacteriological agar (Life Technologies, Karlsruhe) was added. For detecting the hemolytic 

activity of L. monocytogenes and E. coli strains, enterohemolytic washed blood agar plates 

from Oxoid co. (Wesel) were used. 

L. monocytogenes were grown in minimal medium (Premaratne et al., 1991) containing 

glucose as a defined carbon source. Minimal medium is composed of: 

 

Salt component A (see below)                             100 ml 

Salt component B (see below)                               10 ml 

13 mM ferric citrat                                                 20 ml 

20% [w/v] glucose                                                 50 ml 

1 mg/ml Amino acids solution                               10 ml 

5 mg/ml L-cysteine                                                 20 ml 

30 mg/ml L-glutamine                                            20 ml 

10 mg/ml Riboflavin (Vitamin B2)                         50 µl (in 1 N formic acid) 

10 mg/ml Thiamine (Vitamin B1)                         100 µl 

10 mg/ml (+)-Biotin                                                 50 µl (in 0.1 N NaOH) 

1 mg/ml DL-6.8-Thioctic Acid:                                 5 µl (in 70% [v/v] Ethanol) 

H2O                                                                 ad 1000 ml 

                                                                                            

Salt component A: 

KH2PO4                                                                   6.56 g 

Na2HPO4.7 H2O                                                   30.96 g 

H2O                                                                   ad 100 ml 

Salt component B: 

MgSO4.7 H2O                                                         4.09 g 

H2O                                                                   ad 100 ml 

Amino acids solution: 

L-Arginine                                                                0.1 g 

L-Isoleucine                                                              0.1 g 

L-Leucine                                                                 0.1 g 
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L-Methionine                                                          0.1 g 

L-Valine                                                                  0.1 g 

H2O                                                                  ad 100 ml 

All components were autoclaved separately and/or sterile filtered. Amino acids solution were 

stored at 4°C, vitamins at -20°C while all other components were kept at RT. Cysteine and 

glutamine solutions must be freshly prepared due to its oxidative instability. 

 

For production of competent E. coli cells, E. coli were grown in SOB-medium (Inoue et al., 

1990):     

 

2.0% [w/v] tryptone                                                5.0 g 

0.5% [w/v] yeast extract                                       1.25 g 

10 mM NaCl                                                       0.145 g 

2.5 mM KCl                                                        0.045 g 

10 mM MgCl2.6 H2O                                              0.5 g 

10 mM MgSO4.7 H2O                                         0.615 g 

H2O                                                                  ad 250 ml 

 

The SOC-Medium in which E. coli cells are suspended after managing the transformation 

contains 20 mM of D- glucose in addition to the components of the SOB medium.   

 

2.3.2. Media supplements 

 

For inoculation of culture media by antibiotic resistant strains, the following antibiotics were  

added: Ampicillin (stock solution 100 mg/ml in 50% (v/v) ethanol, end concentration 100 

µg/ml), erythromycin for selecting plasmid-containing E. coli strains (stock solution 50 

mg/ml in 96% (v/v) ethanol, end concentration 300 µg/ml), erythromycin for selecting 

plasmid-containing L. monocytogenes strains (stock solution 5 mg/ml in 96% (v/v) ethanol, 

end concentration 5 µg/ml) and chloramphenicol (stock solution 5 mg/ml in 70% (v/v) 

ethanol, end concentration 8 µg/ml for selecting plasmid-containing L. monocytogenes strains 

or 20 µg/ml for selecting plasmid-containing E. coli strains). For production of 

electrocompetent L. monocytogenes cells, penicillin was used (Stock solution 10 mg/ml in 

50% [v/v] ethanol, end concentration 10 µg/ml). For killing the extracellular bacteria after  

monolayer eukaryotic cell line infection in case of  invasions or plaque-assays, gentamicin 
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was used (Stock solution  50 mg/ml in H2O, end concentration 20 µg/ml or 10 µg/ml in soft 

agar into the over layer of eukaryotic cells respectively).  

In E. coli strains containing plasmids  harbouring the multiple cloning site (mcs) in the lacZα 

gene, the medium must contain 5-Bromo-4-chlorindoxyl-β-D-galactoside (XGal; Stock 

solution  20 mg/ml in Dimethylformamid, end concentration 15 µg/ml) for detecting the 

successful insertion of the desired gene in the mcs region of the plasmid. 

 For production of electrocompetent Listeria, bacteria were grown in BHI medium containing 

0.5M D-sucrose. For electroporation purpose, BHI medium with 0.5M D-sucrose was used. 

 

2.3.3. Buffers and solutions 

 

TE Buffer: 

          

              10 mM Tris.HCl (pH 8.0) 

              1.0 mM EDTA                            
 

GES-Reagent: 

               

              60 g      guanidiniumthiocyanate 

              0.5 M   EDTA                                                             20 ml 

              10% [w/v]   sodium-N-lauroylsarcosinate                    5 ml 

              H2O                                                                       ad 100 ml 

              Sterile filter with 0.45 µm-Filter and  

              keep at room temperature away from light .                       

 

50X TAE-Puffer: 

                

              242.3 g                   Tris 

              57.1 ml                   96% [v/v] acetic acid 

              100 ml                    0.5 M EDTA (pH 8,0) 

              H2O                       ad 1000 ml                       
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5X loading buffer (for agarose gel electrophoresis): 

                                      

              25.0% [w/v]            ficoll Type 400 

              0.25% [w/v]            bromphenol blue 

              in TE buffer 

 

DNA standard marker: 

 

The 1 Kb Plus DNA Ladder TM (delivered from Life Technologies, Karlsruhe as aliquots of 

1µg/µl) was diluted to be used at an end concentration of 50 ng/µl as follows: 

 

               1 Kb Plus DNA Ladder TM                    20 µl 

               5X loading buffer                                100 µl 

               TE  buffer                                       ad 400 µl 

 

From this dilution, 10-12 µl were loaded onto the agarose gel.  

The ladder contains a total of twenty bands; ten bands ranging in size from 3000 bp to 12000 

bp in 1000-bp increments while the other ten bands ranges in size from 100 to 2000 bp. 

 

CCMB80 solution: 

               

               CaCl2.2H2O                                            11.8 g 

               MnCl2.4H2O                                             4.0 g 

               MgCl2.6H2O                                             2.0 g 

               Potassium acetate                                   0.98 g 

              Glycerin (sterile)                                    100 ml 

               H2O                                                 ad 1000 ml 

 

10X  PCR buffer: 

                                                                                                                               End conc.: 

             1 M Tris.HCl (pH 8.3)                              200 µl                                  200 mM 

             1 M MgCl2                                                  20 µl                                    20 mM 

             1 M KCl                                                     250 µl                                  250 mM 

             10% [v/v] tween 20                                      50 µl                               0.5% [v/v] 



2. Materials and Methods                                                                                                          44                       

             10 mg/ml    gelatin                                       100 µl                                 1 mg/ml 

             H2O                                                        ad 1000 µl 

 

10X  PBS: 

            

           NaCl                                                                   80 g 

           KCl                                                                    2.0 g 

           Na2HPO4                                                          6.1 g 

           KH2PO4                                                            2.0 g 

           H2O                                                         ad 1000 ml  (pH 7.4 with 1M NaOH) 

                                        

2X sample buffer (SDS-PAGE): 

 

         100% [v/v] glycerin                                         2.0 ml 

         10% [w/v]  SDS                                               1.0 ml 

         100% [v/v] β-Mercaptoethanol                        0.2 ml 

         0.5 M Tris.HCl (pH 6.8)                                0.29 ml 

         0.2% [w/v] bromphenolblue                          0.15 ml 

         (in 0.1 M Tris.HCl [pH 7,5]) 

         H2O                                                                  6.9 ml 

 

Polyacrylamide resolving gel (10 or 12%):                  

       

       1.5 M Tris.HCl (pH 8.8)                                       5 ml 

        Rotiphorese® Gel 30                             6.45 or 8.4 ml 

        10% [w/v] SDS                                                 0.2 ml      

        TEMED                                                              10 µl       

        25% [w/v] APS                                                   60 µl      

        H2O                                                       8.15 or 6.2 ml 

 

Polyacrylamide stacking gel (5.7 %): 

 

      0.5 M Tris.HCl (pH 6.8)                                      2.5 ml 

      Rotiphorese® Gel 30                                            1.9 ml 
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      10% [w/v] SDS                                                    0.1 ml 

      TEMED                                                                3.5 µl 

      25% [w/v] APS                                                      40 µl 

      H2O                                                                      5.4 ml 

 

10X SDS-running buffer: 

 

    Tris                                                                          30.3 g 

    Glycine                                                                     144 g 

    SDS                                                                            10 g 

    H2O ad                                                                  1000 ml 

 

Coomassie blue (for protein staining): 

 

    0.2%[w/v] coomassie R250 

    10% [v/v] acetic acid (96% [v/v] glacial acetic acid) 

    10% [v/v] ethanol 

    H2O ad 1000 ml 

 

Destaining solution for  SDS-PAGE: 

 

   10% [v/v] acetic acid (96% [v/v] glacial acetic acid) 

   40% [v/v] methanol 

   H2O ad 1000 ml 

 

Overnight destaining solution for  SDS-PAGE: 

 

   5% [v/v] acetic acid (96% [v/v] glacial acetic acid) 

   7.5% [v/v] methanol 

   H2O ad 1000 ml 

 

10X  Blot buffer: 

     

     Tris                                                                              58 g  
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   Glycine                                                                        29 g 

   SDS                                                                            3.7 g 

   H2O                                                                   ad 1000 ml 

 

10X  TBS: 

    

   Tris                                                                           24.2 g 

   NaCl                                                                            80 g 

   H2O                                                                 ad 1000 ml (pH 7.6 with HCl) 

 

1X  TBS-T: 

 

   100 ml        10X TBS 

   0.1% [v/v]   tween 20 

   H2O ad       1000 ml 

 

Blocking solution (for immunoblotting assay): 

 

   Skimmed milk                                                              5 g            

   1X TBS                                                                   100 ml 

 

BCIP-solution: 

 

   0.1 M glycine (pH 10) 

   1 mM ZnCl2 

   1 mM MgCl2 

   1 mg/ml 5-Brom-4-chlor-3-indolylphosphat-p-toluidine (BCIP) 

 

Sodium phosphate loading buffer for protein purification 
(cation exchange chromatography): 
    

    0.05M NaH2PO4                              pH 6.2 (with 0.05 Na2HPO4) 
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Sodium Phosphate elution  buffer for protein purification 
(cation exchange chromatography): 
   

   0.05M NaH2PO4                             pH 5.6    (with 0.05 K2HPO4)            

   1M NaCl  

Tris-HCl loading buffer for protein purification 

(anion exchange chromatography): 

 

   0.05M Tris                                      pH 7.5        (with 37% HCl) 

 

Tris-HCl elution  buffer for protein purification 

(anion exchange chromatography): 

   0.05M Tris                                      pH 7.5       (with 37% HCl) 

   0.5M NaCl 

 

Mowiol solution: 

   Mowiol                                           2.4 g 

   Glycerin 100 %(v/v)                      4.8 ml                 

   H2O                                                6.0 ml  → keep the mixture at room temperature 

   0.2M  Tris.HCl (pH 8.5)                12.0 ml→10 min at 50°C; 15 min at 5000g, 
                                                          take the supernatant, store at 4°C    
 

Diethanolamine buffer for ELISA: 

   MgCl2                                           10mg 

   Diethanolamine                            10ml 

   H2O         to                                 100ml          pH 9.8  (with37% HCl) 

 

Erythrocytes lysis buffer: 
 
   Tris                                           2.06 gm 

   NH4Cl                                       7.49 gm 

   H2O        to                             1000.0 ml        pH 7.2  (with37% HCl) 

     

FACS buffer: 
 
  FCS (100%)                       2.0 ml 

  PBS (1X)                                   98.0 ml 
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2.4. Bacterial storage 

 

To keep the bacteria for the routine use over a short period of time, bacteria were inoculated 

onto fresh agar plates every 4 to 8 weeks, incubated at 37°C, then stored at 4°C. E. coli 

species were grown on LB plates while Listeria strains were grown on BHI plates. In case of 

antibiotic resistance as a result of plasmid transformation, E. coli and L. monocytogenes were 

grown on LB and BHI agar plates supplemented with the corresponding antibiotics. 

For longer-term storage, 1.0 ml bacterial culture was mixed with 0.5 ml sterile 100 % (v/v) 

glycerin in a 2 ml cryotubes (Nalge Nunc, Hamburg), freezed in fluid nitrogen and 

subsequently stored in -80°C.    

 

2.5. Bacterial growth conditions 

 

 For the most purposes as for example plasmid DNA or chromosomal DNA isolation, 

infection assays, E. coli and L. monocytogenes were grown in 10 ml medium in 100 ml 

conical flasks at 37 °C with shaking at 180 rpm either in a water bath (Infors, Bottmingen, 

Swiss) or on a shaking apparatus (GFL co., Burgwedel) placed in a 37 °C incubation room. In 

case of all in vitro and in vivo infection experiments, subcultures were performed by 1:50 

dilution of overnight culture (200 µl) in a fresh medium (10 ml) followed by further 

incubation at 37 °C for 2-3 hours corresponding to the  bacterial exponential growth phase. 2 

ml of bacterial culture were transferred to a sterile 2.0 ml reaction tube, spinned down at 8000 

rpm for 2 minutes. The bacterial pellet was saved, resuspended in 2.0 ml sterile PBS and 

spinned down again. This washing step was repeated twice. The pellet was resuspended in 

PBS and the bacterial concentration was calibrated by measuring its optical density at 

wavelength of 600. Further dilutions were prepared in PBS to obtain required numbers of 

bacteria for infection (for details, see section 2.9.6.1). 

 

2.6. Bacterial growth measurement 

 

The optical density of bacterial culture was measured with a spectrophotometer (Ultrospec 

3000; Amersham Pharmacia Biotech, Freiburg).1.0 ml of bacterial culture or suspension was 

added in a disposable microcuvet and the optical density was measured at a wave length of 

600 nm. In case of optical density over 0.6, bacterial culture must be 1:10 diluted with the 

respective buffer or culture medium before measurement. 
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2.7. Molecular biological and molecular genetics methods 

 

Chromosomal as well as plasmid DNA isolation, restriction enzyme analyses and 

amplification by PCR were performed according to standard protocols (Sambrook et al., 1989; 

Ausubel et al., 1990; McClure et al., 2000). 

 

2.7.1. DNA isolation 

27.1.1. Plasmid DNA isolation from E. coli  

 

It took place by means of the GFXTM micro plasmid prep kit (Amersham pharmacia biotech. 

co., Freiburg) following instructions of the manufacturer. 3.0ml of bacterial culture were 

divided into two halves, centrifuged after each other for 1 minute at 13000 rpm in a 1.8ml 

reaction tube and treated according to the manufacturer instructions submitted for a 2-3 ml 

bacterial culture. Plasmid DNA was eluted with 50 µl 10 mM Tris.HCl (pH 8.5). If the 

plasmid DNA was intended to be used in sequencing reaction, double distilled H2O (pH 7.5) 

was used in elution. Plasmid DNA can be stored at -20 °C. 

 

2.7.1.2. Chromosomal DNA isolation from gram-positive bacteria  

 

  Chromosomal DNA was isolated from Listeria monocytogenes and Streptococcus   

pneumonia following the protocol of Pitcher et al. (1989) as follows: 

1.5 ml bacterial culture was spinned down in 1.8 ml reaction tube for 4 minutes at 1500 g. The 

supernatant was flicked out and the pellet was washed with 0.85% (w/v) NaCl solution, 

centrifuged at 15.000 g for 5 minutes, then suspended in 100 µl TE buffer containing 50 

mg/ml lysozyme  and finally incubated in a thermomixer (Eppendorf, Hamburg) at 37°C and 

1200 rpm for 30 minutes. 1.0µl Dnase-free Rnase (Boehringer Mannheim co., Mannheim) 

was added to the pellet, then incubated for 5 minutes at room temperature (RT) before mixing 

with 500µl GES-reagent by inverting the reaction tube 5 times. After 5 minutes incubation at 

RT followed by 2 minutes on ice, 250µl ice-cooled 7.5M ammonium acetate was added for 

protein precipitation. After 10 minutes incubation on ice, the reaction tube was inverted 5 

times for mixing. The DNA was extracted by adding 500µl phenol/chloroform/isoamyl 

alcohol (25:24:1) to the reaction tube. The reaction tube was inverted gently for 15 minutes, 

then centrifuged for another 15 minutes at 18.000g and 4°C. The upper aqueous layer was 

removed with a pipette and placed in a new microfuge tube. DNA was precipitated by adding 
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0.5 volume of 2-propanol followed by careful horizontal turning of the tube, careful and slow 

inverting and finally strong shaking so that the chromosomal DNA could be rolled up to a 

well visible coil. The received DNA coil would be a pellet through 5 minutes centrifugation at 

18.000 g and 4°C. The DNA pellet was washed five times, each with 1.0 ml 70% (v/v) 

ethanol and then centrifuged. Thereafter, the DNA pellet was vacuum dried for 5-10 min and 

resuspended in 100µl of filtered TE buffer. The DNA was dissolved by incubating the 

samples overnight at 37oC. The chromosomal DNA was stored at 4oC. According to the 

described method, 10µg of chromosomal DNA could be obtained from 1.5 ml of stationary 

grown bacteria. 

 

2.7.2. Enzymatic treatment of DNA 

2.7.2.1. DNA digestion with restriction enzymes 

 

In order to digest plasmid DNA for fragment isolation or further cloning, DNA quantities 

between 100 ng and several micrograms in a volume of 15 to 100 µl would be incubated for 1 

to 4 h with the respective restriction enzymes (about 5 to 25 Units per µg). The restriction 

digestion took place in the manufacturer enzyme specific reaction buffer. In case of restriction 

digestion with two restriction endonucleases working in two different buffer systems, the 

digested DNA would be purified after the first digestion by means of the QIAquick PCR 

Purification Kits (Qiagen co., Hilden) then incubated with the second enzyme. 

 

2.7.2.2. Ligation of a DNA fragment with a DNA vector     

In general, a 1:3 (vector: insert) ratio is recommended for the ligation reaction. The ligation is 

carried out in presence of  three ingredients in addition to water: Two or more fragments of 

DNA that have either blunt or compatible cohesive ends (the vector and the insert), a 1X 

buffer containing ATP which is provided as a 10X concentrate, and the T4 DNA ligase (Life 

Technologies co., Karlsruhe). The volume of the ligation mixture depends on the DNA 

concentration ranging from 15-40µl using 1-2 units from the T4-ligase for 50ng-2µg of DNA. 

The optimal incubation conditions for T4 DNA ligase is overnight at 16°C. 

2.7.3. Agarose gel electrophoresis 

Agarose gel electrophoresis is employed to check the progression of a restriction enzyme 

digestion, to quickly determine the yield and purity of a DNA isolation or PCR reaction, and 
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to size fractionate DNA molecules, which then could be eluted from the gel. Prior to gel 

casting, dried agarose is dissolved in 1X TAE buffer by heating. 0.5µg/ml ethidium bromide 

was included in the warm gel solution to enable fluorescent visualization of the DNA 

fragments under UV light. The warm gel is poured into a mold (made by wrapping clear tape 

around and extending above the edges of an 18 cm x 18 cm plastic plate), which is fitted with 

a well-forming comb. The percentage of agarose in the gel varied between 0.8-1.2 percent 

[w/v] depending on the expected size(s) of the fragment(s). Agarose gels are submerged in 1X 

TAE electrophoresis buffer in a horizontal electrophoresis apparatus. The DNA samples are 

mixed with 5X gel tracking dye (1:1 v/v) and loaded into the sample wells. Electrophoresis is 

usually carried out at 150 - 200 mA for 30-60 minutes at RT, depending on the desired 

separation. When low-melting agarose is used for preparative agarose gels, electrophoresis is 

carried out at 100-120 mA for 30-60 minutes, again depending on the desired separation. 1 kb 

plus DNA LADDERTM (Life Technologies co., Karlsruhe) size markers were co-

electrophoresed with DNA samples for fragment size determination. After electrophoresis, the 

gel is placed on a UV light (254nm) box and a picture of the fluorescent ethidium bromide-

stained DNA separation pattern is taken with the aid of a gel documentation system of 

Cybertech CSI (Cybertech co., Berlin) and a video copy processor (P68E; Mitsubishi Electric, 

Ratingen). If the DNA would be eluted from the gel for size fractionation purposes, the 

amount of time at which the DNA is exposed to the UV transilluminator has to be minimised 

because the UV mutagenises the DNA at a measurable rate. A clean scalpel blade is used to 

cut around the band of interest. The transilluminator is switched off and the white light is 

switched on. The band is carefully removed from the gel and placed on the glass. It is 

recommended to trim off as much empty agarose as possible. The excised band is transferred 

into a 1.8 ml microfuge tube. 

2.7.4. Extraction of DNA fragments from the agarose gel 

QIAquick gel extraction kit (Qiagen co., Hilden) following producer’s instructions was used. 

DNA is eluted with 20-30µl 10mM Tris.HCl (pH8.5) and can be stored at –20 °C for further 

use. 

2.7.5. Quantification of DNA concentration 

For cloning or sequencing purposes, the amount of DNA must be firstly measured using the 

Nanodrop ND-1000 spectrophotometer (G. Kisker GbR¸ Steinfurt). 1µl of the DNA sample is 
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pipetted directly onto the measurement surface. Using surface tension, a column is drawn 

between the ends of two optical fibers to establish the measurement path. DNA measurement 

took place at a wave length 260 nm and the amount of DNA is given as ng/µl. 

 

2.7.6. Transformation 

2.7.6.1. Transformation in E. coli 

2.7.6.1.1. CCMB80 method 

Chemically competent E. coli is prepared following the protocol of Hanahan et al. (1991). 20 

ml LB medium was inoculated with E. coli INVαF' strain and incubated overnight at 37°C. A 

1 ml overnight culture was inoculated in 50 ml SOB-medium and incubated at 25-30°C until 

the optical density at 550nm was approximately 0.3. The culture was chilled for at least 10 

min on ice. In the following steps, the cell suspension should be kept on ice as much as 

possible. The cell suspension was centrifuged for 10 min at 3.000 rpm (Sorvall GSA rotor, 

GMI co., Minnesota; USA) at 4°C. The pellet was gently resuspend in 17 ml ice-cold 

CCMB80 buffer and incubated for 20 minutes on ice then centrifuged for 15 minutes at 3000 

rpm (Sorvall GSA rotor) at 4°C. Again, the pellet is gently resuspended in 4.2 ml ice-cold 

CCMB80 buffer. The cell suspension is aliquoted at 200 µl per cryotube (Nalge Nunc co., 

Hamburg). The cell suspension is shock-freezed in liquid nitrogen and tubes are stored at 

80°C where they will be competent for at least 6 months. For transformation, competent E. 

coli  are thawed out on ice. 100-200µl of  competent E. coli  are gently mixed  with the  DNA 

preparation (usually 10pg to 10ng DNA) in a 1.8ml microfuge tube, incubated on ice for 30 

minutes and heat shocked at 42 °C for 90 seconds. The transformation mixture is added to 

800 µl SOC medium and incubated at 37 °C with shaking at 180-200 rpm for 1-3 hours 

depending on the antibiotic selection marker in the transforming DNA. If the transforming 

DNA has a phenotypic expression of ampicillin or chloramphenicol resistance, one hour will 

be enough for incubating the transformed E. coli but in case of erythromycin resistance, the 

incubation time will be extended to 3 hours. Finally, 50-200 µl of the transformed bacteria 

will be plated out on suitable selection media and incubated for 1-2 days at 37°C. In case of 

pPL2 and pAUL-A transformation, it is recommended that plates have to be incubated 

overnight at 30 °C due to its temperature sensitivity. 

 

2.7.6.2. Transformation in L.monocytogenes by electroporation 

 

Electrocompetent L. monocytogenes was prepared following the protocol of Park and Stewart  
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(1990). A single colony of L. monocytogenes or its isogenic mutants was inoculated in 10 ml 

BHI. The bacterial culture was grown overnight with shaking at 180 rpm and 37 °C. 2.0 ml is 

inoculated into 200 ml 0.5 M sucrose containing BHI in 1 L flask and incubated with shaking 

at 180 rpm and 37 °C for 2-3 hours till reaching OD600 of about 0.2.  200 µl of 10mg/ml 

penicillin G stock solution is added and bacteria were further incubated for 2 hours. Bacteria 

were spinned down at 5000 rpm for 10 minutes at 4°C (Sorvall GSA-rotor) and the 

supernatant was decanted. At this time point, bacteria must be kept on ice during work. The 

bacterial pellet was resuspended in 20 ml ice cold HEPES buffer (1 mM HEPES [pH 7.0], 

0.5M sucrose) and centrifuged at 6000 rpm and 4°C for 10 minutes. The pellet was again 

resuspended in 10ml HEPES buffer and centrifuged at 6000 rpm and 4°C for 15 minutes. This 

step was repeated three times. In the last time, the supernatant was decanted and the bacterial 

pellet was mixed thoroughly with 500 µl glycerin containing HEPES buffer (1mM HEPES 

[pH 7.0], 0.5M Sucrose, 10% [v/v] glycerin). The bacterial suspesion is aliquoted as 50 µl cell 

suspension in 1.8 ml cryotubes (Nalge Nunc co., Hamburg), shock-freezed in a liquid nitrogen 

and kept at –80°C. Electroporation took place by mixing 50µl of thawed electrocompetent 

bacteria with 1-10µl (containing 1-2µg) of plasmid preparation. The mixture was pipetted in a 

pre-cooled electroporation cuvette (0.1 cm slit; Invitrogen, Groningen; Holland). The  

electroporator is set at 1 KV, 400 ohms, 25 µFD. Cuvette was placed and pulsed. The time 

constant for electroporation is usually about 5 minutes. Immediately 1 ml pre warmed 0.5M 

sucrose containing BHI was added and bacteria was incubated for 1-3 hours, depending on the 

antibiotic selection, at 37°C and 180 rpm. 100-250 µl of bacterial suspension are plated out on 

selective media for 1-2 days at 37°C. 

 

2.7.7. Polymerase chain reaction (PCR) 

2.7.7.1. Amplification of DNA fragments for further cloning 

The DNA fragment, to be cloned in a vector, has to be amplified to an amount sufficient to be 

cloned with a minimum nucleotide mismatch. This can be done with the aid of the expandTM 

high fidelity PCR system (Boehringer Mannheim co., Mannheim) which increase both the 

yield and accuracy of the PCR product (Mullis et al., 1986). It contains the Pwo-DNA-

polymerase proofreading enzyme which increases the fidelity of PCR threefold over Taq 

DNA Polymerase. It prevents truncated products from mis-incorporated nucleotides as well as 

limiting primer degradation by the 3' to 5' exonuclease activity of the proofreader. According 

to the producer’s instructions, the volume of of PCR preparation for DNA fragment smaller 
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than 1kb is smaller than that of DNA fragment bigger than 1kb.The dNTP-mixture used in the 

hifi PCR preparation was prepared from stock solution of 100mM dNTP set (Life 

technologies co., Karlsruhe). The concentration of each nucleotide in the dNTP-mixture is 

5mM while its end concentration in the PCR preparation is 200µM. The end concentration of 

each primer in the PCR preparation is 30nM. 1-2µl of isolated chromosomal DNA(100ng-

1µg) is used as a template. It is common to use 0.2ml "thin walled" tubes (Biozym Diagnostic 

co, Hess. Oldendorf) for polymerase chain reactions. These tubes transmit the temperature 

changes faster.  PCR took place in thermocyclers Gene Amp PCR system2400 (Perkin Elmer 

co., Langen).  

The amplified DNA has to be purified from buffer, primers and other proteins prior to cloning 

or restriction digestion. The purification is done by means of QIAquick PCR purification kits 

(Qiagen co., Hilden) according to the manufacturer’s instructions. The DNA is eluted with 

20-30µl of 10mM Tris.HCl (pH 8.5). After purification, 3-5µl DNA can be tested with 

agarose gel electrophoresis for the right size of the PCR amplified DNA. 

Usually , the amplified DNA fragment is subcloned in  PCR®2.1-TOPO®  vector with the aid 

of TOPOTM TA Cloning® kit (Invitrogen co., Groningen, Holland) and transformed in E. coli 

INVαF'. Now, the DNA insert in the new constructed PCR®2.1-TOPO® derivative is available 

for further restriction digestion and cloning in other vectors. Sometimes, the amplified DNA 

fragment can be used directly in further restriction digestion and ligation in the desired vector. 

2.7.7.2. Amplification of DNA fragments for testing the recombinant clone 

After cloning a DNA fragment in the desired vector by ligation or in the PCR®2.1-TOPO®  

vector by topoisomerisation, PCR analysis is performed to confirm the identity of the right 

clone using  forward and reverse primers possessing sequences complementary either to those 

of the vector lying up-and down stream from the DNA insert or to  the sequences at the 5` and 

3`ends of the DNA insert. One colony of the transformed bacteria is picked by means of a 

tooth pic and placed in a 0.2ml reaction tube (Biozym Diagnostic co., Oldendorf).  50µl of 

PCR preparation is added in the tube as follows: 

                                                                                                           End conc.: 

10X PCR buffer                                        5.0 µl                                    1X  

5 mM dNTPs                                             2.0 µl                                    200 µM 

20 µM forward primer                               0.5 µl                                    200 nM 
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20 µM reverse primer                                0.5 µl                                    200 nM 

Taq-Polymerase (5 U/µl)                         0.25 µl                                   1.25 U/50 µl 

H2O                                                     ad 50.0 µl 

 

The thermostable Taq polymerase was obtained from Life Technologies (Karlsruhe). 

The temperature program of PCR reaction was adjusted as follows: 

 

1)   2 min                                                    94°C 

2)   20 sec                                                   94°C 

3)   30 sec                                                   55°C 

4)   90 sec                                                   72°C 

5)   3 min                                                    72°C 

6)   ∞                                                            4°C 

Steps 2) to 4) are repeated 25 times. The PCR product is tested for the right size through 

agarose gel electrophoresis.   

 

2.7.8. Construction of a site-directed insertion mutation 

 

The isogenic deletion mutants were produced by means of chromosomal integration of a 

pAUL-A vector containing a portion of the desired gene coding sequence (Chakraborty et al., 

1992; Schäferkordt and Chakraborty, 1995). The pAUL-A vector is a plasmid containing a 

temperature sensitive origin of replication from plasmid pE194, lacZa` multiple cloning site 

surrounded by transcriptional terminators and erythromycin resistance marker expressed in 

both E. coli and Listeria sp. Two fragments from the chromosomal DNA, one is (often about 

1000bp) upstream and the other (often about 500 bp) downstream from the gene of interest 

were amplified with high fidelity PCR followed by PCR product purification and restriction at 

the 3` end of the upstream fragment as well as the 5`end of the downstream fragment with the 

same endonuclease. Thereafter, the two restricted fragments were ligated together and the 

ligation product lacking the gene of interest was amplified with high fidelity PCR and 

restricted at its 5` and 3` ends with specific endonucleases.  The pAUL-A plasmid was 

isolated from E. coli DH5α and restricted with the same endonucleases followed by ligation 

with the PCR amplified and restricted chromosomal DNA fragment. The ligation mixture was 

transformed into E. coli INVαF' followed by overnight incubation at 30°C. Recombinants 

were identified as Lac_ (white coloured) colonies and the plasmid DNA was analysed by PCR 
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analysis using the forward primer for the upstream fragment and the reverse primer for the 

downstream fragment to identify the insert with the right size followed by DNA sequencing to 

identify plasmids carrying the correct insert. These plasmids were isolated from E. coli 

INVαF' and electroporated into L. monocytogenes EGD-e followed by overnight incubation at 

30°C. Again, PCR analysis was performed with grown EGD-e colonies to confirm the 

presence of plasmids carrying the right size of insert. Integration of the plasmid was achieved 

by streaking out the PCR positive colonies onto BHI plates containing 5µg/ml erythromycin 

and overnight incubation at 42°C. At this temperature, pAUL-A can not multiply but will 

integrate into the chromosomal DNA by homologous recombination disrupting the whole 

gene in the chromosomal DNA with its insert possessing the deleted gene sequence. Several 

transformants were purified by re-streaking colonies onto BHI plates containing 5µg/ml 

erythromycin and further incubation at 42°C. Colonies were tested by PCR analysis using 

universal primers of pAUL-A (M100/M101), which bind few nucleotides up and downstream 

of the multiple cloning site of  pAUL-A, to identify integration of pAUL-A into the 

chromosomal DNA. The absence of the band corresponding to the insert indicates a 

successful integration. A weak band refers to incomplete integration. So, re-streaking must be 

continued for further few days till complete integration is achieved. The homologous 

recombination between the chromosomal and pAUL-A DNA sequences is accomplished by 

two-step gene replacement procedure. The plasmid is first integrated in the chromosome 

corresponding to the site on the plasmid that was cleaved by a restriction endonuclease. 

Homologous recombination results in two copies of the gene, separated by the plasmid 

sequences. The second step involves homologous crossing over in the repeated DNA segment 

to loop-out the plasmid, along with the intact gene. In other words, the wild-type 

chromosomal allele can be replaced by the mutant allele from pAUL-A. To exice  pAUL-A  

that carry either the wild type or the mutant gene out of the bacterial cell, PCR positive 

colonies were overnight incubated in BHI containing 5µg/ml erythromycin at 30°C. At the 

next day, the bacterial culture was 1:1000 diluted and further incubated at the same conditions 

till reaching OD600 of 0.3-0.5 followed by further 1:20 dilution in BHI containing 10µg/ml 

erythromycin and incubation for 2.5 hours at 30°C. Addition of 200µg/ml ampicillin and 

overnight incubation at 30°C gives selection for bacteria that already lost pAUL-A to live 

over bacteria that still containing pAUL-A. Several dilutions from the bacterial culture (10-1 

_10-5) were plated out on BHI plates without erythromycin and overnight incubated at 30°C. 

The colonies that grow only on BHI plates but not on those containing 5µg/ml erythromycin 

were selected for PCR analysis using the forward primer for the upstream fragment and the 
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reverse primer for the down stream fragment to find out if the homologous recombination 

managed to exchange the wild type with the mutant gene. Colonies that carry the mutant gene 

underwent sequencing analysis to confirm the correct insert sequence. 

 

2.7.9. DNA sequencing 

 

Identification of nucleotides sequence of a DNA fragment was carried out using a strength of 

grouping cycle sequencing with the aid of thermosequenase fluorescent labelled primer cycle 

sequencing kit and ALFexpress (both purchased from Amersham Pharmacia Biotech co., 

Freiburg) following the manufacturer’s instructions. For each sequencing reaction 1µl  of 

Cy5-labelled primer(1-2pmol) was combined with 6µl of the tested DNA fragment (0.5µg)  

and added to each of four labelled microfuge tubes containing 2µl of  G,C,T or A dNTPs and 

introduce the four sequencing reaction mixtures to the thermocycler pre-programmed as 

follows:    

                             1) 5 min.                           95°C 

                             2) 30 secs.                        98°C 

                             3) 40 secs.                        60°C 

                             5)  5 min                          60°C 

                             6)  ∞                                  4°C 
 

 

Steps 2)  and 3) were repeated 25 times. Addition of 5µl stop buffer to each reaction tube 

could stop the reaction. 

 

2.7.10. Computer programs 

 

Nucleotides sequences were processed with the aid of “ Heidelberg Unix Sequence Analysis 

Resources”(HUSAR) program and the lasergene  99-sequence analysis system (DNA STAR, 

Inc; purchased from GATC Biotech, Konstanz). Figures of plasmid and new clones were 

created with the aid of “Clone Manager 5” while graphics and pictures were processed with 

the aid of Corel Draw (Scientific and Educational Software co., Durham; USA). Different 

statistical  data were converted to figures using Sigma plot 2000 (SPSS Inc., Chicago; USA). 
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2.7.11. Primers 

 

All primers used in this work either for purpose of amplification or sequencing was combined 

in the following list: 

 
Table 2.3. A list of primers used either in DNA amplification or in sequencing. Sites for restriction     
                 digestion are underlined                
                

Primer Nucleotide sequence (5`→3`) 
Restriction 

site 

hly-gene for 5’- AATTCCCTCGAGCCTCCTTTGATTAGTATATTC –3’ XhoI 

hly-gene rev 5’- AGCCACCTACAACTAGTCTGACAGAGAG  -3’ SpeI 

hly-P for 5’- CTTGACTAGAGGGTACCTCC-3’ KpnI 

PEST rev 5’-CTGAAGCAAAGCATATGTCTGC-3’ NdeI 

PEST for 5’-AAGACGCATATGGAAAAGAAACACG-3’ NdeI 

hly∆PEST rev 5’-TATGGATCTCGAGTCAGATATTC -3’ XhoI 

ply-gene for AGGTAGCATATGGCAAATAAAGCAG NdeI 

ply-gene rev CCCTGTATCTCGAGGAATTGG XhoI 

Lmo-fri for1 TTGTTCTCTCGGATCCGTTGACAAGGTTTCTTTATC BamHI 

Lmo-fri rev 1 AAATTCCTTTGCGGCCGCTGAGTTGATTGTTTTC NotI 

Lmo-fri for 2 CAAACATATCGCGGCCGCCAAAGCATTCTTAGGAAAA

GC 

NotI 

Lmo-fri rev 2 GTTTTTGGTTCAAGCTTGATTTTCCAGTCGTGGTC HindIII 

fri for CCTGAAAGCGGTGAGCTCAATTTTCCATA SacI 

fri rev CATTTATTTGCTTGGTCGACTACCTCGATATTC SalI 

M100 GTAAAACGACGGCCAGT / 

M101 CAGGAAACAGCTATGAC / 

 

2.8. Protein biochemical methods 

2.8.1. Protein isolation from Listeria species 

2.8.1.1. Proteins in bacterial supernatant 

 

A fresh colony of Listeria sp. was inoculated in 250-300 ml conical flask containing 50 ml 

BHI and incubated at 37°C and 180 rpm till reaching OD600 of 1.0. The bacterial culture was 

transferred into 50 ml reaction tube. Bacteria were removed by centrifugation for 20 minutes 
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at 2.800g and 4°C. The culture supernatants were carefully aspirated and transferred into a 

fresh tube. Supernatant proteins were precipitated overnight by the addition of 10% (v/v) 

trichloroacetic acid (TCA) at 4°C on ice. The supernatant was centrifuged for 20 minutes at 

6.200g and 4°C. The precipitated proteins were suspended in Tris.HCl (pH 8.8) and stored at 

–20°C. 

 

2.8.1.2. Somatic soluble antigens 

 

Bacteria were cultured overnight in 20ml BHI broth and transferred to 50 ml reaction tube. 

The supernatant was removed by centrifugation for 5 minutes at 8000 rpm and RT. Bacterial 

pellet was washed twice with PBS, and subsequently subjected to ultrasonication. 1g (wet 

weight) of bacterial cells was suspended in 10 ml of PBS and sonicated (87.5% output, degree 

7 on a sonifier [Model S-125; Branson Sonic Power Co., Danbury, Conn; USA]) 6 times for 1 

minute followed by 1 minute incubation on ice per time to avoid elevation of temperature. 

The sonicated suspension was centrifuged at 39000g for 50 minutes, and the supernatant was 

filter sterilized (pore size 0.45µm [Millipore co. Eschborn]), aliquoted and stored at –20°C. 

 

2.8.2. Protein analysis 

2.8.2.1. SDS-Polyacrylamide Gel Electrophoresis 

 

Two glass plates (one notched and the size of both is 10 x 10cm.) were attached together 

using fixed spacers and a one-piece profiled silicone rubber seal and fixed with clamps. The 

assembly was kept to stand upright using clamps as supports. Resolving gel was prepared in 

0.25 M Tris.HCl pH 8.8 with a final concentration of 10 or 12% depending on the molecular 

weight of the separated proteins. The gradients of the resolving gel were mixed gently 

ensuring no air bubbles form and subsequently poured carefully into glass plate assembly. 

The gel was overlayed with water to ensure a flat surface and to exclude air and left one hour 

to dry. Water was decanted before adding the stacking gel. Stacking gel was prepared in a 

final concentration of 5.7% in 0.125 M Tris.HCl pH 6.8, mixed and poured carefully onto the 

top of set resolving gel, comb was inserted and allowed to set for 30 minutes to dry. The 

assembled glass plates were fitted in a gel casting stand (Biometra co., Göttingen). The comb 

was removed and the gel casting stand was filled with 1X SDS running buffer so as to 

completely cover the gels. Protein samples were mixed with 2X sample buffer (3:1 v/v), 

heated at 95°C for 5 minutes and loaded into the wells in the stacking gel by layering them 
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under the running buffer using a micropipet. The gel casting stand was covered with the 

protection cover and connected to the power supply with a voltage of 150v and a current of 

200mA for 60-80 minutes. As a molecular weight marker, 5.0µl of a pre-stained SDS-PAGE 

standard marker (Bio-Rad co., Philadelphia; USA) possessing a wide molecular weight range 

covered by broad range pre-stained standards ranging from 6.0 to 200.0 kDa was also loaded. 

The gel was covered with Coomassie blue staining solution, sealed in plastic box and left on a 

shaker for 2 to 3 hours at RT with agitation. The stained gel was destained with destaining 

solution with agitation. 

 

2.8.2.2. Immunoblotting (Western blot) 

2.8.2.2.1. BCIP immunodetection procedure 

 

After separation of proteins by the SDS-PAGE electrophoresis, the gel was transferred on a 6 

x 9 cm piece of PVDF transfer membrane (Millipore co., Eschborn) previously soaked in 100 

% (v/v) methanol. Both gel and PVDF membrane were sandwiched between two Whatmann 

3MM papers (Biometra co., Göttingen) previously soaked in 1X blot buffer. The assembled 

gel with membranes were carefully transferred into FastblotTM B44 semidry blotting system 

(Biometra co., Göttingen) in a manner that the electric current passes from the cathod  through 

the gel and then through the PVDF membrane to the anode. The blot casting was connected to 

the standard power pack supply P25 (Biometra co., Göttingen) and blot running parameters 

were adjusted to voltage of 200v and a current of 250mA per gel for 45 minutes. The blotted 

nitrocellulose membrane was blocked in freshly prepared 5% skimed milk in 1X TBS buffer 

for 2 hours at RT with constant agitation. The primary antibody was diluted to the 

recommended concentration in a fresh TBS containing 0.2% tween 20 (TBS/T). The 

nitrocellulose membrane was soaked in the primary antibody solution and incubated for 1 to 2 

hours at RT or overnight at 4ºC with agitation. The primary antibody used in this work may 

be  monoclonal or polyclonal antibodies (Table 2.4.) as well as natural antisera isolated from 

mice previously infected with Listeria monocytogenes or its derived mutants.  The 

nitrocellulose membrane was washed five times for 3 to 5 minutes each with TBS/T. The 

nitrocellulose membrane was incubated in TBS/T solution containing a 1:1000 diluted 

secondary antibody for 30-60 minutes at RT. For a mouse monoclonal antibody, alkaline 

phosphatase conjugated goat-anti-mouse IgG was used while for a rabbit polyclonal antibody, 

alkaline phosphatase conjugated goat-anti-rabbit IgG (Dianova co., Hamburg) was used. The 

nitrocellulose membrane was washed five times for 3 to 5 minutes each with TBS/T. 
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Detection of proteins was performed using BCIP solution as an enzyme substrate. As soon as 

the protein bands were detected, membrane was washed 4-5 times with water and left to air 

dry. 

 

2.8.2.2.2. Enhanced chemiluminescence (ECL) immunodetection procedure 

 

This method is more sensitive than that using BCIP as a substrate. So, it is often used for 

detection of minor amounts of proteins. The sequence of procedure was the same as that 

mentioned above with some differences; the secondary antibody used in this technique was 

either horseradish peroxidase-conjugated goat-anti-mouse or anti-rabbit IgG (1:1000 diluted). 

After the last wash, the membrane was transferred to a clean glass plate and covered with a 

membrane of 10 ml of developing solution (ECL from Amersham International, Piscataway; 

USA) for 2 minutes. The excess of developing solution was drained and  membrane was 

wrapped in Saran Wrap (Dow chemical co. South Carolina ;USA), fixed in an x-ray film 

cassette with the proteins facing up and exposed to an x-ray film (Kodak co. ,Stuttgart, 

Germany)  in a dark room for few seconds or up to several minutes. 

 

Table 2.4. A list of first antibodies used in Immunoblotting during this work 

Detected  protein(s) Type of antibody Dilution in TBS-T 

LLO (Listeriolysin O) monoclonal (mouse ab) 1:15000 

PLY (Pneumolysin) monoclonal(mouse ab) 1:15000 

monoclonal(mouse ab) 1:15000 Frm ( Ferritin-like protein 

from L. monocytogenes ) polyclonal (rabbit ab) 1:10000 

 

2.8.3. Protein Purification 

 

Bacterial cytolysins were hyper-expressed in L. innocua through co-expression of the positive 

regulatory factor prfA in the plasmid vector in conjunction with the structural cytolysin gene 

(Darji et al., 1995). One bacterial colony was inoculated in 20 ml BHI overnight with shaking 

at 180 rpm and 37ºC. 10 ml of the overnight bacterial culture was used to inoculate one liter 

of minimal medium in a 3 liter volume conical flask. The bacterial culture was incubated 

without shaking at 30ºC for 48 hours. The bacterial pellet was removed by centrifugation at 

6000 rpm for 30 minutes at 4ºC in a floor F6-6X 250ml Sorvall centrifuge (GMI, Minnesota; 

USA). The supernatant was concentrated by transferring at 4ºC to Amicon stirred cell series 
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8000 (Millipore co., Eschborn) with a cut-off point of 30 kDa  and allowed to be concentrated 

to about 25 ml. In case of cation exchange chromatography used for purification of 

listeriolysin O, the concentrated supernatant was patch absorbed with Q-sepharose (pharmacia 

co., Freiburg), pre-equilibrated with loading buffer (20mM sodium phosphate, pH6.2) for 60 

minutes. The non-absorbed fraction was centrifuged, filtered by 0.45µm Millipore filter and 

transferred through a super loop, which allows introduction of larger sample volumes into a 

pressurized fluid system, to a HiPrep™ 26/10 desalting column intended for desalting and 

buffer exchange using Äkta explorer which is a high-performance chromatography system (all 

tools and components used in connection with ÄKTA explorer were purchased from  

Pharmacia biotech AB, Uppsala; Sweden) and UNICORN™ control system version 3.0 

provided with a program for  protein desalting. Proteins were eluted from the desalting 

column with the loading buffer that used in the ion exchange chromatography in order to 

carry the same charge as the loading buffer. Purification of the desired protein from 

supernatant fluids was achieved by ion exchange chromatography. Separation in ion exchange 

chromatography depends upon the reversible adsorption of charged solute molecules to 

immobilized ion exchange groups of opposite charge. In cation exchange  chromatography, 

pH of the loading buffer (sodium phosphate loading  buffer) must be lower than the isoelectric 

point of the desired protein by at least 0.5 units while must be higher with the same value 

when applying to anionic exchanger (Tris.HCl loading buffer). Resource S column was used 

as a cation exchange column while Resourse Q was used as an anion exchange column 

depending on the isoelectric point of the separated protein. With the aid of Äkta explorer and 

UNICORN™ control system version 3.0 provided with a program for ion exchange 

chromatography, the column was firstly equilibrated with the loading buffer at a flow rate of 

4ml/min followed by introduction of the sample. The protein of interest was bound with the 

oppositely charged chromatographic medium leaving the other proteins carrying the same 

charge to elute out of the column. When the elution buffer start to drop in the column, 

conditions were then altered by increasing salt concentration so that the bound substances 

were eluted differentially and collected in a fraction collector with the solution eluting from 

the column being monitored by an absorbance device for measuring the protein concentration 

in the effluent. The quantity of the isolated protein in mg/ml could be determined by 

measuring the effluent at OD280 and dividing the optical density value by 1.25. Also, the 

haemolytic activity of the purified cytolysin could be identified qualitatively and 

quantitatively by the aid of hemolysin titre test. The cytolysin was stored in aliquots at –80ºC. 

Under these conditions, they were stable for more than 6 months. 
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2.8.4. Screening of hemolytic activity 

 

With the aid of hemolysin titre test, the haemolytic activity of a protein can be identified by 

measuring the magnitude of lysis of (1% v/v) sheep erythrocytes suspension (Young et al., 

1986). 1 ml of defibrinated erythrocytes (Oxoid co., Wesel) was diluted with gentle mixing in 

9 ml of 1X PBS (pH 5.6 or pH 7.0) in 15 ml reaction tube followed by centrifugation for 5 

minutes at 2900 rpm and 4ºC. The supernatants was gently decanted and the washing step was 

repeated once. 100 µl from the washed erythrocytes was added to 9.9 ml of 1X PBS (pH 5.6 

or pH 7.0) containing 10 mM DTT. In case of measuring the haemolytic activity in bacterial 

culture supernatant, the supernatant was separated from bacteria by centrifugation at 14000 

rpm for 2 minutes. The test was carried out in 96-well microtiter plates with tapered (v-

shaped) well base. 50µl of 1X PBS (pH 5.6 or pH 7.0) was added to each of the 12 well of the 

row except the first well where 100 µl of the protein suspension was added.  1:2 serial dilution 

was carried out in the next 11 wells by gentle mixing of 50 µl from the protein suspension in 

the first well with the 50µl of 1X PBS (pH 5.6 or pH 7.0) in the second well followed by 

mixing 50 µl from the second well with that in the third and so on till reaching the end of the 

row where 50 µl from the last well was flicked out. A negative control sample (100 µl of 1X 

PBS [pH 5,6 or pH 7.0]) and a positive control sample (100 µl of distilled water) were 

included in all tests. 50 µl of washed defibrinated (1% v/v) sheep erythrocytes suspension was 

added to each well followed by incubation for 1-3 hours at 37ºC and 5%CO2. The non-lysed 

erythrocytes would aggregate and the intact erythrocytes could be seen as a pellet on the base 

of plate wells. To measure the haemolytic activity of a purified protein, 100µl of the purified 

protein was added in the first well followed by 1:2 serial dilutions in 1X PBS as previously 

discussed. To quantify the haemolytic activity, the number of wells containing lysed 

erythrocytes was counted. The hemolytic units were expressed as the reciprocal dilution of 

toxin that is required for 50% lysis of erythrocytes compared to the lysis obtained by distilled 

water. 

 

2.9. Cell culture 

2.9.1. Eukaryotic cell lines 

 

Infection assays were carried out in a variety of eukaryotic cell lines of different types and 

derived from several sources (Table 2.5.). Furthermore, the P3-X63-Ag8-653 myeloma cell 

line was included in production of monoclonal antibodies (Table 2.5.). 
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Table 2.5. Eukaryotic cell lines used in this study 

Cell line Cell Type Organ Source Catalog. Nr. 

HeLa Epithelial Uterus Human DSMZ ACC 57 

J774A.1 Monocytes / Mouse DSMZ ACC 170 

L-929 Fibroblasts subcutaneous tissue Mouse DSMZ ACC 2 

P3-X63.Ag8–653 Myeloma cells / Mouse DSMZ ACC 43 

P3-X63.Ag8–653 * Myeloma cells / Mouse DSMZ ACC 43 

* X63.Ag8–653 myeloma cell line transfected with BCMG-Neo vector harbouring  mouse IFN-
γ cDNA.  
 

2.9.2. Cell culture media and supplements 

 

DMEM:                                   Dulbecco’s Modified Eagle Medium; with sodium pyruvate, 

                                                1 g/l  glucose and pyridoxine (Life Technologies co.) 

MEM:                                      Minimum Essential Medium; with Earle's salts; L-glutamine 

                                                (Life Technologies, Karlsruhe co.) 

RPMI 1640:                             RPMI 1640; with L-glutamine, and 2.0 g/l NaHCO3 

                                                (PAN Biotech, Aidenbach co.) 

FCS:                                       100% Foetal Calf Serum (Sigma-Aldrich, Deisenhofen co.) 

L-Glutamine:                          100X; 29.3 mg/ml in normal saline, 200 mM (PAA  

                                                Laboratories, Linz; Österreich) 

NEA:                                       Non-essential amino acids (100X) (Biochrom co., Berlin) 

Hanks’ salt solution:              Hanks’ salt solution (1X); w/o Ca2+, Mg2+, w/o Phenol Red 

                                               (Biochrom co., Berlin) 

Trypsin/EDTA:                      Trypsin/EDTA (1X) (PAA Laboratories, Linz; Österreich) 

2X MEM:                               Modified Eagle Medium (2X); with L-glutamine, w/o phenol 

                                                red (Life Technologies co.) 

2% [w/v] Agar:                      Agar, cell culture tested (Sigma-Aldrich co.), 2% [w/v] in                           

                                               H2O 

Neutral red:                            Neutral red solution (Sigma-Aldrich co.) 

 

 

HeLa cells were grown in MEM , J774A.1 were grown in DMEM , and L929 cells as well as 

X63.Ag8–653 myeloma cell line were grown in RPMI 1640. To prepare a complete medium, 

all media were supplemented with 10 % (v/v) foetal calf serum, and 2mM L-glutamine and 
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5x10-5 M 2-mercaptoethanol. MEM was additionally supplemented with 1% (v/v) non-

essential amino acids (NEA). HAT selection medium is prepared by supplementing a 500 ml 

complete RPMI 1640 medium with 2 % (v/v) of 50X HAT (Gibco # 21060-017). X63.Ag8–

653 cells producing IFN-γ  were grown in complete RPMI medium supplemented with 

10µg/ml G418 as a selection antibiotic (Life technologies co., Karlsruhe). 

In Plaque assay, the infected monolayer of L-929 cells was incubated in MEM medium 

containing the following components: 

 

2X MEM                                 12.9ml 

100% [v/v]  FCS                       1.5ml 

100X NEA                                0.3ml 

100X L-glutamine                    0.3ml 

2% [w/v]  Agar                        15.0ml 

2.0 ml from this mixture were applied to each well. 

            

         2.9.3. Counting the eukaryotic cells using a microscope counting chamber 

 

For cell culture applications that require the use of cell suspensions it is necessary to 

determine cell concentration. A device used for cell counting is called a counting chamber 

(Becton Dickinson co., Frankfurt/Main). To prepare the counting chamber, the mirror-like 

polished surface is carefully cleaned with lens paper. The coverslip is also cleaned. Coverslips 

for counting chambers are specially made and are thicker than those for conventional 

microscopy since they must be heavy enough to overcome the surface tension of a drop of 

liquid. The coverslip is placed over the counting surface prior to putting the cell suspension. 

The cell suspension was 1:10 diluted in a sterile trypan blue solution (Sigma-Aldrich co., 

Munich),which can stain only the living cells, and 10µl of diluted cell suspension was 

introduced into one of the V-shaped wells by means of a 10µl pipet (Eppendorf co., 

Hamburg). The suspension was allowed to be drawn into the chamber by capillary action. 

Care should be taken not to overfill or underfill the chamber. The opposite chamber was filled 

in the same manner. The charged counting chamber is then placed on the microscope stage 

and the counting grid is brought into focus at low power. The counting chamber consists of 

sixteen 1 mm squares divided into smaller squares. Each square represents a volume of 10-4 . 

The whole cells in the sixteen squares were counted. To determine the number of cells per ml, 
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the total number of cells counted in all squares was multiplied by 104 and by the dilution 

factor (10). 

2.9.4. Culture of eukaryotic cells 

The eukaryotic cells were cultured in 15ml of its suitable medium in rounded cell culture 

dishes (Nalge Nunc co., Hamburg) and incubated at 37ºC in presence of 5% CO2 (Steri-Cult 

incubator, Forma scientific/Labotect, Göttingen) for 3 to 4 days when the cells are about 80% 

confluent. Then, the cells are detached from the surface by trypsinization. The cells were 

washed twice with 5ml Hanks’ salt solution (Biochrom AG co., Berlin) followed by addition 

of 1.0ml Trypsin/EDTA and incubated for 5 minutes at 37ºC. 500µl of detached cell 

suspension was reseeded in a new cell culture plate containing 15ml of fresh corresponding 

medium. If cells were intended to be used in an infection assay or a plaque assay, the 

Trypsin/EDTA cell suspension was taken, one day before performing the assay,  in 15 ml of 

the corresponding medium, counted using a microscope counting chamber and adjusted to 

105cells/ml. Cell suspension was seeded in 24-well plate (1ml/well) for invasion assay or 6-

well plate (2ml/well) for plaque assay. 

 

2.9.5. Storage of eukaryotic cells 

 

In order to keep the eukaryotic cells viable for a long time, cells were washed with Hanks’ 

salt solution followed by addition of 1 ml Trypsin/EDTA and incubated for 5 minutes at 37ºC. 

Cells were detached from the plate surface by trypsinization. The cells were counted and the 

number was adjusted to 106/ml. 1ml aliquots of cell suspension was added separately in  15ml 

conical tubes (BD bioscience co., Heidelberg) and washed with 10ml of its corresponding 

medium by centrifugation for 10 minutes at 1100rpm and 37ºC. The medium was removed 

while the cell pellet was resuspended in  500µl of FCS containing 8% dimethyl sulfoxide 

(DMSO) in 2ml-cryotubes (Nalge Nunc co., Hamburg) and kept in a freeze box (Nalge Nunc 

co., Hamburg) with 250ml 2-propanol overnight at -80ºC. At the next day the cryotubes were 

transferred into a tank of liquid nitrogen for long period storage. When needed, the cryotube 

was taken out from the N2 tank, thawed at 37ºC and added to 15ml of its corresponding 

medium in a cell culture plate and incubated at 37ºC and 5% CO2. When 50% confluent 

growth was obtained, the medium must be changed with fresh one in order to eliminate any 

traces of DMSO because of its toxic effect on the cells. 
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2.9.6. Infection of eukaryotic cell lines with Listeria strains 

2.9.6.1. Invasion assay 

 

The ability of the wild type Listeria monocytogenes or its mutant derivatives to invade and/or 

proliferate in eukaryotic cells can be identified and quantitatively estimated by performing the 

invasion assay. Eukaryotic cells were seeded and grown in its corresponding tissue culture 

media in cell culture plates. The number of 24-wells cell culture plates used in the assay was 

equal to the number of time points at which the bacteria will be isolated and plated out after 

eukaryotic cell infection. In all assays performed during this work four plates, each 

corresponding to one time point, (ranging from 1 to 8 hours) were used. Each bacterial species 

were used to infect three wells containing eukaryotic cells in each plate, with an additional 

fourth well containing a slide cover for detecting the bacterial invasion through fluorescent 

microscopy. Carrying out the assay independently in triplicates is necessary to confirm the 

number of isolated bacteria from each well separately. One day before the screening assay, 

the cells were collected and counted by the aid of the counting cell chamber. 105 cells were 

seeded per well. At the same day, single colony from each bacterial species were picked with 

a sterile toothpick and used to inoculate 20 ml of BHI, with or without antibiotics, in a 250ml 

conical flask followed by overnight incubation. At the day of assay, the overnight bacterial 

culture was 1:50 diluted in BHI medium and incubated for further 3 hours at 180 rpm and 

37ºC till reaching OD600 of 0.8-1.0. 2 ml of the exponentially growing bacteria were 

centrifuged for 2 minutes at 8000 rpm and RT. The supernatants were flicked out and the 

bacterial pellets were washed twice by 2 ml of PBS by centrifugation at the same conditions 

to remove any traces of BHI. The number of bacteria in PBS will be quantitatively determined 

through measuring the optical density at OD600. The bacterial suspension will be diluted to be 

equivalent to OD600 of 0.1. By the aid of L. monocytogenes growth curve, it was estimated 

that OD600 of 0.1 for Listeria monocytogenes is equivalent to 1.6x108cfu/ml. Then bacterial 

suspensions were further 1:10 diluted in the eukaryotic cell culture medium and 300µl from 

this suspension (Approximately 5X106 cfu) were pipetted into its corresponding four wells 

containing the eukaryotic cell monolayer in each of the four assay plates to be equivalent to 

MOI of 10. The bacteria were spinned down for 1 minute at 2800 rpm to come in contact with 

the eukaryotic cells. The plates were incubated at 37ºC and 5% CO2 for a period depending 

on the invaded cell line; In case of J774 macrophages, 30 minutes will be enough for bacteria 

to be phagocytosed but in case of HeLa cells, the time will be elongated to one hour for 

bacteria to be internalised into the eukaryotic cells. The inoculating bacterial suspensions 
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were diluted to 1.6x103 cfu/ml by 1:10 serial dilutions in 1X PBS and 20 µl would be used for 

plating out BHI agar plates to confirm equal inoculating numbers of bacteria for all 

inoculating bacterial species. After incubation, plates were taken out and washed three times, 

each with 1ml of eukaryotic cell culture medium per well followed by addition of 1 ml of cell 

culture medium containing gentamicin (20µg/ml) in order to kill the extracellular bacteria. 

The plates were incubated for a period ranging from one hour to eight hours under the same 

conditions. At each determined time point after incubation, a single plate was taken out  from 

the incubator, washed 3 times with 1ml 1X PBS per well. The well containing the coverslip 

was fixed by treating with 0.5ml of cold 3.7% formaldehyde in 1X PBS for 10 minutes at RT 

followed by washing twice with 1X PBS and incubation in 1 ml 1X PBS at 4ºC for further 

processing for immunofluorescent microscopy preparation (see section 2.9.6.3).  

Permeablisation of eukaryotic cell membrane in the other 3 wells took place by addition of 

1.0ml of a cold sterile distilled water containing 0.2% (v/v) triton X-100 followed by 

incubation for 10 minutes at RT. The internalised bacteria diffused out of lysed eukaryotic 

cell line through strong pipetting in each well. The bacterial suspensions were 1:10, 1:100, 

and 1:1000 diluted in PBS and each dilution was plated out in dublicate on BHI agar plates 

followed by overnight incubation at 37ºC. Bacterial colonies were counted and the numbers of 

colony forming units per well were calculated by multiplying the colonies number by its 

corresponding dilution factors. The mean value of cfu/well and the standard error was 

estimated from the values of cfu in each of the 3 wells. Growth kinetics for each bacterial 

strain is represented through drawing a growth curve for each bacterial species by the aid of 

Sigma plot software. 

 

2.9.6.2. Plaque assay 

 

Performance of plaque assay (Sun et al., 1990) is similar to invasion assay in terms of 

bacterial or viral invasion and proliferation in eukaryotic cell lines but plaque assay can 

qualitatively determine these parameters. So, plaque assay gives indication for bacterial 

multiplication in eukaryotic cells as well as cell to cell spread by counting the number of clear 

plaques in a continuous sheet of cultured cell monolayer infected with bacteria. One day 

before performing the assay, L-929 cell line culture was diluted, and adjusted to 5 

x105cells/ml. 2 ml was seeded in each well of 6-well cell culture plates. Inoculating bacterial 

suspensions were prepared as described in invasion assay and 10µl from 1.6x108 cfu/ml 

bacterial cell suspension was used to inoculate each well of the 6-well plate. The plates were 
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incubated for 2 hours at 37ºC and 5% CO2 followed by washing twice with Hanks’ salt 

solution and addition of 2 ml of complete RPMI 1640 medium containing 20µg/ml 

gentamicin. The MEM-soft agar mixture (see section 2.9.2) must be prepared just before use. 

A sterile 2% agar was melted completely in a microwave.  Agar was allowed to cool slightly, 

to near 70°C and 20 ml was aliquoted to a 50 ml conical tube. 20 ml of pre-warmed 2X MEM 

containing 5% FCS, non-essential amino acids, glutamine, 10µg/ml gentamicin, as well as the 

recommended concentration of the selection antibiotic (when assay was performed for 

plasmid containing bacteria) was added to the 20 ml aliquot of 2% agar, and incubated in a 

37°C water bath. When ready, the plates were tipped up and let drain to one side. The entire 

medium was aspirated, the plates were turned to level and quickly the overlay agar was 

removed from the water bath and approximately 2 ml of molten overlay mixture was added to 

each well by allowing it to slide down the far wall of the well and onto the plate. The plates 

were incubated for 3 days at 37ºC and 5%CO2. This time period gave plaques the chance to be 

big enough to be detected. The plaques were stained by adding 1ml sterile neutral red (1:10 

diluted in 1X PBS, pH 7.4) to each well followed by further incubation for 3-4 hours at 37ºC. 

Destaining was performed with 1 ml of 1X PBS/well and subsequent 30 minutes incubation. 

Now plaques could be easily counted. The size and number of plaques can give information 

about the ability of bacteria to escape phagosomes, multiply and invade the neighbour cells. 

 

2.9.6.3. Immunofluorescence microscopy 

 

 The coverslips with attached infected eukaryotic cells (see section 2.9.6.1.) were prepared for   

immunofluorescence microscopy by flicking out the PBS followed by permeablization of 

eukaryotic cell membrane by only one minute incubation with 600µl 1X PBS containing 

0.2%(v/v) triton X-100 per well at RT with subsequent washing twice with 1X PBS. The 

coverslips were taken out of the 24-well plates and placed on a wet Whatman3MM paper 

(Biometra co. ,Göttingen). The intracellular infecting bacteria were stained by incubation with 

20µl of undiluted primary monoclonal antibody (a mixture of both specific α-ActA-antibody 

N4 and N81) for 30 minutes at RT. The coverslips were washed 3 times by immersing them 

in a beaker containing 1X PBS followed by removing the buffer by a careful attaching the 

coverslip to a Whatman3MM paper. 20 µl of 1:100 diluted Oregon Green 488 conjugated 

phalloidin (green) and anti-mouse antibody conjugated with Cy3 (red) mixture was added to 

each coverslip followed by incubation for 30 minutes at RT and 3 times washing with 1X 

PBS. Thereafter, 4 µl of 1:1 mowiol/antifade mixture (The antifade solution was purchased 
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from Biorad Lab., München) was pipetted as a drop on a preparation slide and the coverslip 

was carefully placed on the drop with the attached cells side coming in contact with the drop. 

The slides were kept away from light for 15 minutes allowing mowiol to dry. The coverslips 

were fixed to the slide by surrounding the coverslip with a layer of a nail polish, thus avoiding 

the movement of coverslips during microscopic examination and preventing air trapping 

between the coverslip and the slide. The coverslips were examined under a fluorescence 

microscope and images were captured and processed using KS 300 software (Carl Zeiss co., 

Berlin). Under the microscopic field, the green fluorescent eukaryotic cell actin skeleton and 

actin polymerisation processed by Listeria monocytogenes together with the red fluorescent 

bacterial cells could be detected. 

 

2.10. Immunological methods 

2.10.1. Experimental mice infection 

 

Mice used in all experiments were six to eight week-old female BALB/c mice, purchased 

from Harlan Winkelmann co., Borchen and were kept at breeding facilities in specific-

pathogen-free conditions. 

Primary infection with Listeria strains was performed by an intravenous or intraperitoneal 

injection of viable bacteria in a volume of 0.2 ml of PBS (for preparation of bacterial 

suspension, see section 2.5). In all experiments, the dose of primary infection with the wild 

type EGD-e was approximately 1000-2000 cfu/mouse while 50.000 cfu/mouse (equal to 10 

times the LD50 of the wild type L. monocytogenes) was the challenge dose. The primary 

infection dose of all L. monocytogenes mutants was approximately (106-107) cfu/mouse 

except for EGD-e∆frm (2000 cfu/mouse). 

 

2.10.2. Determination of bacterial load in infected organs 

 

At certain time points after infection, spleens and livers were aseptically removed from mice 

in a biohazard facility. Shortly, mouse was euthanised by CO2 inhalation and submerged in 

70% ethanol. The mouse was left to air dry on its back on a paper towel. Spleens and livers 

were removed using sterile instruments and carefully suspended in 3ml and 5ml 0.2% NP40 

in 1X PBS respectively. The organs were aseptically homogenized by means of polytron 

homogenizer (Kinematica AG, Littau-Lucerne; Switzerland.) at a speed of 7000 rpm. 

Bacterial growth in spleens and livers was determined by plating 10-fold serial dilutions in 1X 
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PBS (10-1-10-3) of the organ homogenates on BHI agar. The detection limit of this procedure 

was 102 colony forming units (cfu) per organ. Colonies were counted after 24 hours of 

incubation at 37°C. 

 

2.10.3. Production of protein-specific antibodies 
 
2.10.3.1. Polyclonal antibodies 
 

Specific polyclonal antisera against various listerial proteins were produced in rabbits. 6 week 

old rabbits (New Zealand White) were used for immunization. The purified protein is diluted 

to a final concentration of 200 µg in 1.0 ml PBS and combined with 1.0 ml of the appropriate 

adjuvant. The protein and adjuvant are mixed thoroughly to form a stable emulsion which is 

injected subcutaneously and provides enhanced immune response from the sustained presence 

of the immunogen. Blood is collected from the central ear artery with a 19-gauge needle and 

allowed to clot and retract at 37°C overnight. The clotted blood is then refrigerated for 24 

hours before the serum is decanted and clarified by centrifugation at 2500 rpm for 20 minutes. 

The schedule of immunization was carried out according to Richard et al. (2004) as follows: 

At the day of immunization (step A), 5.0 ml of blood is drawn from the rabbit’s ear to prepare 

about 2.0 ml of pre-immune serum utilizing as a negative control. For each rabbit, 200µg of 

antigen in PBS are emulsified with complete Freund’s adjuvant (CFA) and injected 

subcutaneously. At day 21 (step B), 200 µg of antigen in  PBS are emulsified with CFA and 

injected subcutaneously into each rabbit. At day 28 (step C), 200 µg of antigen in PBS are 

emulsified with incomplete Freund’s adjuvant (IFA) and injected subcutaneously into each 

rabbit. At day 35 (step D), 1.0 ml of blood is drawn from the rabbit’s ear to prepare about 0.5 

ml of serum. This sample is tested by ELISA or immunoblotting assay, against the protein 

used for immunization, for its positivity versus the pre-immune serum. A positive signal 

allows proceed to Step E, a negative signal results in the process returning to Step B. At day 

37 (step E), 100 µg of antigen in PBS are emulsified with CFA and injected subcutaneously 

into each rabbit. At day 44 (step F), 100 ml of blood are drawn from each rabbit. At least 40 

ml of serum is then obtained which can then be utilized at a dilution from 1:1000 to 1:10000.  

 

2.10.3.2. Monoclonal antibodies (mAb) 
 

Monoclonal antibodies utilized in this study were generated by hybridoma fusion (Berry et 

al., 2003). Mice were immunized i.p. with 5µg of purified protein in PBS emulsified with 
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complete Freund’s adjuvant. In general, mice were immunized every 2-3 weeks. When a 

sufficient antibody titer is reached in serum, the immunized mouse was euthanized by CO2 

inhallation, spleen was removed in a biohazard facility and kept in 10 ml of complete 

RPMI1640 medium for transport back to the lab. Additionally, peritoneal cells were removed 

from naive mouse by peritoneal lavage for use as feeder cells. Spleen was placed into sterile 

petri dish and cells were perfused out of the spleen by poking the spleen 8-10 times with an 

18 ga needle followed by injecting the complete RPMI medium slowly in the spleen by means 

of a 3ml-syringe with 21 gauge needle. The injection process was repeated many times until 

nearly all the spleen cells were washed out. The spleen was discarded into the biohazards bag. 

Spleen cells were carefully collected, transferred to a 50 ml conical tube and spinned down at 

900 rpm for 12 minutes at 4°C (Eppendorf centrifuge 5810 R, Eppendorf; Hamburg). The 

pellet was resuspended in 30 ml serum free complete RPMI 1640 medium and spinned down 

again as above. At the day of fusion, approximately 107 cells of P3-X63-Ag8–653 mouse 

myeloma cell line were spinned down at 850 rpm for 12 minutes at 4°C and washed with 30 
ml serum free complete RPMI 1640 medium. The cells were spinned down again, 

resuspended in the same medium and left at 37°C until spleens are retrieved. Both immune 

spleen cells and myeloma cells were counted using a microscope counting chamber and 

combined at a ratio of 5:1 (spleen cells: myeloma cells). In addition, peritoneal cells were 

washed twice as above in serum-free complete RPMI and counted. The cell combination was 

washed 2 times more with 30 ml serum-free complete RPMI 1640 medium and spinned down 

as above. The supernatant was aspirated and the pellet was broken by gentle tapping on the 

flow hood surface. The tube was placed in container of warm water (37°C). Gradually, over a 

period of 30 seconds, 1 ml of 37°C PEG 1500 (Roche diagnostics, Mannheim) was added 

while tapping the side of the tube to achieve thorough mixing. Mixing was continued over the 

next 90 seconds. After approximately 1 minute 40 seconds, mixing was stopped and a 5 ml 

pipet was filled with warm serum-free complete RPMI. When exactly 2 minutes had elasped, 

the PEG/cell mixture was slowly diluted by adding dropwise 1 ml of serum-free complete 

RPMI over a 1 minute time span. During the next 1 minute, 2 ml of the same medium was 

added dropwise. The remaining 2 ml in the pipet was added during the next 40 seconds. Next 

a 10 ml pipette was used to add 14 ml of 37°C pre-warmed serum-free complete RPMI during 

the last 1 minute period. The total volume was brought to 50 ml using a complete RPMI 

medium supplemented with 5% fetal calf serum, centrifuged at 4°C and resuspended in a 

selective HAT medium at the appropriate volume to bring the cells to a concentrations of 1.5 

x 106 cells per ml. HAT medium is a selection medium for hybrid cell lines; contains 
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hypoxanthine; aminopterin; thymidine. Only hybridoma cell lines (B-lymphocytes+myeloma 

cells), but not  unfused meyloma cells or B-lymphocytes, can  express both hypoxanthine 

phosphoribosyl transferase (HPRT+) and thymidine kinase (TK+) and subsequently survive in 

this medium. Peritoneal cells were added to the fused cells at 2.5 x 104 cells per ml and the 

cells are dispensed into 96 well plates in a volume of 150µl. 24-48 hours later, all wells are 

treated with 50µl of 4X HAT. Fusion plates were examined at 24-48 hours for any 

abnormalities (i.e. bacterial contamination). On day 7, wells were inspected under microscope 

and then fed. One half of the volume in each well was aspirated using a sterile Pasteur pipet. 

A new pipet was used for each plate. Wells were fed with 125 µl of complete RPMI1640 

supplemented with 1X HAT on days 7, 11 and thereafter as needed. Cultures were examined 

visually at each feeding. Once a majority of wells appear 50% confluent for growth, 

supernatants were harvested for screening by ELISA or by immunoblotting assay against the 

antigen used in immunization. Plates were fed at this time. Supernatants from Positive clones 

were isotyped using “hybridoma subisotyping kit” (Merck Biosciences co., Schwalbach), 

purified using standard methods on protein A-Sepharose (Sigma, St. Louis, MO). Antibody 

concentration was determined by the measurement of absorbance at OD 280. Supernatants 

were stored at –20°C. Positive hybridomas were expanded in 6-well plates till 50 % confluent 

growth, harvested and stored in liquid nitrogen. 

 

 2.10.4. Detection of Listeria-specific antibodies 

 

Type specific IgG anti-listeria antibodies were detected in mice antisera 7-9 days after 

Listeria infection. Listeria specific antibodies were either qualitatively detected using 

immunoblotting assay (see section 2.8.2.2) or quantitatively measured using ELISA assay.   

ELISA measures type specific IgG anti-Listeria specific antibodies present in mice serum. 

When dilutions of mice sera are added to type-specific Listeria antigen coated microtiter 

plates, antibodies specific for that antigen bind to the microtiter plates. The antibodies bound 

to the plates are detected using a goat anti-mouse IgG alkaline phosphatase-labeled antibody 

followed by a p-nitrophenyl phosphate substrate. The optical density of the coloured end 

product is proportional to the amount of anti-Listeria antigen antibody present in the serum. 

Blood was collected from mice by cardiac puncture. Cardiac puncture must be carried out on 

an anesthetized animal only. This is a terminal procedure used to acquire the maximum 

volume of blood from a mouse (approximately 1.5 ml). Mice were anesthetized with an 

inhalant diethyl ether and checking that the pedal response be absent before starting. The 
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mouse was laid flat on its back. An area on the left side of the mouse at the base of the elbow 

was landmarked where the heartbeat is the strongest. A 23ga needle was inserted, attached to 

a syringe, between 2 ribs into the heart. The needle was slowly advanced down and forwards. 

When the heart is pierced, blood would be visible in the hub of the needle which must be 

steady in this case with thumb and index fingers and the syringe was gently aspirated. Blood 

samples were transferred to a sterile 2.0 ml reaction tube and centrifuged at 14.000 rpm for 

10 minutes. Serum was carefully aspirated and stored at 20°C before analysis. 

For ELISA, 96-well NUNC Maxisorb plates (Nalge Nunc, Hamburg) were incubated at 4°C 

overnight with 100 µl of somatic soluble antigen from L. monocytogenes diluted 1:2 in 0.5 M 

sodium carbonate buffer, pH 9.6. Plates were sealed to prevent evaporation.  After two 

washes with TBS-0.2% Tween (TBS/T), non-specific binding was blocked by adding 150 µl 

of 2% bovine serum albumin. Plates were sealed and incubated at RT for 1-2 h. Individual 

sera were added to the samples starting at a dilution of 1:10 and serially diluted 1:2 in 0.5% 

BSA in TBS/T for determining the end point titers. Plates were sealed. After 1.5 h at 37°C, 

plates were washed three times with TBS/T, and 100 µl of alkaline phosphatase-coupled goat 

anti-mouse IgG (BD bioscience co., Heidelberg) diluted 1:1000 in TBS/T were added. Plates 

were sealed and incubated at RT for 30 minutes followed by 5 times washing with TBS/T. 

One tablet of alkaline phosphatase substrate (Sigma-Aldrrich co., Deiesenhofen) was 

dissolved in 10 ml diethanolamine buffer by vortexing. Immediately 50 µl of substrate 

solution was dispensed into each well. Plates were incubated at RT for 5-10 minutes for 

colour development. Optical densities were measured with a SpectraMax 250 ELISA reader 

(MWG Biotech, Ebersberg) at 405 nm. Each assay was performed in duplicates, and data 

represent means ±SD.  

 
2.10.5. DTH response to somatic listerial antigen 
 
For determination of DTH (Delayed Type Hypersensitivity) responsiveness, somatic soluble 

L. monocytogenes EGD-e antigen diluted in sterile PBS (final protein concentration: 60 

ng/ml) was injected into the left hind footpads of mice while the right one was injected with 

only PBS and acts as a control. Twenty-four hours later, thickness of the left and right 

footpads of individual mice were measured with dial-gauge calipers (Kröplin co., 

Schlüchtern). DTH-induced footpad swelling was calculated by subtracting the mean 

differences between left and right footpad thickness of injected naive control mice from those 

of immune mice (Mielke et al., 1998). Non-specific footpad swelling never exceeded 0.2 mm. 
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2.10.6. Stimulation of spleen cells in vitro for cytokine production 

 

Infection of mice with Listeria strains gives rise to T cell stimulation for proliferation and 

production of cytokines. For cytokines to be detected in cytokines immunoassayes, T cells 

have to be restimulated in vitro by synthetic Listeria derived antigens. 

Spleens of naïve (as a control) or previously infected mice were removed and used to prepare 

in vitro cell cultures. Single-cell suspensions were generated by cell perfusion out of spleen 

through injecting the spleens with PBS and dissociating the tissue mechanically (for details, 

see section 2.10.3.2). After spontaneous sedimentation of cell clusters, the single-cell 

suspension was filtered through a 100 W metal sieve and washed three times in culture 

medium RPMI 1640. Erythrocytes were lysed by osmotic shock in 3 ml erythrocyte lysis 

buffer. The cell population was stained with trypan blue solution and counted under 

microscope. At least 95% of the cells must be viable (for details, see section 2.9.3). Cells were 

incubated on the basis of spleen equivalents (1x108 cells/5 ml) in 25 cm2 cell culture flasks in 

complete RPMI 1640 medium. Lymphokine secretion was stimulated by either a synthetic 

peptide derived from L. monocytogenes EGD-e for CD8+ T lymphocytes stimulation or the 

released soluble antigens of L. monocytogenes EGD-e for CD4+ T lymphocytes stimulation 

(10 -100 ng). Peptides used in this work were derived from either listeriolysin O (LLO91-99) or 

P60 (P60217-225). At the end of 5 days incubation, cells were harvested and centrifuged in order 

to produce cell-free culture supernatant. The supernatant was passed through a 0.45 W filter, 

fractionated, and stored at -70°C until it was thawed only once before use in cytokine assays 

(Peters et al., 2003). Cells were resuspended in RPMI 1640 complete medium, counted and 

transferred directly to be analysed through ELISPOT assay. 

 

2.10.7. Cytokines ELISA 

 

Cytokine sandwich ELISA is a sensitive enzyme immunoassay that can specifically detect 

and quantitate the concentration of soluble cytokine and chemokine proteins. The basic 

cytokine sandwich ELISA method makes use of highly-purified anti-cytokine antibodies 

(capture antibodies) which are noncovalently adsorbed (coated) primarily onto plastic 

microwell plates as a result of hydrophobic interactions. After plate washings, the 

immobilized antibodies serve to specifically capture soluble cytokine proteins present in 

samples which were applied to the plate. After washing away unbound material, the captured 

cytokine proteins are detected by biotin-conjugated anti-cytokine antibodies (detection 
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antibodies) followed by an enzyme-labeled avidin or streptavidin stage. Following the 

addition of a chromogenic substrate-containing solution, the level of coloured product 

generated by the bound, enzyme-linked detection reagents can be conveniently measured 

spectrophotometrically using an ELISA plate reader at an appropriate optical density.  

In details, the purified anti-cytokine capture antibody (BD bioscience co., Heidelberg) was 

diluted to 10 µg/ml in binding solution (0.1M NaHCO3, pH 9.6). 50 µl/well diluted antibody 

was added to the wells of an enhanced protein Nunc Maxisorb binding ELISA plate (Nalge 

Nunc, Hamburg). Plates were sealed to prevent evaporation and incubated overnight at 4°C. 

Plates were brought to room temperature; the capture antibody solution was removed. The 

non-specific binding was blocked by adding 150 µl of 2% BSA or 10% of FCS. Plates were 

sealed and incubated at RT for 1-2 h. Plates were washed 3 times with TBS containing 0.2% 

Tween20 (TBS/T). 50µl/well of standards and samples were added. Plates were sealed and 

incubated for 2-4 h at RT or overnight at 4°C. Plates were washed 3 times with TBS/T. The 

biotinylated anti-cytokine detection antibody (BD bioscience co., Heidelberg) was diluted to 

10µg/ml in TBS/T and 50 µl of diluted antibody was added to each well. Plates were sealed 

and incubated for 1 h at RT followed by 5 times washing with TBS/T. 50µl/well of 1:1000 

diluted Streptavidin-Alkaline phosphatase conjugate (Sigma-Aldrrich co., Deiesenhofen) in 

TBS/T was added. Plates were sealed and incubated at RT for 30 minutes followed by 5 times 

washing with TBS/T. One tablet of Alkaline phosphatase substrate (Sigma-Aldrrich co., 

Deiesenhofen) was dissolved in 10 ml diethanolamine buffer by vortexing. The wells were 

emptied and immediately 50 µl of substrate solution was dispensed into each well, incubate at 

RT for 5-10 minutes for colour development. The optical density for each well was read with 

a microplate ELISA-reader set to 405 nm. 

 

2.10.8. Cytokines ELISPOT 

 

The ELISPOT assay is designed to enumerate cytokine producing cells in a single cell 

suspension. This method has the advantage of requiring a minimum of in vitro manipulations 

allowing cytokine production analysis as close as possible to in vivo conditions. This 

technique is designed to determine the frequency of cytokine producing cells under a given 

stimulation, and the follow-up of such frequency during a treatment and/or a pathological 

state. After cell stimulation, locally produced cytokines are captured by a specific monoclonal 

antibody. After cell lysis, trapped cytokine molecules are revealed by a secondary biotinylated 

detection antibody, which is in turn recognised by streptavidin conjugated to alkaline 
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phosphatase. PVDF-bottomed-well plates are then incubated with BCIP/NBT substrate. 

Coloured "purple" spots indicate cytokine production by individual cells.  

In details, PVDF-bottomed-96-well plates (Millipore co. Eschborn) were incubated with 

100µl of 70% ethanol for 10 minutes at RT. Wells were emptied and washed three times with 

100µl of PBS. 100µl of 10µg/ml of the capture antibody in 1X PBS was dispensed in each 

well. The plate was covered and incubated overnight at 4°C. The wells were emptied and 

washed 3 times with 100 µl of PBS. The wells were blocked by dispensing 100 µl of 2% BSA 

in PBS into wells. The plate was covered and incubated for 2 hours at RT. The wells were 

emptied by flicking the plate over a sink and tapping it on absorbent paper. The plate was 

washed once with PBS. 100 µl of complete RPMI 1640 medium containing in vitro 

stimulated spleen cells (104-106 cells) (see section 2.10.6.) and appropriate concentration of  

the stimulator peptide (10 ng) was dispensed into triplicate wells. As a positive control, when 

analysing CD8+ T cells producing IFN-γ, 100 µl of complete RPMI medium containing 

standard IFN-γ-X63.Ag8–653 producing cells (50-100 cells) was included. The plate was 

covered and incubated at 37°C in a 5% CO2 for 48 hours. During this period the plate could 

not be agitated or moved. The wells were emptied by flicking the plate over a sink and gently 

tapping it on absorbent paper. The wells were washed three times with PBS followed by 

addition of 100µl distilled water and 5 minutes incubation at RT to allow cell lysis. The wells 

were further washed twice with PBS. The biotinylated anti-cytokine detection antibody (BD 

bioscience co., Heidelberg) was diluted to 10.0 µg/ml in PBS and 50 µl of diluted antibody 

was added to each well. The plate was covered and incubated 90 minutes at 37°C. The wells 

were emptied and washed three times with PBS. 50µl/well of 1:1000 diluted Streptavidin-

Alkaline phosphatase conjugate (Sigma-Aldrich co., Deisenhofen) in PBS was added. The 

plate was covered and incubated at RT for 30 minutes followed by 5 times washing with PBS. 

100µl of ready-to-use Alkaline phosphatase conjugate substrate kit (Biorad lab., München) 

were distributed in wells and the reaction was let to go for about 5-20 minutes at RT. Spots 

formation was monitored by eyes. The wells were rinsed three times with distilled water and 

left to dry for 2 hours at RT or overnight at 4ºC away from direct light. The spots were 

counted with the aid of a magnifying lens or under microscope. 

 

2.10.9. Flow Cytometry Analysis 

 

Flow cytometry employs instrumentation that scans single cells flowing past excitation 

sources in a liquid medium. This technology can provide rapid, quantitative, multiparameter 
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analysis on living or dead cells based on the measurement of visible and fluorescent light 

emission. Flow cytometry is a widely used method for characterizing and separating 

individual cells. This basic protocol focuses on a measurement of fluorescence intensity 

produced by fluorescent-labelled antibodies and ligands that bind specific cell-associated 

molecules. Spleens of naïve (as a control) or previously infected mice were removed and used 

to prepare in vitro cell cultures. Single-cell suspensions were generated by injecting the 

spleens with PBS and dissociating the tissue mechanically. After spontaneous sedimentation 

of cell clusters, the single-cell suspension was filtered through a 100 W metal sieve and 

washed three times in culture medium RPMI 1640. Erythrocytes were lysed by osmotic shock 

by suspending them in 3 ml of erythrocytes lysis buffer followed by 5 minutes incubation at 4 

ºC and 5 minutes centrifugation at 1000 rpm and 20ºC.  The cell population was stained with 

trypan blue solution and counted under microscope. At least 95% of the cells must be viable. 

Spleen cells were suspended on the basis of spleen equivalents (1x108 cells/5 ml) in a 5 ml 

FACS buffer. 50 µl from the single cell suspension was added to a 96 well V-bottom plate 

(Nalge Nunc, Hamburg).  

100 µl of appropriately diluted labeled antibody was added to the cells, mixed gently and 

incubated at 4oC in dark for 30 minutes. The cells were washed three times by adding 100µl 

of FACS buffer to each well followed by centrifugation at 900 rpm and 4ºC for 5 minutes. 

The stained cell pellets were resuspended in 300 µl FACS buffer for flow cytometry. As a 

control, unstained cells must be included. Flow cytometry was performed using a FACS 

Calibur flow cytometer and further analysed with CELL Quest software (BD bioscience co., 

Heidelberg).  
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3.  Results 
 
3.1.  Purification and characterization of thiol-activated cytolysins hyper-expressed in      
         the non-pathogenic species Listeria innocua 
 
     The thiol-activated (oxygen-labile) cytolysin listeriolysin O (LLO) produced by 

pathogenic Listeria monocytogenes as well as pneumolysin (PLY) produced by  

Streptococcus pneumonia  belong to a family of related toxins that are expressed by diverse 

species of gram-positive bacteria including streptolysin, alveolysin, cereolysin, perfringolysin, 

produced by Streptococcus pyogenes, Bacillus alvei, Bacillus cereus, and Clostridium 

perfringens respectively (Smyth and Duncan, 1978). Molecular cloning and sequencing of 

these various toxins has shown that apart from the commonly shared properties such as being 

inactivated by free cholesterol and their presumed receptors on cell surface, they all contain a 

conserved undecapeptide sequence that includes a single conserved cystein located at the C-

terminal end of the respective molecules (Nato et al., 1991). 

 

3.1.1.  Listeriolysin O 

  
Several isolation procedures have been previously reported for purification of listeriolysin. 

The majority of these protocols suffer from the disadvantage that the protein is isolated from 

the bulk quantities of culture supernatants expressing various other virulence factors 

indigenous to pathogenic L. monocytogenes strains (Darji et al., 1995). Although expression 

and secretion of listeriolysin in the non-pathogenic species of B. subtilis has been reported 

(Bielecki et al,. 1990), the secretion of proteases by this species restricts its use as a source for 

efficient purification of this protein. Expression of this protein in E. coli has been hampered 

by lack of haemolytic activity levels, poor secretion of the polypeptide to the external medium 

and the probable contamination of the purified listeriolysin with the lipopolysaccharide (LPS) 

from E. coli (Mengaud et al,. 1988). Moreover, in the previous procedures,  listeriolysin  was  

purified from bacteria that were grown in enriched media containing high levels of proteins 

thus decreasing the efficiency of purification process. Therefore, listeriolysin was purified in 

this study from the closely related non-pathogenic species Listeria innocua engineered to 

hyperexpress listeriolysin and grown in a minimal medium that contains the lowest amounts 

of amino acids, and essential elements required for growth of Listeria giving the advantage of 

avoiding contamination of listeriolysin with other external proteins. In addition, expression of 

L. monocytogenes hly, plcB, actA, and plcA and production of their respective proteins is 
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upregulated by incubation under stress conditions, such as a shift from rich to minimal 

medium, heat shock, or growth within mammalian cells (Sokolovic et al., 1993; Bohne et al., 

1994; Klarsfeld et al., 1994) giving the advantages of higher yield production of listeriolysin 

O. Moreover, it was previously established that co-expression of the positive regulatory factor 

prfA in the plasmid vector in conjunction with the structural gene hly increased the expression 

over 500-fold (Darji et al., 1995). In addition, strains of the species L. innocua are devoid of 

extracellular proteases and permitted the development of a simple and rapid procedure for the 

purification of large quantities of listeriolysin. 

 
3.1.1.1.  Bacterial strain and growth conditions  

 
Listeriolysin O was purified from Listeria innocua serotype 6a strain NCTC 11288 

electroporatically transformed with pERL3-503 gram-positive/gram-negative schuttle vector 

containing the intact gene of listeriolysin O under the regulatory control of  prfA gene (Darji 

et al., 1995). This strain was grown on brain heart infusion agar, broth, or in minimal medium 

supplemented with 5 µg/ml erythromycin. 10 ml of BHI overnight culture of the recombinant 

L. innocua strain was used to inoculate one liter of minimal medium.  

 

Table 3.1. Expression of listeriolysin O and pneumolysin in BHI and minimal medium culture    
                 supernatants of the recombinant L. innocua strain       
                   

Hemolytic activity a 
Medium 

Listeriolysin O Pneumolysin 

BHI 1024 64 

Minimal medium 2048 128 
 

a Hemolytic activity are estimated from supernatants of overnight cultures starting with an equal 
inocula and calculated as the reciprocal of the highest dilution required to lyse sheep erythrocytes.  
 

 

To determine the effect of growth in minimal medium on activity of listeriolysin O, 200µl of 

BHI overnight culture of L. innocua expressing LLO was used to inoculate 10 ml of either 

BHI or minimal medium. After further overnight incubation at 37°C, hemolytic activity of 

both culture supernatants, isolated from equal number of bacteria, was measured. In 

accordance with previous reports (Bohne et al., 1994; Klarsfeld et al., 1994), the shift of this 

strain  from  enriched  BHI  medium  to minimal  medium  resulted  in  a  2 fold  increase  of  
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haemolytic activity in culture supernatant of minimal medium over that of BHI medium 

(Table 3.1.).  

 
3.1.1.2.  Purification and characterization of listeriolysin O 

 
Listeriolysin was purified to homogeneity from the supernatant of the L. innocua strain 

harbouring plasmid pERL3-503 by two consecutive steps of ion exchange chromatography 

separated by a desalting step. As can be seen in Table. 3.2., already the concentration step 

resulted in a 15.9-fold enrichment of specific activity probably due to the loss of low 

molecular weight materials during the procedure.  

Listeriolysin O has an isoelectric point of 6.7 (Nomura et al., 2002) and shows an optimum 

activity at acidic pH. So, it was purified using cation exchange chromatography. Efficient 

elution of the toxin from the column was achieved with a buffer combining high salt (1M 

NaCl) with acidic pH (5.6). Listeriolysin eluted as a sharp peak between 0.18-0.23 M NaCl.  

 

Table 3.2. Purification of listeriolysin O from recombinant Listeria innocua cultures 

Purification steps 
Volume 

(ml) 

Total protein 

(mg) 

Total activity 

(HUa x 107   ) 

Specific activity 

(HU/mg) 

Enrichment 

(fold) 

Recovery

(%) 

Crude sup. 1000 2412 2.21 9.2x103 _ 100 

Conc. Sup. 25 145 2.11 1.46x105 15.9 95.5 

Q-sepharose Na-Frb 25 95 2.05 2.16x105 23.5 92.8 

Resource-S purified Fr. 4 5.4 1.66 3.07x106 333.7 75.1 

 
a One haemolytic unit is defined as the reciprocal dilution of the toxin that is required for 50% lysis of       
  erythrocytes compared to the lysis obtained by distilled water . 
b Na-Fr = Non-absorbed fraction         
 
 

The eluate containing the peak of haemolytic activity exhibited a specific activity of 3.07x106 

HU per mg protein (Table 3.2). The homogeneity and purity of the protein was confirmed by 

SDS-PAGE electrophoresis. A protein of 58 kDa was visualised as a single band after 

coomassie brilliant blue (Fig.3.1.A). The monoclonal antibody (M275) that neutralised the 

haemolytic activity (Darji et al,. 1995) also recognized this polypeptide in an immunoblot 

(Fig.3.1.B) confirming the identity of the protein as listeriolysin O. 
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Fig. 3.1. A) Analysis of the purification steps of listeriolysin by SDS-PAGE. Crude unconcentrated 
supernatant of L. innocua transformed with PERL3-503 (1), concentrated supernatant (2), fraction 
unabsorbed on Q-sepharose (3), fraction eluted from the Resource-S column (4). B) Immunoblot 
developed with a monoclonal mouse anti-listeriolysin antibody (M275) using 1 µg of the fraction 
eluted from Resource-S column. Lane (M) corresponds to the running marker protein while the 
numbers to the left of the both figures correspond to apparent molecular weights (in kDa). 
 
 
3.1.2.  Pneumolysin 
 
All cholesterol-binding cytolysins are produced in the extracellular medium except 

pneumolysin which  is an intracytoplasmic toxin that lacks a leader peptide and thus released 

due to the action of surface pneumococcal autolysin (Jedrzejas, 2001). All previous 

procedures that reported  pneumolysin purification have used the wild type Streptococcus 

pneumonia as a source of pneumolysin which is released in a low amount as a consequence of 

cell lysis along with other virulence factors including both proteins and proteases. 

Furthermore, Not all strains of S. pneumonia were found to produce pneumolysin (Kanclerski 

and Mollby, 1987). To further investigate the properties of the pneumolysin and to use it as an 

antigen in a serological assay of pneumococcal disease, it was necessary to improve the 

methods of production and purification of this protein. Here, the structural gene of 

pneumolysin was over-expressed in the non-pathogenic L. innocua species under the control 

of listeriolysin O promoter and prfA regulator and was efficiently exported to the extracellular 

medium by the aid of Listeriolysin O signal peptide and purified using a single step of anion 

exchange chromatography. 
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3.1.2.1.  Bacterial strain and growth conditions 
 

Bacterial strain used in this study is the wild type Listeria innocua 6a strain NCTC 11288    

electroporatically transformed with pSOG306 gram-positive/gram-negative schuttle vector 

which contains the intact promoter of listeriolysin O followed by its signal peptide coding 

sequence under the regulatory control of prfA gene (Otten et al., unpublished) and harbours 

the structural gene of pneumolysin which was cloned downstream from listeriolysin O signal 

peptide (Fig. 3.25.A). Bacteria were grown in brain-heart infusion (BHI) broth as well as in 

minimal medium in presence of  5 µg/ml erythromycin. As described above for listeriolysin 

O, shift of L. innocua expressing pneumolysin from BHI to minimal medium also resulted in 

a 2 fold increase in haemolytic activity of pneumolysin in culture supernatants (Table 3.1.). 

 
3.1.2.2.  Purification and characterization of pneumolysin 

 
A simple one step anion exchange chromatography procedure was performed for purifying 

pneumolysin. The concentrated crude supernatant underwent desalting and buffer exchange in 

HiPrep™ 26/10 Desalting column. The  desalted  product  was  subjected  to  anion  exchange  

 

Table 3.3.  Purification of pneumolysin from recombinant Listeria innocua culture 

Purification steps 
Volume 

(ml) 

Total protein 

(mg) 

Total activity 

(HUa x 106   ) 

Specific activity 

(HU/mg) 

Enrichment 

(fold) 

Recovery

(%) 

Crude sup. 1000 1920.0 4.67 2.43x103  100 

Conc. Sup. 25 162.25 3.96 2.44x104 10 84.8 

Resource-Q purified Fr. 4 2.0 3.27 1.6x106 673.9  70.0 
 

a One haemolytic unit is defined as the reciprocal dilution of the toxin that is required for 50% lysis of    
  erythrocytes compared to the lysis obtained by distilled water . 
 
chromatography using resourse-Q column. Chromatography of the concentrated supernatant 

fluid on the resource Q-anion-exchange column produced two major peaks of absorbance. 

Pneumolysin eluted reproducibly from the column at 0.21 to 0.28 M NaCl, pH 7.5, as the 

second major peak and was collected in fraction 16. This fraction retained a hemolytic activity 

of approximately 1.6x106  hemolytic  units  per  mg  and contained  approximately  500  µg of 
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Fig. 3.2.A) Analysis of the purification steps of pneumolysin by SDS-PAGE. Crude unconcentrated 
supernatant of L. innocua transformed with pSOG306 harbouring pneumolysin gene (1), concentrated 
supernatant (2), fraction eluted from the Resource-Q column (3). B) Immunoblot developed with a 
monoclonal mouse anti-pneumolysin antibody using 5 µg of the fraction eluted from Resource-Q 
column. Lane (M) corresponds to the running marker protein while the numbers to the left of both 
figures correspond to apparent molecular weights (in kDa). 
 

 

protein per ml, representing approximately 70.0 % recovery of lytic activity and a 674.0-fold 

purification (Table 3.3.). In SDS-PAGE, fraction 16 was shown by coomassie blue staining to 

contain a single homogeneous protein with a molecular mass of 53 kDa (Fig. 3.2.A). The 

protein was recognized in immunoblots by a specific monoclonal antibody (Fig. 3.2.B).  
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3.2. The  ferritin  protein Frm, a novel listerial antigen, mediates hydrogen peroxide       
       resistance and is required for efficient intracellular growth of L. monocytogenes 
 
Iron is an essential element for mammalian cell growth. It is a required constituent of 

numerous enzymes, including iron sulphur and haem proteins of the respiratory chain, as well 

as ribonucleotide reductase, which catalyses the rate-limiting step in DNA synthesis 

(Cammack et al., 1990). However, free iron has the capacity to participate in oxygen free 

radical formation via Fenton chemistry (Linn, 1998). Balancing the deleterious and beneficial 

effects of iron thus emerges as an essential aspect of cell survival. Therefore, bacteria have 

evolved complex iron acquisition systems that allow them to maintain this delicate 

intracellular iron balance (Theil, 1990; Harrison and Arosio, 1996; Chasteen, 1998). Bacteria 

possess three different kinds of iron storage proteins that belong to distinct, albeit distantly 

related families. Ferritins and heme-containing bacterioferritins which share the molecular 

architecture of mammalian ferritins (Harrison and Arosio, 1996; Andrews, 1998) in addition 

to the recently discovered prototype of ferritin from the gram-positive bacterium L. innocua 

(Bozzi et al., 1997). These ferritins have the ability to sequester iron atoms which is not 

required for immediate metabolic needs. Iron is taken up by ferritins in the ferrous form, 

oxidised in its ferroxidase center and  stored in the central cavity of the molecule in the ferric 

form (Harrison and Arosio, 1996). 

In an attempt to identify the role of humoral immunity in response to Listeria infection, the 

respective target antigens recognized by antisera of mice previously infected with the wild 

type L. monocytogenes were examined. A cross-reactivity with a 110 kDa polypeptide species 

present in the soluble antigen fraction of L. monocytogenes were detected in the antisera of 

mice infected with pathogenic L. monocytogenes. N-terminal amino acid sequencing of this 

species revealed identity to the previously described ferritin Fri from L. innocua as well as the 

ferritin-like protein, Flp of L. monocytogenes. Here the role of the listerial ferritin in response 

to oxidative stress as well as during systemic Listeria infection was assessed.  

 

3.2.1.  Bacterial strains and culture 

 
Wild type Listeria monocytogenes strain EGD-e (Glaser et al., 2001) and its isogenic  

derivatives EGD-e∆frm, EGD-e∆frm: :pPL2-frm and EGD-e∆hly were used in this study. 

Bacteria were grown either in brain-heart infusion (BHI) broth or in minimal medium at 
indicated temperatures in presence or absence of antibiotics. 
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3.2.1.1.  Generation of the ∆frm mutant and its complementation 

  
The isogenic deletion mutant L. monocytogenes EGD-e∆frm was generated following a 

published procedure (Schäferkordt and Chakraborty, 1995). For the generation of the isogenic 

deletion mutant, a 1000 bp long PCR fragment comprising  frm upstream sequences was  

 

Fig. 3.3. Generation of the ∆frm mutant and its complementation. A) Construction of the pAUL-A 
integration vector carrying approximately 1000 and 500 pbs upstream and  downstream fragments 
from the frm gene, respectively. Both fragments are ligated at the NotI restriction site and cloned into 
the mcs of the lacZa` gene (empty arrow) in pAUL-A using BamHI and HindIII restriction sites. B) 
Plasmid map of the pPL2 integration vector harbouring the structural gene of ferritin-like protein 
(Frm) of L. monocytogenes. The structural gene encoding ferritin-like protein (Frm) of L. 
monocytogenes with SacI and SalI restricted ends was cloned in the multiple cloning site of pPL2.  
 

 

amplified with oligonucleotides (Lmo-fri for. 1, BamHI) (-105) and  (Lmo-fri rev. 1, NotI) (-

1036). A second PCR fragment harbouring frm downstream regions was amplified with 

oligonucleotides (Lmo-fri for 2, NotI) (1419)  and (Lmo-fri rev 2, HindIII) (1965) (see section 

2.7.11). Both fragments were restricted with endonuclease NotI and used in a ligation 

reaction. The entire PCR fragment of 1423 bp, lacking  frm gene, was amplified with –105 

and 1965 oligonucleotides, restricted with BamHI and HindIII and was cloned into the BamHI 

and HindIII restriction sites of the pAUL-A plasmid (Fig. 3.3.A). Transformation of this 

pAUL-A::∆frm plasmid into E. coli and subsequently into L. monocytogenes EGD-e followed 

by generation of chromosomal in-frame deletion of the frm gene was performed as described 
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in section 2.7.8. The desired deletion of the frm gene was confirmed by nucleotide sequencing 

and immunoblotting. 

For the construction of EGD-e∆frm strains complemented with  frm gene (EGD-e∆frm: :frm), 

pPL2 plasmid was used (Lauer et al., 2002). A 935 bp long fragment containing entire frm 

gene was cloned on to the multiple cloning site of pPL2 plasmid (Fig. 3.3.B) using (fri for. 

SacI) and (fri rev. SalI) oligonucleotides primers (see section 2.7.11). Transformation of 

EGD-e∆frm strains with pPL2 plasmid containing frm gene was performed by electroporation 

(Schäferkordt and Chakraborty, 1995). The desired recombinants were selected using 

chloramphenicol  (8µg/ml) on  BHI  agar  plates and subsequently verified by sequencing. 

 
3.2.2.  Detection of Frm during infection 

 

Antisera obtained from mice 9 days after infection with the wild type L. monocytogenes 

EGD-e (2000 cfu) were detected using immunoblotting assay against a soluble antigen 

fraction of L. monocytogenes. Antisera reacted with a 110 kDa polypeptide species derived 

from the soluble  antigen fraction. This crossreactivity was not observed with antisera from 

mice infected with a non-pathogenic L. innocua strain (Fig. 3.4.A). To identify the novel 110 

kDa polypeptide species that was specifically recognized by the antisera, the soluble antigen 

fraction was subjected to separation by SDS-PAGE and transferred by blotting to a PVDF 

filter. The filter was stained with Coomassie Blue and the band corresponding to the 110 kDa 

species excised, and subjected to N-terminal sequencing.    

The sequence obtained MKTINSVDTKEFLN was identical to the N-termini of two 

previously described 18 kDa polypeptides described as L. innocua ferritin (Fri) and the 

ferritin-like protein (Flp) of L. monocytogenes respectively (Bozzi et al, 1997; Hebraud and 

Guzzo, 2000).  In  keeping  with the nomenclature describing the ferritin gene from L. 

innocua as fri, the designation frm for ferritin from L. monocytogenes was proposed.  Rabbit 

polyclonal antibodies were produced against the purifed Fri protein from L. innocua and 

immunoblotting experiments revealed the presence of a 18 kDa polypeptide in both L. 

monocytogenes  EGD-e and  L. innocua  soluble antigen  fractions  (Fig.3.4.B).  Additional, 

distinct multimeric forms of the protein were also recognised by the antibody in soluble 

antigen preparations of either strains.  

The Fri-specific antibodies were also used to monitor expression of the Frm-protein under 

various growth conditions. Expression of Frm at different growth temperatures was complex; 

Frm was observed  in bacteria  grown at 37 °C  but  was not  detectable in  cultures  grown  at 
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Fig. 3.4. Immunoblot analysis and physical characterization of Frm. Soluble antigen fractions (15 µg) 
either from L. monocytogenes (Lane 1) or L.innocua (Lane 2) were transferred onto a PVDF filter and 
incubated with antisera obtained from mice infected with the wild type L. monocytogenes EGD-e 
(Lane 1), L.innocua (Lane 2) (A) or with a polyclonal rabbit antibody raised against purified ferritin 
(B) of L. innocua followed by AP-conjugated secondary antibody. Blots were visualised using BCIP 
as a substrate. The arrow refers to the position of the 110 kDa polypeptide. Equal amounts of soluble 
fractions obtained from L. monocytogenes EGD-e cultures grown at 37°C at different  time intervals 
over a period of 5.5 hours and purified ferritin as a positive control (+) were transferred  onto a PVDF 
filter (D). Equal amounts of soluble fractions obtained from L. monocytogenes EGD-e grown at 37°C 
(Lane 1) , 20 °C (Lane 2) and 5 °C (Lane 3)  were blotted onto PVDF filter (C). Blots (C and D) were 
developed with the Fri polyclonal rabbit antibody using the ECL chemiluminescence kit. The numbers 
to the left of the figures correspond to apparent molecular weights (in kDa). 
 

 

20°C (Fig. 3.4.C). Nevertheless, expression of Frm was regained in cultures grown at 5°C. As 

can be seen in data presented in Fig. 3.4.D, expression of Frm also increased with the age of 

the cultures indicating growth-phase dependent regulation.  

 

3.2.3.  Properties of the ∆frm L. monocytogenes mutant 

 
Further evidence that the protein recognized by antisera of L. monocytogenes EGD-e is indeed 

Frm was sought by generating a ∆frm mutant lacking the entire gene.  Fri-specific  antibodies  
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Fig. 3.5. Immunological characterization of the ∆frm mutant. Equal amounts of soluble antigen 
fractions from L. monocytogenes EGD-e (Lanes 1), the isogenic deletion mutant L. monocytogenes 
EGD-e∆frm (Lane 2), and 1µg purified bacterial ferritin from L. innocua (Lane 3) were loaded onto 12 
% SDS-polyacrylamide gel. Gels were stained with Coomassie Blue (A) or electrophoretically blotted 
and developed with rabbit anti-ferritin polyclonal antibody followed by AP-conjugated anti-rabbit IgG 
(B). The arrow indicates the position of the monomeric Fri polypeptide (18kDa). Proteins  in Fig. A 
were transfered electrophoretically onto  a PVDF filter and incubated with antisera obtained from mice 
infected with the wild type Listeria monocytogenes followed by AP-conjugated anti-mouse IgG. Blots 
were visualized using BCIP as a substrate (C). The arrow refers to the absence of the 110.0 kDa 
polypeptide in EGD-e∆frm. 
 
 
were used to confirm its absence in the resulting mutant strain. As can be seen from the 

results depicted in Fig. 3.5.A and B, the 18 kDa protein observed in the wild type strain was 

lacking in the mutant. In addition, antisera obtained from mice following infection with L. 

monocytogenes EGD-e also do not react with the soluble fraction preparations from the 

mutant strain indicating that the 110 kDa species observed is indeed a multimeric form of the 

Frm monomer (Fig. 3.5.C).  

 

 

 

 

 

 

 

 
Fig. 3.6. Plaque formation of EGD-e∆frm mutant strain in mouse fibroblasts. L-929 mouse fibroblast 
monolayer was infected with the wild type L. monocytogenes EGD-e (1) and mutant L. monocytogenes 
EGD-e∆frm (2) for 2 hours followed by further 30 minutes incubation with 20µg/ml gentamicin. The 
overlay agar was added to the infected cells followed by 3 days incubation at 37ºC and 5%CO2. 
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Fig. 3.7. Impaired intracellular growth of EGD-e∆frm mutant strain in eucaryotic cells. A) Human 
HeLa cell line  was infected with the wild type L. monocytogenes EGD-e, mutant L. monocytogenes 
EGD-e∆frm, L. monocytogenes EGD-e∆frm complemented with the ferritin gene (∆frm: :frm) and 
mutant L. monocytogenes EGD-e ∆hly strains. Cells were lysed at certain time intervals and plated on 
BHI plates. The viable bacteria were enumerated. B) The mouse macrophage like cell line J774 was 
infected  with the wild type L. monocytogenes EGD-e and the mutant L. monocytogenes EGD-e∆frm 
strains. Bacteria were labelled with Cy3 conjugated anti-Listeria antibody (red). The kinetics of 
infection were monitored by immunofluoresence microscopy at 1 and 4 hours post infection.  
 

 

When grown in laboratory media, growth of the ∆frm mutant was indistinguishable from that 

obtained with the wild type strain (Fig. 3.8.A). Further properties of the mutant were 

examined using tissue culture infection assays. Both the wild type L. monocytogenes and its 

mutant strain ∆frm showed the same efficiency to form plaques upon infection of mouse 

fibroblasts L-929 (Fig. 3.6) reflecting the same ability to spread from cell to cell. Also, the 

invasion rate of the ∆frm mutant was not significantly different from that obtained with its 

parental wild type strain for HeLa cells. When examined for its ability to replicate 

intracellularly it was observed that although the overall generation time of the mutant was 

similar to the wild type strain, a significant lag phase was observed before intracellular 

growth was  initiated (Fig. 3.7.A)  indicating  that  Frm  may  be  involved in  initiating  

efficacious  intracellular growth. To obtain information on the nature of the defect we 

compared the intracellular growth properties of  the ∆frm  mutant  to that of the ∆hly strain. It 

has been previously shown that ∆hly is unable to escape from the phagolysosome of J774 

macrophages and therefore does not replicate in this cell line (Lety et al., 2001). For the HeLa 

cell line, intracellular  growth of ∆hly occurs, but  is delayed  primarily because the bacterium  

escapes only slowly into the cytoplasmic milieu  (O´Riordan et al., 2002). In HeLa cells 

growth  of  the  ∆hly  strain  is  initiated  following   an   extended   lag  phase   and  is   more   
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pronounced  than  that observed with the ∆frm strain. Extrapolating from this information, it 

appears that the ∆frm mutant may have a defect in exiting from the host vacuole to the 

cytoplasm. Indeed, immunofluoresence staining of bacterial growth in J774 macrophages 

using both strains showed that growth of the mutant is retarded at early times of infection 

(Fig. 3.7.B). 

Also a single copy chromosomally located frm-complementing mutant was constructed by 

inserting the frm gene into the PSA bacteriophage attachment site at tRNAArg- attBB´ using 

the integration vector pPL2. From the growth properties of these mutants in HeLa cells, it is  

 

Fig. 3.8. The EGD-e∆frm mutant is sensitive to hydrogen peroxide–mediated killing. Overnight 
cultures in BHI of the wild type L. monocytogenes EGD-e and the mutant L. monocytogenes EGD-
e∆frm strains were diluted 1:50 in normal BHI medium (A) and in BHI medium containing 0.03% 
hydrogen peroxide (B) and the bacterial growth was followed over a period of time by measuring the 
optical density of bacterial culture at 600nm.Sensitivity to hydrogen peroxide was also monitored by 
plating both the wild type L. monocytogenes EGD-e and the mutant L. monocytogenes EGD-e∆frm 
strains after 3 hrs of 0.03% hydrogen peroxide treatment (C). *P<0.05 (EGD-e vs EGD-e∆frm both 
treated with 0.03% H2O2) 
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clear that single-copy complementation restored the growth capabilities of these strains to 

essentially wild type levels (Fig. 3.7.A).  

 

3.2.4. Frm mediates resistance to the effects of hydrogen peroxide  

 

The growth properties of the wild type and mutant strains were examined under a variety of 

abiotic stress conditions. Strains were grown at high and low temperatures, in acidic media, in  

the presence of sub-lethal concentrations of SDS, under high osmolarity conditions involving 

salt and in the presence of hydrogen peroxide. In all of the conditions tested, no differences 

were observed excepting for cultures grown in the presence of low concentrations (0.03%) of 

hydroxide peroxide in the growth medium (Fig. 3.8.B). Indeed, using plating assays it was 

found that the percentage of viable bacteria of the ∆frm mutant to be about 50% of the 

parental EGD-e strain when exposed to 0.03% hydrogen peroxide  (Fig.3.8.C). 

 

3.2.5. Frm promotes bioaccessibility of mineralized iron 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9. Ferric citrate restores growth of EGD-e∆frm mutant strain in chemically defined minimal 
medium. Parallel cultures (controlled by equal optical densities) of both the wild type L. 
monocytogenes EGD-e and the mutant L. monocytogenes EGD-e∆frm strains were grown in a minimal 
medium at 37°C. At 8h of growth (indicated by an arrow), equal volumes of cultures of both the L. 
monocytogenes EGD-e and the mutant L. monocytogenes EGD-e∆frm strains were supplemented with 
different divalent cations (citrate salts 260 µM) or left untreated. The bacterial growth was followed 
over a period of 22 hours by measuring the optical density of the cultures at 600nm. Addition of 
different salts has no significant effect on the growth of the wild type L. monocytogenes EGD-e 
strains. For clarity only the supplemented cultures of the mutant L. monocytogenes EGD-e∆frm strains 
are plotted. 
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When the strains were grown in a minimal medium containing iron citrate virtually no growth 

was observed for the ∆frm mutant (Fig. 3.9.) while the parental strain grew on to reach  
stationary phase. The addition of further iron citrate to the culture of non-growing ∆frm 

bacteria after 8 hours promoted bacterial growth. To further determine the ∆frm strain’s  

selectivity for iron, a number of divalent cations such as Cu2+, Mn2+, Mg2+ were added to the 

non-growing ∆frm cultures. As indicated in Fig. 3.9. none of them was able to additionally 

support the growth of non-growing ∆frm suggesting that the bio-availability of iron is limiting 

to the ∆frm strain. Increase in the amount of other components of the minimal medium i.e. 

essential amino acids did not affect growth of the ∆frm mutant.  

 

3.2.6.  The ∆frm mutant exhibits defects at early stages of infection 

 

Studies were performed comparing the virulence properties of the mutant and the 

∆frm::pPL2-frm complemented strain to that of the wild type strain EGD-e in the mouse 

model of infection. At all time points studied the number of bacteria isolated from an EGD-e 

infected  mouse  was  set  arbitrarily  at 100%. Although  a similar  inoculum  was used for all  

 

 
Fig. 3.10. Frm is required for efficient growth at early stages of listerial infections. The kinetics of 
bacterial growth was followed in organs of mice infected with the wild type L. monocytogenes EGD-e, 
L. monocytogenes EGD-e∆frm  and L. monocytogenes EGD-e∆frm complemented with the ferritin 
gene (EGD-e∆frm::frm). Mice were injected (i.v.) with 2000 viable bacteria for all strains. Bacterial 
survival was followed in both spleens (A) and livers (B) of infected mice over 5 days. The number of 
surviving EGD-e∆frm and EGD-e∆frm::frm are calculated as a percent of survival number of the wild 
type L. monocytogenes at each time point examined. *P<0.05 (EGD-e∆frm vs EGD-e∆frm::frm). 
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three bacteria we found that the ∆frm mutant had consistently lower numbers of bacteria 

present in both spleens and livers of the infected mice as compared to the complemented and 

wild type strain at all of the experimental time points examined (Fig. 3.10.). This effect was 

most visible at 4 hours and 8 hours as well as one day post infection, where although roughly 

equivalent initial doses of either bacteria were used, significantly lower numbers of bacteria 

were recovered from the spleens (Fig. 3.10.A) and livers (Fig. 3.10.B) of mice infected with 

the ∆frm mutant as compared to the complemented mutant or the wild type strain. 
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3.3. Induction of immune responses by attenuated isogenic mutant strains of Listeria  
        monocytogenes 
 

Listeria monocytogenes has been used for decades for the induction and analysis of T cell-

mediated immunity ( Mackaness, 1962; Hahn and Kaufmann, 1981; Kaufmann, 1993; Mielke 

et al., 1997; 1998;). These studies have led to extensive and detailed information on the host 

response to infection, and have triggered strong interest in bacterial virulence factors that 

allow entry into the host, support intracellular survival and facilitate dissemination of these 

bacteria during infection (Portnoy et al., 1992; Chakraborty and Wehland, 1997). Studies of 

cell biology revealed that invading bacteria use active mechanisms to escape from the 

encapsulating phagosome, and that they can replicate in the cytoplasm of both professional 

phagocytes and parenchymal cells, such as hepatocytes. These studies have also explained the 

cellular basis of Listeria potent intrinsic capacity to induce major histocompatibility complex 

(MHC) class I-restricted protective CD8+ T cells (Mielke et al., 1989; Kaufmann, 1993; 

Pamer et al., 1997). This in turn resulted in the current interest in developing L. 

monocytogenes as a viable bacterial T cell vaccine vector as an alternative to Salmonella, 

which mainly induces CD4+ T cell responses (Hess et al., 1996). Indeed, recombinant L. 

monocytogenes expressing foreign antigens has already been shown to be a highly effective 

vector for the induction of specific T cells active in the prevention of tumor growth and for 

protection against viral infections (Schafer et al., 1992; Ikonomidis et al., 1994; Frankel et al., 

1995; Goossens et al., 1995; Pan et al., 1995; 1996; Shen et al., 1995; Jensen et al., 1997). 

However, one drawback to the use of virulent L. monocytogenes as a vector is that Listeria 

infection induces a strong T cell responses mediating DTH and granulomatous inflammation 

that may result in extensive tissue destruction which make their use as vaccine vectors 

undesirable (Darji et al., 2003). For increased safety, however, a more appropriate vaccine 

vector would be a well-characterised mutant that is reliably attenuated in virulence but that 

still retains the favourable immunological CD8+ T cell-inducing properties of the parental 

strain. In addition, the accompanying CD4+ T cell response mediating delayed type 

hypersensitivity (DTH) and granulomatous inflammation (Mielke et al., 1989; 1992) should 

be downmodulated in order to prevent inflammatory tissue destruction. Here, the 

immunological properties of isogenic Listeria monocytogenes mutants carrying a specific 

deletion within the actin nucleator (actA) or multiple deletions within actA and phospholipase 

B (plcB) were systemically examined for their suitability for use as delivery vehicles. 
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3.3.1. Survival   and   persistence  of   wild   type  L.  monocytogenes   and   isogenic    L.    
          monocytogenes mutant strains in vivo 
 

The presence of viable microorganisms during the early phase of infection is critical in the 

induction and the establishment of cell-mediated immunity. L. monocytogenes EGD-e mutant 

strains (L. monocytogenes ∆actA2 and L. monocytogenes ∆actA∆plcB) were examined 

whether they display similar virulence attenuation in vivo compared to their parental wild type 

L. monocytogenes EGD-e strain. A group of BALB/c mice (20 mice) were infected i.v. with 

sub-lethal doses of either wild type L. monocytogenes EGD-e (103), or the isogenic L. 

monocytogenes mutant strains (107). In vivo survival and growth kinetics of bacteria were 

followed by determining the number of bacteria in the spleen and liver of infected mice at 

various time points for several days. As indicated in Fig. 3.11., bacterial count of the mutant 

Listeria strains dropped rapidly from day 2 after the infection onwards and levelled off at a 

low number, persisting up to day 8 post-infection. On the other hand, the bacterial number of 

the wild type L monocytogenes, both in spleen and liver, increased between day 2 and day 4 

of the infection and declined rapidly from day 5 post-infection onwards. Since higher dose of 

the wild type Listeria strain is lethal, growth kinetics was performed with a lower infection 

dose (103). In all cases, both in the wild type EGD-e and in the isogenic EGD-e mutant 

strains, bacteria were cleared from the spleen and liver by days 8 -10 after the infection. 

 

 
 
Fig. 3.11. Kinetics of primary infection in mice with the wild type L. monocytogenes and isogenic L. 
monocytogenes mutant strains. Mice were infected i.v. with either 103 wild type L. monocytogenes or 
107 isogenic L. monocytogenes mutant strains ∆actA2 and ∆actA∆plcB. Different time intervals after 
the infection, 3 mice per group were sacrified and the number of viable bacteria in the organs 
enumerated. Data presented are representative of three independent expirements. 



3. Results                                                                                                                                 97                         

3.3.2. Spleen morphology on day 4 post-infection 

 

L. monocytogenes infection often elicits host inflammatory reaction accompanied by a 

cascade of tissue alterations, such as splenomegaly and granulomatous inflammation that 

finally result in the eradication of bacteria. These responses are cell-mediated and 

predominantly involve activation of non-specifically invading CD4+ T cells at the site of 

infection. Since the bacterial number of isogenic EGD-e mutant strains in vivo declined faster 

(Fig. 3.11.) than the parental wild type EGD-e strain, the morphological alterations in the 

spleens, following i.v. infection of mice with either the wild type EGD-e strain or isogenic  

EGD-e mutant strains were examined. As shown in Fig. 3.12., marked differences were 

observed in the morphological structure of spleens obtained from mice infected with these 

strains. Spleens obtained from mice infected with the wild type EGD-e strain displayed a 

pronounced strong granuloma formation from day four post-infection onwards. These 

granulomas probably resulted from intense and vigorous monocytes infiltration. In contrast, 

granuloma formation was hardly visible in spleens of mice infected with both L. 

monocytogenes ∆actA and ∆actA ∆plcB mutant strains.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.12. Morphological alterations in the spleens of mice infected i.v. with the wild type L. 
monocytogenes and isogenic L. monocytogenes mutant strains. Spleens of mice (infected i.v. as 
mentioned in Fig. 3.11.) were removed on day 4 after infection. Shown is the scanned picture of 
spleens from the wild type L. monocytogenes and its isogenic mutant strains. Infiltration of monocytic 
cells and granulomatous lesions are only detectable in the spleens isolated from mice infected with the 
wild type L. monocytogenes. 
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3.3.3.  Listeria-induced  IFN-γ  production  of  spleen  cells  in vitro  and  DTH-response  
           in vivo 
 

Antigen-induced CD4+ T cell-derived IFN-γ production of spleen cells was measured as an in 

vitro correlate of DTH to determine whether immunization with the various mutants may lead 

to quantitative differences in the proinflammatory T cell response. Day 9 after infection was 

chosen for the analysis of the primary immune effector phase. Spleen cells were isolated and 

stimulated in vitro with the released soluble antigen of L. monocytogenes EGD-e (100 ng). 

Spleen cells from mice immunized with L. monocytogenes ∆actA2 and L. monocytogenes 

∆actA∆plcB mutant produced significantly lower levels of IFN-γ in comparison to 

splenocytes of mice pre-immunized with the wild type strain (Fig. 3.13.A). Furthermore, the 

observations obtained in vitro were confirmed in vivo by antigen-elicited skin responses 

showing corresponding results (Fig. 3.13.B). Six mice per group were injected into the left 

hind footpads with 50 µl of somatic soluble L. monocytogenes EGD-e antigen (60 ng/ml) at 

day 9 post-infection. Twenty-four hours later, thickness of the left and right footpads of 

individual mice were measured. Footpads of mice pre-immunized with both L. 

monocytogenes ∆actA2 and L. monocytogenes ∆actA∆plcB mutant strains showed a 

markedly lower thickness than those of mice pre-immunized with the wild type EGD-e strain.  

 
 

Fig. 3.13. A) Listeria-induced IFN-γ production by spleen cells 9 days after infection (i.v.). Mice were 
infected with 103 CFU of L. monocytogenes EGD-e or with 107 CFU of its isogenic mutants. On day 9 
after infection, mice were killed and spleens were removed. Single cell suspensions were stimulated in 
vitro with secreted soluble Listeria antigen (100 ng) to produce IFN-γ. After 48 h, culture supernatants 
were tested for presence of IFN-γ by ELISA.*P<0.05 (EGD-e vs ∆actA2 and ∆actA∆plcB). B) DTH 
response to listerial antigen 9 days after primary infection. Mice were infected as in Fig. 3.13.A. 9 
days after infection, DTH was triggered through injection of soluble somatic listerial antigen. Twenty-
four hours later, specific skin response was determined. Experiments were repeated twice. The mean 
value ± S.D. of five animals of a representative experiment is shown.*P<0.05 (EGD-e vs ∆actA2 and 
∆actA∆plcB). 
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3.3.4. Acquired protection conferred by isogenic attenuated mutants 
 

Sub-lethal infecting doses of wild type L. monocytogenes strains are generally controlled by 

mice  in  the  initial  infection  and  result  in  the  induction of   protective immunity to further  

 

  

Fig. 3.14. A) Induction of protective immunity conferred after infection with the wild type L. 
monocytogenes and its isogenic mutant strains. Groups of mice were infected i.v. as described in 
Fig.3.11. Two months later all mice were challenged with a lethal dose (10X LD50) of the wild type L. 
monocytogenes. As a control, a group of uninfected normal mice was included. Survival of mice after 
the challenge was monitored up to 8 days. B) Bacterial titers in spleens and livers of 3 mice per group 
of mice challenged in Fig. A were monitored at day 2 after challenge. 
 

 

infections. Such an acquired protective immunity is exclusively T cell-mediated and requires 

specific cytotoxic CD8+ T cells. So, most noteworthy is to investigate whether infection of 

mice with the highly attenuated isogenic EGD-e mutant strains L. monocytogenes ∆actA2 and 

∆actA∆plcB confers a protective immunity to re-infection. Groups of BALB/c mice were 

infected with the wild type L. monocytogenes EGD-e strain (103) or with the isogenic L. 

monocytogenes mutant strains (107). Two months later, all mice were challenged with a lethal 

i.v. dose (5x104), corresponding to 10X LD50, of the wild type L. monocytogenes EGD-e 

strain, and the survival of mice in all groups was monitored. As a control, a group of untreated 

normal BALB/c mice that have received a similar lethal dose (5x104) of the wild type L. 

monocytogenes EGD-e strain were included. As shown in Fig. 3.14.A, immunization with 

isogenic EGD-e mutant strains protects mice against a lethal infection with the wild type 

EGD-e strain. The protective response was significant as all mice, pre-immunized with the 

isogenic EGD-e mutant strains, survived. Not surprisingly, all mice that were pre-immunized 

with sub-lethal doses of the wild type EGD-e strain were also protected against a lethal 
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listerial infection and survived. All control mice that were not pre-immunized succumbed to 

the infection and died within 3 days after re-infection. In addition, the bacterial titres were 

determined in spleens and livers at day 2 post-challenge in each mice group. Naïve unprimed 

mice were not able to control challenge infection as indicated by the high bacterial load in 

spleen and liver. In contrast, mice primed with the wild type as well as the isogenic mutant 

strains L. monocytogenes ∆actA2 and L. monocytogenes ∆actA∆plcB managed to restrict 

listerial growth in the first 2 days after infection (Fig. 3.14.B).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.15. Number of antigen-specific IFN-γ producing CD8+ T cells in the spleens of mice infected 
i.v. with the wild type L. monocytogenes and isogenic L. monocytogenes mutant ∆actA and 
∆actA∆plcB strains, determined by ELISPOT. Spleen cells from infected mice were isolated either 9 
days after the primary infection or 5 days after the recall challenge infection and stimulated with 
immunodominant MHC class I peptide LLO91-99 in triplicates in nitrocellulose based 96-well culture 
plates. Number of specific IFN-γ producing cells against the dominant H-2Kd restricted LLO91-99 
epitope were determined by counting the number of spots under microscope. 
 

 

The ability of L. monocytogenes to gain access to the cytoplasm of infected cells allows 

processing and presentation of bacterial antigens through the MHC class I pathway. Infection 

of mice with L. monocytogenes leads therefore to the generation of MHC class I restricted 

CD8+ T cells, specific for listerial antigens, which transfer protective immunity and are also a 

major component of the adaptive immune response of the host to re-infection by this 
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intracellular pathogen. Mice, pre-immunized with isogenic EGD-e mutant strains were 

protected against a lethal challenge of the wild type EGD-e strain. The impact of previous 

immunization with attenuated isogenic EGD-e mutant strains on the generation of antigen-

specific MHC class I restricted CD8+ T cells were quantitatively determined. The numbers of 

IFN-γ producing CD8+ cells, after immunization with either the wild type or mutant EGD-e 

strains, against the dominant H-2Kd restricted LLO91-99 epitope (Wipke et al., 1993) in in vitro 

ELISPOT assay were evaluated. The number of LLO91-99-specific CD8+ T cells in spleens of 

mice infected with the two isogenic mutant strains (L. monocytogenes ∆actA2, L. 

monocytogenes ∆actA∆plcB) was very similar. It was however approximately 1.5-fold lower 

than that observed in spleens of mice primarily infected with the wild type EGD-e strain (Fig. 

3.15.). The number of LLO91-99-specific CD8+ T cells however, was significantly raised 

during the recall challenge infection in spleens of mice primarily infected with the two 

isogenic mutant strains (L. monocytogenes ∆actA2, L. monocytogenes ∆actA∆plcB). It was 

almost as high as that observed in spleens of mice infected with the wild type L. 

monocytogenes EGD-e strain (Fig. 3.15.). 

Sub-lethal infections of L. monocytogenes in mice are generally cleared by innate and specific 

immune responses, providing the animals with long-term immunity to re-infection. Such 

infections usually resulted in a rapid activation and an expansion of cytotoxic T lymphocytes 

(CD8+), specific for multiple peptides derived from L. monocytogenes (Mercado et al., 2000). 

The number of cells in the spleen, particularly CD8+ T cells, increases during the recall 

response to L. monocytogenes. Antigen specific T cells were monitored in mice 9 days after 

immunization (primary infection) with the wild type EGD-e and the isogenic mutant strains 

(L. monocytogenes ∆actA2, L. monocytogenes ∆actA∆plcB). They were found to be 

predominantly CD8+ effector T cells, as determined by the rapid induction of IFN-γ 

(ELISPOT) following antigen exposure (Fig. 3.15.). It was previously shown that pathogen 

specific T cells are programmed during the first days of infection and subsequently undergo 

proliferation and differentiation into effector T cells (Mercado et al., 2000). All mice, pre-

immunized either with the wild type EGD-e, or with the mutant L. monocytogenes ∆actA2 

and L. monocytogenes ∆actA∆plcB strains survived a lethal challenge with the wild type 

EGD-e strain (Fig. 3.14.A).The contribution of CD8+ T cells to the conferred protection was 

therefore further investigated through quantifying the expression of CD62L (as a memory T 

cell marker) on CD8+ T cells before and after the recall infection with L. monocytogenes (Fig. 

3.16.). CD62L (L-selectin) is expressed at high levels on the surface of naïve T lymphocytes, 

but rapidly down-regulated upon T cell activation. As indicated in Fig. 3.16., a striking 
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increase in the number of CD8+CD62Llo T cells was observed in the spleens of mice, pre-

immunized with the wild type EGD-e and the isogenic mutant (L. monocytogenes ∆actA2, L. 

monocytogenes   ∆actA∆plcB)  strains  after  the   recall  infection,   as   determined   by  flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.16. Expression levels of CD62L on CD8+ splenocytes following primary and recall infection 
with L. monocytogenes and its isogenic mutant strains. Flow cytometry was performed with spleen 
cells, isolated from mice at day 9 after the primary infection or day 5 after the challenge. Cells were 
stained with FITC-labeled anti-Lyt-2 and biotinylated anti-CD62L, and the binding of anti-CD62L on 
the cell surface was detected with PE-conjugated streptavidin. Numbers shown are gated CD8+CD62lo 
T cells (lower panel) and analysed with CELLQuest software.   
 

 

cytometric analysis. Two months after the primary infection, all groups of mice showed 

approximately 19-23% of CD8+CD62Llo expressing T cell population which is relatively 

similar to that expressed in naïve uninfected mice (Mercado et al., 2000). During the recall 

infection however the population of CD8+CD62Llo expressing T cells increased from about 
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20% to over 50%. The increase in the percentage of CD8+CD62Llo  T cell population, 

attributed to the isogenic mutant (L. monocytogenes ∆actA2, L. monocytogenes ∆actA∆plcB) 

strains, was similar or higher than that observed in animals primarily infected with the wild 

type L. monocytogenes EGD-e strain and positively correlated with the increase in the number 

of LLO91-99-specific CD8+ T cells (Fig. 3.15.). 

 

3.3.5. Induction of listeriolysin O-specific antibodies against isogenic L. monocytogenes  
          deletion mutant strains 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17. Induction of specific antibody response against isogenic Listeria mutants. Listeriolysin O-
specific antibodies in sera of mice 9 days post infection with the wild type L. monocytogenes or its 
isogenic deletion mutants (∆actA2 and ∆actA∆plcB) were measured with ELISA at 405 nm. Results 
from 3 mice per group are given. 
 

 

It was previously established that listeriolysin O is a main protein target of the human 

humoral response against L. monocytogenes (Grenningloh et al., 1997). Moreover, the 

monoclonal antibody against listeriolysin O was found to be protective from a lethal dose of 

the wild type L. monocytogenes (Edelson et al., 1999; Edelson and Unanue, 2001). The ability 

of mice infected with the L. monocytogenes isogenic deletion mutants (∆actA2 and 

∆actA ∆plcB) to produce listeriolysin O-specific antibody was examined. Groups of 3 mice 

were injected i.v. with the wild type L. monocytogenes (103) cfu, its isogenic mutants (∆actA2 
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and ∆actA ∆plcB) (107) cfu, or left uninfected.  9 days later, blood was collected from all 

groups by heart puncture, sera were isolated and incubated in ELISA plates with 100 ng of 

purified listeriolysin O. The amount of antibody in mice sera was measured by means of 

ELISA reader at 405 nm. As shown in Fig. 3.17., the isogenic Listeria monocytogenes mutant 

strains managed to induce listeriolysin O-specific antibodies in an amount comparable to the 

wild type strain while no significant antibody production was demonstrated in naïve unprimed 

mice.   
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3.4.  Immunological  characterization  of  a  L. innocua  recombinant  strain  carrying       
        the virulence gene cluster (vgc) of L. monocytogenes 
 
As previously discussed, the virulence of pathogenic L. monocytogenes wild type strain is 

attributed to the presence of the virulence gene cluster (vgc) comprises genes (hly, plcA, plcB, 

mpl, actA , inlA , inlB ) required for survival in host vacuoles following uptake as well as 

replication and intracellular motility in the host cell cytoplasm  (Chakraborty et al., 2000). 

The virulence gene cluster is, however, totally absent from the non-pathogenic L. innocua 

strain (Gouin et al., 1994; Kreft et al., 1999; Chakraborty et al., 2000) explaining its non-

invasivness. However, It was interesting to examine the immunological properties of a 

recombinant strain of L. innocua transformed with a gram-positive/gram-negative schuttle 

BAC-based vector (pUvBBAC) harbouring a 96.9 kb fragment encoding the prfA virulence 

gene cluster ( prfA-plcA-hly-mpl-actA-plcB ) of L. monocytogenes (Hain et al., unpublished). 

The suitability of this recombinant strain to be an appropriate vaccine vector was systemically 

examined through testing its ability to induce sufficient CD8+ T cell response as well as 

lower levels of the unfavourable accompanying CD4+ T cell response mediating delayed type 

hypersensitivity (DTH) and granulomatous inflammation. 

 

3.4.1.  Growth kinetics of the recombinant L. innocua strain in vivo 

 

It is well-known that the ability of listeria to survive in vivo at the early stage of infection is 

crucial for induction of cell-mediated immunity. The in vivo survival of the recombinant L. 

innocua strain harbouring the complete virulence gene cluster of L. monocytogenes was 

compared to that of the wild type L. monocytogenes EGD-e in both spleen and liver. A group 

of BALB/c mice (16 mice) were infected i.v. with sub-lethal doses of wild type L. 

monocytogenes EGD-e (103), the recombinant L. innocua mutant strain, (designated L. 

innocua: :vgc) (107), or the wild type L. innocua strain (107). In vivo survival and growth 

kinetics of bacteria were followed by daily determining the number of bacteria in the spleen 

and liver of infected mice beginning at day 1 till day 4 after infection. As expected, regardless 

of the dose of infection, the wild type L. innocua strain was rapidly cleared from both organs 

from the outset (Fig. 3.18.) whereas L. innocua: :vgc strain successfully survived in both 

spleen and liver during the first two days after infection as indicated by the bacterial number 

that increased in both spleen and liver till day 2 and falled gradually over days 3 and 4 post-  

 



3. Results                                                                                                                                 106                       

 
Fig. 3.18. Course of primary infection in mice with the wild type L. monocytogenes and the 
recombinant L. innocua strain. Mice were infected i.v. with 103 wild type L. monocytogenes, 107 wild 
type L. innocua, or 107 recombinant L.innocua strain (L.innocua: :vgc). Different time intervals after 
the infection, 3 mice per group were sacrified and the number of viable bacteria in the organs was 
enumerated. Data presented are representative of three independent experiments. 
 

infection  onwards. On  the  other  hand,  the  bacterial  number  of  the  wild  type  L. 

monocytogenes,  both in spleen and liver, increased from day 1 till day 4 of the infection 

onwards. Since higher dose of the wild type listeria strain is lethal, growth kinetics was 

performed with a lower infection dose (103).  

 
 
3.4.2.  Downmodulation of CD4+-mediated inflammatory responses by the recombinant  
           L. innocua derivative 
 

To determine the degree of CD4+-mediated inflammatory response induced by the 

recombinant L. innocua strain (L. innocua: :vgc), morphological changes were examined in 

the spleens on day 3 after i.v. infection with the wild type EGD-e(103), the wild type L. 

innocua strain and its recombinant derivative (L. innocua: :vgc) (107). Although the number 

of  bacteria  survived  from  spleens  at  day 3 post-infection for both the wild type EGD-e and  

L. innocua: :vgc were approximately the same, marked difference in the morphological 

appearance between spleens isolated from mice primarily infected with the wild type EGD-e 

and those isolated from mice primarily infected with L. innocua: :vgc (Fig. 3.19.). 

Splenomegaly associated with extensive granuloma formation was characteristic to spleens of 

EGD-e infected mice, as a result of intensive leukocyte infiltration, whereas only 

splenomegaly (without granuloma) was the case in spleens of L. innocua: :vgc infected mice. 

Infection with the wild type L. innocua strain did not result in any morphological changes in 

spleens on day 3 post infection. 
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Fig. 3.19. Morphological appearance of the spleens of mice infected i.v. with the wild type L. 
monocytogenes and the recombinant L.innocua strain. Spleens of mice (infected i.v. as mentioned in 
Fig.3.18.) were removed on day 3 after infection. Shown is the scanned picture of spleens from the 
wild type L. monocytogenes, the wild type L.innocua and its recombinant mutant strain L.innocua: 
:vgc. Infiltration of monocytic cells and granulomatous lesions are only detectable in the spleens 
isolated from mice infected with the wild type L. monocytogenes. 
 

 

Moreover, antigen-induced CD4+ T cell-derived IFN-γ production of spleen cells was 

measured as an indication for DTH and proinflammatory T cell response induced against 

EGD-e, L. innocua, or its recombinant derivative. Spleen cells were isolated at day 9 post-

infection and stimulated in vitro with the released soluble antigen of L. monocytogenes EGD-

e (100 ng). Spleen cells from mice immunized with the L. innocua: :vgc mutant produced 

significantly lower levels of IFN-γ when compared with that produced after immunization 

with the wild type EGD-e strain. The wild type L. innocua strain failed to prime T cells for 

the production of IFN-γ (Fig. 3.20.A.). Most notably, the observations obtained in vitro were 

confirmed in vivo by antigen-elicited skin responses showing corresponding results (Fig. 

3.20.B). 6 mice per group were injected into the left hind footpads with 50 µl of somatic 

soluble L. monocytogenes EGD-e antigen (60 ng/ml) at day 9 post-infection. Twenty-four 

hours later, thickness of the left and right footpads of individual mice were measured. 

Footpads of mice pre-immunized with L. innocua: :vgc mutant strain showed a markedly 

lower thickness than those of mice  pre-immunized with the wild type EGD-e strain. The wild 

type L. innocua strain could not able to induce DTH response in footpads. 
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Fig. 3.20. A) Listeria-induced IFN-γ production by spleen cells 9 days after infection (i.v.). Mice were 
infected with 103 CFU of L. monocytogenes EGD-e, 107 CFU wild type L. innocua, or with 107 CFU 
its recombinant mutant strain L.innocua: :vgc. On day 9 after infection, mice were killed and spleens 
were removed. Single cell suspensions were stimulated in vitro with secreted soluble Listeria antigen 
to produce IFN-γ. After 48 hours, culture supernatants were tested for presence of IFN-γ by 
ELISA.*P<0.05 (EGD-e vs L.innocua: :vgc). B) DTH response to listerial antigen 9 days after primary 
infection. Mice were infected with 103 CFU of L. monocytogenes EGD-e , 107 CFU wild type 
L.innocua,  or 107 CFU its recombinant mutant strain L.innocua: :vgc. 9 days after infection, DTH was 
triggered through injection of soluble somatic listerial antigen. Twenty-four hours later, specific skin 
response was determined. Experiments were repeated twice. The mean value ± S.D. of five animals of 
a representative experiment is shown.*P<0.05 (EGD-e vs L.innocua: :vgc). 
 
 
 
3.4.3.  Expression of T cell-mediated immune response to the recombinant L. innocua  
           strain  
 

A number of cell types are involved in host defenses to Listeria. Antigen-specific T 

lymphocytes mediate recovery from primary listerial infections and protective immunity to 

subsequent infections (Lane and Unanue, 1972; North, 1973). Both CD4+ (helper, MHC class 

II restricted) and CD8+ (cytotoxic, MHC class I restricted) T cell subpopulations have been 

implicated (Kaufmann et al., 1985; Ladel et al., 1994). Recent experimental evidence 

indicates, however, that CD8+ T cells play the predominant role (Mielke et al., 1988; Berche 

et al., 1989 ;  Baldridge  et al., 1990; Goossens  et al., 1992; Roberts et al., 1993; Ladel et al., 

1994). The ability of the recombinant L. innocua strain to induce T cell mediated immunity 

was examined. Groups of BALB/c mice were infected with the wild type EGD-e (103), the 

wild type L. innocua strain (107) and its recombinant derivative (L. innocua: :vgc) (107). Two 

months later, all mice were challenged with  a  lethal  i.v. dose (5x104), corresponding to 10X 

LD50, of the wild type L. monocytogenes EGD-e strain and the survival of mice in all groups 

was monitored. As a control, a group of untreated  normal BALB/c mice that  have received  a 
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Fig. 3.21. Induction of protective immunity conferred after infection with the L.innocua recombinant 
mutant strain L.innocua: :vgc. Groups of mice were infected i.v. as described in Fig. 3.20. Two 
months later all mice were challenged with a lethal dose (10X LD50) of the wild type L. 
monocytogenes. As a control, a group of uninfected normal mice was included. Survival of mice after 
the challenge was monitored up to 8 days.  
 

 

similar lethal dose (5x104) of the wild type L. monocytogenes EGD-e strain were included. 

Primary infection with L. innocua: :vgc strain protected mice against a lethal infection with 

the wild type EGD-e strain. The protective response was significant as all mice, pre-

immunized with the recombinant L. innocua strain, survived. As expected, all mice that were 

pre-immunized with sub-lethal doses of the wild type EGD-e strain were also protected 

against a lethal listerial infection and survived whereas all the non-immunized mice as well as 

those pre-immunized with wild type L. innocua strain died within 4 days after challenge (Fig. 

3.21.).  

Entry of Listeria into the cytosol is a critical event for CD8+ T-cell recognition and the 

induction of immunity (Brunt et al., 1990). In order to establish the correlation between the 

protection of mice previously infected with the wild type EGD-e strain or the L. innocua 

recombinant  strain  upon  lethal  challenge  with   the  wild  type   L. monocytogenes   EGD-e   
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Fig. 3.22. Number of antigen-specific IFN-γ producing CD8+ T cells in spleens of mice infected i.v. 
with the wild type L. monocytogenes, L.innocua and L.innocua recombinant mutant strain (L.innocua: 
:vgc), determined by ELISPOT. Spleen cells from infected mice were isolated either after the primary 
infection or after recall challenge infection and stimulated with the immunodominant MHC class I 
peptide LLO91-99 in triplicates in nitrocellulose based 96-well culture plates. Number of specific IFN-γ 
producing cells against the dominant H-2Kd restricted LLO91-99 epitope was determined by counting 
the number of spots under microscope. 
 

 

strain and the induction of CD8+ cells in response to infection, the generation of antigen-

specific MHC class I restricted CD8+ T cells were quantitatively examined. The amount of 

antigen specific MHC class I restricted effector CD8+ T cells induced in spleens of mice 9 

days after the primary infection and 5 days after the challenge with the wild type L. 

monocytogenes (2x103) was determined through evaluation of the number of IFN-γ producing 

CD8+ T cells induced against the dominant H-2Kd restricted LLO91-99 epitope (Wipke et al., 

1993) in in vitro ELISPOT assay. As shown in Fig. 3.22., infection with wild type L. 

monocytogenes as well as the recombinant L. innocua derivative (L. innocua: :vgc) managed 

to induce a highly detectable population of LLO91-99 specific CD8+ T-cells. This number 

raised significantly during the recall infection. On the other hand, Infection with the wild type 

L. innocua strain failed to induce a significant level of CD8+ T-cells population either 

primarily or after challenge. 
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It was recently established that activated CD8+ T cells seem to be programmed to develop 

into memory T cells, because CD8+ T cells that were stimulated briefly (~24 hours), 

proliferated and differentiated into CTLs without further antigenic stimulation and continued 

to develop into long-lived, protective memory CD8+ T cells (Mercado et al., 2000; Kaech and 

Ahmed, 2001). Memory T cells can be subdivided into two categories on the basis of 

activation markers, homing receptor expression, and effector function (Lanzavecchia and 

Sallusto , 2000). Central memory T cells, which express high levels of the chemokine 

receptor CCR7 and the adhesion molecule CD62L and do not express effector functions, may 

differentiate into effector memory T cells, which express low levels of CCR7 and CD62L 

(also known as L-selectin or Mel-14) but produce cytokines ( Sallusto  et al., 1999). Whether 

these memory T cell subsets differ in their capacity to mediate protective immunity is 

unknown. Furthermore, the stimuli that generate central versus effector memory T cells 

remain undefined (Lauvau et al., 2001). In order to address the contribution of effector 

memory CD8+ T cells in mediating long last immunity after re-infection with the wild type 

Listeria monocytogenes, the expression level of CD62L, an effector memory  CD8+ T cell 

surface marker, was quantified. Two months after the primary infection, the number of 

CD8+CD62Llo lymphocytes was approximately identical in all groups of primarily infected 

mice. This number increased dramatically upon re-infection with the wild type L. 

monocytogenes (2x103) in mice pre-immunized with EGD-e as well as L. innocua: :vgc 

mutant strain while pre-immunization with the wild type L. innocua strain was not able to  

induce a significant CD62L down-regulation  (Fig. 3.23.). 

  

3.4.4.  Induction  of  listeriolysin O  specific  antibody in  response to  the recombinant L.  
           innocua: :vgc strain 
 

As previously discussed (section 3.3.5.), listeriolysin O (LLO) was efficiently recognized 

with antisera of mice primarily infected with the wild type L. monocytogenes as well as its 

isogenic deletion mutants, ∆actA2  and  ∆actA∆plcB, while  antisera  from  unprimed  mice  

failed  to recognize the purified listeriolysin O. In an attempt to examine if primary infection 

with L. innocua: :vgc recombinant strain can induce a humoral immune response against 

listeriolysin O, groups of 3 mice were injected i.v. with the wild type L. monocytogenes (103), 

L. innocua: :vgc (107), the wild type L. innocua (107), or left uninfected. 9 days later, blood 

were collected from all groups, sera were isolated and used to detect purified listeriolysin O 

(100 ng)  in  an immunoblotting  assay. As  expected  antisera   from mice  primarily  infected  
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Fig. 3.23. Expression levels of CD62L on CD8+ splenocytes following primary and recall infection 
with L. monocytogenes, L.innocua and L.innocua: :vgc. Flow cytometry was performed with spleen 
cells, isolated from mice at day 9 after the primary infection or day 5 after the challenge. Cells were 
stained with FITC-labeled anti-Lyt-2 and biotinylated anti-CD62L. The binding of anti-CD62L on the 
cell surface was detected with PE-conjugated streptavidin. Numbers shown are gated CD8+CD62lo T 
cells and analysed with CELLQuest software. 
 

 

with the wild type L. monocytogenes can recognize listeriolysin O. Antisera from mice 

primarily infected with L.inn: :vgc recombinant strain can also efficiently recognize LLO 

while antisera from  unprimed mice as well as mice primarily infected with the wild type L. 

innocua failed to recognize LLO (Fig. 3.24.). 
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Fig. 3.24. Induction of listeriolysin O-specific antibodies against the recombinant L. innocua: :vgc 
strain. 100 ng of purified LLO were loaded onto 10 % SDS-polyacrylamide gel, transferred 
electrophoretically onto  a PVDF filter and incubated with antisera obtained from mice 9 days after 
infection with the wild type Listeria monocytogenes (1), L. innocua: :vgc (2), wild type L.innocua (3), 
unprimed mice (4), and M275 antibody (as a control) (5), followed by AP-conjugated anti-mouse IgG. 
Blots were visualized using BCIP as a substrate. The numbers to the left of the figure correspond to 
apparent molecular weights (in kDa). 
 

 

Based on its ability to induce effector CD8+ T lymphocytes as well as humoral immunity in 

addition to the downmodulation of unfavourable CD4+ inflammatory response, L. innocua 

complemented with the virulence gene cluster of L. monocytogenes is shown to be a 

promising vaccine or delivery vector.   
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3.5.  Molecular and immunological characterization of a Listeria monocytogenes strain    
        harbouring a gene of pneumolysin in instead of listeriolysin O 
 
Lysis of the host cell vacuole is mediated in large part by the thiol-activated cytolysin 

listeriolysin O (LLO) (Gaillard et al., 1987; Tilney and Portnoy, 1989; Bielecki et al., 1990). 

Transposon insertions in hly, the structural gene encoding LLO, result in a non-hemolytic 

phenotype, complete avirulence and inability to lyse the host vacuole (Gaillard et al., 1986; 

Kathariou et al., 1987; Kuhn et al., 1988; Portnoy et al., 1988). Introduction of hly on a 

plasmid restores both haemolytic capacity and virulence (Cossart et al., 1989). Thiol-activated 

hemolysins, so named for the the unique cysteine highly conserved undecapeptide, or in other 

wards, cholesterol-binding cytolysins (CBCs), due to their ability to bind cholesterol, have 

been identified in 23 taxonomically different species of gram-positive bacteria (Alouf, 2000) 

including for example streptolysin O (SLO) produced by Streptococcus pyogenes, 

pneumolysin (PLY) produced by Streptococcus pneumonia, suilysin (SLY) produced by 

streptococcus suis and perfringolysin O produced by Clostridium perfringens (Smyth and 

Duncan, 1978; Alouf and Geoffroy, 1991). LLO, however, is the only one that is produced by 

intracellular bacterium (Jones and Portnoy,1994). Apart from pneumolysin, which is an 

intracytoplasmic toxin, all other toxins are produced in the extracellular medium (Alouf, 

2000). It was previously shown that L. monocytogenes expressing perfringolysin O in place of 

listeriolysin O was able to lyse the host cell vacuole, grow in the cytoplasm, and spread from 

cell to cell to a limited extent in vitro followed by damage of the cells, preventing the 

intracellular proliferation of bacteria (Jones and Portnoy,1994). 

Subclinical infection of BALB/c mice with virulent Listeria monocytogenes leads to the 

induction of Listeria-immune T-cell populations and protective immunity. LLO production 

appears to be required for induction of protective immunity, since preparations of killed L. 

monocytogenes or mutants of L. monocytogenes which lack LLO expression remain within 

the phagocytic vacuole of the host cell, do not replicate intracellularly, and do not trigger a 

protective antilisterial immune response (Barry et al., 1992; Cossart , 1988; Mengaud et al., 

1989). Here, a related cytolysin, pneumolysin (PLY) was chosen to be tested if it is able to 

complement LLO for intracellular survival, virulence, and induction of protective immunity. 

 

3.5.1.  Bacterial strains and growth conditions 

 

Bacterial strains used in this study are the wild type Listeria monocytogenes EGD-e serotype 

1/2a (Glaser et al., 2000), its isogenic deletion mutant EGD-e∆hly (Leimeister-Wächter et al.,  
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Fig. 3.25. A) The structural gene encoding pneumolysin with NdeI and XhoI restricted ends was 
cloned in the multiple cloning site (mcs) of pSOG306, containing the same restriction ends, 
downstream from the promoter and signal peptide sequence of listeriolysin O (hly P+SP). B) The 
intact gene encoding listeriolysin O with XhoI and SpeI restricted ends was cloned in the multiple 
cloning site of pSOG304 restricted with the same enzymes.   
 

 

1990; Guzman et al., 1995), both were electroporatically transformed with pSOG306 gram-

positive/gram-negative schuttle vector, containing the intact promoter of listeriolysin O 

followed by its signal peptide coding sequence under the regulatory control of  prfA gene 

(Otten et al., unpublished) and its isogenic derivatives EGD-e∆hly::pSOG304-hly (designated 

EGD-e∆hly: :LLO), and EGD-e∆hly::pSOG306-ply (designated EGD-e∆hly: :PLY). Bacteria 

were grown in brain-heart infusion (BHI) broth in presence of 5µg/ml erythromycin.  

 

3.5.2.  Construction of plasmid-based strains   

 

For the construction of EGD-e∆hly strains complemented with either intact ply or hly gene, 

pSOG306 or pSOG304 plasmid, respectively, was used. 

 

3.5.2.1. EGD-e∆hly::pSOG306-ply 

 

The structural gene for PLY were amplified from the S. pneumonia (Genbank accession no. 

X52474) chromosomal DNA by means of  (ply-gene for., NdeI) and   (ply-gene rev., XhoI)  

oligonucleotides primers (see section 2.7.11) which contained restriction sites for the enzymes 

NdeI and XhoI, respectively. The 1397 bp fragment was cloned into pSOG306 that was 
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restricted with the same enzymes, downstream from the signal peptide sequence of hly (Fig. 

3.25.A). 

 

3.5.2.2. EGD-e∆hly::pSOG304-hly 

  

By means of (hly-gene for., XhoI) and   (hly-gene rev., SpeI)  oligonucleotides primers (see 

section 2.7.11), a 2086 bp long fragment containing entire hly gene including its promoter 

was amplified from the Listeria monocytogenes chromosomal DNA using high fidelity PCR 

procedure followed by cloning on to pSOG304 plasmid, harbouring the prfA regulator (Otten, 

et al., unpublished) using XhoI and SpeI restriction sites (Fig. 3.25.B). Both constructions 

were checked by DNA sequence analysis. Transformation of EGD-e∆hly strains with 

pSOG306 or pSOG304 plasmid containing ply or hly genes respectively was performed by 

electroporation (Schäferkordt and Chakraborty, 1995). The desired recombinants were 

selected using erythromycin (5µg/ml) on BHI agar plates and subsequently verified by 

sequencing and western blot analysis. 

  

3.5.3. Expression and hemolytic activity of pneumolysin  

 
Pneumolysin was expressed and efficiently secreted into the culture supernatent of EGD- 

e∆hly, as shown by Western blot using monoclonal anti-PLY antibody (Fig. 3.26.).  

 

 

 

 

 

 

 

 
 
 
 
Fig. 3.26. Immunoblot analysis. Equal amounts of proteins precipitated by 10% trichloroacetic acid 
from BHI culture supernatants of L. monocytogenes EGD-e∆hly  (Lanes 1) and the isogenic deletion 
mutant L.monocytogenes EGD-e∆hly expressing either LLO (Lanes 2) or PLY (Lanes 3) were loaded 
onto 10 % SDS-polyacrylamide gel. Proteins were electrophoretically blotted and developed with 
either mouse anti-LLO monoclonal antibody (M275) or mouse anti-PLY monoclonal antibody 
followed by AP-conjugated anti-mouse IgG. Lane (M) corresponds to the running marker protein 
while the numbers to the left of the figure correspond to apparent molecular weights (in kDa). 
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Fig. 3.27. Hemolytic activity of recombinant pneumolysin. Serial twofold dilutions of each culture 
supernatant (isolated from bacterial cultures at OD600 of 1.0) from L. monocytogenes EGD-e (Lane 1), 
the isogenic deletion mutant L. monocytogenes EGD-e∆hly (Lane 2), and EGD-e∆hly expressing 
either LLO (Lane 3) or  PLY (Lane 4) (starting from 50 µl of non-diluted sample) were incubated with 
defibrinated sheep erythrocytes at pH 5.6 and 37°C for 2 hours. Cytolysis of erythrocytes is visualized 
by a uniform grey colour of the well (corresponding to haemoglobin release). A dark spot at the 
bottom of the well corresponds to sedimented intact erythrocytes.  
 

 

Interestingly, pneumolysin was recognized with anti-LLO monoclonal antibody  (M275) 

while  LLO  was  also  recognized  with  anti-PLY  monoclonal antibody. The  cross reactions 

of   LLO  and  PLY  against  both  antibodies  are  more  likely  due  to  the  close  structure 

homology between the two proteins. The regulated expression of the cloned gene products 

was  examined by  assaying the  hemolytic activity  of bacterial  culture supernatants on sheep 

erythrocytes at pH 5.6. As expected, EGD-e∆hly had no detectable hemolytic activity. 

Pneumolysin showed a comparable hemolytic activity to that of LLO (Fig. 3.27.).  

 

3.5.4.  Listeria  expressing  pneumolysin  shows  a  limited  intracellular  growth in  J774  
           macrophages 
 
The ability of this strain to grow inside the mouse macrophage like cell line J774 was 

examined. During the first 8 hours of intracellular growth, wild type EGD-e as well as the 

mutant strain EGD-e∆hly complemented with LLO doubled approximately 5 times, whereas 

the pneumolysin expressing  EGD-e∆hly mutant strain doubled only once during the first 4 

hours  followed by a decrease in  the  growth  rate   suggesting   the  induction  of  host  cell 

cytotoxicity by pneumolysin, resulting in entry of extracellular gentamicin and bacterial death 

(Fig. 3.28.). 
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Fig. 3.28. A)  Intracellular growth kinetics in macrophages. A) macrophage-like J774 cell line was 
infected with the wild type L monocytogenes EGD-e, mutant Lmonocytogenes EGD-e∆hly expressing 
either LLO  or PLY, and mutant L. monocytogenes EGD-e∆hly strains at MOI of 10. Viable bacteria 
were enumerated at indicated time intervals following incubation at 37°C. B) macrophage-like J774 
cell line was infected with the wild type L.monocytogenes EGD-e (1), mutant L.monocytogenes EGD-
e∆hly expressing either LLO (2) or PLY (3), and mutant L. monocytogenes EGD-e∆hly strains (4). 4 
hours after gentamicin treatment, cells were fixed with 4% formaldehyde and visualised by staining F-
actin using Oregon Green 488 conjugated phalloidin under a fluorescence microscope. 
 

 

In order to confirm this suggestion, the infected macrophages were examined 4 hours post-

infection by flourescent microscopy after staining with beta-phalloidin to visualize the F-

actin. The wild type L. monocytogenes as well as mutant bacteria expressing wild type LLO 

had multiplied and were found associated with tails of polymerized actin, propelling bacteria 

to adjacent cells, whereas  bacterial escape  as  well  as actin polymerisation for the EGD-

e∆hly mutant strain expressing pneumolysin was significantly lower (Fig. 3.28.). As expected, 

the EGD-e∆hly strain was unable to multiply or to polymerize actin.  

 
3.5.5.  L. monocytogenes expressing pneumolysin shows a reduced in vivo survival  

 

In order to correlate the in vitro intracellular growth of the L. monocytogenes expressing 

pneumolysin strain to its in vivo survival, the virulence of this strain in comparison to the 

wild-type was assessed by using the i.v. mouse model. The number of bacteria in both spleens 

and livers of infected mice was determined over 9 days after infection. A group of BALB/c 

mice were intravenously (i.v) injected with sublethal doses of either wild type EGD-e strain 

(103), or the isogenic L. monocytogenes derivatives EGD-e∆hly, EGD-e∆hly: :LLO, and 

EGD-e∆hly: :PLY (8x106). As shown previously, regardless of the dose of infection, the 
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mutant EGD-e∆hly is rapidly cleared from both organs from the outset (Lety et al., 2001; 

Peters et al., 2003).  On day 3 post-infection, bacterial load had already fallen to a level of 

approximately 40 cfu/mg of spleen and 10 cfu/mg of the liver even after infection with 8x106 

viable bacteria per mouse (Fig. 3.29.). Although the survived numbers of EGD-e∆hly: :PLY 

mutant strain increased from day one to day three post infection in both spleen and liver, it 

remained 10–60 as well as 10 folds lower than the number of wild type survived from spleen 

or liver respectively over the first 3 days after the infection. Then, the number of survived 

mutant strain EGD-e∆hly: :PLY decreased rapidly from day 4 post-infection onwards. 

Survival was fully restored in EGD-e∆hly complemented with plasmid-encoded LLO to an 

extent seems to be identical to that of the wild type L. monocytogenes where the number 

increased between day 1 and day 3. On day 3, the number of wild type and EGD-e∆hly +LLO 

peaked at the same level and declined rapidly from day 4 post-infection onwards. In all cases, 

both in the wild type EGD-e and in its mutant derivatives, bacteria were cleared from the 

spleen and liver by day 8 -10 post-infection. 

 

3.5.6.  Induction of a protective antilisterial immune response by Listeria monocytogenes  
           expressing pneumolysin in place of listeriolysin O 
 

Analysis of the specificity of antilisterial cytotoxic cells from Listeria immune BALB/c mice 

donors has shown a dominant response to an epitope corresponding to amino acids 91 to 99 of  

LLO (Pamer et al., 1991; Harty and Bevan, 1992). Pamer and co-workers have identified four 

major Listeria-derived epitopes of CD8+ T cells presented by H2-kd (Busch et al., 1998; 

1999). Two of the peptides derive from p60, a constitutively secreted protein of Listeria:  

p60449–457 is presented at a high density by infected cells but is subdominant based on the size 

of the T cell population specific for this peptide; in contrast a stronger T cell response is 

specific for p60217–225, even though this epitope is presented at a lower level. A third epitope 

derives from LLO (residues 91–99);  although  presented  in  smaller  amounts  than  the  p60 

epitopes, it dominates the T cell response. The fourth epitope is from a secreted 

metalloprotease, mpl84–92. A major contribution in understanding the response to Listeria has 

been made by following the development of the CD8+ T cell  response to  these four  peptides 

(Busch et al., 1998; 1999) using the MHC tetramer approach developed by Davis and Altman 

(Altman et al., 1996). Demonstration of antilisterial T cells with specificity to non-LLO-

derived  epitopes  had  been  difficult  to  achieve  because  of  the  requirement  of  LLO  in  
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Fig. 3.29. In vivo kinetics of primary infection. The kinetics of bacterial growth was followed in 
organs of mice infected i.v. with either 103 wild type L. monocytogenes EGD-e or 8x106 isogenic L. 
monocytogenes mutant strains EGD-e∆hly expressing either LLO or PLY, and mutant L. 
monocytogenes EGD-e∆hly strains. On days 1, 2, 3, 4, 5, 8, and 9 after infection, the numbers of 
viable bacteria in the spleens and the livers of three animals per group were determined. Data 
presented are representative of three independent experiments. 
 

 

facilitating escape of the bacteria to the cytoplasm of the host cell and the apparent dominance 

of an anti-LLO response in antilisterial immunity. In this study, it was examined if the ability 

of pneumloysin expressing EGD-e∆hly mutant  strain to  escape  phagolysosome  and  gain  

access  to  the  cytoplasm  can induce a protective immunity against a lethal infection with the 

wild type L. monocytogenes by facilitating endogenous antigen processing and presentation of 

non LLO-determinant epitopes for association with MHC class I molecules for surface 

display to CD8+ T cells. Groups of BALB/C mice were infected i.v. with the wild type strain 

(103) or its isogenic derivatives (8x106). 2 months later, all mice were challenged with a lethal 

i.v. dose (5x104), corresponding to 10X LD50 of the wild type L. monocytogenes, and survival 

was monitored. As a control, a group of non-immunized normal BALB/C mice that have 

received a similar lethal dose of the wild type L. monocytogenes were included. As expected, 

all the non-immunized mice died in 3 days as well as those pre-immunized with the isogenic 

mutant strain EGD-e∆hly were dead in 4 days after the challenge infection with L. 

monocytogenes whereas those pre-immunized with the wild type as well as EGD-e∆hly 

complemented with  LLO  were  protected  against  a  lethal  Listeria  infection  and  survived 

(Fig. 3.30.A). Surprisingly, all the mice pre-immunized with EGD-e∆hly mutant strain 

expressing PLY can also survive the lethal infection of the wild type EGD-e strain. 
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Fig. 3.30. Induction of protective immunity by Listeria monocytogenes expressing pneumolysin. A) 
Mice were infected i.v. with either 103 wild type L. monocytogenes EGD-e or 8x106 isogenic  L. 
monocytogenes mutant strains EGD-e∆hly expressing either LLO or PLY, and mutant L. 
monocytogenes EGD-e∆hly strains. Two months later all mice were challenged with a lethal dose 
(10X LD50) of the wild type L. monocytogenes. As a control, a group of uninfected normal mice was 
included. Survival of mice after the challenge was monitored up to 8 days. Data were pooled from two 
independent experiments with a total of 15 mice per group. B) Bacterial titres in spleens and livers of 
3 mice per group of mice challenged in Fig. A were monitored at day 2 after challenge. 
 

 

 In addition, the bacterial titres were determined in spleens and livers at day 2 post-challenge 

in each mice group. Mice primed with the isogenic mutant strain EGD-e∆hly as well as naïve 

unprimed mice were not able to control challenge infection as indicated by the high bacterial 

load in spleen and liver. In contrast, mice primed with the wild type EGD-e or the mutant 

strain EGD-e∆hly complemented with either LLO or PLY managed to restrict listerial growth 

in the first 2 days after infection (Fig. 3.30.B). Hence, to this point, pneumolysin seems to 

manage to induce a protective immunity in absence of listeriolysin O. 

In order to determine whether T cells with specificity for non-LLO-derived epitopes of L. 

monocytogenes are a component of a protective antilisterial immune response, the amount of 

antigen specific MHC class I restricted effector CD8+ T cells induced against a P60 derived 

peptide, P60217-225, in mice spleens 9 days after the primary infection as well as  5 days after 

the challenge with a sub-lethal dose (2x103) of L. monocytogenes was quantitatively 

determined  through evaluation of the number of IFN-γ producing CD8+ T cells induced 

against the dominant H-2Kd restricted P60217-225 subdominant epitope (Vijh and Pamer, 1997) 

in in vitro ELISPOT assay. As shown in Fig. 3.31., infection with the PLY expressing mutant 

strain managed to induce a highly detectable population of P60217-225 specific CD8+ T-cells 

comparable to those induced in response to infection with the wild type L. monocytogenes as 
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well as the mutant complemented with LLO. This number raised significantly during the 

recall infection. On the other hand, Infection with the isogenic mutant strain EGD-e∆hly failed   

to   induce  a  significant  level  of  CD8+   T-cells   population   either   primarily   or   after 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.31. Number of antigen-specific IFN-γ producing CD8+ T cells in the spleen of mice infected 
i.v. with L.monocytogenes or its mutants, determined by ELISPOT assay. Spleen cells from infected 
mice were isolated either at day 9 after the primary infection or day 5 after recall challenge infection 
and stimulated with the immunosubdominant MHC class I peptide  P60217-225 in triplicates in 
nitrocellulose based 96-well culture plates. Number of specific IFN-γ producing cells was determined 
by counting the number of spots under microscope. 
 

 

challenge. These data reveal that pneumolysin can replace listeriolysin for induction of 

protective anti-listerial immunity developed against non-listeriolysin derived epitopes. 

The induction of antilisterial protective immunity with PLY expressing Listeria was 

addressed by identifying the production of memory T cells in response to challenge infection.  

The magnitude of down regulation of CD62L T cell surface marker was quantitatively 

determined 2 months after the primary infection and 5 days after the recall infection. The 

expression of CD62L on the T cells was shown to be downregulated in response to primary 

Listeria infection and is upregulated after bacterial clearance (Busch and Pamer, 1999). 

However, during the recall infection with L. monocytogenes, CD62L was significantly down 

regulated.  Day  5  post  challenge  was chosen because maximum spleen cellularity as well as 
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Fig. 3.32. Expression levels of CD62L on CD8+ splenocytes following primary and recall infection 
with L. monocytogenes strains. Flow cytometry was performed with spleen cells, isolated from mice 2 
months after the primary infection or 5 days after the challenge. Cells were stained with FITC-labeled 
anti-Lyt-2 and biotinylated anti-CD62L, and the binding of anti-CD62L on the cell surface was 
detected with PE-conjugated streptavidin. Numbers shown are gated CD8+CD62Llo T cells (lower 
panel) and analysed with CELL Quest software.    
 

 

maximum number of CD8+ T cells was established on this day (Busch and Pamer, 1999). As 

shown in Fig. 3.32., challenge with the wild type L. monocytogenes managed to induce a 

significant  down  regulation of  CD62L  on  CD8+  splenocytes in mice pre-immunized  with 

PLY expressing EGD-e∆hly strain similar to that induced in mice pre-immunized with the 

wild type L. monocytogenes as well as with EGD-e∆hly: :LLO suggesting that CD8+ T 
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lymphocytes induced against non-listeriolysin determinants are able to confer anti-Listeria 

protective immunity.  

 

3.5.7.  Humoral response is induced against both listeriolysin O and pneumolysin 

 
It was previously shown that Listeriolysin O and irpA are major protein targets of the human 

humoral response against L. monocytogenes (Grenningloh et al., 1997). So, it was important 

to examine if mice pre-immunized with either the wild type  L. monocytogenes or  its  

isogenic derivatives can produce antibodies against either listeriolysin O or pneumolysin.  

Blood was obtained from mice by heart puncture at day 8 post-infection, corresponding to the 

plateau phase of antibody response to antigen. Sera were separated from blood cells by 

ultracentrifugation  at  15.000  rpm  for  15  minutes.  Purified listeriolysin O  or  pneumolysin 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig. 3.33. Induction of humoral immunity against thiol-activated cytolysins. Equal amounts (1µg) of 
purified listeriolysin O (LLO) or pneumolysin (PLY) were loaded onto 10 % SDS-polyacrylamide gel. 
Gels were electrophoretically blotted and incubated with antisera obtained from mice 9 days after 
infection with 103 wild type L. monocytogenes EGD-e (Lane 1), 8x106 isogenic L. monocytogenes 
mutant strains EGD-e∆hly expressing either LLO (Lane 2) or PLY (Lane 3), and 8x106 mutant L. 
monocytogenes EGD-e∆hly strains (Lane 4) followed by AP-conjugated anti-mouse IgG. Blots were 
visualized using BCIP as a substrate. The numbers to the left of the figure correspond to apparent 
molecular weights (in kDa). 
 

(1µg/serum tested) were used as antigens in immunoblots and incubated with mice sera. 

Surprisingly, Sera from mice pre-immunized with the wild type EGD-e as well as the isogenic 

mutant strain complemented with either listeriolysin O or pneumolysin have strongly 

recognized the two cytolysins while those isolated from mice pre-immunized with the 
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isogenic EGD-e∆hly mutant strain failed to detect the two toxins as shown in Fig. 3.33. The 

cross reactivity of monoclonal antibodies as well as natural antibodies against both 

listeriolysin O and pneumolysin was suggested to be due to the structural similarities between 

the two toxins. So, pneumolysin expressing EGD-e∆hly mutant strain acts as a target for both 

antilisterial cellular and humoral immune responses.  
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3.6.  The PEST-like region in Listeriolysin O is critical for induction of effective long- 
         term immunity 
 
Listeriolysin O (LLO), a major virulence factor secreted by the bacterial pathogen Listeria 

monocytogenes, contains near to its N-terminus a putative PEST-like sequence (P, Pro; E, 

Glu; S, Ser; T, Thr)  which was recently identified to be essential  for the virulence and 

intracellular compartmentalization. The first study concerning the role of  PEST like motif in 

the pathogenicity of Listeria monocytogenes was conducted with Decatur et al, and concluded 

that the PEST like motif may target eukaryotic proteins for phosphorylation and/or 

degradation by the proteasome, and may generally represent sites of protein-protein 

interactions (Decatur and Portnoy, 2000) although the actual mechanism by which the PEST-

like sequence acts to negate LLO toxicity was not clear.  The critical role of this sequense in 

mediating escape from the host cell phagolysosome was recently established (Lety et al., 

2001; 2002). 

Listeria monocytogenes has been used for decades for the induction and analysis of T cell-

mediated immunity (Mackaness, 1962; Mielke et al., 1998). Among the listerial virulence 

factors, Listeriolysin O is critical for  generating a protective anti-listerial T lymphocyte 

response (Dunn and North, 1991). In an attempt to analyze if the PEST like sequence lacking 

listeriolysin O can induce a T cell-mediated immunity, 28 amino acid residues at the N-

terminus of listeriolysin O harbouring the PEST like sequence was deleted and the growth 

kinetics of the isogenic Listeria mutant lacking the PEST-like sequence as well as its 

immunological properties were systemically examined. 

 

3.6.1.  Generation of the  LLO mutant protein 
3.6.1.1.  Bacteria  

 

Bacterial strains used in this study are wild type Listeria monocytogenes EGD-e serotype 1/2a 

(Glaser et al., 2001), its  isogenic deletion mutant EGD-e∆hly (Leimeister-Wächter et al., 

1990; Guzman et al., 1995), both were electroporatically transformed with pSOG304 gram-

positive/gram-negative schuttle vector (Otten et al., unpublished), and its isogenic derivatives 

EGD-e∆hly: :pSOG304-hly (designated EGD-e∆hly: :LLOwt), and EGD-e∆hly: :pSOG304-

hly∆PEST(designated EGD-e∆hly: :LLO∆PEST). Bacteria were grown in brain-heart infusion 

(BHI) broth in presence of 5µg/ml erythromycin. In all in vitro and in vivo experiments, fresh 

cultures of bacteria, prepared from an overnight culture, were used.  
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3.6.1.2. Construction of the mutants 
 

For the construction of EGD-e∆hly strains complemented with either intact hly gene or hly 

gene lacking the PEST-like sequence, pSOG304 plasmid was used.  

 
 
3.6.1.2.1.  EGDe∆hly::pSOG304-hly∆PEST  
 

A 28 amino acids region (a`a` 26 - a`a` 53) harbouring the PEST-like sequence at the N-

terminus of Listeriolysin O was removed using a method  of site-directed mutagenesis called 

gene splicing by overlap extension (Ho et al., 1989). A 309 bp long PCR fragment comprising 

PEST-like region upstream sequences was amplified with (hly-P for., KpnI) and  (PEST rev., 

NdeI) oligonucleotides primers. A second 1595 bp PCR fragment harboring PEST-like region 

downstream sequences was amplified with (PEST for., NdeI)  and (hly∆PEST rev., XhoI) (see 

section 2.7.11). Both fragments were restricted with endonuclease NdeI and used in a ligation 

reaction. So, the deleted sequence was substituted with a NdeI restriction site encoding a (h) 

and (m) residues (Fig. 3.34.B). The entire PCR fragment, lacking the PEST-like region , was 

amplified with oligonucleotides containing KpnI and XhoI restriction sites, restricted with 

KpnI and XhoI restriction enzymes and was cloned into the KpnI and XhoI restriction sites of 

the pSOG304 plasmid vector (Fig. 3.34.A). Both constructions were checked by DNA 

sequence analysis. 

 
 
3.6.1.2.2.  EGD-e∆hly: :pSOG304-hly 
 

EGD-e∆hly expressing the intact wild type listeriolysin O was used in all experiments as a 

positive control. By means of (hly-gene for., XhoI) and   (hly-gene rev., SpeI) oligonucleotides 

primers (see section 2.7.11),  a  2086  bp  long      fragment  containing entire hly gene and its 

promoter was amplified from Listeria monocytogenes chromosomal DNA using high fidelity 

PCR procedure followed by cloning on to pSOG304 plasmid using XhoI and SpeI restriction 

sites (Fig. 3.25.B).  

Transformation of EGD-e∆hly strains with pSOG304 plasmid containing intact hly gene or 

hly lacking PEST-like sequence was performed by electroporation (Schäferkordt and 

Chakraborty, 1995). The desired recombinants were selected using erythromycin (5µg/ml) on 

BHI agar plates and subsequently verified by sequencing and western blot analysis. 
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Fig. 3.34. A) Cloning of the PEST-knock out listeriolysin O in pSOG304. The structural gene 
encoding listeriolysin O lacking the PEST-like sequence with KpnI and XhoI restricted ends was 
cloned in the multiple cloning site (mcs) of pSOG304 restricted with the same enzymes. B) Sequence 
of the mutated protein. DNA and amino acid sequences of the LLO∆PEST mutant. The created NdeI 
site is underlined, and the corresponding residues are in bold. The numbers above the sequences refer 
to the amino acid position. 
 

 
3.6.2.  Expression and hemolytic  activity of the LLO mutant protein 

 

The LLO mutant protein  was expressed and efficiently secreted into the culture supernatant  

of EGD-e∆hly, as shown by western blot using monoclonal anti-LLO antibody (M275) (Fig.  

3.35.A). The PEST-like sequence lacking LLO was normally recognized by the monoclonal 

antibody which appeared to react more strongly with LLOwt than with the mutant protein. 

Moreover, several additional bands of lower molecular weight were clearly detected with  

LLOwt but poorly recognized with the mutant protein suggesting more instability of LLOwt 

than of the mutant protein.  
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Fig. 3.35. A) Immunoblot analysis. Equal amounts of precipitated proteins from culture supernatants 
of  L. monocytogenes EGD-e (Lane 1), the isogenic deletion mutant L. monocytogenes EGD-e∆hly 
expressing either LLOwt (Lane 2) or LLO∆PEST (Lane 3), and EGD-e∆hly (Lane 4) were loaded onto 
10 % SDS-polyacrylamide gel. Proteins were electrophoretically blotted and developed with mouse 
anti-LLO monoclonal antibody (M275) followed by AP-conjugated anti-mouse IgG. The numbers to 
the left of the figure correspond to apparent molecular weights (in kDa). B) Hemolytic activity of the 
truncated protein. Serial two-fold dilutions of each culture supernatant from L. monocytogenes EGD-e 
(Lane 1), the isogenic deletion mutant L.monocytogenes EGD-e∆hly (Lane 2), and  EGD-e∆hly 
expressing either LLOwt  (Lane 3) or  LLO∆PEST (Lane 4) (starting from 50 µl of non-diluted 
sample) were incubated with defibrinated sheep erythrocytes at pH 5.6 and 37°C for 2 hours. Cytolysis 
of erythrocytes is visualized by a uniform grey colour of the well (corresponding to haemoglobin 
release). A dark spot at the bottom of the well corresponds to sedimented intact erythrocytes.  
 
 
 

The regulated expression of the cloned gene products was examined by assaying the 

hemolytic activity of bacterial culture supernatants on sheep erythrocytes at pH 5.6. As 

expected, EGD-e∆hly had no detectable hemolytic activity. The mutant protein show a 

hemolytic activity  appears to be identical to that of  LLOwt (Fig. 3.35.B).  

 
 
3.6.3.  Deletion of the PEST-like sequence of LLO inhibits bacterial phagosomal escape 
 
 

To understand the role of PEST-like sequence in mediating survival of L. monocytogenes in 

vivo, the interaction of mutant L. monocytogenes lacking the PEST-like sequence with J774 

macrophages was examined in vitro. It has been previously shown that EGD-e∆hly is unable 

to escape from the phagolysosome of J774 macrophages and therefore does not replicate in 

this cell line (Decatur and Portnoy, 2000, Lety et al., 2001; 2002). During the first 6 hours of  

intracellular growth, the wild type EGD-e as well as the mutant strain EGD-e∆hly 

complemented with LLOwt doubled approximately 5 times (Fig. 3.36.A), whereas the number 
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Fig. 3.36. Intracellular growth kinetics in eukaryotic cells. A) macrophage-like J774 cell line was 
infected with the wild type L. monocytogenes EGD-e (filled circles), mutant L. monocytogenes EGD-
e∆hly expressing either LLOwt (open circles) or LLO∆PEST (closed triangles), and mutant L. 
monocytogenes EGD-e∆hly strains (open triangles) at MOI of 10. Viable bacteria were enumerated at 
indicated time intervals following incubation at 37°C. B) macrophage-like J774 cell line was infected 
with the wild type L. monocytogenes EGD-e (1), mutant L. monocytogenes EGD-e∆hly expressing 
either LLOwt (2) or LLO∆PEST (3), and mutant L. monocytogenes EGD-e∆hly strains (4). 4 hours 
after gentamicin treatment, cells were fixed with 4% formaldehyde and visualised by staining F-actin 
using Oregon Green 488 conjugated phalloidin under a fluorescence microscope. 
 

 

of  both mutant strain lacking the PEST-like sequence  and EGD-e∆hly neither increased nor  

severely decreased during the 8 hours infection path although the number of colony forming 

units of the former remained slightly higher than that of the latter  suggesting that both strains 

remained trapped, but viable, in phagosomes of the J774 macrophages. The infected 

macrophages were examined 4 hours post-infection by flourescent microscopy after staining 

with beta-phalloidin to visualize the F-actin. The wild type L. monocytogenes as well as 

mutant bacteria expressing wild type LLO had multiplied and were found associated with tails 

of polymerized actin, propelling bacteria to adjacent cells (Fig. 3.36.B), whereas bacteria 

expressing LLO∆PEST showed a severely reduced replication with very low capacity to 

polymerize actin in most of the infected cells. As expected, the EGD-e∆hly strain was unable 

to multiply or to polymerize actin. These data reflects the importance of PEST-like sequence 

in mediating disruption of the phagosomal membrane and bacterial intracellular 

multiplication. 
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3.6.4.  PEST-like sequence mediates survival of L. monocytogenes in vivo   

 

The first and crucial step in the in vivo characterization of mutants was the determination of 

their growth kinetics in spleen and liver. The presence of viable microorganisms during the 

early phase of infection is critical in the induction and establishment of cell-mediated 

immunity   (Darji et al., 2003).  Therefore,    the    virulence    of   EGD-e∆hly    transformants  

 

 
Fig. 3.37. In vivo kinetics of primary infection in mice with the wild type L. monocytogenes and its 
isogenic mutants. Mice were infected i.v. with either 103 wild type L. monocytogenes EGD-e (filled 
circles) or 106 isogenic L. monocytogenes mutant strains EGD-e∆hly expressing either LLOwt  (open 
circles) or LLO∆PEST (closed triangles), and mutant L. monocytogenes EGD-e∆hly strains (open 
triangles). On days 1,2,3,4,5,8,and 9 after infection, the numbers of viable bacteria in spleens and 
livers of three animals per group were determined. Data presented are representative of three 
independent experiments. 
 

 

expressing LLOwt and LLO∆PEST was compared with that of wild type L. monocytogenes 

and EGD-e∆hly. A group  of BALB/c  mice  were  intravenously  (i.v)  injected with sublethal 

doses of either wild type EGD-e strain(103), or the isogenic L. monocytogenes derivatives 

EGD-e∆hly , EGD-e∆hly: :LLOwt, and EGD-e∆hly: :LLO∆PEST (106). In vivo survival and 

growth kinetics of bacteria were followed by determining the number of bacteria in spleens 

and livers of infected mice at various time points for several days. As shown previously, 

regardless of the dose of infection, the mutant EGD-e∆hly is rapidly cleared from both organs 

from the outset  (Lety et al., 2001; Peters et al., 2003). On  day  3  post-infection,  bacterial 

load had already fallen to a level of approximately 40 cfu/mg of spleen and 10 cfu/mg of the 

liver even after infection with 106 viable bacteria per mouse (Fig. 3.37). Although the PEST-

like sequence lacking strain showed a slightly more survival than EGD-e∆hly in spleen and 
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liver of infected mice, bacterial counts remains very low up the first day after infection and 

dropped more after day 2 onwards. Survival was fully restored in EGD-e∆hly complemented 

with plasmid-encoded LLOwt to an extent identical  to that  of  the  wild  type L. 

monocytogenes  where the  number  increased between day 1 and day3. On day 3, the number 

of the wild type EGD-e and EGD-e∆hly+LLOwt peaked at the same level and declined 

rapidly from day 5 post-infection onwards. In all cases, both in the wild type EGD-e and in its 

isogenic mutant strains, bacteria were cleared from spleens and livers by day 8-10 post-

infection. 

 
3.6.5. Spleen morphology on day 3 after infection 
 

Because  the  spleen  is  the lymphatic organ where the immune response is initiated 

following an i.v. inoculum, morphological alteration in the spleens on day 3 after i.v. 

infection with the wild type EGD-e and its isogenic derivatives was monitored. As shown in 

Fig. 3.38., marked differences were observed in the morphological structure of spleens 

obtained from mice infected with these strains. Spleens obtained from mice infected with the 

wild type EGD-e strain showed a pronounced strong granuloma formation on day 3 post-

infection resulted  from intense and vigorous leukocyte infiltration  of the white pulp, whereas   

 

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 3.38. Morphological changes in spleens of mice infected with Listeria strains. Spleens of mice 
(infected i.v. as mentioned in Fig. 3.37) were removed on day 3 after primary infection. Shown is the 
scanned picture of spleens from the wild type L. monocytogenes EGD-e (A), mutant L. monocytogenes 
EGD-e∆hly expressing either LLOwt (B) or LLO∆PEST (C), and mutant L. monocytogenes EGD-
e∆hly strains (D).Vigourous monocytic infiltration and intense granulomatous lesions are detectable 
only in the spleens isolated from mice infected with the wild type L.monocytogenes(A) while 
splenomegaly was detected in the spleens isolated from mice infected with mutant L. monocytogenes 
EGD-e∆hly expressing LLOwt (B). No morphological alterations were detected in spleens of mice 
infected with  mutant L. monocytogenes EGD-e∆hly expressing LLO∆PEST (C) or those infected with 
the isogenic mutant L. monocytogenes EGD-e∆hly (D). 
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EGD-e∆hly: :LLOwt displayed a splenomegaly without granuloma. Infection with both EGD-

e∆hly and EGD-e∆hly: :LLO∆PEST did not result in morphological changes on day 3 post 

infection.   

 

3.6.6.   PEST-like   sequence truncated Listeriolysin O fails to induce IFN-γ  either in    
            serum or by splenocytes during primary infection 
 

It was previously reported that IFN-γ produced at the first stage of infection with L. 

monocytogenes is critical for the generation of host resistance (Xiong et al., 1994). The 

induction of IFN-γ was, therefore, measured after infection with wild type and its isogenic 

derivatives. Mice  were i.v. injected with (103)  cfu of  L. monocytogenes  or (106) cfu   of   its  

 

 

Fig. 3.39. A) IFN-γ concentration in the serum of mice infected with Listeria strains. Mice were 
infected with 103 CFU of L. monocytogenes EGD-e or 106 CFU of the various Listeria mutants. On 
day 2, animals were killed and blood was obtained by heart puncture. Serum concentration of IFN-γ 
was determined by ELISA. B) Listeria-induced IFN-γ production by spleen cells 9 days after 
infection. Mice were infected with 103 CFU of L. monocytogenes EGD-e or with 106 CFU of various 
Listeria mutants. On day 9 after infection, mice were killed and spleens removed. Single cell 
suspensions were stimulated in vitro with secreted soluble Listeria antigens to produce IFN-γ. After 48 
hours, culture supernatants were tested for presence of IFN-γ by ELISA. 
 

 

isogenic derivatives, and  IFN-γ concentration was measured in serum samples on day 2 post- 

infection. As shown in Fig. 3.39.A, infection with the wild type and EGD-e∆hly: :LLOwt 

resulted in  high serum levels of IFN-γ while a significantly low amount of IFN-γ was 

detected in sera of mice infected with either EGD-e∆hly or the ∆PEST strain. In addition, the 

IFN-γ level in vitro in culture supernatants of spleen cells isolated from the same groups mice 

on day 9 post-infection was measured. Only the wild type strain and the mutant EGD-e∆hly 
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complemented with LLOwt induced detectable levels of IFN-γ whereas EGD-e∆hly and 

∆PEST strains failed to induce production of IFN-γ (Fig. 3.39.B). 

 

3.6.7.  Expression  of  acquired  immunity  by  the  wild  type  L. monocytogenes  and its    
            isogenic derivatives 
 

It was established that sub-lethal primary infection with the wild type L. monocytogenes was 

controlled by mice and resulted in the induction of protective immunity to further infections 

(Darji et al., 2003). Such an acquired protective immunity is absolutely mediated by  

cytotoxic CD8+ T lymphocytes. It was therefore noteworthy to investigate whether the 

induction  of protective  immunity is  affected  with  absence of  the PEST-like sequence from  

Fig. 3.40.  Primary infection with ∆PEST mutant Listeria strain fails to induce a protective immunity 
against a lethal wild type L. monocytogenes infection. (A) Mice were infected i.v. with either 103 wild 
type L. monocytogenes EGD-e or 106 isogenic L. monocytogenes mutant strains EGD-e∆hly 
expressing either LLOwt or LLO∆PEST, and mutant L. monocytogenes EGD-e∆hly strain. Two 
months later all mice were challenged with a lethal dose (10X LD50) of the wild type L. 
monocytogenes. As a control, a group of uninfected normal mice was included. Survival of mice after 
the challenge was monitored up to 8 days. Data were pooled from two independent experiments with a 
total of 15 mice per group. (B) Bacterial titer in spleens and livers of 3 mice per group of mice  
challenged in Fig. A were monitored at day 2 after challenge. 
 

 

Listeriolysin O. Groups of BALB/C mice were infected i.v. with the wild type strain(103) or 

its isogenic derivatives (106). 2 months later, all mice were challenged with a lethal i.v. dose 

(5x104), corresponding to 10X LD50 of the wild type L. monocytogenes, and survival was 

monitored. As a control, a group of non-immunized normal BALB/C mice that have received 

a similar lethal dose of the wild type L. monocytogenes were included. As shown in Fig. 

3.40.A, all the non-immunized mice died in 3 days as well as those pre-immunized with 
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mutant strains EGD-e∆hly and EGD-e∆hly: :LLO∆PEST were dead in 4 days after the 

challenge infection with L. monocytogenes whereas those pre-immunized with either  the wild 

type or EGD-e∆hly complemented with LLOwt were protected against a lethal Listeria 

infection and survived. In addition, the bacterial titer was determined in spleens and livers at 

day 2 post-challenge in each mice group. Mice primed with mutant strains EGD-e∆hly and 

EGD-e∆hly: :LLO∆PEST as well as naïve unprimed mice were not able to control challenge 

infection as indicated by the high bacterial load in spleens and livers. In contrast, mice primed  

with either the wild type or the mutant strain EGD-e∆hly complemented with LLOwt 

managed to restrict listerial growth in the first 2 days after challenge infection (Fig. 3.40.B). 

Hence, absence PEST-like sequence abrogates the induction of a protective Listeria-specific 

T cell response.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3.41. Number of antigen-specific IFN-γ producing CD8+ T cells in the spleen of mice infected 
i.v. with the wild type L.monocytogenes and its mutant strains, determined by ELISPOT assay. Spleen 
cells from infected mice were isolated either at day 9 after the primary infection or day 5 after recall 
challenge infection and stimulated with immunodominant MHC class I peptide  LLO91-99 in triplicates 
in nitrocellulose based 96-well culture plates. Number of specific IFN-γ producing cells were 
determined by counting the number of spots under microscope. 
 

 

To obtain information on the nature of the inability of mutant strain lacking PEST-like 

sequence  to  confer a protective immunity  upon re-infection, the amount of antigen specific 
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MHC class I restricted effector CD8+ T cells induced in mice spleens 9 days after the primary 

infection and 5 days after the challenge with a sublethal dose (2x103) of L. monocytogenes 

was quantitatively determined through evaluating the number of IFN-γ producing CD8+ T 

cells induced against the dominant H-2Kd restricted LLO91-99 epitope (Wipke et al., 1993) in 

an in vitro ELISPOT assay. As shown in Fig. 3.41., infection with the wild type Listeria 

monocytogenes as well as the mutant complemented with LLOwt managed to induce a highly 

detectable population of LLO91-99 specific CD8+ T-cells. This number raised significantly 

during the recall infection. On the other hand, Infection with both mutant strains EGD-e∆hly 

and EGD-e∆hly: :LLO∆PEST failed to induce a significant level of CD8+ T-cells population 

either primarily or after challenge. So, the lack of PEST-like sequence seems to influence the  

antigen presentation efficiency through the MHC class I pathway due to the inability of 

PEST-like sequence lacking strain to gain access to the cytosole of the infected cell and to 

undergo further processing and antigen presentation.  

It was recently established that  the pathogen specific T lymphocytes are programmed during 

the  first  day of  infection  and  subsequently undergo  proliferation  and  differentiation  into  

effector  T cells without further calibration by the progressing inflammatory response but the 

magnitude of the LLO91-99-specific response correlates with the duration of in vivo bacterial 

growth during the first 24 hours after infection (Mercado et al., 2000). 

To correlate the in vivo growth kinetics of bacteria in spleens of infected mice with the 

magnitude  of memory  T cell response, the expression of CD62L (L-selectin) on CD8+ T 

cells, as an effector memory T cell marker, 2 months after the primary infection and 5 days 

after the recall infection has been quantified. CD62L is expressed at high levels on the surface 

of naïve T lymphocytes, but its expression is rapidly downregulated upon T cell activation 

(Bush and Pamer, 1999). 2 months after the primary infection, all groups of mice showed 

approximately 19-22 % of CD8+CD62Llo expressing T cell population which is relatively 

similar to that expressed in naïve uninfected mice (Mercado et al., 2000). During the recall 

infection however the CD8+CD62lo T cell population showed more than three folds increment  

in  mice  pre-immunized  either  with  the  wild  type  or  with    EGD-e∆hly: :LLOwt whereas 

pre-immunization with EGD-e∆hly or EGD-e∆hly: :LLO∆PEST fails to induce CD62L 

downregulation on the surface of T-lymphocytes (Fig. 3.42.) as indicated by the slight 

increase in the percent of  CD8+CD62lo  T cells during recall infection suggesting that the 

restricted in vivo growth and intracellular replication of EGD-e∆hly: :LLO∆PEST as well as  

EGD-e∆hly inhibits the capability of naïve T cells to come into contact with APCs in order to 

elicit a full T cell response.  
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Fig. 3.42. Quantification of CD62L expression on CD8+ splenocytes following primary and recall 
infection with L. monocytogenes and its mutant strains. Flow cytometry was performed with spleen 
cells, isolated from mice two months  after the primary infection or day 5 after the challenge. Cells 
were stained with FITC-labeled anti-Lyt-2 and biotinylated anti-CD62L, and the binding of anti-
CD62L on the cell surface was detected with PE-conjugated streptavidin. Numbers shown are gated 
CD8+ CD62lo T cells analysed with CELLQuest software.    
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4.  Discussion 
 
4.1. Antibody responses are important in defense during  infection with intracellular    
       bacteria 
 
The view that antibody-mediated immunity against many prokaryotic and eukaryotic 

intracellular pathogens is not important was popular until recently. The concept of a division 

whereby antibody-mediated immunity protected against extracellular pathogens and cell-

mediated immunity protected against intracellular pathogens may have had its intellectual 

origins in the great debate between the advocates of humoral and cellular immunity at the turn 

of the 20th century. The humoralists viewed immunity as being conferred by soluble 

substances in the blood and the generation of an effective antibody response, with phagocytic 

cells functioning primarily to clean up microbial debris while the cellularists viewed 

immunity as being conferred by macrophages and other phagocytic cells, with the role of 

humoral factors being to provide opsonins (Silverstein, 1979; Casadevall,  1998). This debate 

was fuelled by the success and difficulties associated with demonstrating antibody-mediated 

protection against certain pathogens in passive immunization studies. Administration of 

immune serum protected against toxin-mediated diseases such as tetanus and diphtheria and a 

certain subset of extracellular bacterial pathogens like Streptococcus pneumoniae, Neisseria 

meningitidis, and Haemophilus influenzae (Casadevall and Scharff, 1994). A recent study 

showed that monoclonal antibody raised against PLY protected mice against pneumococcal 

pneumonia (Garcia-Suarez et al., 2004). However, passive immunization provided little or no 

protection against intracellular microbes such as Mycobacterium tuberculosis (Glatman-

Freedman and Casadevall, 1998) and Listeria monocytogenes (Osebold and Sawyer, 1957; 

Mackaness, 1962; Miki and Mackaness, 1964).  

The fact that a microbe inside a cell is separated from serum antibody has contributed to the 

belief that serum antibody cannot be effective against an intracellular pathogen. However, a 

recent  surprising finding concluded that a neutralizing mAb to LLO provided resistance to 

Listeria infection (Edelson et al., 1999). Antibody-mediated protection was evident very early 

(within 6 hr) after infection and occurred in SCID mice, indicating that the effects of antibody 

were independent of the adaptive immune response. The authors reasoned that anti-LLO 

antibody-mediated protection was occurring through intracellular neutralization of LLO 

within phagocytic cells  which would block Listeria escape to the host cell cytosol and 

thereby block the rapid bacterial replication which takes place at this site (Edelson and 

Unanue, 2001). 
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Indeed, both LLO (Low et al., 1992)  and PLY (Cima-Cabal et al., 1999) were found as major 

targets of serum antibodies in  listeriosis or  pneumococcal pneumonia patients. In addition, 

due to their  potential role in bacterial virulence as well as in immunoregulation against their 

corresponding pathogens, it was noteworthy to purify these toxins to facilitate understanding 

their role in bacterial pathogenicity and immune responses elicited against them. 

In this study an improved production and a conventional column method for the bulk 

purification of pure cytolysins was reported. Listeriolysin O as well as pneumolysin were 

currently isolated from the supernatant of pathogenic L. monocytogenes and S. pneumonia 

strains respectively. There are 2 basic problems associated with this; large quantities of the 

pathogen have to be cultivated, restricting large scale purification of the toxin to designated 

facilities (Walton et al., 1999). Previous attempts to purify pneumolysin depended on its 

passive release in culture supernatants as a result of autolysis phenomena, since pneumolysin 

is an intracytoplasmic protein lacking a leader peptide to be exported to the extracellular 

medium, giving rise to a poor yield (Kanclerski and Mollby, 1987). Furthermore, the 

pathogenic L. monocytogenes and S. pneumonia strains secret a large number of additional 

proteins into its supernatant fluids including proteases (Courtney, 1991, Domann et al., 1993). 

To circumvents these problems, either listeriolysin O or pneumolysin gene was expressed in a 

non-pathogenic strain, Listeria innocua, a species found to lack all known virulence factors 

present in pathogenic L. monocytogenes (Leimeister-Wächter and Chakraborty, 1989). By 

including the positive regulator of listeriolysin production, the prfA gene, on the same 

plasmid it was possible to express large quantities of listeriolysin O in the culture supernatants 

of recombinant Listeria innocua strains. This 27 kDa cytoplasmic protein is a positively 

acting transcriptional activator required for all known listerial virulence genes (Leimeister-

Wächter et al., 1990). In addition, by introducing both promoter and signal peptide of 

listeriolysin O gene under the regulatory control of prfA, expression of pneumolysin as well 

as its active export to the extracellular medium was facilitated. 

  In all previous reports concerning of LLO purification, Listeria was grown in an enriched 

Brain Heart Infusion (BHI) medium for production of LLO. In addition to containing a high 

amounts of proteins that may interfere with efficiency of purification process, expression of 

virulence genes of L. monocytogenes, including LLO, are not induced in BHI but highly up 

regulated upon shift of L. monocytogenes from enriched medium to minimal medium 

(Sokolovic et al., 1993; Bohne et al., 1994; Klarsfeld et al., 1994) which has also the 

advantage of containing the minimum amount of amino acids required for bacterial growth, 
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thus enhancing both quantity and quality of purified LLO. Indeed, hemolytic activity of both 

toxins showed a 2-fold increment upon shift from BHI to minimal medium (Table 3.1).  

Listeriolysin O has been previously purified by thiol-disulphide exchange chromatography on 

thiopropyl/sepharose-6B, by immunoaffinity chromatography or by conventional methods 

using several column chromatographic steps (Geoffroy et al., 1987, Low et al., 1992, Matar et 

al., 1992, Schoel et al., 1994). The method described here used batch absorption of 

concentrated bacterial supernatants to Q-sepharose, followed by column chromatography of 

the non-absorbed fraction on a Resource-S column. The use of a buffer with an acidic pH was 

instrumental in improving the yields of pure listeriolysin. Using this procedure, approximately 

5.4 mg of purified protein per liter of original culture supernatant was obtained (Table 3.2). 

This is a substantial improvement to the methods with the highest  yields reported previously 

(Nato et al., 1991 , Schoel et al., 1994, Darji et al., 1995). 

On the other hand, earlier purification methods for pneumolysin have used preparative 

electrophoresis as a last step (Shumwory and Klebanoff, 1971; Johnson, 1972 ; Paton et al., 

1983) resulted in a poor yield. Other methods such as gel filtration and sucrose density 

gradient centrifugation have resulted in findings of different molecular weights (Kreger and 

Bernheimer, 1969). The method developed by  Kanclerski and Mollby resulted in a  highly 

purified pneumolysin but several column chromatographic steps were required (Kanclerski  

and Mollby, 1987). In the present study, pneumolysin underwent a simple one purification 

step resembles that used for LLO but due to the difference in pH activity and isoelectric 

points (LLO=6.7; PLY=5.2), pneumolysin was subjected to anion exchange chromatography 

on Resource-Q column. This procedure gave a pure protein yield of 2.0 mg per liter of 

original culture supernatant with a specific activity of 1.6x106 Hu/mg (Table 3.3). 

The relative ease with which listeriolysin O and pneumolysin can be purified from 

recombinant L. innocua strains will simplify the isolation and characterization of novel 

mutants of both toxins that are defective for hemolysis or for binding to its putative receptor 

on the eukaryotic cells. In addition, it will facilitate studies in pathogenicity of their parent 

strains as well as serological diagnosis of both listeriosis and pneumococcal infections.  

 

To date, studies on specific antilisterial antibodies following infection with L. monocytogenes 

have revealed cross-reactivity to only a few proteins, including listeriolysin, IrpA, InlB, actA, 

and P60 as targets of the humoral immune response (Gentschev et al., 1992; Low et al., 1992; 

Gholizadeh et al., 1996; Grenningloh et al., 1997). A pivotal study by Edelson and Unanue 

showed that prior treatment of mice with neutralizing monoclonal antibody to listeriolysin 
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prevents subsequent infection with this bacterium suggesting that listerial antigens targeted by 

the humoral response are required for successful host infection and thus warrant investigation 

(Edelson et al., 1999). Here it was shown that specific antibodies are directed against Frm, a 

newly discovered ferritin-like protein in L. monocytogenes, during infection by this 

bacterium. Physiological studies suggest that ferritin is required for making environmental 

iron available to these bacteria and in mediating protection against hydrogen peroxide and the 

reactive oxygen intermediates derived thereof. The properties exhibited by an isogenic ∆frm 

strain provide evidence that the listerial ferritin is involved in efficacious bacterial growth at 

early times in the infectious process.  

The identity of a 110 kDa species seen by the immune antisera from L. monocytogenes 

infected mice as the frm gene product was revealed in several ways. First, antisera from L. 

monocytogenes-immunized mice recognised the 110 kDa polypeptide species derived from 

the L. monocytogenes (Fig. 3.4.A). This cross-reactivity was not observed with antisera from 

mice infected with a non-pathogenic L. innocua strain indicating that antibodies are directed 

to this protein during infection. Second, antisera from L. monocytogenes-infected mice 

showed cross-reactivity to the 110 kDa polypeptide species in soluble antigen extracts derived 

from the wild type, but not from the ∆frm mutant strain (Fig.3.5.C). Third, specific rabbit 

antisera raised against L. innocua ferritin also cross-reacted with the L. monocytogenes 

counterpart but was absent in a mutant lacking  frm (Fig.3.5.B).  

Immunoblotting experiments revealed distinct differences in the multimeric molecular species 

detected in L. innocua and L. monocytogenes (Fig.3.4.B). One explanation for these 

differences could possibly be the two amino acid substitutions in L. monocytogenes Frm 

relative to the L. innocua Fri protein, namely Lys114→Gln and Asp126→Asn both of which 

are located at the entrance of the three-fold channels pores and are hydrogen-bonded to each 

other. Similarly, changes in the subunit arrangement and spatial structures could account for 

differences in multimeric species of Frm observed in the L. innocua and L. monocytogenes. In 

a study on proteins induced by cold shock in L. monocytogenes, a ferritin-like protein (Flp) 

has been described and purified to homogeneity (Hebraud and Guzzo, 2000). Flp is identical 

in its N-terminal sequence and molecular weight to Frm described in this study. Based on its 

elution properties, these authors suggested a native molecular mass for Flp of about 110 kDa, 

composed of six identical 18 kDa subunits (Hebraud and Guzzo, 2000).  

Inoculation of mice with a sub-lethal dose of the virulent L. monocytogenes EGD-e strain 

invariably led to the production of Frm-specific antisera in the infected mice. Although the 

non-pathogenic L. innocua strain also produces a related ferritin no antibody is directed to this 
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protein during infection with this strain (Fig.3.4.A), suggesting that some level of 

extracellular bacterial growth early in systemic infection is required for adequate amounts of 

Frm to be recognized by cells regulating the humoral response. Indeed the rapid elimination 

of non-pathogenic bacteria from the host could explain the absence of Frm-specific antisera in 

the infected host. 

Listerial ferritin levels were strongly dependent on growth phase (Fig.3.4.D). A complex 

pattern of Frm expression was observed in cultures growing at 5, 20 and 37°C.  Thus, in 

bacteria grown at 20°C Frm could not be detected, but was readily detectable in cultures 

grown at either 5° or 37°C (Fig.3.4.C) suggesting that Frm is subjected to multiple forms of 

regulation. This phenomenon was also described in the study of Hebraud and Guzzo who 

found that transcription of the ferritin gene was barely detectable at 30°C but was induced in 

cells that were either heat- or cold- shocked at 49° and 5°C respectively (Hebraud and Guzzo, 

2000). Similarly, in a study on adaptive changes to high and low temperatures in Listeria, 

Phan-Thanh and Gormon described a 17.6kDa polypeptide that was induced under conditions 

of both cold and heat shock (Phan-Thanh and Gormon, 1995).  

In previous studies, transcription of the L. innocua fri gene was shown to be dependent on 

iron in growth medium (Polidoro et al., 2002). In brain heart infusion cultures depleted for 

iron by chelation, induction of RNA corresponding to the fri gene was detected. In contrast, 

fri was poorly transcribed in cultures growing in brain heart infusion showing that the 

availability of iron regulates Fri expression. Promoter mapping studies indicate the presence 

of two sites at which transcription is initiated, one of which is probably a sigB-dependent 

transcript (Polidoro et al., 2002). In that study, similar results were detected using the L. 

innocua fri gene as a probe to monitor expression of the corresponding gene in L. 

monocytogenes. Since sigB-dependent genes are expressed as bacteria enter a nutrient 

limiting stage it is indeed likely that both Fri and Frm expression is also dependent on this 

alternative sigma factor (Ferreira et al., 2003; Fraser et al., 2003; Moorhead and Dykes, 

2003).  

Unlike the parental wild type strain, a ∆frm strain is capable of very limited growth in 

minimal media containing 260µM ferric citrate. Reconstruction experiments revealed that the 

arrested growth of ∆frm strain in minimal medium can only be restored upon addition of 

further ferric citrate (260µM) to the cultures (Fig.3.9). Addition of other divalent citrate salts 

like, Cu2+,Mg2+,or Mn2+ (260µM) to growth-arrested cultures of the ∆frm strain in minimal 

medium failed to promote further growth. These data strongly emphasize reduced 

bioavailability of iron in the ∆frm mutant strain grown in minimal medium and exclude the 
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possibility of induction of a citrate-inducible iron acquisition system as previously described 

(Adams et al., 1990).  

Evidence that Frm is required for early survival in the infected host was suggested by the 

observation that although the ∆frm mutant strain was as proficient as the wild type strain for 

invasion and cell to cell spread as indicated by the plaque assay (Fig.3.6), it exhibited an early 

defect in intracellular growth in both the HeLa and J774 macrophage cell lines (Fig.3.7). 

Complementation of the ∆frm strain restored the intracellular proliferative ability of these 

bacteria to wild type strain levels (Fig.3.7.A). This deficiency in growth at early times was 

also manifested in the mouse model of infection (Fig.3.10) indicating that expression of the 

listerial ferritin is required for efficient systemic growth and spread. 

It has been suggested that the reaction of ferrous ions with metabolically generated reactive 

oxygen intermediates leads to killing of the bacterial cell (Harrison and Arosio, 1996). Based 

on the most recent in vitro (Zhao et al., 2002) and in vivo evidence (Ishikawa et al., 2003; 

Ueshima et al., 2003) that the ferritin-like activity of Dps proteins leads to protection against 

the toxic combination of Fe(II) and hydrogen peroxide, it was reasoned that the early defect 

observed following cellular infection was related to the inability of the ∆frm mutant to remove 

excess ferrous ions thereby inducing cell damage, in particular during transit through the host 

cell vacuole. Indeed, hydrogen peroxide is a constituent of the host vacuole and, among the 

various bacterial stresses examined; it was the only deleterious one for growth of the ∆frm 

mutant bacteria during bacterial growth (Fig.3.8). Reintroduction of a single copy of the frm 

gene to mutant ∆frm bacteria restored the growth ability to wild type levels in the presence of 

this agent. 

In conclusion, the present data indicate that listerial ferritin appears to be a general survival 

factor required for overcoming changes in cellular redox state in the diverse habitats that 

Listeria spp. occupy. Thus, regulated expression of the frm gene is probably of great 

consequence for the lifestyle of this bacterium. A large number of iron and other metal 

transporters are present in the genome of L. monocytogenes to ensure uptake of iron from both 

the extracellular and intracytoplasmic environment of the infected host (Glaser et al., 2001). 

Clearly other mechanisms for iron homeostasis must exist in the absence of the listerial 

ferritin because mutant bacteria lacking frm are still capable of intracytoplasmic growth. 

Further analysis of the role of iron in listerial growth and physiology would provide valuable 

information on the ability of L. monocytogenes to adapt to different ecological niches. 
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4.2. Tailored bacterial vehicles as vaccine strains 

 

In this study, it was shown that selective manipulation of virulence genes in L. monocytogenes 

can generate mutant bacteria that retain the marked protective immunogenic potential of the 

wild type strain but are attenuated in virulence as well as their capacity to induce CD4+-

mediated inflammation. Two approaches were conducted to generate these mutants; the first 

was the deletion of certain virulence genes from the wild type L. monocytogenes. The second 

was the complementation of the non-pathogenic L. innocua strain with the virulence gene 

cluster isolated from the wild type L. monocytogenes.   

Here, the induction of a protective cell-mediated immunity elicited by attenuated isogenic 

Listeria mutant strains was reported. Two highly attenuated isogenic L. monocytogenes 

mutant strains, L.monocytogenes EGD-e∆actA and ∆actA∆plcB that have retained the desired 

immunological characters of a wild type L. monocytogenes strain were characterized. The 

mutant EGD-e∆actA2 strain is identical to the wild type L. monocytogenes strain, except for 

lacking the entire actA gene, crucial for actin polymerisation, and thus it devoids of the 

Listeria’s intracellular actin-based motility (Chakraborty et al., 1995). The EGD-

e∆actA∆plcB lacks both the actA gene and the gene encoding the phosphatidyl choline-

specific phospholipase (plcB), located in the lecithinase operon. The plcB protein modulates 

host signalling pathway and its absence impairs the mechanisms by which Listeria escapes 

from being translocated in the host vacuoles (Bannam and Goldfine, 1999; Wadsworth and 

Goldfine, 1999). Although both mutant strains lack genes responsible for intracellular motility 

and cell to cell spread, they persist long enough in the host to induce a potent CD8+ T cell-

mediated immunity, accompanied by a reduced capacity to induce helper T cell-mediated 

inflammatory response. 

As revealed by the in vivo growth kinetics, both mutants were slowly and continuously 

eliminated from the host, although could still be detected at a lower number in the spleen and 

liver up to day 8 after infection. This is in contrast to the non-pathogenic Listeria innocua 

strain (Fig.3.18) or a L. monocytogenes strain lacking the hly gene, encoding the toxin 

listeriolysin (Fig.3.29), where bacteria are completely eliminated 3 days after infection. The 

latter strains were unable to provide a protective immunity to re-infection (Fig.3.21 and 

3.30.A), in accordance with the findings that the persistence and the number of viable 

microorganisms are important factors for efficient T cell-mediated immunity (North et al., 

1981). Here, the data also show that even a few hundred bacteria, as in the case of 
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∆actA∆plcB mutant, persisting in spleens or livers of infected mice are sufficient for the 

generation of sterile immunity (Fig. 3.11).  

Even at higher doses (107) of infection with the mutant strains, no obvious morphological 

alterations in spleens and livers were detected. Thus, pathologically these mutants behave 

similarly to the non-pathogenic L. innocua strain that is efficiently cleared by the host 

(Fig.3.19), without inducing any detectable morphological changes. On the other hand, strong 

monocytic infiltrations were observed in spleens of mice infected with the wild type EGD-e. 

The morphological difference observed between spleens of mice infected with the wild type 

EGD-e and its isogenic mutant strains were not due to the absence of bacteria, as comparable 

numbers of mutant EGD-e strains were present on day 3. The intensity of detectable changes 

in the spleen morphology (Fig.3.12) was associated with the level of the induced DTH 

response, a reaction mainly associated with helper CD4+ T cell activation, as indicated with 

the skin reactions (Fig.3.13.B) and the production of IFN-γ after in vitro stimulation of spleen 

cells (Fig.3.13.A). Significant reduction in DTH response and in production of IFN-γ was 

observed in mice infected with the mutant EGD-e strains in comparison to the wild type 

EGD-e strain. 

Dynamics and early programming of T cells, responding to antigen, during L. monocytogenes 

infection has recently been reported (Busch and Pamer, 1999). It has been shown that during 

the primary phase of infection, the cytotoxic T cells specific for listerial antigens express low 

levels of CD62L. This expression of CD62L on the cytotoxic T cells (CD8+) is up-regulated 

during the memory phase. The expansion of antigen-specific T cells and generation of the T 

cell memory were reported to be independent of the duration and severity of in vivo bacterial 

infection (Mercado et al., 2000). The in vivo growth kinetics of isogenic mutants (EGD-

e∆actA2 and ∆actA∆plcB) and the induction of memory cytotoxic cells (CD8+CD62lo) 

presented here are in agreement with this report (Fig. 3.16). Both isogenic mutant strains have 

functional listeriolysin genes that enable the bacteria to escape from the phagosome to the 

cytosole. The data of this study therefore further suggest that transient infection with isogenic 

mutant strains is sufficient for the induction and expansion of protective CD8+ T cells (Fig. 

3.15). 

Significant levels of antiserum to the haemolytic toxin, listeriolysin, were observed in mice 

infected with the wild type EGD-e and both mutant strains (Fig.3.17). There were no 

significant differences between these strains even though there were differences in the 

numbers of viable bacteria at the later time points during infection. Thus generation of anti-

listeriolysin antibodies may be an early event during infection where larger number of 
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bacteria is present during hematogenous spread. Neutralizing antibodies to listeriolysin can 

also confer immunity (Edelson et al., 1999). 

In an attempt to increase immunogenicity, a number of approaches, taking advantage of the 

properties of a particular cytokine (for example, IL-12, IFN-γ) have recently been employed. 

Many of these approaches were unable to produce satisfactory results simply because they led 

to a strongly dominant CD4+ T cell response (Miller et al., 1995), or developed into a Th2 

recall as well as Th1 response (Wolf et al., 1995). Others considered approaches to in vivo 

modulation of Th1 response by using neutralising antibodies against cytokines (IFN-γ) 

resulting, beside exacerbated infection, in a dramatic increase of IL-4 and a switch from Th1 

to Th2 cells (Nakane et al., 1996). Genetically defined mutants, on the other hand, display 

differential capacities to induce IFN-γ levels and activation of CD4+ T cells and, in this study, 

led to a reduction in both granuloma formation and DTH. At the same time, these bacteria 

were able to produce sufficient immunomodulators that retain their ability to induce a potent, 

protective cell-mediated T cell response. Indeed, these two strains have advantages over 

strains lacking metabolic genes like L. monocytogenes auxotrophic mutant bearing deletions 

in alanin racemase (daI) and D-amino acid aminotransferase (dat), two genes required for the 

biosynthesis of bacterial cell walls (Thompson et al., 1998). This strain showed, in absence of 

D-alanine,  a defective growth in mice and a failure to induce a protective immunity against 

challenge infection. Another example is L. monocytogenes ∆pheA, a gene encoding the 

prephenate dehydratase (pheA), an enzyme acting late in the pathways for biosynthesis of 

phenylalanine. This strain was not efficiently attenuated and had elicited the same level of 

CD4+ inflammatory responses as the wild type (Alexander et al., 1993). In addition, 

Salmonella typhimurium ∆aroA, although attenuated, induced mainly CD4+ T cell responses 

(Hess et al., 1996). 

Isogenic mutants of wild type L. monocytogenes that are highly attenuated for virulence were 

identified. They showed a strong reduction in the undesirable localized inflammatory 

capacities, but are nevertheless capable of providing effective protective responses. The 

highly reduced virulence of the ∆actA∆plcB mutant, in particular, indicates that a very low 

number of persisting bacteria is required for immunity. Based on these studies, it will be 

interesting to determine, through the introduction of further mutants, whether there is a 

minimum number of persisting live replicating bacteria needed for mediating immunity. As 

shown above, the ∆actA∆plcB mutant is able to induce sufficient IFN-γ to prevent a Th1 to 

Th2 switch and retains its ability to induce a strong CD8+-mediated T cell response. Recently 

initial clinical studies in healthy human volunteers with similar mutants have been carried out 
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indicating no serious long-term health consequence (Angelakopoulos et al., 2002). These 

virulence-attenuated isogenic mutant strains can not only be used as live vaccines against the 

corresponding virulent pathogen, but also as carriers for introducing heterologous protective 

antigens of other pathogenic microorganisms into animals and humans.        

 

The gene products of the PrfA-dependent gene cluster, which are crucial for the release from 

the host cell phagosome, intracellular replication, intracellular movement, and the cell-to-cell 

spread of pathogenic Listeria monocytogenes strain (Portnoy et al., 1992), are lacking in the 

non-pathogenic L. innocua strain. The present study investigated that expression of the prfA-

dependent virulence gene cluster of the wild type Listeria monocytogenes strain in the non-

pathogenic L. innocua strain can generate a recombinant attenuated strain that can efficiently 

induce a protective immunogenic responses  with a capacity to downmodulate CD4+ T cell-

mediated inflammation. The recombinant L.innocua strain transformed with a gram-

positive/gram-negative schuttle BAC-based vector (pUvBBAC) harbouring the chromosomal 

region of Listeria monocytogenes that encodes the gene cluster prfA-plcA-hly-mpl-actA-plcB 

was assessed. 

Investigation parameters were selected to correspond to critical steps of the host response 

during the pre-immune phase, the primary immune effector phase, and the memory immune 

effector phase of the infection (Mielke et al., 1997). Day 3 of a Listeria infection marks the 

end of the pre-immune phase. It is the last day before the expansion of specific T cells in this 

model (Kaufmann, 1986; Ehlers et al., 1992). The presence of viable bacteria on this day has 

been shown to be critical for the successful induction of T cell-mediated immunity (North et 

al., 1981). On day 3, therefore, bacterial load as well as spleen morphology was investigated. 

Day 9 corresponds to the primary immune effector phase, that is, acquired resistance. On this 

day, DTH to soluble antigen was measured in vivo as well as T cell-derived IFN-γ production 

by spleen cells, known to be an in vitro correlate of DTH reaction and a measure of CD4+ T 

cell activity (Mielke et al., 1998). Moreover, the induction of antigen specific IFN-γ 

producing CD8+ cytotoxic T cells was estimated on this day. Day 60 as well as day 5 post-

challenge were chosen to refer to the memory immune effector  phase (Busch and Pamer, 

1999)  when the number of memory effector T- cells were quantitated. 

Bacterial growth kinetics in vivo indicate not only the virulence of a bacterium but are also 

associated with the induction of T cell-mediated host responses (Kaufmann, 1984). 

Experiments that temporally abrogated Listeria infection with antibiotics (North et al., 1981) 

have revealed that the persistence and number of viable microorganisms are important 
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parameters for efficient induction of T cell-mediated immunity. The recombinant L. innocua: 

:vgc strain showed a significant survival pattern in the first 3 days after infection in both 

spleens and livers (Fig.3.18.). It was present in a substantial number for at least 3 days which 

was comparable to that of the wild type L. monocytogenes. The wild type L. innocua, lacking 

the vgc, was rapidly eliminated from day 1 onwards even when high inocula were used for 

infection. Most noteworthy, although the recombinant L. innocua::vgc strain was injected in 

mice in a dose of 107 cfu, mice can efficiently control the infection. Morphological 

appearance of infected spleens have shown that the wild type L. monocytogenes induces 

granuloma as a result of monocytic infiltrations of the white pulb which is most intensive on 

day 3 post infection while only splenomegaly without any detectable granulomas was the case 

after  L. innocua: :vgc infection (Fig.3.19). The wild type Listeria innocua strain did not 

induce any detectable changes in spleen morphology. The intensity of the morphological 

alterations in spleens paralleled the level of Listeria-induced DTH responses. In accordance 

with data presented by Yang et al., IFN-γ turned out to be a most helpful in vivo and in vitro 

parameter predicting the strength of the proinflammatory CD4+ T cell-mediated immune 

response to the bacteria (Yang et al., 1997). A previous study showed that only vaccination 

with strains with the capacity to induce T cell-mediated immunity, i.e. the wild type L. 

monocytogenes strain resulted in appreciable levels of type I cytokines transcripts like IL-12 

and IFN-γ (Peters et al., 2003). In the present study, the wild-type L. monocytogenes strain 

could induce a significant level of IFN-γ in the supernatants of spleen cell cultures from 

immunized mice which was approximately 2 folds more than IFN-γ induced in response to L. 

inn: :vgc infection (Fig. 3.20.A). This finding was supported with the measurement of the in 

vivo induction of DTH after recombinant L. inn: :vgc strain infection which was also 

significantly lower than DTH induction after L. monocytogenes infection (Fig. 3.20.B). In 

both cases, the wild type L. innocua failed to induce any proinflammatoty CD4+ T cell-

mediated immune response. So, infection with the recombinant L. inn: :vgc strain seems to 

abrogate the induction of undesirable CD4+-mediated inflammatory responses. 

Recent advances in techniques to investigate the specific T cell response, in particular of the 

CD8+ subpopulation with peptide loaded tetrameric MHC, intracellular cytokine staining and 

the use of transgenic animals (Busch et al., 1999; Mercado et al., 2000; Huleatt et al., 2001; 

Lauvau et al., 2001; Badovinac et al., 2002; Yajima et al., 2002) have provided tremendous 

insight as to how the specific immune response is mounted. It is the elegant work by Pamer’s 

group that also revealed that priming of CD8+ T cells by heat-killed bacteria must be 

differentiated from differentiation into effector cells (Lauvau et al., 2001). Therefore, the 
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most reliable approach to assess the complex ability of T cells to protect animals against a 

lethal dose of microorganisms remains the demonstration of the in vivo function of T cells by 

the effect of T cell subset depletion (CD4+ and CD4+ plus CD8+) in previously immunized 

and subsequently challenged animals (Mielke et al., 1998). In contrast to animals immunized 

with the wild type L. innocua as well as unimmunized mice, all animals immunized with L. 

monocytogenes EGD-e or L. inn: :vgc were protected against 10X LD50 of virulent Listeria 

(Fig. 3.21), despite significant differences in their DTH responses. T cell subset depletion 

revealed that this protection was CD4+ T cell independent, but that it was severely impaired 

when both CD4+ and CD8+ T cells were depleted (Mielke et al., 1998). In accordance to this 

report, L. inn: :vgc strain was efficiently able to induce LLO91-99-specific CD8+ T cells 

producing IFN-γ after both primary and recall infection (Fig. 3.22). 

During an immune response, antigen-specific T cells proliferate enormously and develop into 

effector T cells capable of immediate effector functions, such as cytotoxicity and IFN-γ 

production (Butz and Bevan, 1998; Murali-Krishna et al., 1998). Following a successful 

immune response, activated effector T cells undergo large-scale apoptosis, presumably to 

maintain homeostasis in T cell numbers (Van Parijs and Abbas, 1998). However, the process 

leaves behind an enhanced pool of relatively quiescent antigen-experienced memory T cells 

that persist over long periods of time and mount a rapid and augmented response upon re-

challenge with antigen (Van Parijs and Abbas, 1998). The entry into memory stage, however, 

is accompanied by changes in gene expression profile of antigen-specific CD8+ T cells. This 

includes the ability to rapidly expand their population during recall responses and to 

downregulate expression of some cell surface markers such as CD62L (L-selectin) and CCR7 

which, therefore, have been widely used to define memory and naive phenotypes of T cells in 

humans and mice (Dutton et al., 1998; Kaech et al., 2002b; Gett et al., 2003; Wherry et al., 

2003). The expression of CD62L, an adhesion cell surface molecule, is used for identifying 

naive T cells, and the loss of CD62L expression correlates with T-cell priming. The presence 

of live bacteria over the first 48 hours after immunization was found to be critical for 

induction of effector CD8+ T cell mechanisms (Mercado et al., 2000). It was previously 

reported that primary infection with the wild type L. monocytogenes induces down regulation 

of CD62L on surface of effector CD8+ T cells which reaches its downregulation peak at day 8 

post infection (Kaech et al., 2002a; Wherry et al., 2003). However, over the next several 

weeks, expression of CD62L is up regulated. During recall infection, CD62L was massively 

and rapidly downregulated on the surface of memory CD8+ T cells (Mercado et al., 2000; 

Darji et al., 2003). Here, infection with the recombinant L. inn: :vgc strain managed to induce 
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a significant population of cytotoxic CD8+ T lymphocytes (Fig. 3.22) which, upon challenge 

with the wild type L. monocytogenes, showed a CD62L expression pattern similar to that 

shown upon infection with the wild type L. monocytogenes (Fig. 3.23) while primary 

infection with the wild type L. innocua failed to induce a significant down regulation of 

CD62L during recall infection. These data together with the successful in vivo survival pattern 

of the recombinant L. inn: :vgc strain support the previous findings. Moreover, a significant 

induction of humoral immunity against listeriolysin O was observed in mice primarily 

infected with L. inn: :vgc as well as the wild type L. monocytogenes but not with the wild type 

L. innocua (Fig.3.24) as indicated by the recognition of listeriolysin O by the immune mice 

antisera in immunoblotting assay proposing that the persistence of viable bacteria over the 

first three days after infection is critical for induction of humoral immunity. 

Most noteworthy, the inability of L. monocytogenes strain lacking only listeriolysin O 

(Tanabe et al., 1999) as well as L. innocua strain expressing only LLO (Peters et al., 2003) to 

induce a protective T cell response reflects the critical coordination role of virulence gene 

cluster elements in conferring a long lasting immunity. The delineation of its immunological 

properties shows that the recombinant L. inn: :vgc strain retains the favourable immunological 

properties of the wild type L. monocytogenes and fulfils appropriate criteria for a suitable live 

bacterial T cell vaccine vector.  

 

4.3. Listeriolysin O   is   not   absolutely   essential   for  induction  of  long  term  cellular    
       immunity against Listeria monocytogenes 
 

The role of the major virulence factor in L. monocytogenes, listeriolysin O, in mediating 

escape from host cell vacuole as well as in pathogenicity of L. monocytogenes was elucidated 

(Kathariou et al., 1987; Gaillard et al., 1986; Cossart et al., 1987; 1989; Portnoy et al., 1988; 

Tilney and Portnoy, 1989). Moreover, listeriolysin O production by infecting bacteria is 

essential for generating a protective T lymphocyte response against L. monocytogenes 

(Mengaud et al., 1988; Mielke et al., 1997). The results of the present study indicate that 

although the related hemolysin, pneumolysin, can not restore a full virulence to L. 

monocytogenes, it can functionally mediate lysis of the host cell vacuole and induce a 

protective immunity against a lethal dose of the wild type L. monocytogenes. Unlike other 

cytolysins, pneumolysin molecule is not surface exposed. It is a cytoplasmic enzyme that 

lacks a signal peptide and is, therefore, released due to the action of surface pneumococcal 

autolysin (Paton et al., 1983; 1986; 1993). So, the functional gene structure of pneumolysin 

was cloned downstream to the putative LLO signal peptide sequence in a plasmid-borne genes 
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under the control of LLO promoter and prfA regulator and expressed in EGD-e∆hly. In 

comparison to LLO, pneumloysin was efficiently secreted in culture medium (Fig.3.26) and 

showed a clear haemolytic phenotype comparable to that of the LLO expressing strain 

(Fig.3.27). 

In primary amino acid structure, thiol activated cytolysins  are defined by an almost invariant 

undecapeptide sequence ECTGLAWEWWR, which is important for cytolytic activity 

(Billington  et al., 2000) giving rise to a possibility that both LLO and PLY share some cross-

reacting epitopes. This structure homology can explain the cross-reactivity of both LLO and 

PLY proteins with either monoclonal antibodies produced against them (Fig.3.26). This cross 

reactivity was extended to include the immune sera from mice infected with either LLO or 

PLY-expressing strain which could recognize both purified LLO and PLY proteins (Fig.3.33). 

Definition of listeriolysin O as well as pneumolysin by sera of patients with listeriosis or 

pneumococcal diseases might be of great diagnostic value. 

L. monocytogenes has emerged as a model system for the molecular study of intracellular 

parasitism. It can enter into a wide variety of cells by phagocytosis. Subsequent to entry into a 

host cell, L. monocytogenes lyses its vacuole and escapes into the cytosol, where it can 

multiply and spread from cell to cell (Cossart and Lecuit, 1998). There is an overwhelming 

evidence that the primary L. monocytogenes determinant responsible for escape from a 

vacuole and thus entrance in the cytosol, two key events for virulence, is LLO, encoded by the 

hly gene. First, mutants lacking LLO fail to escape from a vacuole and are absolutely 

avirulent. Complementation with hly restores virulence (Cossart et al., 1989). Second, 

expression of LLO by Bacillus subtilis confers to these extracellular non-pathogenic bacteria 

the capacity to escape from a vacuole and grow in the cytosol (Bielecki et al., 1990). Third, 

purified LLO encapsulated into pH-sensitive liposomes can mediate dissolution of a vacuole 

(Lee et al., 1996).  

Several members of the pore-forming CBCs family such as perfringolysin O (PFO) of 

Clostridium perfringens have been characterized in detail (Rossjohn et al., 1997; Shatursky et 

al., 1999). The major known difference between LLO and other members of the family is that 

LLO has an optimum activity at acidic pH (Geoffroy et al., 1987). This raises the question of 

whether this unique trait has any physiological relevance in the infectious process. To start to 

address this question, PFO had been cloned and expressed in L. monocytogenes in place of 

LLO under the control of the endogenous hly promoter (Jones and Portnoy, 1994). PFO was 

able to mediate vacuolar escape at approximately 50% of the efficiency of LLO. However, 

after a small number of bacterial divisions in the cytosol, the host cell became permeabilized 
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and died. In accordance with these findings, results of this study showed that the PLY-

expressing strain is able to enter the host cell cytoplasm, grow, and spread from cell to cell to 

a limited extent over the first 4 hours post in vitro infection followed by inhibition of growth 

(Fig.3.28). These results indicate that LLO has evolved some specific properties to prevent 

cytotoxicity that are not shared by PLY, a protein from an extracellular pathogen that 

normally acts on cells from outside (Alouf and Geoffroy, 1991). It is unclear at this point 

what particular properties allow LLO but not PLY to mediate L. monocytogenes survival. 

Two striking different parameters between LLO and PLY were supposed to be responsible for 

L. monocytogenes survival pattern. The first parameter is their pH optima (Geoffroy et al., 

1987; Portnoy et al., 1988). LLO has a pH optimum in the acidic range, while PLY is equally 

active at both acidic and neutral pHs. Accordingly, one interpretation of these results is that 

released LLO is relatively inactive in the cytoplasm, while PLY is fully active. The low pH 

optimum of LLO may represent a protective mechanism to prevent host cell damage in the 

cytoplasm. Conceivably, L. monocytogenes has adopted a strategy used by eukaryotic cells to 

compartmentalize the potentially toxic activity of lysosomal acid hydrolases (Jones and 

Portnoy, 1994). The second parameter includes the protein instability in the cytosole. A recent 

study demonstrated that a PEST-like sequence is present at the NH2 terminus of LLO while 

absent in both PFO and PLY and is responsible for the rapid degradation of LLO in the host 

cell cytosole, thus decreasing the intracytoplasmic half life time of LLO (Decatur and 

Portnoy, 2000). PEST-like sequences are thought to target eukaryotic proteins for 

phosphorylation and degradation, and deletion or specific amino acid substitution of this 

sequence in LLO led to increased cytotoxicity and lower virulence in a mouse model. When 

the sequence was introduced in PFO and the chimeric toxin expressed in L. monocytogenes, 

bacteria were less toxic than those expressing wild-type PFO and were able to multiply 

intracellularly in J774 macrophages. Thus, introduction of a PEST motif in LLO is a strategy 

used by L. monocytogenes to restrict the activity of this powerful toxin to the host cell 

vacuole, thereby preserving the intracellular niche for bacterial multiplication. Based on these 

postulations, the limited survival of pneumolysin expressing strain in J774 macrophage-like 

cell line is supposed to be due to cytotoxicity of pneumolysin that induced permeability of cell 

membrane resulting in entry of extracellular gentamicin inside the macrophages and killing 

the bacteria. 

Determination of virulence in mice showed that, in contrast to the wild type, the isogenic 

mutant EGD-e∆hly strains expressing either LLO or PLY was avirulent. Mice can control a 

dose of 8x106 cfu suggesting that some levels of regulation were missing in plasmid based 
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strains. However, the strain expressing LLO followed the same in vivo survival pattern as the 

wild type strain in both spleens and livers (Fig.3.29) while in accordance to the in vitro 

survival, the pneumolysin expressing strain showed a slight increase in level of replication 

and survival in vivo over the first 3 days after infection followed by slow and continuous 

elimination from the host, although could still be detected at a lower number in the spleen and 

liver up to day 8 after infection. One speculation for slow in vivo replication of pneumolysin 

expressing strain is that cytotoxicity of pneumolysin causes the host cells to become 

permeable to the extracellular bactericidal factors in serum that enter the host cells and kill 

PLY-expressing strain. In contrast, the isogenic mutant EGD-e∆hly strain was rapidly cleared 

from both organs over the first 3 days after infection.   

Survival of mice primarily infected with pneumolysin-expressing strain upon recall infection 

with a lethal dose of the wild type L. monocytogenes supports previous reports showing that 

the persistence and the number of viable microorganisms over the first 48-72 hours after 

infection are important factors for efficient T cell-mediated immunity (North et al., 1981; 

Mercado et al., 2000) and that the presence of few hundreds of bacteria viable in spleens and 

livers of infected mice was sufficient for induction of protective immunity (Darji et al., 2003). 

Moreover, immunization of mice with a PFO-expressing strain led to a protective immunity 

(Bouwer et al., 1994) indicating that T cells with specificity for non-LLO-derived epitopes of 

L. monocytogenes are a component of a protective antilisterial immune response. Here, in 

agreement with these findings, the ability of pneumolysin-expressing strain to confer a 

protective immunity and to induce a significant number of CD8+ cytotoxic T cells specific to 

the subdominant Listeria epitope, P60217-225,  either primarily or after challenge (Fig.3.30 and 

3.31) confirm that they do indeed enter the cytoplasm facilitating procession and presentation 

of Listeria-derived peptides by H-2Kd MHC class I molecules for cytotoxic T cells that are 

expected to domain the protective immune response (Berche  et al., 1987; Portnoy, 1992; 

Pamer , 1993). Analysis of the specificity of antilisterial cytotoxic cells from Listeria immune 

BALB/c donors has shown a dominant response to an epitope corresponding to amino acids 

91 to 99 of LLO (Busch et al., 1998). Previously, demonstration of antilisterial T cells 

specific to non-LLO-derived epitopes has been difficult to achieve, because of the crucial 

requirement of LLO in facilitating escape of the bacteria to the cytoplasm of the host cell, 

which may be responsible for the apparent dominance of an anti-LLO response in antilisterial 

immunity (Beattie et al., 1990; Pamer et al., 1991; Safley et al., 1991; Harty and Bevan, 

1992). In addition, LLO but not PFO-expressing Bacillus subtilis were able to confer 

immunity against the wild type L. monocytogenes (Bouwer et al., 1992) indicating that anti-
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listerial immunity has specificity to both LLO and non-LLO derived epitopes. Induction of 

P60217-225 specific effector T cells by pneumolysin-expressing strain (Fig.3.31) was also 

supported by the ability of this strain to initiate a successful programming of T cells leaving, 

following a successful eradication of the strain, a significant pool of CD8+ T cells that acquire 

memory cell properties. One of memory cell surface markers is the adhesion molecule, L-

selectin (CD62L), whose expression is upregulated on naïve CD8+ T cells but rapidly down 

regulated upon cell stimulation (Busch and Pamer , 1999). The in vivo growth pattern of  

PLY-expressing strain together with its ability to induce a significant number of 

CD8+CD62Llo T cells (Fig.3.32) was in agreement with the finding that induction of an 

efficient T cell stimulation and  programming is dispensable for duration and severity of in 

vivo bacterial infection (Mercado  et al., 2000). 

L. monocytogenes has been described as a potential vaccine carrier for induction of protective 

cell-mediated immune responses to virus-specific or pathogenic bacterium-specific epitopes 

(Schafer et al., 1992). The premise for this vaccine design is that following uptake by the host 

cell, L. monocytogenes escapes to the cytoplasm of the host cells, thereby introducing 

peptides into the intracellular environment for processing through the endogenous pathway 

for presentation, in association with MHC class I at the cell surface, to reactive cytotoxic 

CD8+ T cell populations. Indeed, the results of this study are consistent with a model in 

which a protective immunity can be specifically induced against non-LLO derived antigens in 

absence of the pore-forming listeriolysin O. 

 

4.4. Cytosolic  localisation  of  L. monocytogenes  is  critical  for  induction  of  protective  
       immunity  
 

Several virulence factors associated with Listeria infection have been identified. One of these 

is listeriolysin O (LLO). LLO is not only required as a virulence factor that enables 

L. monocytogenes to escape  from the vacuole formed upon initial internalization but it is also 

required in the immunization process during infection through generation of a protective T 

lymphocyte response to L. monocytogenes.  

 The critical role of the PEST-like region at the N-terminus of Listeriolysin O in pathogenesis 

of Listeria monocytogenes was previously studied (Decatur and Portnoy, 2000; Lety et al., 

2001; 2002). On the other hand, nothing is known about the role of this motif in the induction 

of a T cell response against Listeria monocytogenes. In this study the critical role of PEST-

like sequence of Listeriolysin O in mediating induction of Th1-type immune response and 

conferring a protective T cell antilisterial immunity was established. The 28 amino acids 
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region at the N-terminus of Listeriolysin O that harbours the PEST-like sequence was deleted 

and the mutant protein was expressed in EGD-e∆hly. As shown by Western blotting with a 

monoclonal anti-LLO antibody (Fig.3.35.A), the mutant protein, designated LLO∆PEST, was 

secreted in comparable amounts in the culture supernatants. The additional recognized bands 

of lower molecular weight in case of the wild type LLO may reflect its instability over the 

mutant protein supporting the earlier prediction of Decatur and Portnoy  that the PEST-like 

sequence may target LLO for degradation (Decatur and Portnoy, 2000). 

 In vitro, the culture supernatants containing the mutant protein (LLO∆PEST) exhibited a 

haemolytic activity comparable to that of the wild type (Fig.3.35.B). This finding was in 

agreement with previous observations (Lety et al., 2002) indicating that modifications in the 

proximal portion of LLO do not affect protein secretion and hemolytic activity. Evidence that 

PEST-like sequence is crucial for mediating the disruption of phagolysosomal membrane and 

the escape of Listeria into the cytosole of phagocytic cells was confirmed by following the in 

vitro growth kinetics and the immunofluorescence microscopy analysis of the LLO∆PEST 

mutant strain in J774 macrophages (Fig.3.36). These data revealed that the escape of the 

LLO∆PEST mutant from the vacuole was severely impaired. This deficiency in growth was 

also manifested in the mouse model of infection where the LLO∆PEST mutant strain was 

rapidly removed from spleens and livers of infected mice up to day 3 post-infection 

(Fig.3.37).  

It is well-known that a Th1-type immune response is induced in mice upon infection with L. 

monocytogenes and that antigen specific T cells play a central role in protective immunity 

against challenge infection (Darji et al., 2003; Kimoto et al., 2003). Day 3 of Listeria 

infection represents the end of the pre-immune phase of host response against L. 

monocytogenes. It is the last day before the expansion of specific T cells in this model 

(Kaufmann, 1986; Ehlers et al., 1992). The presence of viable bacteria on this day has been 

shown to be critical for successful induction of T cell-mediated immunity (North et al., 1981). 

It was recently established that the pathogen specific T lymphocytes are programmed during 

the first day of infection and subsequently undergo proliferation and differentiation into 

effector T cells without further calibration by the progressing inflammatory response but the 

magnitude of the LLO91-99 specific response correlates with the duration of in vivo bacterial 

growth during the first 24 h after infection (Mercado, et al., 2000). 

These findings prompted the analysis of the relation between the in vivo survival of the PEST-

like sequence mutant strain and its ability to induce a protective immunity. The bacterial load 

in spleens and livers of infected mice was measured at certain time points for several days.  
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The ∆PEST mutant strain and the ∆LLO isogenic mutant strain were rapidly cleared from 

spleens and livers although the former showed a slightly more survival than the latter 

(Fig.3.37). The slight increase in survival pattern of ∆PEST mutant strain over the LLO 

lacking strain both in vitro and in vivo suggests that the removal of the PEST-like motif 

extremely inhibit, but not completely abolish, the disruption of phagolysosomal membrane 

and intracellular bacterial survival. Furthermore, either ∆PEST mutant strain or the ∆LLO 

isogenic mutant strain failed to induce any detectable changes in spleen morphology 3 days 

after infection (Fig.3.38) while infection with the wild type and LLO producing mutant 

showed an intensive granuloma and splenomegaly respectively due to induced monocytic 

infiltration which paralleled the level of DTH responses, a reaction mainly associated with 

helper CD4+ T cell activation.  

LLO was shown to possess the ability to induce various cytokines, including IL-1α and IFN- 

γ. The early production of IFN-γ following infection was shown to be important for the 

generation of protective T cells indicating that listeriolysin O is critical for generating a 

protective anti-listerial T lymphocyte response (Nishibori et al., 1995; 1996; Xiong et al., 

1994; 1998). Mitsuyama and co-workers reported that the inability of a LLO-lacking strain or 

killed bacteria to induce the generation of protective T cells is due not to the lack of a central 

T cell epitope(s) but to the lack of ability to induce the production of endogenous cytokines 

during the early stage of immunization (Tanabe et al., 1999). It has been reported that a 

significant level of IFN-γ production in the murine spleen occurred within 24 to 48 h of 

immunization with a virulent strain (Nakane et al., 1989; 1990). Moreover, when endogenous 

IFN-γ was neutralized by administration of anti- IFN-γ  monoclonal antibody for the initial 2 

days in mice immunized with viable L. monocytogenes, the generation of protective T cells on 

day 6 was completely blocked (Yang et al., 1997). As expected, early production of IFN-γ 

was successfully induced by wild type and LLO producing mutant (Fig.3.39.A). On the other 

hand, both ∆PEST mutant strain and the LLO lacking strain were unable to induce IFN-γ in 

mice serum at day 2 post infection indicating that the in vivo growth deficiency of this mutant 

may contribute to its deficiency to induce IFN-γ production. 

In an attempt to confirm this indication, the amount of IFN-γ produced in culture supernatants 

of splenocytes at day 9 post-infection (Fig.3.39.B) as well as the number of specific MHC 

class I restricted effector CD8+ T cells in spleens at either day 9 post-infection or day 5 post-

challenge (Fig.3.41) were estimated. Day 9 post-infection corresponds to the primary immune 

effector phase, that is, acquired resistance. It was found that the ∆PEST as well as the ∆LLO 

mutant strain fails to induce the number of CD8+ T cells, after either the primary infection or 
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the challenge, or to prime splenocytes to produce a detectable level of IFN-γ. So, the removal 

of PEST-like sequence seems to influence the antigen presentation efficiency through the 

MHC class I pathway due to the poor ability of PEST-like sequence lacking strain to gain 

access to the cytosole of the infected cell and to undergo further processing and antigen 

presentation.  

Earlier studies suggested that  differentiation of CD8+ T cells into effector cells during 

primary immune response has important consequences for the development of long-lived 

memory cells (Lauvau et al., 2001) and that the immunization with avirulent Listeria with an 

in vivo persistence of less than 48 hours (Baldridge et al., 1988) or with a heat-killed Listeria 

(Lauvau et al., 2001) induced only low levels of protection. There was a consensus that the 

virulence factors of L. monocytogenes may contribute directly to the induction of protective 

immunity (Xiong et al., 1998). It was previously confirmed that the deletion of both actin 

nucleator (actA) and phospholipase B (plcB) genes from L. monocytogenes  has extremely 

lowered its virulence but had no influence on its ability either to induce and maintain effector 

memory T cells or to confer a long-lasting protective immunity against the wild type L. 

monocytogenes (Darji et al., 2003) whereas the isogenic mutant strain EGD-e∆hly was shown 

to lack the ability to induce a protective immunity (Xiong et al., 1994; Tanabe et al., 1999; 

Peters et al., 2003) indicating that listeriolysin is essential for induction of protection 

mediating T cells. All other virulence factors even if over-expressed cannot compensate for 

the absence of listeriolysin (Marquis et al., 1995). Most noteworthy, the ability to produce 

listeriolysin O was not sufficient to convert L. innocua into a protection inducing bacterial 

vector (Peters et al., 2003). 

 In this study, these findings were extended by testing the effect of PEST-like sequence 

deletion from Listeriolysin O on T cell mediated protection. It was found that mice 

immunization with ∆PEST mutant strain was not protective against a secondary lethal wild 

type listerial infection (Fig.3.40.A). These mice could not control the challenge infection as 

indicated by either  the high bacterial load in their spleens and livers (Fig.3.40.B) or the poor 

induction of  CD8+CD62Llo effector memory splenocytes (Fig.3.42). In contrast, mice that 

were previously primed with mutant strain expressing the intact listeriolysin O as well as the 

wild type L.monocytogenes showed a full survival and an extreme effector memory T cell 

protective response. Hence, these findings confirm the role of PEST-like sequence in 

mediating escape of L. monocytogenes from phagosomal vacuole into the cytosole as well as 

targeting the listeriolysin O for degradation and presentation on MHC I molecules. 
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Collectively, the ability of L. monocytogenes to gain access into the cytosole of antigen 

presenting cells is crucial for protection and for its use as a potential live vaccine vector. 

 

4.5. Outlook 

 

4.5.1. Antibody-mediated immunity against intracellular pathogens 

 

For intracellular bacteria, the role of antibody-mediated immunity is still poorly understood. 

This is due to the fact that the bacteria inside the cell are protected from the serum antibody. 

Indeed, the recognition of some listerial proteins by the immune sera of listeriosis patients 

(Grenningloh et al., 1997) in addition to the recent finding that monoclonal antibody produced 

against LLO can limit the intracellular listerial growth in macrophages (Edelson and Unanue, 

2001) have paved the way for thinking about the contribution of humoral response to Listeria 

infection.  

However, the two-dimensional separation and categorization of microbes as either 

intracellular and extracellular pathogens was never absolute, since tissue examination often 

revealed that pathogens classified as intracellular could be found in the extracellular space and 

vice versa. Furthermore, at some points in the infectious cycle, most intracellular pathogens 

reside in the extracellular space, where they are vulnerable to antibody action, and Fc receptor 

cross-linking can have profound effects in the intracellular milieu through signal transduction. 

Based on these information, it is suggested that  some level of extracellular listerial growth 

early in systemic infection is required for adequate amounts of antigens to be recognised by 

cells regulating the humoral response. Indeed, generation of monoclonal antibodies against 

secreted or surface-exposed listerial antigens like LLO, P60, actA, and irpA will be helpful as 

a therapeutic tool where antibiotic resistance are common or  for infectious listerial diseases 

that could arise in the setting of severe immunosuppression such as during bone marrow and 

organ transplantation, and AIDS. 

 

4.5.2. Requirements  for the creation of novel vaccine vectors 

 

There is a need to develop vaccines with the potential for global use against bacterial 

infectious diseases. These should be inexpensive to produce, stable in the absence of 

refrigeration, safe and efficacious, and able to be given orally or intranasally rather than by 

injection. 
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A vaccine should be sufficiently attenuated through deletion of certain virulence as well as 

metabolic genes. Attenuation should be sufficient to decrease if not eliminate induction of 

undesirable disease symptoms. In this regard, the nutritional status and health of the 

population to be vaccinated should be considered. The attenuation should be an inherent 

property of the bacterial vaccine and not be dependent on fully functional host defences and 

immune response capabilities. The attenuation should not be reversible by diet or by host 

modification of diet constituents, including by host-resident microbial flora. The attenuation 

should not lead to the development of a persistent carrier state for the vaccine. The attenuated 

vaccine should be sufficiently invasive and persistent to stimulate both strong primary and 

lasting memory immune responses.  

A vaccine should also be designed to minimize tissue damage that is not needed to induce an 

effective immune response. For example, vaccines for enteric pathogens must access the gut-

associated lymphoid tissue (GALT) via invasion and transcytosis through M cells. However, 

attachment to and invasion into enterocytes can lead to undesirable diarrhoeal episodes that do 

not contribute to the desired immune response. As even attenuated vaccine strains may cause 

disease in a few unlucky individuals, safety considerations dictate that any live bacterial 

vaccine should be susceptible to all clinically useful antibiotics. Lastly, the attenuated vaccine 

should possess some containment features to reduce its shedding and/or survival in nature to 

preclude vaccination of individuals who did not elect to be vaccinated. However, persistence 

of a live vaccine with potential for individual-to-individual spread could have a positive 

public health benefit, as is probably the case for vaccination against polio. 

When such an attenuated bacterial mutant is used as a delivery carrier for heterologous 

antigens, the plasmid vector component has to be optimised. Indeed, stability of protective 

antigen expression in vivo is essential for recombinant vaccine efficacy. Insertion of genes 

into the chromosome can increase stability, but the level of antigen expression is generally too 

low to stimulate an adequate immune response. Since the level of protein synthesis in bacteria 

is very much dependent upon gene copy number, antigen production can be vastly increased 

by use of multicopy plasmid vectors. In this case, the use of a balanced-lethal host-vector 

system wherein the plasmid possesses a gene complementing a chromosomal deletion 

mutation of a vital gene, such as for cell wall synthesis or DNA stability or replication, 

ensures that the plasmid is maintained (Nakayama et al., 1988). An alternate approach to 

ensuring retention of the plasmid vector is the "Hok-Sok" strategy, which also results in 

bacterial cell death if the plasmid is lost (Galen et al., 1999). When a plasmid vector with a 

high copy number is used, the level of expression of the gene encoding the vector-selective 
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marker can be far in excess of that necessary for maintenance of the vector. In these instances, 

overexpression of such a gene product further attenuates the vaccine, presumably due to the 

added energy drain on the recombinant vaccine. To address this problem, the selective marker 

gene can be designed to include a ribosome-binding recognition sequence but no promoter 

(Kang et al., 2002). As a safety consideration, it is desirable that plasmid vectors possess some 

containment features to minimize the possibility of transfer to and maintenance in other 

bacterial species. The vector should therefore be non-conjugative, should preferably be non-

mobilizable, should possess a narrow replicon host range, and should not specify resistance to 

any antibiotic. 

 

4.5.3. Role of Listeriolysin O in Listeria monocytogenes  infection 

 

In spite of the great number of studies dealing with the role of LLO in pathogenesis of 

Listeria monocytogenes, more researches have to be conducted to understand how LLO 

interacts with phagolysosmal membranes and allows bacterial phagosomal escape. The patch 

clamp technique may be helpful to elucidate the precise molecular mechanisms by which the 

PEST-like sequence participates in the opening of the vacuole. Indeed, the role of the PEST-

like sequence in mediating escape of Listeria monocytogenes into the cytosol can be 

demonstrated through its fusion to the coding sequences of particular proteins like Green 

Fluorescent Protein (GFP). The intracellular localisation of the fusion proteins can be 

followed in phagocytic cells using fluorescent microscopy.  

A potential screening system for the ability of the PEST-like sequence to permit cytosolic 

transfer of LLO could exploit the Cre–lox recombination system. The Cre–lox recombination 

system has the potential to become a powerful tool for the conditional and cell-specific 

deletion of genes. The introduction of this system into transgenic mice should facilitate 

studies on the loss of function of genes in a particular cell type. The Cre recombinase from 

bacteriophage P1 (Sternberg and Hamilton, 1981) excises intervening DNA sequences located 

between two unidirectional lox sites positioned on the same linear DNA segment, leaving one 

lox site behind.  Fusion of the PEST-like sequence from listeriolysin O to the sequence 

encoding the Cre recombinase may facilitate its escape from the phagolysosme and  gaining 

access to the  cytosole of eukaryotic cells for further translocation into the nucleus where Cre-

mediated gene deletion takes place. In cells that have previously engineered to express the 

Green Fluorescent Protein (GFP) flanked by lox-sites, facilitation of entry of the Cre 

recombinase by the PEST-like sequence would therefore result in GFP-negative cells. 
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5. Summary 
 

In this study, the cholesterol-binding cytolysins, listeriolysin O (LLO) as well as pneumolysin 

(PLY), were expressed in the non-pathogenic species Listeria innocua. Growth of L. innocua 

recombinant strains in the chemically defined minimal medium resulted in 2-fold increment in 

the expression of both cytolysins. Purification from supernatant fluids was achieved by ion 

exchange chromatography. The procedure resulted in about 75 % (LLO) or 70 % (PLY) yield 

of a hemolytically active, highly purified homogenous 58 (LLO) or 52 (PLY) kDa protein 

which can be used to produce monospecific antibodies as well as in many diagnostic and 

serological procedures including procedures which were examined or developed in this study. 

The identity and role of listerial antigens recognized by antibodies following listerial infection 

is largely unknown. In this study, a new and previously uncharacterized target of the humoral 

immune response, the listerial ferritin protein (Frm), was discovered and characterized. 

Specific antibodies to Frm are detected in antisera of mice infected with the L. monocytogenes 

wild type strain but not in antisera of mice infected with a non-pathogenic L. innocua strain. 

Antibodies raised to purified listerial ferritin allowed demonstration that expression of Frm is 

both growth phase- and temperature- dependent. Using an isogenic ∆frm mutant, ferritin was 

found to be essential for bacterial growth in chemically-defined minimal media but not in 

complex media such as BHI. Mutant bacteria also exhibited a defect in intracellular survival, 

probably in exiting from the phagosomal vacuole to the cytoplasm. The ∆frm strain is 

hypersensitive to hydrogen peroxide indicating that Frm mediates protection to reactive 

oxygen intermediates under various growth conditions. Mouse infection studies revealed that 

the listerial ferritin is required for efficacious bacterial growth early in the infectious process.   

Although attenuated strains of microbial pathogens have triggered vaccine development from 

its origin, the role of virulence factors in determining host immunity has remained largely 

unexplored. In this study, using the murine listeriosis model, it was investigated whether the 

induction and expansion of protective and inflammatory T cell responses may be modified by 

selective manipulation of virulence genes. This was accomplished in two ways; the first was 

through generation of isogenic Listeria monocytogenes mutant strains that harboured either a 

specific deletion within the actin nucleator (actA) and/or multiple deletions within the actA 

and phospholipase B (plcB) genes while the second way was through the complementation of 

the non-pathogenic Listeria innocua strain with the PrfA-dependent virulence gene cluster 

(vgc) of the wild type L. monocytogenes.  In comparison to the wild type L. monocytogenes 

EGD-e strain, the mutant strains were extremely low in virulence and were rapidly eliminated 
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by the host during the first days of infection. Nevertheless, a single immunization with mutant 

strains (EGDe∆actA, EGD-e∆actA∆plcB and L. innocua: :vgc) has efficiently induced and 

maintained effector memory CD8+ T cells and provided animals with a state of long-lasting 

protective immunity against wild type L. monocytogenes. Moreover, these mutants were 

shown to exhibit a significantly reduced ability to induce CD4+  T cell-mediated 

inflammation. Therefore, they can be used as live vaccines against the corresponding virulent 

pathogen and as carriers for introducing heterologous protective antigens into animals and 

humans. Among the three mutants tested, the double-deletion mutant (EGD-e∆actA∆plcB) 

showed, beside its profound ability to induce protective CD8+  T cells, the most significant 

level of in vivo attenuation as well as the lowest ability to induce unfavourable CD4+ T cell-

mediated inflammatory responses. Thus, this mutant, L. monocytogenes ∆actA∆plcB, appears 

to be the most promising mutant as a bacterial vaccine vector. 

In an attempt to address the role of the pore forming listeriolysin O (LLO) in intracellular 

survival of L. monocytogenes as well as in mediating a protective T- cell response against the 

wild type L. monocytogenes strain, two approaches were conducted in this study. Firstly, the 

structural gene for the related cytolysin pneumolysin  (PLY) was cloned on a plasmid vector 

downstream from the promoter and signal peptide sequences of hly, the gene encoding LLO, 

and expressed in the isogenic  EGD-e∆hly mutant strain. The resultant recombinant strain 

secreted active PLY in culture supernatants and was able to escape phagosomes of phagocytic 

cells in vitro and spread from cell to cell to a limited time after which growth was aborted 

because of a cytotoxic effect on the host cell. This strain also showed a restricted in vivo 

survival in a mouse model of listeriosis but was able to protect mice against a lethal dose of 

the wild type L. monocytogenes and induced a specific T-cell responses against Listeria 

derived epitopes other than LLO such as the subdominant P60217-225 epitope indicating that 

during the immune response to L. monocytogenes, immune splenocytes with specificity for 

LLO and other non-LLO-derived epitopes develop. These non-LLO epitopes serve as targets 

for antilisterial cytotoxic cells that confer antilisterial immunity. 

The second approach was to study the role of the  putative PEST-like sequence (P, Pro; E, 

Glu; S, Ser; T, Thr), found near the N-terminus of LLO, in virulence and intracellular 

compartmentalization of the wild type L. monocytogenes strain as well as in induction of a 

strong cell-mediated protective immunity to the wild type L. monocytogenes. Therefore, the 

28 amino acids harbouring the PEST-like sequence at the N-terminus of LLO were deleted 

and the mutant LLO protein was expressed in a hly-negative isogenic mutant of L. 

monocytogenes. The mutant protein was secreted in normal amounts in the culture supernatant 
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and was fully haemolytic. L. monocytogenes expressing this truncated LLO showed a reduced 

capacity to escape the phagosomes of J774 cell line macrophages and showed a 1000-fold 

decrease in virulence in the mouse model. Moreover, the mutant strain showed a low ability to 

induce both an early serum level of gamma interferon and gamma interferon-secreting T cells 

following infection of BALB/c mice and exhibited reduced levels of protection against 

virulent L. monocytogenes. These results suggest that the PEST-like sequence is crucial for 

conferring a long lasting immunity against the wild type Listeria monocytogenes through 

facilitating the bacterial escape into the cytosole of host cells for further processing and 

antigen presentation. 
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6. Zusammenfassung 
 

In der vorliegenden Arbeit wurden die Cholesterin-bindenden Cytolysine, Listeriolysin O 

(LLO) oder Pneumolysin (PLY) in dem apathogenen Stamm L. innocua exprimiert. Die 

Kultivierung von rekombinanter L. innocua-Stämme in einem chemisch definierten 

Minimalmedium führte zu einer zweifachen Steigerung der Expression von beiden 

Cytolysinen. Mit Hilfe der Methode der Ionenaustausch-chromatographie wurden die Proteine 

aus dem Überstand der Kultur aufgereinigt. Damit erhielt man in etwa 75% (LLO) bis 70% 

(PLY) Ausbeute von hämolytisch aktiven, mit hochreinen, homogenen  Proteinen LLO 

(58kDa) und PLY (52kDa), die Verwendung bei der Produktion von spezifischen Antikörpern  

und in der Diagnostik und Serologie haben können.    

Die Identität und Rolle von listeriellen Antigenen, die nach einer Infektion mit L. 

monocyogenes von Antikörpern erkannt werden , ist bisher noch weitgehend unbekannt.  

In dieser Arbeit wurde das listerielle Ferritin (Frm) als neuer Angriffspunkt für die humorale 

Immunantwort nach einer Infektion von Mäusen mit pathogenen L. monocytogenes 

identifiziert. Spezifische Antikörper gegen Frm werden im Antiserum von mit dem Wildtyp 

L. monocytogenes infizierten Mäusen nachgewiesen, nicht aber im Antiserum von Mäusen, 

die mit dem apathogenen Stamm L. inoccua infiziert wurden.  Antikörper, die aus 

aufgereinigtem Ferritin aus Listeria gewonnen wurden, zeigten, dass die Expression von Frm 

sowohl von Wachstumsphase als auch von  Temperaturbedingungen abhängt. Bei der 

Verwendung einer isogenen Mutante ∆frm  stellte sich heraus, dass Ferritin für das 

Bakterienwachstum in einem chemisch–definierten Minimalmedium essentiell ist, nicht aber 

in Komplexmedium wie z. B. BHI. Die Deletionsmutante wies außerdem einen Defekt im 

Überleben innerhalb der Wirtszelle auf, wahrscheinlich beim Schritt des Austritt aus dem 

Phagosom in das Cytoplasma. Die Mutante ∆frm  ist hypersensitiv gegenüber 

Wasserstoffperoxid, was darauf schließen lässt, dass Frm für den Schutz gegen reaktive 

Sauerstoff-Intermediate unter unterschiedlichen Wachstumsbedingungen sorgt. Versuche am 

Mausmodell zeigten, dass das listerielle Ferritin für ein effizientes Bakterienwachstum in der 

frühen Infektionsphase notwendig ist. 

Obwohl attenuierte Stämme pathogener Mikroorganismen die Entwicklung von Impfstoffen 

schon zu ihrem Beginn anführte, ist die Rolle von Virulenzfaktoren in Hinblick auf die 

Immunität des Wirtes größtenteils noch immer nicht erforscht. In dieser Arbeit wurde, mit 

Hilfe eines  Listeriose-Mausmodells, untersucht, ob die Auslösung einer schützenden oder 

inflammatorischen T-Zell-Antwort durch die selektive Manipulierung von Virulenzgenen 
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modifiziert werden kann. Dies wurde auf zwei Wegen erreicht: Zum Einen erfolgte durch die 

Herstellung von isogenen Listeria monocytogenes Mutanten, die entweder eine spezifische 

Deletion im Gen für das Aktin-akkumulierende Protein (actA) und/oder multiple Deletionen 

im actA Gen und Phospholipase B (plcB) Gen trugen. Zum Anderen erfolgte eine 

Komplementierung eines nicht-pathogenen Stammes Listeria inoccua mit dem PrfA-

abhängigen Virulenzgencluster (vgc) eines Wildtyps von L. monocytogenes.  

Im Vergleich zum wildtypischen  L. monocytogenes EGD-e waren die Virulenz der Mutanten 

extrem herabgesetzt, und sie wurden während der ersten Tage der Infektion rasch von Wirt 

eliminiert. Dagegen wurde durch die einmalige Immunisierung mit den Mutanten 

(EGDe∆actA, EGD-e∆actA ∆plcB and L. innocua: :vgc) sehr effizient eine Gedächtnis  T-

Zell-Antwort (CD8+) ausgelöst, die die Tiere mit einem lang-anhaltenden Immunschutz 

gegen den Wildtyp L. monocytogenes ausstattete. Darüber hinaus war die Fähigkeit der 

Mutanten  signifikant reduziert, eine CD4+- T-Zell- vermittelte Inflammation zu stimulieren. 

Daher können sie als Lebendimpfstoff gegen die entsprechenden Erreger verwendet werden, 

und als Träger für die Bildung heterologer schützender Antikörper in Tier und Mensch 

dienen. 

Unter den drei Mutanten, die getestet wurden, zeigte die Doppelmutante (EGD-

e∆actA∆plcB), neben seiner ausgeprägten Fähigkeit, schützende CD8+-T-Zellen zu 

induzieren, den signifikantesten Grad an Attenuierung  in vivo  als auch die geringste 

Fähigkeit, eine ungewollte CD4+- T-Zell-vermittelte inflammatorische Antwort auszulösen.  

Daher wird diese Mutante L. monocytogenes ∆actA ∆plcB zur Zeit als die vielversprochenste 

Mutante  für einen bakteriellen Impf-Vektor angesehen.  

In einem Versuch, die Rolle des Poren-bildenden Listeriolysin O (LLO) beim Überleben von 

L. monocytogenes in der Zelle  als auch bei der Vermittlung einer schützende T-Zell-Antwort 

gegen den Wildtyp L. monocytogenes zu bestimmen, wurden in dieser Arbeit zwei Ansätze 

verfolgt. Erstens, wurde das Strukturgen für das ähnliche Cytolysin Pneumolysin (PLY) in ein 

Plasmid kloniert,  downstream vom Promoter und der Sequenz des Signalpeptids von hly, 

dem für das LLO codierenden Gen, und das Konstrukt wurde in der isogenen EGD-e∆hly 

Mutante exprimiert. Der resultierende rekombinante Bakterienstamm sezernierte aktiv PLY in 

den Kulturüberstand und war im in-vitro Experiment befähigt, den Phagosomen  

phagozytierender Zellen zu entkommen. Er konnte sich außerdem von Zelle zu Zelle 

ausbreiten. Der Stamm zeigte zudem im in vivo Versuch mit einem Listeriose-Mausmodell 

eine verringerte Überlebensrate, er war jedoch zugleich dazu in der Lage, Mäuse gegen eine 

letale Dosis des Wildtyps von L. monocytogenes zu schützen. In der Maus induzierte der 
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rekombinante Bakterienstamm eine spezifische T-Zellantwort gegen von Listeria-stammende 

Epitope, und zwar nicht gegen Epitope von  LLO sondern solche wie das subdominante 

p60217-225 Epitop.  Dies lässt darauf schließen, dass sich während der Immunantwort auf L. 

monocytogenes, immungewordene Milzzellen mit Spezifität für LLO und andere nicht-LLO 

Epitope bilden. Diese nicht-LLO Epitope dienen als Angriffspunkte für anti-listerielle 

cytotoxische Zellen die zur Immunität gegen Listerien beitragen. 

Der zweite Ansatz war die Untersuchung der Rolle der putativen PEST-ähnlichen Sequenz, 

die sich nahe des N-Terminus des LLO-Proteins befindet, in Bezug auf die Virulenz und auf 

die intrazelluläre kompartimentierung des Wildtyps L. monocytogenes, sowohl in Bezug auf 

die Induktion einer starken zell-vermittelten Immunität gegen den Erreger. Die 28 

Aminosäuren am N-Terminus von LLO, die die PEST-ähnliche Sequenz beinhalteten wurden 

somit deletiert und die LLO Variante wurde in einer hly-negativen  isogenen Mutante 

exprimiert. Das mutierte Protein wurde in normalen Mengen in den Kulturüberstand 

sezerniert und war in vollem Maße hämolytisch. Der Listerienstamm, der dieses veränderte 

LLO exprimierte, zeigte eine reduzierte Kapazität den Phagsosomen von J774 Makrophagen 

zu entkommen, und wies eine tausendfache Senkung der Virulenz im Mausmodell auf. 

Darüber hinaus zeigte die Mutante eine herabgesetzte Fähigkeit, sowohl ein frühes 

Serumlevel an γ-Interferon als auch an γ-Interferon-sezernierenden T-Zellen nach der 

Infektion von BALB/c Mäusen zu induzieren, und dadurch kam es zu einem reduzierten 

Schutz gegen den virulenten Stamm L. monocytogenes. Diese Ergebnisse weisen darauf hin, 

dass die PEST-ähnliche Sequenz des reifen LLO entscheidend für die Erhaltung einer lang 

anhaltenden Immunität gegen den Wildtyp L. monocytogenes ist.  
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