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1. Introduction 

1.1. Bone Morphogenetic Proteins as members of Transforming Growth Factor β 

Superfamily 

 

Transforming growth factor β (TGFβ) and related molecules are members of the 

polypeptide growth factor superfamily. Based on sequence homology over 50 

evolutionary conserved members were identified and grouped into the following 

subfamilies: TGFβs, activins and inhibins, bone morphogenetic proteins (BMPs) and 

growth/differentiation factors (GDFs) (reviewed by Mehra et al., 2002). In addition 

proteins with a lower degree of similarity such as Mőllerian inhibitory substance (MIS) 

and glial cell line-derived neurotropic factor (GDNF) have been considered as members 

of the TGFβ family (Kingsley et al., 1994). Originally in the 1960s, only the activity of 

BMPs to induce bone formation, as their name suggests, was identified (Urist, 1965). 

More than two decades later this activity has been assigned to specific factors, when 

bovine osteogenin (BMP3) (Luyten et al., 1989), and human BMP2 and 4 (Wozney et 

al., 1988) were sequenced and purified. Later on, a number of GDFs has been also 

recognized as bone morphogenetic proteins, raising the number of BMPs to around 20 

(Yamashita et al., 1996). The BMPs/GDFs have been further grouped into six subsets 

based on amino acid sequence homology (Miyazono et al., 2005), as follows:  

1. BMP2 and BMP4 (BMP2b). 

2. BMP3 (Osteogenin) and BMP3b (GDF10). 

3. BMP5, BMP6 (Vg-1 related, Vgr-1), BMP7 (osteogenic protein-1, Op-1) and 

BMP8 (Op-2). 

4. BMP9 (GDF2) and BMP10. 

5. BMP12 (GDF7 or cartilage-derived morphogenetic protein-3, CDMP3), BMP13 

(GDF6 or CDMP2) and BMP14 (GDF5 or CDMP1). 

6. BMP11 (GDF11) and GDF8 (Myostatin). 

Since the TGFβ superfamily comprises so many protein families, it is obvious that 

sequence and percentage of homology among families, subsets and even between 

members of the same group varies significantly. However, there are common and 

consistent features that allow to classify them as TGFβ related proteins (i.e. synthesis as 

precursor, conserved tertiary structure etc.), as described below. 
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Members of the TGFβ superfamily, including BMPs, are synthesized as pre-pro-

protein precursors (of approximately 400-525 amino acids in case of BMPs), containing 

leader secretion sequence, pro-region and carboxy-terminal mature region (Gentry et al., 

1988). The pro-region facilitates proper dimerization of pro-proteins, and dimers are 

subsequently cleaved by endoproteases at conserved RXXR amino acid sequence 

(Mehra et al., 2002). Furin-like proteases are generally believed to convert the 

precursors into biologically active, mature forms (Matthews et al., 1994) prior to 

secretion. Mature peptides form a cystein knot which contains most ofen six cystein 

residues (Reddi, 1998), however, there may be additional one to three cysteines 

included in the sequence (Neuhaus et al., 1999). As for TGFβ1, the cleaved, disulfide-

linked pro-region has been shown to remain non-covalently associated with the mature 

peptide to form a “latent complex” (Lawrence, 1996) followed by secretion and further 

processing. The ability of other BMPs to create such a complex has not yet been shown. 

 A cystein knot, common for all mature TGFβ ligands, including BMPs, was also 

found in a number of other growth factors, as for example platelet-derived growth factor 

(PDGF) and glycol-protein hormone. These factors share no other sequence 

homology/similarity to TGFβ, but they are together defined by some authors as 

members of cystein-knot growth factor superfamily (Sun et al., 1995).  

 

 

1.2. BMPs receptors 

 

 The physiological effect of BMPs is achieved by binding of the secreted form to 

specific receptors. There are three known types of TGFβ receptors, type I, type II and 

type III, named according to the their mobility on SDS-PAGE gels (Cheifetz et al., 

1986). Type I of molecular mass of approximately 55 kDa, and a 70-85 kDa type II are 

transmembrane serine/threonine (Ser-Thr) receptor kinases, while 200-400 kDa type III 

receptors contain two distinct members, a proteoglycan (betaglycan) and a glycoprotein 

(endoglin) (Massague et al., 1994, Cheifetz et al., 1988). It is believed, that BMPs signal 

only through type I and II receptors (Liu et al., 1995). Type I receptors were firstly 

identified as activin receptor-like kinases 1-4 or ALK1-ALK4 (ten Dijke et al., 1993). 

At the same time, other groups cloned these and others type I receptors and named them 

according to their specificity of ligand binding. Because of this reason each receptor has 

at minimum of 2 names. ALK-2 is also known as ActR I or Acvr1 (activin receptor type 



                                                                                                               INTRODUCTION 

 3 

I), ALK-3 and ALK-6 as BMPR IA and IB (BMP receptor IA and IB), respectively, 

ALK-4 – ActR IB (activin receptor type IB) and finally ALK-5, based on its specificity 

to TGFβ, is also called TGFβ RI (reviewed by Mehra and Wrana, 2002). Four members 

of type II receptors have been identified and three of them preferentially bind activins 

(ActR II and ActR IIB) and TGFβ1 (TβR II) (Lin et al., 1992), while BMPs have a 

higher affinity to BMPRII, although they were shown to interact with ActR IIA as well 

(Mathews et al., 1991, Mathews et al., 1992). Known TGFβ/Activin/BMP receptors, are 

summarized in table 1. Receptors, which have been identified to bind BMP10, will be 

described separately in the chapter 1.4. 

 

Tab. 1. TGFβ/BMP receptors and their putative ligands (modified from Cytokine 

Mini-reviews, R&D Systems’, 2004) 

■ BMP2 
● BMP7 
 

● Act A 

● BMP7 
● GDF5 
 

● TGFβ-1 
● Act A 
● BMP2 
● BMP4 
● BMP7 
● GDF5 
● GDF6 
● BMP6 
 

● TGFβ-1 

 

 
ALK-6 

 ● Act A 

 

● TGFβ-1 
● Act A 
● BMP7 

● TGFβ-1 

 

 
ALK-5 

● Act A 
 

● BMP7 

● Act A 
■ GDF5 

● TGFβ-1 
● Act A 
● BMP7 

● TGFβ-1 

 

 
ALK-4 

● BMP2 
■ BMP7  
● GDF5 

● Act A 
 

● TGFβ-1 
● Act A 
● BMP2 
● BMP7 
● GDF5 
● GDF6 

● TGFβ-1 

 

 
 

ALK-3 

● Act A 
■ BMP7 
■ GDF5 
● GDF6 

● Act A 
● BMP7 
● GDF5 
● GDF6 
● BMP6 
 

● TGFβ-1 
● Act A 
● BMP2 
● BMP7 
● BMP6 
 

● TGFβ-1 

 

 
ALK-2 

● Act A ● Act A ● TGFβ-1 
● Act A 
● BMP7 

■ TGFβ-1  
ALK-1 

Type II Receptors 
    TGFβR II                   BMPR II                     ActR II                  ActR IIB  

 
Type I Receptors 

KEY 
● binding/signal transduction 
● no binding 
● binding/no signal transduction 
■ binding/signal transduction uncertain 
■ binding uncertain/no signal transduction 
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The serine/threonine kinase domain of type II receptors is constitutively active, and 

upon a ligand binding, phosphorylate glycine-serine domain (GS domain) of type I 

receptor, which results in induction of their kinase activity (Miyazono et al., 2005) and 

initiates downstream Smad-dependent or -independent signaling. Hence, specificity of 

induction is mainly achieved by type I receptor. BMPs bind to ALK-2, ALK-3 and 

ALK-6 type I receptors (ten Dijke et al., 1994, Chen et al., 1998, Macias-Silva et al., 

1998), although an interaction with ALK-1 cannot be excluded (Mazerbourg et al., 

2005). Some BMPs were also shown to bind to type II and I receptors in a cooperative, 

rather than in a stepwise manner (Knaus et al., 2001, Gilboa et al., 2000, Mehra et al., 

2002). It was also suggested that receptors of both types can constitutively form 

homodimers or can even heterotetramized, because the autophosphorylated type II 

naturally recruits type I receptor (Derynck et al., 1997, Cho et al., 1998). The precise 

mechanism of ligand-dependent receptor recruitment and action remains unknown. It is 

known that type I receptors are negatively regulated by various receptor-associated 

molecules, like FK506-binding protein 12 (FKBP12) (Wang et al., 1996), BMP and 

activin membrane bound inhibitor (BAMBI), and BMP receptor associated molecule 1 

(BRAM1). For instance, FKBP12 binds to type I receptor and possibly prevents its 

premature activation (reviewed by Massague et al., 2000).  

 In the signaling cascade, upon ligand binding, receptors are internalized and can 

be either recycled to the membrane or can be downregulated through endocytosis. 

Internalization of receptors is implicated as a mechanism of limitation or additional 

negative regulation of TGFβ/BMPs signaling (Mellman et al., 1996).   

 

 

1.3. Smad-dependent and Smad-independent signaling pathways 

 

As mentioned before, both type I and II receptors are necessary for BMPs signal 

transduction. After ligand binding they form a heterotetrameric-activated receptor 

complex, that transmits BMP signal through either Smad-dependent or Smad-

independent pathways. In addition to the canonical Smad-mediated pathway, BMPs 

activate also a number of mitogen activated protein kinases (MAPKs), like extra-

cellular signal-regulated kinases (ERKs), p38 MAP kinase (Iwasaki et al., 1999) or 

protein kinase C-dependent pathway (Hay et al., 2001). It was shown, that the mode of 

receptor oligomerization/recruitment prior to the ligand binding mainly determines 
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downstream signal transduction pathway (Hassel et al., 2003). A schematic 

representation of BMPs induced Smad-dependent signaling is shown in Fig. 1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1. Schematic representation of the TGFβ/BMP induced Smad signaling 

pathway (modified from Massague et al., 2000).  

 

Smads are considered, however, as the major transducers for the serine/threonine 

kinase receptors. Eight Smad proteins have been identified so far in mammals and have 

been grouped into three classes, based on their function (Goumans et al., 2000): 

1. Receptor-regulated Smads (R-Smads). They can be further subdivided in 2 

groups: activated by TGFβ and activins (Smad2 and Smad3 – AR-Smads). The 

second group is activated by BMP receptors (Smad1,-5,-8 – BR-Smads) 

(Miyazono et al., 2005). Interaction of the R-Smads with a defined type I 

receptor determines the specificity of the TGFβ family members (ten Dijke et 

al., 2000). Unique c-terminal phosphorylation site is typical only for members of 

R-Smads.  

2. Common-partner Smads (co-Smads). This subgroup is represented only by 

Smad4 in mammals, but others might also exist, as two Smad4 homologues have 
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been found in Xenopus laevis. Smad4 is utilized in both BMP and TGFβ/activin 

signaling pathways (Masuyama et al., 1999).  

3. Inhibitory Smads (I-Smads). Smad6 and Smad7 have been recognized as 

inhibitors of BMP and TGFβ/activin signaling and their expression is induced by 

mature ligand binding (Christian et al., 1999). The inhibitory effect can be 

achieved by stable interaction with the activated type I receptor, thus preventing 

phosphorylation of R-Smads, or by competition for binding of co-Smad, thereby 

preventing the formation of R/co-Smads complex. The first mechanism applies 

to both I-Smads, while the later is unique for Smad6 and its inhibition of 

Smad1/Smad4 interaction (Hata et al., 1998). 

Upon ligand binding and activation by type II receptor, type I receptors phosphorylate 

R-Smads at their C-terminal SSXS sequence and oligomerize with a co-Smad (Heldin et 

al., 1997). This complex is translocated into the nucleus, where it regulates transcription 

of target genes by direct binding to specific DNA sequences, interacting with other 

DNA-binding proteins, and recruiting transcriptional co-activators or co-repressors (Fig. 

1.1) (Miyazono et al., 2000).  

 

 

1.4. Role of BMP signaling in heart development and angiogenesis 

 

At least six BMPs have been found to be expressed in the heart, i.e. BMP2, 

BMP4, BMP5, BMP6, BMP7 and BMP10, with distinct but partially overlapping 

distribution (reviewed by Schneider et al., 2003).   

Among the BMPs, the BMP2 expression patterns and function were the most 

intensively studied. BMP2 is widely expressed during mouse embryonic development 

as well as in the adult heart has dynamic expression pattern (Lyons et al., 1989, 1990). 

BMP2 was noted in cardiac crescent at E7.5 (Ma et al., 2005), and at E8.5 BMP2 

transcripts are detectable by in situ hybridization in the promyocardium and surrounding 

mesodermal cells, while the protein is localized in the atrioventricular (AV) 

myocardium and the dorsal wall of future atria as well (Sugi et al., 2004). One day later 

at E9.5, transcripts of BMP2 were observed in the region, where protein was found one 

day before (i.e. AV myocardium) and at a lower levels in the outflow tract. At E10.5 

BMP2 protein was diminished in myocardial cells, but was detectable in cushion AV 

mesenchyme and epicardium. This pattern of protein localization was preserved during 
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later stages of development- E13.5- E16.5, i.e. during valvulogenesis. By in situ 

hybridization, BMP2 expression in the AV canal was extinguished at E10.5 (Sugi et al., 

2004). On the other hand BMP2 transcripts were found in and ventricular myocardium 

by another group (Ma et al., 2005). In adult mouse heart, protein expression persisted in 

cardiac valve tissue (Sugi et al., 2004).   

BMP2 is implicated in multiple developmental and physiological processes. A 

homozygous null mutation of BMP2 causes, in addition to the amnion/chorion defects, 

abnormal development of the heart in the exocoelomic cavity, but the specification of 

the cardiac mesoderm occurs normally (Zhang et al., 1996). Conditional inactivation of 

BMP2 in the myocardium led to cardiac jelly loss and at later developmental stages 

resulted in failure in endocardial endothelial-mesenchymal transition (EMT) (Ma et al., 

2005). In vitro studies proved that BMP2 is required for myocardial segmental 

regulation of AV endocardial cushion mesenchymal cells formation (Sugi et al., 2004). 

Moreover BMP2 can direct regionalized myocardial patterning (Ma et al., 2005). In 

addition to cardiac development, BMP2 has been reported to exert both pro- and anti-

apoptotic effects, depending on cell type and circumstances (Yokouchi et al., 1996; 

Iwasaki et al., 1999; Bhatia et al., 1999). In neonatal cardiomyocytes in culture the 

inhibition of apoptosis by BMP2 was shown to occur through activation of Smad-1 and 

induction of anti-apoptotic gene Bclx expression (Izumi et al., 2001). Elevated levels of 

BMP2 expression in tumors, suggesting the possible role of this cytokine in promotion 

of tumor angiogenesis were recently reported. The authors found that BMP2 had no 

significant effect on proliferation, but promoted tube formation of human dermal 

microvascular endothelial cells in vitro (Raida et al., 2005).  

 BMP4 is the most widely expressed BMP gene throughout mouse 

developmental stages and in adult tissues. During embryonic heart development BMP4 

was found in the outflow tract at E8.5. In addition, BMP4 transcripts were found in 

muscular layer of the OFT and its derivatives (aorta and pulmonary trunk) and this 

expression is maintained until birth (Jiao et al., 2003). In the inflow region, BMP4 was 

first noticed in the sinus venosus at E8.5. At E9.0 expression was detected in the dorsal 

midline of common atrium and in the AV cushion, regions where the atrial septum 

primum is initiated (Jiao et al., 2003). Another report proved additionally the expression 

of BMP4 in parietal pericardium (Stottmann et al., 2004). In adult heart, in addition to 

expression in muscle layers of aorta and pulmonary trunk, BMP4 was found in valves 

and the annulus of mitral and tricuspid valves (Jiao et al., 2003).  
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 Conditional inactivation of BMP4 in mouse hearts leads to atrioventricular canal 

defects (AVCD), and a single AV junction with a common valve.  In the outflow region 

of developing heart, BMP4 deficient embryos display a double-outlet right ventricle. 

Initiation of cushion formation and endothelial-mesenchymal transition was not 

affected, probably due to compensatory effects of other BMPs. However, after the 

cushion was formed BMP4 was required for the proper septation of the AVC (Jiao et 

al., 2003). Using the micro-bead delivery technique, BMP4 was shown to significantly 

induce programmed cell death in surrounding embryonic tissue explants in vitro. The 

highest induction of apoptosis by BMP4 was observed in the conotruncal cushion, while 

in myocardial and AV cushion explants the number of apoptotic cells was 

approximately two fold lower (Zhao et al., 2000).   

 BMP5, BMP6 and BMP7 belong to the same subgroup of BMPs, with an almost 

90% homology within the mature, active region (Solloway et al., 1999). BMP5 and 

BMP7 are strongly expressed in developing myocardium, whereas BMP6 is expressed 

in both the OFT myocardium and atrioventricular cushion (Dudley et al., 1997). 

Surprisingly, mice lacking BMP5 (Kingsley et al., 1992), BMP6 (Solloway et al., 1998), 

or BMP7 (Dudley et al., 1995) do not exhibit cardiac abnormalities. Double mutations, 

i.e. BMP5/BMP7 (Solloway et al., 1999) or BMP6/BMP7 (Kim et al., 2001) resulted in 

severe heart development retardation indicating that these closely related factors are 

interchangeable. In double BMP5/BMP7 knock-outs (Solloway et al., 1999) the general 

morphology of the heart was disorganized with reduced cell density and trabeculation. 

The authors explained the lack of endocardial cushion formation as a secondary effect 

of overall growth/development retardation.  

 BMP6 and BMP7 share 87% amino acid identity in the C-terminal mature 

domain (Kim et al., 2001). BMP6 expression in the heart was restricted to the AV 

cushion and OFT at E9.5 with its decrease on the right side of the OFT at E10.5 and 

was absent by E11.5. At later developmental stages BMP6 transcripts were also found 

in endothelium lining dorsal aorta and pulmonary trunk and valve leaflets. Asymmetric 

expression of BMP7 in myocardium of developing heart was also noted, with its down-

regulation in the left atrium and ventricles. Deletion of both BMP6 and BMP7 caused 

mouse embryonic lethality between E10.5- E12.5, a period when significant overlap in 

the BMP6 and BMP7 expression occur (Kim et al., 2001). Double BMP6/BMP7 knock-

outs had underdeveloped endocardial cushions of , reduced ventricular trabeculation and 

displaced venous valves within the heart. Additionally, both atrial chambers and cardiac 



                                                                                                               INTRODUCTION 

 9 

veins were dilated. However this edema might be secondary to heart failure and valvular 

malformation (Kim et al., 2001).  

 Since BMPs act through receptors, their localization and mutational analysis can 

provide valuable functional information. Activin receptor like kinase 1 (ALK-1) is able 

to bind TGFβ1 or activins in the presence of either TβR II or activin type II receptors, 

respectively. However preliminary data showed that it does not induce transcriptional 

activity (Kretzschmar et al., 1998, Bassing et al., 1994). Thus ALK-1 was considered as 

an orphan receptor. Expression of this receptor in arterial endothelium during 

embryogenesis (Roelen et al., 1997) and in adult tissues (Panchenko et al., 1996) 

suggested its potential role in the regulation of angiogenesis. Mice lacking ALK-1 

exhibit dilation of major vessels and fusion of capillaries (Oh et al., 2000). Similar 

phenotypes were observed in TGFβ1 (Dickson et al., 1995), TβR II (Oshima et al., 

1996), endoglin (Li et al., 1999) and Smad5 (Sankar et al., 1996) deficient mice. It is 

generally believed, that BMPs activate Smad 1/5/8 whereas TGFβs induce Smad 2/3 

pathway. Although ALK-1 has been identified to bind TGFβ1, the signal is most 

probably mediated through a BMPs Smad1/5 dependent pathway (Oh et al., 2000). 

Additionally, ALK-1 signaling was shown to be required for differentiation and proper 

localization of vascular smooth muscle cells to the perivascular region during 

embryogenesis (Oh et al., 2000). The most extensively studied cytokine in angiogenesis 

was TGFβ1 and its receptors, i.e. ALK-1 and ALK-5 (reviewed by Goumans et al., 

2003). It is proposed that two TGFβ signaling pathways (via ALK-1 and ALK-5) may 

play a balancing role in vascular development (Seki et al., 2006). As already mentioned, 

ALK-1 is expressed in the endothelial layer of arteries, while ALK-5 transcripts were 

found in vascular smooth muscle cells in medial and adventitial layers of blood vessels, 

but they were undetectable in the intimal layer in embryos. Some groups however, 

found ALK-5 expression in endothelial cell lines (reviewed by Goumans et al., 2003). 

ALK-5 was shown to exert its function via the Smad2/3, but not the Smad1/5/8 pathway 

(Lebrin et al., 2005). Moreover ALK-5 knock-outs exhibit defects in the formation of 

the smooth muscle layer, but no dilation of blood vessels, as in case of ALK-1, was 

observed. During embryonic heart development, ALK-5 was found to be expressed by 

trabecular muscle cells (Seki et al., 2006). Based on these data, the authors proposed 

that TGFβ signaling is involved in vascular morphogenesis utilizing two distinct type I 

receptors: ALK-1 in endothelial cells and ALK-5 in vascular smooth muscle cells. As 
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shown by the example of TGFβ1, one ligand might exhibit different functions 

depending on the binding to particular receptors in various cell types. 

Activin receptor like kinase 2 (ALK-2) has been shown to play a role in 

rightward looping of the primary heart tube in Xenopus leavis (Ramsdell et al., 1999). 

During mouse embryogenesis ALK-2 was found to be expressed at low levels in the 

myocardium, whereas an abundant expression was detected in endocardial cells and the 

underlying mesenchyma of AV canal (Wang et al., 2005). Interestingly, mice with a 

deficiency of ALK-2 in cardiomyocytes did not develop an obvious cardiac phenotype 

while severe septal and valvular defects were observed, when ALK-2 was ablated in 

endothelial cells, as a result of disturbed endothelial to mesenchyme transdifferentiation 

(Wang et al., 2005).       

It has been already mentioned, that BMPs act mainly through ALK-3 and ALK-

6 of type I receptor. ALK-3 is ubiquitously expressed throughout development, whereas 

ALK-6 is absent in the developing heart from midgestation (Dewulf et al., 1995). 

Cardiac specific ALK3 deletion results in many heart defects (Gaussin et al., 2002). 

Ablation of ALK-3 leads to increased apoptosis rate of cardiomyocytes, thus the ALK-3 

mediated pathway is required for myocyte survival. Additionally, ALK-3 expression in 

myocytes is necessary at mid-gestation for proper intraventricular septation, 

development of normal trabeculae, compact myocardium and endocardial cushion. 

Interestingly, in mutant embryos, BMP10 expression in trabeculae was unchanged, but 

precocious expression in atria was found (Gaussin et al., 2002). When ALK-3 

expression was abolished in the subset of cardiac myocytes of AVC, anomalies in mitral 

septal leaflets and tricuspid mural leaflets were found in adult animals. Downward 

displacement and disruption of the annulus fibrosus resulted in direct myocytic 

connection between atrium and ventricle that led to ventricular preexcitation (Gaussin et 

al., 2005). Surprising results were obtained when ALK-3 expression was ablated in 

neural crest cells (Stottmann et al., 2004). Most aspects of neural crest development 

occurred normally, but the mutant embryos died at midgestation due to acute heart 

failure. Mutants display a shortened with defective septation, lack of endocardial 

cushion and reduced rate of ventricular myocardial proliferation leading to little 

expansion of trabeculae and thinned compact myocardium. Ablation of ALK-3 in Isl1 

expressing cells (believed to be undifferentiated cardiac progenitors) leads to aberrant 

morphology of and right ventricle at E9.5. At E11.5 a thinner ventricular wall and 

reduced trabeculation was observed. At E13.5 severe defects in formation with 
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persistent truncus arteriosus and underdeveloped valves were noted. Thinner ventricular 

wall and septation defects appeared due to disturbed proliferation and apoptosis, 

respectively (Yang et al., 2006).  

Developmental events are also sensitive not only to complete absence but also to 

reduced BMP signaling (Délot et al., 2003). Mice lacking half of the ligand-binding 

domain in the BMP type II receptor die at midgestation as a result of severe 

cardiovascular defects. Mutants exhibit a very restricted phenotype, limited specifically 

to the outflow tract (OFT). The main defects of BMP signaling limitation are absence of 

septation in the developing heart with interruption of the aortic arch as well as lack of 

the semilunar valve, which prevents the backflow from aorta and pulmonary trunk into 

the ventricles (Délot et al., 2003).  

 

 

1.5. BMP10 as a heart specific member of the TGFβ superfamily 

 

BMP10 starts to be expressed during mouse embryogenesis exclusively in heart 

at E9.0. Its transcripts were found to be restricted to the trabeculated part of common 

ventricles and bulbus cordis, but to be absent in endocardial cells (Neuhaus et al., 1999). 

During later stages (E14.5), the signal also appears in the trabeculated inner atrial wall. 

The sequence of BMP10 displays all characteristic features of a bone morphogenetic 

protein family member, such as RRIR cleavage site, that divides 421 amino acid 

precursors into a pro-region with a hydrophobic leader sequence and the mature ligand 

with conserved cysteine residues. On the basis of sequence homology, BMP10 together 

with BMP9 and chicken dorsalin, constitute a new BMP subgroup (Neuhaus et al., 

1999). The closest relative to BMP10 is BMP9, which is not expressed in the heart. In 

adult tissues, northern blot analysis revealed that BMP10 transcripts are restricted to the 

right atrium of the healthy human heart (Neuhaus et al., 1999), and such kind of 

expression pattern was further confirmed in the mouse by another group (Chen et al., 

2004). Recently, studies concerning BMP10 ablation in the mouse have been published 

as well. Absence of BMP10 caused embryonic lethality, between E9.5 and E10.5. 

BMP10 deficient mice exhibit severe cardiac abnormalities with a profound hypoplastic 

ventricular wall, absence of ventricular trabeculation and halted at acellular stage the 

development of endocardial cushions in both  and the atrioventricular canal (AVC) 

(Chen et al., 2004). The authors found that lack of trabeculated myocardial layers in 
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mutants was caused by a defect in myocyte proliferation and ectopic expression of 

negative cell-cycle regulator p57
kip2

. Moreover, BMP10 expression was found to be 

upregulated in FKBP12- deficient mouse, which exhibit hypertrabeculation (Shou et al., 

1998). High ectopic levels of BMP10 expression were also found in adult hearts of 

ventricular cardiomyocyte restricted knock-out of Nkx2.5 (Pashmforoush et al., 2004). 

Hearts of Nkx2.5 deficient mice are hypertrabeculated due to persistent myocyte mitosis 

leading to complete heart block. Additionally, ventricular myocardium shows 

noncompaction and a disorganized conduction system with progressive fibrosis. 

Proliferative function of BMP10 was further confirmed by generation of transgenic 

mouse strains overexpressing the gene under the ANF promoter, which led to a similar 

phenotype of myocardial hypertrabeculation and noncompaction (Pashmforoush et al., 

2004). 

Receptor binding studies revealed that BMP10 can interact with type I receptors 

ALK-3 and ALK-6 and both type II receptors (BMPR II and ActR IIA) and activates 

Smad1/5/8 pathway. However the design of this study and results are questionable and 

more work is needed to clarify the details of BMP10 signal transduction (Mazerbourg et 

al., 2005). 

 

 

1.6. Aim of the project 

 

The general purpose of the present work was to investigate the role of BMP10 in 

the adult heart. A thorough knowledge of the expression and localization studies of 

BMP10 is a prerequisite for any further work. As BMP10 undergoes secretion from the 

cells where it is expressed, it was necessary to generate an antibody specific to the 

processed, mature secreted form of the protein to investigate the localization of BMP10. 

I was also interested to study the qualitative and quantitative changes of BMP10 

expression in genetic and drug induced models of dilated and hypertrophic 

cardiomyopathy. Additionally, in the work presented here I attempt to unveil the 

function of BMP10. Overexpression of active BMP10 in mammalian cells allowed to 

study the effects of this protein on cells of various origins in vitro. 
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2. Experimental procedures 

 

2.1. Materials 

 

2.1.1. Basic materials 

 

MATERIALS COMPANY 

Biodyne® Nylon Membrane Pall (Dreieich, Germany) 

Bio-Traces® Nitrocelulose Pall (Dreieich, Germany) 

Blotting Paper 3MM Whatman International (Maidstone, 

England) 

Chamber slide w/cover permanox slide  Nunc (Roskilde, Denmark) 

Cell culture plates Nunc (Roskilde, Denmark) 

Filters 
Schleicher & Schüll (Hannover, 

Germany) 

Filters Minisart NML (0.2 und 0.45 µm) Sartorius (Göttingen, Germany) 

Glass slides and cover slides Roth (Karlsruhe, Germany) 

Glassware Schütt (Göttingen, Germany) 

Mini osmotic-pump 2002 Alzet (USA) 

NAP-5™ columns (Sephadex® G-25) Pharmacia  Biotech (Sweden) 

Nitrocellulose membrane Invitrogen (Karlsruhe) 

Plastic ware Nunc (Wiesbaden, Germany) 

Pro-Bond Ni-chelating Resins Invitrogen (Karlsruhe, Germany) 

Round cover slides Roth (Karlsruhe, Germany) 

X-ray developer Kodak (Frankfurt/Main, Germany) 

X-ray Film Kodak (Frankfurt/Main, Germany) 

Ni-NTA agarose Qiagen 

 

2.1.2. Chemicals 

 

Basic chemicals were purchased from the following companies: Boehringer 

Mannheim (Mannheim), Invitrogen (Karlsruhe, Germany), Merck (Darmstadt), 

Molecular Probes (Goettingen), New England Biolabs (Schwalbach), Pharmacia 

(Freiburg), Promega (Mannheim), Roth (Hamburg/Karlsruhe, Germany), Serva 
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Feinbiochemika (Heidelberg), Sigma-Aldrich (Deisenhofen), Stratagene (Heidelberg), 

Quiagen (Hilden). 

 

 

2.1.3. Radiochemicals 

 

Radioactive labelled nucleotides were purchased from Amerscham Buchler 

(Braunschweig) or PerkinElmer (Boston): 

• [α-
32

P] dCTP (6000 Ci/ml) 

 

 

2.1.4. Reagents 

 

• Avertin® 2,2,2-Tribromoethyl Alkohol    Boehringer (Mannheim) 

• Agar plaque plus agarose    BD Clontech (USA) 

• BaculoGold TNM-FH insect medium   BD Clontech (USA) 

• BCIP(5-Bromo-4-chloro-3-indolylphosphat)  Boehringer (Mannheim) 

• BMP-2      Sigma-Aldrich(Deisenhofen) 

• Chloroquine      Sigma-Aldrich(Deisenhofen) 

• DAB (3,3’-diaminobenzidine)    Sigma-Aldrich(Deisenhofen) 

• DAPI (4’,6-diamidino-2-phenylindole)  Invitrogen (Karlsruhe)  

• Dimethylsulfoxid      Sigma-Aldrich(Deisenhofen) 

• Dil-Ac-LDL      Cell Systems (Frankfurt) 

• Digoxigenin-UTP      Boehringer (Mannheim) 

• Dithyotreithol (DTT)      Promega (Mannheim) 

• Doxorubicine      Sigma-Aldrich(Deisenhofen) 

• Draq5™       (Alexis) 

• Dubelcco’s Modified Eagle Medium (D-MEM) 1.000 mg0/ml D-glucose, L-

glutamine and sodium pyruvate    Invitrogen (Karlsruhe) 

• Dubelcco’s Modified Eagle Medium (D-MEM) 4.500 mg0/ml D-glucose, L-

glutamine and sodium pyruvate    Invitrogen (Karlsruhe) 

• Eosin       Division Chroma 

• Fetal Bovine Serum      Invitrogen (Karlsruhe) 
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• Geneticin G-418      Invitrogen (Karlsruhe) 

• Grace’s insect medium    Invitrogen (Karlsruhe) 

• Gradient acrylamide 4-12% gels   Invitrogen (Karlsruhe) 

• Gradient acrylamide 8-20% gels   Anamed 

• Heparin       Sigma-Aldrich(Deisenhofen) 

• Haemalaun sauer     Division Chroma 

• IPTG (Isopropyl-β-D-tiogalactopyranosidase)  Roth (Karlsruhe) 

• Isoflurane      Forene (Germany) 

• Isoproterenol      Sigma-Aldrich(Deisenhofen) 

• Levamisole       Sigma-Aldrich(Deisenhofen) 

• Matrigel      BD Clontech (USA) 

• NBT (4-Nitro-Blue-Tetrazoliumchlorid)  Boehringer (Mannheim) 

• Neutral red      Sigma-Aldrich(Deisenhofen) 

• NP-40       Roth (Karlsruhe) 

• NuPAGE 4-12% Bis-Tris Gel   Invitrogen (Karlsruhe) 

• Mowiol      Merck (Darmstadt) 

• Opti-MEM® with GlutaMAX
TM

-I    Invitrogen (Karlsruhe) 

• PageRuler
TM

 Prestained Protein Ladder  Fermentas (Lithuania)  

• Penicillin-Streptamycin-Glutamine    Invitrogen (Karlsruhe) 

• PFA (paraformaldehyde)    Merck (Darmstadt) 

• Phalloidin-TRITC conjugated   Sigma-Aldrich(Deisenhofen) 

• Phalloidin-FITC conjugated    Sigma-Aldrich(Deisenhofen) 

• Polyfreeze
TM

 tissue freezing medium
TM

  Polysciences Inc. (USA) 

• Prestained Protein Ladder 10-180 kDa   Fermentas 

• Probond
TM

 Resin      Invitrogen (Karlsruhe) 

• Protease inhibitor coctail EDTA-free   Roche (Karlsruhe) 

• RNasin®       Invitrogen (Karlsruhe) 

• Serum free insect medium     Sigma-Aldrich(Deisenhofen) 

• Sheep serum       Sigma-Aldrich(Deisenhofen) 

• Triton X-100      Roche (Karlsruhe) 

• Trizol®       Invitrogen (Karlsruhe) 

• Trypan blue      Sigma-Aldrich(Deisenhofen) 
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• Trypsin 2,5%       Invitrogen (Karlsruhe) 

• Tween-20      Roche (Karlsruhe) 

• Vectabond
TM

      Vector Laboratories 

• X-Gal        Roth (Karlsruhe) 

      (5-bromo-4-chloro-3-indolyl β-D-galactopyranoside)  

• Yeast tRNA      Boehringer (Mannheim) 

 

 

2.1.5. Enzymes 

 

Restriction endonucleases were obtained from Jena Bioscience, New England 

Biolabs and Fermentas. 

 

DNA Polymerase I Large Klenov Promega 

Expand High Fidelity Polymerase Roche 

RQ1 RNase Free DNase Promega 

RNA Polymerases (T7, T3, SP6) Promega 

SuperScript
TM

 II Reverse Transcriptase Invitrogen 

Taq DNA Polymerase Eppendorf 

T4 Polynucleotide Kinase Promega 

T4 DNA Ligase Promega 

 

 

2.1.6. Kits 

 

BaculoGold transfection kit  BD Clontech 

Baculovirus kit BD Clontech 

BrDu Immunohistochemistry system Oncogene 

Comassie Plus
TM

 Protein Assay Kit Pierce 

ECL developing system  Amersham, Pierce 

FUGENE 6 transfection reagent Roche 

In situ cell death detection kit  Roche 

JetQuick PCR purification kit Genomed 
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JetQuick Gel extraction kit Genomed 

JetStar Maxi plasmid purification kit Genomed 

JetStar Mega plasmid/cosmid purification kit Genomed 

Micro-Fast Track 2.0
TM

 mRNA isolation kit Invitrogen 

Ne-Per nuclear and cytoplasm extraction kit  Pierce 

Rapid Ligation Kit Fermentas 

TOPO®TA Cloning Kit Invitrogen 

Femto WB detection system Pierce 

 

 

2.1.7. Oligonucleotides 

 

All oligonucleotides were obtained from Roth, Invitrogen. 

 

Primer Sequence 5’→3’ 

T7 TAATACGACTCACTATAGGG 

T3 ATTAACCCTCACTAAAGGGA 

Sp6 ATTAGGTGACACTATAG 

M13 Forward GTAAAACGACGGCCAG 

M13 Reverse CAGGAAACAGCTATGAC 

5`-mouse-HPRT GCTGGTGAAAAGGACCTCT 

3`-mouse-HPRT CACAGGACTAGAACACCTGC 

5’-mouse-GAPDH GTGGCAAAGTGGAGATTGTTGCC 

3’-mouse-GAPDH GATGATGACCCGTTTGGCCC 

5’-mouse-BMPRII ATGACTTCCTCGCTGCATCGGCCA 

3’-mouse-BMPRII CAGCTAACACAGAAACTGATGCCAAAG 

5’-pRSET-BMP10 CGGATCAGCTCGAGCGCCAAGGGGAACTAC 

3’-pRSET-BMP10 GCCTCTGGTACCCTATCTACAGCCACACTC 

5’-3’arm-BMP10-

ApaI-ko 

GGAGAGGAGAGGGGGCCCATGGC 

3’-3’arm-BMP10-

ApaI-ko 

CAAGGCTGATTTCAGGGCCCAAGCTC 

5’-5’ex2-BMP10- CATACTGCAAGTCTGGTACCTCATAAGTATC 
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KpnI-ko 

3’-5’ex2-BMP10-

KpnI-ko 

GCCACACTCAGACGGTACCATCCCTTC 

5’-PVL-BMP10-NotI GCGGCCGCATGGGGTCTCTGGTTCTGC 

3’-PVL-BMP10-

XbaI 

TCTAGACTATCTACAGCCACACTCAGACAC 

5’-IRES-GFP-

BMP10-PstI 

CTCGCTGCAGGCCATGGGCTCTCTGGTCCTG 

3’-IRES-GFP-

BMP10-XmaI 

GGGCCCGGGCTTTGTGGGCACACAGCAG 

5’-5’arm-BMP10-ko GGAAGGATCCATGGCCGCGGAGCTGAGC 

3’-5’arm-BMP10-ko CCAGACTTGCCGCGGGCTTCATAATATAGC 

5’-mouse-BNP GTTACAGGAGCAGCGCAACC 

3’-mouse-BNP AGGCCACTGGAGGAGCTGAT 

5’-mouse-ANF CTCCTTCTCCATCACCAAGG 

5’-mouse-ANF CTCTGGGCTCCAATCCTGTC 

5’-mouse-pDGFRß GGCAGGTCATACCATGAT 

5’-mouse-pDGFRß TCGAGGTGGTCTTGAGCT 

5’-mouse-SM-actin GAGAAGCCCAGCCAGTCG 

3’-mouse-SM-actin CTCTTGCTCTGGGCTTCA 

5’mouse-calponin GAAATACGACCATCAGCGGG 

3’mouse-calponin CCAGTTTGGGATCATAGAGG 

5’ mouse-BMP10 GGA AAC TAC TGT AAG AGG ACC CC 

3’ mouse-BMP10 CTA TCT ACA GCC ACA TTC GGA GAC 

5’ mouse-PECAM AGGGGACCAGCTGCACATTAGG 

3’ mouse-PECAM AGGCCGCTTCTCTTGACCACTT 

5’mouse-POD1 GGCAAGCAGGTCCAGCGCAAC 

3’mouse-POD1 CAAGCGGTTGGCGGTCACCAC 

5’mouse-ALK1 CCTTGGGGAGCTTCAGAAGGGGC 

3’mouse-ALK1 GGGCCACCAGGACCGGCAAG 

5’mouse-ALK2 GCCGCCCGGGCCACCCGCCCGCGG 

3’mouse-ALK2 CTGCTGGCCTTCACAGTGGTCCTCGTTCC 

5’mouse-ALK3 GCTATACACTTACATCAGATTACTGGG 
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3’mouse-ALK3 CCATGGAAATGAGCACAACCAG 

5’mouse-ALK5 CTGCTCCCGGGGGCGAAGGCATTACAG 

3’mouse-ALK5 GGTGGTGCCCTCTGAAATGAAAGGGCG 

5’mouse-ALK6 GGAGGATGGAGAGAGTACAGCCCC 

3’mouse-ALK6 CAGCCCAATGCTGTACCGAGGTCG 

5’mouse-ALK7 GGTAAGCCTGCTATTGCTCACCGA 

3’mouse-ALK7 GCCACTGGTTTGGGAGATTTGGTC 

5’mouse-Mef2C GCGTGCTGTGCGACTGTGAGATTGC 

3’mouse-Mef2C CCGCCCATCAGACCGCCTGTGTTACC 

5’mouse-p57 AGTCTGTGCCCGCCTTCTAC 

3’mouse-p57 CTCAGTTCCCAGCTCATCACCC 

5’mouse-CHISEL GGGAGCCTTTCGTCCGGGAGCTGG 

3’mouse-CHISEL CATCTCCTGATTCTAAGCATCCAATG 

5’mouse-dHAND CCCGTGCACCATGAGGGCTACCC 

3’mouse-dHAND CTTCACTGCTTGAGCTCCAGGGCCCAG 

5’mouse-Nkx-2.5 TTCAAGCCCGAGGCCTACTCTG 

5’mouse-Nkx-2.5 TGAATCCCCTCCTTCCGCATT 

 

 

2.1.8. Vectors and Plasmids 

 

 

pGEM  

T-Vector 

Promega Contains TA cloning ends for PCR products.  

pCR TOPO 2.1 Invitrogen Contains TA cloning ends for PCR products. 

pCR TOPO II Invitrogen Contains TA cloning ends for PCR products. 

pEGFP-C2 Clontech Contains CMV the promoter and GFP coding 

sequence at C-terminal end; constructed for 

production of fused protein.  

pRSET A Invitrogen Contains 6 copies of Histidine tag which is 

recognized by the monoclonal antibody; 

constructed for production of the epitope-

tagged protein which can be overexpressed in 

E.coli. 

pVL1392 Clontech For protein over-expression in baculovirus 

pIRES2-GFP Clontech Contains CMV promoter and  GFP coding 

sequence at C-terminal end; constructed for 

production of fused protein 
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pHTOP-

BMP10 

Generous gift 

from Dr. 

Neuhaus 

Contains the full length cDNA of human 

BMP10  

BMP10-gen2-

BamHI/HindIII 

Generous gift 

from Dr. 

Neuhaus 

Conteins flanking region of the genomic 

BMP10 locus. Used as probe for ES screening 

BMP10pro Generous gift 

from Dr. 

Neuhaus 

Contains exon 1 and 2 of the human BMP10.  

BMP10-gen10 Generous gift 

from Dr. 

Neuhaus 

Contains part of the BMP10 genomic locus. 

pBlusescript-

BMP10-gen-

locus 

Generous gift 

from Dr. 

Neuhaus 

Contains fragment of the BMP-10 genomic 

locus. 

 

 

2.1.8.1. Plasmids for riboprobes synthesis 

 

 

Antisense 

probe GENE INSERT SIZE (kb) VECTOR 

Enzyme Pol. 

BMP10 BMP10 pro region 1,8kb pBluscript BamH1 T7 

ANF ANF  0,8 kb 
pGEM-T-

Vector 
HindIII T7 

FHL2 FHL2  0,5 kb pBluscript EcoRI T7 

 

 

2.1.9. Bacterial strains 

 

Bacterial strain Company Brief destription 

TOP10F` E.coli (Invitrogen) 

[F`[lacI
q
,Tn10(Tet

R
)]], mercA, ∆(mrr-hsdRMS-

mcrBC), 

φ80lacZ∆M15, ∆lacX74, deoR, recA1, araD139 

∆(ara-leu)7697, galK, rpsL(StrR), endA1, nupG, 

XL1-Blue E. coli (Stratagene) 

recA1, endA1, gyrA96, thi-1, hsdR17(rK
-
,mK

+
), 

supE44, relA1, l
-
, lac

-
, [F' proAB, lacI

q
ZD M15, 

Tn10(Tet
r
)] 

Stbl2 E. coli (Invitrogen) 
F

-
 mcrA ∆(mrr-hsdRMS-mcrBC) recA1 endA1 

lon gyrA96 thi-1 supE44 relA1 λ- ∆(lac-proAB) 
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BL21(DE3)pLysE 

E. Coli 
(Stratagene) 

B,F, dcm, ompT, hsdSB(rB
-
mB

-
)gal(DE3) [pLysS 

Cam
r
, T7 lysozyme, T7 RNA polymerase inhibitor 

 

 

2.1.10. Cell lines 

 

BM-MASC Belema Bedada et al., 2005 

COS-1 ATCC No: CRL-1650 

C3H10T1/2 ATCC No: CCL-226; murine mesenchymal fibroblasts 

C2C12 ATCC No: CRL-1722; murine myoblastoma cell line 

SF9 ATCC No: CRL-1711 

293T ATCC No: CRL-11268; human kidney cell line, contains Adeno 

and SV-40 viral DNA sequence 

 

 

2.1.11. Antibodies 

 

• Alexa Fluor 488 labelled chicken anti-rabbit IgG, (Molecular Probes) 

• Alexa Fluor 488 labelled goat anti-mouse IgG, (Molecular Probes) 

• Alexa Fluor 594 labelled chicken anti-mouse IgG, (Molecular Probes) 

• Alexa Fluor 594 labelled chicken anti-rabbit IgG, (Molecular Probes) 

• Digoxygenin FAB Fragment (Roche) 

• Donkey Anti- rabbit IgG horse radish peroxidase linked (Amersham) 

• Donkey anti-goat IgG Cy2 (Jackson Immnunoresearch) 

• Donkey anti-goat IgG Cy3 (Chemicon) 

• Donkey anti-mouse IgG Cy2 (Jackson Immnunoresearch) 

• Donkey anti-rabbit IgG Cy3 (Chemicon) 

• Goat anti-mouse FAB fragment (Chemicon) 

• Goat anti-mouse whole antibody (Chemicon) 

• Goat anti-rabbit IgG (H+L) Biotin SP-conjugated (Jackson Immnunoresearch) 

• Goat polyclonal anti- Nkx-2.5 antibody (Santa Cruz)  

• Goat polyclonal anti- PDGFRß antibody (Santa Cruz)  

• Goat polyclonal anti- PECAM antibody (Santa Cruz)  

• Goat polyclonal anti- POD1 antibody (Santa Cruz) 

• MF-20:  Mouse monoclonal antibody anti myosin heavy chain, (Schafer et al. 

1999) 
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• Mouse monoclonal Anti HisG antibody (Invitrogen) 

• Mouse monoclonal anti- NCL-CCC9 antibody (Novocastra) 

• Mouse monoclonal anti SM-actin clone 1A4 Cy3 conjugated antibody (Sigma) 

• Mouse monoclonal anti SM-actin clone 1A4 FITC conjugated antibody (Sigma) 

• Mouse monoclonal anti-calponin antibody (Sigma) 

• Mouse monoclonal anti-desmoplakin antibody (Labgen) 

• Mouse monoclonal anti-plakoglobin antibody clone 15F11 (Sigma)  

• Mouse monoclonal anti-vimentin antibody clone V9 Cy3 conjugated (Sigma) 

• Mouse monoclonal anti-vinculin antibody clone VIN 11-5  (Sigma) 

• Peroxidase conjugated streptavidin antibody (Rockland) 

• Polyclonal rabbit anti-GFP (Invitrogen) 

• Rabbit affinity purified anti-collagen VI antibody (Rockland) 

• Rabbit polyclonal anti phospho-histone 3 antibody (Upstate)  

• Rabbit polyclonal anti-Aurora B antibody (Abcam) 

• Rabbit polyclonal anti-BMP10 antibody (Abgent) 

• Rabbit polyclonal anti-BMP10 antibody (Acris) 

• Rabbit polyclonal anti-dystrophin antibody (H300) (Santa Cruz) 

• Rat monoclonal anti-ScaI (D7) antibody (BD Clontech) 

• Sheep Anti- mouse IgG horse radish peroxidase linked (Amersham) 

• Streptavidin-Cy2 conjugated (Chemicon) 

• Streptavidin-Cy3 conjugated (Chemicon) 

• Texas Red dye conjugated streptavidin antibody (Jackson Immnunoresearch) 

 

 

2.1.12. Mouse strains 

 

• ICR (CD31) – albino inbred strain used as wild type in the present study. 

• BL6C/57 –inbred strain commonly used for the generation of transgenic mice. 

• MnSOD knock-out (kind gift from Dr. T. Loch) 

• Desmin-LacZ (generous gift from Prof. Braun) 

• Sca1-GFP (generous gift from Prof. Braun) 
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2.1.13. Buffers and solutions 

 

All buffers and solutions were prepared in accordance with standard protocols 

included in “Molecular Cloning” (Sambrook et al., 1989) or “Current Protocols in 

Molecular Biology” (Ausubel et al., 1992). All solutions were made in double-distilled 

water or demineralized MilliQ water. Solutions were either autoclaved or filter-

sterilized. 
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2.2. Methods 

 

2.2.1. Standard molecular biology methods 

 

All molecular biology procedures were used according to the standard protocols 

of “Molecular Cloning” (Sambrook at al. 1989) and “Current Protocols in Molecular 

Biology” (Ausubel et al. 1992). Procedures used during current study are described 

below only if they differ from the manufacture’s instructions. 

 

 

2.2.2. Cloning methods 

 

All plasmids, during the current studies, were prepared as follows. Inserts of 

interests were amplified using Taq Polymerase (Eppendorf) or Expand High Fidelity 

Polymerase (Roche) with specific primers (2.1.7). PCR amplified fragments were 

cloned into the pGEM-T-vector (Promega) or pCR TOPO II (Invitrogen). Plasmid DNA 

was isolated according to the protocol (Sambrook at al. 1989). Clones were verified by 

digesting with restriction endonuclease enzymes, followed by sequencing of positive 

clones. Typically, a standard sequencing reaction contained around 50-100 ng of 

plasmid DNA, 3.2 pmol of the indicated sequencing primer (2.1.7) supplemented with 

buffers from DNA Cycle Sequencing Kit (Abi, Weiterstadt). Sequencing reactions were 

prepared using the ABI 310 Genetic Analyzer sequencer (Perkin Elmer). Sequences and 

their alignments were validated using the following data bases: www.ncbi.nih.gov. 

BLAST, www.ensembl.org and DNA-Star, Lasergene 99 software. Clones with proper 

sequences were used for further studies. Fragments were cut out with restriction 

enzymes and subcloned into the target vectors (2.1.8). 

 

 

2.2.3. Plasmids generated during the studies 

 

 Plasmids generated during the presented work were prepared as described in the 

chapter 2.2.2 and summarized in the table. The table contains: primers’ pairs used for 

PCR amplification (2.1.7) as well as their applications for further studies. 
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Plasmid 

name 
Primers names 

Cloning 

sites 
Applications 

pCRII-TOPO-

GAPDH 

5’-m-GAPDH 

3’-m-GAPDH 
- 

320 bp GAPDH fragment 

obtained using RT-PCR for 

qRT-PCR. 

pRSET-B- 

mature-

BMP10 

5’-pRSET-BMP10 

3’-pRSET-BMP10 

KpnI 

XhoI 

Over-expression of the fused 

mature region of the BMP10 

protein to the N-terminal 

6×His- tag. in E.coli.  

pVL1392-

BMP10 

5’pvl-BMP10 

3’pvl-BMP10 

NotI 

XbaI 

Over-expression of the full 

length BMP10 in insect cells. 

Transfer plasmid. 

pCRII-TOPO-

ANF 

5’-m-ANF 

3’-m-ANF 
- 

The ANF fragment obtained 

using RT-PCR for qRT-PCR. 

pIRES2-GFP- 

BMP10 

5’pIRES-BMP10 

3’pIRES-BMP10 

PstI 

XmaI 

Expression of the full length 

of the human BMP10 protein 

in eukaryotic cell lines. 

pCRII-TOPO-

3’flanking-

arm-BMP10 

5’-3’arm-BMP10 

3’-3’arm-BMP10 
ApaI 

Construct for the conditional 

inactivation of BMP10. 

pCRII-TOPO-

5’flanking-

arm-BMP10 

5’-5’arm-BMP10 

3’-5’arm-BMP10 
SacII 

Construct for the conditional 

inactivation of BMP10. 

pCRII-TOPO-

Exon2-

BMP10 

5’-ex2-BMP10 

3’-ex2-BMP10 
KpnI 

Construct for the conditional 

inactivation of BMP10. 

pK11-loxP-

BMP10-loxP 
- - 

Construct for the conditional 

inactivation of BMP10. 

pCRII-TOPO-

BNP 

5’-m-BNP 

3’-m-BNP 
- 

The BNP fragment obtained 

using RT-PCR. 

pCRII-TOPO-

FHL2 

5’-m-FHL2 

3’-m-FHL2 
- 

The FHL2 fragment obtained 

using RT-PCR. 

pCRII-TOPO-

BMPRII 

5’-m-BMPRII 

3’-m-BMPRII 
- 

The BMPRII fragment 

obtained using RT-PCR. 

pCRII-TOPO-

PDGFRß 

5’-m-PDGFRß 

3’-m-PDGFRß 
- 

The PDGFRß fragment 

obtained using RT-PCR. 

pCRII-TOPO-

PECAM 

5’-m-PECAM 

3’-m-PECAM 
- 

The PECAM fragment 

obtained using RT-PCR. 

pCRII-TOPO-

calponin 

5’-m-calponin 

3’-m-calponin 
- 

The calponin fragment 

obtained using RT-PCR. 

pCRII-TOPO-

POD1 

5’-m-POD1 

3’-m-POD1 
- 

The POD1 fragment 

obtained using RT-PCR. 

 

Plasmids used for riboprobes synthesis were generated by cloning of RT-PCR 

amplified fragments into the pCR TOPO II (Invitrogen) and are listed in the chapter 

2.1.8.1. 
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2.2.4. Conditional inactivation of BMP10 gene 

 

The plasmid containing the genomic locus of the BMP10 gene was kindly 

provided by Dr. Herbert Neuhaus (2.1.8). Flanking arms (5’ and 3’) as well as exon 2 of 

the BMP10 gene were amplified by PCR using Expand High Fidelity polymerase 

(Roche) and specific primers (2.1.7). All fragments were cloned into the pCRII-TOPO 

vector (Invitrogen) and verified by sequencing including also internal set of primers. 

Next, 3’ flanking region (1.6 kb) was inserted into the pK11 vector with the ApaI site 

followed by cloning exon2 of BMP10 using the KpnI site. Finally, the 5’ flanking arm 

(4.8 kb) was subcloned into the pK11-3’-arm-exon2 plasmid with the SacII site. A 

schematic overview of the construct for the conditional BMP-10 ablation in mice is 

shown in Fig. 2.1. 

 

 

 

  

 

Fig. 2.1. The organization of the BMP-10 modified locus including major 

restriction sites is shown.  

 

The targeting vector contains also a neomycin resistance gene (neo) under the control of 

the phosphoglycerol kinase (PGK) promoter flanked by two FRT sites. The pK11-

BMP-10-ko plasmid was linearized with the PvuI restriction enzyme for ES cells 

transfection. Culture plates used for embryonic stem (ES) cells growth were covered 

with 0.2% gelatine. ES cells were cultivated on a monolayer of feeder cells treated with 

mitomycin C (kind gift from Dr. T. Loch). Usually, feeder cells were plated one day 

prior to ES cells seeding. The culture of ES cells was propagated in ES-medium in a 

humidified atmosphere containing 10% CO2 at 37
O
C. The medium was changed daily. 

ES cells before trypsinization were washed with HEPES/EDTA buffer and detached 

using 0.25% trypsin in HEPES/EDTA buffer. The target construct was introduced into 

ES cells by electroporation methods. Briefly, cells were harvested and around 14×10
6
 

cells were suspended in 600µl of OPTI-MEM medium and 25µg of the linearized 

plasmid DNA was added. Electroporation was done using 4 mm gap electroporation 

cuvettes (Peqlab) at the following conditions: low voltage mode, 250 V and 1 
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millisecond pulse. Then cells (2×4×10
6
 and 2×7×10

5
) were

 
plated in 10-cm dishes. One 

day later, the medium was replaced by selection medium (ES-medium supplemented 

with G418 at 400 µg/ml). Transfected ES cells were grown in selection medium for 14 

days and the medium was replaced daily. After 10 days single colonies were picked and 

propagated in 96 well plates followed by their growth in 24 well plates. Only around 

80-100 clones were obtained after a single electroporation. A part of the ES culture was 

prepared for DNA isolation. These clones were grown in 24 well plates for 7-8 days 

until they reached confluence. Genomic DNA was isolated from around 100 clones 

using the proteinase K extraction method, and southern blot analysis was done using 

specific probe. None of the screened clones were positive for a mutated allele (data not 

shown). 

 

 

2.2.5. In situ hybridization 

 

2.2.5.1. Embryos preparation 

 

Isolated embryos at the different stages were immediately washed with ice-cold 

1×PBS and fixed in 4%PFA over night. Next, samples were dehydrated in 25%, 50%, 

and 75% methanol  in PBT and 2 times in 100% methanol -10 minutes each at room 

temperature. Dehydrated embryos were stored in -20
O
C in 100% methanol. 

 

 

2.2.5.2. Tissue preparation for paraffin embedding 

  

Dissected tissues samples were immediately washed in ice-cold 1×PBS, 

followed by fixation in 4% PFA over night. Next, tissues were dehydrated in ethanol 

(25%, 50%, 75%, 96% for 60 minutes each step and twice in 99.8% ethanol for 10 

minutes followed by 99,8% EtOH at -20
o
C over night). Next day, tissues samples were 

treated twice with 99.8% ethanol/xylol (1:1) for 1 hour, twice per 1 hour with xylol at 

room temperature and incubated for 2 hours at 60
o
C with a mixture of Xylol/ Paraffin 

(1:1), followed by two changes of pure paraffin at 60
o
C. Finally, tissues were embedded 

in paraffin. Sections 7-13 µm thick were prepared using a microtome (Leica). Samples 
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were attached to glass slides coated prior to use with Vectabond
TM

 solution according to 

the manufacture’s instruction. 

 

 

2.2.5.3. In vitro transcription 

 

An antisense and sense riboprobes were synthesized using linearized plasmid 

DNA with RNA polymerases (T7, T3, SP6), depending on the plasmid (2.1.8.1). The 

typical reaction mixture contains: 

 

� Linearized plasmid  1 µg 

� 5 transcription buffer  4 µl 

� 0.1M DTT   2 µl 

� Dig-Mix   2 µl 

� RNA polymerase  1 µl 

� RNasin   2.5 µl 

� H2O     ad 20 µl 

 

The reaction was done for 2 hours at 37
o
C. A plasmid DNA was enzymatically digested 

using DNase I for 30 minutes at 37
o
C followed by DNase heat inactivation at 65

o
C for 

15 minutes. Synthesized riboprobes were purified by precipitation with ethanol 

supplemented with lithium chloride. Next, probes were redissolved in water 

supplemented with RNase inhibitor. The quality of RNA was checked by 

electrophoresis on 1% agarose gel. 

 

 

2.2.5.4. Whole mount in situ hybridization 

 

Embryos at E10.5 were prepared as described in 2.2.5.1. Digoxigenin labeled 

anti-sense and sense probes were synthesized as described in 5.2.5.3. Whole amount in 

situ hybridization was done according to Wilkinson. The following steps were applied: 

 

I. Pre-hybrydization washes: 
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� 100% Methanol   5 min.   RT 

� 75% Methanol/PBT   5 min.   RT 

� 50% Methanol/PBT   5 min.   RT 

� 25% Methanol/PBT   5 min.   RT 

� 2×PBT    5 min.   RT 

� 6% H2O 2    45 min.  RT 

� 3×PBT    5 min.   RT 

� Proteinase K (10µg/ml)/PBT  11 min.  RT 

� Glycine (2mg/ml)/PBT  5 min.   RT 

� 2×PBT    5 min.   RT 

� 0.2% glutaraldehyde/4% PFA 20 min.   RT 

� 3×PBT    5 min.   RT 

� Prehybridization Buffer  120 min.  65
O
C  

� Hybridization Buffer   o.n.   65
O
C 

 

II. Post-hybridization washes: 

 

� 2 x Solution 1    30 min.  70
O
C 

� Solution 1:Solution 2 (1:1)  10 min.  70
O
C 

� 3x Solution 2    5 min.   RT 

� RNase A (1 mg/ml)/ Solution 2 30 min.  37
O
C 

� Solution 2    5 min.   RT 

� Solution 3    5 min.   RT 

� 2 x Solution 3    30 min.   65
O
C 

� 3 x TBST    5 min.    RT 

� 10% Sheep serum/TBST  70 min.   RT 

� Anti-digoxigenin antibody  o.n.   +4
O
C  

1:2000 in 1% sheep serum/TBST 

 

III. Alkaline Phosphatase staining 

 

� 6 x TBST    60 min.   RT 

� 3 x NTMT    10 min.   RT 

� NBT/BCIP in NTMT      RT   
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The alkaline phosphate staining of the samples was stopped with PBT at room 

temperature followed by overnight fixation in 4% PFA at 4
o
C. Embryos were 

documented. 

 

 

2.2.5.5. In situ hybridization in paraffin embedded tissue slides 

 

Tissues samples were prepared as described in 2.2.5.2. Digoxigenin labeled anti-

sense and sense probes were synthesized as described in 2.2.5.3. In situ hybridization 

was done in the following steps: 

 

I. Pre-hybrydization washes: 

 

� 2 x 99.8% Ethanol   2 min.   RT 

� 96% Ethanol    1 min.    RT 

� 70% Ethanol    1 min.    RT 

� 50% Ethanol    1 min.    RT 

� 30% Ethanol    1 min.    RT 

� PBS     5 min.    RT 

� 4% PFA    15 min.   RT 

� PBS     5 min.    RT 

� Proteinase K (10µg/ml)/PBS  5 min.   RT 

� Glycine (2mg/ml)/PBS  5 min.   RT 

� PBS     5 min.    RT 

� 4% PFA    15 min.   RT 

� Acetic Anhydrate/0.25% TEA/H2O  10 min.   RT 

� 2 x PBS     5 min.    RT 

� Pre-hybridization buffer  15 min.   65
O
C 

� Hybridization buffer   o.n.   65
O
C 

 

II. Posthybridization wash. 

 

� 3 x Solution I    15 min.   65
O
C 

� 3 x Solution III   15 min.   65
O
C 
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� 3 x TBST    10 min.  RT 

� 10% Sheep serum/TBST  30 min.   RT 

� Anti-digoxigenin antibody  o.n.   +4
O
C  

1:2000 in 1% sheep serum/TBST 

 

III. Alkaline Phosphatase Staining. 

 

� 3 x TBST    15 min.   RT 

� 3 x NTMT    10 min.   RT 

� NBT/BCIP in NTMT      RT  

 

The alkaline phosphate staining of the samples was stopped with PBS at room 

temperature followed by fixation in 4% PFA for 60 minutes. Next, sections were stained 

with eosin (2.2.5.6) followed by dehydratation. Finally tissues samples were embedded 

in Entelan and documented. 

 

 

2.2.5.5.1. In situ hybridization solutions and buffers 

 

� Solution 1    50% Formamide 

5 x SSC pH 4.5 

1% SDS 

� Solution 2    0.5 M NaCl 

10 mM Tris-HCl pH 7.5 

0.1% Tween-20 

� Solution 3    50 % Formamide 

2 x SSC pH 4.5 

� NTMT    100 mM Tris-HCl pH 9.5 

100 mM NaCl 

0.05 M MgCl2 

0.1% Tween-20/levamisole 
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2.2.5.6. Hematoxylin/eosin staining 

 

After completing the in situ hybridization procedure, sections were stained with 

2% eosin solution (Division Chroma) for 5 minutes and washed several times with 

water.  

Cryosections were fixed in 4% PFA for 10 minutes, washed with PBS followed 

by nuclear staining with hematoxylin (Division Chroma) for 10 minutes and washed 

with water. The cytoplasm was visualized by eosin staining. Next, sections were 

dehydrated in increasing concentrations of ethanol and finally in xylol followed by 

embedding in Entelan. 

 

 

2.2.6. Basic cell culture methods 

 

2.2.6.1. Maintenance of cell lines 

 

C3H10T1/2, 293T, C2C12 and COS-1 cell lines were grown in D-MEM 

medium containing 1.000 mg/ml and 4.500 mg/ml glucose respectively, supplemented 

with 10% FBS, 100 U/ml of penicillin, 100 µg/ml of streptomycin and 0.292 mg/ml L-

glutamine. Cells were grown for 2 days to reach around 80% confluence in a humidified 

atmosphere containing 10% CO2 at 37°C. Cells were harvested with trypsin solution 

(PAA Laboratories) and split in different ratios, depending on the cell line. Stocks of 

cells were made in DMEM medium containing: 20% FBS and 10% DMSO. 

 

 

2.2.6.2. Transient transfections 

 

2.2.6.2.1. Calcium phosphate method 

 

The calcium phosphate method was used to transiently transfect 293T and COS-1 

cell lines. Cells were seeded 24 hours prior to transfection on 6 cm plates (if applicable, 

containing sterile glass cover slides (Roth)). Cells were plated with a density of 

approximately 5×10
4
 cells per 6cm plate. Approximately 10 minutes before 

transfection, the medium was replaced with fresh growth medium supplemented with 50 
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µM chloroquine (Sigma). Next, 1-30 µg of total plasmid DNA was mixed with 500 µl 

of 2xHBS buffer (100 mM NaCl; 6.5 mM KCl; 0.8 M Na2HPO4 ⋅ 2H2O; 210 mM 

HEPES pH 7.05) followed by addition of 62 µl of 2 M CaCl2. The transfection cocktail 

was immediately mixed by pipeting and added to a plate in dropwise fashion. Usually, 

3-4 hours later medium was replaced and fresh medium was applied. 

 

 

2.2.6.2.2. Fugene 6 transfection reagent 

 

The Fugene 6 transfection reagent was used to transiently transfect the 10T1/2 

cell line according to the published protocol (Roche). 

 

 

2.2.6.3. Overexpression of BMP10 in the 293T cell line, preparation of conditioned 

medium  

 

 The 293T cell line was transiently transfected using the calcium method 

(2.2.6.2.1) or the Fugene 6 reagent (2.2.6.2.2) with pBMP10-IRES2-GFP plasmid or 

pEGFP-C2 vector. Twenty-four hours after transfection, the medium was replaced by 

serum free medium D-MEM containing 1.000 mg/ml glucose supplemented with 100 

U/ml of penicillin, 100 µg/ml of streptomycin and 0.292 mg/ml L-glutamine. Seventy-

two hours after transfection, its efficiency was proved by fluorescence microscopy and 

the medium enriched in BMP10 protein as well as control medium were collected, 

filtrated and used in further experiments. In addition, cells were homogenized in 

TRIZOL and total RNA was isolated followed by RT-PCR examination. BMP10 

conditioned medium and control medium were examined by western blot and the 

activity of the BMP10 protein to induce alkaline phosphatase (2.6.7) in C2C12 cells was 

tested. 
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2.6.7. Alkaline Phosphatase detection 

 

The activity of the BMP10 protein in conditioned medium was analysed by its 

ability to induce alkaline phosphatase activity in C2C12 cells. Briefly, 1x10
4 

C2C12 

cells were seeded per 1 well using 96 well plates. The next day, conditioned medium 

containing secreted BMP10 protein and BMP-2 (Sigma) as positive control were 

applied. As negative control serum free medium collected from 293T cells transfected 

with the pEGFP-C2 vector as well as standard GM were applied. Different 

concentrations of BMP-2 in the range 200 ng, 150 ng, 100 ng, 75 ng, 50 ng, 25 ng per 

ml were used. In the case of BMP10 conditioned medium and control serum free 

medium 100%, 75%, 50%, 10%, 5% were used. All tested conditions were done in 

triplicate. After 48 hours cells were washed a few times in PBS, followed by fixation in 

4% PFA for 10 min. Next, cells were washed three times with buffer containing 100 

mM Tris-HCl pH 9.5, 0.1% Triton X-100, 0.5 mM MgCl2. Finally, cells were incubated 

with the NBT/BCIP staining solution at 37
O
C for 10-15 minutes followed by washing 4-

5 times with PBS and fixation in 4% PFA for 10 minutes. Cells were documented by 

photographing using a digital camera (Canon). 

 

 

2.2.8. Mouse adult heart non-cardiomyocyte isolation 

 

 Non-cardiomyocyte populations were isolated from BL6C/57 or Sca-1-GFP 

mice strains. Animals were anesthetized with pentobarbital sodium. The murine hearts 

were quickly removed and perfused by the aorta with Ca
2+

 free buffer containing: 113 

mM NaCl, 4.7 mM KCl, 0.6 mM KH2PO4, 1.2 mM MgSO4×7H2O, 12 mM NaHCO3, 

10 mM HEPES, 30 mM Taurin, 10 mM 2,3-butanedione monoxime, 5.5 mM glucose. 

The enzymatic digestion was initiated by applying Liberase Blendzyme and Trypsin. 

Next, hearts were gently minced and enzymatic digestion was stopped by supplying 

bovine calf serum. The suspension was filtered via a 100µM cells strainer. Cells were 

adjusted with CaCl2 solution to the final 1 mM concentration of Ca
2+

 in four steps and 

counted for viability. The cell suspension was centrifuged at 300 rpm for 1 minute. The 

supernatant contained the fraction of non-cardiomyocytes cell, which were seeded on 

standard cell culture plates. Non-cardiomyocytes were grown in D-MEM medium 

containing 1.000 mg/ml glucose, supplemented with, 100 U/ml of penicillin, 100 µg/ml 
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of streptomycin and 0.292 mg/ml L-glutamine and 10% FBS in a humidified 

atmosphere containing 10% CO2 at 37°C. Isolation of murine adult non-cardiomyocytes 

were done together with Marion Winslet. The culture purity was checked by 

immucytochemistry (Fig. 2.2). 

 

 

 

 

 

 

 

 

 
 

Fig. 2.2. Immunocytochemistry of non-cardiomyocytes isolated from the murine 

adult heart. Cells were stained with SM-actin conjugated FITC antibody (green) 

and vimentin conjugated TRITC antibody (red) to quantify the number of 

fibroblasts (vimentin positive), smooth muscle cells (SMA positive) and 

myofibroblasts (SMA and vimentin positive). Nuclei were visualized by DAPI 

staining (blue). 

 

 

2.2.9. Terminal dUTP deoxynucleotidyl transferase nick end-labeling (TUNEL) 

assay 

 

 The TUNEL assay was performed on mouse heart cryosections. Cryosections 

were prepared from at least three animals from each of the tested model of CMP and 

compared to age and strain matched control animals. As a positive control ischemic dog 

heart was used (Kindly provided by Dr. Sawa Kostin). The In situ Cell Death detection 

kit (Roche) was used according to supplier’s manual. 

 

 

2.2.10. Immunocytochemistry 

 

Cells after culture were washed several times with PBS, fixed in 4% PFA for 10-

20 minutes followed by incubation with PBS/0.1% Triton-X100 solution and blocked 
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with 5% horse serum in PBS/0.1% Triton-X100 solution. Cells were incubated with the 

primary antibody at 4
o
C over night or for 1 hour at room temperature, washed with PBS 

and incubated with secondary, fluorochrom-conjugated antibody for 45 minutes. After 

three washes with PBS, the cells were embedded in Mowiol (6g of glycerol was mixed 

with 2,4 g of Mowiol and 6 ml H2O, followed by incubation for 4 hours at room 

temperature, mixed with 12 ml of 0.2 M Tris-HCl pH 8.5, heated for 10 minutes at 

50
O
C and aliquoted). 

 

 

2.2.11. Immunohistochemistry 

 

Depending on the aim of the study and/or primary antibody, different staining 

protocols and detection systems were used. 

Cryosections were washed with PBS, fixed in 4% PFA for 10-20 minutes 

followed by incubation with PBS solution and blocked with 0.1% BSA in PBS. 

Cryosections were incubated with the primary antibody at 4
o
C, washed with PBS and 

incubated with secondary, fluorochrom-conjugated antibody for 45-60 minutes. After 

three washes with PBS, sections were embedded in Mowiol. When the signal had to be 

amplified the two step detection of the primary antibody with the biotin-streptavidin 

system was used. 

 

 

2.2.12. β-galactosidase staining 

 

Tissues samples were fixed in PFA solution followed by preparation of the 

cryosections. Sections were washed with PBS and treated with the staining solution ( 5 

mM potassium ferricyjanide, 5 mM potassium ferrocyjanide, 1 mM magnesium 

chloride, 0.002% NP-40, 0.05% Na-deoxycholate) containing 0.1% X-Gal for 5-30 

minutes. Reaction was stopped by washing with PBS. Cryosections were embedded in 

Mowiol. 
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2.2.13. Total RNA isolation from tissues and cells 

 

Total RNA was isolated using the Trizol
TM

 reagent according to the 

manufacture’s instructions (Invitrogene). All equipments for RNA isolation were 

sterilized by treating with 0.5 M NaOH for 30 minutes at room temperature followed by 

washing with DEPC water. Tissue samples were homogenized using the Ultra Turrax 

homogenizer (IKA Works, Wilmington, USA). Solutions used during the RNA isolation 

procedure were prepared on the base of RNAse free water. Typically 1 ml of Trizol
TM

 

reagent was applied to 100 mg of tissue or per 10
6
 cells.  

 

 

2.2.14. Reverse transcription reaction 

 

The reverse transcription reaction was performed on the template total RNA 

extracted with the TRIzol
TM

 reagent (2.2.13). Total RNA concentration was estimated 

with the Eppendorf BioPhotometer by measuring absorbance at 260 nm in triplicate. 

Firstly, due to the possibility of DNA contamination, RNA was treated with RQ1 

RNase-free DNase (1 U of DNase per 1 µg of RNA) followed by DNase heat 

inactivation (65
O
C, 10 minutes). DNA free samples were used for first stranded cDNA 

synthesis. Reverse transcription reactions were carried out using SuperscriptII reverse 

transcriptase (Invitrogen) and oligodT(15) (Promega) according to the manufacture’s 

protocol. Reaction was done at 42
O
C for 60 minutes followed by heat inactivation of 

Superscript II at 70
O
C for 10 minutes. cDNAs obtained were freshly used for PCR 

reaction or stored in -20
O
C for further experiments. 

 

 

2.2.15. PCR reaction 

 

PCR conditions were optimized experimentally for each primer pair according to 

the manufacturer’s instructions (Eppendorf). Usually, the template DNA was used in the 

range 1-10 ng in the case of plasmid DNA or 2-4 µl of cDNA after the RT reaction. The 

amount of cDNA used for the PCR reaction depended on the level of gene expression in 

the samples. The typical reaction mixture contained: 10 x buffer, 5 x Enhancer buffer, 
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0.2 pmol of each primer, 5U of Taq polymerase (Eppendorf) and when necessary 

supplemented with MgCl2. Thermal cycling conditions were optimized empirically. 

 

 

2.2.16. Semi-quantitative and quantitative Real Time PCR reactions 

 

The semi-quantitative PCR analysis was performed using 2-4 µl of cDNA as a 

template for the PCR reaction. Expression of each of the examined genes was tested 

individually with a decreasing number of cycles, and repeated in triple. As a reference, 

the level of the housekeeping genes GAPDH or HPRT was used. 

The quantitative Real Time analysis was done using the iCycler iQ Multi Colour 

Real Time PCR thermocycler (Biorad Laboratories). The typical reaction mixture is 

described in 2.2.15. It was supplemented by SYBR green and fluorescein according to 

the published protocol. A standard curve was determined by the expression level of the 

housekeeping gene GAPDH. 

 

 

2.2.17. P
32

 labeling probe preparation 

 
Plasmid DNA was digested with specific restriction endonucleases, followed by 

electrophoresis on the agarose gel. Inserts were cut out and purified with the JetQuick 

Gel extraction kit (Genomed). Typically, 25-50 ng of purified DNA was mixed together 

with random hexanucleotides as primers and denatured at 95
O
C for 5 minutes followed 

by cooling down on ice. These components were mixed with: dNTPs, BSA, Klenow 

enzyme, 5 µl of [α-
32

P] dCTP (6000 Ci/ml) and incubated at 37
O
C for 2 hours. A 

random primed labeled probe was purified from not nucleotides incorporated using 

NAP-5
TM

 columns (Sephadex® G-25) (Pharmacia Biotech). 

 

 

2.2.18. Southern blot analysis 

 

Southern blot analysis was performed according to Sambrook et al. 1989. The 

genomic DNA was obtained from the ES cells clones (2.2.4). To screen the ES clones, 

genomic DNA was digested with KpnI and separated on 1% agarose gel followed by 
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DNA depurination (incubation in 0.25% HCl for 15-20 minutes at room temperature). 

The transfer was done in alkaline conditions (0.4 M NaOH), over night. More than 12 

hours later, the membrane was washed in 2xSSC pH 7.5 for 10 minutes and air-dried. 

The membrane with bound DNA was hybridized with radioactively labeled DNA probe. 

In the first step, the membrane was pre-hybridized at 65
O
C for 2-3 hours in Church and 

Gilbert hybridization buffer (0.5M Na2HPO4, 1 mM EDTA, 7% SDS) containing 0.2 

mg/ml denaturated herring sperm DNA. Hybridization was carried out in Church and 

Gilbert hybridization buffer containing a reduced amount of denaturated herring sperm 

DNA to 0.1 mg/ml and 3 x 10
6
 cpm/ml of labeled probe. The reaction was done at 65

O
C 

with rolling over night. Typically, the next day the membrane was washed three times 

with solution containing 1xSSC pH 7.0, 1% SDS at 65
O
C. The results were visualized 

using X-ray films (Kodak). 

 

 

2.2.19. Western blot analysis 

 

Typically, proteins were separated on standard denaturing SDS-PAGE gels. 

However, depending on the aim of the experiment, different types of gels were used. 

The first type of gels was performed according to Sambrook et al. 1989, and was 

composed of 5% stacking gel and separating gel in the range of 6% to 15%. This type of 

gels was used for detection of higher amount of proteins. Gradient gels were bought 

from Invitrogen and Anamed. Upon completion of electrophoresis, proteins were 

transferred onto nitrocellulose membranes using two systems: semi-dry electroblotting 

method (Fastblot B 43, Biometra) or the so called wet system according to the manual 

(Invitrogen). In the case of semi-dry blotting, 4 pieces of Whatman 3MM paper and 1 

piece of BioTrace
®

 Nitrocellulose Membrane were cut to the size of the gel and together 

with the gel soaked for a few minutes in electroblotting buffer. Two layers of 3MM 

paper were placed on an anode. On the top of that, the nylon membrane was placed. 

Gels were laid on the membrane and covered with 2 additional layers of 3MM paper. 

The whole stack was covered with the cathode. Electroblotting was run at a current of 5 

mA per cm
2
 of the blot for 45-60 minutes. The membrane was stained with Ponceau S 

for a few minutes to visualize the transferred protein bands followed by blocking in 5% 

non-fat dry milk powder (Roth) in TBST solution for 60 minutes at room temperature. 

The membrane was incubated at 4°C over night with the primary antibody in blocking 
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buffer containing 3% non-fat dry milk powder in TBST buffer. Next, three 5 min. 

washings in TBST buffer preceded 45 min. incubation (room temperature) with the 

secondary antibody in TBST with 1% non-fat dry milk. All incubations were done on 

the rotating platform. 

Depending on the type of experiment and the level of proteins, different 

detection systems were used. When highly expressed proteins were monitored, the 

system based on DAB staining was used. After 3 washings (5 min. each) in TBST, the 

membrane was incubated with ABC solution (2 drops of ‘label A’ and 2 drops of ‘label 

B’ in 5 ml TBST prepared 30 min. in advance, Vector Laboratories) for 30 min. After 

that the membrane was washed three times with TBST buffer. Detection was done with 

DAB (2.5 mg/ml) in 10 ml of 0.1 M Tris⋅HCl pH 7.2 with 5 µl 30% H2O2. Staining was 

stopped by rinsing in water. When the proteins were not abundant or isolated from 

different cell lines and tissues, the ECL detection (Amersham) or Femto WB detection 

system (Pierce) were used according to published manuals. 

 

 

2.2.20. Protein isolation 

 

Tissues samples after isolation were sonicated in the extraction buffer (0.1 M 

Tris-HCl pH 8.0, 0.01 M EDTA, 0.04 M DTT, 10% SDS supplemented with proteases 

inhibitor). After sonication, protein crude was incubated for 2 min. at 99
O
C followed by 

centrifugation at room temperature with maximum speed. Specific fractions of protein 

were isolated using NE-PER extraction kit (Pierce) according to the manual. Protein 

concentration was determined using BioRad Dc assay according to the protocol. 

 

 

2.2.21. Overexpression and purification of the His-tagged mature region of BMP10 

 

In order to overexpress BMP10 in bacteria, the pRSET vector (Invitrogen) was 

used which contains N-terminal 6HisG tag. The his tag not only facilitates affinity 

chromatography purification on a Ni
 2+

-NTA column but also the detection of the 

overexpressed protein, since a specific anti-HisG antibody (Invitrogen) is available. 

Additionally, as the main aim of the study was the generation of a BMP10 antibody, the 

His tag is believed to be the least immunogenic. The mature region of BMP10 was PCR 
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amplified with specific primers, containing in-frame XhoI and KpnI restriction sites and 

the product was cloned into the pCR2.1-Topo vector (Invitrogen) followed by 

sequencing. After sequence verification, the XhoI/KpnI fragment was subcloned into 

the pRSET-B vector. The Bl21DE3 bacterial strain (Invitrogen) was used for protein 

overexpression. The conditions for BMP10 overexpression were estimated empirically. 

After transformation of Bl21DE3, colonies were picked from plates and then grown in 

the suspension culture at 37
 O

C, with shaking of 250 rpm in 50 ml culture volume. After 

over night culture, bacterial cells were placed into the fresh culture medium with 

dilution 1:50 and grown at 37
O
C or 30

O
C or RT in various culture volumes (25-150ml). 

Overexpression was induced by applying 1 mM IPTG. 1ml samples were collected 

every hour. The level of protein overexpression was monitored by SDS-PAGE gel 

electrophoresis followed by staining with Coomassie blue solution. The mature region 

of the BMP10 fused to His tag was efficiently overexpressed at all tested conditions, but 

unfortunately the test of solubility revealed that it is insoluble independent on 

culture/overexpression conditions in phosphate buffer, in the pH range compatible for 

protein binding to Ni
2+ 

resins (Fig. 2.3). Hence Mat-BMP10 was overexpressed at 37
O
C 

and bacteria were collected 4 hours after induction with IPTG (Figs. 2.3, 2.4). In 

addition Western blot was done to verify the identity of the protein band. Overexpressed 

protein was purified under denaturing conditions on a Ni
2+ 

chelating column (Figs. 2.4, 

2.5) as described in the manufacture’s instructions (Qiagen). Fractions (approximately 3 

mg) with the highest degree of purity were subjected to separation on SDS-PAGE on 

standard 15% preparative gels. Proteins were visualized with the ethanol Coomasie 

solution, appropriate bands were cut out and in this form sent for immunization of 

rabbits, that was carried out by Dabio (Regensburg, Germany).  
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Fig. 2.3. Overexpression of the 6His-tagged BMP10 in E.coli (A). Lane 1- 

negative control; 2 and 5- 4 hours after IPTG induction in 30
o
C and 37

 o
C, 

respectively; 3 and 6- 2 hours after IPTG induction in 30
o
C and 37

 o
C; 4and 7 

before induction with IPTG. Overexpression of the expected 17 kDa mature 

region of BMP10 fused to His-tag was apparent (A). The test of solubility in 

phosphate buffer (B,C) shows that in all tested conditions majority of the 

overexpressed protein remains insoluble. Overexpression in 30
o
C (B), with 

various oxygen accessibility, i.e. culture volume (1 and 2- 50 ml culture, 3 and 

4- 20 ml culture) did not improve solubility compared with overexpression in 

37
o
C (C). Lanes 2, 4, 5 show the protein detected with specific anti HisG 

antibody His-BMP10 in insoluble fractions (arrow), lanes 1,3,6- protein detected 

in soluble fractions (arrowhead).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. Purification of His-tagged mature region of BMP10. Panel A shows 

SDS-PAGE of collected fractions eluted with 8M urea at pH 4.5 with the highest 

protein content as judged on the basis of the elution profile (B) followed by dot 

blot analysis with anti-HisG antibody of enriched in BMP10 fractions (C). 
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Fig. 2.5. Purification of the His-tagged mature region of BMP10. Panels A and B 

show different tested conditions to obtain the native mature region of BMP10. 

Panel A: lanes -1-3: buffer containing 10 mM HEPES, 10µM Zn(CH3COO)2, 50 

mM NaCl supplemented with 5 mM ß-mercaptoethanol (line 1), 20 mM ß-

mercaptoethanol (line 2), 1mM DTT (line 3), lane 4 – 50 mM Tris-HCl pH 7.5, 

lane 5 – 50 mM Tris-HCl pH 8.0, lane 6 – PBS.  Panel B, phosphate buffer 

supplemented with: 0.1%, 0.2% and 0.5% Tween-20 (lines 1-3 respectively), 

0.1%, 0.2% and 0.5% Triton X-100 (lines 4-6 respectively), 0.1%, 0.2% and 

0.5% NP-40 (lines 7-9 respectively). 

 

 

2.2.22. Osmotic mini-pump implantation 

 

 To induce heart hypertrophy/CMP doxorubicin (15µg/g) and isoproterenol 

(225µg/g) were administrated in the ICR mouse strain by surgical implantation of the 

mini-osmotic pump model 2002 according to supply instructions (Alzet). In all 

experiments both male and female mice were used. Mice were anesthetized with 

Avertin injection or by Isoflurane together with oxygen inhalation followed by 

subcutaneous pump implantation. The skin incision was closed with wound clips. Using 

this pump model, drugs were administrated at 0.5µl per hour for 14 days. 
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2.2.23. Magnetic Resonance Imaging 

 

MRI measurements and data evaluation were done by Dr. Astrid Wietelmann 

and Ursula Hoffmann. The study was carried out on 11 C57bl/6 and 7 ICR animals 

(both genders) of varying ages and weight (22 - 30 g). Animals were anaesthesed by 

using 2.5% isoflurane (Forene, Abbott, Germany) in air and oxygen and then 

maintained during the whole MR experiment with 1.5 to 2.5% (v/v ) isoflurane at 0.5 

l/min air and 0.5 l/min oxygen flow, delivered via a nose-cone (surgivit/Anesco, Hugo 

Sachs Elektronik-Harvard, Germany). The gaseous mixture was bubbled through water 

to prevent damage of the mucous membrane of the mouse from the dry gaseous 

mixture. For electrocardiogram (ECG) triggering ECG leads (Neonatel Monitoring 

Electrode, Red Dot, 3M Health Care, Germany) were attached to both front paws and 

the tail. The leads were attached to a preamplifier (ESS ECG Transducer Box, Bruker 

BioSpin MRI, Germany) to amplify the ECG signal for detection on the magnetic 

resonance system. The mice were positioned supine on a cradle and then placed into the 

MRI receiving coil. The temperature of the probe assembly was maintained at 37°C by 

running heated water through the water channels of the probe assembly to maintain the 

body temperature of the mouse. 

MR acquisitions were performed on a 7.05 T horizontal-bore (16 cm) MR 

scanner (Bruker, Germany) equipped with a 300mT/m gradient system and with 300.51 

MHz for isotope 
1
H. A 2.6 cm usable diameter quadrature low-pass birdcage coil 

constructed as described previously (Wagener et al. 2004) was used in all experiments. 

MRI experiments were conducted by applying an ECG-triggered gradient-echo 

sequence with the following imaging parameters: echo time (TE) = 2.2ms; repetition 

time (TR) = 12.11ms; field of view (FOV) = 3.00cm
2
; acquisition matrix = 129 x 129; 

maximal in-plane resolution =  233µm
2
; slice thickness = 1.0mm. 

At a heart rate of 450 beats/min, the corresponding cardiac cycle length was ms, 

allowing for acquisition of  frames within each cardiac cycle with the given temporal 

resolution of  ms. A sufficient number of dummy scans (5 scans within 2 s) were run to 

bring the magnetization to steady state prior to imaging data readout. Four 

accumulations were made to obtain a sufficient signal to noise ratio. 
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2.2.24. Confocal microscopy and three-dimensional (3D) reconstructions 

 

Sections and cells were examined by laser scanning confocal microscopy (Leica 

TCS SP2, AOBS). After data acquisition, the images were transferred to Silicon 

Graphics Indy workstation (Silicon Graphics) for three-dimensional (3D) reconstruction 

using Imaris, the 3D multichanel image processing software (Bitplane, Zürich, 

Switzerland) as desribed by Kostin (Kostin et al., 1999). All confocal images and 3D 

images were done by or in cooperation with Dr. Sawa Kostin. 

 

 

2.2.25. Embryonic heart cultures 

 

Embryonic hearts were isolated from mouse ICR embryos at stage E9.5 – E11.5. 

Hearts were grown in D-MEM medium containing 1.000 mg/ml glucose, supplemented 

with 100 U/ml of penicillin, 100 µg/ml of streptomycin and 0.292 mg/ml L-glutamine 

as well as with 2.5%, 5% and 10% FBS or in serum free medium. Hearts were 

maintained in a humidified atmosphere containing 10% CO2 at 37°C for 48 – 96 hours 

after isolation (Fig. 2.6). 

Due to the fact that embryonic hearts are able to survive in serum free medium 

the next obvious question was whether they still express typical markers during in vitro 

culture. mRNA was isolated from collected embryonic hearts from in vitro cultures and 

compared to hearts isolated from E9.5 – E11.5. Markers like Nkx-2.5, MEF2C, 

CHISEL, dHAND, ANF were unchanged. The only p57 transcripts have shown 

differences in expression level (Fig. 2.7). 

In addition to RT-PCR analysis the proliferation test was performed. Embryonic 

hearts were grown in the presence of Bromo-deoxy-Uridine (BrdU) for 6 – 8 hours. 

Next, hearts were embedded in OCT medium and 7µM sections were prepared. 

Cryosections of embryonic hearts were fixed with Methanol/Acetone for 10 minutes in -

20
O
C followed by immuno-detection using the BrdU kit (Oncogene) accordingly to the 

manufacture’s instructions. 

As shown in Fig. 2.8, there were no drastic differences between in vitro 

cultivated hearts in cells proliferation. Taken together, established methods can be 

useful tools in further studies. 
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Fig. 2.6. Embryonic hearts isolated from mouse embryos at E 9.5 immediately 

after isolation, 24 and 48 hours in culture in medium containing different 

amounts of serum as well as in serum free medium. 
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Fig. 2.7. RT-PCR analysis of E11.5 heart cultured in vitro in comparison to 

freshly isolated embryonic hearts at different stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.8. Comparison of BrdU incorporation between in vitro cultured embryonic 

hearts and in vivo injected BrdU followed by embryonic heart isolation, 

sectioning and signal detection. Similar rate of proliferation was observed. 

 

In addition, embryonic hearts were infected with adenovirus carrying the GFP 

cassette to label the epicardial layer (kindly provided by Dr. H. Ebelt). Twenty-four 

hours after infection expression of GFP was monitored by fluorescence microscopy 

(Fig. 2.9A). Next, infected embryonic hearts were embedded in the agarose type IX-A 

(Sigma) followed by cutting into 30-40µm thick sections using a Vibratom (Leica). 

Sections of embryonic hearts were placed onto cell culture plates coated with growth 

factors reduced Matrigel
TM

 (BD Clontech) and grown in the same conditions like whole 
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embryonic hearts. Embryonic heart slices were documented daily as shown in Fig.2.9B-

D and the culture was carried up to 10 days.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9. Panel A- in vitro labeling of E11.5 embryonic heart epicardium with 

GFP expressing adenovirus (green). Panel B illustrates the infected epicardial 

layer directly after sectioning, panels C and D spreading of infected cells after 

48 and 72 hours pi (24 and 48 hours after sectioning), respectively. Note 

discontinuous green layer and increased in the number of GFP positive cells.  

 

 

2.2.26. Overexpression of BMP10 using the baculovirus/insect cell system 

 

 All methods used and described below are a combination of published 

baculovirus/insect cells protocols (O´Reilly et al, 1992; King et al., 1992; BD 

Pharmingen Baculovirus Procedures and Methods Manual). 

 

 

2.2.26.1. Generation of the expression construct 

  

 Full length human BMP10 cDNA was PCR amplified with specific primers 

including Pst I/XmaI restriction sites and cloned into the pCR2.1-Topo vector 

(Invitrogen) followed by sequencing. After sequence verification, BMP10 cDNA was 
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subcloned into the pVL1392 transfer vector. The pVL1392 vector contains the 

polyhedrin gene locus of the Autographa californica nuclear polyhedrosis virus 

(AcNPV), but lacks part of the polyhedron gene coding sequence. Although the 

polyhedron is not essential for virus replication in cell culture, it is responsible for a 

visible plaque characteristic-the presence of polyhedral occlusion bodies in the nucleus 

of infected cells (O’Reilly et al, 1992). 

 

 

2.2.26.2. Routine sub-culturing of the Sf9 cell line in monolayer culture 

  

 The Sf9 cell line derived from Spodoptera frugiperda (Fall army worm) was 

cultured in monolayer in 10% FCS supplemented TNF-FH medium (BD Pharmingen) 

with gentamycine (50µg/ml) in a humidified incubator at 27
o
C until cells reached 

confluence, without CO2 supplementation. For sub-culturing, cells were dislodged by 

rapidly pipetting medium over the cells. Cells were counted and dependent on the assay 

Sf9 cells were plated at particular densities as indicated below. 

 

Assay Plate size Number of cells  

per assay 

%  

Confluent 

Transfection 60 mm 2.0 x 10
6 

~60% 

End-point Dilution 

Assay 

96 well plate 1.0 x 10
4 

 

~30% 

Plaque Assay 100 mm 

35 mm 

6.2 x 10
6 

1.0 x 10
6
 

~70% 

~70% 

Viral Amplification 100 mm 5.0 x 10
6
 ~70% 

Protein 

Overexpression 

100 mm 5.0 x 10
6
 ~70% 

 

 

2.2.26.3. Co-Transfection of Sf9 cells 

 

Insertion of the BMP10 gene into a baculovirus genome was achieved by 

homologous recombination between BMP10-pVL1392 transfer plasmid and viral DNA 

in Sf9 cells. The liposome mediated co-transfection method of BMP10-pVL1392 and 

linearized BaculoGold AcNPV viral DNA was carried according to the manufacture’s 

instructions. Linearized viral DNA contains lethal deletion in the polyhedrine gene that 

can be complemented by recombination with the transfer plasmid, thus only 
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recombinant viruses form plaques (O’Reilly et al, 1992). Simultaneously, co-

transfection of control transfer plasmid XylE-pVL1392 (positive control) with 

BaculoGold DNA and infection with wild-type AcNPV virus was performed. Medium 

containing virus was harvested 4 days post transfection.  

 

 

 

 

 

 

 

 

 

Fig. 2.10. Representative images of Sf9 cells co-transfected with BMP10-

pVL1392 (A) or control XylE-pVL1392 (B).. 

 

 

2.2.26.4. Plaque assay 

 

The plaque assay was performed to titer, separate and purifies individual 

recombinant viruses. Usually, 1.0 x 10
6 

cells were seeded on a 35 mm dish and grown 

overnight at 28
o
C. The log (1 in 10) dilution series in the range 10

3
 to 10

8 
of co-

transfection supernatant (medium containing virus) were prepared. TNM-FH growth 

medium was removed from the cells and cells were overlaid with 100µl at the 

appropriate dilution. Plates were rocked gently for 1 hour at room temperature. Next, 

the inoculum was removed and cells were covered with agarose overlay (5% low 

melting agarose in 2x Grace’s medium). Cells were incubated at 28
o
C for 4-5 days until 

plaques developed. Plaques were more easily visualized by staining the monolayer with 

neutral red (Sigma) solution (0.025% w/v in PBS). The staining solution was applied on 

the agarose overlay followed by incubation at 28
o
C for 1 hour. Then, the staining 

solution was removed and dishes were inverted upside-down and stored at room 

temperature for 2 hours in the dark. Plaques appeared as clear patches in a background 

of red, living cells. Individual plaques were picked for the further the virus 

amplification. Usually 10-50 plaques were picked. Plaque of agarose was taken up with 

Pasteur pipette and placed in 0.5ml TNM-FH growth medium. Virus particles were 
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released from the plaque by vortexing followed by overnight incubation at 4
o
C with 

gentle shaking.  

 

 

2.2.26.5. Amplification of virus and preparation of high-titer working stock 

 

Sf9 cells were seeded on 150mm plates at 5x10
6
 and incubated 2 hours to attach. 

Next 250µl of virus inoculum from purified agarose plaque was applied to growth 

medium. Infected cells were grown for four days. Then supernatant was harvested 

followed by centrifugation to remove cellular debris and the next round of amplification 

was performed until a high titer stock, i.e. 1x10
8 

pfu/ml was obtained. After each step of 

amplification the virus titer was determined by plaque assay and end-point dilution 

method.  

 

 

2.2.26.6. End-point dilution assay 

 

Sf9 cells were diluted to a final concentration of 1x10
4
 and 100µl aliquots of the 

cells were seeded into a 96 well plate. Tenfold serial dilution of the amplified virus 

stock was prepared (10
-3

 to 10
-8

) and 10µl of each dilution was added per well. The end-

point dilution assay was always performed in triplicates, and each dilution was applied 

to ten wells. Additionally, uninfected controls were included in the experiment. Cells 

were incubated at 28
o
C in humidified environment. After 5-7 days each well was 

examined for virus infection. The total number of positive and negative wells for each 

virus dilution was counted and the virus titer was calculated using the method of Reed 

and Muench, as described by King and Possee (King and Possee, 1992). 

 

 

2.2.26.7. Detection of recombinant virus and overexpressed BMP10 protein 

 

To prove that recombination between BMP10-pVL1392 transfer plasmid and 

linearized baculovirus DNA had occurred and BMP10 was transcribed in infected Sf9 

cells. The RT-PCR reaction on RNA isolated from 10 clones separated by plaque assay 

was performed. RNA was isolated from transfected Sf9 cells using the TRizol reagent 
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and RT-PCR was done as already described with specific primers. The same clones 

were used for protein isolation to check protein expression by Western Blot. 

Additionally, as the secretion sequence was included in BMP10 cDNA cloned into the 

transfer vector, the supernatant of cells infected with high titer virus for BMP10 

overexpression was collected and the presence of the secreted protein was monitored by 

Western Blot. Fig. 2.11 illustrates the results of RT-PCR analysis of BMP10 

transcription on example of the 7 clones selected plaques/clones as well negative and 

positive controls. The lower panels in Fig. 2.11 show that BMP10 protein is efficiently 

expressed in Sf9 cells, however, it is not secreted to the medium (supernatant). This 

phenomenon of ignoring the secretion leader sequence is well known and described 

(reviewed by O’Reilly et al., 1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11. Representative results of BMP10 transcription/expression and 

secretion in infected insect Sf9 cells of 7 clones/plaques. Upper panel- RT-PCR 

analysis with BMP10 specific primers proved transcription of the foreign gene. 

C+ positive control, i.e. PCR on the BMP10-pVL1392 plasmid. C- negative 

control, RNA and proteins isolated from SSf9 cells infected with wild-type 

AcNPV virus. Lower panels- Western Blot analysis of BMP10 expression and 

secretion in BMP10-baculovirus infected Sf9 cells. Proteins and supernatant 
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were prepared from the same clones as for RT-PCR analysis. The marginal 

signal in the supernatant in case of 4 clones is most probably a result of BMP10 

protein release from dead cells and not due to recognition of the secretion 

sequence. 

 

 

2.2.27. Microscopy 

 

Stained sections and cells were documented using Leica system: DFC300Fx camera 

connected to DMRB microscope.  

 

 

2.2.28. Statistics 

 

Unless otherwise stated all data are means ± SD. Statistical analysis was 

performed using Exel software (Microsoft). Student’s t tests were used. Data were 

considered significant when p<0.05. 
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3. Results 
 

3.1. BMP10 expression during mouse embryonic development and in the adult 

heart 
 

 Detailed and careful analysis of BMP10 expression was a prerequisite for further 

experiments, hence in situ hybridization was performed. Antisense and sense riboprobes 

were synthetised on the plasmid containing pro-region of BMP10 (generous gift from 

Dr. H. Neuhaus) linearized with BamHI and EcoRI, respectively and specificity was 

confirmed by whole mount in situ hybridization on mouse embryos at E10.5.  

 

  

 

 

 

 

 

 

 

 

Fig. 3.1. Whole-mount in situ hybridization with antisense (A) and sense probe 

for BMP10 (B). Expression is detectable only with the antisense riboprobe  in the 

developing heart (arrow, blue label).  

 

As shown in Fig.3.1, the antisense probe detects BMP10 transcripts only in the 

developing heart, while the sense probe gives no signal. In adult tissues, RT-PCRs 

results (Fig. 3.2A) revealed the BMP10 transcript only in the heart. To further 

investigate the localization of BMP10 transcripts within the adult murine heart, in situ 

hybridization analysis on paraffin embedded tissue slides was used.  Twelve µm thick 

sections were hybridized with the antisense digoxygenin labeled BMP10 probe. A 

strong and obvious expression of BMP10 was identified in the right atrium. The 

majority of the cells in the trabeculated wall of entire right atrial appendage were 

positive for BMP10. Both atrial cardiomyocytes and interstitial cells in this part of the 

heart expressed BMP10. Transcripts were also detectable in the region neighboring the 

interatrial septum. The detailed analysis revealed lack of BMP10 expression in the 

ventricular part of the heart, left atrium and left atrial appendage.  
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Fig. 3.2. (A) Expression of BMP10 in adult mouse tissues is confined to the heart 

as revealed by the RT-PCR analysis. Within the heart the PCR product is 

exclusively localized in the right atrium. (B-G) In situ hybridization of the BMP10 

riboprobe on paraffin embedded heart tissue sections (blue label) confirms the RT-

PCR results. Transcripts are detectable in the right atrium (RA), right atrial 

appendage (RAA) and interatrial septum (IAS). LA, left atrium; LAA, left atrial 

appendage; LV, left ventricle; RV, right ventricle; EPI, epicardial leyer; Ao, aorta.  
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Experiments that will be presented in next chapters of this work required BMP10 

expression analysis in different knock-out mice at various age and with different 

backgrounds. In order to verify possible age and strain dependent changes of BMP10 

expression, the level of transcripts was analyzed by semi-quantitative RT-PCR. RNA 

was isolated from 6 weeks and 6 months old ICR and C57Bl6 mice hearts and a RT-

PCR analysis with BMP10 specific primers was performed. BMP10 expression was 

normalized to control GAPDH PCR product (22 cycles), as shown in Fig. 3.3. The 

obtained results indicate a higher level of BMP10 expression in ICR than the C57Bl6 

strain and additionally, an age dependent decrease was noted. However, the localization 

of BMP10 transcripts remains unchanged and restricted to the right atrium and seems to 

be not age and strain dependent as judged by the in situ hybridization results (data not 

shown).  

 

 

 

 

 

 

 

 

 

Fig. 3.3. Semi-quantitative RT-PCR analysis of BMP10 expression in 6 weeks 

(lanes 1 and 3) and 6 months (lanes 2 and 4) old ICR (1,3) and C57Bl6 (2,4). An 

equal amount of RNA was controlled by the level of the GAPDH PCR product.  

 

 

3.2. A polyclonal anti-matBMP10 antibody specifically recognizes the processed 

mature region of BMP10  

 

 As was already mentioned, BMP10 has a leader secretion sequence. BMP10 is 

synthesized as pre-pro-protein followed by its secretion to the extracellular matrix and 

processing. In this case, cells expressing BMP10, identified by in situ hybridization 

might, but do not have to overlap with the localization of the active, mature protein and 

its target cells. As there are no commercially available antibodies against BMP10 it was 

necessary to generate such an antibody. Overexpression of the mature region of BMP10 
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fused to His tag in E.coli and purification of the protein were prerequisites for further 

experiments.  

 

 

3.2.1. Test of antibody specificity 

 

Detailed and careful verification of the specificity of the generated antibody was 

necessary to avoid artifacts in further experiments. The next chapters describe 

experimental approaches that were used to verify specificity and applications of the 

generated antibody.  

 

 

3.2.1.1. Western Blot analysis  

 

The first step of analysis required to test whether the antibody specifically 

recognizes BMP10, but not the His-tag fused to protein. For this reason, unrelated to 

BMP10 protein - 6HisG-∆VITO1 (kindly provided by Dr. M. Mielcarek), cloned to 

pRSET-A vector and overexpressed under the same conditions as His-tagged BMP10 

was selected. Fig. 3.4 shows the detection of 6HisG-BMP10, but not the tagged 

∆VITO1 by obtained antibody.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4. Western Blot analysis of His-tagged VITO1 and BMP10. Polyclonal anti-

BMP10 antibody specifically recognized 17kDa 6HisG-BMP10 (lane 2, arrow), 

but not 30kDa 6HisG-∆VITO1 (lane 1, arrowhead).  
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Next, the ability of the antibody to recognize the mature region of mouse BMP10 was 

investigated. Proteins were extracted from the left and right atrium and nuclear, 

cytosolic and membrane fractions were separated. BMP10 was immunodetected with a 

commercially available (Abgent, Orbigen) and the newly generated antibody. The 

preimmune serum was used as a negative control. Western blotting of protein extracts 

revealed 2 bands. The approximately 40kDa band corresponds to the full length BMP10 

precursor while the second band corresponds to the mature monomer with the predicted 

molecular mass of 12 kDa. As shown in Fig. 3.5, the generated anti-mat-BMP10 

antibody was specific for the processed form of BMP10 and did not recognize the full 

length propeptide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5. Western Blot analysis of membrane, cytosolic and nuclear protein 

fraction isolated from mouse atria. The generated anti-matBMP10, control 

preimmune serum and two commercially available antibodies were used to 

detect BMP10. The mature form of the protein of predicted 12kDa was detected 

by the newly generated antibody (but not by preimmune serum). The Abgent 

antibody gave a signal of 40kDa in right and left atrium, whereas The Orbigen 

antibody showed the highest specificity to BMP10 precursor of approximately 

40 kDa in the cytosolic fraction isolated from right atrium.  

 

Commercially available antibodies detected only the propeptide form of BMP10. All 

antibodies detected the strongest signal in protein extracts isolated from right atrium. 
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The Orbigen antibody showed the highest specificity as indicated by the cytoplasmic 

detection of the BMP10 precursor in the fraction isolated from right atrium. 

 

 

3.2.1.2. Immunocytochemistry 

 

The unspecific bands, which were observed by Western Blot analysis suggested 

cross-reactivity of the newly generated anti-BMP10 antibody with other proteins. To 

test the ability of the newly generated antibody to detect BMP10 by 

immunohistochemistry, an in situ staining of cells overexpressing BMP10 was 

performed. COS1 and 293T cells were transiently transfected with the BMP10-IRES-

GFP expression plasmid or empty pEGFP vector. Forty-eight hours later, cells were 

fixed and immunostained with anti-BMP10 antibodies and preimmune serum. Both 

commercially available antibodies did not detect BMP10 (data not shown) and seem to 

be not useful for immunohistochemistry. Preimmune serum gave also only marginal, 

background signal while the new anti-BMP10 antibody showed a strong staining in 

cells transfected with BMP10-IRES-GFP (Fig. 3.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. COS1 cells transfected with BMP10-IRES-GFP (green) and 

immunostained (red) with control preimmune serum (A, merged C) or anti-
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BMP10 antibody (B, merged D). Only the generated anti-BMP10 antibody gave a 

strong staining in cells transfected with BMP10-IRES-GFP (B,D). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. The Anti-BMP10 antibody specifically recognizes the BMP10 protein. 

293T cells transfected with the expression construct BMP10-IRES-GFP (green) 

and immunostained with the anti-BMP10 antibody (red) (A,B).  

 

Interesingly, immunodetection of BMP10 in 293T cells showed a strong signal not only 

in transfected cells, as judged on the basis of GFP expression, but also in neighboring 

cells (Fig. 3.7). This might be explained by the efficient release from trensfected cell 

and subsequent binding to adjacent cells.  

 

 

3.2.1.3. Immunohistochemistry 

 

Since the tested antibody gave satisfactory results in transfected cells, the 

determination of the ability to detect the native BMP10 in tissue sections was the last 

and most important test to prove its specificity. Fig. 3.8 shows representative confocal 

images of BMP10 detection in mouse heart. A membrane localization of BMP10 in the 

right atrium and the right atrial appendage (Fig. 3.8 A and B, respectively) is apparent. 

Using the same laser set up, the left atrium and ventricles (Fig. 3.8 C and D) were 

examined for a signal. The relative differences in signal intensity between the examined 

parts were clearly visible. Since the antibody staining of BMP10 matched the in situ 

hybridization data it seems likely that the antibody generated against the mature region 

of BMP10 works reliably and specifically.  
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Fig. 3.8. Confocal images of mouse heart immunolabeled with anti BMP10 

antibody (A-D) or preimmune serum (E) followed by detection and signal 

amplification using the biotin-streptavidin system (green). Staining was confined 

to the right atrium and the right atrial appendage and membrane localization of 

BMP10 is apparent (A and B). Only a marginal signal was noted in the left atrium 

(C) and no BMP10 positive cells were found in the ventricular part of the heart 

(D). Preimmune serum gives no signal (E). Panel F represents the same section 

like in E counterstained with phalloidin-TRITC (red). Nuclei were visualized with 

Draq5 (A-D red; E and F blue).  
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3.3. Localization versus expression of BMP10 

 

 Since the newly generated anti-BMP10 antibody allowed specific detection of 

the BMP10 protein, the comparison of BMP10 expression with its targeted localization 

became possible.  

 In situ hybridization with the BMP10 specific probe had already revealed that 

during mouse embryogenesis BMP10 expression is restricted to the trabeculated part of 

the developing heart. The immunohistochemical analysis of BMP10 location in mouse 

embryos is presented in Figs. 3.9 and 3.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9. Low magnification images showing BMP10 localization (green 

fluorescence, panel A) in the developing mouse embryonic heart at E11.5; (B) 

nuclear staining (blue); (C) merge. The signal was apparent in the trabeculated 
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part, but also in the non-compacted myocardium and outflow tract. Panel D- 

higher magnification of in situ hybridization with the BMP10 specific probe at 

E11.5. BMP10 transcripts (dark blue label) are detectable exclusively in 

trabeculae but not in other structures of the developing heart. H, heart; OFT, 

outflow tract; TR, trabeculae.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10. Higher magnification of BMP10 localization (green) in embryonic heart 

at E11.5 (A, B). BMP10 was detected in a subpopulation of trabeculae a with 

gradual decrease of staining intensity in non-compacted myocardium. Note, that 

epicardial cells are positive for BMP10 (arrow). Nuclei were visualized by Dapi 

(blue) and sections were counterstained with phalloidin-TRITC (red in C and D). 

TR, trabeculae; Epi, epicardium. 

 

In contrast to in situ hybridization, accumulation of BMP10 positive cells was 

also found in the outflow tract (Fig. 3.9). BMP10 in embryonic heart was found in 

trabeculated myocardium and showed the highest staining intensity compared with 

other cardiac structures (Fig. 3.10). At higher magnification, a gradual decrease of the 
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staining intensity in non-compacted myocardium was clearly visible. At E11.5 of mouse 

embryonic development, the epicardium is apparent and also cells that constitute the 

fine epicardial layer were positive for BMP10. 

In the neonatal mouse heart, BMP10 transcripts were no longer detectable in the 

ventricular part and the expression was restricted to the right atrium (Fig. 3.11 C). A 

fibrous layer separating atria from ventricles limits BMP10 expression within the right 

atrium. However, by immunostaining of BMP10, a vestigial amount of protein was 

detectable in ventricles (Fig. 3.11 A). The signal was also partially observed in the 

epicardial layer. In the right atrium, in addition to the expected membrane location, a 

cytoplasmic accumulation of BMP10 was found.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11. Detection of BMP10 protein (A- green) and transcripts (C- blue) in the 

neonatal mouse heart. BMP10 was predominantly localized in cells of the right 

atrium. Asterisks indicate two types of pattern: cytoplasmic accumulation and 

membrane location (A). Arrows point to vestigial amount of BMP10 in the right 

ventricle. Nuclei were stained with Dapi (A and B- blue). Panel B represents the 

same section counterstained with phalloidin (red). C- In situ hybridization of 

paraffin embedded neonatal heart sections showed the restriction of BMP10 

expression to the right atrium (blue label).  The arrow indicates the fibrous ring 

separating atrium from ventricle. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12. Immunostaining of BMP10 (A-green) and localization of BMP10 

transcripts (C- blue) in the adult mouse heart. Expression and localization were 
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restricted to the right atrium. Panel B represents the same section as A, 

counterstained with phalloidin-TRITC (red), nuclei were stained with Dapi (A and 

B- blue). 

 

In adult mice, BMP10 protein was detectable neither in ventricles nor in the 

epicardium (Fig. 3.12). Additional signals were found in the tricuspid valve and in 

single cells around big vessels in the atrial area, which initially were not detected by in 

situ hybridization (Fig. 3.13). 

 

 

 

 

 

 

 

 

 

Fig. 3.13. Specific BMP10 expression and localization was found around big 

vessels in the atrial area (A- blue, arrows) and in the tricuspid valve (arrows in B- 

blue; C- green). A,B- in situ hybridization, C- immunodetection of BMP10 

(green). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14. RT-PCR analysis of selected BMPs receptors in different parts of the 

adult murine heart. Equal amounts of RNA used for reverse transcription were 

monitored by the HPRT PCR product.  

 

 

BMP10, as other members of the TGFβ family, acts via receptors and for this 

reason the expression of bone morphogenetic proteins receptors (type I and II) in adult 

and embryonic heart was analyzed. RT-PCR analysis revealed comparable expression 
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levels of Alk1 and BMPRII in the adult and embryonic heart. The ALK4 PCR product 

was weaker in the adult than in the embryonic heart and the opposite situation was 

observed in the case of ALK3. Expression of ALK6 was restricted to embryonic heart, 

but this receptor is not expressed in adult myocardium (data not shown). Next, the 

expression of selected receptors was examined in atria and ventricles of the adult heart 

(Fig. 3.14). RT-PCR analysis revealed higher expression levels of ALK3 and BMPRII 

in the right atrium, while the ALK1 PCR product was barely visible in this heart 

chamber.  

 

 

3.4. Murine models of cardiomyopathies 

 

 The primary aim of this work was the characterization of changes of BMP10 

expression in pathological hearts. Two genetic models of cardiomyopathy, i.e. Desmin 

knock-out (Desmin LacZ strain; generous gift from Prof. T. Braun) and 10 months old 

MnSOD (SOD2) heterozygous mice (generous gift from Dr. T. Loch; laboratory 

collection) as well two drug-induced (doxorubicin and isoproterenol) models of 

cardiomyopathy were investigated. The degree of pathological changes was estimated 

on the basis of Magnetic Resonance Imaging (MRI) analysis as well as detailed 

histological examination.  

 

 

3.4.1. Magnetic Resonance Imaging (MRI) 

  

Cardiovascular MRI allows the accurate evaluation of ventricular function and 

determination of myocardial volumes and ejection fraction (EF). In this study, Desmin 

knock-outs, doxorubicin and isoproterenol treated mice as well as PBS treated age and 

strain matched controls were measured. Fig. 3.15 shows an example of Desmin knock-

out and control in coronal plane for anatomical imaging of apparent heart hypertrophy 

in the knock-out mouse. End-systolic and end-diastolic frames at the papillary muscle 

level are presented to demonstrate chamber dilation with increase of myocardial 

thickness. 
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Fig. 3.15. Representative transversal and coronal MRI images of Desmin knock-

out (left panel) and control (age and strain matched) mouse. Heart hypertrophy 

and chambers dilatation are evident in the knock-out. 
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Fig. 3.16. Examples of MRI analysis of doxorubicin (left panel) and 

isoproterenol (right panel) treated mice. In the centre a representative control for 

both drugs is presented. See text for the details.  

 

Similar sets of images of doxorubicin and isoproterenol treated and control mice are 

shown in Fig. 3.16. Heart hypertrophy, chamber dilation and impaired systolic function 

in isoproterenol induced cardiomyopathy are clearly visible. 

Administration of doxorubicin did not cause a degree of heart failure as severe 

as treatment with isoproterenol (Fig. 3.16, left panel). However, as seen in humans, 

chronic cardiotoxic effects might develop even after several weeks or months after 

doxorubicin administration (Singal et al., 1987). To obtain a more severe 

cardiomyopathy, higher concentrations of adriamycin were applied. Since the higher 

dose was lethal for the animals, only the modest cardiomyopathy, caused by the low 

doxorubicin concentration was analyzed further. 
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A characteristic feature of dilated cardiomyopathy is the enlargement of the 

ventricles with impaired systolic function. In the present study, changes in ejection 

fraction (EF) and myocardial volumes were used as main parameters to determine heart 

failure. All examined models showed a decrease of ejection fraction. Desmin knock-

outs (n=5) exhibited 11% reduction compared with controls (47.8%±3.34 and 

53.6%±3.75, respectively). The most pronounced decrease was noted in isoproterenol 

treated mice. The average value of ejection fraction from five measurements was 

calculated as 17.3%±1.21, whereas it was 61.6%±4.15 in ICR control mice. 

Doxorubicin administration caused a reduction of ejection fraction by 13% in 

comparison to controls. A graphic illustration of changes in ejection fraction and 

myocardial volumes is depicted in Fig. 3.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17. Graphic presentation of average values of ejection fractions (EF) – 

panel A and myocardial volumes (B) in representative groups of all examined 

models.  

 

The myocardial volumes were estimated in both systole and diastole as 

illustrated in Fig. 3.17 B. An increase of the myocardial volume was apparent in 

Desmin LacZ strain and was calculated in systole (0.110ml) and in diastole (0.103ml). 
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The same parameters were also determined in control C57Bl6 mice ( systole: 0.075ml, 

diastole: 0.069ml). A comparison between both strains revealed an increase of 46% in 

systole and 49% in diastole in Desmin knock-out mice. In isoproterenol treated mice the 

changes in myocardial volume were less pronounced (increase of 11% in systole and 

28% in diastole compared with ICR controls). Induction of cardiomyopathy with 

doxorubicin resulted in reduction of myocardial volume of 17% and 10% (0.053ml and 

0.045ml, controls- 0.064ml and 0.050ml) in systole and diastole, respectively. An 

additional parameter, which indicates heart failure, was the heart weight (mg) to body 

weight (g) ratio. As shown in Fig. 3.18 this ratio was elevated in all models compared to 

control mice.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.18. Heart weight to body weight ratio.  

 

 

3.4.2. Pathomorphological analysis of murine models of cardiomyopathy  

 

 The histopathological analysis of murine models of cardiomyopathies included 

the following features: 

• Myofiber disarray 

• Replacement fibrosis 

• Cardiomyocyte hypertrophy 

• Cell death 

Originally, a disarray of hypertrophied and disorganized myocytes was described 

in humans as a unique feature of hypertrophic cardiomyopathy. However, identical 

histological abnormalities have been reported in the absence of myocardial thickening 

(Shapiro et al., 1996). A striking and consistent feature of cardiomyopathy in Desmin 

knock-out was myofiber disarray, which is characterized by severe disarrangement of 
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the myocardial architecture resulting in bizzarely shaped myocytes (Fig. 3.19). A milder 

degree of disarray developed after doxorubicin administration. Neither SOD2 

heterozygous nor isoproterenol treated mice exhibited this feature (data not shown). 

Another typical pathological feature in cardiomyopathic hearts is the formation of 

focal fibrosis. The extracellular matrix to which cardiomyocytes are attached plays a 

vital role in cardiac contraction (McKenna et al., 1996). In the healthy heart collagen VI 

is localized around myocytes as a fine, thin sheet (Fig. 3.20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19. Representative images of myocyte disarray in Desmin knock-out and 

doxorubicin treated mice. The left panel shows detection of LacZ in Desmin 

knock out. Disarray in Doxorubicin treated mice is visualized by phalloidin-

FITC staining, nuclei are shown in red. 

 

In pathological hearts an increased collagen deposition was clearly visible (as 

shown in Desmin knock-out and doxorubicin treated mice). Especially, the Desmin 

knock-out hearts showed an abundant accumulation of collagen VI in areas of 

replacement fibrosis. In MnSOD heterozygous and isoproterenol treated mice collagen 

deposits were not as pronounced as in Desmin LacZ, and resembled a modest fibrosis as 

seen after adriamycin administration (data not shown). 
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Fig. 3.20. Different degrees of increased collagen VI (green) deposition in 

Desmin knock-out and doxorubicin treated mice and adequate controls. Sections 

were counterstained with phalloidin-TRITC (red) and nuclei were visualized by 

DAPI staining (blue).  

 

Basically, hypertrophy is defined as an increase in the size of the cardiac 

myocytes in response to pathological stimuli. As shown in Fig. 3.21, mice treated with 

isoproterenol showed an increase in myocyte size. Immunostaining for intercalated disk 

and/or membrane associated proteins is exceptionally helpful to clearly illustrate 

hypertrophic cardiomyocytes. Detection of plakoglobin in MnSOD heterozygous (left 

panel) and desmoplakin in isoproterenol treated mice (right panel- higher magnification) 
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demonstrates moderate and severe increase in myocytes size, respectively. Induction of 

cardiomyopathy by doxorubicin treatmentdid not result in cellular hypertrophy, as 

shown in Fig. 3.22 by vinculin staining. Desmin knock-out mice exhibited the highest 

degree of hypertrophy among all models tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.21. Immunodetection of plakoglobin (green) in SOD2 heterozygous (left 

panel) and vinculin in isoproterenol treated mice (right panel -green) illustrates 

different degrees of myocyte hypertrophy in both models in comparison to 

adequate controls. Sections were counterstained with phalloidin-TRITC (red). 

Nuclei are visualized in blue by DAPI.  

 

Numerous experimental and clinical studies have demonstrated that myocyte 

death is a critical determinant of cardiac remodeling and heart failure in different 

pathological settings, including cardiomyopathies. Two distinct types of cell death are 

known and recognized, namely necrosis and apoptosis (reviewed by Kostin, 2005). 

Necrosis is defined as an accidental type of cell death caused by ischemia, inflammatory 
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reaction or toxic agents. In contrast, apoptosis is a pre-programmed cell suicide. To 

distinguish between both types of cell death tissue sections were stained for 

Complement9 - a part of membrane-attack complex (Homeister et al., 1992), which is a 

marker of necrosis and TUNEL protocol was used to detect apoptotic DNA 

fragmentation.  

Examples of necrotic and apoptotic cells are shown in Fig. 3.23.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.22. Doxorubicin treated mice did not exhibit cardiomyocyte hypertrophy 

(left panel) as demonstrated by vinculin detection (green), while in Desmin 
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knock-out mice an increase in myocytes size is apparent. Nuclei are visualized in 

red by Draq5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.23. Example of a Complement9 positive myocyte (A-green). Panel B 

represents the same section as in A counterstained with phalloidin-TRITC (red). 

Nuclei were visualized with Draq5 (blue). Apoptotic cells (C and D- red) in 

isoproterenol (A-C) and doxorubicin (D) treated mice.  Sections C and D were 

counterstained with phalloidin-FITC (green).  

 

Desmin knock-out displays the most severe cardiac phenotype among the 

models examined, albeit neither necrotic nor apoptotic cells were detectable (data not 

shown). In MnSOD heterozygous only necrosis was noted (data not shown) while 

isoproterenol and doxorubicin administration was inducing both types of cell death.  

Many studies showed that dystrophin cleavage is associated with advanced heart 

failure (Kawada et al., 2005). In the healthy heart, a continuous dystrophin distribution 
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covers the cytoplasmic face of the peripheral plasma membrane, as described by 

Kaprielian (Kaprielian et al., 2000) and illustrated in examples of control mouse heart in 

Fig. 3.24. Cells lacking this membrane-associated protein were found in doxorubicin 

induced DCM, but not in the other tested models. Results of the histopathological 

analysis are summarized in table 3.1.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.24. Immunolabelling of dystrophin (A-green) in doxorubicin treated mouse 

heart. Arrows indicate cardiomyocytes lacking dystrophin. Panel B represents the 

same section counterstained with phalloidin-TRITC (red), panel C- merged 

images. Nuclei were visualized with Draq5 (blue).  

 

 

Summary of histopathological analysis. 

Tab. 3.1. Results of pathomorphological analysis.   

Cell Death  

Disarray Fibrosis 
Myocyte 

Hypertrophy 

Dystrophin 

lost Necrosis Apoptosis 

Desmin -/- + + + - - - 

MnSOD+/- - + + - + - 

Isoproterenol - + + - + + 

Doxorubicin + + - + + + 
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3.5. BMP10 expression in Cardiomyopathies 

 
 The main aim of the study was the determination of BMP10 expression under 

pathological conditions. Changes in the expression level were assessed by in situ 

hybridization and immunohistochemistry. To estimate the deregulation of BMP10 on 

the RNA level semi-quantitative RT-PCR analysis was performed and followed by 

Western Blot analysis for protein quantification.  

 

 

3.5.1. BMP10 is ectopically expressed in ventricles of Desmin knock-out mice  

 

As described in the previous chapter, mice lacking desmin exhibit the most 

severe cardiac phenotype among the tested murine models of cardiomyopathy. 

Detection of BMP10 transcripts by in situ hybridization revealed an ectopic expression 

in the ventricular myocardium of Desmin knock-out mice (Fig. 3.25). Based on the in 

situ hybridization result it is difficult to decide, whether this BMP10 expression occurs 

in cardiomyocytes or in other types of cells  

 

 

 

 

 

 

 

 

Fig. 3.25. In situ hybridization (blue label) on paraffin embedded Desmin knock-

out heart slides.  Panel A- low magnification; B- concentration of BMP10 

expressing cells in the left ventricle; C- high magnification of BMP10 positive 

cells in the myocardium indicate expression in interstitial cells. Sections were 

counterstained with eosin.  
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Fig. 3.26. Immunostaining of BMP10 in cryosections of Desmin knock-out heart. 

Panel A- BMP10 positive cells were found in or in the vicinity of vessels. B- 

Higher magnification of (A) showing small cell nearby an artery. Note, that the 

appearance of the nucleus might indicate cell division, or there are two cells close 

to each other. Panel C- cluster of BMP10 positive cells localized between 

cardiomyocytes. 

 

To increase the level of resolution and to determine the identity of BMP10 

expressing cells in the ventricular myocardium immunofluorescent stainings were 

employed. In addition to the right atrium, some labeling was also noted in ventricular 

cells (Fig. 3.26). BMP10 positive cells were found often, but not exclusively, in the 

proximity of vessels or even as incorporated cells in walls of coronary arteries. In 

Desmin knock-out mice, ventricular cells positive for BMP10 often appeared as clusters 

of interstitial cells. In some cases it was difficult to identify individual cells since the 

nuclei seemed not to be separated completely. Qualitative and quantitative changes of 

BMP10 protein were also found in right atrium (Fig. 3.27). An increase in the amount 

of BMP10 and its cellular redistribution from membrane to cytosolic accumulation was 

apparent. This pattern resembled the protein distribution in the neonatal atrium. The 

upregulation of BMP10 expression in Desmin knock-out, as judged by 

immunohistochemistry was also confirmed by semi-quantitative RT-PCR (Fig. 3.28) 

and Western Blot analysis (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.27. BMP10 localization in the right atrium of WT (A) and Desmin knock-

out mice (B). Note increased amount of BMP10 protein accumulated in the 

cytoplasm (green) in the knock-outs right atrium. Cryosections were 

counterstained with F-actin (red) and nuclei were visualized by Draq5 (blue).  
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Fig. 3.28. Semi-quantitative RT-PCR analysis of BMP10 (left panel) and ANF 

expression (right panel) in Desmin knock-out and control WT mice. Up-regulation 

of BMP10 expression is apparent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.29. In situ hybridization with an ANF specific antisense probe (blue label) 

in control (A,B) and Desmin knock-out (C,D) mouse heart. Upregulation of ANF 

expression in septum (A,C) and apex (B,D) of knock-out, but not in WT.   

 

An upregulation of BMP10 expression on both, RNA and protein levels were found in 

Desmin knock-outs in comparison to wild type controls. Changes in ANF transcript 

levels, a well known marker of cardiomyopathy were also checked. As expected, higher 

expression of this gene was also found. This observation was confirmed by in situ 
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hybridization with an ANF specific riboprobe (Fig. 3.29). Strong signals in the septum 

and apex as well as small foci in the ventricular free wall were apparent. 

 

 

3.5.2. Qualitative and quantitative changes of BMP10 expression in the 

heterozygous MnSOD knock-out mice 

 

 The second genetic model examined for BMP10 expression was MnSOD 

heterozygous.  Six months old mice exhibit impaired systolic function and reduced 

ejection fraction (data kindly provided by Dr. T. Loch, personal communication). In situ 

hybridization with the BMP10 antisense probe revealed a significant reduction of 

BMP10 expression in right atrium (Fig. 3.30) yielding a population of cells that was 

negative for BMP10. Furthermore, an ectopic expression of BMP10 was scored in some 

ventricular cells of MnSOD heterozygous mice (data not shown), but not in age and 

strain matched controls.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.30. Representative images of in situ hybridization with a BMP10 specific 

antisense probe in MnSOD heterozygous mice heart (A,B) and matched controls 

(C,D). B and D show higher magnification of right atrium of images A and C, 

respectively and illustrate decreased expression of BMP10 in MnSOD+/-. The 

signal is present in blue.  

 

The deregulation of BMP10 transcription in the right atrium was confirmed by 

immunodetection of the protein. In transgenic mice, a heterogeneous pattern of BMP10 
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distribution was observed, as shown in Fig. 3.31. Three different types of BMP10 

cellular localization were found: 

1. Preserved membrane location, typical for wild type mice 

2.  Cytosolic accumulation of BMP10 granules 

3.  Absence of the signal 

 

In ventricles, cells expressing BMP10 were detected in MnSOD heterozygous, but not 

WT mice. Clusters of BMP10 positive interstitial cells were found in the subepicardial 

layer and the myocardium (Fig. 3.31C and D).  
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Fig. 3.31. Confocal images of BMP10 localization (green) in heterozygous 

MnSOD (B-D) and control (A) mice. Panels A and B- BMP10 distribution in the 

right atrium. Panels C,D- BMP10 positive cells were found in ventricles of the 

transgenic mouse. Sections were counterstained with phalloidin-TRITC (red). 

Panels E and F- higher magnification of (D) illustrating a BMP10 positive cell on 

an myocyte (E), F- counterstained with phalloidin-TRITC (red). Panels E and F 

represent different layers of confocal image to illustrate localization of BMP10 in 

the interstitial cell. Nuclei were visualized with Draq5 (blue).  

 

The stained cell presented in Fig. 3.31D seems to resemble a small 

cardiomyocyte, but confocal analysis revealed that it is an interstitial cell situated on a 

myocyte. 

The relative level of BMP10 transcription in transgenic mice was reduced in 

comparison to wild type control (Fig. 3.32A), as revealed by semi-quantitative RT-PCR. 

Analysis of BMP10 expression on the protein level also indicated a decreased amount 

of BMP10 (Fig. 3.32B) whereas ANF expression was upregulated in SOD2 

heterozygous (Fig. 3.32C). In situ hybridization with an ANF probe revealed specific 

localization in the proximity of vessels of ANF transcripts in knock-outs (Fig. 3.33).  

 

 

 

 

 

 

 

 

 

 

Fig. 3.32. Panel A- semi-quantitative RT-PCR analysis of BMP10 expression in 

MnSOD heterozygous and control mice. Panel B- Western Blot shows relative 

difference in BMP10 protein level in transgenic and control mice. Panel C- semi-

quantitative analysis of ANF expression in WT and SOD2 heterozygous. An equal 

amount of RNA was monitored by the level of the GAPDH PCR product (22 

cycles). 
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Fig. 3.33. In situ hybridization in paraffin embedded heart slices with an antisense 

ANF probe. ANF expression in ventricles in WT (A) is restricted to single cells, 

whereas in MnSOD heterozygous foci of interstitial cells surrounding vessels (B) 

and myocytes (C) ANF positive cells were detectable. 

 

 

3.5.3. Redistribution and upregulation of BMP10 in doxorubicin induced CMP 

 

Clear changes of the BMP10 expression pattern were found in Desmin knock-

out and SOD2 heterozygous mice, which might be considered as models of chronic 

heart failure. On the other hand, drug induced cardiomyopathies might serve as models 

of acute cardiac disorder.  

Mice treated with doxorubicin exhibited apparent changes in the BMP10 

expression as revealed by in situ hybridization. BMP10 transcripts were detectable not 

only in the right atrium (Fig. 3.34A), but also in single, ventricular interstitial cells (Fig. 

3.34B). The number of positive cells was not abundant, and definitely lower than in 

Desmin knock-out and MnSOD heterozygous. It should also be noted that the chamber 

dilation did not only affected ventricles but also the atria. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.34. In situ hybridization with an antisense BMP10 specific probe in 

doxorubicin treated mouse heart. Panel A- BMP10 expression in the right atrium 

(blue label), dilation of the left ventricle and the right atrium is also visible. Panel 

B- higher magnification of (A), the arrow indicates the BMP10 signal in the 

septum. 

 

Using immunohistochemistry, an ectopic expression of BMP10 in the 

ventricular myocardium was confirmed (Fig. 3.35). Clusters of BMP10 positive cells, 

however, were not found in this model. Only single cells stained with BMP10 antibody 
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were detected and, as was already mentioned, their number was lower than in genetic 

models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.35. Representative confocal images illustrating BMP10 (green) expression 

in the right atrium (A) and ventricles (B) in heart of doxorubicin treated mouse. 

Sections were counterstained with phalloidin-TRITC (red) and nuclei were 

visualized with Draq5 (blue).  

 

Administration of doxorubicin resulted in redistribution of BMP10 protein in the 

atrium, as shown in Fig. 3.35A. BMP10 was accumulated in the cytoplasm and only a 

minor amount was localized at the membrane. Quantitative determination of BMP10 

expression revealed an upregulation of BMP10 in adriamycin treated mice. Results of 

semi-quantitative RT-PCR and Western Blot analysis are presented in Fig. 3.36. 

Additionally, ANF expression was only slightly upregulated (Fig. 3.36C) and ANF 

transcripts were detectable in single, ventricular cells, as shown in Fig. 3.37. 

 

 

 

 

 

 

 

 

 

Fig. 3.36. Semi-quantitative RT-PCR of BMP10 (A) and ANF (C) in doxorubicin 

(right) and PBS (left-WT) treated mouse heart. B- Western Blot presenting up-

regulation of BMP10 on the protein level. 

 



                                                                                               RESULTS 

 85 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.37. In situ hybridization in paraffin embedded heart slides with an antisense 

ANF probe. ANF expression was not detectable in ventricles in PBS treated 

control (A,B). In doxorubicin induced cardiomyopathy (C,D) transcripts were 

detectable in single, ventricular cells (blue label) and indicated a slight 

upregulation of ANF expression in the pathological heart. 

 

 

3.5.4. Downregulation of BMP10 in isoproterenol induced hypertrophic CMP 

 

 The previously described models represent the dilated type of cardiomyopathy 

(DCM). It was unclear, whether changes in BMP10 expression and localization were 

typical only for DCM or whether it is a common marker of heart failure. Hence, 

isoproterenol induction of hypertrophy was included in the study as a model of acute 

hypertrophic CMP.  

 In situ hybridization (Fig. 3.38) as well as immunolabeling (Fig. 3.39) revealed 

qualitative changes in BMP10 expression. In the right atrium, some cells did not express 

BMP10 anymore (Fig. 3.38B and C), while other strongly expressed BMP10.  
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Fig. 3.38. In situ detection of BMP10 transcripts (blue label) in isoproterenol 

treated mouse heart. Panel A- shows an overview. Panel B- illustrates 

downregulation of BMP10 in the right atrium. Note lack of BMP10 expression in 

some areas of the right atrial appendage. Panel C- higher magnification of the 

BMP10 signal in cardiomyocytes and interstitial cells in the right atrium. Arrows 

indicate lack of BMP10 expression. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.39. Representative confocal images of BMP10 (green) localization in 

isoproterenol treated mouse heart.  Panel A- homogeneous pattern of BMP10 

downregulation. Panel B- heterogeneity of BMP10 distribution. Panel C- example 

of ectopic BMP10 expression in ventricles. Sections were counterstained with 

phalloidin-TRITC (red), nuclei with Draq5 (blue). 

 

Similar results were obtained on the protein level. In the isoproterenol treated mice two 

distinct patterns were observed in the atrium: 

1. Homogeneous downregulation (Fig. 3.39A) 

2. Heterogeneous pattern (Fig. 3.39B), as already described for MnSOD 

heterozygous mice. 

 

A number of cells expressing BMP10 were found in the ventricles, as shown 

above. Only single, separated BMP10 positive cells were detected. These cells did not 

form clusters as in genetic models, however pairs were sometimes found. It was 

difficult to determine the overall BMP10 expression level due to the heterogeneity of 

the expression and localization pattern. Hence, quantification by PCR and Western Blot 

analysis had to be performed (Fig. 3.40). Preliminary determination on RNA level 

revealed a decrease of BMP10 expression (Fig. 3.40A), while ANF (Fig. 3.40C,D), 

FHL2 and BNP (data not shown) were upregulated. To verify differences in BMP10 

levels real-time quantitative RT-PCR was used (Fig. 3.40D). In hypertrophied hearts, 

the ANF level increased 4.5 fold, while BMP10 was down-regulated by a factor of 7.3. 
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Western Blot confirmed results obtained from RT-PCR analysis. FHL2 has been 

described as specific and reliable marker of hypertrophy (Kong et al., 2001), hence in 

situ hybridization with FHL2 specific riboprobe was performed. Transcript detection 

revealed expression of this gene in most of the ventricular cells of the treated heart (Fig. 

3.41), while in control only a weak signal was detected.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.40. Semi-quantitative RT-PCR of BMP10 (A) and ANF (C) in isoproterenol 

(right) and PBS (left-WT) treated mouse heart. B- Western Blot showing 

downregulation of BMP10 on protein level. Preliminary semi-quantitative RT-

PCR was confirmed by real time PCR analysis (D). Results were normalized to 

GAPDH expression and are presented as copy number of gene of interest per 100 

GAPDH copies.  

 

 

 

 

 

 

Fig. 3.41. FHL2 transcript detection (blue label) by in situ hybridization in control 

(A) and isoproterenol treated (B,C) hearts. Only a weak signal was detectable in 

control hearts (A). Strong induction of FHL2 expression in isoproterenol treated 

hearts was observed (B,C). 
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3.5.5. Deregulation of BMP10 expression in neonatal SOD2 knock-outs  

 

 Homozygous SOD2 knock-outs die shortly after the birth due to severe dilated 

cardiomyopathy (Li et al., 1996; Lebovitz et al., 1996). It was interesting therefore to 

check changes in BMP10 expression in this genetic model. Three days old MnSOD 

homozygous, heterozygous and WT mice from the same litter, on mixed C57Bl6/ICR 

background (generous gift from Dr. T. Loch) were used for the analysis. In situ 

hybridization in paraffin embedded hearts slides revealed striking differences in BMP10 

transcription (Fig. 3.42). In knock-out mice, ectopic expression was detected in 

ventricles, while in the right atrium the signal intensity was apparently diminished. 

Neonatal heterozygous MnSOD mutant mice, which do not show impairment of cardiac 

function and which have a virtually normal lifespan, did not exhibit any apparent 

changes in BMP10 expression (data not shown).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.42. Recapitulation of BMP10 expression in ventricles and downregulation 

of its atrial transcription in three day old MnSOD knock-out. In situ hybridization 
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with the BMP10 specific antisense riboprobe (blue label). Panels A and B- 

illustrate the BMP10 expression in three day old wild type control. Panels C,D- 

show decrease of BMP10 expression in the right atrium of SOD2 homozygotes. 

Panels B,D- represent higher magnification of the atria in wild type and knock-

out, respectively. E,F- higher magnification of (C) illustrating the signal detected 

in the ventricles of neonatal SOD2 homozygous. 

  

Immunostaining of BMP10 showed a striking decrease of protein expression in 

the right atria of knock-outs (Fig. 3.43), but not in heterozygous (data not shown) and 

wild type controls. Representative confocal images of BMP10 localization in two 

different SOD2 homozygous and in control mouse are shown in Fig. 3.43. As already 

mentioned, membrane location and cytoplasmic accumulation of BMP10 in the cells of 

right atrium is typical for wild type neonatal mouse. However, in neonatal MnSOD 

knock-outs the BMP10 signal in the cytoplasm was not detectable and only membrane 

bound BMP10 was found in the subset of atrial cells. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.43. The representative images of the BMP10 in situ immunodetection 

results. Downregulation of atrial BMP10 (green) expression in neonatal MnSOD 

homozygous (C,D) mice as compared to the control wild type (A). Sections were 

counterstained with phalloidin-TRITC (red) and nuclei were visualized with DAPI 

(blue).  

 

The relative comparison of BMP10 expression level in MnSOD homozygous 

with heterozygous and wild type controls by semi-quantitative RT-PCR confirmed the 

overall downregulation of the gene in knock-out animals. Simultaneously, expression of 

known markers of cardiomyopathy, i.e. BNP and ANF was monitored and a strong 

increase was detected. As shown in Fig. 3.44, a decreased expression of BMP10 was 

detected only in MnSOD-/-, but not in heterozygous mice. An increase of ANF was 

observed exclusively in knock-outs.  
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Fig. 3.44. Semi-quantitative RT-PCR analysis of BMP10 (left panel) and ANF 

expression (right panel) in three day old wild type, heterozygous and homozygous 

MnSOD knock-outs. Downregulation of BMP10 expression in SOD2-/- is 

correlated with an increase of ANF.  

 

 

3.6. Characterization of ventricular BMP10 positive cells in pathological adult 

hearts 

 

 The induction of BMP10 expression in different regions of the failing ventricles 

suggested its role in an adaptive or pathological response. To determine its positive or 

negative action, it was necessary to characterize the ventricular BMP10 positive cells. 

Based on preliminary observations, i.e. localization in the close proximity to vessels and 

the presence of cell clusters- endothelial, smooth muscle and proliferation markers were 

chosen to unequivocally identify BMP10 expressing cells.  
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Fig. 3.45. A subpopulation of BMP10 positive cells express the endothelial marker 

PECAM. Double immunodetection of endothelial marker CD31/PECAM (A, red) 

and BMP10 (B, green) in the ventricles of Desmin knock-out mouse heart. Nuclei 

were visualized with DAPI (C, blue). Panel D shows merged images. For exact 

description see text. 

 

As shown above, a subpopulation of BMP10 positive cells was positive for the 

endothelial marker- platelet endothelial cell adhesion molecule PECAM/CD31 (Fig. 

3.45). It should be noted, that BMP10 was not found in all endothelial cells (data not 

shown). Similar results were obtained when smooth muscle actin was used as a marker 

(Fig. 3.46). Again, BMP10 was detected in a subpopulation of smooth muscles cells. 

Most of the BMP10 positive cells exhibited moderate expression of the smooth muscle 

marker, but only a minority of smooth muscles cells in the heart stained positive for 

BMP10.  

 

 

 

 

 

 

 

Fig. 3.46. A minority of SMA positive cells in ventricles of MnSOD heterozygous 

expressed BMP10. Merged images of double immunostaining (A-B) of smooth 

muscle actin- SMA (red) and BMP10 (green)- yellowish when co-localize. The 

arrow indicates the cell expressing both BMP10 and SMA, arrowhead- 

BMP10
pos.

/SMA
neg.

 cell. Nuclei were visualized with DAPI (blue).  

 

Double immunolabeling of BMP10 and the proliferation markers phospo-histone 

H3 (Fig. 3.47) and Aurora B (Fig. 3.48), revealed that a major subpopulation of BMP10 

positive cells underwent mitosis. Phospo-histone H3 marks cells in both G2 and mitosis 

(Fig. 3.47), while Aurora B marks those in anaphase, telophase and cytokinesis. On the 

basis of the Aurora B pattern, BMP10 positive cells in cytokinesis were found in the 

different genetic models of cardiomyopathy (Fig. 3.48) and isoprotererol induced (data 

not shown) models. Surprisingly, in doxorubicin treated mouse heart, an accumulation 

of Aurora B was detected in nuclei of BMP10 positive cells although these cells did not 

exhibit features of cytokinesis (Fig. 3.48). 
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Fig. 3.47. In a subpopulation of BMP10 positive cells (green) phosphorylated 

histone H3 is detectable (pink, nuclear location).  Nuclei were visualized with 

DAPI (blue) and sections were counterstained with phalloidin 633 (dark red).  
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Fig. 3.48. BMP10 is detectable in proliferating cells. Proliferation marker- Aurora 

B (red) co-localizes with BMP10 (green) in ventricles of MnSOD heterozygous 

(SOD+/-) and doxorubicin (DOX) treated mice. Nuclei were stained with DAPI 

(blue). Note the accumulation of Aurora B in nuclei of BMP10 positive cells in 

doxorubicin treated heart, however, these cells did not exhibit features of 

cytokinesis. 

 

During the analysis of BMP10 expression in different models of 

cardiomyopathies, the question arose whether BMP10 is present in ventricular 

cardiomyocytes. As already mentioned in the case of MnSOD heterozygous, due to the 

small size of BMP10 positive cells it was easy to confuse BMP10 positive cells as heart 

muscle cells. Sometimes even a careful confocal analysis did not give clear answer. 

Hence, two distinct cardiomyocyte specific markers, Nkx2.5 and MHC were selected 

and used in double labeling experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.49. Immunolabeling of Myosin Heavy Chain (red) with MF20 antibody 

(A) and BMP10 (B, green) in isoproterenol induced hypertrophy showed that 

BMP10 is expressed in interstitial cells but not in cardiomyocytes in ventricles 

of the failing heart. Nuclei are shown in blue by DAPI staining (C). Panel D- 

merged images.  
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Fig. 3.50. Immunostaining of MF20 (A,E- red) and BMP10 (B,F- green) in the 

developing mouse heart at E11.5. BMP10 is detected not only in cardiomyocytes, 

but also in surrounding cells. Nuclei were visualized with DAPI (C,G- blue). D 

and H show merged images.  
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Representative results of MF20 and BMP10 double staining are shown in Fig. 

3.49. Hypertrophied ventricular cardiomyocytes in isoproterenol treated mouse are 

negative for BMP10 and BMP10 positive cell do not express myosin. It should be 

emphasized however, that in the right atrium BMP10 staining was detected in myocytes 

(illustrated in Fig. 3.51 on the example of Nkx2.5). 

In the developing mouse heart, BMP10 was detected by in situ hybridization 

(Neuhaus et al., 1999) and immunostaining (own results) in the trabeculated 

myocardium. Additionally, embryonic BMP10 deficiency (Chen et al., 2004) leads to 

defective outgrowth of these structures, hence it was interesting to analyze, whether 

BMP10 localization is restricted to cardiomyocytes in embryonic ventricles.  

In trabeculae, centrally located MF20 and BMP10 positive cells were 

surrounded by non-cardiomyocytes which did also express BMP10. Hence both 

myocytes and non-cardiomyocytes express BMP10 in embryonic hearts (Fig. 3.50.)  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.51. A and B- ventricular BMP10 positive cells (green) do not express 

Nkx2.5 (purple in merge with blue DAPI). Section B was counterstained with 

phalloidin 633. C- High magnification of atrial cardiomyocytes with membrane 

location of BMP10 (green) and Nkx2.5 staining (red) in nucleus. 

 

Since structural proteins label only relatively mature cardiomyocytes, the 

transcription factor Nkx2.5 was used as an additional marker for cardiomyocytes. The 

double immunostaining with BMP10 and Nkx2.5 specific antibody (Fig. 3.51) resolved 

my prior observations concerning a possible BMP10 expression in cardiomyocytes. 

Under pathological conditions BMP10 expression was not detected in ventricular 

myocytes, but only in interstitial cells.  
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Fig. 3.52. Immunostaining of Nkx2.5 (A- red) and BMP10 (B- green) in 

developing mouse heart at E11.5. BMP10 is detected not only in cardiomyocytes, 

but also in other cells. Nuclei were visualized with DAPI (C- blue). D shows 

merged images.  

 

Since BMP10 was detected only in pathologically altered ventricles, but not in 

healthy hearts I wanted to identify the origin of these BMP10 expressing cells. It is 

believed that pluripotent progenitor cells reside in the heart and can be characterized by 

stem cell antigen 1 (Sca1)/Ly6A expression (Oh, H., 2003). Additionally, resident Sca1 

positive cells in the heart were further subdivided into two: CD31- and 31+ cardiac side 

populations (Pfister et al., 2005). For this reason I used transgenic mice overexpressing 

GFP under the control of a Sca1 promoter (generous gift from Prof. T. Braun). An 

additional advantage of using a transgenic strain is the amount and stability of the 

expressed GFP and the possibility to monitor Sca1 promoter induction changes on the 

basis of GFP intensity differences.  

First, the number of progenitor cells in the heart was verified on the basis of 

green fluorescence. As shown in Fig. 3.53, an enormous number of cells expressing 

GFP were found in the heart, even without signal amplification with an anti-GFP 

antibody.  

In addition it was analyzed whether PECAM/CD31 and Sca1-GFP were 

expressed in the same cells. CD31 positive cells incorporated in vessels did not express 
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Sca1 (data not shown), only a minority of Sca1-GFP positive cells outside of the vessel 

wall expressed platelet endothelial cell adhesion molecule (Fig. 3.54).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.53. A high number of stem cell antigen 1 positive cells reside in the heart as 

shown by visualization of GFP expression driven by Sca1 promoter (A). Panel B- 

the same section as in A counterstained with phalloidin-TRITC (red), C- nuclei 

were visualized with DAPI (blue) D-merged images.  
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Fig. 3.54. Colocalization of CD31 (A-red) and Sca1-GFP (B-green) cells in Ly6A 

transgenic mouse heart. The arrow indicates colocalization of PECAM and Sca1 

antigen, arrowheads PECAM
neg.

/Sca1
pos.

 cells. Nuclei were visualized in blue with 

DAPI (C). Panel D presents merged images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.55. BMP10 co-localizes with Sca1 antigen in the ventricles of isoproterenol 

treated Sca1-GFP transgenic mice. Membrane bound BMP10 (red) was found in 

Sca1 positive cells which underwent cytokinesis (arrow). BMP10 accumulated in 

cytoplasm correlated with the marginal GFP signal (arrowhead). GFP was not 

amplified by antibody staining. For nuclei visualization DAPI was used (blue).  
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To study BMP10 expression in Sca1-GFP mice, cardiac dilation or/and 

hypertrophy had to be induced by doxorubicin and isoproterenol administration, 

respectively, prior to immunohistochemical analysis.  In mice treated with both drugs, 

BMP10 was found in Sca1
pos.

, but also in cells negative or weakly expressing Sca1 (Fig. 

3.55). As shown below, in a model of hypertrophic cardiomyopathy, BMP10 was 

detected in separating GFP positive cells (Fig. 3.55, left panel, arrow). Note the 

difference between BMP10 locations: in the left panel BMP10 is membrane bound in 

cells probably undergoing cytokinesis, , whereas in clustered cells on the left side of the 

image, a clear cytosolic accumulation is visible (Fig. 3.55, left panel, arrowhead). It 

should be mentioned that the presence of cytosolic BMP10 accumulation was most 

often but not always correlated with weak Sca1 expression, as shown in Fig. 3.55. The 

right panel shows a rare example of cell strongly positive for BMP10 with a preserved 

Sca1 signal. From two BMP10
pos.

 cells, one exhibits strong GFP fluorescence, while the 

second has diminished, marginal GFP expression (limited to the disappearing signal in 

nucleus). On this image a Sca1
pos.

 cell with membrane location of BMP10 is also 

shown.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.56. BMP10 (A- red) was detected in single ventricular Sca1 positive cells 

(B-green) in doxorubicin treated Sca1-GFP transgenic mice. For nuclei 

visualization DAPI was used (C- blue). Panel D shows merged images.  
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Induction of BMP10 with doxorubicin yielded similar results. BMP10 was 

localized in both Sca1
pos.

 and Sca1
neg.

 cells and a correlation of GFP intensity and 

BMP10 accumulation was noticed. As already mentioned, ventricular cells, which 

ectopically expressed BMP10 due to doxorubicin administration, did not show the 

tendency to cluster and only single BMP10 positive cells were found.  When Sca1
pos.

 

cells were marked with GFP, very often pairs or even clusters of Sca1
pos.

 cells were 

present, but in contrast to isoproterenol there was only single BMP10
pos.

 cell among 

them (Fig. 3.56).  

 

 

3.7. Growth and differentiation function of BMP10- in vitro studies 

 

3.7.1. The BMP10-IRES-GFP construct produces functional BMP10 protein 

 

 To test the function of BMP10 in vitro, a BMP10 expression construct was 

generated. 293T cells were transiently transfected with the BMP10-IRES2-GFP 

construct or pEGFP empty vector (control). Twenty-four hours after transfection, when 

the GFP reporter molecule expression was apparent and transfection efficiency was 

estimated to comprise a minimum level of 80% (based on GFP fluorescence), the 

growth medium containing 10% FCS was replaced with serum free DMEM medium. 

Forty-eight hours later, medium and cells were collected to test whether BMP10 and 

GFP proteins overexpressed in mammalian cells show the following properities: 

1. Detection of BMP10 by Western Blot in cells as well in medium due to the 

leader secretion sequence included in BMP10 cDNA. GFP should be detectable 

only in transfected cell lysates. 

2. Induction of alkaline phosphatase (ALP) in C2C12 cells by BMP10 containig 

supernatant from transfected cells.  

As shown in Fig. 3.57 293T cells were efficiently transfected with the BMP10-

IRES-GFP plasmid (Fig. 3.57A) and the pEGFP control vector (data not shown). Using 

Western Blot analysis GFP was detected with the anti-GFP antibody in the lysate of 

cells transfected with either the BMP10-IRES2-GFP expression construct or the control 

vector. 
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A weak signal was also visible in both control and conditioned serum free media; which 

is probably derived from dying transfected cells. In case of BMP10, Western Blot 

revealed the expression of the full length protein in 293T cells transfected with the 

plasmid, but not with the empty vector. A stronger band of appropriate size was also 

detectable in BMP10 conditioned medium, which indicates efficient secretion and 

accumulation of full length protein in this medium. The band was not present in control 

serum free medium after pEGFP transfection (Fig. 3.57B). 

 

 

 

 

 

 

 

 

  

 

Fig. 3.57. Panel A- Typical transfection efficiency of 293T cells necessary for 

enrichment of the medium with BMP10. Panel B- Western Blot analysis of cell 

lysates (lanes 1 and 3) and serum free medium (lanes 2 and 4) 72 hours after 

transfection with BMP10-IRES-GFP (lanes 1 and 2) or control pEGFP (lanes 3 

and 4).  

 

Since the protein of the expected size was efficiently synthesized, secreted and 

accumulated in the medium, the most important was to verify the biological activity of 

the overexpressed BMP10. All members of the Bone Morphogenetic Proteins family are 

known to induce osteoblast differentiation of myoblastic cells, such as C2C12 cells 

(Katagiri et al., 1994; Aoki et al., 2001).  

 

 

 

 

 

 

 

Fig. 3.58. BMP10 induces differentiation of C2C12 cells into osteoblasts. Alkaline 

phosphatase activity detection (blue) in C2C12 cells treated with SF control (A), 

BMP10 enriched medium (B-D) and BMP2 (E- positive control). Panel A- 100% 

of control serum free medium medium; B and C (high magnification)- 100% of 
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BMP10 conditioned medium, D-5% of BMP10 conditioned medium; E- positive 

control 200ng/ml BMP2. 

 

Osteoblasts exhibit high levels of alkaline phosphatase (ALP) activity (Katagiri 

et al., 1994). Thus, induction of ALP by BMP10 would prove the biological activity of 

BMP10. Hence, C2C12 cells were plated in 96-well dishes in regular growth medium 

and 24 hours later the medium was replaced with serum free medium enriched in 

BMP10 or with control medium of different concentrations. Medium collected from 

pEGFP transfected 293T cells was prepared in parallel and used as a negative control. 

Commercially available BMP2 (Sigma) was used as a positive control. Cells were 

cultured for further 48 hours followed by detection of alkaline phosphatase (ALP) 

activity as described in Experimental Procedures. 

The BMP10-IRES-GFP expression construct produced a functional BMP10 

protein which is capable of activating ALP at a level comparable to BMP2. BMP10 is 

efficiently overexpressed and secreted since only 5% of BMP10 conditioned medium 

was sufficient to induce alkaline phosphatase activity in C2C12 cells (Fig. 3.58). ALP 

was neither induced in control conditioned medium (Fig. 3.58A) nor in DMEM serum 

free medium (data not shown).  

A similar set of experiments was also carried using 10T1/2 and 293T cells. In 

both cell lines alkaline phosphatase expression/activity was not induced by BMP10 

conditioned medium.  

 

 

3.7.2. Cell line selection for in vitro studies 

 

On the basis of immunohistochemistry BMP10 positive cells in pathological murine 

hearts exhibited the following features: 

1. They reside in the vicinity or are incorporated in vessels 

2. They express proliferation markers 

3. A subpopulation coexpresses the smooth muscle marker- SM actin 

4. A subpopulation coexpresses the endothelial marker -PECAM 

5. They can originate from Sca1 positive cells 
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Based on these observations, which suggest that BMP10 might exert effects on vessel-

associated cells 3 different cell lines were chosen to test the function of BMP10: 

1. mBM-MASC1- mouse bone marrow derived mesenchymal stem cells- because 

of their pluripotency and high expression of the Sca1 antigene (Belema Bedada 

et al., 2005).  

2. The multipotent mouse embryonic fibroblastic 10T1/2 cell line because of its 

ability to differentiate into pericytes/vascular smooth muscle cells (vSMCs) 

(Hirschi et al., 1998), a process stimulated by TGFβ1. 

3. Mouse adult non-cardiomyocytes (mANCM) isolated from adult wild type 

murine hearts. For this particular experiment cells were also isolated from the 

transgenic strain with GFP expression under control of the stem cell antigen 1 

promoter- Sca1 (Ly6A)-GFP. The heterogeneity of the mANCM culture was 

checked by immunocytochemistry on the basis of the expression of various 

markers: fibroblasts (vimentin), myofibroblasts (vimentin and SMA), smooth 

muscle cells (SMA) and endothelial cells (PECAM and AcLDL uptake).   

Serum free medium collected from 293T cells transfected with empty vector and 

prepared identical to BMP10 conditioned medium served as a negative control in each 

cell culture experiment.  

As BMP10 exerts its function via receptor binding, the expression profile of 

BMPs/TGFβ type I receptors in all cell lines used in the project was analyzed by RT-

PCRs (Tab. 3.2). 10T1/2, C2C12 and bm-MASCs express all type I receptors. In 293T 

cells ALK1 is not present, while COS1 cells lack ALK1, ALK5 and ALK6, described 

already as the least responsive cell line to BMP10 (Mazerbourg et al., 2005).    

 

Expression profile of BMPs/TGFβ receptors in cell lines used in this study 

 ALK1 ALK3 ALK5 ALK6 

Cos1 - + - - 

10T1/2 + + + + 

C2C12 + + + + 

293T - + + + 

BM-MASC1 + + + + 

Tab. 3.2. Collective representation of TGFβ type I receptor expression profile in 

cell lines used in this study (RT-PCRs results).  
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3.7.3. BMP10 induces proliferation 

 

As mentioned before, the only consistent feature of all ventricular BMP10 positive 

cells in pathological murine hearts was the co-expression of proliferation markers. Since 

BMP10 knock-out embryos display a complete loss of ventricular cell proliferation 

(Chen et al., 2004), and overexpression of BMP10 in the embryonic myocardium results 

in increased cellular mitosis (Pashmforoush et al., 2004) the effects of BMP10 on 

growth of non-cardiomyocytes as well of various cell lines of embryonic and adult was 

investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.59. BMP10 induced proliferation of 10T1/2 cells and mANCM isolated 

from the heart. Panels A-C- 10T1/2 cell line. Panels D-F- mANCM. Mitosis and 

cytokinesis marker- Aurora-B immunostaining (red) of  cultured in standard 

growth medium containing 10% FCS (A and D), control serum free medium (B 

and E) and BMP10 conditioned medium (C and F) indicated the higher number of 

proliferating cells in BMP10 enriched medium compared to control SF medium, 

but lower than in growth medium. Nuclei are visualized in blue by DAPI.  

 

Non-cardiomyocytes isolated from adult mouse heart (Fig. 3.59), 10T1/2 (Fig. 

3.59) and mBM-MASC1 (Fig. 3.61) were plated at equal density. Cells were grown in 

standard growth medium containing 10% FCS or serum free control or BMP10 

conditioned medium for 48 hours. Aurora-B staining was used to visualize cells 

undergoing mitosis and cytokinesis. Proliferating cells in late stages of mitosis and 

cytokinesis were counted and the relative ratio of proliferation was calculated with the 

number of dividing cells in control serum free medium was taken as 1. The summarized 
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results are shown in Fig. 3.60. BMP10 induced proliferation in all tested cell lines 

compared to serum free control medium. In mBM-MASCs the number of mitotic cells 

increased 3.3 fold while in 10T1/2 and mANCM 2.4 and 2.2 fold more proliferating 

cells were noted, respectively in BMP10 conditioned than control medium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.60. BMP10 induces proliferation of cells in serum free medium. Relative 

proliferation ratio of mBM-MASCs, 10T1/2 and mANCM cells grown in standard 

growth medium supplemented with 10% FCS (bars 1) serum free control medium 

(bars 2)- reference value calculated as1 and serum free BMP10 enriched medium 

(bars 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.61. BMP10 induces proliferation of mBM-MASCs. Note, that proliferating 

BMP10 treated mBM-MASCs cells (B-D) are morphologically distinct from 

control (A). Aurora-B immunostaining (red) of mBM-MASCs cultured in control 
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serum free medium (A) and BMP10 conditioned medium (B-D). Nuclei are 

visualized in blue by DAPI. F-actin was stained with phalloidin-FITC (green).  

 

 

3.7.4. BMP10 induces morphological changes of various cell types 

 

 During the studies that addressed the effects of BMP10 on proliferation, not only 

the induction of mitosis, but also changes in the morphology of treated cells were noted. 

Forty-eight hours after replacing the growth medium to conditioned or control medium, 

BMP10 addition caused an intensive proliferation of smaller cells than in control 

medium as illustrated in mBM-MASCs (Fig. 3.61) and this morphology was preserved 

after cell division (Fig. 3.62).  

 

 

 

 

 

 

 

 

 

 

Fig. 3.62. mBM-MASCs grown in control serum free (A) and BMP10 enriched 

(B) medium were counterstained with phalloidin-TRITC (red). Nuclei are 

visualized in blue by DAPI. Note that the BMP10 treated cells formed far-

reaching cell-cell contacts (arrow). 

 

These cells created long processes enabling far-reaching cell-cell contacts (Figs. 3.62B, 

3.63B,C). Most of them exhibited a spindle-like shape with centrally located nuclei and 

elongated cytoplasm. The nuclei of the newly appeared subpopulation of cells upon 

BMP10 addition in mBM-MASCs as well as in 10T1/2 were much smaller than in 

control cultures (Fig. 3.59C and 3.61B-D, respectively for both cell lines). It should be 

mentioned that in control medium serum deprivation also caused induction of a sub-

population of smaller cells; however, to a much lower degree and they failed to form 

long distance cell-cell contacts.  
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Fig. 3.63. 10T1/2 grown in control serum free (A) and BMP10 enriched (B,C) 

medium show distinct morphology. Arrows indicate created cell-cell contacts in 

BMP10 treated culture. Cells were counterstained with phalloidin-TRITC (red) 

and nuclei are visualized in blue by DAPI. 

 

It is a well known phenomenon that serum deprivation induces SM-actin expression of 

10T1/2 cells and differentiation to pericytes is strongly amplified by TGFβ-1 addition as 

judged by the expression of others pericyte markers (Hirshi et al., 1998).  Kale et al., 

noted maximal SM-actin expression after 48 hours of 10T1/2 induction with TGFβ-1 

(Kale et al., 2004). On the basis of this observation smooth muscle actin was firstly 

analyzed in the cell lines after 2 days of BMP10 addition. In 10T1/2 cells a robust 

expression of SM-actin was detected in BMP10 treated cultures, while only single cells 

in the control culture expressed this marker. No signal was detectable in cells grown in 

medium supplemented with 10% FCS. BMP10 induced SM-actin expression also in 

mesenchymal stem cells but in this case the expression was limited to a morphologically 

distinct subpopulation (Fig. 3.64).  

 

 

 

 

 

 

 

 

 

Fig. 3.64. SM-actin immunodetection in mBM-MASCs. Panel A- SMA 

expression (green) was induced by serum deprivation in control SF medium in 

cells with fibroblast-like morphology. Note the highly organized pattern of actin 

filaments. Panel B- SM-actin positive mBM-MASCs cells (green) grown in 

BMP10 enriched serum free medium for 48h showed a different morphology and 

accumulation of disorganized actin filaments. Nuclei were visualized by DAPI 

staining (blue). 
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In mBM-MASCs cells growing in control SF medium an expression of SM-actin was 

found in some larger cells with fibroblast-like morphology and the actin filaments 

showed a high degree of organization (Fig. 3.64A) opposite to the BMP10 treated cells 

where disorganized SMA was accumulated in the cytoplasm (Fig. 3.64).  

 

 

3.7.5. BMP10 induces a distinct subset of mBM-MASC-derived cells and tube-like 

formation  

 

Since 48 hours treatment of mesenchymal cells with BMP10 caused induction of 

a morphologically distinguishable cell population, the effect of this factor during later 

time-points was further studied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.65. Phase-contrast micrographs of mBM-MASCs after 96 hours of culture 

in serum free control (A,B) and BMP10 conditioned medium (C,D).  
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Fig. 3.65 illustrates the difference between mBM-MASCs cultured in control and 

BMP10 enriched serum free medium for 4 days. Cells stimulated with BMP10 failed to 

form a monolayer and recruited neighboring cells to create characteristic line or ring-

shaped patterns. This observation indicated stem cell differentiation into endothelial 

(EC) or pericytes/vSM cells. Hence the expression of EC markers (PECAM and 

Capsulin/POD/Epicardin as well Ac-LDL uptake), pericyte specific markers (PDGFRβ, 

SMA) and smooth muscle specific molecule (Calponin) were tested.  

As mentioned in the previous chapter, SM-actin expression was first noted 48h 

after BMP10 stimulation. Forty-eight hours later (96 hours in conditioned or control 

medium) SMA expression was analyzed again and was found mostly in “line-like” 

structures composed of a population of small cells with disorganized actin filaments.  
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Fig. 3.66. BMP10 induced PECAM (red) and SM-actin (green) expression in 

mBM-MASCs (left panel). Note the co-localization of endothelial and smooth 

muscle cell markers upon BMP10 treatment. In mBM-MASCs grown in control 

SF medium (middle panel) and standard growth medium (right panel) expression 

of CD31 and SMA was also noted, but co-localization of signals was never 

observed. Nuclei were stained with DAPI (blue). 

 

Surprisingly, PECAM was also detectable in some SMA positive cells (Fig. 3.66), 

although some cells were found that expressed only a single marker. mBM-MASCs 

cultured in control serum free generatedmedium single cells positive for one marker 

were also found. However, co-localization of signals was never observed. SMA 

expression was detected in some of the cells with highly organized actin filaments when 

mBM-MASCs reached confluence in standard growth medium supplemented with 10% 

FCS.  
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Fig. 3.67. The endothelial marker– epicardin (red) co-localizes with calponin 

expression (green) in a subpopulation of BMP10 treated cells (left panel). Both 

markers were only occasionally found in control SF medium (middle panel) or 

growth medium (right panel). Nuclei were stained with DAPI (blue).  

 

This might be explained by spontaneous differentiation of stem cells in all types of cells 

due to their pluripotency when they are confluent (data kindly provided by Dr. F. 

Belema Bedada, personal communication). Similar results were observed in the case of 

serum deprivation. 

Unexpectedly PECAM and SMA co-localized in some BMP10 treated cells. To 

further investigate the identity of these cells another set of smooth muscle and 

endothelial cell markers - calponin and epicardin, was studied.   

A specific nuclear localization of epicardin was found in “line-like structures”, 

but not in other cells, and the majority of capsulin positive cells expressed also calponin 

(Fig. 3.67). On the other hand, in approximately of 70% cells positive for calponin the 

endothelial marker was not detectable. Only a minor amount of cells grown in control 

serum free or standard growth medium (GM) was calponin positive, as it is a more 

specific marker and expressed later than SM-actin.  

The most specific method to identify an endothelial cells subpopulation is their 

ability to take up Ac-LDL (Acetylated Low Density Lipoprotein). Some mBM-MASCs 

induced with BMP10 were positive for Ac-LDL uptake as presented above (Fig. 3.68). 

Red fluorescence, specifically indicating the endothelial character of labeled cells 

partially overlapped with diminished SM-actin staining, but most of the ECs were not 

expressing smooth muscle actin. Neither cells from the control culture nor stem cells 

grown in standard GM were positive for Ac-LDL uptake.     

As mentioned previously, TGFβ is known to induce differentiation of 10T1/2 

cells to pericytes/vSMCs. Several markers are commonly used to identify pericytes, e.g. 

SM-actin and platelet-derived growth factor receptor β (PDGFRβ). There is evidence 

that pericytes may also give rise to other types of cells, including fibroblasts, 

osteoblasts, chondrocytes and adipocytes (Collet et al., 2005, Armulik et al., 2005). To 

address the question whether BMP10 induced expression of other pericyte markers in 

MASC mesenchymal stem cells I also investigated the presence of PDGFRβ (Fig. 3.69). 
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Fig. 3.68. Representative images of Dil- labeled Ac-LDL (red) uptake by mBM-

MASCs grown in the presence of BMP10 (left panel). The drug was not 

detectable in mBM-MASCs grown in control SF medium (right panel). Cells 

were stained with anti-SM actin (green) and nuclei were visualized with DAPI. 
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Fig. 3.69. Immunostaining of PDGFRβ receptor (red) and SMA (green) in mBM-

MASCs. PDGFRβ is specifically detected in BMP10 treated cells (left panel), but 

not in control cells (middle panel- control SF medium; right panel- standard GM). 

DAPI stains nuclei in blue.  

 

PDGFRβ expression was specifically induced by BMP10 addition, but not by 

serum deprivation in a control culture of bone marrow derived mesenchymal stem cells. 

Approximately 50% of PDGFRβ positive cells express SM-actin as well. In addition I 

also detected cells with only one of the two tested markers. As before, SMA was 

detected in both serum free control medium and 10%FCS supplemented growth 

medium. Moreover, SMA co-localized in some BMP10 treated cells with vimentin 
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expression (Fig. 3.70). Vimentin was not found in control untreated cells and BM-

MASCs grown in growth medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.70. Immunostaining of EMT marker - vimentin expression is induced by 

BMP10 (left panel, red) and co-localizes with SMA (green). Vimentin was not 

detectable in both control cultures.  Nuclei are visualized in blue by DAPI. 
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3.7.6. Differentiation of 10T1/2 cells is stimulated by BMP10 addition 

 

 Multipotent mesenchymal 10T1/2 cells are known to differentiate into various 

cell types. MyoD induces fibroblast conversion to muscle cells (Braun et al., 1989), 

whereas their stimulation with TGFβ results in expression of pericyte/vSMC markers 

(Hirshi et al., 1998). Preliminary results indicated that treatment of 10T1/2 with BMP10 

might induce differentiation into a new sub-population of morphologically distinct cells. 

10T1/2 fibroblasts were grown in serum free BMP10 conditioned or control medium 

followed by immunocytochemical analysis as in the case of mBM-MASCs. In BMP10 

enriched medium 10T1/2 cells created cord-like structures, as shown below (Fig. 3.71).  

 

 

 

 

 

 

 

 

 

Fig. 3.71. Phase contrast microphotography of 10T1/2 cells grown in control (A) 

and BMP10 enriched (B) serum free medium for 7 days. The BMP10 but not the 

control serum free medium stimulateed cord-like structure formation. 

 

The first and obvious question was whether the effect of BMP10 on 10T1/2 

differentiation was similar to the TGFβ effect, hence immunodetection of PDGFRβ and 

SM-actin, which serve as pericyte/vSMC markers, was performed.  

Strong induction of PDGFRβ expression was observed in BMP10 treated 

cultures. In cord-like structures SMA co-localized with the PDGF-BB receptor (Fig. 

3.72 middle panel). In a sub-population of small cells, which did not show the this line-

like pattern, PDGFRβ positive cells mostly did not express SM-actin and an overlapping 

signal was found only occasionally. To further investigate the induction of smooth 

muscle markers, the expression of calponin- a late SMCs marker- was examined (Fig. 

3.73).  
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Fig. 3.72. (A) Low power magnification of PDGFRβ (red) and SMA (green) 

immunodetection in 10T1/2 cells treated with BMP10 (left and middle panel), or 

control SF medium (right panel). Nuclei were stained with DAPI (blue). (B) 

Higher magnification of BMP10 treated cells stained as in A. Note the partially 

overlapping signal of PDGFRβ and SMA (arrow) or the lack of their co-

localization (arrowhead) in BMP10 treated cells 
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Fig. 3.73. Immunodetection of calponin (green) in 10T1/2 cells grown in BMP10 

conditioned (left panel) or control (right panel) serum free medium. Arrows 

indicate a monolayer cell negative for calponin. Nuclei are visualized in blue by 

DAPI.  

 

Fig 3.73 shows the results of calponin detection in 10T1/2 cells cultured in 

BMP10 enriched and control medium. Strong calponin expression was found after 

BMP10 treatment in highly organized tube-like structures, but not in other cells. Only a 

minor back-ground signal was noted in control cultures.  
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Addition of BMP10 to stem cell cultures induced expression of endothelial 

markers. Therefore CD31 and Ac-LDL uptake was also examined in 10T1/2 cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.74. A. Low magnification images of PECAM/CD31 (red) and SMA (green) 

immunodetection of 10T1/2 cultured in BMP10 conditioned and control SF 

medium, as well in standard growth medium supplemented with 10% FCS. Nuclei 

are shown in blue. Note three populations of cells in BMP10 treated culture: 

PECAM
pos.

/SMA
pos. 

(arrow); PECAM
pos.

/SMA
neg.

 (asterisk) and 

PECAM
neg.

/SMA
pos.

 (arrowhead). PECAM and SMA were detected in single cells 

in control cultures at marginal background level.  

 

Two distinct patterns of PECAM/SM-actin expression were found (Fig. 3.74). In 

cord-like structures induced by BMP10, most of the cells expressed both proteins, while 

in areas where theses structures were not yet obvious three phenotypes were noted: 

PECAM
pos.

/SMA
pos.

; PECAM
pos.

/SMA
neg.

 and PECAM
neg.

/SMA
pos.

. It should be 

emphasised that most of cells in this case were PECAM
pos.

/SMA
neg.

. When cells were 

positive for both antigens, one signal was usually stronger and the other weaker. Ac-

LDL uptake (Fig. 3.75) followed by SM-actin staining confirmed this observation. 
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Red fluorescence indicating endothelial cells were only found in 10T1/2 cells 

grown in serum free BMP10 conditioned medium, but not in the control culture (Fig. 

3.75). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 75. Identification of endothelial cells on the basis of DiI-Ac-LDL uptake 

(red), followed by SM-actin staining (green) in BMP10 treated (left panel) and 

control cultures (right panel). Nuclei were stained with DAPI (blue).  
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Cells strongly positive for Ac-LDL uptake had only a weak, marginal SMA 

signal and vice versa. Approximately 40% of the cord-like forming cells were AcLDL 

positive, 40% exhibited smooth muscle phenotype and 20% were negative or weakly 

positive for both. Because of the unexpected induction of either smooth muscle or 

endothelial markers by BMP10 addition, their expression was also analyzed at the RNA 

level.   

 

 

 

 

 

 

 

 

 

 

Fig. 3.76. BMP10 induces expression of endothelial markers (POD, CD31), the 

pericyte-specific marker PDGFRβ and the smooth muscles marker calponin in 

10T1/2 cells. Semi-quantitative RT-PCR analysis of BMP10 treated and control 

10T1/2 cells 48 and 96 hours in culture as well as in confluent culture in growth 

medium. The endothelial specific transcription factor- POD is highly expressed 

after 48 hours of BMP10 treatment, whereas cell-surface CD31 is upregulated 

after 4 days. Note the induction of calponin expression by serum deprivation. 

Equal loading of RNA was assured by monitoring expression of the housekeeping 

gene HPRT.   

 

Semi-quantitative RT-PCR analysis confirmed the results of 

immunocytochemistry (Fig. 3.76). Strong induction of the endothelial specific 

transcription factor POD was detectable in 10T1/2 cells already 48 hours after BMP10 

addition and was sustained at the same level 48 hours later. The other cell surface 

endothelial marker- CD31 was weakly expressed after 2 days in conditioned medium 

but its level increased after 96 hours of treatment. Calponin was not detectable at an 

earlier time-point, but on the fourth day of BMP10 treatment its transcription was 

strongly induced. It should be mentioned that serum deprivation also caused an 

expression of calponin albeit at a much lower level. PDGFRβ was also detected in 

treated cells after 48 and 96 hours. 

Vimentin, a mesenchymal marker, is known to be up-regulated during 

endothelial-to-mesenchymal transition (EMT). Vimentin was highly expressed in 
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10T1/2 cells growing in medium containing 10% FCS (Fig. 3.77). Serum deprivation 

resulted in down-regulation of vimentin expression. In fibroblasts grown in serum free 

BMP10 supplemented medium vimentin was also downregulated, but its expression 

level was preserved in a small subpopulaion of cells in cord-like structures. A strong 

signal of vimentin was observed mostly in cells weakly positive or negative for SMA.  

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

Fig. 3.77. Downregulation of vimentin expression (red) correlated with SMA 

(green) upregulation in BMP10 treated 10T1/2 cells in cord-like structures. 

Decreased vimentin staining without significant SMA induction was observed in 

control serum free medium in 10T1/2 cells. The right panel represents 10T1/2 

cells grown in standard GM, stained with the same set of markers. Note the strong 

and homogeneous vimentin pattern. Nuclei are visualized in blue by DAPI 

staining.  

 

 

3.7.6.1. Overexpression of BMP10 induces differentiation of 10T1/2 cells 

 

 Since addition of BMP10 to the medium induced differentiation of 10T1/2 cells, 

I investigated whether it is possible to achieve the same effect by direct overexpression 
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of the growth factor. This experiment allowed me to confirm that induction of 

proliferation and differentiation of fibroblasts are direct downstream effects caused by 

BMP10, but not a result of other proteins secreted from 293T cells to the conditioned 

medium. 10T1/2 cells were seeded at equal density and transfected with BMP10-IRES-

GFP plasmid or a pEGFP empty vector as a control. After transfection cells were grown 

in standard growth medium supplemented with 10% FCS to avoid the differentiation in 

response to serum deprivation. It should be emphasized that transfection efficiency was 

comparable for both pEGFP and BMP10-IRES-GFP after 24 hours, when GFP 

expression was clearly visible. Figure 3.78 illustrates the difference in cell morphology 

between control and BMP10 transfected 10T1/2 cells 24 hours after transfection. An 

obvious proliferative effect as well a morphologically distinct shape of BMP10 

transfected cells was noted after 48 hours as shown in Fig. 3.79. Control cells 

expressing GFP remained morphologically indistinguishable from surrounding 

fibroblasts and did not exhibit a high rate of mitosis since only single cells, not clusters 

of green cells were found 48 hours after transfection. Clusters of elongated green cells 

creating network –like structures became visible at the same time point after 

transfection with BMP10-IRES-GFP construct. 
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Fig. 3.78. 10T1/2 cells 24 hours after transfection with BMP10-IRES-GFP and 

control pEGFP vector. GFP positive cells indicating on BMP10 expression 

(BMP10-IRES-GFP transfected) are morphologically distinct from cells 

transfected with the empty vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.79. 10T1/2 cells 48 hours after transfection with BMP10-IRES-GFP and 

control pEGFP vector. GFP positive cells indicating BMP10 expression (BMP10-

IRES-GFP transfected) are morphologically distinct from cells transfected with 

the empty vector. Note the increased number of green cells in the 10T1/2 cell line 

transfected with the BMP10 expression construct indicating a pro-mitotic effect of 

BMP10.   

 

The effects of BMP10 overexpression in 10T1/2 cells was more pronounced 72 hours 

after transfection. In contrast to control cultures (data not shown), where only single or 

pairs of GFP positive cells were found, a large number of BMP10 expressing cell 

clusters was visible (Fig. 3.80). In addition to long-shaped cells, a sub-population of 

smaller cells expressing GFP appeared in the culture, as shown in Fig. 3.80. The new 

type of cells was comparable with those induced by BMP10 conditioned medium in 

both 10T1/2 and BM-MASC cell lines. These cells remained connected with elongated 

cells creating “nodes” and formed clusters with each other. The pro-mitotic effect was 

maintained even 72 hours after transfection. 
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Fig. 3.80. 10T1/2 cells 72 hours after transfection with BMP10-IRES-GFP. Green 

cells expressing BMP10 were highly proliferative. In addition to long-shaped cells, 

a sub-population of smaller BMP10-IRES-GFP expressing cells appeared in the 

culture. 

 

The use of the BMP10-IRES2-GFP expression construct for transfection allows 

to monitor cells, which express BMP10. I asked the question whether in such cells are 

able to create cord/tube-like structures and to take up acetylated low density lipoprotein 

(Ac-LDL), the most reliable and specific method to distinguish endothelial cells. 

As shown below, GFP positive cells expressing BMP10 form three dimensional 

tubes as visualized by phalloidin counterstaining (Fig. 3.81). Cells transfected with the 

control pEGFP vector did not exhibit this feature and were not able to take up Ac-LDL 

(data not shown). In Fig. 3.82 representative images illustrating Ac-LDL uptake by 

BMP10 expressing cells (as estimated by green fluorescence) are shown. All 10T1/2 

cells that express BMP10 were also positive for red fluorescence, indicating the 

presence of LDL in these cells. It should be mentioned that also in some of the cells 

neighbouring GFP positive red fluorescence was noted. 
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Fig. 3.81. Tube-like formation of BMP10-IRES-GFP transfected 10T1/2 cells. 

Panel A- confocal image of cells stained with phalloidin-TRITC (red). Panel B- Z-

position illustrates 3D structure created by transfected cells as illustrated on 

selected confocal sections; C- 3D reconstruction of the confocal images shown in 

A and B. Nuclei were visualized with DAPI (blue). 
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Fig. 3.82. BMP10-IRES-GFP transfected 10T1/2 cells (green) were able to take up 

DiI conjugated acetylated LDL (Ac-LDL) (red). Nuclei were visualized with 

DAPI (blue). 
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Fig. 3.83. 10T1/2 cells transfected with BMP10-IRES-GFP (green) expressed 

calponin (left panel, red) and PDGFRβ (right panel, red). Note that in some of the 

 



                                                                                               RESULTS 

 128 

cells neighbouring transfected cells both markers are detectable. Nuclei were 

visualized with DAPI (blue). 

 

This experiment proved that BMP10 is able to promote differentiation of 

mesenchymal, fibroblastic 10T1/2 cells into endothelial-like cells. As already 

mentioned, the activity of alkaline phosphatase was not detectable in this cell line upon 

BMP10 induction, both by conditioned medium or transfection with BMP10-IRES-GFP 

plasmid. This might indicate a specific and selective induction of differentiation by 

BMP10. 

Since addition of BMP10 to the medium induced expression of smooth muscle 

specific gene expression, for example calponin, I checked whether cells transfected with 

BMP10 express calponin as well. Another question was, if the PDGFRβ receptor is 

detectable in these cells. 

Calponin was detected in transfected, but also in some cells adjacent to BMP10 

expressing cells, as shown in Fig. 3.83. Staining was noted in cord-like, GFP marked 

structures and in the cells that seemed to be recruiting to them. Similar resulst was 

obtained with BMP10 conditioned medium. The expression of the pericyte specific 

gene- PDGFRβ was found to be stimulated by BMP10 (Fig. 3.83). The results of 

BMP10 treatment and transfections of 10T1/2 cells are summarized in Tab. 3.3. 

 

The BMP10effects on 10T1/2 cells 

Cell 

line 

Effects/Markers Control BMP10 

treated 

BMP10 

transfected 

Remarks 

10T1/2   

Proliferation + upregulated upregulated  

Cord-like 

structures 

- induced induced  

Smooth muscle 

cell markers 

+ + + 

PDGFRβ + + + 

10T1/2 cells 

adopt 

pericytes/vSMC 

phenotype in 

SF medium  

Endothelial cell 

markers 

- + + In cells forming 

cord-like 

structures 

 

Vimentin downreguleted + + Expression was 

preserved in 

cord-like 

structures 

Tab. 3.3. Summary of BMP10 influence on 10T1/2 cells. 
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3.7.7. BMP10 induces formation of cord-like structures in primary cultures of 

mouse adult non-cardiomyocytes 

 

3.7.7.1. Characterisation of isolated cells 

 

Since BMP10 was found to be expressed in ventricular cells that do not express 

cardiomyocyte-specific markers, the total population of non-cardiomyocytes was 

isolated from adult mouse heart. These cells were grown in 10% FCS medium and early 

passages (1-3) were used for the experiments. For each experiment, the heterogeneity of 

culture was analyzed by immunocytochemistry on the basis of the following markers: 

fibroblasts (vimentin), myofibroblasts (vimentin and SMA), smooth muscle cells (SMA, 

calponin), pericytes (PDGFRβ) and endothelial cells (PECAM and AcLDL uptake) 

(Fig. 3.84). 
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Fig. 3.84. Characterisation of mANCM isolated from WT mouse heart (A-E) and 

Sca1(Ly6A)-GFP transgenic strain (F). The following antibodies were used to 

estimate the content of different sub-populations of cells in the heterogeneous 

culture: (A)- anti-Vimentin (red)/anti-SMA (green) (fibroblasts, smooth muscle 

cells and myofibroblasts, when co-localize); (B)- anti-CD31 (red- endothelial 

cells); (C)- anti-PDGFRβ (red, pericytes); (D)- anti-Calponin (red, smooth muscle 

cells), and Ac-LDL uptake (E,F- endothelial cells). See text for details. 

 

The average content of fibroblasts, characterised by vimentin but not SMA 

expression, was estimated to be in the range of 90%-95%, depending on the isolation. 

The number of myofibroblasts- cells positive for both, vimentin and SMA, never 

exceeded 3%, and smooth muscle cells judged by the calponin and SMA signal were 

7%-10%. Only a few single cells expressing PDGFRβ were found in the cultures. The 

quantity of endothelial cells as estimated by CD31 immunodetection was at the level of 

30%, whereas 20% of cells were able to take up Ac-LDL. In 50% of Sca1
pos

 cells, 

identified by GFP expression, DiI-Ac-LDL was detected. However, cells that did not 

express the Sca1 antigen did also take up Ac-LDL, as shown in Fig. 3.84F. 

 

 

3.7.7.2. Some mANCM cells express BMP10 in culture 

 

 After isolation of mANCM from the whole heart, cells were grown to reach 

confluence in 10%FCS DMEM medium, trypsinised and plated at two different 

densities: 1x10
6
 and 1x10

5
 per 6 cm plate. The next day the growth medium was 

replaced with serum free BMP10 conditioned or control medium.  
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Fig. 3.85. BMP10 in primary mANCM culture isolated from the Sca1-GFP 

transgenic strain was detected with anti-matBMP10 antibody (red). GFP signal 

was not amplified (green). Arrows indicate the small subpopulation of 

BMP10
pos

/Sca1
neg

 cells, arrowhead BMP10
pos

/Sca1
pos

, asterisk BMP10
neg

/Sca1
pos

. 

Nuclei were stained with DAPI (blue).  

 

A proliferative effect of BMP10 was apparent in low-density cell cultures while 

no induction of mitosis by BMP10 was observed in more confluent cultures. Therefore, 

it had to be verified whether BMP10 expression is induced in the high-density cell 

cultures growing in the standard growth medium not supplemented with BMP10. 

BMP10 expression was tested by immunocytochemistry and on the RNA level by RT-

PCR analysis. Since mANCM were isolated from the whole heart, cells expressing 

BMP10 were found in all cultures, independent of cell density (Figs. 3.85 and 3.86). In 

mANCM isolated from Sca1-GFP mouse heart, BMP10
pos.

/Sca1
neg.

 and 

BMP10
pos.

/Sca1
pos.

 were found. Most of the cells BMP10
pos.

/Sca1
neg.

 were smaller than 

those expressing both genes (Fig. 3.85). When cells were plated with lower density, 

only single BMP10
pos.

 cells were found in the culture and BMP10 expression on mRNA 

was also low. In more confluent cultures, the number of cells expressing BMP10 rapidly 

increased, as shown in Fig. 3.86. Induction of BMP10 expression was further confirmed 

by RT-PCR analysis (Fig. 3.86). 
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Fig. 3.86. Low power magnification phase contrast microphotograph of mANCM 

cells 1 day (A) and 7 days (B) in culture and semi-quantitative RT-PCR analysis 

of BMP10 expression level (box). RNA for RT-PCRs was isolated from the 

presented cells (A,B). Confocal images (C,D) of BMP10 immunostaining (green) 

in confluent maNCM. Nuclei were stained with DAPI (blue). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.87. A highly proliferative sub-population of confluent mANCMs (A) was 

picked and cultured separately in growth medium containing 10%FCS. B- 24 

hours later the cells had fibroblast-like morphology. C- 72 hours in culture, cord-

like structures were noted.  

 

When mANCMs were confluent, either in serum free or FCS supplemented 

medium, highly proliferative cells, which did not form a monolayer appeared in the 

cultures. These cells were BMP10 positive. This might explain the lack of the effect of 
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exogenous BMP10 to confluent cultures as the gene is already efficiently expressed in 

many cells. Clusters of these cells (Fig. 3.87A) were isolated and cultured further in 

growth medium (Fig. 3.87B-C). On day 1, cells exhibited a typical fibroblast-like 

morphology (Fig. 3.87B). Two days later, structures resembling a cord-like pattern were 

visible in the culture (Fig. 3.87C) and although this pattern was conserved later on the 

cord-like structures had an immature apperence. However, when as a result of picking 

cell-cell contacts were disturbed (cells were not confluent), proliferation of this sub-

population of mANCM was significantly diminished, which will be described in detail 

in the next chapter. 

 

 

3.7.7.3. Characterisation of the mANCM subpopulation containing BMP10 

positive cells. 

 

 The tendency to form cord-like structures by a subpopulation of BMP10 positive 

mANCM cells, resembled the effect of BMP10 in all cell lines tested. The structures 

formed by the isolated subpopulation of mANCMs were not “fully developed” and did 

not exhibit the ability to create protrusions allowing long-distance cell-cell contact. 

However, the cells spontaneously were arranged in parallel forming longitudinal chains. 

To characterize the type of cells that create these chains, after isolation clones 

containing BMP10 positive cells, the same set of antibodies as for 10T1/2 and BM-

MASCs was used (Fig. 3.88).  

Aurora B staining showed the disturbed proliferation of the cells growing in 

standard growth medium supplemented in 10% FCS (Fig. 3.88A,B). SM actin was 

detected in contaminating cells, but not in cells building chain-like structures (Fig. 

3.88A,C). Strong vimentin expression indicating a mesenchymal origin was observed. 

PECAM expression was also found (Fig 3.88B), although not so strong as in HUVEC 

cells, that served as positive control and no signal was noted in the negative control 

(data not shown). Only a weak signal for PDGFRβ staining was found in single cells. 
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Fig. 3.88. Characterization of picked subpopulation of mANCMs. Note: (A) 

Impaired proliferation and lack of smooth muscle markers (SMA- green and 

Aurora-B- red). (B) Weak expression of PECAM (red) and single Aurora-B 

positive cells (green). (C) Strong vimentin staining (red) and lack of SMA 

expression (green) indicate the mesenchymal origin. (D) PDGFRβ was found 

only in single cells (red). Nuclei were stained with DAPI (blue). 

 

 

3.7.7.4. Effects of BMP10 on mANCM cells 

 

 BMP10 expression is strongly induced in confluent cultures of maNCM, but 

downregulated after trypsinization when the cell density is lower. To investigate the 

effects of BMP10 on heterogeneous mANCM cells, but avoid induction of endogenous 

BMP10 expression, only low density cultures were used. 1x10
5 

cells were plated on a 6 

cm dish to examine the effects of BMP10. The next day, the growth medium was 

replaced with serum free BMP10 conditioned or control medium and cells were further 

incubated for 96 hours with medium changes every 48 hours. Cells treated with BMP10 

started to create similar structures as observed in the case of mBM-MASCs and 10T1/2 

cells. An identical set of antibodies was used for characterisation of BMP10 induced 

changes. 
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Figure 3.89 illustrates the results of SM actin and Aurora B double staining. In 

BMP10 treated cultures, the highly proliferative cells forming cord-like structures are 

mostly negative for the smooth muscle marker, in contrast to previously described cell 

lines. The overall number of smooth muscle actin positive cells seemed to be reduced. 

Comparable results concerning induction of mitosis were obtained as already 

mentioned. Since cells forming tube-like structures were negative for SM actin it was 

likely that they are endothelial cells. This assumption was confirmed by 

immunostaining, as presented below (Fig. 3.90).  
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Fig. 3.89. BMP10 induced proliferation of SMA
neg. 

cells in the mANCM culture. 

Immunodetection of SM actin (green) and Aurora B (red) in BMP10 treated (left 

panel) and control cultures of mANCM. Nuclei are visualized in blue by DAPI.  

 

Structures induced by BMP10 addition to the medium were strongly positive for 

PECAM. In control serum free and in growth medium cells expressing PECAM were 

forming incomplete line-like structures.  

Since BMP10 forced the expression of PDGFRβ in 10T1/2 and BM-MASC 

cells, the induction of this gene in maNCM was also investigated. In mANCMs cultured 

in standard growth medium only single cells positive for PDGFRβ were found as 

described in chapter 3.7.7.1. Comparable results were obtained when cells were grown 

in serum free control medium. After stimulation with BMP10 most of the cells in cord-

like structures expressed PDGFRβ indicating the acquisition of a pericyte identity (Fig. 

3.91). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.90. BMP10 stimulated PECAM expression in a subpopulation of mANCM. 

CD31 (PECAM) immunodetection in BMP10 treated (left panel) and control 
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(middle-serum free control medium, right panel- growth medium) mANCM. Note 

that CD31
pos.

 cells in BMP10 treated cultures are smaller than in controls and  

formed ring-like structures. Nuclei were counterstained with DAPI (blue).  

 

It is interesting to note, that some cells which express PDGFRβ as a result of 

BMP10 addition did not express SM actin. Often strong PDGFRβ staining was observed 

in cells adjacent to SMA
pos.

 cells. Smooth muscle actin was found in bigger, 

morphologically distinct cells outside of the cords and rings. In control cultures co-

localization of SMA and PDGFRβ was visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 3.91. BMP10 induced PDGFRβ expression in cord-like structures. 

Immunodetection of PDGFRβ (red) and SM actin (green) in mANCM cultured in 

serum free BMP10 enriched and control medium as well as in standard growth 

medium. Note that upon BMP10 stimulation the strongest PDGFRβ signal was in 

smaller cells creating ring-like structures and weaker staining was in larger cells in 

cords. Highly organized smooth muscle actin filaments were detected in 

morphologically distinct cells. In tube-like structures SMA showed a disorganized 

pattern. Nuclei are visualized in blue by DAPI staining.   
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The preliminary characterization of mANCM revealed that more than 90% of 

the cells in this heterogeneous culture were positive for vimentin, comparable to the 

changes in vimentin expression observed in 10T1/2 and BM-NCMs upon BMP10 

treatment. The influence of BMP10 addition on vimentin expression in cells of heart 

origin was worth to be examined. Representative images of double vimentin and SMA 

immunodetection in mANCM cultures are shown in Fig. 3.92. 

Vimentin expression was preserved upon BMP10 treatment, although its cellular 

organisation was disrupted. It did not co-localize with smooth muscle actin. Figure 3.92 

clearly illustrates the smaller size of cells forming ring-like structures, in mANCM 

grown in serum free BMP10 enriched medium in comparison to control serum free and 

growth medium. 

The effects of BMP10 treatment on mANCM and bm-MASC cells are displayed 

in Tab. 3.4, whereas Tab. 3.5 summarizes the results observed after BMP10 treatment 

of all cell lines used in this study in comparison to the expression of various BMP 

receptors  
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Fig. 3.92. BMP10 did not influence the expression levels of vimentin (red) but its 

cellular organization in cord-like structures in mANCM. Note that SMA (green) 

filaments were disorganized in ring-like structures as well. Double 

immunodetection of vimentin (red) and SMA (green) in mANCM cultured in 

serum free BMP10 enriched (left panel) and control (middle panel) medium. Right 

panel illustrates the same staining in cells grown in 10% FCS containing medium. 

All images represent the same magnification. Nuclei were stained with DAPI 

(blue).  

 

 

BMP10 effects on mANCM and bm-MASC1 cells 

Cell line Effects/Markers Control BMP10 

treated 

Remarks 

mBM-

MASC1 

 

Proliferation + upregulated  

Cord-like structures - induced  

Smooth muscle cell 

markers 
+ ++ 

SMA expression is 

induced by serum 

deprivation and in 

confluent culture 

PDGFRβ - +  

Endothelial cell 

markers 
- + 

Co-localization of 

EC and SMC 

markers in BMP10 

treated, but not in 

control culture 

 

Vimentin - +  

mANCM  

Proliferation + upregulated  

Cord-like structures - induced 

In control culture 

not completely 

formed structures 

were observed 

Smooth muscle cell 

markers 
+ +  

PDGFRβ 
Single 

cells 
+ 

Expressed in cord-

like structures in 

BMP10 treated 

culture 

Endothelial cell 

markers 
+ 

expressed in 

cord-like 

structures 

Expressed in 

morphologically 

distinct cells 

 

Vimentin + + 

BMP10 did not 

affect the expression 

levels of vimentin 

but its cellular 

organisation. 

Tab. 3.4. Summary of BMP10 effects on mANCM and bm-MASC1 cells. 
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Type I Receptors Cell line Effects of BMP10 

Present Absent 

COS1 Lack of induction of ALP activity 

Lack of cord-like structures ALK3 

ALK1 

ALK5 

ALK6 

293T Lack of ALP activity 

Lack of cord-like structures 

ALK3 

ALK5 

ALK6 

ALK1 

C2C12 Induction of ALP activity ALK1 

ALK3 

ALK5 

ALK6 

 

10T1/2 Lack of ALP activity 

Induction of tube-like structures 

formation 

ALK1 

ALK3 

ALK5 

ALK6 

 

mBM-MASC Lack of ALP activity 

Induction of tube-like structures 

formation 

ALK1 

ALK3 

ALK5 

ALK6 

 

mANCM Lack of ALP activity 

Induction of tube-like structures 

formation 

N.D
* 

N.D
* 

Tab. 3.5. Summary of BMP10 effects on various cell lines in comparison to expressed 

type I receptors. N.D.- not done because of heterogeneity of culture (*). 
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4. Discussion 

 

4.1. BMP10 expression and localization in healthy murine hearts 

 

 At the beginning of this project only the expression of BMP10 during mouse 

embryonic development was known. Whole mount in situ hybridization and northern 

blot results had also indicated that the expression of BMP10 was restricted to the right 

atrium in adult human tissues (Neuhaus et al., 1999). To investigate more closely the 

expression of BMP10 in adult murine tissues, this study started with the RT-PCR 

analysis of BMP10 expression. The results revealed that BMP10 expression is confined 

to the heart. Within the heart the BMP10 specific PCR product is present only in the 

right atrium confirming previously published expression patterns (Neuhaus et al., 1999). 

By in situ hybridization it was possible to detect BMP10 expression in the majority of 

atrial cells, both interstitial and atrial cardiomyocytes. Transcripts were also found in the 

trabeculated atrial wall of the right atrial appendage and the interatrial septum. 

However, the compact layer of the wall as well as the pericardium do not express 

BMP10. BMP10 transcripts are absent in both ventricular chambers and in the left 

atrium or the left atrial appendage.  

 BMP10 is a cytokine that belongs to the TGFβ family. The leader secretion 

sequence indicates that expression might, but not necessarily has to overlap with the 

localization of BMP10 after secretion. Partially overlapping expression and localization 

domains have been noticed in the case of BMP2 (Sugi et al., 2004). That was the reason 

to generate the antibody specifically recognizing the mature, processed form of BMP10, 

i.e. the active ligand interacting with receptors. After confirmation of the specificity of 

the BMP10 antibody by western blot, immunocyto- and immunohistochemistry, it was 

possible to examine BMP10 protein localization during embryonic development and in 

the adult mouse heart. By in situ hybridization BMP10 during embryogenesis was found 

to be expressed in the heart in the trabeculated, non-compacted myocardium only 

(Neuhaus et al., 1999). Immunodetection of BMP10 at E11.5 revealed that the extent of 

protein localization is significantly broader than the expression domains. Surprisingly, 

accumulation of BMP10 positive cells was found in the walls of the outflow tract. 

Moreover, the mature ligand of BMP10 was found not only in the trabecular layer of the 

developing heart, but also in the compact wall of the ventricles. In ventricular chambers 
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BMP10 localizes in a subpopulation of trabecular cells with a gradual decrease of 

staining intensity in the non-compacted myocardium, where BMP10 transcripts are not 

detectable. Cells that constitute a fine epicardial layer are positive for BMP10 as well. 

Double immunodetection of the myosin heavy chain (MHC), Nkx2.5 and BMP10 

revealed localization of the cytokine in cardiomyocytes, but additionally in interstitial 

cells surrounding muscles.  

Based on the expression and localization profile it seemed likely that BMP10 

might probably act both in an autocrine fashion and in a paracrine way. A 

cardiomyocyte restricted effect of BMP10 action was postulated by Chen (Chen et al., 

2004) but not investigated further since BMP10 deficient embryos die between E9.5 and 

E10.5. Mutant embryos displayed “cardiac dysgenesis with profound hypoplastic 

ventricular walls and absence of trabeculae” (Chen et al., 2004). Based on in situ 

hybridization experiments the authors found that BMP10 expression is restricted to 

muscles cells and postulated that the defective trabeculation and hypoplastic ventricular 

walls in mutants were caused by marked reduction of cardiomyocytes proliferation. It 

was suggested therefore that BMP10 provides a positive growth signal for 

cardiomyocytes. Although the authors recognized abnormal development of the 

endocardial cushion in both outflow tract (OFT) and atrioventricular canal (AVC), and 

found that this phenotype in BMP10 deficient hearts is rescued by BMP10 protein 

supplementation, they could not exclude that this effect was secondary to a severely 

impaired cardiac growth. Since immunodetection with the generated antibody proves 

that BMP10 localizes to the OFT, it is likely that OFT abnormalities in embryos lacking 

BMP10 represent direct effects of this growth factor deficiency. The authors however, 

did not characterize the nature of abnormalities in the OFT (Chen et al., 2004).  

Expression of BMP10 in the neonatal mouse was found to be restricted to the 

right atrium, with transcripts limited by the annulus fibrosus. In contrast to the 

embryonic heart the protein localization predominantly overlapped with in situ 

transcripts detected in infants. However, a vestigial amount of BMP10 protein was 

found in the right ventricle. In the right atrium, two distinct localization patterns of the 

mature ligand were observed. Some cells exhibit cytosolic accumulation of the protein, 

while other cells show BMP10 bound to the membrane.  

In the adult murine hearts BMP10 localizes predominantly to cells of the atrium 

resulting in a homogenous, cell-membrane localization pattern with marginal cytosolic 

staining. Detailed examination shows that additional structures in the heart are able to 
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bind or express BMP10. Immunohistochemistry showed binding of BMP10 by cells of 

the tricuspid valve. Careful in situ transcript detection analysis confirmed the results of 

protein immunodetection, and expression of BMP10 in some cells in the valve was 

found. Moreover, single cells adjacent to the big veins and arteries in the upper atrial 

area of the heart demonstrate BMP10 transcription. The detailed knowledge of BMP10 

expression and localization in the healthy murine heart was required to analyze 

pathological changes of BMP10 expression in different models of cardiomyopathies.  

 

 

4.2. Phenotypic differences and similarities of the mouse models of CMP 

 

One of the primary aims of the present work was the characterization of BMP10 

expression in various models of cardiomyopathies (CMP). In this study both genetic and 

drug induced models resembling dilated and hypertrophic cardiomyopathies were used. 

I took advantage of the accessible and well characterized Desmin knock-out (Milner et 

al., 1996; Thornell et al., 1997, Li et al., 1996) (generous gift from Prof. T. Braun). As 

the second genetic model, 10 months old heterozygous mice deficient in the manganese 

superoxide dismutase gene (MnSOD/SOD2), generated by Dr. T. Loch were used 

(laboratory collection). These models represent examples of desmin related 

cardiomyopathy (Gard et al., 2005; Sanbe et al., 2004; Olivé et al., 2004) and 

mitochondropathy, respectively (Finster, 2004; Russell et al., 2005). Induction of dilated 

cardiomyopathy by doxorubicin administration (Gille et al., 1997; Zhou et al., 2001; 

Childs et al., 2002; Green et al., 2002; Wallace, 2003) was also utilized. Treatment of 

mice with isoproterenol resulting in heart hypertrophy (Boluyt et al., 1995) served as a 

second drug induced model. A detailed pathological description of all models, including 

MRI analysis and characterization of the nature and degree of pathomorphological 

changes were a prerequisite of this study. Parameters for the histopathological analysis 

included the degree of fibrosis and cardiomyocyte hypertrophy, presence or absence of 

myofiber disarray and two types of cell death, namely apoptosis and necrosis. 

Additionally, the levels of ANF, BNP and FHL2 as indicators of heart disorder were 

monitored.  

Desmin deficient mice are the best characterized among the tested models 

(Milner et al., 1996; Milner et al., 1999) and on the basis of published data as well as 

own results exhibit the most severe degree of cardiomyopathy. The desmin protein is an 
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intermediate filament expressed in all types of muscles. The null mutation causes the 

most severe phenotype in cardiac muscles (Milner et al., 1996; Li et al., 1996; Thornell 

1997), which correlates with a higher content of this protein in the myocardium (2%) 

than in skeletal muscles (0.35%) (Price, 1984). Selective microvascular dysfunction was 

also observed in desmin null mice (Loufrani et al., 2001). Desmin mutations resulting in 

dilated cardiomyopathy have been described in humans and the term “desminopathies” 

has been proposed (Li et al, 1999).  

In this study, magnetic resonance analysis of Desmin knock-out mice revealed 

hypertrophy of the heart, confirmed by measurements of myocardial volume. In 

addition impairement of systolic function and chamber dilation was observed, as 

already reported by Milner (Milner, DJ et al., 1999). However, the authors claimed, that 

dilatation of the chambers was accompanied by thinning of the ventricular free walls, 

which is in contrast to our results. An obvious increase in thickness visible in MRI 

images was further confirmed by histological examination. Histological inspection 

revealed advanced calcification, which was visible at a first glance in most of the 

desmin deficient mice, however at different degrees dependent on the genetic 

background. An elevated heart weight to body weight index as compared to WT 

corroborates previously published results (Milner et al., 1999). The histopathological 

analysis confirmed most of the published data (Mavroidis et al., 2002; Milner et al., 

1996). Hearts of mice lacking desmin demonstrate numerous muscle architectural 

defects, with loss of alignment of myofibrils. Fibrous scar tissue develops throughout 

the myocardium and foci of abundantly accumulated collagen VI deposits were found. 

Cardiomyocytes are hypertrophied and the increase in myocyte size among all the tested 

models is the most pronounced in Desmin knock-out mice. Surprisingly, transgenic 

hearts did not contain significant number of apoptotic or necrotic cells as detected by 

TUNEL and Complement9 staining, respectively. Previous publications claimed that 

fibrosis and calcification found in desmin knock-out hearts were the result of high 

incidences of programmed cell death of myocytes (reviewed by Capetanaki, 2002; 

Weisleder et al., 2002) and necrosis (Li et al., 1996). However, this observation was not 

confirmed in the present study. One of the reasons might be that both groups examined 

young animals whereas in the present work older animals (6-8 months) were used, 

because we did not observe striking features of cardiomyopathy in younger knock-out 

mice. This was caused probably by the use of a different genetic background. Moreover, 

the expression level of the marker of cardiac disorders- ANF is significantly upregulated 
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with accumulation in apex, septum and ventricular free wall. ANF is a peptide hormone 

with diuretic, natriuretic and vasorelaxant properties (Rosenzweig et al., 1991; de Bold 

et al., 1996) and its ventricular expression is often correlated with an increase in 

ventricular mass in pathological hearts (Calderone et al., 1995; Matsubara et al., 1990). 

ANF was also shown to be specifically expressed in the regions of hearts with the 

highest degree of tissue pathology (Vikstrom et al., 1998).  

Superoxide dismutase (SOD) catalyzes the dismutation reaction of superoxide 

anion to hydrogen peroxide (Halliwell et al., 1995). Three different SODs are known in 

mammals: cytosolic copper/zinc SOD (Cu/ZnSOD or SOD1), mitochondrial manganese 

SOD (MnSOD or SOD2) and extracellular copper/zinc SOD (EC-SOD or SOD3) (van 

Remmen et al., 2001; reviewed by Bartosz, 2003). Among these three homologues only 

MnSOD exhibits a modulated expression induced by a variety of physiological factors 

suggesting that SOD2 plays a role in other processes than the antioxidant defense 

system (Li et al., 1995; Sato et al., 1995; Nogae et al., 1995).  

Not many data are available concerning cardiomyopathy caused by manganese 

superoxide dismutase deficiency. Two independent groups generated mutant strains 

lacking MnSOD (Li et al., 1995; Lebovitz et al., 1996; Huang et al., 2001). Both 

observed neonatal lethality, although at different time points, dependent on the genetic 

background. In both mutant strains dilated cardiomyopathy was a common finding. 

Neonatal MnSOD homozygous generated in our laboratory by Dr. T. Loch exhibit 

DCM manifested by ventricular cavity enlargement and free wall thinning (data 

provided by Dr. T. Loch, personal communication). Upregulation of ANF expression in 

3 days old neonatal SOD2-/-, but not in heterozygous further confirmed pathological 

changes of the heart.  

Several reports describe the cardiac phenotype in MnSOD deficient homozygous 

mice, but apart for some biochemical reports, not many data are available concerning 

old heterozygous MnSOD mice. An average reduction of enzyme activity in 

heterozygous MnSOD mutants was estimated at the level of 50% (Li et al., 1995), 

whereas the strain generated in our laboratory exhibits only 30% of MnSOD activity 

reduction in the heart (Dr. T. Loch, personal communication). This decrease in the level 

of the enzyme influences the physiological function of the heart as shown in 6 months 

old MnSOD
+/- 

mutants characterized by impaired systolic function and reduced ejection 

fraction (unpublished data, kindly provided by Dr. T. Loch, personal communication). It 

has been assumed that pathological changes will proceed with the age of the animals. 
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During this study a detailed histopathological analysis of 10 months old heterozygous 

MnSOD mice heart was performed. A moderate increase of the degree of fibrosis and 

slight cardiomyocyte hypertrophy was observed in mutants compared to age and strain 

matched controls. A disarrangement of the myocardial architecture, typical for desmin 

knock-outs was not present in MnSOD
+/-

 mice. In heterozygotic MnSOD, only necrotic 

but not apoptotic cells are detected in the myocardium. It has been reported that isolated 

cardiomyocytes from knock-out mice heterozygous for MnSOD are more sensitive to 

apoptosis than heart muscle cells from WT, or untreated MnSOD
+/-

 myocytes (Van 

Remmen et al., 2001). Moreover, another group found induction of the apoptotic 

pathway in vivo, as detected by enhanced staining of the poly(ADP-ribose)polymerase 

(PARP) and activated caspase-3 in heterodeficient SOD2 mice, as soon as 6 to 10 days 

after birth (Strassburger et al., 2005). Both methods are based on detection of cleaved 

forms of PARP (24kDa and 89kDa) and activated caspase-3 (17kDa) and are reliable 

when used in Western Blot (reviewed by Rodriguez et al., 2005). In this study, the 

TUNEL method indicating DNA fragmentation was used for detection of apoptotic cells 

but in contrast to published reports, programmed cell death was not observed in 

MnSOD heterodeficient mice.  

Doxorubicin (adriamycin), an anthracycline, is a potent anti-cancer drug and has 

a wide spectrum of activity (Blum et al., 1974). Doxorubicin has a very high affinity to 

the nucleus (60% of the total intracellular amount of the drug was found in the nucleus) 

and was recognized as a potent DNA modifier inhibiting DNA polymerase and nucleic 

acid synthesis. In addition, anthracyclines are known to stabilize the complex of 

topoisomerase and DNA which leads to protein bound double strand DNA breaks 

(reviewed by DeBeer et al., 2001). In this respect, the primary effect of the adriamycin 

anti-tumor action is the inhibition of proliferation and induction of apoptosis. However, 

the therapeutical potential of doxorubicin is limited by the development of dose-

dependent cardiomyopathy (Unverferth et al., 1982). Both, acute and chronic 

cardiovascular changes have been described in patients undergoing adriamycin 

chemotherapy (reviewed by De Beer et al., 2001). Acute side-effects are usually 

transient and clinically manageable, but chronic effects may develop several weeks or 

even months after repetitive doxorubicin administration in humans. In the 1970s and the 

beginning of the 80s, when doxorubicin was commonly used as a chemotherapeutic 

agent, the mortality rate, due to developed congestive heart failure, has been described 

to vary from 30%-60% (Haq et al., 1985). Signs indicating a cardiotoxic effect include 
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hypotension, tachycardia, cardiac dilation and ventricular failure (Singal et al., 1987; De 

Beer et al., 2001). Several mechanisms leading to adriamycin induced cardiotoxic 

effects have been proposed. These include the free radical hypothesis, Ca
2+

 overload, 

doxorubicin metabolite- doxorubicinol toxicity, as well direct interactions with the 

contractile system and some other cardiac-restricted targets (Jeyaseelan et al., 1997; 

Lewis et al., 1986; De Beer et al., 2001).  

In the present study, doxorubicin was administrated to 6-8 weeks old ICR mice 

for 14 days. The empirically established dosage (15µg/g of body weight) did not cause 

premature lethality and MRI analysis indicated a moderate degree of heart failure. An 

increase of adriamycin concentration results in a high mortality rate during the drug 

administration period, making further examination impossible. However, even when the 

pathological changes or cardiac dysfunction caused by doxorubicin are not obvious, the 

results revealed significant changes of BMP10 expression in treated hearts. Therefore 

the same drug dosage, time etc, was applied for the experimental groups.  

On the basis of MRI analysis a moderate decrease of ejection fraction in 

comparison to the placebo group was found, and the myocardial volume was slightly, 

but significantly reduced in doxorubicin treated mice. These MRI parameters indicate 

modest chamber dilation. Cardiomyocyte hypertrophy is absent but the “beginning” of 

myofiber disarrangement is clearly visible. Upon doxorubicin administration an 

increase of collagen deposition in the extracellular space resulting in replacement 

fibrosis is evident. Two distinct types of cardiomyocyte death were detected in 

doxorubicine induced cardiomyopathy: necrosis commonly induced by toxic agents and 

apoptosis because doxorubicin exhibits a pro-apoptotic function (De Beer et al., 2001).  

Many studies indicate that dystrophin cleavage is a common pathway to 

advanced heart failure and some link dystrophin loss with cardiomyocyte death 

(Kawada et al., 2005; Kaprielian et al., 2000). Interestingly, cells lacking this membrane 

associated protein are found only in doxorubicin treated mice hearts, but not in other 

models.   

Cardiomyopathies caused by homozygous and heterozygous SOD2 deficiency or 

induced by doxorubicin are considered as mitochondria-related CMPs and the term 

mitochondropathies was proposed by several authors (Finster, 2004; Russell et al., 

2005). Adriamycin was shown to induce activity of MnSOD (Childs et al., 2001) and 

vice versa, MnSOD overexpression modifies early oxidative events of doxorubicin’s 

acute side effects in the heart (Chaiswing et al., 2005). Despite these physiological 
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correlations and independent of the elevated levels of reactive oxygen species which 

lead to heart dysfunction in both models a distinct pathological changes were found in 

both groups. 

Cardiac hypertrophy is observed in various cardiovascular diseases, including 

hypertension, myocardial infarction and cardiomyopathy. In end-stage human heart 

failure elevated levels of plasma catecholamines have been found (Daly et al., 1990) 

and it has been suggested that prolonged β-adrenergic stimulation plays a role not only 

in modulation of cardiac function but also in the development of the hypertrophic 

response (Mueller et al., 1995; Zou et al., 2001). This hypothesis was supported by the 

finding that β-blocker treatment is able to restore cardiac function (Motomura et al., 

1990). Moreover, continuous infusion of a synthetic catecholamine in rats, namely 

isoproterenol (ISO), acting as β-adrenergic receptor agonist, elicits typical hypertrophy 

associated cardiac gene expression (Boluyt et al., 1995; Morisco et al., 2001). For this 

reason, isoproterenol induced hypertrophic cardiomyopathy was included in the study. 

Like doxorubicin, isoproterenol (225µg/g of body weight) was administrated to 6-8 

weeks old ICR mice for 14 days, followed by NMR examination. The applied dosage of 

ISO induced severe heart hypertrophy with impaired systolic function, as clearly visible 

from the end-systolic MRI image at the level of the papillary muscles. This observation, 

together with a significant decrease of ejection fraction, indicates ventricular chamber 

dilation. The elevated myocardial volume, as well the significantly increased heart to 

body weight ratio in comparison to placebo treated controls further confirm the 

diagnosis of cardiac hypertrophy. Histological analysis revealed cardiomyocyte 

enlargement. Modest fibrosis, characterized by collagen accumulation, similar in its 

extent to that observed in doxorubicin induced cardiomyopathy is present as a result of 

isoproterenol administration. Moreover, both types of myocyte death (apoptosis and 

necrosis) were found in the myocardium of this model. However, β-adrenergic 

stimulation does not cause other pathological changes, e.g. myofiber disarray and 

dystrophin disruption. These results are consistent with previously published findings 

(Stanton et al., 1969; Shizukuda et al., 1998). 
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4.3. BMP10 as a novel marker of pathological changes in the heart 

 

In all models tested two types of changes of the localization and expression of 

BMP10 were noted. First, a drastic redistribution of BMP10 correlating with 

quantitative changes of the protein in the right atrium was observed. Second, ventricular 

cells ectopically expressing the BMP10 protein were detected. For example, in Desmin 

knock-outs an ectopic BMP10 expression was found in both right and left ventricle, 

with a higher number of stained cells in the left chamber. In situ immunodetection of 

BMP10 protein further confirmed this observation. Surprisingly, BMP10 positive cells 

mostly localize in the proximity of cardiac vessels and their incorporation in the 

coronary vasculature was also noted. Similar results were obtained in doxorubicin and 

isoproterenol treated hearts as well as in MnSOD heterozygous mice. Moreover, stained 

cells often form clusters, although isolated single cells were also detected in 

doxorubicin treated mice. In cardiomyopathy induced by isopreterenol administration, 

ventricular BMP10 positive cells are not located in tightly packed clusters but still close 

to each other.  

High levels of ectopic BMP10 expression in ventricular myocardium were also 

found in ventricular cardiomyocytes restricted Nkx2.5 knock-out (Pashmforoush et al., 

2004). Inactivation of Nkx2.5 by Cre-recombinase under the control of a myosin light 

chain-2V (MLC2V) promoter, thus preserving transcription factor expression in atrial 

myocytes, leads to marked cardiac enlargement with trabeculae filling the left 

ventricular cavity in both neonatal and adult mutants, due to the persistence of 

trabecular cardiomyocyte proliferation after birth. A similar phenotype was observed in 

human patients with Nkx2.5 mutation. Myocardial overgrowth was also found in 

embryos of transgenic strains overexpressing BMP10 controlled by an ANF promoter 

(Pashmforoush et al., 2004). These data indicate that BMP10 might stimulate 

cardiomyocyte proliferation. However, it indicates two distinct pathways of ectopic 

induction of BMP10 expression, i.e. Nkx2.5 dependent and independent pathways. 

While the former might be restricted to cardiomyocytes and direct negative looping 

BMP10-Nkx2.5 was proposed by the authors (Pashmforoush et al., 2004), there seems 

to be another pathway of BMP10 induction by pathological stimuli which is restricted to 

non-cardiomyocytes. On the other hand the upregulation and ectopic expression of 

BMP10 in Nkx2.5 knock-out mice might also occur by an indirect pathway. The 
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absence of Nkx2.5 might trigger pathological changes that stimulate BMP10 

expression. 

Besides the ectopic ventricular expression of BMP10, deregulation of gene 

expression in the right atrium is observed in all models, as described in chapter 3.5. 

Since these changes are very strong, it is highly probable, that changes in expression of 

atrial BMP10 levels result in overall quantitative deregulation of gene expression in 

pathological murine hearts. These data are summarized in Table 4.1. 

 

 

Summary of BMP10 expression and localization changes 

Qualitative changes  

Ventricles Right Atrium 

Quantitative 

changes 

WT Absent Homogenous 

Membrane location 

- 

Desmin knock-out Clusters of BMP10
pos. 

cells 

Membrane location 

Cytosolic accumulation 

Upregulated 

 

SOD heterozygous 

 

Clusters of BMP10
pos. 

cells 

Heterogeneous pattern: 

1.Lack of BMP10 

2. Membrane location 

3. Cytosolic accumulation 

 

Downregulated 

Doxorubicin Single BMP10
pos. 

cells Cytosolic accumulation 

Loss of membrane location 

Upregulated 

 

Isoproterenol 

 

Single BMP10
pos. 

cells 

Closely located to each 

other 

Two types of changes: 

1.Homogenous downregulation 

2. Heterogeneous pattern, as in 

SOD
+/-

 

 

Downregulated 

Nkx2.5 knock-out 

(Pashmforoush et 

al., 2004) 

Expressed in trabeculae 

of adult myocardium 

(in situ hybridization 

data) 

 Upregulated 

Tab. 4.1. Characterization of qualitative and quantitative BMP10 expression 

changes in models of cardiomyopathy of adult mouse. An exact description of the 

observed changes is included in chapter 3.5. 

 

Qualitative and quantitative changes of BMP10 expression in the right atrium 

and ectopic expression of BMP10 in ventricles in models of cardiomyopathies are 

evident. It should also be mentioned that the number of ventricular cells, which 
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ectopically express BMP10 varies significantly between the different models. Desmin 

knock-out displays the most severe pathological phenotype and the number of 

ventricular BMP10 positive cells is the highest among all adult models examined. A 

lower number of cells ectopically expressing BMP10 are present in MnSOD
+/-

, while 

both drug induced models of cardiomyopathy exhibit the lowest numbers of ventricular 

BMP10
pos.

 cells. Since the number of cells ectopically expressing BMP10 in ventricles 

is low, the general quantitative changes of BMP10 in pathological hearts most probably 

reflect a deregulation of BMP10 in the right atrium. 

 

 

4.4. BMP10 positive cells constitute a subpopulation of cardiac progenitors 

 

Characterization of ventricular cells expressing BMP10 was carried out using a 

double immunolabeling method. Since BMP10 was found in ventricular cells of failing, 

but not of healthy hearts, I became interested in the origin of these cells. It has been 

reported that progenitor cells reside in the heart and that they can be characterized by 

stem cell antigen 1 (Sca1) expression (Oh et al., 2003; Matsuura et al., 2004). 

Moreover, Sca1 positive cells in skeletal muscle were described as small interstitial 

cells adjacent to the basal lamina, typically co-expressing PECAM (CD31) and 

localized in proximity of endothelial cells i.e. Sca1
neg.

/CD31
pos.

 (Oh et al., 2003). In the 

heart Sca1
pos. 

cells were further subdivided into two groups: CD31
pos.

 and CD31
neg. 

the 

latter exhibiting a distinct differentiation potential (Pfister et al., 2005). It was proposed 

that CD31
neg. 

but not CD31
pos.

 cells can differentiate into cardiomyocytes. While 

Sca1
pos.

/CD31
neg.

 express cardiomyocyte specific transcription factors, Sca1
pos.

/CD31
pos.

 

exhibit both endothelial (based on Tie2 expression) and smooth muscle (as judged by 

SM-actin expression) phenotypes (Pfister et al., 2005). Moreover, circulating Sca1
pos. 

cells are also considered by some authors as endothelial progenitor cells (EPCs) and 

were shown to incorporate into vascular sprouts and capillaries in vivo (Takahashi et al., 

1999). Hence, in this study a Sca1-GFP transgenic mouse strain was used and 

cardiomyopathy was induced with doxorubicin and isoproterenol leading to induction of 

ectopic BMP10 expression. Results of characterization of ventricular BMP10 positive 

cells are summarized in table 4.2. 
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Characterization of BMP10 positive cells 

Cell type/ Process Marker Characteristic- cellular 

labeling 

Endothelial Cells PECAM (CD31) BMP10
pos.

/CD31
pos. 

BMP10
neg.

/CD31
pos. 

BMP10
pos.

/CD31
neg. 

Smooth Muscle Cells Smooth Muscle Actin (SMA) BMP10
pos.

/SMA
pos. 

BMP10
neg.

/SMA
pos. 

BMP10
pos.

/SMA
neg.

 

Cardiomyocytes Myosin Heavy Chain (MF20) 

Nkx2.5 

BMP10
 pos.

/MF20
 neg. 

BMP10
 pos.

/Nkx2.5
 neg. 

Atrium and embryonic heart 

BMP10
pos.

/MF20
neg. 

BMP10
pos.

/Nkx2.5
pos. 

BMP10
pos.

/MF20
neg. 

BMP10
pos.

/Nkx2.5
pos. 

Proliferation  Phospho-Histone H3 (pH3) 

 

Aurora B 

BMP10
pos.

/pH3
pos. 

BMP10
neg.

/pH3
pos. 

BMP10
pos.

/Aurora B
pos. 

BMP10
neg.

/Aurora B
pos. 

Sca1 progenitors Reporter gene expression (GFP) BMP10
neg.

/Sca1
pos. 

BMP10
pos.

/Sca1
pos. 

BMP10
pos.

/Sca1
neg. 

Tab. 4.2. Characterization of cells ectopically expressing BMP10 in ventricles of 

diseased hearts.  

 

The only persistent and common feature of all BMP10
pos.

 cells in ventricular 

chambers was co-expression of proliferation markers (Aurora B and phophorylated 

histone H3) and lack of cardiomyocyte specific gene expression. Ventricular cells 

ectopically expressing BMP10 in failing hearts exhibit both smooth muscle and 

endothelial marker expression. Moreover, co-expression of Sca1 antigen in most of the 

BMP10 positive cells was observed with a correlation of the gradient increase/decrease 

of BMP10/Sca1 signal intensity, respectively. These results might indicate that BMP10 

induced proliferation of Sca1
pos.

/CD31
pos. 

followed by their differentiation. Similar to 

skeletal muscle (Oh et al., 2003), CD31
pos.

, i.e. endothelial  cells incorporated in the 

vessels did not express Sca1 antigen and circulating EPCs which originally expressed 

Sca1 adopted the endothelial phenotype upon incorporation (Takahashi et al., 1999). 
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Thus, from this observation it is evident that cells expressing BMP10 constitute a 

subpopulation of cardiac progenitor cells that contribute to remodeling process in the 

heart. 

 

 

4.5. Pro-mitotic function of BMP10 

 

 Published data clearly indicate that BMP10 stimulates of cardiomyocytes during 

embryogenesis (Chen et al., 2004). In the adult pathological heart a re-expression of 

BMP10 was found in ventricles and seemed to be restricted to muscle cells 

(Pashmforoush et al., 2004). My own results which were obtained using a specific 

antibody against BMP10 clearly exclude that BMP10 is re-expressed in ventricular 

cardiomyocytes in adult hearts. It seems most likely that the poor resolution of the in 

situ hybridization technique used by Pashmforoush led to an incorrect identification of 

BMP10 expressing cells. Furthermore it seems likely that the function of BMP10 can 

differs between adult and embryonic heart as well in case of cardiomyocytes and 

interstitial cells. Recently, overexpression of BMP10 in postnatal myocardium was 

shown to disrupt hypertrophic growth of cardiomyocytes and to induce proliferation of 

non-muscle cells (Chen et al., 2006). Transgenic mice have smaller hearts due to 

smaller cardiomyocyte size, resembling the atrial phenotype, whereas the number of 

myocytes in the heart remains constant. The authors found an increase in ejection 

fraction in mutants (Chen et al., 2006) which supports the hypothesis that inhibition of 

hypertrophic response has a beneficial effect on heart function (Jeong et al., 2006).  

Chen and colleagues used the embryonic heart culture system to prove that 

BMP10 addition can completely rescue the phenotype of hearts isolated from embryos 

with BMP10 null mutation (Chen et al., 2004). BMP10 enriched medium was able to 

restore proliferation in knock-out hearts in vitro. In the present study a BMP10 

conditioned medium was used to investigate the effect of BMP10 on non-muscle cells. 

One could argue that conditioned medium contains also factors secreted by transfected 

cells and the achieved effect results from the action of these growth factors. Hence, to 

monitor the function of BMP10, 10T1/2 cells were directly transfected with a BMP10-

IRES-GFP expression construct.  

The main objective which was addressed using biologically active BMP10 was 

whether ectopic expression of BMP10 in failing heart affected the survival of 
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cardiomyocytes and/or stimulated the proliferation and differentiation of non-

cardiomyocytes in the heart. Basically it is believed that members of the TGFβ/activin 

family exhibit a “destructive” function in pathological hearts (reviewed by Euler-

Taimor et al., 2006). Enhanced expression of these factors is generally related with 

ventricular hypertrophy (Ikeuchi et al., 2004), interstitial fibrosis (Hao et al., 2000; 

Wang et al., 2002) and induction of apoptosis (Francis et al., 2000; Chipuk et al., 2001). 

Even though BMPs belong to the TGFβ superfamily they exert beneficial effects on the 

heart, primarily during heart development (Mozen et al., 2001; Chen et al., 2004). They 

also inhibit apoptosis in adult cardiomyocytes (Izumi et al., 2001). Based on the 

localization of BMP10
pos.

 cells in cardiomyopathic hearts and their phenotype as judged 

by double immunolabeling, the effects of BMP10 was analyzed using various non-

muscle cells such 10T1/2 fibroblasts and adult bone marrow pluripotent mesenchymal 

stem cells (bm-MASCs) (Belema Bedada et al., 2005). Moreover, primary cultures of a 

heterogeneous population of non-cardiomyocytes isolated from adult mouse heart were 

used to study the BMP10 effect on potential target cells.  

10T1/2 cells are known to differentiate into pericytes/vascular smooth muscle 

cells (vSMCs) in response to TGFβ1 (Karen et al., 1998; Darlan et al., 2001; Kale et al., 

2004; Kurzen et al., 2001). In vitro studies using different cell lines of various origins 

and cells isolated from the heart confirmed that the effect of BMP10 is not limited to 

cardiomyocytes. As described in chapter 3.7.3 a strong induction of proliferation was 

observed. Another proof of the pro-mitotic effects of BMP10 was the finding that 

BMP10 expression in mANCM primary cultures correlated with the proliferation of 

certain subpopulation of cells exhibiting great colony forming activity. The ability of 

non-cardiomyocyte cells to give rise to distinct cell populations was described by three 

independent groups. In particular it was demonstrated that Sca1 progenitors of cardiac 

origin which also expressed the CD31 molecule are present in a large number in the 

heart and exhibit great colony forming activity (Oh et al., 2003; Matsuura et al., 2004; 

Pfister et al., 2005). However, the authors ignored the highly proliferative subpopulation 

and concentrated on examination of the differentiation potential of Sca1
pos.

 into 

cardiomyocytes (Oh et al., 2003; Matsuura et al., 2004) or more specifically 

Sca1
pos.

/CD31
neg.

 cells (Pfister et al., 2005). Pro-mitotic function of BMP10 was 

expected and easy to predict as BMP10 during heart development has been also 

implicated in proliferation of cells forming trabeculae (Chen et al., 2004) and BMP10 

overexpression leads to trabecular overgrowth (Pashmforoush et al., 2004). Moreover, 
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ventricular BMP10
pos. 

cells co-express proliferation markers. Cell culture experiments 

showed that BMP10 induces proliferation in all tested cell lines and as mANCMs were 

used, this effect can be also achieved in adult cardiomyopathic hearts further confirming 

observations in heart failure models.  

 

 

4.6. BMP10 is a potent regulator of vasculogenesis/angiogenesis 

 

Besides the increased proliferation rate, addition of BMP10 did also stimulate 

cell differentiation, recruitment and development of three dimensional structures as 

shown below.  

While the proliferative function of BMP10 was expected, the of induction of 

cord/tube-like structure formation by this cardiac restricted cytokine was suprising. 

Even TGFβ1, a known potent factor inducing 10T1/2 fibroblast differentiation to 

pericytes/vSMCs was not able to induce the formation of a 3D structure (Karen et al., 

1998; Kurzen et al., 2004). This effect was achieved only in co-culture systems of 

endothelial cells (ECs) with smooth muscle like 10T1/2 cells using Matrigel™ as a 

frame (Darland et al., 2001). In the present study vessel-like structures expressing both 

endothelial and smooth muscle markers were obtained using BMP10 alone without gel 

support. The same effect was obtained when 10T1/2 cells were directly transfected with 

a BMP10-IRES-GFP expression construct (see chapter 3.7.6.1). BMP10 transfected 

cells exhibit higher rate of proliferation than control, i.e. pEGFP transfected cells. 

BMP10 expressing 10T1/2 cells were also able to recruit each other and neighboring 

cells to form cord-like structures. Furthermore a new subpopulation of small cells (GFP 

positive i.e expressing BMP10) appeared in the culture similar to the conditioned 

medium. 

In MASCs and 10T1/2 cells treated with BMP10 co-localization of SMC and EC 

markers were observed, as described in chapters 3.7.5 and 3.7.6 respectively, for both 

cell lines. In isolated Sca1
pos.

 cells a co-localization of SMC and EC markers was also 

noted (Pfister et al., 2005), similar to the models of CMP where BMP10
pos.

/Sca1
pos.

, 

BMP10
pos.

/CD31
pos.

, BMP10
pos.

/SMA
pos.

 cells were found in ventricles. Therefore it is 

likely that cells with this phenotype and differentiation potential reside in the heart and 

might contribute to reverse remodeling processes. This is further supported by the 



                                                                                          DISCUSSION 

 156 

results obtained with mANCM cells that are also able to develop 3D cord-like structures 

in response to BMP10.  

 

      

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Confocal image illustrating the 3-dimensional structure created by 

differentiated 10T1/2 cells as a result of transfection with BMP10 expression 

construct (green). Cells were counterstained with phalloidin-TRITC (red). GFP 

marks transfected cells. Nuclei were visualized with DAPI (blue).   

 

 

4.7. Distinct functions of BMP10- interaction with different receptors 

 

BMP10 exerts it function via interaction with specific receptors. It was not a 

main aim of this study to analyze interactions of BMP10 with specific receptor. 

However it was possible postulate putative BMP10-Receptor interactions based on 

BMP10 expression, localization in combination with published data and the expression 
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profile of the BMPs receptors in different cell lines. Moreover, in the case of proteins 

that are secreted and act via receptors it is not possible to consider the functional 

implication separately from the receptor. It is generally assumed that BMPs can interact 

with three different type I receptors, i.e. ALK2, ALK3, ALK6. ALK-6 is absent in the 

developing heart from midgestation on (Dewulf et al., 1995). In the healthy murine 

heart ALK3 is abundantly expressed in the right atrium with lower expression levels in 

the ventricles and the left atrium, whereas ALK1 is almost absent in regions where 

BMP10 is normally expressed. As ALK6 is not expressed in the adult heart one could 

expect BMP10 to act via the ALK3 receptor. Interaction of BMP10 with this receptor 

was shown by another group (Mazerbourg et al., 2005). The same report indicates the 

possibility of BMP10 binding to ALK6. However, ALK1 was excluded from the study, 

due to the high background activation of the reporter gene. Strong activation of the BRE 

promoter by BMP10 upon binding to ALK1 was ignired by the authors due to the 

background activation (Mazerbourg et al., 2005). Moreover, BMP10 signaling through 

the ALK3 receptor has been proposed to have an anti-hypertrophic action on 

cardiomyocytes, as judged by the expression level of the ALK3 receptor in the heart 

(Chen et al., 2006). My own results show that ALK3 expression in the heart is highest 

in the right atrium, which overlaps with BMP10 expression while the level of ALK1, 

which is very low in the right atrium. Since atrial cardiomyocytes are smaller than 

ventricular cells, the anti-hypertrophic function of BMP10 (Chen et al., 2006) is 

probably achieved by signaling through ALK3. However, even if BMP10 in the right 

atrium or in a transgenic strain (Chen et al., 2006) acts via the ALK3 receptor, it might 

interact with a different receptor in ventricular cells where it is ectopically expressed 

upon pathological stimuli. This possibility is supported by the absence of ALK3 

expression in Sca1
pos.

 heart resident cells (Oh et al., 2003). Additionally, the disruption 

of ALK3 expression in Sca1
pos.

 cells followed by their differentiation revealed an 

unchanged induction of Nkx2.5 expression while induction of other cardiomyocyte 

specific markers, i.e. MEF2C and MHC, were severely impaired (Oh et al., 2003). In 

the proposed negative regulatory loop which employs BMP10-Nkx2.5 (Pashmforoush 

et al., 2004) a cardiac myocyte specific ALK3 deletion had very little effect on 

trabeculation and did not cause an alteration of Nkx2.5 expression (Gaussin et al., 2002; 

Chen et al., 2004). Hence, it is not clear whether BMP10 signaling through the ALK3 

receptor during embryogenic induces myocytes proliferation and differentiation. 

Interestingly, in ALK3 mutant embryos, BMP10 expression in the trabeculae was 
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unchanged, but BMP10 expression was induced in embryonic atria much earlier than in 

wild type (Gaussin et al., 2002), indicating that BMP10 may be downstream of ALK3 in 

atrial myocytes. 

The expression profile of type I receptors in cell lines used in cell culture 

experiments revealed that proliferative and angiogenic effects of BMP10 was observed 

in cells expressing ALK1, ALK3 and ALK5. Cos1 cells have been described as the least 

responsive to BMP10 (Mazerbourg et al., 2005) and express neither ALK1 nor ALK5. 

Overexpression of BMP10 in 293T cells did not cause an effect as in 10T1/2 or 

MASCs. Since the only missing receptor in the 293T cell line is ALK1, it is possible 

that BMP10 binding to ALK1 promotes the angiogenic signaling pathway, however 

further experiments are necessary to support this hypothesis.   

The BMP10 antibody which was generated in the course of the project allowed 

detection of the secreted protein. In mouse embryos, the mature ligand was found in the 

outflow tract in addition to the developing heart chambers. Moreover, BMP10 was 

shown to induce both endothelial and smooth muscle cell phenotypes in vitro followed 

by 3D tube-like structures formation. Cells expressing BMP10 and SMC and/or EC 

markers were also found in various models of cardiomyopathies. TGFβ signaling is 

known to play an important role during vascular remodeling (Oh et al., 2000; Goumans 

et al., 2002) and two type I receptors are implicated in these processes, namely ALK1 

and ALK5. As already mentioned expression levels of ALK1 in right atrium is 

extremely low. So it is unlikely that BMP10 acts via this receptor in the right atrium of 

the healthy heart. However, ALK1 is believed to modulate TGFβ1 signaling during 

angiogenesis (Oh et al., 2000, Seki et al., 2003) and it is specifically expressed in the 

arterial endothelium during embryogenesis with a significant decrease in adult blood 

vessels (Seki et al., 2003). ALK5 was also shown to transmit TGFβ1 signals and its 

expression is restricted to the vascular smooth muscles of vessels (Seki et al., 2006). 

Interestingly, ALK5 expression in the developing heart is confined to trabecular 

muscles, and is not found in the compact wall. Additionally, some mesenchymal cells 

surrounding the aorta expressed ALK5. In the adult heart, expression was found in the 

pulmonary artery valve and some ventricular, but not endothelial cells (Seki et al., 

2006). Surprisingly, null mutation of ALK1 leads to defective differentiation and 

recruitment of smooth muscle cells, while disruption of the ALK5 gene to impaired 

endothelial cells migration and proliferation (Oh et al., 2000; Urness et al., 2000; 

Larsson et al., 2001; Goumans et al., 2003). These data suggest that there is a link 
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between ECs and SMCs dependent on the ALK1/ALK5 pathway. This role was 

assigned to platelet derived growth factor BB (PDGF-BB) released by ECs during the 

resolution phase of angiogenesis. This potent chemoattractant is bound by 

vSMCs/pericytes expressing the PDGFβ receptor (Hellstrom et al., 1999). Additionally, 

PDGF induces TGFβ expression in vSMCs/pericytes (Nishishita et al., 2003). BMP10 

induces expression of EC, vSMC/pericyte markers in vitro, and in vivo BMP10 is 

expressed in Sca1 progenitors which are also known to express these genes (Pfister et 

al., 2005). It is likely that ectopic BMP10 expression induces differentiation of common 

endothelial and smooth muscle progenitors from Sca1
pos. 

resident cells, thus inducing 

angiogenic events in a tissue specific manner. The simultaneous expression of EC, 

vSMC and pericyte markers is already known and was described in vivo (DeRuiter et 

al., 1997). It can be induced in vitro by TGFβ in epicardial explants, in an ALK5 

dependent pathway (Compton et al., 2005). As already mentioned, BMPs are known to 

bind to ALK2, -3 and -6, however, the closest homolog of BMP10, i.e. BMP9 (GDF2) 

has been shown to interact with ALK1 in combination with BMPR II (Brown et al., 

2005). This finding further supports the possible BMP10 action via ALK1 receptor, 

which is known to play a role during angiogenesis. A postulated mechanism is 

presented below (Fig. 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Schematic representation of distinct BMP10 functions dependent on the 

interaction with specific receptor. 
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4.8. Functional implications of BMP10 expression in diseased hearts 

 

The purpose of this study was to clarify the possible role of BMP10 in cardiac 

diseases. I investigated, therefore, cardiac tissue from different models of 

cardiomyopathic mice. Data on BMP10 in myocardium is scarce even though BMP10 is 

the only cardiac restricted member of the BMP protein family. Much information can be 

found on the role of BMPs in bone development, pathology and regeneration. In the 

past decade the role of BMPs expressed in heart on the cardiac development was also 

intensively studied. This information, discussed extensively in the Introduction, formed 

the basis of my present work.  

BMPs are known to play an important role during bone repair (Lee et al., 2006). 

The effects include induction of proliferation, migration and differentiation of 

mesenchymal progenitor as well as vascular invasion (Redi, 1997; Okubo et al., 2002; 

Lind et al., 1996; Bostrom et al., 1995). Similar functions were uncovered for BMP10 in 

functional studies which I performed using various cells culture models. The most 

important observation in this context was the induction of morphogenetic events leading 

to the formation of vessel-like, tubular structures.  

The unusual variety of ventricular cells expressing BMP10, the induction of EC, 

vSMC markers and tube formation by BMP10 in vitro allowed to draw the following 

conclusions and to formulate a hypothesis: 

1. As a result of pathological stimuli a new subpopulation of proliferating 

cells appears in the ventricles of the adult heart, which is characterized 

by ectopic BMP10 expression (BMP10
pos.

 cells).  

2. BMP10 is a sensitive marker of heart dysfunction and drastic 

expression changes and redistribution of protein can be found even 

when the pathological phenotype is modest.     

3. A possible function in vasculogenesis or angiogenesis of ventricular 

BMP10
pos.

 cells might be deduced based on their localization and 

characterization. BMP10 can induce proliferation in resident cardiac 

progenitors followed by differentiation into ECs and/or vSMCs. These 

results were further confirmed in vitro using different cell lines.  

4. BMP10 exhibits various functions dependent on the target cells. The 

physiological effect of BMP10 probably differs between the 

embryonic heart and the adult right atrium in the healthy adult heart. 
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Different functions might be assumed for embryonic and atrial 

cardiomyocytes as well as for interstitial cells. It can be hypothesized 

that this effect is achieved by differentially expressed BMP10 

receptors.  

5. The function of BMP10 in the pathological heart is distinct from that 

of the healthy organ. 

6. Ventricular BMP10 positive cells originate from Sca1
pos.

 cells and 

BMP10 signaling can modulate proliferation followed by 

differentiation of Sca1 cardiac progenitors in the failing heart. Cell 

culture experiments together with published data confirm this 

possibility. 

Taken together, these findings allow the conclusion that BMP10 in diseased 

hearts plays a significant role in cardiac remodeling.  

Cardiac remodeling is a determinant of the clinical course of heart disorders. It 

implies that cardiac structure and function slowly deteriorate in response to pathological 

stimuli acting on the heart such as hypertension, pressure or volume overload or genetic 

factors such as in primary or secondary cardiomyopathies. Often, the term “adverse” 

remodeling is used to indicate an aggravation of structure and function until heart 

failure occurs. The most widely used definition of remodeling was given by Cohn in 

2000: 

Cardiac remodeling is defined as gene expression resulting in molecular, cellular 

and interstitial changes and manifested clinically as changes in size, shape and 

function of the heart (Cohn et al., 2000). 

This applies also to the models of cardiomyopathy used in this study. Experimental 

animals similar to human patients show adverse remodeling processes, which involve 

myocytes, the extracellular matrix and the microvasculature. The term reverse 

remodeling definies reversal of the negative effects, i.e. improvement of cardiac 

structure and function. 

It can be hypothesized that BMP10 expression in cardiac ventricles as observed 

in this study might be important for remodeling during the course of the 

cardiomyopathies studied here by allowing a certain adaptation to negative effects of the 

disease. It might be assumed that BMP10 is involved in the remodeling process by 

acting as a protecting factor, i.e. by provoking either, to certain extent, reverse 

remodeling or at least a delay in the occurrence of the heart failure as endpoint of 
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remodeling. Probably the protective effects of BMP10 counteracting adverse 

remodeling processes are twofold: (i) a positive influence on the cardiac 

microvasculature including capillaries and arterioles-arteries based on the results 

presented here, and (ii) BMP10 might have an antihypertrophic effect as shown by 

Chen (Chen et al., 2006). 

The scheme of fig. 4.3 shows the possible action of BMP10 on the cardiac 

microvasculature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3. Schematic drawing of the role of BMP10 as a compensatory factor in 

cardiac remodeling.  

 

It is known that proliferation of interstitial cells and activation of endothelial 

cells play a role in cardiac reverse remodeling (Cohn et al., 2000). Induction of the 

proliferation and differentiation by BMP10 of resident cardiac progenitors into 

endothelial and vascular smooth muscle cells - the components of capillaries and 

arteries together with induced migration of these cells might lead to an enhanced cardiac 

vascular development. This may improve the oxygen supply of the hypertrophied and/or 

diseased heart. Therefore, recapitulation of BMP10 expression in pathological ventricles 
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may be a key component of the complex compensatory machinery that is initiated by 

various pathological conditions.  

Even though cardiomyocytes represent the major proportion of the protein mass 

of the heart (approximately 75%) they constitute only a minor part of the cell number 

(around 25%) in the heart (reviewed by Shapiro et al., 1996). Although there is 

sometimes the tendency to consider only the response of myocytes in the development 

of cardiomyopathy, the integration of other cell types should not be ignored. Non-

cardiomyocytes such as vascular smooth muscle, vascular and endocardial endothelial 

cells, fibroblasts and components of the nervous system play an important role in the 

development of the pathological as well as physiological responses.  

In the current work I proved that BMP10 is a cardiac specific factor able to 

induce proliferation and differentiation of mesenchymal progenitors to endothelial and 

vascular smooth muscle cells followed by tube-like structure assembly. Therefore it is 

highly probable that ectopic expression of BMP10 in pathological hearts has a 

beneficial pro-angiogenic function. 
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5. Summary 

 

PURPOSE:  

BMP10 is a cardiac specific member of the TGFβ superfamily and the 

expression of this cytokine is limited to the right atrium of the healthy heart. In the work 

presented here, I attempted to unveil the function of BMP10 in the pathological adult 

heart.  

 

MATERIAL AND METHODS:  

The expression and localization of BMP10 was studied in embryonic, neonatal and 

adult mouse hearts. Two genetic (heterozygous MnSOD and Desmin knock-out strains) 

and two drug induced (doxorubicin and isoproterenol) murine models of 

cardiomyopathies were used to investigate the changes of BMP10 expression and 

localization. MRI analysis was used to determine alterations of cardiac function and 

histopathological examination to identify changes of myocytes and the interstitium was 

carried out in the hearts of all models tested. The TUNEL method (apoptosis) and 

Complement9 staining (necrosis) were used for determination of cell death. Quantitative 

changes of BMP10 in the pathological murine hearts were monitored on the RNA level 

by semi-quantitative and real-time RT-PCR as well on the protein level by western blot. 

The levels of ANF, BNP and FHL2 as indicator of heart disorder were examined. 

Redistribution of BMP10 mRNA expression in diseased hearts was shown by in situ 

hybridization. By overexpression of the His-tagged mature region of the BMP10 in 

E.coli and its purification it was possible to generate an antibody specifically 

recognizing the mature secreted domain of the BMP10. Therefore, BMP10 localization 

in the healthy and cardiomyopathic murine hearts was investigated. The generation of 

expression construct producing functional BMP10 protein allowed to conduct in vitro 

experiments. Cell culture experiments using medium enriched in active BMP10 protein 

allowed evaluation of the BMP10 action on the primary culture of isolated non-

cardiomyocytes as well as multipotent mesenchymal 10T1/2 fibroblasts and the bone 

marrow derived stem cell line bm-MASCs. Immunocytochemistry and RT-PCR 

analysis of treated cells wereused to analyze the effects of BMP10 in vitro. 
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RESULTS: 

1. During embryonic heart development BMP10 expression was found in the 

trabeculated myocardial layer, and BMP10 protein was observed additionally in the 

outflow tract, the compacted heart wall and the epicardial layer.  

2. BMP10 in the healthy adult heart is expressed in the right atrium and after secretion 

binds to the membrane of both atrial cardiomyocytes and interstitial cells. Moreover, 

expression and binding of this protein was observed in the tricuspid valve and cells 

adjacent to the arteries in the upper atrial area of the heart.  

3. The murine models used in this study represent the dilated and hypertrophic type of 

cardiomyopathy and exhibit different degrees of cardiac dysfunction characterized 

by changes in myocardial volume and reduced ejection fraction. Interstitial and 

replacement fibrosis, cardiomyocyte hypertrophy, myofiber disarray and cell death 

in respect to necrosis and apoptosis were detected but the degree of structural 

changes was different in all models. The number of apoptotic or necrotic cells was 

very low. 

4. In diseased hearts two types of qualitative BMP10 distribution changes were found. 

The subcellular localization of BMP10 in cells of the right atrium was changed. In 

addition, BMP10 was re-expressed in ventricular cells.  

5. In Desmin knock-out and in doxorubicin induced dilated cardiomyopathy 

upregulation of the BMP10 expression was found, while quantification of BMP10 in 

MnSOD heterozygous and isoproterenol treated mouse heart revealed its 

downregulation. These variations in BMP10 quantity were monitored at the RNA 

and protein level. The number of BMP10 positive cells in the ventricles of 

pathological hearts is low, and therefore quantitative changes represent most 

probably the deregulation of BMP10 expression in the right atrium. 

6. Ventricular cells ectopically expressing BMP10 in pathological hearts are Sca1
pos.

 

and show signs of proliferation. Characterization of the ventricular BMP10
pos.

 cells 

revealed that they constitute a heterogeneous population of cells often expressing 

endothelial and smooth muscle cell markers, but never cardiomyocyte specific 

genes. BMP10 is expressed, however, by embryonic and atrial cardiomyocytes.  

7. BMP10 effects are dependent on the differentially expressed receptors in various 

cell lines. The effect of BMP10 in C2C12 cells is limited to the induction of 

osteoblast differentiation. In contrast, BMP10 induced multipotent mesenchymal 

10T1/2 embryonic fibroblasts, adult bone marrow mesenchymal stem cells and in 
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non-cardiomyocytes isolated from the adult mouse heart to express smooth muscle, 

endothelial and pericyte markers. Moreover, cells expressing these markers are able 

to form 3D tube-like structures indicating a possible role of BMP10 in angiogenesis.  

 

CONCLUSION: 

On the basis of these results it can be concluded that BMP10 acts in an autocrine 

and paracrine fashion. As expression and localization of BMP10 changes dramatically 

even when the pathological changes are still moderate, BMP10 may play an important 

role in the disease process of dilated and hypertrophic cardiomyopathy. In 

cardiomyopathic hearts ventricular BMP10
pos.

 cells seem to originate from cardiac Sca1 

progenitors and it might be concluded that BMP10 induces their proliferation and 

differentiation. In addition, cell culture experiments show that BMP10 induced 

differentiation of mesenchymal cells to endothelial, smooth muscle cells and pericytes 

leading to the assembly of tube-like structures. BMP10 may play a protective role in the 

cardiomyopathies studied here by stimulating the development of the cardiac 

microvasculature including capillaries, arterioles and small arteries. This process might 

result in an inhibition or at least a delay of adverse remodeling of the heart, which is 

part of an important adaptive process to cardiac diseases. Further studies including the 

inactivation of BMP10 in the adult heart are necessary to investigate the BMP10 

function in vivo. 
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6. Zusammenfassung 

 

ZIEL DER STUDIEN: 

BMP10 ist ein herzspezifisches Mitglied der TGFβ-Superfamilie. Die 

Expression dieses Zytokins ist auf das rechte Atrium des gesunden Herzens begrenzt. In 

der vorliegenden Arbeit bemühte ich mich, die Funktion von BMP10 im pathologischen 

adulten Herzen aufzudecken.  

 

MATERIAL & METHODEN: 

Die Expression und Lokalisation von BMP10 wurde im embryonalen, 

neonatalen und adulten Mausherzen untersucht. Zwei genetisch ( heterozgote MnSOD 

und Desmin knock-out Stämme) und zwei Drogen induzierte (Doxorubizin und 

Isoproterenol) murine Kardiomyopathiemodelle wurden genutzt, um Veränderungen der 

BMP10 Expression und Lokalisation zu prüfen. An den Herzen aller getesteten Modelle 

wurden MRI-Analysen durchgeführt, um kardiale Funktionsänderungen zu bestimmen, 

und histopathologische Betrachtungen unternommen, um Veränderungen der Myozyten 

und des Interstitiums aufzudecken. Die TUNEL Methode (Apoptose) und die 

Complement9-Färbung (Nekrose) dienten der Feststellung von Zelltod. In den 

pathologischen Mäuseherzen wurden die quantitative Veränderungen von BMP10 auf 

RNS-Ebene durch semi-quantitative und „real-time“ RT-PCR kontrolliert, indessen auf 

Proteinebene durch die Methode des Western Blots. Die ANF-, BNP- und FHL2-Level 

als Indikatoren für Herzstörungen wurden ebenfalls analysiert. Die Neuverteilung der 

BMP10 mRNS-Expression in geschädigten Herzen wurde durch in situ 

Hybridisierungen gezeigt. Die Lokalisation des BMP10 Proteins in gesunden und 

pathologischen Herzen wurde mit einem Antikörper untersucht, der spezifisch die 

aktive Domäne von BMP10 erkennt. Für die Generierung des Antikörperes wurde zuvor 

das reife, mit einem His-Schwanz versehene Protein in E. coli überexprimiert und 

aufgereinigt. Die Herstellung eines Expressionskonstrukts, das ein funktionsfähiges 

BMP10 Protein produziert, ermöglichte die Durchführung von in vitro Experimenten. 

Zellkulturexperimente mit aktivem BMP10 Protein angereichertem Medium, 

ermöglichte die Aufklärung der BMP10-Aktivität im Primärkulturen von nicht-

Kardiomyozyten, in multipotenten mesenchymalen 10T1/2 Fibroblasten und einer 

Knochenmark abstammenden Stammzelllinie bm-MASC (engl.: „bone marrow derived 
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mesenchymal adult stem cells“). Immunozytochemische und RT-PCR Analysen an den 

behandelten Zellen dienten der Aufklärung der BMP10-Effekte in vitro.  

 

ERGEBNISSE: 

1. Während der embryonalen kardialen Entwicklung konnte die Bmp10 Expression im 

trabekulierten Myokard detektiert werden. Das BMP10 Protein wurde außerdem im 

Ausflusstrakt, der kompaktierten Herzwand und im Epikard nachgewiesen. 

2. Bmp10 wird im gesunden adulten Herzen im rechten Atrium exprimiert. Nach der 

Sekretion bindet das Protein an die Membranen beider atrialen Kardiomyozyten und 

die interstitialen Zellen. Des Weiteren wurden die Expression und die Bindung des 

Proteins in den Trikuspidalklappen und den benachbarten Zellen der Arterien in der 

oberen atrialen Region des Herzen beobachtet. 

3. Die murinen Modelle, die in dieser Studie verwendet wurden, repräsentieren die 

dilative und die hypertrophe Form der Kardiomyopathie. Sie weisen verschiedene 

Grade der kardialen Dysfunktion auf, die charkaterisiert sind durch Veränderungen 

im myokardialen Volumen und eine reduzierte Ejektionsfraktion. Interstitiale und 

reparative Fibrose, kardiomyozytäre Hyperthrophie, Fehlanordnung der 

Herzmuskelfasern und Zelltod in Bezug auf Apoptose und Nekrose konnte in allen 

Modellen festgestellt werden. Jedoch der Grad der jeweiligen strukturellen 

Veränderung war different. Die Anzahl der apoptotischen und nekrotischen Zellen 

war sehr gering. 

4. In den geschädigten Herzen konnten zwei Typen einer qualitativen Veränderung der 

BMP10 Verteilung gefunden werden. Zum einen war die subzelluläre Lokalisation 

von BMP10 im rechten Atrium verändert, und zum anderen wurde BMP10 in 

ventrikulären Zellen re-exprimiert. 

5. In der Desmin-defizitären Maus und in Doxorubizin-induzierten dilativen 

Kardiomyopathien konnte eine Hochregulation der BMP10 Expression gefunden 

werden, während die Quantifizierung von BMP10 in MnSOD heterozygoten und 

Isoproterenol behandelten Mäusenherzen eine Runterregulation aufdeckte. Diese 

Variationen der BMP10 Quantität wurden auf RNS- und Proteinebene kontrolliert. 

Die Anzahl der BMP10 positiven Zellen in den Ventrikeln der pathologischen 

Herzen ist gering. Folglich repräsentieren die quantitativen Veränderungen 

höchstwahrscheinlich die Deregulierung der BMP10 Expression im rechten Atrium. 
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6. Ventrikuläre Zellen, die ektopisch BMP10 im pathologischen Herz exprimieren, sind 

Sca1
pos

 und weisen Anzeichen der Proliferation auf. Die Charakterisierung dieser 

BMP10
pos 

Zellen enthüllte, dass sie eine heterogene Population von Zellen darstellen, 

die oftmals endotheliale Marker und solcher glatter Muskulatur exprimieren, aber 

niemals Kardiomyozyten-spezifische Gene. Dennoch wird BMP10 von embryonalen  

und atrialen Kardiomyozyten exprimiert.  

7. Die BMP10-Effekte sind abhängig von differentiell exprimierten Rezeptoren in den 

verschiedenen Zelllinien. Die Effekte von BMP10 auf C2C12 Zellen sind limitiert 

auf die Induktion der Osteoblastendifferenzierung. Im Gegensatz dazu induziert 

BMP10 in multipotenten mesenchymalen 10T1/2 Fibroblasten, adulten 

Knochenmark abstammenden mesenchymalen Stammzellen und in nicht-

Kardiomyozyten, die aus dem adulten Mausherzen isoliert wurden, endotheliale, 

perikardiale und für glatte Muskulatur typische Marker. Darüber hinaus sind die 

Zellen, die diese Marker exprimieren, in der Lage, dreideimensionale röhrenartige 

Strukturen zu bilden. Dies weist auf eine mögliche Rolle von BMP10 während der 

Angiogenese hin. 

 

SCHLUSSFOLGERUNGEN: 

 Basierend auf den dargestellten Ergebnissen kann geschlussfolgert werden, dass 

BMP10 auf eine autokrine und parakrine Art und Weise wirkt. Da die BMP10 

Expression und Lokalisation sich dramatisch verändern, auch wenn die pathologischen 

Veränderungen noch moderat sind, ist es möglich, dass BMP10 eine wichtige Rolle im 

Krankheitsverlauf der dilativen und hypertrophen Kardiomyopathien spielt. In 

kardiomyopathischen Herzen scheinen die ventrikulären BMP10
pos

 Zellen aus kardialen 

Sca1 Vorläufern hervorzugehen. Es könnte gefolgert werden, dass BMP10 ihre 

Proliferation und Differenzierung induziert. Des Weitern haben Zellkulturexperimente 

gezeigt, dass BMP10 die Differenzierung von mesenchymalen Zellen zu endothelialen 

Zellen, Zellen der glatten Muskulatur und Perizyten induziert, was schließlich zur 

Bildung von röhrenähnlichen Strukturen führt. In den untersuchten Kardiomyopathien 

spielt BMP10 eine protektive Rolle, indem es die Entwicklung der kardialen 

Mikrovaskulatur inklusive der Kapillaren, Arteriolen und kleinen Atrierien stimuliert. 

Dieser Prozess resultiert möglicherweise in einer Inhibition oder zumindest einer 

Verzögerung der nachteiligen Umgestaltung des Herzens, welche Teil des wichtigen 

adaptiven Prozess an Herzerkrankungen ist. Weitere Studien, inklusive der 
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Inaktivierung von BMP10 im adulten Herzen sind notwendig, um die BMP10 Funktion 

in vivo zu untersuchen. 
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7. ABBREVIATIONS 

 

3D   three-dimensional 

A    Adenine 

ActR   activin receptor 

ALK   activin receptor-like kinases 

ALP   Alkaline phosphatase 

ANF   Atrial Natiuretic Factor 

Ao   aorta 

AVC   Atrioventricular Canal 

AVCD   Atrioventricular canal defects 

BAMBI  BMP and activin membrane bound inhibitor 

BLAST  Basic Local Alignment Search Tool 

BMP   Bone Morphogenetic Protein 

BMP10  Bone Morphogenetic Protein 10 

BMPR   BMP receptor 

BNP   Brain Natiuretic protein 

bp   base pairs 

BRAM1  BMP receptor associated molecule 1 

BrdU    Bromo-deoxy-Uridine  

BSA   Bovine Serum Albumine 

C   Cytosine 

cDNA    DNA complementary to mRNA 

CMP   cardiomyopathy 

Co-Smads  Common-partner Smads 

DOX   doxorubicin 

E   Embryonic day 

EC   Endothelial cells  

ECG   Electrocardiogram 

EF   Ejection fraction 

EMT   Endothelial to mesenchymal transition 

EPI   Epicardial layer 

ERK   Extra-cellular signal regulated kinase 
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ES   embryonic cells  

EST   expressed sequence tag 

EtOH   ethanol 

FCS   Fetal Calf Serum 

FHL   Four and half LIM protein 

FKBP12  FK506-binding protein 12 

FOV   Field of view 

FRT   Flp recombinase recognition site 

g   gram 

G   Guanine 

GDF   growth/differentiation factor 

GDNF   glial cell line-derived neurotrophic factor 

GFP   Green Fluorescence Protein 

GM   Growth medium 

H   hour 

IAS   Interatrial septum 

IRES   internal ribosome entry site 

I-Smads  Inhibitory Smads 

ISO   Isoproterenol 

kbp   kilo base pairs 

kDa    kilo Daltons 

KO   Knock-out 

LA   Left atrium 

LAA   Left atrium appendage 

LV   Left ventricle 

M   mol 

mANCM  mouse adult non-cardiomyocytes 

MAPK   Mitogen activated protein kinase 

matBMP10  mature region of the Bone Morphogenetic Protein 10 

mBM-MASC1 mouse bone marrow mesenchymal adult stem cell line 1 

MeOH   Methanol 

mg   milligram 

MHC   Myosin heavy chain 

min.   minute 
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ml   milliliter 

mM   mili Mol 

MRI   Magnetic Resonance Imaging 

mRNA   messenger RNA 

neg.   negative 

ng   nanogram 

nm   nanometer 

NMR   Nuclear magnetic resonance 

o.n.   over night 

OFT   Outflow tract 

P   Phosphorylation site 

PBS   Phosphate Buffered Saline 

PBT   PBS+Tween20 

PCR   Polymerase Chain Reaction 

PDGFRß  platelet-derived growth factor receptor ß 

PFA   Paraformaldehyde 

PGK   phosphoglycerol kinase 

pmol   piko mol 

pos.   positive 

RA   Right atrium 

RAA   Right atrium appendage 

RNA   ribonucleic acid 

R-Smads  Receptor-regulated Smads 

RT   Repetition time 

RT-PCR  Reverse Transcriptase Polymerase Chain Reaction 

RV   Right ventricle 

Sca1   stem cell antigen 1 

SDS-PAGE  SDS polyacrylamide gel electrophoresis 

SF   Serum Free medium 

SMA   Smooth muscle actin 

SOD   superoxide dismutase 

T   Tesla 

TE   echo time 

TGFß   Transforming Growth Factor ß 
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TR   Trabeculae 

TUNEL  Terminal dUTP deoxynucleotidyl transferase nick end-labeling 

DCM   dilated cardiomyopathy 

U   unit 

v/v   volume/volume 

vSMC   vascular smooth muscle cell 

wt   wild type 

µg   microgram 
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8. Appendix 

 

8.1. Curriculum Vitae  

 

DATE OF BIRTH: 13 August 1977 

STATUS:           married  

NATIONALITY:    Polish 

 

EDUCATION: 

 

1996 -2001  Student of Agricultural University of Poznań, Faculty of 

Biotechnology (G.P.A: 4.6/5.0), Engineer and Master of Science 

Diploma made at the Institute of Bioorganic Chemistry Polish 

Laboratory of tRNA, Team of Protein Biosynthesis. Master Thesis 

Diploma defended on June 2001 (5.0/5.0). Rector’s prize for 

achievements during studies. 

 

RESEARCH EXPERIENCE: 

 

1999-2000 volunteer work in Protein Biosynthesis Laboratory in Institute of 

Bioorganic Chemistry Polish Academy of Sciences  

2000-2001 Engineer and Master of Science Diploma at Institute of 

Bioorganic Chemistry Polish Academy of Sciences. Thesis:  

 “Investigating of conformational changes of eukariotic ribosome 

using antisense oligonucleotides hybridisation method” 

11.2001-4.2005 Marie Curie fellow, Probiodrug, Halle, Germany 

1.05.2002- 01.2005  Ph.D. student at the Marthin-Luther University Halle-Wittenberg, 

Germany; Institute for Physiological Chemistry, involved in two 

projects belonging to one grant: “Functional Genomics of the 

ageing heart: Affected genes and their mode of action” 

02.2005 – 06.2005  PhD student at the Martin Luther University Halle -Wittenberg, 

Medicine Faculty, Institute of Physiological Chemistry; Max- 

Planck Institute of Heart and Lung Research –Bad Nauheim. 
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07.2005 -   to present, PhD student at the University Klinik  

Giessen – Marburg, Max-Planck Institute of Heart and Lung 

Research –Bad Nauheim. 

 

CONFERENCES AND COURSES 

 

1. Polish American Conference Physico-Chemical Methods in Biotechnology and 

Material Science; 5-7 June 2000, Poznan, Poland 

2. International Conference " Molecular Architecture of Evolution: Primary and 

Secondary Determinants" Poznan, Poland, (2000)  

3. Theoretical Course “RNA Structure and Function” International Centre for Genetic 

Engineering and Biotechnology; 9-12 April 2001, Trieste, Italy  

 

PUBLICATIONS: 

 

Piotrowska, I., Dudzinska, B., Twardowski, T., (2002) Structure and function of 

prokaryotic ribosome (in Polish). Advances in Biochemistry 48(1), 2-19  

 

8.2. Publications and scientific activity in congresses during PhD studies 

 

8.2.1. Publications 

Presented results have not been published. 

 

8.3.2. Presentation 

 

Results have not been presented during scientific congresses.  

 

8.3.4. Courses 

 

RNAi Myores Workshop, Villie-Morgon, 2006 
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