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INTRODUCTION

The most interesting solutions of equation

X(1)=—fx(=1), (f)

with f:R—R continuous and f(&)¢&>0 for all {#0, and of its
generalizations, are those which are slowly oscillating. This notion is related
to the particular type of delay in the equation considered. In our case it is
appropriate to call a function x: [—1, 0)- R slowly oscillating iff there
exists ¢>—1 such that z >z’ + 1 for every pair of zeros z> z' of x in
|2, ). Slowly oscillating solutions may be undamped (see [4, 9, 10]), and
results on periodicity are well known. We refer to Nussbaum’s survey [5],
and to the author’s paper [9].

Here we are concerned with the domain of slow oscillations—that is, the
set S, of continuous functions ¢: [—1, 0] » R such that the solution x = x® of
()= f(x(t —~ 1)) for t> 0, x|[~1,0] =4, is slowly oscillating. In general,
S,U {0} is a proper subset of the state space X of continuous real functions
on [—1,0]. Examples are provided by the case f linear, where X\S, always
contains an infinite-dimensional subspace, and by results on bifurcation of
“rapidly oscillating” periodic solutions [1,5]. But numerical experiments
suggest that these “rapidly oscillating” solutions are unstable or rare in some
sense [7]. The natural conjecture that S, is open and dense in X was already
stated by Kaplan and Yorke [4].

In case fis linear, this follows from our Lemma 3 in [9]; see Corollary 2
below. The main result of this paper deals with density for nonlinear
equations, openness of S, being immediate.

*This work was supported by Deutsche Forschungsgemeinschaft, Sonderforschungs-
bereich 72, Universitat Bonn.



THEOREM 1. Let a continuous function fi R — R be given with f(E) >0
Sfor £+ 0. Assume [ is strictly increasing on R and continuously differentiable
on a neighborhood of 0 € R with f'(0) > n/2.

Then there exists a > 0 such that every ¢ € X with lim sup,_ . |x°(t) < a is
in the closure of Sj.

S'(0) > /2 guarantees undamped slowly oscillating solutions, so we are in
one of the more interesting cases. A first consequence is density of the
domain of undamped oscillations (Corollary 3). If in addition |f|< c|id},
¢ < ﬁ +1, then the conjecture of Kaplan and Yorke holds true
(Corollary 4). If f also satisfies Nussbaum’s conditions for uniqueness of the
(x(¢), X(¢))-orbit of slowly oscillating periodic solutions |6] then we can state
that the domain of attraction of this orbit is open and dense (Corollary 5).

The proof of Theorem 1 involves nonautonomous delay equations. It is
based on the following observation. Consider two solutions w, y of (), say,
w is “rapidly oscillating” and the initial value of y is close to w||—1, 0]. The
difference, or perturbation, x = y — w satisfies the nonautonomous equation

%(t) = —F,(t, x(t = 1)), (Fu)

where F,(f, &)= f(E+ w(t — 1)) — f(w(t—1)) for >0, E€R. f strictly
increasing yields F, (¢, &) &> 0 for all ¢t >0, £ € R, &= 0. Therefore, if the
initial value x|{—1,0] is in the cone

K=1{¢ € X:¢(—1)=0, ¢ strictly increasing}

then the same elementary argument as that in the autonomous case shows
that the perturbation x is a slowly oscillating solution of (F,,).

The first step towards Theorem 1 is now to extend the instability proof of
[9] to nonautonomous equations. This is done in Sections 1 and 2, starting
with a suitable reformulation of the result of Hale and Perello on unstable
behavior of functional differential equations [3]. In Theorem 2 we obtain
that limsup, . |x(¢)] e ceeds some positive constant § for all slowly
oscillating solutions of a class of equations of type (F,,). All statements and
proofs in Sections 1 and 2 are such that this constant § can be made uniform
with respect to solutions w of (f) which become sufficiently small at infinity.
This is essential for the proof of Theorem 1 in Section 3. As above, consider
a solution w of (f) and another solution, y, which starts close to w such that
x=p—w has initial value in K. For w sufficiently small at infinity,
Theorem 2 applies to the slowly oscillating solution x of (F,). Imposing 2
further smallness condition on w, we can interchange the roles of x and w
and regard w as a “small” perturbation of x so that y=x+ w becomes
slowly oscillating as well.



Notation. Let t>0, n€N. X and Y denote the Banach spaces of
continuous functions ¢: [~7, 0] » R” and y: (1, 0] = C”, respectively, with
supremum-norms, For functions x on [—7, 00) with values in R" or C,
segments x,, t>0, are defined by x(a):=x(t+a), a€ -7, 0] For
G:R¢ X X- R" or G: Ry X Y- C", solutions of

x(1) = G(t x,) (G)

are defined to be continuous functions x: [—7, 00) —» R” (or - C") which are
differentiable and satisfy (G) for > 0.

1. INSTABILITY FOR NONAUTONOMOUS EQUATIONS

We assume the reader to be familiar with the theory of linear retarded
autonomous functional differential equations as given in {2, Chap. 7).
Reference [8] contains a somewhat different approach to the results needed
here, which does not make use of adjoint equations. We recall the definition
of the Liapunov functional which was used by Hale and Perello [3] to
describe unstable behavior:

Let a continuous linear map L:Y— C" be given. Let A denote the
generator of the semigroup (7)),», defined by the solutions of the initial
value problem y(¢) = Ly,, o= ¢ € Y. Let a nonempty set E of eigenvalues of
A with positive real part be given. Consider the projection P of Y onto the
generalized eigenspace which is associated with E. We have
d = dim PY < 0. Choose a basis @, .. §, of PY. With respect to this basis
A|PY is represented by a d X d-matrix B with the set of eigenvalues equal to
E. There is a positive definite d X d-matrix D with BYD + DB = identity
matrix. Define the functional ¥: X~ Rj by V¢ = y"'Dy and Pp = 59 5.0,
Obviously, there are ¢, > 0, ¢, > 0 with

e |POIP < Ve || Pl forall gEX (1
Now consider nonautonomous equations
x(t) = N(t x,), N)
with N: R¢ X X - R" continuous. The argument of [3] also implies

LEMMA 1. There is a constant ¢, > 0 such that for every p > 0 there
exists € = ¢, > 0 with the following property:

For every triple (N, T, 8), N: R§ X X — R" continuous, T > 0, 6 > 0, which
satisfies

IN(, ¢)— Lol <ellgl  on (T, 0) X {$EX:|gll <O}, (€)



we have
(6> T Allx <A P [x,IF < V= 5 Vi, < Vx,)

Jor every solution x of (N).
Vx, stands for the derivative of t —» Vx,.

Proof (compare proof of Lemma 10.1.1 in [2]). By the decomposition in
the variation-of-constants formula, we have, for any solution x of an

equation of type (N), that the function 0 < ¢— y(t) € C? defined by Px,=
9 y:(t) ¢, satisfies

J(t) = By(t) + C(N(t, x,) — Lx))

with a constant d X n-matrix C independent from N and x.

Set y :=sup, _, »"Dy >0, f:=inf|,,_, »"Dy >0, c; := 1/2y. Let p> 0.
Choose ¢ < p+\/B/4y||C||||D|. Assume (N, T, 0) satisfies (¢). For every
solution x of (N) and all t >0,

Vx, = y(0)" () + g()" Dy(¢) + y(t)" Dg(t),
where g(r) : = C(N(t,x,) — Lx,). t > T and ||x,|| < 8 yield
Vx> Vx/y = 2([Cllellx | |1 D] VVx,/\/B.
By the choice of ¢ and by p?||x,||* < Vx,,
Vx, > Vx,y— Vx,/2y.
COROLLARY 1. Assume L:Y - C" is a linear continuous map. Let a
nonempty set E of eigenvalues of the infinitesimal generator of the semigroup

defined by y(t) = Ly, be given such that Re 1 > 0 for all A € E. Let P denote
the projection operator on Y associated with E.

Let a set S, = X\{0} and a constant ¢, > 0 be given with

Sl <Pl forall ¢€S,. (P)

Then there exists ¢ > 0 such that Jor.every triple (N, T, 6) satisfying (€) we
have

lim sup |x(¢)| > &
{200

Jor every solution x of (N) with {x,:t> t.} < Sy for some t, > 0.



Proof. Let p<cy\/e,. By (1), p*llg|2< V¢ for all ¢ € S,. Choose
¢ = ¢, according to Lemma 1. Let (N, T, J) satisfy (¢). For every solution x
of (N) with x, € S, for £ > ¢, we have

P lxd* < Vx,. (2)

Assume sup,,|lx,[<J for some s> max{t,, T}. Then c,¥x,<Vx, on
[s, 0) by Lemma 1. Hence 0 < Vx, e < Vx, < ¢, [|Px,|I* < ¢y I x| € 6%
which contradicts ¢; > 0 and Vx; >0 (Vx,> 0 by (2) and 0 € S).

Remark. Obviously, if (N, T, d) satisfies (¢') with 0 < &’ < ¢, ¢ such that
the assertion of Corollary 1 holds, then we have (¢) too, and therefore
lim sup,_ , |x(#)] > & for every solution x of (N) with x, € S, for ¢ in some
unbounded interval.

2. INSTABILITY AND SLOWLY OSCILLATING SOLUTIONS FOR
NONAUTONOMOUS EQUATIONS

We specialize T =1, n= 1, and consider equation

X(t) = —F(t, x(t — 1)) (F)

for continuous functions F: R§ X R— R with

Fit,5¢>0 forall ¢>0 and ¢+#0. (H)

LEMMA 2. Every solution x:{—1,0)~R of equation (F) wifh X, 'in
K:={4€X:¢g(—1)=0, ¢ strictly increasing} is slowly oscillating with
2> z' + 1 for every pair of zeros z > z' of x. We have

(i) |x|> 0 and |x| decreasing on some interval [t, 00), or
(ii) the zeros of x form a sequence (2;);en, Such that

: ; . leven
X gO in (Zj+lazj+l+l) Jor j odd
Proof. If the zeros of x are unbounded set z, := —1 and let z, be the first

zero in (—1, ). By x, € K, z; > 0. x > 0 in (~1,z,) and (F) imply x <0 in
0,2, + 1)=(zy+ 1,2z, + 1). Hence x < 0 and X <0 in (z,, 2, + 1). Denote
the first zero in (z,, 0) by z,. Then z, >z, + 1, and the same argument
gives 0 <X in (z, + 1, z, + 1). Induction yields (ii). The argument also
shows |z — 2’| > 1 for every pair of zeros z # 2’ if the zeros are bounded. In
this case, (F) implies |x| decreasing on some unbounded interval.



All segments of solutions with initial value in K lie in the set

S := {y € X\{0}: v or —y satisfies (S)},

w >0, or there exists a € [—1, 0] with y > 0 in {—1, a| and
0>win [a,0]. (S)

S is the set of functions with at most one change of sign.
As in [9], we shall apply Corollary 1 to the linear equation

y(O)=—ay(t—1) (@)

with @ > 0, to the projection P, associated with the unique pair of eigen-
values A,, 4, with |ImA,| <7, and to a subset of S. The next two lemmas
are taken from [9]. They prepare the construction of a suitable subset. The
basic relation between P, and the notion of slowly oscillating is given by

LEMMA 3. For every ¢ € X, ¢ defines a slowly oscillating solution of (2)
i P,¢+0.

COROLLARY 2. S, is open and dense in X.

Proof. Open is obvious. If y does not define a slowly oscillating solution,
P,y =0. For every real valued ¢ € P, Y\{0} (or for every ¢ € K), we obtain
P (w+¢)=P,9+#0, and v+ ¢ defines a slowly oscillating solution. This
implies density.

By Lemma 3, P, does not vanish on S. In [9] we used the simpler
operator T,(1), T,(1) ¢(a) = $(0) —a [2, ¢(a) da for a € [—1, 0], to charac-
terize subsets of S where an estimate like (P) in Corollary 1 for P=P,1s
valid:

LEMMA 4. For every cone Sy < S there exists ¢, > 0 with cg|¢]l < [P, ¢l
for all $ € Sy iff there is k > 0 with || ¢|| < k|| T,(1) 8| for all $ € Sx-
In Lemma 5 and Theorem 2 we shall consider triples (F, 77 )

F:R{ x R-> R a continuous function with (H), T> 0 and r > 0 reals.

LEMMA 5. For every given set of constants o >0, ¢ > d > 1, there exisis

a constant k=k(c,d,a) >0 with the following property. For every triple
(F, T, r) such that

diS|<|FLOI<clé]  on [T, )X (—=r7r) 3



we have, for every solution x of (F) with x, € K and lim sup,_,, |x(@)| < r,
Il < KNl To(1) .l

Sor all t in some unbounded interval.

Proof. Let (F, T, r) be given such that (3) holds. Assume x is a solution
of (F) with x, € K and |x(#)| < r for all ¢ in some unbounded interval [u, ),
u>0,

For x we have assertion (ii) of Lemma 2: Suppose x > 0 in some interval
(t, ), t>u Then ¥<O0 in (t+1,00). Together with d> 1, this implies
X(t+3)—x(t+2) = JiHixe)ds = —[iiFEx@—1)ds <
—d [1t3x(s — 1) ds < —x(t + 2), hence x(t + 3) < 0, contradiction. The same
proof applies in case x < 0 on some unbounded interval.

Now we can follow the proof of Lemma5 in [9]. We choose a zero
z;>u + 1 such that x, ,, € K. The local extrema of x on [z;, c0) are given
by my=z,+1, k2 j

On the intervals [m,, m, + 1/c] we have |x|>|g|, & the affine function
given by g, (m,)=x(m), & =—cx(m,). This follows from |X(t) =
|F@, x(t — 1) < e|x(t— 1) < e |x(my)]| for my <t my+ 1, and from ¢ > 1.

For every ¢t > 0, we have

t—1gv<wgt=>a <2 T,(1) x| “)

[ " x(s) ds

Proof. 2|T,()x] > IT.Dx)w-1 — (T(Hx)0 -0 =
a|f*7'x(a) da — [°3' xa) da| = a|[}={ x(t + a) da].

Lett>z,+ 1.
Case 1

There exists k > j with t — 1 <m <t

Subcase 1. |x,||=|x(m) and t<m+ 1/2c. Then |[T,(1)x|>
(T (1) x)(=D)| = |x(0) > |81 > | gulmy + 1/20) = |x(mil/2-

X

I

5
m m, + i/c

FIGURE 1



Subcase 2. ||x,|=|x(m,)| and m,+ 1/2c <t On [m,,m,+1/2¢]c
[t—1,t] we have |x|>|gl>|x(m)|/2=]x]/2>0. Equation (4) with
v=m,, w=m,+ 1/2¢ yields 2 || T,(1) x,|| >/ x,||/4c.

Subcase 3. |x(my)| <|lx,|. |x| increases on [m, — 1, m,], decreases on
(my, z,,,] and increases on [z, ,,2;,,+ 1]. This implies z,,,<¢ and
|x(t) =lx,ll, hence | T, (1) x,[| > [x(D)] = | x|
Case 11

For every k> j, m & [t—1,t]. Then z;<t—2, and x is monotone on
(= 1, ). Hence f1x ] = x(0)] or |, = |x((— 1)

Subcase 1. || x| =]|x(?). | T,(1)x,|| > ||x,|| is obvious.

Subcase 2. | x| =|x(t— 1) >|x(¢) and |x| > |x(t — 1)| in {t =1~ 1/2¢,
t—1]. For s € [t — 1/2c, t], we infer |X(s)| = |F(s, x(s — 1))| > d |x(s — )| >
d||x,|| > 0, hence |x(t) — x(t — 1/2¢)| > d || x,||/2¢, and therefore

d | xll/4e <@ <N T (1) x| (%)

or
d | x,||/4e <|x(t — 1/2¢)|. (6)

In case (6) and |x(t — 1/2c)| <|x(#)] we obtain (5) once again. In case (6)
and |x(t — 1/2¢)| > |x(¢)|, the monotonicity of x in [t — 1,¢] implies |x|>
|x(t —1/2¢)| in [t—1,¢—1/2c]. Then (6) and (4) yield 2| T,(1)xll>

a(l —1/2¢)d||x,|/4c.

AN
AN
\,

£ - 1/2¢ \ t
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Subcase 3. |x||=|x(t — 1)| > |x(¢) and |x(s)| < |x(t — 1)| for some s in
[t—1—1/2¢,t—1]. Lemma2 implies- the existence of k> j Wwith
my€ (t—1—1/2¢c,t—1) and |x(m,)| >|x(t—1). On the interval [t—1,

9k
l ~ . o 1/4c \‘\
! — ] —
t -1~ 1/2c my my + 3/4c

FIGURE 3



t— 1+ 1/4c| < [my,, m, + 3/4c] we obtain |x]>|gel>|ge(m+3/4c) =
x(m)/4 > [x(t— 1)/4 = ||x,[|/4, and (4) yields 2 [|T,(1) /|| > a x|/ 16¢-
Set k(c, d, &) := max{2, 32¢/a, 8¢/(ad(1 — 1/2c))}.

THEOREM 2. Let a > m/2. There exists € > 0 such that Sfor every 6> 0
we have: For every triple (F, T, 0) satisfying

IF(t’ é)—a€|<8|é| on [T’ OO)X (_5’ 5) ((5))
and for every solution x of (F) with x, € K,

lim sup |x(2)] > 4.
{—00

Proof. For a > /2, ReA, >0 [10]. Lete, > O such thatd:==a —¢&, > 1.
Set ¢ : = a +¢,. Choose k = k(c, d, @) > 0 according to Lemma 5 and define
S,:={p€S:||¢|| <k|T,(1)¢|l}. By Lemmad there is ¢, >0 such that
¢ 8l <P, 8| for all § € S,. We apply Corollary 1 and the subsequent
remark to P,, S,, L,: ¢——ap(=1), E,:={4,; 1.} and to mappings
N: (1, §) » —F(t, §(—1)): There is e* > O such that for every & in (0, g¢*), for
every triple (F, T, §) with ((¢)) and for every solution x of (F) with x, € S,
for ¢ in some unbounded interval, we have lim sup,_ | x(£)| > 0.

Choose ¢ in (0, min{e,, e*}). Let (F, T, d) with ((¢)) be given. Equation
((e)) implies ((¢,)), hence |F(, &) — a|&| <& |¢] and a || — |[F(5 O < e ¢
on [T, o0) X (=4, 8), and the definition of ¢ and d above gives

d|E|<|F(L &) <clél  on [T, 0)X(=6,9) ((3)

for the triple (F, T, §).

Now suppose x, € K and lim sup,_, | x(¢)| <9 for some solution x of (F).
Because of ((3)), Lemma 5 applies with r =4, and by our definition of S, we
obtain x, € S, for ¢ in some unbounded interval.

By ¢ <e¢*, the first part of the proof yields limsup,.. |x(1)| =0, a
contradiction.

3. DISCUSSION OF MAIN EQUATION

Consider the equation
X)) =—flx(t— 1) (f)

with f* R - R continuous, f(&) ¢ > 0 for all &# 0. Integration of the right-
hand side for ¢ € [0, 1] and iteration shows that every ¢ € X defines a unique
solution x® of (f) with x,=¢. For every t>0, segments x? depend
continuously on ¢. Arguments as in the proof of Lemma 2 give



PROPOSITION 1. Every solution x of (f) with |x| >0 on some interval
(t—1,1), t >0, is slowly oscillating.

LEMMA 6. For every m>0 there exists a=a(f)>0 such that
0 € KU (—K), |¢(0)) >mand y EX, |v| < a imply ¢ + w E S,.

Proof. For m >0, choose a>0 with a-+ max;_,, 4|/ <m Let
¢ € KU (—K), |#(0)] > m. Set x := x®*%. Choose b € (—1, 0) with |¢(b)| =a.
lwl <a implies |x|=|¢+w|>|¢|—|y|>a—a=0 in (b,0]. For
t€(0,b+ 1], we have 11 and ¢—1<b, hence |x(r)|=|4(0) + yw(0) +
[0x(s) ds| > 180 —|p(O) ~ [/ —~1) + wls—1)ds > m—a~—
MaXx;_yq.24|f] > 0. Therefore |x{>0 on (b,b+ 1), and Proposition 1
applies.

Proof of Theorem 1. Set a := f'(0) > n/2 and choose & > 0 such that the
assertion of Theorem 2 holds. For continuous functions w: [—1, c0)— R,
define  F (&) =fE+wi—1)~fwt—1)) for >0, ¢€ER
F,:R{ X R— R is continuous and satisfies (H) since f'is strictly increasing.
f continuously differentiable on a neighborhood of 0 € R implies the
existence of & > 0 such that | F(t, &) — aé| = | [%¢=D+E (£ () — a) dn| < e[¢]
whenever (w(t—1)| < and |&|<d. We infer that for all continuous
functions w: [—1, 00) = R with lim sup,_ |w(¢)| < J, there exists T, >0 such
that (F,, T, 0) satisfies ((¢)). By Theorem 2, lim sup,_ | x(¢)| > 6 whenever
x is a solution of (F,,) with lim sup,, |w(t)| < 8, x, € K.

Now choose a € (0, §/2) according to Lemma 6. Let w be a solution of (f)
with lim sup,_ ., |w(t)| <a. Let W be a neighborhood of w, in X. Choose
w € W such that ¥ — w, € K. We show y € S,: Let y denote the solution of
(f) defined by w. x:=y—w is a solution of (F,) which x, € K, hence
lim sup,, ., | x(¢)] > & (see the first part of the proof). In case |x| > 0 on some
unbounded interval [t, o), (H) implies that |x| decreases on (f+ 1, ) t0
lim sup,_, |%(¢)] > 8. Therefore we have s>¢+2 with |[y|=|x+w|2
6d—a>0on (s—1,s), and y is slowly oscillating (Proposition 1).

In case the zeros of x are unbounded, there is a zero z, of x such that
Xy €EKU(K), 1%,,,0) =|x(z;+ > &2, and |-w,,,| <a BY
Lemma 6, the solution —1<t— p(t+z;+ 1) with initial value y,.,=
Xppr+ Wou is slowly oscillating, and the assertion follows.

4, SoME CONSEQUENCES

COROLLARY 3. Assume f satisfies the hypotheses of Theorem 1. Then
there exists a' > O such that the set {¢ € X: lim sup,_ . |x®(¢)| > a'} is dense.



Proof. Set a :=f"(0) > /2. For ¢ > 0 as in Theorem 2 there exists § >0
with  [f(&) —al|<e|é| for |& <d. Therefore Theorem2 yields
lim sup, ., |x(¢)| > & for every solution x of (f) with x, € K.

f'(0) > 1 implies that for every slowly oscillating solution x of (f) the
zeros are unbounded (this follows by an argument similar to the first part of
proof of Lemma 5), and x, € K for some s > 0. For the solution x: —1 -
x(t + s) of (f) with initial value x, we have lim sup,_, |x(t + s)| > 0, hence
lim sup, ., |x(?)| > 9, also.

By Theorem 1, there is a >0 such that every initial value ¢ with
lim sup, ., [x*(f) < @ may be approximated by initial values in S;. Set
a': min{a, J}.

COROLLARY 4. Assume f satisfies the hypotheses of Theorem 1 and | f | <
clid| with ¢ <+/2 + 4. Then S, is open and dense.

This follows from the subsequent Propositions 2 and 3 and from
Theorem 1.

PROPOSITION 2. S, is open for every continuous Sunction f: R = R with

S&E>0 for £+0.

Proof. For ¢ € S, there exists >0 with |x®|>0 in [t—1,¢]. By
continuous dependence, [x*| > 0 in [¢— 1, ¢] for all y in some neighborhood
of ¢. Apply Proposition 1.

PropoSITION 3. Let f: R — R be continuous with f(§) & > 0 for £+ 0 a.nd
If1<clid], e < ﬁ + 1. Then lim,_, x(t) = 0 for all solutions x of () which
are not slowly oscillating.

Proof. Consider a solution x which is not slowly oscillating. By
Proposition 1, every open interval of unit length contains zeros. Hence u :=
limsup,,  x(¢)>0; v:= —liminf_ x(t)>»0. u=0 and v= 0 are
equivalent: Let u=0. For every negative local minimum x{m), m >0, we
then have x(m—1)=0 (by (f)); hence 0>x(m)= [moyx(s)ds =
— [m=1 £(x(s)) ds > — max{f(¢): 0< &< MKy g mo2) X}, SO U= 0 implies
v=0. Similarly v =0 yields u=0.

Therefore it is enough to derive a contradiction from the assumption u >0
and v > 0.

Because of ¢ < /2 + } there exists ¢ > 0 with 0<i—¢/(u+e)—i(c—1%)°
and 2¢/(v +¢) + (/2 +3)/2 < L

Set p:=u-+¢ g:=v+e Choose s>—1 with —g<x < p on [s, ).
Equation (f) and | f| < ¢ |id| imply

—cpLXx<Leg on[s+1, ). @)



Choose a local minimum x(m) < —v +¢&, m>s+4. Then x(z)=0 for z=
m— 1, and

—v4e>x(m)= J"’ #(t) dt = —f F(x(1)) dt

> Slx(2)) dt

J'[z.z— 11N{t> = 1:x(¢) >0)
> - j ex(t) dt =: —cl. ®)

We shall prove

1<[ o, ©)

z-1

where h: ¢ —min{p, h, h,} with the functions h,, , given by h(z—1)=0,
h,=cq, hy(z) =0, h,= —cp. Define ¢, and ¢, by h,(t,) = p = h,(t,). The set

P
[

! |

j

L ,

z -1 £, t1 z
FIGURE 4

(L, O ER™: z— 1<t <z, 0K ELA(t)} is a triangle if £, < ¢,, a trapezoid if

t, < t,. In the trlangle case we have
z—1le=t,<t,=pleg+z—1, or c<1+ p/q. (10)

Proof of (9). For x(z—1)=0, z—1>s+1 and (7) and x< p on
[s, 00) imply x<h on [z—1, z] hence (9) If x(z—1)#0, set z/:=
sup{t>z—1: |x|>00n iz, )}. 2 € (z — 1,z) is a zero of x, and [z — 1,2)
contains no zero. This implies the existence of a zero z” of x in (z' — 1,
z—1). Equation (7), 2" >z’ —1>z—2>s+1,and x < p on [s, ) yield

N N
2' -1 hy /K/ \hz

z" z -1 z! z

FIGURE 5



FIGURE 6

x<min{p, h,(- +z—1—=2"), hy(- +1—2"), hy(- +z—1—2'), hy} =: g on
[Z”, Z].

Hence 1< [_, g(t)dt= (3", g(t)dr+ [} g(t+ 1) dt. Tt is easily seen
that 0 g<h(-+z—2)on [z—1,2z'] and 0 g(- + 1)< A(- +z—2') on
|2/ — 1,z — 1]. Figure 6 illustrates one of the combinations of triangles and
trapezia to be considered.

We infer I<[%_ h(t+z—2z')dt=][:_ h(t)dt. Computation of
{z_,h(t)ydt: In the trapezium case, t, <t,, we have [Z_ h()dt=
(1/2) p(1 + t, — t,) = — p*/2cq + p(1 — 1/2¢). For t,<t; we obtain
Ji-1 h(e) di = pg/2(p + q).

Now (8) and (9) imply

v—e<—p2q+plc—3) il <t (an

v—e<c’pg/2(p+9) if <t

Let g=bp, b> 0. In case t, < f,, (11) gives bp < 26 — p*/2bp + p(c — 1), or
b*—(c—1)b+ (3 —e/p)<0. On the other hand, the function BB —
(c—4)B+ (A —¢/p) has its absolute minimum at f§ = (¢ —3)/2, with value
1—¢/p— (c —1)¥/4 > 0, by the choice of &, contradiction. In case £, < £, we
have ¢ < 2e + ¢?pg/2(p +q), by (11). Hence 1< 26/q+c*/2(1+b). By
(10), 1< 2e/q+ c*/2c=2e/q+c/2<2¢/q+ (v/2 +13)/2, contradicting the
choice of ¢.

Kaplan and Yorke proved that for every slowly oscillating solution x of
(f), AR >R continuously differentiable with f(0)=0, /' >0, f'(0) > /2
and f bounded below, the trajectory —1<¢— (x(¢), X()) € R? tends to a
closed annulus A4 between two orbits of slowly oscillating periodic solutions
[4]. We have (0, 0) & 4. By a result of Nussbaum (6], there is exactly one
orbit of slowly oscillating periodic solutions, say, 0,= {(»(0), ¥(1) E R™:
t € R}, provided fis odd and f” and &— f(&)/¢ are increasing for £<0and
decreasing for £ > 0 (and the hypotheses of Kaplan and Yorke are satisfied).
Hence (x(¢), %(t)) - o, as t - oo for every slowly oscillating solution in this
case.

If in addition | f| < clid|, ¢ < \/5+ 1, then Proposition 3 yields x slowly
oscillating whenever (x(f), ¥(f)) - o, as £ = oo since trajectories of solutions



not slowly oscillating tend to (0,0)& o, Therefore S,={g€E€LX:

(x

is

fl

(1), X(t)) » o, as t » oo}, and Corollary 4 implies

COROLLARY 5. The domain of attraction of the unique periodic orbit o,
open and dense provided f is odd, bounded, continuously differentiable with
>0,1(0)> n/2, f" and &~ f(&)/E increasing for & > 0, and decreasing for

E>0, || <clid] with ¢ < /2 + 1.
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