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Summary 
  
Bacteria from rhizosphere samples of Hordeum secalinum and Plantago winteri from a natural salt 

meadow in Hessen, Germany, a natural undisturbed ecosystem, were isolated with emphasis on 

diazotrophs (NFB &LG agar), phosphate- and phytate-mobilising bacteria (CP & IHP agar), ACC 

(1-aminocyclopropane-1-carboxylate, a precursor of ethylene) deaminase-active bacteria (DF agar) 

as well as IAA (indole-3-acetic-acid)-producing bacteria (LBT agar) as source of potential 

halotolerant potential growth-promoting rhizospheric bacteria. Twenty-two isolates, out of 100, 

mostly belonging to diazotrophic, ACC deaminase producer and P-mobilising bacteria, were 

selected and their potential plant growth-promoting activities determined in pure culture by 

evaluating their abilities to grow on specific media, measuring specific metabolic functions. The 

effect of these 22 isolates on barley plants (Hordeum vulgare L.) was evaluated in non-sterile soil 

under salt stress in greenhouse conditions. Results surprisingly showed that the best performing 

isolates in pure culture were not those ones displaying the best plant growth-promoting activity in 

plant growth assays. The partial 16S rRNA gene sequence of the bacteria showed that they belong 

to the Proteobacteria, Actinobacteria, and Firmicutes. Among the isolates two new species 

belonging to genus Rheinheimera, R. hassiensis E48T and R. muenzenbergensis E49T, a new species 

of genus Cellvibrio, C. diazotrophicus E50T, and new genus and species Hartmannibacter 

diazotrophicus E19T were proposed and accepted. Strain E19T is able to grow on agar containing 

not water-soluble phosphate sources (Ca3(PO4)2, AlPO4 FePO4 and Phytate), DF media agar 

supplemented with ACC, nitrogen free media, reduce acetylene, and it has phosphatase and ACC-

deaminase activities. In addition, reduction of ethylene emission measured on barley plantlets 

under salt stress showed positive stress relieving effect of E19T due to its ACC deaminase activity. 

Plant growth-promoting activity of the new taxonomically proposed strains were first tested under 

gnotobiotic conditions in a newly designed liquid plant growth system, and in Mitscherlich pots 

using subsoil under salt stress with unsuccessful results under such experimental conditions. 

However, experiments using non-sterile soil under salt stress allowed to evidence the plant growth-

promotion capability of H. diazotrophicus E19T on barley plants (Hordeum vulgare L.) by 

significantly increasing root and shoot dry weights, water content in the root system, root-to-shoot 

ratio and decreasing root Na+ concentration and root surface sodium uptake. The capability of 

strain E19T to colonize barley roots under salt stress conditions was revealed with a specifically 

designed fluorescence in situ hybridization (FISH) probe. 

Draft genome sequence of H. diazotrophicus E19T is used at the moment in order to identify the 

presence of genes contributing directly or indirectly to enable PGPR effects on plants aiming to 

better understand the mode of interaction of the bacterium and plants, and to furthermore study the 

phylogenetic relationship with closest genome sequenced related organisms. 
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1. Introduction 

The rhizosphere is defined as a region or volume of soil influenced by the plant root 

system activity. Plants rhizosphere usually extends a few mm from the root system 

(Bringhurst et al., 2001), represents a versatile and dynamic ecological environment of 

plant-microbe interactions influencing plant nutrition (Mayak et al., 2004). Interaction of 

rhizobacteria and growing plants can be neutral, negative or positive. Neutral interactions 

are related to commensals bacteria exhibiting no visible effect on growth or physiology of 

the host (Beattie, 2006). Negative interactions are related to phytopathogenic rhizobacteria 

and their metabolic products while positive interactions are related to enhance plant growth 

(Zahir et al., 2003). 

1.1 Plant Growth-Promoting Rhizobacteria 

The term Plant Growth-Promoting Rhizobacteria (PGPR) is used to define bacteria that 

colonize the rhizosphere and stimulate plant growth. Since Kloepper & Schroth (1981) 

introduced the termed PGPR up to day there are more than 4400 search results related to 

this term in public databases available at web of science v 5.15 

(https://webofknowledge.com). 2060 of these results have been published in the last 5 

years revealing the increasing interest of the scientific community in this research area (Fig 

1). 

  

  A: Published papers per year  B: Citations per year 

Fig 1. Number of articles per year in Web of Science (v 5.15) for key words ‘plant-growth promoting 

bacteria’, ‘plant-growth promoting bacterium’, ‘ PGPR’, ‘PGPA’ and ‘PGPRs’ obtained from web of science 

date: A) Published items in each year, B) Citation in each year. 
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PGPR can/are be considered as an indispensable part of rhizosphere biota that when grown 

in association with the host plants can stimulate the growth of the host. PGPR strains may 

have at least three of the following criteria: aggressive colonization, plant growth 

stimulation or biocontrol properties (Weller et al., 2002; Vessey, 2003). PGPR have also 

been classified based on their degree of association with plant root cells and their 

beneficial roles. Classification based on their degree of association with plant root cells 

divides PGPR in extracellular plant growth promoting rhizobacteria (ePGPR) and 

intracellular plant growth promoting rhizobacteria (iPGPR). ePGPR are found as part of 

the rhizosphere, rhizoplane or endophytic bacteria located at the spaces between root 

cortex cells. iPGPR are found as intra cellular endophytic bacteria that are located inside 

specialized nodular structure of plant root cells (Gray & Smith, 2005). PGPR enhance 

plant growth by direct mechanisms such as nitrogen fixation, nutrient solubilization and 

production of plant growth regulators and indirect mechanisms such as competitive 

exclusion of pathogens and stimulation of other beneficial organisms for the plant (Zahir et 

al., 2003), moreover they have been classified based on the beneficial roles either as 

biofertilizers, phytostimulators or biopesticides (Martínez-Viveros et al., 2010).  

2. PGPR traits 

It is widely reported that the application of PGPR influences plant growth by different 

mechanisms such as fixation of atmospheric nitrogen, solubilization and mobilization of 

phosphorus, sequestration of iron by siderophores, production of phytohormones, 1-

aminocyclo-propane-1-carboxylate (ACC) deaminase, antibiotics, hydrogen cyanide, 

organic molecules such as vitamins, amino acids and volatile compounds and synthesis of 

hydrolytic enzymes (Babalola, 2010). 

2.1 Nitrogen fixation 

Nitrogen fixation by diazotrophic bacteria is the process of conversion of atmospheric N2 

to NH3 to be assimilated by plants to synthesize nitrogenous biomolecules. Diazotrophic 

bacteria carry out nitrogen fixation by a highly conserved enzyme complex called 

nitrogenase. This enzyme complex consists of two components, Fe protein (dinitrogenase 

reductase) and FeMo protein (dinitrogenase) and is produced and regulated by the nif 

genes (Drummond et al., 1996) or alternative nitrogenases that replace Mo with V or Mo 
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with Fe regulated by the vnfH and anfH gene respectively (Zehr et al., 2003). Among these 

genes the nifH gene, that encodes for the dinitrogenase reductase, is a useful molecule in 

order to detect bacterial diazotrophic diversity (Raymond et al., 2004).  

Diazotrophic bacteria in plant microbe interaction could be grouped as symbiotic fixers, 

rhizosphere-associated or endophytic nitrogen fixers according to their biological nitrogen 

fixation (BNF) systems. As symbiotic nitrogen fixers, occurring in nodules, utilize organic 

acids biosynthesized by plants as energy source to fix nitrogen. Rhizosphere-associated 

bacteria use carbon compounds from exudates for N2-fixation, and endophytic nitrogen 

fixers use carbon sources available  within the plant tissues and/or from degradation of 

plant compounds (Terakado-Tonooka et al., 2013) (Sessitsch et al., 2012). 

2.2 Mineral solubilization  

Solubilization of unavailable forms of minerals, used by plants as nutrients, it is another 

desirable trait of PGPR because they influence the maintenance of soil fertility by 

increasing its availability. Inoculation of rhizobacteria increased uptake of nutrient 

elements like Ca, K, Fe, Cu, Mn and Zn by plants by decreasing the soil pH-value in the 

rhizosphere, enzymes and/or siderophores (Richardson et al., 2009). 

Phosphorus (P) is an essential growth limiting compound for plant growth involved in 

several important metabolic processes (Vance, 2001). P is generally present at levels of 

0.04-0.12 % as organic and inorganic insoluble forms, and its soluble form normally is 

present in very low levels of 0.1 % or less (Zou et al., 1992). Soluble P concentration in 

soil is a growth-limiting factor due to the fact that plants absorb P form as mono basic 

(H2PO4-) and di basic (HPO42-) ions (Glass, 1989). Phosphate solubilization is an important 

trait for PGPR and strains holding this activity are considered as phosphate-solubilizing 

bacteria (PSBs). PSBs act by converting insoluble inorganic forms of P such as tricalcium 

phosphate, dicalcium phosphate, hydroxyl apatite and rock phosphate (Goldstein, 1986; 

Rodríguez et al., 2006) to soluble forms by producing organic anions or protons (Nahas, 

1996). Organically bound phosphorus content in upper layer of arable soils can range 

considerably between 20 to 80 % total P content, and approximately 40 % corresponds to 

phytate fraction (Dalal, 1977). Mineralization of most organic phosphorus is mediated 
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enzymatically by nonspecific phosphatases, phytases, phosphonatases and C–P lyases 

produced from plants or microorganisms (Tarafdar & Claassen, 1988).  

Siderophores are low molecular weight molecules that solubilize and sequester iron(III) 

from the soil to make it available for microorganisms and plant cells (Neilands, 1995). 

Although iron(III) oxides and hydroxyls are present in sufficient amounts in arable soils it 

is due to their extreme low solubility in water that plants and microorganisms suffer from 

iron limitation. Siderophores secreted by microorganisms can be classified in four main 

types: catecholates, phenolates, hydroxamates and carboxylates (Saghir et al., 2009). 

2.3 Plant growth regulators 

Plant growth regulators or phytohormones are organic compounds produced by plants or 

microorganisms at low concentration able to regulate multiple physiological processes 

including root initiation, elongation architecture and root hair formation which all 

influence physiological processes in plants. Plant hormones are grouped in abscisic acid 

(ABA), auxins, cytokinins (CKs), ethylene, gibberellins (GAs), jasmonic acid (JA) and 

salicylic acid (SA) compounds. Although, the activity of each plant regulator is known 

they interact in complex networks involving feedback and cross-talk regulation, being a 

subject of present study (Woodward and Bartel, 2005; Kochar et al., 2013). PGPR are able 

to produce and affect plant growth regulator levels in plants benefiting the plant growth by 

affecting root and shoot hormone concentrations, mediate shoot hormone status or alter 

root-to-shoot long-distance signaling (Dodd, 2005); nevertheless it is important to take in 

account that not all PGPR strains able to produce plant growth hormones in vitro alter 

plant growth in vivo.   

 2.3.1 Ethylene and ACC deaminase  

Ethylene (ET) is a gaseous hormone that regulates processes in plants such as seedling 

emergence, leaf and flower senescence, ripening, organ abscission, and also upregulates 

plant response to biotic and abiotic stresses such as pathogen attack, heat and cold stress, 

water logging, drought, excess of heavy metals, high soil salinity, and soil compaction 

(Morgan and Drew, 1997; Dodd et al., 2010). ET synthesis is described to be produced in a 

biphasic model presenting two peaks of production in plants (Van Loon et al. 2006; Pierik 

et al., 2006; Glick et al., 2007). First ET peak is typically smaller that the second peak and 
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it is believed to be responsible for the transcription of genes involved in plant 

defensive/protective proteins (Robison et al., 2001). Second ET peak occurs as response to 

stress, normally several days after the initial ethylene peak, and it is considered to cause 

detrimental effects by initiate processes such as senescence, chlorosis and leaf abscission 

in plants. Therefore, the lowering action of ET in the second peak will benefit plant health 

(Glick, 2014). A sustained high level of ethylene, due to stress, would inhibit root 

elongation leading to an abnormal root growth, which would affect plant growth and 

development (Babalola, 2010).  

 

The enzyme 1-aminocyclo-propane-1-carboxylate (ACC) deaminase cleaves ACC, an 

immediate precursor of ethylene in plants, to form ammonia and α-ketobutyrate (Fig. 2). 

ACC is produced and exuded by plant tissues and can be metabolized by ACC deaminase-

containing microbe (Glick et al., 1998). When stress occurs, ACC is produced and exuded 

from seeds or roots providing then conditions for ACC deaminase-containing PGPB in the 

rhizosphere to degrade it. Since ACC is used by bacteria more ACC is exuded from the 

plant tissue in order to keep an internal-external equilibrium resulting in a reduction of the 

ACC amount inside the plant cells for ET synthesis (Fig.2). Therefore, the inhibitory effect 

of ET on plants is reduced by bacterial influence allowing plants to grow and develop 

longer roots and shoots by ACC deaminase bacterial activity that can reduce by 50 to 90% 

the second ethylene peak in plants (Glick et al., 1998). 

 

Fig.2: Model of how PGPB can produce ACC deaminase and synthesize IAA facilitating plant growth. ACC;  
1-aminocyclo-propane-1-carboxylate; SAM, S-adenosyl methionine; IAA, Indol acetic acid (Glick, 2014). 
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2.4. Other PGPR traits 

PGPR have been reported also to promote plant growth by producing volatile organic 

compounds (VOCs) able to elicite plant growth by signal molecules mediating plant-

microbe interaction when produced at sufficient concentrations (Ryu et al., 2005; Santoro 

et al., 2011). Some PGPR are able to produce water-soluble B group vitamins niacin, 

pantothenic acid, thiamine, riboflavine and biotin that can influence plant cells and also 

beneficial rhizospheric bacteria (Revillas et al., 2000; Lugtenberg et al., 2001). PGPR 

strains are known to influence the reduction of phytopathogens and deleterious 

rhizobacteria by their production of antibiotics, hydrogen cyanides and hydrolytic enzymes 

(Bhattacharyya & Jha, 2012):  

3. Salinity 
 

Salinity is one of the most severe environmental stresses on plants (Tester and Davenport, 

2003; Munns and Tester, 2008). It affects about 20 % of all irrigated agricultural fields and 

over 7 % of the world land surface (Szabolcs, 1994) and causes economical global annual 

costs by loss in crop production in the order of US$ 27.3 billion (Qadir et al., 2014). 

Moreover, climate change scenarios showed the increasing risk of salinization at different 

latitudes, and therefore a special effort will be required for maintaining crop production 

under salt stress (Turral et al., 2011). 

3.1 Soil salinization 

The soil salinization is primarily influenced by natural causes such as salt water intrusion, 

deposition of salt by oceanic salt carried in wind and rain and mineral weathering (Rozema 

& Flowers, 2008). Irrigation of crops with salt waters, inorganic fertilizers and soil 

amendments are anthropogenic factors that also lead to soil salinization (Ghassemi et al., 

1995; Kotuby-Amacher et al., 2000). Soil salinity refers to the accumulation of water 

soluble mineral salts in soil including cations (Na+, Ca2+, Mg2+, and K+), and anions (Cl-, 

SO42-, HCO3-, CO32ˉ, and NO3-). It is usually reported in mg l-1 (ppm), mmol l-1 or mmol 

charge l-1 (meq l-1) in solution extracted from a soil saturated with water (Tanji, 2002).  

Salinity is measured as electrical conductivity (EC) which is the measure of the amount of 

electrical current that a material can carry. EC is used to express the magnitude of the total 
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dissolved electrolytes in soils (Abrol et al., 1998), generally reported as deci Siemens m-1 

(dS m-1, equivalent to mmhos cm-1) or its transformed units milli Siemens cm-1 (mS cm-1) 

(Tanji, 2002). Soils are classified according to its EC value in classes in non-saline 0-2, 

slightly saline 2-4, moderately saline 4-8, strongly saline 8-16, very strongly saline > 16 

conductivity of the saturation extract (dS m-1) (Abrol et al., 1998). 

3.2 Salinity causes different effects in plants   

Salinity causes nutritional imbalance in plant growth, development and yield mainly 

because salt affects nutrient availability, competitive uptake and mineral transport inducing 

nutritional disorders (Grattan & Grieve, 1999). Salinity reduces N uptake/accumulation 

(Feigin, 1985), reduction of phosphate uptake/accumulation by reducing phosphate 

availability (Sharpley et al., 1992), reducing K+ net uptake and its translocation by 

lowering K+ content in shoot and increasing K+ in root (Botella et al., 1997). 

Limitation of plant growth by salinity is primarily due to reduction of water uptake from 

soil by osmotic effects. Damage is mainly caused by excess of Na+ and Cl- ions and 

nutrient deficiencies caused by Na+ competition with other ions (K+, NO3− and H2PO4-), 

needed for plant nutrition (Tester & Davenport, 2003). Toxicity by Na+ affects plants more 

than toxicity caused by Cl- because Na+ causes cell swelling and several disorders at 

enzyme activation and protein synthesis processes resulting in reduced energy production 

and other physiological changes (Tester and Davenport, 2003; Larcher, 1980). Excess of 

Cl- in plants accumulates in shoots inhibiting photosynthesis mainly by inhibition of nitrate 

reductase activity (Xu et al., 2000; Flowers, 1988). Effects of salinity on plants lead to 

anatomical and morphological changes, leaf discoloration, inhibition of seed germination, 

seedling growth, flowering and fruit set (Tester and Davenport, 2003; Sairam and Tyagi, 

2004). In order to maintain water homeostasis and normal physiological functions 

produced by salinity plants overproduce compatible organic solutes such as proline and 

glycine betaine (Serraj & Sinclair, 2005). Proline maintains higher leaf water potential and 

protects plants against oxidative stress by adjusting osmotic pressure and stabilizing 

membranes, constitutive proteins and enzymes, scavenging free radicals, and buffering 

cellular redox potential during salt stress (Ashraf and Foolad, 2007; Peng et al., 2008; 

Kohler et al., 2009). The time frame of salt effects on plants have been described by 

Munns and Sharp (1993) and it is proposed as a two-phase growth response concept. First 
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phase or osmotic phase is of short duration and reduce growth by the water stress due to 

the root surrounding salt. The second or ion-specific phase takes time to develop and it is 

caused by the excessive levels of salt accumulation in cell vacuoles of transpiring leaves 

leading to the reduction of growth of younger leaves by the lack of carbohydrates supply to 

growing cells (Munns, 2002).  

Plants have different mechanisms to handle salinity tolerance that are grouped in three 

different categories. As a primarily mechanisms in order to reduce osmotic stress plants 

decrease leaf area and stomatal conductance that benefits the plants only if there is 

sufficient soil water available. The second mechanism consists of Na+ exclusion by roots in 

order to avoid its accumulation to toxic concentration in leaves. The third mechanism is the 

tissue tolerance that consists in accumulation of Na+, or in some species such as barley also 

Cl-, by compartmentalization of these ions at cellular and intracellular level in order to 

avoid toxic concentration at cytoplasmatic level. This process occurs especially in leaves 
mesophylic cells and leads to toxic levels of Na+ with time (Munns & Tester, 2008). 

3.3 Crops and salt stress 

Most of the cultivated plants declined yields even at values that are lower than the defined 

value for salinity (EC= 4 dS m-1) (Maas, 1990). Tolerance of some crops to saline 

conditions is resumed in Table.1. Salt-sensitive plants when exposure for few days to salt 

will reduce the plant growth rate with no many visible changes. Extended exposure effects 

of few weeks will become evident by the yellowing or death of older leaves and a more 

evident reduction of growth. On the other hand under moderate salinity salt-tolerant plants 

are able to grow for several months, although flowering or decreased production of florets 

may result (Munns, 2002).  

 
Table.1. Tolerance threshold values of some crops to saline conditions. Salinity expressed as electrical 

conductivity of the saturation extract (Brady & Weil, 2008) 

Sensitive 

(0-4 dS m-1) 

Moderately tolerance 

(4-6 dS m-1) 

Tolerant 

(6-8 dS m-1) 

Highly tolerance 

(8-12 dS m-1) 
Almond Corn Fig Barley 

Bean Grain Sorghum Oats Cotton 
Clover Lettuce Pomegranate Olive 
Onion Soyben Sunflower Rye 
Potato Tomato Wheat Wheatgrass 
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Barley (Hordeum vulgare L.) is one of the world´s most extensively cultivated crops and 

being, according to FAO, the European Union its highest producer (Table.2). Barley is the 

most salt tolerant cereal, reported to die only after extended periods at salt concentrations 

higher than 250 mM NaCl (equivalent to 50 % seawater) (Munns et al., 2006). Due to its 

salt tolerance barley crops may be suitable to be used in salt remediation of salt impacted 

soils (Chang et al., 2014). 

Table.2. Last year barley crop production in millions of tons data from FAOSTAT (FAOSTAT, 
http://faostat.fao.org/): 

Countries 2009 2010 2011 2012 2013 
European Union + (Total) 62.2 53.3 51.9 55 59.8 
Russian Federation 17.8 8.3 16.9 13.9 15.3 
Northern America + (Total) 14.4 11.5 11.1 12.8 14.9 
Germany 12.2 10.4 8.7 10.4 10.3 
France 12.8 10.1 8.7 11.3 10.3 
Canada 9.5 7.6 7.7 8.0 10.2 
Spain 7.3 8.1 8.3 5.9 10 
Australia & New Zealand + (Total) 8.3 7.6 8.3 8.6 7.8 

 
4. PGPR under salt stress 

4.1 Bacterial osmotolerance 

Microorganisms have developed different adaptations to counteract the outflow of water 

which enables them to also grow in high osmolarity environments that cause a rapid lost of 

cell water along the osmotic gradient causing reduction in turgor and dehydration of the 

cytoplasm. When bacterial cells are exposed to high osmolarity the cytoplasm is exposed 

to high ionic strength, in order to maintain osmotic equilibrium accumulation of K+ could 

serve as a second messenger activating additional osmotic responses. As response, cells 

upregulate genes involved in adaptive, protective, metabolic, and amino acids transport 

processes and production of organic compatible solutes in order to equilibrate the 

intracellular potassium concentration. (Miller and Wood, 1996; Shabala, 2009). Osmolytes 

produced by bacteria as organic compatible solutes can be sugars and derivates, polyols, α- 

and β-amino acids and their derivatives, betaines and/or ectoines (Paul and Nair, 2008; 

Lamosa et al., 1998; Roesser and Müller, 2001). Compatible solutes function as 

osmoprotectants and also supporting protein stability, folding and function in vitro and in 

vivo (Street et al., 2006). Other mechanisms to survive under salt stress is the production of 
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exopolysaccharides to enhance water retention to protect cells from osmotic stress and 

fluctuations in water potential (Sandhya et al., 2010) changes in the fatty acid composition 

of the bacterial membrane (Klein et al., 1999) and/or shortening peptidoglycan inter-

peptide bridges (Piuri et al., 2005). 

4.2 Plant promotion of PGPR in crops 

The use of PGPR is a promising agricultural practice to help less salt tolerant horticultural 

crops to maintain an acceptable level of productivity under higher salt concentrations 

(Nadeem et al., 2012; Singh et al., 2011). PGPR have been related to influence plant health 

under salt stress on several parameters such as increasing biomass, root system surface, 

improving germination rate, enhancement of chlorophyll content and resistance to diseases. 

Among PGPR mechanisms reported to influence plant growth under salt stress are 

enhancement of plant nutrient uptake, production of ACC deaminase, production of 

phytohormones, increase K+ ion concentration, induce systemic tolerance, ion homeostasis 

mediation, induced antioxidative enzymes, contributing to osmolyte accumulation and 

production of bacterial extracellular polymeric substance (Paul and Lade, 2014; Ryu et al., 

2005; Nadeem et al., 2012; Yang et al., 2009). 

4.2.1 Enhancement of plant nutrient uptake 

PGPR improve nitrogen and phosphorus uptake, solubilizing inorganic phosphate and 

mineralizing organic phosphate (Diby et al., 2005; Ogut et al., 2010, Upadhyay et al., 

2011). PGPR inoculation influencing positively plant biomass, increase of N, P, K+, and 

Ca2+ absorption and decrease of Na+ absortion have been reported in cotton by Klebsiella 

oxytoca Rs-5 and Pseudomonas putida Rs-198 under salt stress (Yue et al., 2007; Yao et 

al., 2010).  

4.2.2 Plant growth regulators  

Beside the effect of PGPR lowering the ethylene concentration and thereby stress signal 

for the plant Glick (2014) suggested a cross-talk between IAA and ACC deaminase where 

by lowering plant ethylene levels, ACC deaminase facilitates the stimulation of plant 

growth by IAA (Fig. 2). There are several reports of ethylene emission reduction by 

inoculation ACC deaminase producing bacteria e.g. Achromobacter piechaudii on tomato 
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plants (Mayak et al., 2004), Achromobacter xylosoxidans on Madagascar periwinkle 

(Catharanthus roseus) (Karthikeyan et al., 2012) and Bacillus licheniformis, 

Brevibacterium iodinum and Zhihengliuella alba on red pepper seedlings (Siddikee et al., 

2011). Also a Streptomyces strain reported to promote growth in wheat under salt stress by 

production of indole acetic acid and auxin, phosphate solubilization and siderophore 

production even though no ACC deaminase is evaluated (Sadeghi et al., 2012). 

Bacterially-mediated plant tolerance to salt stress has been reviewed and includes diverse 

functional and taxonomical groups of bacteria (Dimkpa et al., 2009). Diversity of 

rhizobacteria mediated plant tolerance to salinity stress involving ACC deaminase activity 

in different plant species is reviewed in Table.3. ACC deaminase production has been 

reported in strains belonging to Proteobacteria, Actinobacteria, Firmicutes and 

‘Bacteroidetes’ (Glick, 2014; Nadeem et al., 2010). 

4.2.3 Induced systemic tolerance 

Yang et al. (2009) proposed the term induced systemic tolerance (IST) to the effect of 

VOCs, produced by PGPR, that induce physical and chemical changes in plants enhancing 

tolerance to abiotic stresses, including salt stress (Farag et al., 2013). Zhang et al., (2008) 

reported that plant growth promotion triggered by VOCs from Bacillus subtilis GB03 

confers salt tolerance in Arabidopsis thaliana reducing Na+ levels and recirculation of Na+ 

in the whole plant under salt condition by accumulation of tissue specific high affinity 

potassium transporter HKT1, that mediate Na+ transport, expression down regulated in 

roots and upregulated in shoots. Furthermore, PGPR inoculation increased iron uptake, 

redistributed whole-plant auxin, increased leaf cell expansion, and  influenced root 

branching (Zhang et al., 2007; Zhang et al., 2008). Similar effects have been also studied in 

white clover and wheat (Han et al., 2014; Zhang et al., 2014). 

4.2.4 Ion homeostasis mediation 

As an effect of salinity the availability, transport and mobility of Ca2+ and K+ are affected 

in growing parts of plants. Potassium can act as a cationic solute responsible for stomatal 

movements as a response to changes in water status on bulk leaf (Caravaca et al., 2004) 

and Ca2+ regulates early signaling processes at the onset of salt stress. PGPR can influence 

in host physiology and in the foliar reduction of Na+ and Cl− ions accumulation by 
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increasing K+ and Ca2+. Wheat plants separately inoculated with Pseudomonas putida, 

Enterobacter cloacae, Serratia ficaria and Pseudomonas fluorescens have been reported to 

increase the K+/Na+ ratio by increasing K+ effectively influencing salinity tolerance 

(Nadeem et al., 2013). 

Table.3. Rhizobacteria reported in literature as PGPR under salt stress involving ACC deaminase activity in 

different plant species.  

Rhizobacteria Plant Reference 
Achromobacter xylosoxidans Catharanthus roseus Karthikeyan et al. (2012) 
Achromobacter piechaudii Tomato (Lycopersicon esculentum) Mayak et al., (2004) 
Acinetobacter sp. Barley (Hordeum vulgare), Oats (Avena 

sativa) 
Chang et al. (2014) 

Alcaligenes faecalis Rice (Oryza sativa) Bal et al. (2013) 
Azospirillum sp. Durum wheat (Triticum durum) Nabti et al. (2010) 
Bacillus pumilus Rice (O. sativa) Jha et al. (2011) 
Bacillus pumilus Rice (O. sativa) Bal et al. (2013) 
Bacillus sp. Avocado (Persea gratissima) Nadeem et al. (2012) 
Bacillus licheniformis Red pepper seedlings (Capsicum 

annuum) 
Siddikee et al. (2011) 

Bacillus aryabhattai Canola (Brassica campestris) Siddikee et al. (2010) 
Brevibacterium casei Pea nut (Arachis. hypogaea) Shukla et al. (2011) 
Brachybacterium saurashtrense Pea nut (A. hypogaea) Shukla et al. (2011) 
Brevibacterium iodinum Red pepper seedlings (Capsicum 

annuum) 
Siddikee et al. (2011) 

Brevibacterium epidermidis Canola (Br. campestris) Siddikee et al. (2010) 
Burkholderia sp. Tomato (L. esculentum) Onofre-Lemus et al. (2009) 
Burkholderia caryophylli Wheat (T. aestivum) Shaharoona et al. (2007) 
Haererohalobacter sp. Pea nut (A. hypogaea) Shukla et al. (2011) 
Hartmanibacter diazotrophicus  
(from this study) 

Barley (H. vulgare) Suarez et al. (2015) 

Klebsiella oxytoca Cotton (G. hirsutum) Yue et al. (2007) 
Enterobacter sp. Tomato (L. esculentum) Kim et al. (2014) 
Enterobacter cloacae  Wheat (T. aestivum) Nadeem et al. (2013) 
Enterobacter aerogenes Maize (Z. mays) Nadeem et al. (2007) 
Methylobacterium fujisawaense Canola (Br. campestris) Madhaiyan et al. (2006) 
Micrococcus yunnanensis Canola (Br. campestris) Siddikee et al. (2010) 
Ochrobactrum sp. Rice (O. sativa) Bal et al. (2013) 
Pseudomonas sp.  Barley (H. vulgare), Oats (Avena 

sativa) 
Chang et al. (2014) 

Pseudomonas putida, P. fluorescens Wheat (Triticum aestivum) Nadeem et al. (2013) 
Pseudomonas sp. Mung bean (Vigna radiata L.) Ahmad et al. (2013) 
Pseudomonas sp.  Avocado (Persea gratissima) Nadeem et al. (2012) 
Pseudomonas pseudoalcaligenes Rice (O. sativa) Jha et al. (2011) 
Pseudomonas fluorescens, P. 
aeruginosa, P. stutzeri 

Tomato (L. esculentum) Tank and Saraf, (2010) 

Pseudomonas putida, P. fluorescens Wheat (T. aestivum) Nadeem et al. (2010) 
Pseudomonas spp. Wheat (T. aestivum) Shaharoona et al. (2007) 
Pseudomonas syringae, P. fluorescens Maize (Z. mays) Nadeem et al. (2007) 
Pseudomonas fluorescens Groundnut (Arachis hypogaea) Saravanakumar and Samiyappan, 

(2007) 
Pseudomonas putida  Canola (Brassica campestris) Cheng et al. (2007) 
Rhizobium sp. Mung bean (Vigna radiata L.) Ahmad et al. (2013) 
Serratia ficaria  Wheat (T. aestivum) Nadeem et al. (2013) 
Serratia sp. Wheat (T. aestivum) Zahir et al. (2009) 
Streptomyces sp. Tomato (L. esculentum) Palaniyandi et al. (2014) 
Variovorax sp. Avocado (Persea gratissima) Nadeem et al. (2012) 
Zhihengliuela alba Red pepper seedlings (Capsicum 

annuum) 
Siddikee et al. (2011) 
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Inoculation with Pseudomonas sp. on eggplant (Solanum melongena L.) significantly 

increased K+ and Ca2+, and decreased Na+ shoot concentrations under saline conditions but 

not under non stress conditions (Fu et al., 2010). Similar results in cotton by inoculation of 

Pseudomonas putida Rs-198 increased K+ and Ca2+, and decreased Na+ in leaves and roots 

(Yao et al., 2010). 

4.2.5 Induced antioxidant enzymes  

Salinity induces in plants the formation of reactive oxygen species (ROS) due to a salt 

shock that brings about damage to lipids, protein and nucleic acids and eventually death 

(del Rio et al., 2003). As a response to salt stress antioxidant enzymes such as catalase, 

guaicol peroxidase and superoxide dismutase are increased in plants to improve salt 

tolerance (Mittova et al., 2002). Gururani et al. (2013) reported improvement in plant 

tolerance to salt stress by two ACC deaminase producers and phosphate solubilizers, 

Bacillus pumilus and B. firmus strains, inoculated on potato (Solanum tuberosum) by 

positively influencing photosynthetic activity, higher proline content in tubers, enhancing 

of mRNA expression, and specific activities of ROS scavenging enzymes. Similarly, Kim 

et al. (2014) reported increases in fresh weight, dry weight, plant height of tomato, and 

enhancement of reactive oxygen species scavenging enzyme activities in aerial plant tissue 

(Nakano and Asada, 1981) under salt stress by an ACC deaminase and IAA producer 

Enterobacter sp. strain inoculation. 

4.2.6 Contribution to osmolyte accumulation 

Improvement of plant growth parameters on wheat plants under different salt stress 

conditions by the inoculation of Azospirillum strains has shown an increase in proline 

accumulation (Zarea et al., 2012). Moreover, plant growth promotion and increasing of 

proline and also total soluble sugar content accumulation in wheat plants inoculated with 

single bacteria and coinoculation of Bacillus subtilis and Arthrobacter sp have been 

reported to influence the osmotolerance under salt stress (Upadhyay et al., 2012). 

4.2.7 Production of bacterial extracellular polymeric substance 

PGPR have been related to increase water holding and fertilization by influencing soil 

particles aggregation and enhance volume of macropores helping plants to manage salt 
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stress by producing extracellular polymeric substances (Roberson & Firestone, 1992). 

Furthermore, extracellular polymeric substances are able to bind to cations decreasing their 

availability for plant uptake and therefore helping to alleviate plants stress conditions 

(Upadhyay et al., 2011). Plant growth-promotion by exopolysaccharides producing 

bacteria efficiently reduced plant cation uptake under salt stress as reported by Siddikee et 

al. (2011) on red pepper seedlings by Bacillus licheniformis, Brevibacterium iodinum and 

Zhihengliuella alba, and by Upadhyay et al. (2011) on wheat by co-inoculations of 

Bacillus species and Enterobacter species. 

5. Bacterial root colonization 

The study of the interaction of PGPR with rhizosphere, roots and their natural environment 

is essential in order to elucidate the successful inoculation, colonization, behavior, 

functioning and successful application (Jones et al., 2004; Bloemberg, 2007). In order to 

evaluate root colonization and interaction the gnotobiotic system may be used to 

accomplish this aim. One example for a gnotobiotic system was described by Lugtenberg 

et al. (2001) as a sterile system that allows sterile seedling germination in interaction with 

high bacterial suspension in long quartz sand column moisturized with a plant nutrient 

solution (PNS) without added carbon source (Lugtenberg et al., 2001). Microscopic 

techniques have been used to observe localization of soil microorganisms on soil and 

plants systems in controlled or field environments by light microscopy, transmission 

electron microscopy (TEM), scanning electron microscopy (SEM), and fluorescence 

microscopy.  

 

Fluorescence microscopy has been used to detect nucleic acids, proteins and 

polysaccharides of microorganisms in soil (Li et al., 2004). Fluorochromes such as 4,6 

diamidino-phenylindole (DAPI), allow staining of bacteria by binding to the AT-rich 

regions of double stranded DNA of vital and dead cells and have been used for bacterial 

enumeration in soil. However, DAPI binds to DNA but no differentiation of bacterial 

species can be achieved by this technique (Hannig et al., 2010). Fluorescence in situ 

hybridization (FISH) allows to specifically stain bacteria with fluorescence-labeled 

molecular probes that bind specifically to rRNA (Macnaughton et al., 1996). FISH allows 

to determine structure and dynamics of microbial communities from environmental 

samples (Amann et al., 1995; Daims et al., 2005), target microorganisms on different 
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phylogenetic levels (Amann et al., 1990), as well to localize, quantify and identify 

rhizospheric microorganisms on soil particles, rhizosphere biofilm, root cells, axial 

grooves between epidermal cells, cap cells, or root hairs (Watt et al., 2006) using confocal 

laser scanning microscopy (CLSM) and epifluorescence microscopy techniques (Hannig et 

al., 2010). 

6. Salt environments as potential new sources of microbial diversity  

Among all microorganisms observable in nature it was estimated that more that 99 % 

cannot be cultivated by standard techniques (Hugenholtz et al., 1998). Among cultivated 

bacteria the phylogenetic class α-proteobacteria and phyla Actinobacteria, Acidobacteria 

and Verrucomicrobia are ubiquitous to almost all soil types. The phyla Proteobacteria, 

Cytophagales, Actinobacteria and Firmicutes are the most represented among all 

cultivated bacteria and the ones that presented constantly taxa rearrangement and new 

descriptions (Zhang & Xu, 2008).  

 

Meta-analysis of publicly available 16S rRNA gene sequences suggested that in saline soil 

habitats less than 25 % of bacteria have been sampled and that among these sequences 

Proteobacteria and Actinobacteria represented the most common taxon (Ma & Gong, 

2013). Pyrosequencing analysis of 16S rRNA-based datasets from saline soil correlates 

salinity as the strongest factor influencing significant differences in bacterial community 

composition and diversity. Furthermore, phyla have been found that cannot be classified as 

salinity related and also other phyla which are typically related  to this environment 

(Canfora et al., 2014).  

7. New taxa description   

The species concept for prokaryotes has been long debated, however one of the most 

considered and accepted concept is the so-called phylo-phenetic species concept. This 

concept defines species as a monophyletic and genomically coherent cluster of individual 

organisms (strains) that show a high degree of overall similarity in many independent 

characteristics and is diagnosable by one or more discriminative phenotypic properties 

(Rosselló-Mora & Amann, 2001). Then this species concept is based on a polyphasic 

approach, that includes the description of phenotypic analysis combined with genomic data 

(Vandamme et al., 1996).  
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7.1 Phenotypic traits 

Phenotypic traits are the observable characteristics that result in the overall gene 

expression of the organism (Moore et al., 2010), that can be influenced largely by 

environmental conditions such as temperature, pH-value, oxygen tension and others. 

Individually phenotypic characteristics, that also include chemotaxonomic characteristics, 

are insufficient to delineate a species, but together they provide sufficient descriptive 

information. The more characteristics that are included in the descriptions, the more robust 

and stable classification will be. Among the different characteristics some have resolving 

power at species level while others are valuable to discriminate genera, families and orders 

(Rainey & Oren, 2011) 

Phenotypical characteristics analysis includes cell morphology and physiology, 

metabolism and enzymatic activities. Chemotaxonomical characteristics comprise analysis 

of composition of prokaryote cells including components of cell wall, outer cell membrane 

or cytoplasm membrane such as fatty acids, polar lipids, quinones, polyamines, the 

presence or absence of mycolic and teichoic acids, pigments and/or certain proteins (Fig. 

3) (Moore et al., 2010; Tindall et al., 2010). Most of bacterial descriptions have been 

analyzed by classical standard microbial methods although new phenotyping systems such 

as the matrix-assisted-laser desorption/ionization time of flight mass spectrometry 

(MALDI-TOF MS) or the high field ion cyclotron fourier transform mass spectroscopy 

(ICP-FTMS) techniques have been introduced into systematic (Welker & Moore, 2011). 

7.2 Genotypic traits 

Genotypic traits of an organism are those within its genetic material and its analysis for 

characterization purposes include several techniques (Fig. 3) such as DNA G + C content, 

DNA-DNA hybridization and analysis of 16S rRNA gene sequence have been of great 

value in bacterial taxonomy (Tindall et al., 2010). The 16S rRNA gene is widely used in 

microbiology as a phylogenetic marker because it is functionally stable, ubiquitous, highly 

conserved and poorly subject to horizontal gene transfer. All prokaryotes are classified on 

the basis of the 16S rRNA gene sequence into the ‘Bacteria’ or ‘Archaea’ domains, and 

subdivided following a hierarchical manner into the non-overlapping ranks ‘phylum’, 

‘class’, ‘order’, ‘family’, ‘genus’, ‘species’ (Brenner et al., 2001). As a general statement 
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values below the mean (96.4 % ± 0.2) or minimum identity (94.9 % ± 0.4) to the type 

species may lead to a new genus circumscription (Yarza et al., 2008). Cut-off values of the 

16S rRNA gene sequence identity for novel taxa at the species level have been considered 

97 % (Tindall et al., 2010), although Stackebrandt and Ebers (2006) suggested increasing 

value up to 98.7 %. However, cut-off values of the 16S rRNA gene sequence identity does 

not apply for all genera as is illustrated in  Streptomyces genus where >99 % sequences 

similarity is shared within 30 type species strains, and contrasts with < 94 % sequence 

similarity within 44 of the 47 described species contained in genus Deinococcus (Rainey, 

2011). Furthermore, nucleotide variations among multiple rRNA operons in a single 

genome (Rainey et al., 1996; Acinas et al., 2004) and rare but occurring horizontal gene 

transfer (HGT) distorting relationships between taxa in phylogenetic analysis (Jain et al., 

1999) have been also disadvantages discussed on the use of 16S rRNA gene as a molecular 

marker. 

The DNA G+C content of prokaryotes has been often used to grossly classify prokaryotes 

and its intra-genomic variability between >5 and >10 % between strains make it useful to 

classify within distinct in some cases species or genera, respectively (Goodfellow et al., 

1997). Among genomic DNA methods, DNA–DNA hybridization (DDH) (Johnson & 

Ordal, 1968) evaluate the relatedness degree of highly related organisms and is still 

recognized as a ‘gold standard’ for delineation of prokaryotic species (Tindall et al., 2010). 

As a general statement DNA-DNA relatedness threshold for the definition of a species is 

70 % (Stackebrandt & Goebel, 1994). 

Multi locus sequence analysis (MLSA) (Maiden et al., 1998), consists of the phylogenetic 

analysis of 16S rRNA gene together with protein-encoding marker gene sequences of 

housekeeping genes (dnaJ, dnaK, gyrB, hsp60, recA, rpoB ) alignments. MLSA analysis 

increase the species phylogenetic resolution of 16S rRNA gene up to subspecies 

delineation and is useful to eliminate phylogenetic inconsistence such as lateral gene 

transfer (Kämpfer & Glaeser, 2011). Some authors consider this technique to represent the 

novel standard in microbial molecular systematics that improves phylogenetic resolution at 

the species level and that could replace DDH studies (Gevers et al., 2005; Konstantinidis 

and Tiedje, 2007). 
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Fig.3. Different methodologies used for the characterization of prokaryotes and their 

approximate taxonomic resolution levels (Moore et al., 2010). 

The lowering costs and high throughput of next-generation sequencing methods have 

enabled fast increase of sequenced genomes (Soon et al., 2013). Up to date more than 

29000 prokaryotic genome sequences are available in public databases 

(http://www.ncbi.nlm.nih.gov/genome/browse/) facilitating genomes sequence comparison 

(Ramasamy et al., 2014). Genome sequence can be used in taxonomy by using several 

indices obtained from pairwise genomes comparison such as the average nucleotide 

identity (ANI) (Konstantinidis & Tiedje, 2005) and maximal unique matches (MUM) 

(Deloger et al., 2008) that is suggested as a valid alternative to DDH (Goris et al., 2007). It 

is also proposed that an ANI value ≥ 95 % between genomes corresponded to a DDH value 

of ≥ 70 % (Goris et al., 2007). However, analysis of genome sequence analysis provides a 

high taxonomic resolution (Fig.3) and it should be include among taxonomic criteria as an 

additional parameters to the phenotypic and chemotaxonomic parameters and not as a 

replacement of them (Ramasamy et al., 2014). 

8. Genome sequence comparison 

Gene-based genome comparison allows genotypic characterization of prokaryotes based on 

their similarities or differences of gene contents. In order to perform comparison a genome 

is compare to a selected group of related organisms in order to describe its core genome, 
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singleton genes and pan-genome. Core genome references to the set of genes that is shared 

by an analyzed group organisms, meaning that all genomes of the studied group possess an 

orthologous gene in any other strain of the genome group. Singleton genes describes genes 

that are unique within the studied group, it means that no orthologous genes are identified 

in any other strain of the comparison set. Pan-genome refers to all independent genes 

within a group of analyzed organisms, it means that comprises all singleton genes and all 

genes that can be founded in more than one but not in all compared genomes (Borriss et 

al., 2011). In terms of bacterial species description it could be said that a bacterial species 

can be described by its pan-genome, that is the sum of a ‘core genome’ and a ‘dispensable 

genome’ (Tettelin et al., 2005, Blom et al., 2009).      

Comparison of multiple genomes of related species have become of great interest and 

could be done through databases such as the Comprehensive Microbial Resource (CMR) 

(Peterson et al., 2001) or the Microbial Genome Database (MBGD) (Uchiyama, 2003). 

Such databases allow the use of different parameters to define a homology cutoff for 

genome comparison depending on the user expertise and in order to avoid different 

parameters analysis an automatic estimation of an adequate homology criterion software 

such as the Efficient Database framework for comparative Genome Analyses using 

BLAST score Ratios (EDGAR) has been developed (Blom et al., 2009). EDGAR uses a 

generic orthology criterion adjusted to the set of compared genomes based on BLAST 

score ratios and provides several analysis and visualization features. EDGAR also provides 

a precalculated public databases for 116 genera with 1008 genomes, but it also allows to 

create projects to user-defined sets of genomes with publish and un-publish data (Borriss et 

al., 2011). 

Comparative whole genome sequencing could be used for several proposals such as 

phylogenetic, epidemiological, and ecological studies, and is increasingly being used in 

place of PCR-based sequencing or typing methods (Edwards & Holt, 2013). The use of 

comparative genomic analysis in PGPB will help on the understanding of genes on 

metabolism, potentially involved in plant growth promotion, compound and metal 

resistance, rhizosphere colonization, lifestyle, ecological adaptation and on physiological 

role in their interaction with plants (Bruto et al., 2014; Shen et al., 2013; Duan et al., 2013). 
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9. Aims of this study 
 

As soil salinization is a major concern of modern agriculture and an expected threat in 

climate change scenarios, special effort will be required for maintaining crop production 

under salt stress (Turral et al., 2011). The use of plant growth-promoting rhizobacteria 

(PGPR) is a promising agricultural practice to help less salt tolerant crops to maintain an 

acceptable level of productivity under higher salt concentrations (Nadeem et al., 2012; 

Singh et al., 2011). A lot of research has been conducted in order to understand plant stress 

effects of salt and the mechanisms involved in alleviation and promotion of plant growth in 

different kinds of crops by bacteria (Sections 3 and 4). Many studies have focused on 

isolation of effective halotolerant PGPR from salt affected soils (Siddikee et al., 2011), and 

from the rhizosphere of natural salt tolerant and halophytes plant species (Ruppel et al., 

2013; Paul and Lade, 2014). Even so, there are no studies exploring both, the microbial 

and functional diversity, of halotolerant rhizobacteria with plant growth-promoting abilities 

(PGPA) isolated from the rhizosphere of natural salt tolerant plant species growing in 

natural protected areas.  

 

In the following study, the aims were to investigate the microbial diversity of PGPR from 

the rhizosphere of natural salt tolerant plant species, and the selection of isolates that 

effectively promote the growth of Hordeum vulgare L. under salt stress. Furthermore, 

special attention is intended on isolates of taxonomical interest and not belonging to 

bacterial genera reported as PGPR. The study involved the evaluation of qualitative and 

quantitative PGPA of the isolates in pure culture, plant growth (ad planta) experiments 

using a gnotobiotic liquid system and non-sterile soil under salt stress, and root 

colonization experiments using fluorescence in situ hybridization (FISH). Additionally, it 

involved polyphasic approaches to describe new bacterial taxa and detection of genes 

involved in plant growth promotion. The main aims of this study were: 

1. Analysis of the halotolerant microbial diversity of plant growth-promoting 

rhizobacteria from the rhizosphere of Hordeum secalinum and Plantago winteri 

using selective enrichment media. 
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2. Among the plant growth-promoting rhizobacteria isolated it should be selected 

isolates of taxonomical interest with plant growth-promoting abilities able to 

promote Hordeum vulgare L. growth under salt stress. 

3. The localization and effective plant growth promotion abilities of the isolates ad 

planta should be determined and correlated with their respective gene content. 
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ABSTRACT 

Soil salination is a severe problem in agricultural plant production and it is expected to 

become more relevant in the next decades. Plant growth promoting rhizobacteria (PGPR) 

isolated from salty habitats can contribute to sustain growth and alleviate salt stress of crop 

plants. In this work, 100 potential PGPR were isolated on enrichment media for relevant 

functions (ACC-deaminase activity, Auxin synthesis, P-solubilization and N-fixation), 

from the rhizosphere of Hordeum secalinum and Plantago winteri grown in a natural salt 

meadow. Twenty-two isolates, including representatives of each function and depicting a 

high taxonomical diversity, were tested for their promotion effect on barley under salt 

stress and non-sterile substrate. The two best promoters were tested in a second plant 

assay. In parallel to the plant assay, the complete spectrum of PGP-activities of our isolates 

was assessed by pure culture assays. Results surprisingly showed that the best promoters 

did not display a promising PGP-spectrum., whereas isolates showing multiple  PGP-

activities in pure culture, eventually did not promote barley growth. The most effective 

isolate (E108, identified as Curtobacterium flaccumfaciens, which increased barley growth 

up to 300%) would have never been recognized as best candidate based on its PGP-

activities in pure culture. Its mechanisms of action involved amelioration of Na
+
 tissue 

tolerance and reduction of cation root surface uptake. Our results highlight how screening 

based on pure culture assays may not be suitable for recognition of best PGP candidates, 

and could preclude the detection of both new PGPR and new plant growth promotion 

mechanisms. 

Keywords 

salt stress; salt meadow; Curtobacterium; PGPR, plant microbe interaction 

Highlights 

High phylogenetic diversity of PGPR in a natural salt meadow 

PGP activities assessed in pure culture do not allow good prediction in plant assays 

Curtobacterium flaccumfaciens isolate was most effective PGPR on barley under salt 

stress 

Amelioration of Na
+
 tissue tolerance 

Reduction of cation root surface uptake 
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INTRODUCTION 

 

Soil salination is a serious threat for agriculture. It is expected that more than 50 % of all 

agricultural soils will be affected by salinity increase by the year 2050 (Ashraf 1994; 

Vinocur & Altman 2005). It is therefore imperative, in the context of a responsible soil 

management for sustainable agriculture, to discover beneficial microorganisms able to 

alleviate the salinity stress and improve plant growth (Grover et al. 2011; Singh et al. 

2011) thus allow sufficient yields. 

The results obtained so far lead to the general conclusion that bacteria producing ACC-

deaminase are most suitable candidates, as they are able to remove the precursor of 

ethylene, the inducer of the plant response to several abiotic stresses including salt-stress 

(Dimkpa et al. 2009; Yang et al. 2009). Numerous rhizosphere-inhabiting pseudomonads 

possess this function and, since they are often efficient root colonizers, they have been 

regarded as optimal candidates for salt-stress alleviation. Promising results were obtained 

with cucumber (Egamberdieva et al. 2011), lettuce (Kohler et al. 2009), mung bean 

(Ahmad et al. 2011), paddy rice (Jha et al. 2011), sunflowers (Shilev et al. 2012), tomato 

(Tank and Saraf 2010) and wheat (Zahir et al. 2009; Nadeem et al. 2010). Further ACC-

deaminase producers, such as Achromobacter sp. (Mayak et al. 2004; Karthikeyan et al. 

2012), Burkholderia (Shaharoona et al. 2007), Bacillus sp. and Brevibacterium sp. 

(Siddikee et al. 2010 and 2011) did also significantly alleviate salt stress. However, 

additional rhizocompetent bacteria with different PGP traits (Pii et al. 2015) can also play a 

major role in supporting the plant growth under stress conditions, as demonstrated, for 

example, for the exopolysaccharide (EPS)-producing Bacillus, Serratia and Aeromonas 

(Ashraf et al. 2004; Han and Lee 2005).  

Barley (Hordeum vulgare L.) is a relatively salt tolerant crop and the most salt tolerant 

cereal (Nevo et al. 1993), domesticated the first time about 10,000 years ago in the Fertile 

Crescent (Badr et al. 2000) and a second time, more recently, in an undefined region 

located between Turkmenistan and Pakistan (Morrell and Clegg 2006). It is the fourth most 

cultivated cereal in the world after corn, rice and wheat (source: Encyclopedia of Life, 

http://eol.org).  

In this work we exploited the rhizosphere bacteria associated with monocotyledon wild 

barley (Hordeum secalinum) and the dicotyledonous greater plantain (Plantago winteri), 
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isolated from a salt meadow in Germany, as bioinoculant for mitigating salt stress of the 

crop plant Hordeum vulgare. We selected bacteria with various potential PGP activities 

and broad taxonomic affiliations, and tested their potential on Hordeum vulgare under salt 

stress conditions, using non-sterile soil, in order to select competitive strains with higher 

probability of being effective in future field applications. Our hypothesis was that typical 

plate assays for PGP activities might not detect the actual plant growth promoters, which 

could explain the typical low efficacy of such laboratory assays as screening method for 

selecting promising bacterial isolates to be tested ad planta. 

 

MATERIALS AND METHODS 

 

Sampling campaigns and bacterial isolation on plate. 

Plants were taken in a natural salt meadow near Münzenberg, Hessen, Germany (50° 279´ 

360´´ N 8° 449´ 350´´ E) where salty water welled from a subsurface salt deposit to the 

surface. Chloride (Cl
-
), sulfate (SO4

-
) and nitrate (NO3

-
) concentrations were measured 

with a ion chromatograph (Bak et al. 1991) from the surface water of nearby ditches in 

June 2004. Chloride concentrations were 133 ± 1.4 mM, sulfate concentrations were 0.039 

± 0.04 mM, nitrate was not detectable. The pH-values (7.66 ± 0.22) were measured directly 

in the water of the ditches with a mobile pH meter (WTW, Weinheim, Germany). All 

values are means of duplicates ± the range of the values). Hordeum secalinum and 

Plantago winteri plants were dug at 3 time points of the year (May 2007, July 2006, 

October 2006) and Plantago winteri plants in addition also in December 2005. In the 

laboratory, the root systems were carefully separated from the roots of other plants with 

sterile forceps. Loose soil was separated from the root by hand shaking. The roots with 

attached rhizospheric soil were weighed in sterile glass flasks and sodium pyrophosphate 

(0,18 %) was added to detach the bacteria and soil from the root material. 

Detaching was done by vigorous shaking of the flasks by hand for 5 min. From each 

resulting soil suspension, three independent serial dilutions with 0.9 % NaCl were prepared 

and from the dilutions, different media were inoculated. The media used for the isolation 

were chosen among those allowing the enrichment of specific functional groups: potential 

nitrogen fixing bacteria (LG medium, Turner and Gibson 1980; NFB medium, Kirchhof et 

al. 1997); potential ACC-deaminase producers (DF medium, Penrose and Glick 2003); 

potential organic phytate-mobilizing bacteria (IHP medium, Unno et al. 2005); potential 

inorganic phosphate-mobilizers (CP medium, Suarez et al. 2014c); potential indol-acetic-
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acid (IAA) producers (LBT medium with L-tryptophan, followed by confirmation on 

nitrocellulose membrane with the Salkowski reagent Bric et al. 1991). Total load of 

heterotrophic bacteria was assessed with liquid and solid K7 medium (per liter water: 1 g 

glucose, 1 g yeast extract, 1 g peptone and 15 g agar). Cycloheximide [per 1 l media: 40 ml 

steril filtrated solution (4 mg cycloheximide ml
-1

 deionised water)] was added to the K7-

media, the CP-media and the DF-media to suppress fungal growth. All isolation plates and 

liquid cultures were incubated at 25 °C and cell numbers were checked regular until no 

change occurred any more. For the liquid (DF) and semisolid (NFB, IHP) media, the 

MPN-method (Man 1983) was used for the calculation of the cell numbers per gram dry 

weight soil. Cell numbers on the solid media were calculated as colony forming units 

(CFUs) per gram dry weight soil. After visible growth, recurrent colonies with different 

morphology were chosen and strains were purified by using standard streaking technique 

on the corresponding medium and then stored in 20 % glycerin at -80 °C.  

 

Taxonomical identification of the isolates 

For the sequencing of the partial 16S rRNA gene one part of a colony was picked with a 

sterile toothpick and directly put in the PCR reaction cup. PCR reaction was performed 

with the primer pair EUB9f (9-27) (Lane 1991) and EUB 1492r (Weisburg et al. 1991) as 

described by Kampmann et al. (2012). For sequencing 10-15 ng of the purified PCR 

product was amplified with 10 pmol of the forward primer 616V (Johnson 1994) and 

partial with 10 pmol of the reverse primer EUB 1492r (Weisburg et al. 1991) to receive a 

more complete sequence Sequencing was performed by the sequencing facility of the IFZ 

(Research Centre for Bio Systems, Land Use and Nutrition, Giessen, Germany) with either 

the Abi Prism 310 Genetic Analyser (Applied Biosystems, Weiterstadt, Germany) and the 

Abi Prism BigDyeTMPrimer Cycle Sequencing Kit (Applied Biosystems, Weiterstadt, 

Germany), according to the manufacturer instructions or DNA was sent for sequencing to 

the company LGC (Berlin, Germany). Chimera were detected according to Kampmann et 

al. (2012). Pairwise similarities values of next the relatives were retrieved from the 

EzTaxon server (Kim et al. 2012). The 16S sequences obtained in this work were 

submitted to ... under the accession numbers … to … . 

 

Plant growth promoting assay with Hordeum vulgare 

Plant assay 1: Twenty-two isolates were selected based on their taxonomic and functional 

diversity, and were tested for their efficiency in alleviating salt stress on Hordeum vulgare 
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(cultivar Propino) ad planta, in greenhouse. Bacterial isolates were grown in liquid AC 

medium (Sigma-Aldrich Chemie, Steinheim, Germany), centrifuged at 8000 g and 

resuspended with 30 mM MgSO4 to reach a concentration of 10
7
 to 10

8
 CFUs ml

-1
, 

depending on the isolate. Barley seeds were sterilized with 2.5 % bleach, washed five 

times with sterile water and then incubated for one hour in the respective bacterial 

suspensions under gentle shaking. Immediately after, the seed were planted into non-sterile 

Classic Tonsubstrat ED 73 substrate (Einheitserde- und Humuswerke Gebr. Patzer GmbH 

& Co.KG, Sinntal – Altengronau, Germany), into squared plastic pots (13 cm x 13 cm) 

containing ~750 ml (~270 g dry weight) of substrate. Physico-chemical properties of the 

substrate are given in Supplement 1. The water capacity (WC) was estimated to be 233 ml, 

and each pot was irrigated with 180 ml rainwater (~75 % WC). This amount of water 

allowed the whole substrate in the pot to be moistened, yet avoiding percolation. Eight 

seeds were placed on each pot and covered with a one cm-layer of the same substrate. 

Treatments were named after the isolate name. The mixture of all isolates was also tested 

(treatment “MIX”). Barley seeds incubated in sterile 0.03M MgSO4 solution served as 

negative control (treatment “S+ B-“). Additional uninoculated seeds were placed into pots 

that did not receive NaCl, to assess the normal growth of barley in absence of salt stress 

and bacterial inoculants (treatment “S- B-“). Pseudomonas fluorescens PCL1751 

(Kamilova et al. 2005; Egamberdieva et al. 2011), effective in promoting the growth of 

different plants under salt stress, was used here as an additional treatment to have a 

comparison for the effect of our isolates. Five pots per bacterial treatment/uninoculated 

control were prepared and arranged in a greenhouse with a randomized complete block 

design (RCBD; Clewer and Scarisbrick 2001) to account for possible gradient effects in 

the greenhouse. Plants were grown for 5 weeks with daylight from 06:00 to 22:00 

(artificial light switched off when natural light exceeded 10 Klx), and temperature of 20 °C 

and 16 °C (day and night, respectively). 

 

Four days after first seedling emergence, the germination was considered complete and 

each pot was rarified to five plants. Depending on the number of germinated seeds, the 

smallest, the biggest and then the smallest seedling were removed. 

Beginning with the third day after germination (DAG), pots treated with bacteria and those 

of the treatment “S+ B-“ were irrigated with increasing NaCl solutions in rainwater (50 

mM, 100 mM, 150 mM, 200 mM and finally 250 mM NaCl, with three days interval each; 
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Supplement 2) to impose the salt stress, until reaching a salinity of 4.8 % (g NaCl soil  

DW
-1

) 27 DAG. Treatment “S- B-“ received the same amount of rainwater without NaCl.  

 

Five weeks after sowing, from each pot, the shoots and the leaves of the 5 plants were 

separately collected in paper bags, and their fresh weight was recorded (gram pot
-1

). 

Leaves and shoots were then dried at 80 °C for 48 h before assessing the dry weight.  

Salt stress resistance (barley FW in presence of salt / barley FW without salt * 100) of 

inoculated and uninoculated plants was compared by using the fresh weight of the five 

plants per pot (N=5). To evaluate the effect of the inoculation on the plant fitness, the 

percentage of relative increase (Crane-Droesch et al. 2013) was calculated on both the 

accumulated dry biomass and the water content (calculated as the difference between 

fresh- and dry weight). Effect on both germination and roots was not assessed in this first 

plant assay. 

 

Plant assay 2:  

 

The two best performing isolates (E108 and E110, see results) were tested in a second 

experiment to assess their effect on barley germination and growth when salt stress 

occurred already at seeding to have conditions that are more similar to the field. The two 

selected isolates were inoculated alone (treatments “E108” and “E110”, respectively) and 

in combination (treatment “E108+E110”), and were compared to both uninoculated barley 

(treatment “S+B-“) and to barley inoculated with dead bacteria produced by autoclaving an 

aliquot of the E108+E110 mixture (treatment “S+ D”). Seed inoculation was performed in 

the same way as plant assay 1. E108 and E110 bacterial suspensions were applied at a 

concentration of 10
7
 CFUs ml

-1
. Squared pots and the non-sterile Classic Tonsubstrat ED 

73 substrate soil as in plant assay 1 were used, but the salt stress was applied already at the 

seeding stage (Supplement 2) to assess the effect on the germination under salt stress, and 

then increased until a final NaCl concentration of 4.4 % (reached 15 DAG). At this NaCl 

concentration, the electrical conductivity (EC 1:5, Guang-Ming et al. 2006) was 22.40 ± 

0.7 mS cm
-1

. Treatment S- B- received the same amount of rainwater without NaCl. 

The experimental design was the same of plant assay 1 (5 pots with 5 plants each, RCBD 

randomized) but fifteen seeds, instead of eight, were placed into each pot, to account for 

the reduced germination rate as affected by salt. Germination was monitored until eight 

days after sowing, and then the pot were rarified to five plants. Plants were grown under 
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the same greenhouse conditions of plant assay 1, and were harvested 42 DAG. Fresh 

weight of leaves, stems and roots was recorded and plant material was left to dry for 48 h 

at 80 °C before assessing the dry weight. As in the plant assay 1, salt stress resistance was 

calculated on fresh weight, while the relative increase of both dry biomass and water 

content on dry weight (leaves, stems and roots separately).  

 

Characterization of PGP activities of the selected isolates in pure culture experiments 

(plate assay) 

From the twenty-three isolates evaluated in the plant assay 1, fifteen strains were selected 

for the determination of their PGP activities in pure culture assays. The selected isolates 

included all those showing largest effects on plant growth (both positive and negative) as 

well as neutral isolates, and in addition also strain PCL1751. Every isolate was inoculated 

on plates of different selective media for 3-5 days at 28 °C to determine their PGP 

activities qualitatively: SRSM1 medium (Sundara Rao and Sinha 1963) and IHP medium 

(Unno et al. 2005) were used to test the ability to grow in presence of calcium phosphate 

and phytate, respectively. Additionally, for confirmation of phytate mobilization activity, 

the isolates grew on IHP solid medium were then inoculated into 5 ml of IHP liquid 

medium at 28 °C in a rotary shaker for 15 days. NFB medium (Kirchhof et al. 1997) 

prepared with washed agar and supplemented with 1 % of saccharose was used to check 

the ability of growing on nitrogen free media. Growth tests were evaluated at least twice on 

the respective medium and compared with the growth on Tryptic Soy Agar medium. DF 

medium with addition of ACC (Penrose and Glick 2003) and Lauria-Bertani broth 

supplemented with L-tryptophan (LBT) medium (Bric et al. 1991) were used to test the 

potential ACC deaminase activity and IAA production, respectively; ACC deaminase 

activity and IAA production of positive isolates were then quantitatively measured 

according to Penrose and Glick (2003) and Glickmann and Dessaux (1995), respectively. 

For the siderophore production test, the isolates were inoculated in liquid King’s B 

medium (Schaad et al. 2001). After 7 days of bacterial growth, 1 ml was centrifuged for 5 

min at 2600 g at room temperature. One-hundred microliters of supernatant were placed in 

a micro-plate and 100 µl of 2 mM chrome azurol S (CAS) solution (Alexander and Zuberer 

1991) were added. After 30 minutes, a colour change to yellow or orange indicated the 

production of siderophores of the type hydroxamate. 
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Chemical analysis of plant material 

The concentration of the cations Na
+
, Ca

2+
, Mg

2+
 and K

+
 in the leaves, stems and roots of 

barley plants inoculated with most effective isolate E108 and uninoculated controls was 

measured under a full-factorial design 2X3 (two inoculation treatment: inoculated/not 

inoculated; 3 plant habitats: leaves/stems/roots). Plant material was dry ashed at 550 °C, 

dissolved in 5 M HNO3, and finally measured by atomic absorption spectroscopy (Steffens 

and Schubert 2011). Total intake was calculated as the product of the cation concentration 

and the dry weight of the corresponding plant habitat. Root surface uptake was calculated 

as the total intake of each cation in the whole plant (in mg) divided by the root dry weight 

(Schubert et al. 2009). Root-to-shoot translocation was calculated as the total cation 

content of the shoots (leaf + stems) divided by the total cation content of the roots, and was 

further normalized to the biomass partition (shoots DW/roots DW), to eliminate the bias 

due to the different effects on the growth of shoots and roots (Saqib et al. 2005). Therefore, 

root-to-shoot translocation has no units. 

Statistical analysis  

Statistical differences of germination, plant growth parameters, cations 

concentration/intake and MPN values between treatments were assessed by ANOVA 

(either one-way, multivariate or factorial, depending on the tested dataset), followed by 

LSD Post-hoc test at p<0.05, using the software Statistica (Statsoft Inc., Tulsa, USA). 

Effect size (partial-η2
) and analysis power (1-β) of each statistical test are also reported. 

Student’s T-test was used to compare root surface uptake and root-to-shoot translocation 

between E108-inoculated plants and uninoculated control plants. 

 

RESULTS  

 

Bacterial enumeration form rhizospheric soil of Plantago winteri and Hordeum secalinum, 

strain isolation and identification. 

Bacterial cell numbers determined in the rhizopheric soil of P. winteri and H. secalinum 

sampled at 4 time points are shown in Supplement 3. The cell numbers of the rhizospheric 

soil were as expected higher as the bulk soil. Between the different PGPA no statistical 

differences could be found. The cell numbers trended to be lower in the sampling of 

December and October (Supplement 3). Out of the dilutions of the counting a total of 100 

pure bacterial isolates were obtained from all media, including members of 39 genera (Fig. 

1), 22 families, 15 orders and 8 classes (Alphaproteobacteria 33 %, Actinobacteria 27 %, 
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Gammaproteobacteria 18 %, Bacilli 15 %, Betaproteobacteria 2 %, Cytophaga 2 %, 

Sphingobacteria 2 % and Flavobacteria 1 %). 

Among such isolates, three new species and one new genus were already described (Suarez 

et al. 2014a, b and c). Additionally, 22 more isolates showed pairwise similarities lower 

than 98.7% to next described relatives, potentially indicating further new species/genera 

(Stackebrandt and Ebers 2006) (Supplement 4). 

The highest number of the isolates (40 %) was obtained on the enrichment media for 

potential nitrogen fixers, while potential auxine producers were the smallest functional 

category retrieved (6%). Phosphate mobilizers, phytate mobilizers and ACC-deaminase 

producers accounted for 26, 15 and 13% of the isolates, respectively. 

Twenty-two isolates were selected based on their functional and taxonomical diversity for 

the ad planta test on barley. 

 

Effect of bacterial inoculation on barley under salt stress 

Plant assay 1: Inoculation with bacteria caused significant changes in the salt stress 

resistance of barley (ANOVA, F24, 99 = 2.66, P< 0.001; partial-η2 
= 0.39; 1-β = 0.99; Fig. 

2). LSD post-hoc test (P< 0.05) revealed that 20 out of 24 tested bacterial inoculations 

(including the reference strain Pseudomonas fluorescens PCL1751 and the mixture of all 

isolates) had no significant effect on barley growth; one isolate (E136B, identified as 

Bacillus sp.) and the mixture of all isolates had a significant negative effect. The isolate 

E108, identified as Curtobacterium flaccumfaciens, significantly increased the salt-stress 

resistance of barley (Fig. 2), followed by isolate E110 identified as Ensifer garamanticus. 

Bacterial inoculation affected significantly the relative increase (RI) of both dry biomass 

and water content (MANOVA, F96, 4382.82 = 2.35, P< 0.001; partial-η2
 = 0.37; 1-β = 1; Fig. 

3). In particular, in comparison with the uninoculated barley, more water was accumulated 

in both leaves and stems of E108 inoculated plants (Fig. 3 C and D) and in the stem of 

E110 inoculated plants (Fig. 3 D); the accumulated biomass also was increased in the 

stems by inoculation with isolates E108 and E110, (Fig. 3 A and B), suggesting a general 

positive effect of these two bacteria on barley fitness. Isolate E19 slightly increased the 

water content of the leaves (Fig. 3C). Isolate E108 showed the strongest effect on both 

biomass accumulation and water content in both leaves and stems, thus resulting the best 

performing isolate among the tested ones, followed by strain E110. These two strains were 

therefore selected for the second plant assay, performed under stronger salt stress. 
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Plant assay 2: Isolates E108 and E110 were tested in a second plant assay, with salt stress 

occurring already at the seeding stage (1.75 % NaCl) and then further increased 

(Supplement 2). Germination rate of barley was significantly increased especially by strain 

E108 (ANOVA Repeated measures, F5, 24 = 33.40, P< 0.001; partial-η2
 = 0.87; 1-β = 1.0). 

The germination rate in presence of strain E108 was comparable to that of seeds without 

salt (Fig. 4), although delayed of about 4 days. Germination rates of E110 and E108+E110 

were higher than uninoculated control, and also higher (but not significantly different) 

from the seeds inoculated with dead bacteria (Fig. 4). 

 

Salt stress resistance of leaves, stems and roots (based on separate fresh weights) was 

significantly increased by inoculation with E108, while only root salt resistance was 

increased by inoculation with E110 (MANOVA, F12, 47.92 = 2.66, P= 0.0080; partial-η2
 = 

0.40; 1-β = 0.95) (Fig. 5). The mixture of the two isolates was not effective.  

Biomass accumulation of leaves, stems and roots were significantly increased by 

inoculation with E108 (MANOVA, F24, 53.54 = 6.21, P< 0.001; partial-η2
 = 0.74; 1-β = 1), 

with respect to both uninoculated plants (treatment “S+B-“) and plants inoculated with 

dead bacteria (S+D, Fig. 6). The water content was significantly higher than the 

uninoculated plants only, while not significantly different from treatment “S+D” (Fig. 6). 

Only in roots, E110-inoculated barley plants accumulated more water than the control 

plants (Fig. 6). The positive effect of E108 on biomass accumulation overcame that on 

water content and was highest in the roots (+319.1 %), followed by stems (+152,2 %) and 

leaves (+105,7 %) (Fig. 6). The mixture E108+E110 was less effective than E108 alone 

and more than E110 alone, although water content of leaves and stems was even lower 

than that of uninoculated control (at harvesting, the E108+E110 inoculated plants appeared 

very dry and partially withered already). Plant of this treatment accumulated significantly 

more root biomass (Fig. 6). Plants inoculated with the dead bacteria accumulated more 

water and more biomass than uninoculated plants, but the difference was not statistically 

significant (Fig.6). 

 

Characterization of PGP activities of the isolates in pure culture  

From the twenty-two isolates evaluated in the plant assay 1, fifteen were selected to 

analyze their PGP activities (Table 1). Results showed an unexpected high rate of positive 

results. The isolates E134 and E38 presented most of the activities: E134 was positive for 
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indol-acetic-acid production (IAA), nitrogen fixation (NF) phosphate mobilization 

(PHO),phytate mobilization PHY and siderophore production (SID), whereas E38 was 

positive for ACC, IAA, NF, PHO and PHY. Two isolates, PCL 1751 and E31 presented 

activity for ACC, IAA, NF and SID. Isolate E110 was positive for IAA production (the 

highest among the tested isolates), NF, PHO and PHY. Isolate E8 showed a very high ACC 

deaminase activity (8,545 nmol h
-1

, followed by E136A with 292 nmol h
-1

), as well as the 

second highest IAA production, NF and SID. Surprisingly the isolates with highest PGP 

score in pure culture (including the ACC-deaminase producer pseudomonads) were not the 

best performing ad-planta under salt stress condition, while the best ad-planta performers 

(E108 and E110) showed low PGP potential in pure culture. 

 

Cation analysis of the plant tissues 

The contents of the four cations mainly involved in plant sensitivity and adaptation to high 

salinity (Na
+
, Ca

2+
, Mg

2+
 and K

+
) were measured in the plants inoculated with isolate 

E108, the most effective promoter, and compared to those of uninoculated plants 

(treatment “S+B-“). Cation concentrations were significantly affected by inoculation 

(Factorial ANOVA, F4,20 = 12.71; P<0,001; partial-η2
 = 0.72; 1-β = 1) and by plant habitat 

(Factorial ANOVA, F8,40 = 46.09; P<0,001; partial-η2
 = 0.90; 1-β = 1), but not by the 

interaction Inoculation*Habitat (Factorial ANOVA, p=0.069). Post hoc test indicated that 

only the concentration of K
+
 was significantly reduced in both leaves and stems by 

inoculation with isolate E108, while concentrations of all other cations (Ca
2+

, MG
2+

 and 

Na
+
) were not significantly different (Supplement 5). However, since the E108 inoculated 

plants grew more than the uninoculated control plants, the total intake of all cations was 

significantly higher (Factorial ANOVA, F4,20 = 25.03; P<0.001; partial-η2
 = 0.83; 1-β = 1; 

Supplement 5). Plant habitat and interaction Inoculation*Habitat were also significant 

(p<0.001 and p=0.017, respectively). Differences between total intakes of E108-inoculated 

plants and uninoculated controls were significant in both stems and leaves for all cations, 

whereas only Na
+
 and Mg

2+
 were significantly different in the root (Supplement 5). In 

order to shed light on the possible mechanism of action of isolate E108, root surface uptake 

and root-to-shoots translocation were calculated, two parameters that indicate how the 

plant manages the cations under high salinity conditions. Root surface uptake of all four 

cations was significantly reduced by inoculation of E108, while normalized root-to-shoot 

translocation was not significantly changed (Tab. 3). 
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DISCUSSION 

 

A strong effort is currently devoted to seek for new bioresources, due to the need of 

discovering new organisms and substances with biotechnological potential. Natural salt 

environments seem to be a promising source of bacteria able to alleviate salt stress in 

important crops, such as cereals (Tiwari et al. 2011; Nabti et al. 2014). Therefore, isolation 

campaigns at different seasons and with rhizosphere soil of different plants were performed 

to find new effective PGPR from a natural salt meadow. The chloride concentration at June 

of the water in the meadow was with ~ 133 mM in the range where plants not belonging to 

the groups of the extreme halophytes and halophytes already show reduced substantially 

growth (Greenway and Munns, 1980). At this concentration, the growth of Triticum 

trugidum ssp. durum (durum wheat), Triticum aestivum (bread wheat) and Hordeum 

vulgare (barley) is already decreased by around 70 %, 60 % and 51 %, respectively 

(Colmer et al. 2005). The natural occurring monocotyledon Hordeum secalinum (meadow 

barley) and the dicotyledon Plantago winteri (great plantain) are adapted to this relatively 

harsh conditions by plant physiological adaptions and likely also by the help of naturally 

occurring PGPR. We supposed that in contrast to crop which often have been used as 

inoculum for isolation of new PGPR, these plants and the associated PGPR coevolved in 

the salty environment over a much longer period, whereas the modern crop plants are bred 

in the last 9000 years and cultivated mostly under no salt stress. Therefore, it was expected 

to find PGPR with a high efficiency to promote growth under salt stress. Moreover 

choosing the close relative plant species Hordeum secalinum to the crop plant Hordeum 

vulgare may increase the chances that the new PGPR also interact with the crop plant. 

Altogether around 50 pure cultures could be isolated from each plant, by choosing six 

different already PGPR-selective media instead of the often used universal media and 

therefrom a high percentage of 22 % were potential new not yet described species. The 

diversity was high since the isolates belonged to 40 different genera and 8 different classes. 

As other cultivation-dependent studies the major part of the isolates belonged to the phyla 

Proteobacteria. Whereas other studies (Aranda et al., 2011, Marasco et al., 2013, Bafana, 

2013) found Firmicutes as the next most abundant phylum, in this study Actinobacteria  

was the second most abundant. This is coherent with the meta-analysis performed by Ma 

and Gong (2013), which indicated Proteobacteria and Actinobacteria as the most frequent 

phyla among submitted 16S rRNA gene sequences obtained from saline rhizospheric soils 

and also by Turner et al. (2013) in a metatranscriptomics study looking at the active 
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bacteria in the rhizospheric soils of wheat and pea. However, in a cultivation-independent 

analysis of the rhizosphere of wild and domesticated barley, the bacterial families 

Commandadaceae, Flavobacteriaceae, and Rhizobiocea were found dominant (Bulgarelli 

et al. 2015). Other phyla also found dominant in cultivation independent analyses of the 

rhizospheric microbiomes are Bacteroidetes, Acidobacteria, Saccharibacteria (formerly 

TM7), Chloroflexi, Gematimonadetes and Verrucomicrobia (Buée et al. 2009). Between 

the plants and the seasons investigated in our study, no difference of cell numbers was 

found (Supplement 3). Concerning the taxonomic affiliation of the isolates, neither 

Plantago nor Hordeum specifically favoured any taxon, with the exception of the genus 

Rhizobium that was isolated more often from the Plantago rhizosphere. 

 

Among the 22 isolates selected based on their taxonomical and functional diversity, and 

tested ad planta on Hordeum vulgare, isolate E108 (identified as Curtobacterium 

flaccumfaciens) was the most effective growth promoter. The second best promoter was 

isolate E110 (identified as Ensifer (Sinorhizobium) garamanticus. Both species are well 

known as typical plant endophytes. While Ensifer, as well as other rhizobia, can promote 

the growth and reduce the salt stress in different hosts (including non-legumes; 

Galleguillos et al. 2000), Curtobacterium flaccumfaciens is shown here for the first time as 

PGPR and stress alleviator. Curtobacterium flaccumfaciens was already shown to be able 

to reduce the symptoms of both Xylella fastidiosa (in Catharanthus roseus; Lacava et al. 

2007) and angular leaf spot (in cucumber, by inducing systemic resistance; Raupach and 

Kloepper 2000). Interestingly, Curtobacterium flaccumfaciens is a well-known pathogen 

of different plant species (Collins and Jones 1983), including common bean, soybean, 

sugar beet, poinsettia and tulip. To the best of our knowledge, Curtobacterium 

flaccumfaciens represents the only case of a phytopathogenic bacterium acting as PGPR on 

a different host, and this work is the first report of its plant growth promoting effect not 

mediated by biocontrol activity. The mechanisms at the basis of the Curtobacterium 

flaccumfaciens pathogenicity are not known, but its endophytic lifestyle is well-recognized 

(Bent and Chanway 1998; Zinniel et al. 2002; Gagne‐Bourgue et al. 2013), as well as its 

transmission by seed (Diatloff et al. 1992; Maringoni et al. 2006). Possibly, the same 

colonization strategy may result either in a negative or in a positive net-output on different 

hosts (Partida-Martínez and Heil 2011). The fact that our results with Hordeum vulgare 

(barley) were obtained under non-sterile conditions in greenhouse, adds robustness and 

significance to the PGP effect of isolate E108. 
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In the second plant assay, the effect of the inoculation was much stronger than in the first 

one. This likely occurred because the stress was present from the beginning (at the sowing 

stage already), thus determining a larger benefit of the inoculant (Partida-Martínez and 

Heil 2011). Indeed, this is coherent with the results of Rolli et al. (2015), who showed that 

beneficial effects of bacterial inoculants are stress-dependent, in the case of drought stress. 

Single inoculation of isolate E108 lead to the best performance, including a strong increase 

of both biomass and water content in all plant compartments. Therefore our isolate E108 

acts a “fitness enhancing” bacterium (FEB) on Hordeum vulgare under salt stress. Co-

inoculation of isolates E108 and E110 did not result in a more efficient synergy but in a 

sort of “averaging” of the effects of both inoculants. This is coherent with a few studies 

showing that the beneficial effects of singularly inoculated PGPR disappeared or were 

reduced in co-inoculation, probably due to competition (Probanza et al. 2002; Elkoca et al. 

2010; Golding et al. 2012). There are far more examples of increased beneficial effect of 

co-inoculations (especially in the case of rhizobia + PGPR in legumes), but this likely 

represents a bias due to the common practice to not publish negative results. Moreover, the 

non-sterile conditions used in our plant assay obviously resulted in a complex microbe-

microbe interaction network in the Hordeum vulgare rhizosphere, a more realistic situation 

compared to the gnotobiotic conditions of most published results. The changes in the 

individual contributions after co-inoculations, as well as the net output in such a system is 

therefore more difficult to predict and challenging to explain. In this case, further plant 

assays under gnotobiotic conditions will be required to unravel the mechanism of action 

and interaction of the inoculated PGPRs. 

Results of ad planta tests showed that assays for PGP activities of pure cultures might not 

be the appropriate screening method for selecting the best performing strains ad planta, 

under certain conditions such as salinity stress. ACC-deaminase activity, in particular, was 

expected to be the best indicator of the most effective PGPR under soil salinity, yet our 

results showed that the best performers (E108, E110 and E19) shared the phosphate 

mobilization activity instead (Tab. 1). Of these three isolates, only E19 (Hartmannibacter 

diazotrophicus, Suarez et al. 2014c) possessed the ACC-deaminase activity additionally. 

Although the positive effect of isolate E110 could be explained by both the multi-activity 

and the abundant production of auxine, the best performing isolate (E108) could not have 

been predicted from its assay for PGB activity (Tab. 1). However, it cannot be excluded 

that other untested PGP activities may have also played a role under the non-gnotobiotic 

conditions of our plant assays, or that the beneficial effects of the inoculated strains may 
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have been indirectly mediated by other Hordeum vulgare-associated microbes. Our results 

suggest a possible explanation for the typical low efficiency of the traditionally PGPR 

laboratory screenings, which detect “promising” strains, performing then inconsistently in 

the field. Our study shows in fact that the best promoters would have been discarded 

because not performing in pure culture assays, while the supposed “best candidates” 

eventually did not perform ad planta: as scientists devotedly seeking for environmental 

friendly solutions for sustainable agriculture, are we systematically discarding the best 

PGPRs, while wasting our energies on hopeless strains?  

Cation analysis showed that E108 affected both concentrations and intake of all four 

analyzed cations in the plant tissues (Tab. 2). There are three recognized strategies of plant 

resistance to salt stress: osmotic stress tolerance, Na
+
 exclusion and tissue tolerance to 

accumulated Na
+
  

(Carillo et al. 2011; Munns and Tester 2008). We could not test osmotic stress tolerance, 

since the salt was already present in the substrate of the second plant assay at the sowing 

stage. The results of the chemical analysis suggested that E108 leads to the increase of 

tissue tolerance to Na
+
 accumulation: in fact, despite to a similar concentration of Na

+
, 

inoculated plants were able to grow more (thus accumulating more cations). This suggests 

that intracellular mechanisms, such as compartmentalization of cations or organic solutes 

accumulation, might take place in barley leaf cells. Moreover, isolate E108 reduced the 

root surface uptake, so improving the Na
+
 exclusion in an untypical manner, since the 

effect was not specific for the Na
+
 as expected (Carillo et al. 2011) but generalized over all 

analyzed cations.  

Since only phosphate solubilization was identified as PGP activity of E108 in pure culture 

assays, we cannot hypothesize additional growth promoting mechanisms. Further plant 

assays under gnotobiotic systems would be required in this case to unravel the possible 

PGP mechanisms of this strain on Hordeum vulgare, as resulting from the specific host-

microbe interaction. This was not done here, because the primary scope of this work was to 

identify efficient PGPR under more natural (non-sterile) conditions. 

 

CONCLUSIONS 

The use of salt-stress alleviating PGPR can be an environmental friendly remedy to 

contrast the emerging problem of salinity in agriculture. Our direct screening approach to 

identify isolates of interest, revealed new taxa as fitness-enhancing bacteria (FEB) of 

Hordeum vulgare under salt stress and semi-natural conditions. The highest effect was 
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obtained when the salt stress was applied already at the sowing stage, which represents a 

more realistic situation compared to the imposition of salt stress gradually after seed 

germination. The best FEB was the isolate E108, belonging to the species Curtobacterium 

flaccumfaciens, an otherwise typical phytopathogen. E108 is therefore a suitable and 

highly interesting candidate for comparative genomics and for the investigation of the host-

microbe interaction mechanisms in the differently affected host species. The discordance 

between pure culture assays and ad planta results suggests that the current PGP-screening 

methods commonly used may need to be re-evaluated, in order to detect promising plant 

growth promoters, thus increasing the efficiency of the PGPR investigations. 
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Table 1 PGP activities of some bacterial isolates tested in pure cultures. Values indicate 

quantitative analysis (means ± SD), while +/- indicate qualitative results of plate/liquid 

assay (see material and methods for details). 

Isolate Next relative ACC* (nmol h
-1

) IAA (µg mL
-1

) NF PHO PHY SID 

E38 Microbacterium 

natoriense 

56.77 ± 34.16 15.85 ± 0.23 + + + - 

E134 Streptomyces sp. - 11.39 ± 1.05 + + + + 

E8 Pseudomonas 

brassicacearum 

8545.4 ± 2515.4 30.96 ± 2.52 + - - + 

E31 Pseudomonas kilonensis 114.15 ± 106.76 13.72 ± 0.26 + - - + 

PCL1751 Pseudomonas 

fluorescens 

96.03 ± 4.27 12.82 ± 0.23 + - - + 

E110 Ensifer garamanticus - 38.03 ± 0.98 + + + - 

E136A Bacillus subtilis 292.31 ± 42.71 10.36 ± 0.22 + - - - 

E19 Hartmannibacter 

diazotrophicus 

74.40 ± 24.45 - + + - - 

E136B Brevibacterium 

frigoritolerans 

44.69 ± 42.71 - + - + - 

E65 Streptomyces bacillaris 38.65 ± 0.00 - + - + - 

E105 Sphingopyxis taejonensis - 11.65 ± 0.59 + - - - 

E108 Curtobacterium 

flaccumfaciens 

- 7.49 ± 0.16 - + - - 

E47 Mycobacterium aurum 83.95 ± 64.05 - - - - - 

E48 Rheinheimera aquimaris - 19.61 ± 1.28 - - - - 

E50 Cellvibrio diazotrophicus - - + - - - 

*ACC=ACC-Deaminase production; IAA = Indol-Acetic-Acid production; 

PHO=Phosphate mobilization; PHY=Phytate mobilization; NF = Nitrogen fixation; SID = 

Siderophore production. Details in materials and methods.
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Table 2 Cation Root surface uptake and normalized root-to-shoot cation translocation of 

plants inoculated with isolate E108 and uninoculated controls (S+B-). Values are mean ± 

SE. Different letters indicate significantly different means (Student’s T-test, p<0.05) 

between treatments, within the same cation (N=5). 

Cation Treatment 

Root surface uptake 

(mg g
-1

 root DW) 

Normalized root-to-shoot 

translocation 

Na
+
 E108 121.28±6.26 A 1.62±0.19 a 

S+B- 157.39±11.21 B 1.67±0.32 a 

Ca
++

 E108 42.60±3.33 A 1.84±0.24 a 

S+B- 73.60±8.61 B 1.85±0.71 a 

K
+
 E108 138.68±3.28 A 2.07±0.17 a 

S+B- 262.02±30.97 B 2.86±0.81 a 

Mg
++

 E108 11.39±0.48 A 1.35±0.28 a 

S+B- 18.03±1.37 B 2.02±0.95 a 
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Figure Legends 

 

Fig 1 (a) Bacterial genera isolated from the meadows “Münzenberg” (Germany; 50° 279´ 

360´´ N; 8° 449´ 350´´ E), in the four sampling campaigns (b) Relative abundance of the 

five functional groups as resulted from bacterial isolation on different function-specific 

enrichment media (ACC= potential ACC-Deaminase producers; IAA = potential Indol-

Acetic-Acid producers; PHO= potential phosphate mobilizers; PHY= potential phytate 

mobilizers; NF = potential nitrogen fixators). 

 

Fig 2 Salt stress resistance of Hordeum vulgare (barley), calculated as percentage ratio 

between the fresh weight in presence of salt and without salt (boxes and whiskers represent 

mean ± SE, respectively). Effect of inoculation with single bacterial isolates or with the 

mix of all isolates (MIX) is compared with the uninoculated H. vulgare (S+ B-). Asterisks 

indicate means significantly different from control treatment “S+B-“ (LSD Post-hoc test, 

p< 0.05) 

 

Fig 3 Percentage of relative increase (bars indicate mean ± SE) of both biomass and water 

content, separately shown for leaves and stems. Effect of inoculation with single bacterial 

isolates or with the mix of all isolates (MIX), compared with the uninoculated H. vulgare 

(treatment “S+ B-“). Asterisks indicate means significantly different from control 

treatment “S+B-“ (LSD Post-hoc test, p< 0.05) 

 

Fig 4 Germination rate of barley calculated on five pots (15 seeds per pot) eight days after 

sowing. Box and whiskers represent mean ± SE, respectively. The effect of the inoculation 

with single bacterial isolates (E108 or E110) and with the bacterial mixture (E108+E110) 

under salt stress is compared with uninoculated H. vulgare without salt stress (treatment 

“S-B-“), with H. vulgare inoculated with dead bacteria (treatment “S+D”) and with 

uninoculated H. vulgare (treatment “S+B-“). Different letters indicate significantly 

different means at p<0.05 (LSD Post-hoc test) 

 

Fig 5 Salt stress resistance of H. vulgare, calculated as percentage ratio between the fresh 

weight in presence of salt and without salt (boxes and whiskers represent mean ± SE, 

respectively). The effect of the inoculation with single bacterial isolates (E108 or E110) 

and with the bacterial mixture (E108+E110) under salt stress is compared with 
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uninoculated H. vulgare without salt stress (treatment “S-B-“), with H. vulgare inoculated 

with dead bacteria (treatment “S+D”). Different letters indicate significantly different 

means at p<0.05 (LSD Post-hoc test) 

 

Fig 6 Percentage of relative increase (RI; mean ± SE) of both biomass and water content, 

separately calculated for leaves, stems and roots. The effect of the inoculation with single 

bacterial isolates (E108 or E110) and with the bacterial mixture (E108+E110) under salt 

stress is compared with uninoculated H. vulgare without salt stress (treatment “S-B-“), 

with H. vulgare inoculated with dead bacteria (treatment “S+D”). Different letters indicate 

significantly different means at p<0.05 (LSD Post-hoc test) 
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Fig 6 

 

 

 

 

 

 

 



                                                                                                                                                Chapter 2 

72 
 

Supplement 1 Physico-chemical properties of the Classic Tonsubstrat ED 73 substrate 

(Einheitserde- und Humuswerke Gebr. Patzer GmbH & Co.KG, Sinntal – Altengronau, 

Germany), the substrate used for the plant assays. 

 

Physico-chemical parameter Value 

pH (CaCl2) 5.8 

KCl 2.5 g l
-1

 

EC 0.3–0.9 mS cm
-1

 

Nitrogen (CaCl2) 250 mg l
-1

 

Phosphate (CAL) 300 mg l
-1

 

Kalium (CAL) 400 mg l
-1

 

Sulphur (fresh mass) 200 mg l
-1

 

Magnesium (fresh mass) 700 mg l
-1
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Supplement 2 Scheme of the salt stress application to H. vulgare (barley) for the two plant 

growth promotion assays in greenhouse. Salt stress was induced by watering the pots with 

NaCl solutions to increasing NaCl concentration in the substrate. DAG: Days after 

germination. 
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Supplement 3 CFUs (a) and MPN (b) cell numbers of plant growth-promoting bacteria 

determined for four sampling times. The numbers are expressed as per g of dry 

rhizospheric soil. 

Plant 

rhizosphere 

Medium
*  

 

1
st 

 Sampling 

(December 2005) 

2
nd

 Sampling 

(July 2006) 

3
rd 

Sampling 

(October 2006) 

4
th

 sampling 

(May 2007) 

Aerobic heterotrophic Bacteria 

 P. winteri K7 (a) 

      (b) 

3.0 x10
9 
 

6. 910
10

  

1.28x10
11

 

4.5 10
10

 

2.9 10
9
 

5.3 10
8
 

7.3 10
10

 

2.3 10
10

 

 H. secalinum K7 (a) 

      (b) 

nd 
**

 

nd 

1.5 10
10

  

5.4 10
9 
 

1.8 10
9 
 

6.2 10
8 
 

1.2 10
11

 

2.5 10
10

 

Nitrogen-fixing Bacteria 

 P. winteri LG  (a) 3.3 10
9
 1.7 10

11
 8.8 x10

9
 1.3 10

9
 

NFb (b) > 2.0 10
7
 (#) 5.3 10

10
 1.010

9
 3.8 10

10
 

 H. secalinum LG  (b) nd 1.510
9
 1.110

10
 2.9 10

10
 

NFb (b) nd 5.4 10
9
 1.310

9
 2.5 10

10
 

Phosphate-mobilising & Phytate-mobilising Bacteria 

 P. winteri CP  (a) 1.1 10
8
 9.4 10

9
 2.5 10

8
 1.3 10

9
 

IHP (b) > 2.0 10
7 

(#) 5.3 10
10

 2.1 10
8
 1.1 10

9
 

 H. secalinum CP  (a) nd 4.3 10
8
 5.2 10

8
 7.1 10

9
 

IHP (a) nd 3.4 10
8
 1.3 10

9
 6.2 10

9
 

ACC-Deaminase-producing Bacteria 

 P. winteri DF (b) 2.0 10
7 

(#) 5.3 10
10 

 1.0 10
9
 1.1 10

10
 

 H. secalinum DF (b) nd 4.0x10
10

 6.810
9
 2.5 10

9
 

IAA-producing Bacteria 

 P. winteri LBT (a) nd 2.2 10
11

 8.8 10
8 
 1.4 10

10
 

 H. secalinum LBT (a) nd 1.7 10
9
 1.7 10

9
 6.7 10

9
 

 

* 
Selective media used for enrichment of different functional groups: K7 = complex 

medium, LG and NFb (N-free media) = nitrogen fixers; DF + ACC as only N-source: 

ACC-deaminase producers; CP (mineral medium with calcium phosphate): phosphate 

solubilizers; IHP (phytate containing mineral medium): Phytate solubilizers; LB + 

tryptophan: IAA producers.
 

** nd= not determined 

# = All dilution steps were overgrown; therefore the actual MPN cell number is expected 

to be higher. 
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Supplement 4 Bacterial isolates obtained by enrichment on specific culture media. 

Sampling campaign, 16S rDNA-based taxonomical identification, isolation source and 

isolation medium (with corresponding functional activity) are shown. 

 

Sampling 

date 

Isolate 

name 

Result of Identify Analysis 

(EZTaxon) 

Sequence 

length 

 (bp) 

Similarity 

(%) 

Isolation 

source 

Isolation 

medium 

Activity 

Dec 05 E1 Sphingobium xanthum (KF437579) 534 99.25 Plantago NFB NF 

Dec 05 E4 'Albirhodobacter marinus' (FR827899) 

Paracoccus caeni (GQ250442) 

556 98.92 

95.55 

Plantago IHP PHY 

Dec 05 E5 Serratia plymuthica (AJ233433) 531 99.24 Plantago IHP PHY 

Dec 05 E8 Pseudomonas brassicacearum 

(AF100321) 

605 99.67 Plantago DF-ACC ACC 

Dec 05 E9 Sphingomonas sanxanigenens 

(DQ789172) 

568 98.24 Plantago LG NF 

Dec 05 E10 Streptomyces bacillaris (AB184439) 419 100 Plantago LG NF 

Dec 05 E14 Bacillus aryabhattai (EF114313) 550 100 Plantago CP PHOS 

Dec 05 E15 Micrococcus luteus (CP001628) 484 99.79 Plantago CP PHOS 

Dec 05 E19 Hartmannibacter diazotrophicus 

(KC567245) 

1426 100 Plantago CP PHOS 

Dec 05 E20 Cellvibrio diazotrophicus (JQ922426) 1474 98.08 Plantago LG NF 

Jul 06 E21 Streptomyces coeruleorubidus 

(AJ306622) 

452 98.64 Hordeum LG NF 

Jul 06 E22 Mucilaginibacter sabulilitoris 

(JQ739458) 

1429 99.30 Hordeum LG NF 

Jul 06 E23 'Albirhodobacter marinus' (FR827899) 

Paracoccus caeni (GQ250442) 

589 98.95 

94.90 

Plantago LG NF 

Jul 06 E24 Ensifer garamanticus (AY500255) 931 96.99 Plantago LG NF 

Jul 06 E25 Pseudomonas corrugata (D84012) 679 94.15 Hordeum NFB NF 
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Jul 06 E26 Rhizobium selenitireducens (EF440185) 560 98.04 Plantago NFB NF 

Jul 06 E27 Ensifer garamanticus (AY500255) 880 97.95 Plantago NFB NF 

Jul 06 E28 Bacillus safensis (AF234854) 524 99.81 Hordeum CP PHOS 

Jul 06 E29 Streptomyces rishiriensis (AB184383) 503 100 Hordeum CP PHOS 

Jul 06 E30 Bacillus safensis (AF234854) 594 99.81 Hordeum CP PHOS 

Jul 06 E31 Pseudomonas kilonensis (AJ292426) 574 99.82 Hordeum CP PHOS 

Jul 06 E32 Ancylobacter dichloromethanicus 

(EU589386) 

576 99.82 Plantago CP PHOS 

Jul 06 E33 Bacillus safensis (AF234854) 640 99.02 Plantago CP PHOS 

Jul 06 E34 Curtobacterium pusillum (AJ784400) 632 99.20 Plantago CP PHOS 

Jul 06 E37 Variovorax paradoxus (D88006) 593 99.65 Hordeum IHP PHY 

Jul 06 E37II Stenotrophomonas rhizophila 

(AJ293463) 

603 98.77 Hordeum IHP PHY 

Jul 06 E38 Microbacterium natoriense (AY566291) 518 98.61 Hordeum IHP PHY 

Jul 06 E39 Stenotrophomonas rhizophila 

(AJ293463) 

591 99.15 Hordeum IHP PHY 

Jul 06 E40 'Albirhodobacter marinus' (FR827899) 

Gemmobacter tilapiae (HQ111526) 

559 99.45 

95.21 

Plantago IHP PHY 

Jul 06 E41 'Albirhodobacter marinus' (FR827899) 

Paracoccus caeni (GQ250442) 

537 99.04 

95.58 

Plantago IHP PHY 

Jul 06 E42 'Albirhodobacter marinus' (FR827899) 

Paracoccus caeni (GQ250442) 

510 99.20 

96.55 

Plantago LBT IAA 

Oct 06 E47 Mycobacterium aurum (X55595) 688 99.47 Hordeum LG NF 

Oct 06 E48 Rheinheimera hassiensis (JQ922423) 1412 100 Hordeum LG NF 

Oct 06 E49 Rheinheimera muenzenbergensis 

(JQ922424) 

1416 100 Hordeum LG NF 

Oct 06 E50 Cellvibrio diazotrophicus (JQ922426) 1409 100 Hordeum LG NF 

Oct 06 E51 Rhizobium alkalisoli (EU074168) 621 98.82 Plantago LG NF 

Oct 06 E54 Mycobacterium aurum (X55595) 679 99.15 Plantago LG NF 

Oct 06 E55 Streptomyces goshikiensis (AB184204) 646 98.91 Plantago LG NF 

Oct 06 E57 Rothia amarae (AY043359) 646 99.64 Plantago LG NF 

Oct 06 E59 Sphingomonas ginsenosidimutans 

(HM204925) 

551 100 Hordeum NFB NF 
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Oct 06 E60 Pseudoxanthomonas japonensis 

(AB008507) 

626 99.47 Hordeum NFB NF 

Oct 06 E61 Sphingomonas ginsenosidimutans 

(HM204925) 

555 100 Hordeum NFB NF 

Oct 06 E62 Sphingobium limneticum (JN591313) 612 97.85 Plantago NFB NF 

Oct 06 E63 Arthrobacter russicus (AB071950) 459 100 Plantago NFB NF 

Oct 06 E64I Dyadobacter ginsengisoli (AB245369) 598 98.6 Plantago NFB NF 

Oct 06 E64II Sphingobium limneticum (JN591313) 649 96.11 Plantago NFB NF 

Oct 06 E65 Streptomyces bacillaris (AB184439) 585 100 Hordeum CP PHOS 

Oct 06 E66 Tistrella mobilis (AB071665) 1453 100 Hordeum CP PHOS 

Oct 06 E67 Bacillus safensis (AF234854) 616 99.63 Hordeum CP PHOS 

Oct 06 E69 Streptomyces sanyensis (FJ261968) 583 100 Hordeum CP PHOS 

Oct 06 E70 Rhizobium leguminosarum (JH719379) 602 99.00 Hordeum CP PHOS 

Oct 06 E71 'Enterobacter oryzendophyticus' 

(JF795011) 

Enterobacter ludwigii (AJ853891) 

612 100 

 

99.67 

Plantago CP PHOS 

Oct 06 E74 Sphingomonas sanxanigenens 

(DQ789172) 

1409 98.36 Plantago CP PHOS 

Oct 06 E75 Bacillus safensis(AF234854) 577 99.81 Plantago CP PHOS 

Oct 06 E78 Streptomyces malachitospinus 

(AB249954) 

624 99.20 Plantago CP PHOS 

Oct 06 E80 Nocardioides hankookensis (EF555584) 628 98.54 Plantago CP PHOS 

Oct 06 E83 Bacillus simplex (AB363738)  580 99 Plantago CP PHOS 

Oct 06 E85 Labrenzia suaedae (GU322907). 644 97.66 Plantago CP PHOS 

Oct 06 E87 'Albirhodobacter marinus' (FR827899) 

Pseudorhodobacter antarcticus 

(FJ196030) 

581 99.11 

95.05 

Hordeum IHP PHY 

Oct 06 E88 Pseudomonas geniculata (AB021404) 564 99.24 Hordeum IHP PHY 

Oct 06 E89 Photobacterium halotolerans 

(AY551089) 

1546 100 Plantago IHP PHY 

Oct 06 E90 Rhizobium mesoamericanum 

(JF424606) 

621 98.43 Plantago IHP PHY 

Oct 06 E92 Dickeya dadantii (AOOE01000052) 628 96.72 Plantago LBT IAA 

Oct 06 E93 Microbacterium oxydans (Y17227) 678 100 Plantago LBT IAA 
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May 07 E101 Lysinibacillus xylanilyticus (FJ477040) 698 100 Hordeum LBT IAA 

May 07 E102 Lysinibacillus xylanilyticus (FJ477040) 652 97.88 Hordeum LBT IAA 

May 07 E103 Lysinibacillus xylanilyticus (FJ477040) 701 100 Hordeum LBT IAA 

May 07 E104 Tistrella bauzanensis (GQ240228) 622 99.66 Plantago LBT IAA 

May 07 E105 Sphingopyxis taejonensis (AF131297) 581 100 Hordeum IHP PHY 

May 07 E106 Pseudomonas corrugata (D84012) 637 99.83 Hordeum IHP PHY 

May 07 E107 Sphingopyxis taejonensis (AF131297) 602 100 Hordeum IHP PHY 

May 07 E108  Curtobacterium flaccumfaciens 

(AJ312209) 

576 99.82 Plantago IHP PHY 

May 07 E109 'Albirhodobacter marinus' (FR827899) 

Paracoccus caeni (GQ250442) 

624 99.00 

95.46 

Plantago IHP PHY 

May 07 E110 Ensifer garamanticus (AY500255) 614 97.87 Plantago IHP PHY 

May 07 E111 Mesorhizobium gobiense (EF035064) 578 99.64 Hordeum NFB NF 

May 07 E112 Pedobacter koreensis (DQ092871) 598 97.65 Hordeum NFB NF 

May 07 E113 Arcicella rosea (AM948969) 543 100 Hordeum NFB NF 

May 07 E114 Rhizobium giardinii (ARBG01000149) 662 95.91 Plantago NFB NF 

May 07 E115 Streptomyces flavovirens (AB184834) 627 99.84 Plantago NFB NF 

May 07 E117 Pseudoxanthomonas spadix 

(AM418384) 

532 98.85 Plantago NFB NF 

May 07 E118 Streptomyces pratensis (JQ806215) 636 100 Hordeum LG NF 

May 07 E119 Streptomyces zaomyceticus (AB184346) 636 99 Hordeum LG NF 

May 07 E122 Pseudomonas corrugata (D84012) 622 99.83 Hordeum LG NF 

May 07 E123 Mesorhizobium metallidurans 

(CAUM01000060) 

534 100 Hordeum LG NF 

May 07 E124 Bordetella trematum (AJ277798) 613 99.67 Hordeum LG NF 

May 07 E125 Mycobacterium hodleri (X93184) 510 98.62 Hordeum LG NF 

May 07 E128 Streptomyces pratensis (JQ806215) 526 100 Plantago LG NF 

May 07 E129 Rhizobium sphaerophysae (FJ154088) 602 99.65 Plantago LG NF 

May 07 E130 Ancylobacter rudongensis (AY056830) 543 97.76 Plantago LG NF 

May 07 E131 Cellulomonas humilata (X82449) 601 99.49 Plantago LG NF 

May 07 E132 Flavobacterium resistens (EF575563) 649 96.04 Plantago LG NF 

May 07 E134 'Streptomyces siamensis' (AB773848) 

Streptomyces spiroverticillatus 

(AB249921) 

605 99.30 

98.60 

Hordeum DF-ACC ACC 
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May 07 136A Bacillus simplex 1393 100 Hordeum DF-ACC ACC 

May 07 136B Bacillus simplex 1401 100 Hordeum DF-ACC ACC 

May 07 E146 Streptomyces canus (AY999775) 621 100 Hordeum CP PHOS 

May 07 E147 Bacillus subtilis (AMXN01000021) 617 99.03 Hordeum CP PHOS 

May 07 E148 Bacillus safensis (AF234854) 599 99.83 Plantago CP PHOS 

May 07 E151 Micromonospora fulviviridis (X92620) 578 99.47 Plantago CP PHOS 

May 07 E155 Streptomyces arenae (AB249977) 392 99.49 Hordeum CP PHOS 

May 07 E157 Bacillus subtilis (AMXN01000021) 556 99.82 Plantago CP PHOS 

 

ACC = ACC-Deaminase production; PHOS = Phosphate mobilization; PHY = Phytate 

mobilization; NF = Nitrogen fixation; IAA = Indol-Acetic-Acid production 
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Supplement 5 Cation content of Hordeum vulgare plants. Values indicate means ± SE 

(N=5), while different letters indicate significantly different means within the same cation 

(Tukey HSD test, P<0.05). 

Cation Habitat Treatment 

Concentration 

(mg g
-1

 DW) 

Total intake 

(mg pot
-1

) 

Na
+
 Leaves E108 25.61±1.19 ab 18.53±1.15 a 

    S+B- 21.69±2.35 bc 7.01±0.99 b 

  Stems E108 30.16±2.30 a 17.44±1.32 a 

    S+B- 27.40±3.31 ab 5.85±1.01 b 

  Roots E108 17.25±1.20 c 6.00±0.54 b 

    S+B- 15.13±1.41 c 1.31±0.14 c 

          

Ca
++

 Leaves E108 11.93±0.96 a 8.64±0.83 a 

    S+B- 12.46±0.72 a 4.47±0.82 b 

  Stems E108 7.25±0.34 bc 4.22±0.32 b 

    S+B- 8.72±0.09 b 2.00±0.36 c 

  Roots E108 5.38±0.32 c 1.86±0.14 c 

    S+B- 7.66±2.31 bc 0.58±0.05 c 

          

K
+
 Leaves E108 33.50±0.77 b 24.17±0.71 a 

    S+B- 41.87±0.44 a 14.67±2.50 b 

  Stems E108 31.51±0.33 b 18.31±0.97 b 

    S+B- 39.75±1.55 a 9.41±1.89 c 

  Roots E108 18.81±0.54 c 5.46±0.22 cd 

    S+B- 15.74±2.28 c 1.35±0.18 d 

          

Mg
++

 Leaves E108 2.55±0.16 ab 1.85±0.15 a 

    S+B- 2.66±0.11 a 0.90±0.14 c 

  Stems E108 2.49±0.13 ab 1.44±0.09 b 

    S+B- 2.84±0.09 a 0.65±0.12 c 

  Roots E108 1.91±0.09 bc 0.66±0.03 c 

    S+B- 1.78±0.50 c 0.14±0.03 d 
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Summary 

The newly designed plant liquid growth system allows evaluation of NaCl salt stress effect 

on barley plants but in order to evaluate a bacterium plant growth-promoting effect using 

this system it is needed the use of germ-free plantlets or seeds. Analysis for bacteria 

vertically transfer in seeds is remarkably important for plant microbe interaction studies 

under gnotobiotic conditions. The subsoil sand mixture in Mitscherlich pots allows to 

evaluate barley plants growth under nitrogen nutritional deficiencies, different P 

fertilization sources and salt stress effect in growth chamber conditions.  

1. Material and methods 

 

1.1 Seeds surface sterilization and bacterial inoculum 

Barley (Hordeum vulgare L. cultivar Morex or cultivar Propino) seeds were surface 

sterilized using a solution with final 3 % bleach concentration (Hurek et al., 1994) and 

washed seven times under gentle agitation for 10 min with sterile water. Growth curves of 

the strains (Appendix 1) were measured in TSB (strains E48
T
 and E50

T
) and/or marine 

broth half concentration (strain E19
T
) under optimal conditions to determinate cell 

concentrations needed in liquid culture for the inoculation process in bacteria-plant 

interaction experiments. The parameters of absorbance and cells per ml were obtained by 

measuring the OD with a spectrophotometer (Genesys 10UV, Thermo Spectronic) at 600 

nm. The OD was calibrated using a Thomma counting chamber (Labor Optik, Germany). 

With these values the regression curve from the log phase for each strain was calculated. In 

all cases results of cell ml
-1

 were confirmed by counting colony forming unit per ml (CFU 

ml
-1

). In order to produce bacterial inoculums for plant experiment, selected strains were 

grown in their respective media under best growth conditions (Suarez et al., 2014 a,b,c), 

centrifuged at 3345 g and resuspended in 30 mM MgSO4 solution to reach a 10 
7– 10 

8
 

CFU  ml
-1

 concentration in exponential growth phase.  

1.2 Gnotobiotic system 

Surface sterilized barley (Hordeum vulgare L. cv. Morex) seeds were placed in petri dishes 

containing sterile filter paper, moisturized with 3 ml of sterile distillated water, and 



                                                                                                                                            Chapter 3 

83 

 

incubated for 48 h at 25 °C in darkness. Plantlets were placed in sterile 50 ml tube with 25 

ml of grown culture of strain Rheinheimera hassiensis strain E48
T
 (Suarez et al., 2014b) 

and incubated for 1 h at 28 °C in darkness under slow agitation. Inoculated plantlets were 

transfer to glass tubes (4 cm width X 14 cm length) filled with 100 g autoclaved quartz 

sand and 10 ml of sterile plant nutrient solution 5 mM Ca(NO3)2, 1 mM K2SO4, 0.2 mM 

KH2PO4, 0.6 mM MgSO4, 0.5 mM CaCl2, 10 μM H3BO3, 2 μM MnSO4, 0.5 μM ZnSO4, 

0.3 μM CuSO4, 0.01 μM(NH4)6Mo7O24, 0.2 μM Fe-EDTA (Hatzig et al., 2009). 

Greenhouse conditions for plant growth were 1000 lux, 20 C during day and 14 C during 

night for 1 week. For sampling shoots (leaf blades + sheaths) and roots of the 5 inoculated 

and uninoculated plants were separated and collected in separated paper bags, and their 

fresh weights were recorded. Dry biomass accumulation and water content were assessed 

after 3 days drying at 80 °C.  

1.3 Plant growth liquid system  

Surface sterilized barley (Hordeum vulgare L. cv. Morex) seeds were peeled under sterile 

conditions using forceps and placed individually in SG agar (yeast extract, peptone, 

glucose, and agar) for 72 h at 25 °C in darkness in order to detect bacterial growth and 

provide conditions for seed germination (Fig. 1A). Seedlings that presented none bacterial 

growth on the agar SG where transfer with forceps under sterile conditions to 50 ml sterile 

centrifugation tubes (Falcon; Becton Dickinson, Paramus, N.J.). Bacterial inoculum of 

Cellvibrio diazotrophicus E50
T
 (Suarez et al., 2014c) was added to the tube containing the 

seedlings and incubated for 2 h at 28 °C in darkness under slow agitation (Fig.1B). 

Inoculated plantlets were transfer to sterile rubber plugs (1.7 cm, 2 cm length), with a 

central hole of approximately 0.5 cm, placing the root system at the lower part of rubber 

plug to protect it from light influence, and immediately fixed with sterile agar 1.5 % 

(50 °C). Four rubber plugs with the fixed plantlets were transfer to round grey plastic racks 

(4.5 cm diameter x 3 cm depth) and placed in sterile transparent plastic boxes (9.5 x 8.0 x 

12 cm) filled with 175 ml CaSO4 1 mM solution. (Fig.1C). The boxes were placed under 

controlled conditions for 72 h daylight from 06:00 to 22:00 (artificial light switched off 

when natural light exceeded 10 Klx), and temperature of 20 °C and 16 °C (day and night, 

respectively). 
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Fig.1. Surface sterilized barley (H. vulgare L. cv. Morex) seeds plantlets. A) 72 h plantlets on SG agar 

tubes; B) Plantlets incubated with inoculums of C. diazotrophicus E50
T
; C) transparent plastic boxes 

containing plastic racks with inoculated plantlets fixed in the rubber plugs. 

Plantlets fixed in the rubber plugs were transfer to a root sterile liquid system with 2 l 

capacity (Fig 2A). Plant nutrient solution was supplied to the system laterally at ~160 ml 

min
-1

 under sterile conditions by transferring the corresponding sterile solution from a 2 l 

glass flask (Schott, Mainz, Germany), connected through a hose to the system, by air flow 

strength generating an overpressure in the Schott flask with an air pump (Marina model 

200, Hagen Germany) injecting filtrated air through a 0.2 μm pore membrane (Sarstedt 

Nümbrecht, Germany) (Fig. 2B). Liquid was removed from the system at around 250 ml 

min
-1

 by gravity and slight overpressure through a fluid outlet at the bottom of the vessel. 

To maintain plant root and bacterial growth under oxygen conditions filtered sterile air was 

supplied the liquid medium of the system through a hose entering the system from the top 

and ending at the lateral bottom of the vessel using an air pump (Marina model 200, Hagen 

Germany) at a 90 l h
-1

 flow. An air outlet was located on the top of the system covered by a 

0.2 μm pore membrane filter.  

Plant nutrient solution (PNS) containing 5 mM Ca(NO3)2, 1 mM K2SO4, 0.2 mM KH2PO4, 

0.6 mM MgSO4, 0.5 mM CaCl2, 10 μM H3BO3, 2 μM MnSO4, 0.5 μM ZnSO4, 0.3 μM 

CuSO4, 0.01 μM (NH4)6Mo7O24, 0.2 μM Fe-EDTA (Hatzig et al., 2009). Conductivity was 

measured for all solution with conductivity meter (Model 3110) with measuring cell 

(TetraCon 325) (WTW, Weilheim Germany).  
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Fig.2. Root sterile liquid systems A) Liquid sterile system disposition; B) Liquid sterile system functioning 

diagram. 

Experimental design was set to obtain five homogeneous plants inoculated with strain 

E50
T
 and five un-inoculated homogeneous plants grown for 45 days in plant nutrient 

solution at 0 mM, 100 mM and 150 mM NaCl concentration respectively. Solutions were 

changed every 5 days in order to maintain equal conditions through the experiment and to 

increase the salt concentration stepwise as described in Table 1, and pH was set to 6.5.   

Table.1. Barley (H. vulgare L. cv. Morex) plant growth conditions though experimentation describing the 

day plan of the plant nutrient solution concentration and its NaCl concentration stepwise increase with their 

respective electrical conductivity in dS m
-1

. 

NaCl plant nutrient 

solution 

concentration 

Day Plant nutrient 

solution 

concentration 

Day dS m
-1

 

SG agar 0 - 0 - 

Sterile rubber in 

plastic boxes 

3 ¼ 3 0.34 

0 mM 7 ½ 7 0.65 

25 mM 12 ½ 12 3.31 

50 mM 17 ½ 17 6.18 

75 mM 22 ½ 22 8.71 

100 mM 27 ½ 27 11.15 

125 mM 32 ½ 32 13.39 

150 mM 37 ½ 37 15.87 

150 mM 42 ½ 42 15.87 
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Plant sampling for this assay was done after 45 days of growth from shoots and roots of the 

5 plants of each treatment measuring their length. Plant material was collected in separated 

paper bags and their fresh weights recorded. Dry biomass accumulation and water content 

were assessed after 3 days drying at 80 °C. In order to determine rhizospheric CFU ml
-1

 

approximately 0.2-0.5 grams from different parts of the root system were cut, placed in a 

50 ml centrifugation tube (Falcon), weighted and 9 ml sodium pyrophosphate 0.18% was 

added. After 30 min gentle shaking 0.1 ml of the dilutions 10
5
-10

7
, from decimal serial 

dilution in NaCl 0.9 %, were inoculated in TSA and incubated for 48 h 28 °C. For 

endorhizospheric the sampled roots used previously for rhizospheric analysis were 

immersed for 10 min in a 1 % sterile chloramine solution followed by 5 times washes with 

PBS 1X and shortly place and moved over TSA agar using forceps. Subsequently, the root 

samples were transfer to a Stomacher bag containing 9 ml 1X PBS sterile solution, shaken 

120 s in high speed and pressed on a mortar using a pestle. Obtained suspension (1 ml) was 

used to make a decimal serial dilution in NaCl 0.9 % and 0.1 ml from dilutions 10
1
-10

3
 

was inoculated on TSA and incubated for 48h 28 °C. CFU ml
-1

 of each corresponded 

treatment were counted and colonies with different morphological characteristics were 

used for PCR colony amplification of their 16S rRNA gene using PCR protocol using 

EUB9f (9-27) and EUB 1492r primer pair (Lane, 1991) as described by Kampmann et al. 

(2012). The PCR products were cleaned using the QIA quick PCR purification kit (Qiagen, 

Hilden, Germany) and sequenced by the company LGC genomics (Berlin, Germany). The 

obtained 16S rRNA gene sequences of the isolates were compared with relatives retrieved 

from the GenBank database using the MEGA software version 5.0 (Tamura et al., 2011). 

1.4 Sub soil plant growth promotion experiment using Mitscherlich pots.  

 

1.4.1 Plant growth promotion experiment under nitrogen deficiency and 

insoluble phosphate source 

Twenty surface sterilized seeds of Hordeum vulgare L. cv. Propino seeds (Syngenta, Bad 

Salzuflen Germany) inoculated with Hartmannibacter diazotrophicus strain E19
T 

were 

seeded evenly with tweezers in Mitscherlich pots containing a mixture of 3.25 kg of 

subsoil (Appendix 3) and 3.25 kg quartz sand. The soil in the pots were treated, in order to 

avoid deficiencies, with 160 mg N (NH4NO3),  100 mg P (Ca(H2PO4)2*H2O), 400 mg K 

(K2SO4), 50 mg Mg (MgSO4 x 7 H2O), 0.46 mg B (H3BO3), 0.11 mg Mo ((NH4)6MoO24 x 
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4H2O), 40 mg Mn (MnSO4 x H2O), 10 mg Zn (ZnSO4*7H2O) and 5 mg Cu (CuSO4*5H2O) 

mg (kg soil)
-1

 respectively and similarly as Steffens et al. (2010). In order to set treatment 

for nitrogen deficiency the nitrogen source was reduced to 16 mg N NH4NO3 (kg soil)
-1

 

and treatment with water insoluble phosphate source was 100 mg P Ca3(PO4)2 mg (kg 

soil)-
1
 instead of the water soluble source Ca(H2PO4)2 H2O. Twenty days after sowing, 

barley plants were fertilized with 83.3 mg N (NH4NO3) (kg soil)
-1 

excluding those settled 

under nitrogen deficiency. Water-holding capacity was kept at 60 % with tap water 

throughout all experimentation.  

Seven days after sowing 10 homogeneous seedlings were left for experimentation 

removing non-homogeneous and extra seedlings. For all treatments, Mitscherlich pots with 

un-inoculated seeds were set in same growth conditions to evaluate plant growth 

promotion by the inoculated bacteria. After 8 days of the first inoculation, a re-inoculation 

of 200 ml of bacterial suspension of strain E19
T
 was applied to all pots belonging to this 

treatment and 200 ml of 30 mM MgSO4 solution to un-inoculated treatments. Plant growth 

conditions were 16 h at 22 °C with light and 8 h at 18 °C with darkness at 60 % of relative 

humidity in growth chamber (Weiss-Technik, Umwelttechnik GmbH, Reiskirchen).  

Plant sampling for this assay was done after 35 days of growth after sowing. For sampling 

shoots (leaf blades + sheaths) were measured and cut with scissors 1 cm over subsoil 

mixture surface. Shoots from each pot were collected in separated paper bags, and their 

fresh weights recorded. Dry biomass accumulation and water content were assessed after 3 

days drying at 80 °C. CFU from rhizosphere and endorhizosphere from pots inoculated 

plants with strain E19
T
 where analyzed in order obtain predominant colonies to determine 

the presence of the strain. For this 0.2-0.5 grams from different parts of the root were cut, 

placed in a 50 ml centrifugation tube, weighted and 9 ml sodium pyrophosphate 0.18 % 

added. After 30 minutes gentle shaking 0.1 ml of the dilutions 10
4
-10

7
, from decimal serial 

dilution in NaCl 0.9 %, were inoculated on calcium phosphate agar (CP) containing 1 % 

saccharose, 0.01 % NaCl, 0.05 % MgSO4.7H2O, 0.02 % yeast extract, 0.05 % NH4Cl, 

0.01 % MnSO4.H2O, Ca3O8P2 0.5 %, 0.5 % (v/v) bromocresol green (0.5 % in 0.2M KOH) 

and 1.5 % agar, and incubated for 48 h 28 °C. For assessment of endorhizospheric bacteria 

the sampled roots used previously for rhizospheric analysis were immersed for 10 min in a 

1 % sterile chloramine solution followed by 5 times washing with PBS 1X and shortly 

place and moved over TSA and half marine agar using forceps. Subsequently, the root 
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samples were transfer to a Stomacher bag containing 9 ml 1X PBS sterile solution, shaken 

120 sec in high speed and pressed on a mortar using a pestle. 1 ml of obtained suspension 

was used to make a decimal serial dilution in NaCl 0.9% and 0.1 ml from dilutions 10
1
-10

3
 

was inoculated on CP agar and incubated for 48h 28°C. Several colonies with similar 

growth characteristics of strain E19
T
 on CP agar were sub-cultured on CP agar and their 

colony morphology, catalase activity and microscopic characteristics compared with strain 

E19
T
 characteristics. Selected colonies were used for PCR colony amplification of their 

16S rRNA gene using PCR protocol using EUB9f (9-27) and EUB 1492r primer pair 

(Lane, 1991) as described by Kampmann et al. (2012). The PCR products were cleaned 

using the QIA quick PCR purification kit (Qiagen) and randomly restricted using 

endonucleases HpaII and Hin6I. Restriction products were separated by electrophoresis in 

2.75 % TBE-agarose gel. As control it was use E19
T
 genomic DNA restricted under same 

conditions in order to compare ARDRA pattern of the16S rRNA gene PCR products for 

the selected isolates. 

1.4.2 Plant growth promotion experiment using different phosphate sources 

under salt stress  

H. diazotrophicus E19
T
 was isolated as phosphate-mobilizing bacterium (Suarez et al. 

2014C) and therefore its ability to support plant growth under limited phosphate conditions 

was tested. Twenty surface sterilized seeds of Hordeum vulgare L. (cultivar Propino) seeds 

(Syngenta, Bad Salzuflen Germany) inoculated with H. diazotrophicus E19
T 

were seeded 

evenly with tweezers in Mitscherlich pots containing a mixture of 3.25 kg of subsoil 

(Appendix 1) and 3.25 kg quartz sand. The soil in the pots was treated with 160 mg N 

(NH4NO3), 400 mg K (K2SO4), 50 mg Mg (MgSO4 x 7 H2O), 0.46 mg B (H3BO3), 0.11 mg 

Mo ((NH4)6MoO24 x 4H2O), 40 mg Mn (MnSO4 x H2O), 10 mg Zn (ZnSO4*7H2O) and 5 

mg Cu (CuSO4*5H2O) mg (kg soil)
-1

 respectively and similarly as Steffens et al. (2010). 

Pots where adjusted with NaCl to generate salt stress conditions at 15 ds m
-1

 and with 

different P fertilization at 100 mg P kg soil
-1

 for either Ca(H2PO4)2, GAFSA, or organic P 

as phytate dodeca-sodium salt (Na-hexaphytate, C6H6O24P6Na12) (Sigma- Aldrich, USA). 

In order to observed P fertilization effect and salt stress effect, pots without P fertilization 

under salt stress and pots under non salt stress fertilized with highly soluble phosphate 

form Ca(H2PO4)2 were settled. Twenty days after sowing, barley plants were fertilized 
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with 83.3 mg N (NH4NO3) kg soil
-1

. Water-holding capacity was kept at 60 % with tap 

water throughout experimentation. 

Seven days after sowing 10 homogeneous seedlings were left for experimentation 

removing non-homogeneous and extra seedlings. For all treatments, Mitscherlich pots with 

un-inoculated seeds were set in same growth conditions to evaluate plant growth 

promotion. After 8 days of the first inoculation, a re-inoculation of 200 ml of bacterial 

suspension of E19
T
 was applied to all pots belonging to this treatment and 200 ml of 

30 mM MgSO4 solution to un-inoculated treatments. Plant growth conditions were 16 h at 

22 °C with light and 8 h at 18 °C with darkness at 60 % of relative humidity in growth 

chamber (Weiss-Technik, Umwelttechnik GmbH, Reiskirchen).  

Plant sampling for this assay was done after 35 days of growth after sowing. For sampling 

shoots (leaf blades + sheaths) were cut with scissors 1 cm over subsoil mixture surface. 

Shoots from each pot were collected in separated paper bags, and their fresh weights 

recorded. Dry biomass accumulation and water content were assessed after 3 days drying 

at 80 °C.  

1.5 Statistical analysis  

Statistical differences of the different experiments were performed using Shapiro-Wilk test 

to check the normal distribution of the data. The analysis of variances was performed using 

ANOVA and either Tukey HSD or Fisher LSD post-hoc test at p<0.05 were assessed using 

software Statistica (Statsoft Inc., Tulsa, USA) version 12. 

2. Results 

2.1 Gnotobiotic system 

A gnotobiotic system was used in order to analysis plant growth interaction of R. 

hassiensis strain E48
T
 and

 
surface sterilized barley (H. vulgare L. cv. Morex) seeds. 

However, it was not possible to obtained homogeneous growth parameters on the fresh and 

dry weight due to the strong attachment of sand particles to the whole root surface altering 

these values (Fig.3). 

http://en.wikipedia.org/wiki/Normal_distribution
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Fig.3. Attachment of sand to the root system on H. vulgare L. (cultivar Morex) inoculated with strain E48
T
. 

2.2 Plant growth liquid system  

Barley (H. vulgare L. cv. Morex) plants grown in PNS with no NaCl added to liquid 

medium presented significant differences in shoot length, shoot and root fresh and dry 

weights values compared with plants grown in PNS settled at 100 and 150 mM NaCl 

concentration. Fresh and dry weight values for shoots and roots, and shoot length results 

showed that there were no significant differences between the plants inoculated with C. 

diazotrophicus strain E50
T
 and uninoculated plants neither in PNS settled at 100 and 150 

mM NaCl concentration nor PNS with no NaCl added (Table 2).  

Table.2. Effects of C. diazotrophicus strain E50
T
 on barley (H. vulgare L. cv. Morex) plants grown in PNS 

with no NaCl added and settled at 100 and 150 mM NaCl concentration, after 45 days growth. Average ± 

standard error from 5 replications. Different letters indicate significantly different means (Tukey HSD, 

p<0.05).  DW, dry weight; FW, Fresh weight; gms, grams. 

Inoculation PNS 

NaCl 

(mM) 

Root DW 

(gms) 

Shoot DW 

(gms) 

Root FW 

(gms) 

Shoot FW 

(gms) 

Root  length 

(cm) 

Shoot length 

(cm) 

Ctrl 0 0,43 ± 0.10 a 1,85 ± 0.18 a 8,69 ± 2.14 a 15,38 ± 2.76 a 56,00 ± 10.61 a 65,00 ± 3.48 a 

E50T 0 0,47 ± 0.10 a 2,31 ±0.53 a 8,86 ± 2.04 a 18,45 ± 3.68 a 54,33 ± 6.53 ab 72,82 ± 4.55 a 

Ctrl 100 0,20 ± 0.05 b 0,77 ±0.19 b 2,96 ± 0.27 b 5,57 ± 1.76 b 28,90 ± 6.07 b 51,00 ± 5.88 b 

E50T  100 0,24 ±0.07 b 0,75 ±0.26 b 3,03 ± 0.89 b 5,60 ± 1.67 b 33,00 ± 10.56 ab 50,20 ± 6.21 b 

Ctrl 150 0,24 ± 0.04 b 1,03 ± 0.26 b 3,45 ± 0.37 b 7,02 ± 1.62 b 40,10 ± 21.77 ab 53,20 ± 5.30 b 

E50T  150 0,26 ± 0.09 b 0,97 ± 0.30 b 3,20 ± 0.55 b 6,36 ± 1.65 b 42,60 ± 16.46 ab 53,78 ± 6.04 b 

Root length values showed higher significant differences between un-inoculated plants 

grown in PNS with no NaCl added compared with those inoculated with strain E50
T
 under 

same conditions. No significant root length difference was observed between inoculated 

and un-inoculated plants grown in PNS settled to 150 mM NaCl, whereas this difference 

was significant in plants grown in nutrient solution settled at 100 mM NaCl (Table 2). A 

two-factor ANOVA of these data showed a significant effect of NaCl adjusted PNS (F14, 36 

= 5.89, p <0.001), a no significant effect for the inoculation of strain E50
T 

(F7, 18 = 1.67, 
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p=NS) and a non significant interaction between them in the growth of barley (H. vulgare 

L. cv. Morex) plants (F14,36 = 0.88, p=NS) (appendix 2.1.1). 

Table.3. Results for CFU ml
-1 

of rhizosphere and endorhizosphere of H. vulgare L. cv. Morex plants grown 

in PNS non NaCl added and adjusted to 100 and 150 mM NaCl concentration inoculated and uninoculated 

with strain E50
T
. 

 
Average ± standard error from 4 replications. Different letters indicate significantly 

different means (Tukey HSD, p<0.05). 

PNS Rhizophere (CFUml-1) 
 

Endorhizosphere (CFU ml-1) 

NaCl [ ] Ctrl E50T 
 

Ctrl E50T 

0 mM 1.5± 1.5 109 a 2.1 ± 0.3 108 a 
 

5.2 ± 3.4 103 x 1.9 ± 0.8 104 x 

100 mM 2.0 ± 3.7 109 a 2.2 ± 0.7 108 a 
 

6.1 ± 4.7 105 x 5.6 ± 1.5 105 x 

150 mM 6.2 ± 1.6 108 a 2.2 ± 1.1 108 a 
 

5.1 ± 5.5 105 x 3.8 ± 3.1 105 x 

Results for CFU ml
-1 

of rhizosphere of H. vulgare L. cv. Morex plants grown in PNS non 

NaCl added and adjusted to different NaCl concentration inoculated and uninoculated with 

strain E50
T
 (Table 3), presented no significant differences (F2,18 = 0.63, p=NS) (Appendix 

2.1.2). Similarly, endorhizospheric CFU ml
-1

 values of barley plants grown in PNS non 

NaCl added and adjusted to different NaCl concentration inoculated and uninoculated with 

strain E50
T 

presented no significant differences (Table 3). There was no significant 

interaction between inoculation of strain E50
T
 and the different NaCl adjusted PNS on the 

endorhizospheric CFU ml
-1

 barley (H. vulgare L. cv. Morex) plants (F2,18 = 0.10, p=NS) 

(appendix 2.1.3). From the TSA agar plates used for CFU ml
-1

 analysis from rhizosphere 

and endorhizosphere predominant characteristic colonies were identified by their partial 

16S rRNA gene sequence (Table 4). 

  

Fig.4. SG tube agar used to confirm seed surface sterilization A) 2 days seedlings H. vulgare L. cv. Morex 

growth on SG agar, B) Same SG agar tube after 15 days incubation at 28 °C.  

After surface sterilization of barley (H. vulgare L. cv. Morex) seeds and incubated for 72 h 

no presence of bacteria was observed (Fig. 4A). But after 15 days incubation of the 
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respective SG agar tubes from where the plantlets used for this study come from bacterial 

growth was observed. Colonies predominant in this step from this experiment and previous 

similar experiments from the same seed batch were isolated and identified by their partial 

16S rRNA gene sequence (Table 4). 

 

Table.4. Blast similarity of the partial 16S rRNA gene sequences from isolated colonies from rhizosphere 

and endorhizosphere CFU m
-1

l analysis, and colonies isolated from SG agar after seed sterilization over 

incubation.  

Source of isolation Isolate Length  ID Blast No. access ID 

% 

Plant rhizosphere inoculated with 

strain E50T 

IA1 1061 Pseudomonas sp. BBI9 GQ868355 100 

Plant rhizosphere inoculated with 

strain E50T  

IA2 1009 Cellvibrio diazotrophicus E50T JQ922446 99 

Plant rhizosphere uninoculated. IA3 946 Curtobacterium flaccumfaciens 

A4-16  

JF496347 99 

SG agar tube (after seed surface 

sterilization) 

C5EA 989 Curtobacterium flaccumfaciens 

A4-16 

JF496347 99 

Previous experiment (after seed 

surface sterilization) 

SB1 1052 Microbacterium phyllosphaerae 

KUDC1780 

KC355287 99 

Previous experiment (after seed 

surface sterilization) 

C13EA 1059 Pseudomonas sp. AW4  HQ911371 100 

  

2.3 Plant growth promotion under nitrogen deficiency and insoluble phosphate 

source 

Since H. diazotrophicus strain E19
T 

was isolated as phosphate-mobilizing bacterium and 

able to fix nitrogen, its ability to promote growth of summer barley (H. vulgare L. cv. 

Propino) under nitrogen deficiency and a water insoluble phosphate source was tested. 

Experiments were done in the growth chambers with Mitscherlich pots containing a 

mixture of 3.25 kg subsoil (appendix 3) and 3.25 kg quartz sand. 

After 35 days growth no significant differences in shoot fresh or dry weight were obtained 

within plants inoculated with strain E19
T
 and strain E19

T
 dead biomass under nitrogen 

deficiency (Fig. 5).  



                                                                                                                                            Chapter 3 

93 

 

 

E19T

N2 Deficiency (10 % 

N2 respect to 

control) 

Ca3(PO4)2

Low bacterial 

solubility

Ca(H2PO4)2 H2O

High solubility

(Control) 

Dead Biomass

Plant growth effect of strain E19T under deficiency and non-

deficiency conditions without salt stress

•Duration: 35 

days

•Sub soil

•Conditions: 

16 h  20 °C /   8 

h 14 °C

10 Klux

 

Fig.5. Mitscherlich pot experiment evaluating plant growth effect of H. diazotrophicus strain E19
T 

in summer 

barley (H. vulgare L. cv. Propino) under nitrogen deficiency and different phosphate sources without salt 

stress after 35 days growth. 
 

Results from summer barley plants fertilized with water soluble phosphate source 

Ca(H2PO4)2 H2O and water insoluble phosphate Ca3(PO4)2 mg (kg soil)
-1

 inoculated with 

strain E19
T  

and inoculated with strain E19
T
 dead biomass showed no significant difference 

in shoot fresh weight, but presented statistically significant differences on shoots dry 

weight.  

Also, neither in shoots fresh or dry weights there were significant differences within the 

summer barley plants inoculated with strain E19
T 

and inoculated with E19
T
 dead biomass 

in treatment with nitrogen deficiency (Fig. 6).  

A two-factor ANOVA of these data showed a significant effect of nitrogen deficiency, or 

water soluble or insoluble phosphate sources fertilization (F4, 46 = 181.5, p <0.001), a 

significant effect for the inoculation of strain E19
T 

(F2, 23 = 15.6, p <0.001) but no 

significant interaction between them in the growth of summer barley (H. vulgare L. cv. 

Propino) plants (F4,46 = 2.3, p=NS)(appendix 2.2.1).  
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Fig 6. Effects of H. diazotrophicus strain E19
T 

on summer barley (H. vulgare L. cv. Propino) plants grown 

under non salt stress fertilized with different phosphate sources or deficiency in nitrogen. Different letters 

indicate significantly different means (Tukey HSD, p<0.05). Ctrl, treatments inoculated with strain E19
T
 

dead biomass. 

Results from CFU ml
-1

 analysis from rhizosphere and endorhizosphere summer barley 

plants inoculated with strain E19
T
 fertilized with different P sources and under N 

deficiency on agar CP are shown in Table 5.  

Results from rhizosphere summer barley plants fertilized with nitrogen deficiency and 

fertilized with water insoluble phosphate Ca3(PO4)2 inoculated with strain E19
T 

and 

inoculated with strain E19
T
 dead biomass showed no significant difference in CFU ml

-1
, 

whereas rhizosphere CFU ml
-1 

on the treatment fertilized with 
 
water soluble phosphate 

source Ca(H2PO4)2 H2O inoculated with strain E19
T  

and inoculated with strain E19
T
 dead 

biomass presented a significant differences. CFU ml
-1

 endorhizosphere showed no 

significant differences neither by different fertilization nor inoculation with strain E19
T 

and 

inoculated with strain E19
T
 dead biomass.  

Statistical analysis of these data showed no significant effect of nitrogen deficiency or 

water soluble or insoluble phosphate sources fertilization treatments (F4,10 = 9.3, p=NS), no 

significant effect for the inoculation of strain E19
T 

(F2,5 = 12.8, p=NS) and no significant 
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interaction between them on the CFU ml
-1

 at the rhizosphere and endorhizosphere (F4,10 = 

8.4, p=NS)(appendix 2.2.2) 

Table.5. Rhizosphere and endorhizosphere CFU ml
-1 

on CP agar from summer barley plants inoculated with 

strain E19
T
 fertilized with different P sources or under N deficiency with non salt stress. Average ± standard 

error from 2 replications. Different letters indicate significantly different means (Tukey, HSD p<0.05). 

Fertilization Inoculation Rhizosphere (CFU ml-1) Endorhizosphere (CFU ml-1) 

Ca(H2PO4)2 H2O E19T 5.25 ± 1.06 108 a 4.40 ± 2.26 103 x 

Ca(H2PO4)2 H2O Dead Biomass E19T 8.70 ± 10.3 107 b 9.05 ± 12.7 103 x 

Ca3(PO4)2 E19T 9.75 ± 8.84 106 b 7.50 ± 3.54 102 x 

Ca3(PO4)2 Dead Biomass E19T 3.80 ± 3.11 107 b 1.58 ± 0.10 103 x 

Nitrogen deficiency E19T 3.6 ± 4.8 107 b 1.0 ± 0.0 104 x 

Nitrogen deficiency Dead Biomass E19T 3.80 ± 0.14 107 b 2.33 ± 3.07 103 x 

Fifty colonies isolated from the agar CP plates used for rhizosphere and endorhizosphere 

CFU ml
-1

 were sub-cultured in agar CP and their colony morphology, catalase activity and 

microscopic characteristics compared with strain E19
T
 growth on CP under same 

conditions. A PCR amplification product of the 16S rRNA gene of 6 possible isolates with 

similar characteristics to E19
T
 and their 16S rRNA gene were restricted with enzymes 

HpaII and Hin6I using as control a PCR amplification product of the 16S rRNA gene of 

strain E19
T
 from a genomic DNA extraction (Fig. 7). For all isolates analyzed none of 

them corresponded to the 16S rRNA gene restriction pattern of the strain E19
T
 strain 

profiles and some of them have the same restriction pattern between them.  

A B C D E HF I A B C D E IH F

A : 168 N3

B:  173 N3

C:  174 N1

D:  177 N3

E:  177 N5

F:  178 N5

H:  E19 G-DNA 1:10 dill

I:    E19 G-DNA 1:100 dill

HpaII Hin6I

Ϯ.7ϱ% agarose gel; ϭϮϬ‘ + ϰϱ‘; ϭϬϬbp marker

colonie-PCR with MrPrimer

 

Fig.7. ARDRA pattern of the16S rRNA gene PCR products, using the endonucleases HpaII and Hin6I for the 

selected isolates with similar colony morphology, catalase activity and microscopic characteristics to strain 
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E19
T 

isolated from the rhizosphere and/or endorhizosphere of summer barley plants grown in Mitscherlich 

pots under nitrogen deficiency or different phosphate sources without salt stress and inoculated with strain 

E19
T
. 

 

2.4 Plant growth promotion using different phosphate sources under salt stress   

H. diazotrophicus strain E19
T 

was tested in vivo for the ability to promote growth of 

summer barley (H. vulgare L. cv. Propino) under salt stress and different phosphate 

sources. Experiments were done with Mitscherlich pots containing a mixture of 3.25 kg of 

subsoil (Appendix 3) and 3.25 kg quartz sand fertilized with 100 mg P (kg soil
)-1

 of water 

soluble phosphate Ca(H2PO4)2H2O, GAFSA, organic P and a treatment without P 

application, respectively in growth chamber conditions. Pots under non salt stress fertilized 

with highly soluble phosphate form Ca(H2PO4)2H2O were settled in order to evaluated salt 

stress effect. 

Ca(H2PO4)2*H2O

High solubility

+ Salt

Rock phosphate

+ Salt

P0 +salt Ca(H2PO4)2*H2O

High solubility

No Salt

Na-

Hexaphosphate 

+ Salt

Plant growth effect of summer barley with 

different Phosphate sources under salt stress 
15 dS m-1 35 days

 

Fig.8. Mitscherlich pot experiment evaluating plant growth effect of H. diazotrophicus strain E19
T 

in summer 

barley (H. vulgare L. cv. Propino) fertilized with different phosphate sources under salt stress after 35 days 

growth. 
 

After 35 days growth significant differences were obtained within all different phosphate 

sources variables under salt stress (Fig. 8), although no significant differences were 

observed in shoot fresh and dry weights within summer barley plants inoculated with strain 

E19
T 

and those inoculated with E19
T
 dead biomass among all different phosphate sources 

tested under salt stress (Fig. 9). Shoot fresh and dry weights of summer barley plants 

grown in pots containing water soluble phosphate Ca(H2PO4)2 without salt stress presented 
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the best growth but as well as in the other P sources pots under salt stress there were no 

significant differences within plants inoculation with strain E19
T 

or E19
T
 dead biomass 

(Fig. 9). A two-factor ANOVA of these data showed a significant effect of different 

phosphate sources fertilization under salt stress (F8, 58= 82.5, p <0.001), a no significant 

effect for the inoculation of strain E19
T 

(F2, 29 = 2.59, p=NS), and no significant interaction 

between them in the growth of summer barley (H. vulgare L. cv. Propino) plants (F8,58 

=1.78, p=NS)(appendix 2.2.1) 

B B

A A
CC

DD

A AB B
C C E E

E E

D D

 

Fig.9. Mitscherlich pot experiment evaluating plant growth effect of H. diazotrophicus strain E19
T 

in summer 

barley (H. vulgare L. cv. Propino) fertilized with different phosphate sources under salt stress after 35 days 

growth. Different letters indicate significantly different means (Tukey HSD, p<0.05).  

3. Discussion 

The evaluation of the plant growth effect R. hassiensis strain E48
T
 and

 
surface sterilized 

barley (H. vulgare L. cv. Morex) seeds in the gnotobiotic system presented difficulties due 

to the strong attachment of sand particles to the whole root surface which did not allow to 

determine root biomass and to localize the bacteria on the root. The gnotobiotic system is 

widely used to evaluate bacterial root colonization and bacterial cell concentration. Some 

of the advantages of a gnotobiotic system are better reproducibility, allow to test bacterium 

on the root in absences of indigenous bacterial competitor as occurs in soil and it makes 
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simple to test individually the interaction effect with other bacteria, fungi or protozoae 

Simons et al. (1996).   

The used gnotobiotic system was not suitable for sterile root experiments allowing growth 

over a time period of weeks thus in order to evaluate root colonization, bacterial cell 

numbers, plant growth parameters and increase stepwise NaCl concentration in PNS the 

plant growth liquid system (numeral 1.3) was designed. The plant growth liquid system 

allowed the correct stepwise increase of PNS adjusted to different NaCl concentration and 

their corresponding electrical conductivity as shown in Table 1. The induction of salt stress 

was confirmed statistically and by the negative effect on all plant growth parameters of the 

barley plants grown at 100 and 150 mM NaCl adjusted concentration in PNS (Table.2).   

Even though, there was no significant effect by the inoculation of E50
T
 on barley plants, 

the presence of strain E50
T
 through experimentation was confirmed by its isolation (isolate 

IA2) from the CFU plates colonies sampled from E50
T
 inoculated barley plants 

rhizosphere samples at the end of the experiment (Table.4). Furthermore inoculation of 

strain E50
T
 at barley seedling stage with an active inoculum at 10

8
 cells ml

-1
concentration 

can be assume as enough to colonize root surface barley seedling. In accordance, Simons et 

al. (1996) reported 80 to 90 % root tip surface colonization of 7 days old tomato grown 

seedlings inoculated with Pseudomonas fluorescens WCS365 at a concentration of 10
7
 - 

10
8
 CFU ml

-1
 in a gnotobiotic system.  

One of the objectives of the plant growth liquid system was to keep gnotobiotic conditions, 

in which all microorganisms are either known or excluded, during all experimentation to 

evaluate the interaction of strain E50
T
 with barley (H. vulgare L. cv. Morex) seeds. 

Different kind of colonies where isolated from CFU ml
-1

 from rhizosphere and 

endorhizosphere (Table 4), confirming that neither the plant liquid growth system was able 

to keep sterile conditions nor the seed surface sterilization process was not successful 

although it was optimized in respect of disinfectant concentration and time.  

Several colonies with isolate IA3 characteristics were isolated from inoculated and 

uninoculated endorhizosphere barley plant samples. Furthermore, isolate C5EA, with same 

colony characteristic of isolate IA3, grow on SG agar tube after 72 h incubation probably 

because it was not present on the seed surface but in the spermoplasm and thus seed 
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surface sterilization process was not effective to eliminate its growth. Blast similarity of 

16S rRNA gene identification of isolates C5EA and IA3 showed both isolates sequences 

similarity with Curtobacterium flaccumfaciens A4-16 (JF496347).  

Member of the genus Curtobacterium have been frequently reported as bacterial seed 

endophytes (Truyens et al., 2014) as PGPR, Curtobacterium flaccumfaciens ME1 

(Raupach and Kloepper, 1998), and as phytopathogen Curtobacterium flaccumfaciens pv. 

flaccumfaciens (EPPO/CABI, 1997). Curtobacterium flaccumfaciens pv. flaccumfaciens is 

transmitted both within and on the seed, it is very resistant to drying and it can remain 

viable for long periods in stored seeds (EPPO/CABI, 1997; Camara et al., 2009). For 

instance, presence of several isolates with similar characteristics as isolates C5EA and IA3 

in endorhizosphere samples and after surface seeds sterilization lead to hypothesize that all 

corresponded to a same strain of Curtobacterium flaccumfaciens and it may be vertically 

transmitted in the barley (H. vulgare L. cv. Morex) seeds used for this experiment. 

Although, several attempts to improve sterilization protocol and different batch of seeds 

from cv Morex to eliminate the presence of Curtobacterium flaccumfaciens colonies could 

not be achieved.  

For further experimentation the commercial available summer barley (H. vulgare L. cv. 

Propino) was selected in order to replace the use of barley (H. vulgare L. cv. Morex). For 

evaluation of plant growth promotion by H. diazotrophicus strain E19
T 

on summer barley 

(H. vulgare L. cv Propino) mixtures of subsoil, sand and mineral salts were used to set 

plant growth conditions with nutritional deficiencies, different P fertilization sources 

fertilization and salt stress adjustment in Mitscherlich pots under growth chamber 

conditions. Similarly, Steffens et al. (2010) used sub soil to determined the bioavailability 

of phytate soil P for various plant species due to the fact that it contains low organic-

matter, restricts microbial activity, and provides low nutritional conditions that can be 

adjusted by mineral salt or fertilizers supplementation.  

In both experiments, the effect on summer barley plant by nitrogen deficiency, water 

soluble and insoluble phosphate sources fertilization under no salt stress, and by different 

phosphate sources fertilization under salt stress in Mitscherlich pots were statistically 

significant confirming that the nutritional effects set for the experiments were reached. 

However, plant growth promotion by PGPR has been reported to have a prominent 
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beneficial effect on limited resources in poor soils (Ramos Solano et al., 2006), no 

significant interaction between the nutritional effects evaluated, in both Mitscherlich pots 

experiments, and inoculation of E19
T
 were observed. Although, post hoc analysis of the 

dry weight of shoots of plants fertilized with water soluble phosphate Ca(H2PO4)2 and 

water insoluble phosphate Ca3(PO4)2 sources under no salt stress showed an effect of strain 

E19
T
. It is important to remark that the parameters evaluated corresponded to the plant 

shoot and not to the complete plant biomass and that the effect of the inoculation could be 

determined in a biomass increase of the whole plant including the roots and not only the 

shoots.   

An attempt to isolate and to confirm presence of strain E19
T
 at rhizosphere or 

endorhizosphere of inoculated summer barley plants cv Propino grown in Mitscherlich 

pots was unsuccessful. Isolates were compared based on colony morphology, catalase 

activity and microscopic characteristics similarities, and for those with similar 

characteristics a comparison of their 16S rRNA gene restriction pattern showed that none 

corresponded to strain E19
T
. It was expected to isolate strain E19

T
 colonies from 

rhizosphere or endorhizosphere samples due to its high inoculated concentration on the 

barley seeds and the expected low microbial activity in the used mixture of sand and 

subsoil. Agar CP was used for CFU ml
-1

 counting and in for isolation due that it is the 

originally agar media used for its isolation (Suarez et al., 2014a) and because it selectively 

allow the growth of PSBs. CP agar allowed great variety of colonies including colonies 

with similar evaluated characteristics. Also, allowed rapid growth colony bacteria 

development that hampered to confirm E19
T
 strain presence in the samples by this method.  
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Appendix 

1. Strains E48
T
, E50

T
 and E19

T
 growth conditions used in for bacterial inoculums 

production for plant growth promoting experiments. 

Strain Media Temperature 

(°C) 

Time (h) Agitation 

(rpm) 

E19
T
 Marine bouillon half 

concentration 

28  36 150 

E48
 T

 TSB 28  24 150 

E50
 T

 TSB 28  24 150 

 

2. Statistical Analysis 

2.1 Statistical results of the effects of C. diazotrophicus strain E50
T
 on barley (H. 

vulgare L. cv. Morex) plants grown in PNS  

2.1.1 ANOVA analysis of effects of C. diazotrophicus strain E50
T
 on barley (H. 

vulgare L. cv. Morex) plants grown in PNS with no NaCl added and settled at 100 

and 150 mM NaCl concentration, after 45 days growth.  

 

Post hoc results 
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2.1.2  ANOVA analysis and post hoc for results for CFU ml
-1 

of rhizosphere of H. 

vulgare L. cv. Morex plants grown in PNS non added and adjusted to 100 and 150 

mM NaCl concentration inoculated and uninoculated with strain E50
T
 

 

 

2.1.3 ANOVA analysis and post hoc for results for CFU ml
-1 

endorhizosphere H. 

vulgare L. cv. Morex plants grown in PNS non added and adjusted to 100 and 

150 mM NaCl concentration inoculated and uninoculated with strain E50
T
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2.2 Statistical results of effects of H. diazotrophicus strain E19
T 

on summer barley (H. 

vulgare L. cv. Propino) plants grown under non salt stress fertilized with different 

phosphate sources or deficiency in nitrogen. 

2.2.1 ANOVA and post hoc analysis for Mitscherlich pot experiment evaluating 

plant growth effect of H. diazotrophicus strain E19
T 

in summer barley (H. vulgare 

L. cv Propino) under nitrogen deficiency and different phosphate sources without 

salt stress 

 

 

 

2.2.2 ANOVA and post hoc analysis of rhizosphere and endorhizosphere CFU ml
-1 

on 

CP agar from summer barley plants inoculated with strain E19
T
 fertilized with 

different P sources or under N deficiency with non salt stress 
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2.3  ANOVA and post hoc analysis for Mitscherlich pot experiment evaluating plant 

growth effect of H. diazotrophicus strain E19
T 

in summer barley (H. vulgare L. cv 

Propino) fertilized with different phosphate sources under salt stress. 
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3. Sub Soil physicochemical characteristics 

Texture  

Texture  Percentage (%) 

Sand 44.92 

Silt 34.71 

Clay 20.38 

pH-value (0.01 M CaCl2) = 6.4 

M after Schachtschabel 287.8 mg Mg kg
-1

 Soil 

 Percentage (%) 

Ct 0.169 

Nt 0.031 

St 0.027 

CAL-K  23.35 mg K kg
-1

 soil              

CAL-P  6.30 mg P kg
-1

 soil 

DTPA extractable 

micronutrients 

mg kg
-1

  soil 

Cu 0.57  

Mn 14.40 

Fe 30.85 

Zn 0.63 

 

NO3-N (0.01 M CaCl2) 5.17 mg N kg-
1
  soil 

NH4-N (0.01 M CaCl2) 0.43 mg N kg
-1

  soil 

Norg-N (0.01 M CaCl2) 0.34 mg N kg
-1

  soil 

DOC (0.01 M CaCl2) 14.75 mg C kg
-1

 soil 

NO3-N1. + 2.EUF-Fraction 5.22 mg N kg
-1

  soil 
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Supplementary materials 

 

Supplementary Fig. S1.Electron micrograph of cells of strain E50
T
. Bar, 2 μm 

 

 

 

Supplementary Fig. S2. Light microscopy of flagella staining. A. Strain E20, B. Strain E50
T
 showing both a 

single polar flagella. (Bars, 5 μm.). 

 

B A 
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Supplementary Fig. S3.Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences for the 

strains E20, E50
T
 and members of the recognized Cellvibrio genus. Bootstrap percentages higher than 

70 (based on 1000 replicates) are showed at nodes. Bar, 0.02 substitutions per nucleotide position. 

Table S1. Fatty acids content (in % of total fatty acids) of strains E20, E50
T
, and type strains of other 

Cellvibrio species. Strains: 1, E20; 2, E50
T
; 3, C. gandavensis LMG 18551

T 
(Mergaert et al., 2003). 

Fatty acid 1 2 3 

  This 

s

t

u

d

y

Mergaert, et 

al. 

(200

3). 

C10:0 3.2 3,0 1.3 1.6-3.3 

C10:0 3-OH 5.2 4.5 2.3 3.0-6.5 

C11:0 3-OH - - - - 

C12:0 9.8 8.9 4.5 5.0-8.6 

C12:0 2-OH tr tr  - 

C12:1 3-OH - - 3.3 3.7-7.4 

C12:0 3-OH 6.2 5.4 3 - 

C14:0 3.5 3.4 - - 

C15:0 tr - tr 0.0-1.8 

C16:0 18.3 21.5 25 17.4-25.5 

C17:0 2.0 1.8 1.7 0.0-1.7 

C18:0 8.9 8.6 1.5 0.0-1.4 

C18:1
ω7c

 11.7 11.7 17 7.5-11.5 

C18:1
ω6c - - - - 

Summed feature 3 28.2 30.0 39.6 34.6-47.6 

Summed feature 5 - - - 0.0-1.1  

 

+, Detected, -, not detected; tr, trace (<1.0 %). Summed features are groups of two or three fatty acids that 

cannot be separated by GLC with the MIDI System. Summed feature 3 (C16:1
ω7c  

and/or iso- C15:0 2-

OH), Summed feature 5   (C18:2
 ω6,9c

and/or C
 18:0 

anteiso). 
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Supplementary material for 

 

Rheinheimera hassiensis sp. nov. and Rheinheimera muenzenbergensis sp. nov., two new isolates from 

the rhizosphere of Hordeum secalinum  

Christian Suarez
1
, Stefan Ratering

1, 2*
, Rita Geissler-Plaum

1 
and Sylvia Schnell

1
 

 

 

Supplementary Fig. S1. Electron micrographs of cells of strain A. E48
T
, B. E49

T
. Bar, 1 μm 

 

Supplementary Fig. S2. Light microscopy of flagella staining. A. Strain E48
T
, B. Strain E49

T
 showing both 

a single polar flagella. (Bars, 2 μm.). 

 

 

Supplementary Fig. S3. Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences for the 

strains E48
T
, E49

T
, members of the recognized Rheinheimera genus and some other related genera. 

Bootstrap percentages higher than 70 (based on 1000 replicates) are showed at nodes. Bar, 0.10 

substitutions per nucleotide position. 

B A 

A B 
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Supplementary Fig. S4. Maximum-parsimony phylogenetic tree based on 16S rRNA gene sequences 

for the strains E48
T
, E49

T
, members of the recognized Rheinheimera genus and some other related 

genera. Bootstrap percentages higher than 70 (based on 1000 replicates) are showed at nodes. Bar, 0.10 

substitutions per nucleotide position 

 

Supplementary Fig. S5. Neighbor-joining tree based on nifH gene sequences showing relationships between  

strains E48
T 

and nifH gene sequence containing species based on 344 bp sequences length. 

Leptospirillum ferrooxidans C2-3 was set as outgroup. Bootstrap percentages higher than 50 (based on 

1000 replicates) are showed at nodes. Bar, 0.02 substitutions per nucleotide position. 
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Supplementary Fig. S6. Neighbor-joining tree based on amino acids sequences showing relationships 

between  strains E48
T 

and NifH sequence containing species based on 115 amino acids sequences length 

alignment. Leptospirillum ferrooxidans C2-3 was set as outgroup. Bootstrap percentages higher than 50 

(based on 1000 replicates) are showed at nodes. Bar, 0.02 substitutions per amino acid position. 
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Supplementary material 

“Hartmannibacter diazotrophicus gen. nov., sp. nov., a novel phosphate-solubilizing and nitrogen-fixing 

alphaproteobacterium isolated from the rhizosphere of a natural salt meadow plant” Suarez et al. 
(2014) 

 

Supplementary Fig. S1. Light microscopy of flagella staining. Strain E19
T 

showing a single lateral 

flagellum. (Bar, 2 μm). 

 

Supplementary Table S1.The 16S rRNA gene similarity values for the strain E19
T
 with closest related16S 

rRNA gene bacteria sequences retrieved from GenBank database and EzTaxon database of type strains 

of recognized prokaryotic names. Similarity analysis was performed using ARB version 6. 

Name Strain Accesionnumber Similarity % 

Hartmannibacter diazotrophicus E19 T KC567245 100 

Sediment bacterium 23-01 EU167992 
99,8 

Sediment bacterium 23-02 EU167993 
99,7 

Rhizobium qilianshanense CCNWQLS01T JX117881 
93,5 

Rhizobium rhizoryzae J3-AN59 T EF649779 
93,5 

Labrenzia suaedae YC6927 T GU322907 
93,1 

Stappia stellulata IAM12621T D88525 
93,1 

Stappia indica R11 AB607869 
93,1 

Halomonas sp. JL1044 DQ985041 
93,1 

Rhizobium sp. ORS 1465 AY500261 
93,1 

Rhizobium tarimense CCBAU 83306 T EF035058 93,0 

Aureimonas phyllosphaerae L9-753 T JQ346806 93,0 

Mesorhizobium robiniae CCNWYC 115 T EU849582 93,0 

Stappia indica B106 T EU726271 
92,9 

Mesorhizobium mediterraneum LMG 17148T AM181745 92,9 

Methylopila jiangsuensis JZL-4 T FJ502233 92,8 

Labrenzia aggregata IAM 12614T AAUW01000023 92,8 

Pseudoxanthobacter soli CC4 T EF465533 92,8 

Aureimonas ureilytica 5715S-12T DQ883810 92,8 

Albibacter methylovorans DSM 22840T FR733694 92,7 

Rhizobium soli DS-42T EF363715 92,7 

Mesorhizobium temperatum SDW 018 T AF508208 92,7 

Methylopila musalis CCUG 61696 T JQ173144 92,6 

Rhizobium gallicum R-602 T U86343 92,6 

Rhizobium cellulosilyticum ALA10B2T DQ855276 92,6 
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Rhizobium huautlense S02 T AF025852 92,6 

Rhizobium alkalisoli CCBAU 01393T EU074168 92,6 

Aliihoeflea aestuarii N8T EF660756 92,6 

Mesorhizobium tianshanense A-1BS T AF041447 92,6 

Mesorhizobium muleiense CCBAU 83963 T HQ316710 92,6 

Shinella zoogloeoides IAM 12669 T AB238789 95,5 

Mesorhizobium metallidurans CFBP 7147 T AM930381 92,5 

Hansschlegelia zhihuaiae S 113 T DQ916067 92,4 

Kaistia soli 5YN9-8 T EF592609 92,4 

Labrenzia alba 5OM6 T AJ878875 92,4 

Rhizobium mongolense USDA 1844T U89817 92,4 

Phyllobacterium trifolii PETP02T AY786080 92,4 

Mesorhizobium tamadayense Ala-3 T AM491621 92,4 

Labrenzia alexandrii DFL-11T AJ582083 92,3 

Pleomorphomonas oryzae F7 T AB159680 92,3 

Pleomorphomonas koreensis Y9 T AB127972 92,3 

Mesorhizobium caraganae CCBAU 11299T EF149003 92,3 

Hoeflea anabaenae WH2K T DQ364238 92,2 

Mesorhizobium gobiense CCBAU 83330 T EF035064 92,2 

Mesorhizobium opportunistum WSM2075 T AY601515 92,2 

Mesorhizobium huakuii IFO 15243 T D13431 92,2 

Mesorhizobium amorphae ACCC 19665T AF041442 92,2 

Thermovum composti Nis3 T AB563785 92,1 

Labrenzia marina mano18T AY628423 92,1 

Sinorhizobium fredii ATCC 35423 T D14516 92,1 

Phylobacterium endophyticum PEPV15 T JN848778 92,1 

Thermovum composti Nis3 T AB563785 92,1 

Mesorhizobium tarimense CCBAU 83306 T EF035058 92,1 

Hansschlegelia plantiphila S113 T DQ404188 92,1 

Mesorhizobium septentrionale SDW 014 T AF508207 92,1 

Mesorhizobium plurifarium LMG 11892 T Y14158 92,1 

Rhizobium leguminosarum USDA 2370 T U29386 92 

Martelella mediterranea,  MACL11 T AY649762 92 

Breoghania corrubedonensis UBF-P1 T GQ272328 92 

Pannonibacter phragmitetus C6/19 T AJ400704 91,9 

Phyllobacterium brassicacearum STM 196 T AY785319 91,9 

Mesorhizobium chacoense PR5 T AJ278249 91,9 

Daeguiacaeni K107 T EF532794 91,9 

Phyllobacterium ifriqiyense STM 370 T AY785325 91,8 

Phyllobacterium bourgognense STM 201 T AY785320 91,8 

Nitratireductor lucknowense IITR-21 T HQ658355 91,8 

Phyllobacterium myrsinacearum STM 948 T AY785315 91,7 

Phyllobacterium leguminum ORS 1419 T AJ968695 91,7 

Hoeflea phototrophica DFL-43 T ABIA02000018 91,7 

Hoeflea suaedae YC6898T HM800935 91,7 

Mesorhizobium ciceri UPM-Ca7 T U07934 91,6 

Mesorhizobium australicum WSM2073 T AY601516 91,6 

Phyllobacterium catacumbae CSC19 T AY636000 91,6 

Hoeflea alexandrii AM1V30 T AJ786600 91,6 

Brucella ceti NCTC 12891 T AM158982 91,6 

Brucella pinnipedialis NCTC 12890 T AM158981 91,6 

Mesorhizobium loti LMG 6125 T X67229 91,5 

Mesorhizobium shangrilense CCBAU 65327 T EU074203 91,5 

Lutibaculum baratangense AMV1 T AWXZ01000027 91,5 
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Supplementary Fig. S2. Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences for 

strain E19
T 

(1426 bp), members of related families of the order Rhizobiales and Rhodobacterales, and 

representatives of class Alphaproteobacteria. Bootstrap percentages higher than 70 (based on 1000 

replicates) are showed at nodes. Escherichia coli ATCC 11775
T 

was used as out-group.Bar, 0.01 

substitutions per nucleotide position. 
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Supplementary Fig. S3. Maximum-parsimony phylogenetic tree based on 16S rRNA gene sequences for 

strain E19
T 

(1426 bp), members of related families of the order Rhizobiales and Rhodobacterales, and 

representatives of class Alphaproteobacteria. Bootstrap percentages higher than 70 (based on 1000 

replicates) are showed at nodes. Escherichia coli ATCC 11775
T 

was used as out-group.Bar, 0.10 

substitutions per nucleotide position. 
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Supplementary Fig. S4. Neighbor-joining tree based on nifH gene sequences showing relationships between  

strain E19
T 

and nifH gene sequence containing species based on 324 bp sequences length. Zymomonas 

mobilis subsp. pomaceae ATCC 29192 was set as out-group. Bootstrap percentages higher than 40 

(based on 1000 replicates) are showed at nodes. Bar, 0.02 substitutions per nucleotide position. 
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Supplementary Table S2. Fatty acid composition of strain E19
T
 and Stappia stellulata LMG 23382

T
. Cells 

were grown on marine agar at 28 °C for 48 h. Values are percentages of total fatty acids 

 

Fatty acid E19T St. stellulata 

LMG 

23382T 

C8:0 3-OH 0.2 - 

C10:0 3-OH 0.4 - 

C14:0  - 0.2 

Sum in feature 2 8.3 3.2 

C16:1 ω11c 0.8 0.4 

Sum in feature 3 1.1 1.1 

C16:0 6.1 7.2 

C16:0 3-OH 1.8 0.1 

C18:1 ω9c - 0.6 

C18:0 - 2.0 

C18:1 ω7c 71.4 62.1 

C18:1ω7c11 methyl - 16.9 

Sum in feature 7 - 1.9 

C19:0 10 methyl - 0.2 

C19:0 cycloω 8c 1.5 2.1 

C18:0 3-OH - 1.3 

C20:1ω7c - 0.2 

C20:0 7.9 0.3 

 

Summed features are groups of two or three fatty acids that it is not possible to be separated by GLC with the 

MIDI System: Summed feature 2 (C14:0 3-OH and/or iso-C16:1 I); summed feature 3 (C16:1ω7cand/or iso-

C15:0 2-OH); summed feature 7 (unknown 18.846 and/or C19:1ω6c) 

 

 

Supplementary Fig. S5. Polar lipids profile Hartmannibacter diazotrophicus E19
T
. Unidentified 

phospholipid (PL), phosphatidylglycerol (PG), phosphatidylcholine (PC), phosphatidylethanolamine 

(PE) and aminolipid (AL). 
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Abstract 

Soil salinization is a major concern of modern agriculture, specifically regarding irrigation 

and arid regions. However, plant growth promoting rhizobacteria (PGPR) can increase 

plant resistance to abiotic stress and represent an environmental friendly approach to 

alleviate salt stress in crops. The plant growth promoting (PGP) activities of 

Hartmannibacter diazotrophicus E19T, a new genus recently isolated from the rhizosphere 

of Plantago winteri from a natural salt meadow, were assessed in pure culture experiments 

and in vivo assays. ACC-deaminase activity for strain E19T at 1, 2 and 3 % NaCl were 0.56 

± 0.20, 1.29 ± 0.82 and 2.60 ± 1.2 μmol α-ketobutyrate mg protein-1 h-1 respectively, and 

production of IAA was not detected. H. diazotrophicus E19T inoculated summer barley 

seedlings exposed for 2 h to 200 mM and 400 mM NaCl stress showed reduced ethylene 

emission in comparison to uninoculated plantlets exposed to same conditions. Inoculation 

of barley plants (Hordeum vulgare L.) with strain E19T in non-sterile soil under salt stress 

conditions significantly increased root (308 %) and shoot (189 %) dry weight. The relative 

increase of water content in the root system was 378 % than the control treatment, and the 

root-to-shoot ratio more than double compared to control. H. diazotrophicus inoculation 

showed no effect on both Na+ and K+ concentration in leaf blades or sheaths, but decreased 

root surface sodium uptake. The capability of strain E19T to colonize barley roots under 

salt stress conditions was revealed with a specific designed fluorescence in situ 

hybridization (FISH) probe. H. diazotrophicus strain E19T positively promotes barley 

growth under salt stress conditions, and indicates that the mode of action is based on ACC-

deaminase production.  

 

Keywords: Hartmannibacter diazotrophicus, PGPR activity, FISH, 1-Aminocyclopropane-

1-Carboxylate (ACC)-deaminase, salt stress 
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1. Introduction 

Salinity affects about 20 % of all irrigated agricultural fields and over 7 % of the world 

land surface (Szabolcs, 1994), by reducing the ability of crops to take up water and by ion 

toxicity. The physiological consequences of this is the loss of the crops by inhibition of 

seed germination, seedling growth, flowering and fruit set (Sairam and Tyagi, 2004). 

Economical global annual costs by loss in crop production caused by salt-induced land 

degradation were estimated to be US$ 27.3 billion (Qadir et al., 2014). Moreover future 

climate change-predicted scenarios show the increasing risk of salinization at different 

latitudes, and therefore a special effort will be required for maintaining crop production 

under salt stress (Turral et al., 2011).  

 

It is widely reported that the application of plant growth promoting rhizobacteria (PGPR) 

influences plant growth by different mechanisms such as fixation of atmospheric nitrogen, 

solubilization and mobilization of phosphorus, sequestration of iron by siderophores, 

production of phytohormones, 1-aminocyclo-propane-1-carboxylate (ACC) deaminase, 

antibiotics, hydrogen cyanide, organic molecules such as vitamins, amino acids and 

volatile compounds and synthesis of hydrolytic enzymes (Babalola, 2010). Moreover, 

PGPR can also help plants to tolerate abiotic stresses such as salinity, drought, 

waterlogging and heavy metals e.g. by inducing systemic tolerance (Yang et al., 2009). 

Bacterial mediated plant tolerance to salt stress has been reviewed and includes diverse 

functional and taxonomical groups of bacteria (Dimkpa et al., 2009).  

One of the mechanisms of PGPR to alleviate salt stress is the synthesis of ACC deaminase 

in the rhizosphere, which lowers the level of ethylene accumulation in stressed plants 

(Glick et al., 1998; Mayak et al., 2004).  Ethylene is a modulator of growth and 

development in plants and is involved in the response of plants to stress. A sustained high 

level of ethylene, due to stress, would inhibit root elongation leading to an abnormal root 

growth, which would affect plant growth and development (Babalola, 2010). Bacteria 

producing ACC deaminase are able to promote root elongation and plant growth by 

lowering ethylene levels in the roots of developing plants (Dey et al., 2004). Diversity of 

rhizobacteria-mediated plant tolerance to salinity stress involving ACC deaminase activity 

in different plant species have been reviewed by Nadeem et al. (2010) and Paul and Lade 

(2014). ACC deaminase production has been reported in strains belonging to 
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Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes (Glick, 2014; Nadeem et al., 

2010). Nevertheless, no particular bacterial genus and species have the same genetic 

makeup and metabolic capabilities to consider a specific bacterial group as PGPR (Glick, 

2014).   

The use of PGPR is a promising agricultural practice to help salt affected crops to maintain 

an acceptable level of productivity under higher salt concentrations (Nadeem et al., 2012; 

Singh et al., 2011). Amelioration of adverse effect of salt stress by different rhizobacteria 

on several crops is reviewed by Paul and Lade (2014). Barley (Hordeum vulgare L.) is one 

of the world´s most extensively cultivated crops and the most salt tolerant cereal, reported 

to become seriously damaged only after extended periods at salt concentrations higher than 

250mM NaCl (equivalent to 50 % seawater) (Munns et al., 2006). To our knowledge not 

many studies have been done in plant growth promotion by PGPR on barley (Hordeum 

vulgare L.) (Omar et al., 2009; Chang et al., 2014; Hmaeid et al., 2014; Nabti et al., 2014) 

probably due to its natural salt tolerance compared to other agricultural crops such as corn, 

soybean, wheat, tomato and rice. Therefore, increasing research on PGPR strains to 

ameliorate salt plant stress on barley will help to improve its natural tolerance on fields and 

also its potential use in remediation of salt-impacted soils (Chang et al., 2014). 

Salt impacted environments are sources of potential PGPR able to ameliorate salt stress in 

agriculture. Meta-analysis of publicly available 16S rRNA gene sequences suggested that 

in saline soil habitats less than 25 % of bacterial diversity has been recovered using 

molecular techniques (Ma and Gong, 2013) and only a small part has been isolated. Recent 

studies on PGPR from salt environments reported the presence of a possible new species 

´Haererehalobacter´, (Jha et al., 2012) and  new species, with plant-growth promotion 

potential (Suarez et al., 2014a, 2014b, 2014c; Gontia et al., 2011) 

We hypothesized that a bacterium naturally occurring in a naturally salinized soil and 

coevolved over long time with salt resistant plants could be a suitable alleviator of salt 

stress on crops such as barley. Therefore, we tested the in vitro and in vivo PGP activities 

of a new genus recently isolated in our laboratory from a natural salt meadow (Suarez et 

al., 2014a). We investigated the effect of H. diazotrophicus on growth of summer barley 

(H. vulgare L.) in a greenhouse experiment with non-sterile soil and under high salinity. 
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2. Material and methods 

2.1 Bacterial strain and cultivar 

H. diazotrophicus E19T (Suarez et al., 2014a) was grown routinely in half concentrated 

marine broth (Carl Roth GmbH, Germany) at 28 °C. Liquid cultures were incubated 48 h 

in an orbital shaker, at 28 °C and 150 rpm. The strain does not grow on NaCl < 1%. 

Optimal growth occurs at NaCl concentration of 1-3%. The strain is available by the LMG 

and KACC culture collection under the code LMG 27460T and KACC 17263T. For all 

plant assays, the cultivar Propino of summer barley (Hordeum vulgare L.) was used. 

2.2 Plant growth promotion activities in vitro 

ACC-deaminase activity was determined by the amount of α-ketobutyric acid generated 

from the cleavage of ACC following the protocol proposed by Penrose and Glick (2003) 

with following modifications: Strain E19T was growth in 20 ml half marine broth (Roth) 

for 48 h at 28 °C and in order to evaluate enzyme activity under different salt concentration 

DF minimal salt medium supplemented with ACC (Penrose and Glick, 2003) was adjusted 

at 1, 2 and 3 % NaCl final concentration. Reaction was determined at 540 nm absorbance 

comparing the values of the samples to a standard curve of α-ketobutyrate ranging between 

0.1 and 1 μM. Protein concentration was determinated by Bradford assay (Bradford, 1976) 

with Bovine Serum Albumin (BSA) as standard protein for ACC-deaminase activity. 

Indole acetic acid (IAA) production was previously reported as negative for this strain by 

growth on Luria Bertani (LB) agar supplemented with L-tryptophan and it was 

qualitatively confirmed in this study by inoculating 200 μl of liquid E19T culture grown for 

48 h at 28 °C in 10 ml (LB) broth supplemented with L-tryptophan (100 μg ml-1) and 

adjusted at 1, 2 and 3 % NaCl final concentration. Grown culture (1.5 ml) was centrifuged 

at 16200 g for 5 min and 50 μl supernatant were added to 100 μl Salkowsky reagent 

(Gordon and Weber, 1951). After 30 min incubation at room temperature IAA 

concentration was measured at 530 nm absorbance comparing the values of the samples to 

a standard curve of IAA (5, 15, 25, 35 and 45 μg ml-1). A Pseudomonas species (isolate E8, 

isolated in our laboratory and producing a high amount of ACC deaminase and IAA; 

unpublished) was used as positive control. 

 



                                                                                                                                            Chapter 7 

150 

 

2.3 ACC deaminase activity in vivo 

Barley plants ethylene emission was measured following the protocol of Siddikee et al. 

(2011) with modification. Strain E19T cells were grown in half marine broth, centrifuged at 

3345 g for 10 minutes, re-suspended in ACC supplemented DF minimal salt medium (1, 2 

and 3 % NaCl final concentration) and incubated for 48 h at 28°C in agitation (120 rpm). 

Cells were harvested, washed and re-suspended in sterile 30 mM MgSO4 solution to reach 

a concentration of 107– 108 CFU ml-1. Sterilized barley seeds (H. vulgare L, cv. Propino) 

were incubated for 1 hour with the bacterial suspension, seeded into rectangular plastic 

pots (45.5 cm x 27.5 cm x 5 cm depth, 40 seeds per pot) filled with ~4500 ml (~1620 g dry 

weight) non-sterile classic clay substrate ED 73 (Einheitserde- und Humuswerke Gebr. 

Patzer GmbH & Co.KG, Sinntal – Altengronau, Germany). Three replicate pots per 

treatment were prepared. Physico-chemical properties of the substrate are: pH (CaCl2) 5.8, 

KCl 2.5 g l-1, EC 0.3–0.9 dS m-1, nitrogen (CaCl2) 250 mg l-1, phosphate 300 mg l-1, 

potassium 400 mg l-1, sulphur 200 mg l-1, magnesium 700 mg l-1. The maximum water 

holding capacity (WHC) was estimated to be 2000 ml, and each pot was irrigated with 

1500 ml rain water (~75% m. WHC). Growth conditions were daylight from 06:00 to 

22:00 (artificial light switched on when natural light was less than 10 Klx), and 

temperature of 20 °C and 16 °C (day and night, respectively).  

Eight days after seeding, the soils were irrigated with 0, 200 and 400 mM NaCl solved in 

deionized water, to impose different salt stress levels. Not inoculated seeds, with and 

without salt stress, were used as control treatments. From each pot, 30 seedlings were 

uprooted, washed in order to remove soil from roots using respective NaCl solution and 

placed in 120 ml flasks (Schott, Mainz, Germany). After 30 minutes, the flasks were sealed 

using butyl rubber stoppers. One milliliter air samples from head-space were sampled after 

4 h and 24 h of incubation at room temperature. Ethylene concentrations were measured 

using a Perkin Elmer Auto system XL chromatograph equipped with a thermal 

conductivity detector adjusted at 150°C and a Hayesep R column (2 m length, 2 mm 

diameter) at a helium (quality 5.0) flow of 28 ml min-1 and 50 °C oven temperature. Three 

measures were done for each treatment, and the average was used. Ethylene emission 

results are expressed as nmol of ethylene g-1 fresh weight h-1 by comparing the values of 

the samples to a standard curve generated with ethen 2.5 (Westfalen AG, Germany). 
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2.4 Plant-growth promotion ad planta under salt stress 

Strain E19T was tested for its efficiency in alleviating salt stress on barley (Hordeum 

vulgare L, cv. Propino) in vivo, under greenhouse conditions. Barley seeds were surface 

sterilized using a solution with final 3 % bleach concentration (Hurek et al., 1994) and 

washed seven times under gentle agitation for 10 min each with sterile water. The bacterial 

inoculum of strain E19T used for all plant experiments was prepared as follows: strain 

E19T in exponential growth phase was centrifuged at 3345 g in 50 ml screw-cap tubes, and 

resuspended in 30 mM MgSO4 solution to reach a concentration of 1.5 109 CFU ml-1. 

Squared plastic pots (13 cm x 13 cm) were filled with ~750 ml (~270 g dry weight) non-

sterile classic clay substrate ED 73. The maximum water holding capacity (WHC) was 

estimated to be 233 ml, and each pot was irrigated with 180 ml rain water (~77% WC). 

This amount of water allowed the whole substrate in the pot to be moistened, yet avoiding 

extensive percolation. Five pots per bacterial treatment and uninoculated control were 

prepared and arranged in a greenhouse with a randomized complete block design (RCBD; 

Clewer and Scarisbrick, 2001) to account for possible gradient effects in the greenhouse. 

Fifteen disinfected barley seeds incubated for 1 hour with the suspension of strain E19T 

were placed on each pot and covered with a one cm-layer of soil substrate. Germination 

was monitored until eight days after sowing and then each pot was rarified to 5 plants. 

Barley seeds incubated with sterile MgSO4 solution served as negative control (treatment 

“S+B-“). Additional barley seeds inoculated with an autoclaved aliquot of the strain E19T 

(treatment “S+D“) was used to evaluated the influence of dead bacterial biomass on barley 

growth under salt stress. 

To assess the effect of salt stress on the germination, the pots were irrigated three times 

before seeding with 150 mM NaCl solution in rain water.  NaCl concentration at the 

seeding stage was 1.75 %, and it was increased by further irrigation with 150 mM NaCl 

solution in rain water, until a final NaCl concentration of 4.4 % reached 15 days after 

germination. At this NaCl concentration, the electrical conductivity of one part dry soil + 5 

parts water (EC 1:5) was 22.40 ± 0.7 dS m-1. Uninoculated seeds without salt stress 

(treatment “S- B-“) received the same amount of rain water without NaCl. 
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After 42 days of growth under the same conditions described above for ethylene emission 

experiment, sheaths, leaf blades and roots of the 5 plants of each pot were separated and 

collected in three paper bags, and their fresh weights were recorded. Dry biomass 

accumulation and water content were assessed after 3 days drying at 80 °C. As growth 

parameter to evaluate the effect of the bacterial inoculation on the plant fitness, the 

percentage on relative increase (RI; Crane-Droesch et al., 2013) was used on both 

accumulated biomass (the dry weight) and water content (difference between fresh weight 

and dry weight).  

2.5 Cation analysis in plant samples 

The concentration of Na, Ca, K and Mg (mg g-1) were determined in dry and ground 

samples from leaf blades, sheaths and roots after dry-ashing (550 °C) and measured by 

means of flame photometry (Varian FS 220) (Steffens and Schubert, 2011), under a full-

factorial design 2X3: two inoculation treatments (inoculated/not inoculated) and three plant 

habitats (leaf blades/sheats/roots). Cation uptake at the root surface was calculated as ratio 

of total plant cation content divided to the root dry weight (Schubert et al., 2009). Root-to-

shoot translocation was calculated as the total cation content of the shoots (leaf 

blades+sheaths) divided to the total cation content of the roots. This value was normalized 

to the biomass partition (shoots DW/roots DW) in order to eliminate the bias due to the 

different effects of the bacterium on the growth of shoots and roots (Saqib et al., 2005). 

2.6 Probe design for H. diazotrophicus for fluorescence in situ hybridization (FISH)  

Specific probe E19.2-FISH (5' AT TAG CTG ACC CTC GCA GGT 3') labeled with 

fluorescein isothiocyanate (FITC) at the 5' end was designed based on the 16S rRNA gene 

sequence of H. diazotrophicus (KC567245) aligned together with the next relatives with 

the alignment tool SINA (v1.2.9) (Pruesse et al., 2012) and merged with the pre-aligned 

16S rRNA gene online database (LTPs111, Feb 2013) (Yarza et al., 2008) using ARB 

version 5.2 (Ludwig et al., 2004). Specificity of the probe was checked using Probe Check 

(Loy et al., 2008) and Probe Match tools, provided by the Ribosomal Database Project 

(RDP) (Cole et al., 2009). Annealing site is located in an accessible position according to 

Behrens et al., (2003). In order to ensure the specificity of the probe, an unlabeled 

competitor probe was designed with one mismatch (E19.2 comp 5' AT TAG CTY ACC 

CTC GCA GGT 3'). 
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Specificity of the E19.2-FISH probe was tested against Marinobacterium jannaschii LMG 

6239T (AB006765), a bacterium with one mismatch in the E19.2-FISH target sequence, by 

using the probe competitor. For cells fixation, 1 ml of bacterial pure liquid cultures were 

centrifuged (16200 g, at 4 °C for 5 min), resuspended in 1X phosphate buffer saline (PBS), 

mixed with 4 % paraformaldehyde (PFA) solution (3 vol. PFA + 1 vol. sample) and 

incubated for 4 h at 4 °C. Fixed cells were washed twice by centrifugation (16200 g, at 

4 °C, 5 min) and the final pellets were resuspended with ice cold 1x PBS. Immediately, 

1vol of ice-cold 96 % ethanol was added, and the fixed cells were stored at -20 °C until 

FISH staining. 

 

Fixed cells samples (15 μl of each) were placed and dried at 41 °C for 15 min on a poly-L-

lysine coated microscopy slide. Cells were permeabilized by incubation in lysozyme (1 mg 

ml-1) for 10 minutes at room temperature. Three minutes-stepwise incubation in ethanol 

(50 %, 80 % and 100 %) was used to dehydrate the samples. Probe binding profiles were 

tested using hybridization buffer (0.9 M NaCl, 0.01 % SDS, 20 mM Tris-HCl, pH 7.6) 

containing 0 to 50 % formamide (10 % stepwise increase), in order to determine the 

optimal stringency condition of the E19.2-FISH probe to strain E19T, as previously 

described (Daims et al., 2005). Probe EUB338 (Amann et al., 1990) labeled with 

Rhodamine was used as counterstaining and positive control for FISH. All oligonucleotide 

probes were purchased from biomers (Ulm, Germany). 

 

2.7 Bacterial detection of H. diazotrophicus by FISH in plant roots 

Surface sterilized barley (cultivar Propino) seeds were germinated on sterile filter paper 

supplemented with 3 ml of sterile water and incubated for 72 h at 25 °C in darkness. 

Plantlets were placed into 50 ml tubes containing 25 ml of strain E19T suspension, and 

incubated for 1 h at 28 °C in darkness under slow agitation. Inoculated plantlets were 

transferred to sterile rubber plugs (1.7 cm, 2 cm length), with a central hole of 

approximately 0.5 cm, placing the root system at the lower part of rubber plug to protect it 

from light influence, and immediately sealed with sterile agar 1.5 % (50 °C). Four rubber 

plugs with the fixed plantlets were transfer to round grey plastic racks (4.5 cm diameter x 3 

cm depth) and placed in sterile transparent plastic boxes (9.5 x 8.0 x 12 cm) filled with 175 

ml of half concentrated plant nutrient solution (Hatzig et al., 2009) adjusted at final 1 % 
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NaCl concentration (Fig. 2 supplement) in order to both generate the salt stress to the 

plantlets and maintain the optimal NaCl concentration for the growth of strain E19T. The 

boxes were placed in greenhouse for 8 days under the same conditions described above. 

Non-inoculated control plantlets were also prepared and used as negative controls. Samples 

of the root system were washed with PBS 1X, fixed by using 4 % paraformaldehyde/PBS 

(3:1 vol/vol), incubated at 4 °C for 4 h, washed twice with PBS and then stored in PBS/ 

ethanol (1:1) at -20 °C until FISH staining. 

 

Root fixed samples were cut in fragments of 4 to 5 mm, washed twice with PBS and in 

tube-FISH was performed as described by Cardinale et al., (2008). FISH probes used for 

the hybridization step were E19.2-FISH for H. diazotrophicus E19T labeled with FITC, 

unlabeled competitor (E19.2 comp), and EUB338 (Amann et al., 1990) EUB338II and 

EUB338III (Daims et al., 1999) labeled with Rhodamine for eubacteria detection. 

Hybridization was performed at 20 % formamide concentration and 41 °C, for 2 h 

followed by a washing step at 44 °C for 15 min and then a rinse with ice-cold water. 

Negative FISH control was obtained by hybridizing the samples with the non-sense FISH-

probe NONEUB labeled with the same dyes used for the positive probes, in order to detect 

possible non specific staining of both the probes and the fluorochromes. 

FISH stained root sections were placed on regular microscope glass slide, dried with 

compressed filtered air and immediately mounted with Citifluor AF1 mounting medium 

(Citifluor Ltd., London, UK). Samples were visualized with the epifluorescence 

microscope Zeiss Axioplan (Zeiss Jena, Germany) using the Zeiss filter sets 9 and 15 to 

observe FITC and Rhodamine respectively. Image overlap was done with imageJ version 

1.48.  

2.8 Statistical analysis 

Statistical differences of plant growth parameters between inoculated and uninoculated 

plants were determined by ANOVA followed by Tukey HSD post-hoc test at P<0.05. 

Statistical differences of ethylene emissions and cation concentration between inoculated 

and uninoculated plants were determined by ANOVA and factorial ANOVA, respectively, 

followed by Fisher LSD post-hoc test at p<0.05. Statistical differences of both root surface 

uptake and root-to-shoot translocation between inoculated and uninoculated plants were 
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assessed by Student’s T-Test. All statistical tests were performed with the software 

Statistica (Statsoft Inc., Tulsa, USA) version 12.0. 

3. Results 

3.1 Plant growth promotion abilities in vitro 

Strain Hartmannibacter diazotrophicus E19T isolation, as well as its complete phenotypic, 

chemotaxonomic, phylogenetic and genomic characterization was previously described 

(Suarez et al., 2014a). ACC-deaminase activity of strain E19T in DF minimal salt medium 

supplemented with ACC under different salt concentration of 1, 2 and 3 % NaCl were 0.56 

± 0.20, 1.29 ± 0.82 and 2.60 ± 1.2 μmol α-ketobutyrate mg protein-1 h-1. Strain E19T 

presented very limited growth in LB broth supplemented with L-tryptophan (100 μg ml-1), 

independently from NaCl concentration, and no IAA production was observed.  

3.2 Monitoring ethylene emission of plantlets 

Plantlets treated with 400 mM NaCl solution without bacterial inoculum presented the 

highest values of ethylene emission, whereas lower emission values were obtained from 

plants treated with deionized water or 200mM NaCl, with and without bacterial inoculum, 

after both 4 and 24 h incubation (Table 1). After 4 hours incubation, inoculation with E19T 

had no effect onto non-stressed plants. Plantlets inoculated with H. diazotrophicus at 

200 mM NaCl emitted significantly less ethylene (F1, 16 = 8.54, P = 0.01) with respect to 

uninoculated controls, while no significant ethylene emission difference from inoculated 

and uninoculated  plantlets was observed at 400 mM NaCl.  

Ethylene production after 24 h incubation increased by 28 % and 36 % in uninoculated 

plantlets treated with 200 mM and 400 mM NaCl, respectively, compared to non-stressed 

uninoculated plantlets (Table 1). Plantlets inoculated with H. diazotrophicus increased by 

about 1 % and 22 % ethylene emission, at 200 mM and 400 mM NaCl, respectively. At 

both 200 mM and 400 mM NaCl the reduction of ethylene emission due to the inoculation 

with strain E19T was statistically significant (F1, 36 =13.61, P < 0.001).  
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3.3 Plant-growth promotion potential under salt stress 

H. diazotrophicus strain E19T was tested in vivo for the ability to alleviate salt stress on 

summer barley (cultivar Propino) under greenhouse conditions. Salt stressed barley plants 

inoculated with the strain E19T presented not significant difference in fresh or dry weight 

on leaf blades (Table 2). Sheaths dry weight was significantly higher than uninoculated 

plants (F2, 12 = 9.64, P = 0.003). A clear significant difference was also observed in the root 

fresh (F2, 12 = 12.31, P = 0,001) and dry weight (F2, 12 = 64.05, P < 0.001) when compared 

plants treated with E19T dead biomass (“S+D“) and uninoculated plants (“S+B-“). A 

significant increase value of 333 % in the root biomass and 109 % in sheath biomass, and a 

relative increase in water content of 206 % in root system compared to plants inoculated 

with E19T dead biomass was observed (Table. 2). The root-to-shoot ratio was significantly 

(F2, 12 = 24.45, P < 0.001) increased more than double when compared inoculated plants to 

uninoculated or inoculated with dead biomass of strain E19T. Results clearly showed that 

active growth promotion of H. diazotrophicus is due to its PGP activities, instead of 

nutrient addition from dead cell biomass. 

 

3.4 Cations concentration of plant tissue and parameters of Na+ exclusion 

 

Salt stressed barley plants inoculated with the strain E19T showed no significant 

differences in the cation concentrations (F4,20 = 2.36, P = 0.09; Table 3) and there was no 

significant interaction between inoculation and habitat (F8,40 = 0.53, P = 0.83). 

Sodium uptake at the root surface was significantly lower (t7 = -6.08, p = 0,0005) in salt 

stressed barley plants inoculated with the strain E19T (65.3 ± 19.7 mg Na+ g root DW-1) in 

comparison with uninoculated plants (157.4 ± 25.9 mg Na+ root DW-1). Similarly, the root 

uptake of the other analyzed cations was reduced by strain E19T (data not shown). Root to 

shoot translocation (normalized to the biomass partition) of all analyzed cations was not 

significantly modified by inoculation of strain E19T.  

 

3.5 Design of a specific FISH probe for H. diazotrophicus strain E19T 

A 20 nucleotides length probe, named E19.2-FISH, designed from a pre-aligned 16S rRNA 

gene online database (LTPs111, Feb 2013) containing the 16S rRNA gene sequence of H. 
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diazotrophicus (KC567245) was checked on Probe Check and Probe Match databases. The 

probe has a G-C content of 55 % and annealed between positions 1262 to 1281 of the E 

coli 16S rRNA gene sequence (Brosius et al., 1978). 

Results revealed that the probe was specific for H. diazotrophicus strain E19T. Specificity 

of E19.2-FISH hybridization on cells of strain E19T compared with cells of M. jannaschii 

LMG 6239T was reached at 20 % formamide. Hybridization of both E19T and M. 

jannaschii cells with NON-EUB probe showed no signal. 

3.6 Root colonization abilities of E19T on barley plantlets 

Experiments in liquid growth system confirmed the presence of strain E19T on root surface 

of 8 days barley plantlets grown in half concentrated plant nutrient solution adjusted to 1 % 

NaCl concentration. FISH images showed the green signal of the E19.2-FISH probe 

(Fig.1A, arrows) perfectly colocalized with the red fluorescence (EUB338 probe; Fig.1B, 

arrows). The overlap of the two images resulted in yellow H. diazotrophicus E19T (Fig.1C, 

arrows). E19T cells were mostly localized on the surface of the root and no presence of 

strain E19T cells were found on root tips. Presence of other bacterial cells beside H. 

diazotrophicus was visualized in the root system of inoculated plantlets (Fig 1A-C, red 

only cells; dotted circles). Similar cells were also observed on uninoculated plants roots, 

where no H. diazotrophicus cells were detected, suggesting that certain bacteria colonize 

the internal tissues of the barley seeds.  

4. Discussion 

PGPR efficiently interact and alleviate abiotic stress conditions that affect plant growth, 

including salt stress (Babalola, 2010; Dimkpa et al., 2009). H. diazotrophicus strain E19T 

promoted positively the plant growth of barley under salt stress conditions. Previously 

described PGP activities for strain E19T (Suarez et al., 2014a) involved in plant growth-

promotion included ability to grow on agar containing different kinds of insoluble 

phosphate, growth on nitrogen free media and growth on media with ACC as only nitrogen 

source. 

H. diazotrophicus ACC deaminase activity (0.56 to 2.60 μmol α-ketobutyrate mg protein-1 

h-1) in DF medium at 1, 2 and 3 % NaCl was comparable with reported salt tolerant 
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rhizobacteria with ACC deaminase activity like Bacillus licheniformis, Brevibacterium 

iodinum, Zhihengliuella alba (Siddikee et al., 2011), Achromobacter xylosoxidans 

(Karthikeyan et al., 2012) performing ACC deaminase activity between 1.38 and 4.24 

μmol α-ketobutyrate mg protein-1 h-1. In addition, these values were higher than 

≥ 0.02 µmol α-ketobutyrate mg protein-1 h-1, an estimated value of ACC deaminase activity 

considered sufficient to permit a bacterium to act as PGPR under abiotic stress (Penrose 

and Glick, 2003).  

Indeed, the results of the ethylene emission experiment (Table 1) revealed rising of 

ethylene production by increasing salt concentration and significant reduction of ethylene 

production of barley plantlets by the ACC deaminase activity of H. diazotrophicus E19T 

under the same salt stress conditions. These findings are in accordance with similar 

experiments of ethylene emission reduction by inoculation of a ACC deaminase producing 

bacterium Achromobacter piechaudii on tomato plants (Mayak et al., 2004), 

Achromobacter xylosoxidans on Madagascar periwinkle (Catharanthus roseus) 

(Karthikeyan et al., 2012) and Bacillus licheniformis, Brevibacterium iodinum and 

Zhihengliuella alba on red pepper seedlings (Siddikee et al., 2011). Beside the effect of 

lowering the ethylene concentration and thereby the stress signal for the plant, Glick 

(2014) suggested a cross-talk between IAA and ACC deaminase: by lowering plant 

ethylene levels, ACC deaminase facilitates the stimulation of plant growth by IAA. In 

strain E19T no indole acetic acid production was detected suggesting that stimulation on 

plant root growth did not occur by a coordinated stimulation of IAA and ACC deaminase. 

However, significantly higher root and sheath dry weights of barley plants treated with H. 

diazotrophicus E19T under salt stress after 42 days growth was observed (Table 2) 

revealing a reduction of the salt stress effect. Similar results were reported by Chang et al. 

(2014) showing an enhancement of barley root and shoot biomass in greenhouse 

experiment by inoculation of Pseudomonas corrugata CMH3 and Acinetobacter sp. 

CMH2 isolated from the rhizosphere of monocotyledonous grasses from soil with high 

salinity. Although these strains produce similar effects as H diazotrophicus under similar 

conditions, both are ACC deaminase and IAA producers, and not only ACC deaminase as 

strain E19T.  

Root-to-shoot ratio of barley plants under salt stress inoculated with H. diazotrophicus 

increase remarkably compared to uninoculated plants (Table 2). Under salt stress 
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conditions root-to-shoot ratio increases due to the importance of the root biomass to allow 

proper development and water uptake; it is considered as an adaptive response to survive 

salt stress in order to enable the capacity to divert photoassimilates to the most limiting 

organ for growth (Pérez-Alfonseca et al., 1996). Increases on root-to-shoot under salt stress 

have been reported in Citrus spp, olive and barley (Zekri and Parsons, 1989; Perica et al., 

2008; Pérez-López et al., 2013) and are in accordance to Munns and Tester, (2008) general 

statement that root biomass is less affected by excess salinity than above ground organs. In 

addition the use of PGPR under salt stress help to increase even more the root-to-shoot 

ratio indicating the root behavior to growth as if there was not stress. Root-to-shoot 

increase by PGPR under salt stress have been reported on wheat by Pseudomonas putida 

(N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) (Zahir et al., 

2009), on red pepper seedlings by Bacillus licheniformis, Brevibacterium iodinum and 

Zhihengliuella alba (Siddikee et al., 2011) and on barley by Pseudomonas corrugate 

CMH3 and Acinetobacter sp. CMH2 (Chang et al., 2014). PGPR promote root 

development providing more surface area enhancing both water and nutrients uptake from 

soil. Morphological changes in shoot and root elongation in certain plant species by 

different ACC deaminase producer PGPR strains was also summarized by Bhattacharyya 

and Jha (2012).  

Plants exposed to salt stress absorb large amount of Na+ leading to limited transport, 

assimilation and distribution of mineral nutrients and as well to nutrient imbalance in 

plants organs. Osmotic stress tolerance, Na+ and Cl- exclusion and tolerance of tissue to 

accumulated Na+ and Cl- are the three distinct types of plant adaptations to salinity (Munns 

and Tester, 2008). Hordeum vulgare spp. vulgare excludes Na+ on the root surface, 

increase K+/Na+ selectivity, compartmentalize Na+ into vacuoles, and increases organic 

solutes to regulate osmolarity in cells cytosol (Tester and Davenport, 2003). Inoculation of 

H. diazotrophicus in salt stressed barley plants showed no effect on leaf blades or sheaths 

Na+ concentration. These findings are in accordance with Mayak et al. (2004) who reported 

no influence on Na+ in leaves by Achromobacter piechaudii inoculation on tomato plants 

under two different salt stress levels. E19T inoculation in salt stressed barley plants 

decreased root surface sodium uptake compared to uninoculated plants, indicating an 

adding effect to the barley root Na+ exclusion mechanism (Garthwaite et al., 2005; Munns, 

2002). Interestingly, the root surface uptake of all analyzed cations was significantly 

reduced, suggesting a general effect of strain E19T, possibly due to production of surface 
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polysaccharides that might reduce the availability of cations to plants, as suggested by 

Siddikee et al. (2011). The root-to-shoot translocation was not altered by the inoculation of 

strain E19T. Although there was a much higher Na+ accumulation in the roots of the E19T-

inoculated plants (4.7 ± 0.44 mg pot-1) compared to the uninoculated ones (1.3 ± 0.27 mg 

pot-1), this was not due to lower translocation to the shoots, but instead to the stronger 

growth promoting effect of strain E19T on the root compared to the effect on the shoots.  

Pseudomonas putida, Enterobacter cloacae, Serratia ficaria and Pseudomonas fluorescens 

have been reported to increase the K+/ Na+ ratio by increasing K+, effectively influencing 

salinity tolerance in wheat (Nadeem et al., 2012). Inoculation of H. diazotrophicus in salt 

stressed barley plants showed no significant effect on K+ concentration neither in leaf 

blades, sheaths nor roots, but a slight, yet not significant, increase of Mg2+ in sheaths, Ca2+ 

in leaf blades and an opposite effect in roots by a slight reduction of Mg2+ and Ca2+ 

concentration. Increased uptake of Mg2+ and Ca2+ in leaves and roots by K+ content 

increasing in cotton leaves by inoculation of Pseudomonas putida Rs-198 have been 

reported by Yao et al. (2010).  

The presence of H. diazotrophicus on barley root system was confirmed by FISH using the 

newly designed probeE19.2-FISH. Occurrence of PGPR in plant root systems have to be 

confirmed, since many plant associated bacteria with putative plant growth-promoting 

traits fail to confer these beneficial effects due to insufficient rhizo and/or endosphere 

colonization (Compant et al., 2010). In fact, successful root colonization and persistence in 

plant rhizosphere are required to exert beneficial effect on the plant (Bhattacharyya and 

Jha, 2012). 

FISH images demonstrated high density of H. diazotrophicus on root surface; however no 

cells were visualized at the root tips. Surfaces colonization of root systems and their 

respective pathways have been reported for different kind of bacteria (Compant et al., 

2010), which may show different colonization patterns on different plants, as demonstrated 

with Azospirillum brasilense Cd on tomato, pepper and cotton (Bashan et al., 1991). 

Visualization of other bacterial cells, beside H. diazotrophicus, on the root system in the 

liquid system corresponded to bacteria that survive the seed surface sterilization. Beside 

the presence of other bacteria, H. diazotrophicus showed to be efficient in colonization and 
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establishment on the root surface. H. diazotrophicus possess lateral flagella considered a 

useful trait for root colonization enabling movement of bacteria along the root probably 

playing an important role in long-term colonization as suggested for Azospirillum 

brasilense (Moens et al., 1995; Merino et al., 2006). The presence of bacterial endophytes 

inside the seeds is a known phenomenon that surely deserves more attention. Such 

endophytes in fact may play important roles for the seed germination and the plant growth, 

and, since they are vertically transmitted to the next generation, might eventually co-evolve 

with the host and establish intimate associations and interactions. Moreover, also certain 

bacterial phytopathogens, such as Curtobacterium flaccumfaciens pv. flaccumfaciens, are 

known to be transmitted by seed (Camara et al. 2009). 

5. Conclusions 

H. diazotrophicus strain E19T promotes plant growth in barley plants under salt stress. The 

mechanism of action is based on the production of ACC deaminase. The specific FISH 

probe designed will be useful for further in situ analyses of H. diazotrophicus in the host 

plant.  
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Table 1. Ethylene biosynthesis by 8 days old summer barley (Hordeum vulgare L.) 

plantlets under different salt stress conditions, with and without inoculation of H. 

diazotrophicus strain E19T. Average ± standard error from 3 replications. Different letters 

indicate significantly different means (LSD p<0.05) within incubation times. 

 

 

Treatment Ethylene emission (nmol ethylene g FW -1 h -1) 

4 h incubation  24 h incubation 

NaCl concentration 0 mM 200 mM 400 mM  0 mM 200 mM 400 mM 

Not inoculated 0 73.67 ± 8.45 b 75.07 ± 1.48 b  8.42 ± 0.6 a 10.81 ± 1.2 bc 11.48 ± 0.96 c 

H. diazotrophicus 0 60.18 ± 1.72 a 72.76 ± 8.34 b  8.54 ± 1.1 a 8.57 ± 0.81 a 10.46 ± 0.74 b 
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Table 2. Effects of H. diazotrophicus strain E19T on summer barley (Hordeum vulgare L.) 

in saline, non-sterile soil, after 42 days growth. Average ± standard error from 5 

replications. Different letters indicate significantly different means (Tukey HSD, p<0.05) 

within rows.  S+B-, barley in saline soil without bacterial inoculum; S+D-, barley in saline 

soil inoculated with autoclaved strain E19T biomass; RI, relative increase.  

Growth parameter E19T S+B- S+ D 

Leaf blades fresh weight (g pot-1) 3.06 ± 0.69 a 2.68 ± 0.85 a 3.14 ± 1.28 a 

Sheaths fresh weight (g pot-1) 2.07 ± 0.53 a 1.52 ± 0.59 a 1.80 ± 0.87 a 

Roots fresh weight (g pot-1) 1.73 ± 0.57 a 0.43 ± 0.15 b 0.74 ± 0.47 b 

Leaf blades dry weight (g pot-1) 0.42 ± 0.10 a 0.35 ± 0.15 a 0.41 ± 0.23 a 

Sheaths dry weight (g pot-1) 0.53 ± 0.08 a 0.23 ± 0.11 b 0.28 ± 0.15 b 

Roots dry weight (g pot-1) 0.40 ± 0.04 a 0.08 ± 0.03 b 0.13 ± 0.06 b 

Root /shoot ratio 0.43 ± 0.07 a 0.16 ± 0.07 b 0.20 ± 0.06 b 

RI biomass leaf blades (%) 20.11 ± 20.55 a 0 ± 38.66 a 16.35 ± 65.09 a 

RI biomass sheaths (%) 130.59 ± 34.73 a 0 ± 41.68 b 22.01 ± 64.99 b 

RI biomass roots (%) 384.75 ± 52.54 a 0 ± 34.90 b 51.57 ± 77.01 b 

RI water content leaf blades (%) 13.17 ± 29.24 a 0 ± 17.08 a 17.34 ± 44.94 a 

RI water content sheaths (%) 19.56 ± 34.75 a 0 ± 23.87 a 18.18 ± 56.35 a 

RI water content roots (%) 280.18 ± 150.16 a 0 ± 35.04 b 74.56 ± 116.99 b 
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Table 3. Cations concentration in leaf blades, sheats and roots of H. diazotrophicus strain 

E19T inoculated and uninoculated summer barley (Hordeum vulgare L.) under salt stress 

after 42 days growth in non-sterile soil. Average ± standard error from 5 replications. 

Different letters indicate significantly different means (LSD p<0.05) within columns. S+B-

, barley in saline soil without bacterial inoculum. 

Plant part Treatment Cations concentration (mg g DW-1) 

Na+ Ca2+ K+ Mg2+ 

Leaf blades E19 21.15  ± 4.62 ab 14.42 ± 2.16 a 39.88 ± 5.24 a 2.74 ± 0.30 a 

 S+B- 21.69 ± 5.87 ab 12.46 ± 1.80 a 41.87 ± 1.10 a 2.66 ± 0.27 a 

Sheaths E19 26.20 ± 9.92 a 8.68 ±2.20 b 36.96 ± 3.55 a 3.00 ± 0.74 a 

 S+B- 27.40 ± 8.30 a 8.72 ± 0.24 b 39.75 ± 3.88 a 2.84 ± 0.22 a 

Roots E19 11.80 ± 2.00 c 6.60 ± 1.49 b 10.50 ± 3.17 b 1.32 ± 0.26 b 

 S+B- 15.13 ± 3.25 bc 7.65 ± 5.34 b 15.74 ± 5.50 b 1.78 ± 1.15 b 



                                                                                                                                            Chapter 7 

171 

 

Figure legends 
 
Figure 1. Fluorescence in situ hybridization (FISH) images of barley root colonization by 

H. diazotrophicus strain E19T. Summer barley was inoculated with strain E19T in liquid 

growth solution, and roots were stained after 8 days of growth. A) EUB338  (universal 

bacterial probe) labelled with Rhodamine (red); B) E19.2-FISH (E19T -specific probe) 

labelled with FITC (green); C) overlap of panel B and C (E19T cells appear orange/yellow, 

other bacteria appear red); D) Phase contrast image. Arrows indicate H. diazotrophicus 

E19T cells. Dotted circles indicate other unidentified bacterial cells stained with the FISH 

probe EUB338 only. Scale bars indicate 5 μm. 
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Hartmannibacter diazotrophicus E19
T 

is a Plant Growth-Promoting Rhizobacterium (PGPR), that was 

isolated from the rhizospheric soil of Plantago winteri from a natural salt meadow. The draft genome 

sequence (estimated size 5.43 MB, 4,983 coding sequences (CDSs)) will help to decipher the molecular 

interaction between plant and bacteria under salt stress conditions of the plant. 

The term Plant Growth-Promoting Rhizobacteria is used to define bacteria that colonize the rhizosphere and 

stimulate plant growth (Kloepper and Schroth, 1981), also under abiotic stress (Yang et al., 2009). 

Hartmannibacter diazotrophicus E19
T 

was isolated as a part of an investigation on rhizospheric bacteria from 

salt resistant plant species (Cardinale et al. 2015, submitted). Plant growth-promoting abilities of H. 

diazotrophicus were evaluated (Suarez et al., 2014). Strain E19
T
 is able to solubilize insoluble phosphate, fix 

nitrogen and produce ACC deaminase. Plant growth promoting effect of E19
T
 has been reported in summer 

barley plants under salt stress (Suarez et al. 2015, submitted).  

 

Genomic DNA of H. diazotrophicus PGPR E19
T 

was isolated using PureLink Genomic DNA Mini Kit (Life 

Technologies, USA). A Nextera XT paired-end library was prepared and sequenced on a MiSeq system using 

v2 chemistry, according to protocols provided by the manufacturer (Illumina, Netherlands). Sequencing reads 

were analyzed using CLC Genomics Workbench 7.0.4 (CLC bio, Denmark) and gave following metrics: 

2,455,240 reads in pairs, with an average length of 210.78 bases, were assembled to a gapped genome of a 

total length of 5,436, 725 bp with an average coverage of 95.19. The genome was then manually curated 

using the CLC Microbial finishing tool (CLC bio) to two contigs. Manual and automatic annotations, and 

comparative genome analyses were done using software GenDB 2.4 (Meyer et al., 2003) and EDGAR (Blom 

et al., 2009) respectively. 

The draft genome sequence of strain E19
T
 consisted of a single circular chromosome of 5,432,335 bp with a 

GC content of 63.98 %. A total of 4,983 genes (coding sequences [CDS]), 3 rRNA operons and 46 tRNAs 

were found. H. diazotrophicus E19
T 

genome based relationship on average amino acid identity (AAI) mean 

values (Table 1) is close to Pleomorphomonas koreensis DSM23070 (71.57 %), Pleomorphomonas oryzae 

DSM 16300 (71.54 %) and Stappia stellulata DSM 5886 (69.17 %).  

Among different reported genes involved in plant growth-promotion (Table 2) (Bruto et al., 2014; Gupta et 

al., 2014) E19
T
 genome includes genes involved in phosphate solubilization and phosphate transport system 

pqqBCDE, pstABCS, phoBHU, nitrogenase-encoding nifHDK and ACC deaminase production rimM . Also, 

present are genes luxS, lsr involved in quorum sensing, flgIHG fliGMPI involved in motility by flagella, 

cysCJIN for H2S production, soxB involved in glycine-betaine production, katG for catalase and sodB for 

superoxide dismutase. No presence of genes ipdC/ppdC involve in synthesis of indole acetic acid (IAA), nirK 

involve in formation of the NO root-branching signal, hcnABC for hydrogen cyanide production, phlACBD 

for synthesis of 2,4-diacetylphloroglucinol, budAB for acetoine synthesis, budC 2,3-butanediol synthesis, 
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pvd, fpvA, mbtH, fhu involved in siderophore production, pelF, alg8, pslA involved in exopolysaccharides 

synthesis, osmC, phzF involved in phenazone production, and ubiC in 4-hydroxybenzoate production. 

E19
T
 contains gene clusters involved in nitrogen fixation and phosphate solubilization, well know PGP traits 

and most common traits found in a comparative genome analysis of PGPR strains belonging to different 

genera of Proteobacteria (Bruto et al., 2014). Also, present is the gene cluster for H2S production reported as 

a biological active gas able to increase plant growth and seed germination (Dooley et al., 2013). Genes 

related with reported PGP traits under salt stress contained in E19
T 

encode for enzymes such as catalase and 

superoxide dismutase, involved in management of oxidative stress in plants, ACC deaminase, reported to 

lower the level of ethylene accumulation due to stress, and for synthesis of osmoprotectant glycine betaine 

(Paul and Lade, 2014). Genes for quorum sensing and motility are present and reported to be involved in 

colonization and establishment processes in rhizosphere by PGPR (Ryan et al., 2009; Merino et al., 2006). In 

E19
T
 genome were not founded genes involved in synthesis of hydrogen cyanide, 2,4-diacetylphloroglucinol, 

acetoine, 2,3-butanediol, phenazine and 4-hydroxybenzoate reported as antimicrobial compounds produced 

by PGPR strains used in biocontrol (Loper et al., 2012; Babalola, 2010). Genes encoding for other known 

PGP traits such as siderophore production, synthesis of IAA, NO root-branching signal and synthesis in 

exopolysaccharides are not content. E19
T
 sequence and annotation will be deposited in EMBL. 

 

Table 1. Genome retrieved Hartmannibacter diazotrophicus E19
T
 means of the average amino acid identity 

(AAI) and 16S rRNA gene sequence (1472 bp) similarities to next relative available genome sequences. 

Similarity values were transferred from Suarez et al. (2014).. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next relative bacteria AAI 

(Mean)  

Similarity 

(%) 

Pleomorphomonas koreensis Y9
T
 (AB127972) 70.87 92.3 

Pleomorphomonas oryzae F7
T
 (AB159681) 70.80 92.3 

Stappia stellulata IAM12621
T
 (D88525) 68.33 93.2 

Labrenzia aggregata IAM 12614
T
 (AAUW01000023) 67.93 92.8 

Mesorhizobium loti LMG 6125
T
 (X67229) 65.76 91.6 

Mesorhizobium_amorphae ACCC 19665
T 

(AF041442) 65.58 92.1 

Mesorhizobium metallidurans STM 2683
T
 (CAUM01000060) 65.49 92.5 

Brucella pinnipedialis B2 94
T
 (CP007743) 65.45 91.5 

Lutibaculum baratangense AMV1
T
 65.01 91.5 

Aureimonas ureilytica 5715S-12
T
 (DQ883810) 64.61 92.8 
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Table 2. Hartmannibacter diazotrophicus E19
T
 gene content in draft genome involved in plant growth-

promotion. +, indicates presence of genes; -, indicates absence of gene. 

Plant growth promotion traits Genes H. diazotrophicus 

E19T 

Nitrogen fixation nifHDK + 

Phosphate solubilization pqqBCD + 

 pqqFG - 

 pqqE + 

 pstABCS + 

 phoBU + 

 phoR - 

 phoCDET - 

 phoH + 

IAA production ipdC - 

 ppdC - 

Siderophore production pvd - 

 fpvA - 

 mbtH - 

 acrB - 

 fhu - 

ACC deaminase acdS - 

 rimM + 

 dcyD - 

H2S production cysCJIN + 

Quorum sensing luxS + 

 lsr + 

Motility flgIHG + 

 fliGMPI + 

Heat shock proteins dnaJ + 

 dnaK + 

 groE - 

Glycine-betaine production soxB + 

Catalase katG + 

Superoxide dismutase sodB + 

2,4-Diacetylphloroglucinol 

synthesis 

phlABCD - 

Hydrogen cyanide synthesis hcnABC - 

Acetoin & butanodiol synthersis als - 

 budABC - 

 poxB - 

Phenazone production phzF - 

4-hydroxybenzoate production ubiC - 

Exopolysaccharides synthesis pelF - 

 alg8 - 

 pslA - 
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Supplementary Material 

Fig S1.Venn diagram showing the number of shared CDS between Hartmannibacter diazotrophicus E19
T 

Pleomorphomonas koreensis DSM 23070 and Pleomorphomonas oryzae DSM 16300. The overlapping part 

in the middle shows the number of CDS shared by all three bacteria; the other overlaps show CDS shared 

between two bacteria, but not the third. Pleomorphomonas koreensis DSM 23070 and Pleomorphomonas 

oryzae DSM 16300 share more common CDS in between that individually with Hartmannibacter 

diazotrophicus E19
T.

 

 

 

 

Table S1. Matrix of the mean values of the average amino acid identity (AAI) of H. diazotrophicus E19
T
 to 

next relative available genome sequences.   
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Fig S2. Phylogenetic tree based on core genes sequences of strain E19
T
 and available closest gene sequence 

of members of related families of the orders Rhizobiales and Rhodobacterales and representatives of the class 

Alphaproteobacteria. Genome sequences were aligned by MUSCLE and non matching parts of the alignment 

were masked by GBLOCKS and subsequently removed. The remaining parts of all alignments were 

concatenated in to one alignment and the phylogenetic tree construction was done with PHYLIP. All 

previously described step were done in EDGAR (Blom et al., 2009). 
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GENERAL DISCUSSION 

In this halotolerant PGPR screening study, 100 potential PGPR were isolated on selective 

enrichment media. Most of them belonging to diazotrophic, P-mobilising bacteria and 

ACC deaminase producer (Chapter 2, Fig.1B). The bacteria were isolated from the 

rhizospheric soil of the natural salt tolerant plants Hordeum secalinum (meadow barley) 

and Plantago winteri (great plantain). These halotolerant PGPR isolates were potential 

candidates to be tested under salt stress because they have coevolved and are adapted to the 

rhizosphere of natural salt resistant inhabitant plants sampled from a natural salt meadow. 

It is known that, microbial communities are selectively influenced by roots exudates, biotic 

and/or abiotic stresses, nutritional deficiencies and are even different between plant species 

and cultivar (Berg and Smalla, 2009; Hartmann et al. 2008). Therefore, the specific biotic 

and abiotic conditions of the natural salt meadow allowed H. secalinum and P. winteri to 

coevolve with salt adapted microbial communities. Among these rhizospheric microbial 

communities, natural adapted rhizobacteria with PGPA would have also coevolved and 

they could be capable to perform a highly efficient plant promotion under salt stress. As a 

promising agricultural practice to help salt affected crops and to ameliorate adverse effect 

of salt stress, there is an increasing interest in the isolation of halotolerant rhizospheric 

bacteria from natural salt tolerant (Paul and Lade, 2014) and halophytes plant species 

(Ruppel et al., 2013). 

Crop cultivars Morex and Propino of Hordeum vulgare were chosen in this study as model 

plant to test ad planta PGPR candidates under salt stress. These plant models are related to 

the plant species H. secalinum and therefore the halotolerant PGPR candidates would have 

better chances to positively promote their growth. Nevertheless, the ability of PGPR strains 

to promote growth in a plant species different from where they were originally isolated is a 

desirable characteristic. For instance, this is the case of a well-studied IAA and ACC 

deaminase producer PGPR Pseudomonas. sp. UW4 isolated from reeds and reported to 

promote canola seedling root elongation in growth pouches under gnotobiotic conditions 

(Glick et al., 1995). Therefore also Plantago winteri was chosen as isolation source. 

In order to evaluate ad planta growth effects of the halotolerant PGPR candidates on H. 

vulgare under salt stress, different approaches were used. Several considerations were 

taken into account for the procedure to impose salt stress to the systems, and the plant-
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bacteria growth conditions. These interactions were evaluated using both a gnotobiotic 

plant growth liquid system and a non-sterile pot system using two different types of soils. 

A gnotobiotic plant growth liquid system was designed to study colonization, 

establishment and plant growth effect of selected isolates on H. vulgare cv. Morex 

seedlings using plant nutrient solution (PNS) under salt stress conditions (Chapter 3, 

Fig.2). The system was successful in order to impose salt stress and allow colonization of 

the inoculated bacterium, but unsuccessful to keep gnotobiotic conditions. Apart from 

inoculated strain E50T colonies, other kinds of colonies were isolated from colony forming 

unit (CFU) analysis at the end of the experiment, displaying the failure to maintain the 

expected gnotobiotic condition (Chapter 3, Table.4). Additionally, similarity of 

predominant colonies isolated from CFU analysis at the end of experiment to colonies 

isolated at the seed surface sterilization procedure was confirmed (Chapter 3, Table.4). 

This is the case of isolates C5EA and IA3, which presented identical morphological 

characteristics and closest Blast similarity of their 16S rRNA gene to Curtobacterium 

flaccumfaciens A4-16 (JF496347). Members of the genus Curtobacterium have been 

frequently reported as bacterial seed endophytes (Truyens et al., 2014), vertically 

transmitted and able to remain viable for long periods in stored seeds (EPPO/CABI, 1997; 

Camara et al., 2009).  

These arguments lead to hypothesize that isolates C5EA and IA3 correspond to a 

Curtobacterium flaccumfaciens strain vertically transmitted in H. vulgare cultivar Morex 

seeds, able to resist the seed surface sterilization procedure. Moreover, presence of 

bacterial growth on SG tube agar, used to check the seed surface sterilization, was detected 

after 15 days of incubation and not after 72 h, as expected (Chapter 3, Fig. 4). The slow 

bacterial growth and its presence on the area where the radicular system was developed 

may be explained by the presence of endophytic bacteria that were partially or not affected 

in the seed surface sterilization procedure. Several attempts, with unsuccessful results, 

were done by using antibiotics to eliminate possible endophytic bacteria (data not shown).  

Even though, nowadays there is a particular interest in the plant growth-promoting effect 

of bacterial seed endophytes (Partida-Martínez and Heil, 2011; Truyens et al., 2014), the 

use of  germ free seeds or seedlings obtained from sterile plant tissue´s cultures is of 

utmost importance in gnotobiotic studies. Gnotobiotic systems have been used in/with 
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different plants such as tomato, radish, potato, cucumber, wheat, grape, rice and grass in 

order to study bacterial root colonization and to determine bacterial root concentration 

(Hurek et al., 1994; Simons et al. 1996; Bloemberg et al. 2000; Compant et al., 2005). 

Such kind of studies have used seeds, seedlings or roots developed from sterile stem 

cuttings (de Weger et al., 1987) depending on the plant and purpose of the research. 

Bacterial growth on plant material used in gnotobiotic studies, mainly in seeds, are usually 

checked after seed surface sterilization protocols on different kinds of nutrient agars and 

incubated for short period time (Hurek et al., 1994; Simons et al., 1996; Kutter et al., 

2006). Moreover, the so called gnotobiotic conditions have been assumed to be reached by 

the use of seed surface sterilization protocols overlooking or no mentioning endophytic 

bacterial growth (Yim et al., 2009; Ahmad et al., 2013; Bal et al., 2013; Palaniyandi et al., 

2014). In order to study plant microbe interaction under gnotobiotic conditions the 

presence of endophytes after seed surface sterilization protocols must not be overlooked.  

Improvement of sterilization protocols by combining disinfectants and antibiotics, 

verifying absence of bacterial growth by cultivation methods and confirming absence of 

bacterial cells by microscopic techniques to plant material is required in plant-microbe 

gnotobiotic studies. For instance, Nabti et al. (2010) and Buddrus-Schiemann et al. (2010) 

used combination of disinfectant and antibiotics for seed surface sterilization and 

confirmed the axenic gnotobiotic condition in plant roots by testing bacterial growth on 

nutrient agar media and microscopic visualization using an eubacteria specific FISH probe. 

After analysis of different seed batches it was decided to use H. vulgare cv. Propino 

instead of H. vulgare cv. Morex, originally used for its natural salt tolerance (Witzel et al., 

2009), for further experimentation. This decision was mainly taken because of the presence 

of endophytic bacteria, which could not be eliminated with the seed surface sterilization 

protocol, especially strains of C. flaccumfaciens (see above). These reported ecological 

roles could have an undesirable positive or negative influence in a plant growth promotion 

study. Furthermore, summer barley H. vulgare cv. Propino was selected for further 

experimentation because it is a commercial available variety, widely cultivated, and has a 

high malt content, desirable for the brewery industry (Syngenta, 2014).  

Further improvement on the designed plant growth liquid system and on the seed surface 

sterilization protocol must be done in order to maintain the desirable gnotobiotic 
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conditions. Gnotobiotic systems experiments to evaluate PGP by rhizobacteria using quartz 

sand, plant nutrient solution and/or sterilized soil generally lead to different results than 

systems using non-sterile soils. Indeed, functional bacterial plant growth promoting 

mechanisms in a gnotobiotic system could be less or no functional in non-sterile soil 

experiments by the presence of indigenous organisms (Ryu et al., 2005). To sum up, it 

must be regarded that a plant completely free of microorganism is an exotic exception 

rather than a natural plant growth condition (Partida-Martínez and Heil, 2011).  

In parallel to gnotobiotic experiments, non-sterile soil experiments were settled to 

determine ad planta growth effect of the halotolerant PGPR candidates on summer barley 

H. vulgare cv. Propino under salt stress. As first approach in non-sterile soil, mixtures of 

subsoil, sand and mineral salts were used to set different plant growth conditions. Such 

conditions were adjusted to analyze nutritional deficiencies, different P fertilization 

sources and salt stress in Mitscherlich pots under growth chamber conditions (Chapter 3, 

Fig.5.8). In all cases the different experimental variables used to impose salt stress and to 

test nutritional deficiencies and fertilization effects on the plants were statistically 

significant. On the contrary, no statistical significant interaction by the inoculation of any 

evaluated PGPR candidate on the growth of H. vulgare cv. Propino under any of the 

different conditions settled in subsoil experiments was observed. For instance, no plant 

growth effects were observed in strain E19T (Chapter 3) and strains E64I, E22, E55, E51 

tested in the master thesis of Ana Maria Zapata (data not part of this work). Plant growth 

promotion by PGPR has been reported to have a prominent beneficial effect on limited 

resources in poor soils (Ramos Solano et al., 2006). Subsoil contains low organic-matter, 

restricted microbial activity, and provides low nutritional conditions that can be adjusted 

by mineral salt or fertilizers supplementation (Steffens et al., 2010). Therefore, it was 

expected to provide proper conditions in order to evaluate PGP by the PGPR candidates 

under nutrient limitation and with and/or without salt stress.  

Even though PGPR candidates revealed no PGP effects neither in the gnotobiotic plant 

liquid system nor in non-sterile subsoil experiments, these two methodologies were 

successful in imposing the desirable plant salt stress and can be useful for further 

experimentation. Unfortunately, these methodologies did not allow to easily test several 

isolates at once. Therefore, a second methodological approach using an organic non-sterile 
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soil to test the PGPR isolates on H. vulgare cv. Propino under salt stress was settled 

(Chapter 2. Plant assay 1). 

Due to the large number of halotolerant PGPR candidates to be tested, twenty-two isolates 

out of the one hundred were selected for further experimentation based on their isolation 

medium and taxonomical diversity. The selected isolates were fully characterized for their 

PGPA (in pure culture) and their (ad planta) effects on H. vulgare cv. Propino growth 

under salt stress tested in the organic non-sterile soil under greenhouse conditions (Chapter 

2. Plant assay 1). A very low proportion of the isolates containing all or almost all PGPA 

activities in pure culture presented successful results in their ad planta experiment 

(Chapter 2, Table 2). Strains E108 and E110, identified as Curtobacterium flaccumfaciens 

(AJ312209) and Ensifer garamanticus (AY500255) respectively (Chapter 2, Supplement 

4), showed statistical significant effects on H. vulgare cv. Propino growth under salt stress 

in the first plant assay (Chapter 2, Fig. 2, 3). These two strains were therefore selected for a 

second plant assay, performed under stronger salt stress conditions confirming their 

positive plant effect on H. vulgare cv. Propino under salt stress (Chapter 2, Fig. 4-6). 

Surprisingly, strain E108 showed the best results on ad planta experiment but did not 

present several PGPA activities in pure culture.  

Classically, approaches for screening PGPR have always looked for best quantitatively 

and/or qualitatively PGPA in pure culture to select few among several isolates to test their 

effect on plant growth (ad planta) (Franco-Correa et al., 2010; Bal et al., 2013;Goswami et 

al., 2014). Consequently, potential efficient ad planta PGPR isolates, able to colonize the 

root system and promote plant growth, could be underestimated by their low performance 

in pure culture PGPA tests. This phenomenon may occur because the effect of a PGPR to 

promote plant growth also depends on its ability to colonize the root and to interact with 

other soil or endophytic bacteria (Compant et al., 2010). Not many studies use ad planta 

experiments as a screening method in order to test PGPR effect on plants. One example of 

the use of this approach was reported by Etesami et al. (2013), who proposed a rapid 

screening method to select PGPB. Endophytes (80) and rhizospheric (120) isolates of 

berseem clover (Trifolium alexandrinum) were inoculated in mixtures to rice plants. Then, 

thirty-four re-isolated bacteria from the rice roots systems were positively tested for several 

PGP traits and among them several were successful to promote rice plantlets in gnotobiotic 

conditions. Based on the results of this study and previously exposed considerations, ad 
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planta tests could represent a more realistic field growth condition and a less time and 

money consuming selection parameter. Furthermore, the possible low efficiency of 

classical PGPR in pure culture screening could have been undetectable because normally 

just successful results using similar approaches have been published. 

Interestingly and supporting the previous discussion, classical screening methods based on 

pure culture PGPA screening test (Chapter 2, Table. 1) would have excluded strain E19T 

from ad planta experiments. Although, due to its taxonomical interest, salt tolerance, in 

pure culture ACC deaminase activity and the slightly increasing effect on the water content 

of H. vulgare cv. Propino leaves in the screening ad planta experiment (Chapter 2, Fig. 

3C), it was included in further experimentation.  

 

Plant growth promotion of strain E19T on summer barley cv. Propino under salt stress 

using non-sterile soil (Chapter 7) was demonstrated by the significantly increasing root and 

shoot dry weights, water content in the root system and root-to-shoot ratio, and by 

decreasing root Na+ concentration and root surface sodium uptake. The significant ACC 

deaminase ad planta activity on barley plantlets under salt stress and the lack of IAA 

production and/or remarkable qualitatively PGP in pure culture able to influence PGP 

revealed that the main mechanism of strain E19T for PGP under salt stress is based on the 

production of ACC deaminase. The presence of H. diazotrophicus on barley root system 

under salt stress was demonstrated by FISH using a newly designed probe for strain E19T. 

Results from this study, caused the inclusion of H. diazotrophicus E19T in the list of 

rhizobacteria reported in the literature as PGPR involving ACC deaminase activity in 

different plant species (Chapter 1, Table.3). Moreover, the lack on IAA production of 

strain E19T shows the individual effect of this trait without the synergistically linked effect 

of IAA in PGP (Glick, 2014).  

Visualization of other bacterial cells by FISH staining, besides H. diazotrophicus, on the 

root system corresponded to bacteria that survived the seed surface sterilization of H. 

vulgare cv. Propino seeds (Chapter 7, Fig. 1). Contrary to the desirable absence of 

endophytic bacteria in plant microbe interaction on gnotobiotic conditions, the presence of 

endophytic bacteria in H. vulgare cv. Propino was expected to interact with strain E19T on 

the root system. Besides the presence of other bacteria, H. diazotrophicus was able to 
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confer its beneficial effect and showed to be efficient to colonize and establish on barley 

cv. Propino root surface. 

 

Apart from the objective to isolate halotolerant PGPR promoting growth of barley under 

salt stress, this study was useful to analyze the cultivable microbial diversity of the 

rhizosphere of the natural salt tolerant plants H. secalinum and P. winteri. Partial 16S 

rRNA (400-600 bp approx.) (Chapter 2, Supplement 4) was used for an initial taxonomic 

affiliation of new isolates and also for identification of potential candidates of taxonomical 

interest. Results revealed that the rhizosphere of H. secalinum and P. winteri plants is a 

source of high bacterial diversity, where most common isolate taxa affiliation was to phyla 

Proteobacteria and Actinobacteria. Likewise, the most common bacterial taxa present in 

saline and non-saline soils, belong to phyla Proteobacteria and Actinobacteria (Canfora et 

al., 2014; Ma and Gong, 2013). The rhizospheric bacterial genera diversity of P. winteri 

(29 genera) was higher than of H. secalinum (21 genera) (Chapter 2, Supplement 4). 
However, in both cases, isolates most common genera affiliation corresponded to 

Streptomyces, Pseudomonas, Rhizobium and Bacillus, which are recognized genera 

containing strains with PGPA, confirming their isolation prevalence on PGP qualitative 

selective media screening (Paul and Lade, 2014; Dimkpa et al., 2009).  

Eleven out of one hundred isolates were considered for further taxonomical 

characterization, including the almost complete 16S rRNA gene sequence. In general, two 

organisms with 16S rRNA gene sequence pairwise similarities lower than 98.7% may not 

belong to the same species (Stackebrandt and Ebers, 2006). Even though, for isolates 

belonging to Streptomyces (Rainey, 2011), Rhizobium (Puławska et al., 2012) and 

Pseudomonas (Cámara et al., 2007), another phylogenetic markers besides their 16S rRNA 

gene sequence must be used in order to consider them as possible new taxa description.  

In order to characterize new taxa isolates, a polyphasic experimental approach was done 

following previously related taxa rank publications, the recommended key elements outline 

for prokaryotes characterization (Tindall et al., 2010), and focusing on new metabolic 

activities. So far and as part of this work new species Cellvibrio diazotrophicus E50T 

(Suarez et al., 2014c), Rheinheimera hassiensis E48T and R. muenzenbergensis E49T 

(Suarez et al., 2014b) and new genus and species Hartmannibacter diazotrophicus E19T 

(Suarez et al., 2014a) were proposed and accepted. For these new species proposals, the 
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mandatory DNA-DNA hybridization with closest relatives, the almost complete 16S rRNA 

gene sequence, the major fatty acids membrane profile and their analysis of phenotypical 

traits were analyzed. C. diazotrophicus polyphasic study was done with two different 

isolates, strains E20 and E50T, differently than new description of Rheinheimera species 

and new genus and species H. diazotrophicus. For new species description the use of more 

than one strain is desirable in order to evidence intraspecific diversity, although sometimes 

impossible (Rosselló-Mora and Amann, 2001). Furthermore, emendation of the genus 

Cellvibrio was accepted based on the confirmed capability of fixing nitrogen and growth in 

presence of up to 5% NaCl (w/v) not reported in previously species descriptions. 

Concerning the singularities of R. hassiensis E48T and R. muenzenbergensis E49T 

descriptions, this is the first descriptive work to explore diazotrophy among described 

species of genus Rheinheimera. Strain E48T and E49T are able to grow in nitrogen free 

media but they are not able to reduce acetylene. The nifH gene presence was detected only 

in strain E48T and not in other tested Rheinheimera species able to grow in nitrogen free 

media in this study.  

H. diazotrophicus E19T belongs to Alphaproteobacteria but it could not be characterized 

neither as a member of any recognized genus nor any family of the orders Rhizobiales or 

Rhodobacterales. These orders, members of the class Alphaproteobacteria, are 

circumscribed solely on the basis of phylogenetic analysis of 16S rRNA gene sequences 

(Garrity et al., 2005). Strain E19T showed less than 93.5% 16S rRNA gene sequence 

similarity with members of genera among Alphaproteobacteria. Also, this value is below 

of genus, mean (96.4 % ± 0.2) or minimum identity (94.9 % ± 0.4), and above family, 

mean (90.1 % ± 1.1) or minimum identity (87.5 % ± 1.3), proposed boundaries (Yarza et 

al., 2008). Similarly to 16S rRNA, chemotaxonomic and phenotypic analysis presented 

enough criteria for the new genus proposal and eventually could lead to a higher rank 

classification proposal. Consistently, the List of Prokaryotic Names with Standing in 

Nomenclature (http://www.bacterio.net/index.html) included H. diazotrophicus E19T in the 

list of ¨validly published names of genera and taxa above the rank of genus up to and 

including class¨.  

 

In light of the above, the natural salt tolerant plant inhabitant H. secalinum and P. winteri 

growing in the salt meadow are source of diversity of halotolerant and halophylic bacteria, 

and potential novel taxa. One of the major factors influencing bacterial community 



                                                                                                                                                Chapter 9 

187 

 

composition and diversity in soil is salinity (Canfora et al., 2014; Ma and Gong, 2013). It 

has been suggested that less than 25 % bacterial diversity from saline soil habitats has been 

recovered using molecular techniques (Ma and Gong, 2013) and only a small part has been 

isolated. Also, undisturbed environmental conditions of the natural protected area, where 

the salt meadow is located and the coevolution of microbial communities with the sampled 

plants rhizospheres would have been driving forces influencing bacterial diversity. For 

instance, Chen et al. (2010) reported abundant diversity and potentially novel taxa 

description of halophilic and halotolerant isolated bacteria from non-saline soil from 

natural protected areas by cultivable dependent methods. 

In summary, the rhizospheres of H. secalinum and P. winteri are sources of new 

halotolerant PGPR and isolates with taxonomical interest. Similarly, Jha et al. (2012) 

reported the isolation of a possible novel species description of genus Haererehalobacter 

and accepted novel species description Brachybacterium saurashtrense (Gontia et al., 

2011) as part of a screening of new halotolerant diazotrophic bacteria with PGP potential 

from roots of the halophyte Salicornia brachiata.. 

Due to its PGP effect on H. vulgare cv. Propino under salt stress (Chapter 7) and its 

described taxonomical singularity (Chapter 6), the draft genome of Hartmannibacter 

diazotrophicus E19T was sequenced and assembled (Chapter 8). As part of its taxonomical 

analysis, the average amino acids identity (AAI) of the strain E19T genome sequence was 

calculated using EDGAR (Blom et al., 2009). Strain E19T AAI comparison with other 

sequenced bacterial genomes showed as closest relatives two species of the unclassified 

genus Pleomorphomonas, Pleomorphomonas koreensis DSM23070 (71.57 %) and 

Pleomorphomonas oryzae DSM 16300 (71.54 %), belonging to Alphaproteobacteria. 

Other sequenced bacterial genomes belonging to genera of Rhodobacterales and 

Rhizobiales orders showed AAI values lower than 70% in comparison to strain E19T 

(Chapter 8, Table.S1), confirming its taxonomical singularity among Alphaproteobacteria. 

Nevertheless, average nucleotide identity (ANI) and AAI are genome sequences pair-wise 

similarities analysis that typically give good resolution at species and sub species level 

(Konstantinidis and Tiedje, 2005). Moreover, they do not have enough resolution for genus 

delimitation because just about 10 % of the whole genome DNA sequence is used when 

distant genetic organisms are compared. Recently proposed percentage of conserved 

proteins (POCP) showed much less overlap in genus and family/order ranks and could be a 
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more suitable analysis for taxonomic delimitation (Qin et al., 2014). Furthermore, even the 

strong correlation between AAI values and 16S rRNA gene sequence, genome retrieved 

Hartmannibacter diazotrophicus E19T 16S rRNA gene sequence (1472 bp) similarity and 

mean of (AAI) to next relative available genome sequences showed different rank order 

(Chapter 8, Table.1). In order to characterize the taxonomical rank of strain E19T, isolation 

of related organisms and their complete genome available sequences, as well as suitable 

genome sequences pair-wise similarities analysis are needed.   

The manual annotation of genes of strain E19T draft assembly genome sequence is 

currently done. Encoding genes in genome consistently confirmed the pure culture PGP 

activities of E19T for phosphate solubilization (genes pqqBCDE, pstABCS, phoBHU), 

nitrogen fixation (genes nifHDK), ACC deaminase production (gene rimM), motility 

(genes flgIHG, fliGMPI), catalase (gene katG) and superoxide dismutase (gene sodB). No 

genes have been found for siderophore production and IAA production. The presence of 

ACC deaminase gene was not detected by original and/or modified PCR protocol approach 

using specific primers for acdS gene (data not shown) in strain E19T although it was 

reported to encode for ACC deaminase among Proteobacteria (Blaha et al., 2006). 

Interestingly, genome sequence confirmed absence of acdS gene but presence of rimM, 

which also codes for ACC deaminase (Gupta et al., 2014). The presence of rimM gene is 

likely to explain the ACC deaminase activity of the strain E19T in pure culture and in the 

plant-bacteria interaction experiment (Chapter 7, Table.1). Complete annotation of genes 

will be useful in order to identify the presence of genes contributing directly or indirectly 

to enable PGPR effects on plants, salt tolerance, rhizocompetence, colonization and 

elucidation of metabolic pathways aiming. Sum of these results will be useful to better 

understand the mode of interaction of the bacterium and plants. Furthermore, it will be 

helpful for a comparative genome study with other PGPR strains sequenced genomes to 

analyze singularity and/or co-ocurrance of genes involved in plant growth promotion. 
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