WIRKUNG DER PITYRIARUBINE – NEUE TRYPTOPHAN-METABOLITE VON MALASSEZIA FURFUR – AUF HUMANE GRANULOZYTEN

DINO KESSLER

INAUGURAL-DISSERTATION

zur Erlangung des Doktorgrades beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Giessen

édition scientifique VVB LAUFERSWEILER VERLAG

Das Werk ist in allen seinen Teilen urheberrechtlich geschützt.

Jede Verwertung ist ohne schriftliche Zustimmung des Autors oder des Verlages unzulässig. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung in und Verarbeitung durch elektronische Systeme.

1. Auflage 2007

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Author or the Publishers.

1st Edition 2007

© 2007 by VVB LAUFERSWEILER VERLAG, Giessen Printed in Germany

VVB LAUFERSWEILER VERLAG

édition scientifique

STAUFENBERGRING 15, D-35396 GIESSEN Tel: 0641-5599888 Fax: 0641-5599890 email: redaktion@doktorverlag.de

www.doktorverlag.de

Aus der Klinik für Dermatologie und Andrologie des Fachbereichs Humanmedizin der Justus-Liebig-Universität Giessen

Betreuer: Prof. Dr. P. Mayser

Eingereicht über das Institut für Hygiene und Infektionskrankheiten der Tiere der Justus-Liebig-Universität Giessen

im Fachbereich vertreten durch: Prof. Dr. Dr. habil. G. Baljer

Wirkung der Pityriarubine

- neue Tryptophan-Metabolite von Malassezia furfur -

auf humane Granulozyten

Inaugural-Dissertation

zur Erlangung des Doktorgrades beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Giessen

eingereicht von

Dino Kessler

Tierarzt aus Köln

Giessen 2007

Mit Genehmigung des Fachbereichs Veterinärmedizin der Justus-Liebig-Universität Giessen

Dekan: Prof. Dr. Dr. habil. G. Baljer

- 1. Berichterstatter: Prof. Dr. P. Mayser
- 2. Berichterstatter: Prof. Dr. Dr. habil. G. Baljer

Tag der mündlichen Prüfung: 11.12.2007

Danksagung

Mein besonderer Dank gilt Herrn Dr. Hans-Joachim Krämer, der mir das interessante Dissertationsthema zur Verfügung gestellt hat und wissenschaftlicher Betreuer dieser Arbeit war. Herr Dr. Krämer war in allen Phasen der Arbeit mein erster Ansprechpartner. Erst durch seine stete Diskussionsbereitschaft und konstruktiven Vorschläge konnte ich die Dissertation in dieser Form ausarbeiten.

Herrn Prof. Dr. Peter Mayser möchte ich für die Vertretung im Fachbereich Humanmedizin und Begutachtung dieser Arbeit danken, sowie für die wissenschaftlichen Diskussionen um die Arbeit.

Herrn Prof. Dr. Dr. habil. G. Baljer danke ich für die Vertretung und Begutachtung dieser Arbeit im Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen.

Frau Dr. C. Hipler von der Dermatologischen Klinik der Universität Jena möchte ich für die freundliche und unkomplizierte wissenschaftliche Kooperation danken.

Herrn Dr. R.-H. Bödeker möchte ich für die Zusammenarbeit bei der statistischen Auswertung danken.

Herrn Dr. R. Weiß danke ich für die Korrekturen an der Arbeit.

Ein herzlicher Dank geht an all die wissenschaftlichen MitarbeiterInnen und DoktorandInnen, die mir durch Ihre Hilfsbereitschaft und freundliche Zusammenarbeit bei der Realisierung der Experimente geholfen haben.

Inhaltsverzeichnis

1. Einleitung	1
2. Literaturübersicht	2
2.1 Geschichte und Taxonomie der Gattung Malassezia	2
2.2 Kennzeichen der Spezies Malassezia furfur	3
2.3 Epidemiologie von <i>Malassezia-</i> Hefen	5
2.4 Mit Malassezia-Hefen assoziierte Krankheitsbilder	7
2.4.1 Pityriasis versicolor	8
2.4.2 Sekundärmetabolite von Malassezia furfur und ihr	
Zusammenhang mit der PV	14
2.4.3 Andere mit Malassezia assoziierte Erkrankungen	17
2.5 Neutrophile Granulozyten und ihre getesteten Parameter	20
2.5.1 Funktion der neutrophilen Granulozyten	20
2.5.2 Respiratorischer Burst	22
2.5.3 Lipidmediatoren	25
2.5.4 Zytokine	27
2.6 Die Pityriarubine und verwandte Substanzen	29
3. Eigene Untersuchungen	
3.1 Fragestellung	35
3.2 Materialien und Methoden	36
3.2.1 Materialien	
3.2.1.1 Geräte und Lösungen für die Anzucht von Malassezia-Hefen	
und die Gewinnung der Unterfraktionen	36
3.2.1.2 Geräte und Lösungen für die präparative HPLC der	
Substanzgewinnung	37
3.2.1.3 Geräte und Lösungen für die analytische HPLC der	
Substanzgewinnung	37
3.2.1.4 Geräte und Lösungen für die Zellisolation und für die	
Herstellung der Verdünnungsreihe der Pityriarubine	38
3.2.1.5 Geräte und Lösungen für die Messung freier	
Sauerstoffradikale	39
3.2.1.6 Geräte und Lösungen für die Leukotrien – Analytik mittels HPLC	40
3.2.1.7 Geräte und Lösungen für die Messung von IL-8 mittels ELISA	41

3.2.2 Methoden	42
3.2.2.1 Anzucht von Malassezia furfur und Gewinnung der Pityriarubine	
A, B und C	42
3.2.2.1.1 Anzucht und Nährmedien	43
3.2.2.1.2 Bildung von Pigmenten und Fluorochromen	44
3.2.2.1.3 Kulturbedingungen	45
3.2.2.1.4 Pigmentgewinnung und Aufreinigung	45
3.2.2.1.4.1 Gewinnung des Pigment-Rohextraktes	45
3.2.2.1.4.2 Gelpermeationschromatographie	46
3.2.2.1.4.3 Dünnschichtchromatographie und Aufreinigung zur HPLC	48
3.2.2.1.5 High Performance Liquid Chromatographie (HPLC)	51
3.2.2.1.5.1 Präparative HPLC	51
3.2.2.1.5.2 Analytische HPLC	52
3.2.2.1.6 Strukturaufklärung	52
3.2.2.2 Untersuchung der Wirkung der Pityriarubine	52
3.2.2.2.1 Isolierung der neutrophilen Granulozyten	52
3.2.2.2.2 Untersuchung der Wirkung der Pityriarubine und	
des Arcyriarubin A auf granulozytäre Funktionsparameter	54
3.2.2.2.1 Messung der granulozytären Freisetzung reaktiver	
Sauerstoffspezies (ROS)	56
3.2.2.2.2.2 Analytik von Arachidonsäure-Metabolite mittels HPLC	58
3.2.2.2.3 Analytik des IL-8 mittels ELISA	63
3.3 Ergebnisse	67
3.3.1 Respiratorischer Burst	68
3.3.1.1 A 23187 als Aktivator	68
3.3.1.2 N-Formyl-Methionin-Leucin-Phenylalanin (Fmlp) als Aktivator	70
3.3.1.3 Di-Octanoyl-Glycerol (DAG) als Aktivator	71
3.3.1.4 Phorbolester als Aktivator	72
3.3.1.5 Natriumfluorid als Aktivator	73
3.3.1.6 Zymosan als Aktivator	74
3.3.2 Leukotrienausschüttung	75
3.3.2.1 Leukotrien B ₄	75
3.3.2.2 6-trans-Leukotrien B ₄	77
3.3.2.3 6-trans-12-epi- Leukotrien B ₄	79

3.3.3 Interleukin - 8 – Ausschüttung	81
3.3.4 Ergebnisse im Rahmen einer Kooperation mit der Universität Jena	82
3.3.4.1 Inhibition des "respiratorischen burst" nach IL-3-Stimulation	82
3.3.4.2 Einfluss der eingesetzten Substanzen auf HaCaT-Zellen	83
3.3.5 Ergebnisse des H-Test von Kruskal und Wallis	84
4. Diskussion	
4.1 Die Pityriarubine A, B und C: Hochpotente und spezifische	
Inhibitoren granulocytärer Entzündungsreaktionen	85
4.2. Die Pityriarubine A, B und C und ein möglicher Zusammenhang	
mit der Pityriasis versicolor	94
5. Zusammenfassung	98
6. Summary	99
7. Literaturliste	101
8.Anhang	118

Abkürzungsverzeichnis

AA	Arachidonsäure
A 23187	Calcimycin, ein Calciumionophor
AE	Atopisches Ekzem
Ah-Rezeptor	Arvl-Hvdrocarbon-Rezeptor
Akt	Proteinkinase B
АТР	Adenosintriphosphat
R2-Integrine	Gruppe von Rezentorproteinen
BIM	BisindolyImaleimid
Ca ²⁺	zweiwertiges Calcium
C3h	Komponente des Komplementsystems
CD11b	Rezentorprotein aus der Gruppe der ß2-Integrine
CD18	Rezentorprotein aus der Gruppe der 62-Integrine
Cdc42	Intereinheit der NADPH-Oxidase
	Diacylolycerin: Di-Octanovl-Glycerol
DIHETES	Dibydroxyeicosatetraensäure
DMSO	Dimethyleulfoxid
	Dosovyribonukloinsäuro (–DNA)
	othylono diamino totraacotic acid
LDIA	(Äthylondiamintotraossigsäuro)
EDK	
	Extracenular-regulated protein kinase
	ein Rezeptorprotein
	5-Lipoxygenase-aktivierendes Protein
Fmip	N-tormyi-Methionin-Leucin-Phenylalanin
g	Erdbeschleunigung (= 9,81 m/sec ⁻)
GDP	Guanosindipnospnat
GIP	Guanosintriphophat
gp91 ^{phox}	Untereinheit der NADPH-Oxidase
H/H ···	Hank s HEPES cum Ca/Mg Puffer
HEIE	Hydroxyeicosatetraensäure
HPLC	High Performance Liquid Chromatographie
IC ₅₀	Konzentration eines Inhibitors, die nötig ist, um ein
	Enzym in vitro um 50 % zu blocken
ICAM-1	Rezeptorprotein
lg	Immunglobulin
IL	Interleukin
IP3	Inosit 1,4,5 – Triphophat
JNK	c-Jun NH2-terminal kinase
КОН	Kaliumhydroxid
LTA ₄	Leukotrien A ₄
6-trans-LTB₄	6-trans-Leukotrien B ₄
6-trans-12-epi-LTB ₄	6-trans-12-epi- Leukotrien B ₄
K252a	ein Proteinkinase C-Inhibitor aus der Gruppe der
	Staurosporine
LO	Lipoxygenase
LPS	Lipopolysaccharid

М.	Malassezia
MAPK	Mitogen-activated Proteinkinasen
ml	milliliter
ma	milligramm
MPS	Mononukleäres Phagozytierendes System
MW	Mittelwert
NADPH	Nicotinamidadenindinukleotidphophat
ma/d	millioramm pro Tag
	Plättchen-aktivierender Faktor
	Phoenbat-gonufforto Salziõgung
P20 porovirodovin	Untoroinhoit dor NADDH Ovidago
	Dillereinnen der NADER-Oxidase
PSOIVIAPN Doo ^{phox}	Untersinheit der NADDH Ovidees
	Untereinneit der NADPH-Oxidase
P4/ ^{phox}	Untereinneit der NADPH-Oxidase
P67 ^{pmax}	Untereinheit der NADPH-Oxidase
PE	Phobolester
PI3Kõ	Phosphatidylinositol 3-kinase o
PIP2	Phophatidylinosit-4,5-biphophat
PKA	Proteinkinase A
PKC	Proteinkinase C
PLC	Phospholipase C
PLD	Phospholipase D
PMN	polymorphkernige neutrophile (Granulozyten)
PV	Pityriasis versicolor
Rac2	Untereinheit der NADPH-Oxidase
RNS	Ribonukleinsäure (=RNA)
Ro	BisindolyImaleimid
ROS	reactive oxygen species
	(reaktive Sauerstoffspezies)
Rap1A	regulatorische Untereinheit der NADPH-Oxidase
RPMI	Standardzellkulturmedium (entwickelt am Roswell
	Park Memorial Institute)
SE	Seborrhoisches Ekzem
SF	Standardabweichung
SOD	Superoxiddismutase
sn	species
spn	Mehrzahl für species
Tc-Zellen	T-Killer-Zellen
Th-Zellen	T-Helfer-Zellen
	Tumor Nekroso-Eaktor
	Mikromotor
μπ π.Μ	mikromolor
µıvı LIV/Licht	IIIKIUIIUIAI
	Unaviolenes Licht
u.U.	
vgi.	vergieiche

1. Einleitung

Die in dieser Arbeit untersuchten Pityriarubine A, B und C sind Teil einer Vielzahl von Pigmenten und Fluorochromen, die *Malassezia furfur* mit Tryptophan als einziger Stickstoffquelle produziert. Diese besondere Stoffwechseltätigkeit von *Malassezia furfur* ist in dieser Form unter den Spezies der Gattung *Malassezia* einzigartig und wurde erstmals von Mayser et al. im Jahr 1998 beschrieben ^[110] (vgl. Kap. 2.2). Nachdem die Struktur der bis dahin unbekannten Pityriarubine entschlüsselt war ^[91], fiel eine Verwandtschaft zu biologisch aktiven Stoffen wie den Bisindolylmaleimiden auf, die als Proteinkinase-Inhibitoren in Signaltransduktionsprozesse von Zellen eingreifen und so beispielsweise die Aktivierung von Entzündungszellen hemmen

(vgl. Kap. 2.6).

Aufgrund dieser strukturellen Verwandtschaft wurden in der vorliegenden Arbeit die Pityriarubine A, B und C im Hinblick auf ein mögliches inhibitorisches Potential gegenüber stimulierten Entzündungszellen untersucht. Ein in der Literatur häufig beschriebenes biologisches Modell für die Messung des inhibitorischen Potentials einer Substanz auf Entzündungszellen ist die Wirkung auf die granulozytäre Freisetzung reaktiver Sauerstoffspezies ("burst"), weshalb auch in dieser Arbeit der "granulozytäre burst" als ein Parameter untersucht wurde. In Kapitel 2.5 werden neutrophile Granulozyten und die in dieser Arbeit untersuchten Parameter der granulozytären Aktivierung näher beschrieben.

Eine besondere Bedeutung erlangt die Produktion möglicherweise entzündungshemmender Substanzen vor dem Hintergrund, dass eine Reihe der bisher aus dem Pigment isolierten und biologisch charakterisierten Substanzen eine Verbindung mit der Pathogenese der Pityriasis versicolor (PV) vermuten lassen, einer durch *Malassezia* verursachten und weltweit verbreiteten Hautmykose.

In Kapitel 2.4 wird auf die mit *Malassezia* assoziierten Krankheiten und speziell die Pityriasis versicolor, sowie auf den möglichen Zusammenhang dieser Krankheit mit den von *Malassezia furfur* produzierten Tryptophan-Metaboliten näher eingegangen.

Die in dieser Arbeit untersuchte Wirkung der Pityriarubine A, B und C auf granulozytäre Entzündungsreaktionen soll also auch in den Kontext eines möglichen Zusammenhanges von Tryptophan-Metaboliten mit der Pityriasis versicolor gestellt und diskutiert werden.

2.Literaturübersicht

2.1 Geschichte und Taxonomie der Gattung Malassezia

Die Erforschung der Gattung *Malassezia* ist seit der ersten Beschreibung durch Eichstedt im Jahr 1846^[53] im Zusammenhang mit der Pityriasis versicolor von kontroversen Diskussionen begleitet. Dies betrifft sowohl die Taxonomie der Gattung, als auch deren Pathogenität und Bedeutung für die verschiedensten Krankheitsbilder, insbesondere der Pityriasis versicolor.

Der Gattung *Malassezia* wurde 1853 von Robin ^[156] zunächst der Name "Microsporon furfur" gegeben. Das aufgrund der Ähnlichkeit zu dem Dermatophyten Microsporum audouinii. Diese Gattungszugehörigkeit wurde im Jahr 1892 von H.E. Baillon ^[12] korrigiert, der aufgrund der Mikromorphologie das neue Genus schuf und zu Ehren des Pathologen Louis Charles Malassez, der 1874 die typischen runden und ovalen Sprosszellen beschrieb, dem Pilz seinen heutigen Namen "*Malassezia*" gab.

Eine Schwierigkeit in der Erforschung dieser Gattung lag in der erst im Jahr 1927 durch Panja gelungenen Anzucht ^[136]. Zurückzuführen ist diese erst so spät gelungene Kultivierung auf die speziellen Bedürfnissen *Malassezias* an das Kulturmedium, die 1939 von Benham ^[14] mit der Lipiddependenz dieser Hefen charakterisiert wurde und den Weg für die unterschiedlichsten Kulturmedien ebnete.

Die Probleme in der Taxonomie entstanden aber vor allem dadurch, dass die Erscheinungsvarianten der Gattung *Malassezia* lange als verschiedene Organismen angesehen wurden, so dass den Sproßzellen der Gattungsname *Pityrosporum* und der Hyphenform der Gattungsname *Malassezia* zugesprochen wurde.

Auch hier war es Panja im Jahr 1927^[136], der die beiden Lebensformen als erster zu einer Art zusammenschloss. Die Diskussion jedoch, ob sich nicht doch zwei Spezies hinter den beiden Erscheinungsformen verbergen, konnte erst im Jahr 1977 beendet werden, als es drei unabhängig voneinander arbeitenden Gruppen^[52,125,165] gelang, die Hefeformen zur Produktion von Hyphen anzuregen. Dabei konnten sowohl die runden, als auch die ovalen Hefeformen zur Produktion von Hyphen veranlasst werden, so dass ab diesem Zeitpunkt all diese Formen nur als unterschiedliche Erscheinungsvarianten im Lebenszyklus ein und desselben Organismus angesehen wurden.

Die Unklarheiten um Identifizierung und Nomenklatur der Gattung *Malassezia*, für die unterschiedliche Forschungsgruppen jeweils ihre eigene Klassifikation favorisierten, wurde jedoch erst 1995 von Guillot und Gueho ^[77] beendet, die mittels einer vergleichenden Analyse der rRNS und DNS von 104 Isolaten der Gattung *Malassezia* sieben Spezies postulierten: *M. furfur*, *M. sympodialis*, *M. obtusa*, *M. globosa*, *M. restricta*, *M. slooffiae* und *M. pachydermatis*. Zudem wurden mit *M. yamatoensis* ^[182], *M. japonica* ^[183], *M. nana* ^[88] und *M. dermatis* ^[183] erst vor kurzem neue Spezies identifiziert. Die Gattung *Malassezia* wird darüber hinaus den Basidiomyzeten (Ständerpilzen) zugeordnet, dies unter anderem aufgrund des Chitingehaltes der Zellen ^[95].

Auch wenn diese neue Einteilung allgemein anerkannt und durch andere Studien gestützt wird ^[78,95], besteht ein Problem darin, vorangegangene Studien in den Kontext dieser neuen Klassifizierung einzuordnen ^[160,8].

Da es sich bei der Gattung *Malassezia* um opportunistisch pathogene Keime handelt, die als Kommensalen auf der Haut leben, begleiten die Erforschung der *Malassezia*-Spezies auch gegensätzliche Diskussionen hinsichtlich der Pathogenität und der pathogenen Mechanismen diese Keime bzw. um der Kofaktoren, die nötig sind, eine Erkrankung auszulösen. Auf diese Problematik wird im Rahmen der mit den Pilzen assoziierten Krankheitsbilder eingegangen.

2.2. Kennzeichen der Spezies Malassezia furfur

Malassezia furfur ist ein Sproß- oder Hefepilz, der in Hefe- und Mycelform vorkommt, wobei die Mycelform auf gesunder Haut selten und in der Kultur nur unter bestimmten Bedingungen zu finden ist. Die Hefezellen sind charakterisiert durch eine lange, zylindrische, ovale oder runde Form, wobei auch Übergänge zwischen den Formen beobachtet werden, die offenbar teilweise vom Nährmedium abhängen ^[73,155,165,175]. Meist lagern sich die Zellen "nestförmig" an, wobei um die Zellen kurze Hyphenelemente gelagert sind.

Runde Zellen besitzen einen Durchmesser von etwa 2-3 µm, während ovale Formen durchaus 6 µm lang sein können.

Die Zellwand von *Malassezia* ist mit 0,12 µm im Gegensatz zu anderen Hefen relativ dick. Sie besteht aus mehreren Schichten, unter denen jedoch zwei Hauptschichten auszumachen sind ^[119]. Dieser mehrschichtige Wandaufbau verleiht den Zellen ihre mechanische Stabilität und Osmotoleranz.

Malassezia-Hefen gehören bis auf *M. pachydermatis* alle zu den obligat lipophilen Mikrorganismen ^[200,90] und zeigen eine Abhängigkeit von längerkettigen Fettsäuren (Zahl der C-Atome \geq 12), die in Fettsäuren höherer Kettenlänge umgewandelt werden ^[171] - ein Hinweis auf die Adaption an seborrhoische Areale. Am effektivsten werden von *Malassezia* dabei freie langkettige Fettsäuren verstoffwechselt, gleich ob gesättigt oder ungesättigt. Freie Fettsäuren kürzerer Kettenlänge (Zahl der C-Atome \leq 10) und davon abgeleitete Triglyzeride hingegen können das Wachstum von *Malassezia* hemmen ^[134].

Der Nachweis gelingt über Abstriche und Hautschuppen und eine Anzucht auf geeigneten Medien. Dies kann bei *Malassezia furfur* im Gegensatz zu anderen *Malassezia*-Spezies ein Minimalmedium mit Aminosäuren oder anderen Stickstoffquellen sowie einer Lipidquelle sein, da *Malassezia furfur*, abgesehen von der beschriebenen Lipidabhängigkeit, ein recht anspruchsloser Keim ist.

Malassezia furfur besitzt also die Fähigkeit, Lipide als einzige Kohlenstoffquelle zu nutzen und benötigt zudem weder Spurenelemente, Vitamine, noch Elektrolyte^[109].

Malassezia – Hefen besitzen eine Lipaseaktivität ^[36]. Diese membranständige extrazelluläre Lipase ist während der logarithmischen Phase des Zellwachstums besonders hoch, was die Bedeutung der Hydrolyse von Lipiden für das Wachstum unterstreicht ^[144].

Darüberhinaus produziert *Malassezia* eine Phospholipase ^[153] und ein Enzym mit Lipoxygenase-Aktivität ^[126]. Beide sind Enzyme, die bei Entzündungsreaktionen mit *Malassezia*-Beteiligung eine Rolle spielen könnten.

Ein bereits bekannter, von *Malassezia*-Hefen produzierter Metabolit ist Azelainsäure, die mit ihrer bakteriziden ^[89] und fungiziden ^[30] Wirkung eine wichtige Bedeutung im Konkurrenzkampf mit anderen Mikroorganismen um Lebensraum auf der Hautoberfläche zukommt. Darüberhinaus wird Azelainsäure als Inhibitor der

Tyrosinase eine mögliche Bedeutung in der Depigmentierung bei der Pityriasis versicolor alba zugesprochen ^[124,157].

Die Kolonien von *Malassezia furfur* zeigen sich cremefarben bis gelblich ^[1] mit dem typisch fruchtigen Geruch, dem ursächlich flüchtige γ -Lactone zugrunde liegen. Die optimalen Wachstumsbedingungen liegen bei 32 – 37 ° C und bei einem pH-Wert von 5,5 bis 6,5.

Malassezia – Hefen wachsen sowohl unter anaeroben, mikroaeroben und auch aeroben Kulturbedingungen.

Eine besondere Stoffwechseltätigkeit, die *Malassezia furfur* von anderen *Malassezia*-Hefen abgrenzt, ist die Fähigkeit, eine Vielzahl von Pigmenten und Fluorochromen zu produzieren, wenn Tryptophan als einzige Stickstoffquelle zur Verfügung steht ^[109, 110]. Aus diesen konnte bereits eine Reihe von Substanzen mit biologischer Wirksamkeit isoliert werden (vgl. Kap. 2.4.2).

Unter den anderen Spezies der Gattung *Malassezia* produziert nur noch *M. pachydermatis* Pigmente – jedoch in weit geringerer Vielfalt und Menge als *M. furfur* ^[113].

2.3 Epidemiologie von Malassezia-Hefen

Wie erwähnt, gehören *Malassezia* – Hefen zur residenten Mikroflora der Haut des Menschen ^[200,90] und lassen sich von nahezu allen erwachsenen Individuen kultivieren; dabei kommt *Malassezia* sowohl in der Hyphen- als auch in der Sprosszellform vor. Die Lipidabhängigkeit führt dazu, dass *Malassezia* vor allem in den talgdrüsenreichen Arealen der Haut zu finden ist, also der vorderen und hinteren Schweißrinne, sowie im Kopf-, Hals- und Gesichtsbereich und dort in erster Linie in den oberen Zellagen ^[142, 143, 195].

Die Besiedlungsdichte ist individuellen Schwankungen unterworfen ^[154,189] und korreliert positiv mit steigender Talgproduktion und zunehmenden Feuchtigkeitsgehalt der Haut ^[131], so dass die Kolonisierung während der Pubertät beginnt und die Besiedlungsdichte mit steigendem Alter und dem damit einhergehenden Abfall der Lipidkonzentration auf der Haut wieder abnimmt. So findet

sich in der Gruppe der 30-jährigen eine signifikant höhere Dichte als bei den 40- bis 80-jährigen ^[15].

Malassezia-Hefen kommen auf eine Häufigkeit von 78-97 % im Kopfbereich und auf 92–100 % im Bereich des Stammes ^[108,132,155]. Sie werden auch bei Haussäugetieren und anderen Warmblütern nachgewiesen. Dabei wird mittlerweile deutlich, dass diese nicht nur von *M. pachydermatis*, der einzigen lipidunabhängigen Spezies, besiedelt werden, sondern auch von anderen *Malassezia*-Arten.

So lag bei einer Studie an Pferden und domestizierten Wiederkäuern der Anteil der sechs lipidbedürftigen Arten mit 42 % deutlich höher als der Anteil von *M. pachydermatis* (3 %), die auch insgesamt die seltenste Art war ^[42].

Eine Studie an Hunden und Katzen, deren Untersuchungsmaterial in erster Linie Ohrabstriche waren, zeigte, dass zwar *M. pachydermatis* mit 83 % der häufigste gefundene Keim war, jedoch wurden auch *M. furfur* in 45 % der Isolate und *M. sympodialis* in 75 % nachgewiesen. Dabei lagen in über 80 % der Fälle Mischkulturen von zwei oder allen drei nachgewiesenen Keimen vor ^[148].

2.4. Mit Malassezia-Hefen assoziierte Krankheiten

Die Gattung *Malassezia* gehört zur residenten Flora der menschlichen Haut und besitzt - indem sie pathogenen Mikroorganismen den Raum entzieht - eine nicht unbedeutende Schutzfunktion. Darüber hinaus sind *Malassezia spp.* an der Entstehung einer Reihe von Erkrankungen beteiligt.

Generell wird für die Ausbildung einer Erkrankung durch *Malassezia sp.* die Bildung von Mycel als ein zentraler pathogener Mechanismus dieser Hefe angesehen, da erst so dem Pilz ein Eindringen in das Stratum corneum möglich ist ^[25,35,115,120]. Allerdings bilden *Malassezia*-Hefen auch auf gesunder Haut Mycel aus – wenn auch in geringerem Maße ^[114]. So bedarf es also sicherlich weiterer Kofaktoren, um die verschiedenen Krankheiten auszulösen.

Eine exponierte Rolle unter den *Malassezia*-assoziierten Krankheitsbildern hat die Pityriasis versicolor (PV). Eine Besonderheit dieser Erkrankung ist, dass trotz massiver Invasion von *Malassezia* in das Stratum corneum eine erstaunlich geringe Infiltration von Entzündungszellen in den betroffenen Arealen vorliegt ^[31,81,167].

Diese Erscheinung steht im krassen Gegensatz zu anderen *Malassezia*– Erkrankungen und generell zu anderen Mykosen. Weitere Besonderheiten der PV sind eine starke Fluoreszenz der betroffenen Areale unter UV-Licht, sowie eine intensive Pigmentierung und Depigmentierung der Haut.

Aufgrund eines möglichen Zusammenhanges zwischen der PV und der von *Malassezia furfur* unter bestimmten Kulturbedingungen gebildeten Pigmente (vgl. Kap. 2.4.2), zu denen auch die Pityriarubine gehören, sowie der großen Bedeutung dieser Erkrankung, wird im vorliegenden Kapitel auf die PV detailliert eingegangen.

2.4.1 Pityriasis versicolor

Mit einer Verbreitung von bis zu 50 % und mehr in tropischen und subtropischen Regionen ^[43,71,72,106] und zwischen 0,5 und 2 % ^[13,68] in gemäßigten Breiten, gilt die Pityriasis versicolor als eine der häufigsten superfiziellen Mykosen weltweit ^[13,57,68,84].

Die PV wird eingeteilt in eine hyperpigmentierte Form (PV chromians) mit makulöser, perifollikulärer oder papulöser Erscheinung, sowie in eine hypopigmentierte Pityriasis versicolor alba.

Das klinische Bild der PV chromians besteht in den typischen milchkaffeefarbenen, kleieartig schuppenden Maculae, die zunächst linsen- bis pfenniggroß sind und fortschreitend landkartenartig konfluieren können. Bei der perifollikulären Form bleibt die Erkrankung weitgehend auf die Follikel beschränkt.

Interessant ist die besonders unter UV-Licht zu beobachtende Transformation <u>hyper</u>pigmentierter Areale in <u>hypo</u>pigmentierte Areale ^[13,84]. Diese beiden Stadien können auch nebeneinander bestehen.

Auffällig ist die im Vergleich zur gesunden Haut stark erhöhte Zahl an Hyphen, die in Läsionen von PV-Patienten 100 % beträgt und in nicht läsionaler Haut von solchen - je nach Lokalisation - 42 - 50 %. Allerdings finden sich Hyphenstadien auch mit 6 -7 % ^[114] auf gesunder Haut.

Die Erkrankung findet sich in allen Körperregionen, deutlich vermehrt jedoch in den seborrhoischen Bereichen des oberen Körperstammes.

Von der PV betroffen sind vor allem Jugendliche und jüngere Menschen in der zweiten und dritten Lebensdekade. Für diese Häufung scheinen besonders die Veränderungen in der Zusammensetzung der Hautlipide während der Pubertät verantwortlich zu sein ^[34,107,137].

Die Gründe für die ungewöhnliche Pigmentierung sind schon lange Gegenstand der Forschung.

So konnte zwar gezeigt werden, dass die Melanozyten in hyperpigmentierten Arealen vergrößert sind, jedoch ist ihre Zahl nicht vermehrt ^[4]. Interessant ist, dass Hyperpigmentierung bei PV-Läsionen auch in Hautarealen mit vitiliginöser Depigmentierung anzutreffen ist, ein Befund, der sehr für eine Eigenfärbung des Pilzes spricht.

Abbildung 1: Hyperpigmentierung bei der Pityriasis versicolor

Auch die Mechanismen der Hypopigmentierung werden seit langem intensiv untersucht. Zum einen wurde eine UV-filternde Wirkung durch den Pilz angenommen ^[4]. Dem wurde jedoch entgegengesetzt, dass auch in unbelichteten Arealen Hypopigmentierung zu finden ist ^[21,94] und die Repigmentierung außerordentlich langsam vonstatten geht ^[68]. Diese Befunde legen eher toxische, die Melaninsynthese oder die Melanozyten betreffende Einflüsse nahe.

So konnte ein gestörter Melanosomentransfer zu den Keratinocyten ^[4,32,37,96] und eine toxische Wirkung von Azelainsäure, einem Stoffwechselprodukt des Pilzes, auf die Melaninsynthese beobachtet werden ^[82]. Dass Azelainsäure an der Hypopigmentierung beteiligt sein soll, bleibt aber insofern sehr zweifelhaft, als diese auch auf gesunden Individuen produziert wird, ohne dass es bei diesen zu einer Hypopigmentierung kommt.

Interessant ist, dass – im Gegensatz zu Vitiligo – trotz der Hypopigmentierung keine erhöhte Empfindlichkeit gegen UV-Licht besteht, was unter Umständen mit einer UV-protektiven Wirkung von Seiten des Pilzes im Zusammenhang steht ^[4].

Abbildung 2: Hypopigmentierung bei der PV alba

Eine weitere Besonderheit der PV ist die auch für die klinische Diagnostik wichtige grün-gelbe Fluoreszenz unter UV-Licht einer Wood-Lampe bei 366 nm. Eine definitive Erklärung für dieses Phänomen steht zwar noch aus, doch ist ein ursächlicher Zusammenhang mit den von *Malassezia*-Hefen produzierten fluoreszierenden Substanzen nicht auszuschließen.

Die Kontagiösität der PV ist als gering bzw. als nicht gegeben anzusehen ^[68,84,168]. So gelangen experimentelle Infektionen nur in Ausnahmefällen ^[34,58,137].

Welche Bedingungen letztlich gegeben sein müssen, dass die zur residenten Flora der Haut gehörende Hefeform Mycel ausbildet, welches in das Stratum corneum eindringen kann, ist noch nicht vollständig geklärt ^[25,35,117,120], wird aber als ein zentraler Prozess der Erkrankung angesehen.

Als ein bedeutender Kofaktor der Erkrankung ist feuchtwarmes Makroklima bekannt, ersichtlich schon aus der anfangs erwähnten weltweiten Verteilung mit einer Spitze von teils über 50 % in tropischen und subtropischen Breiten ^[72,73,106].

Darüberhinaus scheinen generell das Mikroklima und Einflüsse, die zu einer erhöhten Schweißproduktion führen, die Krankheit zu fördern. So zum Beispiel anlagebedingte Hyperhidrose ^[151], Berufs- und Freizeitverhalten ^[69,180], wie häufiger

Besuch einer Sauna, das Tragen okklusiver Kleidung ^[84] oder auch Erkrankungen, die mit einer erhöhten Schweißneigung einhergehen. Hierzu zählen beispielsweise Hyperthyreose und Tuberkulose ^[151], aber auch neurologische Erkrankungen mit Störungen der Schweißdrüseninnervation. So konnte eine erhöhte Inzidenz bei Patienten mit Rückenmarkstraumen festgestellt werden, und zwar scharf abgegrenzt oberhalb der denervierten Gebiete, da es in nicht betroffenen Arealen zu einer kompensatorischen Hyperhidrose kommt ^[152].

Zu klären ist auch noch die Frage, ob das gehäufte Auftreten der Erkrankung unter systemischer Steroidtherapie tatsächlich auf die immunsuppressive Wirkung der Corticosteroide oder nicht doch eher auf die einhergehende Hyperhidrose bzw. veränderte Schweißzusammensetzung zurückzuführen ist. So konnte eine erhöhte Schweißneigung unter Prednisontherapie festgestellt werden ^[104].

Für die zweite These spricht auch, dass die Inzidenz unter Erkrankungen wie AIDS oder Diabetes mellitus ^[104] – im Gegensatz zu anderen Hefemykosen - nicht zunimmt. Auch die lokale Applikation von Steroiden auf *Malassezia*-besiedelte Hautbezirke führt nicht zum Ausbruch von PV ^[34].

Ebenfalls wird eine genetische Prädisposition ursächlich diskutiert^[34].

Die Diagnose PV wird außer anhand der klinischen Symptomatik, ergänzt durch eine Woodlicht-Untersuchung, durch das KOH – Nativpräparat gestellt. Klinisch prägnant ist das so genannte Hobelspänphänomen, eine kleieartige Schuppung ("Pityriasis"), die auftritt, wenn mit einem Holzspatel über die Läsionen gestrichen wird. Auf diese Art wird auch das Material für die mikroskopische Diagnostik gewonnen. Hier kann der Erreger sehr leicht nachgewiesen werden. Bei 400facher Vergrößerung sind Ansammlungen runder Sprosszellen (bis 8µm) mit kurzen, gebogenen, selten sich verzweigenden Hyphen mit einem Durchmesser von 2,5 - 4 µm zu erkennen. Alternativ zu dieser Methode kann auch der Tesafilmabriß verwendet werden.

Von großem Interesse sind die histologisch nur geringen Veränderungen^[2,196].

Es findet sich eine Hyperkeratose, eine fakultative Parakeratose und eine geringgradige Akanthose, wobei der Erreger nicht in tiefere Schichten der Epidermis eindringt, sondern im Stratum corneum verbleibt, wo er zwischen und innerhalb der Korneozyten eindringt ^[68].

Die Immunantwort fällt im Vergleich zur Erregerdichte sehr gering aus. So findet sich nur ein geringes perivaskuläres Infiltrat von T-Lymphozyten im oberen Korium. Es handelt sich dabei vornehmlich um Th- Zellen und einige Tc-Zellen ^[167]. Diese Befunde konnten durch nachfolgende Studien bestätigt werden ^[31,81].

Weiterhin konnte in einigen Läsionen eine erhöhte Zahl an Langerhans' Zellen festgestellt werden ^[31,81], was auf ihre Funktion als Antigen-präsentierende Zellen zurückzuführen sein dürfte.

Ein Anstieg von Monozyten wurde nur selten festgestellt ^[31,81]. Ebenso wurden Granulozyten in keiner Studie nachgewiesen. Dieses Fehlen eines granulocytären Infiltrates wurde auch in einer neuen Untersuchung bestätigt. Hier konnte gezeigt werden, dass bei der PV - trotz einer gegenüber der Tinea corporis höheren Keimdichte – im Gegensatz zu dieser kein granulocytäres Infiltrat vorliegt ^[196].

Warum die Immunantwort auf *Malassezia* in den Läsionen der Pityriasis versicolor derart gering ausfällt, ist unklar.

Die Untersuchungen zur humoralen Immunantwort sind widersprüchlich. So konnte von fünf unabhängigen Forschungsgruppen gezeigt werden, dass sich die Antikörpertiter gegen *Malassezia*-Hefen zwischen Erkrankten und Kontrollgruppen nicht unterschieden ^[5,7,59,66,81]. Im Gegensatz dazu stehen drei Studien ^[47,173,198], die höhere Antikörpertiter bei Erkrankten fanden.

Eine dieser Studien beschäftigt sich speziell mit *Malassezia furfur* ^[173]. In dieser konnte bei den Erkrankten höhere IgG- und IgM-Titer, jedoch kein Unterschied bei IgA festgestellt werden.

Bezüglich der humoralen Antwort auf Hyphen existiert bislang eine einzige Studie. Dort ergaben sich sowohl für Erkrankte als auch für die Kontrollgruppen deutliche Spiegel an IgE gegen Antigene von *M. furfur*, die allerdings in der Patientengruppe bei IgM und IgG noch signifikant höher lagen ^[8,161].

Auch Studien, die die zelluläre Immunantwort betreffen, sind sehr gegensätzlich und es lässt sich in der Gesamtheit keine klare Aussage für die Gattung *Malassezia* treffen ^[6,47,162,177,178,197].

Zwei Studien beschäftigen sich speziell mit der zellulären Immunantwort auf *M. furfur.* 1999 wurde von Bergbrand et al. in Lymphozyten-Migrationsassays die Reaktion auf gefriergetrocknete Zellen von *M. furfur* untersucht, wobei sich eine deutlich geringere Reaktion bei Erkrankten fand ^[19].

Eine andere Arbeitsgruppe ^[162] fand ebenfalls in Migrationsassays mit Mycel von *M. furfur* keine Unterschiede in der Immunantwort.

Auch wenn die Studien zur Immunantwort bei der PV auf die Gattung *Malassezia* im allgemeinen und *M. furfur* im speziellen teils widersprüchlich sind, so ergeben sich doch insgesamt Hinweise, die auf eine Störung der Immunantwort bei dieser Erkrankung hinweisen.

Die Anteile der verschiedenen Spezies von *Malassezia* in PV-Läsionen betreffend, gibt es seit der Differenzierung in die sieben neuen Spezies nur wenige Studien ^[43,44,79,123], die zudem in ihren Ergebnissen stark variieren.

Die verbreitetste Art scheint *M. globosa* zu sein, die in drei von vier Studien bei 50-60 % der PV-Herde dominiert. Eine andere Arbeitsgruppe postulierte *M. sympodialis* als deutlich dominierend ^[79].

M. furfur wurde dagegen in Arbeiten von Nakabayashi et al., sowie Gubta et al. bei nur 5% bzw. 10,8 % der Patienten nachgewiesen ^[79,123]. Die Arbeitsgruppe um Crespo Erchegia konnte *M. furfur* dagegen überhaupt nicht nachweisen ^[43].

Allerdings sind diese Studien nur qualitativer Art (Nachweis der betreffenden Spezies ohne relativen Anteil) und berücksichtigen nicht, dass verschiedene Spezies auch in unterschiedlicher Ausprägung nebeneinander existieren ^[43,44]. Auch Untersuchungen zu Veränderungen in der Zusammensetzung der Flora im Verlauf der PV liegen noch nicht vor ^[8].

Ein besonderes Problem bei diesen Untersuchungen ist die Anzüchtbarkeit der Hefen im Kulturmedium. Dabei kann es durch unterschiedliches Anwachsverhalten zu Verschiebungen im relativen Anteil der verschiedenen Spezies kommen. Im Extremfall wächst die pathogenetisch als wichtigste Spezies angesehene *M. furfur* in Hyphenform in Isolierungsversuchen überhaupt nicht und wäre damit nicht nachweisbar.

Darüberhinaus ist zu berücksichtigen, dass Pilze, die in tiefere Schichten eingedrungen sind, mit oberflächlichen Methoden nicht erfasst werden.

Als Therapie der PV haben sich lokale Cremes oder Lösungen mit den Wirkstoffen Ketoconazol oder Econazol bewährt. Ihre antifungale Wirkung erlangen diese zur Gruppe der Imidazole gehörenden Pharmaka hauptsächlich über die Hemmung der Ergosterolbiosynthese, dem Hauptsterol der Pilzmembran. Darüber hinaus werden aber auch der Fettsäurestoffwechsel, sowie oxidative und peroxidative Enzymsysteme beeinflusst und die Aufnahme von DNS- und RNS-Bausteinen gehemmt. Da die Hyphenstadien bei der PV auf der gesamten Haut erhöht sind, wird eine Behandlung der gesamten Körperoberfläche empfohlen.

Alternative Therapeutika sind andere Azolantimykotika und andere antimykotisch wirksame Präparate.

Bei Versagen der äußerlichen Therapie werden systemisch Azole eingesetzt, so z. B. Ketoconazol in einer Dosierung von 200 mg/d über 10 Tage ^[150] oder Fluconazol in einer Dosierung von 50 mg/d über 14 Tage ^[60].

Die Rezidivrate liegt auch bei längerer, intensiver Therapie bei 60 - 80 % innerhalb der nächsten 1 - 2 Jahre.

2.4.2 Sekundärmetabolite aus Kulturen von *Malassezia furfur* und ihr Zusammenhang mit der PV

Die Pityriarubine A, B und C sind Komponenten eines aus einer Vielzahl von Substanzen zusammengesetzten braunen Pigmentes, das in vitro von *Malassezia furfur* gebildet wird, wenn Tryptophan die einzige Stickstoffquelle ist.

Einige der bisher aus diesen Kulturextrakten isolierten und untersuchten Sekundärmetabolite zeigen biologische Eigenschaften, die einen Zusammenhang mit der Pathogenese der Pityriasis versicolor vermuten lassen:

<u>Malassezin</u> ist ein von *Malassezia furfur* gebildeter Sekundärmetabolit, dessen Wirkung auf Melanocyten in vivo mit dem charakteristischen Bild der PV alba assoziiert werden kann, bei dem es auch nach einer Behandlung zu einer lange anhaltenden Depigmentierung kommt. Für dieses Symptom wurden schon länger toxische Einflüsse von Seiten des Pilzes vermutet.

Malassezin ist ein potenter Ah-Rezeptoragonist, der an Melanozyten charakteristische Veränderungen wie Apoptose und Nekrose auslöst, die von zytoskelettalen Zusammenbrüchen des melanozytären Aktin-Myosin-Systems begleitet werden. Malassezin übt also direkte toxische Wirkungen auf die pigmentbildenden Zellen aus und behindert möglicherweise den melanosomalen Transport zu den Keratinozyten ^[145].

Als ein ebenfalls mit der Depigmentierung zusammenhängender Mechanismus kann die Hemmung des Schlüsselenzyms der Melaninsynthese, der Tyrosinase, angesehen werden; so konnten kürzlich aus Kulturextrakten zwei unbekannte Substanzen mit Tyrosinase-hemmender Wirkung isoliert und charakterisiert werden [45].

Ein weiterer isolierter Sekundärmetabolit ist das <u>Pityriacitrin</u> - ein bereits aus marinen Bakterien bekannter Lichtschutzfaktor, der erstmals den relativen UV-Schutz der PV-Areale auch bei herabgesetzter Melaninbildung der PV alba erklären könnte ^[111]. Darüberhinaus ist anzumerken, dass, im Gegensatz zur Differentialdiagnose "Vitiligo", bei der PV alba eher eine schwach gelbe als eine gänzlich weiße Färbung zu erkennen ist. Dies entspricht dem Farbton des Pityriacitrins.

Auch die Hyperpigmentierung konnte bisher nicht schlüssig erklärt werden. Da sie jedoch auch in Arealen von Vitiligo vorkommt, wurde dies mit einer Eigenfärbung des

Pilzes in Verbindung gebracht. Eine solche Eigenfärbung ließ sich auch im Zusammenhang mit der Pigmentproduktion bei *Malassezia furfur* feststellen.

Ein wichtiges differentialdiagnostisches Kriterium ist die grün-gelbe Fluoreszenz der befallenen Hautstellen bei Beleuchtung mit Wood-Licht (366 nm). Hier liegt eine Beteiligung des aus Kulturen der Hefe isolierten gelbgrünen Fluorochroms <u>Pityrialacton</u> - neben anderen zahlreich in den Kulturextrakten vorhandenen fluoreszierenden Stoffen - nahe. Pityrialacton war bisher unbekannt, und stellt ein Strukturisomer des Pityriaanhydrids dar, eine bislang zwar bekannte, aber noch nicht in der Natur gefundene Verbindung, die ebenfalls aus den Kulturextrakten isoliert werden konnte ^[112].

Obwohl die Wirkungen der Sekundärmetabolite die Pathogenese bisher ungeklärter klinischer Symptome der Pityriasis versicolor erstmals schlüssig erklären, bleibt die Frage offen, wie sich die speziellen Produktionsbedingungen der Pigmente durch *Malassezia furfur* in einem Zellmedium mit Tryptophan als einziger Stickstoffquelle auf die Lebensbedingungen auf der Haut übertragen lassen.

Hypothese Eine ist. dass hydrophile Stickstoffverbindungen über die Schweißsekretion werden, während sich abgeschwemmt die hydrophobe Aminosäure Tryptophan im Gegensatz dazu auf der Haut anreichert und auf diese Weise verstärkt als Substrat zur Verfügung steht ^[127].

Dieser Umstand würde auch die Hyperhidrose als einen wichtigen Manifestationsfaktor erklären. Diese kann – wie bereits erwähnt - genetisch oder durch das Tragen okklusiver Kleidung bedingt sein, aber auch medikamentös oder aufgrund anderer Erkrankungen wie beispielweise Hyperthyreose, Tuberkulose oder einer gestörten Innervation hervorgerufen werden. Auch das deutlich gehäufte Auftreten der PV in feucht-warmen Makroklima, das die Schweißneigung erhöht, könnte hiermit eine zusätzliche Erklärung finden (vgl. Kap. 4.2).

Eine weitere Hypothese ist, dass durch eine hohe *Malassezia*-Biomasse, der für das Wachstum benötigte Verbrauch "anderer" Aminosäuren sehr hoch ist, während sich Tryptophan hingegen zunehmend anreichert, da die Hefe für das Wachstum vorwiegend andere Aminosäuren einsetzt. Sind diese verbraucht, sistiert das Wachstum und die Pigmentsynthese setzt ein.

Bei der Diskussion, wie die Bildung der Sekundärmetabolite auf der Haut induziert wird, sollte auch bedacht werden, dass die Bildung der bisher noch unbekannten und für die Synthese der Tryptophan-Metabolite nötigen Enzyme auf dem Milieu der Haut durchaus anderen Gesetzen unterliegen kann als in dem artifiziellen System einer Pilzkultur.

2.4.3 Andere mit Malassezia assoziierte Erkrankungen

Bei einem Vergleich der PV mit den anderen *Malassezia* assoziierten Erkrankungen fällt auf, dass keine der für die PV typischen klinischen Erscheinungen wie Hypo- und Hyperpigmentierung, die Fluoreszenz unter langwelligem UV-Licht oder das geringe inflammatorische Infiltrat bei anderen Malassezia-Erkrankungen zu finden ist.

Das Seborrhoisches Ekzem (SE) ist charakterisiert durch "entzündlich gerötete, fettig schuppende und leicht infiltrierende Herde in seborrhoischen Arealen, verbunden mit geringem Juckreiz". Die Inzidenz des Seborrhoischen Ekzem liegt bei 1 - 3 % im Bevölkerungsdurchschnitt ^[67,149].

Die Pityriasis simplex capillitii wird von vielen Autoren als milde Form des SE angesehen ^[172] und wird deshalb gemeinsam mit dem SE abgehandelt.

Welche Rolle die Gattung *Malassezia* in der Pathogenese des SE und der Kopfschuppen einnimmt, konnte bisher noch nicht erklärt werden. Sicher ist jedoch, dass die Populationsdichte von *Malassezia* bei diesen Erkrankungen deutlich höher ist ^[115], bzw. dass der Anstieg der Populationsdichte von *Malassezia* mit der Schwere des Krankheitsbildes korreliert ^[86,140].

Durch Untersuchungen an Biopsien betroffener Areale wurde eine deutlich höhere Dichte der Spezies *Malassezia* auch in tieferen Schichten des Stratum corneum festgestellt. Die Autoren diskutieren, dass die Schwere des Pilzbefalles mit oberflächlichen Untersuchungsmethoden deutlich unterschätzt wird ^[140]

Was die humorale Immunantwort auf *Malassezia* bei SE-Erkrankungen betrifft, konnte ein Großteil der Arbeiten in Bezug auf *Malassezia*-spezifische Antikörper-Titer keinen Unterschied zwischen Patienten zu denen von Kontrollgruppen aufzeigen ^[5,16,17,18,97,139]. In drei Untersuchungen ^[3,118,173] wurden höhere Titer bei Erkrankten ermittelt, in einem Fall wurde dabei eine Antigenpräparationen von *Malassezia furfur* eingesetzt ^[173].

Die zelluläre Immunantwort betreffend gibt es zwei Studien, in denen Isolate von *Malassezia furfur* benutzt wurden. Beide ^[47,139] konnten keine Unterschiede zwischen Erkrankten und Kontrollgruppe nachweisen. In zwei weiteren Studien, die Antigenpräparationen anderer *Malassezia*-Spezies einsetzten, wurde eine höhere ^[6] und eine geringer ausfallende Immunantwort gefunden.

Die Ergebnisse sind also, wie auch bei der PV, widersprüchlich.

Im Gegensatz zur Histologie der PV findet sich beim SE jedoch eine deutliche Entzündungsreaktion in erkrankten Arealen, in die Lymphozyten, Makrophagen, Monozyten und auch Granulozyten involviert sind ^[11,18].

Therapeutisch wird die SE heutzutage mit systemischer oder topischer Gabe von Antimykotika wie Ketoconazol angegangen. Der Therapieerfolg liegt dabei über 80%.

Das Atopische Ekzem ist ein chronisches oder chronisch-rezidivierendes Ekzem, dessen Ätiologie noch nicht vollständig aufgeklärt ist. Eine zentrale Rolle spielen IgEvermittelte Überempfindlichkeitsreaktionen vom Soforttyp, verbunden mit weiteren immunologischen und nichtimmunologischen Einflüssen, wie psycho- und neurovegetative Störungen.

Malassezia-Hefen könnten vor allem für das AE im Kopf- und Nackenbereich eine Rolle spielen. So ergaben zwei Studien positive Ergebnisse auf *Malassezia*-Extrakte bei Hauttests mit Patienten, die eine Lokalisation der AE in diesen Bereichen aufwiesen^[40,188].

Auch weisen die positiven Ergebnisse einer antimyzetischen Therapie mit Ketoconazol in zwei Studien auf eine Beteiligung von Pilzen bei diesem Krankheitsbild hin ^[11,40].

Beim Atopischen Ekzem findet sich im Gegensatz zur PV ebenfalls ein deutliches Entzündungsinfiltrat, das bei akutem Verlauf von T-Lymphozyten und bei der chronischen Form von Mastzellen und Eosinophilen dominiert wird ^[101].

Bei der *Malassezia*-Follikulitis handelt es sich um juckende Papeln und Papulopusteln, die an Follikel gebunden in erster Linie am Rumpf und Hals und nur selten an den Extremitäten vorkommen. Sie unterscheiden sich von Akne dadurch, dass sie nicht mit Komedonen vergesellschaftet und monomorph sind sowie nicht auf die gängige Aknetherapie ansprechen.

Die läsionale Infiltration mit Entzündungszellen ist auch hier deutlich stärker als bei PV. Es dominieren bei noch intakten Follikeln Lymphozyten ^[26,33,59,60], während bei ruptierten Follikeln das Infiltrat in seiner Zusammensetzung stark variiert und neben Lymphozyten Neutrophile, Makrophagen, Eosinophile und auch Plasmazellen enthalten kann ^[147,174].

Histologisch ist die Krankheit kaum von anderen Follikulitiden abzugrenzen. Es findet sich allerdings eine große Zahl von Sprosszellen im Talg, jedoch sind die Talgdrüsenfollikel auch physiologischerweise mit Hefen der Gattung *Malassezia* besiedelt.

So ist die Eigenständigkeit der Erkrankung innerhalb des Komplexes der Follikulitiden nicht klar und der einzig schlüssige Beleg bleibt das Ansprechen auf eine antimyzetische Therapie ^[23,51] und das Versagen einer Antibiose als Abgrenzung zu bakteriellen Infekten.

Weitere Erkrankungen, mit denen die Gattung *Malassezia* bzw. *Malassezia furfur* beim Menschen in Verbindung gebracht wird, sind die Papillomatosis confluens et reticularis, die Acne vulgaris, die Psoriasis vulgaris, aber auch systemische Erkrankungen wie die katheterassoziierte *Malassezia*-Sepsis^[8].

2.5 Neutrophile Granulozyten und ihre getesteten Parameter

Da diese Arbeit den Einfluß der Pityriarubine auf die granulozytäre Aktivierung untersucht, soll nachfolgend die Funktion neutrophiler Granulozyten und der hier untersuchten granulozytären Parameter, also des "respiratorischen burst", der Leukotriene und des IL-8 dargestellt werden.

Neutrophile Granulozyten und ihre Aktivierung wurden als Modell ausgewählt, weil sie als wichtiger Teil des Immunsystems häufig in Untersuchungen zum Einfluss biologisch wirksamer Substanzen auf die Reaktionen von Entzündungszellen verwendet werden.

Darüberhinaus sind neutrophile Granulozyten in Läsionen fast aller Hautkrankheiten zu finden und scheinen eine Schrittmacherrolle für die Ansammlung beweglicher Zellen des <u>Mononukleären Phagozytierenden System (MPS)</u> zu spielen ^[189].

2.5.1 Funktion der neutrophilen Granulozyten [65,93,170,192]

Die neutrophilen Granulozyten, auch polymorphkernige Neutrophile (PMN) genannt, sind als mobile Effektorzellen ein wichtiger Teil des unspezifischen Immunsystems und haben etwa einen Anteil von 55 - 65 % der zirkulierenden Leukozyten beim gesunden Menschen.

Die PMN besitzen zwei Hauptaufgaben, die eng miteinander verbunden sind und sich gegenseitig bedingen. Dies ist zum einen die Phagozytose - unter anderem durch die Bildung reaktiver Sauerstoffspezies (Kapitel 2.5.2.) - und zum zweiten die Produktion und Freisetzung entzündungsregulativer Substanzen z. B. aus der Gruppe der Lipidmediatoren (Kapitel 2.5.3) oder der Zytokine (Kapitel 2.5.4).

Durch die umfangreiche Ausstattung an zur Opsonisation von Mikroorganismen wichtigen C3b- und Fc- Oberflächenrezeptoren, ist ihre phagozytäre Aktivität deutlich höher als die der eosinophilen und basophilen Granulozyten und stellt ihre Hauptaufgabe dar.

Die Aktivierung der Granulozyten erfolgt dabei zunächst über körpereigene Mediatoren oder direkt durch die Einwirkung von mikrobiellen Stimuli (Exo- und Endotoxine).

Der erste Schritt zur Einwanderung in entzündetes Gewebe besteht in der kurzzeitigen Adhäsion der PMN an der Gefäßwand der angrenzenden Gewebe.

Dabei kommt ihnen eine Mikrozirkulationsstörung und die damit verbundene verlangsamte Fließgeschwindigkeit entgegen, die ein kurzzeitiges Anhaften an der Gefäßwand begünstigt. Wichtig bei diesem Prozess sind zugleich Adhäsionsmoleküle aus der Gruppe der Selektine, die sich auf der Oberfläche der Endothelzellen und auf den Granulozyten befinden und diesen als "rolling" bezeichneten Vorgang ermöglichen.

Für eine vollständige Adhäsion sind jedoch – als Liganden des interzellulären Adhäsionsmoleküls 1 (ICAM-1) der endothelialen Zelloberfläche - die β2-Integrine der Granulozyten nötig. Diese befinden sich auf der Membran der neutrophilen Granula, die bei Aktivierung der PMN mit der Zelloberfläche fusioniert und so die Expression der Integrine und Adhäsion der PMN ermöglicht. Der Vorgang der Expression ist durch Zytokine, wie Interleukin-1, Interleukin-8 oder TNFα modulierbar.

Die weitere Transmigration in den Extravasalraum geschieht mittels aktiver amöboider Bewegung über interendotheliale Lücken.

Die nachfolgende Bewegung erfolgt entlang einem Konzentrationsgradienten chemoattraktiver Substanzen (Chemotaxis), für welche die Granulozyten Rezeptoren auf ihrer Oberfläche besitzen. Solche chemisch wirksamen Stoffe sind beispielsweise LTB₄ oder auch C_{5a}, eine Komponente des Komplementsystems, wobei LTB₄ eine besonders stark chemotaktisch wirksame Substanz für neutrophile Granulozyten ist und von diesen auch gebildet wird (sog. Autacoid).

Die Erkennung von Antigenen zur Phagozytose wird durch die Opsonierung wesentlich erleichtert. Ihre Aufnahme erfolgt über Pseudopodien, die den Partikel umschließen und dann miteinander fusionieren. Im Innern der PMN wird das nun vorliegende Phagosom durch lysozomale Enzyme oder freie Sauerstoffradikale abgebaut.

Die proteolytischen Enzyme befinden sich zunächst in den Granula des Zytoplasmas. Bei Fusion der Granulamembran mit dem Phagosom oder auch mit der Zellmembran kommt es zur Degranulierung und die proteolytischen Enzyme werden freigesetzt. Bei Fusion mit der Zellmembran werden die auch chemotaktisch wirksamen Enzyme in die Umgebung abgegeben.

In der Wand der Granula vorhandene Rezeptor- und Oberflächenmoleküle, darunter auch Fmlp-Rezeptoren, werden - nach Stimulation - durch Membranfusion der Granula an die Zelloberfläche transloziert, wodurch entsprechend Liganden zur Verfügung stehen.

Der zweite Weg der Abtötung von Mikroben - die Produktion reaktiver Sauerstoffspezies - ist der effizientere, allerdings aber auch mitverantwortlich für die zytotoxische Aktivität der PMN und wird im folgenden Kapitel näher behandelt.

2.5.2 Respiratorischer Burst [65,93,170,192]

Die Produktion reaktiver Sauerstoffspezies, auch "respiratorischer burst" genannt, beruht auf der Aktivierung der an die Zellmembran gebundenen NADPH-Oxidase. Dieser Multienzymkomplex besteht aus zytosolischen Proteinen (P47^{phox}, P67^{phox}, P40^{phox}, sowie den kleinen G-Proteinen Rac2, Cdc42, P29 peroxiredoxin), und aus einer membranständigen Komponente (Gp91^{phox}, P22^{phox} und dem kleinen G-Protein Rap1A) ^[10,170].

In unstimulierten PMN liegen die einzelnen Komponenten dissoziiert, also getrennt und inaktiv vor. Bei Stimulation durch diverse Agonisten kommt es jedoch zur Phosphorylierung der zytosolischen Komponenten und deren Translokation an die Plasmamembran, wo sie mit den dort ansässigen Komponenten assoziieren.

Das Ergebnis ist die Aktivierung der NADPH-Oxidase, die NADPH zu NADP umwandelt. Dabei freiwerdende Elektronen reduzieren molekularen Sauerstoff, so dass Superoxidanionen entstehen^[9]:

NADPH + 2 $O_2 \rightarrow \text{NADP}^+ + \text{H}^+ + 2 O_2^-$

Diese primären Produkte sind noch relativ wenig reaktiv und werden durch Superoxiddismutase (SOD) zu Wasserstoffsuperoxid (H₂O₂) reduziert:

$$2 O_2^{-} + 2 H^+ \rightarrow H_2O_2 + O_2$$

Das Wasserstoffperoxid wird unter der katalytischen Wirkung der Myeloperoxidase und in Gegenwart von Halogenen zu Hypochloriger Säure oxidiert. Die Myeloperoxidase befindet sich in den azurophilen Granula. In den mononukleären Zellen übernimmt eine Katalase die Funktion der Myeloperoxidase:

 $H_2O_2 + CI^- + H^+ \rightarrow HOCL + H_2O$

Hypochlorsäure ist als starkes Oxidationsmittel ebenso hochreaktiv. Es reagiert mit Ammonium und Aminen und bildet so stark reaktive Chloramine. Weitere Produkte, die aus einer Reaktion von Wasserstoffperoxid mit Superoxidanionen hervorgehen, sind Hydroxylradikale und Singulett-Sauerstoff:

$$H_2O_2 + O_2 \rightarrow 2 OH + {}^1O_2$$

Beide reagieren in erster Linie mit bakteriellen Lipiden, sind allerdings sehr instabil.

Die große Bedeutung der mikrobiziden Wirkung all dieser reaktiven Sauerstoffspezies wird augenscheinlich bei Individuen mit einem Mangel an Superoxiddismutase oder Myeloperoxidase, da solche unbehandelt an immer wiederkehrenden Infektionen sterben.

Neben der direkten Reaktion mit Proteinen, Nukleinsäuren oder Membranlipiden ist auch die inaktivierende Wirkung auf Proteaseinhibitoren wichtig, die eine optimale Wirkung der granulozytären Proteasen ermöglicht.

Um eine ausgewogene Reaktion zu ermöglichen und die destruierende Wirkung auf körpereigenes Gewebe nicht überschiessen zu lassen, sind lokal und systemisch regulierende Mechanismen nötig.

Diese werden über die vom Aktivierungsgrad des Granulozyten abhängige Rezeptorstruktur an dessen Oberfläche gesteuert.

Der Aktivierungsgrad wiederum ist abhängig von der Stimulation durch Entzündungsmediatoren. Solche Stimulantien können zum Beispiel Antigene von Seiten eines Erregers sein, andererseits aber auch körpereigene Mediatoren, wie aus dem Plasma stammende Bestandteile des Komplementsystems oder Produkte der Gerinnungskaskade, sowie von stimuliertem Wirtsgewebe oder Leukozyten synthetisierte Substanzen, wie Zytokine oder Lipidmediatoren.

Die Mediatoren können über die Besetzung des entsprechenden Rezeptors die Signaltransduktion induzieren.

Die Signaltransduktionsmechanismen von sekretorischen Reaktionen aktivierter Granulozyten sind in ihrer Kompexizität noch lange nicht verstanden und so sind auch die Zusammenhänge bei der Aktivierung der NADPH-Oxidase mit ihrer membranständigen Komponente (Gp91^{phox}, P22^{phox}, Rap1a) und ihren zytosolischen Proteinen (P47^{phox}, P67^{phox}, P40^{phox}, Rac2, Cdc42, P29 peroxiredoxin) nach wie vor noch nicht vollständig aufgeklärt.

Ein zentraler und schon gut bekannter Mechanismus ist vermittelt durch ein G-Protein^[121]:

Dabei kommt es durch Bindung entsprechender Agonisten an den Rezeptor zu einer Konformationsänderung am G-Protein. Diese Konformationsänderung setzt nun eine Sequenz von Transduktionsmechanismen in Gang, die nicht nur eine simple Weiterleitung des Signals an Effektorsysteme bewirken, sondern auch zu einer Verstärkung des Signals führen.

So bewirkt die Aktivierung des G-Proteins durch Stimuli wie Fmlp, LTB_4 oder C_{5a} , dass an der hochaffinen Bindungsstelle für GTP eben dieses das gebundene GDP ersetzt, was in eine Aktivierung von Phospholipase C (PLC) mündet.

Die aktivierte Phospholipase C ist für die Bildung zweier second-messenger verantwortlich. Dabei spaltet die Phospholipase C ein spezielles Membran-Phospholipid, das Phophatidylinosit-4,5–biphophat (PIP2) in ein diacyliertes Glycerin (Diacylglycerin, DAG) und in Inosit 1,4,5–Triphophat (IP3).

Das DAG aktiviert die Proteinkinase C (PKC), die aus dem zytoplasmatischen Pool an die Zellwand transloziert wird. Die Proteinkinase C ist ein Enzym mit vielen Isoformen und verantwortlich für die Aktivierung einer ganzen Reihe weiterer Enzymkomplexe, so beispielsweise auch für die Aktivierung der NADPH-Oxidase, welche die Bildung reaktiver Sauerstoffspezies katalysiert.

Das *IP3* hingegen bindet an einen Rezeptor am endoplasmatischen Retikulum und initiiert die Freisetzung von Calcium. Die Calcium-Freisetzung wiederum hat auch eine zentrale Bedeutung für die PKC, da es deren Affinität gegenüber DAG erhöht und so das Signal verstärkt.

Bei der Ca²⁺-Freisetzung kommt es zunächst initial zu einem schnellen Anstieg des Spiegels, dem ein im weiteren protrahierter Anstieg folgt.

Die Dauer und Konzentration des initialen Calcium-Spiegels entscheidet zum einen über das Maß der aktivierten PKC und somit auch über den PKC-Gesamteffekt in der protrahierten Phase.

Auch das Phospholipid Phophatidylserin erhöht die Affinität von DAG.

Ein weiterer wichtiger Weg der Transduktion extrazellulärer Signale in intrazelluläre Antworten ist assoziiert mit "Mitogen-activated Proteinkinasen" (MAPK)^[87].

Hier konnten bisher drei dominierende MAPK ausgemacht werden:

1. Extracellular-regulated protein kinase (ERK (p42/44))

2. c-Jun NH2-terminal kinase (JNK (p46/54))

3. p38 mitogen-activated kinase (p38 MAPK)

Unter diesen drei MAPK lassen sich nochmals einige Isomere unterscheiden, die in eine ganze Reihe zellulärer, entzündungsregulativer Prozesse involviert sind, unter denen der respiratorische Burst eine Komponente darstellt.

In den respiratorischen Burst sind ERK und die P38 MAPK wahrscheinlich über die Aktivierung des Proteins P47^{phox} eingebunden. Dieses Protein stellt eines der zytosolischen Bestandteile der NADPH-Oxidase dar.

Sind die Komponenten der NADPH-Oxidase jedoch einmal zusammengefügt, so besitzt die P38 MAPK keinen regulativen Einfluss – kann also nicht mehr in den einmal gestarteten Prozess eingreifen.

2.5.3 Lipidmediatoren [65,93,192]

Zu dieser großen und wichtigen Klasse von biologisch aktiven Lipiden gehören zum einen Oxygenierungsprodukte der Arachidonsäure und zum zweiten Membranphospholipide wie z. B. Phophatidylcholin sowie dessen acetylierte Derivate.

Diese Stoffe besitzen auto- und parakrine Regulationseigenschaften für Entzündungszellen.

Dabei umfasst die (zweite) Gruppe der acetylierten Derivate des Phophatidylcholin die Plättchen-aktivierenden Faktoren (PAF). Sie werden in erster Linie von Plättchen und Mastzellen, aber auch von Granulozyten und anderen Zellen gebildet. Sie besitzen eine Reihe von biologischen Wirkungen, wobei neben Erhöhung der Gefäßpermeabilität und Aggregation von Plättchen mit Freisetzung vasoaktiver Substanzen, vor allem auch die chemotaktische Wirkung, Leukozytenaktivierung, sowie Induktion von Degranulierung, Sauerstoffradikalbildung und Aktivierung der Eicosanoidsynthese in Granulozyten ^[169,176] zu nennen sind. Damit ist zugleich eine Brücke zu der ersten Gruppe der Lipidmediatoren und zum Ausgangsprodukt dieser Gruppe, der Arachidonsäure, das als ein Produkt während der PAF-Synthese freigesetzt wird, geschlagen (s.u.).

Die Arachidonsäure wird aus der mit der Nahrung zugeführten Linolsäure gebildet. Es handelt sich dabei um eine vierfach ungesättigte omega-6-Fettsäure, die aus 20 Kohlenstoffatomen besteht und deren letzte Doppelbindung sechs C-Atome vom Methyl-Ende entfernt ist. Sie kommt an Membranphospholipide gebunden in allen Zellen vor und wird durch Phopholipasen – in erster Linie Phopholipase A2 – freigesetzt, die durch Zellschädigung aktiviert werden.

Darüber hinaus besitzen PMN die Fähigkeit, exogen angebotene Arachidonsäure zu metabolisieren. Diese kann beispielsweise von Endothelzellen stammen (Kooperative Eicosanoidsynthese)^[75].

In vitro lässt sich die Induktion der Eicosanoidsynthese bei Granulozyten in Abwesenheit exogener AA durch artifizielle Stimuli wie Calciumionophor A23187, wie in der vorliegenden Arbeit, oder, in Anwesenheit exogener AA, auch durch natürlich vorkommende rezeptorabhängige Agonisten wie Komplementfaktoren (C3b, C5a), bakterielle Formylpeptide oder IL-8 herbeiführen ^[38].

Prinzipiell sind nun zwei Wege beschrieben, auf denen die entstandene Arachidonsäure weiter verstoffwechselt werden kann. Zum einen über den Cyclooxygenase-Weg, über den die Thromboxane, Prostacycline oder Prostaglandine entstehen, also Stoffe, die vor allem auf Gefässregulation, Thrombozytenaggregation und Schmerzrezeptoren wirken.

Der andere Weg wird initiiert durch die Einwirkung des Enzyms Lipoxygenase (LO), deren Aktivität über diverse Zwischenprodukte und weitere Enzyme zur Bildung von Leukotrienen und Hydroxyeicosatetraensäuren führt.

Der erste - durch die Lipoxygenase katalysierte - Schritt ist der Einbau eines Sauerstoffmoleküls in die Arachidonsäure. Dabei existieren verschiedene Varianten der Lipoxygenase, welche die Sauerstoff-Addition an jeweils spezifischen C-Atomen und somit die Bildung verschiedener Metaboliten katalysieren.

Die Anteile der diversen Varianten sind je nach Zelltyp unterschiedlich, wobei PMN in erster Linie mit 5-LO ausgestattet sind.

Der Syntheseweg über die 5-LO führt im weiteren Verlauf zu den Hydroxyeicosatetraensäuren und den Leukotrienen, deren Bildung und Funktion näher beleuchtet werden soll ^[24]:

Die 5-LO katalysiert die Dioxygenierung an der fünften Position der Arachidonsäure, wodurch das relativ instabile Zwischenprodukt 5-Hydroxyperoxid entsteht. Dieses kann nun auf zwei Arten weiter umgewandelt werden. Zum einen kann durch eine Peroxidase die entsprechende Monohydroxyfettsäure (5-HETE) entstehen, zum zweiten kann - wiederum durch die 5-LO katalysiert – das instabile Epoxid Leukotrien A₄ (LTA₄) gebildet werden.

In den in dieser Arbeit untersuchten neutrophilen Granulozyten wird nun mittels des Enzyms LTA₄-Hydrolase vor allem LTB₄ synthetisiert, das über eine Cytochrom P450-abhängige Omega-Oxidation zu den inaktiven Metaboliten 20-hydroxy-, sowie
20-carboxy-LTB₄ verstoffwechselt wird. Desweiteren zerfällt LTA₄ spontan zu den Metaboliten 6-trans-LTB₄, 6-trans-12-epi-LTB₄ und 5,6-DIHETES.

Die 5-LO wird über eine Erhöhung des intrazellulären Calciumspiegels aktiviert, so dass das Enzym vom Cytosol an die Zellmembran transloziert wird und mit dem 5-Lipoxygenase-bindenden Protein (FLAP) interagiert, welches die Bindung des Enzyms an die AA beschleunigt.

Unter den aufgeführten 5-LO–Metaboliten besitzt das LTB₄ die deutlich stärkste proinflammatorische Aktivität: Hervorzuheben ist dabei die sehr starke chemotaktische Wirkung auf Granulozyten, sowie auch auf Monozyten und Mastzellen. Diese chemotaktische Wirkung ist auch höher als die des 6-trans-LTB₄ und des 6-trans-12-epi-LTB₄ ^[63,70,105].

Darüber hinaus spielt LTB₄ als Adhäsion- und Diapedese-induzierender Mediator eine wichtige Rolle in der Einwanderung von Leukozyten ^[64,85].

Weiterhin scheint das LTB₄ auch auf granulozytären Entzündungsreaktionen, wie Sauerstoffradikalbildung und Degranulierung, einzuwirken. So sind die Effekte der Stimuli A 23187 oder Fmlp (bakterielles Tripeptid) teils erst indirekt über endogen gebildetes LTB₄ möglich ^[83,202].

Ebenso besitzt LTB₄ auch direkte immunmodulatorische Fähigkeiten: es stimuliert die monozytäre Zytokinsynthese und zeigt eine proliferative Wirkung auf T-Lymphozyten [159,179]

Demgegenüber werden die durch eine Glutathionperoxidase synthetisierten Cysteinleukotriene LTC₄, LTD₄ und LTE ₄ auch als "slow reacting substance of anaphylaxis" bezeichnet. Sie stammen in erster Linie von eosinophilen Granulozyten und Mastzellen ab und werden kaum von Neutrophilen gebildet ^[122]. Ihre Wirkung erstreckt sich vor allem auf glatte Muskelzellen und sie zeigen zudem eine stark vasokonstriktive und bronchospastische Wirkung. Durch den postkapillären Schwerpunkt ihrer Aktivität kommt es zu Plasmaaustritt und Ödembildung, darüberhinaus führen sie zu einer Erhöhung der endothelialen Permeabilität ^[103].

2.5.4 Zytokine [65,93,192]

Bei den Zytokinen handelt es sich um immunregulative Proteine, die von immunologisch kompetenten Zellen gebildet und sezerniert werden und vor allem auch als interzelluläre Regulatoren dienen. Strukturell sind die Zytokine eine wenig einheitliche Gruppe von Substanzen. Sie agieren alle über spezifische Liganden-Rezeptor-Interaktionen, wobei nur IL-1 α/β und TNF- α/β einen gemeinsamen Rezeptor besitzen.

Einige proinflammatorische Zytokine, so auch das in dieser Arbeit untersuchte IL-8, versetzen die PMN schon in geringen Konzentrationen in einen voraktivierten Zustand ("priming") und verstärken so die granulozytäre Antwort auf einen Stimulus [135].

Bei diesem "priming" kommt es zur verstärkten Expression zahlreicher Moleküle auf der Granulozytenoberfläche. Diese Expression ist vor allem hervorgerufen durch eine Translokation entsprechender Granulakomponenten, wie Adhäsionsmoleküle, Rezeptoren und Proteasen vom Cytosol an die Zellmembran^[99,130].

IL-8 wirkt darüber hinaus als starkes Chemokin vor allem auf PMN, aber auch auf Basophile und Lymphozyten, die sich somit entlang eines IL-8 Konzentrationsgradienten bewegen können und so zum Ort eines Entzündungsgeschehens gelangen. Gerade bei inflammatorischen Geschehen im Bereich der Haut scheint die chemotaktische Wirkung von IL-8 eine wichtige Rolle zu spielen, wobei IL-8 seine eigene Rezeptor-Expression schnell herunterreguliert ^[166] und damit seine eigene Wirkung abmildert.

Bei der Transmigration in den Extravasalraum ist IL-8 ebenso von Bedeutung, indem es die Expression von β_2 -Integrinen (CD11b/ CD18) von PMN und deren Liganden am Endothel fördert, wodurch das weitere "rolling" der Leukozyten verhindert und eine stabile Bindung an das Endothel mit nachfolgender Transmigration erreicht wird.

2.6 Die Pityriarubine und verwandte Substanzen

Bei den Pityriarubine A, B und C handelt es sich um Bisindolylcyclopentendione, deren Grundstruktur aus drei Molekülen Tryptophan aufgebaut ist ^[91].

Damit weisen sie eine enge strukturelle Verwandtschaft zu einer Reihe biologisch hochaktiver Substanzen auf, den Indolcarbazolen und Bisindolylmaleimiden [48,121,158,186,187]

Diese sind als Proteinkinase-Inhibitoren von besonderem Interesse und in der Lage granulozytäre Funktionsparameter wie den "respiratorischen burst" zu hemmen.

Die Struktur des Arcyriarubin A, des einfachsten Bisindolylmaleimiden ist enthalten in den Pityriarubinen, die statt der Imid-Gruppe zusätzlich ein komplexes Spirangerüst enthalten:

Arcyriarubin A, Bisindolylmaleimid

Das Bisindolylmaleimid (Arcyriarubin A), das erstmals aus rotgefärbten Schleimpilzen der Gattung Arcyria 1989 isoliert wurde ^[181], wird in dieser Arbeit als Vergleichsubstanz verwendet.

Die inhibitorische Potenz dieser Substanz gegenüber Proteinkinase C (PKC) ist mit einer IC_{50} von etwa 0,1 µM sehr hoch und liegt in der Größenordnung der stärksten PKC-Inhibitoren ^[186]. Neben der PKC wird auch die Proteinkinase A (PKA) gehemmt, allerdings mit einer etwa um eine Grössenordnung geringeren Potenz ^[186].

Durch chemische Veränderungen, u. a. Substitution der H-Atome an den Imid- und Indol-Stickstoffen mit verschiedenen organischen Resten lässt sich die inhibitorische Wirkung der BisindolyImaleimide signifikant und empfindlich modulieren [49,121,158,185,186,187]

So führt der Verlust lediglich einer Carbonylgruppe gegenüber Arcyriarubin A zu einem Anstieg der IC₅₀ auf 2,0 μ M ^[186]. Kovalente Bindung zwischen den Indolsystemen ohne andere Veränderungen führt zu einer Erhöhung der IC₅₀ auf 40 μ M. Interessant ist auch, dass die meisten Modifikationen am Imid-Stickstoff zu einer starken Abnahme der inhibitorischen Fähigkeiten auf PKC führen, wie am Beispiel des BIM Ro 31-6045 weiter unten dargestellt. Jedoch gibt es auch Ausnahmen dieses Phänomens: So liegt die IC₅₀ für PKC nach Substitution des Imid-H am Bisindolylmaleimid durch eine CH₂OH-Gruppe bei 0,5 μ M und zeigt damit wieder eine vergleichbar hohe Potenz dieses Moleküls ^[158]. Substitutionen an den Indolen mit lipophilen organischen Resten führen zu einer Verstärkung der Potenz ^[49,121,186,187]. Dies unterstreicht die starke Beeinflussung der biologischen Wirksamkeit dieser Stoffgruppe schon durch geringe Änderungen an ihrer Struktur. Twomey et al. ^[187], sowie Muid et al. ^[121] verglichen das inhibitorische Potential verschiedener Bisindolylmaleimide (siehe Struktur im folgenden Text). Neben der Hemmung der Proteinkinase C wurde darüber hinaus auch die Wirkung dieser Substanzklasse auf die Freisetzung reaktiver Sauerstoffspezies nach Stimulation neutrophiler Granulozyten untersucht.

Grundstruktur der Bisindolylmaleimide

In der folgenden Tabelle 1 sind die darin untersuchten Derivate aufgelistet, wobei R2 die Substituenten an der Imido-gruppe, R1 und R3 jeweils die Substituenten an den Indol-Stickstoffen darstellen.

Name	R1	R2	R3
Ro 31-6045	-H	-CH ₃	-H
Ro 31-7549	-(CH ₂) ₃ NH ₂	-H	-CH ₃
Ro 31-8425	-CH ₂ NH ₂	-H	-CH ₃

Tabelle 1: Substituenten verschiedener Bisindolylmaleimidean der Grundstruktur dieser Stoffgruppe

Für diese Untersuchungen der inhibitorischen Wirkung auf Proteinkinase C wurden Präparationen aus Rattenhirnen eingesetzt.

Es zeigte sich, dass das Ro 31-6045 als das strukturell einfachste unter den untersuchten modifizierten Bisindolylmaleimiden und das einzige mit einer Modifikation am Imid-Stickstoff (Substitution des Imid-Wasserstoffs durch eine Methyl-Gruppe) die geringste Wirkung hatte. So ergab sich eine IC₅₀ des Ro 31-6045 von über 100 μ M, während das Ro 31-7549 schon bei einer Konzentration von 0,075 μ M 50 % Hemmung aufwies und das Ro 31-8425 sogar bereits bei 0,0076 μ M.

Für die Wirkung auf isolierte Proteinkinase C, gewonnen aus humanen neutrophilen Granulozyten liegen nur Werte für das Ro 31-7549 und das Ro 31-8425 vor. Beide

reagieren mit humaner Proteinkinase C noch empfindlicher als mit aus Rattenhirnen gewonnener Proteinkinase C; sie erreichen hier eine IC_{50} durch 0,048 μ M bzw. 0,0048 μ M.

Auf die inhibitorische Wirkung gegenüber Proteinkinase C führen die Autoren dieser Arbeiten die Inhibition des "respiratorischen burst" zurück. Experimentelle Ergebnisse dazu (IC₅₀ bei mit verschiedenen Stimuli ausgelöstem burst von 2 x 10⁶ Neutrophilen) zeigt folgende Tabelle 2 ^[121,187]:

	Stimuli			
Prüfsubstanz	Fluorid	DAG	Fmlp	OZ
Ro 31-6045	> 3,0	> 10,0	> 10,0	>10,0
Ro 31-7549	0,008	0,67	1,97	7,0
Ro 31-8425	0,005	0,148	0,60	2,84

Tabelle 2: IC₅₀ einiger BisindolyImaleimide nach Aktivierung des "burst" mit verschiedenen Stimuli

Es ergaben sich ähnliche inhibitorische Potenzen wie bei der Wirkung auf isolierte Proteinkinase C. Denn auch hier zeigt das Ro 31-6045 eine deutlich schwächere Hemmwirkung auf den burst als die an den Indolen substituierten Verbindungen.

Fluoride erlangen ihre stimulierende Wirkung des "respiratorischen burst" über die Aktivierung von G-Proteinen. Die deutlich stärkere Hemmung bei Zugabe dieses Stimulus gegenüber den anderen entsteht wahrscheinlich aus einer (toxischen) Herabsetzung der intrazellulären ATP-Konzentration, mit dem die Inhibitoren um die entsprechende Bindungsstelle an der Proteinkinase konkurrieren ^[185].

Auch der durch den direkten Proteinkinase C-Stimulator DAG (Di-Octanoyl-Glycerol) hervorgerufene burst verdeutlicht die unterschiedliche Wirkung der von den Autoren verwendeten Bisindolylmaleimide.

Im Gegensatz zu diesen Stimuli ist N-formyl-Methionin-Leucin-Phenylalanin (Fmlp) ein an der Außenwand der Neutrophilen am gleichnamigen Rezeptor (Fmlp-Rezeptor) ansetzender Stimulus.

Das inhibitorische Potential der Substanzen gegenüber diesem Stimulus ist, wie der Tabelle zu entnehmen, deutlich geringer als bei direkten PKC-Aktivatoren und bei Natrium-Fluorid, dies jedoch bei erhaltener relativer Wirkungsstärke. Die Wirkung auf den durch opsonisiertes Zymosan provozierten burst ist bei allen drei untersuchten Bisindolylmaleinimiden nochmals geringer als bei Fmlp, auch hier mit gleicher relativer Wirkungsintensität.

Die verhältnismäßig schwache Hemmung der Stimuli Fmlp und Zymosan erlaubt zusätzliche Einblicke in die Signaltransduktionsprozesse, vergleicht man die Wirkung der Bisindolylmaleinimide mit der von Staurosporin oder K252a:

Diese hemmen mit jeweils einer IC₅₀ von 0,15 μ M deutlich stärker nach Aktivierung mit Fmlp bzw. 0,2 µM (Staurosporin) und 0,8 µM (K252a) nach Zymosan [119,185]. Diese Tatsache ist aber nicht durch eine höhere Spezifität auf PKC zu erklären, denn in vitro-Versuche mit PKC aus humanen neutrophilen Granulozyten ergeben eine IC₅₀ von 0,002 µM für Staurosporin und 0,270 µM für K252a, was einer vergleichbaren Potenz wie der der untersuchten RO-Derivate entspricht. Somit könnten nach diesen Aktivatoren PKC-unabhängige Signaltransduktionswege involviert sein, die zwar durch die unspezifischen Inhibitoren Staurosporin bzw. K252a (beides Indolocarbazole) gehemmt werden, in die die untersuchten Bisindolylmaleinimide aber nicht eingreifen können (vgl. Ergebnisse und Diskussion in dieser Arbeit bezüglich ähnlicher Verhältnisse bei den untersuchten Pityriarubinen).

Es lässt sich also feststellen, dass es sich bei den Bisindolylmaleinimiden um eine Gruppe hochpotenter Proteinkinase C – Inhibitoren handelt, deren inhibitorisches Potential sich durch Veränderung der an dem Grundgerüst anhängenden Reste signifikant modulieren läßt. Durch ihre enge strukturelle Verwandtschaft und ihre gut charakterisierte Wirkung auf den "respiratorischen burst" bieten sie sich als Vergleichssubstanzen zu den Pityriarubinen an, wobei in der vorliegenden Arbeit das Arcyriarubin A wegen seiner fehlenden Substitution an den Indolen, wie sie auch bei den Pityriarubinen vorliegt, eingesetzt wurde.

3. Eigene Untersuchungen

3.1 Fragestellung

Nach der Aufklärung der Struktur der Pityriarubine ^[91] und der offensichtlichen Verwandtschaft zu bereits bekannten immunmodulatorischen Substanzen, lag ein Vergleich mit diesen nahe. Das Bisindolylmaleimid Arcyriarubin A, ein bekannter und hochpotenter Proteinkinase C-Inhibitor, wurde dabei als Vergleichssubstanz ausgewählt (vgl. Kap.2.6).

Im einzelnen sollte folgenden Fragen nachgegangen werden:

1. Haben die Pityriarubine A, B oder C einen Einfluß auf den durch folgende Aktivatoren induzierten "respiratorischen burst" von neutrophilen Granulozyten?:

- a) Calcium-Ionophor A23187
- b) N-formyl-Methionin-Leucin-Phenylalanin (Fmlp)
- c) Di-Octanoyl-Glycerol (DAG)
- d) Phorbolester
- e) Natrium-Fluorid
- f) Zymosan A

2. Haben die Pityriarubine A, B oder C einen Einfluß auf die durch das Calcium-Ionophor A23187 induzierte Produktion von Leukotrienen?

3. Haben die Pityriarubine A, B oder C einen Einfluß auf die durch LPS induzierte Produktion von Interleukin-8 nach 24-stündiger Inkubation?

4. Zeigen die Pityriarubine A, B und C wirkungsspezifische Besonderheiten untereinander sowie im Vergleich zum Arcyriarubin A ?

5. Kann ein pathogenetischer Zusammenhang der Pityriarubine A, B und C mit der Erkrankung "Pityriasis versicolor" postuliert werden?

3.2 Materialien und Methoden

3.2.1 Materialien

3.2.1.1 Geräte und Lösungen für die Anzucht von *Malassezia*-Hefen und die Gewinnung der Unterfraktionen

<u>Geräte</u>

- o Brutschrank (Heraeus Holding GmbH, Hanau)
- Melag AutoklaveTyp 23 (Melag, Berlin)
- o Rotationverdampfer Typ 51111 (Heidolph Instruments, Schwabach)
- o Sicherheitsarbeitsbank UVUB 1200 (Uniequip Laborgerätebau, Martinsried)
- o Kunststoffpetrischalen, 10 cm Durchmesser (Nunc, Roskilde, Dänemark)
- Techne DRI- Block DB 3 (Thermo Dux, Heidelberg)
- 4 ml Glasröhrchen (neoLab Autosampler Vials, Heidelberg)
- Hettich Zentrifuge Rotana RP (Hettich Zentrifugen, Tuttlingen)
- o Filterpapier, Größe:20 x20 (Camag, Muttenz, Schweiz)
- o Laufkammer (Desaga, Heidelberg)
- o Kieselgel DC-Platten 60 (Merck, Darmstadt)
- o Wood`sche UV-Lampe, Typ 131200 (Desaga GmbH, Heidelberg)
- o 1000ml Flash-Birne (Pfeuffer, Hannover)
- Glassäule, NS 29 mit Fritte Durchmesser 30 mm, Por.1, PTFE-Küken NS 14/2,5 mm spitz ausgezogen, Nutzlänge ca. 525 mm (Pfeuffer, Hannover)
- o Linomat IV (Camag, Muttenz, Schweiz)

<u>Lösungen</u>

- Referenzstamm: *Malassezia furfur* CBS 1878 T (Centralbureau voor Schimmelcultures, Baarn, Niederlande)
- o Malzextrakt-Bouillon (Merck, Darmstadt)
- o Pepton (Pepton aus Casein) (Merck, Darmstadt)
- o Ochsengalle (Difco, Detroit, USA)
- Tween 40 (Sigma, Steinheim)
- o Olivenöl, steril gefiltert (Apotheke)
- o Agar (Agar Agar reinst) (Merck, Darmstadt)
- o Cycloheximid (Sigma-Aldrich, Steinheim)
- o Chloramphenicol (Merck, Darmstadt)

- Ethylacetat (Merck, Darmstadt)
- o 0,3 g L-Tryptophan (min 98 %) (Sigma, Deissenhofen)
- o Tween 80 (Polyoxyethylen-Sorbitan) (Sigma, Deissenhofen)
- o Ameisensäure (Merck, Darmstadt)
- o Ethylformiat (Merck, Darmstadt)
- o Toluol (Merck, Darmstadt)
- o Methanol (Merck, Darmstadt)
- o Natriumsulfat, wasserfrei (Fluka Biochemika, Buchs, Schweiz)
- o Sephadex G-25 (Pharmacia, Uppsala, Schweden)
- o Gelmaterial Sephadex LH 20 (Sigma, Deissenhofen)
- 3.2.1.2 Geräte und Lösungen für die präparative HPLC bei der Substanzgewinnung

<u>Geräte</u>

- o LiChrospher-RP8 Säule (30x250mm) (Merck, Darmstadt)
- o Gilson Masterpumpe M305(Gilson, Viellers le Bel, Frankreich)
- Pumpe Gilson Modell 302 (Gilson, Viellers le Bel, Frankreich)
- o Gilson 802-Modul (Gilson, Viellers le Bel, Frankreich)
- o UV-Detektor (Holochrome) (Gilson, Viellers le Bel, Frankreich)
- Fraktionensammler: Super Frac (Pharmacia Biotech, Freiburg)
- o Gefriertrockner Lyovac GT2 (Gilson, Viellers le Bel, Frankreich)

<u>Lösungen</u>

- o Acetonitril (Merck, Darmstadt)
- o Lösungsmittel: Gradient Grade (Merck, Darmstadt)
- o Wasser für Chromatographie (Merck, Darmstadt)
- 3.2.1.3 Geräte und Lösungen für die analytische HPLC bei der Substanzgewinnung

<u>Geräte</u>

 Reversed-Phase-Säule (RP-18, 4 × 250 mm, stationäre Phase Shandon ODS Hypersil 3 µm, Life Science International LTD, Cheshire, England)

- Gradientenpumpe Gynkotek 480 (Gynkotek, Germering, BRD)
- UV-Detektor 785 (bai, Bensheim, BRD)
- o Gynkotek C-R 6A Chromatopac (Gynkotek, Germering, BRD)
- Autosampler: Alcott Modell 738 (Bischoff Analysentechnik, Leonberg, BRD)

<u>Lösungen</u>

- o Acetonitril (Merck, Darmstadt)
- o Lösungsmittel: Gradient Grade (Merck, Darmstadt, BRD)
- Wasser für Chromatographie (Merck, Darmstadt, BRD)
- 3.2.1.4 Geräte und Lösungen für die Zellisolation und für die Herstellung der Verdünnungsreihe der Pityriarubine

<u>Geräte</u>

- Hettich Zentrifuge Rotina 46 R (Hettich Zentrifugen, Tuttlingen, BRD)
- 50 ml Falcon-Röhrchen (Becton-Dickinson Labware Europe, Le Pont de Claix, Frankreich)
- FACScan Flowcytometer (Becton Dickinson; San Jose, CA, USA)
- Analysenwaage Sartorius BD211p (Sartorius Göttingen, BRD)

<u>Lösungen</u>

- o Aqua ad injectabilia (Baxter, Deutschland GmbH, Unterschleißheim)
- Titriplex III (Ethylendiamintetraessigsäure Dinatrium Dihydrat) (EDTA) (Merck, Darmstadt)
- Ficoll Paque (Pharmacia, Uppsala, Schweden)
- PBS $\frac{1}{2}$ (sine Ca²⁺ et Mg²⁺) 10x
 - 1000 ml Aqua dest.
 - + 80 g Natriumchlorid (NaCl) (Roth GmbH, Karlsruhe, BRD)
 - + 2 g Kaliumchlorid (KCI) (Roth GmbH, Karlsruhe)

+ 11,5 g Di-Natriumhydrogenphosphat (2 H₂O x Na₂ HPO₄) (Roth GmbH, Karlsruhe)

- + 2 g Kaliumhydrogenphophat (KH₂PO₄) (Roth GmbH, Karlsruhe)
- + 1 N NaOH ad pH 7,4

- \circ PBS $^{-}/-$ (sine Ca^{2+} et Mg^{2+})1x
 - 900 ml Aqua dest.
 - + 100 ml PBS ⁻/- 10x
 - + 1 N NaOH ad pH 7,4
- Polyvinylalkohol (PVA)
 1000 ml 0,9 % NaCl-Lösung (Roth GmbH, Karlsruhe)
 + 10 g Polyvinylalkohol (PVA)
- DMSO (Merck, Darmstadt)
- 3.2.1.5 Geräte und Lösungen für die Messung freier Sauerstoffradikale

<u>Geräte</u>

- 15 ml PP-Tubes (Greiner Bio-One GmbH, Frickenhausen, BRD)
- Hettich Zentrifuge Mikro 22 R (Hettich Zentrifugen, Tuttlingen, BRD)
- Photometer Uvikon 860 (Kontron Instruments)

<u>Lösungen</u>

- Cytochrom C (Sigma Aldrich Chemie GmbH, Steinheim)
- Superoxiddismutase (SOD) (Sigma Aldrich Chemie GmbH, Steinheim)
- Hank´s/HEPES cum Ca/Mg Puffer (H/H^{+/+})
 100 ml Hank`s Balanced Salt Without Phenol Red 10 x (sine Ca⁺⁺/Mg⁺⁺)
 (HBSS 10x) (GIBCO, Karlsruhe)
 - + 900 ml Aqua ad iniectabilia (Baxter, Deutschland GmbH, Unterschleißheim)

+ 6 g HEPES (N-2-Hydroxyethylpiperazine-N´-2-ethanesulfonic acid) (Carl Roth GmbH & Co., Karlsruhe)

- + 1 N NaOH ad pH 7,4
- A 23187 (Calbiochem Novabiochem Corporation, Bad Soden)
- o N-formyl-Methionin-Leucin-Phenylalanin (Fmlp) (Sigma Aldrich, Taufkirchen)
- o Phorbolester (Phorbol-12-myristat-13-acetat) (Sigma Aldrich, Taufkirchen)
- o Di-Octanoyl-Glycerol (DAG) (Sigma Aldrich, Taufkirchen)
- o Zymosan (Sigma Aldrich, Taufkirchen)
- Natriumfluorid (Sigma Aldrich, Taufkirchen)

3.2.1.6 Geräte für die Leukotrien – Analytik mittels HPLC

<u>Geräte</u>

- Water I Laboratory Water System (Gelman Sciences, Ann Arbor, USA); zur Entionisierung und Filterung von Wasser
- o C18–Silica–Gel–Säulen, 1 cm³ Volumen (Bond Elut, Zug, Schweiz)
- Reversed-Phase-Säule (RP-18, 4 × 250 mm, stationäre Phase Shandon ODS Hypersil 3 μm) (Life Science International LTD, Cheshire, England)
- o Hochdruck-Flüssigkeits-Pumpe: Kontron HPLC-Pump 420 (Kontron)
- o (Kontron HPLC-Detektor 430, (Kontron)
- Kontron HPLC-Autosampler 465 (Kontron)

<u>Lösungen</u>

• Hank´s/HEPES cum Ca/Mg - Puffer (H/H^{+/+})

100 ml Hank`s Balanced Salt Without Phenol Red 10 x (sine Ca⁺⁺/Mg⁺⁺) (HBSS 10x) (GIBCO, Karlsruhe, BRD)

+ 900 ml Aqua ad iniectabilia (Baxter, Deutschland GmbH, Unterschleißheim, BRD)

+ 6 g HEPES (N-2-Hydroxyethylpiperazine-N´-2-ethanesulfonic acid) (Carl Roth GmbH & Co., Karlsruhe, BRD)

- + 1 N NaOH ad pH 7,4
- o authentische Standards
 - LTB₄ (Cayman Chemical Company)
 - o 6-trans-LTB₄ (Cayman Chemical Company)
 - o 6-trans-epi-LTB₄ (Cayman Chemical Company)
- Ammoniaksche Lösung; 25 %ige Lösung (Merck, Darmstadt, BRD); zur Herstellung einer 10 %igen Ammoniaklösung mit aqua tridestillata
- Chloroform reinst (Fluka AG, Bern, Schweiz)
- o Methanol reinst (Fluka AG, Bern, Schweiz)
- o Acetonitril (Fluka AG, Bern, Schweiz)
- EDTA-Titriplex (Ethylendiamintetraessigsäure Dinatrium Dihydrat) (Merck, Darmstadt)
- o Gradient Grade (Merck, Darmstadt)

3.2.1.7 Geräte und Lösungen für die Messung von IL-8 mittels ELISA

<u>Geräte</u>

- o 24 Well Cluster (Corning Incorporated, Corning, USA)
- o Nunc-Immuno[™]-Plate "Maxisorp" (Nunc[™] Brand Products, Denmark)
- o Photometer (SLT Labinstruments Deutschland GmbH, Crailsheim)

<u>Lösungen</u>

- o Zellmedium:
 - 98 % Medium RPMI 1640 ohne I-Glutamin (Gibco, Karlsruhe)
 - 1 % Penicillin/Streptomycin (Pan Biotech GmbH)
 - 1 % Fetales Kälberserum (FCS) (Gibco, Karlsruhe)
- PBS ⁻/- 1x (siehe Materialien zur Zellisolation)
- "Capture" Antikörper: Anti-II-8, monoklonal, "capture" (R&D Systems GmbH, Wiesbaden-Nordenstedt)
- Biotinylierte Antikörper: Biotinylated Anti–Human II-8 Antibody (R&D Systems GmbH, Wiesbaden-Nordenstedt)
- o Recombinant Human IL-8 (R&D Systems GmbH, Wiesbaden-Nordenstedt)
- o Diluent:
 - 1000 ml Aqua. dest.
 - + 1 g Bovines Serum Albumin (BSA) (PAA Laboratories GmbH, Linz, Österreich)
 - + 0,5 ml Tween® 20 (Polyoxyethylene-Sorbitane-Monolaurate) (Sigma,Steinheim)
 - + 2,4 g Tris base (Carl Roth GmbH & Co., Karlruhe)
 - + 8,766 NaCl (Carl Roth GmbH & Co., Karlruhe)
 - + 1 N HCl ad pH 7,4
- Blockpuffer:
 - 100 ml PBS 7-

+ 1 g Bovines Serum Albumin (BSA) (PAA Laboratories GmbH, Linz, Österreich)

- + 5 g Saccharose (Carl Roth GmbH & Co., Karlruhe)
- + 0,05 g Sodium Azide (NaN₃) (Sigma, St. Louis, USA)

• Waschpuffer:

1000 ml Aqua. Dest.

- + 0,5 ml Tween® 20 (Polyoxyethylene-Sorbitane-Monolaurate) (Sigma, Steinheim)
 - + 2,4 g Tris base (Carl Roth GmbH & Co., Karlsruhe)
 - + 1 N HCl ad pH 7,4
- Substratpuffer:
 - 1000 ml Aqua. Dest.
 - + 8,2 g Natriumacetat-Trihydrat (Merck, Darmstadt)
 - + 6,9 g Natriumhydrogenphosphat-Monohydrat (Merck, Darmstadt)
 - + 1 N HCl ad pH 4,2
- HRP-Streptavidin-Verdünnung:
 - 10 ml Diluent

2,5 µl HRP (Horseradish Peroxidase) – Streptavidin (Zymed Laboratories, San Francisco, CA, USA)

- o ABTS Verdünnung
 - 21 ml Substratpuffer
 - + 14 mg ABTS (Roche Diagnostics GmbH, Mannheim)
- Wasserstoffsuperoxid (H₂O₂) (Merck, Darmstadt, BRD)
- o Lipopolysaccharid (LPS) (Sigma Aldrich, Taufkirchen)

3.2.2 Methoden

3.2.2.1 Anzucht von Malassezia furfur und Gewinnung der Pityriarubine

Die Gewinnung der Pityriarubine geschah im Wesentlichen nach der Methode von W. Steglich, H.-J. Krämer und P. Mayser ^[91,92,110].

Dabei wird zunächst die Bildung von Pigment über spezielle Kulturbedingungen mit Tryptophan als einziger Stickstoffquelle induziert. Die Isolierung und Aufreinigung der Pityriarubine A, B und C aus diesem aus hunderten Substanzen bestehenden Pigment geschah mittels einer Abfolge verschiedener Extraktions- und Chromatographieschritte.

3.2.2.1.1 Anzucht und Nährmedien

Die Anzucht des Stammes erfolgte auf modifiziertem (m)- Dixon-Agar in einem Brutschrank bei einer Temperatur von 32 ° C. Die Kulturen wurden in wöchentlichem Abstand auf frischen Agar weiterverimpft. Es wurde ausschließlich auf den Referenzstamm CBS 1878 T zurückgegriffen.

Der modifizierte Dixon – Agar besteht aus folgenden Einzelkomponenten:

3,6 % Malzextrakt
0,6% Pepton
2 % getrocknete Ochsengalle
1% Tween 40
0,2 % Glycerol
0,2 %Ölsäure
1,2 % Agar
Aqua. Dest. auf 100 %

Der in dieser Arbeit zur Anzucht verwendete Agar wurde aus Gründen der Kostenerersparnis nochmals modifiziert. Dabei wurde statt Glycerol und Ölsäure 0,4 % Olivenöl verwendet.

Weiterhin wurde dem Nährboden zur Vermeidung von Kontaminationen

Cycloheximid und Chloramphenicol zugesetzt

Dieser Nährboden erwies sich in seiner Eigenschaft zur Anzucht des Pilzes als ein dem (m)- Dixon- Agar gleichwertiger Ersatz.

Zur Zubereitung des Nährbodens wurden alle Bestandteile - mit Ausnahme des Olivenöls und des Tween 40 – zunächst eingewogen, mit Aqua. Dest. auf 250 ml aufgefüllt, bei 1 bar über 30 min autoklaviert und auf 50° C abgekühlt. Abschließend wurden der Tween 40, sowie das Olivenöl zugegeben und je 10 ml des Agars unter einer Sicherheitsarbeitsbank in Kunststoffpetrischalen von 10 cm Durchmesser gegossen.

3.2.2.1.2 Bildung von Pigmenten und Fluorochromen

Der Stoffwechsel von *Malassezia furfur* weist eine Besonderheit auf. Ist Tryptophan die einzig verfügbare Stickstoffquelle, so geht die Vermehrung mit der Bildung eines braunen Pigmentes einher. Dieses besteht aus einer großen Zahl bis dato unbekannter und erst zum kleinsten Teil entschlüsselter Farbstoffe und Fluorochrome.

Abbildung 3: Pigmentbildung mit Tryptophan als einziger Stickstoffquelle

3.2.2.1.3 Kulturbedingungen

Der zur Induktion der Pigmentbildung benötigte Agar ist frei von Vitaminen, Elektrolyten, Spurenelementen und Kohlenhydraten. Er ist transparent, enthält nur eine Lipidquelle und – wie erwähnt – Tryptophan als einzige Stickstoffquelle. Auch hier wurde wie zur Anzucht des Referenzstammes dem Nährboden als Kontaminationsschutz Chloramphenicol und Cycloheximid zugesetzt. Der Nährboden war wie folgt zusammengesetzt:

0,3 g L-Tryptophan 2 g Agar 3 ml Tween 80 Ad 100 ml Aqua. Dest.

Zur Zubereitung des Nährbodens wurde zunächst die Mischung aus Cycloheximid, Chloramphenicol, Agar und Wasser bei 1 bar über 30 Minuten autoklaviert, auf 50 °C abgekühlt und mit L-Tryptophan und Tween 80 versetzt. Anschließend wurden je 10 ml des fertigen p-Agar unter einer Sterilbank in Kunststoffpetrischalen von 10 cm Durchmesser ausgegossen.

Nach dem Abkühlen wurden die bereits 6 Tage auf dem modifizierten Dixon-Agar bebrüteten CBS 1878 *Malassezia*-Kulturen mittels einer hitzesterilisierten Öse unter einer Sterilbank auf dem Pigment-Agar ausgestrichen, die Petrischalen mit einem Klebeband verschlossen und 14 Tage bei 32 °C im Brutschrank bebrütet.

3.2.2.1.4. Pigmentgewinnung und Aufreinigung

3.2.2.1.4.1 Gewinnung des Pigment-Rohextraktes

Der anfangs transparente Nährboden verfärbte sich unter den durch *Malassezia*-Hefen gebildeten Pigmenten dunkelbraun, wobei unter UV-Licht bei 254 und 366 nm deutliche Fluoreszenz zu beobachten war.

Der Inhalt von je 20 Petrischalen wurde nun komplett in ein Becherglas von 2 Litern Fassungsvermögen überführt, mit einem handelsüblichen Pürierstab maximal zerkleinert und mit ca. 1,5 Liter Ethylacetat verrührt. Dieser Ansatz wurde für 48 Stunden ruhengelassen. In dieser Zeit wurden die lipophilen Bestandteile des Ansatzes durch das Ethylacetat extrahiert, das sich daraufhin dunkelbraun verfärbte und stark fluoreszierte.

Es schloß sich nun die - für die nachfolgende Gelpermeationschromatographie nötige - Reinigung des Extraktes an.

Dafür wurde der Extrakt über einem mit Glaswolle gefüllten Trichter dekantiert und

so die aus dem Nährboden stammenden, festen, in dem Ethylacetat schwebenden Bestandteile entfernt.

Das so erhaltene Filtrat wurde in einem Scheidetrichter zu gleichen Teilen mit destilliertem Wasser versetzt und geschüttelt.

Nach kurzer Ruhephase waren zwei Phasen klar aufgetrennt:

Zum einen die untere, schwerere Wasserphase, in der sich noch Reste des Nährbodens befanden. Zum anderen die obere, von weiteren störenden Verunreinigungen befreite Ethylacetat- Phase mit den Pigmenten.

Nach dem Ablassen der wässrigen Phase wurde die obere, lipophile Phase aufgefangen und nun mittels eines Rotationverdampfers getrocknet. Der getrocknete Extrakt wurde dann in etwa 2 ml Ethanol aufgenommen.

In den vorliegenden 2 ml Rohextrakt befanden sich also die aus der Gesamtmenge von 20 Petrischalen gewonnenen Pigmente gelöst.

3.2.2.1.4.2 Gelpermeationschromatographie

Das Gelmaterial Sephadex LH 20 mit einer Porengröße von 25 -100 µm ist ein hydroxyproliertes Derivat des Sephadex G-25 und wird für die Gelpermeationschromatographie, sowie für die Normalphasenverteilungs- und Adsorptionschromatographie verwendet.

Für die Mitteldruck-Säulenchromatographie wurde Sephadex LH 20 zunächst etwa 12 Stunden in Methanol suspendiert und dann in die Glassäule gefüllt. Mittels eines Druckballes wurde die Gelsuspension, die immer mit Methanol bedeckt bleiben muß, in der Säule komprimiert. Nach zweimaligen Wiederauffüllen der Säule mit Gelsuspension und anschließender Kompression, hat das komprimierte Sephadex etwa eine Höhe von 450 mm erreicht.

Befand sich der Methanol-Spiegel kurz über der Gelsäule, wurden ca. 8 ml des Rohextraktes (= Ertrag von 80 Agarplatten) gleichmäßig und schonend auf die Säule gegeben.

Nach dem Einsickern des Rohextrakts in die oberste Schicht des Kieselgels wurde die Glassäule mit dem Elutionsmittel Methanol aufgefüllt, eine 1000 ml Flash-Birne auf die Säule gesetzt und mit Methanol gefüllt und mittels einer Ballon-Pumpe ein solcher Druck erzeugt, dass sich eine durchschnittliche Laufzeit von ca. 19 ml/ min. ergab.

Die Gesamtlaufzeit der Säule betrug etwa 130 min, bei einem Elutionsvolumen von etwa 2500 ml.

Innerhalb dieser Laufzeit ließ sich das Rohextrakt in 8 Fraktionen unterschiedlicher Volumina auftrennen, die in Bechergläsern aufgefangen wurden. Im Tageslicht Iassen sich diese Fraktionen farblich kaum unterscheiden, da alle eine bräunliche Farbe besitzen und so die einzelnen Farbbanden nur schwach voneinander abgegrenzt sind.

Zur besser erkennbaren Differenzierung der Fraktionen wurde deshalb die Fluoreszenz unter Bestrahlung mit einer Wood`schen UV-Lampe mit einer Wellenlänge von 254 und 366 nm als Trennungskriterium verwendet.

Fraktion	Volumen der	Farbe
	Fraktion in ml	unter UV-Licht
0	300	farbloser Vorlauf
1	100	Braun
2	100	Goldgelb
3	100	Hellgelb
4	200	Bräunlich
5	200	Orange
6	200	Blau
7	200	Gelb
8	200	Violett

Die Fraktionen wurden nach folgenden Kriterien aufgefangen:

Das Kieselgel wurde mehrmals verwendet und zur Erhaltung der Trenneigenschaften nach jeder Chromatographie regeneriert. Zu diesem Zweck wurde über das verbliebene Sephadex 1 ml 2 N Salzsäure gegeben und anschließend die Säule mit Methanol gespült, bis der pH wieder neutral war.

3.2.2.1.4.3 Dünnschichtchromatographie und Aufreinigung zur HPLC

Die weitere Auftrennung der Fraktionen in Unterfraktionen erfolgte mittels Dünnschichtchromatographie mit einem für Indolderivate geeigneten Laufmittel. Zu diesem Zweck wurden die Einzelfraktionen zunächst in einem Rotationsverdampfer getrocknet und in etwa 2 ml Ethanol gelöst. Die Lösungen wurden so konzentriert, um die nachfolgende Auftragungszeit auf die Kieselgel DC-Platten zu reduzieren.

Die Auftragung zur <u>präparativen</u> Dünnschichtchromatographie erfolgte mit Hilfe des Camag Linomat IV mit folgender Einstellung:

Plattenbreite	200 mm
Bandbreite	180 mm
Auftragsgeschwindigkeit	4 sec/ µl
Startposition horizontal	10 mm
Startposition vertikal	20 mm
Zwischenraum	0 mm
Aufzutragendes Volumen	300 µl
Druck Hauptventil	> 100 bar
Druck Reduzierventil	5 bar

Zur Gewinnung einer möglichst großen Menge an Substanz wurde bei der präparativen Dünnschichtchromatographie über die ganze Breite der Kieselgelplatte die Lösung einer Fraktion aufgetragen. Zur Auftragung bei der <u>analytischen</u> Dünnschichtchromatographie wurde folgende Einstellung verwendet:

Plattenbreite	200 mm
Bandbreite	10 mm
Auftragsgeschwindigkeit	4 sec/ μl
Startposition horizontal	10 mm
Startposition vertikal	20 mm
Zwischenraum	7 mm
Aufzutragendes	20 ul
Volumen	- F
Druck Hauptventil	> 100 bar
Druck Reduzierventil	5 bar

Auf diese Art konnten alle Einzelfraktionen auf eine Platte aufgetragen und die Zusammensetzung der einzelnen Fraktionen direkt analysiert werden.

Die DC erfogte in einer Laufkammer mit Hilfe eines Filterpapiers und einem Laufmittel bestehend aus 200 ml Toluol, 100 ml Ethylformiat und 60 ml Ameisensäure. Dies entspricht einem Verhältnis von Toluol zu Ethylformiat zu Ameisensäure von 10:5:3.

Die Laufzeit des Lösungsmittels bis zum oberen Ende der Kieselgelplatte betrug etwa 50 Minuten.

Die einzelnen Banden wurden folgendermaßen charakterisiert:

- 1. anhand ihrer typischen Färbung im sichtbaren Licht und ihrer potentiell fluoreszierenden Färbung unter UV-Licht bei 254 und 366 nm
- über ihre Rf-Werte (Quotient aus dem Entfernung einer Substanz vom Startpunkt und der zurückgelegten Laufmittelstrecke) und des Verhältnisses der einzelnen Banden untereinander

Die Pityriarubin-haltigen Banden lassen sich, wie folgt, charakterisieren:

Substanz	Fraktion	Rf-Wert	Färbung
Pityriarubin A	3 und 4	0,14	Orangerot
Pityriarubin B	4 und 5	0,27	Orangerot
Pityriarubin C	5 und 6	0,38	Orange

Abbildung 4: Analytische Dünnschichtchromatographie

Linker Pfeil: Pityriarubin A Mittlerer Pfeil: Pityriarubin B Rechter Pfeil: Pityriarubin C Die auf diese Art benannten Banden konnten nun im Rahmen der präparativen Dünnschichtchromatographie einzeln mit einem feinen Spatel von der Platte gekratzt und im Mörser zerkleinert werden.

Zur Extraktion der Pigmente aus dem vereinigten Kieselgel der betreffenden Bande wurde Ethylacetat verwendet, dem – nachdem die Pigmente durch Benetzung und Schütteln in Lösung gegangen sind - zur Abtrennung des Kieselgels Wasser hinzugegeben wurde.

Auf diese Weise bildeten sich zwei stabile Phasen: Die untere schwere Wasserphase mit abgeschiedenem Kieselgel und die leichtere Ethylacetatphase mit gelöstem Pigment, die in einen Scheidetrichter dekantiert wurde. Hier setzten sich nochmals Reste der Wasserphase unten ab und wurden verworfen.

Die Ethylacetatphase wurde aufgefangen und zur Bindung von Restwasser mit wasserfreiem Natriumsulfat versetzt, welches abzentrifugiert wurde.

Die von Restwasser befreite Ethylacetatphase wurde nun in einen Rundkolben überführt und mittels Rotationsverdampfer im Wasserstrahlvakuum eingeengt. Das zurückbleibende Pigment wurde in möglichst wenig Ethylacetat (etwa 1 bis 2 ml) gelöst und - falls noch Verunreinigungen zu erkennen waren (ungelöste, im Medium schwebende Teilchen) - bei 4000 Umdrehungen über fünf Minuten zentrifugiert. Durch die Zentrifugation lagerten sich die schwereren, nicht löslichen Verunreinigungen am Boden des Gefäßes ab. Der Überstand mit den Pigmenten konnte so leicht entnommen werden.

Abschließend wurde die Pigmentlösung in 4 ml Glasröhrchen überführt und unter einem Stickstoffstrom bei 40 °C getrocknet.

3.2.2.1.5 High Performance Liquid Chromatographie (HPLC)

Die Isolierung der Bestandteile einer Fraktion wurde mittels präparativer HPLC durchgeführt.

Die erhaltenen Fraktionen wurden mittels analytischer HPLC auf Reinheit untersucht. Diese beiden Verfahren wurden von Dr. H.-J. Krämer, Klinische Pharmakologie, Giessen, durchgeführt.

3.2.2.1.5.1 Präparative HPLC

Durch präparative HPLC können die trotz Vorreinigung noch recht komplexen Fraktionen (durchschnittlich 5 – 10 Komponenten) über einen Gradienten mit einer LiChrospher-RP8 Säule (30x250mm) mit entsprechender Vorsäule getrennt und in grösseren Mengen rein dargestellt werden. Der verwendete lineare Gradient (180 min) läuft von 0 – 100 % Acetonitril bzw. 100 – 0 % Wasser. Die Flussrate beträgt 5 ml/min. Die eluierenden Verbindungen werden mittels Fraktionensammler in 180 Fraktionen von je 5 ml aufgefangen und anschliessend lyophilisiert. Hauptkomponenten werden nochmals mit einem gespreizten Gradienten (hier 50 -80 % Acetonitril bzw. 0 – 20 % Wasser) nachgereinigt. Nach erneuter Lyophilisation wird ein Aliquot zur analytischen HPLC verwendet oder per Express unter Stickstoffatmosphäre auf Trockeneis zur Strukturaufklärung den an Kooperationspartner in München geschickt.

Mit der beschriebenen Methodik konnten aus 214 mit *Malassezia furfur* bebrüteten Petrischalen 1,4 mg Pityriarubin A, 1,37 mg Pityriarubin B und 1,32 mg Pityriarubin C gewonnen werden.

3.2.2.1.5.2 Analytische HPLC

Zur analytischen HPLC wurde eine Reversed-Phase-Säule (4 × 250 mm) verwendet. Die Elution erfolgte mittels Hochdruck-Gradienten. Als mobile Phase wurde Acetonitril-Wasser (linearer Gradient von 0 – 100 % Acetonitril bzw 100 – 0% Wasser über 100 min) bei einer Flussrate von 1 ml/min eingesetzt. Die Detektion eluierter Substanzen erfolgte bei 220 nm, die Chromatogramme wurden mittels eines Thermoschreibers bei einer Schreibergeschwindigkeit von 2mm/min aufgezeichnet. Der Probenauftrag erfolgte mittels eines Autosamplers in einem Volumen von 100 µl.

3.2.2.1.6 Strukturaufklärung

Die aus Gießen erhaltenen Proben wurden im Fachbereich Chemie der Ludwig-Maximilians-Universität in München von Prof. Dr. W. Steglich und Dr. B. Irlinger mittels ¹H- und ¹³C-NMR (600MHz), Massenspektroskopie (HRMS) sowie FT-IR-Spektroskopie analysiert. Zur Aufnahme geeigneter Massenspektren standen verschiedene Ionisationsmethoden zur Verfügung (EI, ESI, FAB und CI). Im vorliegenden Fall erfolgte aufgrund der geringen zur Verfügung stehenden Menge

der Isolate (0,1 mg) lediglich die massenspektroskopische Identifikation und der Vergleich mit bereits bekannten Metaboliten aus *Malassezia furfur*.

3.2.2.2 Untersuchung der Wirkung der Pityriarubine

3.2.2.2.1 Isolierung der neutrophilen Granulozyten

Die in den Versuchen verwendeten polymorphkernigen neutrophilen Granulozyten (PMN) wurden im wesentlichen nach der Methode von Boynum ^[29] durch Zentrifugation über einen Ficoll-Gradienten gewonnen. Bei dieser Methode macht man sich die unterschiedliche Migration im Dichtegradienten zu Nutze, da Granulozyten und Erythrozyten aufgrund ihrer höheren Dichte schneller sedimentieren als mononukleäre Zellen, die sich in den oberen Gradientenschichten sammeln.

Es wurden nur gesunde freiwillige Probanden zur Blutspende herangezogen. Die Blutentnahme erfolgte an einer peripheren Vene der Armbeuge. Zur Antikoagulation

wurde in den zur Aspiration verwendeten Spritzen EDTA vorgelegt, so dass eine EDTA- Endkonzentration von 0,125 % erreicht wurde.

Die Isolation der Zellen erfolgte standardmäßig unter sterilen Bedingungen und bei einer Raumtemperatur von 20 – 25 °C. Die durchschnittliche Isolationsdauer betrug etwa zwei Stunden.

Je 30 ml des gewonnenen Blutes wurden nun vorsichtig auf 15 ml Ficoll-Lösung – vorgelegt in einem 50 ml Propylene-Röhrchen – aufgeschichtet und 35 Minuten bei 400 x g zentrifugiert.

Die unterschiedliche Dichte der verschiedenen Zellpopulationen bewirkt nun eine Auftrennung der Zellen bei der Sedimentation, wobei sich nach der Zentrifugation die Granulozyten und Erythrozyten am Boden des Röhrchens wiederfinden und das darüberliegende Plasma und die sich in den oberen Zellschichten befindenden mononukleären Zellen abgesaugt werden können.

Es schließt sich die Abtrennung der Erythrozyten von den PMN an. Dazu wurde die Granulozyten-Erythrozyten-Bande im Verhältnis 1:3 mit Polyvinylalkohol gemischt und 15 Minuten zur Sedimentation der Erythrozyten stehengelassen.

Danach wurde der PMN-reiche Überstand mit einer Pipette abgenommen, in frische Propylene-Röhrchen überführt und 10 Minuten bei 350 x g zentrifugiert.

Verbleibende Erythrozyten wurden durch hypotone Lyse entfernt: Hierzu wurden die Zellen – nach Absaugen des Überstandes – in 18 ml Aqua dest. resuspendiert. Nach 20 Sekunden wurde die Lyse durch Zugabe von 2 ml PBS 10x beendet und das Falcon-Röhrchen mit PBS 1x auf 50 ml aufgefüllt. Abschliessend folgte eine 10minütige Zentrifugation bei 150 x g.

Nach Absaugen der Flüssigkeit wurden die Zellen für die verschiedenen Versuche in den entsprechenden Medien und zu unterschiedlichen Konzentrationen resuspendiert (siehe folgende Kapitel).

Die Quantifizierung der Zellen erfolgte durch lichtmikroskopische Zählung mittels Neubauer-Zählkammer bei 400-facher Vergrößerung.

Vitalität und Reinheit wurde bei jeder Isolation über Differentialblutbilder sowie Propidiumiodid-Färbung mit anschließender FACS Analyse überprüft. Der Anteil PMN lag generell bei > 97 %, bei einer Vitalität von > 96 %.

3.2.2.2 Untersuchung der Wirkung der Pityriarubine und des Arcyriarubin A auf granulozytäre Funktionsparameter

Bei allen Versuchsansätzen wurden immer gleiche Endkonzentrationen der Pityriarubine A, B und C, sowie des Arcyriarubin A verwendet (20 μ M, 10 μ M, 5 μ M, 2 μ M, 1 μ M, 0,5 μ M).

Herstellung der Verdünnungsreihe der Inhibitoren:

Die tiefgefrorenen Pityriarubine und das ebenso aufbewahrte Arcyriarubin A wurden in Mengen von 0,3 - 0,5 mg auf einer sechsstelligen Analysenwaage abgewogen und am Versuchstag mit DMSO zu einer Konzentration von 10 mg/ml gelöst ("Substanzlösung" bzw. Lösung 1).

Daraus wurden entsprechende Aliquots unter Berücksichtigung des Molekulargewichtes der Substanzen zu den Pufferlösungen bzw. Zellkulturmedien gegeben:

Molekulargewichte:

- Arcyriarubin A: 327,3 g/Mol
- Pityriarubin A: 526,55 g/Mol
- Pityriarubin B: 524,53 g/Mol
- Pityriarubin C: 525,51 g/Mol

Das Molekulargewicht der einzelnen Pityriarubine wurde auf 525,5 g/Mol aufgerundet.

Die Wahl der höchsten Konzentration wurde aufgrund der Schwerlöslichkeit der Pityriarubine und des Arcyriarubins in rein wässrigen Lösungen einerseits und andererseits einer Minimierung des Lösungsvermittlers DMSO, das Zellaktivitäten beeinflusst, getroffen.

Zur Herstellung von 500 µL einer "Stammlösung" (Lösung 2) mit einer Konzentration von 400 µM wurde die "Substanzlösung" (Lösung 1) wie folgt verdünnt:

- Arcyriarubin A: 2 x 3.27 μ L zu 493.5 μ L H/H ⁺⁺ (bzw. RPMI)
- Pityriarubin A: $2 \times 5.25 \mu$ L zu 489.5 μ L H/H ⁺⁺ (bzw. RPMI)
- o Pityriarubin B: 2 x 5.25 μ L zu 489.5 μ L H/H ⁺⁺ (bzw. RPMI)
- o Pityriarubin C: 2 x 5.25 μ L zu 489.5 μ L H/H ⁺⁺ (bzw. RPMI)

Beim Ansetzen der Lösungen zu den Versuchen zum "Burst" und der Leukotrienausschüttung wurde berücksichtigt, dass sich das Gesamtvolumen von 1 ml zusammensetzte aus insgesamt 300 μ L Zellsuspension, sowie 100 μ L Reagenzlösung (Cytochrom C und SOD) und 100 μ L der Aktivatorlösung, so dass für die Lösung der Inhibitoren ebenfalls 500 μ L zur Verfügung stand.

Diese 500 μ L wurden aus der 400 μ M-Stammlösung durch Verdünnen im Verhältnis 1:10, 1:20, 1:40, 1:200 hergestellt, um damit die ersten vier Konzentrationen (20 μ M, 10 μ M, 5 μ M, 2 μ M) im Endvolumen zu erhalten; die Lösungen für 1 μ M und 0,5 μ M wurden aus der 1:200 Lösung durch zweimaliges aufeinanderfolgendes Verdünnen im Verhältnis 1:1 hergestellt.

Bei den Versuchen zur IL-8 Freisetzung mit einem Gesamtvolumen von 500 μ L wurden die Substanzen in 50 μ L gelöst zum Ansatz gegeben, d. h. alle obigen Verdünnungsschritte 1:10, 1:20 etc. wurden durch Verdünnungen 1:1, 1:2 etc. ersetzt, um eine zehnfach höhere Konzentration der Substanzen in den zugegebenen 50 μ L zu erhalten.

Die DMSO-Konzentrationen betrugen in den Stammlösungen 2 x 5.25 µL/500 µL, d. h. 21 µL/ml oder 2.1 %. Diese Lösung wurde nicht in den Zellversuchen eingesetzt, sondern nochmals mindestens um den Faktor 10 verdünnt. Vorversuche mit DMSO-Konzentrationen von 5 % zeigten nur geringen Einfluss auf die ROS-Freisetzung, deshalb wurde der Einfluss des DMSO vernachlässigt. Wie die Ergebnissen von C. Hipler (Jena) (siehe Kap. 3.4) bestätigen, haben die in den Versuchen eingesetzten DMSO-Konzentrationen keinen Einfluss auf die Ergebnisse.

3.2.2.2.1 Messung der granulozytären Freisetzung reaktiver Sauerstoffspezies (ROS)

<u>Prinzip</u>

Hierzu wurde die Methode nach Cohen ^[41] benutzt, bei der die Reduktion von Cytochrom C durch Wasserstoffperoxid (H_2O_2) sowie Peroxid-Anionen ($O_2^{2^-}$) photometrisch erfasst wird. Cytochrom C ändert dabei in charakteristischer Weise das Absorptionsspektrum.

Als Vergleichsansätze dienten dabei solche, denen neben dem Cytochrom C zusätzlich noch das Enzym Superoxid-Dismutase (SOD) zugesetzt wurde. Dieses

verhindert selektiv die Reduktion von Cytochrom C durch Wasserstoffsuperoxid, so dass aus der Differenz der beiden Ansätze auf die Menge des entstandenen Wasserstoffsuperoxid und anderer reaktiver Sauerstoffspezies (ROS) geschlossen werden kann. Da diese Substanzen weitgehend Reaktionsprodukte der granulozytären NADPH-Oxidase darstellen, erhält man so ein angenähertes Maß für deren Aktivität.

Zusätzliche Ansätze ohne Zusatz der Testsubstanzen, aber mit Aktivator, dienten als Maximalkontrolle, solche ohne jeglichen Zusatz von Inhibitoren oder Aktivator als Leerwert zur Kontrolle des spontanen Zerfalls der Zellen.

Durchführung

Jeder Ansatz enthielt 300 μ l einer Zellsuspension mit einer Konzentration von 16,66 x 10⁶ PMN/ ml. Dies entspricht absolut 5 x 10⁶ Zellen in 300 μ l Zellsuspension, die sich dann in 1 ml Endvolumen des Versuchsansatzes befanden. Als Kurzzeit-Kulturmedium diente HH^{+/+}.

Allen Proben wurden 75 μ M Cytochrom C zugesetzt, die Vergleichsansätze enthielten zusätzlich noch 100 μ g/ml SOD. Das Cytochrom C der Proben bzw. das Cytochrom C und SOD der Vergleichsansätze war jeweils in 100 μ l Medium gelöst.

Vor der Stimulation wurden alle Proben mit den vorbereiteten, in 500 µl HH^{+/+} gelösten Testsubstanzen für 10 min. im Wasserbad bei 37° C vorinkubiert. Die Kontrolllösungen ohne Testsubstanzen wurden entsprechend mit 500 µl Medium aufgefüllt und ebenso für 10 min. vorinkubiert.

Alle Aktivatoren waren in 100 µl Zellmedium gelöst. Den Versuchsansätzen ohne Aktivator wurden stattdessen 100 µl Medium zugesetzt.

Folgende Aktivatoren wurden eingesetzt:

o Calcium-Ionophor A23187

Konzentration: 1 µM A23187

Inkubationszeit: 10 min.

o N-formyl-Methionin-Leucin-Phenylalanin (fmlp):

Die Zellen wurden mit 5 μ g/ml Cytochalasin B für 30 Minuten in einem Brutschrank bei definierter CO₂-Zufuhr vorinkubiert. Cytochalasin B wirkt als "primer" auf die Granulocyten und verstärkt so den Effekt von fmlp^[162].

Konzentration: 1 µM fmlp

Inkubationszeit: 10 min.

1,2 Di-Octanoy-sn-glycerol (DAG)
Konzentration: 10 μM DAG
Inkubationszeit: 10 min.
Natrium-Fluorid (NaF)
Konzentration: 10 μM NaF
Inkubationszeit: 10 min.
Phorbolester (PE) (Phorbol-12-myristat-13-acetat)
Konzentration: 1 μM Phorbolester
Inkubationszeit: 20 min.
Zymosan A
Konzentration: 1 mg/ml Zymosan
Inkubationszeit: 25 min.

Die Reaktion wurde nach der jeweiligen Inkubationszeit durch Kühlung auf Eis mit anschließender Zentrifugation bei 4° C (1200 x g, 4min.) abgestoppt.

Die Zellüberstände wurden photometrisch bei 546 nm – dem Absorptionsmaximum des Cytochrom C – analysiert. Dabei wurde die Extinktion jeweils gegen den SODenthaltenden Vergleichsansatz gemessen.

Auswertung und Statistik

Aus den erhaltenen Einzeldaten wurde durch prozentualen Vergleich mit den Maximalwerten des jeweiligen Tages und anschliessender Mittelwertbildung der relativen Prozentwerte das Ergebnis erhalten. Darüber hinaus wurde die Standardabweichung ermittelt.

Eine alleinige Auswertung anhand des Mittelwertes ist jedoch nicht korrekt, da die mathematische Grundvorraussetzung der Normalverteilung nicht gegeben ist. Aus diesem Grund wurde für jeden Versuch eine Exponentialfunktion gebildet und die IC₅₀ ermittelt.

Zur Verifizierung der Versuchsergebnisse wurde der H-Test von Kruskal und Wallis herangezogen.

3.2.2.2.2 Analytik von Arachidonsäure-Metabolite mittels HPLC

<u>Prinzip</u>

In der vorliegenden Arbeit wurde die Bildung von Arachidonsäure-Derivaten mittels Calcium-Ionophor A23187 induziert. Andere Aktivatoren wie Fmlp – auch in Kombination mit Cytochalasin B – Priming oder Arachidonsäure - erbrachten keine ausreichende Freisetzung von Leukotrienen.

Der Nachweis der Arachidonsäure-Metabolite aus den Zellüberständen erfolgte über Festphasenextraktion und nachfolgende HPLC-Analytik.

Die Festphasenextraktion dient dabei der Aufreinigung und Anreicherung der Arachidonsäure-Metabolite aus dem Zellüberstand.

Dazu wurden Vorsäulen verwendet, die kovalent mit gesättigten C₁₈-Alkylresten abgesättigtes Silica-Gel mit einer Partikelgröße von 40 µm als stationäre Phase enthalten. Dieses Gelmaterial besitzt eine hohe Affinität für unpolare Verbindungen und ermöglicht so die Extraktion der lipophilen Lipoxygenase-Metaboliten aus dem wässrigen Zellüberstand und die anschließende Elution mittels eines unpolaren Lösungsmittels wie Methanol. Zu beachten sind die genauen Bedingungen des Probenauftrages und der Elution. So sollte die Dauer des Durchflusses möglichst gleichbleiben, ebenso die Elutionsgeschwindigkeit. Ausserdem muss - um Substanzverluste zu verhindern - ein Verspritzen der Eluate bei der Elution durch das angelegte Vakuum vermieden werden.

Die quantitative HPLC der Zellproben erfolgte mittels einer isokratischen reversedphase (RP-) Chromatographie, bei der ein lipophiles Silicagel mit C-18-Ketten als Säulenfüllung verwendet wird, ähnlich dem Vorsäulen-Material, das lipophile Substanzen zunächst bindet, die dann durch das organische Lösungsmittel in der mobilen Phase nacheinander von der Säule abgelöst werden. Dabei kann durch Wahl der Zusammensetzung der mobilen Phase eine Trennung der interessierenden Substanzen erzielt werden. Es bildet sich eine Konkurrenzsituation zwischen der Lösung der Substanzen im lipophilen Gelmaterial und der Lösung in der mobilen Phase aus, wodurch eine feinabgestimmte Trennung erreicht werden kann. Detektiert werden die eluierenden Komponenten mittels eines Durchflussphotometers im UV, wobei eine für die Substanzen charakteristische Wellenlänge eingesetzt wird. Im Fall der Leukotriene liegt diese Wellenlänge bei 230 nm. Die

eluierenden "peaks" sind in ihrer Fläche oder auch Höhe proportional der Substanzmenge, so dass nach entsprechender Kalibrierung mit bekannten Konzentrationen eine Quantifizierung der Substanzen erfolgen kann. Dabei ist zu beachten, dass die Konzentrationsabhängigkeit nur in gewissen Grenzen linear verläuft.

Beim Zusammenschalten mit der Vorsäulenextraktion ist zu beachten, dass die Effizienz der Extraktion und der nachfolgenden Elution erstens nicht 100% beträgt und zweitens für jede einzelne Substanz verschieden sein kann. Zur Kontrolle und für die nachfolgende quantitative Aussage über den Gehalt der ursprünglichen Probe ist es daher erforderlich, zum einen die Linearität der Flächen- oder Höhenkonzentrationsabhängigkeit zu charakterisieren ("response"), zum anderen die Wiederfindung der einzelnen Komponenten ("recovery") nach Durchlaufen aller analytischen Schritte zu bestimmen - beides mit bekannten Konzentrationen der zu bestimmenden Substanzen.

Durchführung

Versuchsansatz und Stimulation der Zellen

Jeder Ansatz enthielt 400 μ l einer Zellsuspension mit einer Konzentration von 12,5 x 10⁶ PMN/ ml. Dies entspricht 5 x 10⁶ Zellen in 400 μ l Zellsuspension. Das Zellmedium war H/H⁺⁺.

Vor der Stimulation wurden alle Zellen mit den zu untersuchenden Substanzen für 10 min. in einem Wasserbad bei 37° C vorinkubiert.

Die Stimulation der Zellen erfolgte mit 1 μ M A23187 bei einer Inkubationszeit von 10 min. Die Reaktion wurde durch Kühlung auf Eis und anschließender Zentrifugation (1200 x g, 4min.) bei 4° C abgestoppt. Die Zellüberstände wurden bis zur weiteren Analyse bei -20° C tiefgefroren.

Festphasenextraktion

Für die sich anschließende Festphasenextraktion wurden die verwendeten Vorsäulen zur besseren Kontrolle der Elutionsgeschwindigkeit in eine Extraktionsapparatur eingesetzt, in der über eine Wasserstrahlpumpe ein über ein Nadelventil einstellbares Vakuum erzeugt wurde. Der erste Schritt der Festphasenextraktion war die Konditionierung der Säulen durch Aufpipettieren von jeweils zweimal 1 ml Methanol und 1 ml destilliertem Wasser. Diese waren wie alle verwendeten Lösungen eisgekühlt.

Anschließend wurden die ebenfalls gekühlten Zellüberstände aufpipettiert, worauf ein zweimaliges "Waschen" der Säule mit je 1 ml Aqua dest. folgte, um nicht-retinierte polare Verbindungen zu spülen. Das nachfolgende rasche Durchsaugen von 100 µl Chloroform diente dazu die wässrige Phase komplett von der Säule zu verdrängen und neutrale Lipide zu entfernen.

Die Elution der Arachidonsäure-Metaboliten erfolgte durch Zugabe von 250 µl Methanol, das nach einer Einwirkzeit von 2 min. schrittweise langsam abgesaugt und in Eppendorfgefäße aufgefangen wurde.

Die Proben wurden dann bis zum vollständigen Eindampfen des Lösungsmittel einem kontinuierlichen Stickstoffstrom ausgesetzt und konnten in dieser Form bis zu der anschließenden HPLC-Analytik bei -20° C gelagert werden.

Reversed-Phase-HPLC (isokratisch)

Die Proben wurden für die HPLC-Analytik in 50 μ I Methanol gelöst. Zur analytischen HPLC wurde eine Reversed-Phase-Säule verwendet. Die Elution erfolgt mittels Hochdruck-Flüssigkeits-Pumpe bei einem Flussrate von 1,3 ml/min. Die mobile Phase bestand aus Methanol, Wasser und Essigsäure im Verhältnis 78:28:0,16 und wurde mit NH₄OH auf einen pH von 4,9 eingestellt. Zur Reinigung und Entgasung wurde die mobile Phase durch ein Membran-Filtersystem gesaugt, zusätzlich wurde noch eine Ultraschall-Entgasung durchgeführt. Die Detektion eluierter Substanzen erfolgt bei 220 nm, die Chromatogramme werden mittels eines Computersystems mit entsprechender Software aufgezeichnet und ausgewertet. Der Probenauftrag erfolgt mittels eines Autosamplers in einem Volumen von 30 μ I.

Evaluierung der Leukotrien-Analytik und Auswertung

Um Daten zum Zusammenhang zwischen HPLC-Peakfläche und Konzentration zu erhalten, wurden mit den zu bestimmenden Proben Verdünnungen von den zu bestimmenden Metaboliten (LTB₄, 6-trans-LTB₄) mit bekanntem Gehalt analysiert. Ein Metabolit war trotz intensiver Bemühungen seitens des Lieferanten zur Zeit der Analytik nicht verfügbar (6-trans-12-epi-LTB₄). Aus früheren Ergebnissen ^[72] ist

jedoch bekannt, dass sich diese Substanz genau wie die anderen untersuchten Leukotriene verhält.

Durch dieses Vorgehen erhält man die sog. "response"-Kurve der Apparatur, d. h. das erhaltene Signal ist der eingesetzten Substanzmenge idealerweise proportional und kann zur Erstellung einer Eichkurve dienen.

Da die nicht Proben aber direkt analysiert werden, sondern über Festphasenextraktion vorbereitet werden, ist es erforderlich, dabei auftretende Verluste (z. B durch nicht-quantitative Absorption bzw. dann Elution) zu kontrollieren. Dazu werden die gleichen Substanzmengen wie in den "response"-Versuchen eingesetzt, nur wird die Substanz in Zellkulturmedium gelöst und anschliessend wie eigentliche Proben über Festphasen-Extraktionssäulen geführt (Simulation der "richtigen" Proben). Durch Vergleich der Peakfläche des jeweiligen Standards mit dem Ergebnis nach Festphasenextraktion erhält man eine Abschätzung des bei dem Verfahren aufgetretenen Verlustes bzw. die sog. "recovery".

Ergebnisse der "response"- und "recovery"-Versuche für die interessierenden Metaboliten:

<u>LTB</u>₄:

6-trans-LTB₄:

Für beide Metabolite ergibt sich sowohl für die "response" wie auch für die "recovery" eine lineare Ursprungsgerade als funktionaler Zusammenhang

(±SE, R = Korrelationskoeffizient):

<u>LTB₄:</u>

Response: Y = 21,61($\pm 0,56$) XR = 0,998n = 5Recovery : Y = 11,59($\pm 0,31$) XR = 0,997n = 5<u>6-trans- LTB4:</u>Response: Y = 18,67($\pm 0,47$) XR = 0,998n = 5Recovery : Y = 10,82($\pm 0,55$) XR = 0,990n = 5

Man erkennt deutliche Einflüsse der Festphasenextraktion und der anschliessenden Trocknung der Eluate; der durchschnittliche Verlust beträgt reproduzierbar ca. 40-50 %.

Die Umrechnung auf absolute Konzentrationen erfolgt also in beiden Fällen durch Multiplikation mit einem konstanten Faktor. Da nur die relativ zum Maximalwert erfolgte prozentuale Hemmung in den Versuchen betrachtet wird, erübrigt sich diese Umrechnung; es können direkt die Peakflächen in Relation gesetzt werde.
Auswertung

Aus den erhaltenen Einzeldaten wurde wie bei der Auswertung des "respiratorischen burst" durch prozentualen Vergleich mit den Maximalwerten des jeweiligen Tages und anschliessender Mittelwertbildung der relativen Prozentwerte das Ergebnis erhalten. Darüber hinaus wurde die Standardabweichung ermittelt.

Da die mathematische Grundvorraussetzung der Normalverteilung nicht gegeben ist und somit eine alleinige Auswertung anhand des Mittelwertes nicht korrekt ist, wurde für jeden Versuch eine Exponentialfunktion gebildet und die IC₅₀ ermittelt.

Zur Verifizierung der Versuchsergebnisse wurde der H-Test von Kruskal und Wallis herangezogen.

3.2.2.2.3. IL-8-Analytik mittels ELISA

<u>Prinzip</u>

Als Aktivator der IL-8-Bildung wurde in der vorliegenden Arbeit Lipopolysaccharid (LPS) benutzt – ein Zellwandbestandteil gramnegativer Bakterien. LPS bindet an spezifische Rezeptoren an der Außenwand der Zelle und aktiviert so die Granulozyten zur Synthese von IL-8.

Nach 24-stündiger Inkubation wurde die Reaktion durch Kühlung auf Eis und Zentrifugation bei 4°C abgestoppt und der IL-8-Gehalt des Zellüberstandes mittels Sandwich-ELISA analysiert.

Dabei wird das zu untersuchende Antigen – im vorliegenden Fall also IL-8 – von einem festsitzenden, spezifischen Antikörper ("capture"-AK) gebunden und anschließend von einem zweiten, auch spezifischen Antikörper ("biotinylierter" AK) markiert. Das zu analysierende Antigen liegt also – wie in einem Sandwich - zwischen den beiden Antikörpern.

Eine mit Streptavidin markierte Peroxidase (Merrettich- oder Horseradish-Peroxidase) bindet an das Biotin des Zweitantikörpers gebunden, oxidiert in einem letzten Schritt ein Testsubstrat (ABTS) und führt so zu einer Färbung, deren Intensität proportional zur ursprünglichen Antigenmenge ist und die mittels eines Photometers quantifiziert wird. An der Intensität des Farbumschlages lässt sich nun in Relation zu einer Standardkurve die Menge des gebundenen Antigens berechnen.

Durchführung

Jeder Ansatz enthielt 400 μ l einer Zellsuspension mit einer Konzentration von 6,25 x 10⁶ PMN/ ml. Dies entspricht 2,5 x 10⁶ Zellen in 400 μ l Zellsuspension. Zellmedium war hier RPMI mit einem Anteil von 1 % FCS (Fetal Calf Serum) und 1 % Penicillin/Streptomycin (siehe Materialien).

Die zu untersuchenden Substanzen waren in 50 µl Medium gelöst und vor der Zugabe sterilfiltriert. Die Stimulation erfolgte mit 50 µl LPS (10 ng/ml).

Die Kontrollansätze ohne LPS und ohne die zu untersuchenden Substanzen erhielten stattdessen 100 µl Medium; sie dienten als "Leerwert". Kontrollen mit LPS, aber ohne die zu untersuchenden Substanzen wurden mit 50 µl Medium aufgefüllt und dienten als Maximalwerte.

So ergab sich für alle Versuchsansätze ein Volumen von 500 µl.

Alle Versuchsansätze wurden für 24 Stunden in einem Brutschrank bei 37° C und unter einem definiertem CO₂-Gehalt von 5 % inkubiert.

Die Reaktion wurde durch Kühlung auf Eis und anschließender Zentrifugation (1200 x g, 4min.) bei 4° C abgestoppt. Danach konnten die Proben bei -20° C bis zum Nachweis des IL-8 mittels ELISA tiefgefroren.

Die ELISA-Platten wurden in einem ersten Schritt mit "Capture"-Antikörpern inkubiert, die in PBS 1x zu einer Konzentration von 4 µg/ml gelöst waren; in jedes "well" wurden 100 µl dieser Lösung pipettiert.

Der 12-stündigen Inkubation mit "Capture"-Antikörpern folgte ein "Waschschritt". Dazu wurde die Flüssigkeit auf Papier ausgeklopft und die "wells" anschliessend mit 300 µl Waschpuffer gefüllt. Dieser Schritt wurde noch zweimal wiederholt.

Nach dem "Waschen" der "wells" schloss sich eine 1-stündige Inkubation bei Raumtemperatur (20-25°C) mit 300 µl Blockpuffer zur Absättigung der Platten mit unspezifischem Protein an. Nach erneutem dreimaligen "Waschen" erfolgte die Zugabe von 100 µl der vorbereiteten Zellüberstände (Proben) und die Inkubation der Ansätze über 2 h bei Raumtemperatur. Kurz zuvor waren diese Proben im Verhältnis 1:1 mit Diluentpuffer gemischt worden, damit die IL-8-Konzentration der Proben im exponentiellen und damit im linearen Bereich (bei logarithmischer Transformation) der Standardkurve lag.

Nach diesem Inkubationsschritt wurden die "wells" erneut mit Waschpuffer gewaschen und im Anschluß mit 100 µl biotinyliertem Antikörper, der in Diluentpuffer zu

einer Konzentration von 40 ng/ml gelöst war, versetzt und für zwei Stunden bei Raumtemperatur inkubiert.

Nach weiterem dreimaligen "Waschen" folgten die Zugabe und Inkubation der HRP-Streptavidin-Verdünnung für etwa 20 min. bei Raumtemperatur. Nach erneutem dreimaligen "Waschen" schloss sich die Substratinkubation über mind. 30 min. an, nach denen die Farbentwicklung abgeschlossenen war. Die Messung der Ansätze erfolgte am Photometer bei 450 nm.

Auswertung und Statistik

Die Messung und Auswertung der Einzelversuche erfolgte mittels Elisa-Reader und dessen integrierter Software. Im Prinzip wird aus den eingesetzten IL-8-Standards mit bekannter Konzentration eine Eichkurve erstellt, aus der dann über die gemessenen Extinktionen der Proben die enthaltene IL-8-Konzentration berechnet wird. Zur Verdeutlichung wird in folgender Grafik die Standardkurve aus zehn verschiedenen Messungen dargestellt:

Die Software des Elisa-Readers interpoliert zwischen den einzelnen Punkten mittels der sog. Spline-Approximation, bei der zwischen jeweils zwei benachbarten Punkten eine kubische Parabel gelegt wird, deren Parameter durch numerische Verfahren so bestimmt werden, dass ein nahtloser Übergang der einzelnen Kurvensegmente erreicht wird. Aus den erhaltenen Einzeldaten wurde durch prozentualen Vergleich mit dem Maximalwert und anschliessender Mittelwertbildung der relativen Prozentwerte das Ergebnis erhalten. Darüberhinaus wurde die Standardabweichung ermittelt. Weil die statistische Grundvoraussetzung der Normalverteilung nicht vorlag,

wurde wie auch bei den beiden anderen Parametern die IC_{50} ermittelt. Zur Verifizierung der Ergebnisse wurde auch hier der H-Test von Kruskal und Wallis durchgeführt.

3.3 Ergebnisse

In den Diagrammen sind die Mittelwerte verschiedener Versuchsreihen bei gleicher Konzentration dargestellt.

Auf der x-Achse der Diagramme finden sich die verschiedenen Inhibitorkonzentrationen und auf der y-Achse die durch sie erzielte prozentuale Minderung der maximalen Freisetzung der verschiedenen Indikatorsubstanzen. Weiterhin ist in den Diagrammen die bei den einzelnen Versuchen beobachtete Standardabweichung angegeben. Diese Vorgehensweise wurde nur zur besseren Darstellung und Vergleichbarkeit der Versuchsergebnisse mit der Literatur gewählt.

Eine Kurvenanpassung an die für die einzelnen Konzentrationen beobachteten Mittelwerte ist nicht korrekt, da erstens die Voraussetzung der Normalverteilung nicht gegeben ist und zweitens die inter- und intraindividuelle Variabilität als identisch angesehen wird.

Aus diesem Grund wurde für jeden einzelnen Versuch (Konzentrationsreihe) an die für die einzelnen Konzentrationen beobachteten relativen Hemmungen mit Hilfe der nichtlinearen Regression eine "Exponentialfunktion" angepasst und dann die IC_{50} ermittelt.

Die Funktion, bezüglich derer die Anpassung durchgeführt wird, entspricht einer typischen Hemmkurve und lautet:

$F_{(x)} = 1/(1/u + (b_0 \cdot (b_1^x)))$

Dabei ist *u* der obere Grenzwert (obere Asymptote) und x die jeweilige Konzentration. Die durch die Anpassung ermittelten Koeffizienten b_0 und b_1 kennzeichnen den Verlauf der Hemmkurve der einzelnen Versuchsreihen und sind im Anhang aufgelistet. Die IC₅₀ der einzelnen Versuchsreihen sind in diesem Kapitel neben den oben beschriebenen Mittelwertsdarstellungen in einem zusätzlichen Diagramm angegeben – jedoch nur bei Versuchen mit einer inhibitorischen Wirkung der Pityriarubine. Weiterhin ist zu erwähnen, dass mit den Granulozyten eines Probanden jeweils nur eine Konzentrationsreihe gemessen wurde. Individuelle Unterschiede in der Reaktion der Granulozyten – sowohl bei der Aktivierung, als auch bei der Wirkung der Inhibitoren – könnten sich in einer relativen Streuung bei der Berechnung der IC₅₀ zeigen.

Zur Prüfung auf Unterschiede zwischen den durch den jeweils verwandten Inhibitor definierten Gruppen wurde der H-Test von Kruskal und Wallis eingesetzt. Unter der

Annahme einer gleichmäßig fallenden Dosis-Wirkungskurve wurden dabei zum einen die bei der höchsten Konzentrationsstufe beobachteten Werte, sowie die mit Hilfe berechneter Hemmkurven ermittelten IC₅₀ zwischen den Gruppen verglichen. Die statistische Auswertung geschah in Zusammenarbeit mit Dr. Bödeker (Leiter AG Med. Statistik, Fachbereich Medizin der JLU Gießen).

3.3.1 Respiratorischer Burst

3.3.1.1 Calcium-Ionophor A23187

Calcium-Ionophor A23187 provoziert unspezifisch den Einstrom von extrazellulärem Calcium in den Intrazellulärraum und aktiviert damit Ca²⁺-abhängige Prozesse, so auch die granulocytäre NADPH-Oxidase und damit den "burst".

Die Pityriarubine A, B und C hemmten den durch A23187 induzierten "burst" in dosisabhängiger Weise, wobei eine signifikant unterschiedliche Wirksamkeit der drei Pityriarubine nicht festzustellen war.

Die relative Streuung bei der IC₅₀ könnte auf eine individuell unterschiedlich starke inhibitorische Wirkung der Pityriarubine zurückzuführen sein.

Diagramm 2: IC₅₀ der Pityriarubine und des Arcyriarubin A für den durch A23187 ausgelösten "burst"

[n=8; negative Werte sind nicht im Diagramm aufgeführt (siehe Anhang)]

3.3.1.2. N-formyl-Methionin-Leucin-Phenylalanin (Fmlp)

Diagramm 3: Wirkung der drei Pityriarubine und des Arcyriarubin A auf den durch Fmlp ausgelösten "burst" (MW ± SE, n=9)

N-formyl-Methionin-Leucin-Phenylalanin (Fmlp) bindet an einen spezifischen Rezeptor der Außenwand des Granulocyten und führt zu intrazellulären Reaktionen, zu denen auch der "burst" und die Ausschüttung von Entzündungsmediatoren wie Leukotrienen gehört.

Die Pityriarubine A, B und C hemmen den durch Fmlp induzierten "burst" in dosisabhängiger Weise und nochmals stärker als den durch den Aktivator A23187 ausgelösten "burst".

Diagramm 4: IC₅₀ der Pityriarubine und des Arcyriarubin A für den durch Fmlp ausgelösten "burst" (n=9)

3.3.1.3. Di-Octanoyl-Glycerol (DAG)

Diagramm 5: Wirkung der Pityriarubine und des Arcyriarubin A auf den durch DAG ausgelösten "burst" (MW ± SE, n=4)

Di-Octanoyl-Glycerol ist ein spezifischer Aktivator der Proteinkinase C.

Die Pityriarubine A und C zeigen in diesem Fall keine signifikante Wirkung auf die Radikalausschüttung.

3.3.1.4. Phorbolester (Phorbol-12-myristat-13-acetat)

Diagramm 6: Wirkung der drei Pityriarubine und des Arcyriarubin A auf den durch Phorbolester ausgelösten "burst" (MW ± SE, n=4)

Das Phorbol-12-myristat-13-acetat ist ein direkter Proteinkinase C-Aktivator.

Während Arcyriarubin A den "burst" hochpotent hemmt, zeigen die Pityriarubine keine Wirkung.

3.3.1.5. Natriumfluorid

Diagramm 7: Wirkung der drei Pityriarubine und des Arcyriarubin A auf den durch Natriumfluorid ausgelösten "burst" (n=4)

Natriumfluorid induziert den "burst" über eine G-Protein-Aktivierung, deren nachgeschaltete Prozesse dann die zelluläre Aktivierung, u. a. die der Proteinkinase C auslösen.

Die Pityriarubine A, B und C konnten den "burst" nicht signifikant hemmen.

Arcyriarubin zeigte dagegen eine hochpotente Hemmung des "burst".

3.3.1.6. Zymosan A

Diagramm 8: Wirkung der drei Pityriarubine und des Arcyriarubin A auf den durch Zymosan ausgelösten "burst" (n=4)

Zymosan ist ein unlösliches Reservekohlehydrat aus der Hefe Saccharomyces cerevisiae und besitzt die Fähigkeit, Immunglobuline zu binden und so als "opsoniertes Zymosan" (OZ) den "burst" auszulösen, kann aber auch als Mikropartikel direkt den "burst" induzieren ^[20].

Der Zymosan-induzierte "burst" konnte weder von einem der Pityriarubine, noch von Arcyriarubin A inhibiert werden.

3.3.2 Leukotriene

Als Aktivator der Leukotrienausschüttung wurde Calcium-Ionophor A23187 eingesetzt, das unspezifisch zu einem Einstrom von extrazellulärem Calcium in den Intrazellulärraum führt und so Ca²⁺-abhängige Prozesse, wie die granulozytäre NADPH-Oxidase oder auch die Phospholipase A₂ in Gang setzt.

Diagramm 9: Wirkung der drei Pityriarubine und des Arcyriarubin A auf die Freisetzung von Leukotrien B₄ (Arcyriarubin: n=4; Pityriarubine A, B, C: n=6)

Die Pityriarubine A, B und C hemmen, wie auch das Arcyriarubin A die LTB_4 -Ausschüttung signifikant. Auch hier ist der Mittelwert der relativen Hemmung gegenüber den Maximalwerten dargestellt. Die Maximalwerte der verschiedenen Versuchstage lagen etwa bei 1 – 2,5 ng/ml.

Werte über 100 sind nicht im Diagramm aufgeführt (siehe Anhang)]

3.3.2.2 6-trans-LTB₄

Diagramm 11: Wirkung der drei Pityriarubine und des Arcyriarubin A auf die Freisetzung von 6-trans-Leukotrien B₄ (Arcyriarubin: n=4; Pityriarubine A, B, C: n=6)

Alle eingesetzten Inhibitoren zeigen auf diesen Parameter eine nochmals stärkere inhibitorische Wirkung als auf LTB_4 . Die Maximalwerte der verschiedenen Versuchstage lagen etwa bei 0,4 – 1 ng/ml.

Diagramm 12: IC₅₀ der Pityriarubine und des Arcyriarubin A für die durch A23187 ausgelöste 6-trans-Leukotrien B₄ –Ausschüttung [Arcyriarubin: n=4; Pityriarubine A, B, C: n=6; Werte über 100 sind nicht im Diagramm aufgeführt (siehe Anhang)]

3.3.2.3 6-trans-12-epi-LTB₄

Diagramm 13: Wirkung der drei Pityriarubine und des Arcyriarubin A auf die Freisetzung von 6-trans-12-epi-Leukotrien B₄ (Arcyriarubin: n=4; Pityriarubine A, B, C: n=6)

Auch die Ausschüttung von 6-trans-12-epi-LTB₄ hemmen sowohl die Pityriarubine, als auch das Arcyriarubin signifikant. Die Maximalwerte der verschiedenen Versuchstage lagen etwa bei 0,4 - 0,9 ng/ml.

Diagramm 14: IC₅₀ der Pityriarubine und des Arcyriarubin A für die durch A23187 ausgelöste 6-trans-Leukotrien B₄ -Ausschüttung (Arcyriarubin: n=4; Pityriarubine A, B, C: n=6)

3.3.3. Interleukin-8

Diagramm 15: Wirkung der drei Pityriarubine und des Arcyriarubin A auf die Freisetzung von IL-8 (n=5)

Nach einer 24-stündigen Inkubation der Zellen mit dem Stimulus LPS und den zu untersuchenden Stoffen zeigte keine der Substanzen eine Inhibition der Interleukin-8- Ausschüttung.

3.3.4 Ergebnisse im Rahmen einer Kooperation mit der Universität Jena

Im Rahmen einer Kooperation mit Frau Dr. C. Hipler, Dermatologische Klinik der Universität Jena, wurden weitere Daten zu den Wirkungen der Pityriarubine auf humane Granulozyten erhalten. Die vom Autor isolierten Substanzen wurden Frau Dr. Hipler nur unter Angabe des Molekulargewichts übergeben. Die Wahl der in den Versuchen eingesetzten Konzentrationen und deren Berechnung wurden ihr überlassen. Weiterhin sei erwähnt, dass im Gegensatz zu den vom Autor erhobenen Daten, mit den Granulozyten eines Probanden mehrere Konzentrationsreihen durchgeführt wurden.

3.3.4.1 Inhibition des "respiratorischen burst" nach IL-3-Stimulation

Der granulozytäre "burst" wurde in Jena mittels Chemilumineszenz gemessen (Reaktion der freigesetzten ROS mit Lucigenin).

Diagramm 16: Wirkung der drei Pityriarubine und des Arcyriarubin A auf den durch IL-3 ausgelösten "burst" (Arcyriarubin: n=37; Pityriarubin A: n=38; Pityriarubin B: n=50; Pityriarubin C: n=43)

Es fand sich eine sehr gute Übereinstimmung mit der vom Autor erhaltenen Dosis-Wirkungsbeziehung der Hemmung und damit eine Bestätigung der vom Autor erhaltenenen Daten.

3.3.4.2 Einfluss der eingesetzten Substanzen auf HaCaT-Zellen

Um einen möglichen toxischen Einfluss der Pityriarubine, des Arcyriarubins und des Lösungsmittels DMSO auf Zellen zu überprüfen, wurden diese Substanzen für 24 bzw. 48 Stunden mit HaCaT-Zellen (Zelllinie humaner spontan immortalisierter Keratinozyten) inkubiert. Die Wirkung der eingesetzten Inhibitoren und des Lösungsmittels DMSO auf das Wachstum der HaCaT-Zellen wurde mittels ATP-Test überprüft.

Insgesamt zeigten die untersuchten Substanzen keinen signifikanten Einfluss auf das Wachstum der HaCaT-Zellen.

Diagramm 18: Einfluss der drei Pityriarubine und des Arcyriarubin A auf den HaCaT-Zellen nach 24-stündiger Inkubation (n=4)

Diagramm 19: Einfluss der drei Pityriarubine und des Arcyriarubin A auf den HaCaT-Zellen nach 48-stündiger Inkubation (n=4)

3.3.5 Ergebnisse des H-Test von Kruskal und Wallis

Mit dem H-Test von Kruskal und Wallis konnten keine relevanten Unterschiede in der inhibitorischen Wirkung von Arcyriarubin A und Pityriarubin C bezogen auf die Aktivatoren Fmlp und IL-3 festgestellt werden. Somit ist von einer gleichen inhibitorischen Potenz dieser beiden Substanzen auf die von Fmlp und IL-3 aktivierten Reaktionen auszugehen.

4.Diskussion

4.1 Die Pityriarubine A, B und C: Hochpotente und spezifische Inhibitoren granulozytärer Entzündungsreaktionen

In den durchgeführten Versuchen erwiesen sich die Pityriarubine A, B und C als hochpotente Inhibitoren der granulocytären Aktivierung mit einer einheitlichen, aber gegenüber dem Arcyriarubin A deutlich abgegrenzten Wirkungsspezifität bezüglich der verschiedenen Stimuli.

Die spezifische Wirkung der Pityriarubine äusserte sich darin, dass lediglich der durch Fmlp, IL-3 und Calciumionophor A23187 ausgelöste "burst" gehemmt wurde, nicht aber der durch PKC- und G-Protein-Aktivatoren, wie DAG, Phorbolester oder Natrium-Fluorid.

Die den Pityriarubinen strukturell am nächsten stehende Klasse der Bisindolylmaleimide und Indolcarbazole, aus der auch das in den Versuchen als Vergleichssubstanz eingesetzte Arcyriarubin A stammt, differenzierte hingegen nicht zwischen diesen Aktivatoren, sondern zeigte immer eine Hemmwirkung.

Arcyriarubin A stellt als das strukturell einfachste Bisindolylmaleimid den Grundkörper dieser Substanzklasse dar und ist darüber hinaus auch in der Struktur der Pityriarubine A, B und C enthalten:

Pityriarubin A

Pityriarubin B

Pityriarubin C

Trotz ihrer recht unterschiedlichen Struktur zeigten die Pityriarubine keine signifikanten Unterschiede in ihrer Potenz.

So lag die Hemmung des "burst" nach Stimulation mit Calcium-Ionphor A23187 und einer Inhibitorkonzentration von 20 μ M für das Pityriarubin A bei etwa 40 % des Maximalwertes, für das Pityriarubin C bei 45 % und für Pityriarubin B bei 47 %, wobei eine signifikante Hemmung auch noch bei einer Konzentration von 10 μ M zu erkennen war.

Allerdings wiesen die Pityriarubine eine schwächere Hemmwirkung als das Arcyriarubin A auf, das bei Konzentrationen von 20 μ M den "burst" auf 11 % des Maximalwertes hemmte und auch in der niedrigsten Konzentrationsstufe von 0,5 μ M noch eine Inhibition auf 87 % des Maximalwertes auslöste.

Betrachtet man die Wirkung der Inhibitoren auf den durch Fmlp aktivierten "burst", so zeigte sich eine stärkere Wirkung der Pityriarubine als nach A23187-Aktivierung. Fmlp ist ein Zellwandbestandteil gramnegativer Bakterien, der an einen Rezeptor an der Außenwand der Granulozyten bindet und so hochspezifisch den "burst" induziert, während A23187 nur unspezifisch den Ca²⁺-Einstrom aus dem Extrazellulärraum ermöglicht und damit auch Ca²⁺-abhängige Prozesse, wie die NADPH-Oxidase aktiviert.

Für das Pityriarubin C ergab sich bei einer Konzentration von 20 µM eine Inhibition auf etwa 11 % des Maximalwertes und damit eine nur unwesentlich schwächere Wirkung als durch den potenten PKC-Inhibitors Arcyriarubin A, das den "burst" bei gleicher Konzentration auf 4 % des Maximalwertes hemmte. In einer ähnlichen Größenordnung lagen die Wirkungen des Pityriarubins A mit einer Hemmung auf 14 % des Maximalwertes und des Pityriarubins B mit einer Inhibition auf 27 % (Konzentrationen jeweils 20 μ M). Alle untersuchten Substanzen zeigten darüber hinaus auch in niedrigeren Konzentrationen bis 5 μ M ebenfalls noch eine Inhibition.

Ein ebenfalls starke Hemmwirkung wie bei dem durch Fmlp ausgelösten "burst" zeigte sich in Bezug auf die Aktivierung durch IL-3 (experimentelle Daten von C. Hipler, Jena), das wie Fmlp an einen Rezeptor an der Außenwand der Granulozyten bindet, jedoch eine körpereigene, immunmodulatorische Substanz aus der Gruppe der Zytokine ist.

Von den Pityriarubinen hatte wiederum das Pityriarubin C (Konzentration: 20 μ M) mit einer Hemmung auf 4 % des Maximalwertes die stärkste Wirkung. Eine ähnlich starke Wirkung zeigten das Pityriarubin A bei gleicher Konzentration mit einer Inhibition auf 15 % des Maximalwertes und das Pityriarubin B mit einer Inhibition auf 18 %. Bei allen drei Pityriarubinen war auch noch bis zu einer Konzentration von 5 μ M eine deutliche Hemmung zu erkennen.

Arcyriarubin A erwies sich bei IL-3-Stimulation den Pityriarubinen als überlegen. Der "burst" konnte bei diesem Stimulus noch bis zu einer Arcyriarubin-Konzentration von 10 µM vollständig gehemmt werden. Erwähnt sei hier noch, dass im Gegensatz zu den vom Autor gewonnen Daten die Messung per Chemilumineszenz erfolgte und die Zahl der Konzentrationsreihen (n=37-50) höher war, jedoch alle Granulozyten nur von einer Testperson stammten, während der Autor mit den Granulozyten eines jeden Probanden jeweils nur eine Konzentrationsreihe maß.

Der entscheidende Unterschied zwischen der Wirkung der Pityriarubine und dem Arcyriarubin A lag jedoch - wie bereits erwähnt – darin, dass die Pityriarubine den "burst" nach Aktivierung mit den Proteinkinase C-Stimuli Phorbolester und DAG, sowie mit dem G-Protein-Aktivator Natrium-Fluorid nicht hemmten, während das Arcyriarubin A in der höchsten Konzentrationsstufe den "burst" nach Stimulation mit Natrium-Fluorid auf etwa 19 % hemmte und auf 5 % bzw. 11 % nach Phorbolester-bzw. DAG-Aktivierung.

Der einzige untersuchte Aktivator des "burst", der weder von den Pityriarubinen, noch von Arcyriarubin A gehemmt werden konnte, ist Zymosan A. Zymosan A ist ein

Zellwandbestanteil der Hefe Saccharomyces cervisiae und besitzt die Fähigkeit, Immunglobuline zu binden und so als "opsoniertes Zymosan" den "burst" auszulösen, kann aber auch als Mikropartikel direkt den "burst" induzieren ^[20].

Neben der Wirkung auf den "granulozytären burst" wurde als eine weitere biologisch wichtige Funktionen von neutrophilen Granulozyten die Leukotrienausschüttung untersucht.

Die Stimulation erfolgte mit dem Calcium-Ionophor A23187 und auch hier im Vergleich zu Arcyriarubin A. Der Stimulus Fmlp hatte auch nach Cytochalasin-Priming eine nur sehr geringe Freisetzung von Leukotrienen gezeigt und war deshalb nicht weiter untersucht worden. Als Maße für den aktivierten Arachidonsäurestoffwechsel wurden die Leukotriene LTB₄, 6-trans-LTB₄ und 6-trans-12-epi-LTB₄ ausgewählt.

Insgesamt zeigten die Pityriarubine auch auf die Leukotrienausschüttung einen inhibitorischen Effekt. So ließ sich durch 20 μ M Pityriarubin C eine Hemmung der LTB₄-Ausschüttung auf etwa 46 % des Maximalwertes beobachten. Ähnlich wurden 6-trans-LTB₄ und 6-trans-12-epi-LTB₄ auf knapp 18 % und etwa 22 % gehemmt. Damit zeigt Pityriarubin C einen ähnlich hemmenden Einfluss auf die Ausschüttung von Leukotrienen wie das Arcyriarubin A.

Die beiden anderen Pityriarubine wiesen ein etwas geringeres hemmendes Potential auf die Leukotrienausschüttung auf. Ihre hemmende Wirkung auf die Freisetzung von LTB₄ lag bei 20 μ M zwischen 70 und 80 % des Maximalwertes, sowie auf 6-trans-LTB₄ und 6-trans-12-epi-LTB₄ zwischen 50 und 60 % bzw. 40 und 50 % des Maximalwertes. Somit ergaben sich hier erste Hinweise auf unterschiedliche Wirksamkeiten der Pityriarubine.

Außer auf den "burst" und die Leukotrienfreisetzung wurde auch die Wirkung der Pityriarubine auf die Freisetzung von IL-8 nach Stimulation mit LPS untersucht. Im Gegensatz zu den bereits besprochenen Parametern konnten weder die Pityriarubine, noch das Arcyriarubin A unter den gegebenen Versuchsbedingungen einen Einfluss auf die Freisetzung des Interleukins-8 ausüben.

Angesichts der offenbar spezifischen Wirkung der Pityriarubine sollen nachfolgend auch als Ausblick auf weitere Untersuchungen - ein Vergleich mit der Wirkungsweise

verwandter Substanzen gezogen werden sowie anhand der aktuellen Literatur mögliche Mechanismen diskutiert werden, auch wenn dies aufgrund der Vielfalt und Komplexität der noch nicht vollständig aufgeklärten oder noch gänzlich unbekannten Signaltransduktionsprozesse ausgesprochen schwierig ist.

Wie erwähnt, hemmen die Pityriarubine den "burst" spezifisch nach Stimulation mit Fmlp, IL-3 und A23187, nicht aber nach Stimulation mit DAG, Phorbolester oder NaF, wobei die natürlichen und spezifischen Rezeptoragonisten Fmlp und IL-3 deutlich stärker gehemmt werden als das unspezifische Calciumionophor A23187.

Im Gegensatz dazu hemmen strukturell eng verwandte Substanzen wie die Bisindolylmaleimide den "granulozytären burst" uneingeschränkt nach Stimulation durch all diese Aktivatoren.

Die von Fmlp und IL-3 ausgelösten Prozesse stellen wahrscheinlich Untereinheiten der von A 23187 "unspezifisch" induzierten Aktivierungswege dar, weshalb vermutet werden kann, dass die Pityriarubine mit hoher Spezifität und Potenz an einem noch unbekannten Zielort in der Signalkaskade des Fmlp und IL-3 angreifen.

Gleichzeitig konnten mit der ausbleibenden Inhibition des "burst" nach Aktivierung durch die PKC-Stimuli DAG und Phorbolester sowie bei Anwendung des G-Protein-Aktivators Natriumfluorid, das sekundär eine Aktivierung der PKC bewirkt ^[121,187], einige aufgrund der strukturellen Verwandtschaft mit den Bisindolylmaleimiden zunächst erwartete Wirkungen nicht experimentell bestätigt werden.

Bisindolylmaleimide erlangen ihre inhibitorische Wirkung auf Kinasen über eine kompetitive Hemmung von ATP ^[121], das Proteinkinasen als Quelle für aktiviertes Phosphat zur Phosphorylierung eines Proteinsubstrates dient. Indem die Bindungsstelle für ATP blockiert wird, wird auch die nachgeschaltete Phosphat-Übertragung verhindert.

Dabei ist jedoch zu bedenken, dass eine Aktivierung nicht aller PKC mit den aufgeführten PKC-Stimuli DAG, Phorbolester und NaF möglich ist. So besitzen beispielsweise die atypischen PKC keine entsprechend ausgeprägte C1-Domäne, also jenen Bereich, an den DAG und Phorbolester binden und die PKC aktivieren ^[128]. Unter diesen atypischen PKC befindet sich auch die ζ -PKC – eine in Neutrophilen vorkommende und auch generell vorherrschende PKC-Variante ^[128].

Diese Tatsache weist auf die strukturelle Divergenz dieser Gruppe von Proteinkinasen hin, die sich in drei Hauptgruppen gliedern lassen. Die am besten bekannte unter diesen Gruppen ist die der konventionellen PKn C: α , β I, β II und γ . Diese Gruppe unterscheidet sich von den anderen auch dadurch, dass sie in Form der C2-Domäne eine Bindungsstelle für Ca²⁺ hat und über diese auch reguliert werden kann. Die "neuen" ("novel") PKC δ , ϵ , η (L), θ und μ sind den konventionellen PKCs zwar außerordentlich ähnlich, besitzen aber keine Bindungsstelle für Ca²⁺, jedoch ebenso eine C1-Domäne, während sich die atypischen PKCs ζ und λ (I) schon in ihrer Struktur deutlich von der der anderen beiden Gruppen abgrenzen und weder eine C2-Domäne als Bindungsstelle für Ca²⁺ besitzen, noch die bereits erwähnte C1-Domäne [¹²⁸].

Neben der fehlenden inhibitiorischen Wirkung der Pityriarubine nach Aktivierung des "burst" durch PKC-Stimuli, könnte ein weiteres Argument gegen eine Wirkung der Pityriarubine auf die PKC darin bestehen, dass Moleküle, die am N-Rest der Imidstruktur substituiert sind – also gerade dort, wo die strukturelle Besonderheit der Pityriarubine gegenüber den BisindolyImaleimiden liegt - eine deutlich geringere Inhibition der PKC bewirken (vgl. Kap. 2.6 ^[50,186]). Insofern wäre auch eine kompetitive Hemmung des ATP an der Bindungsstelle von Proteinkinasen als zentraler Wirkmechanismus der Pityriarubine unwahrscheinlich.

Da jedoch die bekannten und veröffentlichten Substituenten der untersuchten Bisindolylmaleimid-Analoga bisher nur auf kleine Strukturen aus einem oder wenigen Atomen beschränkt waren, könnte gerade die sehr große Spirostruktur der Pityriarubine zu erheblich mehr Bindungsmöglichkeiten am Protein führen und damit auch eine kompetitive Hemmung möglich machen.

Dass jedenfalls eine einfache Substitution am Imid-Stickstoff nicht immer einen Wirkungsverlust bedeutet, wird durch die Anlagerung einer CH_2OH -Gruppe an den Stickstoff bestätigt. Dieses Molekül besitzt mit einer IC_{50} von 0,5 µM eine hohe Potenz auf die PKC ^[49].

Insgesamt lässt sich zu einer möglichen Wirkung auf die PKC sagen, dass aufgrund der strukturellen Vielfalt und speziellen Regulationsmechanismen der Proteinkinase C eine Wirkung der Pityriarubine zumindest auf bestimmte Isoformen der PKC nicht ganz ausgeschlossen werden kann. Jedoch ist ein direkter Einfluss der Pityriarubine

auf die Gruppe der konventionellen und neuen PKC angesichts der genannten Fakten sehr unwahrscheinlich, während hingegen die atypischen PKC für weitere Untersuchungen von größerem Interesse sind.

Interessant ist die Wirkung verschiedener Bisindolylmaleimide bzw. Indolcarbazole auf den Stimulus Fmlp. Fmlp aktiviert unter anderem die drei in der neutrophilen Granula vorherrschenden PKC-Isoformen α und β I und β II, sowie ζ ^[146] und daher resultiert wohl auch die inhibitorische Wirkung verschiedener Bisindolylmaleimide bzw. Indolcarbazole auf diesen Stimulus.

Allerdings zeigen PKC-Inhibitoren aus dieser Substanzklasse trotz in vitro ähnlich hoher inhibitorischer Potenz auf PKC ein erstaunlich unterschiedliches Wirkungspotential auf die Fmlp-induzierte Radikalausschüttung im Zellmodell. K252a beispielsweise erweist sich mit einer IC₅₀ von 0,15 μ M als potenter als das Bisindolylmaleimid Ro 31-8425, das bei diesem Stimulus eine IC₅₀ von 0,6 µM aufweist. Dies bedeutet eine Umkehrung der in-vitro-Verhältnisse auf PKC, da das Bisindolylmaleimid Ro 31-8425 hier mit einer IC₅₀ von 0,0048 µM gegenüber humaner PKC deutlich potenter ist als das K252a mit einer IC₅₀ von 0,8 µM. Noch größere Diskrepanzen zwischen der in-vitro Wirkung auf PKC und der Wirkung im Zellmodell zeigen sich nach Stimulierung mit opsoniertem Zymosan^[121,186,187]. Im Gegensatz dazu wird der durch den PKC-Stimulus DAG aktivierte "burst" deutlich stärker durch das Bisindolylmaleimid Ro 31-8425 (IC₅₀ 0,148 µM) gehemmt als durch K252a (IC₅₀ 3,0 µM), was der inhibitorischen Wirkung dieser Hemmstoffe auf die PKC entspricht.

Dies weist darauf hin, dass nach Aktivierung mit natürlichen Rezeptoragonisten wie Fmlp oder opsoniertem Zymosan noch andere Kinasen als weitere "Schlüsselenzyme" in die NADPH-Aktivierung involviert sind, auf die Inhibitoren wie das BisindolyImaleimid Ro 31-8425 nicht einwirken, jedoch andere Inhibitoren wie das K252a^[187].

Die Hemmwirkung der Pityriarubine auf den Fmlp und IL3-induzierten "burst" ist möglicherweise auf eine Hemmung derartiger in die Signalkaskade von Fmlp und IL-3 eingreifender Kinasen zurückzuführen.

Zu diesen gehören zum Beispiel die "mitogen-aktivierten Proteinkinasen" (MAPK), die aus drei Gruppen bestehen: Die Extracellular-regulated protein kinase (ERK

(P42/44)), die c-Jun NH2-terminal kinase (JNK (P46/54)) und die P38 mitogenactivated kinase (P38 MAPK)^[87].

Die MAPK können zum einen von der PKC aktiviert werden, besitzen aber auch von dieser unabhängige Signalwege ^[102] und sind auch in Signaltransduktionsprozesse involviert, die zu einer Ausschüttung von Lipidmediatoren führen ^[80,116,199,203].

In den "respiratorischen burst" sind ERK und P38 wahrscheinlich über die Aktivierung der Proteine P47^{phox} und P67^{phox} eingebunden ^[46,54,87], während JNK wohl keinen Einfluss auf die Ausschüttung von Sauerstoffradikalen hat ^[87].

Die P38 MAPK ist im Gegensatz zu ERK jedoch nicht in die Fmlp-induzierte Signalkaskade zur Aktivierung von P47^{phox} involviert ^[50].

Die Aktivierung von P47^{phox} nach Fmlp-Stimulation ist auch ein Beispiel für eine Schnittstelle PKC-abhängiger und -unabhängiger Signalwege.

So zeigten Dewas et. al. ^[50], dass nach Fmlp-Stimulation sowohl ERK, als auch PKC an der Phosphorylierung von P47^{phox} partizipieren und sich die inhibitorischen Wirkungen von ERK- und PKC-Inhibitoren addieren, wenn sie gemeinsam getestet werden. Dagegen haben ERK-Inhibitoren nach direkter PKC-Stimulation durch Phorbolester nur eine ausgesprochen schwache hemmende Wirkung auf die P47^{phox}-Phosphorylierung, während die von PKC-Inhibitoren deutlich stärker ist als nach Stimulation mit dem natürlichen Rezeptoragonisten Fmlp.

Interessanterweise führt der MEK-Inhibitor PD98059 (MEK ist die der ERK vorgeschaltete Proteinkinase) trotz sehr hoher Spezifität zur Aufhebung der Phosphorylierung aller dominierenden Phosphopeptide in Fmlp-stimulierten Zellen ^[134], obwohl die ERK lediglich einen Serinrest an P47^{phox} phosphoryliert. Damit konnte gezeigt werden, dass die ERK-Aktivierung einen Einfluss auf alle nachfolgenden Signalwege hat, und damit eine erhebliche Verstärkung erfährt. Dies könnte zum einen in einer - auch schon nachgewiesenen - Konformationsänderung an P47^{phox} begründet liegen, die durch die von ERK eingeleitete Phosphorylierung ausgelöst wird und zu einer erhöhten Zugänglichkeit für andere Proteinkinasen an P47^{phox} führen könnte und so die Wirkung von ERK verstärken würde.

Die andere, in der Literatur diskutierte Möglichkeit der Potenzierung wäre, dass ERK aufsteigend auch andere Kinasen reguliert, die ihrerseits wieder P47^{phox} phosphorylieren.

Durch den zentralen Verstärkermechanismus der ERK folgt aus einer Hemmung ein grosser Einfluss auf den Signalweg. Solche Mechanismen könnten die starke Wirkung der Pityriarubine auf den Fmlp-induzierten "burst", die schwächere Wirkung nach unspezifischer A23187-Stimulierung und das Versagen bei direkter Aktivierung der PKC durch beispielsweise DAG erklären.

Auch die Phosphorylierung von P67^{phox} verläuft über PKC-abhängige und PKCunabhängige Wege ^[55] und ebenso kommt es nach Phosphorylierung durch P38 bzw. ERK (jeweils in unterschiedlichen Regionen) zu Konformationsänderungen an diesem Protein, wodurch auch hier bestimmte Regionen erst für weitere Phophorylierungsschritte zugänglich werden ^[46].

Es sei noch erwähnt, dass alle drei MAPK in von IL-3 ausgelösten Signaltransduktionsmechanismen eingebunden sind ^[169].

Eine weitere Proteinkinase, die in Fmlp-stimulierte Signaltransduktionsprozesse eingreift und bei deren Inhibition es zu einem ähnlichen Bild wie bei dem der Pityiarubine kommt, ist die PI3Kδ. So hat eine Inhibition der PI3Kδ eine Hemmung des Fmlp-induzierten "burst" zur Folge, aber nicht die Phorbolester-stimulierte Ausschüttung in neutrophilen Granulozyten^[163].

Eine Parallele zur hemmenden Wirkung der Pityriarubine auf den "burst" zeigt sich auch bei Cirsimaritin, einem natürlichen Flavonoid, das in einigen traditionellen Heilpflanzen (*Eriodictyon californicum, Artemisia capillaris*) vorkommt. Denn auch Cirsimaritin hemmt die Fmlp-induzierte Freisetzung von Sauerstoffradikalen (IC₅₀ etwa zwischen 11,5 und 17 μ M bei 10⁶ neutrophilen Granulozyten), ist aber nicht in der Lage, die Phorbolester-induzierte Ausschüttung zu inhibieren ^[190].

Diskutiert wird, dass Cirsimaritin die Hemmung in erster Linie über eine Blockade der Phospholipase D (PLD) erzielt. Dieser Effekt wird erreicht über eine im Mechanismus noch unbekannte Reduzierung des Ca²⁺-Spiegels und über eine Hemmung der Tyrosinphosphorylierung. Dies wird plausibel, wenn man in Betracht zieht, dass die Fmlp-induzierte PLD-Aktivierung Ca²⁺- und Tyrosin-Kinase-abhängig ist, aber unabhängig von PKC. Demgegenüber läuft die Phorbolester-induzierte PLD-Aktivierung über PKC, ist aber unabhängig von Ca²⁺. Darüberhinaus hat Cirsimaritin noch andere Effekte: So hemmt es beispielsweise die Phosphorylierung von Akt – einer Serin-Threonin-Kinase -, die wohl ebenfalls in den "burst" eingreifen soll ^[38,190].

Ebenso zeigt Cirsimaritin einen schwachen inhibitorischen Effekt auf die ERK. Dieses Beispiel verdeutlicht, dass ein Inhibitor auf verschiedenste Art in die Zellmechanismen eingreifen kann.

Damit wären auch PLD und Tyrosin-Kinasen als mögliche Zielmoleküle der Pityriarubine in Betracht zu ziehen.

Die hier diskutierten möglichen Angriffspunkte könnten durch Phosphorylierungsexperimente mit spezifischen Antikörpern überprüft werden. Dabei bietet die Flowcytometrie mit intakten Zellen neue methodische Möglichkeiten.

4.2. Die Pityriarubine A, B und C und ein möglicher Zusammenhang mit der Pityriasis versicolor

Die Pityriarubine A, B und C sind Bestandteile von Kulturextrakten der lipophilen Sproßpilzspezies *Malassezia furfur*, die mit Tryptophan als einziger Stickstoffquelle ein aus zahlreichen Komponenten zusammengesetztes Pigment bildet ^[108]. Ergebnisse von Untersuchungen an den bisher daraus isolierten und biologisch charakterisierten Sekundärmetabolite lassen einen Zusammenhang mit der Pathogenese und der klinischen Symptomatik der Pityriasis versicolor vermuten. So konnten mit der Wirkung verschiedener Tryptophan-Metabolite ^[45,111,112,145] erstmals die klinischen Symptome der Hyper- und Hypopigmentierung, des relativen UV-Schutzes bei der PV alba und der gelblich-grünen Fluoreszenz unter Wood-Licht verbunden werden (vgl. Kap. 2.4.2). Alle diese typischerweise mit der PV assoziierten Symptome waren bislang ungeklärt.

Ein weiterer Aspekt von besonderem Interesse im Krankheitsbild der Pityriasis versicolor ist die im Vergleich zu anderen Mykosen ausgesprochen gering ausgeprägte entzündliche Infiltration in den betroffenen Arealen.

Die in dieser Arbeit festgestellten Wirkungen der Pityriarubine A, B und C, welche in einer hochpotenten und spezifischen Hemmung der entzündlichen Aktivierung von neutrophilen Granulozyten bestehen, könnten damit in Verbindung stehen.

So wird mit der Hemmung des "respiratorischen burst" zum einen der zentrale Mechanismus zur Abtötung eingedrungener Mikroorganismen beeinträchtigt und mit der Inhibition der Leukotrienfreisetzung wichtige chemotaktische, sowie Adhäsion-

und Diapedese-induzierende Signale durch Mediatoren unterdrückt ^[63,70,105]. Solche immunmodulatorischen Mechanismen im Verlauf der Erkrankungsgenese könnten das histologische Bild in PV-Arealen erklären.

Darüber hinaus ist zu bedenken, dass die Unterschiede in den Signaltransduktionsmechanismen verschiedener Typen von Abwehrzellen nur gering sind und Inhibitoren solcher Prozesse, wie z.B. die Bisindolylmaleimide, ihre Wirkungen außer auf Granulozyten auch auf andere Abwehrzellen ausdehnen. In dieser Weise ist anzunehmen, dass auch die Pityriarubine in die Signaltransduktionsprozesse anderer Entzündungszellen eingreifen.

Dafür spricht auch, dass das hier verwendete Modell des "respiratorischen burst" ein in der Literatur häufig beschriebenes Verfahren zur Beurteilung des inhibitorischen Potentials immunmodulatorischer Substanzen darstellt.

Dabei sei nochmals die starke Wirkung der Pityriarubine hervorgehoben, die in Konzentrationen von nur wenigen µM die Aktivierung von 5 Mio. neutrophilen Granulozyten/ml zu hemmen vermögen, einer Zellkonzentration, welche die durchschnittlichen Verhältnisse im nativen Vollblut wiederspiegelt.

Dass die Pityriarubine den durch die natürlichen Stimuli IL-3 und Fmlp zu aktivierenden "burst" hemmen können, könnte als ein Produkt der Evolution und Adaptation von *Malassezia furfur* im Bereich des menschlichen Hautmilieu gewertet werden.

Mit dem hier beschriebenen inhibitorischen Potential der Pityriarubine auf die Aktivierung von Granulozyten läßt sich also erneut ein pathogenetisch bisher ungeklärtes Phänomen der Pityriasis versicolor der Wirkung bestimmter Sekundärmetaboliten von Malassezia furfur zuordnen. Der postulierte Zusammenhang zwischen den Tryptophan-Metaboliten und der Pityriasis versicolor erfährt damit abermals eine Unterstützung. Dabei ist bemerkenswert, dass alle bisher untersuchten Sekundärmetaboliten hochpotent sind und - wie die Pityriarubine schon im µM-Bereich wirken. Somit würden also schon geringste Konzentrationen eine Wirkung auf der Haut entfalten können.

Allerdings konnte ein Nachweis von Sekundärmetaboliten auf bzw. in der Haut als der entscheidende Beweis für den Zusammenhang mit der Erkrankung noch nicht erbracht werden. So scheiterten bisher Versuche, Indolderivate in Hautschuppen Erkrankter mittels direkter Massenspektrometrie nachzuweisen, trotz Vorreinigung

durch Extraktion am zu hohen Hintergrund, der auf die starken Verunreinigungen durch Hautlipide und andere, im Überschuss vorliegende Substanzen zurückzuführen ist.

Auch bleibt die Frage bestehen, wie sich die speziellen Produktionsbedingungen des Pigmentgemisches durch *Malassezia furfur* in einem Kulturmedium mit Tryptophan als einziger Stickstoffquelle mit den Lebensbedingungen dieses Pilzes auf bzw. in der Haut in Einklang bringen lassen.

Eine mögliche Erklärung wäre, dass hydrophile Stickstoffverbindungen über die Schweißsekretion abgeschwemmt werden, während sich die hydrophobe Aminosäure Tryptophan im Gegensatz dazu auf der Haut anreichert. Auf diese Weise stünde Tryptophan verstärkt als Substrat zur Verfügung ^[127].

Dieser Überlegung folgend, erklärt sich auch die Hyperhidrose als ein wichtiger Manifestationsfaktor bzw. das gehäufte Vorkommen der PV in hinterer und vorderer Schweißrinne.

Die Hyperhidrose kann dabei genetisch, medikamentös oder durch das Tragen okklusiver Kleidung bedingt sein, sowie durch Erkrankungen wie Hyperthyreose, Tuberkulose oder eine gestörte Innervation hervorgerufen werden und somit zu einem Prädispositionsfaktor für die Pityriasis versicolor werden. Auch das deutlich gehäufte Vorkommen in feucht-warmen Makroklima, das die Schweißneigung erhöht, untermauert diesen Zusammenhang.

Eine zweite Hypothese ist, dass während des Wachstums einer hohen *Malassezia*-Biomasse "andere" Aminosäuren verbraucht werden, jedoch Tryptophan sich zunehmend anreichert. Im weiteren Verlauf kommt es dann zum Sistieren des Wachstums und zur Induktion der Pigmentbildung. Zu diesem Thema wurden im Institut für Dermatologie an der JLU Giessen Daten in vitro erarbeitet, deren Publikation bald folgt.

Dass die Ausprägung einer Pityriasis versicolor und die mit ihr verbundenen typischen Symptome auf einer speziellen Beziehung zwischen Erkranktem und Erreger (*Malassezia furfur*) beruhen muss, geht aus der Tatsache hervor, dass bei keiner der anderen mit *Malassezia*-assoziierten Erkrankungen die PV-typischen Symptome wie Hyper- und Hypopigmentierung, gelblich-grüne Fluoreszenz, relativer UV-Schutz oder ein auffällig geringes entzündliches Infiltrat zu finden sind.

Interessant ist in diesem Zusammenhang auch, dass die Pityriasis versicolor – bis auf eine Einzelbeobachtung bei der Ziege aus dem Jahr 1984 – bei Tieren nicht beschrieben ist, und dies, obwohl Angehörige der Gattung *Malassezia* auch auf der Haut von Tieren als ein verbreiteter Kommensale zu finden sind ^[42,148].

Auch diese Tatsache deutet darauf hin, dass der PV spezielle Prädipositionsfaktoren zugrunde liegen müssen, die nur bei Menschen zu finden sind.

Folgt man der Hypothese, dass die Schweißsekretion ein entscheidender Kofaktor der PV ist und vergleicht die Schweißsekretion bei Mensch und Tier, ergeben sich deutliche Unterschiede. So regulieren zwar neben dem Menschen noch andere Säugetiere wie z. B. Pferde ihre Körpertemperatur mit Hilfe der Schweißsekretion, jedoch wird der Schweiß in erster Linie von apokrinen Schweißdrüsen produziert, während ekkrine Schweißdrüsen bei Tieren nur in ausgesprochen geringer Zahl zu finden sind ^[129]. Dagegen wird der Schweiß des Menschen vor allem durch ekkrine Schweißdrüsen produziert, während hingegen apokrine Schweißdrüsen nur in wenigen Körperregionen (axillär, zirkumanal, zirkumgenital, perimammillär, meatus acusticus externus) zu finden sind. Neben dem Menschen besitzen nur noch Primaten vermehrt ekkrine Schweißdrüsen, allerdings sitzen diese vor allem im Hand- und Fußbereich. Darüber hinaus zeigen Primaten nicht das effektive Schwitzen wie der Mensch als Teil der Thermoregulation. Die Haut der Tiere bietet also eventuell, auch aufgrund der gegenüber dem Menschen unterschiedlichen Schweißsekretion, nicht die Bedingungen, die für die Bildung der Pigmente durch Malassezia furfur und die Ausbildung einer PV nötig sind.

Zur Klärung der Zusammenhänge zwischen der postulierten Induktion der Pigmentbildung auf der Haut, sowie der Wirkung der Sekundärmetabolite und den Phänomenen der PV, wäre es wünschenswert, in PV-Herden die Sekundärmetabolite nachzuweisen. So z. B. auch über den Umweg der mRNA-Expression der für den Stoffwechsel spezifischen und noch unbekannten Enzyme. Dass ein Zusammenhang zwischen der PV bzw. ihren bisher ungeklärten, spezifischen Symptomen und den von Malassezia furfur gebildeten, biologisch wirksamen Sekundärmetaboliten besteht, ist jedoch aufgrund der Fülle der bisher zusammengetragenen Ergebnisse wahrscheinlich (vgl. auch Kap. 2.4.2) und zwar im Sinne eines evolutiven Vorteils für Malassezia furfur.

5. Zusammenfassung

Die Gewinnung der in dieser Arbeit untersuchten Pityriarubine erfolgte im Wesentlichen nach der Methode von W. Steglich, H.-J. Krämer und P. Mayser ^[91,110]. Dabei wird zunächst die Bildung von Pigment über spezielle Kulturbedingungen mit Tryptophan als einziger Stickstoffquelle induziert. Die nachfolgende Isolierung der Pityriarubine A, B und C aus diesem aus Hunderten von Einzelsubstanzen bestehenden Pigmentes geschieht mittels einer Abfolge verschiedener Extraktionsund Chromatographieschritte.

In den durchgeführten Versuchen wurde unter anderem die Wirkung der Pityriarubine auf die granulozytäre Freisetzung reaktiver Sauerstoffspezies ("burst") untersucht. Hierfür wurden auf verschiedenen Ebenen des Signaltransduktionsprozesses wirkende Aktivatoren verwendet, so dass sich Wirkungsstärke und Wirkungsspezifität der untersuchten Substanzen diskutieren lassen. Darüber hinaus wurde zur besseren Vergleichbarkeit auch der bekannte PKC-Inhibitor Arcyriarubin A getestet, ein Bisindolylmaleimid, dessen chemische Struktur deren der Pityriarubine ähnelt.

In den Versuchen erwiesen sich die Pityriarubine A, B und C als hochpotente Inhibitoren der granulozytären Aktivierung. Sie zeigten trotz ihrer recht unterschiedlichen Struktur eine einheitliche Wirkungsspezifität, die sich gegenüber der Vergleichssubstanz Arcyriarubin A deutlich abgegrenzte. Diese Spezifität äusserte sich darin, dass der durch die natürlichen Aktivatoren Fmlp und IL-3, sowie durch das Calciumionophor A23187 induzierte "burst" gehemmt wurde, nicht aber der durch Zymosan oder durch PKC- und G-Protein-Aktivatoren, wie DAG, Phorbolester oder Natrium-Fluorid. Im Gegensatz dazu differenzierte das Arcyriarubin A nicht zwischen all diesen Aktivatoren und zeigte außer bei Zymosan immer eine Wirkung.

Neben der Wirkung auf den "granulozytären burst" wurde auch die Wirkung auf die durch A23187 ausgelöste Leukotrienausschüttung und auf die LPS-ausgelöste Interleukin-8-Ausschüttung getestet. Hier zeigten die Pityriarubine wie auch das Arcyriarubin A eine Inhibiton der durch A23187 induzierten Ausschüttung der Leukotriene LTB₄, sowie 6-trans-LTB₄ und 6-trans-12-epi-LTB₄, konnten aber ebenso wenig wie das Arcyriarubin A die LPS-induzierte IL-8-Ausschüttung hemmen.

Von besonderem Interesse ist die Produktion der Pityriarubine durch *M. furfur* als möglicherweise entzündungshemmende Substanzen vor dem Hintergrund, dass eine Reihe der bisher aus dem Pigment isolierten und biologisch charakterisierten
Sekundärmetabolite eine Verbindung mit der Pathogenese der Pityriasis versicolor vermuten lassen, einer durch *Malassezia* verursachten und weltweit verbreiteten Hautmykose.

So könnten die immunmodulatorischen Eigenschaften der Pityriarubine mit einem weiteren bisher nicht geklärten klinischen Charakteristikum der Pityriasis versicolor assoziiert werden: der im Vergleich zu anderen Hautmykosen ausgesprochen gering ausgeprägten entzündlichen Infiltration betroffener Areale.

6. Summary

The pityriarubins investigated in this study were isolated mainly by the method of W. Steglich, H.-J. Krämer and P. Mayser ^[91,110], during which pigment synthesis is induced by special culture conditions with tryptophan as the sole nitrogen source. The subsequent isolation of pityriarubin A, B and C from this pigment, which consists of hundreds of substances, occurs by further extraction and chromatography.

The following experiments examined the influence of the pityriarubins on the release of reactive oxygen species ("respiratory burst"). Activators used in the process stimulate on different levels of the signaling pathways, allowing analysis of the pityriarubins` potency and specifity. Moreover, the well-known bisindolyImaleimid and PKC-inhibitor arcyriarubin A, whose structure is related to that of pityriarubins`, was tested in the same manner for better comparision of the results.

The experiments revealed the pityriarubins A, B and C to be highly potent inhibitors of granulocytes' activation. Despite their dissimilar structure, they show a uniform and highly specific influence on the "burst", clearly distinct from arcyriarubin A. This specifity is expressed by the inhibition of the fmlp-, IL-3- and calcium-ionophor A23187-induced "burst" and the absence of an effect in "bursts" activated by zymosan or PKC- and G-protein-activators such as DAG, phorbol-12-myristate-13- acetate or sodium fluoride. In contrast to the inhibitory profile of the pityriarubins, the arcyriarubin A does not distinguish between these activators and constantly shows an effect, lacking only the zymosan-induced "burst".

In addition to the influence on the "respiratory burst", the effect on the expression of leucotriens induced by A23187 and the LPS-induced IL-8-expression was tested. Here the pityriarubins as well as the arcyriarubin A showed inhibition of the

expression of LTB_4 , 6-trans- LTB_4 and 6-trans-12-epi- LTB_4 . However, they could not influence the IL-8-expression.

Production of the pityriarubins by *M. furfur* as possibly anti-inflammatory substances is of special interest. Previously isolated and biologically characterized metabolites suggests a possible role for these compounds in the pathophysiology of pityriasis versicolor, a worldwide common skin mycosis in humans.

In conclusion, the immunmodulating effects of the pityriarubins could be related to an additional significant clinical feature: the relative lack of inflammatory signs in lesions of pityriasis versicolor as compared with other dermal mycoses.

6. Literaturliste

- 1. Abbe, van, N.J.: The investigation of dandruff; J. Soc. Cosm. Chemists 15: 609-630, 1964
- Ackerman, A.B.: Histologic diagnosis of inflammatory skin disease; 2nd edn., Baltimore: Williams and Wilkins, pp. 757-8, 1997
- 3. Alexander, S.: Loss of hair and dandruff; Br. J. Dermatol. 79: 549-552, 1968
- Allen, H.B., C.R. Charles, B.L Johnson: Hyperpigmented tinea versicolor; Arch. Dermatol. 112: 1110-1112, 1972
- Ashbee, H.R., A. Fruin, K.T. Holland, W.J. Cunliffe, E. Ingham: Humoral immunity to *Malassezia furfur* serovars A,B,C in patients with pityriasis versicolor, seborrhoic dermatitis and controls; J. Investig. Dermatol. 3: 227-233, 1994
- Ashbee, H.R., E. Ingham, K.T. Holland, W.J. Cunliffe: Cell mediated immune responses to *Malassezia furfur* serovars A, B, and C in patients with pityriasis versicolor, seborrhoic dermatitis and controls; Exp. Dermatol. 3: 106-112, 1994
- Ashbee, H.R., J. Gunning, K.T. Holland, W.J. Cunliffe, E. Ingham: Titres of IgE specific to *Malassezia furfur* serovar A, B, C in patients with pityriasis versicolor and controls; J. Investig. Dermatol. 105: 492, 1995
- 8. Ashbee, H.R., E.G.V. Evans: Immunology of diseases associated with *Malassezia* species; Clin. Microbiol. Rev. 15: 21-57, 2002
- 9. Babior, B.M.: The respiratory burst oxidase; Adv. Enzym. 65: 49-95, 1992
- 10. Babior, B.M.: NADPH oxidase: an update; Blood 93: 1464-1476, 1999
- Back, O., A. Scheynius, S.G.O. Johansson: Ketoconazol in atopic dermatitis therapeutic response is correlated with decrease in Serum IgE; Arch. Dermatol. Res. 287: 448-451, 1995
- Baillon, E.H.: Traité de botanique médicale cryptogamique suivi du tableau.
 Paris, Facultè de Médecine de Paris: p. 234, 1889
- Balus, L., D. Grigoriu: Pityriasis versicolor; Cilag GmbH, Alsbach, Micologie 4, 1981
- Benham, R.W.: The cultural characteristics of *Pityrosporum ovale* a lipophilic fungus; J. Investig. Dermatol.2: 187-203, 1939

- Bergbrant, I.M., J. Faergemann: Variations of *Pityrosporum orbiculare* in Middle-aged and Elderly Individuals; Acta Dermato-Venereol. 68: 537-540, 1988
- Bergbrant, I.M., J. Faergemannn: Seborrhoeic dermatitis and *Pityrosporum* ovale: a cultural and immunological study; Acta Dermato-Venereol. 69: 332-335, 1989
- 17. Bergbrant, I.M., S. Johansson, D. Robbins, K. Bengtsson, J. Faergemann, A. Scheynius, T. Sonderstrom: The evaluation of various methods and antigens for the detection of antibodies against *Pityrosporum ovale* in patients with seboerrhoeic dermatitis; Clin. Exp. Dermatol. 16: 339-343, 1991
- Bergbrant, I.M., S. Johansson, D. Robbins, K. Bengtsson, J. Faergemannn, A. Scheynius, T. Sonderstrom: An immunological study in patients with seborrhoeic dermatitis; Clin. Exp. Dermatol. 16: 331-338, 1991
- Bergbrant, I.M., B. Andersson, J. Faergemann: Cell mediated immunity Malassezia furfur in patients with seborrhoeic dermatitis and pityriasis versicolor; Clin. Exp. Dermatol. 24: 402 – 406, 1999
- Biggs, D.L., C.S. Lengsfeld, B.M. Hybertson, K. Ng, M.C. Manning, T.W. Randolph: In vitro and in vivo evaluation of the effects of PA microparticle crystallinity on cellular response; J. Control. Rel. 92: 147-161, 2003
- 21. Blumenthal, H.: Tinea versicolor of the penis; Arch. Dermatol. 103: 461-462, 1971
- 22. Boardman, C.R., F.D. Malkinson: Tinea versicolor in steroid treated patients; Arch. Dermatol. 85: 84-92, 1962
- 23. Bojanovsky, A., G. Lischka: *Pityrosporum orbiculare* bei akneiformen Eruptionen; Hautarzt 28: 409-411, 1977
- 24. Borgeat, P.: Biochemistry of the lipoxygenase pathways in neutrophils; Can. J. Physiol. Pharmacol. 67: 936-942, 1993
- Borgers, M., G. Cauwenbergh, M.-A. van de Ven, H. Degreef: Pityriasis versicolor and *P. ovale*: Morphologenetic and ultrastuctural considerations; Int. J. Dermatol. 26: 586-589, 1987
- 26. Borton, L.K., R. A. Schwartz: *Pityrosporum* folliculitis: a common acneiform condition of middle age; Ariz. Med. 38: 598-601, 1981
- 27. Bos, J.D.: The skin is an organ of immunity; Clin. Exp. Immunol. 107 (Suppl.1): 3-5, 1997

- 28. Bos, J.D, M. L. Kapsenberg: The skin immune system: ist cellular constituents and their interactions; Immunol. Today 7: 235-240, 1989
- 29. Boynum, van, A.: Isolation of lymphocytes, granulocytes and macrophages; Scan. J. Immunol. (S5): 9-15, 1976
- Brasch, J., H. Martens, W. Sterry: Acelaic acid has antimycotic properties in vitro; Dermatology 186: 55–58, 1993
- 31. Brasch, J., H. Martens, W. Sterry: Langerhans cell accumulation in chronic tinea pedis and pityriasis versicolor; Clin. Exp. Dermatol. 18: 329-332, 1993
- 32. Breathnach, A. S., B. Gross, und M. Martin: Freeze fracture replication of cultured *Pityrosporum orbiculare*; Sabouraudia 14: 105-113, 1976
- Buffill, J.A., L.G. Lum, J.G. Laya, C.R. Chitamber, P.S. Ritch, T. Anderson, R.C. Ash: *Pityrosporum* folliculitis after bone marrow transplantation; Ann. Intern. Med. 108: 560-563, 1988
- 34. Burke, R.C.: Tinea versicolor: susceptibility factors and experimental infections in human beings; J. Invest. Dermatol. 36: 389-402, 1961
- Carteaud, J.P., M.D. Muir, P.R. Grant: Pityriasis versicoloremissive and cathodoluminescence exmination in the scanning electron microscope; Sabouraudia 10: 143-146, 1972
- Catterall, M. D., M.W. Ward, P. Jacobs: A reappraisal of the role of *Pityrosporum orbiculare* in pityriasis versicolor and the significance of extracellular lipase; J. Invest. Dermatol. 71: 398-401, 1978
- Charles, R.C., D.J. Sire, B.L. Johnson J.G. Eidler: Hypopigmentation of tinea versicolor: a histochemical and elektronmicroscopic study; Int. Clin. Dermatol. 12: 48-58, 1972
- Chen, Q., D.W. Powell, M.J. Rane, S. Singh, W. Butt, J.B. Klein, K.R. Mc Leish: Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils; J. Immunol. 170: 5302-5308, 2003
- 39.Clancy, R.M., C.A. Dahinden, T.E. Hugli: Arachidonate metabolism by human polymorphonuclear leukocytes stimulated by N-formyl-Met-Leu-Phe or complement C5a is independent of phopholipase activation; Proc. Natl. Acad. Sci. USA. 80: 7200-7206, 1983
- 40. Clemmensen, O.J., N. Hjorth: Treatment of the dermatitis of the head and neck with ketoconazol in patients with type 1 sensitivity to *Pityrosporum orbiculare*; Semin. Dermatol. 2: 26-29, 1983

- 41. Cohen, H.J., M. E. Chovaniec: Superoxide-generation by digitonin-stimulated guinea-pig granulocytes; J. Clin. Investig. 61: 1081-1087, 1978
- 42. Crespo, M. J., M.L. Abarea, E. J. Cabanes: Occurrence of *Malassezia spp.* in horses and domestic ruminants; Mycoses 2002 Oct; 45 (8): 333-337, 2002
- 43. Crespo Erchegia, V., A. Ojeda Martos, A. Vera Casano, A. Crespo Erchegia,
 F. Sanchez Fajardo, E. Gueho: Mycology of pityriasis versicolor; J. Mycol.
 Med. 9: 143-148, 1999
- 44. Crespo Erchegia, V., A. Ojeda Martos, A. Vera Casano, A. Crespo Erchegia,
 F. Sanchez Fajardo: *Malassezia globosa* as the causative agent of pityriasis versicolor; Br. J. Dermatol. 143: 799-803, 2000
- Dahms, K., Krämer, H.-J., Thoma, W., Mayser, P.: Tyrosinaseinhibition durch Tryptophanmetabolite von *Malassezia furfur* in humaner Epidermis; Mycoses 45: 230, 2002
- 46. Dang, P.M.C., F. Morel, M.-A. Gougerot-Pocidalo, J. El Benna: Phosphorylation of the NADPH oxidase Component p67^{phox} by ERK2 and p38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region; Biochemistry 42: 4250- 4526, 2003
- 47. Da Mert, G.J., C.H. Kirckpatrick, P.G. Sohnle: Comparison of antibody responses in chronic mucocutaneous candidiasis and tinea versicolor; Int. Arch. Allergy Appl. Immunol 63: 69-76, 1980
- 48. Davis, P.D.: Potent selective inhibitors of protein kinase C; FEBS 259, 61-63, 1989
- 49. Davis, P.D.: Inhibitors of Protein Kinase C 1. 2,3-BisaryImaleimides; J. Med. Chem., 35, 177-184; 1992
- 50. Dewas, C., M. Fay, M.-A. Gougerot-Pocidalo, J. El-Benna; (2000); The mitogen-activated protein-kinase extracellular signal-regulated kinase ½ pathway is involved in formyl-methionyl-leucyl-phenylalanine-induced p47^{phox} phophorylation in human neutrophils; J. Immunol. 165: 5238-5244, 2000
- 51. Dompmartin, D., E. Drouhet: Folliculitis à *Pityrosporum ovale*. Action de l'éconazole; Bull. Soc. Franc. Mycol. Med. 6: 15-20, 1977
- 52. Dorn, M., und K. Roehnert: Dimorphism of *Pityrosporum orbiculare* in defined culture medium; J. Investig. Dermatol. 69: 244-248, 1977

- 53. Eichstedt, E.: Pilzbildung in der Pityriasis versicolor; Frorip Neue Notizen aus dem Gebiete der Naturkunde Heilkunde 39: 270, 1846
- 54. El Benna, J., J. Han, J.-W. Park, E. Schmid, E. Ulevitsch, B.M. Babior: Activation of p38 in stimulated human neutrophils: Phophorylation of the oxidase component p47^{phox} by p38 and ERK but not by JNK, Arcives of Biochemistry and Biophysics 334: 395-400, 1996
- 55. El Benna, J., P. M.-C. Dang, M. Gaudry, M. Fay, F. Morel, J. Hakim, M.-A. Gougerot-Pocidalo: Phosphorylation of the respiratory burst oxidase subunit p67^{phox} During human neutrophil activation; J. Biol. Chem. 272: 17204-17208, 1997
- 56. Elzi, D.J., A.J. Bjornsen, T. MacKenzie, T.H. Wyman, C.C. Silliman: lonomycin causes activation of p38 and p42/44 mitogen activated protein kinases in human neutrophils; Am. J. Physiol. 281: C350-C360, 2001
- 57. Faergemann, J., T. Frederiksson: Tinea versicolor with regard to seborrhoic dermatitis; Arch. Dermatol. 115: 966-968, 1979
- Faergemann, J., T. Fredriksson: Experimental infections in rabbits and humans with *Pityrosporum orbiculare* and *P. Ovale*; J. Investig. Dermatol. 77: 314-318, 1981
- Faergemann, J.: Antibodies to *Pityrosporum orbiculare* in patients with tinea versicolor and controls of various ages; J. Investig. Dermatol. 80: 133-135, 1983
- 60. Faergemann, J.: Treatment of pityriasis versicolor with a single dose of Fluconazole; Acta Dermato-Venereol. 72: 74-75, 1992
- Faergemannn, J., I.M. Bergbrant, M. Dohse, A. Scott, G. Westgate: Seborrhoeic dermatitis and *Pityrosporum* (*Malassezia*) folliculitis: Characterisation of inflammatory cells and mediators in the skin by immunohistochemistry; Br. J. Dermatol. 144: 549-556, 2001
- Ford, G.P., F.A. Ive, P. Midgley: *Pityrosporum* folliculitis and Ketoconazol; Br. J. Dermatol. 107: 691-695, 1982
- Ford-Hutchinson, A.W., M.A. Bray, M.V. Doig, M.E. Shipley, M.J. Smith: Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes.Nature 286: 264-265, 1980
- 64. Ford-Hutchinson, A.W.: Leukotriene B₄ in inflammation; Crit. Rev. Immunol.10: 1-12, 1990

- 65.Forth, W., D. Henschler, W. Rummel: Allgemeine und spezielle Pharmakologie und Toxikologie, 8. Auflage, Verlag Urban, 2001
- Furukawa, F., K. Danno, S. Imamura, Y. Soh: Histological and serological studies of *P. orbiculare* in cases of pityriasis versicolor; J. Dermatol. 8: 27-30, 1981
- 67. Garcia, R.L.: Skin disorders in airforce recruits; J. Assoc. Mil. Dermatol. 2: 61, 1976
- 68. Götz, H.: Pityriasis versicolor; Die Pilzkrankheiten der Haut durch Dermatophyten. Handbuch für Haut- und Geschlechtskrankheiten (Hrsg.: A. Marchiononi, H.Götz). Erg. Band IV/3, Heidelberg: Springer Verlag, 352-360, 1962
- 69. Götz, H.: Verzicht auf Sauna bei Pityriasis versicolor?; Med. Klinik 75: 6-7, 1980
- Goetzl, E.J., W.C. Pickett: Novel structural determinants of the human neutrophil chemotactic activity of leukotriene B.; J .Exp. Med. 153: 482-487, 1981
- 71. Gonzales-Ochoa, A.: Pityriasis versicolor; Rev. Med. 2: 81-82, 1956
- 72. Gordon, M.A.: The lipophilic Mycoflora of the skin. I. In vitro culture of *Pityrosporum orbiculare* n. Sp.; Mycologica 43/5: 524-535, 1951
- 73. Gordon, M.A.: The lipophilic yeast-like organisms associated with tinea versicolor; J. Invest. Derm. 17/5: 267-272, 1951
- 74. Grimminger, F., K.Hattar, C. Papavassilis, B. Temmesfeld, E.Csernok, W.L. Gross, W. Seeger, U. Sibelius: Neutrophil activation by anti-proteinase 3 antibodies in Wegener's granulomatosis: role of exogeneous arachidonic acid and leukotrien B₄ generation; J. Exp. Med. 184, 1567-1572, 1996
- 75. Grimminger, F., U. Sibelius, W. Seeger: Amplification of LTB₄-generation in AM-PMN-cocultures: transcellular 5-lipoxygenase metabolism; Am. J. Physiol. 261: L195 - L203, 1991
- Gronbaek, P.: Comparative investigations on the influence of cortisone and prednisone (M.S.D.) on the content of sodium and potassium in sweat; Acta Rheum. Scand. 2: 170, 1956
- Guillot, J., E. Gueho: The diversity of *Malassezia* yeasts confirmed by rRNA sequence and nuclear DNA comparisons. Antonie van Leeuwenhoek 67: 297-314, 1995

- Gupta, A. K., Y. Kohli R.C Summerbell: Molecular differentiation of seven Malassezia species; J. Clin. Microbiol. 38: 1869-1875, 2000
- Gupta, A, K., Y. Kohli, J. Faergemann, R. C. Summerbell: Epidemiology of *Malassezia* yeasts associated with pityriasis versicolor in Ontario, Canada; Med. Mycol. 39: 199-206, 2001
- 80. Han, W.K., A. Sapirstein, C.H. Cheng, A. Alessandrini, J.V. Bonventre: Crosstalk between cytosolic phospholipase A2 (cPLA2α) and secretory phopholipase A2 (sPLA) in hydrogen peroxide-induced arachidonic acid release in murine mesangial cells; Biol. Chem. 278, 24153 – 24163, 2003
- Hashimoto, K., Y. Taniguchi, M.R. Simon, P.W. Noah, E.W. Rosenberg, L.B. Savoy: Immunological aspects of superficial fungus infections; Jpn. Med. Mycol. 30: 81-90, 1989
- 82. Hattori, M., H. Ogawa, K. Takamori: De-(hypo)pigmentation mechanisms of the affected area of pityriasis versicolor; J. Dermatol.11: 63-66, 1984
- 83. Hatzelmann, A., R. Fruchtmann, K.H. Mohrs, S. Raddatz, und R. Müller-Peddinghaus: Ca²⁺-Ionophor A23187-stimulated secretion of azurophilic granules in human polymorphonuclear leucocytes is largely mediated by endogenously formed leukotriene B₄; Biochem. Pharmacol. 48: 31-9, 1994
- 84. Hay, R.J., S.O.B. Roberts, D.W.R. Mackenzie: Pityriasis versicolor: Textbook of Dermatology (Champion R.H., Burton J.L., Ebling, F.J.D.;eds) 5th edn.; Vol.2 Oxford: Blackwell Scientific Publications: pp. 1176-78, 1992
- 85. Henderson, W.R.: The role of leukotrienes in inflammation; Ann. Intern. Med. 121: 684-697, 1994
- 86.Heng, M.C., C.L. Henderson, D. C. Barker, G.Haberfelde: Correlation of *Pityrosporum ovale* density with clinical severity of seborrhoeic dermatitis as assessed by a simplified technique; J. Am. Acad. Dermatol. 23: 82-87, 1990
- 87. Herlaar, E., Z. Brown: p38 MAPK signalling cascades in inflammatory disease; Molecular Medicine Today, 5: 439-447, 1999
- Hirai, A., R. Kano, K. Makimura, E.R. Duarte, J.S. Hamdan, M.-A. Lachane, H. Yamaguchi, A. Hasegawa: *Malassezia nana* sp. nov., a novel lipid-dependent yeast species isolated from animals; Int. J. Syst. Evol. Microbiol. 54, 623-627, 2004
- Holland, K.T, R.A. Bojar: The effect of azelaic acid on cutaneous bacteria; J.
 Dermatol. Treat..1:17–19, 1989

- Ingham, E., A.C. Cunningham: *Malassezia furfur*, J. Vet. Med. Mycol. 31: 265-288, 1993
- Irlinger, B., H.-J. Krämer, P. Mayser, W. Steglich: Pityriarubins, biologically active bis(indolyl)spirans from cultures of the lipophilic yeast *Malassezia furfur*, Angew. Chemie Int. Ed. England, 43: 1098-1100, 2004
- 92. Irlinger, B., Bartsch, A., H.-J. Krämer, P. Mayser, W. Steglich: New tryptophan metabolites from cultures of the lipophilic yeast *Malassezia furfur*, Helvetica Chemica Acta 88: 1472-1485, 2005
- 93. Janeway, C.A., P.Travers, M. Walport, M. Shlomchik: Immunologie; Spektrum Akademischer Verlag, Heidelberg, Berlin, 5.Auflage, 2002
- 94. Jeliffe, D.B., F.W. Jacobson: The clinical picture of tinea versicolor in negro infants; J. Trop. Med. Hyg. 57: 290-293, 1954
- 95. Kano, R., T. Aizawa, Y. Nakamura, S. Watanabe, A. Hasegawa: Chitin synthase 2 gene sequence of *Malassezia* species; Microbiol. Immunol. 43:813-815, 1999
- 96. Karaoui, R., M. Bou-Resli, N.S. Al-Zaid, A. Mousa: Tinea versicolor: Ultrastructural studies on hypopigmented and hyperpigmented skin; Dermatologica 162: 69-85, 1981
- 97. Kieffer, M., I.M. Bergbrant, J. Faergemann, G.B.E. Jemec, V. Ottevanger, P.S. Skof, und S. Svejgaard: Immune responses to *Pityrosporum ovale* in adult patients with atopic and seborrhoeic dermatitis; J. Am. Acad. Dermatol. 22:739-742, 1990
- Krämer, H.J., M. Podobinska, A. Bartsch, A. Battmann, A. Thoma, A. Bernd, W. Kummer, B. Irlinger, W. Steglich, P. Mayser: Malassezin, anovel agonist of the aryl hydrocarbon receptor from the yeast *Malassezia furfur*, induces apoptosis in primary human neutrophils; Chembiochem. 6: 860-865, 2005
- 99. Kuijpers, T.W., A.T.J. Tool, C.E. van der Schoot, L.A. Ginsel, J.J.M. Onderwater, D. Roos, A.J. Verhoeven: Membrane surface antigen expression on neutrophils: a reappraisal of the use of surface markers for neutrophil activation; blood 78: 1105-1111, 1991
- 100. Lavigne, M.C., P.M. Murphy, T.L. Leto, J.-L. Gao: The N-formylpeptide (FPR) and a second G_i-coupled receptor mediate f-Met-Leu-Phe-stimulated activation of NADPH oxidase in murine neutrophils; Cellular Immunology 218: pp7-12, 2002

- 101. Leung, D.Y.M.: Atopic dermatitis: new insights and opportunities for therapeutic intervention; J. Allergy Clin. Immunol. 105: 860-876, 2000
- Lopez-Ilasaca, M.: Signaling from G-protein-coupled receptors to mitogenactivated protein (MAP)–kinase cascades; Biochem. Pharmacol. 56: 269-277, 1998
- 103. Maclouf, J., A. Sala, G. Rossoni, F. Berti, R. Müller-Peddinghaus, G. Folco: Consequences of transcellular biosynthesis of leukotriene C4 on organ function; Hemostasis. 26: 28-36, 1996
- 104. Mandel, E.H., R.O. Ores, R.J. Siragusa: The incidence of diabetes mellitus in patients with tinea versicolor. J. Med. Ass. 66: 198-200, 1974
- 105. Malmsten, C., J. Palmblad, A. Uden, O. Radmark, L. Engstedt: Leukotriene
 B4: a highly potent and stereospecific factor stimulating migration of polymorphonuclear leukocytes; Acta Physiol. Scand. 110: 449-451, 1980
- 106. Marples, M.J.: The incidence of certain skin diseases in Western Samoa: A preliminary survey; Trans. Royal. Soc. Trop. Med. Hyg. 44: 319-332, 1950
- 107. Marples, M.J.: The genus *Pityrosporum*. In: The Ecology of the Human Skin; Springfield: C.C. Thomas, pp. 408-422, 1965
- 108. Martin-Scott, I.: The Pityrosporum ovale; Br. J. Derm. 64: 257-273, 1952
- 109. Mayser, P., A. Imkampe, M. Winkeler, C. Pappavassilis: Growth requirements and nitrogen metabolism of *Malassezia furfur*, Arch. Dermatol. Res. 290: 277-282, 1998
- 110.Mayser, P., G. Wille, A. Imkampe, W. Thoma, N. Arnold, T. Monsees: Synthesis of fluorochromes and pigments in *Malassezia furfur* by use of tryptophan as single nitrogen source; Mycoses 41: 265-271, 1998
- 111. Mayser, P., U. Schäfer, H.J. Krämer, B. Irlinger, W. Steglich: Pityriacitrin a ultraviolet-absorbing indole alkaloid from the yeast *Malassezia furfur;* Arch. Dermatol. Res. 294: 131-134, 2002
- 112. Mayser P., H. Stapelkamp, H.J. Krämer, B. Irlinger, W. Steglich: Pityrialacton

 a new fluorescing indole alkaloid from the yeast *Malassezia furfur*, Antonie van Leeuwenhoek 84: 185-191, 2003
- 113. Mayser, P., A. Töws, H.J. Krämer, R. Weiß: Further characterization of pigment-producing *Malassezia* strains; Mycoses 47: 34-39, 2004
- 114. McGinley, K.J., L.R. Lantis, R.R. Marples: Microbiology of tinea versicolor; Arch. Dermatol.102: 168-172, 1970

- 115. McGinley, K.J., J.J. Leyden, R.R. Marples, A.M. Kligman: Quantitative microbiology of the scalp in non-dandruff, dandruff and seborrhoeic dermatitis; J. Investig. Dermatol. 64: 401-405, 1975
- 116. Merhi-Soussi, F., Z. Dominguez, O. Macovschi, M. Dubois, G. Nemoz, M. Lagarde, A.-F. Prigent: Mechanisms involved in the stimulation of prostacyclin synthesis by human lymphocytes in human umbilical vein endothelial cells; Brit. Pharmacol. 139: 321-328, 2003
- 117. Midgley, G., E. Gueho, J. Guillot: Disease caused by *Malassezia* species; In
 L. Ajello and r.J. Hay (ed.) Topley and Wilson's Microbiology and microbial infections, vol. 4, pp. 201-211, Arnold, London, U.K., 1998
- 118. Midgley, G., R.J. Hay: Serological responses to *Pityrosporum (Malassezia)* in seborrhoeic dermatitis demonstrated by ELISA and Western blotting; Bull. Soc. Franc. Mycol. Med. 17: 267-276,1998
- 119. Mittag, H.: Fine structural investigations of *Malassezia furfur*. II. The envelope of the yeast cells; Mycoses 38: 13-21, 1995
- 120. Montes, L.F.: Systemic abnormalities and intracellular site of infections in the stratum corneum; JAMA 213: 1469-1472, 1970
- 121. Muid, Robert E., M.M. Dale, P.D. Davis, L.H. Elliott, C.H. Hill, H. Kumar, G. Lawton, B.M. Twomey, J. Wadsworth, S.E. Wilkinson, J.S. Nixon: A novel conformationally restricted protein kinase C inhibitor, Ro 31-8425, inhibits human neutrophil superoxide generation by soluble, particulate and post-receptor stimuli; FEBS 293: 169-172; 1991
- 122. Murphy, R.C., S. Hammarström, B. Samuelson: Leukotriene C: a slow reacting substance from murine mastocytoma cells; Proc. Natl. Acad. Sci., USA. 76: 4275-4279, 1979
- 123. Nakabayashi, A., Y. Sei, J. Guillot: Identification of *Malassezia species* isolated from patients with seborrhoic dermatitis, atopic dermatitis, Pityriasis versicolor and normal subjects; Med. Mycol. 38: 337-441, 2000
- 124. Nazzaro-Porro, M., S. Passi: Identification of tyrosinase inhibitors in cultures of *Pityrosporum;* J. Invest. Derm. 71: 205-208, 1978
- 125. Nazzaro-Porro, M., S. Passi, F. Caprilli: Induction of hyphae in cultures in *Pityrosporum* by cholesterol esters; J. Investig. Dermatol. 69: 531-534, 1977

- 126. Nazzarro-Porro, M., S. Passi, M. Picaro, R. Mercantini, A.S. Breathnach: Lipoxygenase activity of *Pityrosporum* in vitro and in vivo; J. Investig. Dermatol. 87: 108-112, 1986
- 127. Nenoff, P., P. Reinl, U.-F. Haustei: Der Hefepilz *Malassezia*: Erreger, Pathogenese und Therapie; Der Hautarzt 52: 73-86, 2001
- 128. Newton, A.C.: Protein Kinase C: Structure, Function, and Regulation; The Journal of Biological Chemistry 270: 28495-28498, 1995
- Nickel, R., A. Schummer, E. Seiferle: Anatomie der Haussäugetiere, Bd. 3: Kreislaufsystem, Haut und Hautanhangsorgane, 3. überarbeitete Auflage; Parey Buchverlag, 1996
- 130. Niessen, H.W.M., A.J. Verhoeven; Differential upregulation of specific and azurophilic granule membrane markers markers in electropermeabilized neutrophils; Cell signal. 4: 501- 508, 1993
- 131. Noble, W.C.: Microbiology of human skin; London: Lloyd-Duke., 3-65: 263-268, 1981
- 132. Noble, W.C., G. Midgley: Scalp carriage of *Pityrosporum* species: The effect of physiological maturity, sex and race; Sabouraudia 16: 229-232, 1978
- 133. Page, C.O., J.S. Remington: Immunologie studies in normal human sweat; J.Lab. Clin. Med. 69: 634-650, 1967
- 134. Papavassilis, C., K.K. Mach, P. Mayser: Medium chain triglycerides inhibit growth of *Malassezia*: Implications for prevention of systemic infection; Critic. Care Med. 27: 1781-1786, 1999
- 135. Pabst, J.M.: Priming of neutrophils. In: Immunopharmacology of neutrophils. Edited by Hellwell and Williams, Academic Press, London, pp 195-221, 1994
- 136. Panja, G.: The Malassezia of the skin, their cultivation, morphology and species. Trans. 7th Congr. Far East Assoc. Trop. Med. 2: 442-456 (1927)
- 137. Parisis, N., J. Stratigos, U. Marcelou-Kinti, J. Capetanakis: Pityriasis versicolor in Griechenland und ihre Prädispositionsfaktoren. Hautarzt 28: 589-592, 1977
- 138. Park, H.-S., J.-W. Park: Conformational changes of leukocyte NADPHoxidase subunit p47^{phox} during activation studied through its intrinsic fluorescence; Biochem. Biophys. Acta 1387: 406, 1998
- 139. Parry, M.E., G.R. Sharpe: Seborrhoeic dermatitis is not caused by an altered immune response to Mallassezia yeasts; Br. J. Dermatol. 139: 254-263, 1998

- 140. Pierard-Franchimont, C., J.E. Arrese, G. Durupt, G. Ries, G. Cauwenbergh, G.E. Pierard: Correlation between *Malassezia spp.* load and dandruff severity; J. Mycol. Med. 8: 83-86, 1998
- 141. Pierard-Franchimont, C., J.E. Arrese, G.E. Pierard: Immunohistochemical aspects of the link between *Malassezia* ovalis and seborrhoeic dermatitis; J. Eur. Academ. Dermatol. Venereol. 4: 14-19, 1995
- 142. Plewig, G.: *Pityrosporum* in normal sebaceous follicles comedones, acneiformes eruptions and dandruff; Mykosen, Suppl. 1: 155-163, 1978
- 143. Plewig, G., H.H. Wolff: Follikel-Filamente; Arch. Derm. Res. 255: 9-21, 1976
- 144. Plotkin, L.I., L. Squiquera, I. Mathov, R. Galimberti, J. Leoni: Characterization of the lipase activity of *Malassezia furfur*. J. Med. Vet. Mycol. 34: 43-48, 1996
- 145. Podobinska, M.: Malassezin, a novel agonist of the aryl hydrocarbon receptor from the yeast *Malassezia furfur*, induces apoptosis in primary human melanocytes; Chembiochem. 6: 860-865, 2005
- 146. Pongracz, J., J.M. Lord: Superoxide production in human neutrophils: Evidence for signal redundancy and the involvement of more than one PKC isoenzyme class; Biochem. Biophys. Res. Commun. 247: 624-629, 1998
- 147. Potter, B.S., C.F. Burgoon, W.C. Johnson: *Pityrosporum* folliculitis; Arch. Dermatol. 107: 388-391, 1973
- 148. Raabe, P., P. Mayser, R. Weiß: Demonstration of *Malassezia furfur* and *M. sympodialis* together with *M. pachydermatis* in veterinary specimens; Mycoses 41: 493-500, 1998
- 149. Ratzer, M.:The incidence of skin disease in the west of scotland; Br. J. Dermatol. 81: 456-461, 1969
- 150. Rausch, L.J., P.H. Jacobs: Tinea versicolor: Treatment and prophylaxis with monthly administration of ketoconazole; Cutis 34: 470-471, 1984
- 151. Razack, E.M.A., A.S. Thambiah: A clinical study on pityriasis versicolor in Madras; Sabouraudia 15: 305-311, 1977
- 152. Reed, W.B., J. Pidgeon, S.W. Becker: Patients with spinal cord injury. Clinical cutaneous studies; Arch. Derm. 83: 379-385, 1961
- 153. Riciputo, R.M., S. Oliveri, G. Micali, A. Sapuppo: Phospholipase activity in *Malassezia furfur* pathogenic strains; Mycoses 39: 233-235, 1996

- 154. Rieth, H.: Pityriasis alba: eine kosmetisch besonders störende Pilzerkrankung der Haut; Kosmetologie 3: 58-63, 1973
- 155. Roberts, S.O.B.: The mycology of the clinically normal scalp; Br. J. Dermatol.81: 626-628, 1969
- 156. Robin, C.: Histoire naturelle de vegetaux parasites; J.B. Bailliere, Paris, Frankreich, 1853
- 157. Robins, E.J., A.S. Breathnach, D. Bennet, M. Picardo, S. Passi, M. Nazzaro-Porro: Ultrastructural observations on the effect of azelaic acid on normal human melanocytes and human melanoma cell line in tissue culture; Br. J. Dermol. 113: 687-697, 1985
- 158. Rodrigues Pereira, E., S. Fabre, M. Sancelme, M. Prudhomme: Antimicrobial activities of indolcarbazole and bis-indole protein kinase C inhibitors; II. substituition on maleimide nitrogen with functional groups bearing a labil hydrogen; Antibiotics 48, 863-868, 1995
- 159. Rola-Pleszynski, M., L. Bouvrette, D. Gingras, M. Girard: Identification of interferon-gamma as the lymphokine that mediates leukotriene B₄-induced immunoregulation; J. Immunol. 139: 513-517, 1987
- 160. Saadatzadeh, M.R., H.R. Ashbee, K.T. Holland, E. Ingham: Production of the mycelial phase of *Malassezia* species in vitro.; Med. Mycol., 2001
- 161. Saadatzadeh, M.R.: The immunology of the myceleal phase of Mallasezia; Ph. D. thesis, University of Leeds, Leeds, United Kingdom, 1998
- 162. Saadatzadeh, M.R, H.R. Ashbee, W.J. Cunliffe, E. Ingham: Cell mediated immunity to the mycelial phase of *Malassezia spp.* in patients with pityriasis versicolor and controls; Br. J. Dermatol. 144: 77-84, 2001
- 163. Sadhu, C., K. Dick, T.T. Tino, und D.E. Staunton: Selective role of PI3Kδ in neutrophil inflammatory responses; Biochem. Biophys. Res. Communi. 308: 764-769, 2003
- 164. Saeki, K., M. Yagisawa, S. Kitagawa, A. Yuo: Diverse effects of cytochalasin priming and triggering the respiratory burst activity in human neutrophils and monocytes; Int. J. Hematol 74: 409-415, 2001
- 165. Salkin, F., M.A. Gordon: Polymorphism of *Malassezia furfur*, Can. J. Microbiol. 23: 471-475, 1977

- 166. Samanta, A.K., J.J. Oppenheim, K. Matsushima: Interleukin-8 monocytes derived neutrophil chemotactic factor dynamically regulates its own receptor expression on human neutrophils; J. Biol. Chem. 265: 183-189, 1990
- 167. Scheynius A., J. Faergemann, U. Forsum: Phenotypic characterisation in situ of inflammatory cells in pityriasis versicolor; Acta. Dermato-Venereol. 64: 473-479, 1984
- 168. Seeliger, H.P.R., T. Heymer: Diagnostik pathogener Pilze des Menschen und seiner Umwelt; Stuttgart - New York: Thieme Verlag, pp. 14-81, 1981
- 169. Shaw, J.O., R.N. Pinckard, K.S. Ferrigni, L.M. Mc Manus, D.J. Hanahan: Activation of human neutrophils with 1-O-hexadecyl/octadecyl-2-acetyl-snglycero-3-phophorylcholine (platelet-activating-factor); J. Immunol. 127:1250-1255, 1981
- 170. Sheppard, F.R., M.R. Kelher, E.E. Moore, N.J.D. McLaughlin, A. Banerjee, C.C. Silliman: Structural organisation of the NADPH oxidase: phosphorylation and translocation during priming and activation; J. Leuk. Biol. 78: 1025-1042, 2005
- 171. Shifrine, M., A.G. Marr: The requirement of fatty acids by *P. ovale*; J. Gen. Microbiol. 32: 263-270, 1963
- 172. Shuster, S.:The aetiology of dandruff and the mode of action of therapeutic agents; Br. J. Dermatol. 111: 235-242, 1984
- 173. Silva, V., O. Fischmann, Z.P. de Camargo: Humoral immune response to Malassezia furfur in patients with pityriasis versicolor and seborrhoeic dermatits; Mycopathologia 139: 79-85, 1997
- 174. Sina, B., C.L. Kauffman, C.S. Samorodin: Intrafollicular mucin deposits in *Pityrosporum* folliculitis; J. Am. Acad. Dermatol. 32: 807-809, 1995
- 175. Slooff, W.Ch.: Genus *Pityrosporum* Sabouraud. In: The Yeasts A Taxonomic Study (Hrsg. J. Lodder) 2nd edition, Amsterdam: North-Holland Publishing Company, pp. 1167-1186, 1970
- 176. Smith, R.J., B.J. Bowman, S.S. Iden: Stimulation of the neutrophil superoxide-anion-generating system with 1-O-hexadecyl/octadecyl-2-acetylsn-glycero-3-phophorylcholine; Biochem. Pharm. 33: 973-978, 1984
- 177. Sohnle, P.G., C. Collins-Lech: Cell-mediated immunity to *Pityrosporum orbiculare* in tinea versicolor; J. Clin. Invest. 62: 45-53, 1978

- 178. Sohnle, P.G., C. Collins-Lech: Analysis of the lymphocyte transformation response to *Pityrosporum orbiculare* in patients with tinea versicolor; Clin. Exp. Immunol. 49: 559-564, 1982
- 179. Stankova, J., und M. Rola-Pleszynski: Leukotriene B₄ stimulates c-fos and c-jun gene transcription and AP-1 binding activity in human monocytes;
 Biochem. J. 282: 625-629, 1987
- 180. Stefanovic, M., M. Stefanovic, M. Medicijan: Die Verbreitung der Pityriasis versicolor bei der Sportjugend; Castellania 4: 29-31, 1976
- 181. Steglich, W.: Slime moulds (Myxomycetes) as a source of new biologically active metabolites; Pure & Appl. Chem. 61: 281-288, 1989
- 182. Sugita, T., M. Tajima, M. Takashima, M. Amaya, M. Saito, R. Tsuboi, A. Nishikawa: A new yeast species, *Malassezia yamatoensis*, isolated from patients with seborrheic dermatitis, and its distibution in patients and healthy subjects; Microbiol. Immunol. 48, 579-583, 2004
- 183. Sugita, T., M. Takashima, M. Kodama, R. Tsuboi, und A. Nishikawa: Desciption of a new yeast species, *Malassezia japonica*, and its detection in patients with atopic dermatitis and healthy subjects ; J. Clin, Microbiol. 41: 4695-4699, 2002
- 184. Sugita, T., M. Takashima, T. Shinoda, H. Suto, H., T. Unno, R. Tsuboi, H. Ogawa, A. Nishikawa: New yeast species, *Malassezia dermatis*, isolated from patients with atopic dermatitis; J. Clin. Microbiol., 40, 1363-1367, 2002
- 185. Tong, L., S. Pav, D.M. White, S. Rogers, K.M. Crane, C.L. Cywin, M.L. Brown, C.A. Pargellis: Nature Structural Biology, 4, 311-316, 1997
- 186. Toullec: The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C; J. Biol. Chem., 266, No. 24. 15771- 15781, 1991
- 187. Twomey, B., R.E. Muid, J.S. Nixon, A.D. Sedgwick, S.E. Wilkinson, M.M. Dale: The effect of new potent selective inhibitors of protein kinase C on the neutrophil respiratory burst; Biochem. Biophys. Res. Commun., 171, 1087-1092, 1990
- 188. Waersted, A. N. Hjorth: *Pityrosporum orbiculare* a pathogenetic factor in atopic dermatitis of the scalp, face or neck?; Acta Dermato-Venereol. 114: 146-148, 1985
- 189. Wagner, D.K., P.G. Sohnle: Cutaneous defense mechanisms against fungi;Basic Clin. Dermatol. 12: 161-189, 1997

- 190. Wang, J.-P., L.-C. Chang, M.-F. Hsu, S.C. Chen, S.-C. Kuo: Inhibition of formyl-methionyl-leucyl-phenylalanine-stimulated respiratory burst by cirsimaritin involves inhibition of phopholipase D signaling in rat neutrophils; Naunyn-Schmiedeberg's Arch. Pharmacol. 366: 307-314, 2002
- 191. Ward, R. A., M. Nakamura, K.R. McLeish: Priming of the nutrophil respiratory burst involves p38 mitogen-activated protein kinase-dependent exocytosis of flavocytochrome ³/_{4 558}-containing granules; Biol. Chem. 275: 36713-36719, 2000
- 192. Weiß, E., H. Stünzi: Allgemeine Pathologie für Tierärzte und Studierende der Tiermedizin; Verlag Paul Parey, 8. Auflage, 1990
- 193. Whitlock, F.A.: *Pitysporum ovale* and some scaly conditions of the scalp; Brit. Med. J. 1: 484-487, 1953
- 194. Wille, G., P. Mayser, W. Thoma, T. Monsees, H.-J. Schmitz, D. Schrenk, K. Zeitler, W. Steglich: Malassezin a novel agonist of the arylhydrocarbon receptor from the Yeast *Malassezia furfur*, Biorg. Med. Chem. 9: 955-960; 2001
- 195. Wolff, H. H., G. Plewig: Ultrastruktur der Mikroflora in Follikeln und Komedonen; Hautarzt 27: 432-440, 1976
- 196. Wroblewski, N., S. Bär, P. Mayser: Fehlendes granulocytäres Infiltrat bei der Pityriasis versicolor – ein Hinweis für eine spezifische antiinflammatorische Aktivität des Errgers; Mycoses 48: 66-71, 2005
- 197. Wu, Y.C., K.T. Chen: Lymphocyte proliferation to crude abstract of *Pityrosporum species* and natural killer activity in tinea versicolor; J. Med. Assoc., Thail. 70 (Suppl. 3): 45, 1987
- 198.Wu, Y.C., K.T. Chen: Humoral immunity in patients with tinea versicolor; J. Dermatol. 12:161-166, 1985
- 199. Xu, J., Yu-I. Weng, A. Simoni, B.W. Krugh, Z. Liao, G.A. Weisman, und G.Y. Sun: Role of PKC and MAPK in cytosolic PLA₂ phosphorylation and arachidonic acid release in primary murine astrocytes; J. Neurochem. 83: 259-270, 2002
- 200. Yarrow, D., D.G. Ahearn: *Malassezia* Baillon. In: The yeasts: A taxonomic study; Kreger van Rij NJW, ed. 3rd edn., Amsterdam: North Holland Publishing Company. Pp. 882-885, 1984

- 201. Zhang, H., C.D. Garlichs, A. Mügge, W.G. Daniel: Involvement of tyrosine kinases, Ca²⁺ and PKC in activation of mitogen-activated protein (MAP) kinase in human polymorphonuclear neutrophils; J. Physiol. 513.2: 359-367, 1998
- 202. Zhou, H.L., M. Chabot-Fletcher, J.J. Foley, H.M. Sarau, M.N. Tzimas, J.D. Winkler, und T.J. Torphy: Association between Leukotriene B₄-induced phopholipase D activation and degranulation of human neutrophils; Biochem. Pharmacol. 46: 139-48, 1993
- 203. Zhou, H., S. Das, K.S. Muthy: ERK ¹/₂- and p38 MAP kinase-dependent phophorylation and activation of cPLA₂ by m3 and m2 receptors; Am. J. Physiol. Gastrointestinal Liver Physiology 284: G472-G480, 2003

7. Anhang

7.1 Wirkung der untersuchten Substanzen auf den "respiratorischen burst"

7.1.1. Aktivator: A 23187

7.1.1.1 Arcyriarubin A

Arcyriarubin A	1	2	3	4	5	9	7	8
				Extinkti	on			
Leerwert 1	0,005	0,01	0,006	0	0	0,005	0,055	-0,022
Leerwert 2	0,008	0,013	0,047	0,028	0,008	0,019	-0,025	0,009
Leerwert (MW)	2900'0	0,0115	0,0265	0,014	0,004	0,012	0,015	-0,0065
Max.Wert 1	0,381	0,322	0,26	0,598	0,509	0,558	0,213	0,288
Max. Wert 2	0,422	0,312	0,254	0,592	0,486	0,52	0,213	0,33
Max. Wert (MW)	0,4015	0,317	0,257	0,596	0,4975	0,539	0,213	0,309
20 µM	0,018	0	0,087	0,106	0,031	0,0501	0,004	0,066
10 µM	0	0,021	0,2	0,098	0,032	0,112	0,058	0,037
5 µM	0,064	0,085	0,084	0,334	0,178	0,1	0,009	0,094
2 µM	0,139	0,155	0,128	0,421	0,298	0,297	0,172	0,246
1 µM	0,249	0,234	0,2	0,508	0,314	0,362	0,171	0,232
0,5 µM	0,288	0,219	0,202	0,547	0,377	0,438	0,205	0,264
			0 %	les Maxim	alwertes			
20 µM	4,48319	0	33,8521	17,7852	6,23116	9,29499	1,87793	21,3592
10 µM	0	6,62461	77,821	16,443	6,43216	20,7792	27,23	11,9741
5 µM	15,9402	26,8139	32,6848	56,0403	35,7789	18,5529	4,22535	30,4207
2 µM	34,6202	48,8959	49,8054	70,6376	59,8995	55,102	80,7512	79,6117
1 µM	62,0174	73,817	77,821	85,2349	63,1156	67,1614	80,2817	75,0809
0,5 µM	71,731	69,0852	78,5992	91,7785	75,7789	81,2616	96,2441	85,4369
	MΜ	ЗE						
20 µM	11,8605	4,10135						
10 JM	20,913	8,69065						
5 µM	27,5571	5,46798						
2 µM	59,9154	5,70666						
1 µM	73,0662	2,93783						
0,5 µM	81,2394	3,35079						

7.1.1.2 Pityriarubin A

Pityriarubin A	1	2	3	4	5	9	7	8
				Extink	tion			
Leerwert 1	0,005	0,01	0,006	0	0	0,005	0,055	-0,022
Leerwert 2	0,008	0,013	0,047	0,028	0,008	0,019	-0,025	0,009
Leerwert (MW)	0,0065	0,0115	0,0265	0,014	0,004	0,012	0,015	-0,0065
Max.Wert 1	0,381	0,322	0,26	0,598	0,509	0,558	0,213	0,288
Max. Wert 2	0,422	0,312	0,254	0,592	0,486	0,52	0,213	0,33
Max. Wert (MW)	0,4015	0,317	0,257	0,596	0,4975	623'0	0,213	0,309
20 µM	0,1	0,105	0,087	0,28	0,115	0,226	0,107	0,208
10 µM	0,138	0,139	0,09	0,462	0,131	0,291	0,091	0,216
5 µM	0,437	0,356	0,222	0,618	0,208	0,359	0,171	0,269
2 µM	0,413	0,253	0,152	0,596	0,311	0,587	0,211	0,307
1 µM	0,478	0,401	0,177	0,599	0,402	0,519	0,226	0,307
0,5 µM	0,466	0,295	0,387	0,593	0,345	0,513	0,21	0,348
			%	des Maxi	malwerte	S		
20 µM	24,9066	33,123	33,8521	46,9799	23,1156	41,9295	50,2347	67,3139
10 µM	34,3711	43,8486	35,0195	77,5168	26,3317	53,9889	42,723	69,9029
5 µM	108,842	112,303	86,3813	103,691	41,809	66,6048	80,2817	87,055
2 µM	102,864	79,8107	59,144	100	62,5126	108,905	99,061	99,3528
1 µМ	119,054	126,498	68,8716	100,503	80,804	96,2894	106,103	99,3528
0,5 µM	116,065	93,0599	150,584	99,4966	69,3467	95,1763	98,5915	112,621
	MW	SE						
20 µM	40,1819	5,17715						
10 µM	47,9628	6,34664						
5 µM	85,871	8,33389						
2 µM	88,9563	6,80761						
1 µM	99,6846	6,61918						
0,5 µM	104,368	8,2773						

ш
.⊆
ę
ar
,Ti
~
'≓
Ъ.
.3 Pit
I.1.3 Pity
7.1.1.3 Pit

Pityriarubin B	1	2	3	4	5	6	7	8
				Extinkti	on			
Leerwert 1	0,005	0,01	0,006	0	0	0,005	0,055	-0,022
Leerwert 2	0,008	0,013	0,047	0,028	0,008	0,019	-0,025	0,009
Leerwert (MW)	0,0065	0,0115	0,0265	0,014	0,004	0,012	0,015	-0,0065
Max.Wert 1	0,381	0,322	0,26	0,598	0,509	0,558	0,213	0,288
Max. Wert 2	0,422	0,312	0,254	0,592	0,486	0,52	0,213	0,33
Max. Wert (MW)	0,4015	0,317	0,257	0,596	0,4975	0,539	0,213	0,309
20 µM	0,122	0,034	0,198	0,332	0,344	0,153	0,135	0,17
10 µM	0,236	0,183	0,178	0,408	0,355	0,276	0,156	0,319
5 µM	0,489	0,314	0,367	0,585	0,365	0,367	0,196	0,29
2 µM	0,511	0,396	0,272	0,583	0,347	0,498	0,149	0,363
1 µM	0,525	0,516	0,238	0,611	0,355	0,524	0,217	0,338
0,5 µM	0,443	0,367	0,288	0,603	0,375	0,52	0,186	0,32
			% с	les Maxim	alwertes			
20 µM	30,3861	10,7256	77,0428	55,7047	69,1457	28,3859	63,3803	55,0162
10 µM	58,7796	57,7287	69,2607	68,4564	71,3568	51,2059	73,2394	103,236
5 µM	121,793	99,0536	142,802	98,1544	73,3668	68,0891	92,0188	93,8511
2 µM	127,273	124,921	105,837	97,8188	69,7487	92,3933	69,9531	117,476
1 µМ	130,76	162,776	92,607	102,517	71,3568	97,2171	101,878	109,385
0,5 µM	110,336	115,773	112,062	101,174	75,3769	96,475	87,3239	103,56
	MW	SE						
20 µM	48,7234	8,14591						
10 µM	69,158	5,58048						
5 µM	98,6411	8,5832						
2 µM	100,678	7,99691						
1 µM	108,562	9,71127						
0,5 µM	100,26	4,80706						

7.1.1.4 Pityriarubin C

Ditvriarubin C	•	ç	č	V	Ľ	y	7	α
		I	•	Extinkti	on	•		•
Leerwert 1	0,005	0,01	0,006	0	0	0,005	0,055	-0,022
Leerwert 2	0,008	0,013	0,047	0,028	0,008	0,019	-0,025	0,009
Leerwert (MW)	0,0065	0,0115	0,0265	0,014	0,004	0,012	0,015	-0,0065
Max.Wert 1	0,381	0,322	0,26	0,598	0,509	0,558	0,213	0,288
Max. Wert 2	0,422	0,312	0,254	0,592	0,486	0,52	0,213	0,33
Max. Wert (MW)	0,4015	0,317	0,257	0,596	0,4975	0,539	0,213	0,309
20 µM	0,136	0,128	260'0	0,42	0,188	0,21	0,125	fehlend
10 µM	0,167	0,186	0,114	0,466	0,216	0,315	0,098	0,197
5 µM	0,362	0,354	0,293	0,6	0,41	0,316	0,183	0,266
2 µM	0,53	0,166	0,278	0,575	0,33	0,661	0,148	0,387
1 µМ	0,521	0,373	0,298	0,602	0,461	0,55	0,172	0,293
0,5 µM	0,46	0,218	0,204	0,671	0,626	0,546	0,275	0,237
			% с	les Maxim	alwertes			
20 µM	33,873	40,3785	37,7432	70,4698	37,7889	38,961	58,6854	fehlend
10 µМ	41,594	58,6751	44,358	78,1879	43,4171	58,4416	46,0094	63,754
5 µM	90,1619	111,672	114,008	100,671	82,4121	58,6271	85,9155	86,0841
2 µM	132,005	52,3659	108,171	96,4765	66,3317	122,635	69,4836	125,243
1 µМ	129,763	117,666	115,953	101,007	92,6633	102,041	80,7512	94,822
0,5 µM	114,57	68,7697	79,3774	112,584	125,829	101,299	129,108	76,699
	MW	SE						
20 µM	45,4143	5,16651						
10 µM	54,3046	4,51933						
5 µM	91,1939	6,29965						
2 µM	96,5889	10,7685						
1 µМ	104,333	5,60382						
0,5 µM	101,03	8,26117						
			_					

Ľ,	
<u> </u>	
2	
Ţ	
C	
Ð	
Ĕ	
<u>.</u> Θ	
N	
F	
ĕ	
:=	
$\underline{\omega}$	
ò	
Ň	
1	
1	
÷	
2	
σ	
<u>0</u>	
σ	
. _	
÷	
⊆	
0	
÷	
÷	
5	
Ŧ	
<u>.</u>	
Ę	
Ð	
č	
Q	
9	
ΠÛ	
ē	
σ	
Ľ	
Ð	
Ó	
3	
ສີ	
<u> </u>	
~~	
ъ О	
Ра	
te Pa	
ete Pa	
inete Pa	
chnete Pa	
echnete Pa	
rrechnete Pa	
errechnete Pa	
d errechnete Pa	
ind errechnete Pa	
und errechnete Pa	
⁵⁰ und errechnete Pa	
3 50 und errechnete Pa	
IC 50 und errechnete Pa	
5 IC 50 und errechnete Pa	
1.5 IC 50 und errechnete Pa	
.1.5 IC 50 und errechnete Pa	
.1.1.5 IC 50 und errechnete Pa	
7.1.1.5 IC 50 und errechnete Pa	

Arcyriarubin	\mathbf{b}_0	b1	IC 50	Pityriarubin A	\mathbf{b}_0
L	1,68639895	0,3679709	*	٢	-0,30110509
7	-0,82098055	0,78005855	2,46083173	2	-0,12783337
n	0,53062825	0,05088321	11,162504	с	0,03922071
4	0,27763174	0,12513373	6,56082534	4	-0,10536052
5	0,54232429	0,17412136	3,19482915	5	0,49469624
9	0,5988365	0,1381955	3,61644042	9	0,01980263
7	0,37843644	0,22106139	3,25780937	7	0,01980263
ω	0,47000363	0,11653782	5,39403156	œ	-0,04082199

Pityriarubin B	b_0	\mathbf{b}_1	IC 50
٢	-0,51082562	0,10975086	14,6644669
7	-0,73396918	0,17479329	10,4842781
ო	-0,19845094	0,03469124	37,3887827
4	-0,0618754	0,05306672	21,8684643
5	0,41871033	0,01340969	50,7022989
9	0,03922071	0,09239685	11,4656678
7	0,14842001	0,03217673	29,5304163
œ	0,004	0,05069311	26,073676

* - berechneter Wert im negativen Bereich

Pityriarubin A	0q	۲q	IC 50
Ţ	-0,30110509	0,12248308	11,4278424
2	-0,12783337	0,09294375	13,1955696
e	0,03922071	0,09276148	11,420598
4	-0,10536052	0,06034223	19,9524085
5	0,49469624	0,09312598	6,48493642
9	0,01980263	0,07278567	14,8217316
7	0,01980263	0,06859279	15,727741
œ	-0,04082199	0,0429637	26,5208606

Pityriarubin C	\mathbf{b}_0	b1	IC 20
٦	-0,38566248	0,11154137	13,3069435
2	0,14842001	0,05883479	16,1501784
ę	-0,12783337	0,08434115	14,5414864
4	-0,08338161	0,03748844	31,5295531
5	0,03922071	0,08240914	12,8552685
9	-0,0618754	0,0817643	14,1930851
7	0,09531018	0,05363555	18,7059166
ω	-0,02020271	0,06700423	16,6976774

7.1.2 Aktivator: N-Formyl-Methionin-Leucin-Phenylalanin (Fmlp)

7.1.2.1 Arcyriarubin A

	•	c	ç		L	¢	7	۰	4
Al cyriai ubill A	-	7	n	; 	, ,	Þ		0	n
				Extii	nktion				
Leerwert 1	0,003	0,003	0	0,01	0,031	0,031	0,047	0,011	0
Leerwert2	0,006	0,003	0,014	0,007	0,078	0,078	0,014	0,04	0
Leerwert (MW)	0,0045	£00'0	0,007	0,0085	0,0545	0,0545	0,0305	0,0255	0
Max.Wert 1	0,24	0,131	0,459	0,306	0,41	0,41	0,599	0,555	0,228
Max. Wert 2	0,245	0,127	0,471	0,484	0,462	0,462	0,602	0,525	0,204
Max. Wert (MW)	0,2425	0,129	0,465	0,395	0,436	0,436	0,6005	0,54	0,216
20 µM	600'0	0	0,046	0,039	0	0,034	0,015	fehlend	0
10 µM	0,035	0,029	0,178	0,115	0	0,081	0,124	0	0
5 µM	0,084	0,054	0,24	0,351	0,045	0,138	0,429	0,156	0,128
2 µM	0,175	0,123	0,421	0,494	0,182	0,312	0,709	0,269	0,179
1 µM	0,213	0,131	0,395	0,617	0,11	0,336	0,725	0,387	0,194
0,5 µM	0,189	0,133	0,445	0,544	0,148	0,352	0,653	0,404	0,243
			0	% des Ma	kimalwerte	Se			
20 µM	3,71134	0	9,89247	9,87342	0	7,79817	2,49792	fehlend	0
10 µM	14,433	22,4806	38,2796	29,1139	0	18,578	20,6495	0	0
5 µM	34,6392	41,8605	51,6129	88,8608	10,3211	31,6514	71,4405	28,8889	59,2593
2 µM	72,1649	95,3488	90,5376	125,063	41,7431	71,5596	118,068	49,8148	82,8704
1 µM	87,8351	101,55	84,9462	156,203	25,2294	77,0642	120,733	71,6667	89,8148
0,5 µM	77,9381	103,101	95,6989	137,722	33,945	80,7339	108,743	74,8148	112,5
	MW	SE							
20 µM	4,22166	1,54452							
10 µM	15,9483	4,5781							
5 µM	46,5038	7,99926							
2 µM	83,019	9,32447							
1 µM	90,5602	11,8947							
0.5 uM	91.6884	9,80181							

7.1.2.2 Pityriarubin A

Pityriarubin A	1	2	с	4	5	9	7	8	6
				Extii	nktion				
Leerwert 1	0,003	0,003	0	0,01	0,031	0,031	0,047	0,011	0
Leerwert 2	0,006	0,003	0,014	0,007	0,078	0,078	0,014	0,04	0
Leerwert (MW)	0,0045	0,003	0,007	0,0085	0,0545	0,0545	0,0305	0,0255	0
Max.Wert 1	0,24	0,131	0,459	0,306	0,41	0,41	0,599	0,555	0,228
Max. Wert 2	0,245	0,127	0,471	0,484	0,462	0,462	0,602	0,525	0,204
Max. Wert (MW)	0,2425	0,129	0,465	0,395	0,436	0,436	0,6005	0,54	0,216
20 µM	0,017	0,023	0,06	0,099	0,092	0,131	0,094	0,006	0,005
10 µM	0,02	0,049	0,184	0,142	0,073	0,268	0,368	0,188	0,016
5 µM	0,115	0,089	0,174	0,265	0,183	0,394	0,55	0,368	0,203
2 µM	0,196	0,134	0,421	0,447	0,481	0,368	0,57	0,414	0,202
1 µM	0,203	0,114	0,447	0,486	0,263	0,365	0,725	0,495	0,216
0,5 µM	0,221	0,134	0,492	0,528	0,37	0,396	0,653	0,443	0,158
			0	% des Ma	kimalwerte	SS			
20 µM	7,01031	17,8295	12,9032	25,0633	21,1009	30,0459	15,6536	1,11111	2,31481
10 µM	8,24742	37,9845	39,5699	35,9494	16,7431	61,4679	61,2823	34,8148	7,40741
5 µM	47,4227	68,9922	37,4194	67,0886	41,9725	90,367	91,5903	68,1481	93,9815
2 µM	80,8247	103,876	90,5376	113,165	110,321	84,4037	94,9209	76,6667	93,5185
1 µМ	83,7113	88,3721	96,129	123,038	60,3211	83,7156	120,733	91,6667	100
0,5 µM	91,134	103,876	105,806	133,671	84,8624	90,8257	108,743	82,037	73,1481
	MW	SE							
20 µM	14,7814	3,32273							
10 µM	33,7185	6,68499							
5 µM	67,4425	7,23312							
2 µM	94,2482	4,26521							
1 µM	94,1874	6,43458							
0,5 µM	97,1226	6,03232							

7.1.2.3 Pityriarubin B

Pityriarubin B	1	2	3	4	5	6	7	8	6
				Extii	nktion				
Leerwert 1	0,003	0,003	0	0,01	0,031	0,031	0,047	0,011	0
Leerwert2	0,006	0,003	0,014	0,007	0,078	0,078	0,014	0,04	0
Leerwert (MW)	0,0045	0,003	0,007	0,0085	0,0545	0,0545	0,0305	0,0255	0
Max.Wert 1	0,24	0,131	0,459	0,306	0,41	0,41	0,599	0,555	0,228
Max. Wert 2	0,245	0,127	0,471	0,484	0,462	0,462	0,602	0,525	0,204
Max. Wert (MW(0,2425	0,129	0,465	0,395	0,436	0,436	0,6005	0,54	0,216
20 µM	0,009	0,064	0,386	0,101	0,027	0,068	0,021	0,289	0,014
10 µM	0,076	0,057	0,365	0,06	0,215	0,132	0,365	0,321	0,156
5 µM	0,129	0,054	0,456	0,092	0,227	0,252	0,452	0,309	0,112
2 µM	0,198	0,122	0,462	0,455	0,408	0,415	0,541	0,401	0,203
1 µM	0,219	0,117	0,498	0,532	0,277	0,325	0,657	0,447	0,232
0,5 µM	0,221	0,128	0,465	0,546	0,377	0,382	0,665	0,45	0,245
			0	% des Ma	kimalwerte	SS			
20 µM	3,71134	49,6124	83,0108	25,5696	6,19266	15,5963	3,49709	53,5185	6,48148
10 µM	31,3402	44,186	78,4946	15,1899	49,3119	30,2752	60,7827	59,4444	72,2222
5 µM	53,1959	41,8605	98,0645	23,2911	52,0642	57,7982	75,2706	57,2222	51,8519
2 µM	81,6495	94,5736	99,3548	115,19	93,578	95,1835	90,0916	74,2593	93,9815
1 µM	90,3093	90,6977	107,097	134,684	63,5321	74,5413	109,409	82,7778	107,407
0,5 µM	91,134	99,2248	100	138,228	86,4679	87,6147	110,741	83,3333	113,426
	MW	SE							
20 µM	27,4656	9,4506							
10 µM	49,0275	6,95821							
5 µM	56,7355	6,92319							
2 µM	93,0957	3,78179							
1 µM	95,6061	7,14731							
0,5 µM	101,13	5,82023							

7.1.2.4 Pityriarubin C

Pityriarubin C	1	2	3	4	5	6	7	8	6
				EX	tinktion				
Leerwert 1	0,003	0,003	0	0,01	0,031	0,031	0,047	0,011	0
Leerwert2	0,006	0,003	0,014	0,007	0,078	0,078	0,014	0,04	0
Leerwert (MW)	0,0045	0,003	0,007	0,0085	0,0545	0,0545	20 20'0	0,0255	0
Max.Wert 1	0,24	0,131	0,459	0,306	0,41	0,41	665'0	0,555	0,228
Max. Wert 2	0,245	0,127	0,471	0,484	0,462	0,462	0,602	0,525	0,204
Max. Wert (MW)	0,2425	0,129	0,465	0,395	0,436	0,436	0,6005	0,54	0,216
20 µM	0,114	0	0,149	0,022	0	0	0,039	0,087	0
10 µM	0,057	0,008	0,309	0,026	0	0	0,121	0,141	0
5 µM	0,172	0,105	0,33	0,119	0,098	0,151	0,264	0,174	0,005
2 µM	0,231	0,135	0,443	0,422	0,416	0,334	0,679	0,398	0,275
1 µМ	0,236	0,126	0,33	0,47	0,292	0,369	0,669	0,445	0,214
0,5 µM	0,235	0,088	0,644	0,374	0,371	0,242	0,685	0,563	0,232
				% des M	aximalwe	rtes			
20 µM	47,0103	0	32,043	5,56962	0	0	6,49459	16,1111	0
10 µM	23,5052	6,20155	66,4516	6,58228	0	0	20,1499	26,1111	0
5 µM	70,9278	81,3953	70,9677	30,1266	22,4771	34,633	43,9634	32,222	2,31481
2 µM	95,2577	104,651	95,2688	106,835	95,4128	76,6055	113,072	73,7037	127,315
1 µМ	97,3196	97,6744	70,9677	118,987	66,9725	84,633	111,407	82,4074	99,0741
0,5 µM	96,9072	68,2171	138,495	94,6835	85,0917	55,5046	114,072	104,259	107,407
	MM	SE							
20 µM	11,9143	5,64203							
10 µM	16,5557	7,14053							
5 µM	43,2253	8,71238							
2 µM	98,6803	5,62038							
1 µM	92,1604	5,80982							
0,5 µM	96,0708	8,21921							

<u> </u>
77
50
Ľ
)
0
_
5
Ξ.
d٦.
.≝
N
1
σ
Ē
.=
_
0
Ŧ
LL
_
~
Ť
<u> </u>
1
3
$\overline{\mathbf{D}}$
~
ž
Ψ
0
<u> </u>
:5
<u>ب</u>
-
F
5
<u>.</u>
Ŧ
×
Ē
1
Ŧ
F
_
5
č
en
nen
nen
onen
ponent
xponent
Exponent
Exponent
- Exponent
er Exponent
er Exponent
der Exponent
der Exponent
r der Exponen
er der Exponen
ter der Exponen
eter der Exponen
eter der Exponent
neter der Exponent
meter der Exponent
ameter der Exponen
rameter der Exponen
arameter der Exponen
arameter der Exponen
Parameter der Exponen
Parameter der Exponent
e Parameter der Exponen
te Parameter der Exponen
ete Parameter der Exponen
nete Parameter der Exponent
nete Parameter der Exponent
hnete Parameter der Exponen
chnete Parameter der Exponen
schnete Parameter der Exponen
echnete Parameter der Exponen
rechnete Parameter der Exponen
strechnete Parameter der Exponen
errechnete Parameter der Exponen
errechnete Parameter der Exponen
d errechnete Parameter der Exponen
nd errechnete Parameter der Exponen
ind errechnete Parameter der Exponen
und errechnete Parameter der Exponen
und errechnete Parameter der Exponen
in und errechnete Parameter der Exponen
50 und errechnete Parameter der Exponen
5 50 und errechnete Parameter der Exponen
C 50 und errechnete Parameter der Exponen
IC 50 und errechnete Parameter der Exponent
IC 50 und errechnete Parameter der Exponen
5 IC 50 und errechnete Parameter der Exponen
2.5 IC 50 und errechnete Parameter der Exponent
2.5 IC $_{50}$ und errechnete Parameter der Exponen
.2.5 IC 50 und errechnete Parameter der Exponen
1.2.5 IC 50 und errechnete Parameter der Exponen
1.2.5 IC 50 und errechnete Parameter der Exponen
7.1.2.5 IC ₅₀ und errechnete Parameter der Exponen

Arcyriarubin	\mathbf{b}_0	\mathbf{b}_1	IC 50
L L	0,24686008	0,19753852	4,31182839
2	-1,51412773	0,79285676	3,29534937
3	0,05826891	0,14557112	7,14663291
4	-0,73396918	0,1954023	9,37850526
5	0,78845736	0,93137637	0,33300708
9	0,36464311	0,15631975	4,69530661
7	-0,4462871	0,24129776	6,40246051
8	0,01980263	0,97164975	1,11028656
6	-0,51082562	0,99875512	1,61144397
Pityriarubin B	\mathbf{b}_0	\mathbf{b}_1	IC 50
L	0	0,1932615	5,68458957
6	0 23111172	0.06212937	13 9628093

Pityriarubin B	\mathbf{b}_0	٩	IC 50
L L	0	0,1932615	5,68458957
2	0,23111172	0,06212937	13,9628093
£	-0,04082199	0,02361887	48,2425491
4	-0,15082289	0,14574401	8,57280614
5	0,11332869	0,15443635	6,37986835
9	0,18232156	0,1231022	7,44333369
7	-0,35667494	0,19819491	7,34270755
8	0,35065687	0,04056596	18,4380053
6	-0.24846136	0.16602278	8,11378786

Pityriarubin A	\mathbf{b}_0	b1	IC ²⁰
٢	0,21511138	0,18182143	4,85916814
2	-0,04082199	0,12407432	9,18348235
3	0,05826891	0,13784707	7,54708392
4	-0,32850407	0,12936021	11,0321126
5	0,33647224	0,11466707	6,64654655
6	0,07696104	0,07908841	12,9178383
7	-0,30110509	0,13111598	10,6754143
8	-0,15082289	0,24380855	5,12465691
6	-0,10536052	0,23822919	5,05384252

Pityriarubin C	\mathbf{b}_0	\mathbf{b}_1	IC 50
1	0,14842001	0,07853388	12,0991388
2	-1,34707365	0,80343553	3,04403506
3	-0,08338161	0,0875529	13,5003402
4	0,01980263	0,21204216	5,08771308
5	-0,15082289	0,98421103	1,26947895
6	-0,08338161	0,97576646	1,21134918
7	-0,19845094	0,19400306	6,68578741
8	0,27763174	0,12539841	6,5469774
6	-0.17435339	1 00411844	1 26774454

7.1.3 Aktivator: 1,2 Di-Octanoy-sn-glycerol (DAG)

7.1.3.1 Arcyriarubin A

Arcyriarubin A	1	2	3	4
		Extink	tion	
Leerwert 1	0	0,005	0,037	0,008
Leerwert 2	0	0,017	0,089	0,004
Leerwert (MW)	0	0,011	0,063	0,006
Max.Wert 1	0,562	0,553	0,598	0,575
Max. Wert 2	0,556	0,55	0,617	0,593
Max. Wert (MW)	0,559	0,5515	0,6075	0,584
20 µM	0,029	0,21	0,007	0,014
10 µM	0,087	0,116	0,039	0,069
5 µM	0,107	0,355	0,182	0,188
2 µM	0,633	0,629	0,621	0,492
1 µM	0,638	0,589	0,591	0,556
0,5 µM	0,597	0,604	0,458	0,571
	p %	es Maxin	nalwertes	
20 µM	5,18784	38,078	1,15226	2,39726
10 µM	15,5635	21,0335	6,41975	11,8151
5 µM	19,1413	64,3699	29,9588	32,1918
2 µM	113,238	114,053	102,222	84,2466
1 µM	114,132	106,8	97,284	95,2055
0,5 µM	106,798	109,519	75,3909	97,774
	MM	SE		
20 µM	11,7038	8,83177		
10 µM	13,708	3,07961		
5 µM	36,4155	9,74412		
2 µM	103,44	6,9432		
1 µM	103,355	4,39023		
0,5 µM	97,3706	7,74455		

Exponentialfunktion für den durch DAG induzierten burst 7.1.3.2 Arcyriarubin A: IC 50 und errechnete Parameter der

Arcyriarubin	b_0	b1	IC 50
-	0,0048	1,2282	5,54335218
7	0,0048	1,1085	11,0616365
ę	0,0053	1,3122	3,82894289

1,3122 3,82894289 1,2609 4,48760922

0,0053

2 ო 4

7.1.3.3 Pityriarubin A

Pitvriarubin A	-	2	e	4
		Extink	tion	
Leerwert 1	0	0,005	0,037	0,008
Leerwert 2	0	0,017	0,089	0,004
Leerwert (MW)	0	0,011	0,063	0,006
Max.Wert 1	0,562	0,553	0,598	0,575
Max. Wert 2	0,556	0,55	0,617	0,593
Max. Wert (MW)	0,559	0,5515	0,6075	0,584
20 µM	0,597	0,572	0,536	0,562
10 µM	0,572	0,662	0,617	0,525
5 µM	0,606	0,558	0,648	0,552
2 µM	0,579	0,569	0,615	0,514
1 µM	0,593	0,549	0,621	0,587
0,5 µM	0,592	0,569	0,552	0,556
	p %	es Maxin	nalwertes	
20 µM	106,798	103,717	88,2305	96,2329
10 µM	102,326	120,036	101,564	89,8973
5 µM	108,408	101,179	106,667	94,5205
2 μM	103,578	103,173	101,235	88,0137
1 μM	106,082	99,5467	102,222	100,514
0,5 µM	105,903	103,173	90,8642	95,2055
	MM	SE		
20 JJM	98,7446	4,14766		
10 µM	103,456	6,21559		
5 µM	102,693	3,12959		
2 µM	98,9998	3,69756		
1 µM	102,091	1,44075		
0,5 µM	98,7866	3,48185		

7.1.3.4 Pityriarubin B

Dittining D	•	ç	~	
	-	- Evtinkt	> 40	·
	Ċ		100 V	
Leelweit I	D	0,000	0,001	0,000
Leerwert 2	0	0,017	0,089	0,004
Leerwert (MW)	0	0,011	0,063	0,006
Max.Wert 1	0,562	0,553	0,598	0,575
Max. Wert 2	0,556	0,55	0,617	0,593
Max. Wert (MW)	0,559	0,5515	0,6075	0,584
20 µM	0,516	0,179	0,557	0,602
10 µM	0,497	0,219	0,584	0,555
5 µM	0,485	0,683	0,616	0,604
2 µM	0,605	0,572	0,654	0,582
1 µM	0,652	0,645	0,682	0,545
0,5 µM	0,629	0,524	0,635	0,546
	p %	es Maxim	alwertes	
20 µM	92,3077	32,4569	91,6872	103,082
10 μM	88,9088	39,7099	96,1317	95,0342
5 µM	86,7621	123,844	101,399	103,425
2 µM	108,229	103,717	107,654	99,6575
1 µM	116,637	116,954	112,263	93,3219
0,5 µM	112,522	95,0136	104,527	93,4932
	MW	SE		
20 µM	79,8835	16,0238		
10 µM	79,9461	13,5059		
5 µM	103,857	7,62642		
2 µM	104,814	1,99001		
1 µM	109,794	5,594		
0,5 µM	101,389	4,4421		

7.1.3.5 Pityriarubin C

			Ī	
Pityriarubin C	1	2	3	4
		Extinkt	ion	
Leerwert 1	0	0,005	0,037	0,008
Leerwert 2	0	0,017	0,089	0,004
Leerwert (MW)	0	0,011	0,063	0,006
Max.Wert 1	0,562	0,553	0,598	0,575
Max. Wert 2	0,556	0,55	0,617	0,593
Max. Wert (MW)	0,559	0,5515	0,6075	0,584
20 µM	0,668	0,491	0,557	0,556
10 µM	0,614	0,568	0,548	0,593
5 µM	0,623	0,554	0,621	0,515
2 µM	0,586	0,618	0,629	0,579
1 µM	0,568	0,612	0,628	0,586
0,5 µM	0,591	0,623	0,627	0,558
	p %	es Maxima	alwertes	
20 µM	119,499	89,0299	91,6872	95,2055
10 µM	109,839	102,992	90,2058	101,541
5 µM	111,449	100,453	102,222	88,1849
2 µM	104,83	112,058	103,539	99,1438
1 µM	101,61	110,97	103,374	100,342
0,5 µM	105,725	112,965	103,21	95,5479
	MM	SE		
20 JJM	98,8554	6,99647		
10 µM	101,144	4,07042		
5 µM	100,577	4,78266		
2 µM	104,893	2,6806		
1 µM	104,074	2,38119		
0.5 µM	104,362	3,59255		

7.1.4 Aktivator: Phorbolester

7.1.4.1 Arcyriarubin A

A midulation A	•	ç	¢	
	-	↓ ↓ ↓	2	t
		Extinkt	Ion	
Leerwert 1	0,023	0	0	0,008
Leerwert 2	0,012	0,006	0,002	0,003
Leerwert (MW)	0,0175	0,003	0,001	0,0055
Max.Wert 1	0,678	0,469	0,503	0,603
Max. Wert 2	0,621	0,517	0,485	0,632
Max. Wert (MW)	0,6495	0,493	0,494	0,6175
20 µM	0,025	0'03	0,016	0,024
10 µM	0,025	0,087	0,124	0,038
5 µM	0,386	0,109	0,528	0,163
2 µM	0,627	0,605	0,495	0,572
1 µM	0,614	0,554	0,506	0,604
0,5 µM	0,568	0,503	0,522	0,628
	0 %	les Maxim	alwertes	
20 µM	3,84911	6,08519	3,23887	3,88664
10 µM	3,84911	17,6471	25,1012	6,15385
5 µM	59,4303	22,1095	106,883	26,3968
2 µM	96,5358	122,718	100,202	92,6316
1 µM	94,5343	112,373	102,429	97,8138
0,5 µM	87,4519	102,028	105,668	101,7
	MW	ЗE		
20 JM	4,26495	0,62464		
10 µM	13,1878	4,9875		
5 µM	53,7048	19,5888		
2 µM	103,022	6,74485		
1 µM	101,788	3,88233		
0.5 uM	99,2122	4.02186		

7.1.4.2 Arcyriarubin A: IC $_{50}$ und errechnete Parameter der

Exponentialfunktion für den durch Phorbolester induzierten

Arcyriarubin	b_0	b1	IC 50
L	0,0053	1,2547	4,58510105
7	0,0047	1,2172	5,90419313
ę	0,0034	1,2425	6,83602301
4	0,0056	1,2493	4,4265818

7.1.4.3 Pityriarubin A

Ditrainantia A	•	c	ç	
Fityrial ubill A	-	7	n	4
		Extinkt	tion	
Leerwert 1	0,023	0	0	0,008
Leerwert 2	0,012	0,006	0,002	0,003
Leerwert (MW)	0,0175	0,003	0,001	0,0055
Max.Wert 1	0,678	0,469	0,503	0,603
Max. Wert 2	0,621	0,517	0,485	0,632
Max. Wert (MW)	0,6495	0,493	767'0	0,6175
20 JM	0,596	0,502	0,573	0,623
10 µM	0,635	0,525	0,465	0,589
5 µM	0,635	0,518	0,444	0,618
2 µM	0,611	0,503	0,476	0,631
1 µM	0,612	0,499	0,492	0,648
0,5 µM	0,613	0,48	0,49	0,601
		% des Maxir	nalwertes	
20 µM	91,7629	101,826	115,992	100,891
10 µM	97,7675	106,491	94,1296	95,3846
5 µM	97,7675	105,071	89,8785	100,081
2 µM	94,0724	102,028	96,3563	102,186
1 JuM	94,2263	101,217	99,5951	104,939
0,5 µM	94,3803	97,3631	99,1903	97,3279
	MW	SE		
20 µM	102,618	5,00255		
10 µM	98,4431	2,78664		
5 µM	98,1995	3,16468		
2 µM	98,6608	2,04397		
1 µM	99,9944	2,22442		
0,5 µM	97,0654	0,99509		

7.1.4.4 Pityriarubin B

Ditvriarubin R	-	ç	٣	
	-	- 	24:00	r
		EXII	IKTION	
Leerwert 1	0,023	0	0	0,008
Leerwert 2	0,012	0,006	0,002	0,003
Leerwert (MW)	0,0175	0,003	0,001	0,0055
Max.Wert 1	0,678	0,469	0,503	0,603
Max. Wert 2	0,621	0,517	0,485	0,632
Max. Wert (MW)	0,6495	0,493	0,494	0,6175
20 µM	0,644	0,538	0,53	0,592
10 µM	0,583	0,509	0,49	0,629
5 µM	0,614	0,513	0,484	0,622
2 µM	0,618	0,491	0,491	0,589
1 µM	0,613	0,499	0,512	0,596
0,5 µM	0,531	0,483	0,466	0,603
	p %	es Maxima	alwertes	
20 µM	99,1532	109,128	107,287	95,8704
10 µM	89,7614	103,245	99,1903	101,862
5 µM	94,5343	104,057	97,9757	100,729
2 µM	95,1501	99,5943	99,3927	95,3846
1 µM	94,3803	101,217	103,644	96,5182
0,5 µM	81,7552	97,9716	94,332	97,6518
	MW	SE		
20 µM	102,86	3,18174		
10 µM	98,5149	3,03678		
5 µM	99,3239	2,02345		
2 µM	97,3804	1,22162		
1 µM	98,9398	2,12065		
0,5 µM	92,9277	3,81396		

7.1.4.5 Pityriarubin C

Pityriarubin C	•	2	e	4
		Extink	ction	
Leerwert 1	0,023	0	0	0,008
Leerwert 2	0,012	0,006	0,002	0,003
Leerwert (MW)	0,0175	0,003	0,001	0,0055
Max.Wert 1	0,678	0,469	0,503	0,603
Max. Wert 2	0,621	0,517	0,485	0,632
Max. Wert (MW)	0,6495	0,493	0,494	0,6175
20 µM	0,619	0,533	0,484	0,597
10 µM	0,631	0,483	0,467	0,634
5 µM	0,63	0,493	0,489	0,629
2 µM	0,605	0,494	0,459	0,601
1 µM	0,589	0,54	0,47	0,626
0,5 µM	0,574	0,507	0,458	0,628
	0 %	des Maxim	alwertes	
20 µM	95,3041	108,114	97,9757	96,6802
10 µM	97,1517	97,9716	94,5344	102,672
5 µM	96,9977	100	98,9879	101,862
2 µM	93,1486	100,203	92,915	97,3279
1 µM	90,6851	109,533	95,1417	101,377
0,5 µM	88,3757	102,84	92,7126	101,7
	MM	SE		
20 JJM	99,5184	2,91652		
10 µM	98,0824	1,69636		
5 µM	99,462	1,01443		
2 µM	95,8986	1,75675		
1 µM	99,1842	4,08747		
0,5 µM	96,4071	3,50656		

7.1.5 Aktivator: Natriumfluorid

7.1.5.1 Arcyriarubin A

•			,	
Arcyriarubin A	-	2	ß	4
		Extin	ction	
Leerwert 1	0,037	0,013	0,022	0,009
Leerwert 2	0,039	0,02	0,011	0,013
Leerwert (MW)	0,038	0,0165	0,0165	0,011
Max.Wert 1	0,436		0,475	0,455
Max. Wert 2	0,486	0,486	0,4	0,442
Max. Wert (MW)	0,461	0,486	0,4375	0,4485
20 JM	0,036	0,056	0,155	0,091
10 µM	0,024	0,007	0,148	0,127
5 µM	0,151	0,092	0,117	0,159
2 µM	0,282	0,054	0,235	0,215
1 µM	0,294	0,282	0,353	0,384
0,5 µM	0,209	0,372	0,466	0,418
	o %	les Maxin	nalwertes	
20 µM	7,80911	11,5226	35,4286	20,2899
10 µM	5,20607	1,44033	33,8286	28,3166
5 µM	32,7549	18,93	26,7429	35,4515
2 µM	61,1714	11,111	53,7143	47,9376
1 µM	63,7744	58,0247	80,6857	85,6187
0,5 µM	45,3362	76,5432	106,514	93,1996
	MW	SE		
20 JJM	18,7625	6,2624		
10 µM	17,1979	8,12563		
5 µM	28,4698	3,66396		
2 µM	43,4836	11,1256		
1 µM	72,0259	6,60731		
0,5 µM	80,3983	13,1976		

7.1.5.2 Arcyriarubin A: IC ₅₀ und errechnete Parameter der Exponentialfunktion für den durch Natriumfluorid induzierten

Arcyriarubin	09	b1	IC 50
~	0,0106	1,1682	2,23328855
2	0,0174	1,1526	*
ß	0,0081	1,0779	8,21420479
4	0,0078	1,109	6,32065176

* - berechneter Wert im negativen Bereich
7.1.5.3 Pityriarubin A

Pityriarubin A	1	2	3	4
		Extinktion		
Leerwert 1	0,037	0,013	0,022	0,009
Leerwert 2	0,039	0,02	0,011	0,013
Leerwert (MW)	0,038	0,0165	0,0165	0,011
Max.Wert 1	0,436	0,481	0,475	0,455
Max. Wert 2	0,486	0,491	0,4	0,442
Max. Wert (MW)	0,461	0,486	0,4375	0,4485
20 µM	0,492	0,554	0,452	0,413
10 µM	0,583	0,561	0,479	0,429
5 µM	0,574	0,575	0,389	0,437
2 µM	0,567	0,537	0,461	0,441
1 µM	0,559	0,543	0,547	0,438
0,5 µM	0,573	0,566	0,429	0,443
	səp %	s Maximalw	ertes	
20 µM	106,725	113,992	103,314	92,0847
10 µM	126,464	115,432	109,486	95,6522
5 µM	124,512	118,313	88,9143	97,4359
2 µM	122,993	110,494	105,371	98,3278
1 µM	121,258	111,728	125,029	97,6589
0,5 µM	124,295	116,461	98,0571	98,7737
	MM	SE		
20 JJM	104,029	4,56161		
10 µM	111,759	6,41828		
5 µM	107,294	8,43043		
2 µM	109,297	5,20225		
1 µM	113,918	6,0997		
0,5 µM	109,397	6,54024		

7.1.5.4 Pityriarubin B

	,	((
Pityriarubin B	L	2	3	4
		Extinkti	on	
Leerwert 1	260,037	0,013	0,022	0,009
Leerwert 2	0,039	0,02	0,011	0,013
Leerwert (MW)	0,038	0,0165	0,0165	0,011
Max.Wert 1	0,436		0,475	0,455
Max. Wert 2	0,486	0,486	0,4	0,442
Max. Wert (MW)	0,461	0,486	0,4375	0,4485
20 µM	0,46	0,457	0,421	0,467
10 µM	0,48	0,519	0,453	0,446
5 µM	0,538	0,519	0,407	0,438
2 µM	0,562	0,478	0,593	0,442
1 µM	0,495	0,44	0,593	0,438
0,5 µM	0,478	0,399	0,533	0,451
	p %	es Maxim	alwertes	
20 µM	99,7831	94,0329	96,2286	104,125
10 µM	104,121	106,79	103,543	99,4426
5 µM	116,703	106,79	93,0286	97,6589
2 µM	121,909	98,3539	135,543	98,5507
1 µM	107,375	90,535	135,543	97,6589
0,5 µM	103,688	82,0988	121,829	100,557
	MW	SE		
20 µM	98,5424	2,20591		
10 µM	103,474	1,51858		
5 µM	103,545	5,2353		
2 µM	113,589	9,17174		
1 µM	107,778	9,87745		
0.5 uM	102.043	8.13507		

7.1.5.5 Pityriarubin C

	,	¢	,	
Pityriarubin C	1	7	S	4
		Extinkti	on	
Leerwert 1	0,037	0,013	0,022	0,009
Leerwert2	0,039	0,02	0,011	0,013
Leerwert	0,038	0,0165	0,0165	0,011
Max.Wert 1	0,436	0,481	0,475	0,455
Max. Wert 2	0,486	0,491	0,4	0,442
Max. Wert	0,461	0,486	0,4375	0,4485
20 µM	0,47	0,407	0,428	0,438
10 µM	0,488	0,381	0,516	0,431
5 µM	0,533	0,452	0,536	0,44
2 µM	0,55	0,422	0,442	0,436
1 µM	0,51	0,432	0,521	0,429
0,5 µM	0,525	0,431	0,442	0,447
	p %	es Maxim:	alwertes	
20 µM	101,952	83,7449	97,8286	97,6589
10 µM	105,857	78,3951	117,943	96,0981
5 µM	115,618	93,0041	122,514	98,1048
2 µM	119,306	86,8313	101,029	97,2129
1 µM	110,629	88,8889	119,086	95,6522
0,5 µM	113,883	88,6831	101,029	99,6656
	MW	SE		
20 JJM	95,2961	3,9763		
10 µM	99,5732	8,35423		
5 µM	107,31	7,00946		
2 µM	101,095	6,77104		
1 µM	103,564	6,88473		
0.5 uM	100 815	5 15847		

7.1.6 Aktivator: Zymosan A 7.1.6.1 Arcyriarubin A

Arcyriarubin A	1	2	3	4
		Extir	htion	
Leerwert 1	0,021	-0,012	0	0,003
Leerwert 2	0,012	0,012	0,002	0,007
Leerwert (MW)	0,0165	0	0,001	200'0
Max.Wert 1	0,191	0,118	0,169	0,183
Max. Wert 2	0,264	0,191	0,158	0,171
Max. Wert (MW)	0,2275	0,1545	0,1635	0,177
20 µM	0,202	0,153	0,174	0,189
10 µM	0,213	0,132	0,175	0,182
5 µM	0,168	0,116	0,185	0,174
2 µM	0,171	0,132	0,197	0,178
1 µM	0,147	0,116	0,176	0,186
0,5 µM	0,24	0,117	0,177	0,163
		% de	s Maxim	alwertes
20 µM	88,7912	99,0291	106,422	106,78
10 µM	93,6264	85,4369	107,034	102,825
5 µM	73,8462	75,0809	113,15	98,3051
2 μM	75,1648	85,4369	120,489	100,565
1 µM	64,6154	75,0809	107,645	105,085
0,5 µM	105,495	75,7282	108,257	92,0904
	MM	SE		
20 µM	100,256	4,21826		
10 µM	97,2304	4,82595		
5 µM	90,0955	9,52356		
2 µM	95,414	9,85256		
1 µM	88,1066	10,7685		
0,5 µM	95,3925	7,44498		

7.1.6.2 Pityriarubin A

Pityriarubin A	1	2	3	4
		Extin	ktion	
Leerwert 1	0,021	-0,012	0	0,003
Leerwert 2	0,012	0,012	0,002	0,007
Leerwert (MW)	0,0165	0	0,001	0,005
Max.Wert 1	0,191	0,118	0,169	0,183
Max. Wert 2	0,264	0,191	0,158	0,171
Max. Wert (MW)	0,2275	0,1545	0,1635	0,177
20 µM	0,246	0,177	0,216	0,166
10 µM	0,26	0,137	0,221	0,159
5 µM	0,213	0,161	0,215	0,165
2 µM	0,19	0,112	0,22	0,173
1 µM	0,189	0,187	0,181	0,164
0,5 µM	0,224	0,163	0,184	0,178
		% des	Maximalv	vertes
20 µM	108,132	114,563	132,11	93,7853
10 µM	114,286	88,6731	135,168	89,8305
5 µM	93,6264	104,207	131,498	93,2203
2 μM	83,5165	72,4919	134,557	97,7401
1 µM	83,0769	121,036	110,703	92,6554
0,5 µM	98,4615	105,502	112,538	100,565
	MW	SE		
20 µM	112,148	7,94583		
10 µM	106,989	11,095		
5 µM	105,638	8,98744		
2 µM	97,0763	13,52		
1 µM	101,868	8,5802		
0,5 µM	104,267	3,12711		

7.1.6.3 Pityriarubin B

Pitvriaruhin B	÷	6	er,	4
		Extin	Iktion	
Leerwert 1	0,021	-0,012	0	0,003
Leerwert 2	0,012	0,012	0,002	0,007
Leerwert (MW)	0,0165	0	0,001	0,005
Max.Wert 1	0,191	0,118	0,169	0,183
Max. Wert 2	0,264	0,191	0,158	0,171
Max. Wert (MW)	0,2275	0,1545	0,1635	0,177
20 µM	0,277	0,074	0,195	0,173
10 µM	0,199	0,123	0,186	0,189
5 µM	0,251	0,123	0,153	0,185
2 µM	0,219	0,15	0,195	0,169
1 µM	0,196	0,182	0,205	0,17
0,5 µM	0,192	0,14	0,256	0,156
	% d€	es Maxima	Ilwertes	
20 µM	121,758	47,8964	119,266	97,7401
10 µM	87,4725	79,6117	113,761	106,78
5 µM	110,33	79,6117	93,578	104,52
2 µM	96,2637	97,0874	119,266	95,4802
1 µM	86,1538	117,799	125,382	96,0452
0,5 µM	84,3956	90,6149	156,575	88,1356
	MM	SE		
20 µM	96,6652	17,127		
10 µM	96,9063	8,00875		
5 µM	97,0098	6,75951		
2 µM	102,024	5,75659		
1 µM	106,345	9,16237		
0,5 µM	104,93	17,2623		

7.1.6.4 Pityriarubin C

Pityriarubin C	•	2	с	4
		Extink	tion	
Leerwert 1	0,021	-0,012	0	0,003
Leerwert2	0,012	0,012	0,002	0,007
Leerwert	0,0165	0	0,001	0,005
Max.Wert 1	0,191	0,118	0,169	0,183
Max. Wert 2	0,264	0,191	0,158	0,171
Max. Wert	0,2275	0,1545	0,1635	0,177
20 µM	0,219	0,146	0,22	0,171
10 µM	0,24	0,156	0,167	0,184
5 µM	0,223	0,104	0,197	0,169
2 µM	0,221	0,139	0,188	0,162
1 µM	0,207	0,124	0,169	0,172
0,5 µM	0,199	0,104	0,183	0,192
	p %	es Maxim:	alwertes	
20 µM	96,2637	94,4984	134,557	96,6102
10 µM	105,495	100,971	102,141	103,955
5 µM	98,022	67,3139	120,489	95,4802
2 μM	97,1429	89,9676	114,985	91,5254
1 µM	90,989	80,2589	103,364	97,1751
0,5 µM	87,4725	67,3139	111,927	108,475
	MW	SE		
20 JJM	105,482	9,70248		
10 µM	103,14	0,9963		
5 µM	95,3264	10,8979		
2 µM	98,4052	5,73729		
1 µM	92,9467	4,92621		
0,5 µM	93,7969	10,35		

7.2.1 Wirkung der untersuchten Substanzen auf die Leukotrienausschüttung nach Stimulation mit A 23187

7.2.1 Wirkung der untersuchten Substanzen auf die LTB₄ - Ausschüttung

7.2.1.1 Arcyriarubin A

7.2.1.2 Pityriarubin A

aruhin A	•	¢	ć	V
	-	Extin	ction	•
ert 1	0	0	0	0
/ert 2	0	0	0	0
ert (MW)	0	0	0	0
Vert 1	27,6714	24,0127	32,9256	12,8284
Nert 2	23,9038	24,1248	34,2821	10,8513
Vert (MW)	25,7876	24,0688	33,6039	11,8399
	25,0843	19,314	19,699	0,8896
	32,2718	25,8425	25,471	11,9745
	30,226	29,569	33,8147	17,5177
	27,5235	26,4127	26,595	12,2157
	19,7674	21,328	28,3451	17,6349
V	24,1413	26,8836	33,0857	14,7932
	0 %	les Maxin	nalwertes	
	97,2727	80,2451	58,6213	7,51361
	125,145	107,37	75,7979	101,137
	117,211	122,852	100,627	147,955
	106,732	109,739	79,1427	103,174
	76,6547	88,6128	84,3508	148,945
Ν	93,6159	111,695	98,4581	124,944
	MW	ЗS		
	60,9132	19,4776		
	102,362	10,2114		
	122,162	9,80656		
	99,6968	6,98146		
	99,6409	16,62		
δ	107,178	7,0475		

Pitvriarubin A	ţ	6	6	4	5	9
		Extinkt	ion		,	
Leerwert 1	0	0	0	0	0	0
Leerwert 2	0	0	0	0	0	0
Leerwert (MW)	0	0	0	0	0	0
Max.Wert 1	33,4552	27,6714	24,0127	32,9256	12,8284	16,6437
Max. Wert 2	32,3843	23,9038	24,1248	34,2821	10,8513	17,7814
Max. Wert (MW)	32,9198	25,7876	24,0688	33,6039	11,8399	17,2126
20 µM	24,6204	16,8938	21,6775	26,8606	4,0497	15,2269
10 µM	26,1681	19,392	31,7781	31,3384	8,9293	21,8972
5 µM	22,9637	23,7663	22,494	24,2413	8,5518	20,6526
2 µM	29,3352	29,5964	27,1725	27,7597	13,5162	16,69
1 µM	27,9667	22,6229	26,2316	22,6612	11,8445	20,015
0,5 µM	30,5631	21,2843	31,6337	27,2248	8,6316	22,3642
		% des	: Maximalv	vertes		
20 µM	74,7891	65,5113	90,0649	79,9331	34,204	88,4639
10 µM	79,4906	75,1989	132,031	93,2584	75,4173	127,216
5 µM	69,7566	92,1617	93,4573	72,1385	72,229	119,986
2 µM	89,1112	114,77	112,895	82,6087	114,159	96,9641
1 µM	84,9542	87,7278	108,986	67,4363	100,039	116,281
0,5 µM	92,8412	82,537	131,431	81,0169	72,903	129,93
	MW	SE				
20 µM	72,1611	8,43864				
10 µM	97,102	10,6681				
5 µM	86,6215	7,92971				
2 µM	101,751	5,76512				
1 µM	94,2375	7,25993				
0,5 µM	98,443	10,519				

7.2.1.3 Pityriarubin B

Pityriarubin B	1	2	3	4	5	6
			Extinktio	L		
Leerwert 1	0	0	0	0	0	0
Leerwert 2	0	0	0	0	0	0
Leerwert (MW)	0	0	0	0	0	0
Max.Wert 1	33,4552	27,6714	24,0127	32,9256	12,8284	16,6437
Max. Wert 2	32,3843	23,9038	24,1248	34,2821	10,8513	17,7814
Max. Wert (MW)	32,9198	25,7876	24,0688	33,6039	11,8399	17,2126
20 µM	16,2827	28,3367	14,6754	20,2635	9,8287	14,0182
10 µM	25,1775	29,9175	15,6847	20,6924	16,4819	23,3861
5 µM	31,7359	22,7921	26,2676	24,481	17,2469	17,7289
2 µM	32,9567	21,4238	29,1146	26,954	12,5152	19,1446
1 µM	31,927	22,8171	23,883	22,4749	14,873	18,9872
0,5 µM	33,2687	35,6891	26,5351	24,3837	13,5281	25,6478
		% des	: Maximal	vertes		
20 µM	49,4618	109,885	60,9728	60,3011	83,0137	81,4417
10 µM	76,4814	116,015	65,1662	61,5775	139,207	135,867
5 µM	96,4038	88,384	109,136	72,8518	145,668	103
2 µM	100,112	83,0779	120,964	80,211	105,704	111,225
1 µM	96,9843	88,4809	99,2283	66,8819	125,618	110,31
0,5 µM	101,06	138,396	110,247	72,5622	114,259	149,006
	MM	SE				
20 µM	74,1794	8,90489				
10 µM	99,0523	14,5146				
5 µM	102,574	10,0379				
2 µM	100,216	6,53652				
1 µM	97,9173	8,05162				
0,5 µM	114,255	11,1067				

7.2.1.4 Pityriarubin C

• : :		,	,	,		(
Pityriarubin C	-	2	3	4	5	9
			Extinktion			
Leerwert 1	0	0	0	0	0	0
Leerwert 2	0	0	0	0	0	0
Leerwert (MW)	0	0	0	0	0	0
Max.Wert 1	33,4552	27,6714	24,0127	32,9256	12,8284	16,6437
Max. Wert 2	32,3843	23,9038	24,1248	34,2821	10,8513	17,7814
Max. Wert (MW)	32,9198	25,7876	24,0688	33,6039	11,8399	17,2126
20 µM	30,4281	14,7794	13,3358	22,7347	0,0973	0,8765
10 µM	23,5332	27,3832	26,4271	23,9538	7,7021	13,2887
5 µM	22,6374	25,8474	27,0134	27,532	11,3929	16,4863
2 µM	27,8931	38,1363	26,5449	35,7316	17,4571	21,9348
1 µM	34,4667	32,8621	18,5536	23,2739	25,0453	19,8169
0,5 µM	29,3925	27,7376	19,2795	35,6972	19,648	19,2452
		% des	: Maximal	vertes		
20 µM	92,4311	57,312	55,4071	67,655	0,8218	5,09221
10 µM	71,4866	106,187	109,798	71,2829	65,0523	77,2036
5 µM	68,7654	100,232	112,234	81,9311	96,225	95,7807
2 µM	84,7306	147,886	110,288	106,332	147,444	127,435
1 µM	104,699	127,434	77,0858	69,2596	211,534	115,131
0,5 µM	89,2853	107,562	80,1018	106,229	165,948	111,809
	MW	SE				
20 µM	46,4532	14,7821				
10 µM	83,5019	7,91358				
5 µM	92,5281	6,18931				
2 µM	120,686	10,1774				
1 µM	117,524	20,8804				
0,5 µM	110,156	12,2175				

7.2.1.5 IC 50 und errechnete Parameter der Exponentialfunktion für die durch A 23187 induzierte LTB4-Ausschüttung

Arcyriarubin	\mathbf{b}_0	b1	IC 50
1	0,01980263	-0,01146548	*1
7	-0,17435339	0,01950847	65,2519604
ო	0,09531018	0,03748844	26,7629699
4	-0,86750057	0,17277614	11,3795389

Pityriarubin B	٥q	\mathbf{b}_1	IC 50
-	-0,0618754	0,05685281	20,4121425
2	-0,02020271	-0,0082338	*
e	-0,19845094	0,05581306	23,2394195
4	0,40546511	0,02586266	26,801079
5	-0,4462871	0,01862546	82,9455514
6	-0,4462871	0,0287818	53,6762577

n Bereich	
)e	
j⊒	
nega	
ε	
Werte i	
rechnete	
¹ - bei	c
*	1

*² - berechnete Werte größer 100

Pityriarubin A	\mathbf{b}_0	\mathbf{b}_1	IC 50
~	0,21511138	0,01941039	45,5168984
2	0,05826891	0,03401488	30,5849506
ę	-0,27443685	0,01508564	91,0169783
4	0,36464311	9,9995E-05	*2
5	0,01980263	0,07241368	14,8978709
9	-0,32850407	0,01695544	84,1686386

Pityriarubin C	\mathbf{b}_0	\mathbf{b}_1	IC 50
Ł	0,21511138	0,00876151	*2
2	-0,4780358	0,06156536	25,6093394
n	0	0,03062619	35,8716563
4	0,11332869	0,03266078	30,1671771
5	-3,21887582	0,43625293	9,89675446
9	-0,5798185	0,18656255	8,99661145

7.2.2 Wirkung der untersuchten Substanzen auf die Ausschüttung von 6-trans-LTB4

7.2.2.1 Arcyriarubin A

Arcvriarubin A	ţ	2	3	4
		Extinkt	ion	1
Leerwert 1	0	0	0	0
Leerwert 2	0	0	0	0
Leerwert (MW)	0	0	0	0
Max.Wert 1	11,0539	8,0064	9,672	5,8849
Max. Wert 2	13,511	7,8449	9,2718	5,2662
Max. Wert (MW)	12,2825	7,92565	9,4719	5,57555
20 µM	4,1305	2,6837	1,9657	0
10 µM	6,0983	4,901	3,686	2,1627
5 µM	7,175	6,4332	4,6737	4,701
2 µM	8,7763	7,9168	6,9364	5,0727
1 µM	8,2804	6,184	8,0397	7,6764
0,5 µM	10,9984	7,9324	8,961	6,553
	p %	es Maxima	alwertes	
20 µM	33,6293	33,8609	20,753	0
10 µM	49,6505	61,8372	38,9151	38,789
5 µM	58,4167	81,1694	49,3428	84,3146
2 µM	71,454	99,8883	73,2313	90,9812
1 µM	67,4165	78,0251	84,8795	137,68
0,5 µM	89,5457	100,085	94,6062	117,531
	MW	SE		
20 µM	22,0608	7,96588		
10 µM	47,298	5,47417		
5 JuM	68,3108	8,55931		
2 µM	83,8887	6,91913		
1 JuM	92,0002	15,6444		
0,5 µM	100,442	6,08926		

7.2.2.2 Pityriarubin A

Pityriarubin A	1	2	3	4	5	9
			Extinktior			
Leerwert 1	0	0	0	0	0	0
Leerwert 2	0	0	0	0	0	0
Leerwert (MW)	0	0	0	0	0	0
Max.Wert 1	11,0539	16,749	8,0064	9,672	5,8849	10,8822
Max. Wert 2	13,511	15,8761	7,8449	9,2718	5,2662	9,928
Max. Wert (MW)	12,2825	16,3126	7,92565	9,4719	5,57555	10,4051
20 µM	4,4718	10,5801	6,219	7,376	1,3858	7,9976
10 µM	7,4861	19,0954	9,7256	8,244	3,243	11,4216
5 µM	9,1922	10,5932	6,9741	5,2103	3,6526	12,9396
2 µM	12,1367	12,5434	8,5109	7,9677	6,2684	12,4961
1 µM	9,3025	12,8676	8,1962	6,5816	5,4778	13,7861
0,5 µM	8,2255	15,2734	10,4709	8,2859	4,6293	14,41
		% des	: Maximal	vertes		
20 µM	36,408	64,8587	78,4668	77,8724	24,8549	76,8623
10 µM	60,9496	117,06	122,71	87,0364	58,1647	109,769
5 µM	74,8401	64,939	87,994	55,008	65,511	124,358
2 µM	98,8133	76,8942	107,384	84,1193	112,427	120,096
1 µM	75,7381	78,8816	103,414	69,4855	98,2468	132,494
0,5 µM	66,9695	93,6298	132,114	87,4788	83,0286	138,49
	MW	SE				
20 µM	59,8872	12,6117				
10 µM	92,615	10,8594				
5 µM	78,7751	8,45376				
2 µM	99,9556	11,1306				
1 µM	93,0432	12,1767				
0.5 uM	100.285	8,96471				

7.2.2.3 Pityriarubin B

Pityriarubin B	1	2	3	4	5	6
			Extinktior			
Leerwert 1	0	0	0	0	0	0
Leerwert 2	0	0	0	0	0	0
Leerwert (MW)	0	0	0	0	0	0
Max.Wert 1	11,0539	16,749	8,0064	9,672	5,8849	10,8822
Max. Wert 2	13,511	15,8761	7,8449	9,2718	5,2662	9,928
Max. Wert (MW)	12,2825	16,3126	7,92565	9,4719	5,57555	10,4051
20 µM	9,5449	1,8291	3,3796	3,7201	2,6527	8,1933
10 µM	7,6544	11,7538	4,3969	4,4133	5,881	14,0994
5 µM	13,3634	13,4799	7,5433	6,2334	7,5182	11,9144
2 µM	6	14,7158	9,0875	7,5971	5,3554	15,0461
1 µM	9,3757	15,429	7,1404	6,2485	6,7507	12,5506
0,5 µM	15,7559	15,8936	8,5622	6,8654	7,0974	16,0575
		% des	Maximal	vertes		
20 µM	77,7117	11,2128	42,6413	39,2751	47,5774	78,7431
10 µM	62,3198	72,0537	55,4768	46,5936	105,478	135,505
5 µM	108,801	82,6351	95,1758	65,8094	134,842	114,505
2 µM	72,5914	90,2115	114,659	80,2067	96,0515	144,603
1 µM	76,3341	94,5836	90,0923	65,9688	121,077	120,62
0,5 µM	128,28	97,4317	108,032	72,4818	127,295	154,323
	MM	SE				
20 µM	49,5269	12,6117				
10 µM	79,5712	10,8594				
5 µM	100,295	8,45376				
2 µM	99,7206	11,1306				
1 µM	94,7792	12,1767				
0,5 µM	114,641	8,96471				

7.2.2.4 Pityriarubin C

Pityriarubin C	F	2	3	4	5	9
			Extinktio	u		
Leerwert 1	0	0	0	0	0	0
Leerwert 2	0	0	0	0	0	0
Leerwert (MW)	0	0	0	0	0	0
Max.Wert 1	11,0539	16,749	8,0064	9,672	5,8849	10,8822
Max. Wert 2	13,511	15,8761	7,8449	9,2718	5,2662	9,928
Max. Wert (MW)	12,2825	16,3126	7,92565	9,4719	5,57555	10,4051
20 µM	2,0171	7,6135	2,0307	3,8489	0	0,2978
10 µM	8,4252	7,4218	7,0956	5,7821	2,1875	6,5426
5 µM	9,685	9,3672	7,7608	7,2968	4,2177	9,4247
2 µM	10	12,7922	7,8863	9,9284	7,9042	12,9124
1 µM	14,5555	15,6836	5,5273	6,1982	11,1928	11,4314
0,5 µM	12,6459	13,5208	5,5192	9,7534	8,6958	11,4596
		% des	: Maximal	vertes		
20 µM	16,4226	46,6727	25,6219	40,6349	0	2,86206
10 µM	68,5954	45,4975	89,527	61,0448	39,2338	62,8788
5 µM	78,8523	57,4233	97,92	77,0363	75,6463	90,5777
2 µM	83,3954	78,4194	99,5035	104,82	141,765	124,097
1 µM	118,506	96,1444	69,7394	65,4378	200,748	109,863
0,5 µM	102,959	82,8859	69,6372	102,972	155,963	110,134
	MW	SE				
20 µM	22,0357	12,6117				
10 µM	61,1296	10,8594				
5 µM	79,576	8,45376				
2 µM	105,333	11,1306				
1 µM	110,073	12,1767				
0,5 µM	104,092	8,96471				

7.2.2.5 IC 50 und errechnete Parameter der Exponentialfunktion für die durch A 23187 induzierte 6-trans-LTB4-Ausschüttung

Arcyriarubin	\mathbf{b}_0	٩	IC 50
٢	0,35065687	0,0677521	11,0395898
2	0,03922071	0,07686844	13,7818787
ო	0,23111172	0,1044501	8,30540666
4	-0,54472718	0,23333148	7,04293943

Pityriarubin B	\mathbf{b}_0	b,	IC 50
Ł	0,05826891	0,02819865	36,8933697
2	-0,12783337	0,13164211	9,31651482
ę	-0,10536052	0,07575661	15,8926431
4	0,40546511	0,05656935	12,2530516
5	-0,4462871	0,06653652	23,2188173
6	-0,69314718	0,04516455	39,6718088

* - berechneter Wert im negativen Bereich

Pityriarubin A	\mathbf{b}_0	b1	IC 50
+	0,24686008	0,06118917	13,9199835
2	0,23111172	0,01419872	61,0970992
ო	-0,24846136	0,02605753	51,6961287
4	0,37843644	0,00628024	*
5	0	0,09721745	11,3005667
9	-0,54472718	0,04621542	35,5582472

Pityriarubin C	\mathbf{b}_0	b1	IC 20
Ł	-0,17435339	0,12097793	10,522297
7	0,27763174	0,0586462	13,9988715
e	0,09531018	0,07139	14,0538194
4	0,09531018	0,06494469	15,4485629
5	-2,81341072	0,38764052	10,0918835
9	-0,5798185	0,21478875	7,81433296

7.2.3 Wirkung der untersuchten Substanzen auf die Ausschüttung von 6-trans-12-epi-LTB4

7.2.3.1 Arcyriarubin A

Arcyriarubin A	-	2	3	4
		Extinkt	ion	
Leerwert 1	0	0	0	0
Leerwert 2	0	0	0	0
Leerwert (MW)	0	0	0	0
Max.Wert 1	10,7696	7,2064	8,88764	6,0843
Max. Wert 2	11,7814	5,5869	9,3275	5,0685
Max. Wert (MW)	11,2755	6,39665	9,10757	5,5764
20 JM	0,3018	2,3152	1,521	0
10 µM	4,3208	4,2296	2,7416	2,0109
2 µM	5,9268	6,2501	3,3602	4,4819
2 µM	10,7042	7,0506	6,1369	5,1477
Mu 1	8,3274	4,5236	7,5131	8,062
0,5 µM	10,5318	7,144	8,4717	7,078
	p %	es Maxim	alwertes	
20 µM	2,6766	36,1939	16,7004	0
10 µM	38,3203	66,1221	30,1024	36,0609
5 µM	52,5635	97,709	36,8946	80,3726
2 µM	94,9333	110,223	67,3824	92,3122
1 µM	73,8539	70,7183	82,4929	144,574
0,5 µM	93,4043	111,683	93,0182	126,928
	MW	SE		
20 JuM	37,8502	8,28672		
10 µM	72,009	8,01324		
5 µM	73,1216	13,6521		
2 µM	97,6669	8,87101		
1 µM	92,969	17,4003		
0,5 µM	109,453	8,15059		

7.2.3.2 Pityriarubin A

Pitvriaruhin A	•	6	3	4	S	9
			Extinktion		1	
Leerwert 1	0	0	0	0	0	0
Leerwert 2	0	0	0	0	0	0
Leerwert (MW)	0	0	0	0	0	0
Max.Wert 1	13,1455	10,7696	7,2064	8,88764	6,0843	9,3618
Max. Wert 2	12,8519	11,7814	5,5869		5,0685	9,4947
Max. Wert (MW)	12,9987	11,2755	6,39665	8,88764	5,5764	9,42825
20 µM	6,259	2,4476	5,3368	6,6118	0,946	7,3808
10 µM	13,121	6,5804	8,5953	7,5167	3,1808	10,7667
5 µM	7,4524	8,1508	5,7754	3,9676	3,8055	12,3401
2 µM	11,6458	11	7,2017	7,3849	6,6626	10,0679
1 µM	11,1245	9,1791	5,3508	6,201	5,4001	13,2752
0,5 µM	12,4501	11,9559	10,006	8,2053	3,9128	14,0263
		% des	s Maximalv	vertes		
20 µM	48,151	21,7072	83,4312	74,3932	16,9643	78,2839
10 µM	100,941	58,3602	134,372	84,5748	57,0404	114,196
5 µM	57,3319	72,2877	90,2879	44,6418	68,243	130,884
2 µM	89,592	100,286	112,585	83,0918	119,479	106,784
1 µM	85,5816	81,4075	83,65	69,7711	96,8385	140,802
0,5 µM	95,7796	106,034	156,426	92,3226	70,1671	148,769
	MW	SE				
20 J.M	53,8218	12,0004				
10 µM	91,5807	12,6173				
5 µM	77,2794	12,3995				
2 µM	101,97	5,64167				
1 µM	93,0085	10,1919				
0.5 uM	111,583	13,8569				

7.2.3.3 Pityriarubin B

Pitvriarubin B	F	2	3	4	5	9
			Extinktion			
Leerwert 1	0	0	0	0	0	0
Leerwert 2	0	0	0	0	0	0
Leerwert (MW)	0	0	0	0	0	0
Max.Wert 1	13,1455	10,7696	7,2064	8,88764	6,0843	9,3618
Max. Wert 2	12,8519	11,7814	5,5869	9,3275	5,0685	9,4947
Max. Wert (MW)	12,9987	11,2755	6,39665	9,10757	5,5764	9,42825
20 µM	0,3413	8,581	2,1082	3,026	1,6627	7,6636
10 µM	8,2977	9,3538	3,0257	3,6253	5,4336	13,7056
5 µM	12,145	9,5398	6,7913	5,6676	6,5857	11,0356
2 µM	12,4712	9,0817	8,422	7,1588	5,3379	11,3413
1 µM	12,7589	9,4232	7,2425	4,9392	6,6429	12,2498
0,5 µM	12,8592	15,4501	7,5127	6,2538	5,0896	15,4532
		% des	: Maximalv	vertes		
20 µM	2,62565	76,1031	32,9579	33,2251	29,8167	81,2834
10 µM	63,8348	82,9569	47,3013	39,8053	97,4392	145,367
5 µM	93,4324	84,6064	106,17	62,2296	118,099	117,048
2 µM	95,9419	80,5437	131,663	78,6027	95,723	120,291
1 µM	98,1552	83,5723	113,223	54,2318	119,125	129,927
0,5 µM	98,9268	137,024	117,447	68,666	91,2704	163,903
	MW	SE				
20 µM	42,6686	12,3303				
10 µM	79,4508	15,8431				
5 µM	96,931	8,76829				
2 µM	100,461	8,72566				
1 µM	99,7057	11,2601				
0,5 µM	112,873	13,9328				

7.2.3.4 Pityriarubin C

Pityriarupin 🤇	1	2	3	4	5	6
			Extinktior			
Leerwert 1	0	0	0	0	0	0
Leerwert 2	0	0	0	0	0	0
Leerwert (MW)	0	0	0	0	0	0
Max.Wert 1	13,1455	10,7696	7,2064	8,88764	6,0843	9,3618
Max. Wert 2	12,8519	11,7814	5,5869	9,3275	5,0685	9,4947
Max. Wert (MW)	12,9987	11,2755	6,39665	9,10757	5,5764	9,42825
20 µM	5,889	1,0888	0,9632	3,2831	0	0,0869
10 µM	1,5082	8,4386	6,7801	5,581	1,0803	6,4504
5 µM	7,4535	9,2204	7,2618	6,8751	3,8719	9,1524
2 µM	10,9573	19,1893	7,4408	9,295	7,4639	12,4701
1 µM	14,8965	13,5055	3,8155	5,7206	10,7074	11,1831
0,5 µM	11	11,8922	5,5112	8,872	8,0951	10,7132
		% des	: Maximal	vertes		
20 µM	45,3045	9,65633	15,0579	36,048	0	0,9217
10 µM	11,6027	74,8401	105,995	61,2787	19,3727	68,4157
5 µM	57,3403	81,7738	113,525	75,4878	69,4337	97,0742
2 µM	84,2954	170,186	116,323	102,058	133,848	132,263
1 µM	114,6	119,777	59,6484	62,8115	192,013	118,613
0,5 µM	86,0271	105,469	86,1576	97,4135	145,167	113,629
	MM	SE				
20 µM	17,8314	7,67038				
10 µM	56,9174	14,542				
5 µM	82,4391	8,22268				
2 µM	123,162	12,1258				
1 µM	111,244	19,7229				
0,5 µM	105,644	9,05198				

7.2.3.5 IC 50 und errechnete Parameter der Exponentialfunktion für die durch A 23187 induzierte 6-trans-12-epi-LTB4-Ausschüttung

Arcyriarubin	\mathbf{b}_0	\mathbf{b}_1	IC 50
٢	-0,04082199	0,20375684	5,59212784
7	-0,0618754	0,07603469	15,2626091
ო	0,3220835	0,11653782	6,66332024
4	-0,61618614	0,24019731	7,13912432

Pityriarubin B	\mathbf{b}_0	\mathbf{b}_1	IC 20
1	-0,35667494	0,20538683	7,08559178
7	0	0,02975296	36,9244726
ო	-0,38566248	0,10714892	13,8524479
4	0,49469624	0,0629748	9,58980505
5	-0,27443685	0,08240914	16,6613703
6	-0,73396918	0,04094999	44,751699

Pityriarubin A b₀ b₁ b₁				
1 0,13102826 0,0428679 22, 2 -0,02020271 0,10417982 10 3 -0,32850407 0,020293497 62, 4 0,39204209 0,01133551 62, 5 -0,02020271 0,11404272 9,8 6 -0,61618614 0,0475513 36.	Pityriarubin A	\mathbf{b}_0	b1	IC 50
2 -0,02020271 0,10417982 10 3 -0,32850407 0,02293497 62, 4 0,32850407 0,02293497 62, 5 0,32020407 0,01133551 62, 6 0,02020271 0,11404272 9,8 6 -0,61618614 0,0475513 36,	Ł	0,13102826	0,0428679	22,5712951
3 -0,32850407 0,02293497 62, 4 0,39204209 0,01133551 62, 5 -0,02020271 0,11404272 9,8 6 -0,61618614 0,0475513 36.	2	-0,02020271	0,10417982	10,739268
4 0,39204209 0,01133551 62, 5 -0,02020271 0,11404272 9,8 6 -0,61618614 0,0475513 36.	ო	-0,32850407	0,02293497	62,2244666
5 -0,02020271 0,11404272 9,8 6 -0,61618614 0,0475513 36.	4	0,39204209	0,01133551	62,3324598
6 -0.61618614 0.0475513 36.	5	-0,02020271	0,11404272	9,81049062
	9	-0,61618614	0,0475513	36,0620711

Pityriarubin C	\mathbf{b}_0	\mathbf{b}_1	IC 50
Ļ	0,24686008	0,09011489	9,4518477
2	-0,69314718	0,16889854	10,6084961
ę	-0,12783337	0,10011679	12,2501495
4	0,14842001	0,06831264	13,9094651
5	-1,27296568	0,29743436	7,97344978
6	-0,82098055	0,27086648	7,08686008

7.3. Wirkung der untersuchten Substanzen auf die IL-8 - Ausschüttung nach LPS-Stimulation

7.3.1 Arcyriarubin A

A miduriaria	Ţ	ſ	¢		u
	-	4	Extinktion	•	b
Leerwert 1	415	349	525	421	380
Leerwert 2	417	339	484	390	412
Leerwert 3	348	357	451	395	405
Leerwert 4	381	370	486		444
Leerwert (MW)	390,25	353,75	486,5	402	410,25
Max. Wert 1	2198	1157	2693	2279	2499
Max. Wert 2	1764	961	2656	2285	2380
Max. Wert 3	1777	1286	2779		
Max. Wert 4	2320	978	2821		
Max. Wert (MW)	2014,75	1095,5	2738,25	2282	2439,5
20 µM	2327	1302	2720	2742	2577
10 µM	1960	1187	2667	2311	2542
5 µM	2203	1311	2954	2363	2603
2 µM	2331	1303	2718	2542	2538
1 µM	2430	1207	2633	2399	2478
0,5 µM	2056	1583	2804	2451	2243
		% des l	Maximalwe	ertes	
20 µM	115,498	118,85	99,3335	120,158	105,636
10 µM	97,2825	108,352	97,398	101,271	104,202
5 µM	109,344	119,671	107,879	103,55	106,702
2 µM	115,697	118,941	99,2605	111,394	104,038
1 µM	120,61	110,178	96,1563	105,127	101,578
0,5 µM	102,047	144,5	102,401	107,406	91,9451
	MM				
20 µM	111,895				
10 µM	101,701				
5 µM	109,429				
2 µM	109,866				
1 µM	106,73				
0,5 µM	109,66				

7.3.2 Pityriarubin A

,					
Pityriarubin A	-	2	3	4	5
			Extinktion		
Leerwert 1	415	349	525	421	380
Leerwert 2	417	339	484	390	412
Leerwert 3	348	357	451	395	405
Leerwert 4	381	370	486		444
Leerwert (MW)	390,25	353,75	486,5	402	410,25
Max. Wert 1	2198	1157	2693	2279	2499
Max. Wert 2	1764	961	2656	2285	2380
Max. Wert 3	1777	1286	2779		
Max. Wert 4	2320	978	2821		
Max. Wert MW)	2014,75	1095,5	2738,25	2282	2439,5
20 µM	2177	1107	2630	2333	2514
10 µM	2325	889	2478	2449	2501
5 µM	1894	881	2516	2169	2574
2 μM	1959	1049	2480	2222	2568
1 μM	1920	851	2447	2149	2499
0,5 µM	2464	997	2453	2260	2493
		% des	Maximalv	vertes	
20 µM	108,053	101,05	96,0467	102,235	103,054
10 µM	115,399	81,1502	90,4958	107,318	102,521
5 µM	94,0067	80,4199	91,8835	95,0482	105,513
2 μM	97,2329	95,7554	90,5688	97,3707	105,267
1 μM	95,2972	77,6814	89,3636	94,1718	102,439
0,5 µM	122,298	91,0087	89,5828	99,0359	102,193
	MW				
20 µM	102,088				
10 µM	99,3768				
5 µM	93,3743				
2 µM	97,2391				
1 µM	91,7906				
0,5 µM	100,824				

Ш
bin
arul
E:
>
Ē
Pity
.3 Pity
.3.3 Pity

Pityriarubin B	+	2	3	4	5
			Extinktion		
Leerwert 1	415	349	525	421	380
Leerwert 2	417	339	484	390	412
Leerwert 3	348	357	451	395	405
Leerwert 4	381	370	486		444
Leerwert (MW)	390,25	323,75	486,5	402	410,25
Max. Wert 1	2198	1157	2693	2279	2499
Max. Wert 2	1764	961	2656	2285	2380
Max. Wert 3	1777	1286	2779		
Max. Wert 4	2320	978	2821		
Max. Wert(MW)	2014,75	1095,5	2738,25	2282	2439,5
20 JM	2020	1127	2490	2326	2478
10 µM	1912	961	2332	2145	2406
5 µM	1736	917	2539	2262	2426
2 µM	2051	1226	2528	2371	2572
1 µM	1910	838	2242	2062	2477
0,5 µM	2653	1395	2543	2149	2517
		% des	Maximalw	rertes	
20 µM	100,261	102,875	90,934	101,928	101,578
10 µM	94,9001	87,7225	85,1639	93,9965	98,6268
5 µM	86,1645	83,7061	92,7235	99,1236	99,4466
2 μM	101,799	111,912	92,3217	103,9	105,431
1 µM	94,8008	76,4948	81,8771	90,3593	101,537
0,5 µM	131,679	127,339	92,8695	94,1718	103,177
	MW				
20 µM	99,5153				
10 µM	92,082				
5 µM	92,2328				
2 µM	103,073				
1 µM	89,0138				
0.5 uM	109 847				

7.3.4 Pityriarubin C

Extinktion Extinktion Leerwert 1 415 349 525 Leerwert 2 331 357 484 Leerwert 3 331 357 486,5 Leerwert 4 381 370 486 Leerwert 3 390,25 353,75 486,5 Leerwert 4 390,25 353,75 486,5 Max. Wert 1 2198 1157 2693 2779 Max. Wert 3 1777 1286 2821 2779 Max. Wert 4 2014,75 1095,5 2738,25 273 Max. Wert 4 2031 1234 2565 2713 J0 µM 2091 1234 2565 273 J0 µM 2091 1234 2565 101 J0 µM 2091 1234 2565 101 J0 µM 2003 1234 2565 101 J0 µM 209 1234 2424 233 101 J0 µM 20041 1234 <th>Ditvriaruhin C</th> <th>•</th> <th>۰ د</th> <th>٣</th> <th>V</th> <th>Ľ</th>	Ditvriaruhin C	•	۰ د	٣	V	Ľ
Leerwert 1 415 349 525 Leerwert 2 417 339 484 Leerwert 3 381 357 451 Leerwert 4 381 357 486 Leerwert 4 390,25 353,75 486,5 Leerwert 4 390,25 353,75 486,5 Max. Wert 1 2198 1157 2693 Max. Wert 2 1777 1286 2779 Max. Wert 4 2320 978 2821 Max. Wert 4 2320 978 2821 Max. Wert 6 1777 1286 2871 Max. Wert 6 1349 2575 2733,25 Max. Wert 6 1343 2565 2779 Max. Wert 6 2001 1349 2575 2733,25 LopM 2014,75 1095,5 2733,25 101 Jourd 10,201 2014,75 1349 2575 2733,25 LopM 200,42 1366 28424 101 <td< th=""><th></th><th></th><th>ı</th><th>Extinktion</th><th></th><th></th></td<>			ı	Extinktion		
Leerwert 2 417 339 484 Leerwert 3 348 357 451 Leerwert 4 381 370 486 Leerwert 4 390,25 353,75 486,5 Leerwert 1 290,25 353,75 486,5 Max. Wert 1 2198 1157 2693 Max. Wert 2 1777 1286 2779 Max. Wert 4 2320 978 2821 Max. Wert 1 2198 1157 2693 Max. Wert 4 23200 978 2821 Max. Wert 6000 2014,75 1095,5 2738,25 Max. Wert 6000 1349 2613 10 Max. Wert 6000 2014,75 1095,5 2738,25 Jould 2001M 2014,75 1095,5 2738,25 Jul 10 1349 26428 101 Jul 2001M 20642 1349 2424 Jul 0,5 µM 2001 108,444 94,0382	Leerwert 1	415	349	525	421	380
Leerwert 3 348 357 451 Leerwert 4 381 370 486 486 Leerwert (MW) 390,25 353,75 486,5 486,5 Max. Wert 1 2198 1157 2693 486,5 Max. Wert 1 2198 1157 2693 2779 Max. Wert 2 1777 1286 2779 2693 2779 Max. Wert 4 2320 978 2821 2821 2733,25 2821 Max. Wert (MW) 2014,75 1095,5 2733,25 2821 265 2779 Max. Wert (MW) 2014,75 1095,5 2733,25 2821 265 2733,25 2613 275 J 0 µM 20097 1234 2575 2733,25 265 2742 J 10 µM 20041 22031 1234 2424 2424 2424 J 10 µM 20041 1234 2426 265 101 J 10 µM 20041 1234 2424 <t< th=""><th>Leerwert 2</th><th>417</th><th>339</th><th>484</th><th>390</th><th>412</th></t<>	Leerwert 2	417	339	484	390	412
Leerwert 4 381 370 486 Leerwert (MW) 390,255 353,75 486,5 Max. Wert 1 2198 1157 2693 486,5 Max. Wert 2 1771 2198 1157 2693 2 Max. Wert 3 1777 1286 2779 2693 2 Max. Wert 3 1777 1286 2779 2613 2 Max. Wert 4 2320 978 2821 2613 2 Max. Wert 4 2320 978 2613 2 2613 2 Max. Wert 4 2014,75 1095,5 2738,25 2 <	Leerwert 3	348	357	451	395	405
Leerwert (MW) $390,25$ $353,75$ $486,5$ Max. Wert 1 2198 1157 2693 2613 Max. Wert 2 1777 2198 1157 2693 2656 Max. Wert 3 1777 1286 2779 2655 2779 Max. Wert 4 2320 978 2821 2655 2779 Max. Wert 4 $2014,75$ $1095,5$ $2738,25$ 2821 Max. Wert (MW) $2014,75$ $1095,5$ $2738,25$ $2738,25$ $10 \ \mu M$ 2091 1234 2565 $2738,25$ $20 \ \mu M$ 2091 1234 2565 $2738,25$ $10 \ \mu M$ 2091 1234 2565 $2738,25$ $20 \ \mu M$ 2091 1234 2565 $2738,25$ $20 \ \mu M$ 2091 1234 2565 1010 $0,5 \ \mu M$ 2091 1294 2424 2424 $20 \ \mu M$ $108,003$ $108,444$ $94,0382$ 101 $10 \ \mu M$ $109,003$ $108,444$ $94,0382$ 101 $10 \ \mu M$ $100,03$ $108,414$ $94,0382$ 100 $10 \ \mu M$ $100,03$ $108,414$ $94,0382$ 100 $10 \ \mu M$ $100,03$ $108,414$ $94,0382$ 100 $2 \ \mu M$ $100,03$ $108,414$ $94,0382$ 100 $10 \ \mu M$ $100,03$ $108,414$ $94,0382$ 100 $2 \ \mu M$ $100,03$ $108,414$ $94,0382$ 100 $10 \ \mu M$ $100,03$ $108,414$ </th <th>Leerwert 4</th> <th>381</th> <th>370</th> <th>486</th> <th></th> <th>444</th>	Leerwert 4	381	370	486		444
Max. Wert 1 2198 1157 2693 2 Max. Wert 2 17764 961 2656 2779 Max. Wert 3 1777 1286 2779 2821 Max. Wert 3 2014, 75 1095,5 2738,25 2 Max. Wert 4 2320 978 2821 2 Max. Wert 4 2320 978 2821 2 Max. Wert (MW) 2014, 75 1095,5 2738,25 2 Max. Wert (MW) 2014, 75 1095,5 2738,25 2 0.5 µM 2091 1349 2563 2 2 1 µM 2081 1234 2565 10 2 2 µM 2081 1234 2565 10 2 2 µM 2081 1234 2565 10 10 0,5 µM 20,424 103,523 100 10 10 10 1 µM 10,4082 123,44 94,0382 100 10 10	Leerwert (MW)	390,25	353,75	486,5	402	410,25
Max. Wert 2 1764 961 2656 2 Max. Wert 3 1777 1286 2779 978 2821 Max. Wert 4 2320 978 2821 2821 2821 Max. Wert 4 2014,75 1095,5 2738,25 2738,25 2738,25 Max. Wert (mw) 2014,75 1095,5 2738,25 2613 275 20 µM 2176 1349 2575 2738,25 2613 275 2 µM 2091 1234 2565 2724 272 2613 2724 1 µM 2014,75 1128 2642 2424 2724 272 0,5 µM 2642 13662 95,4259 100 102 104 10 µM 2642 123,14 94,0382 101 104 10 µM 103,785 123,14 94,0382 101 104 10 µM 103,786 138,444 94,0382 101 104 10 µM 10,103,713	Max. Wert 1	2198	1157	2693	2279	2499
Max. Wert 3 1777 1286 2779 2779 2779 2779 2821 2732 2821 2732 2821 2732 2821 2732 2821 2732 2821 2732 2744 22424 225 22 2642 2642 2642 2642 2642 2642 2642 2642 2642 2642 2733 269 2701 2704 260 2733 261 2701 2704 2704 2642 2703 2104 2102 2102 2102 2102 2102 2102 2102 2102	Max. Wert 2	1764	961	2656	2285	2380
Max. Wert 4 2320 978 2821 Max. Wert (mw) 2014,75 1095,5 2738,25 2 20 µM 2014,75 1095,5 2738,25 2 20 µM 2091 1349 2575 2 5 µM 2091 1349 2575 2 5 µM 2091 1349 2575 2 2 µM 2091 1349 2575 2 2 µM 2091 1349 2583 2 0,5 µM 2642 1366 2838 2 0,5 µM 2642 139,662 95,4259 101 10 µM 2642 123,14 94,0382 101 10 µM 103,785 123,14 94,0382 101 10 µM 103,288 118,444 94,3303 104 10 µM 103,288 118,444 94,3303 104 10 µM 103,288 118,444 94,3303 104 10 µM 103,133 12	Max. Wert 3	1777	1286	2779		
Max. Wert (MW) 2014, 75 1095,5 2738,25 2 $20 \ \mu M$ 2183 1530 2613 2575 102 102 102 102 102 102 100 </th <th>Max. Wert 4</th> <th>2320</th> <th>978</th> <th>2821</th> <th></th> <th></th>	Max. Wert 4	2320	978	2821		
20 μM 2183 1530 2613 2613 10 μM 2091 1349 2575 2575 5 μM 2097 1349 2565 2565 5 μM 2176 1188 2583 2424 2 μM 2081 1294 2424 2424 1 μM 2081 1294 2424 2424 0,5 μM 2642 139,662 95,4259 102 20 μM 108,351 139,662 95,4259 102 10 μM 103,785 123,14 94,0382 101 10 μM 103,785 123,14 94,0382 101 10 μM 103,785 112,643 93,673 99 2 μM 108,003 108,444 94,3303 104 1 μM 103,288 118,12 88,5237 100 0,5 μM 103,288 118,12 88,5237 100 0,5 μM 109,731 102,701 102,701 102,701 20 μM 100,734 100,734 102,643 10 100,514 100,731 102,701 102,701 103,525 2 μM 102,81 102,701 103,525 100	Max. Wert (MW)	2014,75	1095,5	2738,25	2282	2439,5
10 μM 2091 1349 2575 25 5 μM 2097 1234 2565 2 2 μM 2176 1234 2565 2 2 μM 2081 1234 2565 2 1 μM 2081 1294 2424 2 0,5 μM 2642 13662 95,4259 102 20 μM 103,785 123,14 94,0382 101 10 μM 103,785 123,14 94,0382 101 2 μM 103,785 123,14 94,0382 101 10 μM 103,785 123,14 94,3303 104 1 μM 103,785 112,643 93,673 99 0,5 μM 103,788 118,12 88,5237 100 0,5 μM 103,736 103,236 103,643 10 0,5 μM 109,033 124,692 103,643 10 10,5 μM 100,737 103,736 103,643 100 2 μM <t< th=""><th>20 µM</th><th>2183</th><th>1530</th><th>2613</th><th>2346</th><th>2499</th></t<>	20 µM	2183	1530	2613	2346	2499
5 μM 2097 1234 2565 2 2 μM 2176 1188 2583 2 1 μM 2081 1294 2424 2 0,5 μM 2642 1366 2838 2 0,5 μM 2642 139,662 95,4259 102 10 μM 103,785 123,14 94,0382 101 10 μM 103,785 112,643 93,673 99 0,5 μM 103,288 118,12 88,5237 100 0,5 μM 131,133 124,692 103,643 10 0,5 μM 109,737 103,736 103,643 10 1 μM 107,336 103,731 103,643 10 20 μM 109,737 103,525 103,613 10 2 μM 102,701 102,81 103,525 103,525	10 µM	2091	1349	2575	2309	2794
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 µM	2097	1234	2565	2271	2527
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 µM	2176	1188	2583	2388	2406
0,5 μ M 2642 1366 2838 2 20 μ M 20 μM 706 95,4259 102 20 μM 108,351 139,662 95,4259 102 5μM 103,785 123,14 94,0382 101 5μM 103,785 112,643 93,673 99 2μM 108,003 108,444 94,3303 104 1μM 103,288 118,12 88,5237 100 $0,5 \mu$M 103,288 118,12 88,5237 100 $0,5 \mu$M 109,737 124,692 103,643 10 $100,73H$ 109,737 124,692 103,643 10 20μM 100,731 124,692 103,643 10 $100,73H$ 100,731 102,701 102,701 102,701 2μM 102,701 102,81 102,515 103,525 	1 µM	2081	1294	2424	2284	2625
% des Maximalwertes 20 μM 108,351 139,662 95,4259 102 10 μM 103,785 123,14 94,0382 101 5 μM 103,785 123,14 94,0382 101 2 μM 104,082 112,643 93,673 99 2 μM 108,003 108,444 94,3303 104 1 μM 103,288 118,12 88,5237 100 0,5 μM 103,288 118,12 88,5237 100 0,5 μM 103,288 118,12 88,5237 100 0,5 μM 103,288 118,12 88,5237 100 100,737 103,286 103,643 10 100 20 μM 100,737 100,736 103,643 10 100,701 107,336 102,701 102,701 102,81 1 μM 102,701 102,81 102,525 103,525	0,5 µM	2642	1366	2838	2316	2223
20 μM 108,351 139,662 95,4259 102 10 μM 103,785 123,14 94,0382 101 5 μM 103,785 123,14 94,0382 101 5 μM 104,082 112,643 93,673 99 2 μM 108,444 94,3303 104 1 μM 103,288 118,12 88,5237 100 0,5 μM 131,133 124,692 103,643 10 0,5 μM 109,737 100 103,543 10 0,5 μM 109,737 124,692 103,643 10 20 μM 109,737 109,737 100 10 20 μM 100,736 1003,736 103,643 10 20 μM 100,737 1003,736 100 10 2 μM 102,701 102,701 102,81 10 2 μM 102,81 103,525 103,525 103,525			% des	Maximalw	ertes	
10 μM 103,785 123,14 94,0382 101 5 μM 104,082 112,643 93,673 99 2 μM 108,003 108,444 94,3303 104 1 μM 103,288 112,643 94,3303 104 1 μM 103,288 118,12 88,5237 100 0,5 μM 131,133 124,692 103,643 10 20 μM 109,737 124,692 103,643 10 20 μM 109,737 103,525 103,525 103,525 2 μM 102,701 102,81 102,81 103,525	20 µM	108,351	139,662	95,4259	102,805	102,439
5 μM 104,082 112,643 93,673 99 2 μM 108,003 108,444 94,3303 104 1 μM 103,288 118,12 88,5237 100 0,5 μM 131,133 124,692 103,643 10 0,5 μM 109,737 109,737 103,643 10 20 μM 109,737 103,546 103,643 10 20 μM 100,737 103,525 103,643 10 2 μM 102,701 102,701 102,701 102,81 102,701 2 μM 102,81 103,525 103,525 103,525 103,525 103,525	10 µM	103,785	123,14	94,0382	101,183	114,532
2 μM 108,003 108,003 108,444 94,3303 104 1 μM 103,288 118,12 88,5237 100 0,5 μM 131,133 124,692 103,643 10 20 μM 109,737 109,737 103,643 10 20 μM 109,737 109,737 103,643 10 20 μM 109,737 109,736 103,643 10 20 μM 100,737 103,643 10 10 20 μM 100,736 102,701 102,701 102,701 102,701 2 μM 102,81 103,525 103,525 103,525 103,525 103,525 103,525	5 µM	104,082	112,643	93,673	99,518	103,587
1 μM 103,288 118,12 88,5237 100 0,5 μM 131,133 124,692 103,643 10 20 μM 109,737 109,737 103,643 10 20 μM 109,737 109,737 103,643 10 20 μM 109,737 109,737 102,643 10 20 μM 102,336 102,701 102,81 10 2 μM 102,701 102,555 103,525 103,525	2 µM	108,003	108,444	94,3303	104,645	98,6268
0,5 µМ 131,133 124,692 103,643 10 20 µМ 109,737 10 µМ 107,336 5 µМ 102,81 102,701 1 µМ 103,525	1 µM	103,288	118,12	88,5237	100,088	107,604
MW 20 µM 109,737 10 µM 107,336 5 µM 102,701 2 µM 102,81 1 µM 103,525	0,5 µM	131,133	124,692	103,643	101,49	91,1252
20 μM 109,737 10 μM 107,336 5 μM 102,701 2 μM 103,525		MW				
10 μΜ 107,336 5 μΜ 102,701 2 μΜ 102,81 1 μΜ 103,525	20 µM	109,737				
5 µM 102,701 2 µM 102,81 1 µM 103,525	10 µM	107,336				
2 µM 102,81 1 µM 103,525	5 µM	102,701				
1 Jum 103,525	2 µM	102,81				
	1 µM	103,525				
0,5 µM 110,417	0,5 µM	110,417				

7.3.3 IC 50 und errechnete Parameter der Exponentialfunktion für den durch IL-3 induzierten respiratorischen burst

1,78106318

IC 50

1,51541818 1,44176845

1,15394852

1,67308214 2,27862828 1,1772512 1,37329116 1,33176808 1,37519646 1,16610643

1,0134871

2,42218744 1,84053989 1,4291882

15 16 17

18

ი

ω

402

1,34150757

1,32494456 1,04982802

0,84079687

(Daten von C. Hipler, Jena ermittelt)

7.3.3.1 Arcyriarubin A

Arcyriarubin

 \sim

c 4

2	5 L	2,1538	3,1101	2,0183	2,1922	2,3916	2,4692	2,6678	2,2797	2,299	2,8888	2,806	2,2327	2,6999	2,2355	2,808	2,3404	2,3814	2,2822	2,8317
2	D_0	0,0034	0,0036	0,0046	0,0043	0,0031	0,0017	0,0042	0,0043	0,0044	0,0031	0,0056	0,0046	0,0047	0,0059	0,004	0,0017	0,0027	0,0041	0,0033
Arcviriaruhin	AICYLIALUDIN	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
<u>_</u>	<u>ر</u> 50	1,1058312	1,08833646	1,18424813	1,43680967	1,18015899	1,53366201	1,06346392	1,19531349	1,49933546	1,14175663	1,27877186	1,3265966	1,83530598	1,45722424	1,3005643	1,79816103	1,38201028	1,71022085	
2	01 01	2,7825	2,4182	2,2513	2,4875	3,6425	2,0304	2,0238	2,3105	2,0046	2,2812	2,2984	2,1946	2,3873	2,4102	2,2294	2,4306	2,5284	2,2625	

7.3.3.2 Pityriarubin A

Pityriarubin A	b_0	b1	IC 50
1	0,005	1,1629	6,49913527
2	0,0045	1,1618	7,24268823
ო	0,0053	1,1596	6,2303536
4	0,0048	1,1544	7,11551792
5	0,006	1,1669	5,17333516
9	0,0041	1,1654	7,70447196
7	0,0063	1,1731	4,69601246
80	0,0044	1,1721	6,98163405
6	0,004	1,2003	6,59452672
10	0,0052	1,1678	6,07013024
11	0,0071	1,1885	3,64911144
12	0,0074	1,1886	3,4078036
13	0,0057	1,1864	4,97182032
14	0,0069	1,21	3,45579955
15	0,0073	1,2004	3,29798452
16	0,0047	1,1627	6,91701509
17	0,0046	1,1639	7,01170021
18	0,0061	1,1689	5,01065412
19	0,0053	1,1745	5,73579869

IC 50	5,99084136	5,44192711	8,03736443	12,2427114	8,75205597	9,74451602	9,97729062	9,02888044	11,1568343	10,5133751	8,39901569	2,71995729	3,44923705	2,52682776	4,51491568	2,79157988	3,44521108	3,68222073	1 26570028
b_1	1,1702	1,1889	1,1943	1,3076	1,1508	1,1406	1,1926	1,1634	1,2093	1,1726	1,1612	1,2066	1,2054	1,1632	1,2071	1,2008	1,1475	1,1959	1 1592
b_0	0,0052	0,0052	0,0032	0,0005	0,0039	0,0037	0,0023	0,0034	0,0016	0,0025	0,0038	0,008	0,007	0,0091	0,0057	0,008	0,0083	0,0069	0 0071
Pityriarubin A	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38

7.3.3.3 Pityriarubin B

IC 50	15,439272	11,4832894	10,0687535	10,0364113	11,0596603	12,8162824	10,8383351	9,12866432	6,66618147	5,99672413	7,8325851	8,38650683	11,1616033	8,88610117	4,77263117	8,46057146	6,70704451	4,88431504	4,83585726	6,66653524	6,98311077	8,21870895	12,0978709	12,1953771	10.772195
b_1	1,0847	1,1293	1,1164	1,1303	1,1101	1,1029	1,1628	1,1349	1,1138	1,1362	1,1146	1,1021	1,1139	1,1167	1,1313	1,1636	1,1682	1,1513	1,1639	1,1892	1,1508	1,1688	1,1169	1,155	1.1322
b_0	0,0038	0,0033	0,0044	0,0039	0,0042	0,0038	0,0026	0,0042	0,0065	0,0062	0,0057	0,0059	0,004	0,005	0,0074	0,0037	0,0047	0,0067	0,0064	0,0042	0,005	0,0037	0,0035	0,0023	0.0035
Pityriarubin B	Ł	2	с	4	5	6	7	8	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

	-	-	(
arubin B	D_0	D1	IC 50
26	0,0041	1,117	10,6580866
27	0,0028	1,1196	13,8145288
28	0,0042	1,1108	10,9933137
29	0,0035	1,1174	12,0490926
30	0,0045	1,1495	7,79597106
31	0,0063	1,1421	5,64254549
32	0,0045	1,1518	7,68570723
33	0,0038	1,1592	8,49702258
34	0,0053	1,1553	6,39069009
35	0,0047	1,1479	7,55943603
36	0,006	1,1436	5,95096635
37	0,0044	1,156	7,64775452
38	0,0065	1,1408	5,45408213
39	0,0055	1,1496	6,35172019
40	0,0038	1,1578	8,56710306
41	0,0063	1,1401	5,71797232
42	0,004	1,1506	8,58242355
43	0,0037	1,1641	8,43665059
44	0,0071	1,0957	6,89516075
45	0,0088	1,0752	5,73071863
46	0,0053	1,0885	10,8791722
47	0,005	1,1057	9,76157183
48	0,0074	1,0904	6,8032801
49	0,0072	1,1033	6,26806186
50	0,0025	1,1148	15,4035075

7.3.3.4 Pityriarubin C

IC 50	4,11552152	4,07897144	3,65917575	3,57293655	3,75060184	3,61336552	3,92686687	4,44308269	3,26666431	4,02034641	4,85375603	4,29603906	4,90481387	2,88979431	5,12355093	4,30976091	4,65311515	4,38921458	5,79203035	3,6151681	4,4477615
b1	1,3481	1,3785	1,3456	1,3817	1,3607	1,3591	1,334	1,2527	1,246	1,2464	1,2508	1,2811	1,2718	1,2755	1,2257	1,2281	1,2144	1,2504	1,242	1,2712	1,1836
b_0	0,0039	0,0036	0,0045	0,0042	0,0042	0,0044	0,0043	0,0049	0,0065	0,0055	0,0045	0,0046	0,0041	0,0066	0,0047	0,0055	0,0054	0,005	0,0038	0,0056	0,0063
Pityriarubin C	.	2	с	4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21

Pityriarubin C	p_0	191	IC 50
22	0,0038	1,2235	6,22294991
23	0,0051	1,2319	4,60796536
24	0,0042	1,2064	6,15635375
25	0,0047	1,2084	5,50829499
26	0,0056	1,1957	4,85364454
27	0,0065	1,1959	4,01603602
28	0,0051	1,2009	5,24946703
29	0,0055	1,2105	4,63541256
30	0,0061	1,1999	4,29096813
31	0,0054	1,2183	4,57755742
32	0,0055	1,2059	4,72967558
33	0,0052	1,2115	4,90780864
34	0,0054	1,2277	4,40605048
35	0,0064	1,1707	4,65710984
36	0,0065	1,1941	4,05013696
37	0,0055	1,1974	4,9153849
38	0,0051	1,1981	5,31726648
39	0,0063	1,178	4,57652481
40	0,0053	1,191	5,27800777
41	0,0048	1,208	5,40653191
42	0,0044	1,421	3,1553391
43	0,0036	1,2012	7,14229636

