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1. Introduction. This paper deals with slowly oscillating solutions;
of equation ‘

(£) ‘ x(t) = —f(x(t-1))

for continuous functions £:R + R which are differentiable at £ = O
and satisfy Ef (&) > Q for £ # O. We are interested in the behaviour
of the trajectories (xf)t>o in the state space of continuous

functions on the initial interval.

\

We prove that in case £'(0) > m/2 and £ bounaed below trajectories
of slowly oscillating sclutions are attracted by a set which may be
viewed as a solid torus in function space (Theorem 2). - For a
related result on (x(t),i(t))—tgajectories in the plane, see Kaplan
énd Yorke. -~ Theorem 2 implies the existence of solutions on the
whole real line which are not necessarily periodic but regularly
oscillating in some sense, with the set of zeros unbounded for t > O

as well as for t < O (Corollary 2).




Slowly oscillating periodic solutions with minimal period

correspond to fixed points of a Poincare operator on a cone of

initial functions. This is Jones' well known idea to obtain periodic

solutions. In case of equation (£}, consider the operator T:¢ - x32+1

N . . +
on the cone K of continuous increasing functions ¢:[r1,0] -+ Ro which

are not identically zero.

+1

our method shows that it is possible to get by with an application

of the Schauder fixed point theorem if £'(0) > m/2 and, say, £

bounded below. We construct a suitable closed subset D ¢ K with

T(D) ¢ D (proof of Theorem 3). In particular D is bounded away £from

the critical point ¢ = 0. Former proofs which use Jones' idea have

in common that they use restrictions of the poincare operator to

sets with ¢ = O in the closure. In order to get a nonzero fixed poin

they need fixed point theorems- of expansion—compression type or the

theorem of Browder on nonejective fixed points [G,N1,N2,C,A].

Our proofé make use of the Liapunov functional of Hale and perello

for unstable behaviour of functional differential equations. V is

defined by a projection P onto an eigenspace of inc
tial solutions of the linearized delay equation. A consequence of
the result of Hale and perello is our Theorem 1 say
tories leave a'neighbourhood
keep avia
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Due to Lemma 4 v '
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the only segments x which they contain are those defined by the

iterates of the Poincare operator.

X denot
es the Banach space of continuous functions

. We assum
€ T >0 and n € N arbitrary in section 3

=1 =n in secti
ions 4 - 8. Y denotes the Banach space of

.eontinuous functions :[~1,01 + P

Let F:X + R" i
+ R be given. A solution of the equation

(F T X
) x(t) = F(xt)

is either a i
continuous function x:{-T,®) + RD which is diff
ifferentiable

fOE t >0 an F
‘ d satisfies ( ) for t > O or a dAiff erentiable funct:lon

x:R + R® wh
ich satlsfles (F) for all t € R. The se
gments X, € X are

x (t+ -
a), a € [~1,0]. The trajectory of a solution

t)tzo' or (xt)téR respectively.



F(0) = 0, F differentiable at ¢ = O. We assume that there is a non- Lemma 1 :
a 1. Consider a solution x of (F) with x_ ¢ g!
t

for all t > 0.

3. Instability. We consider equation‘(F) for F:X + R® continuous, J all .
. i ¢ € 8', by (1) and Lemma 1 (1) . Choose § o ;

{ p 38 In part (ii) of
of the infinitesi- f

enp ty set B
< i i
>

T T———————

p° Proof: Assume

mal generator of the semigroup in ¥ defined by the linear equation bl <
+ Gp-for all t > 0. By Lemma 1 (ii), by (Vv
(F'(0)). Let P denote the eigenprojection which belongs to E. We . 0 < vy . r by ) and O ¢ s',
_ ] 3V{xy) < Vix,t), hence 0 < v(x )e®?t <« Vix,) < 2
state a variant of Theorem 3 [HP] as . < el < 2 o < ) 2 °2“th“ <
- 727t c26p for all t > 0, contradiction.
: b) Suppose lx | > &
i r 1 > 0. Fo .
Lemma 1: There exist a continuous quadratic functional V:X - RZ . exists [ " ) P T every v > u with lx I < 8, there
L w e u,v with =
and positive constants c;, C,: Cj with 1 ’ “wa GP and "Xt“ < 6p for all t e (w,v].
5 " o By Lemma 1 (ii) and by (V), V(x,) increas
(i) c hPeR™ < V{F) < c2“P¢“ for all ¢ e X, o p262 _ pznx “2 < v t es on [w,v]. Hence
P wil S VIx ) < vix ) < 2 2
(1i) Yp>o0 1s >0 V (x solution of (F)) Y ¢ > 0: 2 and b)lim . thw v/ = Cz“vaﬂ < czﬂxv“ .
) ply e existence of > i
bxgh € 6, 4 PPl ? < Vixg) => cgVlxy) < V(1) { ) 5 2 0 with
. Sy min {6 ,ps .} <
(with V(x,t) := lim (V(x_,,) = V(x))/h for t > 0). o 5 5 p'POeat slix I for all ¢ > s.
o c) Assume §° <
~ 0%#h~0 Sl p p_V(xo).Lett>(_')_ 6_ < lx, f| impli 2.2
0<t+h PR < p2Hx “2 <y ‘ p - 1 1mplies p Gp <
< el S VD, by (V. x ) < 8, and Ix_} < 6 for all s ¢ [o,t)
<8, ,

Theorem 1: Let 8' ¢ X \ {0} and c > O be given with i 2.2
— mply P76 < V(xg) < Vix.), b
P o/ = ¢/ by (V) and Lemma 1 (ii). In case

(1) clgl < IPpYy for all ¢ € S'. ffi;S»} "Xt“ < 6p < ust With 0 < s < ¢ tn .
Let V be a functional as in Lemma 1. Conclusions: » kr'i? - and Hxvﬂ < 8 _ for all v ; (u,t] hEFe lS2u2e (S;t) With Ix b= s
(1) There exists p > O with i : < vix,). P rtds nence p 6p =P “xu“ < V(Xu) <
W) p2Iel% < V(¢) for all ¢ € S'. ¢
(ii) There exists a > O such that for every solution x of (F) with- gffﬁ;; 4. Slowly oscillating soluti

ons. In the foll9wing we consider

trajectory in 8' there is a real s with equation (f
n ) for continuous functions £:R - R which are diff
fferen-

a <lix. Il for all t > s. Tes R .
- t - RORE tiable at = ,
- j at £ = 0 and satisfy E£(£) > O for £ % 0. TFor every ¢ e X

g i chosen accoxrd ng Part ( ) o mma . r exist . : |"' (o] ) w X =
f Le 1 Then there Sts a unique solution x o) -+ R ( ith
i to 11 ,00) £ £
(iii) Assume P s . o

we have
Thi . .
his solution will also be dénoted by x¢ On compact int 1
. intervals

- 2.2
pe8s < Vix,) for all £t > O
2 . > solution i
s depend continuously on the initial values with respect

for every solution x of (F) with trajectory in S' and with " .
. 0 uniform convergence.

2.2
P 5p < V(xo).

Proof: O < p < c/E} yields p2H¢“2 < czc1“¢“2 < c1“P¢K2 < v{(¢) for




Lemma 2: Assume f£'(0) > 1. Then we have:
(i) For every ¢ € X \ {0} with O < ¢ there is a sequence of non-
x = x® wi 0 < x in [-1,2,1,
negative  zeros zj = zj(¢) of x = x* with < 124

%<0 in (z,,2,+41], ¥ € 0 in (0,2,+1] and

0 < & . odd .
. s . + 1) for all < J.
@) <x < 0} in(mg¥lizgg ) even

i i < d for all
(ii) For every r > O there exists d > O with z1(¢)
b e X\ {0} with O < ¢ < r.
i = —i := su £f.
Assume in addition inf £ >.—w. Set Ty inf £, X, [o?rll

Then we have

t

v

z,(¢) if ¢ e X N {0}, O < ¢.
(iii) —r, < X¢(t) < r, for all < .

v

-1 3if ¢ € X, 0 < ¢ £ r,.
Proof: See e. g. the proofs of Lemmas 2.3 and 2.2 in [N1}.

Remark 1: Assertion (i) with signs of x and x reversed and

assertion (ii) hold if ¢ ¥ O and ¢ < O, or -xr < ¢ < O respectively.

Definition: A solution x of (f) is called slowly oscillating iff

there exists a sequence of zeros of x with property (Z).

Solutions which start in K are slowly oscillating, and the%r
trajectories lie in the set of functions with at most ?ng change
of sign, that is in the set S of ¢ € X \ {0} such that ¢ or —¢
satisfies
0<% or
Jze[-1,0]: -1 <ca<z<a' <0=>¢(a) <0 < §(a').
S is a cone in the sense that we have t¢ € S whenever £t > O, ¢ € S.

But it is not convex.

Proposition:

(i) For every slowly oscillating solution x of (f) there exists

S € R with X, € 8 for all t > s,

(1i) For every ¢ e S there exists t ¢ [0,1] with 0 < xt or x% <0

(i14) x? ¢ S for all t » 0 and all ¢ ¢ 5.

(iv) In case £'(0) > 1 xd> is slowly oscillating for all ¢ ¢ s.

(v) cl S =5 VU {0}.

Proof of (ii): Let ¢ < O in [-1,z) and O < ¢ in (2,0]. (£) implies

0 < %t in (0,z+1], hence 0 < x2+1.

Proof of (iv): By (ii), O < xi or xi £'0 for some t > 0. We have
xi ¥ 0. Apply Lemma 2 (1) and Remark 1 to the solution

~1 < u - x¢(t+u) of (f).

5. Linear slow oscillations and' ineq

uality (1). Linearization of (f)

near x O yields equation

(a) Y(t) = -ay(t-1)

with a = £'(0), a special case of the type considered. Equation (o)

defines a semigroup (Tt)£>o of bounded linear operators in Y by

o Re ¢ s oo Im ¢
Tob o= (y ), + iy ) -
The eigenvalues of the infinitesimal generator are the zeros of

the entire function A+ A+ ge™?

For a > 1/e they are all simple,

Aj, Aj; j e No, with

(2) uj+1 < uj and 2mj < Vj <2mj + 7 for all j ¢ N0

and they form a sequence of pairs

(uj := Re Aj’ vj := Im Aj). We have: 0 < u, <=> 00 > 7w/2.
For a proof of these assertions, see [Wr].

We consider the projection Po which belongs to Ao and To

With regard to (1) let us first determine the maximal subset in X

where PO does not vanish.



Lemma 3: Assume o > 1. For all ¢ € X we have

P0¢ ¥ 0 <=> (Solution y¢ of (a) is slowly oscillating).

Proof "<=": Suppose y¢ is a slowly oscillating solution of (a) with
Po¢ = 0. Let P1 denote the projection which belongs to A1 and 51.

a) Assume Re P.é + 0. There are € > 0, ¢ > O with

(3) dr (6 = By + PO < cet™ )y - 2+ p¢l for all t > o0
[H, ch. 7]. The solution with initial value Re (P0 + P1)¢ = Re P,¢
has the form

£ eult

{(a cos v1t + b sin v1£)
with a, b real, {a|l + |{b} > 0. By (3),

y"’(t)e_ult - acos Vit - bsin vt >0 as t >«

2 < vq implies a contradiction to y¢ slowly oscillating.

b) Assume Re P1¢ = 0. There is a neighbourhhod U of ¢ in X with ylp
a slowly oscillating solution of (o) for every § € U. (Proof: By

]

¢ >0 for some t > O and by continuous dependence, there is a neigh-

- bourhood U with yw > 0 for all y € U. The solution -1 < s =+ yw(t+s)

t
with initial value yi is slowly oscillating, hence yw too.)
We choose a real-valued y # O in‘P1Y with § := ¢ + ¥ € U. Then
Pow = 0, Re P1w = X ¥ 0. As in a), we derive a contradiction.
Proof "=>": The estimate IT (¢ - P o)l < ce(Womed by, P ol for
¢ € X with Po¢ % O implies Re PO¢ ¥ 0. From O < Vg < T and from

"ot O as t +~ » we infer the existence of a

IT 6 - T, Re P dle
segment Tt¢ > 0. It follows that ¢ defines a slowly oscillating

solution.

The hypothesis o > 1 in Lemma 3 and Lemma 4 below can be weakened
to a > O (with the definition of "slowly oscillating” changed to

include monotone solutions which exist for a < 1/e).

Corollary 1: We have Po¢ + 0 for all ¢ ¢ s.
Proof: Apply part (iv) of the Proposition to £ =.a id, use Lemma 3.
We look for subsets of S where estimates of type (1) hold.

Lemma 4: Assume o > 1. For every non-empty cone S8' C S, estimate
Mg de>0V4es:alon <o
is equivalent to

@ dx>0Vées: khoh < LT

Proof: Set Si = {¢p € 8': oll = 1}.

"(4) => (1)0"{ T, completely continuous implies cl T1S{ compact.
This is a subset of § v {0}, by TJS C S (Proposition (i1ii)) and

by ¢l 8 = s v {0}, and moreover a subset of S, by (4). Hence Pob 0
for all ¢ € cl T1Si, and

O < inf {(UP¥l: ¥ € cl ™81} < inf (IB,T,01: ¢ ¢ 51} <

$ATh inf (P ¢z ¢ € SI), by T, = TiPo+ This yields (1) .

"(1)O => (4)": (1)o gives O # cl Posi. This is a closed bounded
subset of the finite-dimensional space PoY’ T1w * 0 for all ¢ in

P Y N {0} implies O < inf {HT1¢H: Y e cl Posi}, and the assertion

follows as above.

Inequality (4) is easier to verify than (1)6 since
Tid(a) = ¢(0) - uff1¢(t)dt for all a ¢ {-1,0]
while integral formulas for Po involve the functions t -+ eA°t

’

see [H, ch. 7] ana [wa].



6. Verification of inequality (4).

Lemma 5: Assume £'(0) > 1. Let r > O be given. Set o := £'(0) and
consider the operator T1 of the semigroup defined by equation (a).
Then there exists a constant k = k(r,£) > O such that

klle < nT1x for all t > O

t“
for every solution x of (f) with |x| < r and with X, in the convex

cone K= {¢ € X: O < ¢ -increasing and 0 < ¢ (0)}.

Proof: Choose a > O, b > 1 such that al&]| < |£(E)l < blE] for
0 < |g] < r. Let x be a solution as 4in the assertion. We consider
its local extrema m, :=0 and mj 1= zj+1, j € N (see Lemma 2). On

3 2
functions gj with gj(mj) = x(mj) and éj'= -bx(mj). This follows

the intervals [mj,m. + 1/b] we have [x| > [gj( for the affine

from |x(t)l = I£(x(t-1))} < blx(t-1) < blx(m)} for t e (my my+1]
and from b > 1.

Let t > O. For t~1 < u < v < t we have
(5)  alry x(s)dsl< 20T %0 . o
Proof: 2“T1xtu > T x (v-t) - T1xt(u~t)ll= alfzztzxt(s')ds'l =
= aIIX x(s)ds|.

Case I: t-1 < my < t for some j e N _.

(o]
Subcase 1: thﬂ = Ix(mj)l and t < mj + 1/2b.
Then AT x | > 12yx, (-1 = Ix(e)l > )gj(tn > )gj(mj + 1/2b)| =
= |x(mj)l/2.

Subcase 2: “xt“ = IX(ij

and mj + 1/2b < t.

on [mj,mj +1/2b] ¢ [t=1,¢] we.

have |x| > jg5| 2 |x(mpl/2 =

m. mj + 1/b
= “xt“/z > 0. (5) with u = my,

v = mj + 1/2b implies 2“T1Xt“ > q“xt“/4b.

Subcase 3: lx(mj)l < Mx .

| x| increases on [mj—1,mj], decreases on [mj,zj+1] and increases

on [zj+1,zj+1 + 1]. This yields Zi49 < t and |x(t)] = th“,
hence “T1xtﬂ > {x(e)l = = Ml }
Case TII: V je NO: mj ¢ [t-1,t].
Then -1 < t-2, and x is monotone in [t-1,t]. Therefore ﬂxtH = |x(t)]

or fix Il = [x(t-1)} .

Subcase 1: fix | |x(t)] implies HT1xtu 2 =0

Subcase 2: “xtﬂ

(=1 > [x(t)] and |x| » |x(t-1)| in

[t -1 -1/2p,t - 1].

For s e [t - 1/2b,t] we infer |X(s)| = |£(x(s-1))} 2 alx(s-1)| »
> alx l > 0, hence [x(t) - x(t - 1/2b)]| > allx,  /2b, therefore
(6) alx./4b < |x(t)] < Iryx b or

(1 alx l/4p

tA

|x(t - 1/2b)] .
In case of (7) and {x(t - 1/2b)| < }x(t)| we obtain (6) once more.
In case of (7) and |x(t - 1/2b){ > Jx(t)| the monotonicity of x in
[t-1,t] implies %] > |x(t - 1/2b)|

in [t-1,t - 1/2b]. (7) and (5) yield  — >

. 2lTyx, > a1 - 1/2b) alix | /4b. i _ x
Subcase 3: th“ = |x(e-1)| > Ix (£}
and |x(s)| < |x(t-1)] for some s in t - 1/2b \\J t

[t -1-1/2p,e - 1].

Lemma 2 (i) implies the existence of j ¢ No with mj in
[t -1-1/2b,t - 1] and lxm) 2 |%(t-1)1. on

[t_— 1,£ =1+ 1/4b] ¢ [mj,mj + 3/4b]]

| { |
R |
j o ot-1 £t -1+ 1/4b my + 3/4b




we obtain [x| > Igjl > lgj(mj + 3/4b)| = |x(mj)$/4 > |x(t~1) /4 =
= Ix 1/4, and (5) yields 2IT x| > «lx, I/16b.

7. Attractor and w-limit sets.

Theorem 2: Let a continuous function £:R -+ R be given which is
differentiable at £ = O and satisfies Ef(E) > O for € % O.

Assume f'(0) > 7/2 and inf £ > -w, Then there are constants a > 0,
r > O such that for every slowly oscillating solution.x of equation
(£) x(t) = —£(x(t-1))

there is a number s > 0 with

x. e {6 €8:ac< gl <} For all ¢ > s,

———

Proof: Set r := max {r;,r,}. Define
st = {6 € 5: kloh < AT 00)

with k = k(r,f) from Lemma 5. By Lemma 4 Sf satisfies (1)0, and we

obtain a constant a > O according to Theorem 1 (ii). Consider a

solution x of (f) which has a sequence of zeros zj with (Z). We

have Xg41 € K and |x(t)| < r for t 2 2,4, by Lemma 2 applied to the

solution -1 < t =+ x(22 +7 + t). Lemma 5 implies that the trajectory

of the solution ¥:-1 <t - x(z4 + 1 + t) is contained in Sf, and

Theorem 1 (ii) yields a < “%t“ = lx, f in an-unbounded

v + 1 + t
interval in R+.

For a bounded solution x of (f) the w-limit set

w, = {¢ € X: I (t.) in R: lim t. = » and lim X, = ¢}
X J j+w j+m 3

is non-empty. For every ¢ € Wy there is a solution y:R + R of (f)

jeN

for all t € R [H, p. 82, Corollary 2.1].

with Yo = ¢ and Yy B 0y

Corollary 2:

(1) w-limit sets of slowly oscillating solutions are contained in
the set {¢ ¢ 5: a < ol < r}.

(ii) For every solution y:R +'R with trajectory in the w-limit set
of a slowly oscillating solution the zeros of y'form ; family

(z.) with property (%). In particular: lim z. = -w,

%3’ jez Jrmeo 3

Proof of (i): Use cl 8 = S V {0} and Theorem 2.

Proof of (ii): It is enough to show the existence of @' > 0 such

that for every s € R there is a sequence of zeros wj, j e N, of y in
1

(s,®) with Wy < 5+ ar, wj+1 < wj+1

in N. Let s € R be given. Yg € S implies 0 < y

;, 0 < |yl in (wj,w. for all j

j+1)

or y < 0 for

s+t s+t
some t ¢ [0,1] (Proposition (ii) applied to -1 < v + y(s+v)),
By O < Hys+t“ < r, by Lemma 2 (ii) and Remark 1 there is é sequence
of zeros wﬁ >0, j € N, of the solution -1 < u + y(s+t+u) with

' . : Lt F R
wy < é, wﬁ + 1< w3+1,-0 < ly(s+t+)| . in (wé,wj+1) for all ‘j e N.

Set d' =4 + 1.

Remark 2: Without boundedness assumptibns on £ we obtain: For every
r > 0 there exists a. >0 such that for every slowly oscillating

solution x bounded by r there is s € R with a. < th“ for all t > s.



8. Periodic solutions by Schauder's theorem.

Theorem 3 [N1]: Let a continuous function f:R + R be given which is
differentiable at £ = 0 and satisfies ££(E) > O for £ %+ O. Assume
£'(0) > /2 and inf £ > -, Then there exists a slowly oscillating
periodic solution of

(£) x(t) = -£(x(t-1)).

Proof: Solutions x:[-1,=) + R with %, € K and xy £ 14 satisfy

-r, < x < T4 (Lemma 2), and their trajectories lie in the set Sf
(see proof of Theorem 2) which together with the projection Po
fulfills the hypotheses of Theorem 1. We choose 6P <, according to
parts (i) and (iii) of Theorem 1 and define

D := {¢$ ¢ K: pzﬁé < V(¢) and ¢ < r1}.

Theorem 1 (iii) and Lemma 2 (iii) show that the operator

T:¢ + x22+1 maps D into D. T is completely continuous.

D is hoﬁeomorphic to a closed bounded convex set: First, we have
D*¥@ (¢ € XK and 6p < Ll < ry imply ¢ € Sf, hence pzég < p2ﬂ¢“2 <
< V(¢)) and‘V(¢) > O for all ¢ € D; in particular O ¢ D, see e. g.
Lemma 1 (i). Set Py i= H¢ﬂp6p//ﬁ7$7 for ¢ € D. Then ¢ € D iff

¢ € K and p¢ < Hepl < ry. We have p¢ < ry (otherwise r, <

12 P
= “¢“PGP/VV(¢) < r,li¢llp/Y/V($) by the choice Gp < ry, contradiction
to ¢ D <5t and (V). The map ¢ + (1 + (161 = p,)/(x; = p,)0/10Y
is a homeomorphism of D onto the set {¢ e X: 1 < ¢(0) < 2},

The fixed point of T in D defines the periodic solution.
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