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Abstract

This thesis investigates a hypersonic turbulent boundary layer over a cone with
cold walls and a sharp nose tip. The analyses include frequency spectra of density
fluctuations up to a frequency of 10 MHz, as well as an analysis of their convection
velocities, at multiple wall-normal locations inside the boundary layer and in the
near field above it. Experimental measurements are obtained under Mach 7.4 and
unit Reynolds number 4.2 × 106 m−1 in the free-piston driven High Enthalpy Shock
Tunnel Göttingen (HEG), using the optical technique of Focused Laser Differential
Interferometry (FLDI). A method is proposed to accurately measure the separation
distance between the probes of multi-foci FLDI, to allow reliable measurements of
convection velocities using cross-correlation between the signals. The method is
based on the detection of a propagating weak blast wave generated by an electric
spark, and is verified to have similar accuracy and precision than the method of
directly imaging the beams, but exhibits increased flexibility. Convection velocities
measured in the near field of the hypersonic boundary layer are in agreement with
free stream data reported in the literature at similar Mach numbers. The measured
frequency spectra of hypersonic turbulent boundary layer density fluctuations show
regions with well-defined power laws typical for pressure fluctuations. These spectra
are compared with Large-Eddy Simulation (LES) results for a conical turbulent
boundary layer, calculated at the experimental test conditions. Direct comparisons
are performed by simulating the FLDI response in the numeric flow field, by means
of computational FLDI (cFLDI). The cFLDI algorithm is validated using the same
blast wave measurements obtained when measuring the separation distance between
FLDI probes. To that end, an analytic methodology is proposed to reconstruct the
pressure waveform of the spherical blast wave, when detected with the straight-
line FLDI. Independence between the cFLDI algorithm and the reconstruction
formulation allow the cFLDI code to be validated once the computational response
of the reconstructed flow field and the experimental data that generated it are in
agreement. The results of the direct comparison between the hypersonic turbulent
conical boundary layer frequency spectra calculated with LES and experimentally
probed in HEG are in reasonable agreement, once the bandwidth constraints of each
are adequately considered. It is also verified that in the present case, in which the
divergence of the FLDI beams in the probed region is small, the complex cFLDI
algorithm may be substituted by a simple line integral of density variations in the
numeric flow field, without significant losses. These observations offer a framework
for practical numerical and experimental comparisons, which are necessary to
validate simulations and turbulence models. The results of this thesis will help to
overcome the current lack of experimental data concerning high-speed turbulent
flows, especially at high frequencies.
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Zusammenfassung

Diese Arbeit untersucht eine turbulente Hyperschallgrenzschicht an einem Kegel mit
kalten Wänden und einer scharfen Spitze. Die Analysen umfassen Frequenzspektren
von Dichteschwankungen bis zu 10 MHz sowie deren Konvektionsgeschwindigkeiten
in verschiedenen Abständen zur Oberfläche innerhalb der Grenzschicht und im dar-
über liegenden Nahfeld. Experimentelle Messungen wurden bei Mach 7.4 und einer
Einheitsreynoldszahl von 4.2 × 106 m−1 im Hochenthalpiekanal Göttingen (HEG)
mittels der optischen Technik Fokussierte Laser-Differentialinterferometrie (FLDI)
durchgeführt. Für die Bestimmung des Abstandes zwischen den Messpunkten eines
FLDI mit mehreren Fokusse wird eine neue Methode vorgestellt, die eine präzise
Messungen der Konvektionsgeschwindigkeit durch eine Kreuzkorrelation der Signalen
ermöglicht. Die Methode basiert auf der Detektion einer sich ausbreitenden schwa-
chen Druckwelle, die durch einen elektrischen Funken erzeugt wird. Die Methode
hat eine ähnliche Genauigkeit und Präzision wie die direkte Abbildung der Strahlen,
weist aber eine erhöhte Flexibilität in der Anwendung auf. Im Nahfeld der Hyper-
schallgrenzschicht stimmen die gemessenen Konvektionsgeschwindigkeiten mit Daten
aus der Literatur für ähnliche Machzahlen überein. Die gemessenen Frequenzspek-
tren turbulenter Hyperschallgrenzschichtdichteschwankungen zeigen Bereiche mit
den für Druckschwankungen typischen Abfällen. Diese Spektren werden mit Ergeb-
nissen einer Large-Eddy Simulation (LES) einer konischen turbulente Grenzschicht
verglichen, die mit den experimentell Anströmungsbedingungen berechnet wurden.
Direkte Vergleiche werden mittels eines numerischen FLDI-Verfahrens (cFLDI) im
numerischen Strömungsfeld durchgeführt. Der cFLDI-Algorithmus wird anhand der-
selben Druckwellenmessungen validiert, die bei der Messung des Abstands zwischen
FLDI-Messstellen zur Anwendung kamen. Dafür wird eine analytische Vorgehens-
weise vorgeschlagen, um die Form der sphärischen Druckwelle zu rekonstruieren,
während diese mit dem geradlinigen FLDI interagiert. Die Unabhängigkeit zwischen
dem cFLDI-Algorithmus und der Rekonstruktionsformulierung ermöglicht die Va-
lidierung des cFLDI-Codes. Die Ergebnisse des direkten Vergleichs zwischen den
mittels LES berechneten und experimentell im HEG untersuchten Frequenzspektren
der turbulenten Hyperschallgrenzschicht stimmen gut überein, wenn die jeweiligen
Bandbreitenbeschränkungen berücksichtigt werden. Es wird auch bestätigt, dass im
vorliegenden Fall, in dem die Divergenz der FLDI-Strahlen im untersuchten Bereich
gering ist, der komplexe cFLDI-Algorithmus ohne wesentliche Verluste durch ein
einfaches Linienintegral von Dichteschwankungen im numerischen Strömungsfeld
ersetzt werden kann. Diese Beobachtungen bieten einen Rahmen für praktische
numerische und experimentelle Vergleiche, die zur Validierung von Simulationen und
Turbulenzmodellen notwendig sind. Die Ergebnisse der Dissertation leisten einen
wesentlichen Beitrag, um in der Zukunft den Mangel an experimentellen Daten von
turbulenten Hochgeschwindigkeitsströmungen, insbesondere bei hohen Frequenzen,
zu überwinden.
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1. Overlook

The goal of this Ph.D. project is to contribute to the advancement of the state-of-the-
art of ground-based experimental investigation of hypersonic turbulent boundary
layers. The optical technique of Focused Laser Differential Interferometry (FLDI) is
explored to that end, given its features of unique temporal and spatial resolutions,
and its ability to overcome measurement challenges pertaining to the wind-tunnel
environment. The developments presented here are focused on two aspects of the
FLDI that are important in the context of its application in hypersonic turbulent
boundary layer investigations: its capability as a velocimetry instrument, and the
challenge of reversing its output back into flowfield quantities.

The use of FLDI as a velocimetry instrument is allowed by the easy way in which
the probes can be multiplied into closely-spaced, independent systems, becoming a
multi-foci FLDI. This capability allows investigators to correlate the time-resolved
density disturbances with their spatial dimensions, hence providing a more complete
picture of the probed flowfield. Convection velocity measurements are obtained
simply by using the time lag between the signals of each probe and the distance
between them. This distance can be easily measured by directly imaging the
FLDI foci. However, this approach may be hindered by geometric constraints,
such as in the case of boundary layer studies, where the foci are located close
to the wall of the wind-tunnel model. An alternative method to measure beam
spacing that overcomes such limitation, while preserving adequate accuracy and
precision, has been developed through measurements of weak blast waves. This
original contribution is detailed in the first publication, “A low-effort and inexpensive
methodology to determine beam separation distance of multi-foci FLDI ”.

The challenge of reversing FLDI measurements back into flowfield quantities
comes from the spatial filtering effect of the FLDI, which varies continuously with
the disturbance wavenumber along the probing axis. This makes the FLDI data
conversion only possible under certain constraints, which may not be applicable
to all cases. In the present work, computational FLDI (cFLDI) is explored as a
possibility to avoid this issue altogether when attempting to compare experimental
and numerical results. In this methodology, instead of the conventional approach of
processing experimental results into flowfield quantities, the opposite is used: the
cFLDI extracts quantities from the numeric flowfield that are directly comparable
to the experiments.

There is of yet no commercial tool that simulates FLDI measurements. The code
to do so in the present work has been implemented in-house based on recent reports
in the literature on the topic. A validation case of this code has been pursued
by investigating the blast wave measurements of the first publication within the
scope of fluid dynamics. In order to perform the validation of the FLDI code, it
was necessary to expand an existing methodology to post-process optically-based
measurements of circular flowfields, in consideration of special characteristics of
the FLDI instrument. This study has led to the second publication, “Focused laser
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1. Overlook

differential interferometry post-processing methodology for flowfields with circular
symmetry”. The flowfield obtained with the original post-processing method is
simulated with the custom cFLDI script, and its output is compared against the
initial experimental measurements. In addition to validating the cFLDI code, this
development lays the foundation for using cFLDI as a tool to analyze the validity of
simplifying hypotheses and constraints when post-processing FLDI measurements,
regardless of the adopted methodology.

As a result of these two peer-reviewed publications, the disposition of the FLDI foci
is accurately measured and the cFLDI tool is developed and validated. This tool set
is employed to investigate a hypersonic turbulent boundary layer over a conical model
with cold walls at Mach 7.4 in the free-piston driven High Enthalpy Shock Tunnel
Göttingen (HEG), at the German Aerospace Center (Deutsches Zentrum für Luft-
und Raumfahrt, DLR). A time-resolved Large-Eddy Simulation (LES), calculated
under the experimentally observed free stream conditions, provides the numeric
flowfield for direct comparison with experiments by means of cFLDI. The findings
are reported in the third publication, “Combined Experimental and Numerical
Investigation of a Hypersonic Turbulent Boundary Layer by means of FLDI and
Large-Eddy Simulations”. Free stream and boundary layer convection velocity and
frequency spectra of density disturbances are reported, showing reasonable agreement
with an extrapolation of existing cases and complementing the current database. The
experimental convection velocity measurements under the investigated conditions are
novel. So are the frequency spectra of the density fluctuations across a hypersonic
turbulent boundary layer with a bandwidth up to 10 MHz. The results of numerical
and experimental comparisons indicate that the proposed direct approach using
cFLDI and FLDI measurements is possible, given appropriate identification of the
limitations pertaining to each case, numerical or experimental. This is also a new
contribution.

This thesis is structured as follows. Chapter 2 provides an introduction to the
topics of high-speed turbulent boundary layer and FLDI, which are central to this
work. The three published papers mentioned above are reproduced in their entirety
in Chapter 3, each of them preceded by explanatory considerations about their
contribution to the current state-of-the-art. The scope chosen for each paper is
such that the first paper discusses the experimental setup, the second one explores
and validates the implemented cFLDI algorithm, and the final paper addresses the
shock tunnel investigation. Detailed expositions of methodologies and the necessary
theoretical background to understand them have been included in each paper. For
completeness, mathematical proofs of a few of the more work-intensive equations
used in the papers are presented in appendixes. Chapter 4 concludes the thesis with
a summary of its main results and contributions, and recommendations for future
work.
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2. Introduction

The boundary layer on the surface of an aerospace vehicle plays a fundamental
role on its design choices. Heat transfer from a turbulent boundary layer to the
surface of the vehicle can be an order of magnitude larger than the laminar case in
high-speed flows [1]. If the vehicle is designed considering a worst-case scenario, it
may have excessive heat shielding, with implications on weight, maneuverability and
range [2]. The increased skin friction in turbulent boundary layers also cause the
aerodynamic drag to increase, with an impact on performance. That does not mean,
however, that laminar boundary layers are exclusively preferable. On hypersonic
vehicles, they may cause problems in the form of flow separation and fuel mixing
inefficiency in airbreathing propulsion [3], giving turbulent flows advantages to be
traded-off.

2.1. High-speed turbulent boundary layers

Applications of high-speed turbulent flows include, for example, acoustic noise
estimation and control, potential exhaust plume interaction with control surfaces,
fuel mixing in scramjets, influence of wakes on control surfaces and blade interaction
in engine rotors, among many others [4]. As a matter of fact, there are predictions
that the boundary layer on future airbreathing hypersonic cruise vehicles will be
chemically reacting and turbulent [5, 6].

Design requirements for hypersonic re-entry or cruise vehicles may need to in-
evitably take into account the effects of turbulent boundary layers. Fluid-structure
interactions cause vibratory loading of structures due to the passage of turbulent
flow, specifically related to small scale, high frequency fluctuations [7, 8]. This
vibration and noise transmitted through the structure of an aerospace vehicle can
adversely affect, e.g., the components in guidance instruments [9].

An in-depth knowledge of the turbulent behavior of flowfields may also be relevant
to enable a better use of experimental observations performed in conventional
(noisy) wind tunnels in the design of vehicles to be operated in the low-noise flight
environment [10–12].

Aiming at designing such vehicles, the basic understanding of the underlying
aerothermodynamic phenomena is fundamental to allow using design tools effectively
[13]. Given the broad applications of turbulent boundary layers, it can therefore be
seen that the design of hypersonic vehicles has a critical dependence on the accurate
prediction of turbulence in high-speed boundary layers.

The advancement of computer technology has enabled exploring computational
flowfields to expand the horizons of aerospace vehicle design. If a calculation
is performed directly from the Navier-Stokes equations, with enough detail to
encompass all significant phenomena, a Direct Numerical Simulation (DNS) flowfield
is obtained. However, DNS of complex, three-dimensional flowfields, which are
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2. Introduction

ubiquitous in engineering applications, is still a tall order. The use of simplified
models to emulate the flowfield behavior at its smallest scales is therefore required.
Also, in the case of flowfields with high-temperature effects, lower-fidelity turbulence
models may allow a larger fraction of computing power to be dedicated to resolving
the additional real gas effects [3].

The elaboration of reliable turbulence models requires appropriate consideration
of the underlying physics and extensive validation. However, despite the relevance
of turbulent phenomena to the design of aerospace vehicles, current understanding
of high-speed turbulent boundary layers is still limited due to the lack of available
data.

In the absence of experimental high-speed data for validation of models or
simulations, available data from the incompressible regime must be used instead
instead [14]. That requires assuming Morkovin’s hypothesis, according to which
the flow dynamics maintains similarity across the flowfields as long as the Mach
number of fluctuations remains small. This hypothesis has a strong impact in the
current understanding of turbulence, as it leads to some widely used compressibility
transformations. One such transformation is the Van Driest velocity scaling, which
transforms the velocity distribution in the inner layer of turbulent boundary layers
into a universal profile. Another example is the Strong Reynolds Analogy (SRA),
which relates streamwise velocity fluctuations to temperature fluctuations. The
SRA is necessary, e.g., for hot-wire measurements lest a number of different overheat
ratios is used [15].

However, the validity of Morkovin’s hypothesis in the presence of the strong density
and pressure fluctuations typical of high-speed flows is a matter of debate [13–19].
In the review work of Spina et al. [20], the authors underlined that Morkovin’s
hypothesis must have an upper Mach number limit. Contrary to low-speed flows,
fluctuations in thermodynamic quantities such as density and temperature become
the most significantly varying properties in hypersonic flows [21]. DNS investigations
of flat plate turbulent boundary layers at Mach 2.5 [16] and 4.5 [17] have indicated
that, indeed, compressibility effects cannot be ignored. On the other hand, turbulent
boundary layer DNS investigations at Mach 14 [18] and up to Mach 20 [13] have
shown compressibility transformations to hold, although in both cases real gas
effects were neglected. Experimental contributions to the discussion are hindered by
the still limited measurements at hypersonic speeds that are detailed an accurate
enough for testing the validity of Morkovin’s hypothesis [22].

Time-averaged models, such as Reynolds-Averaged Navier-Stokes (RANS), when
derived for incompressible flow, neglect fluctuations in thermodynamic quantities
such as temperature and density, which is unsuited at hypersonic speeds [23]. Most
RANS models have been developed and calibrated for highly idealized flowfields,
with modifications aiming at correcting deficiencies having been largely empirical
and, therefore, not broadly applicable or in some cases invalidated in a later moment
[24]. Current turbulence models are still incapable of providing reasonable results
for wall-bounded flows with strong heat transfer, such as a hypersonic turbulent
boundary layer over a cold surface [25].

18



2.2. The need for experimental data

2.2. The need for experimental data

In line with these observations, an urgent need for detailed experimental turbulence
data at high Mach numbers had already been underlined in the 1990s [20]. How-
ever, despite the decades since then, limitations of measurement techniques have
slowed down experimental efforts. The understanding of the behavior of pressure
fluctuations has been pointed out to be lagged behind that of velocity fluctuations
in turbulent boundary layers, both in high-speed flowfields [8] and in the subsonic
regime [26], due to the lack of suited measurement techniques. Importantly, pressure
and velocity have different spectral behavior in turbulent flows [8, 26].

The need for more comparisons between turbulence models and experimental
results, especially concerning off-wall data, is again underlined in the review work
by Roy and Blottner [27]. The authors also stress the importance of non-intrusive
measurement techniques, and the appropriate attention to quantifying experimental
uncertainties. While existing measurements mostly provide data in terms of root-
mean-square (RMS) values alone, an evaluation of the disturbance spectra up to
the high frequencies observed in a transitional hypersonic boundary layer would
also be of interest [12].

The knowledge of the power spectrum of density fluctuations has been flagged
as a critical ingredient for computational models for LES [28, 29], as well as for
the closure of terms of RANS equations [8, 14, 22]. The identification of power
laws in the pressure spectrum is a means of gaining insight into the phenomena
pertinent to turbulence production. For example, the turbulent energy distribution
may be correlated with possible physical sources, e.g., acoustic disturbances in a
shock tunnel, depending on the slope of the spectrum [8, 26]. Also, the power laws
can be attributed to different sources in the governing equations [30], and indicate
the scales of turbulence isotropy [31], which is of relevance for turbulence modeling.
Detailed experimental data considered necessary for calibration and/or validation
of modeling techniques include controlled and well documented inflow conditions,
such as turbulence state and statistics, as well as measurements beyond just the
mean flow [4].

Examples of current techniques capable of investigating the disturbance environ-
ment in hypersonic wind tunnels are listed in the comprehensive study by Wagner
et al. [32]. Pressure fluctuations can be detected using Pitot probes. However, they
require protective cavities to endure the thermal loading and be protected against
the impact of debris, which leads to frequency-dependent signal damping effects and
resonances. Furthermore, the Pitot probe transfer function depends on the shock
stand-off distance and the geometry of the probe, which hinders the comparison of
results from different probes. Hot-wire anemometry (HWA) can provide velocity
measurements. However, HWA presents limited bandwidth (order of 100 MHz),
depends on fragile hardware and has limitations for high enthalpy flows. It may
also present uncertainties due to mixed-mode sensitivity, being sensitive to both
fluctuating mass flux and total temperature [22]. In addition to Pitot probes and
HWA, particle image velocimetry (PIV) can be used to obtain turbulence infor-
mation, specifically on the velocity field [15, 33]. There are, however, challenges
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2. Introduction

pertaining to the necessary seeding of particles in shock tunnels, and particle lag
for measurements in the wall-normal direction. Alternative techniques focusing on
overcoming these challenges by using either an inert gas [34] or even the nitrogen in
the air [35] as the tagged material are currently in development.

2.3. Focused Laser Differential Interferometry

Adding to the non-exhaustive list of techniques mentioned above, density fluctuations
and convection velocity of density disturbances can be detected using Focused Laser
Differential Interferometry (FLDI). This is the main measurement technique explored
in the present work.

FLDI was first proposed in the 1970s [36–38] but has gained momentum more
recently, since it was brought to the attention of the hypersonics community with
the works of Parziale et al. [39] and Parziale [40]. The most distinctive qualities
of the FLDI instrument are an extremely high frequency bandwidth, in the order
of 10 MHz, and spatial resolution, in the order of 100 µm, while being able to
“see through” the noisy shear layer of shock tunnel nozzles. It presents, therefore,
ideal qualities to investigate small fluctuations traveling at high speeds, with the
potential to contribute with addressing the lack of experimental data on high-speed
turbulence highlighted above.

The most fundamental output of an FLDI instrument, being an interferometer, is a
value of phase shift of the laser beam, in radians. This quantity relates to the density
gradient of the flowfield along the axis of beam separation in the interferometer [41].
By adding a small number of simple optical components, the FLDI system is easily
multiplied into an array of closely spaced (order of 1 mm), independent probes [42].
This multi-foci FLDI instrument has the added ability of measuring the convection
velocity of density disturbances, by correlating the outputs from adjacent probes
that are separated by a known distance. This is especially relevant because it allows
transforming the frequency scale into wavenumbers or wavelengths, which are more
amenable to comparisons with models or numeric flowfields.

Over the past decade, FLDI has seen multiple applications. Fundamental studies
of FLDI principles of operation are generally performed using a supersonic turbulent
free jet [43–52], due to its broad frequency content and the existence of an experi-
mental database and analytic models. An alternative approach is to use a laminar
helium jet to study the static response of the FLDI, and single-frequency ultrasonic
acoustic beams centered at several frequency values to investigate the dynamic
response [53, 54]. Turning to shock tunnel investigations, FLDI has been used to
obtain free stream measurements [43, 52, 55–61], probe laminar boundary layers
presenting second-mode instabilities [40, 44, 62–69], and investigate disturbances
inside a separation bubble [63, 70].

Ways to multiply FLDI probes such as to obtain multi-foci setups have also been
targeted by researchers, with different forms of achieving that having been proposed
[42, 45, 48, 51, 58, 62, 68, 71]. Multi-foci FLDI configurations have been used to
measure convection velocities in supersonic free jets [45, 47, 48, 51], the flowfield
generated by a laser induced breakdown [68, 72], disturbances in a shock tube [42],
second-mode instabilities in hypersonic boundary layers [62, 64], hypersonic free
streams [58, 59], and a scramjet combustor [73].
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2.3. Focused Laser Differential Interferometry

Despite the ever growing use of FLDI in high-speed wind tunnels around the world
demonstrated above, however, its application to hypersonic turbulent boundary
layers still remains largely unexplored.

One important caveat concerning FLDI measurements, which may as well be
one of the reasons for that, is that the conversion of FLDI data back into flowfield
quantities requires some careful considerations. As mentioned above, the most direct
output of the FLDI instrument is the phase shift of the laser beam. This quantity
has a direct relationship with the density disturbances of the flowfield [41]. However,
the phase shift is accumulated across the entire probing volume. The reason why
the FLDI is able nonetheless to probe through a noisy shear layer in shock tunnels is
that the sensitivity of the FLDI instrument to different sizes of disturbances varies
along the optical axis [54, 74, 75]. Disturbances with a wavelength comparable to the
beam width get averaged out in the final, integrated response. Hence the sensitivity
of the system to high-frequency content, which is associated with disturbances
of small scales, is restricted to the vicinity of the focus of the FLDI, where the
beam size is minimal. However, because the diameter of the focusing beams varies
continuously, so does the FLDI sensitivity to the sizes of disturbances, with no clear
cutoff parameter for any given disturbance size.

Many recent works have been devoted to studying this FLDI property and allowing
the quantitative conversion of FLDI data into flowfield density values. Fulghum [74]
presented the first efforts to use transfer functions to describe the FLDI sensitivity
behavior in canonical cases such as a uniform flowfield and a free jet. That approach
was later expanded to cases with higher complexity [50]. A solution for the inverse
FLDI problem has been deduced for single-direction, continuous-frequency waves
[60, 76]. In addition, a framework has been proposed to address the problem by
defining a sensitivity function, which depends on parameters of the FLDI setup
and the flowfield [47, 77]. These approaches are the current state-of-the-art on
FLDI signal post-processing. Nonetheless, assumptions about the geometry and
symmetry of the flowfield are inevitable to solve the inverse problem, due to the
loss of information associated with the process of turning the three-dimensional
density field into a single scalar output value in the form of the laser phase shift [76].
This is an obstacle to taking full advantage of FLDI measurements when probing
flowfields with further complexity or non-uniformities.

An alternative approach is explored in the present work, based on advancements
on computational FLDI (cFLDI) and high-fidelity numeric flowfield computations.
The methodology is useful when a numerical representation of the flowfield exists,
such as in a case of turbulence model validation, or combined experimental and
numerical investigations. Instead of converting FLDI measurements into density field
data, cFLDI is applied to the numeric flowfield to provide quantities that are directly
comparable with experiments, with no need for assumptions or simplifications related
to FLDI post-processing.

The cFLDI algorithm was first introduced by Schmidt and Shepherd [75]. It
consists in calculating the effects of a computational density field on individual rays
of light composing the FLDI beams. The only simplification involved in the process
is to neglect any deflections of the rays due to the density field. This was verified not
to degrade the fidelity of the FLDI simulation in the validation work of Lawson and
Austin [78], in which a complex, shock-dominated, dynamic flowfield was studied.
To date, only a handful of additional works have explored cFLDI to investigate
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2. Introduction

high-speed flowfields or the technique itself. It has been used to perform parametric
evaluations of the instrument [79, 80], adding to the fundamental understanding of
the FLDI principles previously obtained with free jet experiments. Also, a DNS of
the boundary layer on the walls of a shock tunnel has been used in combination
with cFLDI to assess the instrument’s ability to obtain data from the core flowfield
[81]. In the present work, the investigations are focused on the core flowfield instead,
using cFLDI to extract a simulated response from the computational flowfield.

The present thesis aims at contributing to the advancement of hypersonic tur-
bulence understanding, in particular concerning high-speed turbulent boundary
layers and the near field around them. Experimental and computational FLDI
are employed to obtain flowfield information in terms of density fluctuations and
convection velocity of density disturbances. The methodology and results presented
herein represent a means and a small sample of addressing the existing gap in the
availability of experimental data on high-speed turbulent flowfields. As such, a
rigorous approach is followed to ensure that the quality of the obtained data complies
with the stringent requirements for turbulence model validation. Furthermore, the
flowfield investigated in this work is one of the suggested cases in the review work of
Roy and Blottner [27] as baselines for comparisons between turbulence models and
experimental results, namely a sharp cone with a zero-pressure gradient turbulent
boundary layer.
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3. Results and Discussion

This work focuses on advancing the limits of interpretation and reliability of exper-
imental FLDI data for the investigation of hypersonic turbulent boundary layers.
The most relevant results are reported in three papers recently published in peer-
reviewed journals. These publications compose the core of the present thesis, and
are reproduced next.

3.1. Measurement of separation distance between FLDI
probes using blast waves (Publication 1)

The possibility of velocimetry using a pair of FLDI probes was identified early
on in the present Ph.D. project as one of the main advantages of the technique
for shock-tunnel investigation. By knowing the separation distance between the
FLDI probes, the time lag between closely-spaced probes can be converted into a
convection velocity. However, the quality of the velocity measurements are directly
dependent on how well the separation distance between the FLDI probes, denoted
∆x2, can be measured. If the measurement of this distance is inaccurate, the
velocity results will be biased. In addition, if the distance measurement has a large
uncertainty, so will the velocity values.

Accurate and precise beam distance measurements can be obtained using a beam
profiler with a large enough sensor area to image the beams. However, this method
is not universally applicable. First, the imaging device has a finite size that becomes
a constraint in the presence of other objects close to the focus of the FLDI system,
such as the wall of a test model. Second, the cost of a beam profiler is comparable to
the cost of an entire FLDI system, which may be prohibitive for smaller laboratories.
Finally, certain types of multi-foci FLDI, such as the multi-point line FLDI [68],
present adjacent probes with no physical separation between them, preventing the
use of the imaging approach. The alternative methods that were present in the
literature lacked precision, accuracy, or both, as observed in the results of the paper
reproduced in this section. One of such methods is the analysis of a lens moving
across the optical axis of the FLDI in the direction of beam separation. Although
its accuracy and precision for the measurement of the velocimetry-related distance
∆x2 was found to be lacking, it was verified to be an excellent alternative to beam
imaging in the case of ∆x1, the small separation distance between the pair of beams
forming one FLDI. Therefore, a demonstration of the equation employed to obtain
∆x1 from the lens measurements, which is usually omitted in the literature, is given
in Appendix A.

For the measurement of ∆x2, a solution was found to replace the beam profiler
with similar accuracy and precision much reduced geometric constraints, and at a
fraction of the cost. The method consists of detecting the passage of a weak blast
wave, which propagates at a known speed of Mach 1 in the acoustic limit. A modified
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3. Results and Discussion

automotive spark plug was used to generate the blast wave. A careful study of the
propagation velocity along the radial distance was conducted to identify the acoustic
limit region. When using the blast wave detection at a single location within this
limit, a beam separation distance within 0.5% of the beam profiler reference value
was obtained, with less than 1% uncertainty. By modeling the blast wave trajectory,
which allowed using the combined data from the whole probed region, accuracy
improved to within 0.2% of the beam profiler reference value. Nonetheless, this
comes with significantly more measurement effort, hence the gain was deemed not
worth it for most applications.

The conceptual idea of using a controlled acoustic disturbance to measure the
separation distance between multi-foci FLDI was proposed by A. Wagner. The
experimental setup was designed by I. Schwendtke and me. The experiments and data
curation were conducted by me. Analyses of the results were carried out by me and
A. Wagner. The manuscript was written by me and edited by A. Wagner. The article
is Open Access under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/). It was published in Experiments in
Fluids, 2022, 63 (2), 53. (DOI: https://doi.org/10.1007/s00348-022-03401-0)

Copyright © The Authors 2022
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Abstract
A new method is presented to measure the separation distance between probing volumes of closely spaced multi-foci Focused 
Laser Differential Interferometers (FLDI). The accuracy and precision of this distance measurement directly translate into 
the quality of convection velocity measurements performed by means of arrays of FLDI. The suggested method is based 
on the detection of a propagating weak blast wave, generated with a simple and inexpensive apparatus using an automotive 
spark plug. Demonstration is conducted using an FLDI with two foci (D-FLDI). The generated blast wave is probed at mul-
tiple distances from its source to verify its weakening into an acoustic pulse, which offers ideal conditions to the proposed 
methodology. D-FLDI separation distance measurement using the new approach is compared to measurements using beam 
profiler images and to the alternative currently established in the literature, based on the FLDI response to a moving weak 
lens. Tests are made on varying internal configurations of the D-FLDI, while the distance between the two systems is kept 
constant. Results show the present method to have improved accuracy and robustness in comparison with the moving lens 
approach, while requiring significantly less effort. Measured separation distances obtained from blast wave detections in 
a single location are within 0.5% of the reference value measured through the beam profiler. This procedure is therefore a 
practical and reliable alternative to the measurement using beam profiler imaging, with similar quality. Its advantages concern 
associated costs, flexibility when measuring in constrained spaces such as in proximity to walls, and applicability to systems 
in which beam imaging is not an option, such as multi-point line FLDI.

1 Introduction

Focused Laser Differential Interferometry (FLDI) is a 
non-invasive measurement technique capable of detecting 
flowfield density fluctuations with remarkable spatial and 
temporal resolution, being especially suited to the field of 
experimental hypersonics (Parziale et al. 2013). With simple 
modifications, it is also possible to use FLDI as a velocity 
measurement tool by producing two closely spaced probing 
volumes to obtain a double-foci FLDI (D-FLDI), as shown 
by Jewell et al. (2016). The detected signal using the two 
probing volumes is very similar but for a time lag, which 
can be converted into convection speed measurement if the 
distance that separates the two systems is known.

In the precursor exploration by Jewell et al. (2016), veloc-
ity estimates of second-mode instability wavepackets in a 
hypersonic boundary layer consistent with typically expected 
values were obtained using D-FLDI. Exploratory work on 
velocimetry by means of parallel FLDI measurements has 
since then been conducted in multiple laboratories. Jewell 
et al. (2019) presented velocity measurements of compress-
ible turbulent jets. Results followed the jet nominal values, 
albeit with a consistent offset. Ceruzzi and Cadou (2019) 
also performed velocity measurements of a turbulent free jet 
of air. Results agreed to hot-wire measurements and a veloc-
ity decay model if a certain distance from the jet exit was 
observed, although large uncertainties were reported. Bathel 
et al. (2020) used a carefully adjusted D-FLDI with parallel 
optical axes to probe a laser-induced breakdown shock wave 
and a conical hypersonic boundary layer with second-mode 
instabilities. Measured shock wave convection velocity was 
in close agreement to the reference obtained from simul-
taneous high-speed schlieren, and with lower uncertainty. 
Reasonable agreement was also verified for the velocity of 
the instability wavepackets, for which FLDI and high-speed 
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schlieren were performed in different runs of the shock tun-
nel. Weisberger et al. (2020) presented FLDI velocimetry 
using a novel type of arrangement, in which a multi-point 
line FLDI is obtained. Convection velocity of laser-induced 
breakdown shock waves were reported with close agreement 
to high-speed schlieren measurements. Another novel meth-
odology to obtain an array of FLDIs was used in Gragston 
et al. (2021b) to detect second-mode instabilities in the 
boundary layer on a flared cone. The obtained wavepacket 
convection velocities were within the expected range with 
respect to the nominal boundary layer edge velocity.

The accuracy and precision of velocimetry by means of 
double- or multi-foci FLDI depend on two main parameters. 
First, how well the two signals correlate, since the agreement 
between them informs the time lag to the velocity calcula-
tion. This depends on what proportion of the flowfield struc-
tures detected with the upstream system convect with little or 
no change until the downstream one. By taking into account 
the length scales of the probed flowfield, the distance sep-
arating the FLDI systems can be adjusted accordingly to 
improve signal agreement. The second parameter is how this 
distance is measured, as the quality of the obtained value is 
directly transferred to the velocity estimation. This was high-
lighted by Weisberger et al. (2020) concerning their meas-
urements using adjacent channels of a multi-point line FLDI 
array, which yielded uncertainties in the order of ±10% . In 
that same work measurements with ±0.9% uncertainty were 
reported when using channels from separate lines, the differ-
ence being only how the spacing between the FLDI probes 
was determined. A similar occurrence is also seen in Ceruzzi 
and Cadou (2019) with the turbulent jet measurements, in 
which the separation between probes in the D-FLDI was 
given with ±6% and the velocity measurements presented 
large error bars.

Three methods are currently established in the literature 
to obtain the separation distance between FLDI systems: 
directly imaging the beams with a beam profiler; gradu-
ally blocking the beams with a precision-controlled stopper 
(Weisberger et al. 2020); or analyzing the system response to 
a lens with large focal length crossing the path of the beams 
(Ceruzzi and Cadou 2019).

The beam profiler offers a direct and precise measure-
ment, but is not applicable if the systems are not physically 
discrete, such as the line FLDI. Additionally, it may not 
be available in all laboratories due to its significant cost in 
comparison with common FLDI components. The beam-
blocking approach also requires specific precision equip-
ment, and was shown to present unsatisfactory precision. 
The lens response method is inexpensive, but time-consum-
ing and also subject to higher uncertainties as will be fur-
ther detailed in this work. Furthermore, the beam profiler 
and the lens methods rely on the existence of certain spatial 
clearance to accommodate either instrument dimensions or 

their movement, which may prevent their application when 
the FLDI beams are positioned close to a surface, e.g., for 
boundary layer measurements. These difficulties are minor 
if beam separation measurements are performed in the 
preparation phase of an experimental campaign, with flex-
ible time and physical constraints. However, the FLDI has a 
number of flexible parameters (positioning, differentiation 
axis, sensitivity, beam convergence, to name a few) which 
may be tuned or changed in the course of the experiments, 
as exemplified in Weisberger et al. (2020) and Siddiqui et al. 
(2021). Such adjustments require choosing and manipulat-
ing optical components, which may change the separation 
distance of the FLDI systems. An updated distance meas-
urement is therefore required, in which the disadvantages of 
these methods may become relevant.

The present work introduces an alternative approach to 
measuring the separation distance between FLDI probes, 
while addressing the limitations pertaining to the current 
methodologies. The procedure is based on the detection of 
a propagating weak blast wave, generated with an electric 
spark in ambient air. The practical advantages analyzed in 
the present study and the preference for low-cost equipment 
of easy access are meant to render this technique easily 
applicable in other laboratories. The developments pre-
sented in the next sections are constrained to a double-foci 
FLDI, but can be directly extrapolated to arrays of more foci, 
regardless of whether they are optically discrete or continu-
ous on the focal plane.

2  Theoretical background

2.1  Indirect estimation of FLDI parameters

Two parameters pertaining to FLDI diagnostics are relevant 
in this work. Namely, the small distance separating the two 
foci which make one FLDI, and the greater distance that 
separates two independent FLDI systems. For convenience, 
the former will be referred to as internal or �x1 and the lat-
ter, external or �x2 . Figure 1 shows a schematic of the FLDI 
used in this work and illustrates these distances. Accurate 
knowledge of the internal separation distance is necessary 
to correctly interpret the FLDI data, given its differential 
nature. The external separation is in turn useful when using 
multiple FLDI bundles to measure convection velocities by 
means of data cross-correlation.

Approaches to indirectly estimate these distances are 
valuable when the beams cannot be directly imaged with a 
beam profiler, e.g., due to hardware or spatial constraints. 
One such method is presented in Fulghum (2014) to obtain 
�x1 by analyzing the FLDI response to a weak lens cross-
ing its path along the axis of beam separation. The method 
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was later extended to also obtain �x2 in Ceruzzi and Cadou 
(2019).

The procedure consists of registering the D-FLDI output 
as a lens of long focal length (in the order of meters) is 
moved along the axis of beam separation. The output of each 
FLDI will describe a sinusoid when plotted as a function 
of the displacement of the lens. The period of the sinusoid 
depends on �x1 and the focal length of the lens. The size and 
focal length of the lens can hence be chosen such as to pro-
vide at least one full sinusoid period when traversed across 
the path of the FLDI beams. With the D-FLDI, the sinusoids 
produced by each FLDI will be out of phase, due to the dis-
tance between them �x2 as the moving lens is probed. The 
mathematical description of this behavior is summarized 
below in view of clarifying the terminology and relevant 
parameters for the present work.

If the FLDI response to the moving lens is normalized to 
have unitary amplitude, the corresponding sine wave when 
the lens moves along the x-axis can be described as:

with Tn and �n denoting the spatial period and the phase 
respectively, and n = A,B representing the two FLDIs. The 
dependence of Tn and �n with �x1 and �x2 is given by: 

with fL denoting the focal length of the weak lens and an 
average period T̄  employed to calculate �x2 . This is a rea-
sonable approximation because the two periods TA and TB 
are ideally identical, since in the type of D-FLDI configura-
tion used here the optical piece controlling �x1 is shared by 
the two FLDIs. An alternative to this approximation is to 

(1)yn = sin

(
2�

Tn
x + �n

)

(2a)�x1n =
�0fL

Tn

(2b)𝛥x2 =
T̄

2𝜋
(𝜑A − 𝜑B)

cross-correlate the two sinusoids to find the spatial lag between 
them. However, a limited sample of sinusoid cycles resulting 
from the movement range of the lens can lead to considerable 
inaccuracy on the spatial lag estimation. The results in this 
work were obtained using Eq. (2b) to calculate �x2.

Another indirect approach to estimate �x1 concerns the 
geometric disposition of the FLDI components. As detailed 
in Sect. 3.1, the internal separation distance originates from a 
divergence angle � introduced in the FLDI beam at the focus 
of its field lens fL on the emitting side. Assuming small angles, 
geometric optics yield simply �x

1
= fL� . In this work, the 

divergence angle is produced by means of a Sanderson prism 
(Sanderson 2005), which consists of a bend-stressed polycar-
bonate bar. Following the approach in Biss et al. (2008), linear 
elastic theory can be used in combination with the properties 
of the prism material to estimate the resulting divergence angle 
introduced between the beams:

with E the material modulus of elasticity, � the bending 
deflection, b the thickness of the bar and Y and L describing 
the bending supports as shown in Fig. 2. The fringe-stress 
coefficient f� is an optical property of the polycarbonate 
material measured using a light source of wavelength � , 
with their ratio remaining constant for varying wavelengths.

(3)� =
�

f�

6E�b

(Y2 − 3L2)

Fig. 1  Schematic of a double-foci FLDI system with constant separation distance. Beams propagate from left (pitch-side) to right (catch-side). 
The two independent FLDIs are shown as different colors. Optical components required to duplicate the standard system are highlighted in red

Fig. 2  Schematic of the arrangement to generate a pure bending 
moment

3.1. Measurement of separation distance between FLDI probes using blast waves
(Publication 1)
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2.2  Blast waves

A blast wave is originated in a fluid as a result of sudden 
movement, such as the expansion of high-pressure gases 
previously confined, or an instantaneous localized energy 
release. The pressure disturbance caused by such an event 
propagates away from its source with the local speed of 
sound. In ambient air, the elevated pressure is accompanied 
by an elevated temperature, which causes the local speed of 
sound to increase. With these portions of the disturbance 
propagating faster than their vicinity, a discontinuity is even-
tually formed as a shock wave front (Kinney and Graham 
1985).

The velocity described by a moving shock wave is pro-
portional to its strength. In the case of blast waves originated 
by localized events such as energy addition in a finite vol-
ume, the strength of the shock wave front will progressively 
become weaker due to volume divergence, dissipation and 
relaxation. As the blast wave loses strength, it eventually 
becomes an acoustic pulse, propagating approximately with 
the ambient sound speed. Even in this limit, it still retains a 
distinct pressure signature marked by a compression phase 
and an expansion phase. This waveform of unique shape 
and known convection speed offers ideal conditions for 
the experimental detection of distances. Nonetheless, this 
requires knowing at which point the blast wave is adequately 
approximated as an acoustic pulse.

An accurate physical simulation of the blast wave evo-
lution is beyond the scope of this work. Instead, a simple 
formulation of blast wave convection velocity as a function 
of distance is pertinent. Specifically, the case of very weak 
blast waves, with M ≈ 1 no more than a few centimeters 
from the source will be of interest.

Jones et al. (1968) proposed a simple theoretical model 
to estimate the trajectory of the blast wave generated by a 
lightning discharge. The model is based on the strong shock 
similarity solution for a cylindrical shock wave, first-order 
corrected for the weak shock limit1. It will be shown in 
Sect. 4.2 that for the spark-generated disturbance in this 
work, the region with significant gradient of blast wave 
propagation velocity is confined to the vicinity of the source 
(distances of same order of magnitude as the length of the 

spark). Therefore, assuming the shock wave to be cylindri-
cal is reasonable when considering the blast wave trajectory 
estimation.

The trajectory of the shock wave front is described in 
terms of radius R and arrival time t. The undisturbed speed 
of sound c0 and a characteristic radius R0 are used to non-
dimensionalize R and t as x = R∕R0 and � = c0t∕R0 , respec-
tively. The characteristic radius is defined as:

with � the specific heat ratio (assumed constant), P0 the 
undisturbed ambient pressure, E0 the energy deposited per 
unit length and B = 3.94 a constant for air. The trajectory for 
the weak shock is described as:

Equation (5) can be used to obtain an analytic expression for 
the dimensional shock wave convection velocity Us = dR∕dt 
as a function of the distance to the blast wave source R, as:

In this equation, the only unknown parameter is R0 , which is 
determined by the energy addition E0 following Eq. (4). An 
experimental method to obtain E0 will be shown in Sect. 4.2.

3  Experimental setup

3.1  Double‑foci FLDI

The D-FLDI arrangement used in this work is shown sche-
matically in Fig. 1. The laser source is a 200 mW Oxxius 
LCX-532S DPSS laser with nominal wavelength 532.3 nm. 
As mentioned in Sect. 2.1, Sanderson prisms are used to split 
the beams into interferometric pairs. The prismatic bar is a 
6 mm thick MakrolonⓇ bent with L = 85 mm and Y = 29 mm 
(refer to Fig. 2). Light intensity after beam recombination 
is measured using Thorlabs DET36A2 photodetectors, ter-
minated with 50� . The outputs from the photodiodes were 
amplified 25 times using a SRS SR445A DC-350 MHz 
preamplifier. All data presented in this work were recorded 
for 1 ms using an AMOtronics transient recorder with DC-
coupling and a sampling rate of 100 MHz.

The FLDI presented here has been designed to oper-
ate in the HEG shock tunnel (DLR 2018). The free gap 
between the field lenses is approximately 3.8 m. The beams 
are expanded to approximately 45 mm diameter at the field 

(4)R0 =

√
4E0

�BP0

(5)� =
1

2

�√
1 + 4x2 − 1

�

(6)Us = c0

√
1 + 4(R∕R0)

2

2R∕R0

1 Bach and Lee (1970) proposed a more complex model, derived 
from the Navier–Stokes equations assuming a power law for the den-
sity profile behind the shock wave. Although this is not the case for 
the weak shock limit, the authors highlight that the obtained shock 
trajectory would remain accurate in the limit due to the conservation 
of total mass and energy. The solution obtained through this method 
has been compared to the one from the approach of Jones et  al. 
(1968), yielding identical results for trajectory. For simplicity, the 
approach from Jones et al. (1968) is retained in this work.
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lenses, which have a diameter of 100 mm and focal length 
500 mm.

Eleven different values of Sanderson prism deflec-
tion were used, allowing flexibility of separation between 
the orthogonally polarized components in the range of 
70 ≤ �x1 ≤ 250 �m . When adjusting the prism deflection, 
bending was always applied past the intended value and 
then returned to it, to avoid hysteresis following Biss et al. 
(2008). The prism deflections � were measured with a deflec-
tion gauge with 0.01 mm precision. The investigations were 
separated into indirect evaluation using a lens with focal 
length 3 m and the present blast wave method (4 points), and 
direct measurement using a DataRay TaperCamD-UCD23 
beam profiler (7 points) as detailed in Table 1. The table 
also shows the beam divergence angles corresponding to 
the Sanderson prism deflection values, for reference. These 
angles are estimates from linear elastic theory, including a 
vertical offset due to residual stress to be seen in Sect. 4.1.

Prior to blast wave measurements, the undisturbed 
response of the FLDI was adjusted to approximately half-
way between its lowest and highest output, where sensitivity 
is at its maximum. This was accomplished by fine adjust-
ment of the relative position of the Sanderson prism on the 
catch-side along the axis of beam separation. When the 
beam-splitting optics is manipulated in this way, the phase 
difference between the resulting colinear beams changes. 
Since the interferometer is adjusted to an infinite fringe con-
figuration, this results in an uniform intensity change after 
the beams are made to interfere with the polarizer before 
the photodiode. This approach is present in Lawson et al. 
(2019), only using Wollaston prisms instead of Sanderson. 
Conversion of voltage produced by the photodetectors into 
phase difference was also performed following that work.

Duplication of the basic FLDI into two or more closely 
spaced systems can be achieved in many different ways 
(Ceruzzi and Cadou 2019; Jewell et al. 2019; Bathel et al. 
2020; Weisberger et al. 2020; Gragston et al. 2021a). In the 
present work, the D-FLDI is produced by means of a Wol-
laston prism of 2◦ splitting angle together with a polarizer, 
highlighted in red in Fig. 1. In this approach, the prism splits 
the incoming beam into two diverging beams with orthogo-
nal polarization. The accompanying polarizer is oriented to 

project the beams back into the original polarization plane, 
such that the remainder of the system operates identically to 
the single FLDI arrangement. With both the original beam 
and the polarizer oriented at 45◦ with respect to the fast axis 
of the prism, two systems with identical power are obtained.

The duplicated system is obtained regardless of the pre-
cise positioning of the pair prism-polarizer on the pitch-side, 
as long as it is placed before the pitch-side Sanderson prism. 
Depending on its position with respect to the expanding and 
field lenses on the pitch-side and their focal lengths, multiple 
values of bundle separation �x2 at the D-FLDI center plane 
can be achieved with the same Wollaston prism, which can 
be advantageous in investigations aiming at, e.g., compar-
ing spectral amplitudes between multiple points. A novel 
approach following this objective with a grid of FLDIs is 
presented in Gragston et al. (2021a).

However, this flexibility comes at the cost of allowing 
the two FLDI systems to describe non-parallel trajectories 
between the field lenses, as their axes will cross either before 
or after the focal length of the pitch-side field lens for all but 
one specific position of the splitting prism-polarizer pair. 
This way, the separation between the systems �x2 will vary 
along the probing region, which must be considered when 
using the duplicated FLDI setup to perform flowfield veloc-
ity measurements. Since the signal obtained on each FLDI 
is an integration of flowfield disturbances across the probing 
volume, disturbances crossing the FLDIs at stations with 
different values of �x2 may bias the velocity measurement.

To avoid this, a parallel disposition of FLDI bundles is 
recommended in velocimetry applications, as highlighted 
in Bathel et al. (2020). In that work, a Nomarski prism was 
used to ensure parallelism between the FLDIs. This type of 
birefringent prism works similarly to the Wollaston prism 
used here, but redirects the output beams so that they cross 
at a point ahead of it. Parallelism between the two FLDIs is 
thus achieved by adjusting this crossing point to be at the 
focal length of the pitch-side field lens, i.e., to coincide with 
the Sanderson prism on the left in Fig. 1.

In the present work, a similar effect is achieved by com-
bining the Wollaston prism with the convergent lens respon-
sible for expanding the beams in the FLDI on the pitch-side. 
The precise position and focal length of the expanding lens 

Table 1  Sanderson prism deflections (measured) and corresponding beam divergence angles (estimated from linear elastic theory) investigated 
in the present work, separated by method and scope

Method Scope � [mm] � [arc min]

Beam profiler �x
1
 , �x

2
0.25, 0.40, 0.55, 0.70, 0.90, 1.10, 1.40 0.42, 0.58, 0.75, 0.92, 1.14, 1.36, 1.69

Moving lens �x
1
 , �x

2
0.30, 0.59, 0.95, 1.45 0.47, 0.79, 1.19, 1.75

Blast wave �x
2

0.30, 0.59, 0.95, 1.45 0.47, 0.79, 1.19, 1.75
Linear elastic theory �x

1
0.00 to 1.80 (continuous) 0.14 to 2.14

3.1. Measurement of separation distance between FLDI probes using blast waves
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are predefined by a combination of other parameters in the 
FLDI, namely the focal length of the field lens, the desired 
distance between the field lenses and the desired maximum 
beam diameter. Once this is set, the position of the Wollas-
ton prism with respect to the expanding lens is determined 
using geometric optics such that the image of the origin 
of the two output beams coincides with the location of the 
pitch-side Sanderson prism in the setup. The center axes of 
each FLDI generated using this approach are shown in Fig. 1 
as dashed lines with the corresponding colors.

For system design purposes, an initial estimate of the 
resulting �x2 as a function of the position of the optical ele-
ments and the splitting angle of the Wollaston prism can be 
obtained through trigonometric relations. Once all compo-
nents are in place, a more precise measurement of the final 
�x2 such as the procedure proposed in this work is essential 
to minimize errors in the velocity measurements.

3.2  Blast wave generation

The FLDI �x2 measurement methodology proposed in this 
work requires a known and repeatable density disturbance to 
cross the optical axis of the FLDI systems. This is achieved 
in a simple manner through a spark in ambient air at rest. In 
contrast to past works which have successfully used laser-
induced breakdown sparks to study the FLDI response (Par-
ziale 2013; Bathel et al. 2020; Weisberger et al. 2020), an 
electric discharge is used here. The advantages for the pur-
pose of the current work are high positioning flexibility with 
reduced cost and safety risks, while producing a blast wave 
with as little strength as possible with good repeatability.

The weak disturbance is preferred here because the con-
vection velocity of an expanding blast wave varies as it 
propagates, but tends asymptotically to the ambient speed 
of sound, as seen in Sect. 2.2. The premise is to use the 
known value of this lower bound to obtain the separation 
between the FLDI bundles from the time lag between the 
signals. Therefore, it is advantageous that the blast wave is 
weak enough to degenerate into an acoustic pulse as close as 
possible to the source, hence minimizing the required physi-
cal space and the influence of external factors. Furthermore, 
the spark generation in ambient air without requiring any 
specific environmental conditioning is aimed at facilitating 
the application of the method. Only the ambient temperature 
is required to determine the local speed of sound.

The electric spark is obtained by means of an automotive 
spark plug. The distance between the electrodes of the spark 
plug is increased to approximately 4 mm such that the result-
ing blast wave produces the necessary amplitude of density 
fluctuations to be detected with the FLDI. A schlieren image 
of the spark-generated blast wave is shown in Fig. 3.

To study the evolution of the blast wave trajectory and 
determine the distance from the source beyond which the 

propagation velocity is M ≈ 1 , the spark plug setup is 
installed on a translating mount with 0.1 mm precision. 
This allows the blast wave source to move along the axis of 
separation between the FLDI bundles, while the FLDI setup 
remains untouched. The combined uncertainty of operator 
and hardware to control this movement was estimated as 
±0.25 mm. The origin of the mount places the center of 
the gap between the electrodes approximately at the middle 
point between the two FLDIs. This was manually adjusted 
in a much coarser manner, with uncertainty in the order of 
1 mm. Given the sensitivity of the theoretical velocity dis-
tribution to the origin of the blast wave, the vector of meas-
urement positions is allowed to be uniformly offset by an 
optimization algorithm when processing the results, as will 
be detailed in the next section.

Measurements were taken at 23 positions corresponding 
to nominal distances between spark source and FLDI probe 
of 3 mm to 50 mm. The spacing between adjacent probing 
positions was made smaller closer to the source, where the 
velocity gradient is larger. The spark plug was controlled to 
produce a single spark during the recording time, allowing 
the disturbances to fully dissipate between discharges. Ten 
blast waves were generated and recorded at each position. 
The lowest and highest observed time lags were discarded, 
and the remaining 8 were individually analyzed. The ambi-
ent temperature near the probing region was measured with a 
digital ambient thermometer with precision of 0.05◦ C before 
each series of measurements to calculate the ambient sound 
speed. When the sound speed is used in Sect. 4.2 to deter-
mine �x2 , the uncertainty carried over from the tempera-
ture measurement is less than 0.01% and will therefore be 
neglected.

4  Results and discussion

4.1  Estimation of distances with existing methods

An example of the results following the procedure described 
in Sect. 2.1 is shown in Fig. 4. The data were obtained 

Fig. 3  Enhanced schlieren image of the blast wave generated using an 
automotive spark plug
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using the D-FLDI described in Sect. 3.1 with Sanderson 
prism deflection � = 0.59 mm and a lens with focal length 
fL = 3  m. The horizontal error bars correspond to the 
±0.25 mm combined uncertainty of operator and hardware 
to control the lens position, which was performed using 
the same supporting mount used for the spark generator 
described in Sect. 3.2.

The period and phase of the sine functions in the form 
of Eq. (1) are determined using least-squares method on 
the normalized FLDI output. A Monte Carlo approach is 
adopted to estimate a representative uncertainty for the fitted 
sinusoids as follows. Uniformly randomized errors on the 
lens displacement values within the assumed uncertainty of 
±0.25 mm are used to calculate 10,000 scenarios. The same 
modified lens displacement vector is used for both FLDIs 
in any given case, since the separation distance between 
them is constant and independent of this uncertainty. From 
the obtained distribution of periods and phases, an average 
sinusoid is obtained for each FLDI (blue and red lines in 
Fig. 4). An idea of the variation of the fits is given by the 
shaded area around each line, composed of 1000 different 
results from the Monte Carlo simulation. Values for �x1 and 
�x2 calculated using Eq. (2) with the average Tn and �n are 
shown in the textbox. Finally, the inset plot displays the 
two average sinusoids when one of them is offset in the x 
direction by the calculated �x2 . An additional offset in the 
y direction is introduced for clarity, otherwise the lines are 
indistinguishable. The precise overlapping in terms of both 

phase and period is a validation of the physical assumptions 
of this methodology.

The distribution of period Tn and phase �n values 
obtained with the Monte Carlo approach are used to esti-
mate the uncertainties for the calculated �x1 and �x2 . Based 
on Eq. (2), the propagation of uncertainties � of �x1 and 
�x2 given uncertainties for period T and phase difference 
�� = �A − �B yields: 

For the example shown in Fig.  4, Eq. (7) gives 
��x1A = 0.86 �m , ��x1B = 0.75 �m and ��x2 = 0.11  mm. 
Hence the �x1 obtained for the two FLDIs shown in the 
textbox in Fig. 4 is the same within the uncertainty bounds, 
which is expected and validates the approach of using an 
average T̄  in Eq. (2b). It is also noted that the uncertainty of 
�x2 is proportionally much larger than that of �x1 . This is a 
consequence of the lens displacement uncertainty having a 
much greater influence on the phase of the sine wave than 
on its period, as can be inferred from the shaded regions in 
Fig. 4.

Complementary to the beam distance measurements per-
formed with the moving lens, the FLDI beams were imaged 
at the center plane of the D-FLDI using a beam profiler. 
An example of the obtained image is given in Fig. 5, for 
Sanderson prism deflection � = 0.9 mm. The resolution of 
the beam profiler was in situ calibrated as 10.3 �m per pixel. 
Distances �x1 and �x2 were measured by detecting the peak 
values of profiles resulting from averaging the pixel intensi-
ties along each vertical line of the images. Ten independent 
images were obtained for each Sanderson prism deflection. 
To achieve sub-pixel accuracy, the average pixel intensity 
profile of each independent image was interpolated using 
a shape-preserving cubic interpolation and smoothed using 
a moving average. The pixel difference between the peaks 
identified in the resulting profiles was then converted to 

(7a)��x1n =
�0fL

T2
n

�Tn

(7b)𝜎𝛥x2 =

√(
𝛥𝜑

2𝜋
𝜎T̄

)2

+

(
T̄

2𝜋
𝜎𝛥𝜑

)2

Fig. 4  Normalized double-foci FLDI response to a moving lens. Dots 
with error bars denote the acquired datapoints and lines correspond to 
least-square fits of sine functions. Shaded areas around the sinusoids 
are possible fits considering randomized errors along the lens dis-
placement points. Resulting �x

1
 and �x

2
 measurements are displayed 

in the textbox. The inset shows the result of horizontally offsetting 
one of the sinusoids by �x

2
 , ideally causing the two lines to overlap. 

They are also vertically offset by 10% for clarity. Data corresponding 
to Sanderson prism deflection � = 0.59 mm

Fig. 5  Beam profiler image of the D-FLDI of the present work. Image 
obtained with Sanderson prism deflection � = 0.9 mm
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distances and used to calculate a mean value and standard 
deviation.

By changing the deflection of the Sanderson prism � and 
repeating the procedures described above, the dependency 
of �x1 with the prism deflection � can be demonstrated. Fig-
ure 6 shows the results of this calibration for multiple values 
of � , with �x1 plotted on the left y-axis and �x2 on the right 
one. The expected results are that �x1 linearly increases with 
the prism deflection � , while �x2 remains unchanged since 
it is not defined by the Sanderson prism settings. The lin-
ear elastic theory estimate for �x1 is obtained from Eq. (3), 
using the optical properties for polycarbonate mentioned in 
Biss et al. (2008), namely f� = 7.0 kN/m for � = 546.1 nm, 
and the mechanical properties of MakrolonⓇ following the 
manufacturer datasheet, E = 2.4 GPa. A small vertical offset 
is introduced in the theoretical prediction to account for the 
trend of an apparent finite �x1 with � = 0 . This may be due 
to a residual stress field in the prism, as highlighted in, e.g., 
Fulghum (2014) and Birch et al. (2020).

The results show that �x1 has a similar behavior for both 
FLDIs, with values that coincide for a given � and which 
are well described by the correlation obtained using linear 
elastic theory once an empirical estimate of residual stress 
offset is taken into account. Uncertainties for �x1A and �x1B 
for both the lens and profiler methods have similar magni-
tude as presented for the example above (order of 1 �m ), and 
are not plotted for clarity. A comparatively low accuracy of 
the beam profiler results is observed for the lower end of � 
values. This is a result of inadequate pixel density of the 
instrument to detect beams this close together, making them 
harder to distinguish.

Regarding �x2 , the distribution of values calculated 
through the moving lens method admits the definition of 
a horizontal line that crosses all points within their uncer-
tainty. Such a line would confirm the expected behavior of 
�x2 not depending on the Sanderson prism configuration. 
However, a noticeable fluctuation among the calculated val-
ues of �x2 can be observed, even though they all yielded a 
similar good signal overlap as seen in the inset of Fig. 4 
(not shown). Together with the relatively large error bar of 
each obtained value (approximately ±6% ), concern is war-
ranted as the uncertainty in �x2 is directly fed through to the 
measurement of velocities using the D-FLDI. One way to 
lower this uncertainty is to collect more independent sinu-
soid sweeps, such as to obtain a reliable mean of �x2 with 
an associated standard deviation. Another way is to address 
the large uncertainty of each calculated �x2 , by reducing the 
influence of the lens displacement uncertainty on the sinu-
soidal fits. This may be accomplished by either reducing the 
uncertainty of each point (e.g., with careful operator action) 
or by using more points on each sweep. All these alterna-
tives, however, significantly add effort to a procedure that is 
already inherently time-demanding.

Looking at the �x2 estimates from the beam profiler 
images, a much more consistent distribution is observed. 
The uncertainty of each point is significantly smaller than 
the moving lens results, at ±0.6% . Also, the mean values 
remain unchanged for different values of Sanderson prism 
deflection, with a mean of �x2 = 1.937 ± 0.001 mm . For a 
direct comparison, the results obtained with the method pre-
sented in this work are also highlighted in Fig. 6. Excellent 
agreement to the beam profiler results can be verified. The 
details pertaining to these measurements are presented in 
the next section.

4.2  Estimation of distances through blast wave 
detection

An alternative to the procedures exemplified in Sect. 4.1 is 
presented in this section. A blast wave is used as a means 
to produce a disturbance with clear signature on the FLDI 
response. The main objective here is to measure �x2 with 
low effort and increased precision, addressing the issues 
highlighted previously.

A sample of blast wave detection using D-FLDI is shown 
in Fig. 7. For ease of operation in the experimental setup, 
FLDI B is upstream of FLDI A with respect to the blast wave 
source, but equivalent results may be obtained inverting the 
disposition of source and probe. The D-FLDI response is 
minimally post-processed to values of phase difference �� . 
The time axis is arbitrarily offset to yield t = 0 when the 
blast wave arrives at FLDI B, since the method explored 
in this section is independent of the blast wave travel time 
upstream of the first FLDI bundle. The clear shape described 

Fig. 6  Values for FLDI �x
1
 (left y-axis) and �x

2
 (right y-axis) meas-

ured using the moving lens method and beam profiler images for mul-
tiple adjustments of Sanderson prism deflection � . The dashed line 
indicates the linear elastic theory prediction, vertically offset to best 
fit the data. The values for �x

2
 obtained with the method suggested in 

this work are also shown for comparison
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by the blast wave detection on each FLDI indicates that an 
accurate estimate of time lag can be obtained as a peak in 
the cross-correlation between the signals.

It is also noteworthy that the signal detected with each 
FLDI is almost identical but for the time lag. This is 
expected since the blast wave does not undergo significant 
changes between the closely spaced FLDI probes, unless 
very close to the spark source. Nonetheless, the multiplica-
tion of FLDI beams requires the addition of system com-
ponents and complexity. The quality and sensitivity of the 
resulting double- or multi-foci FLDI may not be identical, 
and hard to quantify. The controlled disturbance produced 
with the electric spark may therefore be used as a reference 
to identify potential issues that may need addressing.

In Fig. 7, secondary events are observed in the time sig-
nals occurring after the passage of the main blast wave. 
These events correspond to interactions between the blast 
wave and the spark plug structure, as can also be seen in the 
schlieren image of Fig. 3. Events of this nature were veri-
fied to have been strong enough at certain stations to bias 
the cross-correlation of the signals if included. Nonetheless, 
they were always sufficiently separate from the main blast 
wave signature to be easily discarded from the signals prior 
to cross-correlation, hence not interfering with the results 
presented here.

It should be noted that cross-correlating the signals to 
obtain the time lags is preferred for robustness. By tak-
ing into account the full signature of the blast wave on the 
FLDI probes, the lag measurement becomes less sensitive to 
eventual flowfield non-uniformities or signal-to-noise-ratio 

issues. Nonetheless, time lags may also be obtained with 
simpler approaches, such as measuring the time difference 
between the signal peaks. This is an alternative if the sig-
nature from the blast wave is not as easily isolated from 
secondary events as shown here. An example is if the FLDI 
probes are positioned with respect to the surface of a model 
at a certain distance which is not large enough to allow the 
reflected wave to arrive significantly later than the main one, 
nor small enough for the main and reflected wavefronts to 
merge together before reaching the FLDI probes (Kinney 
and Graham 1985).

Since the blast wave propagates with increased speed 
near the source and the D-FLDI is kept unchanged, the 
obtained time lags increase as the source is moved away 
from the D-FLDI. When the time lags stabilize around a 
certain value, an indication is obtained that the acoustic limit 
of the blast wave was reached, in which it propagates with 
M ≈ 1 . For a more accurate prediction of this region, Eq. (6) 
is used to obtain the analytic distribution of wave convection 
velocity. In this equation, a single unknown determines the 
trajectory of the wavefront, namely the energy deposited by 
the spark E0 , which defines R0 through Eq. (4). Since the 
distance between the two FLDIs is the same for all blast 
wave probings, the spark energy can be obtained using the 
detected distribution of time lags without explicit knowl-
edge of the distance �x2 , as the solution for an optimization 
problem as follows.

In a D-FLDI constructed as presented in this work and 
considering the very weak blast wave produced, the velocity 
gradient between the two FLDI bundles will generally be 
small enough to be neglected without incurring an excessive 
error. This way, at each probing location Ri (measured with 
respect to the blast wave source) the distance �x2 will be 
given as a function of the time lag �ti as �x2 = Us(Ri) ⋅ �ti , 
with the blast wave velocity Us a function of Ri (and E0 ) 
according to Eq. (6).

Because �x2 is kept constant as the blast wave source is 
moved away, the product between the theoretical Us and the 
experimental �t must remain constant for all measurement 
locations i = 1,…, n when the correct value of E0 is used. In 
other words, the derivative of Us(Ri) ⋅ �ti with respect to the 
radial coordinate r must be zero. The numerical optimiza-
tion problem hence becomes finding E0 that minimizes the 
objective function f composed by the quadratic sum of these 
derivatives:

The derivative in each point Ri is roughly approximated 
through the mean value theorem, by means of finite differ-
ences between Ri−1 and Ri+1 . This is a reasonable approach 
because the distribution of velocities and time lags along 

(8)f (E0) =

n∑

i=1

[
d

dr

(
Us(Ri) ⋅ 𝛥ti

)]2

Fig. 7  Blast wave detection using the double-foci FLDI. Spark gener-
ator is 30 mm from FLDI B, which is upstream of FLDI A. Main and 
secondary events are highlighted. The origin of the time axis is arbi-
trarily offset to match the blast wave arrival at the position of FLDI 
B. Data corresponding to Sanderson prism deflection � = 0.95 mm
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the radial coordinate is expected to describe a well-behaved 
function. This is further conditioned by using for each loca-
tion the average of time lags obtained with the independent 
measurements, denoted above with the bar over �ti.

As mentioned in Sect. 3.2, the origin of the position 
vector was manually adjusted to roughly place the spark 
generator at the middle point between the two FLDIs. 
However, the theoretical velocity distribution Eq. (6) 
is highly sensitive to the accuracy of this origin to ade-
quately capture the region of stronger velocity gradients. 
Therefore, a second optimization layer was introduced in 
the algorithm, allowing a systematic offset of the posi-
tion vector to be adjusted. This layer was placed above 
Eq. (8), searching for the value of position vector offset 
which minimized the standard deviation of the distances 
calculated as Us(Ri) ⋅ 𝛥ti resulting from the inner optimiza-
tion layer. This target is sustained by considering that the 
perfect representation of the data by the theoretical curve 
should yield the exact same �x2 on all points. A schematic 
representation of the full algorithm is shown in Fig. 8. 
Although this double-layer procedure yields a noticeable 
improvement on the overlapping of experimental data and 
theoretical model, adequate results can also be obtained 
without the second (outer) optimization layer, with the 
resulting �x2 having been observed to vary by a maximum 
of only 0.7%.

Once a value of energy deposition E0 is found, the blast 
wave velocity as a function of its radius is determined. An 
estimate of the separation distance between the FLDI bun-
dles �x2 can hence be obtained from any of the query points 
using the local velocity and the measured time lag. To dem-
onstrate the method and provide an idea of precision, the val-
ues of �x2 reported here are obtained as an average between 
all points collected for each Sanderson prism configuration:

where i = 1,…, n denotes the measurement positions as 
before, and j = 1,…,m represents the individual meas-
urements performed at each position. With a total number 
of 184 independent measurements in each series ( n = 23 
positions, m = 8 measurements at each position), the stand-
ard deviation of the �x2 values is used as an estimate of 
uncertainty.

An example of the measurements and resulting calculated 
blast wave trajectory is shown in Fig. 9. The solid line repre-
sents Eq. (6) calculated using E0 obtained from minimizing 
Eq. (8). The dots with error bars are the means and standard 
deviations of Mach numbers calculated using the experimen-
tal time lags and the separation distance �x2 calculated with 
Eq. (9). The horizontal error bars indicate the ±0.25 mm 
position uncertainty mentioned in Sect. 3.2.

(9)�x2 =
1

n ⋅ m

n∑

i=1

m∑

j=1

(
Us(Ri) ⋅ �ti,j

)
The dotted lines in Fig. 9 are the blast wave trajectories 

obtained with variation of ±30% on the calculated E0 . The 
small influence of such a large difference shows that the 
accuracy of the energy deposition estimate is not a deter-
minant factor for the D-FLDI parameter estimation studied 
here.

This procedure was repeated for the same Sanderson 
prism configurations used with the moving lens method. 
The obtained values of �x2 are reported in Table 2. Two 
important results can be highlighted in this table. First, the 
obtained values for �x2 are essentially the same across all 
different � (hence �x1 ) as they should, and all agree with the 
beam profiler measurements to within 0.2% (refer to Fig. 6). 
Second, the standard deviation in all cases corresponds to 
less than 0.5% of �x2 , i.e., a very consistent value of �x2 
is obtained across all measurement points. Hence a precise 
measurement of �x2 can be performed by using time lags 
detected in a single position, as long as the blast wave local 
convection velocity is known.

Fig. 8  Fluxogram of the double-layered algorithm to calculate the 
best theoretical fit to the experimental data. The f (E

0
) used in the 

inner layer is defined by Eq. (8)
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An adequate estimate of the velocity in the vicinity of 
the blast wave source can only be obtained with measure-
ments at multiple locations, e.g., by means of the optimiza-
tion procedure described here. Nonetheless, Fig. 9 shows 
that such an elaborate estimate is not strictly necessary. 
The sonic limit beyond which M ≈ 1 is reached still rela-
tively close to the source, for the case investigated here in 
which an automotive spark plug is the source of the blast 
wave. Farther than approximately 20 mm from the source, 
the blast wave convection velocity can be approximated as 
M = 1 , requiring no further measurements. Processing in 
this simplified way the collection of measurements used to 
obtain Table 2 yielded no more than 0.5% difference to the 
beam profiler mean measurement, with standard deviations 
ranging from 0.2% to 0.7% in the upper limit of 95% confi-
dence interval. Even if the experimental constraints force a 
measurement very close to the source, Fig. 9 indicates that 

assuming M = 1 to calculate the beam separation distance 
from the signal time lags introduces no more than 3% error 
as close as 10 mm. Finally, if in addition to the approxima-
tion of M = 1 , the time lags were obtained simply using the 
peaks of the signals instead of cross-correlation, as previ-
ously mentioned, the obtained differences to the beam pro-
filer measurements were still 1% or less for distances to the 
spark source larger than 20 mm.

The method suggested here is therefore capable of pro-
viding a good experimental estimate of the beam separation 
distance �x2 of a double- or multi-foci FLDI with very low 
effort. The acquisition of repeated blast wave measurements 
at some location within the sonic limit region is quick and 
requires little mechanical preparation, with the whole pro-
cess taking only a few minutes.

As a side note, the blast wave measurements can be fur-
ther used to give an approximate estimate of the internal 
separation distance �x1 as follows. For any given distance 
from the source, the magnitude of the FLDI signal �� 
will be proportional to the separation distance between the 
interferometric pair �x1 . As long as this separation is kept 
small relative to the waveform of the blast wave, the ratio 
��∕�x1 is constant. It is an approximation of the spatial 
derivative of the disturbance, which remains unchanged 
between measurements if the source and the measurement 
location are the same. This way, if the separation �x1|�1 is 
known for one Sanderson prism deflection �1 , the separa-
tion for other configurations �k , k = 2, 3,… can be obtained 
by matching the magnitude of the measured ��|�k , i.e., 
�x1|�k = ��|�k∕(��∕�x1)|�1 . However, at least one known 
value of �x1 is still required, and uncertainties are difficult to 
assess. Nonetheless, Fig. 4 in Sect. 4.1 has shown that linear 
elastic theory provides direct and reasonable estimates of 
this distance when a Sanderson prism is employed to pro-
duce �x1 , requiring only a pre-strain offset to be adjusted. 
Once this is accomplished, it becomes a good practical sub-
stitute for the lens procedure if needed. The measurement 
of �x1 through blast wave detection is therefore only recom-
mended for verification purposes.

5  Conclusion

The contributions presented in this work addressed a new 
methodology of indirect estimation of the distance separat-
ing the probing volumes of a double-foci FLDI, �x2 . A weak 
blast wave generated in ambient air at rest using an automo-
tive spark plug was shown to become an acoustic pulse close 
to its source. The known convection velocity of this type of 
disturbance, namely the ambient sound speed, was used to 
obtain �x2 from the time lag between the adjacent systems.

An analysis comprising a wide range of measurement 
locations showed that reliable and accurate estimates with 

Fig. 9  Blast wave trajectory regressed from FLDI measurements. 
Solid line indicates the analytic solution using the E

0
 value obtained 

from the optimization procedure. Dotted lines indicate the solutions 
for ±30% on the nominal E

0
 . Measured Mach numbers obtained from 

the time lags detected with D-FLDI, considering the separation dis-
tance indicated in the legend. Data corresponding to Sanderson prism 
deflection � = 0.59 mm

Table 2  Measured FLDI beam separation distances �x
2
 for different 

Sanderson prism deflections �

All units in mm

Sanderson prism � Double-foci FLDI �x
2

0.30 1.937 ± 0.008

0.59 1.933 ± 0.007

0.95 1.937 ± 0.006

1.45 1.935 ± 0.004

Mean: 1.936

3.1. Measurement of separation distance between FLDI probes using blast waves
(Publication 1)
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as little as ±0.4% uncertainty ( 2� ) can be obtained from mul-
tiple measurements in a single location, which is easily and 
quickly executed. Comparison to direct measurements using 
a beam profiler showed differences smaller than 0.5% if a 
single location was used farther than 20 mm from the spark 
source, and less than 0.2% if multiple stations are combined. 
The measurements were shown to be consistent throughout 
multiple configurations of the FLDI Sanderson prism, which 
controlled the unrelated separation between the interfero-
metric pair composing one FLDI, �x1.

The existing method of indirect assessment of beam sepa-
ration distances using the FLDI response to a lens with large 
focal length was critically evaluated. Results corroborated 
its excellent ability to measure �x1 . However, for �x2 the 
lens method yielded measurement uncertainties of ±6% , 
together with a considerable variation of the mean results 
(up to 5% ) when �x1 was varied by means of Sanderson 
prism adjustment.

Velocimetry by means of FLDI measurements is only as 
accurate and reliable as the measurement of the separation 
distance between the FLDI systems �x2 . The present method 
is therefore recommended as a means to obtain this value in 
double- or multi-foci FLDI. It preserves the low-cost benefit 
of the moving lens indirect approach while being much less 
time-consuming with improved accuracy and precision, both 
comparable to direct beam imaging. Additionally, it requires 
very little free space (20 mm length ideally, less if neces-
sary), being more practical than a beam profiler in case of 
limited spatial availability such as in the proximity of model 
walls. Also, the non-imaging nature of this method makes 
it applicable to multi-point FLDI systems in which the foci 
are not optically separated.

Finally, it is worth noting that once the blast wave decays 
to an acoustic pulse, it propagates with little change between 
closely spaced FLDI probes. Being a simple, well-known 
and easily reproduced type of disturbance, it may therefore 
be a helpful reference for system response verification in 
multi-foci FLDI.
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3. Results and Discussion

3.2. Validation of computational FLDI as an analysis tool
(Publication 2)

The computational FLDI (cFLDI) intended to be used in the shock tunnel investiga-
tion in the present Ph.D. project was coded in-house, based mainly on the works by
Schmidt and Shepherd [75] and Lawson and Austin [78]. It needed, therefore, to be
validated before it could be used as an analysis tool. With no public or commercial
software available with equivalent capabilities, a reference test case needed to be
studied with this validation purpose.

The blast wave propagating in a medium at rest, which had been measured in the
previous publication, offered excellent qualities for that end. The measurements were
clear and repeatable, meaning that setbacks usual in experiments, such as background
noise level or experimental uncertainty, could be minimized. Furthermore, the
flowfield generated by a weak blast wave is simple and amenable to analytic modeling,
meaning a computational flowfield could potentially be obtained for the cFLDI
simulation with relative ease.

However, a complete analytic model of the blast wave required an accurate
measurement of the energy deposited in the medium to generate it. With the
modest, low-cost setup based on a modified automotive spark plug that had been
developed earlier, this was not achievable.

The solution was to use the cFLDI directly on the experimental data, instead
of relying on an analytic model to produce the numerical results. In order to do
that, a method to convert the line-based phase difference FLDI data into a radially
distributed density flowfield was developed, based on the works by Yuldashev et al.
[82] and Karzova et al. [83]. The methodology required a number of simplifying
hypotheses, such as ignoring the divergence angle of the FLDI beams, approximating
the differential measurement as a spatial derivative, among others. On the one hand,
the set of assumptions represented a constraint to the general application of the
developed methodology. On the other hand, however, it presented the opportunity
to advance yet another step in the proposed usage of cFLDI, namely as a verification
tool for post-processing methodologies.

The principle explored to that end was that the proposed FLDI data conversion
method was independent from the cFLDI algorithm and equations. Once the
numeric density flowfield was obtained, the cFLDI algorithm was able to calculate
a response akin to the original experimental one. If large discrepancies had been
detected, the cause could have lied either with the post-processing methodology, or
with the cFLDI algorithm, or even both. However, if good agreement was observed,
then a reasonable conclusion is that both the conversion method and the cFLDI
had worked well, since they are mutually independent.

Nevertheless, such simultaneous validation without any additional verification
is not ideal. To address this issue, two additional checks were performed on the
numeric flowfield obtained with the proposed post-processing methodology. First,
a wall-mounted, fast response pressure transducer was employed to measure the
acoustic pressure behind the blast wave in a subset of distances from the source.
Second, the relation between the compression phase period and the peak overpressure
of the waveforms across the entire data set was verified against an analytic model
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from the linear theory of sound in gases. Combined, the results indicated that the
obtained waveforms are indeed typical of weak blast waves, and that their magnitude
was in close agreement with the experiments, lending credibility to the proposed
post-processing methodology.

As for the cFLDI results, the analysis has shown that the simplification hypotheses
require that certain constraining conditions are met. The main one is a maximum
FLDI differentiation distance of 20% the length of the compression front of the
blast wave. Once these constraints were respected, the cFLDI data correlated
with the experiments to within 0.5% when the full signal was considered. The
maximum point-wise discrepancy was observed at the location with peak signal
magnitude, with difference below 3%. These results further demonstrate that the
proposed post-processing methodology is sound, and show that the cFLDI is capable
of converting the numeric flowfield back to the experimental FLDI data, within a
reasonable deviation.

The work that has led to this article was supervised by A. Wagner. The post-
processing methodology was conceptualized and developed by me. The experimental
setup was designed by I. Schwendtke and me. The experimental investigation was
conducted by me. The cFLDI computational code was implemented by me. Analyses
of the data were conducted by me and A. Wagner. The manuscript was written by
me and edited by A. Wagner. The article is Open Access under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). It
was published in Review of Scientific Instruments, 2023, 94 (4), 045102. (DOI:
https://doi.org/10.1063/5.0132874)

Copyright © 2023 Authors
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ABSTRACT
An analytic methodology is presented to reconstruct the pressure waveform of flowfields with circular symmetry from the phase shift detected
with Focused Laser Differential Interferometry (FLDI). A weak blast wave generated by an electric spark in ambient air is investigated with the
proposed approach. Values of separation distance between the differentiating foci of the FLDI Δx of 76, 120, 175, and 252 μm are employed
to probe the flowfield at locations between 3 and 50 mm from the spark source. In a subset of these distances, reference measurements of
peak pressure obtained with a surface pressure sensor indicate good agreement with the reconstructed data when small separation distances
are used. Further analysis of FLDI reconstructed data is conducted using theoretical correlations for N-waves in terms of the distribution
of pressure peak amplitude and compression phase as the wave front propagates. Agreement with theory is verified for all differentiation
separation distances except the largest, for which peak pressure comparison shows a 10% loss of measured vs predicted value. A computational
FLDI is employed to scrutinize the simplifying hypotheses supporting the waveform reconstruction approach. The direct comparison between
experimental and computational FLDI output reveals additional discrepancies for intermediate Δx values but very good agreement for the
smallest Δx. The proposed methodology is thus verified to be reasonable, upon appropriate minimization of the FLDI differentiation distance.
A parametric analysis using computational FLDI indicates the adequate value of FLDI Δx to be 20% or less of the flowfield characteristic length
in terms of density gradient.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0132874

I. INTRODUCTION

Focused Laser Differential Interferometry (FLDI) is a non-
invasive measurement technique that measures flowfield density
fluctuations. Its distinct spatial and temporal resolutions render
it especially suited for ground-based experimental investigation of
hypersonic flowfields. Attention to this technique has been growing
steadily within the community since Refs. 1 and 2. This is evidenced
by the increasing number of laboratories implementing the FLDI
technique in recent years.3–8

Owing to the broad bandwidth of the FLDI and its robust-
ness to external noise, the evaluation of the frequency spectrum
of FLDI data using only simplified post-processing approaches has
been proven to already offer valuable information about the probed

flowfields.9–13 Nonetheless, a rigorous conversion of FLDI data into
flowfield quantities such as density fluctuation is required in order to
fully explore the capabilities of the technique and allow quantitative
evaluations. However, this task is made difficult by some of the key
features of the FLDI. The ability of the FLDI to dampen frequencies
away from its focus and the finite differentiation it performs must be
considered when attempting to convert the FLDI output back into
flowfield variables.

The extraction of quantitative density data while respecting
the complexity of the FLDI response has been explored by means
of transfer function analysis.2,14 This methodology has been ini-
tially shown for special types of flowfields such as uniformly dis-
tributed turbulence or Gaussian jets.2 Agreement between pitot-
based pressure fluctuations and FLDI data processed with transfer
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functions has also been experimentally demonstrated in a Mach 6
free stream.15 Recent efforts have included the deduction of transfer
functions for more complex flowfields, encompassing two and three-
dimensional sinusoidal disturbances, either infinitesimally thin, uni-
form within a finite volume, or modulated by a Gaussian intensity
profile.16,17 A sensitivity function for the FLDI has been developed
using transfer functions and verified using a turbulent air jet18,19

and wind-tunnel disturbances.20 A solution for the inverse FLDI
problem for single-direction, continuous-frequency waves has been
proposed and experimentally verified against supersonic free stream
pitot data.21

These efforts represent significant advancements toward a bet-
ter understanding of the FLDI technique and the proper treatment
of the data it offers. Nonetheless, at each instant in time, the FLDI
output from a three-dimensional density field consists of a single
scalar value as a result of successive integrals and differences of flow-
field quantities. Therefore, assumptions about the topology of the
flowfield are inevitable when trying to reverse this problem.22 The
flowfield models recently explored in Refs. 16–22 are able to repre-
sent many practical applications, such as turbulent jets, free stream
turbulence, and acoustic radiation, among others. Still, they must be
adjusted according to the flowfield at hand and might not offer the
easiest solution for all kinds of flowfields. Furthermore, if the flow-
field model must be adjusted manually in a case-by-case fashion,
it is important to have a way to independently verify the obtained
results.

One such way is to numerically simulate the FLDI response
using a ray-tracing scheme,23 which is able to reproduce how the
flowfield variations are perceived by the FLDI beams. This compu-
tational FLDI (cFLDI) has been shown to produce accurate quan-
titative results against experiments for a static laminar jet24 and
a complex shock-dominated dynamic flowfield.25 The cFLDI has
since been employed to further study the technique. For example,
the dependence between the FLDI sensitivity length and the beam
divergence angle has been verified using parametric analysis.26 The
ability of the FLDI instrument to see through unwanted signals at
the edges of the probing volume, such as the wall boundary layers
or the nozzle shear layer in hypersonic wind-tunnels, has also been
explored.27 Furthermore, cFLDI simulated on the DNS solution of
a wind-tunnel boundary layer has been investigated as a means to
inform constraints for the FLDI application.28

This type of insight is allowed by the proven physical fidelity of
the cFLDI, which, therefore, places it as a tool to explore method-
ologies that aim at obtaining quantitative information from FLDI
data but are only feasible by assuming model parameters or adopting
certain simplifying hypotheses. Once the flowfield is reconstructed
from real FLDI measurements, a simulated FLDI response may
be obtained with the high-fidelity ray-tracing algorithm; then, a
comparison between the real and simulated FLDI data allows for
assessing the validity of any assumptions or simplifications involved
in the post-processing method.

The goal of the present work is to contribute toward the inclu-
sion of circularly symmetric flowfields in the subset of special cases
for which FLDI data can be fully regressed into flowfield quanti-
ties through analytic approaches. A number of assumptions will be
necessary to reach this objective. In light of the physical accuracy
of cFLDI demonstrated in Refs. 24 and 25, simulations using an
implementation of the FLDI ray-tracing algorithm are employed

to support the analysis of the results obtained with the analytic
approach.

The object of study to apply and analyze the proposed method-
ology is a weak blast wave generated by an electric spark in ambient
air at rest, using a setup detailed in a previous study by the present
authors.8 The study of blast waves pertains to various applica-
tions ranging from explosive detonations to sonic booms.29,30 A
review of the diagnostic tools currently available for the experi-
mental study of such flows is summarized in Ref. 31. In that work,
laser interferometry was suggested as a solution to overcome the
bandwidth and sensitivity limitations of consolidated techniques
such as dynamic pressure transducers and condenser microphones.
The FLDI presents similar capabilities with further advantages such
as adjustable sensitivity and simplicity, and may, therefore, be of
interest to related investigations.

The contents of this paper are summarized as follows: Exper-
imental measurements of a weak spark-generated blast wave are
collected using FLDI at multiple distances from the spark source.
A methodology is presented to obtain the spherical distribution of
quantitative acoustic pressure from such measurements, following a
series of simplifying assumptions. No other instruments of similar
capability were available to produce detailed reference measure-
ments for comparison with the FLDI data. Therefore, the obtained
results are verified using multiple complementary approaches. In
a first step, peak pressures are compared to direct measurements
using a fast piezoelectric pressure transducer, performed at loca-
tions allowed by the geometric constraints of the experimental setup.
Next, the obtained waveforms are compared with analytic corre-
lations involving compression phase duration and peak pressure
for propagating acoustic pulses. Finally, the FLDI response to the
reconstructed flowfield is simulated with the ray-tracing scheme
and compared to the original experimental data. The simplifying
assumptions necessary for the flowfield reconstruction methodol-
ogy are analyzed in light of observed discrepancies to help identify
eventual constraining parameters that control the fidelity of the
reconstruction. The emphasis is given to a single location along the
blast wave trajectory, namely, 30 mm from the spark, although the
procedure is applicable to any given location.

II. THEORETICAL BACKGROUND
A. Blast waves

A blast wave in a fluid at rest can be originated by a local-
ized instantaneous release of energy. The change in local pressure
and temperature propagates away from the origin of the event at
the speed of sound in the immediate medium. Because the speed
of sound is larger in regions with higher temperatures, those por-
tions of the disturbance propagate faster than those in their vicinity.
A discontinuity is hence formed as a shock wave front,29 which
propagates supersonically with respect to the undisturbed fluid.

In the case of radially propagating blast waves, the strength of
the shock wave front will progressively become weaker due to vol-
ume divergence, dissipation, and molecular relaxation. Eventually,
the blast wave becomes so weak that it propagates approximately
at the sound speed of the non-disturbed gas, becoming an acous-
tic wave. This process is accompanied by changes in the pressure
signature, best described in terms of acoustic pressure, i.e., the over-
pressure with respect to the undisturbed field. The blast wave is
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marked by a sharp and narrow compression phase (positive acoustic
pressure), followed by a longer and smoother expansion phase (neg-
ative acoustic pressure). As the blast wave propagates, the amplitude
of the positive phase decreases and the trailing edge of the negative
phase becomes sharper due to the slightly higher local sound speed.
The pressure waveform then describes a so-called N-wave.

Close to the blast wave source, the spark-generated blast wave
is best approximated as a cylindrical shock due to the finite length
of the spark. In the acoustic limit region, which is evaluated in
more detail here, the distance to the cylindrical source is an order
of magnitude higher than the length of the spark. In such a case, the
flowfield generated by a point-source is a better representation of
the local blast wave disturbance than the one generated by an infi-
nite line. Therefore, a point-source hypothesis is considered in this
work.

For the spherical propagation of N-waves, Ref. 32 presented
analytic expressions from the linear theory of sound in gases (weak-
shock theory) amenable to experimental comparisons, having also
approximated an electric spark as a point-source downstream of
a few spark lengths from the discharge. The methodology pre-
sented therein consisted of calculating the acoustic pressure peaks
behind the shock, P, expected from theory, given measurements
of compression phase duration, T, over several distances from the
N-wave source. In the present work, both peak pressure and com-
pression phase duration will be obtained directly from FLDI mea-
surements. The cited methodology will, therefore, be employed to
verify whether the obtained (T, P) pairs are physically consistent
with the expected behavior of an N-wave.

The equations and procedures from Ref. 32 pertinent to the
present work are briefly reproduced next. A different variable nota-
tion than presented in that work is used here for clarity. The
compression phase duration T of the N-wave when the spherical
wave front has propagated through a distance R from its origin can
be written in terms of its value at an arbitrary reference propagation
distance (subscript 0) as

T = T0
√

1 + σ0 ln (R/R0). (1)

The non-dimensional parameter σ0 in this equation is a func-
tion of the N-wave compression phase duration and peak acoustic
pressure at the reference distance, as well as the undisturbed medium
pressure Pamb, sound speed camb, and specific heat ratio γ as

σ0 = (γ + 1)R0P0/(2 γ Pamb camb T0). (2)

It is noted in Ref. 32 that through Eq. (1), T2 as a function of
log R describes a straight line with slope equal to σ0T2

0 ln10. This slope
may be obtained from a dataset of measured compression phases T
at multiple locations R. Since the reference location (subscript 0) is
arbitrary, the slope evaluates σ for any T. Finally, Eq. (2) defines the
peak pressure P from weak-shock theory, which corresponds to the
experimentally measured T.

B. Focused laser differential interferometry
Laser interferometry is achieved by combining two coherent

monochromatic beams presenting equal intensity and linear polar-
ization in the same direction, after having traveled through different
optical paths. The interference resulting from their superposition

causes the combined light intensity to be modulated by any dif-
ference in phase between the beams. This difference in phase is
accumulated along the entirety of the paths described by the beams.
The intensity of the recombined beam is detected as a scalar value,
resulting from integrating the light intensity changes across the face
of the beam at the detector. A differential interferometer is obtained
when the beams go through the same medium, separated by a small
distance.

In the special case of a focused laser differential interferometer
(FLDI), the two beams are focused to a point within the probed vol-
ume. These two defining characteristics are responsible for making
the sensitive volume of the FLDI dependent on the wavelength of
the disturbances in the probed flowfield, with high-frequency con-
tent being rejected away from the focal plane. If the wavelength of
the flowfield fluctuation in a certain portion of the beams is too small
relative to their cross-section size, the contribution of those distur-
bances to the final signal is averaged out through integration at the
face of the detector. For a thorough discussion about this, see Ref. 2.

For the reconstruction of spherical blast waves from FLDI
detection presented in this work, a simplified approach that disre-
gards the FLDI wavelength-dependent sensitivity is adopted. The
validity of this assumption is verified with the assistance of a com-
putational model that fully represents the real apparatus. This is
made possible by observing that the series of processes involved in
the interaction between the probed flowfield and the FLDI beams
is challenging to reverse but straightforward to reproduce. Sim-
plifying hypotheses can, therefore, be evaluated by comparing the
high-fidelity simulated FLDI output of the reconstructed field with
the experimental FLDI data that originated it.

The computational FLDI used in this work is based on the ray-
tracing model of Ref. 23 and is similar in terms of implementation
and application to the recent validation work of Ref. 25. A summary
of the pertinent concepts and equations used in this work is given
next.

A Cartesian coordinate system is defined with the z axis paral-
lel to the optical axis (direction of propagation of the beams), the x
axis parallel to the direction of separation between the beams, and
the origin at the midpoint between the FLDI foci. Each beam is dis-
cretized into a finite number of rays, parameterized in a convenient
auxiliary coordinate system to account for the focusing of the beams
in a computationally effective manner. The FLDI used in this work
presents a Gaussian, circular beam cross-section. Therefore, a polar
coordinate system (r̃, θ) is used to distribute the rays around a cen-
ter point in the cross-section with 0 ≤ θ < 2π and 0 < r̃ ≤ r̃max. The
radial coordinate r̃ is non-dimensionalized with respect to the local
Gaussian beam radius w(z),

w(z) =

¿
ÁÁÁÀw2

0
⎛
⎝

1 + [ λ0z
πw2

0
]

2⎞
⎠

, (3)

where λ0 is the light wavelength and w0 = λ0/πθd is the waist of
the beam at the focal plane (z = 0), with θd the beam divergence
angle. An upper limit for the non-dimensional radial coordinate of
r̃max = 2 (two times the local Gaussian beam radius, in dimensional
coordinates) is adopted.23

A greatly simplified exemplary computational mesh is illus-
trated in the Cartesian space in Fig. 1. For clarity, only a region very
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FIG. 1. Illustrative cFLDI mesh, very coarse for clarity. A pair of beams of an FLDI
very near its center plane are shown in different colors, each denoting one plane of
orthogonal polarization. Lines connecting the nodes of individual rays are marked.
The labels of nodes on the front plane are numbered as coordinate pairs: radial
coordinate and angle coordinate.

close to the focus of the system is shown. The pair of orthogonally
polarized beams is displayed in different colors. The spatial dis-
cretization is performed through the definition of nodes as the (r̃, θ)
pairs at each z-plane and rays connecting all nodes with the same
non-dimensional coordinates across all z-planes. The discretization
of each beam is identical except for an offset in the x direction.

The rays shown in Fig. 1 are treated as pairs to perform the
differential operations. Each ray in one of the beams has a correspon-
dent counterpart in the other, as labeled on the front plane of the
figure. Flowfield density values are interpolated to the FLDI nodes at
each instant in time. The total number of z planes is even, so that all
rays undergo a quadrant inversion in θ as they cross z = 0 to account
for image inversion through the focus.25 This is performed internally
in the algorithm and is not shown in Fig. 1.

Fluctuations in density ρ in the flowfield crossing the rays
shown in Fig. 1 cause their optical paths to vary due to changes in
the local refraction index n. A difference in the optical paths traveled
by two monochromatic and coherent light rays causes a difference in
phase Δϕ between them.33 These effects are combined as

Δϕ = 2πK
λ0
(∫

C1

ρ(s1) ds1 − ∫
C2

ρ(s2) ds2), (4)

with K the Gladstone–Dale constant for the light wavelength λ0,
C1 and C2 defining the spatial path traveled by each beam, and the
field density parameterized as ρ(si), with si the spatial variable that
describes Ci.

Equation (4) is valid for each corresponding pair of light rays
that compose the two beams of one FLDI. Upon recombination and
projection of the two beams back to a common polarization plane,
the resulting light intensity of each ray is modulated by the phase
difference Δϕ as33

I = I1 + I2 + 2
√

I1I2 cos Δϕ, (5)

where I1 and I2 are the intensities of the separate rays, and I is the
intensity of the recombined ray.

The output of the FLDI is given by the average of the intensities
of all rays, weighted according to the intensity profile of the beam.
For a Gaussian beam, the normalized intensity profile is described by
Ĩ0(r̃) = 2π−1 exp (−2r̃ 2). If the undisturbed orthogonally polarized
pair is adjusted to present an initial phase difference of π/2 and an
equal intensity distribution Ĩ0/2, the normalized intensity at the face
of the detector D becomes,

ĨD =∬
D
(Ĩ0(r̃, θ) + Ĩ0(r̃, θ) sin Δϕ(r̃, θ)) dr̃ dθ, (6)

with Δϕ(r̃, θ) evaluated using Eq. (4) for each ray. Experimental
FLDI data are usually given in terms of an equivalent phase shift ΔΦ
that represents the normalized intensity ĨD of Eq. (6). With the light
intensity normalization chosen such that the integral of Ĩ0 over D is
unity, the equivalent phase shift ΔΦ becomes

ΔΦ = sin−1(∬
D

Ĩ0(r̃, θ) sin Δϕ(r̃, θ) dr̃ dθ). (7)

In the present work, all integrals are numerically calculated
using trapezoidal integration. Equations (4) and (7), when used with
an appropriate computational mesh, fully represent the FLDI prob-
ing a given flowfield. The cFLDI mesh is kept fixed in space, which
implies ignoring any steering of the rays caused by local gradients of
refraction index. Nonetheless, the effect of this simplification on the
accuracy of cFLDI simulations is negligible. This has been confirmed
in Ref. 25, in which a complex experimental shock-dominated flow-
field was accurately represented by cFLDI simulation using that
same constraint.

It is noteworthy that, when performing cFLDI simulations, the
operation of interpolating flowfield data to FLDI nodes presents a
marked influence on computational cost. For the analysis of a spher-
ically symmetrical disturbance such as the spark-generated blast
wave of the present work, the magnitude of the field disturbance
at any location is simply described in terms of the radial variable
r of a spherical coordinate system. By shifting the origin of the FLDI
Cartesian system to coincide with the source of the disturbance, the
coordinates of each FLDI node (xi, yi, zi) are simply represented in

that system as ri =
√

x2
i + y2

i + z2
i . This way, the density value at each

node is efficiently interpolated from the field disturbance data.

C. Reconstruction of spherical waveforms
from FLDI data

Figure 2 illustrates the principle of the flowfield investigation
in this work. The generated disturbance flowfield is approximated
as spherical, such that at any given instant it is fully described by the
spherical coordinate r, with origin coincident with the location of the
disturbance source. The interferometric pair of the FLDI is parallel
to the Cartesian z and crosses x at a distance x0 to the disturbance
source. The separation distance between the orthogonally polarized
beams is Δx. In this section, a methodology to obtain the radial
distribution of acoustic pressure based on measured FLDI data is
presented.

The problem of interpreting data from spherically diverging
acoustic N-waves using experimental techniques that probe along
straight lines was addressed in detail in Refs. 31 and 34. A similar
procedure will be adopted here, with a few additional assumptions
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FIG. 2. Schematic of one FLDI bundle (green) probing a circular disturbance (gray).
Relevant Cartesian and spherical coordinates are shown. Dimensions not to scale.

and considerations specific to the FLDI. Simplifying hypotheses are
adopted and critically evaluated later in this work with the support
of experiments and computational FLDI.

First, the line integrals in Eq. (4) are expressed in spherical
coordinates. The FLDI coordinate system is defined such that the
center lines of the paths C1 and C2 are parallel to the Cartesian z axis.
The volume described by the FLDI beams is assumed to be slender
enough that the problem can be simplified to the two dimensions
shown in Fig. 2 and that the small divergence angle of the beams can
be neglected within the reconstruction method.

It is noteworthy that with these assumptions, the method
described here is applicable in cases of circular symmetry around
a point, such as a sphere, and also around an axis, such as a cone
or a cylinder with the probing direction perpendicular to their
center axis. The integration paths si in Eq. (4) are hence defined
by a constant x, i.e., si = si(xi, z) and dsi = dz. A line of constant
x = xi is written in spherical coordinates as r =

√
x2

i + z2, yielding
dz = r dr/

√
r2 − x2

i . Finally, considering that the disturbance field is
symmetric around z = 0 and that ri∣z=0 = xi and ri∣z=∞ =∞, each
integral in Eq. (4) becomes

∫
∞

−∞

ρ(xi, z) dz = 2∫
∞

xi

ρ(r) r√
r2 − x2

i

dr. (8)

This integral is now analyzed in light of the problem at hand.
The flowfield surrounding the blast wave is assumed to be initially
at rest. Hence, although the upper limit of the integral in Eq. (8)
is infinite, the integration length of practical significance will be
defined by the blast wave radius. Furthermore, except for very close
to the origin of the blast wave, the acoustic disturbance defined
by it will be largely concentrated in the inner vicinity of its radius
at any instant in time, and zero everywhere else. With these two
observations, it is reasonable to consider z ≪ xi within the relevant
integration length in Eq. (8). Finally, for a small displacement Δx,
consequently, x + Δx ≈ x, Δr ≈ Δx, and r + Δr ≈ r. By defining the
location of each FLDI beam as xi = x0 ± Δx/2 (see Fig. 2), Eq. (8) can
be approximated for each beam as

∫
∞

x0−
Δx
2

ρ(r) r√
r2 − (x0 − Δx

2 )
2

dr ≈ ∫
∞

x0

ρ(r − Δr
2 ) r√

r2 − x2
0

dr,

∫
∞

x0+
Δx
2

ρ(r) r√
r2 − (x0 + Δx

2 )
2

dr ≈ ∫
∞

x0

ρ(r + Δr
2 ) r√

r2 − x2
0

dr.

(9)

With the integrals now having the same integration limits,
Eq. (4) is rewritten as

Δϕ = 2πK
λ0
[2∫

∞

x0

(ρ(r − Δr
2
) − ρ(r + Δr

2
)) r√

r2 − x2
0

dr]. (10)

It is possible to isolate the density difference in the integrand of
Eq. (10) by means of an Abel transform, following Refs. 31 and 34,

F(x) = 2∫
∞

x

f (r) r√
r2 − x2

dr, ((11a))

f (r) = − 1
π∫

∞

r

dF(x)
dx

dx√
x2 − r2

. ((11b))

An expression describing the radial distribution of density dif-
ferences as a function of phase differences measured along a secant
line is thus obtained,

ρ(r − Δr
2
) − ρ(r + Δr

2
) = − λ0

2π2 K∫
∞

r

dΔϕ(x)
dx

dx√
x2 − r2

. (12)

Note that Eq. (12) requires knowledge of the spatial distri-
bution of phase differences. However, the FLDI system outputs a
time-resolved phase difference at a fixed spatial location, namely the
optical axis of the FLDI system. This can be addressed by assum-
ing that the waveform probed by the FLDI travels with a uniform
velocity. Indeed, the weak spark-generated blast wave analyzed here
is produced with the same experimental setup as in Ref. 8, in which
it was verified to present little variation from M = 1 as close as
20 mm from its source. Furthermore, the hypothesis of uniform
propagation velocity was tested in Ref. 31 by means of numeri-
cally simulating blast wave convection using the generalized Burger’s
partial differential equation. Terms accounting for non-linearity,
dissipation, and relaxation processes were included, and the results
revealed maximum errors close to 1% for the estimates of peak
pressure and positive phase duration.

Through this assumption, a time-resolved Δϕ(t) is converted
into a spatially-resolved Δϕ(x) by using

x = x0 − (t − t0)c0, (13)

where c0 is the convection velocity and t0 is the time correspond-
ing to a reference coordinate x0, which may be conveniently defined
without loss of generality.

With the radial distribution of differences in density obtained
from Eq. (12), an estimate of field amplitudes is obtained as follows.
Assuming that the density field is composed of small disturbances,
the local density can be expressed as the sum of a mean value and a
fluctuating component, ρ(r) = ρ̄ + ρ′(r). Since the mean component
is the same for all values of r, the left-hand side of Eq. (12) is equiva-
lent to the difference of fluctuations ρ′(r − Δr

2 ) − ρ′(r + Δr
2 ). Next, if
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Δr is small with respect to the length scale of fluctuations, the spatial
derivative of ρ′ at some radial coordinate ri can be approximated as

dρ′(ri)
dr

≈ −(ρ′(ri − Δr
2 ) − ρ′(ri + Δr

2 )
Δr

). (14)

Finally, expanding the radial density fluctuation ρ′(r) into a
Taylor series at some radial coordinate ri and neglecting higher-
order terms,

ρ′(r) = ρ′(ri) +
dρ′(ri)

dr
(r − ri). (15)

Without its higher-order terms, the accuracy of this expansion
will quickly deteriorate as r becomes distant from ri. Nonetheless,
the FLDI measurements are capable of providing a very fine mesh
of dρ′/dr values due to their high temporal resolution, and the dis-
tribution of ri can be chosen accordingly. A reasonable estimate of
ρ′(r) can be obtained by using Eq. (15) sequentially, with each point
ρ′(ri) defining its neighbor ρ′(ri+1). Remembering that the density
fluctuations are confined to the volume described by the blast wave
radius at any given time, i.e., ρ′(+∞) = 0, this is best done in the
reverse direction, starting from the most outside point

ρ′(ri) = ρ′(ri+1) −
dρ′(ri)

dr
(ri+1 − ri). (16)

As seen in Sec. II A, blast wave data are commonly presented
in the literature in terms of acoustic pressure amplitudes. As such,
it will be more convenient to express the FLDI measurements as
pressure fluctuations rather than density. For the small, isentropic
disturbances analyzed here, density and pressure fluctuations are
related through the local sound speed as

p′ = ρ′c2
0. (17)

In summary, the complete set of simplifying hypotheses
detailed in the preceding paragraphs is listed below:

(a) FLDI
i. Divergence angle of the beams is neglected.

ii. Finite differentiation approximates a spatial derivative.
(b) Flowfield

i. Symmetric around a center point or axis.
ii. Negligible density gradients outside the wave front radius

at any instant.
iii. The wave front travels with uniform velocity within the

relevant probing time.
iv. Isentropic within the relevant probing volume.

It is worth noting that the flowfield reconstruction methodol-
ogy presented here and the numerical representation of the FLDI
detailed in Sec. II B only share Eq. (4). That equation refers to a gen-
eral physical principle of the behavior of light through a transparent
medium of variable density. Therefore, the methods of computa-
tional FLDI simulation and flowfield reconstruction from FLDI data
may be regarded as mutually independent.

III. METHODS
A. Experimental setup

The experimental arrangement employed in this work is the
same as that used in Ref. 8. Information relevant to flowfield
reconstruction and simulation is repeated here for clarity.

The FLDI system was designed to operate in the HEG shock
tunnel.35 The laser source is an Oxxius LCX-532S DPSS with a nom-
inal wavelength of 532.3 nm. The corresponding Gladstone–Dale
constant for this wavelength is K = 0.227 × 10−3 m3/kg. The orthog-
onally polarized pair of beams is produced and later recombined
using a pair of Sanderson prisms,36 allowing different beam separa-
tion distances Δx to be produced. Four values of Δx are analyzed,
namely 76, 120, 175, and 252 μm. The beams are approximately
Gaussian with a maximum diameter of 45 mm at the field lenses,
which are 3.8 m apart.

The photodetector is a Thorlabs DET36A2 of nominal band-
width 25 MHz connected to an amplifier and recorder with a 50 Ω
termination. The signal is recorded with DC-coupling and a sam-
pling rate of 100 MHz. The conversion of the voltage produced by
the photodetector into the FLDI phase difference is performed fol-
lowing Ref. 37. Prior to measurements, the undisturbed response of
the FLDI is adjusted to the region of maximum sensitivity.

The probed flowfield is generated by the electric spark of an
automotive spark plug with a 4 mm separation between its elec-
trodes. The resulting weak blast wave propagates with approximately
the ambient sound speed at distances larger than 20 mm from its
origin, as analyzed in Ref. 8. The flowfield topology is shown in
Fig. 3, with a series of superimposed schlieren images. In addition
to the blast wave propagating radially, Fig. 3 also shows a secondary
wave that propagates diagonally upward. This is a reflection of the
main wave front off the structure of the spark generator and will be
considered in Sec. IV.

A diagram of the experimental setup is shown in Fig. 4. The
spark generator can be moved with respect to the fixed FLDI
depicted in Figs. 4(a) and 4(b) along the axis of beam separation,
such that measurements can be taken and analyzed at multiple dis-
tances from the source, represented as R in the frames of the figure.
Measurements are taken at 23 positions with nominal distances
between the source and probing volume of 3–50 mm. The spac-
ing between the probing positions is smaller near the source, and
position uncertainty is estimated at ±0.25 mm. A single spark is
generated for each measurement, with the disturbances allowed to
fully dissipate before the next one. Despite the careful adjustment

FIG. 3. Superposition of enhanced schlieren images of the blast wave generated
using an automotive spark plug. The wave fronts at each instant in time are marked
with the label ti , with ti − ti−1 = 16.7 μs. Scale at the bottom in mm.
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FIG. 4. Diagram of the experimental setup employed to acquire blast wave mea-
surements. (a) and (b) Depict two moments of a given measurement with FLDI,
before and after the blast wave reaches the probing location, respectively. (c) and
(d) Depict the corresponding moments of a measurement using the wall-mounted
PCB sensor. In (d), the blast wave front has reflected off the wall on which the PCB
is mounted.

and operation of the spark generator, eventual variations in flowfield
generation have been observed during the tests. One possible reason
is random changes in the spark breakdown path, which shift the ori-
gin and slightly alter the strength of the blast wave. Furthermore,
although the experiments are conducted in a protected environ-
ment, it is not completely sealed, which may allow eventual small
non-uniformities to be present in the surrounding medium. To min-
imize the effects of such eventual variations in flowfield generation,
ten measurements are repeated at each position. The ambient sound
speed is calculated using ambient temperature values obtained near
the probing region before each series of measurements.

A separate series of blast wave measurements are conducted
using a wall-mounted fast response piezoelectric pressure sensor
PCB 132A32, as depicted in Figs. 4(c) and 4(d). The measurement
approach is repeated from the FLDI measurements using the same
movable spark generator setup. Starting at 16 mm from the source,
the same nominal distances between the blast wave source and prob-
ing device are used. Measurements closer than this lower bound
were hindered by geometric constraints. The pressure magnitudes
obtained with the sensor are used as a reference for comparisons
with the data post-processed from FLDI measurements. Due to the
interaction between the flowfield and the wall, depicted in Fig. 4(d),
a full waveform comparison is not possible. Nonetheless, the peak
magnitude of overpressure detected at the wall upon reflection of
the weak blast wave should be twice the overpressure of the incident
wave.29

B. Computational FLDI
A mesh convergence analysis must be conducted before using

the computational FLDI to perform flowfield evaluations. The dis-
cretization of the beam cross-section variables r̃ and θ follows a

FIG. 5. Computational FLDI results of a blast wave using different mesh densities
in the z direction. The mesh in z is defined by the uniform distance between two
adjacent planes, denoted dz. Symbols are shown only in the detail inset for clarity.

mutually dependent approach such that each mesh cell has an aspect
ratio close to unity,23 and z is discretized in uniform steps. A single
waveform, based on experiments and representative of the data that
will be detailed in Sec. IV C, is used to generate computational FLDI
results with different meshes.

Figure 5 shows the simulation results for different discretiza-
tion steps in z. The cFLDI solution is sensitive to this parameter
in later moments of the simulation when the radial propagation of
the disturbances causes a more varied distribution of field proper-
ties along the FLDI optical axis. Mesh-independent results for the
discretization in z are obtained with a spacing of 480 μm and below.
The value of 480 μm has been chosen for the subsequent evaluations.

Simulations were performed varying the number of divisions
in the cross-section coordinate θ, shown in Fig. 6. Slight mesh-
dependent variations are observed for the peak absolute values of
the difference ΔΦ. These regions correspond to the largest flowfield
gradient magnitudes, which require fine meshes to be sufficiently
resolved. Since the radial discretization is linked to the steps in θ, the
refinement of this parameter has a strong impact on the computa-
tional requirement of the simulation. Between 144 and 576 divisions
in θ, the relative maximum difference in the simulated signal was
only 0.5%. Therefore a number of 144 divisions were chosen as a
balance between mesh convergence and computational cost. The
corresponding number of divisions in the radial direction was 176.

The waveform used in this analysis corresponds to measure-
ments obtained 30 mm away from the spark source, which is the
location to be explored in detail in Sec. IV C. Due to the varying flow
topology crossing the FLDI beams at each location, a similar mesh
convergence study as presented here must be repeated accordingly if
different locations are to be simulated.

IV. RESULTS AND DISCUSSION
A. Experimental data and processing

Figure 7 shows exemplary time-resolved experimental signals
obtained at a number of probing locations and all four system con-
figurations. The signals are minimally post-processed to yield phase
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FIG. 6. Computational FLDI results of a blast wave using different beam cross-
section meshes. The mesh in θ is defined by the number of divisions around the
circumference nθ, and the discretization in the radial direction is such that the
aspect ratio of each cell remains close to 1. Symbols are shown only in the detail
inset for clarity.

differences ΔΦ and divided by the corresponding differentiation
distance Δx to allow direct magnitude comparison.

The experimental signals from all probing locations were
passed through a Savitzky–Golay filter for noise reduction and pro-
cessed using the procedure detailed in Sec. II C to obtain pressure
waveforms. The compression phase duration was noted to be the
most sensitive parameter to non-uniformities in blast wave genera-
tion. Since the blast wave correlations presented in Sec. II A depend
on the global behavior of the wave as it travels away from the source,
for each measurement location, the waveforms with the highest and
lowest values of compression phase duration were excluded as out-
liers. The remaining eight waveforms were combined into an average

pressure profile, representative of the respective location, for further
analysis.

Figure 8 shows the spatial evolution of pressure waveforms
p′(r) detected with the FLDI for all four system configurations. Note
that the spatial waveforms in Fig. 8 travel from left to right, present-
ing a reversed profile along the x axis compared to the temporal
traces in Fig. 7 [see Eq. (13)]. Each distinct line in Fig. 8 corre-
sponds to the blast wave detection at a given location as the spark
generator was consecutively moved away from the optical axis of
the FLDI. The waveforms are spatially distributed such that they
cross the respective measurement location with half their peak pres-
sure. Where available, the reference peak pressures measured with
the wall-mounted PCB pressure sensor are also shown, divided by a
factor of two as mentioned in Sec. III A.

The typical blast wave profile with a sharp and strong compres-
sion front followed by a longer and less intense expansion region
is observed in the vicinity of the spark generation. As the wave
front propagates radially, the N-wave shape becomes evident, with
approximately symmetric compression and expansion phases. The
inset in Fig. 8 shows in detail the waveform obtained for R = 30 mm
as an example. Small differences between the lines for each Δx can
be seen, which will be further explored in Sec. IV C with aid from
computational FLDI. The positive pressure seen at the trailing edge
of the waveforms (e.g., near the left-hand edge of the inset) is a sec-
ondary wave that stems from the reflection of the main wave front on
the structure of the spark generator. This is seen as an oblique trace
propagating diagonally upward in the flow topology shown in Fig. 3.
The remainder of the secondary wave is cut off from the waveforms
in Fig. 8 for clarity.

Concerning the reference peak magnitudes obtained with the
wall-mounted PCB, the pressure data reconstructed from FLDI
measurements present an overall good agreement. Downstream of
∼30 mm, a consistent small difference in peak magnitudes is appar-
ent, with the PCB data always higher. This may be an effect of the
trailing secondary wave mentioned earlier. Referring again to Fig. 3,
this secondary wave front follows the main one closely along the cen-
ter line in the vicinity of the 30 mm station. While the FLDI is still

FIG. 7. Time signals obtained from FLDI measurements of spherical blast waves using multiple FLDI differentiation distances Δx, minimally post-processed. Each line is
the average of ten overlapping time signals independently obtained at the same location and with the same Δx.
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FIG. 8. Waveforms obtained from FLDI measurements of spherical blast waves using multiple FLDI differentiation distances Δx. The blast wave source is located at r = 0.
Each profile is the average of eight waveforms independently obtained at the same location and with the same Δx. The displayed results are a subset of the complete
dataset, selected for clarity such that consecutive waveforms do not overlap. The waveforms are aligned to their respective measurement location using half the peak
pressure along the front of the wave. Corresponding reference peak pressures measured with a wall-mounted PCB pressure sensor are also shown where available.

capable of a clear detection of the main wave front, the interaction
between the flowfield and the wall in the case of the pressure sensor
favors the combination of the two waves, biasing the measured peak
overpressures.

The physical analysis of the flowfield reconstructed from FLDI
data can be continued by looking at the complete waveforms
obtained. In addition to the peak pressure P, they also allow extract-
ing the compression phase duration T, as illustrated in the inset of
Fig. 8. To account for the finite thickness of the wave front, the value
of half the peak pressure is used as a reference to obtain the com-
pression phase duration as shown. The relationship between these
two features, as expected from weak-shock theory, Eqs. (1) and (2),
is analyzed next.

B. Analysis through weak-shock theory
The distributions of compression phase duration T from the

reconstructed waveforms are shown in Fig. 9. Data for all ana-
lyzed Δx are shown, with an offset of one grid line between each
adjacent dataset. Information obtained from the averaged pressure
profiles is shown using empty symbols with dashed lines. The val-
ues obtained from each individually performed measurement are
shown as filled small symbols on the background for completeness.
The least-squares linear fits of T2 vs log R for each case are shown as
solid lines.

The sets of values from individual waveform regressions shown
in Fig. 9 display an evident scatter toward the larger evaluated dis-
tances. This is attributed to a combination of two factors. First, small
variations in the strength of the generated spark across the repe-
titions may yield pronounced accumulated differences as the wave
propagates further away from the source. Second, as the amplitude
of the detected signal becomes smaller, an eventual weak signal off-
set, either positive or negative, preceding the arrival of the wave
front may bias the results of the integration procedure for waveform
reconstruction, Eq. (12). The average of signal magnitude in a 10 μs

range before the first signal rise is used to offset the zero level, in an
attempt to avoid this. However, low signal-to-noise ratios reduced
the accuracy of the offset in some cases. This is further evidenced
by the fact that scatter is larger for smaller Δx values, in which case
overall smaller signal amplitudes are produced. The biasing effect is
small, as will be verified next with the fluctuation of peak pressures
in this region. However, its influence on the evaluation of compres-
sion phase duration may be significant. A change in peak pressure
will cause a proportional change in the compression phase duration
(refer to the inset in Fig. 8). With the compression phase duration

FIG. 9. Distribution of compression phase duration of spherical blast waves
detected with FLDI using multiple differentiation distances Δx. Data are cascaded
along the y axis with a positive offset of 2 μs2 for each increasing Δx for clar-
ity. Empty large symbols with dashed lines correspond to the mean waveforms,
while filled small symbols in the background correspond to each independently
regressed waveform. Linear fits for the distributions are shown as solid lines.
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becoming ever larger as the wave propagates further, a small rela-
tive change in peak pressure may yield a noticeable change in the
compression phase duration in terms of absolute values.

The observed scatter highlights the importance of performing
repeated measurements across the probed distances. By considering
the averaged waveform to obtain representative values for each loca-
tion, the influence of the detailed factors is greatly reduced. This is
verified by the generally low deviation between the data from aver-
aged waveforms and a straight line, as expected from Eq. (1), and the
similar slope independently obtained for each case.

Figure 10 shows the peak pressure data obtained for each case.
Again, the datasets are cascaded for clarity, and values for the mean
and individual waveforms are shown as empty symbols with dashed
lines and filled small symbols, respectively. The comparatively low
scatter of the values based on individual waveforms confirms that
the non-uniformities mentioned earlier have a small effect on the
peak pressures.

The complete dataset of reference peak pressures obtained with
the wall-mounted PCB sensor is also shown, and repeated accord-
ingly for each FLDI configuration. The logarithmic scale of Fig. 10
highlights the agreement between peak pressures measured with
FLDI and the wall-mounted PCB for R ≤ 30 mm. The PCB measure-
ments beyond that location present a vertical offset. Nonetheless,
they remain described by a straight line, as would be the case with
a slightly stronger blast wave. This is evidence of the combina-
tion between the main and trailing wave fronts downstream of R =
30 mm, mentioned previously.

Proceeding with the analysis of the FLDI measurements, the
slopes obtained from Fig. 9 are used to determine a σ0 for each
measured value of T (refer to Sec. II A) from the averaged wave-
forms. The corresponding values of peak pressure P expected from
the weak-shock theory are then calculated for each measurement
position using Eq. (2). The resulting distribution for each case is

FIG. 10. Distribution of peak pressures of spherical blast waves, detected with the
FLDI using multiple differentiation distances Δx. Data are cascaded along the y
axis with a positive offset in factors of 4 for each increasing Δx for clarity. Empty
large symbols with dashed lines correspond to the mean waveforms, while filled
small symbols in the background correspond to each independently regressed
waveform. The distributions of peak pressures expected from weak-shock theory
based on mean T are shown as solid lines. Reference peak pressures measured
with a wall-mounted PCB pressure sensor are also plotted where available.

shown with a solid line in Fig. 10. For the waveforms reconstructed
from FLDI measurements to be physically consistent, the solid and
dashed lines in Fig. 10 must overlap.

A pronounced disagreement is noticed in the vicinity of the
blast wave source for R < 6 mm. This may be due to a poor approx-
imation of the blast wave as spherical in this region since the spark
length is ∼4 mm. In the case of a purely spherical blast wave, e.g.,
generated using laser induced breakdown as in Ref. 38, it could be
expected that pressures in the close vicinity of the blast wave source
would be higher,39 rising to match the theoretical predictions. The
predictions themselves would not be expected to change, given that
the slopes in Fig. 9 are a global parameter and the compression phase
durations shown in that same figure seem to follow a constant slope
all the way through.

Away from the blast wave source, Fig. 10 shows an overall
good agreement between measured and expected values for the three
lower Δx values, in contrast to the consistent offset observed for
Δx = 252 μm. To quantify this offset, the point-wise ratios between
the peak pressures measured on the FLDI waveforms P and the
corresponding value expected from the weak-shock theory Pws are
calculated. The ratios for R < 6 mm are discarded for all cases for
the reason mentioned earlier. Table I shows the mean and standard
deviation values of P/Pws observed for each case. For the three lower
values of Δx, the distribution of P/Pws is close to and varies across
unity, indicating a reasonable match between the measured pressure
peaks and the weak shock predictions. Conversely, for Δx = 252 μm,
a 10% offset is obtained on average, with the predicted values always
greater than the measurements.

It is noted that only the separation distance Δx between
the interferometric pair of the FLDI differentiates the four cases.
These results indicate that the post-processing approach detailed in
Sec. II C is able to yield physically consistent waveforms as long
as the constraints imposed by the simplifications thereby listed are
adequately considered. A value of Δx = 252 μm likely violates sim-
plification (a).ii, namely, the approximation of the finite difference
performed by the FLDI to a spatial derivative. This is analyzed in
further detail in Secs. IV C and IV D through cFLDI calculations.

C. Computational FLDI simulation
As seen in Sec. II C, the reconstruction of spherically propagat-

ing pressure waveforms using FLDI measurements is made possible
through a series of approximations. In the following, the quality
of the obtained waveforms is assessed by means of cFLDI to pro-
duce time-resolved phase difference ΔΦ(t) simulations based on
the reconstructed flowfield p′(r). These computational results are

TABLE I. Compilation of ratios between peak pressures P measured from averaged
waveforms and the corresponding values expected from the weak-shock theory Pws,
for each FLDI configuration. The mean and standard deviation values obtained from
the distribution for R ≥ 6 mm.

Δx Mean P/Pws

76 μm 0.992 ± 0.055
120 μm 1.033 ± 0.065
175 μm 1.009 ± 0.045
252 μm 0.894 ± 0.054
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compared with the original experimental data. An accurate recon-
struction must produce overlapping simulated results, meaning this
cycle between measured or simulated ΔΦ and reconstructed p′ may
go on indefinitely without any loss of information.

This approach is made possible by recalling that the methods of
flowfield reconstruction and cFLDI simulation are entirely indepen-
dent from each other, as seen in Sec. II. Since the ray-tracing cFLDI
is physically accurate, a match between the simulation of a flow-
field reconstructed from experiments and the experimental data that
originated it implies that the reconstruction is also accurate (pro-
vided the possibility of non-unique solutions can be neglected). Any
deviation between computed and experimental data is, therefore, an
indication of flaws in the flowfield reconstruction procedure.

Figure 11 illustrates how the cFLDI perceives the passage of the
blast wave. The wave front is marked with a darkened surface, and
the FLDI beams are painted according to the instantaneous local
density distribution. Due to the small time of interaction between the
FLDI and the disturbance carried by the blast wave, the shape of the
disturbance is assumed to be frozen in time and moving radially with
a constant velocity. The temporal resolution for the computational
FLDI calculations is chosen to be 20 MHz, based on a convergence
analysis similar to the one presented for the mesh discretization in
Sec. III B.

Careful evaluation of the reconstructed flowfield was conducted
at R = 30 mm for all four Δx values. The observations presented next
are specific to this probing location, but the methodology is general.

An averaged experimental time-resolved phase difference
ΔΦ was obtained for each differentiation distance Δx, and pro-
cessed into a spatially resolved pressure flowfield to be simu-
lated with cFLDI. The approach with averaged experimental data
has the benefit of smoothing out eventual flowfield imperfections
while keeping the signal main features. A clear reference is thus
obtained to compare the computational results after completing

FIG. 11. Illustration of the computational FLDI of a blast wave, in isometric and
top views. Colors are contours of density perturbation within the FLDI domain,
with positive and negative variations indicated as tones of red and blue, respec-
tively. The FLDI bundle is positioned 30 mm away from the blast wave source,
with beams 252 μm apart in this example. At the moment of this snapshot, the
blast wave radius is ∼32.7 mm. The wave front is marked by a darkened surface.

the reconstruction–simulation cycle, improving the detection of
eventual differences stemming from the reconstruction procedure.

Figure 12 shows the comparison between experimental and
computed data. Results are displayed as the ratio between phase dif-
ference ΔΦ and beam separation Δx. With such scaling, all lines
are ideally identical regardless of FLDI configuration since the same
disturbance field is probed at the same location across the cases. A
vertical offset of 20○/mm is used between adjacent cases for clar-
ity. The time origin in each case is arbitrarily defined such that the
peak signals are aligned to facilitate visual comparison. The gray
lines in the main plot show the original experimental data in each
case, with colors denoting the cFLDI output of the corresponding
reconstructed pressure waveforms.

The experimental signals across all four cases are verified to
present a similar general form. All time series show the detection of
the main wave front starting at ∼2.5 μs and the previously mentioned
secondary wave front close to 10 μs. The most noticeable difference
is more apparent noise as Δx is smaller, which is a consequence of
the overall lower signal amplitudes obtained with a small differen-
tiation distance. The signals displayed as ΔΦ/Δx represent a finite
difference approximation of a spatial derivative. Considering the
reduction of non-uniformities through averaging repeated measure-
ments, the flowfield is essentially the same for all cases. Therefore, all
experimental signals are ideally the same in terms of ΔΦ/Δx, as long
as Δx is small enough. The experimental lines in Fig. 12 show this to
be the case for Δx = 76 and 120 μm. For the higher Δx, a reduction
in peak value and a damping of gradients are observed, especially for
Δx = 252 μm. Those are indications that the finite difference oper-
ated by the FLDI is not performed across a small enough spatial
interval to adequately represent a spatial derivative in this flowfield.

More insight can be gained from the cFLDI results. The colored
lines in the main plot of Fig. 12 show that all four cases are mostly

FIG. 12. Comparison of FLDI response to spherical blast waves, detected at
30 mm from the source using multiple FLDI differentiation distances Δx. Mag-
nitudes are the ratio of phase difference to beam separation distance, offset in
multiples of 20○/mm. Time origins are arbitrarily defined. The gray lines corre-
spond to experimental measurements; colors represent the cFLDI response to the
reconstructed disturbance field. The insets on the right refer to the box in the main
plot with the vertical offsets removed, offering a direct comparison between the
peak values of each experimental and cFLDI dataset.
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well reproduced. The exceptions concern the sharp signal rise upon
blast wave arrival. For Δx = 252 and 175 μm, a damping of gradient
and reduction of peak value are again observed, more evidently for
the former. This corroborates the previous observations concerning
the experimental results. At this point, flowfield feature losses due to
inadequate FLDI configuration have taken place twice: once when
the experimental measurements were performed and again when the
computational FLDI responses were simulated. The computational
FLDI results in Fig. 12 also evidence small differences in peak values
for Δx = 120 μm (and very small for Δx = 76 μm).

Table II evaluates these disagreements. For each Δx, the relative
peak signal difference and the zero-lag cross-correlation between
experimental and computational FLDI for the main wave front
(between 1 and 10 μs in Fig. 12) are given. The cross-correlation is
normalized by the auto-correlation of the experimental signal, such
that both shape and amplitude differences result in a departure from
unity. The listed values evidence the influence of Δx on the ability
to return the reconstructed flowfield back into FLDI data. For the
smallest evaluated Δx, good agreement is confirmed, with a loss in
peak value of less than 3% and the overall time signal from the FLDI
simulation correlating with the experimental one at 0.5%.

These observations allow the definition of two types of inaccu-
racies. First, on the ability of the FLDI as an instrument to detect
strong gradients due to finite differentiation. Second, on the effect
of simplifications adopted in Sec. II C to allow reconstruction of the
blast wave flowfield from FLDI measurements. The former is seen in
the raw experimental data as the signals present loss of features if Δx
is above a certain threshold (Δx > 120 μm, in this case) and is unre-
lated to the post-processing methodology. The latter is verified when
the physically accurate computational FLDI fails to reproduce the
experimental signal from which the flowfield was obtained, therefore
being of relevance in this work.

Interestingly, the cFLDI indicates a noticeable peak signal loss
for Δx = 120 μm even though the experimental signal used to recon-
struct the waveform was seemingly sufficiently resolved, as indicated
by the nearly identical experimental ΔΦ/Δx for Δx = 120 and 76 μm.
Furthermore, it is noted that the differences observed in Fig. 12
and reported in Table II are mostly subtle for all cases other than
Δx = 252 μm. It is evidenced that the comparison between measured
and expected values of the reconstructed waveforms performed in
Sec. IV B was only able to identify flaws for the highest Δx, despite
the cFLDI results presenting discrepancies against the experimental
data for other Δx values as well. This highlights the contribution of

TABLE II. Quantitative comparison between experimental FLDI data and the cFLDI
output to the reconstructed disturbance field. Values concern the spherical blast wave
detected 30 mm from its source using multiple FLDI differentiation distances Δx. The
peak signal difference is relative to the experimental signal, and the cross-correlation
coefficient is normalized by the auto-correlation of the experimental signal.

Δx
Relative peak signal

difference (%)
Normalized cross-correlation

coefficient

76 μm 2.74 0.9950
120 μm 6.12 0.9849
175 μm 9.20 0.9704
252 μm 14.48 0.9556

the cFLDI analysis to verify post-processing approaches, especially
in the absence of parallel, reliable measurements to provide further
support. These results are analyzed in more detail next, in view of
the methodology proposed in Sec. II C and the list of simplifying
hypotheses presented in its closing paragraph.

D. Analysis of post-processing simplifications
It is first noted that agreement between experimental and com-

putational results presented in Sec. IV C was obtained for at least
one Δx while all other FLDI parameters remained unchanged. This
indicates that simplifications such as neglecting the divergence of
the beams and their finite volume, hypothesis (a).i, do not signif-
icantly interfere with the field reconstruction for a blast wave and
FLDI setup with the dimensions presented here. An investigation
of this hypothesis can be performed through the cFLDI simula-
tion of a hypothetical instrument in which only one of the beams
crosses the disturbance field, the other remaining unaffected as if
it was a reference beam. In the case of this single beam FLDI, the
output of Eq. (12) from Sec. II C is used directly in Eq. (17) with-
out the steps concerning the conversion of density differences into
density fluctuation magnitude. This is similar to the Mach–Zehnder
interferometer simulation in Ref. 31, with the additional capabil-
ity of having a full three-dimensional beam in the present cFLDI.
By comparing the input flowfield with the flowfield reconstructed
from this single beam instrument output, it is possible to assess
the effects pertaining to beam divergence in an isolated manner.
The comparison between an input flowfield and the reconstruction
from a single beam FLDI simulation using different beam divergence
angles is shown in Fig. 13. The acoustic pressure of the blast wave at
R = 30 mm is used as the reference flowfield. The results confirm
that the effect of beam divergence angle for the FLDI setup used in
the experiments is negligible, while for much larger angles, it would
become relevant. In the case reported here, the effect observed in
Fig. 13 is caused by an interaction between the wave front and the

FIG. 13. Input blast wave acoustic pressure distribution in time, compared to recon-
structed values from single beam computational FLDI simulations. Three different
beam divergence angles are used in the simulations, namely, the divergence cor-
responding to the experimental setup in the present work (∼0.7○), 10 times this
value, and 20 times this value.

Rev. Sci. Instrum. 94, 045102 (2023); doi: 10.1063/5.0132874 94, 045102-12

© Author(s) 2023

3.2. Validation of computational FLDI as an analysis tool (Publication 2)

51



Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

wide radius of the FLDI beams away from the focal plane before the
blast wave reaches the FLDI focus.

Next, regarding the loss of accuracy as Δx becomes larger, an
oversimplification regarding the finite beam separation, hypothe-
sis (a).ii, is evidenced. This finite distance was disregarded when
approximating the integral limits in Eq. (9) and the derivative
in Eq. (14). These approximations can be analyzed separately as
follows.

The approximation of the derivative through finite differences
is a central hypothesis in the reconstruction method since the den-
sity value at each instant depends on the preceding value and
the derivative following Eq. (16). An error in the finite difference
approximation would misrepresent the local gradient, which in turn
would introduce a local magnitude offset that would propagate to all
subsequent points. In addition, recall that the flowfield reconstruc-
tion is performed spatially from outside the blast wave toward the
inside. Hence, in the temporal simulated data in Fig. 12, the accu-
mulated offset would become more significant at later times as the
inner portions of the blast wave reach and travel through the FLDI
location. Figure 12 shows that even for the largest Δx, the disagree-
ment between experimental and computational results is limited to
the first instants after blast wave arrival, with accurate reproduction
later on. Therefore, the finite difference approximation is verified
to be reasonable. This observation concerns the flowfield recon-
struction method alone, even when the instrument itself might be
ill-conditioned to perform the detection as mentioned for the larger
values of Δx in the present case.

Conversely, the approximation of the integral limit can be
particularly inaccurate in the brief moments following blast wave
arrival. During this time interval, the disturbance field affects exclu-
sively the upstream beam, and the combination of the integrals from
Eq. (4) through the approximation described in Eq. (9) is not valid.
A representative distribution of derivatives in this region is still
obtained, but the precise conversion to radial quantities in Eq. (12)
is affected. Evidently, the time interval in which this misrepresenta-
tion is observed (and hence its effect) increases with increasing beam
separation Δx. Figure 12 shows that for the blast wave measurements
presented here, the influence of the misrepresentation is negligible
for Δx = 76 μm, while for Δx ≥ 120 μm it is not.

A parametric study was conducted using the experimental data
and the cFLDI to evaluate this effect. For every probing location and
FLDI configuration, a pressure waveform was reconstructed from
the experiment. By including multiple probing locations, waveforms
of different characteristics are considered, as previously illustrated in
Fig. 8. Each waveform was simulated in a cFLDI using several values
of Δx, encompassing smaller, identical, and larger values than the
experimental ones.

Figure 14 displays an overview of the observed results. On the y
axis of the figure, the difference in the simulated FLDI peak value
with respect to each experimental counterpart is represented as a
percentage of loss. The abscissa shows the cFLDI differentiation dis-
tance Δx used in each simulation, normalized by the width of the
compression front of the simulated waveform. Here, the width of the
compression front refers to the first rising portion of the traveling
pressure waveform, objectively defined as twice the distance between
the waveform maximum pressure P and P/2 upstream of it, as anno-
tated in the inset of Fig. 8. This normalization parameter is proposed
to represent a region of strong gradients with a length across which

FIG. 14. Compilation of peak signal comparisons from parametric cFLDI analysis,
performed over multiple probing locations and with different FLDI configurations.
The y axis shows the percentage of loss on the peak of the cFLDI signal in
terms of ΔΦ/Δx with respect to the original experimental FLDI measurement
used to obtain the computational flowfield. The x axis shows the value of FLDI
differentiation distance Δx, normalized by the width of the compression front of
each simulated pressure waveform. A reference value of expected loss due to
finite differentiation is also given as 1 − HΔx , with HΔx being the transfer function
corresponding to the finite difference.

the approximation of identical integral limits would not hold well.
With the variation of FLDI differentiation distance reaching magni-
tudes comparable to a flowfield length scale, it becomes important
to monitor losses caused by finite differentiation as well. This effect
and that of the integral limit approximation overlap as functions of
the differentiation distance and, therefore, cannot be analyzed sep-
arately. Nonetheless, an important distinction between these two
effects is that the finite difference is physical, while the integral limit
approximation pertains only to the flowfield reconstruction method.
As such, the former is present in both experimental and compu-
tational FLDI, but the latter is exclusive to the cFLDI simulation.
The transfer function describing the effect of finite differentiation
distance as a function of wavenumber is given in Refs. 2 and 21 as
HΔx(k) = sinc(Δx ⋅ k/2). The transfer function is used to calculate
the loss in FLDI response magnitude expected for multiple values
of Δx ⋅ k, or Δx ⋅ 2π/λ in terms of disturbance wavelength, which
is shown in Fig. 14. The width of the compression front used as the
normalization parameter in the figure is assumed to be 1/4 of the
wavelength of an equivalent sinusoidal disturbance.

It is first noted that for all cases, the loss in peak value is
larger than the expected damping due to finite differentiation. This
confirms that the approximation of the integral limit is the most
constraining factor in the present flowfield reconstruction method.
The results show a monotonic relationship between the cFLDI dif-
ferentiation distance Δx and the ability of the simulated setup to
reproduce the experimental signal, with lower values of Δx pro-
ducing the best results. Furthermore, the width of the compression
front of the probed waveform as a normalizing factor for Δx was
able to approximately collapse this relationship, regardless of experi-
mental FLDI configuration or probing location (the latter associated
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with different widths of the compression front, recall Fig. 8). The
apparent larger spread of the points pertaining to the smaller experi-
mental Δx is related to the lower signal-to-noise ratio in those cases,
which introduces larger uncertainties in the determination of ref-
erence magnitudes. It is verified that for values of Δx less than 0.2
times the width of the flowfield compression front, the loss in the
simulated value becomes a minimum, subject to other factors that
may become dominant.

This general rule may be applied to the cases evaluated before,
concerning the probing location of 30 mm away from the spark
source, for verification. Using as a reference the experimental data
obtained with Δx = 76 μm, the obtained compression front width
was ∼0.32 mm. It is noted that Δx = 76 μm is close to 0.2 times this
value, whereas Δx = 120, 176, or 252 μm are much higher, with losses
indicated by Fig. 14 that are compatible with the ones reported in
Table II.

V. CONCLUSION
This work presented a new, analytic post-processing methodol-

ogy to extract quantitative information from Focused Laser Differ-
ential Interferometry (FLDI) measurements of flowfields possessing
circular symmetry. In the absence of complementary experimental
data for complete direct comparisons, a physically accurate com-
putational FLDI was employed as a tool to assess the accuracy
of the approach. Constraining conditions were identified, and the
methodology was confirmed to be reasonable if these conditions are
met.

The methodology was applied and analyzed in FLDI measure-
ments of spark-generated spherical weak blast waves, using multiple
FLDI differentiation distances and probing locations. In a first ver-
ification effort, the reconstructed pressure waveforms agreed with
predictions from weak-shock theory at distances larger than 6 mm
from the spark source, below which the approximation of a spher-
ical blast wave used by the theoretical model is not adequate. The
agreement was observed for all but the largest differentiation dis-
tance, namely, Δx = 252 μm, which showed consistently lower peak
pressure values. Where allowed by experimental constraints, refer-
ence peak pressure values were obtained using a wall-mounted fast
response piezoelectric pressure sensor. Comparisons between these
references and the peak pressure magnitudes of the reconstructed
waveforms provided similar observations.

An in-depth analysis of the reconstructed flowfield using cFLDI
simulations helped identify further inaccuracies not captured in the
theoretical comparisons, in terms of both peak signal amplitude and
gradient damping. The simplification of equal integration lengths
between the two beams composing the FLDI interferometric pair
was identified as the most critical in the post-processing opera-
tions. Nonetheless, very good agreement was obtained between the
computational FLDI for Δx = 76 μm applied to the reconstructed
flowfield and the experimental FLDI which gave origin to it. Dif-
ferences were evaluated as less than 3% restricted to the close
vicinity of the peak signal, and cross-correlation between the signals
including all features agreed to 0.5%. The proposed post-processing
methodology was hence verified to be sound, as long as a small
enough Δx is employed. This threshold was evaluated by means of a
parametric analysis using the cFLDI, as 20% or less of the length of

the compression front, which represents a reference of strong spatial
variation of density in the flowfield studied here.

It must be highlighted that the quantitative results presented in
this work are specific to the blast wave flowfield investigated herein.
Flowfields with different features or length scales might have dif-
ferent sensitivities to either Δx or other FLDI system properties.
Nonetheless, the methodology of using cFLDI to evaluate such sensi-
tivities can be extrapolated to different investigations. The approach
detailed here is therefore recommended for any particular appli-
cation, to ensure proper consideration of limiting constraints and
obtain accurate post-processing output. The depth of insight offered
by cFLDI as exemplified in this work is a strong argument for
encouraging the widespread application of such simulations as an
instrument of analysis.
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As a result of the two published works shown so far, a carefully measured quad-
foci FLDI setup and a validated computational FLDI algorithm were available to
perform shock tunnel investigations. The experimental setup was developed from the
beginning with the large dimensions necessary for application in the High-Enthalpy
Shock Tunnel Göttingen (HEG) [84]. The necessary distance between the field
lenses and the focus of the system was approximately 1.9 m, to account for the
width of the test section and the swing-opening access windows.

The flowfield of interest to the present work was a turbulent boundary layer over a
7◦ half-angle conical model with cold walls under hypersonic free stream conditions
of Mach 7.4 and unit Reynolds number 4.2 × 106 m−1.

In preparation for the experiments, the FLDI had been test-run on previous HEG
campaigns to identify and improve upon practical constraints. One noteworthy
effort was to design the quad-foci FLDI such that all four beams described parallel
trajectories across the probed volume. This requires proper consideration of the
combined behavior of the multiple optical components that are employed to produce
the multi-foci FLDI, which is not observed in many works. The adopted solution has
been reported by other authors [62, 71], namely to ensure that all beams cross the
optical axis at the position of the Sanderson prism on the emitting side. Ensuring
beam parallelism across the test section improves the accuracy of convection velocity
measurements, which could otherwise be biased by variable separation distances
between the pairs of FLDI probes used for velocimetry. Furthermore, it was observed
that the signal cross-correlation profile around the peak value was significantly
narrower when using parallel beams, in comparison to preliminary tests where this
condition had not yet been enforced. The narrow cross-correlation profile around
the peak value improves the precision of the measurements, as uncertainty can be
inferred from the width of this profile.

Another topic that received special attention concerned maximizing the frequency
bandwidth of the system, which presents competing limitations. On the side of the
measurement instrument, the differentiation distance of the FLDI beams imposes a
minimum wavelength in space, which translates to a maximum frequency in time,
that can be resolved, determined by the Nyquist theorem. However, by lowering
this distance, signal magnitudes become weaker, with impact on the side of signal
acquisition, which must consider the signal-to-noise ratio (SNR). This is addressed
by boosting the acquired signal through amplification, which is achieved by either
adding a large termination resistance on the system’s photodetector or using an
external amplifier. The former has the negative effect of decreasing the frequency
bandwidth of the photodetector itself, in terms of time response. Therefore, the use
of an external high-bandwidth signal amplifier was preferred.

It must be noted that two different sampling limits are imposed: a spatial one
determined by the FLDI differentiation distance, and a temporal one determined
by the acquisition system. Furthermore, in order to adequately capture not only
the frequency of the flowfield fluctuations but also their magnitudes, it is a good
practice to employ a sampling rate at least a few times higher than the Nyquist
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limit. A configuration was used for the present experiments in which the boundary
layer FLDI signal was larger than the noise floor up to nearly 10 MHz. The spatial
sampling limit was equivalent to approximately 22 MHz, the photodiodes were used
with a nominal bandwidth of 25 MHz, and the data acquisition rate was 100 MHz.

For the computational flowfield, a Large-Eddy Simulation (LES) of the cone
under the experimentally obtained HEG free stream conditions was calculated [85],
in a cooperation between the Institute of Aerodynamics and Flow Technology at
DLR and the Compressible Flow and Acoustics lab of the School of Mechanical
Engineering at the Purdue University (USA). A total volume of flowfield with
1280 × 128 × 112 grid points (streamwise × wall-normal × azimuth) was simulated
for a total time of 1.43 ms. A slice of 40 × 128 × 112 grid points was extracted
with 14 ns temporal resolution to be used in the cFLDI simulations. This extracted
volume spanned ∼ 10 mm in the streamwise direction starting at 824.6 mm from
the nose of the cone along its axis, ∼ 40 mm in the wall-normal direction starting
flush with the model wall, and 18◦ total azimuth, totaling approximately 15 cm3 of
flowfield. With these dimensions, the straight line of the FLDI describes a secant on
the circular boundaries of the boundary layer with intersections inside the simulated
volume at and above 80% of the boundary layer thickness.

Concerning the frequency bandwidth of the numeric flowfield, the temporal reso-
lution was initially chosen to be of the same order of magnitude as the experiments.
Other factors have showed to be more constraining, namely the spatial resolution
and an explicit spatial filtering required for numerical stability. The mesh refinement
was such that the smallest detectable disturbances were equivalent to approximately
4 MHz. However, the spatial filtering to ensure stability of the computations lowered
this limit to 1 MHz. For the experimental and numerical direct comparisons in the
present work, this was the upper limit that was used. It should be noted that it
is possible to use the results of the present work to optimize future computational
efforts, to allow expanding this frequency limit in a cost-effective manner.

In the third publication, experimental measurements of convection velocity and
frequency spectra performed with FLDI inside and above a turbulent hypersonic
boundary layer are shown, as well as experimental and numerical comparisons of
FLDI data under the same flowfield conditions. With regard to the experiments,
the convection velocities of density disturbances measured in the free stream are
consistent with previous data in the literature, corresponding to neighboring Mach
numbers and based on pressure disturbances. Inside the boundary layer, literature
data was scarce and available only for different flowfield conditions, with lower Mach
numbers and higher wall temperatures. Still, the measured convection velocities
showed similar magnitudes relative to free stream as those reports, even though the
distribution across the boundary layer was different. The experimental frequency
distributions evidenced regions with clear power laws in agreement with those
expected for pressure fluctuations. Considering the numeric data, a careful analysis
of the valid frequency bandwidth in which to perform the comparisons was conducted
and explained in detail. In that analysis, a transfer function of the FLDI spatial
filtering effect was used. The chosen equation is commonly presented in the literature,
but further detail about it is seldom given. A demonstration of the transfer function
is, therefore, given in Appendix B. Within the bounds identified by the analysis,
the computational and experimental FLDI compared well. It was also verified that
a simplified approach to replace the complete cFLDI algorithm with a line integral
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in the numeric flowfield was able to produce similar results. The relevance of these
observations is to confirm that experimental FLDI data may be used in combination
with computational studies of hypersonic turbulence without the need for complex
experimental post-processing strategies, or even sophisticated cFLDI algorithms,
once some conditions are met. This represents a positive outlook for future studies to
develop and test turbulence models for hypersonic flowfields, turbulence production
strategies in high-fidelity computations, among other applications.

Conceptualization of the ideas leading to this publication was performed by me,
A. Wagner, C. Scalo, and T. Toki. The objectives and planning of the experimental
campaign were defined by me. Preparation of the experimental model and operation
of the shock tunnel were conducted by I. Schwendtke, U. Frenzel, and F. Glasewald.
The optical measurement techniques, namely schlieren and FLDI, were prepared
and adjusted by me. The experimental investigation was performed by me and A.
Wagner, with assistance from D. Surujhlal and J. M. Schramm. RANS computations
of the nozzle flowfield were performed by M. Laureti. The LES development and
computations were performed by T. Toki and E. Gil Torres. Curation of the data
used in the paper was conducted by me concerning FLDI, and T. Toki concerning
LES. Development of the cFLDI software was conducted by me. The methodology
of analyses was developed by me. Analyses of the experimental and numerical
data were conducted by me, with technical discussions involving the coauthors.
Supervision of the work was conducted by A. Wagner and C. Scalo. The manuscript
was written by me, and edited by the coauthors. The article is Open Access under
the terms and conditions of the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). It was published in Aerospace,
2023, 10 (6), 570. (DOI: https://doi.org/10.3390/aerospace10060570)

Copyright © 2023 by the authors.
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Abstract: This work investigates a hypersonic turbulent boundary layer over a 7◦ half angle cone
at a wall-to-total temperature ratio of 0.1, M∞ = 7.4 and Re∞m = 4.2 × 106 m−1, in terms of density
fluctuations and the convection velocity of density disturbances. Experimental shock tunnel data are
collected using a multi-foci Focused Laser Differential Interferometer (FLDI) to probe the boundary
layer at several heights. In addition, a high-fidelity, time-resolved Large-Eddy Simulation (LES) of
the conical flowfield under the experimentally observed free stream conditions is conducted. The
experimentally measured convection velocity of density disturbances is found to follow literature
data of pressure disturbances. The spectral distributions evidence the presence of regions with
well-defined power laws that are present in pressure spectra. A framework to combine numerical and
experimental observations without requiring complex FLDI post-processing strategies is explored
using a computational FLDI (cFLDI) on the numerical solution for direct comparisons. Frequency
bounds of 160 kHz < f < 1 MHz are evaluated in consideration of the constraining conditions
of both experimental and numerical data. Within these limits, the direct comparisons yield good
agreement. Furthermore, it is verified that in the present case, the cFLDI algorithm may be replaced
with a simple line integral on the numerical solution.

Keywords: hypersonic turbulence; hypersonic boundary layer; double-foci FLDI; LES; high-enthalpy
shock tunnel

1. Introduction

In the design of aerospace vehicles, the state of the boundary layer is of great im-
portance. Turbulent boundary layers can increase the heat transfer into the vehicle by an
order of magnitude compared to the laminar state, demanding an increasing mass budget
dedicated to the heat management to ensure the integrity of the vehicle. The increasing
skin friction degrades the vehicle performance due to higher viscous drag. Additionally,
the pressure fluctuations in the high-speed turbulent boundary layer can cause vibration
loads on the vehicle’s structure. Despite these negative effects, the occurrence of turbulence
is, in many cases, inevitable or even desired, e.g., in applications involving mixing flows,
as found in scramjets [1].

However, hypersonic turbulence is still not fully understood and turbulence modeling
still results in large uncertainties [2]. Furthermore, experimental data on hypersonic bound-
ary layers, particularly above cold walls, are very limited, hampering the development
and verification of new turbulence models. However, insights into pressure and density
fluctuations through the boundary layer are important for the closure of Reynolds stresses
in the transport equations [3–5], which are necessary for Reynolds-Averaged Navier–Stokes
(RANS) turbulence modeling. Without experimental data, the validity of the established
low-speed RANS models applied to hypersonic flows remains uncertain [6,7]. In addi-
tion, the relevance of the power spectrum of field quantities also extends to Large-Eddy
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Simulation (LES) models [8]. Roy et al. [2] underlined the need to compare numerical
data based on turbulence models and experimental data, recommending to preferably use
non-intrusive measurement techniques to obtain off-wall data. The latter motivates the
present study.

Another active field of research is the quantification and identification of free stream
disturbances in hypersonic wind tunnels. In [9], it is highlighted that the orientation of
the plane-wave disturbances, and thus the type of instability, is important to the boundary
layer transition process. Such orientation can be estimated through convection velocity
measurements. As noted in [10], the entropy, vorticity, and acoustic modes of disturbance
fields are independent. The entropy and vorticity modes convect as frozen patterns along
streamlines, while the acoustic modes can cross streamlines and do not convect as a frozen
pattern with the local mean velocity. Shock tunnel free stream disturbances have been
demonstrated to be mainly acoustic [9–11], and to convect with a Mach-number-dependent
ratio with respect to the free stream [4,12]. No general rule for such dependence has yet
been proposed, and the compilation of a database to support this is still underway. Duan
et al. [4] analyzed pressure signals at different streamwise stations in a Direct Numerical
Simulation (DNS) of a turbulent boundary layer at Mach 5.86. The disturbances both in
the boundary layer and in the free stream were verified to present little change as they
propagated, which could be an indication of frozen waves. In the boundary layer, this
was corroborated by propagation speeds similar to the mean velocity. However, they
observed that the convection speeds in the free stream were significantly lower than the
local mean velocity, contradicting the hypothesis of frozen waves and suggesting the
acoustic mode instead.

Towards a better understanding of high-speed turbulence, the comparison between
numerical and experimental data is a powerful approach that allows the assessment of
hypotheses and complementary analyses. In recent years, a rise in reports on the Direct
Numerical Simulation (DNS) of high-speed turbulent flows was observed [4,5,13–25], as
well as advancements in theoretical approaches [26,27]. Concerning the experimental
aspect, the high velocity and small physical scales of high-speed turbulent boundary layers
are a great challenge to measurement techniques. Hot-wire and particle image velocimetry
(PIV) have been able to advance the knowledge of the behavior of velocity fluctuations in
high-speed turbulent boundary layers [12,28,29]. However, the same cannot be said about
pressure disturbances, as highlighted in [4,30]. Pressure measurements are traditionally
confined to surface-mounted transducers, making experimental data inside the boundary
layer still scarce. Furthermore, the finite area of surface sensors defines a limit to the smallest
detectable scales [30,31], and the high frequencies associated with hypersonic turbulent
fields are beyond the bandwidths of conventional transducers. In [21], the importance of
evaluating the disturbance spectrum up to this upper limit is highlighted in the context of
enabling the better use of wind tunnel boundary layer data and their extrapolation to the
flight environment.

In recent years, the lack of experimental off-wall and high-bandwidth data has been
gradually addressed with the advancements in Focused Laser Differential Interferometry
(FLDI). FLDI is a non-intrusive technique capable of measuring flowfield density distur-
bances along a line-of-sight with an extreme bandwidth and increased sensitivity near the
focal plane [32,33]. These characteristics make FLDI a powerful measurement technique for
shock tunnel investigations, with many researchers having employed it to probe the free
stream [10,11,34–36] and laminar boundary layers [37–43]. Nonetheless, the application of
the technique to hypersonic turbulent boundary layers remains largely unexplored.

One of the main challenges pertaining to FLDI resides in the interpretation of its
output. The focusing of the beams has an effect on the sensitivity of the instrument with
respect to the fluctuation wavenumbers [33,44,45]. While this property is fundamental
to allow the FLDI to see through the noisy shear layer surrounding the core flowfield in
conventional shock tunnels, the transformation of the line-of-sight-integrated measure-
ments into flowfield quantities is not straightforward. Solutions for specific cases such
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as a uniform flowfield and a free jet by means of transfer functions have been presented
in [33]. More recently, transfer functions for cases with higher complexity have been devel-
oped [46]. In [47], a framework for the interpretation of FLDI measurements is proposed
by defining a sensitivity function, which depends on the FLDI setup parameters and an
estimate of the average disturbance amplitudes along the optical axis. In [10], the inverse
FLDI problem is solved for single-direction, continuous-frequency waves. These recent
advancements represent a leap forward in terms of FLDI post-processing. Nonetheless,
assumptions about the flowfield are inevitable, due to the inherent loss of information
associated with the transformation of a three-dimensional flowfield input into a single
scalar FLDI output. In more complex flowfields, this can be an obstacle to fully taking
advantage of the FLDI capabilities.

A promising solution to counteract the drawbacks of the instrument is to compare
the experimental FLDI data to the equivalent data gathered using computational FLDI
(cFLDI; not to be confused with cylindrical-lens FLDI, referred to in the literature with a
capital “C” as CFLDI) with spatially well-resolved CFD results. This has been explored
with a laminar jet [45] and a complex dynamic flowfield containing shock waves [48]. In
these works, computational FLDI was confirmed to be able to extract information from the
numerical flowfield directly comparable with experiments. This ability was applied in [49],
where cFLDI was used to check the validity of simplifying hypotheses adopted in a post-
processing approach for FLDI measurements in circular flowfields. Computational FLDI
has also been used to perform parametric studies on the FLDI response to single-frequency
disturbances [50]. Furthermore, the ability of FLDI to probe through a noisy surrounding
field has been investigated using cFLDI, with the simulation of single-frequency waves [51]
and a DNS of a turbulent boundary layer above a wind tunnel model wall [52]. Further
applications for this methodology include, for example, verification of the correlations
between DNS calculations and a shock tunnel flowfield, or the validation of numerical
models of physical phenomena against experimental data.

In the present work, a high-speed turbulent boundary layer over a conical model with
cold walls is investigated experimentally and numerically, focusing on the frequency spectra
and the convection velocities, by means of multi-foci FLDI readings. Comparisons between
experimental FLDI data and a time-resolved LES computation calculated under equivalent
flowfield conditions are conducted. The measurements comprise several probing locations
in the wall-normal direction, inside the boundary layer and in the near-field above it. The
analyses aim at complementing the existing database, while also exploring the framework
of direct comparison between the experimental and numerical flowfields in terms of FLDI
quantities. Therefore, details are given concerning the experimental and numerical setups,
as well as the constraints of the comparisons. Furthermore, evidence is provided that the
FLDI instrument is capable of seeing through the shock tunnel nozzle shear layer.

The paper is organized in the following manner. Section 2 details the experimental
and numerical setups, including the shock tunnel conditions, measurement techniques,
LES solver and cFLDI algorithm. The experimental and numerical results are presented
in Section 3 and discussed in further detail in Section 4. Finally, Section 5 summarizes the
main findings of the present work.

2. Materials and Methods
2.1. Experimental Setup

The experimental data in this paper were obtained in the High-Enthalpy Shock Tunnel
Göttingen (HEG) of the German Aerospace Center [53]. The HEG is a free-piston-driven
shock tunnel capable of generating flowfield conditions equivalent to hypersonic flight
in the atmosphere, in terms of pressure and heat flux loads. Test times are in the order of
milliseconds, meaning that the walls of the test model remain cold during the test time
unless active wall heating is employed.

A total of seven identical shock tunnel runs with free stream Mach number 7.4 and
unit Reynolds number 4.2 × 106 m−1 were conducted. Table 1 details the observed free

3. Results and Discussion

60



Aerospace 2023, 10, 570 4 of 31

stream conditions. The HEG free stream conditions were derived following a calibration
procedure detailed in [53].

Table 1. Average HEG free stream conditions in this work, with corresponding standard deviations
in parentheses. Static conditions were computed with the TAU code and extracted at the center of the
nozzle exit plane.

p0 [MPa] T0 [K] h0
[MJ/kg] M∞ [-] Rem

[×106 m−1] p∞ [Pa] T∞ [K] ρ∞ [g/m3] u∞ [m/s] Tw/Tr [-]

19.0 (1.8%) 2609 (1.0%) 3.14 (1.2%) 7.4 (0.1%) 4.2 (0.8%) 2074 (2.0%) 252.1 (1.3%) 28.6 (0.9%) 2367 (0.5%) 0.11 (1.0%)

In the interest of allowing the flowfield investigated in this work to be fully reproduced,
further detail is provided in Appendix A. Spatially resolved properties are given therein,
based on a RANS solution of the nozzle flow obtained under the experimental conditions
measured in the present investigation. By using the dataset from Appendix A, the spatial
distribution of the free stream properties upstream of the conical shock produced by the
model can be reproduced within 0.1% error.

The investigated model is a 7◦ half angle at a 0◦ angle-of-attack and with a nose tip
radius of 0.1 mm. The model is instrumented with a line of 21 Medtherm coaxial type
E thermocouples. These sensors are distributed along a streamwise line on the surface
of the cone, facing the region probed with the optical techniques to be detailed. Heat
flux measurements derived from thermocouple data are used to monitor the state of the
boundary layer. Figure 1 shows the measured heat flux levels across all seven shock
tunnel runs. It is verified that the independent runs are able to produce flowfields that are
consistently similar. The experimental standard deviations at any given location are similar
across all runs. For clarity, they are suppressed for all but one run in Figure 1. The rise in the
heat flux values from approximately 400 mm to a higher plateau downstream of 600 mm,
accompanied by larger standard deviations, indicates the transition of the boundary layer to
a turbulent state. Due to the strong similarity between all runs, the measurements obtained
across the full shock tunnel campaign are combined to build a comprehensive overview
of the turbulent boundary layer, as will be further detailed in this work. The figure also
compiles the surface heat flux distribution obtained in the computational flowfield analyzed
in this work, together with a previous experimental distribution obtained in HEG [54],
which was used as a reference to set up the computations.

Additional instrumentation pertinent to the analyses in this work includes a Z-type
high-speed schlieren and a quad-foci Focused Laser Differential Interferometer (FLDI).

The schlieren system uses a Phantom v2012 camera and a Cavilux 640 nm laser
source, with the knife edge oriented parallel to the surface of the cone. The images are
acquired with a sampling rate of 57 kHz, which provides more than 100 frames within
the shock tunnel steady-state time. The visualization area is approximately 40 × 15 mm
(streamwise × wall-normal) centered around the FLDI probing location, with a spatial
resolution of approximately 24 pixels/mm.
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Figure 1. Surface heat flux density distributions along the model for all seven shock tunnel runs. For
clarity, the experimental standard deviations are suppressed for all but one run, and mean values
across all runs are shown with a black solid line. The x coordinate is measured along the axis of the
cone. Additionally shown are the distribution obtained in the LES used in the present work; the
laminar and turbulent distributions in the precursor RANS simulation; and a previous experimental
distribution obtained in HEG [54], which was used to define the boundary layer trip location in the
RANS simulation.

The schlieren images are primarily used to estimate the u99 boundary layer thickness
in each run. This is performed by noting that the location of the maximum curvature of
the wall-normal density distribution presents some proximity to that of 99% of the velocity
magnitude. High-speed conical laminar boundary layers on a cold wall under different
HEG free stream conditions have been computed using the TAU code in past works [55,56].
Analyses of these computations have revealed that the locations of maximum curvature in
density and 99% of the velocity magnitude are within 5% of each other. It will be seen in
the computational results in Section 3 of the present work that this relationship is degraded
in the turbulent boundary layer, with a difference of around 14%. This value gives rise to
measurement uncertainty, which should not be neglected, and it is therefore taken into
account when analyzing the present results. It will be shown in Section 3.1 that the obtained
boundary layer thickness estimates are still accurate enough for the purposes of this work.

Schlieren is used to estimate the boundary layer thickness as follows. The schlieren
knife edge parallel to the model surface yields illumination proportional to the first deriva-
tive of the flowfield density along the wall-normal direction. Hence, the differences in
pixel intensity along this same direction are representative of the second derivative of
density, and the maximum curvature is a peak in these values. A reference schlieren flow
topology image is obtained in each run as the average of all frames within the experimental
steady-state time. For every column in the image (wall-normal direction), a vector of
pixel intensity differences is obtained. The new image containing the distribution of the
wall-normal differences in pixel intensity is then smoothed with a moving average of 200
pixels across the columns (streamwise direction). In this final image, the peak value along
each column is marked as an approximation of the local u99 boundary layer thickness.
Finally, a linear regression is found using least squares considering all the points obtained
across the full schlieren field of view. The boundary layer thickness at the probing location
is calculated by evaluating the linear fit.

The estimates of the boundary layer thickness will be used in Sections 3 and 4 to non-
dimensionalize the FLDI probing positions in both the experimental and computational
cases. Table 2 shows the u99 boundary layer thickness δ obtained in each run in this work
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using the schlieren method above, together with the relative positions of the FLDI probes,
to be detailed next.

Table 2. Measured boundary layer thickness δ (approximate of u99) and relative wall-normal positions
of FLDI probes yF in each shock tunnel run.

Run # δ [mm] yF,lower/δ yF,upper/δ

1 5.10 0.069 ± 0.015 1.821 ± 0.074
2 5.37 0.283 ± 0.024 1.953 ± 0.051
3 5.23 1 0.447 ± 0.033 2.141 ± 0.064
4 5.21 0.568 ± 0.043 2.294 ± 0.091
5 5.27 0.839 ± 0.033 2.533 ± 0.059
6 5.21 1.167 ± 0.041 2.885 ± 0.070
7 5.18 1.471 ± 0.042 3.199 ± 0.078

1 There was no schlieren in this specific run; value obtained as the average of all others.

The experimental FLDI setup employed in this work is a quad-foci FLDI, with four
independent probes in a 2 × 2 arrangement along the perpendicular streamwise and wall-
normal directions. The streamwise pairs are used to obtain convection velocity estimates.
The wall-normal splitting allows measurements of velocity and frequency spectra at two
distances from the model wall simultaneously in each shock tunnel run.

The main characteristics of the quad-foci FLDI are listed in Table 3, in which λ is
the laser wavelength, D4σ is the maximum beam width at the field lenses and d is the
distance between the field lenses and the focus of the system. The separation between the
interferometric pairs is denoted by ∆x1 and measured by analyzing the response of the
system to a weak lens, as described in [33,57]. The separation between the independent
FLDI probes in the streamwise direction, ∆x2, is measured using the weak blast wave
approach described in [58]. Finally, the separation between independent FLDI probes in
the wall-normal direction, ∆y, is measured by means of direct imaging using the schlieren
camera with a semi-transparent stopper at the focus of the FLDI.

Table 3. Quad-foci FLDI setup information.

λ [nm] D4σ [mm] d [m] ∆x1 [µm] ∆x2 [mm] ∆y [mm]

532.3 45 1.920 89.94 ± 1.14 1.937 ± 0.006 ≈8.9

In order to allow simultaneous schlieren measurements in every run, the FLDI is
used with an angle of 2◦ with respect to the spanwise direction. This angle is considered
when calculating the convection velocities. Nonetheless, the 2◦ yaw represents a maximum
streamwise difference of only 2.3 mm between the right and left edges of the intersection
between the FLDI axis and boundary layer under the conditions investigated in this work.
Therefore, the angle will be disregarded in the interpretation of the frequency spectra in
Section 4.

The splitting and recombination of beams for interferometry is obtained using a pair
of Sanderson prisms [59], which is calibrated using the lens approach detailed in [33,57].
The Sanderson prism is oriented such as to split the interferometric pair in the streamwise
direction. The selected interferometry distance ∆x1 seen in Table 3 is chosen so as to
maximize the frequency bandwidth of the instrument, while still presenting a sufficient
signal-to-noise ratio, based on previous HEG tests under similar conditions. The Nyquist
frequency of the FLDI in the flowfield conditions investigated in this work is estimated as
approximately 10 MHz.

The FLDI laser source is an Oxxius LCX-532S DPSS. The beam intensity is detected
using a Thorlabs DET36A2 photodetector of nominal bandwidth 25 MHz. The photodetec-
tors are connected with 50 Ω termination to an SRS SR445A DC-350 MHz preamplifier with
25× amplification. The resulting signals are recorded on an AMOtronics transient recorder
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with DC coupling and a 100 MHz sampling rate. Conversion of the recorded voltage into
the FLDI phase difference is performed following [60]. Prior to each shock tunnel run, the
FLDI is adjusted to half the maximum output value, for optimal sensitivity.

The duplication of the FLDI probe in the streamwise direction is achieved using a 2◦

Wollaston prism, as detailed in [58]. In the wall-normal direction, a second pair is obtained
using the combination of a non-polarizing beamsplitter cube and a convergent lens of focal
distance 400 mm near the laser source, as shown in Figure 2. A half-waveplate is used
before the streamwise splitting to adjust the beams to similar power levels, such that all
instruments present similar signal-to-noise ratios. The optical setup is such that the two
FLDI probes that are closer to the model wall are slightly more powerful than the other
two, but the powers of each streamwise pair of probes are identical.

The attention given in [58] to the production of parallel FLDI probes aiming at reliable
convection velocity correlations is retained here. Therefore, the additions illustrated in
Figure 2 are conceived such that all beams cross the center axis of the instrument at the
focal distance of the field lens, where the Sanderson prism is located.

Figure 2. Emitting side schematic of quad-foci FLDI with parallel beams in the probing region.
Optical components responsible for the wall-normal system duplication are highlighted in red. Beam
colors denote the center lines of independent FLDI probes (beam splitting for interferometry at the
Sanderson prism not shown, for clarity). Parallel lines represented in close proximity to one another
are overlapped in reality. Optical components that do not affect the beam paths in each view are
represented using dashed lines. (a) Side view. (b) Top view.

In all shock tunnel runs, the FLDI setup is positioned 825 mm downstream of the
cone tip, measured along its axis. As highlighted in Figure 1, this location is approximately
200 mm downstream of the boundary layer transition region. This distance is chosen such
that a turbulent boundary layer with well-developed features is probed.

In the wall-normal direction, the FLDI position is varied between runs, to compose a
broad picture of the spectra and convection velocity distributions. The locations are listed
in Table 2, comprising 5 stations fully inside the boundary layer, 4 stations between one
and two times the boundary layer thickness and another 5 above this. Measurement of
the wall-normal locations is performed by imaging a semi-transparent stopper at the focus
of the FLDI with the schlieren camera, using additional lenses for improved resolution
and a calibration target to provide a dimensional reference. The associated level of uncer-
tainty (see Table 2), while not negligible, is considered tolerable when using the measured
quantities as approximate wall-normal probing locations.

3. Results and Discussion
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Frequency spectra from the FLDI measurements are calculated using Welch’s method
with segments of 214 points and 50% overlap, on a 2 ms time window during steady state.
The velocity estimates are obtained through cross-correlation between the streamwise-
separated pairs of FLDI probes, using the same 2 ms time window, but divided into
20 segments of 0.1 ms each with no overlap. This is done so that small fluctuations within
the steady state are detectable, and the experimental uncertainty may be calculated.

2.2. Computational Tools
2.2.1. LES Solver

In the LES, Favre-filtered Navier–Stokes equations are solved via a six-order compact
finite difference code originally developed by [61] and now under continued development
at Purdue. The Quasi-Spectral Viscosity (QSV) approach [62] is used for turbulence closure.
The time integration is carried out via a four-stage third-order strong stability preserving
(SSP) Runge–Kutta scheme [63]. To ensure stability, the conservative variables are filtered
using the sixth-order compact filter described by [64], with a filter coefficient of 0.495.

Only the turbulent region under the shock is simulated in the present LES. The
computational domain, illustrated in Figure 3, extends from 596 ≤ x ≤ 903 mm, with x
measured along the cone wall. The azimuthal extent of the domain is 18 degrees. The
domain height is 29 mm at the inlet and 44 mm at the outlet. The number of grid points
is Nx × Ny × Nθ1 = 1280 × 128 × 112. Mean profiles at the inlet are given by a RANS
simulation with the Spalart–Allmaras (SA) model [65]. The transition location for the
RANS calculation is chosen by matching the experimentally observed beginning of the
transition process. The heat flux profile of the RANS calculation shown in Figure 1 is
different from experimental data around x = 400 mm because the SA model does not
reproduce the intermittency of the transition process. However, the magnitudes agree
well with the experiment in the turbulent region. At the wall, an isothermal and a no-slip
boundary condition are imposed with a wall temperature of 300 K. The flow properties at
the upper boundary are analytically derived via the Taylor–Maccoll inviscid solution [66].
To generate realistic inflow turbulence, turbulent fluctuations are extracted at x = 834 mm
and imposed at the inflow by a rescaling method [67]. The recovery length, investigated
in [68], has been found to be sufficiently short so as not to affect the region where cFLDI
is carried out. At the outlet, a homogeneous Neumann condition is imposed for all flow
quantities. In addition, sponge layers are used at the inlet, outlet and upper boundaries.
The lengths of the sponge layers at the inlet and outlet are 3% of the total computational
domain extent in the streamwise direction. At the upper boundary, it is 5% of the wall-
normal extent.

2.2.2. Computational FLDI

The direct comparisons between experimental and numerical results in Section 4 will
be performed using the FLDI output of phase difference, ∆Φ. The means to obtain this
quantity on the LES is through computational FLDI (cFLDI). This algorithm is based on the
ray-tracing model presented in [44], with further improvements detailed in [48]. A detailed
description of the cFLDI algorithm used in the present work is presented in [49]. That work
also validates the implemented cFLDI, using measurements on the flowfield generated by
a weak blast wave. A summarized overview is presented next, for clarity.

The cFLDI algorithm simulates the behavior of light rays crossing a transparent volume
containing density gradients. Variations in local density ρ cause changes in the refraction
index of the medium, which is perceived by the light rays as a change in the optical path.
When two monochromatic and coherent light rays travel different optical paths, a phase
difference ∆φ between them is produced [69]. This is the phenomenon by which FLDI
extracts information from a given flowfield.
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Figure 3. Schematic of the present QSV-LES of a hypersonic boundary layer over a cone with
rescaling. Streamwise velocity contours are shown in wall-parallel direction and cross-flow planes
show streamwise velocity fields; magnitude of the flow density gradient is shown in a side plane.

In the cFLDI, the two orthogonally polarized beams that compose one FLDI instrument
are discretized into a finite number of rays. Each ray in one beam has a corresponding
pair in the other. After crossing the full probing volume, every pair of rays will present a
phase difference between them, caused by the slightly different density fields. This phase
difference is

∆φ =
2πK
λ0

( ∫

C1

ρ(s1) ds1 −
∫

C2

ρ(s2) ds2

)
, (1)

where λ0 is the laser light wavelength, K is the Gladstone–Dale constant (K = 0.227 ×
10−3 m3/kg for λ0 = 532 nm) and Ci are the spatial paths traveled by the beams, paramet-
rically described by si.

When the light rays are recombined on the receiving side of the FLDI, the phase
difference between them modulates the light intensity. The FLDI instrument is always
configured such that the resulting intensity is a mean value plus a fluctuating component,
which is modulated by sin(∆φ), for maximum sensitivity. Finally, the light intensity
detected by the FLDI instrument is a scalar value corresponding to the combination of all
light rays, weighted by the beam intensity distribution across its area. The FLDI in this
work uses circular beams with an approximately Gaussian intensity distribution. Therefore,
rays are described using radial r and angular θ coordinates, and the beam intensity profile
is given by Ĩ0(r̃) = 2π−1 exp (−2r̃2). The tilde denotes normalized variables, such that
the integral of Ĩ0 over the full area of the beam is unity. The radial coordinate follows
the normalization by the local 1/e2 beam radius suggested in [44], with r̃ = 2 containing
99.99% of the beam energy.

The equivalent phase shift ∆Φ corresponding to the integrated light intensity detected
by the FLDI is hence given by

∆Φ = sin−1
( ∫∫

D
Ĩ0(r̃, θ) sin

(
∆φ(r̃, θ)

)
dr̃ dθ

)
, (2)

with ∆φ(r̃, θ) given by Equation (1).
Equation (2) provides a scalar value that is directly comparable to the experimental

output of the FLDI instrument, minimally post-processed to convert the voltage into a
phase difference.

3. Results and Discussion
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In the ray-tracing approach described above, the mesh used in the cFLDI presents a
particular shape as the number of nodes is fixed in the cross-section of the beam, and the
area across which they are distributed assumes a minimum value at the focus of the system.
As such, it becomes necessary to interpolate the numerical flowfield density values on the
cFLDI nodes. Linear interpolation is performed in the LES rectangular coordinates to allow
the use of fast algorithms. The LES system is defined such that the y planes run parallel to
the cone wall, with the z-coordinate being the azimuthal angle, θ1 (not to be confused with
the FLDI angular coordinate, θ). In this reference system, FLDI draws a curved path, as
shown in Figure 4.

Figure 4. Illustration of the computational meshes, in LES rectangular coordinates. (a) Front view,
FLDI: blue dots, LES: gray lines. (b) Isometric view in the vicinity of the edge of the LES domain,
FLDI: blue and orange lines, LES: gray lines and dots.

A mesh dependence analysis is performed before using cFLDI for comparisons be-
tween the numerical and experimental flowfields. The analysis is performed in a concise
way, by selecting a probing height and a subset of the simulated time domain that are
representative of the worst-case scenario. The strongest density fluctuations are observed
in the upper portion of the boundary layer, between 3 and 6 mm from the model wall.
Without loss of generality, the height of 4 mm and the time span of 0.8 ≤ t ≤ 0.9 ms
are chosen.

The cFLDI is discretized into uniformly distributed planes along its optical axis z. For
the cross-section coordinates (r̃, θ), the angular step ∆θ is defined by the number of equally
distributed points along the circumference nθ . The approach suggested in [44] is adopted,
by which ∆r̃ is calculated as a function of ∆θ such that each mesh cell conserves an aspect
ratio close to unity.

Looking first at the discretization along the optical axis of the cFLDI, the LES mesh
presents a ∆zLES = 286 µm at the Cartesian center plane. Comparison of the cFLDI
simulations using ∆zcFLDI = 2 · ∆zLES down to ∆zcFLDI = ∆zLES/4 has shown negligible
variation. Conservatively, a ∆zcFLDI = ∆zLES/2 is kept, to ensure that any fluctuations
resolved by the LES will be adequately interpolated in the cFLDI.

For the cross-section coordinates, several values for nθ were evaluated. Figure 5
shows the obtained results. The cFLDI values are given in terms of density derivatives,
which are obtained in a simple fashion using the known integration length provided by
the LES domain to convert FLDI ∆Φ into a ∆ρ estimate. This is done so that a broad
comparison may be drawn between the cFLDI output and a similar quantity that may be
easily extracted from the LES, namely the dρ/dx integrated along a zLES line of constant
yLES. This represents a straight horizontal line in Figure 4a, at the same height as the focus
of the FLDI. Figure 5 shows that this simplified quantity and the cFLDI output are not the
same, but have similarities. This will be further explored in Section 3.
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Figure 5. Overview of the convergence analysis. The large plot shows the evaluated cFLDI cases,
and the results from a simple line integral along the LES azimuthal direction. The detail shows the
observed differences between the different cFLDI meshes.

Figure 5 shows that all the evaluated values of nθ produce similar outputs. This is
not surprising, given that the cFLDI mesh is naturally significantly finer than the LES one,
particularly in the streamwise direction. Nonetheless, small differences can be seen in the
detail. Using the finest evaluated mesh (nθ = 288) as a reference, a zero-lag cross-correlation
between its results and those from the remaining meshes is used to select the nθ to be used
in the analyses in this work. With nθ ≥ 72 (four times coarser), a cross-correlation value
larger than 0.99 is obtained. It is therefore selected as representing a converged mesh, each
beam containing 89 × 72 × 236 points (r̃ × θ × z). This mesh is illustrated in Figure 4b,
together with the LES points.

3. Results
3.1. Experimental Data

The frequency spectra measured with FLDI in the experiments are compiled in Figure 6.
The two gray lines correspond to the FLDI response shortly before flow arrival, as a
reference of the noise floor of each streamwise pair of probes. The noise floor levels
are slightly different due to the small power difference between the wall-normal pairs
mentioned in Section 2.1. Flowfield measurements obtained across all shock tunnel runs
are shown with different colors.

Two well-defined groups of spectra are seen in the figure. First, measurements ob-
tained above approximately two times the boundary layer thickness present little variation,
collapsing together. This reiterates the repeatability of the multiple-run experiments and
indicates an upper limit for the turbulent boundary layer influence. These results are in
agreement with the hot-wire measurements of supersonic turbulent boundary layers in [12],
where it is observed that fluctuations in the free stream do not become constant up to two
boundary layer thicknesses away from the wall. Moreover, in the DNS investigation of a
Mach 14 turbulent boundary layer in [18], the spectral distribution of pressure disturbances
is very similar, between 1.57 and 3.63 times the boundary layer thickness. Additionally,
in the cFLDI investigation of a Mach 5.86 turbulent boundary layer DNS in [52], the RMS
of the phase difference is observed to be constant only above 1.56 times the boundary
layer thickness.

3. Results and Discussion

68



Aerospace 2023, 10, 570 12 of 31

The second group of spectra in Figure 6 concerns measurements fully inside the
boundary layer. They present uniformly higher levels than the free stream, with the probe
closest to the model wall (y/δu99 = 0.069) detecting marginally smaller amplitudes than
the others. Although the coarse distribution of the measurement locations does not allow a
precise observation, the region of maximum fluctuation in energy seems consistent with
the 75% of the boundary layer thickness verified in the hot-wire measurements of the Mach
7.2 turbulent boundary layer in [28].

Figure 6. Experimentally measured spectra of FLDI output ∆Φ. Data along a common wall-normal
axis starting at the wall, with positions normalized by the thickness of the boundary layer measured
in each respective run. The gray lines are flow-off references, obtained from the FLDI response before
flow arrival.

Below 100 kHz, all measurements register similar amplitudes. However, this is not
to be interpreted as a flowfield characteristic. In this frequency range, the corresponding
wavelengths are comparable to the maximum FLDI beam width in the test section, for the
setup used in this work. Therefore, it is possible that contributions from the noisy shear
layer surrounding the core flow are the cause of the overlap. This is to be further discussed
in Section 4. Conversely, the higher end of the spectrum shows that the FLDI is capable
of detecting disturbances with magnitudes above the noise floor, up to nearly 10 MHz.
This is both a testament to the capability of the technique and an indication of the scales of
energy-carrying density disturbances. At approximately 2 km/s, 10 MHz corresponds to a
disturbance wavelength of 200 µm.

In the simplified case of neglecting the FLDI wavenumber-dependent sensitivity, the
straightforward conversion of the FLDI phase differences into arbitrary units of density is
possible. In this simplification, the phase differences ∆Φ are proportional to the density
differences ∆ρ (or, in the limit, its derivative dρ). Therefore, the spectra of phase differences
S∆Φ(ω) and density Sρ(ω) are related as S∆Φ(ω) ∝ ω2Sρ(ω) [70]. Caveats of this approach
will be presented with the discussion in the next section. The results of this simplified
conversion using ω2 deconvolution are presented in Figure 7, together with lines repre-
senting reference power slopes. The density power spectra from Figure 7a are repeated
in Figure 7b with the compensation of −11/3 power to facilitate the visualization of the
slopes. In Figure 7b, the rise in the free stream spectra starting at 3 MHz corresponds to the
effect of the power compensation on the noise floor and should be ignored.
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Figure 7. Spectra of density, calculated using ω2 deconvolution from experimental FLDI measure-
ments. Data along a common wall-normal axis starting at the wall, with positions normalized by the
thickness of the boundary layer measured in each respective run. (a) Spectra. (b) Spectra compensated
for f−11/3 slope.

The convection velocity measurements obtained from the cross-correlation of signals
from the FLDI streamwise pairs are shown in Figure 8. Prior to cross-correlation, the FLDI
signals are high-pass-filtered as shown in the legend. This will be further discussed in
Section 4.1. Estimated uncertainties of the probing location are represented with vertical
bars. They take into account both uncertainties pertaining to the measurement of the
location of the FLDI probes with respect to the model wall and the uncertainty of the
experimental measurement of the boundary layer thickness. The former are shown in
Table 2, while the latter was estimated upon inspection of the LES results to be shown
in Section 3.2. The resulting probing location uncertainties are within reasonable bounds
to allow the verification of the overall behavior of the convection velocities across the
boundary layer. The horizontal uncertainty bars represent the standard deviation of the
20 independent calculations on experimental data using 0.1 ms time windows, as mentioned
in Section 2.1. The measurements are verified to generally present little fluctuation within
steady-state time, at less than 1% inside the boundary layer and around 1.5% in the free
stream. The exception is the point at approximately 1.5 times the measured boundary
layer height, which presents a 5% fluctuation. This is attributed to the intermittent passage
of turbulent spots at this height, which could be observed in the schlieren images (not
shown here).

The convection velocities are verified to be larger than the mean velocity close to the
wall and smaller everywhere else. This is in agreement with the convection velocities in
a Mach 7.2 turbulent boundary layer presented in [28], in which the limiting height for
this inversion was measured to be approximately 15% of the boundary layer thickness.
Moreover, in [28], the maximum convection velocities were approximately 0.9 · u∞, similar
to the results presented here, although, near the wall, the measured values were as low
as 0.6 · u∞. This discrepancy may be caused by the combination of two factors. First, the
wall-to-recovery temperature ratio influences the convection velocity magnitudes near the
wall, as seen in the velocity distributions from [4,19] plotted in Figure 8. In [28], this ratio
is approximately 0.5. Second, it is possible that the integrating characteristic of the FLDI, to
be further explored in Section 4, may bias the results very close to the model wall.

3. Results and Discussion
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Figure 8. Measured convection velocities Ub across the hypersonic turbulent boundary layer. Mea-
surement locations are indicated as distances to the model wall, normalized with the boundary
layer thickness in each run. Uncertainty bars of measurement locations combine the uncertainties of
position and boundary layer thickness measurements, shown for a single dataset for clarity. Velocities
are normalized with the nominal flowfield velocity at the edge of the conical boundary layer. The
mean velocity profile ū from the LES in the present work is shown as a reference. Experimental Ub
measurements based on density disturbances, high-pass-filtered over given frequencies. DNS data
from [4,19] based on pressure disturbances on a flat plate with lower free stream Mach number are
plotted for comparison.

The velocity results shown in Figure 8 allow an estimation of the convection velocity
of the density fluctuations in the free stream above the conical boundary layer. The average
of these measurements in the case of the lowest high-pass frequency (200 kHz) is plotted
in Figure 9 against the bulk velocity of pressure fluctuations available in the literature.
In the figure, Mr = (u∞ − Ub)/a∞, with a∞ denoting the speed of sound in free stream
conditions. The region below the line where Mr = 1 pertains to disturbances convecting
supersonically with respect to the free stream. The convection velocity measured in the
present work, which falls within such a region, together with previous investigations, offers
further evidence of the dominance of ‘Mach-wave-type’ acoustic radiation in the supersonic
free stream [4,9,12,71].

3.2. LES Data

The time-resolved numerical solution was simulated for a total flowfield time of
1.43 ms. In the conditions studied in this work, the rescaling–recycling flowthrough time
is approximately 0.1 ms. The mean boundary layer profiles are observed to undergo
significant changes during the first cycles of rescaling–recycling. The steady-state time of
the turbulent boundary layer is assessed by analyzing the wall shear stress over time, shown
in Figure 10. A smoothed signal is shown on top of the raw data, to facilitate qualitative
observations. The low-frequency, high-amplitude variations until approximately 0.4 ms
are evidence of the settling process. Conservatively, the time range below t = 0.43 ms,
marked with a dashed vertical line in the figure, is considered to be a transient settling time
and is therefore discarded from the present study. The remaining simulated time, which
comprises a total of 1 ms within 0.43 < t ≤ 1.43 ms, is detailed and analyzed next.
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Figure 9. Comparison of free stream convection velocities for a wide range of Mach numbers.
Literature data refer to convection velocity of pressure disturbances, from experiments [12] and
DNS [4,9,19,21].

Figure 10. LES wall shear stress over time. Raw and smoothed data are shown. The vertical dashed
line at t = 0.43 ms marks the beginning of the time range considered for analysis in the present study.

An illustration of the computational flowfield is shown in Figure 11, with a slice of
time-varying density contours as they travel across a reference location. The slice has a
constant wall-normal distance inside the boundary layer and a fixed streamwise position,
with the azimuthal direction represented in the figure’s y-axis and time along the x-axis.
A subset of the total time is shown, for clarity. This representation illustrates how the
flowfield is perceived by an observer at a fixed position, such as the FLDI.
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Figure 11. LES time-resolved contours of density on a slice of constant wall-normal coordinate
y = 4 mm, with the LES azimuthal direction along the y-axis and time along the x-axis. A subset of
the computational steady-state time is shown.

Figure 12 shows the LES mean distributions of streamwise velocity, density, pressure
and temperature, averaged over both time and the azimuthal coordinate. The boundary
layer thickness δu99 based on 99% of the free stream velocity is annotated, as well as
the location where the second difference in density is the maximum. As mentioned in
Section 2.1, the latter is the quantity used to estimate the experimental boundary layer
thickness from schlieren observations. Figure 12 shows that there is a difference between
this and the true δu99 of approximately 14%. This mismatch between the two quantities is
considered when estimating uncertainties for the experimental measurements shown in
Section 3.1.

Figure 12. Mean boundary layer profiles from LES. Values correspond to azimuthal averages,
normalized by their values at y = 10 mm. The boundary layer thickness δ corresponding to 99% of
the streamwise velocity magnitude is annotated. The location of the maximum second difference in
density is highlighted with a “+” sign. The mean value of the experimentally measured boundary
layer thicknesses is also represented for reference.

Nonetheless, when comparing the boundary layer thickness in the LES (Figure 12)
and experiments (Table 2), a difference of nearly 20% is observed. Despite this difference,
the numerical boundary layer is obtained such that turbulence is fully developed and the
heat flux magnitude is comparable to the experimental data. Therefore, when comparing
experiments and computations in Section 4, the wall-normal coordinate is normalized by
the boundary layer thickness in each case.

The frequency spectra of the azimuthally averaged density at the same relative posi-
tions as the experimental FLDI probes are compiled in Figure 13. To calculate the spectra,
the time-resolved LES flowfield data are first averaged along the azimuthal direction. Then,
the time-varying density values at a given distance from the wall are extracted and the
spectral estimate is computed. The time-resolved azimuthal average of density represents
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the simplest approximation of the FLDI. Differences may be observed between these spectra
and the corresponding experimental data in Figure 7. In the low-frequency range up to
approximately 100 kHz, the experimental data follow −7/3 power, while the LES data
do not, starting to present this slope for larger frequencies only. Furthermore, the LES
boundary layer data roll off from the −11/3 power slope shortly above 1 MHz, while
the experimental counterparts seem to follow this slope until at least 2.5 MHz. These
differences will be analyzed in Section 4.

Since the FLDI outputs a spatial differential measurement, the spectra of the first differ-
ences in density dρ along the streamwise direction are plotted in Figure 14. This is a more
directly comparable quantity to FLDI measurements. The differential density is extracted
from the LES flowfield using values from adjacent grid planes in the streamwise direction.

Figure 13. Power spectral distribution of azimuthally averaged LES density, at wall-normal locations
corresponding to the experimental probes.

Similarities to the experimental results previously shown in Figure 6 can be seen, such
as the increased magnitudes when inside the boundary layer and the two distinct groups
of spectra. Nonetheless, similarly to the density spectra, differences can be observed in
terms of roll-off, especially for frequencies above 1 MHz. This is both an effect of the
streamwise resolution of the numerical grid, which limits the wavelength that can be
resolved, and the artificial damping necessary to provide stability to the numerical solution.
The identification of such constraints is the main goal of Section 4.3.

Convection velocities are calculated on the numerical flowfield for comparison with
the experiments. Time-resolved data at the same relative positions as the experiments
are extracted and cross-correlated to determine the convection velocities. The flowfield
variables are averaged along the LES azimuthal direction, for better comparison with
FLDI measurements. Cross-correlation is performed with signals from streamwise planes
separated by approximately the same distance ∆x2 of the experimental FLDI velocimetry
pair. Similar to the experimental case, velocity measurements are obtained in subsets of
0.1 ms and combined into an average value. The results of convection velocities obtained
from density and pressure signals are shown in Figure 15. The high-pass filtering used
in the experimental case is also repeated here. When filtering above 1 MHz outside the
boundary layer, the resulting signal retains little of the simulated flowfield (see the spectral
amplitudes in Figure 13). The velocity measurements in such cases are therefore discarded.
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Figure 14. Power spectral distribution of the first spatial differences along the streamwise direction of
azimuthally averaged LES density, at wall-normal locations corresponding to the experimental probes.

Figure 15. Convection velocities across the LES hypersonic turbulent boundary layer, based on
(a) density and (b) pressure disturbances. Annotations shown in (a) are also valid for (b). Wall-
normal distances along the x-axis are normalized by the LES boundary layer thickness δu99. Velocities
in the y-axis are normalized with the flowfield velocity at δu99. The mean velocity profile ū is shown
as a reference. DNS Ub data from [4,19] based on pressure disturbances on a flat plate with lower free
stream Mach number are plotted for comparison.

3.3. Computational FLDI

Computational FLDI (cFLDI) was simulated on the LES flowfield, at the normalized
positions corresponding to the experimental probes. The spectral distributions of the cFLDI
probes are shown in Figure 16.
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Figure 16. Spectra of cFLDI output ∆Φ, at wall-normal locations on the LES flowfield corresponding
to the experimental probes.

In this figure, the y-axis is set to display the same number of decades as Figure 14.
Despite the different dimensional units of the time series, namely kg/m3 in Figure 14 and
radians in Figure 16, it is possible to notice strong similarities in the spectral distributions.
This will be further explored in Section 4.5.

4. Discussion
4.1. Velocity Measurements

Figure 8 shows that the distributions of the convection velocities of density distur-
bances are overall similar to the DNS results of [4,19], with a larger velocity in the boundary
layer and a rather significant drop in the free stream. The maxima and free stream values
are also close.

Despite the agreement in shape, however, the experimental results show evident
displacement towards the free stream. This may be an effect of the different wall-to-
recovery temperatures. There is also a difference in the velocity distribution very close to
the wall. In addition to the different wall temperature, the finite FLDI-sensitive length and
probing along a secant line through the boundary layer might cause this effect. In order to
probe very closely to the wall, the FLDI must cross through the entire boundary layer. In
the present setup, the length of the intersection between the FLDI and the boundary layer is
approximately 60 mm. As demonstrated in Figure 17, the spatial filter effect of the present
FLDI within this distance is small for frequencies as high as 1 MHz. It is therefore subject
to accumulated contributions from regions of strong density fluctuation in the vicinity of
the focal plane. This is further indicated by the distribution of the convection velocities in
the LES results in Figure 15, which do not share this issue and follow the results in [4] more
closely near the wall.

The velocity distributions shown in Figure 8 evidence an overall distinction between
the convection velocity of the density disturbances and the local mean flowfield velocity.
The departure is greater in the free stream than in the boundary layer, but the boundary
layer effect is still noticeable, at least up to 1.5 times of its thickness. Furthermore, dis-
turbances of different sizes, which correspond to different frequency bounds in Figure 8,
convect with similar velocities in the boundary layer. In the free stream, smaller distur-
bances (higher frequencies) convect slightly slower than larger ones (lower frequencies).
However, the influence of the boundary layer extends further into the free stream for
smaller disturbances than for larger ones.
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The numerical results in Figure 15 show that the convection velocities based on
pressure fluctuations in the boundary layer are comparable with the experimental mea-
surements. This also holds for large disturbances in the free stream for both density and
pressure, within a small difference. Conversely, the boundary layer density disturbances
in the LES convect at larger velocities than the experimental and LES pressure-based
velocities. Additionally, smaller disturbances of both pressure and density in the LES
present increasingly larger convection velocities farther away from the model wall, unlike
the experimental measurements. These discrepancies require additional analyses of the
numerical solution, which are beyond the scope of the present work.

The addition of this work’s experimental mean free stream convection velocity to the
dataset in Figure 9 allows the verification that the velocity measurements based on density
fluctuations yield comparable values to existing pressure-based ones. When considering
the extrapolation of the literature points, a slight upward offset of the present measurement
can be seen. This agrees with the trend observed in the two similar DNS points of M = 5.86,
in which a colder wall corresponds to a larger eddy convection velocity.

The observed agreement between the convection velocities of pressure and density
disturbances is an expected result, since the free stream flowfield can be regarded as
isentropic. Nonetheless, contrary to other methods, such as DNS or intrusive experimental
devices that measure localized quantities, the FLDI is an integrating instrument. Therefore,
the verification that the FLDI measurements are similar to other available data despite this
fundamental difference is an important result. It indicates that the existing database of bulk
velocity information may be complemented with multi-foci FLDI measurements.

4.2. Spectra of Density Fluctuations

The spectra of density fluctuations shown in Figure 7 allow the observation of the
energy cascade of the density disturbances. In an environment dominated by acoustic
disturbances, the flowfield is isentropic and thus pressure and density fluctuations are
correlated by a constant (square of the sound speed). Therefore, it makes sense to analyze
the energy cascade detected by the FLDI in light of the expected behavior of pressure, as a
first approximation. The power laws for pressure spectra are represented together with the
experimental density data in the figure, for reference.

In [72], power laws are derived for the spectral distribution of pressure fluctuations in
a shear flow. Interactions of the turbulence–turbulence type are found therein to follow a
f−7/3 decay, while turbulence–mean shear interactions decay as f−11/3 (second moment)
and f−3 (third moment). The two latter decays are experimentally observed in the den-
sity spectra of a Mach 2 shear layer in [8] and associated with isotropic and anisotropic
turbulence, respectively. Nevertheless, in the mentioned work, anisotropic turbulence
was observed at low-to-moderate wavenumbers, with power laws measured between 2.9
and 3.2, while isotropic turbulence was found at high wavenumbers. The f−11/3 decay
has also been experimentally observed in the Mach 6.1 free stream pressure fluctuation
measurements of [73].

The turbulence–turbulence f−7/3 decay is analogous to Kolmogorov’s −5/3 power
law for velocity [30] and relates to acoustic disturbances (eddy Mach waves). It has been
experimentally observed in the farfield of a Mach 4.5 turbulent boundary layer in [12].
More recent DNS studies have also detected the f−7/3 slope at the wall of a transonic
turbulent boundary layer with an adverse pressure gradient in [74] and in the Mach 2.5
free stream above a turbulent boundary layer in [9]. It must be noted, however, that this
slope was not present in the DNS investigation of a Mach 5.86 turbulent boundary layer
in [4]. A scaling value of power −5 is mentioned in [4,74] and attributed to sources in the
inner region of the turbulent boundary layer.

It is seen in Figure 7 that the experimental spectra of density fluctuations obtained
in the present work follow the power laws to some extent. Both the free stream and the
boundary layer have regions described by these scalings, albeit within different frequency
ranges. A rather large region following the −7/3 power slope is seen for both the boundary
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layer and free stream. This indicates a significant contribution of acoustic disturbances to
the turbulent energy. It may be related to the noisy shock tunnel environment [75], which
is dominated by acoustic disturbances, but only partially, as it is also present in the LES
spectra in Figure 13. Interestingly, the −5 power slope is well defined in measurements at
distances more than two times the thickness of the boundary layer. Since this behavior is
linked to boundary layer sources, this could be an indication of energy emission into the
free stream. However, given that the source of the f−5 slope is found to the sublayer region
below z+ = 20 [4], more intricate phenomena would then be responsible for allowing this
to reach the free stream, the investigation of which is beyond the scope of this work.

Although these observations are useful to provide insight into the mechanisms gov-
erning the energy cascade in hypersonic flowfields, they must be interpreted with caution.
As mentioned in Section 3.1, the spectral distribution of densities was obtained by assum-
ing direct proportionality between the FLDI phase differences and the flowfield density
fluctuations. This hypothesis neglects the wavenumber-dependent sensitivity length of
the FLDI. The simplification is reasonable for low frequencies up to a certain threshold, as
it can be seen in Figure 13 that the density spectra directly calculated from the numerical
flowfield also agree with the −7/3 power in an intermediate range of frequencies.

However, in order to correctly convert the high end of the FLDI spectrum, more
sophisticated approaches are needed. Furthermore, the threshold to use the simplified
approach of merely deconvolving ω2 on the FLDI data is not easily defined. The following
sections discuss computational FLDI as an alternative solution for direct comparison be-
tween experimental and numerical results. Once the comparison is established, it becomes
possible to take advantage of the insight given by the numerical investigation without the
need to directly address the complexity of the experimental measurement instrument.

4.3. Constraints for Experimental and Numerical Direct Spectral Comparison

For direct comparisons between computational and experimental FLDI results, it is
important to consider the limitations pertinent to each environment.

In the experiments, the FLDI instrument must run through a noisy shear layer that
surrounds the core flowfield. The wavenumber-dependent sensitivity length of the instru-
ment is well explored in [33]. It is such that high-frequency content is only detected near
the center plane, but the lower end of the spectrum is detected along the entire optical
axis. Therefore, the shear layer imposes a lower limit on the useful frequency response of
the FLDI, below which the measurements are dominated by shear layer content [11,52].
However, the limit is not a well-defined value, as the FLDI response to a disturbance of a
given wavenumber rolls off continuously away from the center plane.

A methodology to assess the lower bound of the FLDI bandwidth in the presence of
strong disturbances surrounding the flowfield is presented in [76]. The method is based
on a ratio of sensitivity functions between the volume of interest and the noisy region,
and it uses the transfer functions of the FLDI instrument and assumptions on the average
amplitudes of disturbances across the probed volume. This approach has been applied to a
test case of free stream measurements through a nozzle shear layer in [11]. In the present
work, a simplified approach is chosen, aiming at a plane-by-plane analysis, as will be
shown. This is a less conservative approach than the more complex method of [76], but is
preferred in this work for two main reasons. First, it does not require explicit assumptions
on the spatial distribution of disturbance magnitudes. Second, for the present case, at the
same time that the direct contribution of the shear layer to the FLDI signal is constrained to
the edges of the flowfield volume, the total width of the shear layers is comparable to the
length of the intersection between the FLDI and the turbulent boundary layer. This means
that the contribution of a signal either in the shear layer or in the boundary layer will be
similar in terms of spatial integration. Nonetheless, the FLDI filtering effect away from
the focus will cause the damping of the amplitudes at the location of the shear layer. This
damping is evaluated using transfer functions as follows.
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The FLDI transfer function is defined as the ratio between the spatial derivative
measured by the instrument and a true spatial derivative of the same disturbance field.
As explored by many authors [33,44,45,76], a useful reference disturbance field is a single-
frequency sinusoidal wave of infinitesimal thickness. The transfer function representing
the FLDI spatial filtering in this case is

Hw(k) = exp
(
−w2k2

8

)
, (3)

where w is the local FLDI beam radius and k is the wavenumber of the sinusoidal wave,
which relates to frequency f and convection velocity Ub as k = 2π f /Ub. The use of this
formulation to evaluate the FLDI wavenumber-dependent sensitivity length has been
experimentally validated in [45], through analyses of multiple ultrasonic wavefronts of
well-defined frequencies.

In the shock tunnel experiments reported here, the core flowfield presents a radius of
approximately 250 mm [53]. Equation (3) is therefore used to evaluate the FLDI transfer
function magnitudes at this location, denoted for simplicity as H250(k), for a wide range of
wavenumbers. Corresponding reference magnitudes at the center plane, denoted H0(k),
are also evaluated. The comparison between them provides a wavenumber-resolved loss
parameter, shown in Figure 17. For a more straightforward interpretation, the figure
displays the results plotted against frequencies obtained from wavenumbers using the
measured free stream convection velocity of approximately 0.75 · u∞, as shown in Figure 8.

Figure 17. Loss of FLDI transfer function due to spatial filtering, evaluated for multiple frequencies
at two distances from the center plane: 250 mm (left y-axis), representative of the nozzle shear layer,
and 30 mm (right y-axis), representative of the edge of the conical boundary layer.

Without losing generality, a loss of −3 dB is defined as a reference bound. This
corresponds to a half power decay, before which the signal amplitudes detected in the
shear layer are expected to be significant enough to bias the measurements from the core
flowfield. Figure 17 shows that at 250 mm from the center plane, the FLDI in the present
work presents a −3 dB loss at f = 160 kHz. The experimental spectra below this frequency
value are hence discarded. It should be noted that despite the simplifications contained in
this approach, this value is in agreement with the experimental spectra shown in Figure 6,
which show separate amplitudes between the boundary layer and free stream in the vicinity
of this frequency. If the contribution of the shear layer was not sufficiently damped, an
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overlap of the spectral amplitudes would be expected, such as in the region below 100 kHz
in the figure.

An additional line is plotted in Figure 17 using the right y-axis for the transfer function
magnitudes at a distance of 30 mm from the focal plane, corresponding to the boundary
layer intersection mentioned in Section 4.1. It is verified that, in this case, the transfer
function value remains close to the best focus reference across all evaluated frequencies,
which represents the weak spatial filter effect in this analysis.

Additional limitations must be considered at the opposite end of the spectrum, towards
extremely high frequencies. First, the experimental measurement capabilities are limited by
the FLDI beam separation distance ∆x1. Wavelengths smaller than twice the separation ∆x1
cannot be resolved. In the present case, 2 · ∆x1 ≈ 180 µm, which corresponds to 10 MHz
in the free stream and 12 MHz in the boundary layer, using the velocity information in
Figure 8. These are constraints of a spatial nature. The oversampling in the time domain,
which, in the present work, is 100 MHz (see Section 2.1), favors the proper detection of
amplitudes in addition to frequencies. It is important to highlight that a compromise must
be made between ∆x1 and the signal-to-noise ratio, since the differences between two
points will be smaller as the distance between them is reduced. In this regard, Figure 6
shows that the FLDI in the present work was able to optimize this trade-off.

A second high-frequency constraint relates once more to the wavenumber-dependent
sensitivity length of the FLDI. At this edge of the spectrum, it is possible that the same
spatial filtering that allows the instrument to see through the shear layer starts damping
information within the scope of the investigation. This is especially the case for the free
stream spectra in the present work. The conical flowfield contributions to the FLDI signal
are expected to be approximately equal throughout the probing volume, or at least within
the boundaries of the conical shock (notwithstanding, the circular symmetry of the flowfield
surrounding the conical model must be properly considered when probing along a straight-
line FLDI, as seen in [49]). With such an extensive probing volume, the influence of the
varying sensitive length is expected to cause significant amplitude differences across the
frequency spectrum. The resulting FLDI signal accumulates contributions from lower-
frequency disturbances across the full probing length, while higher frequencies contribute
only along a limited portion of it. Such cases are the main motivation to use the transfer
function approaches from [33,46,47]. However, these functions must be obtained while
respecting the flowfield characteristics, and the derivation of a transfer function for conical
flowfields is beyond the scope of the present work.

Turning to the numerical flowfield, constraints for FLDI comparison concern the
resolved frequency bandwidth and the limited spatial domain. The frequency bandwidth is
determined by three factors: (1) the temporal resolution of the LES; (2) the spatial resolution
of the grid; and (3) the explicit spatial filtering required for the numerical stability of the
compact finite difference scheme. In the present case, the temporal resolution of 0.014 µs
is enough to provide reliable amplitudes up to at least 7 MHz, assuming a conservative
oversampling of 10 times. The grid resolution is 245 µm, yielding a Nyquist limit of
approximately 4 MHz, assuming a flowfield velocity of 2 km/s. The sixth-order compact
filter dampens high-frequency phenomena starting with a weakened effect above 1 MHz
and becoming progressively stronger at higher frequencies, due to its non-sharp spectral
behavior. The effect is shown in Figures 13, 14 and 16. Representing the stricter high-
frequency constraint in the present dataset, the upper bound of 1 MHz is chosen for the
numerical and experimental comparisons in Section 4.4.

Lastly, the limited spatial domain of the LES may impose a constraint for experimental
and numerical comparisons that relates yet again to the FLDI spatial filtering. If a numerical
flowfield is obtained along the full FLDI probing length, then the spatial filtering of high
frequencies is also present in the cFLDI simulation. In this case, direct comparisons between
experimental and computational FLDI are valid without the need to correct the amplitudes
in any way. If, on the other hand, the simulated flowfield corresponds to a section of the
volume that contributes to the FLDI signal, the comparison is still possible, albeit with
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further considerations. One option is to correct for the FLDI spatial filtering in some way,
as mentioned above. Alternatively, the comparisons must be restricted to frequencies above
a certain value, similar to the shear layer analysis presented earlier in this section.

4.4. Direct Comparison between Experimental and Numerical Spectra

The conical boundary layer offers an advantage in the sense of the preceding observa-
tions. The amplitudes of the fluctuations inside the boundary layer are much larger than
in the free stream. Furthermore, the FLDI crosses the conical boundary layer following a
secant line close to its edge. Therefore, the volume largely contributing to the FLDI signal
is much reduced. For example, when the FLDI is positioned at a height of 0.8 · δu99, the
length of intersection between the FLDI and the boundary layer is approximately 30 mm.
This length has initially informed the definition of the size of the LES domain in this work,
which presents a large enough azimuthal width to comprise the entirety of the intersection
at this height. As a result, in the upper portion of the boundary layer, the full length of the
intersection between the FLDI and the conical boundary layer is calculated.

This means that for a subset of the experimental and numerical data presented in
Figures 6 and 13, respectively, a direct comparison is allowed with minimum constraints.
Figure 18 displays the comparison for three probing stations inside the boundary layer,
namely y/δ = 0.447, 0.568 and 0.839.

Figure 18. Direct comparison between the spectra of phase differences from experimental FLDI
and cFLDI calculated on the LES, for three different locations. (a) y/δ = 0.447, (b) y/δ = 0.568 and
(c) y/δ = 0.839. The lower and upper frequency bounds for the comparison are shown as dashed lines.

These results show encouraging agreement between the experimental and numerical
results within an intermediate range of frequencies. This range agrees to a certain extent
with that obtained from the analyses in Section 4.3, namely 160 kHz < f < 1 MHz.

It is important to highlight the low-frequency bound of f = 160 kHz determined
in the previous section. Figure 18 confirms that indeed the experimental and numerical
lines diverge significantly for frequencies below approximately this value. This is an
indication that the lower frequencies in the experimental results have an origin other
than the boundary layer. Therefore, it is paramount that a high-pass filter is used when
employing FLDI for shock tunnel velocimetry, as exemplified in Figure 8. Otherwise, the
signals being cross-correlated will most likely contain spurious low-frequency contributions,
which have a strong impact on the cross-correlation operation and may thus bias the results.

Nonetheless, as mentioned before, the FLDI filter effect rolls off continuously, meaning
that there is no unique means of finding a cut-off limit. Hence, there is an inevitable level
of arbitrariness when choosing how to define a threshold. The −3 dB loss with respect to
the response at the focus was chosen in the present work, but alternative metrics have been
previously used in the literature, such as 1/e folding in the RMS response [32] or the full-
width half maximum (FWHM) of the transfer function [47]. This stresses the importance of
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having complementary methods of checking the calculated limit. In the present work, these
are the simultaneous measurement of the free stream and boundary layer disturbances and
the direct comparison to numerical results.

4.5. On the Simplified Comparison between Experimental FLDI and Numerical Solutions

As mentioned in Section 3, there is apparent similarity between the cFLDI spectra in
Figure 16 and the LES dρ spectra in Figure 14. This is an indication that the focusing effects
of the FLDI are negligible.

An analysis similar to the one in Figure 17 was performed to evaluate the spatial
filtering effect within the LES domain. At the edges of the boundary layer intersection
previously mentioned, frequencies below 1.1 MHz still retain over 95% of the FLDI center
plane sensitivity. In other words, the FLDI spatial filtering effect is very small in the
boundary layer within the frequency bandwidth resolved by the LES.

In such cases, fluctuations in density ρ and FLDI output ∆Φ are correlated in an almost
direct manner, as a simplification of Equation (1):

∆Φdirect =
2πK
λ0

L∆ρ, (4)

where ∆ρ is the summation (line integral) of the density fluctuations along a line crossing
the LES volume at any given time instant, and L is the length of this line.

Figure 19 shows the result of evaluating Equation (4) along a line of constant wall-
normal coordinates in the LES rectangular system of coordinates, which is equivalent to
a horizontal line in Figure 4a. It is denoted ‘cFLDI approximation’ and plotted together
with experimental and computational FLDI at the same probing height, measured at the
center plane.

Figure 19. Comparison between spectra of phase differences at a single probing location. The spectra
are obtained from experimental FLDI, cFLDI on the LES solution and a simplified, approximate
conversion directly on the LES. The lower and upper frequency bounds for the comparison are shown
as dashed lines.

As expected from the previous observations, the results show strong similarities,
despite the large complexity gap between the cFLDI algorithm and the straightforward
∆Φdirect estimation. Most importantly, there is similarity between the latter and the experi-
mental data. This shows that useful comparisons might also be performed using a very
simple formulation on the LES flowfield, in the absence of a complex cFLDI algorithm.

Evidently, the case presented here presents some facilitating properties, such as a very
weak FLDI filtering effect within the volume of interest, low flowfield curvature and the
computational simulation of the entire relevant volume. Nonetheless, the possibility of
numerical and experimental comparison with such simplicity is encouraging.
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5. Conclusions

This work has reported on the investigation of a turbulent boundary layer with cold
walls at a free stream Mach number 7.4 and unit Reynolds number 4.2 × 106 m−1. Exper-
imental shock tunnel data were analyzed in combination with a Large-Eddy Simulation
(LES) under the same flowfield conditions to allow direct comparison. The main measure-
ment technique was Focused Laser Differential Interferometry (FLDI), employed in a multi-
foci arrangement with all probes parallel to each other for optimal signal cross-correlation.

The convection velocities of the density disturbances were experimentally measured
using the cross-correlation of streamwise FLDI pairs along several locations inside the
boundary layer and in the nearby free stream. Evidence of spurious low-frequency contri-
butions likely coming from the nozzle shear layer highlighted the importance of high-pass
filtering the FLDI signal before the cross-correlation operation. Results show the convection
velocity to be highest slightly above the boundary layer edge at approximately 0.9 times
the free stream velocity. Farther away from the boundary layer edge, the convection ve-
locity was verified to drop to approximately 0.75 times that of the free stream, with larger
disturbances propagating slightly faster than smaller ones. The magnitude of the measured
convection velocity of the density disturbances is in agreement with the literature data
on pressure disturbances in supersonic flows. An exception was observed when probing
very close to the model wall, at approximately 7% of the boundary layer thickness, due to
the contribution of the upper layers of the conical boundary layer to the FLDI signal. An
improvement in future works might be obtained by increasing the beam convergence of
the FLDI setup, which will enhance its filtering ability away from the focal plane. In the
LES, the convection velocities presented similar behavior when pressure disturbances were
evaluated, but significant differences for density disturbances. This discrepancy requires
further investigation, which was beyond the scope of the present work. Future work shall
also investigate the LES flowfield beyond the data directly related to FLDI diagnostics, e.g.,
temperature–velocity relationship, strong Reynolds analogy, among others.

The experimental spectra of the density fluctuations across the turbulent boundary
layer were evaluated and compared to power laws reported in the literature for pressure
fluctuations. The FLDI data were able to evidence the presence of regions with identifiable
power laws of −7/3, −11/3 and −5. However, the upper limit of the frequency spectrum
may have been biased by the FLDI frequency-dependent sensitive length, which was not
compensated for in this work.

A framework to enable FLDI comparisons despite this complexity was explored by
means of the use of computational FLDI (cFLDI) on the LES flowfield. Constraining
conditions pertaining to both low and high ends of the frequency spectrum were detailed.
The former was related to the noisy shear layer of the experimental flowfield and was
calculated to be 160 kHz. The latter was around 10 MHz for the experimental FLDI and
around 1 MHz for the computational solution. Furthermore, comparisons were performed
in probing locations where the straight-line FLDI and the circular boundary layer within
the LES domain presented significant intersection, as most of the flowfield disturbances
were expected to be contained therein. Within these bounds, experimental and numerical
direct comparisons yielded reasonable agreement. Encouraging agreement was also seen
when a simple line integral of the computational data was analyzed in place of the complex
cFLDI algorithm.

Overall, these observations present a positive scenario for future developments to-
wards the understanding of high-speed turbulence, concerning experimental and numerical
comparisons. In the absence of a complete model of cFLDI in groups focused on numerical
investigations, useful data for spectral comparisons with experiments may be provided
in a much simpler manner. At the same time, data provided by experimentalists can be
used with minimal post-processing in numerical comparisons, as long as the necessary
information for the determination of the constraining frequency bounds is also provided.
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Appendix A

A complete set of flowfield parameters, aimed at allowing the flowfield investigated
in the present paper to be reproduced, is given in this appendix.

In the experiments, the cone model is placed partly inside the nozzle. This is needed
to allow the investigation of the fully developed turbulent boundary layer at x = 825 mm,
as seen in Section 2.1, while using the existing test section windows in HEG and avoiding
any effects of the nozzle shear layer interacting with the model. Nevertheless, the tip of the
model is positioned in a region of the nozzle where the flowfield surrounding it is already
sufficiently developed.

Flowfield information is extracted from a RANS solution of the nozzle flow, calculated
from experimental stagnation conditions that were measured in the present investigation.
The extraction is performed along a line upstream of the shock wave produced by the cone
model, as shown in Figure A1.

Figure A1. Topology of the flowfield around the cone model partly inside the nozzle. The line along
which spatially resolved properties are extracted is highlighted.
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The flowfield properties are separated into two groups, depending on their variation
along the extracted line. The properties displayed in Table A1 present fluctuations in the
order of 0.1% and are therefore assumed constant. In the table, Yi refers to the mass fraction
of species i, γ is the ratio of specific heats and R is the gas constant.

Table A1. Flowfield properties that are constant along the extracted line from the RANS solution of
the nozzle, calculated under experimentally observed stagnation conditions.

p0 [MPa] YN2 [-] YO2 [-] YNO [-] YO [-] γ [-] R
[J/(kg·K)]

19.265 0.75414 0.21825 0.02754 0.00007 1.3989 288.21

In Table A2, the properties showing non-negligible variation are listed with the spatial
resolution. A total of 6 points are given for each property, uniformly distributed along
the extracted line. When these points are used as references for a spline interpolation, the
spatial distributions of the flowfield properties are reproduced with ±0.1% accuracy. The
coordinate system has its origin at the tip of the cone model, as shown in Figure A1. The
velocity components along the x and y axes are denoted u and v, respectively. Although u
is nearly constant, it is included in Table A2 for completeness.

Table A2. Spatially resolved flowfield properties, extracted along a line from the RANS solution of
the nozzle, calculated under experimentally observed stagnation conditions.

x [m] y [m] u [m/s] v [m/s] p [Pa] T [K] M [-] µ · 105

[kg/(m·s)] ρ [kg/m3]

−0.01838 0.00 2366.8 0.0 2487.2 266.70 7.2180 1.6822 0.032358
0.10218 0.04 2368.0 7.9 2399.5 263.95 7.2591 1.6683 0.031542
0.22274 0.08 2369.3 16.9 2292.7 260.54 7.3107 1.6511 0.030532
0.34331 0.12 2369.9 21.3 2250.8 259.19 7.3315 1.6443 0.030130
0.46387 0.16 2369.2 18.1 2316.1 261.37 7.2986 1.6553 0.030746
0.58444 0.20 2366.5 6.2 2522.0 267.80 7.2022 1.6877 0.032675
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This Ph.D. work has focused on the problem of paucity of experimental information
on hypersonic turbulent boundary layers. The technique of Focused Laser Differ-
ential Interferometry (FLDI) was employed to obtain off-wall density fluctuation
measurements in a shock tunnel, with high temporal and spatial resolution.

The main contributions of this thesis have been: 1) the new experimental dataset
of spectral distributions and convection velocities of density fluctuations, both given
with wall-normal resolution; and 2) the analysis of direct comparisons between
experimental FLDI and computational FLDI (cFLDI) performed on a LES solution
of the flowfield under the experimentally observed conditions.

The measured convection velocities based on density disturbances presented
similar relative magnitudes to previous investigations of pressure disturbances at
neighboring Mach numbers. The profile of convection velocity along the boundary
layer, on the other hand, was different than existing numerical data. However, the
flowfield conditions across the cases were not identical, in particular regarding wall
temperature, which could be the cause of the discrepancies. The frequency spectra
of density disturbances measured up to 10 MHz showed regions governed by clear
power laws, with powers that are usually found in pressure spectra. Regarding the
analysis of the experimental and numeric shock tunnel flowfields, the proof obtained
in the present work that they can be directly compared using FLDI output (real or
virtual) is of great importance. It represents a new form of approaching the issue of
lack of experimental data to test against turbulence models and flowfield simulations.
The comparisons are further facilitated in cases where the FLDI divergence angle
is shallow, such as the one reported here. Under such conditions, it was observed
that the cFLDI can be replaced with a simple line integral on the numeric flowfield,
not distant in complexity to a numerical schlieren, for example. Hence this is an
approach that may be implemented in CFD visualization and analysis softwares
right now.

Prior to the experiments, the FLDI instrument and auxiliary resources, e.g., the
frequency response of the instrument and techniques to measure the placement of
the beams, were iterated upon and optimized. The experimental data collected in
the High Enthalpy Shock Tunnel Göttingen (HEG) was analyzed with attention to
experimental uncertainties and limitations, to provide future investigators who may
be interested in this data with as clear a picture as possible.

Along those same lines, the shock tunnel flowfield explored in the investigation
reported in this thesis has been extensively detailed in the pertinent publication.
This was done in order to allow reproducibility of the flowfield and the observed
results. Hopefully, this may be used by future investigators as an experimental
baseline to compare against different simulations and models, such as to contribute
to advance the current understanding of high-speed turbulence.
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In the course of reaching the main contributions summarized above, two relevant
accessory contributions are noteworthy. The first one is an alternative low-effort
technique to measure the separation distance between FLDI probes meant for
velocimetry. The proposed method was able to provide measurements of similar
quality to directly imaging the beams with a beam profiler, but at a fraction of the
cost and with more flexibility. The relevance of this measurement is highlighted
by the fact that any imprecision within it is directly carried over to the velocity
measurements performed with FLDI. The results presented in this work have shown
that multi-foci FLDI instruments are capable of high-quality convection velocity
measurements, as long as proper attention is given to calibrating the system.

The second accessory contribution is a post-processing methodology for FLDI mea-
surements performed in flowfields with circular symmetry. The proposed approach
includes this kind of flowfield in the restricted group of cases where the conversion
of FLDI data into flowfield quantities is possible analytically. Furthermore, this
development has introduced the cFLDI as a helping tool to aid in the assessment
of simplifying hypotheses, which might be assumed when developing FLDI data
conversion methods. Hopefully, this kind of approach may be used in future efforts
to advance FLDI data interpretation, further expanding the scientific gains enabled
by the technique.

Turning to future works, a few improvements can be suggested to build upon the
work presented here. In spite of all its advantages, the FLDI is a point measurement.
In order to obtain the turbulent boundary layer information across its thickness
presented here, several different shock tunnel runs were necessary. Such effort is
budget- and work-intensive, and combining different shock tunnel runs, although
possible once free stream repeatability is adequately assessed, increases uncertainties.
A means to avoid this problem is to further multiply the FLDI probes. Even though
the multiplication strategies adopted in the present work could be employed in a
sequential, repeated manner, that can be very cumbersome to implement. Better
approaches have been proposed by works referenced in this thesis that could be
implemented in the FLDI system used here, such as using a diffractive optical
element to produce an array of beams [48], or a cylindrical lens to produce a
stretched line at the focal plane of the system [68].

Additionally, the blast wave technique explored in the first publication could only
be applied to obtain the separation distance between two independent FLDI probes,
∆x2. To measure the internal separation of the beams in one FLDI probe, ∆x1,
other methods must still be employed, such as the weak lens approach or direct
beam imaging. It might be possible to use an approach similar to the blast wave
technique to also obtain ∆x1. Perhaps a stronger blast wave would be needed,
to take advantage of its sharper wave front. Or some other way to interpret the
acquired signal.

Complementing the improvements on the experimental side, a continued effort
may also benefit the numeric flowfield. The LES computations used in the present
work presented remarkable temporal resolution. However, the analysis has shown
that the grid refinement was far more restrictive than the time steps. As such,
a balance can be sought in future efforts, in a way that the spatial resolution is
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improved. The experimental measurements performed in HEG with an optimized
FLDI have shown frequency content to be detectable up to 10 MHz. This can be
used in combination with the expected flowfield velocities, to provide a target spatial
resolution for the computational domain.
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A. Lens formula for FLDI ∆x1 calibration

In publication 1, one of the means employed to obtain the FLDI internal separation
distance ∆x1 was by looking at the response of the system to a moving lens. The
identity:

∆x1 = λ0 fL

T
, (A.1)

which is Equation (2a) in the publication, was given without further detail. In this
appendix, the mathematical deduction of that formula is detailed. The subscript 1
in ∆x1 is dropped in the following, for simplicity.

Figure A.1 illustrates the spatial paths traveled by two rays separated by a
distance ∆x, when going through a plane-convex lens of curvature radius R at a
given distance from its center. The paths traveled within the lens medium are
denoted Li. We are interested in finding out how the separation distance between
the rays, ∆x, relates with the FLDI output when crossing the lens.

Figure A.1.: Schematic drawing of two light rays traveling through a plane-convex lens.

Starting with the basic relationship between the difference in optical path lengths
and phase shift of two coherent light rays:

∫
C1

n(s1) ds1 −
∫

C2
n(s2) ds2 = λ0

2π
∆ϕ (A.2)

where Ci is the spatial path traveled by each beam, described by the spatial variable
si, n is the refraction index of the medium, λ0 is the light wavelength, and ∆ϕ is
the resulting phase difference between the two light rays.
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The left-hand side of Equation (A.2) corresponds to the optical path lengths.
Returning to Figure A.1, when the beams have traveled identical spatial distances
L2, the optical path lengths are:

∫
C1

n(s1) ds1 = nair (L2 − L1) + nlens L1 (A.3a)∫
C2

n(s2) ds2 = nlens L2 (A.3b)

Assuming nair ≈ 1 and nlens = n, the difference in optical path lengths becomes:∫
C1

n(s1) ds1 −
∫

C2
n(s2) ds2 = (n − 1) (L1 − L2) (A.4)

It will be useful to rewrite this expression in terms of the position of the beams
xi with respect to the center of the lens, in place of the traveled distances Li. Using
the lengths bi in Figure A.1, we note that b2

i = R2 − x2
i , and L1 − L2 = b1 − b2.

Therefore, Equation (A.4 becomes:

∫
C1

n(s1) ds1 −
∫

C2
n(s2) ds2 = (n − 1)

(√
R2 − x2

1 −
√

R2 − x2
2

)
(A.5)

Turning now to the right-hand side of Equation (A.2), the phase difference ∆ϕ in
the FLDI is detected as a voltage by a photodiode as:

V = V0 (1 + cos(∆ϕ)) (A.6)

To avoid ambiguity of the FLDI response, it is usual to set the undisturbed
instrument with a ∆ϕ0 = ±π/2. Without loosing generality, we choose for the
remaining steps a ∆ϕ0 = +π/2, such that Equation (A.6) becomes:

∆ϕ = − sin−1
(

V

V0
− 1

)
(A.7)

Substituting Equations (A.5) and (A.7) into Equation (A.2) and rearranging, we
have:

V = V0

{
1 + sin

[2π

λ0
(n − 1)

(√
R2 − x2

2 −
√

R2 − x2
1

)]}
(A.8)

Noting that for any given distance x with respect to the center of the lens,
x1 = x + ∆x/2 and x2 = x − ∆x/2, Equation A.8) can be expressed as:

V = V0

1 + sin

2π

λ0
(n − 1)

√R2 −
(

x − ∆x

2

)2
−

√
R2 −

(
x + ∆x

2

)2


(A.9)
Equation (A.9) is the instantaneous FLDI output of a pair of rays crossing a lens

at an average distance x from its center. We will now analyze the argument of the
sine function, specifically the terms that depend on x, which will be denoted g(x):

102



A. Lens formula for FLDI ∆x1 calibration

g(x) =

√
R2 −

(
x − ∆x

2

)2
−

√
R2 −

(
x + ∆x

2

)2
(A.10)

Linearizing g(x) around x = 0:

dg

dx

∣∣∣∣
x=0

=

 −2
(
x − ∆x

2

)
2
√

R2 −
(
x − ∆x

2

)2
−

−2
(
x + ∆x

2

)
2
√

R2 −
(
x + ∆x

2

)2


∣∣∣∣∣∣∣∣
x=0

= ∆x

2
√

R2 −
(

∆x
2

)2
− −∆x

2
√

R2 −
(

∆x
2

)2

= ∆x√
R2 −

(
∆x
2

)2
(A.11)

Assuming R ≫ ∆x, the result of Equation (A.11) becomes simply ∆x/R, such
that g(x) is linearized as:

g(x) ≈ ∆x

R
x (A.12)

Substituting this in Equation (A.9), the FLDI output can be approximated as:

V ≈ V0

{
1 + sin

[2π ∆x

λ0 R
(n − 1) x

]}
(A.13)

For a thin lens, the curvature radius R and the focal length fL correlate as:

1
fL

= (n − 1)
( 1

R1
− 1

R2

)
(A.14)

where, for a plane-convex lens, R1 = R and R2 = +∞. Substituting the resulting
relation in Equation (A.13):

V ≈ V0

[
1 + sin

(
2π

∆x

λ0 f
x

)]
(A.15)

Finally, from Equation (A.15), it can be seen that the sinusoidal response when the
FLDI is moved along the axis of the weak lens has a spatial period of T = ∆x/(λ0 fL),
which is the identity that was used in the publication.

It should be noted that if a double-convex lens is used instead of the plane-convex
one chosen for the present demonstration, the results remain unchanged. The
double-convex lens requires using different parameters in Equation (A.14). However,
Equation (A.3a) also changes, its effects being carried over the entire demonstration,
ultimately leading to the same identity.
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B. Transfer function of FLDI spatial
filtering

A transfer function representing the FLDI spatial filtering was used in publication 3
to assess the FLDI ability to dampen the contributions of disturbances away from
the FLDI focus. In the paper, it was presented as Equation (3), repeated below:

Hw(k) = e− w2k2
8 , (B.1)

where w is the local FLDI beam radius, and k is the wavenumber of the disturbance.
This equation is often used in FLDI works, but is rarely given any further attention.

In the present appendix, this transfer function is demonstrated in detail.
By definition, the transfer function is the ratio between the measured FLDI output

and the true value that is probed. Since the FLDI performs a spatial differentiation
of the phase of the laser crossing the probed volume, Φ, the transfer function H
due to the finite beam width (subscript w) is:

Hw(k) ≜

(
dΦ
dx

)
measured(

dΦ
dx

)
true

(B.2)

We are interested in the effects of finite beam width. We separate that from
the effects of finite FLDI internal separation distance, ∆x1, by assuming that the
FLDI performs a perfect derivative, that is, ∆x1 → 0. Furthermore, to quantify
Equation (B.2), we analyze a generic refraction index disturbance in the form of a
sine wave of wavenumber k, propagating along the axis of beam separation, x, and
having an infinitesimal thickness in z:

n′ = A sin(k x) δ(z), (B.3)

where A is an arbitrary disturbance amplitude, δ is the Dirac delta function, and n′

is the refraction index change with respect to a mean value.
For the numerator in Equation (B.2), we consider the FLDI response to be an

area integral of the variables across a finite region, encompassing a bundle of light
rays. The corresponding equations were given in publication 2 of the present thesis
as Equations (4) and (7). They are repeated below for clarity, in terms of refraction
index n rather than density ρ, noting that n′ = K ρ′, K being the Gladstone-Dale
constant. Also, a Cartesian system of coordinates is used instead of polar as in the
paper.

∆ϕ = 2π

λ0

(∫
C1

n′(s1) ds1 −
∫

C2
n′(s2) ds2

)
(B.4)
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B. Transfer function of FLDI spatial filtering

∆Φ = sin−1
(∫∫

I0(x, y) sin ∆ϕ(x, y) dx dy

)
(B.5)

In these equations, ϕ is the phase of the individual rays, Φ is the combined
phase of all rays in the bundle, λ0 is the wavelength of the light, Ci is the spatial
path traveled by the beams, which is described by the parametric representation
si(xi, yi, zi), and I0 is the intensity distribution of the rays. Equation (B.4) can be
used to calculate the phase difference introduced in each ray by a disturbance field,
while Equation (B.5) gives the phase difference after the beams are recombined back
together.

Starting with Equation (B.4) the disturbance field of Equation (B.3) yields:

∆ϕ = 2π A

λ0
(sin(k xs1) − sin(k xs2)) (B.6)

It should be noticed that, despite the focusing of the FLDI beams, the pairs
of rays always describe parallel trajectories separated by a distance ∆x1 in the x
direction. Therefore, Equation (B.6) can be generalized in a more clear manner for
any ray that is recombined at a given coordinate x, by replacing xs1 = x + ∆x1/2
and xs2 = x − ∆x1/2.

Assuming small phase shift magnitudes (sin ξ ≈ ξ), substituting Equation (B.6)
into Equation (B.5) yields:

∆Φ =
∫∫

I0(x, y) 2π A

λ0

[
sin
(

k

(
x + ∆x1

2

))
− sin

(
k

(
x − ∆x1

2

))]
dx dy (B.7)

We now differentiate Equation (B.7) in x by the definition, that is, dΦ/dx =
lim∆x1→0(∆Φ/∆x1). The term inside the brackets in Equation (B.7) becomes:

lim
∆x1→0

sin
(
k
(
x + ∆x1

2

))
− sin

(
k
(
x − ∆x1

2

))
∆x1

 = d

dx
sin(k x) (B.8)

Substituting the result of Equation (B.8) in Equation (B.7), the numerator of
Equation (B.2) assumes the form:(

dΦ
dx

)
measured

=
∫∫

I0(x, y) 2π A

λ0
k cos(k x) dx dy (B.9)

Before proceeding, an important side note concerns the beam intensity distribution
I0, which is found with different notations in the literature. The definition used
in publications 2 and 3, namely Ĩ0(r/w) = 2π−1 exp (−2r2/w2), with r the radial
coordinate and w the local beam radius, follows the work of Lawson and Austin
[78]. That is a non-dimensional notation with unit area integral, ideal for the
application in computational FLDI as a weighting function for the summation of
the contributions of each ray to the final signal. However, other works [47, 50, 75,
80] employ a slightly different definition, I0(r) = 2π−1 w−2 exp (−2r2/w2). This
notation takes into account the scaling of peak intensity with respect to the total
power of the beam, when the beam is expanded. In other words, it is able to
represent the fact that the intensity of the laser at the center of the beam is smaller
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at larger distances from the focus. This is important to be taken into account in
the present deduction, since the response of an expanding beam (numerator in
Equation (B.2)) will be compared with that of one that is perfectly focused at all
times (denominator). The latter representation will, therefore, be adopted here.

Substituting I0(r) in Equation (B.9), with r2 = x2 + y2:

(
dΦ
dx

)
measured

=
∫∫ 2

πw2 e
−2
(

x2+y2

w2

)
2π A

λ0
k cos(k x) dx dy

= 2π A k

λ0

2
πw2

∫ +∞

−∞
e− 2y2

w2

[∫ +∞

−∞
e− 2x2

w2

(
ei kx + e−i kx

2

)
dx

]
dy

(B.10)

Noting that
∫+∞

−∞ exp (−a ξ2) exp (−2b ξ) dξ =
√

π/a exp (b2/a), the integral in x
in Equation (B.10) becomes:

∫ +∞

−∞

1
2

(
e− 2x2

w2 ei kx + e− 2x2
w2 e−i kx

)
dx = 1

2

√πw2

2 e− k2w2
8 +

√
πw2

2 e− k2w2
8


=

√
πw2

2 e− k2w2
8 (B.11)

Substituting this result in Equation (B.10) and noting that
∫+∞

−∞ exp (−a ξ2) dξ =√
π/a, we have:

(
dΦ
dx

)
measured

= 2π A k

λ0

2
πw2

∫ +∞

−∞
e− 2y2

w2

√
πw2

2 e− k2w2
8 dy

= 2π A k

λ0

2
πw2

√
πw2

2 e− k2w2
8

√
πw2

2

= 2π A k

λ0
e− k2w2

8 (B.12)

Now turning to the denominator in Equation (B.2), an expression for the true
derivative can be found by applying the definition directly on Equation (B.6).
Identical considerations as before concerning the xsi variables apply now, and the
result of Equation (B.8) is also used:

(
dΦ
dx

)
true

= lim
∆x1→0

[2π A

λ0

(sin(k xs1) − sin(k xs2)
∆x1

)]
= 2π A

λ0
k cos(k x) (B.13)

This equation is evaluated at the position representative of the center of the FLDI
beam, i.e., x = 0. Hence:
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(
dΦ
dx

)
true

= 2π A k

λ0
(B.14)

Finally, Equation (B.1) is obtained by dividing Equations (B.12) and (B.14).
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