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1 Introduction

A pushdown automaton is a one-way finite automaton with a separate push-
down store, that is a last-in first-out (LIFO) storage structure, which is ma-
nipulated by pushing and popping. Probably, such machines are best known
for capturing the family of context-free languages, which was independently
established by Chomsky [3] and Evey [5]. The origin of the pushdown con-
cept is not clear and is attributed by most to Burks et al. [2] and Newell and
Shaw [11]. A little later the term LIFO storage was used explicitly in the litera-
ture, by Samelson and Bauer [13], who proposed it as an aide in the translation
of ALGOL formulas into machine instructions. Pushdown automata have been
extended in various ways. Examples of extensions are variants of stacks [7, 9],
queues or dequeues, while restrictions are for instance counters or one-turn
pushdowns [8]. The results obtained for these classes of machines hold for a
large variety of formal language classes, when appropriately abstracted. This
led to the rich theory of abstract families of automata, which is the equivalent
of abstract families of languages theory. For the general treatment of machines
and languages we refer to Ginsburg [6].

In this paper, we consider a recently introduced extension of pushdown au-
tomata, so-called flip-pushdown automata [14]. Basically, a flip-pushdown au-
tomaton is an ordinary pushdown automaton with the additional ability to flip
its pushdown during the computation. This allows the machine to push and pop
at both ends of the pushdown. Hence, a flip-pushdown is a form of a dequeue
storage structure, and thus becomes equally powerful to Turing machines, since
a dequeue automaton can simulate two pushdowns. On the other hand, if the
number of pushdown flips or pushdown reversals is zero, obviously the family
of context-free languages is characterized. Thus it remains to investigate the
number of pushdown reversals as a natural computational resource.

By Sarkar [14] it was shown for nondeterministic computations that if the num-
ber of pushdown flips is bounded by a constant, then a nonempty hierarchy of
language classes is introduced, and it was conjectured that the hierarchy is
strict. In [10] it is shown that k + 1 pushdown reversals are better than k. To
this end, a technique is developed to decrease the number of pushdown reversals,
which simply speaking shows that flipping the pushdown is equivalent to reverse
part of the remaining input for nondeterministic automata. An immediate con-
sequence is that every flip-pushdown language accepted by a flip-pushdown with
a constant number of pushdown reversals obeys a semi-linear Parikh mapping.
It turned out, that the family of nondeterministic flip-pushdown languages share
similar closure and non-closure properties as the family of context-free languages
like, e.g., closure under intersection with regular sets, or the non-closure under
complementation. Nevertheless, there are some interesting differences as, e.g.,
the non-closure under concatenation and Kleene star.

Here mainly we investigate several variants of deterministic flip-pushdown
automata, nondeterministic flip-pushdown automata, and their relationships



among each other. In particular, we distinguish flip-pushdown automata where
the number of pushdown reversals has to be exactly k or has to be at most k. For
nondeterministic automata this distinction is shown to make no difference. This
is not true for deterministic automata that accept by final state. Interestingly,
it also makes no difference if deterministic automata are considered that accept
by empty pushdown. The two modes of acceptance are the second considered
distinction. Our main contribution are results yielding, for a fixed k, strict in-
clusions in between the different types of deterministic flip-pushdown automata
and, furthermore, between deterministic and nondeterministic automata. By
an adaption of the hierarchy result in [10], all considered classes are separated
for k£ and k 4+ 1. The question, how the number of pushdown reversals relates
to determinism/nondeterminism, at most k/exactly k reversals, or acceptance
by final state/empty pushdown, is answered by deriving incomparability for all
classes which are not related by a strict inclusion.

The paper is organized as follows: The next section contains preliminaries and
basics on flip-pushdown automata. Then Section 3 is devoted to the separa-
tion of deterministic and nondeterministic flip-pushdown automata. The next
section deals with the comparison between flip-pushdown automata making
exactly k and at most & pushdown reversals. In Section 5 we consider the re-
lationships caused by the acceptance modes empty pushdown and final state.
The penultimate Section 6 is devoted to the separation of the flip-pushdown
hierarchies for all considered classes. Finally, we summarize our results and
pose a few open questions in Section 7.

2 Preliminaries

We denote the powerset of a set S by 2°. The empty word is denoted by A, the
reversal of a word w by w®, and for the length of w we write |w|. For the number
of occurrences of a symbol a in w we use the notation |w|,. In the following we
consider pushdown automata with the ability to flip their pushdowns. These
machines were recently introduced by Sarkar [14] and are defined as follows:

Definition 1 A nondeterministic flip-pushdown automaton (NFPDA) is a sys-
tem A = (Q,%,T,4,A,qo, Zy, F), where Q is a finite set of states, ¥ is the
finite input alphabet, I' is a finite pushdown alphabet, ¢ is a mapping from
Q x (ZU{A}) x T to finite subsets of Q x I'* called the transition function,
A is a mapping from Q to 29, qy € Q is the initial state, Zy € T is a partic-
ular pushdown symbol, called the bottom-of-pushdown symbol, which initially
appears on the pushdown store, and F' C (Q is the set of final states.

A configuration or instantaneous description of a flip-pushdown automaton is
a triple (¢, w,7), where ¢ is a state in @, w a string of input symbols, and +
is a string of pushdown symbols. A flip-pushdown automaton A is said to be
in configuration (g, w,~y) if A is in state ¢ with w as remaining input, and ~



on the pushdown store, the rightmost symbol of « being the top symbol on the
pushdown. If p,q are in @, a is in ¥ U {A}, w in £*, v and f in I'*, and Z is
in T, then we write (q,aw,vZ) b4 (p,w,vB), if the pair (p, ) is in d(q,a, Z),
for “ordinary” pushdown transitions and (q,aw, Zgy) Fa (p,aw, Zyy®), if p is
in A(q), for pushdown-flip or pushdown-reversal transitions. Whenever there
is a choice between an ordinary pushdown transition or a pushdown reversal
one, the automaton nondeterministically chooses the next move. Observe, that
we do not want the flip-pushdown automaton to move the bottom-of-pushdown
symbol when the pushdown is flipped. As usual, the reflexive transitive closure
of 4 is denoted by F%. The subscript A will be dropped from F4 and 7%
whenever the meaning remains clear.

A deterministic flip-pushdown automaton (DFPDA) is a flip-pushdown automa-
ton for which there is at most one choice of action for any possible configuration.
In particular, there must never be a choice of using an input symbol or of us-
ing A input. Formally, a flip-pushdown automaton A = (@, %,T,6, A, qo, Zo, F)
is deterministic if:

1. é(q,a,Z) contains at most one element, for all a in ¥ U {A}, ¢ in @, and
Z inT.
2. If §(q, A, Z) is not empty, then §(q,a, Z) is empty, for all @ in X, ¢ in Q,
and Z in T.
. A(q) contains at most one element, for all ¢ in Q.
4. If A(q) is not empty, then d(q,a, Z) is empty, for all ¢ in ZU{A}, ¢ in Q,
and Z in I'.

w

Let £ > 0. For a (deterministic) flip-pushdown automaton A we define T<j(A),
the language accepted by final state and at most k pushdown reversals, to be

Tgk(A) = {’LU S | (qO’wa ZO) |_:k4 (q7 )‘77) with at most k

pushdown reversals, for some v € I'™* and ¢ € F'}.

Example 2 We define the deterministic flip-pushdown automaton
A= <{q07 q1, 92, q3}a {a’ b7 $}a {Aa Ba Z0}7 (53 Aa q0, Z()a {q3}>7

where
1. 0(qo,a, Zo) = {(q0, ZoA)} 8. 6(q0,$,4) ={(q1,4)}
2. 6(q07b ZO) = {(quOB)} 9. 5(q07$7B) = {(QDB)}
3. 6(qo,a,A) = {(q0,AA)} 10. (g2,a,A) = {(g2, M)}
4. 5(q ) {(qo,AB)} 11. §(ga, b, B) = {(qz,A)}
6. 5(610 ) {( qo0, BB)}
7. 6(qo, $ Zy) = {(q1, Z0) }

and A(q1) = {¢2}, that accepts by final state with one pushdown reversal the
non-context-free language { ww | w € {a,b}*}.

4



The transitions (1) through (6) allow A to store the input on the pushdown. If A
reads $, then it moves from state gy to q1 and directly applies the flip operation
specified by A(q1) = {¢2} afterwards, since this is the only choice the machine
has. Then in state g2 automaton A tries to match the remaining input symbols
with the reversed pushdown content. This is done with the transitions (10)
and (11). Thus, if the input is of the form w$w, then all symbols will match,
and A will change into the accepting state g3 with transition (12). In addition, A
will empty its pushdown with its last transition.

The family of languages accepted by nondeterministic resp. deterministic flip-
pushdown automata by final state making at most k& pushdown reversals is
denoted by .Z(NFPDA;) resp. Z(DFPDA ;). Furthermore, let

[e.e]
Z(NFPDA ) = | J (NFPDA ;)
k=0

and similarly .2 (DFPDAg,).

An essential technique for flip-pushdown automata is the so-called “flip-push-
down input-reversal” technique, which has been developed and proved in [10].
It allows to simulate flipping the pushdown by reversing the (remaining) input,
and reads as follows. For sake of completeness the proof from [10] is included.

Theorem 3 Let kK > 0. Language L is accepted by a nondeterministic flip-
pushdown automaton A1 = (Q,%,T,d,A, qo,Zo, F) by final state with at
most k + 1 pushdown reversals, i.e., L = T<(;41)(41), if and only if language

Lr = {wo®| (g0, w, Zp) %1, (@1, A, Zoy) with at most k reversals,
g2 € A(q1), and (g2,v, ZoyT) F4, (g3, A, q4) without any reversal, g4 € F' }

is accepted by a nondeterministic flip-pushdown automaton As by final state
with at most k pushdown reversals, i.e., Lr = T<j(As).

In order to simplify presentation, we introduce the notion of a generalized flip-
pushdown automaton A = (Q,3,T, 4, A, qo, Zo, F), where Q, &, ', A, qo € Q,
Zp € T',and F C @ are as in the case of ordinary flip-pushdown automata, and §
is a finite domain mapping from @ X (X U {A}) x I'* to the finite subsets of
Q@ xI'*. With standard techniques one can construct an ordinary flip-pushdown
automaton from a given generalized one, without increasing the number of
pushdown-flips. Due to the ability to read words instead of symbols, the nec-
essary checks, whether a push or pop action can be performed in the backward
simulation becomes easier to describe.

The following proof has been presented in [10] in terms of nondeterministic
flip-pushdown automata that make exactly k pushdown reversals and accept
by empty pushdown. The equivalence of these models to the one of Theorem 3
is shown in Section 4 and Section 5.



Proof. [of Theorem 3] We only prove the direction from left to right. The
converse implication can be shown by similar arguments.

Let A; = (Q,%,T,6, A, qo, Zo, 0) be a flip-pushdown automaton satisfying vy €

{AMPU{ZX | X € T'} for all (p,v) € 6(q,a,Z), where p,q € Q, a € LU {A},
and Z € I'. This normal form can be easily achieved.

Then we define a generalized flip-pushdown automaton

A2 = (Q U Q U {Qf}a 27 ru F U Qa 5,7 Alv q0, ZOa {Qf})a

where Q = {q|q€ Q}, T ={Z| Z €T}, and & and A’ are specified as
follows:

1. Forallg € Q,a € YU{A}, and Z €T, set §'(q,a, Z) includes all elements
of §(¢,a,Z) and

2. for all ¢ € Q, let A’(q) contain all elements of A(q).

3. For all € Q, if A(r) # 0, then §(r,a, Z) contains (g, ZZyrZy), where
q € Q satisfies (p, \) € d(q,a, Zy) for some p € Q and a € X U {\}.

4. For allp,q € Q,a € SU{\},and X,Y €T, let 6'(,a, XY) contain (p, X)
if (¢, XY) € 6(p,a, X).

5. For all p,q,7 € Q, a € ¥U{A}, and X,Y €T, then

(a) let &'(q,a, X) contain (p, XY) if (¢, \) € d(p,a,Y) and
(b) let §'(g,a, XrX) contain (p,rY) if (¢, \) € §(p,a,Y).

6. For all X € T and p € A(r), for some r € Q, let §'(p, \, Zo XrX) contain

We summarize the transitions for the backward simulation of As in Table 1.

Simulation
forward ‘ ‘ backward

(ﬁ,a ZZOQZO) € 6,(67 a, Z)

fip |peal it () €30y, 20) | P
push | (p, XY) € 6(¢,4,X) | (@ X) € 8'(h,a,X¥) | pop
(@,XY) €9(B,a,X) | push (a)

bov | BN EN@Y) MG V) € #(p.a XrX) | push (b)

accept | (p,\) € d(q,a, Zp) -

(@5, M) €8 (DN Z0XqX)
if pe A(q)

accept

Table 1: Transitions of Ay for the backward simulation of A.

Transitions from (1) and (2) cause Az to simulate A; step-by-step until the
(k + 1)st pushdown reversal done by A; appears. All elements described in (3),
(4), (5), and (6) allow Ay to start a backward simulation of A; on the reverse
remaining input. To be more precise, the transitions in (3) start the backward



simulation of Ay by undoing the very last step of Aj, i.e., by pushing ZyrZ,
onto the pushdown, reading symbol a, and continuing with state ¢, whenever A;
has used transition (p, A) € d(q, a, Zy), for some p € @, in its last computation
step. Then in (4) push moves of A; are simulated as pop moves by As, always
assuming to have a boldface symbol on top of the pushdown. Moreover, tran-
sitions specified in (5) simulate pop moves of A; by push moves of As. Here
we have to consider two cases, namely starting a sub-computation which (a)
comes back to the same pushdown height or (b) comes not back to the same
pushdown height. In the latter case As has to pop a compatible non-boldface
symbol together with a boldface symbol in order to decrease the pushdown
height. Finally, in (6) the termination of the computation is done, by checking
that the pushdown contains a string of the form ZyXrX for some X € I' and
r € @, and has reached some state in A(r).

Now assume that w € Niy1(A1) such that w = uva with

(g0, uva, Zo) 4, (a1,va, ZoXv) Fa, (g2,va, Zoy"X)
l_*Al (Q37 a, ZO) I_A1 (Q4, /\7 >‘)7

where u,v € £*, a € SU{A}, X e TU{A}, vy € T, X = X implies 7 = ),
and the last pushdown reversal appears at (q1,va, ZoX7) Fa, (g2, va, ZoyRX).
Thus, by our previous considerations we find the simulation

(g0, uav™, Zo) 4, (g1, av™, ZoXy) Fa, (33,97, ZoXvZog1 Zo)
I_*A2 (627 Aa ZOX(hX) |_A2 ((ff, )‘7 )\)7

and therefore uav® = u(va)® belongs to Ty (Asz), since the number of reversals
was decreased by one. By similar reasoning, if u(va)® € Ty (Asz), then uva €
Ni11(A1). Since state acceptance and acceptance by empty pushdown coincides
for flip-pushdown automata, the claim follows. O

3 Determinism versus Nondeterminism

We show that nondeterminism is better than determinism. In particular, the
family of languages accepted by deterministic flip-pushdown automata with at
most k£ pushdown reversals is a strict subset of the family of languages accepted
by nondeterministic flip-pushdown automata with at most £ pushdown rever-
sals. To this end, we need the closure of deterministic flip-pushdown languages
under intersection with regular sets and under the prefix operation. The first
property is straightforward by simulating a deterministic finite automaton in
the control of the flip-pushdown automaton at the same time. For the sec-
ond property let w = ajas---a, with a; € X, for 1 < ¢ < n, be some word
over . The set of prefizes of w is defined to be {A,a1,a14a2,...,a1---ap}. For
a language L C ¥* and a natural number ¢ > 1 let

P;(L) ={w € L | exactly i prefixes of w are belonging to L }.



The following theorem shows that deterministic flip-pushdown languages are
closed under the P; operation.

Theorem 4 Let i > 1 and k > 0. If L € Z(DFPDA<y), then Pi(L) €
#(DFPDA ).

Proof. Let A3 = (Q,%,T,0,4,q0,Zo, F) be a deterministic flip-pushdown
automaton such that L = T<j(A;). Then define

A2 = <QX {0717"'72.—{_1}71—‘76,7A,7Q7Z07{(q7i) | qEF}>7

where ¢ equals (g, 0), if A € L, and is (go, 1), otherwise. The transition func-
tions ¢’ and A’ are defined as follows: For all p,q € Q, a € XU{\}, and Z €T
let

L ((p,5),7) € ¢'((g,

pEQRQ\F) r(]—z-l-landpeF)
2. ((p7]+ ) )651(( )7 a, ),lf(p, )E(S(q,a,Z),OSjSi, and p € F,
3. A(g, 7)) ={(p. ) \pGA(Q)}, forall 0 <j <i+1.

j),a,Z), if (p,vy) € 6(¢g,a,Z) and (0 < 7 < i+ 1 and

It is easy to see that Az accepts an input w if and only if exactly ¢ prefixes of w
are belonging to L. O

The following corollary is an immediate consequence of the above given theorem.
Corollary 5 Leti > 1. If L € Z(DFPDAg,), then P;(L) € Z(DFPDAg,).

Another essential ingredient of the proof of the following theorem is a general-
ization of Ogden’s lemma, which is due to Bader and Moura [1] and reads as
follows: For any context-free language L, there exists a natural number 7, such
that for all words z in L, if d positions in z are “distinguished” and e positions
are “excluded,” with d > n¢tl, then there are words u, v, w, z, and y such
that z = uvwzy and (1) vz contains at least one distinguished position and no
excluded positions, (2) if r is the number of distinguished positions and s is the
number of excluded positions in vwz, then r < n*+!, and (3) word uviwzly is
in L for all 7 > 0.

Now we are ready to separate determinism from nondeterminism for flip-push-
down languages.

Theorem 6 Let k > 0. Then .Z(DFPDA;) C .Z(NFPDA ;).

Proof. The inclusion immediately follows for structural reasons. For the
strictness we argue as follows.

For k = 0 the theorem states the well-known result for deterministic context-
free languages. So let k > 1 and L = {ww | w € {a,b}* }. Since L belongs to
Z(NFPDA<;), it belongs to .Z(NFPDA ;) as well. In the following we show



that L ¢ Z(DFPDA<g,). This immediately implies that L ¢ .Z(DFPDA<;)
for any k.

Assume to the contrary, that L € Z(DFPDA.;), for some k. Then by
Theorem 4 we obtain that P»(L) € Z(DFPDA;), and since this language
family is closed under intersection with regular sets, also the language L' =
Py(L) N ba*ba*ba*ba* is a deterministic k-flip language. Thus, language L' be-
longs to .Z(NFPDA ¢ ,), which is closed under rational a-transduction as shown
in [10]. Since L’ contains exactly the words of the form ba™ba™a™ba™ba™a™, this
implies that the language L"” = {a"b"t™c"d"*™ | m,n > 1} belongs also to
Z(NFPDA<fy). In order to obtain a contradiction, it remains to show that
this is not the case. To this end, we use Theorem 3 and the generalization of
Ogden’s Lemma.

Assume to the contrary, that language L" = {a™"™™c"d"*™ | m,n > 1} be-
longs to .Z(NFPDA ) for some k. Then we apply k times the flip-pushdown
input-reversal Theorem 3 to L obtaining a context-free language. Since we do
the input reversal from right-to-left, the block of d’s remains adjacent in all
words. Hence a word w in the context-free language reads as w = ud" v,
where |uv|, = |uv|. = n and |uv|y, = n + m. Then it is an easy exercise to
show that this language cannot be context-free using the generalized version of
Ogden’s lemma. This contradicts our assumption on L”, and thus, it does not
belong to .2 (NFPDA},), for any k > 0. This shows that L” ¢ Z(NFPDAg,).

Hence, we can conclude that L does not belong to .2 (DFPDA ;) for any k. O

Corollary 7 Z(DFPDA<j,) C Z(NFPDA<g,).

4 Exactly k Flips versus At Most k Flips

Let k& > 0. For a flip-pushdown automaton A = (Q,%,T,0,A,qo, Zy, F') we
define T_j(A), the language accepted by final state and exactly k pushdown
reversals, to be

T (A) ={w € X* | (g0, w, Zo) F% (g, A,7) with exactly k

pushdown reversals, for some v € I'* and g € F'}.

Similarly, we use the notations .Z(DFPDA_;), .Z(DFPDA_g,) etc. The next
result shows that for nondeterministic computations the classes for exactly k
flips and at most k flips coincide. It turns out that this is not true for determin-
istic computations, but the result shows also that exactly k flips are included in
at most k flips for deterministic computations. This does not follow for struc-
tural reasons since the automaton with at most &k flips may accept some input
with strictly less than k flips. By definition these inputs do not belong to the
accepted language of the automaton with exactly k flips.



The idea for both directions of the proof relies on the simple fact that a flip-
pushdown automaton can count the number of reversals performed during its
computation in its finite control. Moreover, the construction must ensure that
it is possible to increase the number of pushdown flips without changing the
accepted language.

Theorem 8 Let k > 0. Then

Z(NFPDA_;) = Z(NFPDA;) and Z(DFPDA_;) C .#(DFPDA ;).

Proof. Let 4 = (Q,%,T,4,A,qo, Zy, F) be a (deterministic) flip-pushdown
automaton. Then we define

A2 = <Q X {Oa]-a ,]{}},Z,P,(SI,A,, (q070)7Z0a{(Qak) | q € F}>7

where ¢’ and A’ are defined as follows: For all p,qg € Q,a € XU{\},and Z €T
let

1. ((p,),7) € 8'((¢,9), 0, 2), if (p,7) € 6(g,0,2), for 0 <i <k,
2. A((q, ))Z{(p,2+1)IPGA(Q)},fOI"OSi<k,
3. Al((g k) ={(p,k) [ p € Alg) }-

By construction one sees, that whenever A; is a deterministic flip-pushdown
automaton, then As is a deterministic machine, too.

Observe, that each state in As is a tuple, where in the second component
the number of pushdown reversals performed so far is stored. The transitions
from (1) cause As to simulate the original flip-pushdown A;. If a pushdown flip
is performed, the state’s second component is increased by one, which is seen
in (2). Since only the states of the form (g, k), for ¢ € F, are accepting states,
the automaton A must have done at least £ pushdown reversals in order to
reach a state of this form.

Assume that w € T—¢(A1). Then (qo,w,Zo) F}, (¢,A,7) for some ¢ € F
and v € I'* with exactly k reversals. Thus, ((go,0),w, Zo) 3, ((g,%),,7)-
Therefore, w € T<(A2), since the number of reversals is at most £ now and no
state of the form (g,7) with 0 < i < k is an accepting one. By similar reasoning,
ifw e TS]C(AQ), then w € T:k(Al).

Conversely we argue as follows. Let Ay = (Q,%,T,4,A, qo, Zo, F) be a flip
pushdown automaton. Then we define

A1 =((QU{q}) x{0,1,... Kk}, B,T, 8, A, (q0,0), Zo, { (¢,) [ ¢ € F' }),

where ¢’ and A’ are defined as follows: For allp,q € Q,a € XU{\},and Z € T
let

1. ((go0,1%), Zo) € 6((qp-1%), A, Zy), for 0 < i < k,
2. ((p,),7) € 9'((g,1), a, ), if (p,7) € 0(q, a, Z),
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3. A((qp,1) = {(gf,i+ 1)}, for 0 < i < k,
4. A'((q,7)) ={(p,i+1)|peA(q)}, for 0 <i < k.

The transitions from (1) cause A; to enter the initial configuration of Ay, while
those transitions in (2) simulate the original flip-pushdown A,. If a pushdown
flip is performed, the state’s second component is increased by one, which is
seen in (4). In order to obtain exactly & flips, additional pushdown reversals
can be performed using (3) at the very beginning of the computation.

Assume that w € T<j(A2). Then (go,w, Zo) 7, (g, A,7) for some ¢ € F and
v € I'* with £ reversals, for some 0 < ¢ < k. Thus,

((QB,O),’IU,ZO) |_£?1:£ ((q67k - €)7w7Z0) l_Al ((Q(),k) - £)7w7 ZO) |_:k41 ((Q7 k)v/\77)7

where the first k—£ steps are pushdown flips only. Therefore, w € T—; (A1), since
the number of reversals is exactly & now. By similar reasoning, if w € T_j(A;),
then w € Tgk(A2). O

Due to the equality, in the sequel we can simplify the notation to .Z(NFPDAy)
etc. The next step is to separate the families ' (DFPDA_;) and .Z(DFPDA ;)
for k > 1. Trivially, they coincide for k = 0.

Theorem 9 Let k > 1. Then Z(DFPDA_;) C Z(DFPDAy).

Proof. The inclusion has been shown in the previous theorem. The strictness
is seen as follows. Define L = L' U L", where

L' = {#w#|we {a,b}*} and L" = {#wo#wiSw# | wo,w; € {a,b}*}.

Obviously, language L is accepted by some deterministic flip-pushdown au-
tomaton making at most one flip. So, L is accepted by some DFPDA <}, for any
k>1.

Assume to the contrary that language L is accepted by some deterministic flip-
pushdown automaton A = (Q,%,T,4,A, qo, Zo, F) with exactly k& pushdown
reversals. Consider an arbitrary word #wo# that belongs to L' and, hence, also
to L. There is an accepting computation of A which reads as (qo, #wo#, Zo) F%
(g, A7), where ¢ € F and vy € I'*. Since for every w1 € {a,b}* we find that
v = #woHtw; $wi# belongs to L, there must be also an accepting computation
on v. Since A is deterministic and, thus, has already performed %k pushdown
reversals on the prefix #wg# of v, we can construct an ordinary deterministic
pushdown automaton accepting the language L = { w$w# | w € {a,b}* }. The
deterministic pushdown automaton accepting L initially creates the pushdown
content y with a series of A-moves, changes to state ¢, simulates A step-by-step,
and accepts if A does.

Since L is not even context free, we obtain a contradiction to our assumption.
So L ¢ Z(DFPDA_), and the assertion follows. O
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Corollary 10 .#(DFPDA_g,) C .2(DFPDAz,).

Proof. In the proof of the previous theorem we obtained for the witness
language L ¢ £ (DFPDA_y). Since k was choosen arbitrarily, it follows L ¢
£(DFPDA_,). O

So far we have the strict inclusions
Z(DFPDA_;) C Z(DFPDA<;) C Z(NFPDAy),
for all k¥ > 1, and

Z(DFPDA_j,) C Z(DFPDAp,) C Z(NFPDAg,).

5 Empty Pushdown versus Final State

Now we are going to consider flip-pushdown automata with a different mode
of acceptance. For ordinary deterministic pushdown automata it is well known
that acceptance by empty pushdown yields strictly weaker devices than ac-
ceptance by final state. In the following we distinguish for both modes also
acceptance with at most and with exactly & pushdown reversals, respectively.

Let k£ > 0. For a flip-pushdown automaton A = (Q, %, T, 6, A, qo, Zo, F') we de-
fine N_i(A), the language accepted by empty pushdown and exactly k pushdown
reversals, to be

N<p(A) = {w e X* | (g0, w, Zo) F% (¢, A, \) with at most k

pushdown reversals, for some ¢ € Q }.

As before we define N_;(A), and use the notations .Zy(DFPDAc;) and
XN(DFPDA:]C) etc.

The first result in this section concerns nondeterministic automata. It general-
izes the theorem on ordinary pushdown automata, that languages accepted by
nondeterministic flip-pushdown automata by final state are exactly those lan-
guages accepted by nondeterministic flip-pushdown automata by empty push-
down. We state the theorem without proof since it is a simple adaption of the
proof for ordinary pushdown automata.

Theorem 11 Let k > 0. Then

%v(NFPDA ;) = Z(NFPDA ;) and Zx(NFPDA_;) = Z(NFPDA_y).

In particular, the theorem together with Theorem 8 shows

%n(NFPDA ;) = Z(NFPDA ;) = Z(NFPDA_;) = %y (NFPDA_;)
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and 2y (NFPDAg,) = Z(NFPDAg,). So we have the robust situation that
for the acceptance power of flip-pushdown automata it makes neither a differ-
ence whether the mode is by empty pushdown or by final state nor whether
at most k or exactly k flips are considered. For deterministic classes it does
make a difference, but interestingly, we can show that in case of acceptance by
empty pushdown the families with at most k& and exactly & pushdown reversals
coincide. In case of acceptance by final state the classes have already been
separated.

Theorem 12 Let k > 0. Then %y(DFPDA<;) = Zy(DFPDA_;).

Proof. In order to show the inclusion .Zx(DFPDA<;) C Zn(DFPDA_;)
let Ay = (Q,%,T,6,A,qo, Zo, D) be a deterministic flip-pushdown automaton.
Basically, the idea is to simulate A; until it empties its pushdown and then to
perform the missing number of flips. To this end, the simulating automaton As
has to count the number of simulated flips in its finite control, and has to provide
a new bottom-of-pushdown symbol Zj. The latter is necessary to continue the
computation when A; has emptied its pushdown. Since now the old bottom-
of-pushdown symbol Z; is object of pushdown reversals, special attention has
to be paid. Every time As wishes to simulate a pushdown reversal of Ay, it has
to push Zj, to perform the reversal, and to pop Zp.

Let ' and Q" be two disjoint copies of the set @, and ¢ and ¢, and Z) be
three new symbols. We define

Ar = ({qo} VU (QUQUQ"U{q}) x{1,2,...,k}), B, T U{Z}, 0", A, g, Z, 0),

where §' and A’ are defined as follows. For allp,q € Q, a € XU{A}, and Z € T

L. 0'(gp5 A, Zg) = {((90,0), Zy Zo) },

2. 0'((g.1),a,Z2) = {((p,4),7)}, if 6(g,a, Z) = {(p,7)}, for 0 < i <k,
3. 5I((q7i)7)‘a Z) = {((p’,i),Zo)}, ifA(q) = {p}’ for 0 <@ < k),

4. A'((p',1)) ={",i + 1)}, for 0 < i < k,

5.0'((p",4), A\ Zo) = {((p,9), A)}, for 0 <i <k,

6. &'((g,9), A, Z) = {((gh, 1), Z)}, for 0 <i <k,

7. A'((q,7)) = {(q,i+ 1)}, for 0 < i < k,

8. d'((gz, k), A, Zg) = {((ge: k), A)}

The automaton Aj initially makes a setup for the simulation (1), simulates or-
dinary transitions of A; (2), prepares the simulation of a pushdown reversal (3),
simulates the pushdown reversal (4), completes the simulation of a pushdown
reversal (5), prepares the final pushdown reversals (6), performs the final push-
down reversals (7), and halts by popping the bottom-of-pushdown symbol (8).

It remains to show the inclusion Zx(DFPDA_;) C Zn(DFPDAc;). The
construction is similar to the corresponding one given in the proof of Theorem 8.
The main difference is, that now the simulating automaton is prevented from

13



popping the bottom-of-pushdown symbol whenever the number of performed
pushdown reversals is not equal to k. O

Corollary 13 %y (DFPDAj,) = Zn(DFPDA_g,).

Due to the equalities, again, in the sequel we can simplify the notation to
Zn(DFPDA}) and Zn(DFPDAg,). Now the question for the relationships
between Zn(DFPDA}) and the other classes under consideration arises. The
next result nicely extends the chain of strict inclusions known so far.

Theorem 14 Let k > 0. Then £y (DFPDA}) C Z(DFPDA_y).

Proof. Due to Theorem 12 it suffices to show £y (DFPDA_;) C .Z(DFPDA_y).
Both, for inclusion and for its strictness we can adapt the proofs for ordinary
deterministic pushdown automata.

For inclusion a new bottom-of-pushdown symbol is provided in order to detect
when the simulated automaton empties its pushdown. If and only if this occurs,
the simulating automaton enters an accepting state.

For strictness of the inclusion it is easily seen that a language L € Zn(DFPDA_)
must have the prefix property. That is, no word in L is a proper prefix of an-
other word in L. Since there exist deterministic context-free languages that
do not have the prefix property, there exist languages which do not belong to
Zn(DFPDA_;), but which do belong to £ (DFPDA_;), for all k£ > 0. O

Corollary 15 Zy(DFPDAg,) C Z(DFPDA_gy,).
So far we have shown the strict inclusions
Zn(DFPDAy) C Z(DFPDA_;) C Z(DFPDA<;) C Z(NFPDAy),

for all £ > 1, and correspondingly for “fin.”

6 Flip-Pushdown Hierarchies

In this section we consider hierarchies on flip-pushdown automata induced by
the number of pushdown reversals. Recently, it was shown shown in [10] that for
nondeterministic flip-pushdown automata k + 1 pushdown reversals are better
than k. The proof of this result is based on the “flip-pushdown input-reversal”
technique. The witness language for the hierarchy has shown to belong to
Z(DFPDA_(;41)) but not to Z(NFPDAy). Actually, the language is also
accepted by some deterministic flip-pushdown automaton by empty pushdown
making k + 1 pushdown reversals. For the convenience of the reader we recall
the proof given in [10].
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Theorem 16 Let k > 0. Then XN (DFPDA]H_l) \Z(NFPDA}C) 7'5 @

Proof. Define, for k > 1, the language
Ly, = { #w1Swi #woSwao#t - - - #wipSwi# | w; € {a,b}* for 1 <i <k}

Obviously, language Ly41 is accepted by a deterministic flip-pushdown au-
tomaton by empty pushdown making exactly k + 1 pushdown reversals. So
Liyq € Z(DFPDA]H_l)

Next we prove that Lpyy ¢ Z(NFPDAg). Assume to the contrary, lan-
guage L1 is accepted by some flip-pushdown automaton A with exactly &
pushdown reversals. Then applying the flip-pushdown input-reversal Theo-
rem 3 exactly k times, results in a context-free language L. Now the idea is
to pump an appropriate word from the context-free language and to undo the
flip-pushdown input-reversals, in order to obtain a word that must be in Ly1.
If the pumping is done such that no input reversal boundaries in the word are
pumped, then the flip-pushdown input-reversals can be undone. Therefore, we
need the generalization of Ogden’s lemma [1]. The principle idea of the proof
is shown in Figure 1. Let n be the constant in the generalization of Ogden’s

[ B N ® NN P I
| !

flip-pushdown input-reversal theorem flip-pushdown input-reversal theorem

decomposition by pumping lemma

|
(W W]

pumping

Figure 1: Principle idea of the proof.

2k+1 2k+1 2k+1 2k+1 . .
lemma for L and z = (#a™ ' " $a™ " k+14 be in Li.q. Consider
+

the word z when transformed into an instance 2’ of the context-free language L.
When applying Theorem 3 to a word wv it becomes wv®, then we mark the
last position of w and the first position of v as excluded. Hence, after k ap-
plications of Theorem 3 word 2’ in L contains at most 2k excluded positions e.
Moreover, since only k flip-pushdown input-reversals are allowed, and k + 1
blocks #am" T o gan T e g exist, due to the pigeon-hole principle there
must be at least one block, which was not cut and (its remaining input) re-
versed. We pick one of these intact blocks in 2z’ and mark all its positions as
distinguished. Thus, there are d = 4 - n?**! 4 2 distinguished positions in 2/,
with d > n¢*l.
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Now assume that words u, v, w, x, and y satisfy the properties of the general-
ization of Ogden’s lemma. First, we can easily see that if either v or  contains
symbols $ or #, then we obtain a contradiction by considering word uv?wz2y,
since every word in L (L1, respectively) contains exactly k& + 1 symbols $ and
exactly k + 2 symbols #. Second, we know that because vx contains at least
one distinguished position, word v or x lies completely within our chosen intact
block #a™" ' 57" $an™ pn*™ ¢ (excluding the symbols $ and #). Then we

distinguish three cases:

1. Both words v and z are within the block under consideration. Then the
number of excluded positions in vwz equals zero, and hence [vwz| < n.
Then we obtain, that the block under consideration looses its “copy” form
in the word 2’ = uv?wx?y, i.e., the block we are looking at is not of the
form #w$w#, for some w, anymore.

2. Word v is within the block under consideration, but = is not. Then the
number of excluded positions in vwz is at most 2k, and hence |v| <
n2k+1 Again, the block under consideration looses its form in the word
7 = wlwr?y.

3. Word v is not within the block under consideration, but x is. Then a
similar reasoning as in the case above applies.

Since we know little about the context-free language L, we now transform our
pumped string z’ back towards language Ly 1, according to Theorem 3. Now
the advantage of the excluded positions comes into play. Since we have never
pumped on excluded positions, the pushdown reversal move is still valid. Hence,
word 2’ leads us to a word Z, where the original intact block considered so far is
now not of the form #w$w#, for some w anymore. Observe, that the application
of Theorem 3 is done exactly in the reverse order as above. This means, that an
input reversal appears only at excluded positions (or in-between two excluded
ones). In particular, the block considered so far remains untouched during this
process. Therefore, word Z is not a member of language Ly1. This contradicts
our assumption, and thus Ly, ¢ Z(NFPDAy). O

So we have four hierarchies with separated levels and, furthermore, separated
families on every level. In order to explore the relationships between any
two families somewhere in the inclusion structure (cf. Figure 2), we have to
answer the question how the number of pushdown reversals relates to deter-
minism/nondeterminism, at most k/exactly k reversals, or acceptance by final
state/empty pushdown. In principle, these answers have already been given.
Either two families are related by a strict inclusion or they are incomparable.
One direction of the following theorems is an immediate consequence of the
proof of the hierarchy Theorem 16.

Theorem 17 Let £ > k > 0. The family £ (NFPDAy) is incomparable with
each of the families Z(DFPDA <), Z(DFPDA_;), and £y (DFPDA,).
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Proof. By the proof of Theorem 6 the language { ww | w € {a,b}" } belongs to
Z(NFPDA) but does not belong to .#(DFPDA <y,). This proves the assertion
for k > 1. The case k = 0 is seen by the language { ww® | w € {a,b}* } which
belongs to .Z(NFPDA,) but does not belong to .Z(DFPDA<g,). The latter
can be shown by the same argumentation used to show {ww | w € {a,b}" } ¢
Z(DFPDA ). 0

The next result holds for k£ > 1 only, since trivially the family ./ (DFPDA <)
equals .Z(DFPDA_).

Theorem 18 Let £ > k > 1. The family .Z(DFPDA ;) is incomparable with
each of the families (DFPDA_,) and % (DFPDAy).

Proof. By the proof of Theorem 9 the language
{#w# | w € {a,b}" } U {#wotw $w1# | wo, w1 € {a,b}* }

belongs to .2 (DFPDA<;) but does not belong to .Z(DFPDA_g,). O

Theorem 19 Let £ > k > 0. The family .Z(DFPDA_;) is incomparable with
the family £y (DFPDA,).

Proof. As witness we may take any deterministic context-free language L
that does not have the prefix property. Trivially, L € Z(DFPDA_) but L ¢
ZN(DFPDAﬁn). O

7 Conclusions

We have investigated (deterministic) flip-pushdown automata with a constant
number of pushdown reversals, which were recently introduced by Sarkar [14].
The main interest was on deterministic computations. We distinguished de-
terministic automata, that accept with at most £ pushdown reversals or with
exactly k pushdown reversals, that accept by final state or by empty pushdown.
For all models we showed a strict hierarchy induced by the number of pushdown
reversals. Furthermore, we have separated deterministic from nondeterministic
automata and have considered the relationships between the distinguished de-
terministic classes. The major technique is the “flip-pushdown input-reversal”
technique developed in [10].

A natural property for further distinctions is whether ordinary A\-moves are al-
lowed or not. Here we assume that a pushdown reversal never consumes an
input symbol. A well-known language which separates deterministic context-
free languages without A-moves from deterministic context-free languages with
A-moves is {a™b"zc™ | m,n > 1} U {a™b"yc" | m,n > 1} as shown in [4].
Obviously, this language is accepted by some deterministic flip-pushdown au-
tomaton without A\-moves by empty pushdown making one pushdown reversal.
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#n(DFPDAg)
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Figure 2: Inclusion structure.

Nevertheless, we can generalize the language to L = {a‘b™c"zd’ | £,m,n >
LY u {a®b™cyd™ | £,m,n > 1} U {a*b™czd™ | £,m,n > 1}. Tt is easy to see
that L is accepted by an ordinary deterministic pushdown automaton by empty
pushdown or by final state that makes some A\-moves. On the other hand, lan-
guage L cannot be accepted by any deterministic flip-pushdown automaton not
allowed to make A\-moves.

Conversely, the language Ly, of the hierarchy Theorem 16 is accepted by some
deterministic flip-pushdown automaton without A\-moves by empty pushdown
making k pushdown reversals. But Lj is not accepted by any deterministic
flip-pushdown automaton making strictly less than & pushdown reversals, even
if A-moves are allowed. This shows incomparability between each two of the
families.

Nevertheless, several questions for flip-pushdown languages remain unanswered.
We mention a few of them: (1) What is the power of A\-moves for nondeter-
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ministic flip-pushdown automata? Can they be removed without affecting the
computational capacity? (2) What are the closure properties of the determinis-
tic families? (3) Which properties are decidable? (4) What are the relationships
between these language families and other well-known formal language classes?
Especially, the latter question is of some interest, because not even the rela-
tionship between the family of flip-pushdown languages and some Lindenmayer
families like, e.g. EOL or ETOL languages is known. For more on Lindenmayer
languages we refer to Rozenberg and Salomaa [12]. We conjecture incompara-
bility, but have no proof yet. Obviously, { a”b"c" | n > 0} is an EOL language
which does not belong to .Z(NFPDAg,) [10], but for the other way around
we need a language with a semi-linear Parikh mapping which is not an ETOL
language.
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