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1 Introduction 

1.1 Hypoxic pulmonary vasoconstriction (HPV) – definition 

HPV is a specific physiological mechanism regulating the lungs' vascular resistance in 

relation to alveolar oxygen availability. Although an increase in pulmonary artery pres-

sure (PAP) following hypoxic stimuli has been reported earlier 
25,142

, it is mostly re-

ferred to as the `Euler-Liljestrand-mechanism´. The nomenclature gives credit to the 

authors who studied PAP changes during hypoxic ventilation in cats and suggested that 

this is caused by an intrinsic action of the lungs’ vasculature. They also concluded that 

this mechanism is of significance for the regulation of blood flow in relation to the al-

veolar oxygen distribution throughout the lung 
183

. 

1.1.1 HPV – physiological significance 

Following the detailed characterisation by von Euler and Liljestrand in 1946 HPV has 

been described in a wide variety of animals and models, using different physiological 

techniques and preparations. Even though certain discrepancies concerning its charac-

teristics have been reported, the fundamental rise in PAP following a hypoxic stimulus 

could be demonstrated in the majority of study subjects. This includes, but is not re-

stricted to, humans 
121

, dogs 
14

, rats 
73

, mice 
202

, rabbits 
206

, cattle 
163

, birds 
32

 and reptiles 

166
. Variability of the HPV response between species, gender, the level of maturity and 

the different experimental designs have influenced research on the underlying functional 

principle which is considered to be evolutionary conserved 
137

. Physiological signifi-

cance and efficiency of the HPV mechanism, especially compared to other factors im-

pacting lung perfusion (e.g. gravity and the body position), have been extensively de-

bated following its characterisation 
57

. After all it is now widely accepted that HPV is an 

important intrinsic regulatory response that optimises gas exchange in a variety of situa-

tions. Basically it reduces blood flow through areas of low alveolar oxygen content, 

preventing shunt flow and preserving highest possible oxygen saturation 
209

. Addition-

ally, an elevated flow resistance throughout the non-aerated lungs is maintained during 

foetal circulation 
119

. After birth, when ventilation begins, lungs are inflated and pulmo-

nary vessels subsequently dilate 
39

. Interestingly from this point of view lungs’ vascular 
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adaptation to changing oxygen content can as well be understood as normoxic pulmo-

nary vasodilatation 
199

. 

1.1.2 HPV – physiological characteristics 

Data from animal models with a detached nervous system and/or an exogenously con-

trolled or simplified humoral system (e.g. the isolated buffer-perfused and ventilated 

lung), supported the idea that HPV is a intrinsic mechanism of the lung 
57

. Nevertheless 

researchers identified a multitude of factors, from the autonomic nervous system and its 

transmitters 
92,178

, to histamines 
74

 to the acid-base status 
153

, which are modulating the 

vasoconstrictor response to hypoxia, without being essential for the reaction 
56

. Follow-

ing Ohm’s- law, PAP depends directly on the lungs' total vascular resistance. HPV can 

only usefully function as a mechanism of local ventilation to perfusion (V/Q) matching, 

as the efficiency of blood-flow diversion is inversely proportional to the size of the af-

fected segment 
112,170

. Acute HPV (also referred to as phase 1 or early phase) occurs 

within seconds after alveolar oxygen concentration is lowered under a threshold of very 

roughly 10% 
88,206

 and reaches its maximum mostly within 5 and unlikely more than 15 

minutes 
21,189,202,206

. The kinetics and limits may vary among species and experimental 

setups, as additionally discussed in chapter 1.2, but generally exhibit a positive depend-

ency between the degree of hypoxia and the resulting increase in PAP. In many reports 

continuous hypoxic exposure leads to a biphasic vasoconstrictor response, as in sepa-

rated pulmonary arteries (PA) 
19,148

, isolated lungs 
206,213

 and in vivo 
184

. It has been sug-

gested that this more protracted rise in PAP (referred to as sustained HPV or phase 2) is 

regulated through a distinct pathway and is more closely connected to the structural 

changes observed under chronic hypoxia 
146,209

. 

1.1.3 HPV – associated pathophysiology and clinical relevance 

Considering the impact of the HPV linked mechanisms on pathological processes one 

can identify conditions of impaired vasomotor function, as well as diseases which are 

based on, or accompanied by, an increased or generalised pulmonary vasoconstriction 

and pulmonary vascular remodelling. For example during the acute respiratory distress 

syndrome, a life threatening condition that can be triggered by multiple processes 
67

, or 

in case of the hepatopulmonary syndrome, the diversion of blood flow away from 
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poorly ventilated areas becomes impaired 
78,125

. Therefore desaturated blood is allowed 

to perfuse areas of low oxygenation, increase shunt flow and cause hypoxemia in the 

systemic circulation. Treatment of these conditions is complicated by the fact that a sys-

temic oxygen deficit based on pulmonary shunt flow responds less to a therapeutic in-

crease in fraction of inspired oxygen (FiO2). On the contrary the process of generalised 

pulmonary vasoconstriction and pulmonary vascular remodelling connects HPV and 

several other diseases. Elevated PAP is considered to be an important pathogenetic fac-

tor during high-altitude pulmonary edema and also to be a susceptible therapeutic target 

in this condition 
16

. Several morphological changes, for example an increased media 

thickness or enhanced muscularization of the small pulmonary vessels, occur during 

chronic exposure to hypoxia as well as during idiopathic pulmonary arterial hyperten-

sion (IPAH) and the different and heterogeneous forms of pulmonary arterial hyperten-

sion (PAH) with identified causes 
55,164,165

. In lung fibrosis and other severe respiratory 

diseases, pulmonary hypertension (PH) is at least a concomitant factor 
61

. In chronic 

obstructive pulmonary disease unregulated or generalised vasoconstriction conjoins 

with V/Q- mismatch 
135

. Increased pulmonary vascular resistance and elevated PAP of 

different etiology may lead to restricted blood flow, right ventricular hypertrophy and 

eventually to right heart failure 
11,61

. Finally a functional HPV is of significance for sup-

port of oxygenation during anaesthesia especially in thoracic surgery and its affiliated 

ventilation strategies 
125,127

. 

1.1.4 HPV – site of action  

It is now widely accepted that HPV is predominantly a function of the small precapil-

lary pulmonary arterioles 
56,170

. Increase of the pulmonary vascular resistance during 

hypoxia has been repeatedly shown for vessels above 30µm and up to 600µm 
3,162,170

. 

Some authors reported that the strength of HPV is modified by the mixed venous oxy-

gen tension (PvO2) 
20,73

 while others demonstrated its independence conclusively 
84,206

. 

Hypoxia leads to contraction of pulmonary arteries 
110

 even in absence of vascular endo-

thelial cells 
224

. However it was suggested that endothelial cells are particularly impor-

tant during sustained HPV 
147

. Isolated pulmonary artery smooth muscle cells (PASMC) 

exhibit membrane depolarization, show increased intracellular calcium (Ca
2+

) levels and 

shorten during hypoxic conditions 
110,111,155,225

. It is therefore plausible that at least for 
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acute HPV, both the essential oxygen sensor and the effector mechanisms are located 

within these cells 
168

. Additionally it has been demonstrated that this characteristic is 

specific for PASMC, as it is not shared by tissue extracted from systemic vasculature 

111,224
. 

 

Fig. 1-1: HPV- mechanism of ventilation perfusion matching. This schematic shows impor-

tant physiological characteristics of HPV. In each picture (A,B and C) the two depicted alveolar 

regions supplied by the bronchus represent a shared segment of ventilation and perfusion, while 

the upper two pulmonary arteries –depicted as truncated branches– lead to separate pulmonary 

segments. Blue colour indicates hypoxic/desaturated while red represents normoxic/saturated 

conditions. A) Normally ventilated and perfused terminal lung segment. B) Hypoventilation or 

hypoxic ventilation leads to shunt-flow of desaturated blood and causes systemic hypoxemia. C) 

Due to vasoconstriction of the pulmonary arteries in close relation to the hypoxic area, shunt-

flow is reduced and systemic oxygenation improved. Schematic is based on the illustrations by 

Staub 
170

 and Budowick 
30

. 

1.2 Models and physiological techniques 

Isolated lung techniques have been widely used to study pulmonary vascular responses 

to hypoxia 
137

. Especially artificially buffer-perfused setups offer the advantages of a 
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reduced system complexity compared to the in vivo experiments, combined with bene-

fits of an intact organ and the potency to control many physiological and environmental 

variables 
206

. On the other hand it has been noted before that the threshold for hypoxic 

stimulation may increase or the response become blunted under simplified and artificial 

conditions 
56

. During in vivo studies, HPV can be elicited applying a FiO2 of 0,12-0,15 

at normal atmospheric pressure 
57,69,126

, in isolated lung experiments reduction to a FiO2 

of roughly 0,07-0,10 under atmospheric pressure is required 
137,206

. In general tissue 

oxygen content decreases as a function of the diffusion distance to the oxygen source, 

and is particularly low in the surrounding area of oxygen consumption. Experiments 

with isolated cells or mitochondria are therefore usually conducted under very low oxy-

gen concentration, sometimes even in anoxia. The upper and lower limits of oxygen 

serving as physiological stimulus are currently not uniformly established. This topic is 

of certain interest if results from studies using different degrees of hypoxia are com-

pared, especially under increasingly artificial conditions. The terms “mild”, “moderate” 

or “physiological hypoxia” are not exactly defined but represent the attempt to incorpo-

rate physiologically graduated amounts of oxygen into the respective method. Using 

extremely low levels of oxygen may still lead to a similar reaction but can also mislead 

the interpretation of the results, as proposed for the use of anoxia as a most likely non-

physiological HPV trigger 
18,57

. 

1.3 Cellular mechanisms of HPV – sensor, mediator and effector pathway 

The cellular mechanisms underlying oxygen sensing, signal transduction and the effec-

tor pathway in HPV are not fully elucidated yet. Current theories are partly opposing 

each other and obviously rely on contradicting results. These controversies may, to 

some extend, be explained by the use of incomparable methodology or models. Variabil-

ity in the size or the extraction site of the studied vessels 
38

, in the extent and duration of 

the applied hypoxia 
95

, as well as in the strength of priming 
174

 and pretone 
1
 could lead 

to some of the controversial observations. Furthermore the complexity of the mecha-

nism itself needs to be taken into account, as adaptation to hypoxia likely consists of 

more than one uniform phase and therefore also distinct but overlapping signalling 

pathways may contribute to it. 
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1.3.1 Cellular mechanism – effector pathway 

1.3.1.1 Role of calcium 

All muscular contraction is highly dependent on an increase in cytosolic Ca
2+

 concentra-

tion ([Ca
2+

]c) and its interaction with the contractile apparatus 
140

. The necessary influx 

may either arise from the extracellular space or from intracellular calcium stores 
23

. It is 

known that membrane depolarization, activation of voltage-operated calcium channels 

(VOCC) and calcium influx from the extracellular space play an important role in the 

smooth muscle cells' (SMC) calcium uptake 
140

. This may also be true for the PASMC 

during acute HPV, as suggested by early inhibitor and facilitator studies 
40,71,116,117

. Still 

calcium entry through other channels or from intracellular stores may represent essential 

sources of calcium in the effector pathway of HPV 
43

. This is primarily supported by 

observations that during L-type calcium channel inhibition HPV remains functional to 

some extend 
150,227

. The usage of Ca
2+

 depleted medium to study the overall dependency 

on extracellular calcium provided partly conflicting results 
43,185,203

. Mitochondria and 

the sarcoplasmic reticulum (SR) are major intracellular calcium stores in SMC and con-

tribute to calcium release and buffering 
43,91

. Especially a role for inositol 1,4,5-

trisphosphate (IP3) and ryanodine-sensitive channels in intracellular calcium release has 

found supporting evidence 
43,120,215,228

. Additionally store operated calcium channels 

(SOCC) may allow calcium influx through the plasma membrane via so called capacita-

tive calcium entry (CCE) in an voltage independent manner 
185,190

. For example Ca
2+

 

could be released from the SR by endogenous mediators from ryanodine-sensitive stores 

or via Ca
2+

-induced-Ca
2+

-release (CICR) 
120,214

. It is likely that proteins functioning as 

non-specific cation channels (NSCC) are centrally involved in the effector mechanism, 

as antagonist of certain NSCC inhibit CCE through SOCC and completely abolish HPV 

190,198
. Calcium influx may also be triggered by another class of NSCC, the specific re-

ceptor operated calcium channels (ROCC), or be the result of a multi-factorial event 

involving different calcium sources 
188

. One study demonstrated an essential and spe-

cific role for a member of the transient receptor potential channel family (TRPC) in 

acute HPV. During hypoxia PASMC isolated from TRPC6 knock-out (TRPC6
-/-

) mice 

lacked [Ca
2+

]c increase as well as these mice did not depict acute PAP rise following 

hypoxic ventilation in isolated buffer-perfused lung experiments 
203

. It is known that 



Introduction                                                                                                      

 

7 

TRPC form NSCC 
79

 and may function as ROCCs, SOCCs or both 
17

. It was suggested 

that during hypoxia TRPC may increase intracellular calcium by depolarising mem-

brane potential or by effecting L-type calcium channels 
168,176

. There is considerable 

evidence for distinct pathways and mechanisms underlying acute and sustained HPV. 

Prolonged contraction seems to depend less on voltage-operated calcium entry (VOCE) 

and calcium levels but more on the process of calcium sensitization 
148,150

. For example 

in the TRPC6
-/- 

mice sustained HPV was unchanged while acute phase was abolished 

203
. The process of calcium sensitization may be reinforced by the endothelium and base 

upon protein kinase mediated changes in the phosphorylation status of the contractile 

apparatus 
148

. It was found that Rho-kinase, activated by the G protein RhoA, inhibits 

myosin light chain (MLC) phosphatase and enhances PASMC contraction during hy-

poxia 
146,187.

 

1.3.1.2 Role of potassium 

The resting cellular membrane potential (EM) is mainly built up by the ion gradient of 

the potassium concentrations ([K
+
]) between the extracellular and the intracellular space 

and depends on the relatively high potassium conductance
 
(IK) 

140
. In PASMC depolari-

sation of EM following potassium (K
+
) channel inhibition may lead to calcium influx 

through VOCE as outlined before. Several functional classes of variably composed K
+
 

channels are expressed in PASMC and some might be involved in the effector pathway 

of HPV 
38

. There is evidence that K
+
 channels are influenced by oxygen directly or 

maybe controlled by specific mediators which are generated depending on oxygen 
38,122

. 

An alternative hypothesis suggests K
+
 channel inhibition due to release of Ca

2+ 
from

 

intracellular Ca
2+

 stores 
143

. It could be demonstrated that hypoxia inhibits IK and depo-

larizes EM in PASMC and that certain K
+
 channel antagonists mimic reactions to hy-

poxia 
144,222

. Voltage-gated K
+ 

channels (Kv channels), especially those composed of 

Kv1.2, Kv1.5, Kv2.1 and Kv9.3 alpha-subunits, play an important role in support of 

resting EM in PASMC, exhibit reduced permeability and lead to depolarization in re-

sponse to hypoxia 
10,83,221

. Even though these channels are somehow directly susceptible 

to oxygen, as suggested by patch clamp preparations with isolated Kv- channels, it was 

found unlikely that this characteristic is essential for the HPV sensor system 
10,38

. Fur-

thermore studies in knock-out mice suggested an important but likely a non-essential 
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role for the investigated Kv channels regarding the effector mechanism of acute HPV 

8,201
. Other potassium channel classes are expressed in PASMC as well and might addi-

tionally contribute to the mechanism: 1) calcium activated 2) adenosine triphosphate 

(ATP) -sensitive and 3) two-pore domain K
+
 channels 

201
. Recently an important contri-

bution of the large conductance calcium activated potassium channel (BKα) to the oxy-

gen sensor mechanism in HPV has been widely excluded using BKα deficient mice 
152

. 

1.3.2 Cellular mechanism – mediators 

There are several potential mediators which may connect the oxygen sensors with the 

effector pathway that induces calcium influx and contraction. Major importance has 

been ascribed to mediators connected to cellular energy utilization (e.g. ATP), to reac-

tive oxygen species (ROS) and the cytosolic redox state. Additional potentially impor-

tant mediator candidates include the arachidonic acid metabolites hydroxyeicosatet-

raenoic acid and epoxyeicosatrienoic acid 
85

, as well as carbon monoxide 
80

. 

1.3.2.1 Reactive oxygen species (ROS) and redox state 

There is great support for the hypothesis that ROS and/or the cellular redox-state, repre-

sented by cytosolic redox couples [e.g. oxidised/reduced nicotinamide adenine dinu-

cleotide (NAD/NADH) or glutathione (GSSG/GSH)], are involved in the signalling 

pathway responding to hypoxia. Two opposing theories regarding the role of these sub-

stances are currently established. One is suggesting a decrease in ROS and a more re-

duced state, the other one is favouring an increase as important HPV mediator. The first 

theory proposes that during hypoxia the level of ROS decreases and the intracellular 

compartment is shifted to a more reduced state. Redox-sensitive Kv channels may there-

fore close and lead to calcium influx via VOCC 
200

. In line with these theories oxidants 

were able to reverse HPV, while reducing agents elicited vasoconstriction 
131,200

. Impor-

tant data promoting the latter theory is that hydrogen-peroxide (H2O2) is able to induce 

vasoconstriction and added antioxidants, superoxide (O2
-
) scavengers, as well as over-

expressed catalase and glutathione peroxidase are capable of inhibiting HPV or HPV 

equivalent reactions in isolated cells 
160,186,193,195,205

. A possible pathway that involves a 

rise in ROS and especially H2O2 as a calcium trigger might work via activation of phos-

pholipase C (PLC), which metabolizes phosphatidyl-inositol 4,5-bisphosphate to IP3 



Introduction                                                                                                      

 

9 

and diacylglycerol (DAG) 
195

. Calcium might then be released from IP3 –sensitive intra-

cellular stores 
195

 or via DAG activating TRPC6 channels as recently suggested 
60,203

. 

Furthermore it was reported that H2O2 is able to stimulate Ca
2+

 release from mitochon-

dria and activate VOCC 
159,196

. Monitoring of ROS and the cellular redox-state during 

hypoxia has lead to contradicting observations depending on the applied method 

9,118,186,192,193
. The controversy might at least partially be based on problems in reliably 

detecting ROS 
182

, or be explained by the influence of HPV kinetics, pretone or sub-

cellular localization of differentially acting ROS sources and targets 
168,194

. 

1.3.2.2 Nucleoside phosphates and nitric oxide signalling 

Other theories focus on signal transduction via mediators linked to the cellular energy 

state. It was found unlikely that an overall cellular decrease in ATP concentration is a 

specific signal in HPV as the overall energy state seems well conserved during moderate 

hypoxia 
103

. It has been suggested that energy production during hypoxia is maintained 

by activation of glycolysis and glucose uptake but this shift may lead to alteration in 

cellular distribution of ATP production and its utilization 
102

. ATP might therefore work 

as a signal molecule in a sub-cellular context. The adenosine monophosphate (AMP) - 

activated protein kinase (AMPK) was found regulated by increasing AMP/ATP ratio 

during hypoxia and activate cyclic adenosine diphosphate ribose (cADPR) dependent 

SR- calcium release 
51

. Pharmacological stimulation of the AMPK pathway leads to 

increase in cADPR and [Ca
2+

]c , as does hypoxia 
52

. There may also be a link between 

ROS and the cADPR pathways as it was shown that increased ROS stimulates cADPR 

synthesis 
130,191

 and found necessary for AMPK activation 
50

. Nitric oxide (NO) is a 

vasodilator of systemic and pulmonary vessels that is generated by isoforms of the nitric 

oxide synthase family (NOS) from L-arginine, oxygen (O2), and NADH 
41,100

. Endothe-

lial NO reaches proximal SMC via diffusion and induces the production of cyclic 

guanosine monophosphate (cGMP) which directly or indirectly leads to dephosphoryla-

tion of the MLC and muscular relaxation 
41,167

. The effect of NO on the different phases 

of HPV is incompletely understood but inhibitor studies in isolated lungs and in vivo 

studies in humans found amplification of both acute and sustained vasoconstrictor re-

sponses 
22,210

 while NO inhalation attenuated HPV 
59

. Conversely basal pulmonary vas-

cular tone was sometimes found unaffected by the interruption of NO signalling and 
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does not mimic HPV 
2,64,156

. Therefore inhibition of NO production via hypoxia (e.g. via 

substrate deficiency) is unlikely a major HPV triggering mechanism but NO signalling 

pathways are likely regulating the strength of the vasoconstrictor responses. 

 

Fig. 1-2: Model of potential effector and mediator pathways in HPV. ATP: adenosine 

triphosphate, cADPR: cyclic-adenosine-diphosphate-ribose, CICR: calcium-induced calcium 

release, DAG: diacylgylycerol, ER: endoplasmic reticulum, IP3: inositol-1,4,5-trisphosphate, 

Kv: voltage-gated potassium
 
channel, NO: nitric oxide, NSCC: non-specific cation channel, 

PASMC: pulmonary artery smooth muscle cell, PLC: phospholipase C, ROCR: receptor-

operated calcium release, ROS: reactive oxygen species, RYR: ryanodine receptor, SOCR: store 

operated calcium release, VOCC: voltage-gated L-type calcium channel. 

1.3.2.3 Mediators in sustained HPV 

There are several observations regarding the mentioned mediators that underline differ-

ences, but also point out overlaps in the pathways and mechanisms of acute and sus-

tained HPV. For example ROS seems to be involved in both phases as reducing agents 

and O2
-
 scavengers can affect sustained and acute HPV 

45
. Interestingly inhibitors of 

AMPK were only capable of preventing sustained pulmonary vasoconstriction but not 

acute HPV 
151

. Also only phase 2 was found to directly depended on the uptake of ex-

ogenous glucose 
101,102

. Despite some controversial reports 
12,89,113

 it has been suggested 

that the sustained phase of HPV is dependent on the pulmonary vascular endothelium 

2,147
 and maybe on calcium sensitization via the Rho kinase signalling pathway 

149
. It is 
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known that the endothelium is able to control vascular tone via production and release 

of vasoactive substances like NO 
64

 and endothelin-1 (ET-1) 
94,175

 and that this function 

can be altered by hypoxia. Even though the role of these substances in HPV has not 

been fully elucidated, they do not seem to have an essential, but rather an important 

modulatory and facilitatory effect on HPV 
106,189

. 

1.3.3 Cellular mechanism – oxygen sensor 

Mitochondria are the major oxygen consumers in vital cells 
15

 and it is therefore plausi-

ble to suspect their direct involvement in regulation of oxygen dependent pathways. 

Furthermore they are important regulators of putative HPV signals via production and 

detoxification of ROS, control of energy state and Ca
2+

 handling. The list of potential 

primary oxygen sensors in HPV further includes certain nicotinamide adenine dinucleo-

tide phosphate oxidase (NADPH- oxidase) isoforms and cytochrome P450 containing 

enzymes. 

1.3.3.1 Oxygen sensor – mitochondria 

Mitochondria are important oxygen sensor candidates as they interact with the estab-

lished signal pathways of HPV, and experimental manipulation of mitochondrial func-

tions alters HPV responses. By depleting mitochondrial deoxyribonucleic acid (DNA) it 

was demonstrated that a functional electron transport chain (ETC or respiratory chain) is 

necessary to maintain the HPV linked responses of PASMC to hypoxia 
35,192

. The ETC 

enables the process of oxidative phosphorylation for ATP production using energy de-

rived from reducing equivalents, themselves generated in upstream metabolic processes 

27
. The respiratory chain is composed of four main protein complexes, embedded in the 

inner mitochondrial membrane (complex I-IV) 
27

. Coenzyme NADH is oxidized at 

complex I, reduced flavin adenine dinucleotide (FADH) at complex II and their elec-

trons are transferred down the ETC to be finally accepted by oxygen at complex IV 
27

. 

The mobile molecules cytochrome c and ubiquinone/ubiquinol (Q/QH2) allow electron 

flow between the individual complexes and cytochromes. While transferring electrons, 

the complexes I, III and IV pump protons into the intermembrane space, thereby build-

ing up the electrochemical gradient that drives ATP synthesis at the mitochondrial en-

zyme ATP synthase 
27

. It is reasonable to suggest that a deficiency in oxygen as a sub-
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strate may cause inhibition of ETC functions and act as the primary trigger of HPV. In 

general the affinity of complex IV, which transfers electrons to molecular oxygen, is 

considered to be very high during mild hypoxia 
18,27

. Nevertheless there is considerable 

change in mitochondrial function due to hypoxia and PASMC might be equipped with a 

structurally modified complex IV or its oxygen affinity might be mediator modulated 

123,182
. Recently oxygen affinity of mitochondrial respiration was determined in PASMC 

by respirometry and in isolated lungs by remission spectrophotometry and a small but 

significant decrease of respiration and reduction of mitochondrial cytochromes under 

hypoxic conditions that may increase [Ca
2+

] and elicit HPV could be demonstrated 
169

. 

Data from pharmacological blockade, for example using cyanide (CN
-
) compounds, 

seems particular dose and/or preparation dependent and has not been overall consistent 

with a role as an oxygen sensor for this complex 
7,192

. It has been suggested that, pre-

suming oxidative phosphorylation is somehow impaired during hypoxia, an increasing 

AMP/ATP ratio may serve as a signal mediating HPV even in absence of marked ATP 

depletion 
52

. 

1.3.3.1.1 Mitochondrial ROS production 

Current hypothetical pathways of HPV often involve the metabolism of ROS although 

the source and regulation of these molecules during hypoxia is highly controversial. 

Several mitochondrial elements have been identified as putative ROS generators, and 

depending on the production site, ROS can be emitted to the mitochondrial matrix, the 

intermembrane space or the cytoplasm 
4
. Location and mode of ROS production must 

be taken into account, as detoxifying systems are unequally distributed and lifetime, 

diffusion range and interaction vary between different types of ROS. 
36

. There is consid-

erable variation of ROS production depending on tissue type and the state of respiration, 

but complex I and III might be the most important mitochondrial ROS sources 
15,182

. 

Primary mechanism of ROS production is single electron (e
-
) donation to oxygen result-

ing in O2
-
 
29,123

. O2
-
 may react with nearby partners, transferring an e

-
 back into the ETC 

via cytochrome c as well as being converted spontaneously or enzymatically to more 

stable and less diffusion restricted forms of ROS (e.g. H2O2) 
182

. Assumptions regarding 

mitochondrial functions in HPV pathways are in many cases derived from studies using 

ETC inhibitors and combinations of substrates under different conditions and the speci-
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ficity of these substances, the comparability and physiological relevance of the experi-

ments is therefore an additional matter of debate 
204

. It has been suggested that ROS 

increases during hypoxia and is mainly derived from complex III 
192

. Especially the 

quinol oxidase site located at the cytosolic side of the inner membrane (Qo) of this 

complex releases O2
-
 directly into the intermembrane space what might serve as an im-

portant cellular signal 
36

. This is supported by observations in which substances block-

ing electron flow upstream of the assumed production site (e.g. rotenone – complex I or 

myxothiazol – proximal complex III) inhibited O2
-
 production as well as HPV 

204
, while 

blockers acting downstream did not 
101

. The use of exogenous succinate to bypass the 

proximal blockade of rotenone then again restored ETC functions and was interpreted as 

a confirmatory result which should underpin specificity of this experimental interven-

tion 
101

. In other experiments, even though not performed in PASMC, compounds acting 

distal from the proposed production site could increase ROS generation. This was likely 

by slowing down the e
-
 flow and elevating the concentration of single e

-
 donors, espe-

cially ubisemiquinone (Q•) 
182

. In HPV a similar mechanism might cause reduction of 

proximal ETC and prolong lifetime of Q• and therefore increase ROS production at 

complex III 
192

. According to the authors who conversely propose a decrease in ROS 

production during hypoxia, the ETC complexes exhibit a relatively high baseline pro-

duction of ROS 
118

. In line with this theory they found proximal ETC inhibitors (e.g. 

rotenone and antimycin A) to mimic effects of hypoxia and to prevent subsequent HPV 

7
. In favour of this hypothesis is the fact that decrease of ROS could be easily explained 

by the fact that ROS formation is proportional to available oxygen as well as the poten-

tial e
-
 donors 

123,182
. It is understandable that during hypoxia at least one of these vari-

ables will decrease and lead to decline in ROS formation. Variables known to generally 

modify ROS production are among others: a) the mitochondrial protonmotive force 

(Δp), b) the intra-mitochondrial calcium concentration ([Ca
2+

]m) 
29

 and c) K
+
 influx into 

the mitochondrial matrix 
5
. Additionally efflux of certain ROS types may be regulated 

via membrane channels [e.g. inner membrane anion channels (IMAC) 
192

 or voltage-

dependent anion channels (VDAC) 
70

]. 
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1.3.3.1.2 Mitochondrial protonmotive force 

The energy stored in the electrochemical gradient over the inner mitochondrial mem-

brane is generated by the ETC complexes and called the Δp 
27

. It consists of a chemi-

cal/osmotic gradient (ΔpH) and an electrical gradient, the mitochondrial membrane po-

tential (ΔΨm) 
27

. Δp is an highly important mitochondrial parameter as it drives ATP 

synthesis, supports transport processes over the inner mitochondrial membrane 
29

 and 

was found to determine ROS generation 
93,99

. Studies in isolated mitochondria demon-

strate that complex I produces high amounts of O2
-
 under conditions of elevated Δp, 

either by reversed electron transfer from QH2 or under an increased NADH/NAD ratio 

123
. This may occur when ATP synthesis and respiration are low and there is no proton 

leakage (coupled state). It was also suggested that elevated Δp might be able to stabilize 

Q• and thereby promote ROS production at complex III 
123

. Measurement of ΔΨm in 

isolated PASMC using fluorescent dyes suggested hyperpolarisation during hypoxia 

118,169
. Experimental uncoupling of ATP synthesis from electron transport can be pro-

voked using the protonophores 2,4-dinitrophenol (DNP) or carbonyl–cyanide-p–

triflouromethoxyphenylhydrazone (FCCP) 
177

 and results in decrease of Δp and likely 

decreased ROS production as outlined above. The impact of the chemical uncoupler 

DNP on pulmonary circulation was investigated early in intact animals 
20

 and an iso-

lated lung model 
108

. Although the effect was initially attributed to a change in meta-

bolic rate and through a reduction in PvO2 
20

, these results are consistent with a newer 

study in isolated organs 
204

. According to these authors DNP increases PAP during nor-

moxia and/or augments the effect of hypoxia when applied at lower concentrations 

20,108,204
 but decreases HPV and baseline pressure at higher concentrations 

204
. The value 

of chemical uncouplers in isolated lung models is limited for they can induce severe 

edema 
204

. Additionally in isolated PASMC, FCCP induced an increase in [Ca
2+

]c attrib-

uted to a release from intracellular Ca
2+ 

stores 
223

. 

1.3.3.1.3 Mitochondrial calcium metabolism 

Mitochondria are able to increase [Ca
2+

]c by Ca
2+

 release and maybe via participation in 

CCE processes 
91

 or in connection with the endoplasmic reticulum (ER) 
66

, as well as 

they are able to buffer cytosolic Ca
2+

 rises due to Ca
2+

 uptake. Additionally many mito-

chondrial functions themselves are [Ca
2+

]m dependent or regulated. Ca
2+

 transport 
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through the mitochondrial membranes is achieved by several channels with distinct 

characteristics and functions 
66

. It was found that the major part of Ca
2+

 uptake is driven 

by ΔΨm via a selective mitochondrial Ca
2+

 uniporter (MCU) and the main efflux ac-

complished via Ca
2+

/Na
+
 antiport which in turn relies on Na

+
/H

+
 exchange 

29
. It was 

suggested that rise in [Ca
2+

]c during HPV is augmented or triggered by inhibition of 

mitochondrial calcium uptake 
196

. Yet, the process and importance of mitochondrial cal-

cium uptake in smooth muscle cells, especially under hypoxia is not known. It was 

demonstrated that increase in [Ca
2+

]c  due to release from SR is followed by a rise of 

[Ca
2+

]m in rat PASMC 
44

. FCCP amplifies this increase in [Ca
2+

]c, but diminishes the 

rise in [Ca
2+

]m suggesting a possible ΔΨm dependent modulation of [Ca
2+

]c and contrac-

tion via mitochondrial calcium uptake 
44

. Mitochondrial Ca
2+ 

is an activator of ATP syn-

thesis and thereby able to couple energy consuming processes (e.g. muscular contrac-

tion) to energy production 
66

. It has been suggested that rise in [Ca
2+

]m increases ROS 

generation, for example by enhancing metabolic turnover and inhibition of complex III 

and IV, but experimental data is not consistent in this regard 
29,66,191

. 

1.3.3.2 Additional oxygen sensor candidates 

The commonly proposed oxygen sensor candidates of HPV share the capability to bind 

and react with oxygen using heme-based proteins. Some of these proposed sensor con-

cepts of HPV are underpinned by findings and observations in other oxygen responsive 

tissues like the carotid body cells. Furthermore the principle of iron-containing proteins 

acting as oxygen responsive element is encountered in bacteria, yeast and multicellular 

organisms 
31

. One hypothesis involves the activity of a NADPH oxidase isoform that 

may function as oxygen sensor and enable signal transduction via ROS up- or down-

regulation 
209

. Other concepts propose a role for cytochrome P450 containing 

monooxygenases as well as for certain hemoxygenase (HO) isoforms and their metabo-

lites 
209

. Recently a study using hemeoxygenase-2 (HO-2) - knock-out mice widely ex-

cluded HO-2 as putative oxygen sensor in HPV 
152

. 

1.4 Hypoxia-induced pulmonary hypertension (PH) 

Chronic hypoxia induces substantial changes in physiological functions which are in 

part appropriate to improve oxygen uptake, transport and to adjust systemic homeosta-
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sis. Beside the increase of hematocrit, hypoxia induces structural changes in pulmonary 

circulation 
207

, causes metabolic changes and weight loss 
220

. In regard to the pulmonary 

circulation, reduced alveolar oxygen availability leads to remodelling of pulmonary 

vessels, PH and right ventricular hypertrophy 
48,87

. Contrary to the mechanisms of acute 

HPV, the long-term reactions to generalised hypoxia in the lung and the secondary re-

sponse to increased PAP, like right ventricular hypertrophy, are inadequate to improve 

organisms’ oxygen uptake and become harmful with increasing extent 
65

. 

1.4.1 Pathophysiology and morphology of PH 

The morphology of vascular remodelling in PH of different types and etiology has gen-

eral hallmarks, but also depicts specific variations. A common feature is the thickening 

of the entire arterial wall by cellular hypertrophy and hyperplasia and especially the 

formation of a smooth muscle layer in the smaller and usually non-muscularized PA 
87

. 

Remodelling processes under chronic hypoxia are of extended clinical significance 

when applied as a model of PH. It has to be considered that these processes do not com-

pletely mimic the findings in the various types of severe pulmonary vascular diseases. 

However, PH also arises from chronic hypoxia in humans and thus the model of chronic 

hypoxia-induced PH particularly represents the pathogenesis of PH in this condition. In 

the process of hypoxia-induced remodelling medial hypertrophy occurs and characteris-

tic strands of longitudinally oriented intimal SMC develop 
171

. Wall thickening, narrow-

ing of the lumen and muscularization are further enhanced by recruitment of fibroblasts 

and pericytes, as well as an increased matrix protein deposition 
87,171

. In contrast to dif-

ferent clinically relevant forms of severe PAH in humans (e.g. IPAH), changes in the 

hypoxia animal model are mainly reversible and do not include the formation of a 

neointima or plexiform lesions 
87,171

. 

1.4.2 Molecular basis of adaptation to chronic hypoxia 

There is good evidence that hypoxia stimulates proliferation of PASMC, endothelial 

cells and fibroblasts via regulation of mitogenic factors like ET-1, vascular endothelial 

growth factor (VEGF) and inflammatory mediators as well as of antimitogenic factors 

like NO and prostacyclin 
133

. The hypoxia-inducible factor-1 (HIF-1) is established as 

an important, maybe universal oxygen dependent transcription factor triggering effects 
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of chronic hypoxia via gene regulation 
31

. The subunit HIF-1α is defining the biological 

activity of HIF-1 
158

 and is an essential factor for embryonic development of the cardio-

vascular system. Furthermore it affects the adaption of the pulmonary circulation to 

hypoxia, which was shown in a mouse model 
220

. Among other functions, HIF-1 can 

induce production of proteins that are relevant for PH like erythropoietin, VEGF or ET-

1, and might regulate glucose transport and glycolysis 
34,87,158

. ROS may arise from dif-

ferent sources and represent important signal molecules during hypoxia. Matching this 

concept, ROS were found to stabilize HIF and therefore suggested as mediator of both 

acute and long-term adaptation to hypoxia 
34,196

. The NO signalling pathway is addi-

tionally involved, or at least altered, in the processes of chronic hypoxic PH as well as 

those of IPAH 
100,217

. NO can inhibit vascular remodelling and might play a antagonistic 

role during PH, as pharmacological inhibition of NOS and knock-out of endothelial 

NOS (eNOS) function aggravated PH in hypoxic animal models 
42,100,172

. Additionally 

long-term inhalation of NO could attenuate remodelling 
208

. 

1.5 Mitochondrial uncoupling protein 2 (UCP-2) 

1.5.1 UCP-2 – structure and classification 

UCP-2 is part of the UCP protein family which is encoded by the genomic DNA of 

mammals, fish, birds, plants and likely also of fungi and protozoa 
104

. UCPs in turn be-

long to a superfamily of mitochondrial anion-carriers whose members share structural 

and functional characteristics 
96,104

. Mammals express UCP-1 to UCP-5. The calculated 

sequence similarities are high between UCP-2, UCP-3 and UCP-1, but lower between 

UCP-4 and UCP-5 
96

. UCP-1, 2 and 3 are alkaline proteins with a molecular mass of 31 

– 34 kDa and six α-helical regions spanning the inner mitochondrial membrane. A func-

tional unit is probably formed by a homodimer of the individual UCP proteins 
96

. 

1.5.2 UCP-2’s more popular relative 

The first member of the UCP family, UCP-1 or thermogenin, was discovered in 1978 
75

 

and is now relatively well characterised. It primarily enables heat generation in special-

ized brown adipose tissue (BAT) of mammals by uncoupling the e
-
 flow along the ETC 

from ATP production. Activity of UCP-1 is inhibited by nucleotides but can be restored 
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and enhanced by increasing concentrations of fatty acids (FA) arising from lipolysis 

triggered by noradrenalin via β3-adrenoceptors 
33

. UCP-1 is thereby functioning as a 

regulator of body temperature through non-shivering heat production, but also modifies 

energy balance and body weight, all under control of the sympathetic nervous system 
33

. 

The amount of functional UCP-1 protein can be increased for example during cold ac-

climation and hibernation, and the quantity and distribution of BAT generally varies 

between species, age/size and the living conditions of animals 
33

. Distribution, physio-

logical function and regulation of the protein UCP-2 is currently less clear. As UCP-2 

and UCP-1 are structurally related it is plausible to assume overlaps in function and 

regulation, especially considering the conserved amino-acid sequences in key regions 

linked to proton transport and at substrate binding sites.  

1.5.3 UCP-2 – distribution, function and physiological role 

First described in 1997, as a 59% amino-acid identical homologue of UCP-1 in humans, 

UCP-2 was found capable of lowering the ΔΨm, when expressed in yeast, and initially 

suggested as a regulator of body weight, thermogenesis and immunity 
58

. In contrast to 

the exclusive occurrence of UCP-1 in BAT, UCP-2 is expressed in a variety of tissues. 

Unfortunately most of the studies on localization are performed on messenger- ribonu-

cleic acid (mRNA) level only, and it has been reported that expression levels do not 

actually predict UCP-2 protein abundance 
138

. Due to difficulties with immunodetection 

reliable studies are rare, nevertheless highest UCP-2 protein levels can be expected in 

spleen, lung, stomach, kidney, pancreatic β-cells and immune cells 
138

. Even in tissues 

with a relatively high UCP-2 abundance the calculated protein concentration is likely 

only a small fraction, maybe around 1/500, of the concentration of UCP-1 in BAT 
26

. 

The generally low mitochondrial UCP-2 amount, together with preserved adaptation to 

cold temperatures and a normal body weight in UCP-2 deficient (UCP-2
-/-

) mice, is 

pointing toward functions other then thermogenesis 
13

. Uncoupling activity under 

physiological conditions in intact cells is fairly established for UCP-2 
49,97

 and there is 

evidence for a role in the multifaceted metabolism of ROS 
128

. By controlling Δp, UCP-

2 might change ROS production and intracellular signalling in different cells. Further-

more O2
-
 is able to activate uncoupling activity via UCPs under certain conditions and 

this might enable a feedback loop to control mitochondrial ROS generation 
49,124

. Nu-
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cleotides and FA do impact UCP-2 activity in vitro but whether or not they are impor-

tant mediators in vivo has not been decided yet 
96

. Regarding the physiological or patho-

logical significance of UCP-2, it was published that macrophages, isolated from UCP-2 

deficient (UCP-2
-/-

) mice, produce more ROS than those of wild type (WT) mice and 

this fact was considered to be responsible for an increased resistance against infectious 

agents, observed in these animals 
13

. Additionally UCP-2 can negatively influence insu-

lin secretion and was found upregulated in a type 2 diabetes mellitus animal model 
226

. 

Additional UCP-2 gene knock-out in these animals improved blood glucose control by 

increasing ATP signalling 
226

. Under physiological conditions UCP-2 might decrease 

oxidative damage or fine tune the magnitude of different cellular responses 
26

. Later a 

physiological significant uncoupling activity was questioned again and new functions 

were suggested for the UCP-1 homologues. In an intensely debated publication Trenker 

et al. proposed a fundamental function for UCP-2/3 in enabling mitochondrial Ca
2+

 up-

take via the MCU 
28,179,180

. Intriguingly UCP mediated calcium flux could also be able 

to mimic a protonophoric uncoupling activity by additional involving Ca
2+

/Na
+
 and 

Na
+
/H

+
 exchangers 

63
. Recently another theory suggested involvement of UCPs in glu-

cose and pyruvate metabolism. According to this hypothesis UCP-2/3, themselves regu-

lated by FA and glutamine, decrease mitochondrial pyruvate affinity under certain con-

ditions and influence the composition of fuel for ATP production 
24

. 

1.6 Aim of the study 

HPV is an important, but especially regarding its sub-cellular processes, incompletely 

understood physiological mechanism. The oxygen sensor and signal transduction sys-

tems may involve ROS, Ca
2+

 as well as ATP and may be regulated or triggered via al-

terations of the mitochondrial metabolism. Understanding of these processes is of gen-

eral scientific interest and furthermore, elucidation of the underlying principle may help 

to understand pathological conditions like PH and can be a prerequisite to establish new 

therapies to prevent hypoxemia due to disturbed HPV. 

UCP-2 is a mitochondrial protein whose physiological role and biochemical activity has 

not been finally determined but is proposed to regulate ROS, Ca
2+

 and ATP and there-

fore could be particularly important for regulation of HPV. Thus the aim of this study 
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was to investigate the role of UCP-2 in acute and sustained HPV as well as in chronic 

hypoxia-induced PH.  

To achieve this aim, physiological responses of UCP-2
-/-

 mice were compared to 

matched WT mice in experiments of: 

1. Exposure to acute and sustained hypoxia in an artificially ventilated, buffer-

perfused mouse lung system by determining the changes in the pulmonary arte-

rial pressure (Δ-PAP). 

2. Exposure to chronic hypoxia by evaluating the in vivo right ventricular systolic 

pressure (RVSP) as well as performing lung vessel morphometry and measure-

ment of heart ratio. 

The hypothesis was that UCP-2 negatively regulates mitochondrial ROS production and 

that an increasing levels of ROS acts as a mediator of HPV and vascular remodelling. 

Therefore the extend of vasoconstriction in acute and sustained HPV as well as the 

changes due to long term exposure to hypoxia were expected to be found enhanced in 

UCP-2
-/- 

mice compared to WT mice. 
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2 Materials and methods 

2.1 Animals 

Homozygous UCP-2
-/-

 mice (B6.129S4-Ucp2
tm1Lowl

/J) were purchased from Jackson 

Laboratories (Bar Harbor, USA). WT mice (C57BL/6J) bought from Charles River 

Laboratory (Sulzfeld, Germany) served as control animals. The UCP-2
-/-

 strain was cre-

ated by Lowell et al. as described 
226

. Briefly their procedures involved replacing part of 

the UCP-2 gene sequence between the introns 2 and 7 with a PGK-NEO-Poly(A) ex-

pression cassette and transferring the DNA by electroporation into J1 embryonic stem 

cells. Subsequently these were injected into C57BL/6 blastocytes generating chimeric 

mice which were mated with C57BL/6J animals. Finally heterozygous offspring were 

backcrossed to obtain homozygous study objects. UCP-2
-/-

 offspring used for the de-

scribed experiments were generated by inbreeding of offspring of two pairs of animals. 

After delivery from Jackson and Charles River Laboratories the mice were supplied by 

animal caretakers under equal conditions and had ad libitum access to food and water. 

All animal studies were approved by the local authority for animal research - 

Regierungspräsidium Giessen - reference number: “GI 20/10 Nr. 105/2010” and the 

permit for isolated lung experiments “Pathomechanismen der respiratorischen Insuf-

fizienz am Mausmodell”. All interventions before the time of death of the animals by 

circulatory arrest, especially the conduction of anaesthesia, were supervised by Prof. Dr. 

Norbert Weißmann or another approved researcher. UCP-2
-/-

 and WT-mice used for the 

experiments were of either sex with a body weight between 18 and 35g. 

2.2 Materials 

2.2.1 Equipment and devices 

2.2.1.1 Isolated lung, chronic hypoxia and in vivo measurement 

Bubble trap        Eppendorf  

made of 1.5ml Eppendorf cup      Hamburg, Germany  
 

Flow meter  Aalborg Instruments and Con- 

Model “P”  trolls; Orangeburg, USA 
 

Gas pre-mixtures -  Air Liquide GmbH  
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Normoxic gas (5.3% CO2 / 21% O2 / rest N2)   Ludwigshafen, Germany 

Hypoxic gas (5.3% CO2 / 1.0% O2 / rest N2)  

O2 and N2 

 

Infusion pump       Braun Melsungen AG 

Model “Secura FT”       Melsungen, Germany 
 

 

Isometric force transducer and     Kent Scientific   

base amplifier       Litchfield, USA 
 

Magnetic valve       Rausch & Pausch GmbH 

Model “SV 04”       Selb, Germany 
 

O2 controller       Labotect  

Model “4010”       Göttingen, Germany 
 

Personal computer (PC)      Siemens Nixdorf AG 

         Paderborn, Germany 
 

Positive end-expiratory pressure (PEEP) valve  Bio-Rad Laboratories GmbH 

made of 15ml centrifuge tube     München, Germany 
 

Positive pressure respirator     Hugo Sachs Elektronik 

Model “Minivent, Type 845”     March-Hugstetten, Germany 
 

Pressure transducers       Braun Melsungen AG  

Model “Combitrans”       Melsungen, Germany 
 

Refrigeration/ Heating circulator    Julabo Labortechnik GmbH 

Model “F32-MC”       Seelbach, Germany 
 

Reservoir and        Glassblowing factory 

continuous flow heat exchanger     University Giessen, Germany 
 

Surgical instruments      Martin Medizintechnik 

Forceps and fine scissors      Tuttlingen, Germany 
 

Surgical threads       Ethicon GmbH 

non-absorbable, different sizes     Norderstedt, Germany 
 

Threads         Coats GmbH  

Kenzingen, Germany 
 

Time switch        Grässlin GmbH 

programmable, 4 channels      St. Georgen, Germany 
 

Transducer- amplifier module      Hugo Sachs Elektronik  

“Type 705/1”in “PLUGSYS Type 601”   March-Hugstetten, Germany 
 

Tracheal tube       Becton Dickinson 

made of a “Microlance 20G”       Heidelberg, Germany 
 

Tubes- air-tight       Cole-Parmer Instruments  

Model “Tygon”       Vernon Hills, USA 
 

Tubing pump        Ismatec SA 

Model “Reglo Digital MS-4/8”      Glattbrugg, Switzerland 
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2.2.1.2 Lung vessel morphometry, heart ratio and hematocrit 

Autocrit centrifuge       Clay Adams 

         Parsippany, USA 
 

 

Digital camera        Leica Microsystems 

Model “DC 300F”       Wetzlar, Germany 
 

Hematocrit capillaries      Hirschmann Laborgeräte 

         Eberstadt, Germany 
 

Microtome         Leica Microsystems 

Model “RM 2165”       Wetzlar, Germany 
 

Stereo light microscope       Leica Microsystems 

Model “DMLA”       Wetzlar, Germany 
 

Tissue processor        Leica Microsystems 

Model “TP1050”       Wetzlar, Germany 

 

2.2.2 Chemicals, reagents and antibodys 

Anti-α-smooth muscle actin (anti-α-SMA)   Sigma-Aldrich 

Mouse anti-human antibody diluted 1:900    Saint Louis, USA 

with Bovine serum albumin (BSA) 10% 
 

Anti-von Willebrand factor (anti-vWF)    Dako 

Rabbit anti-human diluted 1:900 with BSA 10%  Hamburg, Germany 
 

Aqua ad iniectabilia       Baxter 

         Unterschleißheim, Germany 
 

Avidin/ Biotin blocking kit     Vector/ Linaris 

         Wertheim-Bettingen, Germany 
 

BSA 10%         Sigma-Aldrich 

prepared with 20g BSA powder and 0.26g NaN3  Saint Louis, USA 

ad 200ml phosphate buffered saline (PBS) 
 

DAB (3,3-diaminobenzidine) substrate kit   Vector/ Linaris 

         Wertheim-Bettingen, Germany 
 

Disodium hydrogen phosphate      Merck 

(Na2HPO4 x 2H2O)      Darmstadt, Germany 
 

Ethanol - 99.6%, 96% and 70%     Fischer 

         Saarbrücken, Germany 
 

Formaldehyde (CH2O) - 37%     Roth 

         Karlsruhe, Germany 
 

Goat serum        Alexis Biochemicals 

         Grünberg, Germany 
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H2O2 - 30%        Merck 

         Darmstadt, Germany 
 

Ketamin (Ketavet) 100mg/ml     Pfizer  

Berlin, Germany 
 

 

 

Krebs– Henseleit buffer (II/N) containing   Serag-Wiessner  

120mM NaCl, 4.3mM KCl, 1.1mM KH2PO4,  Naila, Germany 

2.4mM CaCl2, 1.3 mM MgCl2, 13.32mM Glucose  

and 5% Hydroxyethylamylopectin  
 

Methanol and       Fluka Chemie 

Isopropyl alcohol 99.8%       Buchs, Switzerland 
 

Methyl green       Vector/ Linaris 

         Wertheim-Bettingen, Germany 
 

Mouse on Mouse (M.O.M)      Vector/ Linaris 

and Vectastain Elite Avidin/Biotinylated    Wertheim-Bettingen, Germany 

Enzyme Complex (ABC) immunodetection kit    
 

Na-Heparin (Liquemin) 5000IU/ml    Roche 

Basel, Switzerland 
 

PBS          Prepared in lab 

prepared with 8g NaCl, 2g KCl,  

11.5g Na2HPO4 x 2H2O, 2g KH2PO4  

ad 1l Aqua destillata 
 

Pertex mounting media      Medite GmbH 

         Burgdorf, Germany 
 

Picric acid        Fluka Chemie 

Buchs, Switzerland 
 

Potassium chloride (KCl)      Roth 

         Karlsruhe, Germany 
 

Potassium dihydrogen phosphate     Merck 

(KH2PO4)        Darmstadt, Germany 
 

Rotihistol        Roth 

Karlsruhe, Germany 
 

Saline solution        Baxter 

         Unterschleißheim, Germany 
 

Sodium bicarbonate (NaHCO3) 8.4%    Braun Melsungen AG 

         Melsungen, Germany 
 

Sodium chloride (NaCl)       Roth 

         Karlsruhe, Germany 
 

Thromboxane A2 mimetic - U46619    Paesel and Lorei,  

         Frankfurt am Main, Germany 
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Trypsin         Zymed 

Digest All 2        San Francisco, USA 
 

Very intense purple (VIP),     Vector/ Linaris 

Chromogen substrate kit for peroxidase   Wertheim-Bettingen, Germany 
 

Xylazinhydrochlorid (Rompun) 20mg/ml     Bayer Vital GmbH 

         Leverkusen, Germany 
 

Xylol         Roth 

         Karlsruhe, Germany 
 

Zamboni’s fixative prepared with    Prepared in lab 

50ml CH2O - 37%, 200ml 0.2M NaH2PO4,  

300ml 0.2M Na2HPO4, 150ml picric acid  

ad 1l Aqua destillata 
 

2.2.3 Software 

GraphPad Prism 5       GraphPad Software, Inc. 

         La Jolla, USA 
 

Labtech Notebook Pro      Laboratory Technologies Corp. 

         Wilmington, USA 
 

Microsoft Office Word, Powerpoint     Microsoft Corp. 

and Excel 2003       Unterschleißheim, Germany 
 

QWin V3        Leica Microsystems 

         Wetzlar, Germany 

 

2.3 Methods 

2.3.1 Isolated buffer-perfused and ventilated mouse lung 

A system for isolated buffer-perfused and ventilated mouse lung experiments was set up 

with small modifications as described 
202

. Functionally the system can be divided into 

three parts: The ventilation unit (Fig. 2-1), the perfusion unit (Fig. 2-2) and the meas-

urement unit (Fig. 2-3). Gas flow was adjusted to 50ml/min by the flow meter for both 

normoxic and hypoxic gas mixtures. Buffer fluid was prepared by adding NaHCO3 and 

introducing normoxic gas mixture to the Krebs-Henseleit solution resulting in a pH of 

7.30 – 7.40. The perfusion system was flushed multiple times with Aqua ad iniectabilia 

and cooled down to 4°C before being filled with buffer fluid. Mice were deeply anesthe-

tised with intraperitoneal (i.p.) injection of ketamin [100mg/kg body weight (body wt.)] 

and xylazine [10mg/kg body wt.]. If necessary the injection was repeated with half of 

the above stated dosage until deep anesthesia was reached. Anticoagulation was per-
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formed by i.p. injection of heparin [1000IU/kg body wt.]. Animals were mounted in an 

upright supine position on a rack and a longitudinal incision from the mandible to the 

upper abdomen was conducted. Salivary glands and muscle covering the trachea were 

cut, displaced and a ligature was loosely applied around the lower part of the airway.  

 

Fig. 2-1: Isolated buffer perfused mouse lung - Ventilation unit. After passing the pressure 

regulators, the normoxic, as well as the hypoxic gas stored in the gas pre-mixture tanks passes 

the magnetic valves, which allows the selection of the gas source, then the flow meter before 

reaching the respirator. The respirator delivers positive pressure ventilation to the isolated lung 

and leads the exhaled air over the positive end-expiratory pressure (PEEP) valve. 

Subsequently a transverse incision was set in the mid-abdomen, organs were dislocated 

downwards to reach the diaphragm, where a small tear close to the sternum was made 

and caused a pneumothorax. Now a midsternal thoracotomy, wide opening and immobi-

lizing of the ribcage became possible without injuring the sensitive lung tissue. Dia-

phragm and thymus were carefully removed and after placing a surgical thread around 

the root of the pulmonary artery (PA) the left ventricle (LV) was pierced and the right 

ventricle (RV) was longitudinally incised. The PA was catheterised via the open RV, the 

prepared ligature tied and the perfusion initiated with Krebs- Henseleit buffer at a flow 

rate of 0.2ml/min. The lungs and heart were then carefully detached en-block from the 

body by cutting behind and along the trachea and pulling the sensitive lung tissue away 

from the parietal pleura. The LV was catheterized and connected to the perfusion circuit 

after the lung was suspended freely. The isolated organ was held only by the airway 
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tube aligned to the isometric force transducer and was connected to the PA- and LV- 

catheters. The perfusion system's temperature was steadily increased via the heating 

circulator to a temperature of 37°C. During the next 30min the flow rate was stepwise 

elevated to 2.0ml/min, as was the tidal volume to 300µl. This allowed the lungs to get 

rinsed and adapt before switching the system to recirculation. 

 

Fig. 2-2: Isolated buffer perfused mouse lung - Perfusion unit. The buffer fluid is pumped 

from the reservoir over the flow heater and the bubble trap to the PA catheter (red arrows) and 

drained back from the left ventricle over the tubing pump to the reservoir (blue arrows). The 

temperature of the buffer fluid is regulated by a reversely directed flow of tempered water over 

flow heater and reservoir (black arrows). 

After onset of recirculation the system contained approximately 20ml of buffer fluid and 

was run for additional 15min to achieve a PAP steady-state before proceeding with the 

different experimental protocols. A deep inspiration with doubled tidal volume was de-

livered to reduce atelectasis. A one point calibration procedure was performed before 

the measurements. All pressure transducers were opened to allow equilibration with 

atmospheric pressure for calibration, the transducer- amplifier module was set to 

0mmHg and the transducers were reconnected to the catheters. The left ventricular pres-

sure (LVP) was adjusted to 1.2 - 1.3mmHg by elevating or lowering the LV- outflow 

tube before the start of the individual protocol. Weight force (WF) signals from the iso-

metric force transducer during steady-state were used as reference point from which 



Materials and methods                                                                                               

 

28 

weight gain could be registered. All data collected from homogenous white lungs with-

out signs of edema or persistent atelectasis and an obtainable PAP and weight steady-

state during the initial 15min of recirculation were included into the study. 

 

Fig. 2-3: Isolated buffer-perfused mouse lung - Measuring unit. Pressure transducers are 

attached to the tracheal tube (ventilation pressure), the PA- catheter (pulmonary artery pressure) 

and the LV- catheter (left ventricular pressure). The generated electrical signals of the pressure 

transducers as well as the signals of the isometric force transducer (weight force) are amplified 

and finally recorded on a PC. 

2.3.1.1 Repetitive hypoxia 

15min of normoxic ventilation were alternated with 10min of hypoxic ventilation as 

illustrated in figure 2-4. Δ-PAP of six cycles of alternating ventilation was compared. Δ-

PAP was calculated by subtracting peak baseline PAP from peak PAP for each individ-

ual cycle. 

2.3.1.2 Sustained hypoxia and normoxic control 

After one cycle of normoxic (15min) and hypoxic ventilation (10min) three hours of 

sustained hypoxia were applied. The experiment was completed by another cycle of 

repetitive hypoxia (15min normoxic and 10min hypoxic ventilation) as shown in figure 

2-5. The PAP levels during sustained hypoxia were compared. Additionally experiments 

with continuous normoxic ventilations were conducted. 
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Fig. 2-4: Example of a PAP registration of a repetitive hypoxia experiment.  

 

 

Fig. 2-5: Example of a PAP registration of a sustained hypoxia experiment. 
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2.3.1.3 Repetitive stimulation with U46619 

An infusion pump loaded with the thromboxane A2 mimetic U46619 [0.06µg/ml - 

solved in buffer fluid] was installed into the system at the arterial line leading from the 

buffer reservoir to the lung. Dose finding tests in control mice were conducted to deter-

mine an infusion speed and duration which caused an increase in PAP similar to that 

caused by HPV. A dosage of 15ng U46619 was applied over 1min and 30s [10ng/min] 

with an infusion speed of 10ml/h (Fig. 2-6). 

 

Fig. 2-6: Example of a PAP registration from an experiment with a repetitive stimulation 

by the thromboxane mimetic U46619. 

2.3.1.4 Sustained stimulation with U46619 

Similar to the prior protocol a sustained infusion of U46619 [0.06µg/ml] was used to 

generate an effect now resembling the changes in PAP caused by sustained hypoxic ven-

tilation. A short term stimulation as described before was followed by an infusion of a 

total dose of 0.72µg U46619 over 3h [4.2ng/min] with an infusion speed of 4ml/h. Each 

experiment ended after another short term stimulation with 15ng U46619. The initial 

buffer load was reduced to 8ml in this protocol. 
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Fig. 2-7: Example of a PAP registration from an experiment with a sustained stimulation 

by the thromboxane mimetic U46619. 

2.3.2 Chronic hypoxia 

All WT and UCP-2
-/-

 mice were randomly assigned either to the normoxic or the hy-

poxic group. Animals assigned to the hypoxic treatment / the hypoxic group (HOX) 

were exposed to a reduced, normobaric FiO2 of 0.10 and those assigned to the normoxic 

treatment / the normoxic group (NOX) to atmospheric FiO2 as described previously 
54

. 

Both groups were held in chambers connected to an air circulating system to create an, 

apart from oxygen concentration, identical environment. Conditions were regulated by 

supplementing oxygen or nitrogen via an automated O2-controller, a soda lime container 

that removed CO2 and a cooling system to drain off humidity from the system. Mice 

were exposed for four weeks and subsequently used for the experiments described under 

2.3.2.1 – 2.3.2.4. Mice were removed from their chambers and held at room air shortly 

before (5-15min) and during the individual measurements described below. 

2.3.2.1 Right ventricular systolic pressure measurement 

Measurement of right ventricular systolic pressure (RVSP) was accomplished in vivo as 

a slightly modified procedure of the techniques described before 
47

. For this measure-
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ment mice were anticoagulated with heparin [1000IU/kg body wt.] by i.p. injection. 

After a latency of approximately 30min mice were anesthetised with an i.p. injection of 

ketamin [100mg/kg body wt.] and xylazine [10mg/kg body wt.]. After onset of general 

anaesthesia mice were placed supine on a heating pad, tracheotomy tube inserted as 

described in chapter 2.3.1, but using a smaller incision at the neck. Positive pressure 

ventilation was performed with room air and a tidal volume of 200µl, respiratory rate of 

120/min and a PEEP of 1cm H2O. Using a stereo microscope the right internal jugular 

vein was located through the neck incision and secured with surgical threads at the 

proximal and distal part. A small incision into the vein was made, the fluid filled silicon 

catheter inserted and gently pushed towards the right ventricle. The proper location 

could be verified by real time pressure recordings resembling the typical pressure curve 

of the right ventricle (Fig. 2-8). 

 

Fig. 2-8: Schematic illustrating the catheter location and the associated pressure wave-

form. RA: right atrium, RV: right ventricle, PA: pulmonary artery. Picture of human heart and 

typical hemodynamic tracing 
115

 adapted with kind permission of the author L. Mathews. 

The pressure transducer was calibrated before each experiment. Inclusion criterion was 

a stable pressure registration with homogenous waveform for at least 5min. Pressure 

curves were then recorded for 15–30min and the highest, stable RVSP were utilized. 

The investigator was blinded with regard to the genotype of the mice (WT or UCP-2
-/-

), 

and the treatment regimen (NOX or HOX). However, the NOX or HOX treatment could 
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be easily distinguished by intensity of blood and tissue colour of the mice during the 

preparation. 

2.3.2.2 Hematocrit 

A blood sample was collected in a hematocrit capillary directly from the right or left 

ventricle after completion of the RVSP measurement or during the procedure of lung 

fixation described in the following chapter. Capillary was closed, centrifuged and hema-

tocrit read. 

2.3.2.3 Immunohistochemistry and lung vessel morphometry 

Lung fixation was performed after completing RVSP measurement. Thoracotomy and 

cannulation of the PA was done as described in chapter 2.3.1. The LV was opened 

widely, the PA- catheter was used to flush the lungs with normal saline until they were 

free of blood. Simultaneously ventilation was stopped, and the tracheal tubing con-

nected to a saline filled reservoir which served as a hydrostatic counter pressure during 

fixation. Airway pressure was held at 12cm H2O during the following perfusion with 

Zamboni’s fixative with a pressure of 22cm H2O through the pulmonary catheter for 

around 15min. Afterwards the heart was explanted, rinsed with saline and kept frozen 

until used for heart ratio determination as described in chapter 2.3.2.4. The lungs were 

removed and kept in Zamboni’s fixative overnight, then transferred to PBS and pre-

served at 4°C. Finally the lungs were separated in lobes, dehydrated and embedded in 

paraffin with an automated tissue processor. A double immunohistochemical (IHC) 

staining of 3µm thick, microtome cut sections against α-smooth muscle actin (α-SMA) 

and von Willebrand factor (vWF) was used to evaluate the degree of muscularization in 

the lung vasculature. Similar staining techniques have been described previously 

145,207,218
. Detailed staining protocol is given here: 

Step Procedure Time 

1 Heating sections at 58-60°C 20min 

2 Rotihistol 3 x 10min 

3 Ethanol 99,6% 2 x 5min 

4 Ethanol 96% 5min 

5 Ethanol 70% 5min 

6 H2O2 3% in Methanol 15min 

7 Aqua destillata 2 x 5min 
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8 Phosphate buffered saline (PBS) 2 x 5min 

9 Trypsin at 37°C 10min 

10 PBS 2 x 5min 

11 Avidin Blocking 15min 

12 PBS 5min 

13 Biotin Blocking 15min 

14 PBS 5min 

15 10% BSA 15min 

16 PBS 2 x 5min 

17 Mouse on Mouse (M.O.M.) Ig Blocking 60min 

18 PBS 2 x 5min 

19 M.O.M. diluent 5min 

20 Anti-α-SMA antibody 30min 

21 PBS 4 x 5min 

22 M.O.M. biotinylated IgG  10min 

23 PBS 2 x 5min 

24 M.O.M. ABC reagent 5min  

25 PBS 2 x 5min 

26 Very intense purple(VIP) substrate for peroxidase 3-4min 

27 Tap water 5min 

28 PBS 5min 

29 Avidin Blocking 15min 

30 PBS 5min 

31 Biotin Blocking 15min 

32 PBS 5min 

33 10% BSA 15min 

34 PBS 2 x 5min 

35 Goat Serum 20min 

36 Anti-vWF antibody at 37°C 30min 

37 PBS 4 x 5min 

38 Avidin Biotinylated Complex (ABC)- reagent 30min 

39 PBS 2 x 5min 

40 Diaminobenzidine (DAB) substrate  20s-25s 

41 Tap water 5min 

42 Methyl green on heating plate at 60°C 5min 

43 Aqua destillata 1min 

44 Ethanol 96% 2 x 2min 

45 Isopropyl alcohol 2 x 5min 

46 Rotihistol 2 x 5min 

47 Xylol 5min 

48 Coverslipping with Pertex mounting media  

 

Morphometric analysis of IHC stained sections from the upper left lobe for each animal 

was performed by an investigator blinded blinded with regard to the genotype of the 

mice as well as the treatment regimen and using a computer-aided procedure as de-

scribed before 
157

. Digital photos of the sections were analysed with Qwin software de-

termining size and muscularization of the pulmonary vessel. Approximately 80 vessels 
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of different outer diameters were categorized in nonmuscularized, partially muscular-

ized or fully muscularized depending on the amount of α-SMA labelled by IHC. Vessels 

were manually selected for evaluation based on their size thereby setting the ratio of 

small (outer diameter = 20-70µm), medium (outer diameter = 70-150µm) and large 

(outer diameter >150µm) vessels in every experiment to 85% small, 10% medium and 

5% large ones. The categories of muscularization were defined as: 1. nonmuscularized 

with up to 4% of α-SMA positive staining in the tunica media, 2. partially muscularized 

with more then 4% and up to 75% and 3. fully muscularized with more than 75% posi-

tive staining. Coloration was detected and the associated category automatically as-

signed by the software. The distribution of the muscularization categories was expressed 

as percentage of the total vessel count including all sizes of vessels (small, medium and 

large). 

2.3.2.4 Heart ratio  

Procedures were carried out in a blinded fashion as described 
157

. Hearts were thawed 

and cut under binocular loupe magnification to separate the RV from the associated sep-

tum and LV (LV+septum). Tissue was dried at 40°C for 1 week and all parts weighed 

separately. Heart ratio was calculated as percentage of weight of RV divided by the sum 

of the weight of LV and septum: Heart ratio = RV * 100 / [LV+ Septum] 

2.4 Statistical analysis 

All results, except for the hematocrit, are presented as means ± standard error of the 

mean (SEM). Hematocrit distribution is presented as box-and-whiskers plot. Two-way-

analysis of variance (two-way-ANOVA) with Bonferroni post hoc test was performed 

for comparison of PAP responses to repetitive hypoxic challenges, as well as PAP and 

weight pattern during sustained hypoxic and normoxic ventilation and those following 

sustained thromboxane infusion. One-way-ANOVA with the Student-Newman-Keuls 

multiple comparison test was performed for analysis of RVSP, heart ratio, hematocrit, 

vessel morphometry, body weight and growth. A two-tailed Student t-test was per-

formed for comparison of baseline PAP measured before the first and before the sixth 

cycle of repetitive hypoxia and repetitive thromboxane infusion, as well as for compari-
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son of weight during these experiments. P-values < 0.05 were considered statistically 

significant. 
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3 Results 

3.1 Isolated buffer-perfused and ventilated mouse lung 

3.1.1 Response to repetitive hypoxic ventilation 

PAP characteristics of WT [n=7] and UCP-2
-/-

 [n=5] mice were analysed in an isolated 

buffer-perfused mouse lung system during six cycles of alternating positive pressure 

ventilation with a hypoxic (1.0% O2 for 10min) or normoxic (21.0% O2 for 15min) gas 

mixture. 

 

Fig. 3-1: PAP response to repetitive hypoxic ventilation in UCP-2
-/-

 and WT mice. Six cy-

cles of hypoxic ventilation, 10min each were alternated with 15min of normoxic ventilation in 

UCP-2
-/-

 [n=5] and WT mice [n=7]. Maximum Δ-PAP (mmHg) from corresponding baseline is 

given for each cycle. Bars represent mean ± SEM, * = p<0.05. 

As demonstrated in figure 3-1, UCP-2
-/-

 mice had an overall tendency towards higher Δ-

PAP (difference between highest PAP during hypoxic cycle and the normoxic baseline 

PAP). This difference was statistically significant during the third cycle (mean ± SEM 

for UCP-2
-/-

: 1.5 ± 0.1mmHg and WT: 1.0 ± 0.1mmHg). As depicted in figure 3-2 A, no 

significant difference was found comparing baseline PAP during the phases of normoxic 
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ventilation of cycle 1 and 6. The isolated organs weight gain (difference between weight 

before the first and after the sixth cycle) were not significantly different as shown in 

figure 3-2 B. 

 

Fig. 3-2: Normoxic PAP and isolated organs' weight gain in UCP-2
-/-

 and WT mice. Six 

cycles of hypoxic ventilation, 10min each were alternated with 15min of normoxic ventilation 

in UCP-2
-/-

 [n=5] and WT mice [n=7]. Bars represent mean ± SEM (A) Baseline PAP (mmHg) 

recorded before the first (1) and last (6) hypoxic maneuver. (B) Change in isolated organs' 

weight (mg) during the experiment. 

3.1.2 Response to repetitive stimulation with U46619 

To further investigate the higher pressure response to hypoxia in UCP-2
-/-

 animals, an-

other vasoconstrictor stimulus was applied and the resulting pressure increase moni-

tored. Repetitive short-time infusions (1min and 30s) of the thromboxane A2 mimetic 

U46619 were tested in isolated lungs while ventilated with a normoxic gas mixture. 

Dosage was designed to trigger a pressure response similar to that caused by HPV in 

WT mice. As depicted in figure 3-3 A, B and C, the Δ-PAP, baseline PAP and weight 

gain, respectively, were measured in both UCP-2
-/- 

[n=5] and WT mice [n=5] during six 

cycles of repetitive thromboxane infusion, each containing 15ng of U46619. In this ex-

periment UCP-2
-/-

 mice did not react significantly different from WT mice. Baseline 

PAP and isolated organs' weight gain during these experiments were not significantly 

distinct. 
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Fig. 3-3: PAP response to repetitive stimulation with the thromboxane mimetic U46619 in 

UCP-2
-/-

 and WT mice. Six cycles of thromboxane infusion (10ng/min) each lasting 1min and 

30s, equivalent to a dose of 15ng U46619, were applied to UCP-2
-/-

 [n=5] and WT mice [n=5]. 

Bars represent mean ± SEM. (A) Maximum Δ-PAP from corresponding baseline for each appli-

cation. (B) Baseline PAP recorded before the first (1) and the last (6) application of U46619. (C) 

Change in isolated organs' weight during the course of the experiment. 

3.1.3 Response to sustained hypoxic and normoxic ventilation 

Investigations in UCP-2
-/-

 mice regarding their different HPV characteristics compared 

to WT mice were continued in an experimental setup applying prolonged hypoxia. Mice 

of both genotypes were assigned to hypoxic treatment (HOX) and normoxic treatment 

(NOX) groups: During HOX protocol one cycle of hypoxic / normoxic ventilation (cf. 
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chapter 3.1.1) was followed by three hours of sustained hypoxia. Experiments were 

completed by another cycle of normoxic / hypoxic ventilation. The members of NOX 

groups were ventilated with normoxic gas throughout the entire experiment lasting 

200min. 

 

Fig. 3-4: Δ-PAP during sustained hypoxic and normoxic ventilation. Data are presented as 

changes in PAP from normoxic baseline at time point “zero” (Δ-PAP – mmHg) plotted against 

time. Curves labelled HOX reflect changes during three hours of sustained hypoxia and a fol-

lowing cycle of normoxic and hypoxic ventilation in both UCP-2
-/-

 [n=9] and WT mice [n=9]. 

For the NOX group the changes during sustained normoxic ventilation in UCP-2
-/-

 [n=6] and 

WT mice [n=5] are plotted similar. Data are shown as mean ± SEM, * = p<0.05 comparing WT 

HOX and UCP-2
-/-

 HOX, # = p<0.05 comparing WT NOX and UCP-2
-/-

 NOX. Significant dif-

ferences comparing HOX and NOX treatment are not indicated. 

Figure 3-4 illustrates the course of PAP changes during HOX and NOX ventilation after 

the first 40min of the experimental protocol, this time point is called time point “zero”. 

The initial cycle of alternating hypoxic / normoxic (HOX –group) as well as the initial 

40min of normoxic ventilation (NOX –group), respectively, are not shown for clarity 

reasons (cf. figure 2–5). WT HOX [n=9] and UCP-2
-/-

 HOX [n=9] pressure registrations 

proceeded in a similar pattern with a fast increase and following decline in PAP during 

the initial 20min of sustained hypoxia. Pressure levels did not return to baseline under 
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hypoxic ventilation, but entered a phase of slow and steady increment referred to as 

sustained phase of HPV. When switched to normoxic ventilation at time point 180min, 

PAP decreased rapidly, but remained elevated compared to the PAP of the normoxic 

groups for the corresponding time points. UCP-2 deficient mice demonstrated similar 

characteristics, but the magnitude of the sustained HPV response was altered. UCP-2
-/-

 

mice demonstrated a significantly lower sustained HPV compared to WT mice between 

80 and 140min of hypoxic ventilation. At 110min pressure values were 1.0 ± 0.2mmHg 

for UCP-2
-/- 

and 1.8 ± 0.1mmHg for WT mice. PAP in mice ventilated with normoxia 

was significantly higher at time point 200min in UCP-2
-/-

 mice (0.7 ± 0.1mmHg) com-

pared to WT mice (0.3 ± 0.3mmHg). Comparing NOX and HOX treatment in the same 

genotype, PAP was significantly different from minute 1 to 8 for both WT and knock-

out mice and again from minute 50 to 200 in WT, but only between 100 and 160min in 

UCP-2
-/-

 animals. In respect to the figures' clarity this statistic is not included in figure 

3-4. 

 

Fig. 3-5: Weight change during sustained hypoxic and normoxic ventilation. Isolated or-

gans' changes in weight (mg) during sustained ventilation with (A) hypoxia in both UCP-2
-/-

 

[n=9] and WT mice [n=9] or (B) normoxia in UCP-2
-/-

 [n=6] and WT mice [n=5]. Data is pre-

sented as mean ± SEM. 

Figure 3-5 exhibits the change in weight during (A) hypoxic and (B) normoxic treat-

ment. There was no significant difference in weight gain comparing UCP-2
-/-

 and WT 

mice during HOX and NOX treatment as well as comparing weight gain between HOX 

and NOX treatment in the individual genotype . 
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3.1.4 Response to sustained stimulation with U44619 

Analogous to the short term application of U46619 for comparison with acute HPV, this 

substance was used for induction of prolonged vasoconstriction, and the resulting PAP 

responses were monitored and compared between WT and UCP-2
-/-

mice. Infusion dos-

age was determined in pre-tests using WT mice and was intended to generate a persis-

tent increase in PAP in similar dimensions like sustained HPV. Figure 3-6 demonstrates 

PAP characteristics of WT [n=7] and UCP-2
-/-

 [n=7] mice during the continuous infu-

sion of U46619. 

 

Fig. 3-6: PAP characteristics during sustained infusion of thromboxane mimetic U44619. 

Data are presented as changes in PAP from baseline (Δ-PAP in mmHg) plotted against time. 

Curves reflect changes during three hours infusion of the thromboxane mimetic U44619 

(4.2ng/min), an infusion free interval of 15min and a final bolus of 15ng U46619 for 1min and 

30s (10ng/min). Data of WT [n=7] and UCP-2
-/- 

[n=7] mice are presented as mean ± SEM. 

PAP course is plotted from the moment the sustained infusion was started, this time 

point was defined as “zero”. A single bolus of 15ng was given during the initial 40 min-

utes before the sustained infusion was started (data not shown). Infusion was stopped 

after 180min and the experiment completed with another 15ng bolus of U46619 at time 

point 195min. PAP began to increase about 2min after the start of the infusion with 
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similar kinetics in both mouse strains. The pressure responses to U46619 showed a 

higher variability compared to the pressure characteristics in HPV and the difference 

between UCP-2
-/-

 and WT mice did not reach a statistically significant level. Likewise 

weight gain did not differ significantly as depicted in figure 3-7. 

 

Fig. 3-7: Weight change during sustained infusion of thromboxane mimetic U44619. Iso-

lated organs' changes in weight (mg) during infusion of thromboxane for both WT [n=7] and 

UCP-2
-/-

 [n=7] mice presented as mean ± SEM. 

3.2 Chronic hypoxia 

Different parameters reflecting adaptation and remodelling of the cardiovascular system 

during prolonged exposure to normobaric hypoxia were compared in WT and UCP-2
-/-

 

mice. 

3.2.1 Right ventricular systolic pressure 

RVSP was measured under general anaesthesia using a closed chest catheter technique 

in both WT and UCP-2
-/-

 mice which had been exposed to hypoxic or normoxic atmos-

phere. Randomly assigned mice of both genotypes were held either under a normobaric 

atmosphere with normoxic oxygen concentrations of 21% (NOX) or were exposed to a 

normobaric atmosphere containing 10% oxygen (HOX) over four weeks. As illustrated 

in figure 3-8 both mouse strains demonstrated a statistically significant increase of 

RVSP comparing exposure to hypoxia with exposure to normoxia. Examining the im-

pact of genotypes a significant difference was found comparing animals exposed to hy-

poxic conditions but not after normoxic exposure. WT NOX [n=7]: 25.5 ± 1.0mmHg 
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and WT HOX [n=7]: 37.8 ± 1.2mmHg compared to UCP-2
-/-

 NOX [n=7]: 26.4 ± 

1.3mmHg and UCP-2
-/-

 HOX [n=7]: 44.6 ± 2.0mmHg.  

 

Fig. 3-8: RVSP after exposure to hypoxia and normoxia. Mice of different genotypes were 

exposed to a reduced, normobaric FiO2 of 0.10 referred to as HOX group: WT [n=7] and UCP-2
-

/-
 [n=7] or held at a normal atmospheric, normobaric FiO2 of 0.21 labelled NOX group: WT 

mice [n=7] and UCP-2
-/-

 [n=7]. RVSP (mmHg) recorded after treatment using a closed chest 

catheter technique under general anesthesia and positive pressure ventilation with room air. Bars 

represent mean ± SEM, * = p<0.05 comparing WT and UCP-2
-/-

, # = p<0.05 comparing HOX 

and NOX treatment in the same genotype. RVSP measurements were performed in coopera-

tion with Nirmal Parajuli. 

3.2.2 Heart ratio 

Heart ratio, presented as weight proportion of the separated and dried animal organ (RV 

* 100 / [LV + ventricular septum]), can be used as a parameter to evaluate cardiac adap-

tation to changes in pulmonary vascular resistance and pressure. It was determined in 

WT and UCP-2
-/-

 mice previously held under hypoxic as well as those held under nor-

moxic conditions. As illustrated in figure 3-9 both strains of mice demonstrated statisti-

cally significant increase of heart ratio induced by hypoxia. WT NOX [n=7]: 27 ± 2% 

compared to WT HOX [n=7]: 37 ± 1% and UCP-2
-/-

 NOX [n=7]: 29 ± 2% compared to 

UCP-2
-/-

 HOX [n=7]: 37 ± 2%. Heart ratio in UCP-2
-/-

 mice was not significantly differ-

ent from WT mice under normoxic or hypoxic conditions. There was no significant dif-

ference in the absolute value of the LV weight in respect to genotype or exposure: WT 
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NOX [n=7]: 17.4 ± 0.5mg, WT HOX [n=7]: 17.4 ± 0.5mg, UCP-2
-/-

 NOX [n=7]: 18.6 ± 

0.6mg and UCP-2
-/- 

HOX [n=7]: 17.8 ± 1.1mg (data not depicted). 

 

Fig. 3-9: Heart ratio after exposure to hypoxia and normoxia. Mice of different genotypes 

were exposed to a reduced, normobaric FiO2 of 0.10 referred to as HOX group: WT [n=7] and 

UCP-2
-/-

 [n=7] or held at a normal atmospheric, normobaric FiO2 of 0.21 labelled NOX group: 

WT mice [n=7] and UCP-2
-/-

 [n=7]. Heart ratio (%) determined after these treatments. Bars rep-

resent mean ± SEM, # = p<0.05 comparing HOX and NOX treatment in the same genotype. 

3.2.3 Morphometric analysis of lung vasculature 

Morphometric analysis of pulmonary vessels in immunohistochemically double stained 

lung tissue was conducted for both WT and UCP-2
-/-

 mice held under normoxic and 

hypoxic conditions. Examples of the staining results are given in figure 3-10. For each 

animal approximately 80 vessels of different outer diameters (85% small [20 to 70µm], 

10% medium [70-150µm] and 5% large [>150µm]) were categorized in nonmuscular-

ized, partially muscularized or fully muscularized. The categories' fraction of total ves-

sel count is shown in figure 3-11. Comparison of WT and UCP2
-/-

 mice during NOX 

treatment revealed a statistical significant difference in vessel muscularization between 

WT and UCP-2
-/-

 animals. Fraction of fully and partially muscularized vessels was 

higher in UCP-2
-/-

 mice while the number of nonmuscularized vessels was reduced ac-

cordingly. UCP-2
-/-

 NOX [n=7]: fully 12.6 ± 1.3%, partially 60.4 ± 0.5% and nonmus-
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cularized 27.1 ± 1.2% compared to WT NOX [n=7]: fully 4.1 ± 0.8%, partially 46.5 ± 

1.0% and nonmuscularized 49.4 ± 1.3%. 

 

Fig. 3-10: Example of immunohistochemically double stained lung tissue. Endothelium of 

pulmonary arteries is positive for von Willebrand factor staining (brown), α- smooth muscle 

actin labelling (violet) depends on the amount of muscularization. As an example a single small 

vessel (outer diameter 20-70µm) from each class of muscularization is shown for both WT and 

UCP-2
-/-

 mice. 

There was no significant difference between WT and UCP-2
-/-

 mice in the HOX group. 

Numbers of fully muscularized vessels were significantly increased and nonmuscular-
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ized vessels significantly decreased in both mouse strains comparing hypoxic and nor-

moxic exposure. 

 

Fig. 3-11: Vessel morphometry after exposure to hypoxia or normoxia. Mice of different 

genotypes were exposed to a reduced, normobaric FiO2 of 0.10 referred to as HOX group (WT 

[n=7] and UCP-2
-/-

 [n=7]) or held at a normal atmospheric, normobaric FiO2 of 0.21 labelled 

NOX group (WT mice [n=7] and UCP-2
-/-

 [n=7]). Lung vessel morphometry determined after 

these treatments revealed the fraction of the three muscularization categories from total vessel 

count. Bars represent mean ± SEM, * = p<0.05 comparing WT and UCP-2
-/-

, # = p<0.05 com-

paring HOX and NOX treatment in the same genotype. Performance of vessel counting was 

supported by Adel Bakr. 

3.2.4 Body weight and growth 

Measurement of body weight was conducted previous to and after the exposure period, 

before sacrificing the animals for the experiments specified in chapters 3.2.1 –3.2.3. 

Results (body weight in g) at the specified time points and the calculated growth or 

change in weight (g) are shown in figure 3-12. WT NOX [n=7]: before exposure 21.6 ± 

1.3g / after exposure 24.5 ± 1.2g and WT HOX [n=7]: before exposure 21.1 ± 0.9g / 

after exposure 22.6 ± 0.6g compared to UCP-2
-/-

 NOX [n=7]: before exposure 22.2 ± 

0.9g / after exposure 26.2 ± 1.1g and UCP-2
-/- 

HOX [n=7]: before exposure 22.4 ± 0.8g 
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/ after exposure 22.4 ± 1.1g. There was no statistically significant difference in body 

weight between mice assigned to any of the groups or any significant difference in 

growth during the experiment. 

 

Fig. 3-12: Body weight of animals before and after exposure to hypoxia and normoxia. 

Mice of different genotypes were exposed to a reduced, normobaric FiO2 of 0.10 referred to as 

HOX group (WT [n=7] and UCP-2
-/-

 [n=7]) or held at a normal atmospheric, normobaric FiO2 of 

0.21 labelled NOX group (WT mice [n=7] and UCP-2
-/-

 [n=7]). Mice were weighed before and 

after exposure and resulting growth calculated as difference between the weight after exposure 

minus the body weight before exposure. Bars represent mean ± SEM. 

3.2.5 Hematocrit 

Measurement of hematocrit was performed after completion of RVSP measurement or 

during the procedure of lung fixation for vessel morphometry. Results (hematocrit in %) 

are shown in figure 3-13 as a box-and-whiskers plot. Both WT and UCP-2
-/-

 mice ex-

posed to hypoxia had a statistically significant higher hematocrit: WT HOX [n=6]: 60 ± 

3% and UCP-2
-/-

 HOX [n=6]: 56 ± 4% compared to mice exposed to normoxia: WT 

NOX [n=5]: 37 ± 2% and UCP-2
-/-

 NOX [n=5]: 39 ± 5% There was no statistically sig-

nificant difference in hematocrit as a function of the genotype. 
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Fig. 3-13: Hematocrit of animals exposed to hypoxia and normoxia. Mice of different geno-

types were exposed to a reduced, normobaric FiO2 of 0.10 referred to as HOX group or held at a 

normal atmospheric, normobaric FiO2 of 0.21 labelled NOX group. Hematocrit (%) distribution 

of HOX group (WT [n=6] and UCP-2
-/-

 [n=6]) and NOX group (WT mice [n=5] and UCP-2
-/-

 

[n=5]) is shown as a box-and-whiskers plot. 
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4 Discussion 

4.1 Discussion of the study limitations  

The sub-cellular pathways underlying HPV, especially the mechanism of oxygen sens-

ing but also the downstream processes leading to the lung’s adaptation during hypoxia 

have not been sufficiently clarified yet. UCP-2 is a mitochondrial protein that is linked 

to some of the important mediators of HPV, but was, according to the best of my knowl-

edge, never studied in regard to its function in this mechanism. The availability of UCP-

2
-/-

 mice and specific physiological techniques offered the chance to investigate the con-

tribution of this protein to the processes of acute and sustained HPV as well as to pul-

monary vascular remodelling and PH induced by chronic hypoxia. As this study is 

based on experiments with intact animals as well as isolated organs, it offers several 

advantages (cf. chapter 1.2 and 1.5), but also includes considerable limitations. Due to 

their “loss of function phenotype”, studies using knock-out mice may avoid some of the 

major drawbacks that result from the usage of pharmacological inhibitor. Ideally these 

experiments demonstrate the impact of the UCP-2 gene on important physiological 

characteristics of HPV. This would imply that the difference between the genetically 

altered and WT mouse strain is restricted to the presence or absence of this individual 

target gene. This state can only be approximated in our experimental setups even though 

we applied the standard practice of using a knock-out mouse strain developed from 

blastocytes of the same strain of mice as the control animals (cf. chapter 2.1). For ex-

ample it has been reported that the characteristic of improved glucose tolerance in UCP-

2
-/-

 mice depends on other strain related variables, as the original finding could not be 

reproduced in backcrossed UCP-2
-/-

 mice 
136

. 

As sensitive, interference-prone experiments were performed and small amplitudes of 

physiological parameters were compared, technical issues need to be addressed as well: 

It is known from studies conducted in the same laboratory as was this thesis and it has 

been reported for similar experiments, that the quality and time of the preparation as 

well as the presence of haemoglobin in the buffer fluid can affect the magnitude of the 

vasoconstrictor responses 
107,206

. Furthermore the investigator was not blinded in regard 

to the genetic identity of the animals while performing the isolated buffer-perfused lung 
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experiments. To prevent systematic errors the experimental procedures were standard-

ized and inclusion criteria were established (cf. chapter 2.3.1). To minimize effects aris-

ing from changes in the performance of the investigator, or factors like air pressure and 

room temperature, the timetable was outlined to alternate measurements of the geneti-

cally altered and wild type animals. 

Finally it should be taken into account that UCP-2 is only a single member of the UCP 

family and there are marked local, structural and functional adjacencies especially to 

UCP-3 
104

. Even though we do not have any indications for this event, it remains con-

ceivable that the deficit of UCP-2 is compensated by UCP-3 or other mechanisms as 

congenital UCP-2
-/-

 mice were investigated. 

4.2 Considerations regarding the interpretation of the results 

The maybe most important issue regarding the interpretation and the integration of the 

results is, however, the incomplete characterization of the basic function of the UCP-2 

protein itself. In an experimental setup measuring the reactivity of an intact organ or a 

complete animal, general difficulties in the act of interpretation occur. On account of the 

used methodology it is not overall possible to separate effects that act directly in the 

pulmonary vessels from indirect effects induced by systemic alterations by the knock-

out of UCP-2. In this regard the UCP-2 protein may exert its effects on the pulmonary 

vasculature by its local uncoupling activity, but could also influence pulmonary vascula-

ture by its known property to regulate the plasma insulin level. The observed distinctive 

phenotype in the UCP-2
-/- 

mouse strain might principally be based on a direct modifica-

tion in mitochondrial metabolism in the PASMC, as well as on the changes in insulin 

secretion or the associated plasma glucose levels. This latter mechanism is however 

largely excluded in the isolated and buffer-perfused and ventilated lung preparation. 

However, an interpretation focusing solely on the initially stated uncoupling theory 

might be inappropriate, as this hypothesis was repeatedly challenged. At least two, more 

recent, hypothesis, one suggesting an important role for the UCPs in the mitochondrial 

calcium 
180

 and the other an impact on the cellular glucose metabolism 
24

 need to be 

addressed accordingly. This discussion is intended to offer an interpretation of the study 

results by demonstrating possible links between the best characterized UCP-2 functions 



Discussion                                                                                                      

 

52 

and the sensor, mediator and effector pathways in HPV. Additional studies are needed to 

support or falsify this hypothesis and to establish the relationships of cause and effect on 

the cellular and sub-cellular level as well as to reliably localize UCP-2. 

4.3 Effect of UCP-2 on acute HPV 

In this study the strength of acute HPV in WT and UCP-2
-/-

 mice following repetitive 

hypoxic stimulation is compared using an isolated, artificially ventilated and buffer-

perfused mouse lung model. UCP-2
-/-

 mice depicted an intensified PAP increase, while 

baseline pressures during normoxic ventilation periods in these experiments were simi-

lar to those of WT mice. To evaluate the specificity of the increased pulmonary vaso-

constriction of the UCP-2
-/-

 mice to acute hypoxia, repetitive stimulations with the 

thromboxane A2 mimetic - U46619 were conducted in an otherwise comparable proce-

dure. These experiments showed a tendency towards lower PAP responses in UCP-2
-/-

 

mice, but overall without statistically significant differences. The hereby stimulated 

thromboxane A2 (TXA2)– receptors are G-protein-coupled receptors and have been sug-

gested to enable cellular Ca
2+

 mobilization via activation of the second messenger sys-

tems IP3 and DAG and through Ca
2+ 

sensitization via regulation of myosin light chain 

kinase, Rho and Rho-kinase 
82,86,114,154

. Furthermore in mesenteric arteries the effect of 

U46619 depends on the activity of VOCC as well as SOCC 
68

. As UCP-2 deletion leads 

to different changes in PAP characteristics, depending on the applied trigger, acute hy-

poxia versus U46619, it can be concluded that the mechanism of acute HPV becomes 

altered in a specific manner and that these changes are not caused by a general increase 

in pulmonary vascular contractility. Additionally it suggests that, assumed the effector 

pathway in the TXA2-mediated contraction relies on processes similar to those of HPV, 

e.g. the intracellular calcium increase, the UCP-2 protein influences the upstream sig-

nalling pathways and is therefore related to the processes of oxygen sensing or other 

HPV specific parts of the further upstream mediator system. Studies using different 

ETC inhibitors as well as PA myocytes lacking mitochondrial DNA, indicated the de-

pendence of the HPV mechanism, but the independence of U46619-mediated contrac-

tions, on a properly functioning mitochondrial metabolism 
192

. 
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Weight change of the isolated organ is interpreted as a control value to estimate the ex-

tent of lung edema formation during the experiments, as it is known that fluid accumu-

lation can alter the vasoconstrictor response 
202

. UCP-2
-/-

 mice showed no statistically 

significant difference regarding weight change in both, the repetitive hypoxia and the 

U46119 experiments. Thus an important difference in vascular permeability for the ob-

served effects can be excluded. 

There are several possible mechanisms of how UCP-2 might influence PAP under hy-

poxia: 1) UCP-2 increases vessel muscularization, (cf. chapter 3.2.3 and discussion in 

chapter 4.2) and increases unspecific pulmonary vasoconstriction. This possibility was 

excluded, as U46619-induced vasoconstriction was not increased in UCP-2
-/- 

mice com-

pared to WT mice. 2) UCP-2 is active under normoxic conditions and deletion causes 

generally increased pulmonary vascular tone. This view is supported by the fact that 

PAP was increased in sustained normoxic experiments at late time points when compar-

ing UCP-2
-/-

 and WT mice (cf. chapter 3.1.3). However, in acute HPV the normoxic 

baseline PAP values between repetitive hypoxic maneuvers did not differ, and in vivo 

there was no significantly higher RVSP in mice held under normoxic conditions, com-

paring UCP-2
-/-

 and WT mice (cf. chapter 3.2.1). It needs to be added that in a just re-

cently published study performed in the same laboratory as was this thesis, RVSP and 

heart ratio were found to be statistically elevated comparing UCP-2
-/-

 and WT mice un-

der normoxia 
134

. 3) UCP-2 is active under normoxic conditions, but only a second hy-

poxia-induced stimulus, that is influenced by UCP-2, e.g. ROS, results in increased 

PAP. 4) UCP-2 function is directly activated by hypoxia and attenuates HPV. 5) UCP-2 

function is activated indirectly by hypoxia. Hence, the following discussion will focus 

on factors that may be released in hypoxia and regulated by UCP-2, as well as mecha-

nisms of direct or indirect modulation of UCP-2 function in acute hypoxia. 

4.3.1 Uncoupling function of UCP-2 

A reasonable interpretation of the current results connects the hypothesis of an increas-

ing ROS production serving as trigger of HPV and the assumed uncoupling function of 

UCP-2. Through protonophoric activity the UCP-2 protein could be able to decrease Δp 

and also restrict the rise in ROS production during acute HPV 
49

. A dependency between 
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Δp and ROS production is established under certain conditions 
93,99

. A mild uncoupling 

mediated by the activity of UCP may decrease ROS production 
128

 and an elevated ROS 

production was already demonstrated in macrophages isolated from UCP-2
-/- 

mice 
13

. In 

previous studies, the chemical uncoupler DNP increased PAP during normoxia and/or 

augmented the effect of hypoxia when applied at lower concentrations 
20,108,204

 but in-

hibited HPV and decreased baseline PAP at higher concentrations 
204

. One of the cited 

publications further addressed the dose-dependent effect of the substance and its rela-

tion to normoxic and hypoxic ventilation 
204

. Normoxic PAP rose after administration of 

DNP at concentrations between 10 and 100µM, but declined at 200µM 
204

. A following 

hypoxic stimulus was found - not significantly - elevated at 10µM but significantly at-

tenuated at 70, 100 and 200µM 
204

. It is interesting to note that pressure responses due 

to the application of U46619 were on the other hand significantly elevated under 70µM 

( and non- significantly under 10 and 100µM ) of DNP 
204

. It can be concluded that un-

coupling induced by this substance, in a certain concentration range, had an opposite 

effect than the knock-out of UCP-2, supporting an uncoupling function for this protein.  

 

Fig. 4-1: Possible model of UCP-2 functioning as a protonophore. Absence of UCP-2 in 

UCP-2
-/-

 mice reduces uncoupling, increases ROS production and HPV. CI – CIV: respiratory 

chain complexes I – IV, CV: ATP synthase, Δp: mitochondrial protonmotive force, H
+
: hydrogen 

ion, HPV: hypoxic pulmonary vasoconstriction, IMM: inner mitochondrial membrane, OMM: 

outer mitochondrial membrane, ROS: reactive oxygen species. 

In contrast to these results, another study described that the mitochondrial protonophore 

carbonyl cyanide m–chlorophenyl–hydrazone (CCCP) increased the hypoxia and also 
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the caffeine-induced rise in [Ca
2+

]c, what was interpreted as disruption of the mitochon-

drial Ca
2+

 buffering capacity due to uncoupling 
90

 (cf. chapter 4.3.2). The finding of 

contrary effects, depending on the applied dosage or the kind of uncoupling substance, 

might be caused by the complex influence of Δp on the mitochondrial metabolism. A 

direct and positive relationship between Δp and the generation of ROS might only exist 

in certain limits or under certain conditions, while outside these limits other effects for 

example the calcium handling could play a more important role. A recent study con-

ducted in cardiomyocytes and isolated mitochondria addressed the complex interaction 

of Δp, redox potentials and oxidative stress and provided evidence that in intact cells 

uncoupling due to the chemical uncoupler FCCP leads to increase of ROS at particular 

low and particular high concentrations 
6
. This hypothesis integrates both, the influence 

of high redox potentials and of cellular radical detoxification systems, on ROS balance 

and could therefore explain opposite effects of uncoupling 
6
. In this regard it has also 

been noted that short mitochondrial depolarization mediated by the mitochondrial per-

meability transition pore (PTP) can lead to a burst of mitochondrial ROS through a yet 

unrevealed mechanism 
66

. 

4.3.2 Mitochondrial calcium handling 

Considering the suggested role for UCP-2 and UCP-3 in the mitochondrial calcium uni-

port 
180

, a UCP-2 deficient phenotype might have an impaired mitochondrial Ca
2+ 

buff-

ering capacity as well as an increased [Ca
2+

]c and an amplified vasoconstrictor response 

following hypoxic stimulation, as observed in this study. UCP-2
-/-

 mitochondria could 

also hypothetically exhibit an increased ROS production assuming that a reduced Δp, 

which might be based on a decreased mitochondrial Ca
2+

 uptake and a consecutive re-

duction in the dependent Ca
2+

/Na
+
 and Na

+
/H

+
 exchange over the inner mitochondrial 

membrane, is of greater importance compared to the described positive Ca
2+

 depend-

ency of ROS production 
29

. As mitochondria play an important role in calcium buffering 

62
, a reduced Ca

2+ 
buffering capacity or slower buffering kinetics might explain the ob-

servation of an amplified acute HPV in UCP-2
-/- 

mice. Unfortunately mitochondrial 

Ca
2+

 homeostasis in PASMC is not well characterized, especially its interaction with the 

[Ca
2+

]c  under hypoxia. Thus there is little evidence to suggest a different importance of 

the calcium buffering mechanism for hypoxia triggered vasoconstriction compared to 
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thromboxane-induced vasoconstriction that would be necessary to explain the findings 

of this thesis. 

 

Fig. 4-2: Possible model of UCP-2 functioning as an essential part of the mitochondrial 

calcium uniporter. Absence of UCP-2 in UCP-2
-/-

 mice leads to decreased calcium uptake into 

the mitochondria and a higher calcium concentration in the cytoplasm. Uncoupling is reduced 

and increases ROS production and HPV. CI – CIV: respiratory chain complexes I – IV, CV: ATP 

synthase, c-Ca
2+

: cytoplasmic calcium, c-Na
+
: cytoplasmic sodium, Δp: mitochondrial proton-

motive force, H
+
: hydrogen ion, HPV: hypoxic pulmonary vasoconstriction, IMM: inner mito-

chondrial membrane, m-Ca
2+

: mitochondrial calcium, m-Na
+
: mitochondrial sodium, OMM: 

outer mitochondrial membrane, ROS: reactive oxygen species. 

4.3.3 UCP-2 functioning as a metabolic switch 

The so called metabolic theory of UCP-2 is also well suited to explain the increased 

strength of acute HPV in UCP-2
-/- 

mice. According to Bouillaud et al., UCP-2 and 3 

might act as negative regulators of pyruvate uptake into the mitochondria and change 

the ratio of anaerobic and aerobic glucose utilization 
24

. In absence of UCP-2 higher 

amounts of pyruvate might reach the mitochondrial matrix, become utilized in the tri-

carboxylic acid (TCA) cycle and lead to an increase in redox pressure on the ETC and 

subsequently enhanced ROS formation 
24

. An increased ratio of NADH/NAD
+
 could 

also change the overall redox balance and increase ROS production from NAD(P)H 

oxidases, which have been suggested as sensors in acute HPV 
211

. NADP is reduced to 
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NADPH along the pentose phosphate pathway (PPP), a degrading process that uses glu-

cose-6-phosphat (G-6-P), thus runs in competition with glycolysis and may be influ-

enced by UCP-2 functioning as a metabolic switch. The PPP might be enhanced as cy-

tosolic pyruvate concentration rises due to reduced mitochondrial pyruvate import and 

slows down glycolysis via feedback inhibition. As NADPH is also needed to replenish 

GSH from GSSG and other ROS detoxifying systems, an highly reduced NADP pool 

could also decrease certain types of ROS 
216

. Regarding the importance of these sub-

stances during hypoxia a study in isolated pulmonary arterial rings reported an increase 

in NAD(P)H/NAD(P)
+
 ratio 

101
, while another one demonstrated that changes only af-

fect NADH/NAD
+
 but did not alter the content of NADPH or NADP

+
 during hypoxia 

161
. 

 

Fig. 4-3: Possible Model of UCP-2 acting as negative regulator of mitochondria pyruvate 

uptake. CI – CIV: respiratory chain complexes I – IV, CV: ATP synthase, Δp: mitochondrial 

protonmotive force, e
-
: electron, H

+
: hydrogen ion, FA: fatty acid, Glucose-6-P: glucose-6-

phosphat, HPV: hypoxic pulmonary vasoconstriction, IMM: inner mitochondrial membrane, m-

Ca
2+

: mitochondrial calcium, m-Na
+
: mitochondrial sodium, NAD+/NADH: oxidized/reduced 

nicotinamide adenine dinucleotide, NADP+/NADPH: oxidized/reduced nicotinamide adenine 

dinucleotide phosphate, OMM: outer mitochondrial membrane, PPP: pentose phosphate path-

way ROS: reactive oxygen species, TCA-cycle: tricarboxylic acid- cycle. 
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The metabolic theory itself is based on experiments addressing the influence of UCP-2 

on pyruvate and FA utilization in mouse embryonic fibroblasts 
24

. However, there is not 

much direct experimental evidence to support a function as suggested by the authors 

and the theory so far lacks a precise mechanism that may explain how the novel UCPs 

might perform their assumed role. It has been additionally pointed out that the meta-

bolic and uncoupling activities might both be functions of the novel UCPs. According to 

this hypothesis the frequently described uncoupling phenotype might then either occur 

during non-physiological conditions, or could be assigned to a proton co-transport as 

part of the actual physiological function 
24

. 

4.4 Effect of UCP-2 on sustained HPV
 

To investigate the effect of UCP-2 on the process of sustained HPV, response of WT and 

UCP-2
-/- 

mice to prolonged hypoxia in an isolated, artificially ventilated and buffer-

perfused mouse lung model were compared. Both strains of mice exhibited a biphasic 

vasoconstrictor response pattern in a comparable sequence, but whereas the acute phase 

seemed enhanced (cf. 3.1.1 and 3.1.3: the first and second hypoxic maneuver had only a 

tendency towards higher Δ-PAP but HPV becomes significantly enhanced at the third 

maneuver), the sustained phase was attenuated in the UCP-2
-/- 

mice. A statistically sig-

nificant difference was present for a certain time period during the sustained phase and 

diminished towards the end of the experiment. The PAP values after restoring normoxic 

ventilation were not altered significantly in the UCP-2
-/-

 mice compared to those of WT 

mice. In reference experiments applying continuous normoxic ventilation both mouse 

strains exhibited a small but steady PAP increase, which was found pronounced in UCP-

2
-/- 

mice, compared to the increase in WT mice. Comparable to the before mentioned 

use of short-time thromboxane infusions, in these experiments examining sustained 

vasoconstriction, a continuous U46619 infusion was intended to demonstrate the impact 

of genotypes on non-hypoxia-induced vasoconstriction. This should allow conclusions 

on the specificity of function of UCP-2 in HPV, as discussed before. During sustained 

infusion of U46619 both strains of mice developed an increased PAP which undulated 

on a certain level over time. Even though a tendency towards higher PAP responses 

could be registered in UCP-2
-/- 

mice, there was no significant difference between both 

strains. UCP-2
-/-

 mice had a particularly high intra-group variability in these U46619 
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experiments. There was a non-significant trend towards higher weight gain in WT mice 

during the experiments involving sustained hypoxia, normoxia and U46619 infusion. 

Thus in contrast to acute hypoxia, where an increase in the strength of HPV was found, 

sustained HPV was diminished in UCP-2
-/-

 mice. These effects seem specific for hy-

poxia-induced vasoconstriction as the U46619-induced vasoconstriction was found un-

changed and therefore the data argues against an unspecific effect of UCP-2 on the gen-

eral mechanisms of vasoconstriction. Taken together with the results from the acute 

hypoxia experiments, a hypothesis able to explain the impact of UCP-2 knock-out on 

acute and sustained HPV needs to imply differential regulation of these two interde-

pendent phases. There are several physiological variables and processes found particu-

larly important for sustained HPV. Some of them are potential candidates involved in 

the altered pressure response to sustained hypoxia in the UCP-2
-/-

 mice: 

- Cellular glucose metabolism 

- Calcium sensitization via the RhoA pathway (cf. chapter 1.3.1.1) 

- Modulation of vasoconstriction via changes in calcium homeostasis 

- NO signalling (cf. chapter 1.3.2.2) 

- AMP/ATP – AMPK and cADPR signalling (cf. chapter 1.3.2.2) 

4.4.1 Glucose metabolism 

It has been reported that the strength of sustained HPV depends on the availability of 

glucose and that an amplification of glucose uptake and (anaerobic) glycolysis is re-

quired to enable contraction and maintain the cellular energy state during hypoxia 
102

. 

Lowering glucose levels lead to a decreased pressure response after one hour of sus-

tained hypoxia, without affecting the acute phase or the tension during normoxic condi-

tions 
101,103

. Vice versa, exposure to high glucose levels enabled a greater vasoconstric-

tion during sustained hypoxia 
101,213

. Considered analogous, in this study the effect of 

UCP-2 knock-out mimicked a state of reduced glucose availability during sustained 

hypoxia, as it specifically attenuated the second phase of HPV. Referring to the previ-



Discussion                                                                                                      

 

60 

ously mentioned metabolic theory 
24

, it is plausible that in the absence of UCP-2 the 

shift towards anaerobic glycolysis following exposure to hypoxia might be less effec-

tive. If UCP-2 works as a negative regulator of pyruvate uptake into the mitochondrion 

the aerobic pathway is preferred in UCP-2
-/-

 mice. Subsequently, if the aerobic pathway 

becomes inhibited during hypoxia, the decreased activity of the anaerobic glycolytic 

pathway in the UCP-2
-/-

 mice could be responsible for the attenuation of sustained HPV, 

resembling a state of reduced glucose availability. An important interface between the 

two pathways of pyruvate utilization might be the concentration of NADH. Oxidized 

NAD
+
 is needed for glycerinaldehyd-3-phosphat dehydrogenase activity of glycolysis 

and is regenerated either during oxidative phosphorylation or by lactate dehydrogenase 

(LDH) activity 
109

. 

 

Fig. 4-4: Possible Model of UCP-2 acting as a negative regulator of mitochondrial pyru-

vate uptake during sustained hypoxia. ADP: adenosine diphosphate, ATP: adenosine triphos-

phate, CI – CIV: respiratory chain complexes I – IV, CV: ATP synthase, Δp: mitochondrial pro-

tonmotive force, e
-
: electron, H

+
: hydrogen ion, FA: fatty acid, G-6-P: glucose-6-phosphat, 

HPV: hypoxic pulmonary vasoconstriction, IMM: inner mitochondrial membrane, m-Ca
2+

: mi-

tochondrial calcium, m-Na
+
: mitochondrial sodium, NAD+/NADH: oxidized/reduced nicotina-

mide adenine dinucleotide, NADP+/NADPH: oxidized/reduced nicotinamide adenine dinucleo-

tide phosphate, OMM: outer mitochondrial membrane, PPP: pentose phosphate pathway, ROS: 

reactive oxygen species, TCA-cycle: tricarboxylic acid- cycle. 
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If in UCP-2
-/-

 mice pyruvate is to a greater extend directed towards the TCA cycle and 

oxidative phosphorylation, glycolysis is more inhibited due to decreased activity of 

LDH and the higher levels of NADH. Glycolysis is a central element of the cellular me-

tabolism and connected to several other pathways including the PPP which regenerates 

NADPH from NADP
+
 and is involved in ROS generation via NAD(P)H – oxidases as 

well as ROS scavenging. Elevated levels of NAD(P)H have been reported 
101,212

, but 

were mostly interpreted under the assumption of a reduced cytosolic redox state serving 

as hypoxic signal 
7
. The metabolic theory offers certain advantages in explaining the 

findings of this thesis: 1) SMC fit the described profile of cells that maintain anaerobic 

glycolysis during aerobic conditions 
24,102

. 2) Taken together with the assumption that 

contraction during sustained HPV is specifically dependent on anaerobic glycolysis 

102,213
, the theory fits well the finding of an attenuated pressure response during hypoxia, 

the unchanged response to U46619 and the former observations and theories by Leach 

et al. These authors further suggested a concept of compartmentalized energy produc-

tion and that ATP derived from glycolysis is needed to support contraction via the 

RhoA/Rho kinase pathway 
102

. Even though the growing evidence pointing towards a 

fundamental difference in regulation and energy supply between acute and sustained 

hypoxia it remains unclear how hypoxia induces the changes in the cellular metabolism 

that leads to activation of anaerobic glycolysis. It still needs to be clarified how the mi-

tochondrial metabolism changes under hypoxic conditions and what are the key en-

zymes and substrates affected by these changes. 

4.4.2 Calcium sensitization 

The RhoA pathway itself is thought to mediate or at least modulate smooth muscle con-

traction via regulation of Ca
2+

 - sensitivity and suggested to be triggered by different 

mechanisms, among others hypoxia 
53,146,187

 as well as G protein coupled ET-1 and 

thromboxane receptors 
114,129

. The connection between hypoxia and RhoA/Rho kinase 

activity is not clear but it has been suggested that ROS might be involved and enhance 

Ca
2+

 sensitivity 
37

. The new findings in this thesis, interpreted under the assumption of 

an uncoupling activity leading to an attenuation of ROS production, do not support the 

view of a major importance for ROS enhanced Rho axis mediated vascular contraction 

during sustained hypoxia. 
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4.4.3 Adenosine monophosphate activated protein kinase signalling 

The involvement of the AMPK as a potential mediator of sustained hypoxia-induced 

metabolic signals needs to be addressed as well. Inhibitors of AMPK are able to prevent 

sustained HPV exclusively 
151

 and the enzyme has been suggested to be regulated by 

increasing AMP/ATP ratio and activate cADPR dependent SR- calcium release under 

hypoxia 
51

. Furthermore the activity of this signalling pathway was found enhanced by 

ROS 
50,130,191

. According to this theory and to integrate the own findings, either the in-

tensity of the trigger signal “AMP/ATP ratio”, or one of the other steps along this path-

way need to be negatively affected by the ablation of the UCP-2 gene. To account for a 

lower vasoconstrictor response, there might be less AMP build up or less ROS genera-

tion in UCP-2
-/-

 mice during sustained hypoxia. If uncoupling is the primary role of 

UCP-2, a higher Δp in the knock-out mice might theoretically help to preserve mito-

chondrial ATP generation, but unlikely reduce ROS formation (as discussed before for 

acute HPV). UCP-2 was found to be a negative regulator of Δp, ATP level 
226

 and to 

reduce ROS production 
26

 in most of the studies. If UCP-2 acts as a metabolic switch 

inhibiting pyruvate utilization by the mitochondria, metabolism in UCP-2
-/-

 deficient 

mice might provide less fuel for the anaerobic glycolysis 
24

. Assuming that mitochon-

drial ATP production becomes inhibited during hypoxia and this may lead to an overall 

deficiency in ATP, UCP-2
-/- 

mitochondria could have a higher Δp and an increased ATP 

production. Again, ROS generation would also rather be enhanced by this mechanism. 

4.4.4 Calcium homeostasis 

Assuming a direct interdependency of calcium buffering by the mitochondria, as well as 

of [Ca
2+

]c  and the extend of PASMC contraction, the suggested function of UCP-2 as an 

essential part of the calcium uniporter is not in line with the result of a reduction in the 

strength of sustained HPV. Instead an overall lower amount of [Ca
2+

]c during sustained 

contraction is expected in the UCP-2
-/-

 mice to explain the observed difference. A direct 

correlation between Δp and calcium uptake has been described 
62

, the assumed higher 

Δp in UCP-2
-/- 

mice may serve as an explanation. Still it leaves the problem of a reverse 

effect of UCP-2 knock-out on the acute and sustained HPV unsolved. Only a complex 

mode of action for UCP-2 and mitochondrial calcium metabolism could explain these 

results. During excitation of chromaffin cells, for example, mitochondria take up cyto-
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solic calcium quickly, but also produce a prolonged low plateau phase of calcium eleva-

tion 
62,77

, a mechanism that, when translated to smooth muscle contraction, would allow 

the combination of a higher acute HPV and a lower plateau phase in UCP-2
-/-

 mice, if 

UCP-2 is at all part of a calcium uptake and efflux system. 

4.4.5 Nitric oxide generation 

NO is an important mediator of systemic and pulmonary vascular tone 
22

. Manipulations 

of the cellular NO level alter both acute and sustained vasoconstrictor responses to hy-

poxia 
202,210

. As it has been demonstrated that endothelial NO generation is Ca
2+

 de-

pendent 
98,197

, attenuation of sustained HPV in UCP-2
-/- 

mice via increase in endothelial 

[Ca
2+

]c and subsequent NO generation is a possible mechanism, if UCP-2 is a regulator 

of intracellular calcium 
180

. Hence the enhancement of the acute phase might be a direct 

effect of intracellular calcium in PASMC and the attenuation of the second phase an 

effect of increased NO production in endothelial cells. Due to the problems in reliably 

detecting UCP-2 on the protein level 
138

 it is currently not possible to predict its abun-

dance or activity in the different cell types, like endothelial cells or the PASMC, in-

volved in the different phases HPV. Solving this problem would help to better under-

stand the influence of UCP-2 on acute and sustained HPV. 

4.4.6  Secondary effects of the insulin level 

The effect of insulin on both phases of HPV has been addressed before and is of special 

interest as insulin levels are altered in UCP-2
-/-

 mice 
226

 and insulin regulates cellular 

energy balance and many other processes. It has been shown that insulin pre-incubation 

increases the pressure response in isolated PA due to sustained hypoxia between 15 and 

55 minutes, but had no effect on acute HPV or PAP after 60 minutes 
101

. Comparing the 

time dependent effects of insulin pre-incubation in this study with the own findings, as 

well as in consideration of the experimental circumstances, the data does not support the 

view that the pressure response in the experiments described here is altered through 

short-time effects of an increased insulin concentration. It is feasible but also highly 

speculative that either the higher insulin level or the lower plasma glucose levels in the 

UCP-2
-/-

 mice induced long-term adaptation processes in lung vessels, affecting glucose 
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uptake and utilization and may be responsible for the observed differences in the two 

mouse strains. 

4.4.7 Analogy between glucose sensing and oxygen sensing 

It has been demonstrated that UCP-2 is able to negatively impact insulin secretion 
226

 

and it is interesting to note certain analogies, not only between the effect of UCP-2 

knock-out on insulin secretion and the effect of UCP-2
 
knock-out on HPV characteris-

tics in this study, but also between the process of glucose sensing and insulin secretion 

in pancreatic β-cells and oxygen sensing in HPV. Insulin release from β-cells is a bi-

phasic response following glucose stimulation, the first phase peaks around 4min, is 

followed by a decline for several minutes and a subsequent increase in secretion 
173

. 

This reaction, especially the time course under experimental conditions is strikingly 

similar to the biphasic response of HPV (cf. chapter 1.1.2), as is the effect of the UCP-2 

knock-out on both phases of insulin secretion and HPV. While UCP-2 knock-out caused 

enhanced insulin levels 15 minutes after glucose stimulation in obese mice, insulin lev-

els were significantly lower at the 60 and 90 minute time-points 
226

. However, as in this 

situation, a negative feedback loop is established and as the higher insulin secretion in 

phase 1 seems to influence blood glucose levels 
226

 this could likely be responsible for 

the lower insulin level during phase 2. It is still interesting that, while it is well estab-

lished that insulin secretion is essentially based on enhancement of mitochondrial ATP 

production during high glucose conditions, subsequent closure of cellular KATP –

channels, membrane depolarization and calcium influx, other mediators seem to modu-

late the process and especially the second phase is controlled by a glucose dependent, 

non-electrogenic and yet uncharacterized amplifying pathway 
76

.  

Even though it is only an observation of an analogy it is conceivable that these two 

physiological responses to changes in essential metabolic compounds (glucose and oxy-

gen) share a common principle of signal transduction. An increased Δp in UCP-2
-/- 

mice 

could cause a rise in ATP production from mitochondria, as pointed out before, but the 

HPV sensor mechanism is unlikely based on a rise in ATP production from mitochon-

dria, closure of cellular KATP –channels and membrane depolarization during hypoxia as 

this was described for glucose sensing. Most studies investigating the influence of KATP 
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–channels using the unspecific blocker glibenclamide did not find an influence on 

PASMC membrane potential or PA tone 
46,72

. It has already been suggested that ROS 

signalling is part of glucose sensing and insulin secretion in pancreatic β-cells, as glu-

cose stimulation leads to increase in ROS generation and exogenous H2O2 was able to 

induce insulin secretion 
141

. There are both mitochondrial KATP –as well as cellular 

membrane KATP –channels but the specificity of the pharmacological effects of the cur-

rently known KATP –channel modulators is unclear. Regarding HPV both the unspecific 

inhibitors glibenclamide and the specific mitochondrial KATP inhibitor 5-

hydroxydecanoate suppressed HPV and the specific mitochondrial KATP activator sub-

stance diazoxide as well as the unselective substance pinacidil suppressed HPV and 

induced vasodilation 
132

. 

4.5 Concept of mitochondrial oxygen sensing  

The results of this study in connection with the current concepts of UCP-2 function and 

signalling in HPV are most consistent with the theory of oxygen sensing and signal 

transduction via amplification of mitochondrial ROS. It has been suggested that during 

hypoxia mitochondrial complex IV and mitochondrial respiration become inhibited and 

an elevated Δp leads to increases in ROS formation 
169

. From this point of view it can be 

speculated that UCP-2 impacts both the glucose and the oxygen sensor systems in the 

same way, because both mechanisms may rely on Δp and ROS signalling, parameters of 

the activity of the respiratory chain. During glucose sensing a high metabolic turnover 

rate leads to increasing electron supply into the respiratory chain, while the principle of 

oxygen sensing might be enabled by hyperpolarisation due to lack of the final electron 

acceptor -oxygen. 

4.6 Effect of UCP-2 on the adaptation to chronic hypoxia
 

RVSP measurement, evaluation of heart ratio and morphometric analysis of the lungs’ 

vasculature of both WT and UCP-2
-/-

 mice were performed in animals held under nor-

moxic conditions as well as in those exposed to a reduced normobaric FiO2. Under 

normoxic conditions the UCP-2
-/-

 mice displayed no statistically significant differences 

in RVSP or heart ratio compared to WT mice. However significant differences in the 

morphometry of pulmonary vessels of UCP-2
-/-

 mice compared to WT mice were found: 
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UCP-2
-/-

 mice have a lower rate of non-muscularized arteries and a higher amount of 

partially and fully-muscularized vessels. After exposure to chronic hypoxia both mouse 

strains developed a similar degree of vascular remodelling and right ventricular hyper-

trophy. Interestingly in the chronic hypoxic mice the RVSP was found to be signifi-

cantly higher in UCP-2
-/-

 mice compared to WT mice. Differences comparing the two 

mouse strains regarding their hematocrit under normoxic conditions or in the degree of 

polycythemia induced by hypoxia could not be observed. 

Both concepts, those involving protonophoric activity of UCP-2 and the metabolic the-

ory, might explain an intensified muscularization of vessels during normoxic conditions, 

as ablation of UCP-2 could promote proliferation of PASMC through mitochondrial 

hyperpolarisation and increase of ROS as demonstrated for murine embryonic fibro-

blasts 
139

. Still the results from this part of the study are not overall conclusive. The 

three main target parameters of this experiment (RVSP, heart ratio and the vascular 

morphometric analysis) should basically reflect the same process but do not show the 

expected consistency, as RVSP and heart ratio were not increased despite an increased 

vascular remodelling. A similar discrepancy was found in chronic hypoxia. 

As the RVSP was found significantly enhanced in UCP-2
-/-

 mice compared to WT mice 

under hypoxic conditions, the heart ratio is expected to be increased as well, as this 

would reflect the known physiological adaptation of right ventricular tissue to the 

higher afterload. Moreover the muscularization of pulmonary vessels determines its 

resistance and following Ohm`s law, and under the assumption of a constant cardiac 

output, also determines the RVSP. Therefore it would have been expected to find the 

source of a higher RVSP in a marked remodelling of the pulmonary vessels, but this was 

not the case. In contrast to the above reasoning an interesting study performed in rats 

exposed to chronic hypoxia gives a good explanation for separating results from vessels 

wall thickness measurement and vascular lumen. In this study the fixed pulmonary vas-

culature indeed did not show overall narrowing of the vessel lumen while the other 

signs of hypoxia-induced PH like right ventricular hypertrophy and proliferation of all 

three parts of the pulmonary vessels could be demonstrated as expected 
81

. A possible 

explanation may be that the vessels measured by morphometry do not depict the critical 

anatomical regions responsible for regulation of pulmonary resistance or that there may 
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be marked differences between the measured lumen in fixed and in vivo tissue 
81

. As not 

the difference in the vascular lumen but the differences in wall thickness between UCP-

2
-/-

 and WT mice were compared it can not be excluded that the found wall thickening is 

mainly directed outwards without lumen encroachment 
81

. A higher RVSP in the UCP-2
-

/-
 mice following chronic exposure to hypoxia, in absence of a more pronounced vascu-

lar remodelling and lacking a resulting intensified right ventricular hypertrophy, may 

also be explained by differences in another cardiovascular characteristic. One possibility 

is an increased cardiac output at a constant vascular resistance in the UCP-2
-/-

 mice dur-

ing the in vivo measurements. An influence of UCP-2 on ventricular contractility is 

conceivable as this was demonstrated for rat cardiomyocytes 
181

. Another possibility is 

that despite the similar degree of vascular muscularization in both mouse strains the 

actual resistance of the vascular bed is higher in the UCP-2
-/-

 mice. This might be due to 

an amplified basal tone of pulmonary vessels which cannot be observed in the mor-

phometric analysis of embedded lung tissue. In the experiments of acute and sustained 

hypoxia baseline PAP in a buffer- perfused mouse lung system with a fixed flow rate 

were compared, which allows conclusions on the pulmonary vascular resistance in liv-

ing tissue. No significant difference in the baseline PAP at the start of the experiments 

but significant difference in the course of PAP during three hours of normoxic ventila-

tion between UCP-2
-/- 

and WT mice could be observed. 

To explain the similar degree of right ventricular hypertrophy at different levels of 

RVSP it can be assumed that the RV of UCP-2
-/- 

mice is less prone to hypertrophy under 

hypoxia. Alternatively it is possible that the observed pressure difference between WT 

and UCP-2
-/- 

mice is not appropriate in size or time of influence to induce a significant 

alteration in heart ratio. Concerning this an interesting observation was made in 

hemoxygenase-1 (HO-1) knock-out mice, where a similar amount of pulmonary remod-

elling led to a significantly greater change in ventricular hypertrophy, which was inter-

preted as an effect of HO-1 on cardiomyocytes adaption to the increase in PAP 
219

. In 

UCP-2
-/-

 mice a higher RVSP might be established, but due to an additional effect on 

ventricular adaptation, hypertrophy could be attenuated. The experiments for RVSP 

measurement themselves were performed under normoxic conditions even in the group 

of mice previously exposed to hypoxia (cf. chapter 2.3.2), so finally re-exposure to oxy-

gen might have a distinct effect on WT and UCP-2
-/-

 mice.  
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Time dependency of the adaptation processes to chronic hypoxia might have major im-

portance for the understanding of the effects of UCP-2 on pulmonary hypertension, but 

cannot be monitored due to the study limitation offering only two reading points: ani-

mals under normoxic conditions and animals after the exposure to hypoxia. For example 

in a study investigating the effect of a partial HIF-1α deficiency on the development of 

right ventricular hypertrophy in response to chronic hypoxia, the target values were 

monitored at intervals between one week and six weeks 
220

. This enabled the observa-

tion that in HIF-1α deficient animals the response to chronic hypoxia becomes signifi-

cantly delayed but not eliminated 
220

. These differences between WT and knock-out 

animals were most pronounced in the third week, but no significant difference was seen 

after six weeks 
220

. 

However the results of this thesis demonstrate that the mechanisms of adaptation to 

chronic hypoxia, that is pulmonary vessel remodelling, PH and right ventricular hyper-

trophy, were maintained in the UCP-2
-/-

 animals. In this context the equivalent changes 

of hematocrit indicates that both mouse strains do not differ in this aspect of adaptation 

to hypoxia. This finding furthermore stands against an important direct or indirect influ-

ence of UCP-2
-/-

 on the activation of the HIF pathways that is in control of the red blood 

cell mass via secretion of erythropoietin under hypoxic conditions 
105

. 

Taken together, during normoxia the UCP-2
-/-

 strain exhibits a phenotype of increased 

muscularization of the pulmonary vasculature compared to the wild type mouse strain. 

This effect is not mirrored by an increase in hematocrit and established as a trend to-

wards higher RVSP and heart ratio. Furthermore the difference in muscularization is not 

detectable after exposure to hypoxia, a finding that can be interpreted as a loss of func-

tion of UCP-2 during hypoxia, for example via downregulation of the UCP-2 gene in 

WT mice. 

Proceeding from the results and to overcome limitations of this study, additional ex-

periments, including advanced hemodynamics, morphometry and echocardiography 

were meanwhile conducted in the same laboratory as was this thesis. The results were 

very recently published and actually indicate a slight but statistically significant higher 

RVSP and heart ratio in UCP-2
-/-

 mice compared to WT mice under normoxic condi-
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tions 
134

. Additionally it was shown that under normoxia UCP-2
-/-

 mice have an in-

creased right ventricular wall thickness and an impaired function of the right ventricle 

compared to WT animals 
134

. Furthermore PASMC isolated from UCP-2
-/-

 mice have a 

higher ΔΨm, an increased proliferation and a higher ROS production 
134

. The increased 

proliferation of PASMC from UCP-2
-/-

 mice could then again be reduced by FCCP as 

well as ROS scavengers 
134

. Therefore it was suggested that UCP-2
-/-

 mice exhibit a 

phenotype of increased pulmonary vascular remodelling during normoxia based on mi-

tochondrial hyperpolarisation and increased ROS production 
134

. 
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Summary 

Hypoxic pulmonary vasoconstriction (HPV) is a specific physiological reaction of the 

pulmonary circulation which optimizes pulmonary gas exchange. Due to selective vaso-

constriction of precapillary pulmonary vessels, systemic oxygen availability is pre-

served in case of a localized reduction of ventilation or a lack of local alveolar oxygen. 

Additional interdependent mechanisms lead to vascular remodelling during adaptation 

to chronic hypoxia. Similar changes are also part of the pathogenesis of certain severe 

pulmonary vascular diseases. Despite intensive research, the sub-cellular and molecular 

nature of the mechanisms enabling HPV and vascular remodelling due to hypoxia re-

main unclear. Uncoupling protein 2 (UCP-2) is a mitochondrial protein and a more re-

cently identified homologue of the protein thermogenin (UCP-1). Recent studies sug-

gest important interaction between UCP-2 and the signalling pathways of HPV.  

Against this background, the aim of this study was to investigate the role of UCP-2 in 

the lungs' adaptation to acute, sustained and chronic hypoxia. Therefore important char-

acteristics of HPV in wild-type (WT) and UCP-2 deficient (UCP-2
-/-

) mice were com-

pared. It could be demonstrated that while acute HPV was enhanced in UCP-2
-/-

 mice, 

sustained HPV was attenuated. This difference was found to be specific for hypoxia as a 

vasoconstrictor stimulus. The muscularization of pulmonary vessels was increased un-

der normoxic conditions in UCP-2
-/-

 mice and following exposure to chronic hypoxia 

the right ventricular systolic pressure was found elevated in UCP-2
-/-

 mice compared to 

WT mice.  

The results depict that ablation of UCP-2 divergently impacts the consecutive phases of 

HPV by a yet incompletely understood mechanism. This requires differences in the sen-

sor or mediator systems of acute and sustained HPV. UCP-2 is able to directly or indi-

rectly control the muscularization of pulmonary vessels under normoxic conditions and 

likely the pulmonary vascular tone under chronic hypoxia. 
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Zusammenfassung 

Die Hypoxische Pulmonale Vasokonstriktion (HPV) ist eine spezifische physiologische 

Reaktion des Lungenkreislaufes zur Optimierung des pulmonalen Gasaustausches. 

Durch selektive Engstellung von präkapillären Gefäßen wird die systemische Sauer-

stoffversorgung im Fall lokal begrenzter Belüftungsstörung oder einer lokalen alveolä-

ren Hypoxie aufrechterhalten. Zusätzliche, mit dieser Reaktion überlappende Mecha-

nismen führen zum Gefäßumbau während chronischen Sauerstoffmangels. Diese 

strukturellen Veränderungen sind auch Bestandteil der Pathogenese einiger schwerwie-

gender Lungengefäßerkrankungen. Trotz intensiver Forschung auf diesem Gebiet sind 

die subzellulären und molekularen Grundlagen der HPV und des Gefäßumbaues unter 

Hypoxie weiterhin unklar. Das Uncoupling Protein 2 (UCP-2) ist ein mitochondriales 

Protein, welches Homologien zu dem länger bekannten Protein Thermogenin (UCP-1) 

besitzt. Aktuelle Untersuchungen weisen auf wichtige Wechselbeziehungen zwischen 

UCP-2 und den Signalwegen der HPV hin. 

Davon ausgehend war das Ziel dieser Arbeit die Bedeutung von UCP-2 für die Reaktio-

nen des Lungenkreislaufes auf akute, anhaltende und chronische Hypoxie zu untersu-

chen. Daher wurde die Ausprägung wichtiger Merkmale der HPV von Wildtyp- (WT) 

und UCP-2 defizienten (UCP-2
-/-

) Mäusen verglichen. Es zeigte sich, dass die akute 

HPV in UCP-2
-/-

 Mäusen verstärkt abläuft, während die anhaltende HPV abgeschwächt 

ist. Dieser Unterschied war nur für eine durch Hypoxie ausgelöste Gefäßkontraktion 

nachweisbar. Unter Normoxie ist der Muskularisierungsgrad der pulmonalen Gefäße in 

den UCP-2
-/-

 Mäusen erhöht und nach Exposition gegenüber chronischer Hypoxie zeig-

ten UCP-2
-/-

, verglichen mit WT Mäusen einen erhöhten rechtsventrikulären systoli-

schen Druck. Die Ergebnisse verdeutlichen, dass die Ausschaltung von UCP-2 die auf-

einanderfolgenden Phasen der HPV über einen bisher nicht aufgeklärten Mechanismus 

in gegensätzlicher Weise beeinflusst. Voraussetzung dafür sind Unterschiede in den 

Sensor- oder Mediatorsystemen der akuten und anhaltenden HPV. UCP-2 reguliert unter 

normoxischen Bedingungen direkt oder indirekt den Muskularisierungsgrad von pul-

monalen Gefäßen und wahrscheinlich auch den pulmonalen Gefäßtonus unter chroni-

scher Hypoxie. 
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Abbreviations 

%   - percentage 

ABC   - avidin/biotinylated enzyme complex 

ADP   - adenosine diphosphate 

AMP   - adenosine monophosphate 

AMPK  - adenosine monophosphate activated protein kinase 

ANOVA  - analysis of variance model 

anti- α-SMA - anti- α- smooth muscle actin 

anti- vWF  - anti- von Willebrand factor 

ATP   - adenosine triphosphate 

BAT   - brown adipose tissue 

body wt.  - body weight 

BSA   - bovine serum albumin 

Ca
2+   

- calcium ion 

[Ca
2+

]c  - cytosolic calcium concentration 

[Ca
2+

]m  - mitochondrial calcium concentration 

CaCl2  - calcium chloride 

cADPR  - cyclic adenosine diphosphate ribose 

CCE   - capacitative calcium entry 

cf.   - confer 

cGMP  - cyclic guanosine monophosphate 

CH2O  - formaldehyde 

CICR   - calcium-induced calcium release 

cm   - centimetre 

CN
-   

- cyanide 

CO2   - carbon dioxide 

DAB   - 3,3-diaminobenzidine 

DAG   - diacylglycerol 

°C   - degree Celsius 

DNA   - deoxyribonucleic acid 

DNP   - 2,4-dinitrophenol 

Δp   - mitochondrial protonmotive force 

Δ-PAP  - change in pulmonary artery pressure 

ΔpH   - mitochondrial chemical/ osmotic proton gradient 
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ΔΨm   - mitochondrial membrane potential 

e
-
   - electron 

e.g.   - exempli gratia (for example) 

EM   - cellular membrane potential 

ER   - endoplasmic reticulum 

ET-1   - endothelin-1 

ETC   - electron transport chain 

FA   - fatty acid 

FAD   - flavin adenine dinucleotide – oxidised 

FADH  - flavin adenine dinucleotide – reduced 

FCCP  - carbonyl– cyanide-p–triflouromethoxyphenylhydrazone 

FiO2   - fraction of inspired oxygen 

g   - gram 

G-6-P  - glucose-6-phosphat 

GSH   - glutathione – reduced 

GSSG  - glutathione – oxidised 

h   - hour 

H
+   

- hydrogen ion  

H2O   - water 

H2O2   - hydrogen peroxide 

HIF-1  - hypoxia-inducible factor-1 

HO   - hemoxygenase 

HO-1   - hemoxygenase-1 

HO-2   - hemoxygenase-2 

HOX   - hypoxic group 

HPV   - hypoxic pulmonary vasoconstriction 

Ig   - immunoglobulin 

IgG   - immunoglobulin G 

IHC   - immunohistochemistry  

i.p.   - intraperitoneal 

IPAH   - idiopathic pulmonary arterial hypertension 

IP3   - inositol-1,4,5-trisphosphate 

IK   - conductance of potassium 

IMAC  - inner membrane anion channel 

i.v.   - intravenous 

IU   - international unit 
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K
+
   - potassium ion 

[K
+
]   - potassium concentration 

KCl   - potassium chloride 

kg   - kilogram 

KH2PO4  - potassium dihydrogen phosphate 

Kv channel  - voltage-gated potassium
 
channel 

l   - litre 

LV   - left ventricle 

LVP   - left ventricular pressure 

μ   - micro 

M   - molar 

MCU   - mitochondrial calcium uniporter 

μg   - microgram 

mg   - milligram 

MgCl2  - magnesium chloride 

min   - minute 

μl   - microlitre 

ml    - millilitre 

MLC   - myosin light chain 

mRNA  - messenger- ribonucleic acid 

μm   - micrometre 

μM   - micromolar 

mmHg  - millimetre of mercury 

M.O.M  - mouse on mouse 

n   - number of experiments 

N2   - molecular nitrogen 

Na
+
   - sodium ion 

NaCl   - sodium chloride 

NAD   - nicotinamide adenine dinucleotide – oxidised 

NADH  - nicotinamide adenine dinucleotide – reduced 

NADP  - nicotinamide adenine dinucleotide phosphate – oxidised 

NADPH  - nicotinamide adenine dinucleotide phosphate – reduced 

ng   - nanogram 

NaHCO3  - sodium bicarbonate 

Na2HPO4  - disodium hydrogen phosphate 

NaH2PO4  - sodium dihydrogen phosphate 
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NaN3  - sodium azide 

NO   - nitric oxide 

NOS   - nitric oxide synthase 

NOX   - normoxic group 

NSCC  - non-specific cation channel 

O2   - oxygen 

O2
-   

- superoxide 

PA   - pulmonary artery 

PAH   - pulmonary arterial hypertension 

PAP    - pulmonary artery pressure 

PASMC  - pulmonary artery smooth muscle cell 

PaO2   - alveolar partial pressure of oxygen 

PBS   - phosphate buffered saline 

PC   - personal computer 

PEEP   - positive end-expiratory pressure 

pH - negative decadal logarithm of hydrogen-ion activity in solution 

PH   - pulmonary hypertension 

PLC   - phospholipase C 

PPP   - pentose phosphate pathway 

PvO2   - mixed venous oxygen tension 

Q   - ubiquinone 

Q•   - ubisemiquinone 

QH2   - ubiquinol 

Qo   - quinol oxidase site of respiratory chain complex III 

RA   - right atrium 

ROCC  - receptor operated calcium channel 

ROS   - reactive oxygen species 

RV   - right ventricle 

RVP   - right ventricular pressure 

RVSP  - right ventricular systolic pressure 

RYR   - ryanodine receptor 

s   - second 

SEM   - standard error of the mean 

SMA   - smooth muscle actin 

SMC   - smooth muscle cell 

SOCC  - store operated calcium channel 
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SOCR  - store operated calcium release 

SR   - sarcoplasmic reticulum 

TRPC  - transient receptor potential channel 

TRPC6
-/-  

- transient receptor potential channel 6 deficient 

TCA - tricarboxylic acid 

U46619  - a thromboxane A2 mimetic 

UCP-1   - uncoupling protein 1 or thermogenin 

UCP-2   - uncoupling protein 2 

UCP-2
-/-

  - uncoupling protein 2 deficient 

VDAC  - voltage-dependent anion channel 

VEGF  - vascular endothelial growth factor 

VOCC  - voltage-operated calcium channel 

VOCE  - voltage-operated calcium entry 

vol.   - volume 

VP   - ventilation pressure 

V/Q   - ventilation to perfusion 

vWF   - von-Willebrand factor 

WF   - weight force 

WT   - wild type 
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