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1. Abbreviations 

AFM                                      

ALP 

CPC 

CMPC 

DMEM 

FBS 

HRD 

Mg       

MPC                                   

Mg2Ag                                  

Mg10Gd                                                               

Mg-HA  

PCL      

PMMA                           

Sa                                                               

Sdr                                                             

Sds      

SEM       

TEM                                               

wt 

WE43                                  

W4   

                                     

Atomic Force Microscope 

Alcaline Phosphatase 

Calcium Phosphate Cement 

Calcium-Magnesium Phosphate Cement 

Dulbecco’s Modified Eagles Medium 

Fetal Bovine Serum 

Human reaming debris-derived cells 

Magnesium 

Magnesium Phosphate Cement 

Alloy of 98 % magnesium and 2 % silver 

Alloy of 90 % magnesium and 10 % gadolinium 

Magnesium-Hydroxiapatite 

Polycaprolactone 

Polymethyl methacrylate 

Average surface roughness 

Developed surface area ratio 

Summit density 

Scanning Electron Microscopy 

Transmission Electron Microscopy 

Weight 

Alloy of 4 % yttrium, 3 % rare earth and 93 % magnesium 

Alloy of 4 % yttrium and 96 % magnesium 
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2. Introduction 

2.1. Biodegradable Materials for Medical Use 

Clinical problems like risk of postoperative infection (Quinn et al. 2009, Hachenberg et al. 2010) 

and increased incidence of pediatric trauma requiring surgical intervention (Sinikumpu et al. 

2012, Sandler et al. 2011) raised the need for temporary medical implants that would resorb after 

the bone healing is complete. This would decrease high costs associated with repeated surgeries, 

minimize recovery times, decrease the risk of postoperative infections, and thus promote higher 

quality of life to each individual patient. The concept of biodegradation is already known in 

medical practice, resorbable sutures are successfully used in surgery. However, a bone implant 

that would resorb after the fracture healing is a completely new concept.  

Biomaterials used for implants can be metals, ceramics, polymers and composites. Metals have 

high impact strength, high wear resistance, high ductility and the capacity to absorb high strain 

energy compared to other materials (Moravej and Montavani 2011). These properties make 

metals suitable candidates for maxilofacial and orthopedic load-bearing application and fixation 

devices such as joint replacement, bone plates and screws, as well as dental implants, pacer and 

suture wires, and coronary stents (Moravej and Montavani 2011, Bhat 2002, Park and Lakes 

2007). 

The early use of metals as biomaterials for medical applications has been reported in late 18th 

century when Ag, Fe, Au, and Pt-based alloys were used for bone fracture fixation (Bhat 2002). 

Elemental magnesium was discovered by Sir Humphrey Davy in 1808 which led to design of 

metalic biodegradable implants. In 1878, the first implantation of magnesium wires as ligatures 

to stop bleeding vessels of human patients was performed by Edward C. Huse. He observed that 

the corrosion of Mg was slower in vivo and that the time period until complete degradation was 

dependent on the size of the magnesium wire used (Witte 2010). 

For metal alloy to be successfully used as a resorbable implant, several criteria must be met. It 

should provide enough strength to the healing tissues, it should resorb after a set time period, be 

non-toxic and cause no harm to the organism. Metals proposed for biodegradable implants are 

magnesium and iron. Iron was mainly suggested for cardiovascular uses like stents for lumen 

widening (Moravej and Montavani 2011). 

Magnesium is considered a suitable material for biodegradable implants because of a number of 

reasons. First of all, it is biocompatible (Goyer 2001). By term biocompatible it is meant that 
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material does not cause toxicological tissue reaction (Seal et al. 2009). Secondly, magnesium is 

natural for humans since our body contains about 25 g of this element and 50-60 % is found in 

bone (Institute of Medicine 1997). The normal serum magnesium concentration is 0.75 to 0.95 

mmol/liter (1.8 to 2.3 mg/dl), we consume about 380-850 mg of magnesium daily (Institute of 

Medicine 1997). The main sources of magnesium are grains, nuts and green leafy vegetables like 

spinach and cabbage. Deficiency of these dietary products can cause cardiovascular problems 

and migraines (Institute of Medicine 1997). Excess magnesium is removed readily by the 

kidneys (Institute of Medicine 1997). Thirdly, magnesium seems to stimulate bone formation 

since magnesium ions enhance the cell attachment and proliferation (Li et al. 2008). High 

amounts of magnesium-containing calcium phosphate were found in the degradation layer 

around magnesium implants and it was concluded that magnesium stimulates formation of 

calcium phosphate (Xu et al. 2006, Witte et al. 2005). New bone was seen forming in direct 

contact to the degradation layer (Xu et al. 2006, Witte et al. 2005). It has been stated that 

magnesium containing calcium phosphate should have much better osseoconductivity than 

hydroxyapatite (Kim et al. 2003).  

Last but not least, magnesium has excellent mechanical properties which make it a suitable 

material in trauma patients (Seal et al. 2009). Magnesium based alloys are typically very light 

since they are 1/3 less dense as titanium based alloys and only 1/5 as dense as stainless steel and 

cobalt-chrome alloys (Seal et al. 2009). Conventional metallic implants are not well matched, 

when compared with bone, given the modulus of elasticity for cortical bone is in the order of 3-

20 GPa (Staiger et al. 2006). In comparison the modulus of elasticity for stainless steels is 

typically around 200 GPa, for chrome-cobalt alloys is in the order of 230 GPa, and for titanium 

alloys is about 115 GPa (Seal et al. 2009). The greater the implant’s modulus of elasticity, the 

higher risk of causing stress shielding of the bone and secondary fracture (Seal et al. 2009). 

Magnesium alloys, in contrast, have a modulus of elasticity of around 45 GPa, which is much 

more closely matched to that of bone (3-20 GPa), thus lessening the likelihood of stress shielding 

(Seal et al. 2009). 

2.2. Corrosion 

An important problem of magnesium is a high corrosion rate with consistent hydrogen gas 

formation on contact with fluids: 
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(Witte et al. 2008) 

Magnesium hydroxide accumulates on the surface of the magnesium implant to form a mildly 

protective corrosion layer in water. Although this film slows corrosion under aqueous  

conditions, it reacts with chlorine  ions  present  in blood to produce a highly soluble magnesium 

chloride, MgCl2, and hydrogen gas, H2 (Witte et al. 2008). It was shown that this reaction is 

achieved when the chloride concentration in the system increases above 30 mmol/l (Shaw et al, 

2003). Therefore, severe pitting corrosion can be observed on magnesium alloys where the 

chloride concentration of the body fluid is about 150 mmol/l (Xu et al. 2007, Witte et al. 2005). 

Increase of the pH during this reaction further irritates tissues and makes it more difficult to heal 

(Witte et al. 2008). The hydrogen bubbles push out the osteoclasts and osteoblasts making it 

difficult to form new bone in direct proximity to the implant surface. However, hydrogen gas 

seems to appear within 1 week after implantation, and then disappear after 2-3 weeks (Witte et 

al. 2005). 

It is desirable for magnesium-based alloys to have slow degradation rate so the fractured bone 

heals before the implant resorbs. It is thus crucial to design alloys with slow corrosion rate and 

high biocompatibility. Hard-tissue repair typically requires implantation of the fixture for a 

minimum of 12 weeks
 
(Staiger et al. 2005). In this respect, pure magnesium is undesirable, 

because it is chemically very active
 
(Xin et al. 2011). 

The influence of cells and in vivo environment on magnesium corrosion is not well described in 

literature. It is known that corrosion is faster in vitro than in vivo by several orders of magnitude
 

(Willumeit et al. 2011). This can be explained by the presence of proteins and other organic 

molecules in blood which create a protective coating around magnesium slowing down corrosion 

(Willumeit et al. 2011). Thus, an addition of proteins in form of fetal bovine serum (FBS) into 

the cell growth media would closer imitate in vivo environment than just using pure media 

during corrosion studies on magnesium. Dulbecco’s modified Eagle’s medium (DMEM) contains 

inorganic salts, calcium, amino acids and vitamins, and is thus very close to physiologic 

conditions
 
(Willumeit et al. 2011).  
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It was shown that magnesium facilitates calcification and formation of calcium phosphates
 

(Feyerabend et al. 2012). As mentioned previously, magnesium increases pH of the solution. 

This shift to more basic pH might interfere with bone healing
 
(Xu et al. 2007), but at the same 

time high pH promotes Ca
2+ 

binding
 
(Willumeit et al. 2011). An adequate supply of calcium is 

important to ensure that bone laid down by osteoblasts is normally mineralized
 
(Reid 2014). 

2.3. Magnesium-Based Alloy Design 

Although magnesium is biocompatible, increased degradation rates under physiological pH 

conditions can locally reduce the biocompatibility on the implant surface. Efforts to control the 

corrosion rate of Mg have utilized various processing methods such as purification, alloying, 

anodizing, and surface coating (Brar et al. 2008). Studies have shown that purification of Mg 

reduces the corrosion rate considerably, however, due to low yield strength of pure magnesium 

(Witte et al. 2005), its application in medical appliances that require good load bearing 

properties, is limited. 

Alloying elements can be added to improve mechanical properties of pure magnesium but 

alloying elements should be selected carefully not only in respect to physical properties, but most 

importantly in respect to their effect on cells and body as whole. This, however, is a difficult task 

since one must look not only on the element as a single unit, but also consider its interactions 

with other elements in the magnesium-based alloy. This chapter will discuss some common 

elements used in Mg alloys in respect to their properties and toxicology. 

In general, adding extra elements to the alloy will strengthen material by forming intermetallic 

phases. These intermetallic phases act as obstacles for the dislocation movement (Witte et al. 

2008). Even ductility and corrosion properties might be influenced (Witte et al. 2008, Shaw et al. 

2003). Typical impurities in magnesium alloys are iron (Fe), nickel (Ni), copper (Cu), and 

beryllium (Be) (Witte et al, 2008). They have extremely harmful effects on the corrosion 

behaviour of Mg and rapidly increase the degradation rate. Elements like cadmium (Cd), 

manganese (Mn), tin (Sn), and zinc (Zn) have mild effect on the corrosion rate of Mg with their 

efficacy being dependent on solute concentration (Shaw et al. 2003). Aluminum (Al) is 

considered to enhance the strength and corrosion resistance of Mg, but in recent years it has  

been implicated in a variety of disorders including dialysis demential, hypochromic microcytic  

anaemia, renal osteodystrophy, hepatic disorders and Alzheimer's disease (Kawahara 2005,  

Shcherbatykh and Carpenter 2007). For that reasons it is unacceptable to use Al in medical 

implants. 
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Zirconium, which is added as a grain refiner in Mg-based alloys, has been linked to breast and 

lung cancer (Brar et al. 2008).  It is reported that rare earth (RE) elements have a beneficial effect 

on the corrosion resistance and mechanical properties of magnesium alloys (Nakatsugawa et al. 

1996).  Some of these elements like cerium (Ce), lutetium  (Lu),  and  praseodymium  (Pr),  are, 

however, considered  toxic  for  the  human  body (Brar et al. 2008).  Still, there are some 

elements in the RE family that have relatively low chemical toxicity and can be used in very 

small amounts without toxic effect on the organism. Such elements are yttrium (Y) (Reardon et 

al. 2009, Kyker and Anderson 1955) and gadolinium (Gd) (Hemmer et al. 2010, Setyawati et al. 

2012). Alloying magnesium with yttrium could be an effective measure to improve the bio-

corrosion properties of the magnesium alloy for biomedical application (He et al. 2010). 

Combining magnesium with silver (Ag) might not only strengthen the material but also add 

antibacterial properties to the alloy (Tie et al. 2013). 

Calcium addition to magnesium alloys slows corrosion rate, which is beneficial in terms of 

hydrogen gas formation (Aghion et al. 2012). Ideally, corrosion would be slowed to allow the 

mechanical integrity of the metal to remain intact during bone healing. This would also minimize 

hydrogen production, which has been observed as a (potentially disadvantageous) corrosion by-

product when using this material (Shadanbaz et al. 2012). Moreover, calcium ions might 

contribute to increased viability of magnesium alloys, like in Mg-Ca alloy tested in one Chinese 

study (Li et al. 2008). 

Calcium is natural for humans and it accounts for 1-2 % of adult human body weight. Over 99 % 

of total body calcium is found in teeth and bones, the rest is present in blood, muscle, and other 

tissues, where it mediates vascular and muscular contraction and nerve transmission (Institute of 

Medicine 1997).  

In bone, calcium exists primarily in the form of hydroxyapatite (Ca10 (PO4)6 (OH)2), and bone 

mineral is almost 40 % of the weight of bone (Institute of Medicine 1997). Using materials  

essential to human body as alloying elements, we can greatly reduce the chance of toxicity (Brar 

et al. 2008).    

For the above mentioned reasons, six types of biodegradable magnesium-based alloys were 

designed and produced for this study:  

• alloy consisting of 98 % Mg and 2 % Ag (Mg2Ag),  

• alloy of 90 % Mg and 10 % Gd (Mg10Gd),  

• alloy of 4 % yttrium, 3 % rare earth and 93 % magnesium (WE43),  
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• pure 99.8 % magnesium (pure Mg), 

• magnesium-hydroxyapatite composite implant (Mg-HA),  

• alloy of 96 % Mg and 4 % Y (W4). 

2.4. Surface 

Corrosion of magnesium implants also has an effect on material’s surface characteristics. Surface 

plays an important role for cell attachment. Both too rough and too smooth surfaces are not 

beneficial and hinder bone formation around implants
 
(Wennerberg and Albrektsson 2000). 

Several parameters can describe implant surface topography, such as average surface roughness 

(Sa), developed surface area ratio (Sdr) and summit density (Sds). Sa is defined as an arithmetic 

mean of the departures of the roughness area from the mean plane
 
(Wennerberg and Albrektsson 

2000). Sdr is a ratio between the 3-D measurement and a 2-D reference plane
 
(Wennerberg and 

Albrektsson 2000). Sds is the number of summits per unit area making up the surface
 
(Stout et al. 

1993). Parameters describing spatial properties, like Sds, as well as hybrid properties, like Sdr, 

might further differentiate surfaces with similar Sa characteristics
 
(Stout et al. 1993). 

It was shown by previous studies that an optimal Sa value, representing average surface 

roughness, lies between 1-1.5 μm for titanium implants
 
(Wennerberg and Albrektsson 2000). 

However, positive effect on the bone response was also seen for Sa of ~ 0.5 μm up to ~ 8.5 μm
 

(Shalabi et al. 2006). Long-term corrosion effect on surface roughness of magnesium-based 

alloys has not been studied yet.  

It also seems that bacterial adhesion to surface is highly dependent on surface roughness (Sa) and 

developed surface area ratio (Sdr)
 
(Dorkhan et al. 2012, Bürgers et al. 2010). The level of 

bacterial adherence to moderately rough titanium surfaces (Sdr 58 %) was five times greater than 

to smooth titanium surfaces (Sdr 2.8 %)
 
(Dorkhan et al. 2012). Magnesium resorbs mainly by 

pitting corrosion
 
(Witte et al. 2005) which results in surface changes and might promote bacterial 

adhesion. Thus, it is important to compare whether any correlation between biofilm adhesion and 

surface changes which occur during resorbtion exist.  

2.5. Bacterial Infections 

Postoperative wound infections are the third most common type of nosocomial infection in 

German emergency hospitals after pneumonia and urinary infections (Hachenberg et al. 2010). 

They accounts for 14-16 % of all nosocomial infections among hospital patients and are 

associated with increased morbidity and mortality, prolonged hospital stay and increased costs 
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(Smyth et al. 2008, Smyth and Emmerson. 2000). The most important risk factors include the 

microbiological state of the skin surrounding the incision, delayed or premature prophylaxis with 

antibiotics, duration of surgery, emergency surgery, poorly controlled diabetes mellitus, 

malignant disease, smoking and advanced age (Hachenberg et al. 2010). If the implant could 

biodegrade then all those risk associated with repeated surgeries could be avoided. Thus, 

development of such implant is of importance.  

Implant-associated infections are the result of bacteria adhesion to an implant surface and 

subsequent biofilm formation at the implantation site
 
(Ribeiro et al. 2012). Sources of infectious 

bacteria include the environment of the operating room, surgical equipment, clothing worn by 

medical and paramedical staff, resident bacteria on the patient’s skin and bacteria already 

residing in the patient’s body
 
(Ribeiro et al. 2012, Frank et al. 2013). Thus, the secondary 

operation on implant removal highly increases the risk of nosocomial infection.  

Enterococci, specifically Enterococcus faecalis, are the third most common cause of nosocomial 

infection, and most infections in hospitalized patients are associated with the use of indwelling 

medical devices
 
(Paganelli et al. 2013). E. faecalis, a Gram-positive constituent of the human 

intestinal microbiome, has become a prominent pathogen of health care-associated infections 

over the past 3 decades
 
(Frank et al. 2013). Between 1980 and 2008, the frequency of nosocomial 

infections caused by Enterococcus faecium, the other frequently encountered enterococcal 

pathogen, increased by 8.8 %
 
(Kang et al. 2012). E. faecalis and E. faecium infections together 

accounted for 16.0 % of central line-associated bloodstream infections, 14.9 % of catheter-

associated urinary tract infections, and 11.2 % of surgical site infections reported to the United 

States National Healthcare Safety Network between 2006 and 2007
 
(Hidron et al. 2008). E. 

faecalis is also the primary causative agent of enterococcal endocarditis
 
(McDonald et al. 2005, 

Fernández Guerrero et al. 2007) and is the most frequently isolated in secondary endodontic 

infections
 
(Tennert et al. 2014). 

 

Staphylococcus epidermidis and Staphylococcus aureus represent, in absolute, the main causative 

agents of infection in orthopedics
 
(Campoccia et al. 2006). S. epidermidis is the most frequently 

isolated member of the group of coagulase-negative staphylococci from implant-associated 

infections and they are associated with nosocomial infections
 

(Ribeiro et al. 2012). S. 

epiderimidis, a Gram-positive, nonspore forming facultative anaerobe that grow by aerobic 

respiration or fermentation, with diameters of 0.5−1.5 mm, belong to the normal microbiota of 
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the human skin (Ribeiro et al. 2012). They are characterized by individual cocci, which divide in 

more than one plane to form grape-like clusters (Ribeiro et al. 2012). 

2.6. Ethical Aspects in Experiment Planning for in vitro and in vivo Studies 

In 1959, Russell and Burch published “The Principles of Humane Experimental Techniques”, 

which idea was the humanest possible treatment of experimental animals (Russell and Burch 

1959). The authors suggested the principles of Replacement, Reduction and Refinement, 

commonly abbreviated to 3R’s principle, as the main guideline to achieve as humane 

experimental techniques as possible. Today the principles of the 3R’s is used internationally to 

govern the use of animals in life science. 

By replacement meant Russell and Burch the use of non-animal methods over animal methods if 

this allows to achieve the same scientific aims. Replacement strategies include: a) tissue culture, 

b) perfused organs, c) tissue slices, d) cellular experiments, e) subcellular fractions (Russell and 

Burch 1959). 

Reduction method enables scientists to obtain data from fewer animals, or to gain more data from 

the same number of animals (Russell and Burch 1959). Careful study design is crucial for this 

method to be successful. Development of computer technologies and modern imaging techniques 

greatly facilitate this principle.  

Refinement means minimization of animal suffering during experiment. This includes proper 

anaesthetic and analgesic regimes for pain relief, non-invasive study techniques, as well as 

proper housing and environmental enrichment meeting the animals' needs (Russell and Burch 

1959). 

The current Thesis is based on 3 R’s principle. In vitro methods were used on the first place in 

order to understand the processes which happen to magnesium-based alloys without involving 

animals. That is why the cellular experiment, the in vitro biofilm formation study design and in 

vitro corrosion were chosen. The last stage was to see the tissue reaction to magnesium-based 

implants. The implants were carefully chosen and the animal number was kept to as low as 

possible.  

Unfortunately, in vitro methods have their disadvantages compared to in vivo methods. In case 

with magnesium implants it is known that corrosion is faster in vitro than in vivo by several 

orders of magnitude
 
(Willumeit et al. 2011). This can be explained by the presence of proteins 

http://en.wikipedia.org/wiki/In_Vitro
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and other organic molecules in blood which create a protective coating around magnesium 

slowing down corrosion
 
(Willumeit et al. 2011). Thus, carefully planning the experiment is 

crucial. In our study, an addition of proteins in form of fetal bovine serum (FBS) into the cell 

growth media during corrosion study was chosen in order to closer imitate in vivo environment 

than just using pure media. Dulbecco’s modified Eagle’s medium (DMEM) contains inorganic 

salts, calcium, amino acids and vitamins, and is thus very close to physiologic conditions
 

(Willumeit et al. 2011). The majority of studies on magnesium’s biocompatibility in vitro assess 

short-term magnesium extract’s effect on the cells
 
(Tie et al. 2013, Feyerabend et al. 2010, Yang 

et al. 2013). The aim of our cell study was to evaluate the long-term influence of direct exposure 

of magnesium alloys on the bioactivity of bone-forming cells. This, in our opinion, closer mimics 

the in vivo conditions. 

2.7. Applications of Magnesium Implants  

Two magnesium alloys are currently used today in orthopedic and cardiovascular medicine – 

WE43 and MgYREZr.  

WE43 alloy has shown good results in cardiovascular medicine with no evidence of stent particle 

embolization, thrombosis, excess inflammation, or fibrin deposition and neointimal area was 

significantly less in magnesium alloy stent segments as compared with the stainless steel stent 

segments (Waksman et al. 2006). It was shown that biodegradable magnesium stents can achieve 

an immediate angiographic result similar to the result of other metal stents and can be safely 

degraded after 4 months in human patients (Erbel et al. 2007). However, modifications of stent 

characteristics with prolonged degradation and drug elution are still required and currently in 

development (Moravej and Montavani 2011). 

Orthopedic screws consisting of MgYREZr alloy are commercially available under the name 

MagneZix and are distributed by the medical company Syntellix (“MagneZix Compression 

Screw 3.2“ 2013). MagneZix is an aluminum-free magnesium alloy that is classified as an 

MgYREZr alloy. This alloy contains rare earth elements and is compositionally similar to WE43 

(Windhagen et al. 2013). It has already demonstrated good biocompatibility and osteoconductive 

quality in vivo (Waizy et al. 2014) and is recommended for treatment of among others hallux 

valgus, smaller bone fractures, pseudarthrosis and arthrodesis (“MagneZix Compression Screw 

3.2“ 2013). These screws have shown positive results in the pilot study on 13 patients 

(Windhagen et al. 2013).  
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One of the limitations of Windhagen et al.’s study is the relatively low statistical power. Another 

limitation of MgYREZr alloy is that formation of fibrous tissue was observed in direct contact 

with the implant at some areas (Waizy et al. 2014). Furthermore, Windhagen et al. were not able 

to verify complete screw degradation after 6 months (Windhagen et al. 2013). MagneZix was 

still present after 12 months in the rabbit model (Waizy et al. 2014). The manufacturer thus 

promises complete degradation in up to 24 months (“MagneZix Compression Screw 3.2“ 2013). 

Although slow degradation of magnesium is desirable, for some areas of medical applications 

such as pediatric and maxillofacial fields, shorter degradation times than 24 months are required. 

For pediatric and maxillofacial medicine 6 months degradation would be optimal. Shorter 

degradation time would minimize allergic reactions and also be beneficial in pediatric patients 

that are constantly growing and thus should have implants with faster degradation to prevent 

interference with the growing bone. 

Several articles have reported increase in the incidence of paediatric bone fractures (Sinicumpu et 

al. 2012, Sandler et al. 2011, Delaney et al. 2009). Plays and sports are the common reasons to 

fractures with trampoline, which can now be seen in almost every household, being the main 

reason to such an increase (Sandler et al. 2011). Up to 41 % of all paediatric injuries are related 

to trampoline (Sinicumpu et al. 2012). In about 61-68 % of children with bone fractures, surgical 

intervention is required (Sandler et al. 2011, Delaney et al. 2009). The most common site for 

injury are upper limbs, their prevalence lies between 3-27.9 % in different studies (Sinicumpu et 

al. 2012, Sandler et al. 2011), and the number surgical treatment for diaphyseal fractures 

increased 4.2-fold (Sinicumpu et al. 2012). Children are a specific group of patients and their 

treatment is often hampered since their bodies are in a constant process of growing and implants 

must be adjusted to the bone development so that the growth pattern is uniform and symmetrical. 

All repeated surgeries carry risks as discussed previously, and it is thus desired to avoid such 

procedures. Magnesium-based implants could therefore aid even in the pediatric field. 

The possible application areas of magnesium in maxillofacial field are screws and plates for 

fixation of traumatic orbital defects
 
(Izuka et al. 1991), treatment of zygomatic fractures

 

(Bergsma et al. 1993), fixation of mandibular fractures
 
(Quereshy at al. 2000), and fixation in 

orthognathic and pediatric craniofacial surgeries
 
(Edwards et al. 2001).  
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3. Aims 

The main aim of this Thesis was to investigate magnesium implants’ biocompatibility in vitro 

and in vivo, as well as to study their ability to resist biofilm formation. Additionally, this Thesis 

examines resorption of magnesium materials and its effect on surface and surrounding 

environment. 

Study I: Degradation  

 To determine the corrosion rates of pure Mg, Mg2Ag, Mg10Gd and WE43. 

 To analyze magnesium’s effect on osmolality, Ca
2+

 concentration, pH and on surface 

changes. 

Study II: Cellular Reactions 

 To evaluate the long-term influence of direct exposure of pure Mg, Mg2Ag, Mg10Gd and 

WE43 on the bioactivity of human reaming debris-derived cells.  

Study III: Biofilm  

 To investigate pure Mg, Mg2Ag, Mg10Gd and WE43’s ability to resist bacterial adhesion 

as well as further biofilm formation.  

 To examine the possible correlation between the early stages of biofilm formation and the 

surface characteristics. 

Study IV: Histological Examination 

 To determine the bone response to pure Mg, Mg-HA and W4. 

 To evaluate the amount of gas in the bone tissue and the implant resorption behavior. 
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4. Material and Methods 

4.1 In vitro 

4.1.1. Sample production 

The following materials were used to produce alloys for this study: magnesium (99.99 %, 

Xinxiang Jiuli Magnesium Co. Ltd., China), yttrium (99.95 %, Grirem Advanced Materials Co. 

Ltd., China), gadolinium (99.95 %, Grirem Advanced Materials Co. Ltd., China), rare earth 

mixture (Grirem Advanced Materials Co. Ltd., China), and silver (99.99 %, ESG Edelmetall-

Handel GmbH & Co. KG, Germany). 

Three magnesium-based materials were produced: Mg2Ag (1.89 % Ag, the rest was Mg), 

Mg10Gd (8.4 % Gd, the rest was Mg), and WE43 (3.45 % Y, 2.03 % Nd, 0.84 % Ce, the rest was 

Mg). Pure magnesium (99.97 % Mg) was used as a control. The concentrations of magnesium 

Mg, Y, Nd and Ce were determined by spark emission spectrometer (Spectrolab M, Spektro, 

Germany) and the concentrations of Ag and Gd were determined by X-ray fluorescence 

spectrometer (Bruker AXS S4 Explorer, Bruker AXS GmbH., Germany). The materials were 

cast at Helmholtz Zentrum Geesthacht, Magnesium Innovation Center (HZG-MagIC).  

The three magnesium alloys (Mg2Ag, Mg10Gd, WE43) were produced by permanent mould 

gravity casting. After melting the pure Mg the melt was held at 720 °C and the preheated 

alloying elements were added with continuous stirring for 15 minutes. The melt was poured into 

a preheated (550 °C) permanent steel mould treated with boron nitride. During the casting 

process cover gas was used (SF6 and Ar mixture). The alloys were homogenized with a T4 heat 

treatment prior to extrusion in Ar atmosphere at 550 °C (Mg10Gd and WE43) and at 420 °C 

(Mg2Ag) for 6 hours (h). Afterwards the alloys were extruded indirectly with an extrusion ratio 

of 4:25. The chamber of the extrusion machine was set to 370 °C and the billets (d = 30 mm) 

were preheated for one hour at 370 °C (Mg2Ag), at 390 °C (WE43) and at 430 °C (Mg10Gd). 

The extrusion speed was between 3 and 4.5 mm/sec. Pure Mg was cast by permanent mould 

direct chill casting
 
(Peng et al. 2010). The cast billet (d = 110 mm) was extruded indirectly with 

an extrusion ratio of 1:84. The billet temperature was 340 °C and the speed of the extrusion was 

0.7 mm/sec. Discs (10 mm diameter and 1.5 mm thickness) were machined from the extruded 

bars and then polished with Grit 400 silicone carbide sandpaper.  
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4.1.2. Sample sterilization 

The samples were sonicated for 20 minutes (min) in dry isopropanol, dried and gamma-sterilized 

at the BBF Sterilisationservice GmbH facility (Kernen, Germany) with a total dosage of 29 kGy. 

4.1.3. Corrosion Measurements 

Corrosion measurements were performed by two methods: immersion test and hydrogen gas 

evolution test. The immersion tests were performed following in general the ISO 10993, but with 

modifications: per 0.2 g of sample 3 mL medium consisting of DMEM (DMEM, Life 

Technologies) with 10 % FBS (PAA Laboratories, Linz, Austria) was used.  In total, 6 samples 

per time point were used. Incubation was performed at 37 °C, 5 % CO2, and 95 % humidity in an 

incubator (Heraeus BBD 6620, Thermo Fisher Scientific, Schwerte, Germany), oxygen content 

was set to 20 %. The exposition time of the samples was up to 240 h with medium change every 

48 h. After immersion, the corrosion products were removed by chromic acid (180 g/L in 

distilled water, VWR International, Darmstadt, Germany) at room temperature. The average 

corrosion rate was calculated using the formula: 

CR = (8.76 x 10
4
 Δg) / (A · t · ρ) 

where Δg is the weight change in grams, A is the surface area in cm
2
, t is the immersion time in 

h, and ρ is alloy’s density in g/cm
3
. 

The experimental set up for gas evolution method is depicted in Figure 1. All samples were first 

weighed and then immersed in DMEM containing 10 % FBS. Gas production was measured by 

eudiometer (400 ml, Rettberg, Germany) at room temperature and atmospheric conditions. The 

graded cylinders were filled with distilled water. The reading was taken every 24 h. The 

observation time was 96 h.  

4.1.4. Determination of Osmolality and pH 

The samples were immersed into DMEM with 10 % FBS with medium change every 48 h. At 

established time points the medium from 6 wells per group was collected and analzyed. 

Osmolality was measured by an osmometer (Osmomat 030, Gonotec, Berlin, Germany) and pH 

measurements were performed by a pH-meter (Titan X, Fisher Scientific GmbH, Schwerte, 

Germany) for each time point.  
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Figure 1. Eudiometer set up for gas evolution measurements.  

 

4.1.5. Determination of Ca
2+

 concentration 

Concentration of Ca
2+

 in the solution was measured by a calcium analyzer (9180 Electrolyte 

Analyser, Roche, Mannheim, Germany) after immersion of tested alloys into DMEM containing 

10 % FBS with medium change every 48 h. In total, the medium from 6 wells per group were 

tested. 

4.1.6. Surface Characterization  

For the study of Degradation, the samples were immersed into DMEM with 10 % FBS and let to 

corrode in incubator at 37 °C, 5 % CO2, and 95 % humidity for 3, 5, 7 and 10 days. The medium 

was changed every second day. At different time points the discs were removed and let dry at 

room temperature. Surface characterization was performed by atomic force microscope (AFM, 

XE-100, Park Systems Corp, Suwon, Korea). Measurement areas of 10 × 10 µm in three random 

positions were selected for each disc. The measurements were performed at a scan rate of 
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0.50 Hz. The images acquired from AFM were subjected to leveling and applied Gaussian 

filtering with a cut-off of 2.5 µm using the software MountainsMap® Universal 6.2 (Digital Surf, 

Besancon, France) and 3-D parameters such as Sa, Sdr, Sds were analyzed. In total, 9 surfaces per 

material group were studied. 

For the study of Biofilm, the magnesium discs which were pre-coated in human serum for 18 h 

and then washed twice in 2 ml potassium phosphate buffer (PBS) for 10 min at 37 °C. The micro 

titer plates with magnesium discs in human serum but without bacteria were incubated at 37 °C 

on a rotary shaker at 300 cycles per hour in 5 % CO2 for 2, 24, 72 and 168 h. The human serum 

was changed every second day. At different time points the discs were removed and let dry at 

room temperature after which the surface characterization was performed by AFM with the same 

settings as described in previous paragraph. 

4.1.7. Isolation of human reaming debris-derived cells 

Human reaming debris-derived cells (HRD) were cultured from human reaming debris from 

various patients, with the approval of the local Ethics Commission, approval number AZ 103/13, 

as described by Wenisch (Wenisch et al. 2005). The adult patients were of different gender and 

different ages and did not display any disease related to bone metabolism. In total, the cells from 

six different patients were taken for this study.  

The reaming debris was cultured in Petri dishes with F12K medium including 20 % FBS, 

100 U/ml penicillin and 100 μg/g streptomycin. After 4–7 days the HRD started to grow out of 

the debris. When the cells reached confluence after 2–3 weeks they were trypsinized and 

transferred to cell culture flasks. All cells were kept at 37 °C in a 5 % CO2 atmosphere. 

4.1.8. Cell viability 

To determine cell viability a MTT assay was conducted according to Mosmann (Mosmann et al. 

1983). Briefly, 10,000 cells per cm
2
 were seeded into 12-well plates containing pre-incubated 

magnesium discs and F12K medium with 20 % FCS and 100 μg/g streptomycin. The cell 

medium was changed every second day during the experiment. Duplicates were used for each 

material and patients, and in total 12 wells per specimen were tested. After 24 h, 7 days and 

21 days MTT solution was added to the cell medium. The cells were then incubated in the dark 

for 4 h at 37 °C. Subsequently the cell medium was discarded and the cells were lysed with 

0.004 N HCl in isopropanol. The cell lysates were centrifuged and supernatants were transferred 
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as triplets to a 96-well plate. The adsorption was measured at 570 and 630 nm using a Synergy 

HT Microplate Reader (BioTek, Bad Friedrichshall, Germany). The MTT assay was also 

performed for magnesium discs which were not seeded with the cell culture in order to exclude 

material’s effect on the test and see only how the cells react during the assay. 

Additionally, cell morphology was studied by inverted light microscopy using a Leica 

microscope type 090-135.002 (Leica Microsystems GmbH, Wetzlar, Germany) equipped with a 

Nikon Ds-Fi1 digital camera (Nikon, Duesseldorf, Germany). 

4.1.9. Alkaline phosphatase (ALP) content 

As an indicator of changes in the differentiation behavior of the bone-forming cells caused by the 

test substances a SensoLyte® pNPP Alkaline Phosphatase assay (AnaSpec, Fremont, CA, USA) 

was applied after 24 h and 7, 14, 21 and 28 days of culturing in DMEM low glucose with l-

glutamine, 10 % FCS, 100 U/ml penicillin, 100 μg/g streptomycin, 0.1 μM dexamethasone, 

0.005 μM ascorbic acid and 10 mM β-glycerol phosphate to induce osteogenic differentiation. 

The cell medium was changed every second day during the experiment. Duplicates were used for 

each material and patients and in total 12 wells per specimen were tested. 

The cells were washed and frozen at −80 °C. After thawing the cell number was measured using 

a PicoGreen® dsDNA quantitation assay (Invitrogen, Eugene, OR, USA) according to the 

manufacturer’s protocol. Cells were lysed with 1 % Triton X-100 in phosphate-buffered saline. 

The cell lysates were centrifuged and the supernatants were mixed with the PicoGreen® working 

solution in a 96-well plate. The samples were excited at 485 nm and the fluorescence emission 

intensity measured at 528 nm. The cells that were lysed for the PicoGreen assay, were 

centrifuged and the supernatants were diluted in specific assay buffer included in the assay kit. 

ALP substrate was applied to the diluted samples and the absorbance measured at 405 nm. The 

absolute amounts of ALP were correlated with the cell numbers obtained from the PicoGreen® 

assay.  

4.1.10. Transmission Electron Microscopy (TEM) 

Human HRD seeded in chamber slides (Nalge Nunc International, Rochester, NY, USA) were 

incubated with magnesium discs for 21 days. The cell layer was fixed for 30 min with 2 % 

paraformaldehyde (EMS, Hatfield, PA, USA) in 0.1 M sodium phosphate buffer (pH 7.2–7.4) 

with 2 % glutaraldehyde (EMS, Hatfield, PA, USA) and 0.02 % picric acid (EMS, Hatfield, PA, 
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USA), followed by 20 min fixation with 1 % osmium tetroxide (EMS, Hatfield, PA, USA) in 0.1 

M sodium cacodylate buffer (pH 7.2–7.4). The samples were dehydrated and embedded in Epon 

(Pelco, Redding, CA, USA) before ultrathin sections (80–100 nm) were applied to collodion-

coated copper grids. Analysis was done with a Leo 912 transmission electron microscope (Carl 

Zeiss AG, Oberkochen, Germany) at 80 kV accelerating voltage and equipped with a TRS 

Sharpeye slow scan dual speed CCD camera (Albert Troendle Prototypentwicklung, 

Moorenweis, Germany). 

4.1.11. Scanning Electron Microscopy (SEM) 

Human HRD were cultivated on magnesium discs for 7 and 21 days. Subsequently the cells were 

fixed in 2 % glutaraldehyde in 0.1 M sodium phosphate buffer for 1 h at room temperature, 

followed by dehydration in graded series of ethanol and critical point drying. The specimens 

were mounted together on aluminum pin stubs with the help of adhesive carbon pads. The 

specimens were then sputter-coated with gold/palladium (SC7640 Sputter Coater, VG Microtech, 

Uckfield, East Sussex, GB) and assessed in a LEO 1530 (LEO Elektronenmikroskopie GmbH, 

Oberkochen, Germany) field emission scanning electron microscope operated at 7.5 or 15 kV. 

4.1.12. Determination of Ca
2+

 Consumption and pH 

At established time points the medium was collected and analyzed for Ca
2+

 in the solution and 

pH. The concentration of Ca
2+

 was measured using a calcium analyzer (9180 Electrolyte 

Analyzer, Roche, Mannheim, Germany) and pH measurements were performed by a pH-meter 

(Titan X, Fisher Scientific GmbH, Schwerte, Germany) for each time point. The control group 

for this investigation consisted of the well-plates which contained only the HRD and the medium 

but no magnesium. 

4.1.13. Bacterial Strains and Culture 

The strains used for biofilm assays were E. faecalis ATCC 29212 and S. epidermidis C121 

isolated from the external side of peritoneal dialysis catheter as described by Pihl (Pihl et al. 

2010). All strains were routinely maintained on blood agar or in Todd–Hewitt broth (30 g/l, 

Difco Laboratories, Becton Dickinson & Co, Sparks, MD, USA) at 37 °C in 5 % CO2. 
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4.1.14. Biofilm Formation Assays 

The magnesium discs were pre-coated in human serum for 18 h and then washed twice in 2 ml 

PBS for 10 min at 37 °C.  Overnight broth cultures of S. epidermidis or E. faecalis were 

transferred by 1:10 dilution into fresh, pre-warmed Todd–Hewitt broth and incubated at 37 °C in 

5 % CO2 to the mid-exponential growth phase (optical density at 600 nm ≈ 0.6). The bacterial 

suspension was centrifuged at 3000 rpm for 10 min at 5 °C washed once in PBS and re-

suspended in 10 % human serum to a final concentration of approximately 1×10
8
 cells ml

−1
. The 

bacterial suspension was added to a microtiter plate with the magnesium discs and the bacteria 

were allowed to adhere for 2 h at 37 °C on a rocking platform at 300 cycles per hour. Following 

incubation for 2 h, the surfaces were rinsed twice in 2 ml PBS with pH 7.5 to remove loosely 

bound cells. S. epidermidis was then further incubated for 24, 72 and 168 h respectively. Adhered 

cells were stained using the Live/Dead BacLight staining kit (Molecular Probes, Eugene, OR, 

USA) and then visualized using Aristoplan fluorescent microscope (Leitz, Wetzlar, Germany). 

Ten images per surface were recorded with a digital camera and the number of bacteria on each 

image was counted by hand in a field area of 15600 µm
2
. All experiments were carried out three 

times for each surface.  

4.1.15. Statistical Analysis 

Data were analyzed using the Statistical Package for the Social Sciences (SPSS, v18, SPSS Inc, 

Chicago, USA). The significance level was set at 5 %. Standard analyses comparing more than 

two treatments were conducted via one-way repeated measures analysis of variance (ANOVA). 

One-way repeated measures ANOVA was performed with the Dunn or Holm–Sidak post-hoc 

test. Surface characterization values (Sa, Sds, Sdr) had non-normal distribution and Kruskal-Wallis 

test was performed. The graphs were plotted with Microsoft Excel® computer software (MS 

Excel 2003, Washington, USA). 
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4.2 In vivo 

4.2.1. Sample Production 

Three types of magnesium-based implants were used in this study: a) pure Mg (99.8 % of Mg by 

weight (wt)), b) W4 alloy, VMWO 061 R116986, c) Mg-hydroxyapatite (HA) (80 % W4, 20 % 

HA). The HA powder was produced by spray drying a HA slurry. Mg-HA samples were 

manufactured by high-energy milling of a mixture of HA and Mg granules and extruding the 

homogenate
 
(Witte et al. 2007). 

Pure Mg and W4 were cut from cast ingots and machined into rod samples with a dimension of 

5.0 mm in length and 5.5 mm in diameter. Implants were ultrasonically cleaned and packed into 

airtight pouches. Gamma-sterilization was performed at the BBF Sterilisationservice GmbH 

facility (Kernen, Germany) with a total dosage of 29 kGy. 

4.2.2. Implantation 

All animal experiments were conducted according to the European Commission Directive 

86/609/EEC for animal experiments. A total of 24 female New Zealand white rabbits (Manfred 

Bauer, Neuenstein, Germany) were used. There were 8 animals in each group. The pre-anesthetic 

procedure included an intramuscular administration of Ketamine (50 mg/kg) and Xylazine (1 

mg/kg). General anesthesia was then achieved with intravenous administration of Ketamin (25 

mg/kg) as well as Midazolam 0.5-1 mg/kg. Post-operative anesthesia was achieved with 

Buprenorphin 0.05 mg/kg.  

An incision at the skin level was performed followed by a muscle layer and a periosteal incision. 

Next, a flap was reflected, and the bone exposed. The samples were implanted by lateral 

approach to the left distal femur condyle after predrilling with a 5.5 mm hand-operated diamond 

bone cutting system under constant irrigation with saline solution. Implantation was performed 

pressfit into the spongiosa. One magnesium-based implant was implanted per rabbit. The 

periosteum, muscle, and dermis layer were closed with 4-0 vicryl (Ethicon Johnson, Miami, FL, 

USA) resorbable suture, using single interrupted nodes. The skin was sutured with 4-0 nylon 

(Ethicon Johnson) sutures. After the surgical procedures, the animals were kept in their cages 

under controlled lighting and temperature. 

After the operation, all the animals received 128 mg of Veracin as an antibiotic prophylaxis. 

Postoperatively, the rabbits were allowed to move freely in their cages without external support. 

Four rabbits per group were sacrificed randomly at 6 and 12 weeks post-operation, respectively. 
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4.2.3. Histological Preparations  

The bone samples were embedded in paraffin and in methyl methacrylate based resin 

(Technovit® 9100, Heraeus Kulzer, Hanau, Germany).  

For the paraffin embedding, the specimens were first fixed in 4 % phosphate-buffered 

paraformaldehyde (Merck, Darmstadt, Germany), then decalcified with 10 % 

ethylenediaminetetraacetic acid (EDTA, pH 8.0, Sigma, Taufkirchen, Germany) in 3.5 M Tris 

buffer (pH 7.4, Sigma) for 21 days, dehydrated with graded ethanol concentrations, saturated in 

xylene, and finally embedded in paraffin. Sections of 3–5 μm thickness were cut with a rotator 

microtome (Leica, Bensheim, Germany), deparaffinized, and then stained with hematoxylin and 

eosin (HE) (Shandon Scientific Ltd, Cheshire, UK). 

For the Technovit® 9100 new embedding, the samples were prepared according to the 

manufacturers protocol (Heraeus Kulzer GmbH, Wehrheim, Germany) and then grinded into 50 

μm thick specimens using EXAKT 400CS microgrinding system (Exakt GmbH, Norderstedt 

Germany). The grindings were stained with toluidine blue (TB) and tartrate-resistant acid 

phosphatase (TRAP). Briefly, the grindings were first deplastified. For TB, they were etched in 

20 % hydrogen peroxide for 40 minutes, stained with TB solution containing Sodium Tetraborate 

(Merck, Darmstadt, Germany), Pyronin G (Merck) and Toluidine blue (Chroma, Olching, 

Germany). The grindings were then let to dry for 24 h washed in 100 % ethanol and xylene, and 

coverslipped with DePeX mounting medium (Serva Electrophoresis Life Science Products, 

Heidelberg, Germany). For TRAP the sections were treated with 0.1 M Sodium Acetate buffer 

and incubated in Napthol-AS-TR phosphate (N6125-1G, Sigma) in N–N-Dimethyl formamide 

(Sigma Aldrich) and sodium tartrate (Merck) with Fast Red TR salt (Sigma Aldrich) at 37 °C for 

60 minutes. Coverslipping was performed using DePeX.   

4.2.4. Histomorphometric Analysis 

Image capturing used Axioplan 2 Imaging system (Carl Zeiss, Germany) associated to a DC500 

camera (Leica, Germany). Image evaluation was performed on Image-Pro® Plus (Weiss Imaging 

and Solutions GmbH, Germany) and Photoshop CS3 Extended® (Adobe, v.10.0.1, 2007, USA).  

The region of interest (ROI) was defined as 2 mm from the implant surface since we were mainly 

interested in implant stability in the surrounding bone and the reaction of the nearby tissues. 

Briefly, circles with diameter 7.5 mm were created in Photoshop CS3 Extended® and placed in 

the implant area. The implant was centered in the middle of the circle. All histomorphometric 

analysis was then limited to the ROI inside the circle. For measuring the amount of gas voids, 
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corrosion layer and new bone, all areas containing these structures were first selected and then 

the total area calculated. For quantification of TRAP-positive cells, all cells were counted in the 

ROI and then the resultant number was divided by the circle area (mm
2
) to get the mean number 

of cells per mm². In order to determine the implant-bone contact, the interface between material 

and trabeculae was measured in mm for each animal.
 

4.2.5. TEM  

Examination under TEM was performed in order to study the cell morphology and bone response 

to magnesium materials. The same protocol as for in vitro study was applied to prepare the 

samples for examination (p.24) and then ultrathin sections of about 60–80 nm were cut using the 

ultramicrotome (Reichert-Jung, Vienna, Austria). Examination was done with the transmission 

electron microscope Leo EM 912 (Zeiss). Images were recorded with a 2k × 2k slow scan CCD 

camera (Albert Troendle Prototypentwicklung, Moorenweis, Germany).  

4.2.6. Statistical Analysis 

Data were analyzed using SPSS®. The significance level was set at 5 %. ANOVA test was used 

to determine whether any significant differences in hydrogen gas production, bone contact, 

corrosion layer and implant resorption existed between the three groups. The graphs were plotted 

in Microsoft Excel® computer software. 

 

 

 

 

 

 

 

 

 

 



30 
 

5. Results 

5.1. Degradation 

Degradation of magnesium is a complex process which consists of material’s mass loss, 

hydrogen gas production, change in osmolality, pH and Ca
2+

 concentration of the surrounding 

medium, as well as of surface changes of degrading implants. These changes were measured in 

this study and are presented below. 

5.1.1. Corrosion  

An important problem of magnesium is a high corrosion rate with consistent hydrogen gas 

formation on contact with fluids (Witte et al. 2008). Corrosion is determined by the changes in 

sample mass, and/or the produced gass volume. Thus, both the mass loss and eudiometer 

methods were performed in this study.  

WE43 alloy showed the fastest degradation of all materials measured both by immersion and gas 

evolution methods, followed by Mg10Gd (Fig 2 A). Corrosion of Mg2Ag and pure Mg was 

comparable, but was somewhat lower for Mg2Ag. Figure 2 B illustrates the mass loss at different 

time points during degradation under cell culture conditions. It can be seen that the mass loss 

increases up to day 7 for all samples. At day 7 a slight mass loss was observed for Mg10Gd and a 

rapid mass loss for WE43. For Mg2Ag and pure Mg a slight mass gain after day 7 could be due 

to crystal formation on samples’ surface. The mean corrosion rate was lowest in Mg2Ag, but it 

was not highly significantly different compared to WE43 (p = 0.09). 

Gas evolution test has shown that corrosion tends to slow down after day 3 for all but WE43 

alloy (Fig 2 C). WE43 was corroding fast in vitro and its degradation did not slow down even 

after 4 days. The graph of mass loss (Fig. 2 B) and the graph showing gas emission (Fig. 2 C) 

have quite similar pattern with significantly higher values for WE43 compared to the other 

groups (p ≤ 0.05). 

 

 

 

 



31 
 

 

 

 

 

 

 

  

Figure 2. A. Mean corrosion rates of pure Mg, Mg2Ag, WE43 and Mg10Gd. B. Mass loss at 

different time points during degradation. Note highly significant difference between WE43 and 

other groups at day 10 (p ≤ 0.005). C. Gas evolution. Observe highly significant difference 

between WE43 and other groups starting at day 1 (p ≤ 0.005). 
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5.1.2. Osmolality 

For pure Mg and Mg10Gd osmolality was generally on constant level up to day 7 (Fig 3 A). 

After day 7 osmolality dropped for all tested materials. For Mg2Ag osmolality increased between 

day 3 and 5, but then decreased already after day 5. WE43’s osmolality values varied but the 

lowest osmolality value was reached at day 10.  

5.1.3. pH – measurements 

The original control pH of the medium was 7.9. It was observed that pH of the medium in which 

the samples were immersed was fluctuating over the observation period (Fig. 3 B). Generally, pH 

increased starting from day 3 and reaching its peak at day 7. After day 7 it decreased for all 

groups. The highest mean pH was found for WE43 (1.05 ± 0.23), whereas the lowest mean pH 

was measured for Mg2Ag (0.44 ± 0.17) at all time points. No significant differences were found 

between the groups at various observation periods. 

5.1.4. Ca
2+

 Concentration 

Concentration of Ca
2+

 ions in the original control solution was 1.1 mM/L. It was observed that 

Ca
2+ 

concentration generally decreasing for all samples (Fig. 3 C). This decrease was fastest for 

Mg2Ag and WE43, whereas for pure Mg and Mg10Gd it was more uniform. There was observed 

a signisignificantly lower concentration of Ca
2+ 

for pure Mg and Mg10Gd at day 3 compared to 

the other groups (p  ≤ 0.01). No correlation was found between Ca
2+ 

and pH of the solution.  
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Figure 3. A. Osmolality over 10 days of observation period. B. pH during the observation time. 

C. Concentration of free Ca
2+

 ions; note signisignificantly lower concentration of Ca
2+ 

for pure 

Mg and Mg10Gd at day 3 compared to the other groups (p  ≤ 0.01). 
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5.1.5. Surface Characterization 

Corrosion of magnesium implants influences material’s surface characteristics. Surface plays an 

important role for cellular and bacterial attachment. Both too rough and too smooth surfaces are 

not beneficial and hinder bone formation around implants
 
(Wennerberg and Albrektsson 2000). 

Several parameters can describe implant surface topography, such as average surface roughness 

(Sa), developed surface area ratio (Sdr) and summit density (Sds) (Wennerberg and Albrektsson 

2000, Stout et al. 1993). 

The AFM-measurements have revealed that Sa values of Mg2Ag, WE43 and Mg10Gd formed a 

similar pattern (Fig. 4). For these groups, Sa was lowest at day 0 but increased from day 0 to day 

3, reaching a peak at day 3. Afterwards Sa decreased at day 5 but then started to increase slowly 

up to day 10, but this fluctuation was not statistically significant. In contrast, Sa values of pure 

Mg were rather constant. 

  

Figure 4. Sa, average surface roughness, of magnesium alloys over time. 
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Sdr values of Mg2Ag, WE43 and Mg10Gd showed a similar pattern as Sa for the same materials 

(Fig. 5). The values reached a maximum at day 3 for all but pure Mg groups, then decreased at 

day 5 and then started to grow slightly up to day 10. Increase in Sdr values from day 5 to day 10 

was not found to be statistically significant inside the group. Mg10Gd had significantly higher Sdr 

compared to all other groups at day 10 (p ≤  0.01). Sdr and Sa of pure Mg had alike constant 

pattern. 

  

Figure 5. Sdr, a ratio between the 3-D measurement and a 2-D reference plane, of magnesium 

alloys over time. Note significant difference between Mg10Gd and other groups at day 10          

(p ≤ 0.01). 

 

Sds of WE43 was rather constant over the observation period and no statistical differences were 

found between different observation points (Fig. 6). For the other groups, Sds was fluctuating 

over observation period. Pure Mg and Mg2Ag had a similar pattern of surface change over time. 

For both of these materials Sds decreased and reached its minimum at day 5. It then increased 

again at day 7 but started to fall until day 10, but this decrease was not significant. For Mg10Gd, 

Sds was minimal at day 3 and maximal at day 5, and was then decreasing until day 10. Pure Mg 

values for Sds were significantly lower at day 5 compared to all other groups at this time point     

(p ≤ 0.01). 
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Figure 6. Sds, the number of summits per unit area making up the surface, of magnesium alloys 

over time. Note significantly lower values for pure Mg compared to all other groups at day 5      

(p ≤ 0.01). 
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5.2. Cellular reactions 

Cell viability, differentiation, morphology, intracellular appearance and attachment to materials’ 

surface have been investigated in this study along with the pH changes and Ca
2+ 

concentration in 

order to evaluate magnesiums influence on the primary HRD cells. 

5.2.1. Cell Viability 

The aim of this study was to evaluate magnesium alloys’ effect on the bioactivity of HRD cells 

up to 28 days of direct exposure. Pure magnesium, Mg2Ag, WE43, Mg10Gd induced 

cytotoxicity to HRD were determined by conducting an MTT assay. After 24 h there was no 

statistical difference in the number of viable cells between the groups (Fig. 7). After 7 days the 

significant difference between the control group without magnesium and all other tested 

materials could be observed with higher number of viable cells in the control. After 21 days this 

difference was even more obvious with p ≤ 0.001 (Fig. 7). It was observed that the number of 

viable cells increased in the control group from day 1 to day 21, while in all other groups the cell 

viability was suppressed and no significant difference was seen inside and between the groups 

over the study period.  

 

Figure 7. MTT results for HRD after exposure to different magnesium materials over time. 
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5.2.2. Alkaline Phosphatase Content 

The ALP content in HRD is an important factor in bone mineral formation and shows a scale of 

changes during differentiation. The results for ALP content are presented in Fig. 8. No inhibition 

of the ALP content caused by Mg2Ag, Mg10Gd and WE43 was observed in osteogenic 

differentiating HRD at days 14 and 28. At day 1 the ALP content was significantly higher for 

Mg2Ag (p = 0.004) and WE43 (p = 0.003) compared to the control. The significantly low values 

for the ALP content compared to the control group were observed in pure Mg at day 14               

(p = 0.005) and 28 (p = 0.001).  

 

Figure 8. ALP contents after exposure to different magnesium materials over time. 
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Few or no cells were seen in direct proximity to pure Mg, Mg10Gd or WE43. Instead, the cells 

were found on the edge of the wells (Fig. 9 f). The reduction in cell number was more apparent in 

pure Mg than in any other group. The cell morphology in presence of Mg2Ag was similar to the 

control and the cells were directly contacting the Mg2Ag discs (Fig. 9 c).  

 

Figure 9. Morphology of HRD at 7 days. a. Control group, the well is densely covered with the 

cells. b. Pure Mg, much fewer cells compared to control. c. Mg2Ag, the well is densly covered 

with the cells. d. Mg10Gd, much fewer cells compared to control. e. WE43, similar in 

appearance to pure Mg and Mg10Gd with very few cells observed in material’s proximity.f. For 

pure Mg, Mg10Gd and WE43 the cells were found mainly at the wells‘edge. The image shows 

Mg10Gd’s well edge. Legend: asterix = magnesium disc, arrows = products of degradation. 

 

The cell appearance at day 21 is presented in Figure 10. At 21 days the HRD in WE43 and 

Mg10Gd started to appear closer to the disc although their number was still low compared to 

control and to Mg2Ag. In pure Mg the cells were still only found around the edge of the well and 

not in material’s proximity. In Mg2Ag the cell morphology was closest to the control with high 

cell density directly contacting the discs. 
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Figure  10. Morphology of HRD at 21 days. a. Control group, the well is densely covered with 

the cells. b. Pure Mg, almost no cells compared to control. c. Mg2Ag, the well is densely covered 

with the cells. d. Mg10Gd, much fewer cells compared to control but more than at day 7. e. 

WE43 similar appearance to Mg10Gd with somewhat more cells than at day 7. f. Crystal 

formation was observed for all materials. The image shows pure Mg’s well. Legend: asterix = 

magnesium disc. Scale bar represents 100 µm. 

 

 

The osteogenic differentiating HRD showed a similar pattern of cell morphology and cell number 

as HRD (Fig. 11). No cells were found in direct contact to pure Mg (Fig. 11 b). Mg2Ag was the 

closest to control at all time points regarding morphology and cell density. At day 28 the 

osteogenic differentiating HRD in Mg2Ag group were still closest to control regarding the cell 

number (Fig. 11 c). More cells appeared around Mg10Gd and WE43 at day 28 compared to other 

time points for these materials (Fig. 11 d and e).  



41 
 

 

Figure 11. Morphology of osteogenic differentiating HRD at 28 days. a. Control group, the well 

is densely covered with the cells. b. Pure Mg, few cells compared to control. c. Mg2Ag, the well 

is densely covered with the cells. d. Mg10Gd, the well is densely covered with the cells. e. 

WE43, the well is densely covered with cells. Legend: asterix = magnesium disc, arrows = 

products of degradation. Scale bar represents 100 µm. 

 

5.2.4. TEM 

Intracellular structure was examined after exposure of HRD to magnesium samples for 21 days. 

It was observed that the number of lysosomes and endocytotic vesicles was higher in the HRD 

exposed to magnesium alloys than in the control (Fig. 12). In Mg2Ag degraded material particles 

were found inside the lysosomes (Fig. 12 e) and in the cytoplasm (Fig. 12 f). The degradation 

particles were not observed in the other groups. 
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Figure 12. TEM analysis at day 21. a. Control. b. Mg2Ag. c. Mg10Gd. d. WE43. e. Lysosome 

of the HRD cultured with Mg2Ag. Note the degradation particles (arrows). f. Cytoplasm of the 

HRD cultured with Mg2Ag. Note the degradation particles (arrows). Legend: asterix = 

lysosomes/endocytotic vesicles, n = nucleus. Note the high amount of lysosomes and endocytotic 

vesicles in b, c and d. 
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5.2.5. SEM 

Cellular attachment to magnesium specimens was studied under SEM after incubating the HRD 

with magnesium for 7 and 21 days. It was observed that the cells attached readily to the 

degradation layer and to the forming crystals on magnesium’s surface (Fig. 13). The cell 

pseudopodia were numerous whenever the crystal formed on material’s surface (Fig. 13). Few 

pseudopodia were seen on smoother surfaces (Fig. 13). No difference between 7 and 21 days was 

observed regarding the number of attached cells and their morphology. 

 

Figure 13. SEM analysis at day 7. a. Control densely covered with HRD. b. Pure Mg. c. Mg2Ag. 

d. Mg10Gd. e. WE43. Note the crystal formation on material’s surface in b, c and e and the cell 

attachment to the crystal compared to the smooth surface in d. The cells are marked with an 

asterix. Scale bar represents 20 µm. 
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5.2.6. Ca
2+

 Consumption  

Calcification induced by magnesium specimens was studied by measuring Ca
2+ 

consumption 

from the surrounding medium. The results are presented in Fig. 14. A decrease in free calcium 

ions was observed around all magnesium materials from day 1 to day 7. Between day 7 and day 

28 the Ca
2+ 

ions were released into the medium for all tested samples. Mg2Ag’s values were 

closest to the control out of all groups at day 21 and 28.  Control group had significantly lower 

values compared to all tested alloys at day 1 (p ≤ 0.01), day 7 (p ≤ 0.05), day 14 (p ≤ 0.01), and 

significantly lower than WE43, pure Mg and 10Gd at days 21 (p ≤ 0.01) and 28 (p ≤ 0.01). Pure 

Mg had significantly higher values than all other samples at days 1 to 21 (p ≤ 0.01). At day 21 

pure Mg behaved similarly to Mg10Gd and these values were significantly higher than WE43, 

Mg2Ag and control (p ≤ 0.01). 

 

Figure 14. Consumed ionised calcium at different observation points. Note the low values for the 

control group and high values for pure Mg. 

 

5.2.7. pH – measurements 

Figure 15 represents pH changes. It was seen that all magnesium materials increased the pH of 
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groups: the pH values were stable up to day 7, a sudden pH drop occurred on day 14 and then the 

pH tended to increase slightly up to day 28. The pH values for Mg2Ag were the closest to the 

control. Pure Mg caused the highest increase in pH of all groups, and this increase was 

statistically significant compared the control group at all time points (p ≤ 0.005) but not 

statistically significant compared to the other alloys throughout the study (p ≥ 0.01). No 

correlation between the pH and Ca
2+ 

consumption was found in this study. 

 

Figure 15. pH of the solution after placement to different materials over time. Note significantly 

higher pH of pure Mg compared to the control att all time points (p ≤ 0.005). 
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5.3. Early Stages of Biofilm Formation 

The next study looks at ability of S. epidermidis and E. faecalis to form early biofilm on 

magnesium implants, and furthermore investigates how the surface changes during the 

degradation influence the early stages of biofilm formation. 

5.3.1. Adhesion of S. epidermidis and E. faecalis to Magnesium Surfaces 

Comparison between adhesion of S. epidermidis and E. faecalis to magnesium materials after 2 h 

of incubation is presented in Figure 16.  

  

 

 

Figure 16 Adhesion of S. epidermidis and E. faecalis to magnesium materials after 2 h of 

incubation. A. Live S. epidermidis and E. faecalis. B. Dead S. epidermidis and E. faecalis.            

* Field area represents 15600 µm
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The viability of the adhered cells of both E. faecalis and S. epidermidis was high (> 95 % for 

both strains). E. faecalis was significantly more prevalent on Mg10Gd surface than on other 

alloys’ surfaces (Fig. 16). The magnesium samples were densely covered with E. faecalis, 

whereas S. epidermidis colonies were scarcely spread over the surface (Fig. 17). 

 

Figure 17. A. S. epidermidis on Mg2Ag’s surface at 2 h. B. E. faecalis on Mg2Ag’s surface at     

2 h. Scale bar represents 30 µm. 

 

5.3.2. S. epidermidis Growth over Time 

Biofilm growth of S. epidermidis on magnesium materials over time is presented in Figure 18 A. 

In general, Mg2Ag and WE43 had similar pattern of the biofilm growth, whereas pure Mg was 

comparable to Mg10Gd. The number of adherent bacteria increased at 72 h of incubation for all 

tested samples and this increase was significant (p = 0.003) for all but Mg10Gd group (Fig. 18 

A). Significantly more bacteria were found on Mg10Gd surface at 168 h compared to 2 h (p = 

0.004). Between 72 h and 168 h, the biofilm reached its plateau for pure Mg and Mg10Gd. For 

Mg2Ag and WE43, the amount of adhered S. epidermidis decreased between 72 and 168 h and 

this decrese was significant for both samples (p = 0.004).  

The viability of the cells remained high (> 95 %) at all time-points as shown by the low number 

of dead cells. There was found a significant difference between pure Mg at 24 and 72 h compared 

to the other groups at all time points (p ≤ 0.01) in the amount of dead S. epidermidis (Fig. 18 B). 

The pattern of S. epidermidis growth over time is shown in Fig. 18.   
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Figure 18. A. Adherence of live S. epidermidis to magnesium surfaces over time. B. Adherence 

of dead S. epidermidis to magnesium surfaces over time; note significantly higher values for pure 

Mg compared to all other groups at 24 and 72 h (p ≤ 0.01). * Field arearepresents 15600 µm
2
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Figure 19. Adherence of S. epidermidis to pure Mg at A. 2 h, B. 24 h, C. 72 h, D.168 h. Scale 

bar represents 30 µm. 

 

 

5.3.3. Characterisation of Surface Roughness 

Surface topology was quantified starting from 0 h when bacteria were seeded onto the samples. It 

was observed that Sa values for pure Mg significantly increased from 0 to 2 h, and then slightly 

decreased at 168 h (Fig. 20). This increase was significantly higher than in all other samples       

(p ≤ 0.001). The surface of Mg2Ag stayed stable over time with no significant changes in Sa. 

WE43 was comparable to Mg2Ag in respect to Sa changes. Significant decrease in Sa was 

observed for Mg10Gd at 0 and 168 h (p = 0.005).  

The pattern of Sdr change over time was very similar to Sa and is presented in Figure 21. At 2 h 

there was observed a significant increase of Sdr for pure Mg compared with the initial value            

(p ≤ 0.001) as well as in relationship with all other groups (p ≤ 0.001). Sds behavior was similar 

for all tested materials (Fig. 22). In general, Sds decreased from 0 h to 2 h but then stayed quite 

stable over time. No correlation between the surface topology and amount of adherent bacteria 

were found in this study. 
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Figure 20. Sa, average surface roughness, of magnesium alloys over time. Note significant 

increase in Sa for pure Mg at 2 h compared to the other groups (p ≤ 0.001). Observe Mg10Gd’s 

significant decrease in Sa from 0 to 168 h (p = 0.005). 

 

Figure 21. Sdr, a ratio between the 3-D measurement and a 2-D reference plane, of magnesium 

alloys over time. Note a similar pattern with Sa over the studied period: a significant increase of 

Sdr for pure Mg at 2 h compared with the initial value and with all other groups (p ≤ 0.001). 
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Figure 22. Sds, the number of summits per unit area making up the surface, of magnesium alloys 

over time.  
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5.4. Histology 

The next study’s aim is to determine the bone response to pure Mg, Mg-HA and W4 as well as to 

evaluate the amount of gas in the bone tissue and the implant resorption behavior. 

5.4.1. Bone Response  

A total of 24 female New Zealand white rabbits were used for this in vivo study. There were 8 

rabbits in each group. The animals were sacrified at 6 and 12 weeks post-implantation and W4, 

Mg-HA and pure Mg were evaluated histologically. 

There was no significant difference between the pure Mg and W4 in the amount of new bone 

formation (p = 0.011), and these two materials showed similar appearance histologically (Fig. 23 

A-D). Both materials were often surrounded by host bone (Fig. 23 B), with few areas with newly 

formed bone in direct contact to corrosion layer at 6 and 12 weeks (Fig. 23 C-D). The least new 

bone was observed in Mg-HA group compared to all other materials both at 6 and 12 weeks (Fig. 

23 E-F). This difference was statistically significant (p = 0.03).  

What was similar for all groups is that the clusters of new bone typically formed on the 

circumference of gas bubbles, encircling the gas (Fig. 24 A-B). These newly formed bone 

clusters grew and appeared more matured and developed at 12 weeks (Fig. 24 C-D). Mean bone 

contact to the implant surface was more extensive in Mg-HA group both at 6 and 12 weeks (Fig. 

25). Pure Mg and W4 had the lowest mean values for bone-implant contact (Fig. 25).  



53 
 

 

Figure 23. New bone formation patterns at implants’ surfaces. TB staining. A. W4 at 6 weeks. 

Gas voids (G) and corrosion layer (c.l.) were observed on material’s surface. B. W4 at 12 weeks. 

Bone-implant interface, corrosion layer (c.l.) formed next to host bone (o.b.). C. Pure Mg at 6 

weeks. New bone (n.b.) formed in direct contact to corrosion layer (c.l.). D. Pure Mg at 12 

weeks. New bone formed around corrosion layer (c.l.). Corrosion layer (c.l.) was thicker at 12 

weeks than at 6 weeks. E. Mg-HA at 6 weeks. The material was mostly surrounded by older bone 

(o.b.) and there were no signs of new bone formation. F. Mg-HA at 12 weeks. Material had 

irregular shape and spread into the tissues. Still mostly old host bone (o.b.) was observed. 
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Figure 24. New bone formation patterns around gas voids. HE staining. A and B. New bone (nb) 

clusters surrounding the gas void (G) at 6 weeks. C and D. The bone grows stronger and matures 

(mb) at 12 weeks post-operation. 

 

TRAP-positive multinucleated cells were found in all groups. The highest mean prevalence of 

TRAP-positive cells was seen in Mg-HA group at 6 weeks. There was no significant difference 

between the groups at 12 weeks post-operation, and the number of TRAP positive cells was 

similar in Mg-HA and pure Mg groups (Fig. 26).  

 

Figure 25. Bone-to-implant contact [mm] at 6 and 12 weeks (6 w and 12 w respectively).  
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Figure 26. TRAP-positive cells [cells/mm²] around tested materials at 6 w and 12 w. 

 

5.4.2. Gas Voids 

In general, the gas voids’ diameter was biggest at some distance from the implants. The bubbles 

were smallest at material surface. Pure Mg and W4 were normally surrounded by huge bubbles 

up to 4 mm in diameter whereas Mg-HA implants were producing smaller gas volumes. The gas 

was spread in the bone marrow, not affecting trabecular or cortical bone. Least gas was seen in 

the bone surrounding Mg-HA biomaterial both at 6 and 12 weeks, whereas W4 produced the 

most gas of all groups (Fig. 27).  
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Figure 27. Graph showing the area of gas voids [mm²] around the tested materials at different 

time points. 

 

5.4.3. Implant Resorption Behaviour  

Mg-HA implants had the fastest corrosion rate of all evaluated materials (Fig. 28). Already at 6 

weeks most implants lost their integrity, and degradation products together with the implant 

pieces were seen in the tissues. At 12 weeks the implants were even more degraded. Unlike Mg-

HA, both pure Mg and W4 retained their round shape and density. Corrosion process was 

happening on their surface, whereas in Mg-HA corrosion was more uneven and uncontrollable.   
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Figure 28. Implants’ resorbtion behaviour at 6 and 12 weeks. TB staining. Arrows represent 

degradation products. A. Mg-HA at 6 weeks. B. Mg-HA at 12 weeks. C. Pure Mg at 6 weeks. D. 

Pure Mg at 12 weeks. E. W4 at 6 weeks. F. W4 at 12 weeks.  

 

5.4.4. TEM 

Bone remodeling was observed in direct proximity to implants’ surface. In W4 group osteoclasts 

were seen at implants interface (Fig. 29 A). The signs of bone remodeling with typical rough 

boarders at bone-implant interface were also seen at gas voids’ periphery in W4 (Fig. 29 B). 

Osteocytes were evenly spread in the bone tissue (Fig. 29 B). W4’s degradation particles which 
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otherwise were not seen at light microscope magnifications were observed in the tissues at 12 

weeks (Fig. 29 C).  

Few osteoblasts were seen in Mg-HA group, and often these cells exhibited abnormal 

morphology (Fig. 29 D). Unlike, other materials, bone remodeling around gas voids was not 

observed in Mg-HA (Fig. 29 E). However, new bone-ingrowth into the material was found (Fig. 

29 F). 

 

Figure 29. Images from TEM at 12 weeks. A. Osteoclasts (Oclst) produced typical rough 

boarders (Rb) on bone around W4. B. Host bone rich in osteocytes (Oc) with typical appearance 

of rough boarders (Rb). C. Degradation particles (black dots) of W4 seen in the tissue. D. Few 

osteoblasts (Ob) were seen in direct contact with Mg-HA, and their morphology was disturbed. 

Mg-HA’s degradation products covered host bone (B). E. Gas (G) inside bone marrow in Mg-

HA group. No active bone remodeling was observed. Numerous osteocytes (Oc) in host bone. F. 

View into Mg-HA material. Isles of newly formed bone (B) together with gas voids (G) were 

observed. 
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6. Discussion 

Degradation, cellular reactions, early stages of biofilm formation and histology have been 

investigated in this work. The results and possible future applications of magnesium will be 

discussed in this chapter. 

6.1. Degradation  

This study had the aim to determine corrosion rate, osmolality, pH and surface changes of four 

magnesium-based materials developed for medical applications. 

It was shown that WE43 had the highest, whereas Mg2Ag had the lowest corrosion of all 

materials. Corrosion rates of Mg10Gd and pure Mg were comparable. It is important for 

degradable metal implants to have slow, uniform and thus predictable degradation. Bone healing 

usually takes around 12 weeks
 
(Steiger et al. 2006), but this can vary on individual basis 

depending on patients’ age, general health and medications. Therefore, Mg2Ag with the lowest 

corrosion rate seems to be the most promising for medical purposes of all tested materials.  

Two methods were used to observe corrosion in this study. Immersion test more closely 

resembles in vivo conditions since it was performed under cell culture condition under constant 

temperature, oxygen and carbon dioxide. Moreover, medium was constantly changed every 

second day. Gas evolution test had a few considerations. The experiment was performed in a 

closed system so the gas would not escape, thus the medium was not changed and the access to 

oxygen was limited. Therefore, gas evolution method shows corrosion of magnesium-based 

materials under anaerobic conditions while immersion method represents corrosion under aerobic 

state. In a clinical situation when the implant is placed into the bone the conditions are aerobic, 

with more or less constant body temperature, oxygen and fluid transportation to and from the 

healing site. Thus, the immersion test design is closer to a clinical set-up while the gas evolution 

test is very demonstrative of the amount of hydrogen gas that magnesium-based materials 

produce. 

Theoretically, osmolality should be high when corrosion rate is high because degradation 

products and ions are released from the material (Feyerabend et al. 2012). However, this was not 

the case in this study. Although the corrosion rate of WE43 and Mg2Ag differed by a factor of 

about 2, there was no highly statistical difference between the groups (p = 0.009). This is because 

corrosion is a multi-factorial process characterized by the release of certain ions (e.g. magnesium 

and alloying elements) from the alloy to solution and incorporation of other ions into the 
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degradation layer (e.g. calcium and phosphate). As it was shown by earlier studies, Mg
2+

 

facilitates calcification by stimulating formation of calcium phosphates and thus decreases the 

amount of free Ca
2+

 in the surrounding medium
 
(Shaw et al. 2003). In fact, all magnesium-based 

materials decreased the amount of Ca
2+

 in the solution. Pure Mg and Mg10Gd had a similar 

effect on Ca
2+

: first high decrease and then only slow further reduction, whereas WE43 and 

Mg2Ag had a constant rate of depletion. Calcification is beneficial for potential bone implants 

that are to be used in orthopedic, dental or maxillofacial fields (Reid 2014). 

It was shown in previous research that calcification is promoted at basic pH whereas acidic pH 

leads to dissolving of calcium crystals
 
(Feyerabend et al. 2012). In our study no statistical 

correlation was found between pH and free Ca
2+ 

ions in the solution. However, it was shown that 

pH increased and Ca
2+ 

concentration decreased with time for all tested samples. 

This study showed that magnesium makes pH more basic, and that there is a sudden pH drop 

after day 7. This drop towards more neutral values can be explained by the formation of the 

corrosion layer. Corrosion layer consists of calcium, phosphorous, magnesium and oxygen and is 

osseoinductive, permeable and corrosion protective
 
(Willumeit et al. 2011, Feyerabend et al. 

2012). While high pH is a sign of fast magnesium degradation due to pitting corrosion, lower pH 

indicates that corrosion is either more uniform or reduced
 
(Reid 2014).  

Since magnesium alloys are designed as temporary implants, the fixture will resorb slowly over 

time resulting in the surface change. This resorbtion is mainly the result of pitting corrosion
 

(Feyerabend et al. 2012). This means that the surface of magnesium alloys is not uniform during 

degradation and is challenging to control. We have seen that Sa and Sdr tended to increase when 

the alloys are placed into the medium which represents the body conditions. This increase is 

probably due to pitting corrosion making the surface rougher. After day 3 both Sa and Sdr 

decrease which might be due to formation of corrosion layer which is unstable and tends to break 

away because the crystalline lattice is easily cleaved
 
(Hornberger et al. 2012). This might explain 

why Sa and Sdr values slightly increase after day 7, although this increase is not significant.  

Sds tended to decrease reaching its absolute minimum at day 3 for Mg10Gd and at day 5 for pure 

Mg and Mg2Ag. Such decrease in the number of summits per unit area is due to the cleavage of 

the surface peaks and irregularities which weaken as corrosion proceeds. For pure Mg a rapid 

increase of Sds was observed at day 7 and 10, which might be due to deposition of calcium 

phosphate crystals
 
(Feyerabend et al. 2012). Thus, it can be summarized that when magnesium 

alloys resorb in vitro, the summits become lower with time, while the pitting corrosion 
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progresses. Formation of corrosion layer makes the surface more uniform, while precipitation of 

calcium phosphates contributes to surface roughness. 

Based on the results from this study, it can be hypothesized that formation of corrosion layer not 

only improves conditions in the surrounding environment such as osmolality, pH and Ca
2+

 

concentration, but also makes the surface more uniform. Limitation of this study is that it looked 

at corrosion properties of magnesium in absence of cells. Since these implants are to be used in 

medical applications, the effect of cells on corrosion is desirable to know. Further studies 

examining corrosion properties in presence of cells are required to see the possible interactions. It 

is also desirable to compare in vitro corrosion rate with in vivo degradation in future research. 

6.2. Cellular Reactions 

This study looked at direct long-term effect of magnesium alloys on primary human HRD. The 

cell viability, differentiation, morphology as well as pH and calcium uptake were analyzed in 

order to assess the overall biocompatibility of the tested materials. We evaluated the long-term 

effects of magnesium on human cells to simulate as closely as possible the in vivo situation.  

All magnesium specimens impaired cell viability in this study. Previous studies have shown 

higher values for cell viability measured by MTT test compared to the present study (Feyerabend 

et al. 2010, Tie et al. 2013, Yang et al. 2013). The difference between this work and previous 

publications is that the present study applies the longest in vitro incubation times for magnesium 

alloys tested up to now. The HRD were kept in the direct contact with magnesium samples and 

not in magnesium extract as conducted in most studies
 
(Feyerabend et al. 2010, Tie et al. 2013, 

Yang et al. 2013).  

An important drawback of the tetrazolium-based tests is that the difference between cytotoxic 

(cell death) and cytostatic (reduced growth rate) effects cannot be distinguished
 
(Plumb et al. 

2004). We have thus looked at the cell morphology under light microscope, TEM and SEM.  

After examination under SEM and light microscope it was revealed that the number of cells 

decreased in the presence of pure Mg, Mg10Gd and WE43. These materials seem to have long-

term cytotoxic effect on HRD when put in direct contact with the cells. This explains the low 

viability values. 

The cell number was high and the cells had normal morphology in Mg2Ag groups. However, the 

cell viability was unexpectedly low for this alloy. The TEM analysis revealed elevated amount of 

lysosomes which contained degraded magnesium particles. Degradation particles were also 
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found in the cytoplasm. The presence of high amounts of degradation products inside the HRD 

could explain the low cell viability values for Mg2Ag. It was shown in previous studies that the 

uptake of the material particles leads to the induction of cell stress which triggers the cytotoxicity 

(Pauksch et al. 2014). 

The ALP content in HRD is an important factor in bone mineral formation and shows a range of 

changes during differentiation. The inhibition of ALP content in osteogenic differentiating HRD 

was caused by pure Mg at day 14 and 28. All other magnesium alloys did not affect the ALP 

content. In this respect our study shows similar results as previous research in this area
 
(Li et al. 

2014) despite the fact that we observed osteogenic differentiation under much longer period and 

in direct contact of cells with magnesium.  

The SEM analysis revealed that the cellular attachment was generally more apparent to the 

crystals generated by degradation products on material’s surface. The crystals have been seen 

forming on magnesium alloys in previous studies as well
 
(Tie et al. 2013). In this sense our 

results are similar to earlier findings. The fact that the cells attached to the crystalline structures 

more readily than to the overall material surface and developed numerous pseudopodia can be 

explained by the rough structure of crystals, and by the chemical composition of these crystals. It 

was previously shown that the cells attach better to certain surfaces with the preferable average 

surface roughness of ~ 0.5 μm up to ~ 8.5 μm
 
(Stout et al. 1993). Values under or above this 

range diminish the cells’ ability to bind to the surface.  

The chemical composition of the crystals and the degradation layer formed on magnesium’s 

surface can also explain the better attachment of the cells to these structures. Their chemical 

composition consists of calcium, phosphorous, magnesium and oxygen
 
(Willumeit et al. 2011). 

Thus, the cells attach to already reacted material where they are not mechanically disturbed by 

hydrogen gas produced as a by-product of degradation. The formation of the degradation layer 

could also explain an increase in cell density around Mg10Gd and WE43 after 21 days of 

incubation. 

All magnesium-based materials decreased the amount of Ca
2+

 in this study. As was shown by 

previous publications, Mg
2+

 promotes the formation of calcium phosphates and consequently 

decreases the amount of free Ca
2+

 ions in the medium
 
(Feyerabend et al. 2012. Willumeit et al. 

2011). Consequently, our results are consistent with earlier works. A sufficient supply of calcium 

is vital to ensure that bone laid down by osteoblasts is normally mineralized
 
(Reid. 2014). 

Calcification is thus advantageous for orthopedic and maxillofacial implants. 
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It was shown in previous works that magnesium increases the pH and that the high pH promotes 

Ca
2+ 

binding
 
(Witte et al. 2008. Willumeit et al. 2011). In this study, it was also revealed that pH 

shifts to alkali values in presence of magnesium but to somewhat different degree for different 

alloys. Yet no statistical correlation was observed between the pH and consumed Ca
2+

.  

In conclusion, our study displays a long-term effect of magnesium materials on human HRD 

seeded directly onto magnesium discs. In respect to cell morphology, cell density and the effect 

on the surrounding pH, Mg2Ag showed the most promising results. However, the mechanism of 

cell stress induction and cytotoxicity need to be further studied in order to be able to predict 

possible health risks.  

6.3. Early Stages of Biofilm Formation 

Implant-associated infections are the result of bacteria adhesion to an implant surface and 

subsequent biofilm formation at the implantation site. This study compared magnesium materials 

on their ability to resist bacterial adhesion as well as further biofilm formation. The surface 

changes were measured in order to find the possible correlation between the biofilm and surface 

characteristics. 

Adhesion of E. faecalis was significantly better than adhesion of S. epidermidis to the same 

samples. This means that different bacterial strains have different ability to bind to magnesium 

surfaces under the same conditions which can be supported by previous studies on microbiology
 

(Guo et al. 2014). In this study, no correlation was found between the surface topology and the 

ability of the bacteria to adhere to the magnesium surface, although this correlation was observed 

in previous research
 
(Dorkhan et al. 2012). Resorbtion of magnesium is a very complex chemical 

process. Surface topology is one of many factors that might influence cell and bacteria adherence 

and there are many more aspects that should be taken into account when analyzing magnesium’s 

performance in vitro.  

It has been shown in previous research that magnesium changes the surrounding environment, it 

makes pH more basic
 
(Witte et al. 2008, Willumeit et al. 2011), stimulates precipitation of Ca

2+
 

ions from the solution
 
(Feyerabend et al. 2012, Witte et al. 2008, Willumeit et al. 2011), changes 

the osmolality
 
(Feyerabend et al. 2012) and reacts with the medium to form H2 gas (Staiger et al. 

2006). The surrounding environment also has effect on magnesium since it promotes formation 

of the protective layer on its surface
 
(Staiger et al. 2006). Protective layer slows down further 

degradation but is brittle and cleaves off from the surface quite easily
 
(Hornberger et al. 2012). 

This means that the surface topology of magnesium materials is constantly changing. In this 
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study it was observed that in the first hours of observation Sa increased which can be explained 

by removal of surface irregularities and particles that are present on the surface. Later, the 

summits start to resorb and their tops break off from the surface decreasing the Sds. At later 

stages, the protective layer consisting of calcium phosphates and precipitated proteins from the 

medium is formed on the surface decreasing Sa and Sdr values. 

Bacterial adhesion to magnesium surfaces is lower compared to titanium surfaces
 
(Tie et al. 

2012). Antibacterial properties of magnesium might be explained by the changes that magnesium 

promotes in its surroundings. As stated previously, magnesium makes pH basic through the 

release of OH
- 
ions in contact with fluids

 
(Staiger et al. 2006, Witte et al. 2008, Willumeit et al. 

2011). The higher pH inhibits enzyme activities that are essential to bacterial life, i.e. 

metabolism, growth, and cellular division
 
(Prabhakar et al. 2012).  

It was shown in previous studies that S. epidermidis grows best in slightly more acidic pH close 

to around 6.35 but demonstrates the ability to growth in a range of pHs
 
(McDonald et al. 1986, 

Korting et al. 1992). In this study S. epidermidis seemed to be resistant to alkali pH which 

magnesium creates since the number of bacteria increased up to 72 h for all samples tested. After 

72 h Mg2Ag and WE43 suppress further bacterial growth on their surfaces. This might be due to 

release of Ag
2+

 ions which have known antibacterial properties
 
(Tie et al. 2013). In case of 

WE43, the decreased number of adherent bacteria after 72 h might be due to high resorbtion rate 

of this alloy
 
(Gu et al. 2010) and consequent formation of H2 gas which acts as a physical barrier 

for further biofilm growth. Pure Mg and Mg10Gd both had bacteriostatic effect after 72 h which 

might be due to the change in the surrounding environment which became less favorable for S. 

epidermidis.   

It was shown in previous studies that unlike S. epidermidis, E. faecalis can survive in highly 

alkaline pH, and some clinical isolates require 72 h at pH 12.5 to be killed
 
(Weckwerth et al. 

2013). Mild alkaline mediums had no effect on E. faecalis vitality and high alkaline condition 

(pH > 10) led to significant declines of survival rate of bacteria in one study
 
(Yan et al. 2012). 

Also the biofilm cells of E. faecalis were more alkaline tolerant than corresponding planktonic 

cells
 
(Yan et al. 2012). This can explain why there were more E. faecalis adhered to magnesium 

samples compared to S. epidermidis which are less resistant to alkali pH. Based on the previous 

research results it can be hypothesised that E. faecalis would have continued its biofilm growth if 

the experiment would have continued for several more h and days. 

http://www.contempclindent.org/searchresult.asp?search=&author=AR+Prabhakar&journal=Y&but_search=Search&entries=10&pg=1&s=0
http://www.ncbi.nlm.nih.gov/pubmed/?term=McDonald%20WA%5Bauth%5D
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Dead E. faecalis and S. epidermidis were few in our study. The surface was predominantly 

occupied by live bacteria. Thus, magnesium seems to have no bactericidal effect. With time no 

increase in dead S. epidermidis was observed, their number was stable over the observation 

period.   

Magnesium alloys seemed to suppress the adhesion of S. epidermidis in the first h of experiment. 

Unlike S. epidermidis, E. faecalis binded to magnesium more readily at 2 h. One of the 

limitations of this study is that it does not compare magnesium to titanium surfaces and it is thus 

not possible to see whether magnesium is better in its ability to prevent biofilm adhesion than 

titanium. Resorption of magnesium alloys is a complex process which involves alterations of 

material’s surface and changes to surrounding environment. Thus the task of the future research 

in this area would be determination of factors that suppresses bacterial vitality. 

6.4. Histological Examination 

The current Thesis is based on 3 R’s principle. In vitro methods were first performed in order to 

evaluate the processes which happen to magnesium-based alloys without involving animals. The 

last stage was to see the tissue reaction to magnesium-based implants. The implants were 

carefully chosen and the animal number was kept to as low as possible. All animal experiments 

were conducted according to the European Commission Directive 86/609/EEC for animal 

experiments and it was ensured that the animal suffering is kept to minimal. 

In this study three magnesium-based implants – pure Mg, W4 and Mg-HA – were compared 

qualitatively and quantitatively using such parameters as degradation behaviour, gas formation 

and bone response.  

Formation of corrosion layer and implant resorbtion shows the rate of implant degradation. It is 

crucial that the implant starts resorbing after the bone has gained enough strength after the 

fracture. In this study, Mg-HA implants had the fastest corrosion rates. Already at 6 weeks these 

biomaterials lost their integrity, and degradation products together with the implant pieces spread 

in the tissue. At 12 weeks Mg-HA were even more disintegrated and spread outside the initial 

area of surgical placement. Hard-tissue repair typically requires implantation of the fixture for a 

minimum of 12 weeks
 
(Steiger et al. 2006). Thus, Mg-HA tested in this study does not meet these 

criteria, most likely due to high concentration of HA reaching 20 % by wt. It was shown in one 

publication by Schaffler et al. that the corrosion rate of calcium-containing magnesium implants 

was highly dependent on the amount of calcium in the alloy: the higher the calcium 
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concentration, the faster the degradation rate
 
(Schaffler et al. 2012). Based on these results it can 

be assumed that decreasing the amount of HA might improve resorbtion properties of Mg-HA. 

Unlike Mg-HA, pure Mg and W4 held their original round shape during the whole period of 

investigation. These two materials were covered by even corrosion layer, meaning that 

degradation was quite uniform. W4 had the most even degradation behaviour in this study. 

Material was covered by uniform corrosion layer and degradation products were rarely seen 

breaking off the surface unlike in the other implants. This means that the surface corrosion is 

more homogeneous and thus more predictable. This, of course, is more beneficial for the screws 

and plates that are to be used in bone augmentation procedures. 

In this study we have observed an interesting pattern of new bone formation around magnesium-

based implants. The bone formed not only around material itself, but also around the gas voids. 

Osteocytes, the principal sensors for mechanical loading of bone, regulate the onset of bone 

formation and resorbtion
 
(Frost et al. 1994). Moderate mechanical stress stimulates bone 

formation by osteoblasts, whereas high loads or no loads at all lead to bone resorbtion by 

osteoclasts
 
(Frost et al. 1994). It can be hypothesized that the gas produced by degradation 

process of magnesium acted as a moderate mechanical stress and stimulated osteocytic activation 

of bone remodeling process in this study. This could explain why the clusters of new bone were 

often seen forming around the gas voids. 

When comparing the values for implant-bone contact (Fig. 24 A) and the amount of gas (Fig. 

25), a certain pattern between these two parameters could be observed: the less gas, the higher 

the implant-bone contact. Thus, for Mg-HA the highest mean bone-implant contact was most 

probably due to the lowest mean gas amounts compared to the other groups.  

Several publications describe the gas formation by magnesium implant degradation in vivo 

(Witte et al. 2005, Li et al. 2008). Li et al. detected gas around the binary Mg-Ca implants during 

the early implantation period. The gas disappeared two months after implantation, and no adverse 

effects were observed (Li et al. 2008). Zhang et al. showed that the subcutaneous gas bubbles 

generated by a Mg-6Zn alloy disappeared 6 weeks after implantation (Zhang et al. 2010). In our 

study we have seen that the mean amount of gas was less at 12 weeks compared to 6 weeks for 

W4 and Mg-HA. In this our results are consistent with previous findings. 

TRAP is an enzyme that is expressed in high amounts by osteoclasts, but even by inflammatory 

macrophages and dendritic cells
 
(Noordin et al. 2012). TRAP-staining is widely used as a marker 

of osteoclasts. High amount of TRAP-positive cells, which in most cases are osteoclasts, is a first 
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sign of bone remodeling since resorption by osteoclasts precedes bone formation by osteoblasts. 

Mg-HA group had the highest mean number of TRAP-positive cells at 6 weeks both surrounding 

the implant and in direct contact to material, compared to pure Mg and W4. This is probably 

because of fewer and smaller gas bubbles which, hypothetically, do not push out the cells from 

the implant resulting in higher cell counts in the ROI. Another explanation to such high numbers 

of the TRAP-positive cells could be the osteolysis caused by high degradation rate of Mg-HA 

and an increase in metal particulates in the bone. This immunological response can cause the loss 

of bone and lead to implant failure. Macrophages, fibroblasts, lymphocytes and osteoclasts are 

recruited to the implantation site and secrete proinflammatory and osteoclastogenic cytokines, 

exacerbating the inflammatory response. This chronic cell activation can break the balance 

between bone formation and bone resorption resulting in the osteolysis
 
(Noordin et al. 2012). 

Numerous publications suggest that magnesium alloys promote bone attachment to implant 

surfaces compared to conventional materials (Cecchinato et al. 2015, Zreiqat et al. 2002, 

Castellani et al. 2011, Witte et al. 2007). New bone formation was shown for MgYREZr, Mg-

Mn-Zn, WE43, MgCa0.8, AX30, LANd 442, ZEK100 and LAE442 (Waizy et al. 2012, 

Willumeit et al. 2011, Witte et al. 2007, Waizy et al. 2014). Castellani et al. observed greater 

bone-implant contact with a magnesium alloy based on WE43 compared to a titanium implant 

(Castellani et al. 2011). It was also observed that magnesium significantly promotes the 

osteopontin gene expression compared to titanium, this is an essential gene for the early 

biomaterial-cell osteogenic interaction (Cecchinato et al. 2015). Witte et al. reported a greater 

mineral apposition rate on magnesium alloys compared to a degradable polymer (Witte et al. 

2007). 

Our results are hard to compare with previous research since slightly different alloy compositions 

and manufacture methods are used in various in vivo studies. However, also in this investigation 

it was observed that new bone can form directly on corrosion layer of pure Mg and W4. The least 

new bone formation was seen in Mg-HA. This material had the fastest degradation of all 

implants and thus its release of corrosion products was the highest. These products might have 

changed the internal environment and interfered with the normal tissue healing. This could also 

explain the abnormal appearance of osteoblasts coming in direct proximity to Mg-HA. As a 

result, new bone was not readily forming in Mg-HA group. 

In previous research it was stated that magnesium might stimulate bone formation since 

magnesium ions enhance cell attachment and proliferation
 
(Witte et al. 2005). In our study, new 

bone was seen forming in direct contact to the materials, as well as around the gas voids. We did 
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not observe fibrous tissue formation around tested materials. Fibrous tissue in-growth was 

observed in commercially available MagneZix (Waizy et al. 2014). In this respect our tested 

materials seem to have more positive effect on bone healing. Magnesium itself seems to be 

biocompatible. It is its product of degradation – gas – which causes mechanical barrier for the 

cells.  

To conclude, pure Mg and W4 were shown to be the most promising materials in this study in 

respect to the bone response to the implant material. Mg-HA did not enhance much new bone 

formation, had fast degradation and high amount of TRAP-positive cells which might be the sign 

of the osteolysis. Future research should look at mechanical performance of such materials in 

vivo. The possible applications of pure Mg and W4 could be the screws and plates for fixing 

minor bone fractures as well as for bone augmentation procedures in order to avoid the secondary 

surgery on screw removal. 

6.5 Possible Applications of Magnesium as Implant Material 

Steel- and titanium-based implants are frequently used in orthopedic and maxillofacial surgery. 

While they provide excellent stability, they may persuade stress shielding, and supplementary 

secondary surgery for implant removal may be required since these materials are non-degradable 

(Waizy et al. 2013, Sumitomo et al. 2008). Alternatively, degradable polymer materials are 

mechanically weaker and might provoke foreign body reactions (Bostman et al. 1992). The idea 

behind magnesium implants is to combine degradability (similar to polymers) with good 

mechanical properties (similar to or better than conventional titanium-based materials). Modern 

magnesium alloys show improved anti-corrosive and mechanical properties (Waizy et al. 2013).  

From the studies performed within our project, Mg2Ag alloy was the most promising in respect 

to the cellular reactions, degradation rates, the effect on the surrounding environment and the 

ability to withstand biofilm growth after 72 h. It is thus of interest to conduct in vivo experiment 

with Mg2Ag alloy screws and pins and evaluate degradation, tissue reaction and mechanical 

properties of degrading implants. 

Another possible application for magnesium, and specifically for Mg2Ag, which showed positive 

results in our investigations, are bone cements and fillers with magnesium microparticles, 

magnesium reinforced polymers, as well as magnesium-based coating materials for titanium 

implants. 
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Calcium phosphate cement (CPC) has been successfully used in clinics as bone repair 

biomaterial for many years. However, poor mechanical properties, low intrinsic porosity limiting 

bone in-growth and a low biodegradation rate restrain any further applications. Incorposating 

Mg2Ag particles into CPC cement should theoretically improve CPC’s intrinsic porosity, 

stimulate bone in-growth and improve mechanical properties. Wu et al. has shown good results 

in vivo by combining CPC with magnesium phosphate cement (MPC) and developing calcium-

magnesium phosphate cement (CMPC). Histological evaluation showed that the introduction of 

MPC into CPC enhanced the efficiency of new bone formation. CMPC also showed good 

biocompatibility, biodegradability and osteoconductivity with host bone in vivo (Wu et al. 2008). 

Similar results were presented by Zeng et al. who applied CMPC for sinus floor elevation (Zeng 

et al. 2012). According to the authors, CMPC’s excellent osteoconductivity, which may be 

attributed to Ca and Mg ion composition, and the tissue-engineered bone constructed of CMPC 

and HRD might be a potential alterative graft for maxillofacial bone regeneration (Zeng et al. 

2012). 

In future, not only the bone cements might be improved with magnesium micro particles, but also 

polymers‘ mechanical properties. According to the study by Wong et al., incorporation of 

magnesium micro-particles into the polycaprolactone (PCL) matrix yields mechanical properties 

close to those of human cancellous bone, and in vitro studies show that the silane-coated 

Mg/PCL composites have good cytocompatibility and osteoblastic differentiation qualities 

(Wong et al. 2013). The bulk mechanical properties could be maintained for 2 months before 

degradation takes place. The new bone formation on the silane-coated Mg/PCL composites was 

significantly larger compared to conventional polymethyl methacrylate (PMMA) and pure PCL 

and the results suggest potential clinical applications of the silane-coated Mg/PCL composites 

(Wong et al. 2013). 

Magnesium was suggested as possible surface coating material on titanium implants (Cecchinato 

et al. 2015). It was shown that magnesium coated surfaces significantly promote the osteopontin 

gene expression compared to conventional titanium implants, this is an essential gene for the 

early biomaterial-cell osteogenic interaction (Cecchinato et al. 2015). Thus, testing Mg2Ag as a 

coating material should be the scope of future research. 
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7. Conclusion and Future Prospects 

7.1. Conclusion 

Resorption of magnesium materials is a complex process which causes the shift of the 

surrounding pH to alkali values, increases the osmolality, changes the outer surface and 

decreases the amount of free Ca
2+ 

which is beneficial for bone applications. The general pattern 

of magnesium alloys’ surface change is as follows: the summits become lower with time, while 

the pitting corrosion progresses.  

In the cellular reaction experiment it was shown that exposure of HRD to magnesium increases 

the intracellular counts of lysosomes and endocytotic vesicles. Cellular attachment is generally 

best to the crystals and irregularities that form on material’s surface. All magnesium materials 

induce calcification and apart pure Mg do not affect the normal ALP content which is beneficial 

for orthopedic and maxillofascial applications.  

With regard to bacterial adhesion to magnesium alloys it was detected that various bacterial 

strains have different adherence capacity. There is no difference between the tested magnesium 

materials in their ability to withstand biofilm formation at early stages up to 72 h. After 72 h 

Mg2Ag and WE43 had more favorable properties than pure Mg and Mg10Gd in their ability to 

suppress bacterial growth. The changes in biofilm growth and adherence were not due to the 

changes in surface topology.  

As a result, Mg2Ag alloy seems to be the most promising in respect to the cellular reactions, 

degradation rates, the effect on the surrounding environment and the ability to withstand biofilm 

growth after 72 h. 

Histological study revealed that the new bone was seen forming in direct contact to the 

magnesium materials, as well as around the gas voids. Mg-HA did not cause any adverse 

biological reaction but had too fast resorption in vivo probably due to the high levels of HA 

comprising 20 % of the material’s composition. 

7.2. Future Prospects 

This Thesis along with the previous findings supports the idea of using magnesium materials as 

implants for bone application. Despite the interesting results from this study, there are still scopes 

to investigate. 
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The alloy of Mg2Ag has shown the most promising results in vitro, thus an animal study would 

be the next step to perform. It is of great interest to investigate Mg2Ag’s degradation under long 

observation period of up to 24 months. In vivo investigation should consist of micro-CT to study 

gas production under degradation, histological analysis of tissue reaction to the implant, blood 

sample analysis to detect any abnormal values of magnesium in the blood, analysis of organs 

including kidneys, liver and brain for the presence of elevated levels of magnesium and other 

degradation products. It is also essential to perform mechanical strength tests at different stages 

of degradation to evaluate support that the implant gives to the bone at different time points. 

As discussed in Chapter 6.5, magnesium has many application potentials in regeneration 

medicine. Thus, not only Mg2Ag screws can be designed and tested in vivo, but also Mg2Ag 

particles incorporated in CPC and PCL for improvement of mechanical properties of these 

biomaterials. It might further be of interest to see how Mg2Ag coating on conventional titanium 

implants can influence bone attachment to the materials’ surface. 

Furthermore, Mg-HA bone filling material has shown quite good results in vivo exept rather too 

fast degradation. Therefore, finding optimal proportions of components would be the next stage 

in product development. The amount of HA in our study was 20 % by wt. Future studies should 

look at Mg-HA with smaller HA amount. 

Pure Mg and W4 had a good effect on new bone formation, however, gas voids were interfering 

with the normal tissue healing in this study. It is interesting to investigate the effect of surface 

coating on degradation properties of these materials. Surface coating would eventually assist the 

initial bone healing and thus initial stability of the implant in the bone. The coating would resorb 

with time exposing magnesium’s surface, but than the implant would already have gained the 

initial stability in the bone and the gas production would not be as critical at that stage.  

In addition, 12 weeks after biomaterial implantation might be a too short time gap for the study 

of new bone formation. Hence, analysis should be carried out over a prolonged time period in 

order to study the time related effects of magnesium on bone formation.   

In spite of promising performance seen in magnesium materials, the main conclusion seems to be 

that there is still need for improvement of existing systems and testing promising alloys such as 

Mg2Ag in vivo in order to match the biological bone complexity.  The task of tailoring the  

appropriate magnesium material  for  different  purposes seems to be  a  feasible  challenge  in  

the  future,  and  requires  a  synergistic interdisciplinary work of materials science, engineering, 

biology, chemistry, physics and medicine.   
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Medical Applications. Journal of Maxillofacial and Oral Surgery. 2015 Online 

publication ahead of print. DOI: 10.1007/s12663-015-0743-z.
 

2. Olga Charyeva, Ulrich Thormann, Sven Schmidt, Ursula Sommer, Katrin S.Lips, Lydia 
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Supplement. 2014,96(11):247.
 

3. Olga Charyeva, Frank Feyerabend, Regine Willumeit, Daniel Zukowski, Cyrille 
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Cecchinato, Ryo Jimbo, Ann Wennerberg, Katrin Susanne Lips. In Vitro Resorption of 

Magnesium Materials and its Effect on Surface and Surrounding Environment. Open 

Journal of Toxicology. 2015. Online publication ahead of print. DOI: 

10.15406/mojt.2015.01.00004.
 

4. Olga Charyeva, Jessica Neilands, Gunnel Svensäter, Ann Wennerberg. Bacterial Biofilm 

Formation on Resorbing Magnesium Implants. Open Journal of Medical Microbiology. 

2015,(5): 1-11. DOI: 10.4236/ojmm.2015.51001.
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8.2. Presentations on the International Conferences: 

 Combined Meeting of the Orthopaedic Research Societies (CORS), October 2013, 

Venice, Italy. 

 Orthopaedic Research Society Congress (ORS), March 2014, New Orleans, USA. 

 European Orthopaedic Research Societies Congress (EORS), July 2014, Nantes, France. 

 Nordic Young Scientist Conference in Odontology (NYSCO), August 2014, Malmö, 

Sweden. 
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 SingHealth Scientific Congress on Academic Medicine, September 2014, Singapore, 

Singapore. 

 European Congress of Clinical Microbiology and Infectious Disease (ECCMID), April 

2015, Copenhagen, Denmark. 
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 Conference of the International Giessen Graduate Centre for the Life Sciences (GGL), 

September 2013, Giessen, Germany. 

 Conference of the International Giessen Graduate Centre for the Life Sciences (GGL), 
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10. Summary 

Background. Clinical problems like postoperative infection and increased incidence of pediatric 

trauma requiring surgical intervention raised the need for temporary medical implants that would 

resorb after the bone healing is complete. This would decrease high costs associated with 

repeated surgeries, minimize recovery times, decrease the risk of postoperative infections, and 

thus promote higher quality of life to the patients. The concept of biodegradation is already 

known in medical practice: resorbable sutures are successfully used in surgery. However, a bone 

implant that would resorb after the fracture heals is a new concept. Magnesium was suggested as 

a suitable material for these purposes because it is biocompatible and stimulates new bone 

formation. This doctoral Thesis evaluates both in vitro and in vivo behaviour of magnesium-

based implants and consists of four parts: degradation, cellular reaction, early biofilm formation 

and histology study. 

Materials and Methods. Degradation properties of Mg2Ag, Mg10Gd, WE43 and 99.99 % pure 

Mg were studied by immersion and gas evolution tests. The corrosion rate (CR), osmolality, pH, 

Ca
2+

 concentrations, and surface changes were determined. Biocompatibility was studied by 

exposing primary human reaming debris-derived cells (HRD) to described magnesium alloys and 

assesing cell viability, morphology, differentiation to osteoblasts, along with evaluation of pH 

changes and Ca
2+ 

concentration induced by magnesium. Mg2Ag, Mg10Gd, WE43 and 99.99 % 

pure Mg were further tested for their ability to resist biofilm formation. S. epidermidis and E. 

faecalis were allowed to adhere to the magnesium surfaces for 2 hours (h) followed by rinsing 

and, for S. epidermidis, further incubation of 24, 72 and 168 h was carried out. Furthermore, an 

animal study was performed and consisted of histological and histomorphometrical analysis of 

three magnesium-based materials: magnesium-hydroxyapatite (Mg-HA), W4 (96 % magnesium, 

4 % yttrium), and pure magnesium (pure Mg). Bone response to magnesium and implants’ 

resorption behaviour was studied. 

Results. Degradation. WE43 showed the highest CR of all materials tested – 1.057 mm/year – 

which is almost twice as high as in the other samples. The lowest mean CR was in Mg2Ag 

group. All alloys made pH more alkaline and decreased concentration of free Ca
2+

 in the 

solution. Osmolality decreased in all samples after day 7. Pure Mg had the most constant Sa and 

Sdr of all materials over the observation period. Cellular Reaction. The number of viable cells in 

presence of all magnesium samples was stable over the observation period of 21 days. The 

inhibition of ALP content in osteogenic differentiating HRD was caused by pure Mg at day 14 



84 
 

and 28. All other magnesium alloys did not affect the ALP content. Exposure of HRD to 

magnesium increased the amount of lysosomes and endocytotic vesicles. Early Stages of 

Biofilm Formation. E. faecalis were significantly more prevalent on all magnesium surfaces 

compared to S. epidermidis (p = 0.001). Biofilm growth of S. epidermidis was different on 

various magnesium materials: the amount of bacteria increased up to 72 h but interestingly a 

significant decrease was seen at 168 h on Mg2Ag and WE43 surfaces. For pure Mg and Mg10Gd 

the biofilm formation reached plateau at 72 h. No correlation was found between the surface 

topology and the amount of adherent bacteria. Histology.  Mg-HA had the highest mean amount 

of tartrate-resistant acid phosphatase (TRAP) positive cells at the implantation site of all groups. 

It had shown the fastest degradation rate already at 6 weeks. New bone was observed in direct 

contact to pure Mg and W4. The mean gas volume was highest in W4 compared to pure Mg and 

Mg-HA but this difference was not statistically significant.  

Conclusions. In vitro. Mg-Ag alloys seem to be the most promising in respect to the cellular 

reactions, degradation rates, the effect on the surrounding environment and the ability to 

withstand the biofilm growth after 72 h in vitro. In vivo. Pure Mg and W4 were the most 

promising material in the in vivo experiment. Mg-HA had too fast resorption probably due to the 

high levels of HA comprising 20 % of the material’s composition. The level of HA should be 

reduced in future studies. 
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11. Zusammenfassung 

Hintergrund. Die erhöhte Inzidenz von pädiatrischen Verletzungen sowie postoperativen 

Infektionen, die eine chirurgische Intervention erfordern, lassen die Entwicklung von temporären 

Implantaten zunehmend notwendig erscheinen. Es werden darunter Implantate verstanden, die 

nach abgeschlossener Frakturheilung vollständig resorbiert werden. Ihre Verwendung würden die 

hohen Operationskosten zur Implantatentfernung und das Risiko von postoperativen Infektionen 

reduzieren sowie die Lebensqualität der Patienten steigern. Das Konzept des biologischen 

Abbaus ist in der medizinischen Praxis bereits bekannt: resorbierbare Nähte werden in der 

Chirurgie erfolgreich eingesetzt. Ein Knochenimplantat, das sich nach der Frakturheilung auflöst, 

wäre jedoch ein völlig neues Konzept. Magnesium könnte für die Herstellung von 

bioresorbierbaren Implantaten geeignet sein, da es biologisch gut verträglich ist und die 

Knochenbildung stimuliert. Ziel der vorliegenden Dissertation war es sowohl in vitro als auch in 

vivo das Verhalten von Implantate auf Magnesium (Mg)-Basis zu untersuchen. Hierbei standen 

vier biologische Teilprozesse im Vordergrund: Abbau, zelluläre Reaktion, frühe Bildung von 

Biofilmen und die histologische Beurteilung der Verträglichkeit von Magnesiumimplantaten. 

Materialien und Methoden. Die Degradation von Mg2Ag, Mg10Gd, WE43 und 99,99 % 

reinem Mg wurde durch die Analyse der Gasentwicklung, der Korrosionsgeschwindigkeit (CR), 

der Osmolarität, des pHs, der Ca
2+

 Konzentration und der Oberflächenveränderungen bestimmt. 

Zur Untersuchung der in vitro Biokompatibilität wurden primäre vom humanen Bohrmehl 

abgeleitete mesenchymalen Stammzellen (HRD) und folgende zellbiologische Methoden 

verwendet: MTT-Assay, Transmissions- und Rasterelektronenmikroskopie zur Bestimmung der 

zellulären Vitalität, Calcium-Verbrauch und Gehalt an alkalischer Phosphatase (ALP) zur 

Beurteilung der Differenzierung der HRD zu Osteoblasten und pH-Änderungen zum Nachweis 

einer möglichen Induktion der Knochenbildung durch Magnesium-Ionen. Weiterhin wurde die 

Bildung von Biofilm durch S. epidermidis und E. faecalis auf der Oberfläche von Mg2Ag, 

Mg10Gd, WE43 und 99,99 % reinem Mg untersucht, wofür die Implantatoberflächen über 

mehrere Stunden mit den Bakterien inkubiert wurden. In vivo erfolgte eine Untersuchung von 

Implantaten aus Magnesium-Hydroxyapatit (Mg-HA), W4 (96 % Magnesium, 4 % Yttrium) und 

reinem Magnesium (reines Mg), die in ein künstlich erzeugtes Bohrloch (5,5 mm) in die laterale 

Femurkondyle des linken Femurs von 24 weiblichen Kaninchen eingebracht wurden. Das 

Resorptionsverhalten der Implantate sowie die zelluläre Reaktion des Knochens wurde nach 

Extraktion der Knochen nach einer postoperativen Zeit von 6 und 12 Wochen histologisch, 

histomorphometrisch und enzymhistochemisch untersucht.  
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Ergebnisse. Degradation. WE43 zeigte die höchste CR aller getesteten Materialien (1,057 

mm/Jahr), die damit fast doppelt so hoch war wie die der anderen Proben. Die niedrigste 

durchschnittliche CR wurde in der Mg2Ag-Gruppe gemessen. Bei allen Mg-Legierungen wurde 

ein Anstieg des pHs und eine Reduktion der freien Ca
2+

-Ionen nachgeweisen. Nach einer 7-

tägigen Inkubationszeit sank die Osmolarität in allen Proben. Reines Mg hatte die konstanteste 

Oberfläche (Sa und Sdr) von allen untersuchten Materialien während des gesamten 

Beobachtungszeitraums. Zelluläre Reaktion. Die Zahl der lebensfähigen Zellen in Anwesenheit 

aller Magnesiumproben war über den Beobachtungszeitraum von 21 Tagen stabil. Die osteogene 

Differenzierung der HRD (ALP-Gehalt) wurde von reinem Mg gehemmt (Tag 14 und 28). Die 

Magnesiumlegierungen beeinflussten den ALP-Gehalt nicht. Durch die Exposition mit 

Magnesium wurde die Menge an Lysosomen und Endocytosevesikeln erhöht. Frühe Phase der 

Biofilmbildung. Bakterien des Stammes E. faecalis waren signifikant häufiger auf den 

Magnesiumoberflächen zu finden als S. epidermidis (p = 0,001). Die Biofilmbildung von S. 

epidermidis war abhängig vom verwendeten Magnesiumwerkstoff: Nach einer anfänglichen 

generellen Erhöhung der Bakteriendichte (72 Stunden), wurde interessanterweise eine 

signifikante Abnahme nach 168 Stunden auf Mg2Ag und WE43 beobachtet, während für das 

reine Mg und Mg10Gd die Biofilmbildung nach 72 Stunden ein Plateau erreichte. Es wurde 

keine Korrelation zwischen der Oberflächentopologie und der Menge der adhärierenden 

Bakterien gefunden. Histologie. Am Interface des Mg-HA Implantats konnte die höchste 

durchschnittliche Menge von Tartrat-resistenten saure Phosphatase (TRAP) positiven Zellen 

nachgewiesen werden. Die höchste Abbaurate wurde bereits nach 6 Wochen erzielt. Die Bildung 

von neuem Knochen konnte in direktem Kontakt mit reinem Mg und W4 beobachtet werden. Das 

durchschnittliche Gasvolumen war nach Implantation von W4 am höchsten, während reines Mg 

und Mg-HA eine geringere aber nicht signifikante Reduktion der Gasbildung aufwiesen. 

Schlussfolgerungen. In vitro. Mg-Ag-Legierungen scheinen am vielversprechendsten zu sein in 

Bezug auf die Zellreaktionen, Abbaurate, die Auswirkung auf die Umwelt und die Fähigkeit, 

dem Biofilmwachstum nach 72 Stunden in vitro zu widerstehen. In vivo. Reines Mg und W4 sind 

die vielversprechendsten Materialien im in vivo Experiment. Mg-HA zeigte eine zu schnell 

Resorption, vermutlich aufgrund des hohen HA-Gehalts (20 % der Materialzusammensetzung). 

Das Niveau des HA-Gehalts sollte in zukünftigen Studien reduziert werden. 
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