PHYLOGENETISCHE STUDIEN AN WILDSCHWEINEN IN DEUTSCHLAND

ANNA MÜLLER

Inauguraldissertation zur Erlangung des Grades eines Dr. med. vet.

beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

VVB LAUFERSWEILER VERLAG

Das Werk ist in allen seinen Teilen urheberrechtlich geschützt.

Die rechtliche Verantwortung für den gesamten Inhalt dieses Buches liegt ausschließlich bei den Autoren dieses Werkes.

Jede Verwertung ist ohne schriftliche Zustimmung der Autoren oder des Verlages unzulässig. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung in und Verarbeitung durch elektronische Systeme.

1. Auflage 2015

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Authors or the Publisher.

1st Edition 2015

© 2015 by VVB LAUFERSWEILER VERLAG, Giessen Printed in Germany

STAUFENBERGRING 15, D-35396 GIESSEN Tel: 0641-5599888 Fax: 0641-5599890 email: redaktion@doktorverlag.de

www.doktorverlag.de

Aus der Klinik für Wiederkäuer und Schweine Professur für Schweinekrankheiten der Justus-Liebig-Universität Gießen

Betreuer: Prof. Dr. Dr. habil. Gerald Reiner

Phylogenetische Studien an Wildschweinen in Deutschland

INAUGURAL-DISSERTATION zur Erlangung des Grades eines Dr. med. vet. beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

eingereicht von

Anna Müller

Tierärztin aus Marburg

Gießen, 2014

Mit Genehmigung des Fachbereichs Veterinärmedizin der Justus-Liebig-Universität Gießen

Dekan:

Prof. Dr. Dr. h.c. Martin Kramer

Gutachter:

Prof. Dr. Dr. habil. Gerald Reiner

Prof. Dr. Georg Erhardt

Tag der Disputation:

17. November 2014

Eidesstattliche Erklärung

Ich erkläre: Ich habe die vorgelegte Dissertation selbstständig und ohne unerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der "Satzung der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis" niedergelegt sind, eingehalten.

Bad Laasphe, den 16.04.2014

Anna Müller

Inhaltsverzeichnis

Abbildu	ngsve	erzeichn	is	.VI
Tabellen	nverze	eichnis		۷III
Abkürzu	ingsv	erzeichi	nis	X
1 EI	INLE	TUNG	y 	1
2 LI	TER	ATUR	ÜBERSICHT	2
2.1	Das	europä	ische Wildschwein: Sus scrofa scrofa	2
2.1	1.1	Taxono	mische Einordnung und geographische Verbreitung	2
2.1	1.2	Entwic	klung der Jagdstrecken in Deutschland und Bestandsentwicklungen	
		in Eur	opa	5
2.1	1.3	Sozials	truktur und Fortpflanzungsgeschehen	7
2.1	1.4	Lebens	raumwahl und Aktionsraum (Home Range)	8
2.2	The	oretiscł	ne Grundlagen der Populationsgenetik	. 11
2.2	2.1	Mikros	atelliten	. 11
	2.2	.1.1	Mikrosatelliten	.11
	2.2	.1.2	Anwendung porciner Mikrosatelliten beim Wildschwein	. 13
	2.2	.2	Populationsgenetik und Einflüsse auf die Populationsstruktur	. 14
	2.2	.2.1	Hardy-Weinberg-Gleichgewicht	. 15
	2.2	.2.2	Genetische Drift	. 17
	2.2	.2.3	Genfluss bzw. Migration	. 18
	2.2	.2.4	Wahlund-Effekt	. 19
	2.2	.2.5	F-Statistiken – Heterozygotenrückgang und Inzuchtkoeffizient	. 19
	2.2	.2.6	Gründer-Effekt	. 21
	2.2	.2.7	Effektive Populationsgröße und genetischer Flaschenhals	. 22
	2.2	.2.8	Genetische Distanzen	. 24
	2.2	.2.9	Subpopulationen	. 25

	2.3 1	Populationsgenetische Untersuchungen an Wildschweinen, heimischen
		Wildarten und anderen Großsäugern in Europa 26
	2.3.	1 Populationsgenetische Untersuchungen bei großen Landsäugern – im
		Besonderen beim Wildschwein in Europa26
		2.3.1.1 Untersuchungen bei großen Landsäugern
		2.3.1.2 Untersuchungen bei Wildschweinen in Europa
	2.4	Landschaftszerschneidung und Barrieren 31
	2.4.	1 Begriffsbestimmung - "Landscape genetics"
	2.4.	2 Begriffsbestimmungen – Barriere und Habitatzerschneidung 32
	2.4.	3 "Landscape Genetics" und Untersuchungen zur Barrierewirkung auf Wild 34
	2.4.	4 Barrieren beim Wildschwein
3	MA	TERIAL UND METHODEN
	3.1	Untersuchungsmaterial 38
	22	
	3.2	Jerate und Labormaterial 42
	3.2.	1 Geräte
	3.2.	2 Chemikalien
	3.2.	3 Lösungen und Puffer 43
	3.3	Auswahl der Primer und Mikrosatellitenloci44
	3.4 I	Multiplex-PCR und Touchdown-Prinzip 48
	5.5	Darstellung der Mikrosatelliten-DNA und Fragmentlängenanalyse
	3.5.	1 Längenstandard 50
	3.5.	2 Herstellung der Gele
	3.5.	3 Probenvorbereitung und Probenverarbeitung

	3.5.4	Elektr	ophoresebedingungen	53
	3.5.5	Ausw	ertung der Fragmentlängenanalyse	54
	3.5.6	Überp	rüfung der Fragmentlängen	56
	3.5.7	Inforn Syste	nativität der Mikrosatelliten und Etablierung der Multiplex-PCR- eme	58
	3.6 Sta	ıtistisch	e Auswertung	60
	3.6.1	Überp	rüfung des Datensatzes mit Micro-Checker 2.2.3	60
	3.6.2	Berec	hnungen mit GenAlEx 6.3 und Genepop on the web	60
	3.	6.2.1	Allelfrequenzen und Heterozygosität	61
	3.	6.2.2	Hardy-Weinberg-Gleichgewicht	62
	3.	6.2.3	Linkage Disequilibrium	64
	3.	6.2.4	F-Statistiken	64
	3.	6.2.5	Genfluss	65
	3.	6.2.6	Mantel-Test	65
	3.6.3	Berec	hnungen mit BOTTLENECK 1.2.02	67
	3.6.4	Neigh	bor-Joining	67
	3.6.5	Berec	hnungen mit STRUCTURE 2.3.3	68
	3.6.6	Berec	hnung des Einflusses von Hindernissen	68
4	ERGI 4.1 All	EBNISS elfrequ	SE Jenzen, Genotypfrequenzen, Hardy-Weinberg-Gleichgewicht	73
	u	nd Bere	echnungen zur Heterozygosität	73
	4.1.1	Allelf	requenzen, Genotypfrequenzen und Hardy-Weinberg-Gleichgewicht	74
	4.	1.1.1	Mikrosatellit SW1701	74
	4.	1.1.2	Mikrosatellit SW1979	76
	4.	1.1.3	Mikrosatellit S0005	78
	4.	1.1.4	Mikrosatellit S0070	80
	4.	1.1.5	Mikrosatellit SW288	82
	4.	1.1.6	Mikrosatellit SW2052	84

	4.	1.1.7 Mikrosatellit S0228	
	4.	1.1.8 Mikrosatellit S0359	88
	4.1.2	Berechnungen zur Heterozygosität	
	4.1.3	Linkage disequilibrium	
	4.1.4	F-Statistiken	
	4.1.5	Genfluss	
	4.1.6	Mantel-Tests	
	4.2 Be	rechnungen mit BOTTLENECK 1.2.02	97
	4.3 Ne	ighbor-Joining	
	4.4 Ge	netische Struktur der Gesamtpopulation	99
	4.5 Va	rianzanalysen zur Berechnung des Einflusses von Hindernissen	103
	4.5.1	Autobahnen als Barriere zwischen Revieren	104
	4.5.2	Bahnlinien, Flüsse und Kanäle als Barriere zwischen Revieren	106
	4.5.3	Innerdeutsche Grenze	110
5	DISK	USSION	112
	5.1 Me	ethodenkritik	112
	5.2 Be	sprechung der Ergebnisse	114
	5.2.1	Phylogenetische Berechnungen	114
	5.	2.1.1 Allele, Allelfrequenzen, Allelverteilung	114
	5.	2.1.2 Heterozygositäten	114
	5.	2.1.3 Hardy-Weinberg-Gleichgewicht	
	5.	2.1.4 Linkage disequilibrium	116
	5.	2.1.5 F-Statistiken und Genfluss	116

		5.2.1.6	Mantel-Test	17
		5.2.1.7	Genetischer Flaschenhals11	7
		5.2.1.8	Neighbor-Joining und genetische Stammbäume11	8
		5.2.1.9	Berechnungen mit STRUCTURE 2.3.311	8
	5.2.2	2 Varian	zanalysen – Barrieren und Korridore 11	19
:	5.3 V	ergleich d	ler Ergebnisse mit anderen Studien12	23
4	5.4 B	Sewertung	und Ausblick12	24
6	ZUS	SAMMEN	FASSUNG 12	26
7	SUN	IMARY		28
8	LIT	ERATUR	VERZEICHNIS12	29
9	ANI	HANG		i 7
Dai	nksagui	1g		39

Abbildungsverzeichnis

Abbildung 1:	Geographische Verbreitung von Sus scrofa	3
Abbildung 2:	Verbreitung von Wildschweinen in Deutschland	4
Abbildung 3:	Jahresstrecken des Wildschweins von 1955 – 2010	6
Abbildung 4:	Hardy-Weinberg-Gleichgewicht	15
Abbildung 5:	Gendrift	18
Abbildung 6:	Gründereffekt	22
Abbildung 7:	Genetischer Flaschenhals	24
Abbildung 8:	Einfluss großer Straßen und ihre ökologischen Konsequenzen	33
Abbildung 9:	Untersuchungsgebiet	39
Abbildung 10:	Gelbild von PCR-Produkten	55
Abbildung 11:	Densitogramm von Spur 21	55
Abbildung 12:	Darstellung des Längenstandards als Densitogramm	56
Abbildung 13:	Darstellung der Überprüfung der Fragmentlängen	57
Abbildung 14:	Darstellung der Allelfrequenzen am Locus SW1701	74
Abbildung 15:	Verteilung der Allele des Mikrosatellits SW1701	75
Abbildung 16:	Darstellung der Allelfrequenzen am Locus SW1979	76
Abbildung 17:	Verteilung der Allele des Mikrosatellits SW1979	77
Abbildung 18:	Darstellung der Allelfrequenzen am Locus S0005	78
Abbildung 19:	Verteilung der Allele des Mikrosatellits S0005	79
Abbildung 20:	Darstellung der Allelfrequenzen am Locus S0070	80
Abbildung 21:	Verteilung der Allele des Mikrosatellits S0070	81
Abbildung 22:	Darstellung der Allelfrequenzen am Locus SW288	82
Abbildung 23:	Verteilung der Allele des Mikrosatellits SW288	83
Abbildung 24:	Darstellung der Allelfrequenzen am Locus SW2052	84
Abbildung 25:	Verteilung der Allele des Mikrosatellits SW2052	85
Abbildung 26:	Darstellung der Allelfrequenzen am Locus S0228	86
Abbildung 27:	Verteilung der Allele des Mikrosatellits S0228	87
Abbildung 28:	Darstellung der Allelfrequenzen am Locus S0359	88
Abbildung 29:	Verteilung der Allele des Mikrosatellits S0359	89
Abbildung 30:	Darstellung der beobachteten und der erwarteten Heterozygosität	92
Abbildung 31:	Verteilung der Allelfrequenzen	97

Abbildung 32:	32 : Logarithmierte Wahrscheinlichkeiten ln $Pr(X \mid K)$ für das		
	Vorkommen von K=2 bis K=14 Subpopulationen		
Abbildung 33:	Graphische Darstellung der Ergebnisse von STRUCTURE 2.3.3 100		
Abbildung 34:	Geographische Verteilung der Subpopulationen nach		
	STRUCTURE 2.3.3		
Abbildung 35:	Darstellung der Ergebnisse der Varianzanalyse zur Berechnung		
	des Einflusses von Autobahnen als Hindernis		
Abbildung 36:	Darstellung der Ergebnisse der Varianzanalyse zur Berechnung		
	des Einflusses von Bahnlinien als Hindernis106		
Abbildung 37:	Darstellung der Ergebnisse der Varianzanalyse zur Berechnung		
	des Einflusses von Flüssen als Hindernis		
Abbildung 38:	Darstellung der Ergebnisse der Varianzanalyse zur Berechnung		
	des Einflusses von Kanälen als Hindernis		
Abbildung 39	Darstellung der Ergebnisse der Varianzanalyse zur Berechnung		
	des Einflusses der ehemaligen Innerdeutschen Grenze als		
	Hindernis		
Abbildung 40:	Die ehemalige Innerdeutsche Grenze		
Abbildung 41:	Ein grünes Band - Die ehemalige Innerdeutsche Grenze heute 122		

Abbildungen des Anhangs

Abbildung A 1:	Stammbaum nach Neighbour-Joining-Methode. Teil 117	79
Abbildung A 2:	Stammbaum nach Neighbour-Joining-Methode. Teil 2 18	30
Abbildung A 3:	Stammbaum nach Neighbour-Joining-Methode. Teil 3 18	31
Abbildung A 4:	Stammbaum nach Neighbour-Joining-Methode. Teil 4 18	32
Abbildung A 5:	Stammbaum nach Neighbour-Joining-Methode. Teil 5 18	33
Abbildung A 6:	Stammbaum nach Neighbour-Joining-Methode. Teil 6 18	34
Abbildung A 7:	Stammbaum nach Neighbour-Joining-Methode. Teil 7 18	35
Abbildung A 8:	Stammbaum nach Neighbour-Joining-Methode. Teil 8 18	36
Abbildung A 9:	Stammbaum nach Neighbour-Joining-Methode. Teil 9 18	37
Abbildung A 10	: Stammbaum nach Neighbour-Joining-Methode. Teil 10	38

Tabellenverzeichnis

Tabelle 1:	Wildunfallstatistik des Jagdjahres 2011/2012 1		
Tabelle 2:	Punnett-Quadrat für das Hardy-Weinberg-Gleichgewicht		
Tabelle 3:	Erwartete Heterozygosität (He), beobachtete Heterozygosität (Ho) und		
	F-Statistiken (Fis, Fst) dieser und anderer Studien	31	
Tabelle 4:	Barriereeffekte durch Verkehrsaufkommen	34	
Tabelle 5:	Revierinformationen	40	
Tabelle 6:	Vorauswahl der auf Informativität getesteten Mikrosatelliten und		
	deren Primersequenz	45	
Tabelle 7:	PCR-Ansatz zur Überprüfung der Informativität der Mikrosatelliten	47	
Tabelle 8:	PCR-Bedingungen zur Überprüfung der Informativität der		
	Mikrosatelliten	48	
Tabelle 9:	Bedingungen der Touchdown-PCR	49	
Tabelle 10:	Ausgangsreaktionsansatz zur Optimierung der Multiplexsysteme	50	
Tabelle 11:	Primer zur Herstellung des Längenstandards	51	
Tabelle 12:	Reaktionsansatz zur Herstellung des Längenstandards	51	
Tabelle 13:	PCR-Protokoll zur Herstellung des Längenstandards	52	
Tabelle 14:	Elektrophoresebedingungen	53	
Tabelle 15:	Mikrosatelliten im Multiplex-PCR-System 1	58	
Tabelle 16:	Mikrosatelliten im Multiplex-PCR-System 2	59	
Tabelle 17:	Reaktionsansatz für Multiplex-PCR 1	59	
Tabelle 18:	Reaktionsansatz für Multiplex-PCR 2	60	
Tabelle 19:	Ergebnisse der Berechnungen zu Heterozygosität	91	
Tabelle 20:	F-Statistiken	94	
Tabelle 21:	F _{st} -Werte und N _m -Werte	95	
Tabelle 22:	Ergebnisse des Manteltests	96	
Tabelle 23:	Subpopulationen nach STRUCTURE 2.3.3	100	
Tabelle 24:	Mittelwerte der populationsgenetischen Parameter für die		
	Varianzanalysen	103	
Tabelle 25:	Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur		
	Berechnung des Einflusses von Autobahnen als Hindernis	105	

Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur	
Berechnung des Einflusses von Bahnlinien als Hindernis	107
Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur	
Berechnung des Einflusses von Flüssen als Hindernis	108
Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur	
Berechnung des Einflusses von Kanälen als Hindernis	109
Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur	
Berechnung des Einflusses der ehemaligen Innerdeutschen Grenze als	
Hindernis	111
	Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur Berechnung des Einflusses von Bahnlinien als Hindernis

Tabellen des Anhangs

Tabelle A 1:	Individuelle Genotypen	147
Tabelle A 2:	Alle Genotypen und ihre Frequenzen des Mikrosatellits SW1979	160
Tabelle A 3:	Alle Genotypen und ihre Frequenzen des Mikrosatellits S0070	160
Tabelle A 4:	Alle Genotypen und ihre Frequenzen des Mikrosatellits SW1701	161
Tabelle A 5:	Alle Genotypen und ihre Frequenzen des Mikrosatellits S0005	162
Tabelle A 6:	Alle Genotypen und ihre Frequenzen des Mikrosatellits SW2052	164
Tabelle A 7:	Alle Genotypen und ihre Frequenzen des Mikrosatellits S0228	165
Tabelle A 8:	Alle Genotypen und ihre Frequenzen des Mikrosatellits S0359	165
Tabelle A 9:	Alle Genotypen und ihre Frequenzen des Mikrosatellits SW288	165
Tabelle A 10:	Überprüfung des Hardy-Weinberg-Gleichgewichts	166
Tabelle A 11:	Überprüfung des Hardy-Weinberg-Gleichgewichts mit "Fisher's	
	Exact Test"	175
Tabelle A 12:	Beobachtete Heterozygosität (Ho) und erwartete Heterozygosität	
	(He) jedes Reviers	176
Tabelle A 13:	Überprüfung auf ein Kopplungsungleichgewicht (LD)	177
Tabelle A 14:	Ergebnisse der Berechnungen mit BOTTLENECK 1.2.02	178

Abkürzungsverzeichnis

%	Prozent
°C	Grad in Celsius
μl	Mikroliter
μΜ	Mikromolar
A	Adenin
APS	Ammoniumperoxodisulfat
BB	Brandenburg
BE	Berlin
Вр	Basenpaare
BW	Baden-Württemberg
BY	Bayern
bzw.	beziehungsweise
C	Cytosin
DDR	Deutsche Demokratische Republik (1949-1990)
DJV	Deutscher Jagdverband
DNA	Desoxyribonucleinsäure
dNTP	Desoxynucleosidtriphosphat
DTV	durchschnittliche, tägliche Verkehrsstärke in Kfz pro Tag
EDTA	Ethylendiamintetraessigsäure
etc.	et cetera
et al.	et alia
FAO	Food and Agriculture Organization
G	Guanin
ha	Hektar
HE	Hessen
HWE	Hardy-Weinberg-Equilibrium
ISAG	International Society for Animal Genetics
km	Kilometer
LD	Linkage Disequilibrium
mA	Milliampere
mg	Milligramm

min	Minute			
ml	Milliliter			
mM	Millimolar			
MV	Mecklenburg-Vorpommern			
Nei GD	Genetische Distanz nach NeiUNei GD			
ng	Nanogramm			
NI	Niedersachsen			
NW	Nordrhein-Westfalen			
Ostdt.	Ostdeutsch			
PCR	Polymerase Chain Reaction (Polymerase Kettenreaktion)			
pH	pondus Hydrogenii/potentia Hydrogenii			
RP	Rheinland-Pfalz			
sec	Sekunde			
SH	Schleswig-Holstein			
SL	Saarland			
SN	Sachsen			
SSC	Sus scrofa chromosome			
ssp.	subspecies			
ST	Sachsen-Anhalt			
Т	Thymin			
TBE	Tris-Borat-EDTA-Puffer			
TE	Tris-EDTA-Puffer			
TEMED	N,N,N',N'-Tetramethylethylendiamin			
TH	Thüringen			
Tris	Tris-(hydroxymethyl)-aminomethan			
UNei GD	Unverzerrte genetische Distanz nach Nei			
V	Volt			
W	Watt			
Westdt.	Westdeutsch			

1 Einleitung

Insbesondere durch die Besiedlung urbaner Räume rückt das Wildschwein mehr und mehr ins Bewusstsein des öffentlichen Interesses. Negative Berührungspunkte mit dieser Wildtierart ergeben sich insbesondere durch erhebliche wirtschaftliche Schäden für die Land- und Forstwirtschaft. Bis Mitte des 20. Jahrhunderts waren die Bestände in Deutschland eher klein und weite Regionen galten als wildschweinfrei. Das hat sich gravierend geändert: Die Jagdstrecken und damit die Wildschweinbestände wuchsen seit Ende des Zweiten Weltkriegs stetig an, in den letzten 30 Jahren exponentiell (BRIEDERMANN, 2009). Die starke Expansion der Bestände hat mannigfaltige Gründe, besonders die Lebensund Ernährungsbedingungen der Wildschweine. Intensive Landwirtschaft und Klimaveränderungen (wärmere Winter) tragen erheblich zu einem Wandel in der Reproduktionsdynamik des Schwarzwildes bei. Neben den direkten Schäden durch Vertilgen und Zerstören von Getreide- und Hackfruchternten, spielt das Wildschwein auch als Reservoir für auf Haustiere übertragbare Erkrankungen, insbesondere die Schweinepest eine große Rolle.

Die Erarbeitung der genetischen Struktur der Wildschweinpopulationen ist ein wesentlicher Meilenstein zur Erfassung der Populationsdynamik im Vorfeld von Überlegungen zur effizienteren Restriktion dieser überaus erfolgreichen Wildtierart. Ziel der vorliegenden Arbeit ist die Etablierung populationsgenetischer Daten auf der Basis von über ganz Deutschland verteilten Subpopulationen und deren Einsatz zur Bewertung anthropogener und natürlicher Barrieren.

2 Literaturübersicht

2.1 Das europäische Wildschwein: Sus scrofa scrofa

2.1.1 Taxonomische Einordnung und geographische Verbreitung

Alle Wildschweine gehören zur Ordnung der Artiodactyla (Paarhufer), zur Unterordnung der Suiformes (Schweineartigen) und dort zur Überfamilie der Suidea. Das europäische Wildschwein ist in die Familie der Suidae (altweltliche Schweine) und dort in die Unterfamilie der Suinae (echte Schweine) eingeordnet. Als Sus scrofa ist es Mitglied der Gattung Sus und die einzige in Europa frei lebende Art (OLIVER, 1995). Das natürliche Vorkommen erstreckt sich von Westeuropa, rund um das Mittelmeer herum über Südostasien und Japan bis zum Pazifik (MASSEI & GENOV, 1981). Große Populationen finden sich außerdem in Nord- und Südamerika, in Australien und Neuseeland, die aber auf eingeführte Tiere zurückzuführen sind (SJARMIDI & GERRARD, 1988). Die Herkunft der australischen Wildschweine scheint allerdings auf südostasiatischen Arten zu beruhen (HEISE-PAVLOV & HEISE-PAVLOV, 2003). Die genaue Verbreitung von Sus scrofa ist Abbildung 1 zu entnehmen. Die in Mitteleuropa lebenden Wildschweine gehören der Subspezies Sus scrofa scrofa an. Weltweit sind weitere 16 Unterarten beschrieben (OLIVER, 1995).

Bei genauerer Betrachtung der Verbreitung von *Sus scrofa scrofa* in Deutschland fallen zwei besonders stark besiedelte Gebiete auf; eines im Westen und eines im Nordosten. Das westliche Besiedlungszentrum erstreckt sich vom Saarland über Rheinland-Pfalz, Hessen und die südlichen Teile Nordrhein-Westfalens, umfasst also die westdeutschen Mittelgebirge. Das nordöstlich gelegene Gebiet verläuft von Hamburg über die Mecklenburgische Seenplatte, entlang der polnischen Grenze bis in die Lausitz. Nur geringe Vorkommen sind für Ostfriesland und südlich der Donau beschrieben. Die in Abbildung 2 dargestellte Ausbreitung deckt sich weitgehend mit dem in vorliegender Arbeit betrachteten Untersuchungsgebiet (Abb. 9). Die Darstellung beruht auf Jahresabschusszahlen, dem derzeit einzigen Indikator zur Beurteilung von Bestandsgrößen und –entwicklungen.

Abbildung 1:Geographische Verbreitung von Sus scrofa nach SJARMIDI &
GERARD (1988), modifiziert nach GETHÖFFER (2005)

Abbildung 2: Verbreitung von Wildschweinen in Deutschland. Durchschnittliche Jagdstrecke von Schwarzwild in erlegte Stückzahlen pro 100 ha Jagdfläche des gesamten Landkreises zwischen den Jagdjahren 2000/2001 und 2007/2008 (Quelle: ZEIT online: http://www.zeit.de/2009/52/Deutschlandkarte-Wildschweine-52; Illustration: Jörg Block)

2.1.2 Entwicklung der Jagdstrecken in Deutschland und Bestandsentwicklungen in Europa

Durch das Wachstum der Bevölkerung und die intensive Bejagung galt das Wildschwein in Deutschland Anfang bis Mitte des letzten Jahrhunderts als nahezu ausgerottet. Weite Teile Deutschlands waren praktisch wildschweinfrei, darunter Bayern, Schleswig-Holstein und das heutige Baden-Württemberg. Begünstigt durch die Bedingungen der Nachkriegszeit des Zweiten Weltkriegs und neue Jagdgesetze, eroberte sich das Wildschwein weite Teile seines früheren Lebensraumes nach Kriegsende kontinuierlich und in erheblichem Maße zurück. Ein besonders ausgeprägter Zuwachs fand seit 1980 statt (BRIEDERMANN, 2009). Abbildung 3 zeigt die Streckenentwicklung der letzten 60 Jahre.

Veränderungen der landwirtschaftlichen Verfahren, mastbietende Pflanzungen von Buchen, Wiederansiedelungen von Wildschweinen und die globale Erwärmung begünstigten die Ausbreitung und die starke Bestandsexpansion (BIEBER & RUF, 2005; GEISSER & REYER, 2005). In vielen Gegenden kommt es regelmäßig zu großen Schäden an landwirtschaftlichen Nutzflächen und natürlichen Ökosystemen (SINGER et al., 1984; WELANDER, 2000; SCHLEY & ROPER, 2003; GEISSER & REYER, 2004).

Die offensichtliche Anpassungsfähigkeit der Tiere, die zunehmend auch urbane Räume als Lebensraum erschließen, ist erstaunlich. Wurden in den 80er Jahren und zu Beginn der 90er Jahre für Berlin lediglich einstellige Abschussergebnisse erreicht, so lagen diese im Jagdjahr 2009/2010 bei 1500 Tieren (DJV-Handbuch, 2010).

Abbildung 3: Jahresstrecken des Wildschweins von 1955 – 2010 (DJV-Handbuch 2010; BRIEDERMANN, 2009)

In vielen Teilen Europas zeichnet sich eine ähnliche Bestandsentwicklung ab. So wurden aus der Schweiz, Frankreich, Italien und Spanien sowie aus osteuropäischen Ländern von hohen bzw. steigenden Bestandszahlen berichtet (MORETTI 1995; FERNANDEZ-LLARIO & MATEOS-QUESADA 1998; FRUZINSKI 1995; SAEZ-ROYUELA & TELLERIA 1986). Eine Wiederbesiedlung von Nordeuropa (Schweden, Finnland, Estland, etc.) beschrieben ERKARINO et al., (1982). Nach jahrzehntelanger Absenz reetablierte sich Sus scrofa in Zentralportugal (LOPES & BORGES, 2004). In Schweden und Südengland zeigten sich wachsende Populationen nach Ausbrüchen einzelner Tiere aus Gehegen (LEMEL et al., 2003; GOULDING, 2001). Zurzeit sind in Europa lediglich Irland und Norwegen wildschweinfrei. Einflüsse von Hausschweinen auf die Wildschweinpopulation in Mitteleuropa entstanden durch die bis ins 20. Jahrhundert praktizierte Waldweidemast und der damit zusammenhängenden Einkreuzung von Sus scrofa domesticus in die natürliche Population. Dies beweist der beim Wildschwein gefundene Chromosomenpolymorphismus. Der diploide Chromosomensatz der Hausschweine besteht aus 38 Chromosomen, wohingegen die Zahl der Chromosomen beim mitteleuropäischen Wildschwein zwischen 36 und 38 variiert (HERZOG & HECHT, 1998).

Die Schätzung der Populationsgröße anhand von Streckenergebnissen ist ein praktikables, wenn auch recht ungenaues Verfahren. Andere Bestandsschätzungen beruhen auf direkten Zählungen an Kirrungen (GROOT BRUINDERINK & HAZEBROAK, 1995) bzw. auf indirekten Zählungen von Schneespuren und Wurfkesseln (MARKOV, 1997) oder dem Fang-Wiederfangansatz von BORCHERS et al. (2002). Diese Verfahren sind nur für kleinere Gebiete einsetzbar, da sie großflächig angewendet einen erheblichen Aufwand darstellen.

2.1.3 Sozialstruktur und Fortpflanzungsgeschehen

Wildschweine leben ausgesprochen sozial und bilden feste Gemeinschaften, die Rotten (BRIEDERMANN, 2009; MEYNHARDT, 1990). Die Grundeinheiten dieser matriarchalen Gemeinschaft bestehen aus je einer Bache und ihren letztgeborenen Frischlingen (HENNIG, 1998). Rotten sind Familienverbände; alle Bachen sind nachweislich miteinander verwandt (BRIEDERMANN, 2009; MEYNHARDT 1990). Durchschnittlich sind sechs bis zehn Wildschweine in einer Rotte organisiert; allerdings sind auch Rottengrößen von bis zu 30 Tieren beschrieben und keine Seltenheit (BRIEDERMANN, 2009). Die von einer dominanten Bache geführten, matriarchalen Sozialverbände spielen für die Jungtierentwicklung eine herausragende Rolle.

Als Leitbache fungiert die älteste Bache der Rotte. Sie nimmt einen erheblichen Einfluss auf das Fortpflanzungsgeschehen der Rotte, beispielsweise spielt sie eine Schlüsselrolle bei der Synchronisation des Brunstgeschehens (MEYNHARDT, 1984, 1986). Wird die Leitbache erlegt oder stirbt sie im Herbst vor der Rauschzeit, findet keine Brunstsynchronisation statt und die Rottengefüge zerbrechen (MEYNHARDT, 1989). Aktuelle Studien von BIEBER & RUF, 2002 und GETHÖFFER, 2005 weisen auf einen erheblichen Einfluss der Frischlingsbachen auf das Populationswachstum hin.

Im Gegensatz zu den weiblichen Tieren sind erwachsene Keiler Einzelgänger. Im Alter von 15-18 Monaten werden die Überläuferkeiler aus dem Familienverband verstoßen und bilden bis zur nächsten Rauschzeit Überläuferkeilerrotten von zwei bis fünf Tieren. Danach leben die Tiere allein und ohne festen Einstand (MEYNHARDT, 1990).

Rauschzeiten manifestieren sich laut BRIEDERMANN (1971) zwischen Oktober und Mai mit der höchsten Befruchtungsrate in den Wintermonaten. Die klassischen Frischtermine liegen im März und April, sind aber entsprechend der Rauschzeiten ebenfalls sehr variabel. Neuere Studien zeigen allerdings ein erhebliches Abweichen von der früher typischen Saisonalität. Wobei ein vermehrtes Auftreten von Frischterminen im Hochsommer aufgefallen ist und dementsprechend eine weitere Rauschzeit im Frühjahr stattgefunden haben muss. Also kann nicht mehr von einer strikten Saisonalität ausgegangen werden (NEEF, 2009). Die Tragzeit liegt zwischen 112 und 120 Tagen und entspricht der der Hausschweine (HECK & RASCHKE, 1985). Die Wurfgröße variiert zwischen einem und zehn Frischlingen und liegt durchschnittlich bei 5,65 Frischlingen pro Bache (MEYNHARDT, 1990).

Die Begriffe Frischling, Überläufer, Keiler und Bache entstammen der jagdlichen Terminologie. Als Frischlinge gelten Jungtiere bis zu einem Alter von rund einem Jahr; Überläufer beschreiben junge Tiere im Alter von ungefähr ein bis zwei Jahren. Diese Termini werden nicht geschlechtsspezifisch verwendet. Bachen sind weibliche, Keiler männliche, erwachsene Tiere ab einem Alter von etwa zwei Jahren (BRIEDERMANN, 2009).

2.1.4 Lebensraumwahl und Aktionsraum (Home Range)

Die Lebensraumwahl wird in erster Linie durch das jeweilige Nahrungsangebot bestimmt. Als Nahrung werden Baum- und Feldfrüchte bevorzugt (BRIEDERMANN, 2009). Dem als omnivorem Nichtwiederkäuer stehen Wildschwein aber zahlreiche weitere Nahrungsquellen zur Verfügung (BRIEDERMANN, 2009; GROOT BRUINDERINK et al., 1994; JERZIERSKI & MYRCHA, 1975; MASSEI et al., 1996). In Mitteleuropa spielen Feldfrüchte als Nahrungsquelle eine zunehmende Rolle (BRIEDERMANN, 1967; HOHMANN & HUCKSCHLAG, 2004). Außerdem sind Wasserzugang, Deckung und Ruhezonen bei der Lebensraumwahl der Wildschweine von Bedeutung. Im Allgemeinen werden waldreiche Regionen, strukturierte Feldlandschaften, Sumpfgut und Gewässergebiete mit Schilfgürteln gewählt. Im Besonderen bevorzugen Wildschweine junge und entsprechend niedrige Fichtenbestände, die eine gute Deckung bieten. In den Sommermonaten stellen Raps-, Mais- und Getreidefelder, die sowohl Nahrungsquelle als auch Deckung sind, einen gern aufgesuchten Einstand dar (MEYNHARDT, 1990).

Die Größe des Aktionsraumes ist beim Wildschwein nachweisbar abhängig von der Lebensraumqualität, also vom Nahrungsangebot und den Deckungsmöglichkeiten. Daraus folgt, dass in verschiedenen Regionen auch unterschiedlich große Streifgebiete beobachtet werden können (STUBBE et al., 1989; BRIEDERMANN, 2009; MEYNHARDT, 1990). Außerdem haben Populations- und Altersstruktur und auch die Erfahrung der Leitbache einen Einfluss auf die Größe der Aktionsräume und Wanderdistanzen (SODEIKAT & POHLMEYER, 2003). In gut strukturierten Habitaten, besonders in reichhaltigen Waldgebieten, nutzen Rotten jährlich ein Gebiet von 500-1000 ha und weisen ein sehr standorttreues Wanderverhalten auf. Eine erhöhte Abwanderung von Überläufern kann in solchen Fällen auf eine erhöhte Populationsdichte zurückgeführt werden (BRIEDERMANN, 2009). KEULING et al. markierten 2005 in Mecklenburg-Vorpommern 122 Wildschweine mit Sendern und konnten so einen Aktionsraum von 100-1400 ha verfolgen. Ähnliche Angaben macht HOLZGANG (2001), er nennt Aktionsräume von 800-3000 ha und Wanderdistanzen von bis zu 250 km.

Befürchtungen, dass Rotten in Folge von Drückjagden auseinandergerissen würden und eine erhöhte Abwanderung stattfände (BOITANI et al., 1994; CALENGE et al., 2002), konnten nicht bestätigt werden (SODEIKAT & POHLMEYER, 2002; SODEIKAT, et al., 2005 und MÜLLER, 2001). Demnach verlassen die Rotten auch während Drückjagden ihr angestammtes Streifgebiet nicht bzw. finden sich kurz nach dem Jagdgeschehen wieder ein. Allerdings müssen die Sozialstruktur der Rotte mit einer Leitbache erhalten bleiben und im heimatlichen Aktionsraum genügend Fluchträume vorhanden sein.

Außerdem ist das Wildschwein ein nicht zu unterschätzender Unfallverursacher auf Deutschlands Straßen.

Tabelle 1 zeigt die Wildunfallstatistik des Jagdjahres 2011/2012, dabei steht das Wildschwein nach dem Rehwild auf dem zweiten Platz der Unfallverursacher. Bei Beurteilung der Wildunfallstatistik ist allerdings zu berücksichtigen, dass Rot- und Damwild insgesamt seltener vorkommen, als Reh- und Schwarzwild.

Tabelle 1:Wildunfallstatistik des Jagdjahres 2011/2012 (Angaben beruhen auf
Fallwildzahlen aus den Bundesländern. Fallwild bezeichnet Tiere,
die durch nicht-jagdliche Einwirkungen – überwiegend durch den
Straßenverkehr – zu Tode gekommen sind. ¹⁾Hochrechnungen, da
keine Erfassung vorliegt. Quelle: http://medienjagd.test.
newsroom.de/4511_a5_11_wildunfall.pdf Stand:01/2013)

Bundesland	Rehwild	Schwarzwild	Damwild	Rotwild
Baden-Württemberg	22.031	2.550	58	36
Bayern ¹⁾	34.361	1.798	33	488
Berlin	116	109	6	1
Brandenburg	1.196	514	245	165
Bremen	172	0	0	0
Hamburg	311	1	2	0
Hessen	13.311	2.381	71	305
Mecklenburg-Vorpommern	6.064	1.606	317	260
Niedersachsen	25.746	1.609	894	110
Nordrhein-Westfalen	25.391	1.342	306	240
Rheinland-Pfalz	9.554	1.415	51	307
Saarland	1.284	198	13	7
Sachsen	5.956	1.287	58	125
Sachsen-Anhalt	7.006	1.102	260	214
Schleswig-Holstein	14.602	743	26	248
Thüringen	4.228	743	26	248
Deutschland	171.329	16.986	3.497	2.577

2.2 Theoretische Grundlagen der Populationsgenetik

2.2.1 Mikrosatelliten

2.2.1.1 Mikrosatelliten

Mikrosatelliten werden auch "Single Tandem Repeats" (STRs) (EDWARDS et al., 1991) oder "Simple Sequence Repeats" (TAUTZ, 1989) genannt und stellen kurze, repetitive DNA-Sequenzen dar. Sie sind genomweit lokalisiert. Das sich wiederholende Basenmotiv ist bis zu sechs Basenpaare lang und wiederholt sich zwischen zehn und 30 mal (TAUTZ & SCHLÖTERER, 1994).

Mikrosatelliten finden sich im Genom aller bisher untersuchten Organismen und treten meist im nicht-kodierenden Bereich des Genoms auf. Seltener sind sie im kodierenden Bereich oder in der Promotorregion lokalisiert (HANCOCK, 1999).

Sie zeigen eine hohe Verteilungsdichte im Genom und eine hohe Variabilität, die auf der unterschiedlichen Zahl der Wiederholungen beruht und damit unterschiedliche Fragmentlängen zur Folge hat (ASHLEY & DOW, 1994).

Im Durchschnitt lassen sich pro Genort rund acht unterschiedliche Allele darstellen. Dieser ausgeprägte Grad an Polymorphismus lässt sich mit der Mutationsfreudigkeit repetitiver Sequenzen erklären. Da die Mutationen in nicht-kodierenden Bereichen meist ohne Auswirkungen bleiben, sind sie dort auch wesentlich häufiger nachweisbar als in kodierenden Genomabschnitten. Die Mutationsrate liegt bei Mikrosatelliten zwischen 10⁻⁴ und 5x10⁻⁶ pro Locus und Generation. (CRAIGHEAD et al., 1995; EDWARDS et al., 1992; DALLAS, 1992). Die recht hohen Mutationsraten erlauben eine individuelle Unterscheidung.

Der genaue Mutationsmechanismus war lange Zeit umstritten, mittlerweile setzt sich die Theorie des "slipped-strand mispairing" durch (RICHARDS & SURTHERLAND, 1992; SCHLÖTTERER & TAUTZ, 1992). Dabei nimmt man an, dass es durch Strangverschiebungen zu Fehlpaarungen während der Replikation kommt, was zur Bildung eines in der Länge veränderten Stranges führt. Bei nicht-repetitiven Sequenzen stellt "DNA-Slippage" kein Problem dar, da es nur eine Möglichkeit zur Wiederanlagerung des Templatestrangs gibt. Bei repetitiven Sequenzen kann sich der Strang, entsprechend der Wiederholungen, auch an benachbarte Wiederholungssequenzen außerhalb des eigentlichen Rasters wieder anlagern. Wird die DNA-Synthese mit falsch angelagerten Strängen fortgeführt, verändert sich die Länge des Mikrosatellits. Da die Schätzung vieler populationsgenetischer Parameter abhängig vom jeweils zu Grunde gelegten Mutationsmodell ist (z.B. bei genetischen Distanzen und Untersuchungen auf genetische Flaschenhälse), ist die Kenntnis der verschiedenen Modelle unerlässlich. Für Mikrosatelliten gilt dies im Besonderen, weil mit steigender Mutationsrate die Sensitivität für das jeweilige Mutationsmodell steigt (ESTOUP & CORNUET, 1999).

Von den bisher beschriebenen vier Mutationmodellen werden das "stepwise mutation model" (SMM) (KIMURA & OTHA, 1978) und das "infinite alleles model" (IAM) (KIMURA & CROW, 1964) als die Wichtigsten angesehen. Beim IAM wird unterstellt, dass jede Mutation zur Erzeugung eines neuen Allels führt. Das SMM geht davon aus, dass jede Addition bzw. Deletion einer Wiederholungseinheit zu einem neuen Allel führt (SUNDQIST et al., 2001; VALDES et al., 1993). BALLOUX & LUGON-MOULIN (2002) schließen daraus, dass sich Allele mit stark unterschiedlicher Länge in geringerer Beziehung zueinander befinden als Allele mit ähnlicher Länge. Das von DI RIENZO et al. (1994) eingeführte, TPM (Zwei-Phasen-Modell) stellt eine Erweiterung des SMM dar und nimmt eine Deletion bzw. Addition mehrerer Wiederholungseinheiten an.

Außerdem findet sich in der Literatur das K-Allel-Modell (KAM) nach BALLOUX & LUGON-MOULIN (2002).

Beim Auftreten von Punktmutationen im Bereich der Primerbindungsstellen, wird das dazugehörige Allel nur geringfügig oder gar nicht amplifiziert. Man spricht von "Nullallelen" (PEMBERTON et al., 1995). Dadurch können heterozygote Tiere als vermeintlich homozygot fehlinterpretiert werden. Bei Abstammungskontrollen kann dies zu falsch-negativen Ergebnissen führen (SCHWEND, 2001). Auf Populationsebene kann durch ein, mit statistischer Relevanz, auftretendes Nullallel, der Homozygotenanteil zu hoch eingeschätzt werden, was eine stärkere Abweichung vom Hardy-Weinberg-Gleichgewicht zur Folge hat (WILTON et al., 1999).

Durch die Verwendung spezifischer, den Mikrosatelliten direkt flankierenden, Primer lassen sich die unterschiedlichen Fragmentlängen mittels PCR vervielfältigen und mittels hochauflösender Polyacrylamidgelelektrophorese auftrennen. Fluoreszenzmarkierte Primer, deren PCR-Amplifikate mit Laserlicht-Detektion dargestellt werden können, ermöglichen eine weitreichende Automatisierung der Mikrosatellitenanalyse und so eine schnelle und genaue Genotypisierung der Individuen und die Bewältigung großer Probenaufkommen. Alternativ kann Kapillarelektrophorese zur Darstellung der Amplifikate verwandt werden (PETTERSSON et al., 2009).

Für eine Mikrosatellitenanalyse sind nur kleine Mengen DNA erforderlich. Für eine erfolgreiche DNA-Isolation benötigt man nur eine geringe Menge Ausgangsmaterial (Blut, Schleimhautabstriche, Gewebeproben oder Haare). Mikrosatelliten-Marker lösten die vorher routinemäßig verwendeten biochemischen und Blutgruppenmarker weitgehend. Sie wurden und werden für Genom-Kartierungen (ROHRER, 1994), Kopplungsanalysen (REINER et al., 2007), forensischen Identitätsüberprüfungen und Abstammungskontrollen (GLOWATZKI-MULLIS et al., 1995; HEYEN et al., 1997) noch immer häufig eingesetzt. In der Populationsgenetik, speziell bei phylogenetischen Studien und der "conservation genetics" (Untersuchung der genetischen Stabilität und Variabilität gefährdeter Populationen, Rassen und Arten), kommt der Mikrosatelliten-Analyse ebenfalls noch immer eine große Bedeutung zu, obwohl im Rahmen moderner Sequenzanalyseverfahren inzwischen eine Vielzahl von Einzelbasenmutationen (Single Nucleotide Polymorphisms; SNPs) vorliegen.

Etliche Studien – zum Beispiel GERSTENBERGER (2002) beim Menschen; ECKERT (2003) bei Feliden; KIM et al. (2002) und METTA et al. (2004) beim Rind; ACHMANN et al. (2004) und BJORNSTAD & ROED (2001) beim Pferd; PAETKAU et al. (1995) und BLOCK (2004) bei Bären; ROED (1998), KUEHN et al. (2007) sowie WANG & SCHREIBER (2001) bei Cerviden und MARTINEZ et al. (2000), DELGADO et al. (2008) und FERREIRA et al. (2008) beim Schwein bzw. Wildschwein – belegen die hervorragende Eignung der Mikrosatelliten zur Beantwortung mannigfaltiger Fragestellungen im Bereich der Populationsgenetik.

2.2.1.2 Anwendung porciner Mikrosatelliten beim Wildschwein

Hausschweine und Wildschweine gehören zur gleichen Spezies *Sus scrofa*. Daher gelingt die Amplifikation porciner Mikrosatelliten sowohl beim Hausschwein als auch beim Wildschwein. LOWDEN et al. (2002) überprüften für Hausschweine entwickelte Mikrosatelliten bei verschiedenen Wildformen (Sus barbatus und Sus verrucosus, etc.) und zeigten eine hohe Konservierung der einzelnen Loci. Außerdem wurden in Australien australie verwilderte Hausschweine, die "Feral Pigs" mittels Mikrosatelliten untersucht (SPENCER et al., 2006).

Im eurasischen Raum wurden bis dato nur wenige Mikrosatellitenanalysen beim Wildschwein durchgeführt (DELGADO et al., 2008; FERREIRA et al., 2006; FERREIRA et al., 2008;

NIKOLOV et al., 2009; SCANDURA et al., 2008; VELIKOVIC et al., 2010; VERNESI et al., 2003).

2.2.2 Populationsgenetik und Einflüsse auf die Populationsstruktur

Die Populationsgenetik, die auf den Grundprinzipien der Mendel´schen Regeln basiert, befasst sich mit den Auswirkungen dieser Regeln auf die genetische Struktur von Populationen. Als Population bezeichnet man definierte Vermehrungs- bzw. Paarungsgemeinschaften zwischen Lebewesen. Populationen können natürlich entstehen oder experimentell gebildet werden.

Grundlage der Populationsgenetik ist die Ermittlung und Beurteilung der genetischen Variation, die innerhalb oder zwischen einer bzw. mehreren Populationen zu beobachten sind. Die genetische Variation drückt sich in unterschiedlichen Allelen an gleichen Loci aus. Um diese Variation beurteilen zu können, werden Allelfrequenzen (Verhältnisse der einzelnen Allele zueinander, an einem Locus) ermittelt und verglichen.

Allelfrequenzen sind damit die Grundlage zur Beurteilung der Populationsstruktur und zum Vergleich mehrerer Populationen.

2.2.2.1 Hardy-Weinberg-Gleichgewicht

Das Hardy-Weinberg-Gleichgewicht ist eine der wichtigsten Grundlagen der Populationsgenetik. Es beschreibt das konstante Verhältnis von homozygoten und heterozygoten Individuen innerhalb einer Population. Diese, auf der Mendel'schen Vererbungslehre basierende, Gesetzmäßigkeit wurde Anfang des 20. Jahrhunderts unabhängig voneinander von G.H. Hardy und W. Weinberg beschrieben (HARDY, 1908; WEINBERG, 1908). Die Hardy-Weinberg Verteilung gibt demnach das Zahlenverhältnis der Genotypen in einer Population aus diploiden Organismen bei verschiedenen Allelfrequenzen an einem Locus an (siehe Abbildung 4).

Diese Verteilung setzt allerdings folgende Bedingungen innerhalb der Population voraus:

- Allelfrequenzen sind bei männlichen und weiblichen Individuen gleich
- Ausreichende Populationsgröße, damit Zufallsschwankungen vernachlässigbar werden
- Panmixie
- Keine Mutation, keine Selektion, kein Genimport bzw. Genexport

Abbildung 4: Hardy-Weinberg-Gleichgewicht für zwei Allele: die horizontale Achse zeigt die beiden Allelfrequenzen p und q, die vertikale Achse zeigt die Genotypfrequenzen. Die drei möglichen Genotypen (hier: AA, Aa, aa) sind durch unterschiedliche Zeichen dargestellt. (Quelle: http://commons.wikimedia.org/wiki/File:Hardy-Weinberg1.gif#file)

Wird ein Merkmal (Allel) unbeachtet der Partnerwahl vererbt, entsteht eine gleichmäßige Verteilung des Allels im entsprechenden Genpool. Genetische Drift, Selektionsdruck, geographische Grenzen und andere evolutionäre Prozesse können eine ungleichmäßige Verteilung der Allele bedingen.

Allgemein lässt sich die Gesamthäufigkeit der einzelnen Genotypen durch folgende Gleichung beschreiben:

$$p^2 + 2pq + q^2 = 1$$

Dieses Verhältnis zwischen Genotyp- und Allelfrequenzen bleibt bei obengenannten Bedingungen über Generationen hinweg konstant und wird häufig als Punnett-Quadrat dargestellt (Tabelle 2), welches gleichzeitig der Ermittlung der möglichen Genotypen dienen kann.

 Genpool (weiblicher Anteil)

 A (p)
 a (q)

 A (p)
 Aa (pq)

 Image: Second se

 Tabelle 2:
 Punnett-Quadrat f
 ür das Hardy-Weinberg-Gleichgewicht

Um genetische Tests durchführen zu können, die auf Genotypfrequenzen basieren, ist eine Überprüfung des Hardy-Weinberg-Gleichgewichts vorher unerlässlich. Weichen die Allelhäufigkeiten signifikant von den Erwartungswerten der Hardy-Weinberg-Proportion ab, so deutet dies auf bestimmte Mechanismen bei der Allelrekombination hin. So zeigt beispielsweise eine Gesamtpopulation, die aus nicht paarenden Subpopulationen besteht, deren Allelfrequenzen voneinander abweichen, eine Abweichung vom Hardy-Weinberg-Gleichgewicht. Die Subpopulationen wiederum einzeln untersucht, weisen keine Abweichung vom Hardy-Weinberg-Gleichgewicht auf.

Zur Überprüfung des Hardy-Weinberg-Gleichgewichts wird der Chi-Quadrat-Test bzw. Fisher's Exakter Test verwendet. Dies entspricht einem in der Statistik üblichen Nullhypothesentest. Eine Abweichung vom Hardy-Weinberg-Gleichgewicht kann außerdem auf Inzucht, Substrukturierungen der Gesamtpopulation oder Selektionsprozesse hinweisen.

2.2.2.2 Genetische Drift

Als genetische Drift bezeichnet man die Änderung der Allelfrequenzen, die auf statistischen Zufallsschwankungen beruht und, im Gegensatz zu den Faktoren Selektion, Mutation und Migration, ungerichtet sind. Dieser Faktor spielt besonders in kleinen bzw. isolierten Populationen eine Rolle. Bei Verlust einzelner Allele oder der Entstehung von Homozygoten, wird dieser Zustand im Genpool fixiert und ein unwiederbringlicher Verlust von Allelen und damit Variabilität wird sichtbar; dies führt letztlich zur Homozygotie der Population (SPERLICH, 1988). Dieser Zusammenhang ist in Abbildung 5 dargestellt.

Abbildung 5: Abhängigkeit der Geschwindigkeit des Gendrifts von der Populationsgröße und der mit Gendrift verbundene Rückgang von Heterozygotie (aus SPERLICH, 1988).

2.2.2.3 Genfluss bzw. Migration

Genfluss beschreibt die genetische Variabilität, die auf den Austausch bzw. Eintrag von Genen in eine Population von außen (aus anderen Populationen) zurückgeht. Austausch und Eintrag beruhen auf individuellen Zu- und Abwanderungen der Tiere. Diese Ein- und Abwanderung wird als Migration bezeichnet. Sind Migration und damit der Genfluss vorhanden, kann die Homozygotie verringert werden, also werden die Effekte des genetischen Drifts reduziert. Somit wirkt Genfluss einer optimalen Anpassung an vorhandene Umwelteinflüsse entgegen. Innerhalb von Populationen erfolgt nur bei bestehendem Häufigkeitsunterschied der Genfrequenzen Genfluss; besteht dieser nicht, kommt der Genfluss zum Stillstand. Im Falle fehlender Migration und damit einhergehender Unterbindung des Genflusses, kommt es zu reproduktiver Isolation (HENNIG, 1998; SLATKIN, 1987). Populationen mit hoher Fixation der Loci scheinen an ihre Umwelt gut angepasst zu sein, büßten aber ihre Anpassungsfähigkeit an sich ändernde Bedingungen ein, da im Allgemeinen davon ausgegangen wird, dass hohe Anpassungsfähigkeit einer Spezies auf hoher genetischer Variabilität basiert (LI, 1962).

Um Genfluss zu quantifizieren, stehen direkte und indirekte Methoden zur Wahl. Direkte Methoden betrachten Zuchterfolg und die Verbreitungsdistanzen und ziehen so Rückschlüsse auf den Genfluss. Indirekte Methoden setzen auf DNA-Sequenzen und Allelfrequenzen und verwenden zwei verschiedene Ansätze. SLATKIN (1987) betrachtet in einem Ansatz die Allelfrequenzen seltener Allele. Dem hier verwendeten Ansatz liegt Wrights F_{st} zu Grunde, er wird als N_m abgekürzt und quantifiziert letztlich die "Anzahl der Migranten pro Generation". Zeigt sich N_m kleiner als eins, so ist davon auszugehen, dass die Zufallsdrift zu einer erheblichen genetischen Differenzierung geführt hat.

2.2.2.4 Wahlund-Effekt

Der Wahlund-Effekt beschreibt den Anstieg homozygoter Allele in großen Populationen. Dieser entsteht bei einer Substrukturierung der Gesamtpopulation in mehrere Subpopulationen, die jeweils – zumindest weitestgehend – den Erwartungen des Hardy-Weinberg-Gleichgewichts entsprechen. Dieser Anstieg der homozygoten Anteile geht auf Kosten des Heterozygotenanteils in der Gesamtpopulation (WAHLUND, 1928). Im Blick auf die Gesamtpopulation sind die Auswirkungen hinsichtlich der Allelkonstellation denen der Inzucht recht ähnlich (LI, 1962). Bei einer Reduktion des Heterozygotenanteils weicht die Population vom Hardy-Weinberg-Gleichgewicht ab (ROUSSET & RAYMOND, 1995).

2.2.2.5 F-Statistiken – Heterozygotenrückgang und Inzuchtkoeffizient

Die nach WRIGHT (1965) definierten F-Indizes ermöglichen eine Quantifizierung der Effekte, die zur Verringerung der Heterozygosität in einer strukturierten Population führen. Basierend auf den oben beschriebenen Komplexitätsebenen einer Population und den dazugehörigen Heterozygositätswerten (H_i , H_s , H_t) werden die drei F-Indices (F_{is} , F_{st} und F_{it}) berechnet, um Rückschlüsse auf die Struktur einer Population ziehen zu können.

 H_i ist die individuelle Heterozygosität, also die beobachtete Heterozygosität in einer Subpopulation, wohingegen H_s als die erwartete Heterozygosität in einer panmiktischen Subpopulation definiert ist. H_t beschreibt die erwartete Heterozygosität in einer Gesamtpopulation, die ebenfalls von Panmixie aller vereinten Subpopulationen und deren Individuen ausgeht.

 F_{is} (Inzuchtkoeffizient) bezeichnet auf der einen Seite den Grad des Rückgangs der Heterozygosität eines Individuums, der sich im "non-random mating"-Verhalten seiner Subpopulation begründet und auf der anderen Seite die Wahrscheinlichkeit, dass die zwei Allele eines Locus auf einen identischen Ursprung, also auf einen Vorfahren zurückzuführen sind (Autozygotie). F_{is} kann einen Wert zwischen -1 und 1 annehmen. Negative Werte lassen auf einen Heterozygotenüberschuss schließen, während positive Werte, entgegen der Annahme der erwarteten Heterozygosität nach Hardy-Weinberg-Gleichgewicht, ein Heterozygositäts-Defizit bedeutet, was auf Inzuchtprozesse hinweist.

F_{is} liegt folgende Formel zugrunde:

$$F_{is} = \frac{H_s - H_i}{H_s}$$

 F_{st} beschreibt den Grad der Heterozygotenreduktion (Fixierungs-Index), der durch Substrukturierungen innerhalb einer Population ausgelöst wird. F_{st} beschreibt also die genetische Variabilität zwischen Subpopulationen einer Gesamtpopulation und ist hierfür ein häufig gebrauchtes Maß. F_{st} kann einen Wert zwischen 0 und 1 annehmen. Dabei bedeutet ein Wert von 0, dass keine Substrukturierung der Population vorliegt und von Panmixie ausgegangen werden kann. Ein Wert von 1 zeigt eine vollständige genetische Differentiation an und somit eine vollständige Substrukturierung der Gesamtpopulation. Laut HARTL & CLARK (1997) zeigen Werte bis 0,05 eine vernachlässigbare genetische Differentiation, wohingegen Werte >0,25 bereits eine sehr große Differentiation bedeuten. Desweiteren gibt F_{st} Auskunft über den Grad des Genflusses zwischen den Populationen (F_{st} =1: kein Genfluss; F_{st} =0: es findet ein reger Austausch zwischen den Populationen statt).

F_{st} berechnet sich nach folgender Formel:

$$F_{st} = \frac{H_t - H_s}{H_t}$$
F_{it} , der Gesamtinzuchtkoeffizient eines Individuums im Vergleich zur Gesamtpopulation ist ein selten genutztes Maß und berücksichtigt beide heterozygositätsreduzierenden Effekte. Einmal das nicht panmiktische Fortpflanzungsverhalten (siehe F_{is}) und andererseits die mögliche Substrukturierung der Population (siehe F_{it}).

F_{it} basiert auf folgender Formel:

$$F_{it} = \frac{H_t - H_i}{H_t}$$

Analog zu F_{st} wurde R_{st} (SLATKIN, 1995) berechnet, wobei im Gegensatz zu F_{st} bei R_{st} die molekulare Information in Form der Länge der Allele mit einbezogen wird. R_{st} bietet sich folglich für Mikrosatellitenanalysen an und wird wie folgt berechnet:

$$R_{st} = \frac{V_{ap}}{\left(V_{ap} + V_{wp}\right)}$$

wobei

 $V_{ap} = Varianz \, der \, Anzahl \, der \, Repeats \, eines \, Mikrosatellits \, zwischen \, Populationen$ $V_{wp} = Varianz \, d. \, Anzahl \, d. \, Repeats \, eines \, Mikrosatellits \, innerhalb \, einer \, Population$

2.2.2.6 Gründer-Effekt

Der Gründereffekt (founder effect) beschreibt die Reduktion der genetischen Variabilität einer isolierten (neugegründeten) Population, zum Beispiel auf einer Insel, im Vergleich zu einer nicht isolierten (Ausgangs-) Population. Dieser Unterschied entsteht, weil weniger Allele an der Gründung der Population beteiligt sind, jedoch nicht durch unterschiedliche Selektionsbedingungen. Die neugegründete Population repräsentiert die Ausgangspopulation nur unvollständig. Der Gründereffekt kann zur Entstehung neuer Arten führen (Abb. 6).

Abbildung 6: Stammpopulation (links) und drei mögliche Gründerpopulationen (rechts); Verlust von Allelen bei Verinselung bzw. Neugründung von Populationen

2.2.2.7 Effektive Populationsgröße und genetischer Flaschenhals

In einer natürlichen Population mag die Anzahl aller Individuen sehr groß sein, allerdings erreicht nicht jedes Tier die Geschlechtsreife oder nimmt aus verschiedenen Gründen nicht am Fortpflanzungsgeschehen der Population teil. Dementsprechend sind diese Tiere nicht an der genetischen Zusammensetzung der nächsten Generation beteiligt. Die Anzahl der tatsächlichen Erzeuger ("breeding size") kann sehr viel kleiner sein als die eigentliche Anzahl der Tiere. Um die effektive Populationsgröße zu definieren wird eine "ideale" Population mit einem ausgewogenen Geschlechterverhältnis angenommen. Diese Anzahl wird nun effektive Größe der Zuchtgruppe genannt. Die effektive Populationsgröße wird durch ungleiche Geschlechterverteilung reduziert. Außerdem führt auch die variierende Anzahl des überlebenden Nachwuchses verschiedener Elterntiere zu einer Reduktion. Desweiteren spielt die über Generationen hinweg variierende Populationsgröße eine Rolle; dabei nähert sich die effektive Populationsgröße der kleinsten Populationsgröße an (HARTL & CLARK, 1997).

Unter einem genetischen Flaschenhals ("bottleneck") versteht man die, aus einer starken Dezimierung der Individuenzahl einer Population resultierende, Abnahme der genetischen Variabilität. Vergrößert sich daraufhin die Population wieder, steigt auch – durch Neumutationen – die genetische Variabilität (Abb. 7). Dabei ist die Abnahme der durchschnittlichen Heterozygotie nicht nur von der Größe (Länge im zeitlichen Sinne) des Flaschenhalses abhängig, sondern ebenfalls von der Wachstumsrate der Population nach Passieren des Flaschenhalses. Steigt nach dem Flaschenhals die Populationsgröße schnell an, ist die Reduktion des Heterozygotiegrades schwächer als bei langsamem Wachstum. Die durchschnittliche Allelanzahl pro Locus wird weniger von der Wachstumsrate als von der minimalen Populationsgröße bedingt. Dieser Unterschied besteht, da Allele mit niedrigen Frequenzen - in kürzerer Zeit - durch zufällige Gendrift eliminiert werden können. (NEI et al., 1975).

Bei den meisten großen Säugetieren ist die Heterozygotie besonders stark von der Verringerung der Populationsgröße abhängig. Dies liegt begründet im vergleichsweise geringen Reproduktionspotential und in der langen Generationszeit. Diese Effekte können sich zum Teil noch bis zu mehreren Jahrtausenden in geringer Heterozygotie zeigen (ALLENDORF et al., 1979).

Ob eine Population in jüngerer Vergangenheit einen genetischen Engpass (genetischer Flaschenhals) durchlaufen hat kann mit Hilfe der Software BOTTLENECK 1.2.02 (CORNUET & LUIKART, 1997) untersucht werden. Dabei kommen mehrere Verfahren zum Einsatz. Das erste Verfahren beruht auf einer Ermittlung eines Überschusses an Heterozygoten. Dabei geht man davon aus, dass die genetische Diversität schneller sinkt als der Grad der Heterozygotie, nachdem eine Population einen genetischen Flaschenhals durchlaufen hat. Dem liegt die Tatsache zu Grunde, dass seltene Allele schnell verloren gehen. Dieser Verlust hat aber zunächst noch keinen Einfluss auf die Heterozygotie. So entsteht ein Überschuss an Heterozygoten verglichen zu einer Population im Mutations-Drift-Gleichgewicht. Dieses entsteht, wenn der Verlust von Allelen durch zufällige Drift von neuentstehenden Allelen durch Mutationen ausgeglichen wird.

Abbildung 7: Schematische Darstellung des genetischen Flaschenhalses. Anfänglich zeigt die Population zehn verschiedene Allele (Quadrate). Nach Durchlauf des genetischen Flaschenhalses verbleiben noch zwei Allele. Im weiteren Verlauf würde die Anzahl der Allele durch Neumutationen wieder steigen. (modifiziert nach http://virtuallaboratory.colorado.edu/Biofundamentals/lectureNotes/ Topic1H_Evo.htm)

2.2.2.8 Genetische Distanzen

Zur Messung genetischer Diversität zwischen Populationen werden genetische Distanzen geschätzt. Genetische Distanzen fassen Unterschiede der Allelfrequenzen zwischen den zu vergleichenden Populationen zusammen. Zumeist werden genetische Distanzen in paarweisen Matrizen dargestellt (KALINOWSKI, 2002).

Die Populationsgenetik basiert auf vier verschiedenen evolutionären Einflüssen: genetische Drift, Mutation, Selektion und Migration. Selektion spielt bei der Änderung der Allelfrequenzen von Mikrosatelliten keine Rolle, vorausgesetzt sie befinden sich in einem nicht kodierenden Bereich. Desweiteren wird die Migration ignoriert, da sie sich in der genetischen Distanz zwischen zwei Populationen zeigt. Der Änderung der Allelfrequenzen zwischen zwei Populationen liegt hauptsächlich die genetische Drift zugrunde. Mutationen sind erst von Bedeutung, wenn ein sehr langer Beobachtungszeitraum vorliegt – evolutionär gesehen (EDING & LAVAL, 1999).

Den verschiedenen Ansätzen zur Berechnung der genetischen Distanzen liegen entweder das Mutationsmodell SMM oder IAM zugrunde. Während NEI (1972) und REYNOLDS (1983) vom IAM ausgehen, basieren die Überlegungen von GOLDSTEIN et al. (1995) und CAVALLI-SFORZA & EDWARDS (1967) auf dem SMM.

2.2.2.9 Subpopulationen

Das Programm STRUCTURE 2.3.3 (PRITCHARD et al., 2000; ANDERSON & THOMPSON, 2002) ermöglicht die Einteilung der untersuchten Individuen einer Gesamtpopulation in Subpopulationen – unabhängig von der geographischen Herkunft. Basierend auf einem Modell, in dem es K (Anzahl manuell festgelegt) Populationen gibt,

werden die Individuen einer dieser K Subpopulationen zugeordnet. Von den Allelfrequenzen ausgehend wird jedem Individuum ein Wahrscheinlichkeitskoeffizient pro Subpopulation zugewiesen; dieser gibt Aufschluss in welcher Subpopulation eine Mitgliedschaft des Tieres am wahrscheinlichsten ist.

Diesen Berechnungen liegt das Markov-Chain-Monte-Carlo (MCMC)-Verfahren zu Grunde. Dabei werden wiederholt Stichproben aus einer Wahrscheinlichkeitsverteilung gezogen. Die Sicherheit der Berechnung steigt mit der Anzahl der Wiederholungen. Um die wahrscheinlichste Anzahl Subpopulationen ermitteln zu können, ist es notwendig, mehrere Berechnungen mit einer jeweils unterschiedlichen Anzahl Subpopulationen (K) durchzuführen und die Ergebnisse zu vergleichen. Als Vergleichswert dient der geschätzte natürliche Logarithmus der Wahrscheinlichkeit für die angegebene Anzahl an Subpopulationen ("Estimated Ln Prob of Data"). Die Anzahl der angenommenen Subpopulationen (K) mit dem höchsten "Estimated Ln Prob of Data" ergibt die wahrscheinlichste Anzahl an Subpopulationen.

2.3 Populationsgenetische Untersuchungen an Wildschweinen, heimischen Wildarten und anderen Großsäugern in Europa

Im Vergleich zu anderen heimischen Wildarten finden sich in der Literatur wenige Beispiele für ähnliche Studien beim Wildschwein. Während für das Hausschwein mannigfaltige Studien zur genetischen Variation und Mikrosatellitenanalysen vorliegen, ist über dessen Urform wenig bekannt (SCANDURA et al., 2011). Häufig werden populationsgenetische Untersuchungen bei bedrohten Tierarten bzw. Arten mit kleinen Populationen oder kürzeren Wanderwegen durchgeführt. Beim Vergleich bestehender Studien anderer Wildarten zu Studien beim Wildschwein ist jeweils zu berücksichtigen, wie groß die Population der untersuchten Wildart ist bzw. wie groß die "home range" und die Standorttreue der Tiere ausfallen. Als gute Vergleichstierarten bieten sich im Falle des Wildschweins die Cervidenarten an (Reh, *Capreolus capreolus* und der Rothirsch, *Cervus elaphus*), die in Europa ein ähnliches Verbreitungsgebiet haben wie das Wildschwein (STUBBE, 2008; KINSER et al., 2010); außerdem wirken sich Barrieren auf Cerviden ähnlich aus (HERRMANN & MATHEWS, 2007).

2.3.1 Populationsgenetische Untersuchungen bei großen Landsäugern – im Besonderen beim Wildschwein in Europa

2.3.1.1 Untersuchungen bei großen Landsäugern

KUEHN et al., 2004 untersuchten 207 Rothirsche (*Cervus elaphus*) unterschiedlichen Geschlechts und Alters mit Hilfe von 18 Mikrosatellitenloci aus fünf Schweizer Kantonen, um den Ursprung der heutigen Populationen zu identifizieren.

Basierend auf historischen Daten standen drei verschiedene Populationen als Grundlage für die heutige Population zur Verfügung. Als wahrscheinlichste Ursprungspopulation gilt die Population aus der Gegend Liechtensteins. Die Untersuchung zeigte eine hohe genetische Diversität in allen untersuchten Populationen. Genfluss und eine hohe genetische Vermischung zeigten sich deutlich. Es gab keine Hinweise auf Founder- oder Bottleneck-Effekte. Die hohe erwartete Heterozygosität (0,64 bis 0,69) weist eher auf eine Kolonisierung mit einem hohen Maß an Immigration hin. Die geringen F_{st} -Werte (0,0015 bis 0,0999) lassen auf eine geringe Differentiation schließen.

RØED (1998) untersuchten je 22 Elche, 22 Rothirsche und 22 Rehe und 23 Rentiere aus allen Regionen Norwegens. Von den 75 verwendeten Mikrosatelliten boviner, oviner und capriner Herkunft zeigten 69 einen polymorphen Charakter.

Die Rentiere wiesen mit einem Wert von 0,33 (±0,06) die höchste Heterozygosität auf. Elche, Rothirsche und Rehe wiesen Werte zwischen 0,19 und 0,22 auf. RØED führt diese Unterschiede zum einen auf die große Verbreitung und Wanderfreudigkeit der Rentiere in den eurasischen Tundraregionen zurück. Das Verbreitungsgebiet erstreckt sich letztlich von Norwegen im Westen bis zur Beringstraße im Osten. Zum anderen scheint die große Zahl halbdomestizierter Herden im ganzen Verbreitungsgebiet ein signifikantes Reservoir genetischer Vielfalt für die Wildpopulation darzustellen. Dies wirkt dem Verlust genetischer Vielfalt durch genetische Drift entgegen. Zum anderen waren Rehe, Rothirsche und Elche in vergangener Zeit häufiger Populationsverkleinerungen, die Verlust genetischer Variabilität erwarten lassen, ausgesetzt.

BLOCK (2004) untersuchte 32 slowakische Braunbären mittels zweier Abschnitte der mitochondrialen DNS und dreier Mikrosatelliten. Die erwartete und die beobachtete Heterozygosität lagen, insbesondere im Vergleich zu ungestörten Braunbärpopulationen in Nordamerika, im Normalbereich. Es war kein Zusammenhang zwischen Genotypen und geographischer Distanz zu erkennen, noch waren Barrieren ersichtlich. Die slowakische Population der Braunbären durchlief einen Flaschenhals in den 30er Jahren des 20. Jahrhunderts mit lediglich noch 20 bis 40 Tieren. Nach rigorosen Schutzmaßnahmen besteht die Population heute aus rund 650 Tieren.

2.3.1.2 Untersuchungen bei Wildschweinen in Europa

Um die genetische Struktur der Wildschweinpopulation in Portugal zu erfassen, untersuchten FERREIRA et al. (2006) 65 Blutproben mit sechs Mikrosatelliten. Man unterteilte das Untersuchungsgebiet in drei Regionen (Nord-, Süd- und Zentralportugal); als Grenzen wurden die Flüsse Tejo und Douro festgelegt. Allelfrequenzen, erwartete und beobachtete Heterozygosität und das Hardy-Weinberg-Gleichgewicht wurden berechnet. Die genetische

Differentiation wurde mittels F_{st} beurteilt. Vier der sechs Mikrosatelliten zeigten eine signifikante Abweichung vom Hardy-Weinberg-Gleichgewicht. Fast alle Mikrosatelliten zeigten sich innerhalb der regionalen Gruppen im Hardy-Weinberg-Gleichgewicht. Diese Unterschiede werden als Hinweis auf eine gewisse Strukturierung der Population gewertet. Die größte genetische Differentiation bestand zwischen der Nord- und der Zentral-Gruppe (F_{st} =0,08). F_{st} -Werte von 0,05 und 0,15 implizieren eine moderate Differentiation. Der Vergleich der Südgruppe mit den beiden anderen Gruppen ergab F_{st} -Werte, die auf eine geringe Differentiation hinweisen. Die Autoren schließen daraus, dass sowohl der Douro als auch der Tejo keine absolute Barriere darstellten. Weiter wird vermutet, dass der Douro, der die Nordgruppe abgrenzt, durch seine steileren und steinigeren Ufer die größere genetische Differentiation bewirkt. Hinweise auf eine starke Substrukturierung der Gesamtpopulation liegen nicht vor.

In einer Studie von FERREIRA et al. (2008) wurde die portugiesische Wildscheinpopulation auf eine mögliche Strukturierung in Subpopulationen untersucht. Dabei wurden die gleichen 6 Mikrosatelliten verwendet wie zwei Jahre zuvor (FERREIRA et al., 2006). Neben Allelfrequenzen und dem Hardy-Weinberg-Gleichgewicht wurde das Linkage Equilibrium überprüft. Vier der Mikrosatelliten befanden sich nicht im Hardy-Weinberg-Gleichgewicht. Die Untersuchung der Population mittels STRUCTURE 2.3.3 (PRITCHARD et al., 2000) zeigte, dass wahrscheinlich drei Subpopulationen abzugrenzen sind. Die einzelnen Subpopulationen treten lokal gehäuft auf. Eine Subpopulation ist hauptsächlich in Nordportugal (nördlich des Douro) zu finden, eine weitere konzentriert sich auf Zentralportugal, während die dritte Subpopulation in erster Linie südlich des Tejo auftritt. Die Ergebnisse der F-Statistiken nach WRIGHT (1965) weisen auf moderate bis hohe genetische Differentiation hin. Innerhalb der Subpopulationen lassen die gering bis moderat positiven Werte des Inzuchtkoeffizienten auf eine Differentiation der Population schließen, was die Substrukturierung bestätigt. Ferreira et al. (2008) sahen in der Substrukturierung der Population ihre Vermutung bestätigt, dass die Wildschweinpopulation in Portugal sich nach dem Durchlaufen eines Flaschenhalses noch nicht vollständig wiederhergestellt hat. Gestützt wird diese Vermutung durch die starke Verbreitung des Wildschweins nach einem Jagdverbot in den sechziger Jahren. Eine Durchmischung der Subpopulationen in den Randgebieten scheint stattzufinden.

SCANDURA et al. (2008) untersuchten 252 Wildschweine mit einem Set von zehn Mikrosatelliten. Die Tiere stammten aus Italien, Spanien, Österreich, Frankreich, Polen und Ungarn. Die Mikrosatellitenanalyse zeigt eine geringgradig niedrigere Heterozygosität (alle Tiere: 0,57) als erwartet. Beim Vergleich der verschiedenen Populationen ergaben sich Werte zwischen 0,47 und 0,62. Bei der Überprüfung des Linkage Equilibrium zeigten lediglich 26 von 810 Tests eine signifikante Abweichung. Die Berechnung von F_{st} ergab einen Durchschnittswert von 0,14, was auf eine moderate Differentiation hindeutet. Im paarweisen Vergleich zwischen den Populationen traten Werte zwischen 0,00 und 0,31 auf.

Die genetische Distanz zwischen den Populationen wurde nach Nei berechnet. Keine Hinweise auf eine Korrelation zwischen genetischer Distanz und geographischer Distanz lieferte der Manteltest (r=0,153; p=0,19). Eine Analyse mit STRUCTURE 2.3.3 (PRITCHARD et al., 2000) weist auf 15 Gruppen hin (K=15). Fasst man die 15 synthetischen Gruppen zusammen, ergeben sich vier große Gruppen, die die geographischen Hauptgruppen repräsentieren. Im Großen und Ganzen scheint die größte Vielfalt in Italien vorzuliegen. Scandura et al. (2008) schließen daraus, dass sich südlich der Alpen in der Zeit während und nach der letzten Eiszeit die größere Variabilität bewahrt hat, also, ein genetisches Reservoir bildete. Die Rolle des Menschen wird, trotz massiver Bejagung in den letzten Jahrhunderten, als gering bis nicht messbar eingeschätzt.

Um Unterschiede zwischen Wildschweinen aus Italien und Ungarn feststellen zu können und um den Grad der menschlichen Einflussnahme auf die genetische Struktur einzuschätzen, charakterisierten VERNESI et al. (2003) 105 Wildschweine mit neun Mikrosatelliten. Starke Flaschenhalseffekte wurden sowohl in Italien, als auch in Ungarn ausgeschlossen. Die genetische Variabilität wird als relativ hoch bewertet und so geschlossen, dass der demographische Rückgang nicht so hoch zu bewerten ist wie bei anderen Tierarten. VERNESI et al. (2003) beziehen sich dabei auf Untersuchungen der australischen Koalas (HOULDEN et al., 1996), des Wombats (TAYLOR et al., 1994) und des südafrikanischen Büffels (O'RYAN et al., 1998). Die drei Ursprungspopulationen lassen sich genetisch eindeutig erkennen. Allerdings lässt das geringe Maß an Variabilität nicht die Schlussfolgerung zu, wie zum Teil zuvor angenommen (DE BEAUX & FESTA, 1927), dass Zentraleuropa und Italien (Festland) von zwei unterschiedlichen Subspecies (*Sus scrofa scrofa* bzw. *Sus scrofa majori*) bevölkert werden. Auch unterscheiden sich die italienischen Populationen im gleichen Maße untereinander, wie sie sich von den ungarischen Populationen unterscheiden. Die bulgarische Wildschweinpopulation wurde von NIKOLOV et al. (2009) untersucht. Die Genotypisierung der 289 Tiere erfolgte mit 10 Mikrosatelliten. Zum Vergleich wurden Tiere aus Deutschland mit einbezogen. Zwei Gruppen konnten unterschieden werden. Eine Gruppe stammte aus dem Norden Bulgariens, dem Balkangebirge. Die zweite Gruppe war im Südosten (den Rhodopen, dem Osogovo-Gebirge, der Iskur- und Rila-Region) lokalisiert. Alle bulgarischen Wildschweine zeigten ein höheres Maß an genetischer Variabilität als die Tiere aus Deutschland. Tiere, die aus eingefriedeten Gehegen stammten, unterschieden sich von freilebenden Tieren stärker. Daraus schließen Nikolov et al. (2009), dass ein Einfluss des Menschen auf die genetische Struktur einer Population am wahrscheinlichsten mittels Einzäunungen und vergangenen Umsiedlungsaktionen bewirkt werden kann.

In der serbischen Podunavlje-Podravlje Region untersuchten VELIKOVIC et al. (2010) 51 Wildschweine mit 5 Mikrosatelliten. Die Tiere in dieser Region waren durch einen Fluss vom Rest des Landes isoliert, allerdings wurden dort immer wieder Wildschweine hin umgesiedelt. Die Tiere wurden in zwei Subpopulationen geteilt (Jungtiere und Ausgewachsene). Die beobachtete Heterozygosität lag mit 0,58 etwas niedriger, als FERREIRA et al. (2008) und VERNESI et al. (2003) in Portugal bzw. Italien und Ungarn berechneten. Die jüngere Population wies mehr Allele auf als die Population der ausgewachsenen Tiere. VELIKOVIC et al. (2010) zogen keine weiteren Schlüsse und sahen weiteren Forschungsbedarf.

In Tabelle 3 sind die wichtigsten genetischen Parameter der zuvor genannten Studien zusammengefasst und den Ergebnissen der vorliegenden Studien gegenübergestellt.

Tabelle 3:Werte der erwarteten Heterozygosität (He), der beobachteten
Heterozygosität (Ho) und die Ergebnisse der F-Statistiken (Fis, Fst) der
hier untersuchten Population und vorangegangen Arbeiten (n:
Stichprobenanzahl; n.b.: nicht bekannt)

	Land	n	H _e	Ho	F _{is}	F _{st}
VERNESI et al. (2003)	Italien Ungarn	105	n.b.	0,52-0,72	n.b.	0,018
FERREIRA et al. (2006)	Portugal	65	n.b.	n.b.	n.b.	0,08
SCANDURA et al. (2008)	Italien	252	n.b.	n.b.	n.b.	0,00-0,31
FERREIRA et al. (2009)	Portugal	110	0,7242	0,6273	0,056	0,155
NIKOLOV et al. (2009)	Bulgarien	289	0,55	0,46	0,1612	0,1326
VELIKOVIC et al. (2010)	Serbien	51	0,853	0,579	0,331	n.b.
FRANTZ et al. (2012)	Belgien	325	0,623	0,600	0,038	n.b.
Vorliegende Studie	Deutschland	521	0,757	0,663	-0,177	0,199

2.4 Landschaftszerschneidung und Barrieren

2.4.1 Begriffsbestimmung - "Landscape genetics"

"Landscape genetics" definiert sich als Kombination aus Landschaftsökologie und Populationsgenetik. Genauer gesagt werden Interaktionen zwischen Landschaftsstrukturen und mikroevolutionären Prozessen, wie Genfluss, Gendrift und Selektion untersucht (MANEL et al., 2003). Demnach liegt bei "Landscape genetics" das Hauptaugenmerk auf dem Entdecken von genetischen Ungleichmäßigkeiten und der Korrelation dieser Ungleichmäßigkeiten mit Landschaftsmerkmalen, wie etwaiger Barrieren.

2.4.2 Begriffsbestimmungen – Barriere und Habitatzerschneidung

In der Literatur findet sich keine eindeutige Definition der "Barriere. Nach GRAU (1998) bewirkt eine künstliche Zerschneidung der Landschaft durch linienhafte, anthropogene Elemente Barriereeffekte. GEORGII et al. (2002) unterscheiden zwischen einem Hindernis und einer Barriere. Ein Hindernis bewirkt eine Erhöhung des Raumwiderstandes, bleibt dabei überwindbar. Dagegen zeigt sich eine Barriere aber als unüberwindbar. Eine Unüberwindbarkeit wird aber als in der Praxis kaum nachweisbar angesehen (HOHMANN, 2003). In der vorliegenden Arbeit wird die weniger absolute Definition nach ANDREWS (1990) verwendet. Barrieren werden als eine Hindernisform verstanden, die die Bewegung und Raumnutzung von Organismen einschränken, ohne dabei jedoch unüberwindlich zu sein. Zerschneidung, Isolation bzw. Fragmentierung von Lebensräumen definiert GREGORII (2001) als "Zerstückelung in kleine, oftmals voneinander isolierte Flächen durch jedwede – auch natürliche Grenzlinien". Um Fragmentierung wissenschaftlich zu erfassen, kommen den Begriffen Distanz und Trennung besondere Bedeutung zu. Nach BLAB (1992) setzt sich die Distanz aus der echten, metrischen Entfernung und dem Wirkungsgrad der dazwischenliegenden Barriere zusammen. Die Distanz kann demnach sehr groß sein, wenn die beiden nur wenige Meter entfernten Habitate durch eine absolut dichte Barriere (z. B. durch eine hermetisch abgezäunte Straße) voneinander getrennt sind. Die Einschätzung der Wirkung einer Barriere hängt entscheidend von den artspezifischen Lebensraumansprüchen und Verhaltensweisen ab. Abbildung 8 zeigt die Auswirkungen einer Barriere. Dabei spielen Habitatpräferenzen, tägliche und saisonale Aktionsradien und Wanderwege sowie Sozial- und Fluchtverhalten eine wichtige Rolle (OGGIER et al 2001). Das dichte Verkehrsnetz und im Besonderen der Verkehrsträger Straße wird derzeit als wichtigster landschaftsökologischer Zerschneidungsfaktor angesehen; ihm wird eine ausgeprägte Barrierewirkung zugeschrieben (FORMAN & ALEXANDER 1998, JOB 2000, KRÜGER 2001, OGGIER et al., 2001).

Abbildung 8:Überblick über die Einflüsse großer Straßen und ihre ökologischen
(mittlere Spalte) und genetischen (linke Spalte) Konsequenzen auf
(modifiziert nach: BALKENHOL & WAITS, 2009)

Die Barrierewirkung an Straßen hängt stark vom Verkehrsaufkommen ab. Für große Säuger schlagen MÜLLER & BERTHOUD (1994) die in Tabelle 4 dargestellte Einteilung vor. Als weitere Kategorie hinzuzufügen sind die trassenparallel bezäunten Straßen. Eine eingezäunte Straße hat für Schalenwild die höchste Barrierewirkung, weil je nach Instandhaltung und Höhe des Zauns eine Querung nahezu ausgeschlossen ist (RECK & KAULE, 1993).

Straßen bedecken einen erheblichen Teil der Landesfläche, ihr Einfluss auf das Land ist jedoch noch wesentlich höher (BALKENHOL & WAITS, 2009). Zum Beispiel ist in den USA rund 1 % des Landes von Straßen bedeckt, allerdings sind 20 % des Landes von ihren Effekten betroffen. In kleineren hochentwickelten Ländern liegt der Anteil 2,4 bis 5 mal höher als in den USA (FORMAN et al., 2003). JAEGER et al. (2007) zeigten, dass in Baden Württemberg nur 2 % der Landschaft größere Fragmente als 100 km² darstellen.

In der vorliegenden Arbeit wurden neben Straßen außerdem Bahntrassen, Kanäle und Flüsse auf ihre Barrierewirkung überprüft. Bahntrassen und Kanäle stellen als Teil der Infrastruktur einen omnipräsenten Teil der Landschaft dar. Flüsse wurden zum Vergleich mit Kanälen herangezogen.

Kategorie	Nutzungsintensität	Auswirkungen
A	Geringes Verkehrsaufkommen (<1000 Fahrzeuge/Tag)	Höchste Unfallrate bei allen Wildtieren; Anzahl der Unfälle proportional dem Verkehrsaufkommen
В	Mittleres Verkehrsaufkommen (1000 – 5000 Fahrzeuge/Tag)	Tiere beginnen Querungen zu meiden; Anzahl der Unfälle nicht mehr proportional zum Verkehrsaufkommen
С	Starkes Verkehrsaufkommen (5000 – 10000 Fahrzeuge/Tag)	Tiere zeigen starke Angstreaktionen und vermeiden in der Regel die Straßenquerungen
D	Sehr starkes Verkehrsaufkommen (>10000 Fahrzeuge/Tag)	Nahezu völlige Barrierewirkung. In der Regel versuchen nur Tiere in Panik die Straße zu queren.

2.4.3 "Landscape Genetics" und Untersuchungen zur Barrierewirkung auf Wild

WANG & SCHREIBER (2001) untersuchten 492 Rehe (*Capreolus capreolus*) aus Mitteleuropa (Deutschland, Niederlande und Frankreich) mittels neun Mikrosatelliten um Einflüsse von Habitatfragmentierung und der sozialen Struktur auf die genetischen Verhältnisse der Populationen ermitteln zu können. Diese Studie zeigte eine genetisch homogene Struktur innerhalb der Gesamtpopulation. Allerdings fiel eine Streuung der Allelfrequenzen auf. Die Alleldiversität lag insgesamt höher als bei anderen Cervidenarten. WANG & SCHREIBER bezogen sich dabei auf PEMBERTON & SLATE, 1998 und MARSHALL et al., 1998. "Isolation-by-distance" wurde nicht beobachtet. Außerdem fanden sich keine Anzeichen, dass mehr als eine Subspezies in Zentraleuropa heimisch ist. Die insbesonders aus Deutschland berichteten Umsiedlungen von Rehen, die nur in wenigen Fällen gelang, führte nicht zu einer genetischen Umstrukturierung. Die Population scheint zu groß (rund 1 Million Jahresstrecke), um durch wenige Umsiedlungen einen Effekt erreichen zu können.

Habitatfragmentierung, speziell durch stark urbanisierte Räume, zeigte sich in einer hoch signifikant größeren genetischen Distanz zu angrenzenden Populationen. Dies äußerte sich besonders stark bei einer Population in einem Stadtpark Bremens durch eine um 44,3 % beziehungsweise 39,4 % reduzierte Alleldiversität, beziehungsweise erwartete Heterozygosität. Die dokumentierten Effekte der Habitatfragmentierung führten nach WANG & SCHNEIDER (2001) nicht automatisch zu einer höheren Inzuchtrate. Es wurde vermutet, dass Gründereffekte zu einigen wenigen genetischen Linien führten.

KUEHN et al. (2007) unterzogen 222 Rehe einer Mikrosatellitenanaylse mit 12 polymorphen Mikrosatelliten. Die Tiere entstammten 11 Revieren, die entweder östlich oder westlich einer bezäunten Autobahn in der Zentralschweiz gelegen waren. Um die Populationsstruktur zu ermitteln, wurden die F-Statistiken, der Mantel-Test und der Monmonier-Algorithmus verwendet. KUEHN et al. (2007) leiteten aus den Ergebnissen zwei Hauptaussagen ab. Die Autobahn war eine Barriere für den Genfluss zwischen den Populationen, was zu Populationsdifferentiation führte. Allerdings führten der mangelnde Genfluss und die Habitatfragmentierung nicht zu einem Verlust der genetischen Variabilität innerhalb der einzelnen Populationen.

Den Effekt von der Fragmentierung der Wälder und Veränderung der landwirtschaftlichen Praktiken auf den Zusammenhang der Landschaft und die Ausbreitung der Rehe untersuchten COULON et al., 2004. In einem Untersuchungsgebiet von 55 x 40 km wurde von 648 Individuen mit zwölf Mikrosatelliten genotypisiert. Die genetische Distanz zwischen jedem Individualpaar wurde ermittelt und eine Korrelation zur geographischen Distanz mittels Mantel-Test berechnet. Dabei wurden zwei verschiedene geographische Distanzen verwendet, zum einen die Distanz nach Euklid (direkter Weg) und "the least cost distance" (die Trajektorie, die in möglichst einen bewaldeten Korridor verläuft). Für weibliche Tiere bestand keine Korrelation bei der Distanz nach Euklid, dafür fand sich eine signifkante Korrelation bei "the least cost distance". Bei den männlichen Tieren ergab sich in beiden Fällen eine höhere, allerdings nicht signifikante, Korrelation. Daraus schlossen Coulon et al. (2004), dass die Verbreitung des Rehwildes im fragmentierten Waldgebiet streng an bewaldete Gebiete gekoppelt ist und so auch der Genfluss von dem Zusammenhang der Landschaft abhängt.

In einer Folgestudie (COULON et al., 2006) überprüften die Autoren die genetische Struktur der Rehwildpopulation im obengenannten Gebiet in Südfrankreich anhand von 1148 Individuen. Außerdem sollte die Durchlässigkeit des Gebiets überprüft werden, da einige vermeintliche Barrieren bekannt waren, eine Autobahn und einige Flüsse und Kanäle. Dazu wurde ein Set von zwölf Mikrosatelliten verwendet. In Folgendem wurde, um die Auswirkungen bestimmter landschaftlicher Begebenheiten auf die genetische Struktur ermitteln zu können, ein statistisches Model namens GENELAND verwendet. Es konnte keine absoluten Barrieren gefunden werden. Allerdings konnte eine Kombination mehrerer "Barrieren" zu einer geringeren Durchlässigkeit der Landschaft führen und so eine Populationsdifferentiation bewirken. Die Annahme aus der vorangegangenen Studie, dass landschaftliche Strukturen einen erheblichen Einfluss auf die genetischen Verhältnisse und Entwicklungen einer Population haben, wurde als bestätigt angesehen.

Die schottische Population der Rothirsche (*Cervus elaphus*) untersuchten PEREZ-ESPONA et al. (2008) auf mögliche Effekte unterschiedlichster natürlicher und anthropogener Landschaftsbestandteile auf den Genfluss. Die 695 Tiere stammten aus einem 115 x 87 km großen Gebiet. Es wurde ein Set von 21 Mikrosatelliten verwendet. Neben F-Statistiken wurden Berechnungen mit dem Programm STRUCTURE 2.3.3 (PRITCHARD et al., 2000) durchgeführt. die erwartete beziehungsweise die beobachtete Heterozygosität lag bei 0,804 bzw. 0,763. Die F-Statistik ergaben F_{st} =0,019. Die größte Differentiation fand sich zwischen Tieren, die auf unterschiedlichen Seiten der Hauptbarriere "the Great Glen" (einem Meeresarm) lebten. Ein ähnliches Bild ergab die Structure-Analyse. Das Programm konnte die Population in vier Subpopulationen unterteilen. Eine Subpopulation war vermehrt am östlichen Ufer des Meeresarms beheimatet, während die drei anderen Subpopulationen am westlichen Ufer zu finden waren. Bergübergänge, Straßen und Wälder zeigten sich als weitere (weniger starke) Barrieren für den Genfluss. Während Seen und Flüsse den Genfluss zu erleichtern schienen.

2.4.4 Barrieren beim Wildschwein

FRANTZ et al. (2012) untersuchten den Einfluss linearer Strukturen auf die genetischen Verhältnisse der Rothirsch- bzw. der Wildschweinpopulation anhand von 876 Hirschen bzw. 325 Wildschweinen, dies und jenseits einer Autobahn in Südbelgien. Die Hirsche wurden mittels 13 Mikrosatellitenloci und die Wildschweine mit 14 Mikrosatellitenloci genotypisiert. Die erwartetete Heterozygosität (H_e) betrug beim Rotwild 0,70 und 0,62 beim Wildschwein, die beobachtete Heterozygosität (H_o) lag bei 0,68 bzw. 0,60. Bei beiden Tierarten wurde ein signifikanter, positiver F_{is}-Wert ermittelt (Rotwild: F_{is}=0,033±0,010; p<0,0001 Wildschwein: F_{is} =0,038±0,012; P<0,0001). Sowohl bei Analysen mit GENELAND als auch mit STRUCTURE 2.3.3 (PRITCHARD et al., 2000) ergaben sich eine wahrscheinlichste Anzahl von Subpopulationen, bei der Rothirschpopulation von zwei und im Falle der Wildschweine von einer Subpopulation. Eine "isolation-by-distance"-Berechnung zeigte, dass die Autobahn für Rotwild eine Barriere darstellt, für Wildschweine hingegen nicht.

3 Material und Methoden

3.1 Untersuchungsmaterial

Es lagen DNA-Isolate von 521 Wildschweinen aus Deutschland vor, die aus Gewebeproben von Milz, Tonsillen, Lymphknoten, Ileocaecalklappe oder Lunge im Rahmen früherer Studien der Klinik für Schweine der JLU Gießen gewonnen wurden.

Das Untersuchungsgebiet erstreckte sich über das gesamte Bundesgebiet. In Abbildung 9 sind die Lokalisationen der untersuchten Reviere in einer Übersichtskarte Deutschlands dargestellt. Das oben beschriebene Untersuchungsgebiet entspricht weitgehend dem Verbreitungsgebiet der Wildschweine in Deutschland. Die Proben stammen alle aus wildschweinreichen Regionen. Die Verbreitung der Wildschweine in Deutschland ist in Abbildung 2 (Abschnitt 2.1.1) dargestellt.

Die Proben wurden in den Jahren 2004, 2005, 2006 und 2008 jeweils im Herbst auf Treibund Drückjagden entnommen. Die genaue Herkunft, die Anzahl der untersuchten Tiere, und das Datum der Probenentnahme sind in Tabelle 5 erläutert.

Ziel der Arbeit war es, die untersuchten Subpopulationen miteinander zu vergleichen. Die untersuchte Stichprobe ist allerdings aufgrund der verfügbaren Reviere nicht als representativ für die Bundesländer anzusehen.

Zur Identifizierung der einzelnen Tiere mit gleichzeitiger Möglichkeit der geographischen Zuordnung wurde folgendes System entwickelt: Jedes untersuchte Revier erhielt ein Revierkürzel (siehe Tab. 5), diesem Kürzel wurde die laufende Nummer des Tieres innerhalb des Reviers angehängt. So ist zum Beispiel Tier NW63, das dritte Tier aus Revier NW6 (Nordrhein-Westfalen, Wahner Heide).

Abbildung 9: Übersicht über das Untersuchungsgebiet mit Angabe der Reviernummern (Quelle der Umrisskarte: Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, 2010)

Tabelle 5:	Revierinformationen	(Nr.:	Nummer	des	Reviers;	Tiernr.	lfd.:
	Tiernummer laufend;	Anz.: A	Anzahl der	unter	suchten Ti	ere)	

		Tiorpr			Datum der	
Nr.	Kürzel	lfd	Bundesland	Ort	Anz.	Proben-
		nu				entnahme
1	BW1	1-2	Baden-Württemberg	Kirchheim	2	11.12.2004
2	BW2	3-20	Baden-Württemberg	Rastatt	18	17.12.2004
3	BW3	21-28	Baden-Württemberg	Göppingen	8	25.11.2005
4	BY1	29-33	Bayern	Bayreuth	5	09.10.2004
5	BY2	34-40	Bayern	Kelheim	7	04.12.2004
6	BY3	41-54	Bayern	Rothenbuch	14	19.11.2005
7	SL1	55-72	Saarland	Nauhaus	18	19.11.2004
/	SL2	73-83	Saariand	Incultaus	11	11.11.2005
8	SL3	84-91	Saarland	Weitten/Mettlach	8	17.10.2008
9	RP1	92-99	Rheinland-Pfalz	Hinterweidenthal	8	06.10.2008
10	RP2	100-108	Rheinland-Pfalz	Trier	9	15.11.2004
11	RP3	109-118	Rheinland-Pfalz	Baumholder	10	07.11.2004
12	RP4	119-125	Rheinland-Pfalz	Simmern	7	15.10.2008
13	RP5	126-137	Rheinland-Pfalz	Wimbach	12	31.10.2008
14	HE1	138-148	Hessen	Wettenberg	11	30.10.2004
15	HE2	149-152	Hessen	Witzenbach	4	06.12.2004
16	HE3	153-165	Hessen	Wetzlar	13	05.11.2005
17	HE4	166-183	Hessen	Wanfried	18	13.11.2008
18	TH1	184-189	Thüringen	Heldburg	6	27.11.2004
19	TH2	190-209	Thüringen	Marksuhl	20	30.11.2004
20	SN1	210-219	Sachsen	Flöha	10	13.11.2004
21	SN2	220-230	Sachsen	Colditz	11	03.12.2005
22	NW1	231-244	Nordrhein-Westfalen	Arnsberg	14	03.12.2004
23	NW2	245-251	Nordrhein-Westfalen	Lattenberg	7	29.10.2005
24	NW3	252-254	Nordrhain Wastfalan	Staasa y Calla	3	12.11.2005
24	NW4	255-259		Siesse u. Calle	5	02.12.2005
25	NW5	260-293	Nordrhein-Westfalen	Buschhoven	34	17.11.2008
26	NW6	294-299	Nordrhein-Westfalen	Wahner Heide	7	18.11.2008

Fortsetzung Tabelle 5:

Revierinformationen (Nr.: Nummer des Reviers; Tiernr. lfd.: Tiernummer laufend; Anz.: Anzahl der untersuchten Tiere)

		Tioner				Datum der
Nr.	Kürzel	Tiernr.	Bundesland	Ort	Anz.	Proben-
		nu.				entnahme
27	ST1	300-307	Sachsen-Anhalt	Burgstall	7	22.10.2004
28	ST2	308-327	Sachsen-Anhalt	Zipsdorf	20	05.11.2005
29	ST3	328-335	Sachsen-Anhalt	Altmark	8	08.12.2006
20	NI1	336-353	Niederseeheen	Cährda	18	11.11.2004
30	NI2	354-364	Medersachsen	Gonrae	11	17.12.2004
31	NI3	365-376	Niedersachsen	Nienburg	12	04.12.2006
32	NI4	377-383	Niedersachsen	Munster/Oerrel	7	06.11.2008
33	NI5	384-401	Niedersachsen	Lehre	18	20.11.2008
34	BB1	402-414	Brandenburg	Pechteich	13	05.11.2004
35	BB2	415-422	Brandenburg	Fürstenwalde	8	22.10.2005
36	BB3	423-425	Brandenburg	Eichhorst	3	17.11.2006
37	BB4	426-435	Brandenburg	Reichskreuz	10	22.11.2008
20	BE1	436-439	Deulin	C	4	03.11.2004
38	BE2	440-448	Berlin	Grunewald	9	14.12.2006
20	MV1	449-455	Mecklenburg-	California da	7	26.11.2004
39	MV4	456-470	Vorpommern	Schlemmin	7	15.12.2006
40	MV2	171 175	Mecklenburg-	Drianart	15	10 11 2005
40	IVI V Z	4/1-4/3	Vorpommern	Fliepen	15	19.11.2005
41	MV2	176 182	Mecklenburg-	Sobildfold	5	18 11 2006
41	101 0 3	470-462	Vorpommern	Scillateia	5	16.11.2000
40	SH1	483-490	Sableania Heletein	Tritton	8	24.11.2004
42	SH2	491-500	Schleswig-Holstein	Inuau	10	23.11.2005
43	SH3	501-511	Schleswig-Holstein	Locksted	11	25.11.2006
44	SH4	512-521	Schleswig-Holstein	Ahrensbök	10	14.11.2008

3.2 Geräte und Labormaterial

3.2.1 Geräte

DNA-Sequenzierautomat:	LI-COR DNA-Analyser 4200, LI-COR Biosciences					
	GmbH, Bad Homburg					
Thermocycler:	T-Gradient, analytik Jena Biometra, Göttingen					
Photometer:	Ultrospec 1100pro, GE Healthcare Europe GmbH,					
	Freiburg					
Zentrifugen:	Heraeus Biofuge fresco, Kendro Laboratory Products					
	GmbH, Hanau					
Micro Zentrifuge	SD 220 Vac, Roth, Karlsruhe					
Pipetten:	Biohit GmbH, Rosbach v. d. Höhe und Roth, Karlsruhe					
Wasserbad:	Memmert WB14, Firma Memmert, Schwabach					
pH-Meter:	Hanna HI 991000, MAGV GmbH, Rabenau					
Magnetrührer beheizbar:	Variomag Monotherm, H+P Labortechnil					
	Oberschleißheim					

3.2.2 Chemikalien

- Acrylamidlösung, (LongRanger Gel Solution, Cambrex Bio Science, Rockland, USA)
- Ammoniumperoxodisulfat APS, Roth, Karlsruhe
- Borsäure, Roth, Karlsruhe
- Ethylendiamintetraessigsäure (EDTA), Roth, Karlsruhe
- Ethanol 99,8 %, Roth, Karlsruhe
- Formamid deionisiert, Roth, Karlsruhe
- Fuchsin, AppliChem GmbH, Darmstadt
- Harnstoff, Roth, Karlsruhe
- Isopropanol, Roth, Karlsruhe
- Mulitplex PCR Mastermix, Qiagen, Hilden
- Micro-90 cleaning solution, Sigma-Aldrich, Taufkirchen

- Kochsalzlösung (NaCl), Roth, Karlsruhe
- pBluescript II KS + (Vektor-DNA), Stratagene, Heidelberg
- Primer, Metabion GmbH, München und Biomers.net GmbH, Ulm
- Qiagen Multiplex PCR-Kit, Qiagen GmbH, Hilden
- Tetramethylethylendiamin (TEMED) p.a., Roth, Karlsruhe
- Tris Base, Roth, Karlsruhe

3.2.3 Lösungen und Puffer

10x TE-Puffer pH 8,0 100 mM Tris Base

10 mM EDTA

10x TBE-Puffer pH 8,3

890 mM Tris 890 mM Borsäure 20 mM EDTA

Auftragspuffer Stammlösung

12,5 ml Formamid0,5 ml EDTA 0,5M, pH 8,36 mg/ml FuchsinDie Stammlösung des Auftragspuffers wurde immer 1:32 mit 10x TBE verdünnt.

Polyacrylamidlösung (6%ig)

8,4 g Harnstoff2,4 ml Long Ranger Gel Solution2,4 ml 10xTBE Puffer9,3 ml Aqua bidest.

3.3 Auswahl der Primer und Mikrosatellitenloci

Ein Hauptkriterium bei der Auswahl der Mikrosatellitenloci war deren Informativität. Bei der Suche nach geeigneten Mikrosatelliten definierte sich die Informativität aufgrund der zu erwartenden Anzahl unterschiedlicher Allele.

Die Vorauswahl der Mikrosatelliten beruhte auf Recherchen in der Datenbank NCBI – UniSTS und in diversen Literaturstellen, in denen ähnliche Vorgehensweisen beschrieben werden. Dabei wurde im Besonderen auf die zu erwartende Produktlänge geachtet, die zwischen einzelnen PCR-Systemen möglichst unterschiedlich sein sollte, um Multiplexsysteme etablieren zu können.

Mit den vorausgewählten Mikrosatelliten wurde mit vier Testtieren eine PCR durchgeführt. Die Testtiere stammten aus zwei Revieren, die geographisch nicht in direkter Nachbarschaft lagen (Revier 4: Bayreuth und Revier 7: Neuhaus), um lokale Muster zu berücksichtigen, aber auch um diese auszuschließen. Als Annealingtemperatur wurde die in der Datenbank NCBI – UniSTS angegebene Temperatur gewählt (Tab. 6). Die genaue Zusammensetzung des PCR-Ansatzes für diese Tests ist Tabelle 7 zu entnehmen. Die PCR-Bedingungen finden sich in Tabelle 8.

Die PCR-Produkte wurden anschließend im Sequenzierautomaten aufgetrennt und ausgewertet. Zeigte ein Mikrosatellit bei diesen Tests drei oder mehr Allele, galt dieser als informativ und gelangte in die engere Wahl für die Erstellung der Multiplexsysteme.

Tabelle 6:Vorauswahl der auf Informativität getesteten Mikrosatelliten und
deren Primersequenz $(5' \rightarrow 3';$ oben: forward Primer; unten: reverse
Primer); SSC (Chromosomennummer); AT (Annealingtemperatur
nach NCBI-UniSTS); PL (zu erwartende Produktlänge in Bp); Na
(Anzahl der Allele)

Primer	Sequenz	SSC	AT	PL	NA	Referenz
SW951	TTTCACAACTCTGGCACCAG	10	58	121-136	13	Delgado et al. 2008
51751	GATCGTGCCCAAATGGAC	10	50	121 150	15	Deigado et al., 2000
S0228	GGCATAGGCTGGCAGCAACA	6	62	221-241	6	Dalanda at al. 2008
50220	AGCCCACCTCATCTTATCTACACT		02	221 241	0	Deigado et al., 2000
S0101	GAATGCAAAGAGTTCAGTGTAGG	7	58	196-222	13	Delgado et al. 2008
50101	GTCTCCCTCACACTTACCGCAG	,	50	170 222	15	Deigudo et ul., 2000
50008	GAGGCAGTGTGTTCTATTCA	1	58	177-191	15	Ferreira et al 2008
50000	GCCATGTGTAAAGTGTTGCT		50	1,, 1,1	10	1 on on a ct an, 2000
S0036	AGTGACGTGAGGGTCTGCTCCTC	2	58	114-130	8	Alexander et al.,
50020	ATGGACGGTGGATTCACAGCC		00	114 150	0	1996
SW2093	ATGCACCTGCTCAGAGGC	9	62	104-142	15	Alexander et al.,
5112070	GTCTGTTGAGGCCATGGG					1996
SW2001	TTATCAATCCACCTGCTCCC	7	58	133-139	4	Alexander et al.,
5112001	ATAGGCAACATGCGAGCC		00	100 109	•	1996
\$0389	TTTTGATACCTTGTTCTTCG	11 55	55	125-135	5	Riquet et al., 1995
	TTAGGCTCATGCTTCTGG					
SW1879	AGACACATGCACATGTGTTTTAC	2	55	184-198	11	Alexander et al., 1996
2017	AGCATTTGTTTCTGGTTACTTTTAG					
SW2512	TCTGTCCATCCCTCCATCTC	1	50	117-123	3	Alexander et al., 1996
	AGAAAGTGAAAATTGAGCTGGG					
S0359	CAACTTCTGGCTGCAGAGC	17	58	253-283	8	Robic et al., 1997
	CTAGTCTGGGAGCTTCCATG				Ũ	
SW1376	TGATTTACAATGTTGGGTCG	6	55	113-131	5	Alexander et al.,
	GATCATGTGAGAAAAAAGAATG				_	1996
SW317	GGGATGCTAAAGTTGGAGGG	4	62	154-168	5	Rohrer et al., 1994
	TTAGTGTCCTGGGCAAGGAG				-	
SW1435	CAGGAACTTTCACATGCTGC	9	62	175-185	6	Alexander et al.,
	GTGTTGAGGGCTCTTCCTTG			1.0 100		1996
SW1414	TTTCATTCTTTTTTAATGGCTGG	14	60	175-187	7	Alexander et al.,
S VV 1414	AGACACCCCAAAGTTCATAGC	14	00	1/5-10/	/	1996

Fortsetzung Tabelle 6:

Vorauswahl der auf Informativität getesteten Mikrosatelliten und deren Primersequenz $(5' \rightarrow 3';$ oben: forward Primer; unten: reverse Primer); SSC (Chromosomennummer); AT (Annealingtemperatur nach NCBI-UniSTS); PL (zu erwartende Produktlänge in Bp); N_A (Anzahl der Allele)

Primer	Sequenz	SSC	AT	PL	Na	Referenz
S0070	GGCCGAGCATTTCATTCACAG	10	62	261-293	13	Fredholm et al.,
	GAGCAAACAGCATCGTGAGC	10	02	201 275	15	1993
S0218	GTGTAGGCTGGCGGTTGT	X/Y	62	166-196	5	Delgado et al., 2008
	CCCTGAAACCTAAAGCAAAG					
SW240	AGAAATTAGTGCCTCAAATTGG	2	58	93-114	22	Delgado et al., 2008
	AAACCATTAAGTCCCTAGCAAA					
S0005	TCCTTCCCTCCTGGTAACTA	5	60	203-243	11	Delgado et al., 2008
	GCACTTCCTGATTCTGGGTA					
SW1701	AGGTAACTCAGGTGTCAGATAGC	7	58	94-134	19	Ferreira et al., 2008
	TCTAGTTTAAAAAGCCTGAATGC					
S0120	GCCTAAGTAGAATTAAGCACAAGG	18	58	154-176	10	Alexander et al., 1996
	GTGCTCTCACTGCCTTCATATACC					
SW2052	ACTCACTGTTTCCGGAGGC	6	55	138-168	11	Alexander et al.,
	CCCCTGTGCATACATAGTTGC					1996
SW1378	ACCACACGTCTAATTGAAGAGC	13	60	92-103	5	Alexander et al.,
	TAAATCACAACTTTTGGGGGATG					1996
SW1979	TCCCCTTGCTGTATAGTGGG	13	55	139-175	9	Alexander et al., 1996
	ACTGGCTTTGTTTTACACATGG					
SW1984	TTTTTAGTGTCCAAGGAGGTCC	18	55	95-158	14	Alexander et al.,
	GGAGCACTAATAGACCACCACC					1996
SW1954	GATCGAACCCACACACAG	5	55	167-195	8	Alexander et al.,
	TCATTTGGAATAAAGGGATTTC					1996
SW1492	CAGACAATGCAAAAGCTTTCC	4	55	116-138	6	Alexander et al.,
	TAACCAGGATTTCAGTGGATTC					1996
SW288	AAAATAAAAAGCATGGCCTGC	14	60	103-133	5	Rohrer et al., 1994
	GGGAAAAAACATGTAATTGCC					
SW1103	TCTCTGGATGTGAGATGCTAGG	10	58	124-147	15	Alexander et al.,
	TGCAAGGGTTTCAGGAACTC					1996

getesteten **Fortsetzung Tabelle 6:** der auf Informativität Vorauswahl Mikrosatelliten und deren Primersequenz $(5' \rightarrow 3'; \text{ oben}:$ Primer; unten: reverse Primer); SSC forward (Chromosomennummer); AT (Annealingtemperatur nach NCBI-UniSTS); PL (zu erwartende Produktlänge in Bp); N_A (Anzahl der Allele)

Primer	Sequenz	SSC	AT	PL	Na	Referenz
SW2559	GCCAAGGAGATGAAGTATGTG TTGAATTTCAGGATGGACAGG	12	60	135-147	12	Alexander et al., 1996
SW1443	CAAAAGTTGGCCATGAATTG TTCTTCAGGAATCATTGTTACTTG	. 3	58	167-192	9	Alexander et al., 1996
SW1517	CAAATGATTTTATCCATCCTTGC TCTTAGTGATGCATTCTTAAGCTG	2	58	119-154	9	Alexander et al., 1996
SW491	TTTAAGCCACTGCACCAGG CAGGGAACTCCTCATAGTCCC	5	60	154-174	3	Rohrer et al., 1994

Tabelle 7: PCR-Ansatz zur Überprüfung der Informativität der Mikrosatelliten

Substanz	Menge in µl	Endkonzentration im PCR-Ansatz
2 x Multiplex Mastermix	5	1x
Primer (1,6 µM)	2,5	0,4 µM
DNA (100 ng/µl)	2,5	25 ng/µl
Gesamtvolumen	10	

	Temperatur	Dauer	Anzahl Zyklen
Initiale Denaturierung	95° C	15 min	
Denaturierung	95° C	30 sec	
Anlagerung der Primer	individuell nach An-	90 sec	30
	gaben in NCBI		50
Extension	72° C	30 sec	
Letzte Extension	72° C	10 min	
Abkühlung	4° C	8	

Tabelle 8:	PCR-Bedingungen	zur	Überprüfung	der	Informativität	der
	Mikrosatelliten					

Alle Primer wurden von der Firma Metabion synthetisiert und als Lyophilisat geliefert. Die Forward-Primer waren mit dem Farbstoff IRD-800 am 5'-Ende markiert. Die Primer wurden in 1x TE-Puffer gelöst und deren Konzentration photometrisch bestimmt. Aus diesen Originallösungen wurden zum Einsatz in die PCR Gebrauchslösungen mit einer Konzentration von 1,6 µM hergestellt.

3.4 Multiplex-PCR und Touchdown-Prinzip

Nach der Auswahl der Primer wurden zwei Multiplexsysteme mit je vier informativen Mikrosatelliten entwickelt. Dies erfolgte, um die Anzahl der durchzuführenden PCR-Reaktionen zu verringern. Dabei wurden speziell die zu erwarteten Produktlängen berücksichtigt um Überlagerungen von einzelnen Allelen zu vermeiden und später bei der Fragmentlängenanalyse eine klare Abgrenzung der Mikrosatelliten zu ermöglichen. Außerdem sollten die Annealingtemperaturen der einzelnen Primer möglichst ähnlich sein. Da sich in den einzelnen Multiplexsystemen Primer mit nicht exakt gleichen Annealingtemperaturen befanden, wurde das Touchdown-PCR-Prinzip gewählt, um unspezifische Produkte zu verhindern (NEWTON & GRAHAM, 1994). Die Bedingungen der Touchdown-PCR sind Tabelle 9 zu entnehmen.

Zusätzlich wurden alle PCR-Reaktionen mit einer Hot-Start-Polymerase durchgeführt, die schon beim Ansetzen der PCR die Bildung von unspezifischen Amplifikaten verhindert.

	Temperatur	Dauer	Anzahl Zyklen
Initiale Denaturierung	95° C	15 min	
Denaturierung	95° C	30 sec	
Anlagerung der Primer	65° C	90 sec	8
Extension	72° C	30 sec	
Denaturierung	95° C	30 sec	
Anlagerung der Primer	60° C	90 sec	8
Extension	72° C	30 sec	
Denaturierung	95° C	30 sec	
Anlagerung der Primer	55° C	90 sec	8
Extension	72° C	30 sec	
Letzte Extension	72° C	10 min	
Abkühlung	4° C	x	

Ausgehend von dem in Tabelle 10 aufgeführten Reaktionsansatz wurden die Multiplexsysteme optimiert. Die optimalen Bedingungen wurden anhand der Bandenintensitäten in der Polyacrylamidgelelektrophorese beurteilt. Hierbei wurde darauf geachtet, dass die Bandenintensitäten im Multiplexansatz für die einzelnen Mikrosatelliten annähernd gleich waren. Um dies zu erreichen, mussten die Konzentrationen der Mikrosatellitenprimer angepasst werden (Abschnitt 3.5.7; Tabelle 17 und 18).

Substanz	Volumen in µl	Endkonzentration im PCR-Ansatz	
2 x Multiplex Mastermix	5	1x	
Primermix (16 µM)			
Primer 1	0,25	0,4 µM	
Primer 2	0,25	0,4 μΜ	
Primer 3	0,25	0,4 µM	
Primer 4	0,25	0,4 µM	
Wasser	1,5	./.	
DNA (100 ng/µl)	2,5	2,5 ng/µl	
Gesamtvolumen	10		

Tabelle 10:
 Ausgangsreaktionsansatz zur Optimierung der Multiplexsysteme

3.5 Darstellung der Mikrosatelliten-DNA und Fragmentlängenanalyse

Die Darstellung der Mikrosatelliten-DNA erfolgte auf Polyacrylamidgelen im DNA-Sequenzierautomaten (Firma LI-COR), die anschließende Fragmentlängenanalyse mit dem Programm 1DScanEX.

3.5.1 Längenstandard

Die Fragmentlängen der PCR-Amplifikate wurden anhand eines selbst hergestellten Längenstandards ermittelt. Die Fragmentgrößen des Standards deckten den kompletten Bereich der Allelgrößen der Mikrosatelliten ab.

Grundlage zur Herstellung des Längenstandards war eine Vektor-DNA (pBluescript II KS+), welche mit den Primern MS (DY-781 markiert), MS71, MS141, MS180, MS225 und MS281 amplifiziert wurde (Tabelle 11). Dabei diente der markierte Primer MS als Vorwärtsprimer für alle anderen Primer. Die PCR-Fragmente hatten Größen von 71 Bp (MS/MS71), 141 Bp (MS/MS141), 180 Bp (MS/MS180), 225 Bp (MS/MS225) und 281 Bp (MS/MS281).

Der Reaktionsansatz für die Multiplex-PCR des Längenstandards und das PCR-Protokoll sind den Tabellen 12 und 13 zu entnehmen.

Primer	Sequenz $(5' \rightarrow 3')$
MS (forward)	GTG TAA AGC CTG GGG TGC
MS71 (reverse)	GGA AAG CGG GCA GTG AG
MS141 (reverse)	ATA CGC AAA CCG CCT CTC
MS180 (reverse)	CGC AGC GAG TCA GTG AGC
MS225 (reverse)	GCC TTT GAG TGA GCT GAT ACC
MS281 (reverse)	TTG CTC ACA TGT TCT TTC CTG

Tabelle 11:Primer zur Herstellung des Längenstandards

Tabelle 12: Reaktionsansatz zur Herstellung des Längenstandards

Substanz	Volumon in ul	Endkonzentration
Substanz	volumen m µ	im PCR-Ansatz
Qiagen Multiplex PCR Master Mix	12,5	1x
Primermix (Konz. 10 µM):		
forward Primer: MS (DY-781 markiert)	10	4 μΜ
reverse Primer: MS71 bzw. MS141 bzw.		
MS180 bzw. MS225 bzw. MS281		
DNA (10 ⁶ Moleküle/µl; pBluescript II KS)	2,5	10 ⁵ Moleküle/µl
Gesamtvolumen	25	

	Temperatur	Dauer
Initiale Denaturierung	95 °C	15 min
PCR-Zyklus (30 mal)		
Denaturierung	94 °C	30 sec
Anlagerung der Primer	58 °C	90 sec
Extension	72 °C	90 sec
Letzte Extension	72 °C	10 min
Abkühlung	4 °C	x

 Tabelle 13:
 PCR-Protokoll zur Herstellung des Längenstandards

3.5.2 Herstellung der Gele

Die Glasplatten (vordere und hintere Glasplatte), getrennt durch Spacer (Abstandshalter) mit einer Dicke von 0,2 mm, wurden in Klammern eingespannt und leicht schräg auf die Arbeitsplatte gelegt. Die vorbereitete Polyacrylamidlösung (6%ig) wurde nach Zugabe von 150 μ l 10%iges Ammoniumperoxodisulfat (APS) und 15 μ l TEMED unter leichtem Schwenken zwischen die Glasplatten pipettiert. Dabei war auf eine möglichst gleichmäßige, luftblasenfreie Verteilung der Lösung zu achten. Danach wurde die Apparatur waagerecht abgelegt und das Gel für 2 Stunden polymerisiert. Nach 30 min wurden die Kanten der Glasplatten mit feuchtem Zellstoff eingeschlagen, um das Gel vor Luftsauerstoff und Austrocknung zu schützen.

Nach dem Abschluss der Polymerisation wurde in die obere Kante des Gels ein 70-zähniger Haifischkamm eingesetzt, der im Gel Taschen bildet und das Einpipettieren der Proben ermöglicht. Das polymerisierte Gel wurde in den Sequenzierautomaten eingehängt und die beiden, am oberen bzw. unteren Rand des Gels befindlichen, Puffertanks bis zur Markierung mit 1x TBE-Puffer gefüllt.

3.5.3 Probenvorbereitung und Probenverarbeitung

Nach der PCR wurden die Amplifikate mit Auftragspuffer 1:12 verdünnt. Diese Verdünnung wurde in Vorversuchen mit unterschiedlichen Verdünnungsstufen (1:6, 1:12, 1:24, 1:32) als optimal zur Erreichung einer gleichmäßigen Bandenintensität ermittelt. Anschließend wurden die Proben und der Längenstandard für 3 min bei 92°C im Wasserbad denaturiert.

Danach wurden 0,25 µl des Längenstandards und der Proben in die Geltaschen pipettiert. Hierbei wurde am Anfang (Spur 1) und am Ende (Spur 64) und nach je 12 Proben ein Längenstandard gesetzt. Es konnten also auf einem Gel 60 Proben und 7 Längenstandards geladen werden. Jedes Gel wurde maximal dreimal verwendet.

3.5.4 Elektrophoresebedingungen

Über das zum Sequenzierautomaten gehörige Computerprogramm e-seq Release 2.0 wurden die Elektrophoresebedingungen eingegeben und der Vorlauf und der eigentliche Lauf gestartet. Der Vorlauf (Pre-Run) erfolgte vor dem Auftragen der Proben zur Konditionierung des Gels. Die Bedingungen des Pre-Runs sind in Tabelle 14 aufgeführt. Nach erfolgreichem Pre-Run wurden die Längenstandards und Proben nach oben genanntem Schema in die Geltaschen pipettiert und der eigentliche Lauf (Run) im Programm gestartet. Die Elektrophoresedauer betrug 90 Minuten.

	Pre-Run	Run
Stromspannung	1500 V	1500 V
Stromstärke	40 mA	40 mA
Leistung	40 W	40 W
Zeit	15 min	90 min
Temperatur	50 °C	50 °C

3.5.5 Auswertung der Fragmentlängenanalyse

Die mit dem Sequenzierautomaten gewonnenen Daten wurden von dem dazugehörigen Programm (LI-COR e-seq Release 2.0) gespeichert und standen dort zur Weiterverarbeitung zur Verfügung. Die Fragmentlängenanalyse erfolgte mit dem Programm 1DScanEx for Windows Version 3.0.1 (Scanalytics Inc., Fairfax NA, USA).

Etwaige Unterschiede bei der Bandenintensität wurden durch Veränderung des Kontrasts und der Helligkeit reguliert. Bei zu schwachen oder zu starken Banden wurde der Lauf mit angepassten Verdünnungen wiederholt.

Danach erfolgte die Markierung der einzelnen Probenspuren und des Längenstandards. Die Probenspuren wurden einzeln analysiert, wobei die Banden entsprechend ihrer Intensität durch Peaks dargestellt wurden. Exemplarisch zeigt Abbildung 11 einen Elektrophoreselauf mit Amplifikaten der Multiplex-PCR 1.

Die Peaks wurden auf Plausibilität überprüft und mögliche Stotterbanden entfernt. Die Berechnung der Fragmentlängen der einzelnen Allele erfolgte auf Grundlage des zuvor definierten Längenstandards (Abbildung 12).

Abbildung 10: Gelbild von PCR-Produkten aus der Multiplex-PCR 1, dargestellt mit 1DScanEX (S: Längenstandard; S0070, S0005, SW1979, SW1701: Primerpaare der Multiplex-PCR 1; rechts: Größen des Längenstandards in Basenpaaren).

Abbildung 11: Densitogramm von Spur 21 (Gel aus Abb. 10) dargestellt mit 1DScanEX (1, 2: SW1701; 3, 4: SW1979; 5, 6: S0005; 7, 8: S0070)

Abbildung 12: Darstellung des Längenstandards als Densitogramm mit 1DscanEX, vergleiche Abbildung 10 Spur S (1=71Bp; 2=141Bp; 3=180Bp; 4=225Bp; 5=281Bp)

3.5.6 Überprüfung der Fragmentlängen

Um die von 1DScanEX berechneten Fragmentlängen zu überprüfen bzw. um sicherzugehen, dass gleich lange Banden als ein Allel erkannt werden, wurde das vom Sequenzierautomaten ausgegebene Bild auf eine Powerpointfolie (MS Office) kopiert und die einzelnen Spuren nummeriert. Im Anschluss wurden mittels des Powerpointwerkzeugs "Kurve" Banden gleicher Länge des Standards miteinander verbunden. Das Werkzeug "Kurve" ermöglichte die Berücksichtigung einer etwaigen Gelkrümmung. Durch vertikales Verschieben der Kurve konnten so bei den Proben Banden gleicher Länge eindeutig zugeordnet werden. Die Vorgehensweise ist in Abbildung 13 dargestellt.

Abbildung 13: Darstellung der Überprüfung der Fragmentlängen mittels MS-Powerpoint. (Oben: Kurve auf Banden gleicher Länge des Standards fixieren; Mitte:Kurve vertikal auf zu überprüfende Bande verschieben; Unten: Ergebnis: Allellänge von Tier in Spur 5 und 9 ist gleich)

3.5.7 Informativität der Mikrosatelliten und Etablierung der Multiplex-PCR-Systeme

Beim Test auf Informativität der Mikrosatelliten zeigten folgende der vorausgewählten Mikrosatelliten (Abschnitt 3.3; Tabelle 6) drei bzw. mehr Allele und wurden als informativ eingestuft:

- SW1701 SW1984
- SW828 SW1954
- SW240 SW288
- S0228 S0359
- S0005 SW2559
- SW2052 S0070
- SW1979

Hieraus wurden acht Mikrosatelliten ausgewählt und zu zwei Multiplex-PCR-Systemen zusammengefasst (Tabelle 15 und 16).

Primer	Sequenz	SSC	AT	PL	Na	Referenz
SW1701	AGGTAACTCAGGTGTCAGATAGC TCTAGTTTAAAAAGCCTGAATGC	7	58	94-134	19	Ferreira et al., 2008
SW1979	TCCCCTTGCTGTATAGTGGG ACTGGCTTTGTTTACACATGG	13	55	139-175	9	Alexander et al., 1996
S0005	TCCTTCCCTCCTGGTAACTA GCACTTCCTGATTCTGGGTA	5	60	203-243	11	Delgado et al., 2008
S0070	GGCCGAGCATTTCATTCACAG GAGCAAACAGCATCGTGAGC	10	62	261-293	13	Fredholm et al., 1993

Primer	Sequenz	SSC	AT	PL	Na	Referenz
SW288	AAAATAAAAAGCATGGCCTGC GGGAAAAAACATGTAATTGCC	. 14	60	103-133	5	Rohrer et al., 1994
SW2052	ACTCACTGTTTCCGGAGGC CCCCTGTGCATACATAGTTGC	6	55	138-168	11	Alexander et al., 1996
S0228	GGCATAGGCTGGCAGCAACA AGCCCACCTCATCTTATCTACACT	6	62	221-241	6	Delgado et al., 2008
S0359	CAACTTCTGGCTGCAGAGC CTAGTCTGGGAGCTTCCATG	17	58	253-283	8	Robic et al., 1997

Tabelle 16:Mikrosatelliten im Multiplex-PCR-System 2

In Tabelle 17 und 18 sind die optimierten Reaktionsansätze für die beiden Multiplexsysteme aufgeführt.

Substanz	Menge in µl	Endkonzentration im PCR-Ansatz	
2 x Multiplex Mastermix	5,0	1x	
Primermix (16 µM)			
SW1701	0,3125	0,5 μΜ	
SW1979	0,0625	0,1 μΜ	
S0005	0,125	0,2 μΜ	
S0070	0,0625	0,1 μM	
Wasser	1,9375	./.	
DNA (100 ng/µl)	2,5	25 ng/µl	
Gesamtvolumen	10,0		

Substanz	Menge in µl	Endkonzentration im PCR-Ansatz	
2 x Multiplex Mastermix	5	1x	
Primermix (16 µM)			
SW288	0,25	0,4 µM	
SW2052	0,25	0,4 µM	
S0228	0,125	0,2 μΜ	
S0359	0,25	0,4 µM	
Wasser	1,625	./.	
DNA (100 ng/µl)	2,5	25 ng/µl	
Gesamtvolumen	10		

Tabelle 18:Reaktionsansatz für Multiplex-PCR 2

3.6 Statistische Auswertung

3.6.1 Überprüfung des Datensatzes mit Micro-Checker 2.2.3

Um Einflüsse von Nullallelen auszuschließen bzw. einzuschätzen, wurde der komplette Datensatz der Genotypen mittels Micro-Checker 2.2.3 (VAN OOSTERHOUT et al., 2004) überprüft.

3.6.2 Berechnungen mit GenAlEx 6.3 und Genepop on the web

Die Berechnungen zur Heterozygosität, des Hardy-Weinberg-Gleichgewichts und der F-Statistiken erfolgte unter Berücksichtigung der verschiedenen Komplexitätsebenen: ausgehend von einer Gesamtpopulation, die sich in Subpopulationen unterteilen lässt, bis hin zum einzelnen Individuum, welches Mitglied einer Subpopulation ist und somit auch der Gesamtpopulation angehört.

3.6.2.1 Allelfrequenzen und Heterozygosität

Allelfrequenzen bezeichnen die relativen Häufigkeiten bestimmter Allele innerhalb einer Population und werden für jeden Locus einzeln nach folgender Formel berechnet (HARTL & CLARK, 1997; HEDRIK, 2000; FRANKHAM et al., 2002; HARTL, 2000; CONNER & HARTL, 2004; FRANKHAM et al., 2004):

$$f = \frac{aH}{2N}$$

wobei

aH = absolute Häufigkeit eines Allels an einem Locus

N = Gesamtgröße der untersuchten Stichprobe

Weitere populationsgenetische Kenngrößen werden nach folgenden Formeln berechnet: **beobachtete Heterozygosität** (H_o) (HARTL & CLARK, 1997)

$$H_O = \frac{A}{N}$$

wobei

A = Anzahl der Heterozygoten

N = Gesamtzahl der untersuchten Stichprobe

erwartete Heterozygosität (He) (HARTL & CLARK, 1997)

$$H_e = 1 - \sum x_i^2$$

wobei

 x_i = Frequenz des iten Allels an einem Locus

Anzahl der effektiven Allele (N_e) (BROWN & WEIR, 1983)

$$N_e = \frac{1}{1 - H_e}$$

Shannons Informations-Index (I) (BROWN & WEIR, 1983)

$$I = -\sum x_i \, \log_2 x_i$$

wobei

 x_i = Frequenz des iten Allels an einem Locus

3.6.2.2 Hardy-Weinberg-Gleichgewicht

Das Hardy-Weinberg-Gleichgewicht berechnet sich nach folgender Formel:

$$(A+B)^2 = A^2 + 2AB + B^2$$

In diese Formel werden nun die Allelfrequenzen wie folgt eingesetzt:

$$f(A)^{2} + 2f(A)f(B) + f(B)^{2}$$

Um die zu erwartende Anzahl der einzelnen Genotypen zu berechnen, müssen die absoluten Werte mit der Anzahl der Tiere in der Stichprobe multipliziert werden.

Die Überprüfung von signifikanten Abweichungen vom Hardy-Weinberg-Gleichgewichterfolgt mit dem **Chi-Quadrat-Test** (HEDRIK, 2000):

$$\mathcal{X}^2 = \sum_{i=1}^k \frac{(O-E)^2}{E}$$

wobei

 $O_i = beobachtete Anzahl an Individuen des iten Genotyps$ $E_i = erwartete Anzahl an Individuen des iten Genotyps$ k = Kategorien der Merkmale

Zum Vergleich des errechneten mit dem tabellarischen Chi-Quadrat-Wert und damit zur Beurteilung des Signifikanzniveaus, wird die Anzahl der Freiheitsgrade benötigt, die folgendermaßen berechnet wird (HEDRIK, 2000):

$$DF = \frac{[N_a(N_a - 1)]}{2}$$

wobei

 $N_a = Anzahl der Allele am entsprechenden Locus$

Bei einer Wahrscheinlichkeit größer als P=0,05 bezogen auf die Chi-Quadratwerte (Freiheitsgrad) ist das Ergebnis nicht statistisch signifikant und die Nullhypothese H_0 (Population paart sich zufällig) wird angenommen. Bei Wahrscheinlichkeitswerten von 0 < P < 0,05 wird eine statistisch signifikante Abweichung von der Nullhypothese angenommen (Population unterliegt nicht zufälligen Paarungsprozessen).

Außer mit GenALEx 6.3 (PEAKALL & SMOUSE, 2006; PEAKALL & SMOUSE, 2012) wurde die Überprüfung des Hardy-Weinberg-Gleichgewichts mit Genepop on the web (http://genepop.curtin.edu.au/ Stand: 13.07.2012) (RAYMOND & ROUSSET, 1995; ROUSSET, 2008) durchgeführt. Dieses Online-Tool verwendet als statistische Methode den Fishers Exakt Test, der als zuverlässiger gilt als der oben beschriebene Chi-Quadrat-Test (RAYMOND & ROUSSET, 1995).

Hierbei wird der p-Wert mittels Markov-Chain-Methode ermittelt (GUO & THOMPSON, 1992) unter Vorgabe von 1000 Iterationen. Der Test wurde sowohl einzeln für jeden Locus, als auch lociübergreifend durchgeführt.

3.6.2.3 Linkage Disequilibrium

Mit dem Linkage Disequilibrium (LD; Kopplungsungleichgewicht) lässt sich überprüfen, ob innerhalb der Genotypkonstellationen der untersuchten Individuen bestimmte Allele verschiedener Loci häufiger als erwartet miteinander kombinieren. Dies würde auf ein Linkage Disequilibrium hinweisen. Ein LD kann aber auch auf eine Substrukturierung einer Population in Subpopulationen mit unterschiedlichen Allelfrequenzen hinweisen (WILSON & GOLDSTEIN, 2000; PRITCHARD & ROSENBERG, 1999). Die Berechnung und die Überprüfung, ob ein Linkage Disequilibrium vorliegt, wurde mit der webbasierten Version des Genepop-Programms (RAYMOND & ROUSSET, 1995; ROUSSET, 2008) durchgeführt.

3.6.2.4 F-Statistiken

Die drei F-Indizes nach WRIGHT (1965) wurden mit GenALEx 6.3 (PEAKALL & SMOUSE, 2006; PEAKALL & SMOUSE, 2012) berechnet und basierten auf folgenden Formeln:

Inzuchtkoeffizient (F_{is}):

$$F_{is} = \frac{H_s - H_i}{H_s}$$

Grad der Heterozygotenreduktion (F_{st}):

$$F_{st} = \frac{H_t - H_s}{H_t}$$

Gesamtinzuchtkoeffizient eines Individuums im Vergleich zur Gesamtpopulation (Fit):

$$F_{it} = \frac{H_t - H_i}{H_t}$$

3.6.2.5 Genfluss

Um den Genfluss zu quantifizieren, wurde hier die "Anzahl der Migranten pro Generation" gewählt; dieser Parameter berechnet sich nach folgender Formel (WRIGHT, 1951):

$$N_m = \left[\left(\frac{1}{F_{st}} - 1 \right) \right] / 4$$

wobei

 $N_m = Number of migrants (Anzahl der Migranten pro Generation)$ $F_{st} = \frac{H_t - H_s}{H_t}$

Diese Berechnungen wurden außerdem mit den Subpopulationen durchgeführt, die sich mit STRUCTURE 2.3.3 (PRITCHARD et al., 2000) errechneten (siehe Abschnitt 4.4).

3.6.2.6 Mantel-Test

Der Mantel-Test bietet die Möglichkeit, Korrelationen zwischen genetischer und geographischer Distanz aufzuzeigen. Die paarweisen geographischen und genetischen Distanzen werden als Matrizen eingegeben (MANTEL, 1967).

Für die genetische Distanz wurde die "Allele-Sharing-Distance" verwendet.

Die geographischen Distanzen wurden mit folgender Formel berechnet:

$$D = \sqrt{\sqrt{(xi - xj)^2 + (yi - yj)^2}}$$

wobei

xi bzw.xj = X - Koordinate der Probe i bzw.j yi bzw.yj = Y - Koordinate der Probe i bzw.j Die Güte der Korrelation zwischen genetischer (Matrix X) und geografischer Distanz (Matrix Y) spiegelt der Korrelationskoeffizient r $_{xy}$ wider. r $_{xy}$ kann Werte von -1 bis 1 annehmen. Als Nullhypothese wird angenommen, dass keine signifikante Beziehung zwischen geographischer und genetischer Distanz besteht. Demnach ist bei einer bestehenden Beziehung zwischen den beiden Datensätzen der Korrelationskoeffizient näher 1 oder näher - 1.

Der Korrelationskoeffizient wurde wie folgt berechnet:

$$r_{xy} = \frac{SP_{xy}}{\sqrt{\left[SS_x SS_y\right]}}$$

wobei

$$SSx = \sum_{i \neq j}^{N} (x_{ij} - \bar{x})^2$$
$$SSy = \sum_{i \neq j}^{N} (y_{ij} - \bar{y})^2$$
$$SPxy = \sum_{i \neq j}^{N} (x_{ij} - \bar{x})(y_{ij} - \bar{y})$$

x = Elemente der Matrix Xy = Elemente der Matrix Y

Die Berechnungen erfolgten mit dem Softwarepaket Alleles in space (MILLER, 2005).

3.6.3 Berechnungen mit BOTTLENECK 1.2.02

Um zu überprüfen, ob die Population einen genetischen Flaschenhals durchlaufen hat wurden drei verschiedene Verfahren angewendet.

Es kamen der "Standardized differences test" (CORNUET & LUIKART, 1996) und der Vorzeichenrangtest nach Wilcoxon (LUIKART et al., 1998) zum Einsatz. Außerdem wurde eine von LUIKART et al. (1998) vorgeschlagene, graphische Methode verwendet. Diese geht davon aus, dass in einer Population mit konstanter Größe eine große Anzahl seltener Allele vorkommt und dass speziell diese Allele bei Passage eines Flaschenhalses verloren gehen. Über ein Histogramm der relativen Anzahl an Allelen in den verschiedenen Frequenzklassen (häufige bis seltene Allele) kann so ein Defizit an seltenen Allelen visualisiert werden. Eine Population im Mutations-Drift-Gleichgewicht zeigt eine normale "Linkslastigkeit" im Diagramm. Es sind also viele Allele vorhanden, die alle eine ähnliche Allelfrequenz aufweisen, demnach recht niedrig sind und so in einem Diagramm "links" aufgetragen werden (siehe auch Abschnitt 4.2; Abb. 30).

Da die Anzahl der Allele und die Heterozygotie von Mutationsprozessen abhängt, wurden hier drei, für Mikrosatelliten realistisch erscheinende, Mutationsmodelle unterstellt. Zum einen das "stepwise mutation model" (SMM), das "infinite alleles model" (IAM) und das Zwei-Phasen-Mutationsmodel (TPM) (siehe auch Abschnitt 2.2.1.1). Entsprechend PIRY et al. (1999) wurden für das TPM 95 % Single-Step und 5 % Multi-Step Mutationen angenommen.

3.6.4 Neighbor-Joining

Um einen individuellen Verwandtschaftsbaum nach der Neighbor-Joining-Methode zu erstellen, wurde zuerst durch paarweisen Vergleich der Individuen eine Distanzmatrix ("Allele sharing distance") nach folgender Formel berechnet:

$$D_{ij} = \frac{1}{l} \sum_{k=1}^{l} d_{kij}$$

wobei

l = Anzahl der verwendeten Loci

 $d_{kij} = 0$

wenn Individuum i und Individuum j den gleichen Genoty an Locus k aufweisen $d_{kii} = 0.5$

wenn Individuum i und Individuum j ein gleiches und ein differentes Allel an einem Locus zeigen

 $d_{kii} = 1$

zeigen

Die so berechnete Distanzmatrix wurde als "input-file" in das Programm NEIGHBOR (Teil des PHYLIP-Paketes) (FELSENSTEIN, 1989) eingelesen. NEIGHBOR erzeugte aus der Distanzmatrix einen phylogenetischen Stammbaum und verwendete dafür einen von SAITOU & NEI (1987) entwickelten Algorithmus. Der Stammbaum wurde mit dem Programm TreeView (PAGE, 1996) grafisch dargestellt.

3.6.5 Berechnungen mit STRUCTURE 2.3.3

Das Programm STRUCTURE 2.3.3 (PRITCHARD et al., 2000; ANDERSON & THOMPSON, 2002) ermöglicht die Einteilung der untersuchten Individuen einer Gesamtpopulation in Subpopulationen – unabhängig von der geographischen Herkunft. Im vorliegenden Fall wurden 132500 MCMC – Wiederholungen durchgeführt, bei 100000 Burnin-periods (Verwerfen der ersten Berechnungen um Fehler zu vermeiden).

Die Berechnung wurde mit 2 bis 14 Subpopulationen (K) durchgeführt und für jedes K 2 mal wiederholt.

3.6.6 Berechnung des Einflusses von Hindernissen

Mittels Varianzanalyse (Programmpaket IBM-SPSS Version 19) wurden Einflüsse von künstlichen und natürlichen Hindernissen auf die Wanderung und damit auf die genetische Vielfalt der Wildschweine geschätzt. Für die Berechnung der genetischen Distanzwerte wurde jedes einzelne Revier als eine Population angesehen, die dann paarweise miteinander verglichen wurden. Dabei wurde der paarweise Vergleich der Reviere in einem Umkreis von bis zu 150 km durchgeführt. Als künstliche und natürliche Hindernisse wurden

Bundesautobahnen, Bahntrassen, Flüsse und Kanäle erfasst. Hierzu diente eine physische Reliefkarte nach Wenschow im Maßstab 1:500.000 (www.wenschow.de). Dabei wurden lediglich die großen Flüsse, wie Rhein, Main und Elbe berücksichtigt.

Um Unterschiede zwischen den Revieren im ehemaligen DDR-Gebiet und in Westdeutschland festzustellen, wurden die Reviere zusätzlich in Kategorien unterteilt:

- Kategorie 0: Reviere im ehemaligen DDR-Gebiet
- Kategorie 1: Reviere in Westdeutschland
- Kategorie 2: Reviere im gesamten Bundesgebiet

Als Distanzwerte zwischen Populationen wurden die Distanz nach Nei (1972), die unverzerrte Distanz nach Nei (1978), die Distanz nach Reynolds (1983) und die Distanz nach Cavalli-Sforza (1967) verwendet. Die Distanzwerte nach Reynolds und Cavalli-Sforza basieren auf der Annahme, dass genetische Veränderungen nur auf genetische Drift zurückzuführen sind, wohingegen der Distanzwert nach Nei sowohl Mutationen als auch genetische Drift berücksichtigt. Außerdem wurden als populationsgenetische Kenngrößen der F_{st}-(Fixationsindex) und N_m-Wert ("Number of migrants"; Anzahl Migranten) verwendet; sie beschreiben und quantifizieren den Genfluss. Während alle Distanzwerte und der F_{st}-Wert bei bestehendem Einfluss einer Barriere zunehmen, nimmt der N_m-Wert ab.

Die Distanzwerte, F_{st}-und N_m-Werte wurden nach den folgenden Formeln berechnet:

Distanz nach NEI (1972), berechnet mit GenAlEx 6.3 (PEAKALL & SMOUSE, 2006; PEAKALL & SMOUSE, 2012):

$$D = -ln\left(\frac{J_{xy}}{\sqrt{J_x J_y}}\right)$$

wobei

$$J_{xy} = \sum_{i=1}^{k} X_u Y_u$$

$$J_x = \sum_{i=1}^k X_u^2$$
$$J_y = \sum_{i=1}^k Y_u^2$$

 $X_u = ute Allelfrequenz$ eines Locus der ersten Population $Y_u = ute Allelfrequenz$ eines Locus der zweiten Population

Unverzerrte Distanz nach NEI (1978) berechnet mit GenAlEx 6.3 (PEAKALL & SMOUSE, 2006; PEAKALL & SMOUSE, 2012):

$$\widehat{D} = -ln\left(\frac{\widehat{f}_{xy}}{\sqrt{\widehat{f}_x\widehat{f}_y}}\right)$$

wobei

$$\hat{J}_{x} = der Durchschnitt von \quad \frac{(2n_{x}J_{x} - 1)}{(2n_{x} - 1)}$$
$$\hat{J}_{y} = der Durchschnitt von \quad \frac{(2n_{y}J_{y} - 1)}{(2n_{y} - 1)}$$
$$\hat{J}_{xy} = J_{xy}$$

 $X_u = ute Allelfrequenz$ eines Locus der ersten Population $Y_u = ute Allelfrequenz$ eines Locus der zweiten Population

1-

Distanz nach Reynolds (1983) berechnet mit PHYLIP 3.2 (FELSENSTEIN, 1989):

$$D = -\ln(1-\theta)$$

wobei

$$\theta = \sqrt{\frac{\sum_{l} \sum_{u} (X_u - Y_u)^2}{2\sum_{l} (1 - \sum_{u} X_u Y_u)}}$$

 $X_u = ute Allelfrequenz$ eines Locus der ersten Population $Y_u = ute Allelfrequenz$ eines Locus der zweiten Population Distanz nach Cavalli-Sforza (1967) berechnet mit PHYLIP 3.2 (FELSENSTEIN, 1989):

$$f_{\nu} = \sqrt{\frac{\sum_{l} \left(1 - \sum_{u} \sqrt{X_{u} Y_{u}}\right)}{\sum_{l} (a_{l} - 1)}}$$

wobei

 $X_u = ute Allelfrequenz$ eines Locus der ersten Population $Y_u = ute Allelfrequenz$ eines Locus der zweiten Population $a_l = Anzahl$ der Allele am lten Locus

 F_{st} berechnet mit GenAlEx 6.3 (PEAKALL & SMOUSE, 2006; PEAKALL & SMOUSE, 2012):

$$F_{st} = \frac{H_t - H_s}{H_t}$$

wobei

 $H_s = erwartete \; Heterozygosität \; in \; einer \; panmiktischen \; Subpopulation$ $H_t = erwartete \; Heterozygosität \; in \; einer \; Gesamt population$

N_m berechnet mit GenAlEx 6.3 (PEAKALL & SMOUSE, 2006; PEAKALL & SMOUSE, 2012):

$$N_m = \left[\left(\frac{1}{F_{ST}} - 1 \right) \right] / 4$$

wobei

 $N_m =$ Number of migrants (Anzahl der Migranten pro Generation) $F_{st} = \frac{H_t - H_s}{H_t}$ **Geographische Distanz**

$$D = \sqrt{(xi - xj)^2 + (yi - yj)^2}$$

wobei

xi bzw. yi = Koordinaten der iten Probe xj bzw. yj = Koordinaten der jten Probe

Die Koordinaten sind "GoogleEarth" (Google Inc. (2009). Google Earth Version 5.1.3533.1731; http://earth.google.com) entnommen und wurden von der dort angegebenen Grad-Minuten-Sekunden-Form mittels eines Online-Koordinatenumrechners (rechneronline.de/geo-koordinaten) in die von GenAlEx 6.3 (PEAKALL & SMOUSE, 2006; PEAKALL & SMOUSE, 2012) verwendete dezimale Form umgerechnet.

4 Ergebnisse

Die Ergebnisse der Fragmentlängenanalyse, und die sich daraus ergebenden Genotypen der einzelnen Wildschweine, sind im Anhang aufgeführt (Tab. A 1). Der gesamte Datensatz wurde mittels Micro-Checker 2.2.3 (VAN OOSTERHOUT et al., 2004) auf Nullallele überprüft. Es wurden keine Nullallele gefunden.

Mit den oben genannten Mikrosatelliten ließen sich 470 der 521 Tiere differenzieren. 51 Tiere waren 22 verschiedenen Genotypcluster zuzuordnen. 16 Cluster enthielten zwei, fünf Cluster drei und ein Cluster vier Tiere mit gleichem genetischem Muster. Die Genotypcluster traten stets innerhalb eines Revieres auf, bis auf ein Muster, dass Tiere aus Schleswig-Holstein und Thüringen vereinte.

4.1 Allelfrequenzen, Genotypfrequenzen, Hardy-Weinberg-Gleichgewicht und Berechnungen zur Heterozygosität

Im folgenden Kapitel werden Ergebnisse der Berechnungen der Allelfrequenzen, der Genotypfrequenzen, des Hardy-Weinberg-Gleichgewichts und dessen Überprüfung dargestellt. Eine detaillierte Darstellung der beobachteten bzw. erwarteten Genotypfrequenzen, die sich daraus ergebende Überprüfung des Hardy-Weinberg-Gleichgewichts für die einzelnen Mikrosatellitenloci, und die einzelnen Reviere sind im Anhang aufgeführt (Tab. A 2 bis A 11).

Alle in diesem Abschnitt aufgeführten Werte wurden mit Ausnahme des exakten Fisher-Tests mit GenAlEx 6.3 (PEAKALL & SMOUSE, 2006; PEAKALL & SMOUSE, 2012) berechnet.

4.1.1 Allelfrequenzen, Genotypfrequenzen und Hardy-Weinberg-Gleichgewicht

4.1.1.1 Mikrosatellit SW1701

Der Mikrosatellit SW1701 zeigte 16 Allele. In Abbildung 14 sind die Allelfrequenzen graphisch dargestellt. Da ein Genort je zwei Allele enthält, ergaben sich daraus theoretisch 135 Genotypen, 89 unterschiedliche Genotypen konnten nachgewiesen werden. Vier Allele (102, 118, 121 und 123) traten bei mehr als 10 % der Tiere auf, wobei Allel 102 mit 20,5 % am häufigsten auftrat. Drei Allele (112, 114 und 140) kamen bei weniger als 1 % der Tiere vor.

Abbildung 14: Darstellung der Allelfrequenzen am Locus SW1701 (x-Achse: Allele mit Fragmentlängenangabe in Bp; y-Achse: Allelfrequenz)

Die Überprüfung des Hardy-Weinberg-Gleichgewichts an Locus SW1701 mittels Chi-Quadrat-Test ergab, bezogen auf die Gesamtpopulation, eine hochsignifikante Abweichung. Der exakte Fisher-Test bestätigte dieses Ergebnis (ChiSq ∞ ; DF 16; p \leq 0,001). Die einzelnen Reviere lagen, bis auf wenige Ausnahmen, im Hardy-Weinberg-Gleichgewicht.

Die geographische Verteilung der Allele des Mikrosatellits SW1701 ist Abbildung 15 zu entnehmen. Allel 104 (gelb) war in erster Linie in Südwestfalen, Nord- und Mittelhessen zu finden. Das seltene Allel 108 (pink) trat in Nordostdeutschland in Erscheinung. Bis auf wenige Ausnahmen zeigte sich das Allel 123 (schwarz) im Norden und Nordosten des Landes. Die Allele 131 (dunkelgrün) und 133 (olivgrün) fanden sich hauptsächlich in Südwestdeutschland. Die anderen Allele verteilten sich recht gleichmäßig über das Untersuchungsgebiet.

Abbildung 15: Verteilung der Allele des Mikrosatellits SW1701

4.1.1.2 Mikrosatellit SW1979

Bei Mikrosatellit SW1979 zeigten sich neun Allele, deren Allelfrequenzen in Abbildung 16 dargestellt sind. Daraus ergibt sich eine theoretische Anzahl von 45 Genotypen, wovon 19 nachgewiesen wurden.

Das Allel 176 trat bei 61,9 % der Tiere auf und ist damit - mit Abstand - das häufigste Allel. Drei Allele (162, 164 und 168) sind selten und traten bei weniger als 1 % der Tiere auf. Die anderen Allele zeigten Häufigkeiten zwischen 3 % und 18 %.

Abbildung 16:Darstellung der Allelfrequenzen am Locus SW1979 (x-Achse: Allele
mit Fragmentlängenangabe in Bp; y-Achse: Allelfrequenz)

Die Überprüfung des Hardy-Weinberg-Gleichgewichts an Locus SW1979 mittels Chi-Quadrat-Test ergab, bezogen auf die Gesamtpopulation, eine hochsignifikante Abweichung vom Hardy-Weinberg-Gleichgewicht. Der exakte Fisher-Test bestätigte dieses Ergebnis (ChiSq ∞ ; DF 16; p \leq 0,001). Die einzelnen Reviere lagen, bis auf wenige Ausnahmen, im Hardy-Weinberg-Gleichgewicht.

Bei Betrachtung der geographischen Verteilung der Allele des Mikrosatellits SW1979 (Abbildung 17) fiel auf, dass Allel 170 (pink) in West- und Süddeutschland vermehrt auftrat. Das Allel 174 (orange) kam in einem Korridor vor, der sich vom Südwesten des Landes zum Nordosten erstreckte; es trat nicht in Bayern und Baden-Württemberg auf und nur sehr selten in Norddeutschland. Das häufigste Allel 176 (violett) war landesweit gleichmäßig verteilt.

Abbildung 17: Verteilung der Allele des Mikrosatellits SW1979

4.1.1.3 Mikrosatellit S0005

Der Mikrosatellit S0005 zeigte 20 Allele. Von den 210 möglichen Genotypen traten 124 auf. Die Allelfrequenzen sind Abbildung 18 zu entnehmen. Zwei Allele (222 und 231) traten bei mehr als 10 % der Tiere auf, wobei Allel 222 mit 17,2 % am häufigsten zu finden war. Drei Allele (201, 255 und 258) zeigten sich bei weniger als 1 % der Proben. Die übrigen Allele traten mit einer Häufigkeit von 1 % bis 9,5 % auf.

Abbildung 18:Darstellung der Allelfrequenzen am Locus S0005 (x-Achse: Allele
mit Fragmentlängenangabe in Bp; y-Achse: Allelfrequenz)

Die Überprüfung des Hardy-Weinberg-Gleichgewichts an Locus S0005 mittels Chi-Quadrat-Test ergab, bezogen auf die Gesamtpopulation, eine hochsignifikante Abweichung vom Hardy-Weinberg-Gleichgewicht. Der exakte Fisher-Test bestätigte dieses Ergebnis (ChiSq ∞ ; DF 16; p \leq 0,001). Die einzelnen Reviere lagen, bis auf wenige Ausnahmen, im Hardy-Weinberg-Gleichgewicht.

Abbildung 19 zeigt die geographische Verbreitung der Allele des Mikrosatelliten S0005. Allel 224 (hellblau) zeigte sich hauptsächlich in Südwestfalen und Mittelhessen. Allel 236 (schwarz), welches mit einer Allelfrequenz von 0,033 zu den schwach vertretenen Allelen zählt, trat geographisch unregelmäßig auf, zeigte sich dann aber recht präsent in einem Revier. Die Allele 243 (dunkelgrün), 245 (olivgrün) und 248 (pink) fanden sich in erster Linie in Ostdeutschland.

Abbildung 19: Verteilung der Allele des Mikrosatellits S0005

4.1.1.4 Mikrosatellit S0070

An Mikrosatellit S0070 fanden sich zehn Allele. Abbildung 20 zeigt die dazugehörigen Allelfrequenzen. 48 unterschiedliche Genotypen konnten von den 55 theoretisch möglichen nachgewiesen werden. Das Allel 283 trat bei 25,3 % der Tiere auf und war damit das am häufigsten vorkommende Allel. Drei Allele (266, 286 und 288) kamen bei weniger als 5 % der Individuen vor.

Abbildung 20: Darstellung der Allelfrequenzen am Locus S0070 (x-Achse: Allele mit Fragmentlängenangabe in Bp; y-Achse: Allelfrequenz)

Die Überprüfung des Hardy-Weinberg-Gleichgewichts an Locus S0070 mittels Chi-Quadrat-Test ergab, bezogen auf die Gesamtpopulation, eine hochsignifikante Abweichung vom Hardy-Weinberg-Gleichgewicht. Der exakte Fisher-Test bestätigte dieses Ergebnis (ChiSq ∞ ; DF 16; p \leq 0,001). Die einzelnen Reviere lagen, bis auf wenige Ausnahmen, im Hardy-Weinberg-Gleichgewicht.

Wie Abbildung 21 zu entnehmen ist, zeigte sich Allel 273 (gelb) des Mikrosatelliten S0070 hauptsächlich südlich des Münsterlandes und südlich der Elbe.Allel 288 (taubenblau) trat in erster Linie in Bayern und Baden-Württemberg auf.

Abbildung 21: Verteilung der Allele des Mikrosatellits S0070

4.1.1.5 Mikrosatellit SW288

Mikrosatellit SW288 zeigte acht Allele und damit 36 theoretische Genotypen, von denen 23 Genotypen auftraten. Die Allelfrequenzen sind in Abbildung 22 abgebildet. Zwei Allele (131 und 134) zeigten sich bei je mehr als 30 % der Tiere, wobei Allel 134 mit 39,7 % das häufigste war. Drei Allele (102, 136 und 140) waren seltener als bei 1 % der Proben zu finden.

Abbildung 22:Darstellung der Allelfrequenzen am Locus SW288 (x-Achse: Allele
mit Fragmentlängenangabe in Bp; y-Achse: Allelfrequenz)

Die Überprüfung des Hardy-Weinberg-Gleichgewichts an Locus SW288 mittels Chi-Quadrat-Test ergab, bezogen auf die Gesamtpopulation, eine signifikante Abweichung vom Hardy-Weinberg-Gleichgewicht. Der exakte Fisher-Test bestätigte dieses Ergebnis (ChiSq ∞ ; DF 16; $p \le 0,001$).

Die einzelnen Reviere befanden sich, bis auf wenige Ausnahmen, im Hardy-Weinberg-Gleichgewicht.

Abbildung 23 ist die geographische Verteilung der Allele des Mikrosatelliten SW288 zu entnehmen. Das seltene Allel 102 (rot) zeigte sich lediglich in Berlin. Die Allele 131 (pink) und 134 (hellblau) waren gleichmäßig über das Untersuchungsgebiet verteilt. Nur in Bayern und Baden-Württemberg fand sich das seltene Allel 140 (violett).

Abbildung 23: Verteilung der Allele des Mikrosatellits SW288

4.1.1.6 Mikrosatellit SW2052

Bei Mikrosatellit SW2052 zeigten sich 14 Allele, deren Allelfrequenzen in Abbildung 24 aufgeführt sind. Die Anzahl der theoretischen Genotypen ist 105, nachweisbar waren 70 Genotypen. Ein Allel (172) kam bei weniger als 1 % der Tiere vor. Vier Allele (147, 148, 152 und 154) traten mit mehr als 10 % am häufigsten auf, wobei Allel 154 mit 18,2 % das am häufigsten auftretende war.

Abbildung 24: Darstellung der Allelfrequenzen am Locus SW2052 (x-Achse: Allele mit Fragmentlängenangabe in Bp; y-Achse: Allelfrequenz)

Die Überprüfung des Hardy-Weinberg-Gleichgewichts an Locus SW2052 mittels Chi-Quadrat-Test ergab, bezogen auf die Gesamtpopulation, eine signifikante Abweichung vom Hardy-Weinberg-Gleichgewicht. Der exakte Fisher-Test bestätigte dieses Ergebnis (ChiSq ∞ ; DF 16; p \leq 0,001). Die einzelnen Reviere lagen, bis auf wenige Ausnahmen, im Hardy-Weinberg-Gleichgewicht.

Die geographische Allelverteilung des Mikrosatelliten SW2052 ist Abbildung 25 zu entnehmen. Allel 150 (gelb) zeigte sich im gesamten Untersuchungsgebiet, trat aber vermehrt in Mittelhessen und Südwestfalen auf. Allel 152 (pink) war bundesweit vertreten und kam in Nordostdeutschland häufig vor. In Richtung Westen nahm die Häufigkeit ab. Das Allel 160 (schwarz) zeigte sich landesweit selten, wurde aber in Locksted (Schleswig-Holstein) und Berlin häufiger beobachtet.

Abbildung 25: Verteilung der Allele des Mikrosatellits SW2052

4.1.1.7 Mikrosatellit S0228

Mikrosatellit S0228 zeigte vier Allele und dementsprechend zehn theoretische Genotypen, die alle vertreten waren. Die Allelfrequenzen sind in Abbildung 26 dargestellt. Allel 218 ist mit einer Häufigkeit von 4,7 % das seltenste und Allel 223 mit einer Häufigkeit von 64,5 % das häufigste.

Abbildung 26:Darstellung der Allelfrequenzen am Locus S0228 (x-Achse: Allele
mit Fragmentlängenangabe in Bp; y-Achse: Allelfrequenz)

Die Überprüfung des Hardy-Weinberg-Gleichgewichts an Locus S0228 mittels Chi-Quadrat-Test ergab, bezogen auf die Gesamtpopulation, eine signifikante Abweichung vom Hardy-Weinberg-Gleichgewicht. Der exakte Fisher-Test bestätigte dieses Ergebnis (ChiSq ∞ ; DF 16; $p \le 0,001$). Die einzelnen Reviere lagen, bis auf wenige Ausnahmen, im Hardy-Weinberg-Gleichgewicht.

Abbildung 27 zeigt die geographische Verbreitung der Allele des Mikrosatelliten S0228. Eine gleichmäßige Verteilung über das Untersuchungsgebiet zeigte Allel 223 (grün). Allel 225 (blau) fand sich hauptsächlich in Norddeutschland, wohingegen Allel 227 (gelb) in Süddeutschland vermehrt anzutreffen war.

Abbildung 27: Verteilung der Allele des Mikrosatellits S0228

4.1.1.8 Mikrosatellit S0359

Der Mikrosatellit S0359 zeigte sieben Allele. 28 Genotypen sind demnach theoretisch möglich. 22 Genotypen wurden nachgewiesen. Abbildung 28 stellt die Allelfrequenzen dar. Allel 262 war mit 42,6 % das häufigste und Allel 262 mit einer Häufigkeit von unter 1 % das seltenste. Die Häufigkeit der anderen Allele lag zwischen knapp 5 % und 25 %.

Abbildung 28:Darstellung der Allelfrequenzen am Locus S0359 (x-Achse: Allele
mit Fragmentlängenangabe in Bp; y-Achse: Allelfrequenz)

Die Überprüfung des Hardy-Weinberg-Gleichgewichts an Locus S0359 mittels Chi-Quadrat-Test ergab, bezogen auf die Gesamtpopulation, eine signifikante Abweichung vom Hardy-Weinberg-Gleichgewicht. Der exakte Fisher-Test bestätigte dieses Ergebnis (ChiSq ∞ ; DF 16; $p \le 0,001$). Die einzelnen Reviere lagen, bis auf wenige Ausnahmen, im Hardy-Weinberg-Gleichgewicht.

Abbildung 29 ist die geographische Verteilung der Allele des Mikrosatelliten S0359 zu entnehmen. Allel 258 (hellgrün) war hauptsächlich südlich des Münsterlandes, des Harzes und der Elbe zu finden. Wenn Allel 261 (blau) vorkam, dann recht häufig innerhalb eines Reviers. Das Vorkommen des Allels 264 (pink) konzentrierte sich hauptsächlich auf Südwestfalen, Hessen, Thüringen und Rheinland-Pfalz, wohingegen Allel 278 (orange) fast ausschließlich im Nordosten des Landes zu finden war.

Abbildung 29: Verteilung der Allele des Mikrosatellits S0359

4.1.2 Berechnungen zur Heterozygosität

In Tabelle 19 sind die Ergebnisse der Berechnungen zu Heterozygosität aufgeführt. Der Vergleich der beobachteten Heterozygosität (H_o) und der erwarteten Heterozygosität (H_e) ermöglicht die Beurteilung der Substrukturierung der Gesamtpopulation. Im vorliegenden Fall war die beobachtete Heterozygosität, außer an Locus SW1979, stets niedriger als die erwartete Heterozygosität. Die größte Diskrepanz zwischen beobachteter und erwarteter Heterozygosität fand sich an Locus S0005, wobei die beobachtete Heterozygosität um 19,9 % geringer war als die erwartete Heterozygosität. Der Heterozygositätsverlust war bei Locus SW288 mit 9,1 % am geringsten. Bei Mikrosatellit SW1979 nahm die beobachtete Heterozygosität im Vergleich zur erwarteten Heterozygosität um 15,7 % zu. Betrachtete man alle Loci gemeinsam, zeigte sich eine Reduktion der Heterozygosität um 12,5 %.

Betrachtete man die Heterozygositätsraten der einzelnen Reviere (Tab. A 12 im Anhang), fiel auf, dass im Gegensatz zur Gesamtpopulation, die beobachtete Heterozygosität immer größer war als die erwartete. Vier Ausnahmen bildeten die Reviere Rastatt (BW2), Rothenbuch (BY3), Neuhaus (SL1/2) und Wahner Heide (NW6), bei denen die beobachtete Heterozygosität unter der erwarteten Heterozygositätsrate lag. Abbildung 30 zeigt die beobachteten und erwarteten Heterozygositätsraten der Subpopulationen. Die oben genannten Ausnahmen sind mit einem schwarzen Punkt markiert. Tabelle 19:Ergebnisse der Berechnungen zu Heterozygosität am einzelnen Locus
und lociübergreifend (Gesamtpopulation (n=521); H₀: beobachtete
Heterozygosität; He: erwartete Heterozygosität; Ne: Anzahl effektiver
Allele; I: Fixationsindex)

Locus	Ho	H _e	N _e	Ι
SW1701	0,802	0,883	8,531	2,365
SW1979	0,674	0,575	2,352	1,235
S0005	0,731	0,912	11,327	2,651
S0070	0,714	0,846	6,493	2,041
SW288	0,651	0,716	6,493	2,041
SW2052	0,724	0,877	8,138	2,263
S0228	0,422	0,523	2,098	0,965
S0359	0,587	0,727	3,663	1,527
gesamt	0,663	0,757	5,765	1,811
Standardfehler	0,041	0,052	1,190	0,213

Abbildung 30: Darstellung der beobachteten (H_o, schwarzer Balken) und der erwarteten Heterozygosität (H_e, heller Balken) in den einzelnen Revieren (mit einem schwarzen Punkt markierte Balken weisen auf eine höhere H_e als H_o hin).
4.1.3 Linkage disequilibrium

Im vorliegenden Fall kann bei nur zwei Loci von einer physikalisch gekoppelten Vererbung ausgegangen werden. Locus SW2052 und Locus S0228 befinden sich beide auf Chromosom 6. 27 der 28 Vergleiche zeigten ein signifikantes Kopplungsungleichgewicht (Tabelle A 13 im Anhang). Dabei erwiesen sich sechs Vergleiche als gering signifikant ($p \le 0,05$; *), zwei Vergleiche als signifikant ($p \le 0,01$; **) und 19 Vergleiche als hoch signifikant ($p \le 0,001$; ***).

4.1.4 F-Statistiken

Die Ergebnisse der Berechnungen der F-Indizes nach WRIGHT (1965) sind in Tabelle 20 dargestellt.

Bis auf Locus S0005 wiesen alle Loci einen negativen F_{is} -Wert (Inzuchtkoeffizient) auf. Ein negativer Wert spricht für einen Heterozygotenüberschuss. Gemittelt über alle Loci ergab sich ein F_{is} -Wert von -0,117

Die F_{st} -Werte lagen alle zwischen 0,144 und 0,259. Den geringsten Wert wies Locus SW1979 auf, den höchsten Locus S0359. Ein Loci-übergreifender Wert von 0,199 spricht für einen hohen Grad an genetischer Differenzierung innerhalb der Gesamtpopulation. F_{st} gibt außerdem Auskunft über den Genfluss innerhalb der Gesamtpopulation (0=reger Genfluss; 1=kein Genfluss).

Tabelle 20:	F-Statis	tiken	berechnet	für	die	Gesam	tpopulation	am	einzel	lnen
	Locus	und	lociüberg	greif	end	(F _{is} :	Inzuchtsko	effizi	ent;	F _{st} :
Heterozygotenreduktion; SE: Standardfehler)					ler)					

Locus	F _{is}	F _{st}
SW1701	-0,080	0,193
SW1979	-0,373	0,144
S0005	0,014	0,172
S0070	-0,091	0,227
SW288	-0,169	0,210
SW2052	-0,056	0,205
S0228	-0,033	0,185
S0359	-0,146	0,259
lociübergreifend	-0,117	0,199
Standardfehler	0,042	0,012

4.1.5 Genfluss

Im Anhang (Tabelle 21) sind alle Werte für N_m und F_{st} zwischen den einzelnen Revieren dargestellt.

Der größte Wert für N_m fand sich zwischen Göhrde in Niedersachsen (Population 30) und Schlemmin in Mecklenburg-Vorpommern (Population 39) mit 8,556. Außerdem fielen 15 Populationspaare mit Werten von über fünf auf, wobei die Werte zwischen 5,084 und 8,556 lagen. Der geringste fand sich zwischen Kirchheim in Baden-Württemberg und Locksted in Schleswig-Holstein mit 0,667. Insgesamt waren 26 Werte kleiner eins. Sie rangierten zwischen 0,667 und 0,992. Im Durchschnitt ergab sich ein N_m-Wert von 2,294. In der folgenden Tabelle sind die $N_{m}\text{-}$ und $F_{st}\text{-}Werte$ dargestellt.

Tabelle 21	F _{st} -Werte (u	nter	der]	Diagonalen)) und	N _m -Werte	(über	der
	Diagonalen)	der	· vo	n STRU	CTURE	2.3.3	ermitte	elten
	Subpopulation	nen in	n Verg	leich				

	Pop1	Pop2	Pop3	Pop4	Pop5	Pop6	Pop7	Pop8	Pop9	Pop10
Pop1		5,681	4,510	2,615	4,453	4,457	4,841	5,883	5,376	3,010
Pop2	0,042		5,562	2,532	7,024	9,417	4,884	7,582	6,552	3,005
Pop3	0,053	0,043		3,150	6,287	5,075	2,975	5,265	3,480	4,189
Pop4	0,087	0,090	0,074		2,442	2,796	2,039	3,011	2,233	2,335
Pop5	0,053	0,034	0,038	0,093		5,397	3,789	6,799	3,669	3,057
Pop6	0,053	0,026	0,047	0,082	0,044		3,895	7,689	5,776	2,462
Pop7	0,049	0,049	0,078	0,109	0,062	0,060		4,880	4,619	2,728
Pop8	0,041	0,032	0,045	0,077	0,035	0,031	0,049		5,229	3,278
Pop9	0,044	0,037	0,067	0,101	0,064	0,041	0,051	0,046		2,337
Pop10	0,077	0,077	0,056	0,097	0,076	0,092	0,084	0,071	0,097	

Die F_{st} -Werte liegen zwischen 0,026 (Population 2 und Population 6) und 0,109 (bei Population 4 und Population7), während die Anzahl der Migranten zwischen 2,039 und 9,471 liegt.

4.1.6 Mantel-Tests

Um Korrelationen zwischen genetischer und geographischer Distanz festzustellen, wurde ein Mantel-Test durchgeführt (Tabelle 22).

Die lociübergreifende Korrelation zwischen genetischer und geographischer Distanz lag bei 0,159. Es bestand also eine, wenn auch sehr niedrige Korrelation. Auch die Ergebnisse der einzelnen Loci zeigten, dass eine große geographische Distanz nicht zwangsläufig mit einer großen genetischen Distanz korreliert; ebenso kann eine geringe genetische Distanz trotz großer räumlicher Entfernung auftreten.

Tabelle 22:	Ergebnisse	des	Manteltests	an	den	einzelnen	Loci	und	Loci-
	übergreifend	d (r:	Korrelationsk	oeff	ïzient	; * p< 0,05	; ** p	< 0,0	1; ***
	p< 0,001)								

Locus	r	Signifikanz
SW1701	0,051	**
SW1979	0,084	**
S0005	0,020	**
S0070	0,110	**
SW288	0,054	**
SW2052	0,083	**
S0228	0,046	**
S0359	0,046	**
lociübergreifend	0,159	**

4.2 Berechnungen mit BOTTLENECK 1.2.02

Unter Verwendung der Software BOTTLENECK 1.2.02 (CORNUET & LUIKART, 1997) wurde die Gesamtpopulation auf Hinweise untersucht, ob die Population kürzlich einen genetischen Flaschenhals "recent botttleneck" passiert hat. Dabei wurde die tatsächliche mit der theoretisch erwarteten Heterozygosität verglichen und etwaige Abweichungen auf Signifkanz untersucht (Tab. A 14 im Anhang).

Abbildung 31 zeigt den "mode shift", der die Verteilung der Allelfrequenzen darstellt.

Im vorliegenden Fall ergibt sich kein Grund zu der Annahme, dass die Population kürzlich einem genetischen Flaschenhals ausgesetzt war.

Abbildung 31: Verteilung der Allelfrequenzen (Linkslastigkeit des Diagramms: viele Allele haben eine Frequenz zwischen 0 und 0,1)

4.3 Neighbor-Joining

Das mit TreeView (PAGE, 1996) erstellte Dendrogramm (Abb. A 1 bis A 10 im Anhang) ermöglicht einen Überblick über eine etwaige Gruppenbildung (Cluster) und eine entsprechende Ähnlichkeit der Individuen im Hinblick auf die untersuchten Mikrosatellitenloci. Tiere mit identischen Allelgrößen bei allen Loci sind entlang eines senkrechten Balkens immer untereinander dargestellt und so leicht zu identifizieren.

Den Individuen im Dendrogramm wurde die jeweilige Farbe der vom Programm STRUCTURE 2.3.3 (PRITCHARD et al., 2000) festgelegten Subpopulation zugeordnet (Abb. A 1 bis A 10 im Anhang).

Eine Übersichtsbetrachtung des Dendrogramms ließ erkennen, dass Tiere der gleichen Subpopulation (nach STRUCTURE 2.3.3) meist in einem Cluster des Dendrogramms zu finden waren. Besonders auffällig verhielt sich dieses Muster bei Subpopulation 10 (graublau), die in erster Linie Tiere aus dem Südwesten des Landes vereint.

Ähnlich verhielt es sich mit der kleinsten Subpopulation 4 (gelb), deren geographische Verbreitung aber größer ist als die der Subpopulation 10.

Bei genauerer Betrachtung der kleineren Cluster zeigte sich, dass häufig Tiere, die aus einem Revier stammen, in einem Cluster zu finden waren.

4.4 Genetische Struktur der Gesamtpopulation

Das Programm STRUCTURE 2.3.3 (PRITCHARD et al., 2000) ermöglicht die Berechnung der "wahrscheinlichsten" Anzahl an Subpopulationen innerhalb einer Gesamtpopulation.

Die in Abbildung 32 dargestellten logarithmierten Wahrscheinlichkeiten für die entsprechende Anzahl an Subpopulationen zeigt, dass der höchste Wert bei K=10 Subpopulationen lag.

Die kleinste Subpopulation ist Subpopulation 7 mit 31 Tieren (7,2 %), die größte Subpopulation 2 mit 74 Tieren (12,5 %).

Tabelle 23 zeigt den absoluten und prozentualen Anteil der Tiere der einzelnen Subpopulationen an der Gesamtpopulation.

Abbildung 32: Logarithmierte Wahrscheinlichkeiten In Pr (X | K) für das Vorkommen von K=2 bis K=14 Subpopulationen. Die Kurve zeigt bei K=10 ein Maximum, sodass die Wahrscheinlichkeit für das Vorkommen von 10 Subpopulationen am höchsten ist.

Subnanulation	Anzahl der zugeordneten	prozentualer Anteil /
Subpopulation	Wildschweine	Gesamtpopulation
1	66	13,0 %
2	74	12,5 %
3	52	8,9 %
4	34	7,5 %
5	41	7,9 %
6	67	12,8 %
7	31	7,2 %
8	56	10,4 %
9	58	11,3 %
10	42	8,5 %

Tabelle 23:Anzahl, der den Subpopulationen zugeordneten, Wildschweine und
der prozentuale Anteil an der Gesamtpopulation

In Abbildung 33 sind alle Tiere der Studie graphisch durch senkrechte Balken entlang der x-Achse dargestellt. Dabei wurde jeweils der relative Anteil der Zugehörigkeit zu einer der zehn Subpopulationen aufgetragen (y-Achse), – die dominierende Farbe in einem Balken entspricht der dem Tier zugeordneten Subpopulation. Ein Überblick über die Gesamtpopulation und eine etwaige Clusterbildung lässt sich so erkennen.

Abbildung 33: Graphische Darstellung der Ergebnisse von STRUCTURE 2.3.3 (xrelativer Anteil eines Individuums Achse: an den 10 Subpopulationen, die dominierende Farbe zeigt die Zugehörigkeit zu Subpopulation an; y-Achse: alle Tiere der Studie einer nebeneinander, ein vertikaler Balken pro Tier)

Abbildung 34 zeigt die geographische Verteilung der Subpopulationen.

Es ist schon auf den ersten Blick eine Akkumulation gewisser Farben, also Subpopulationen in manchen Gegenden zu erkennen. Meist zeigen sich mehrere Subpopulationen innerhalb eines Reviers, wobei dieselbe Subpopulation häufig in der näheren räumlichen Umgebung mehrfach auftritt.

Subpopulation 1	trat in erster Linie in Südwestfalen, Nord- und Mittelhessen und
	Westthüringen auf.
Subpopulation 2	kam meist in Nordostdeutschland vor, zeigte sich zudem auch in Bayern.
Subpopulation 3	fand sich häufig in Rheinland-Pfalz und im Saarland, kleinere
	Vorkommen fanden sich in Berlin, der Lausitz und der Lüneburger
	Heide.
Subpopulation 4	zeigte sich in Schleswig-Holstein, Thüringen und in der Lausitz.
Subpopulation 5	fand sich vermehrt im Verlauf der Elbe und im Rheinland.
Subpopulation 6	trat bis auf wenige Ausnahmen nur in Nordostdeutschland auf.
Subpopulation 7	kam vorrangig in Südwestfalen, Baden-Württemberg und Rheinland-
	Pfalz vor.
Subpopulation 8	zeigte sich recht weit verteilt und kam in Westfalen, Baden-
	Württemberg, Franken vor, zeigte sich aber auch in Niedersachsen und
	im Gebiet der Mecklenburgischen Seenplatte.
Subpopulation 9	zeigte größere Vorkommen in erster Linie in Nordostdeutschland und in
	Schleswig-Holstein.
0 1 1 1 10	

Subpopulation 10 trat vorrangig in Rheinland-Pfalz auf und nie nördlich der Elbe.

Abbildung 34: Geographische Verteilung der Subpopulationen nach STRUCTURE 2.3.3

4.5 Varianzanalysen zur Berechnung des Einflusses von Hindernissen

Beim genetischen Vergleich eines Reviers mit allen benachbarten Revieren in einem Umkreis von 150 km ergaben sich insgesamt 165 paarweise Vergleiche. Der mittlere geographische Abstand der Reviere betrug 94,5 km.

Tabelle 24 zeigt die berechneten populationsgenetischen Parameter gemittelt über alle Revierpaarungen.

Tabelle 24:Mittelwerte der populationsgenetischen Parameter über alle
Revierpaarungen (Nei GD: genetische Distanz nach Nei; UNei GD:
unverzerrte genetische Distanz nach Nei; Reynolds: genetische
Distanz nach Reynolds; Sforza: genetische Distanz nach Cavalli-
Sforza; F_{st}: Heterozygotenüberschuß)

Parameter	Mittelwert	Standardfehler
Nei GD	0,395	0,022
UNei GD	0,304	0,022
Reynolds	0,173	0,008
Sforza	0,120	0,004
F _{st}	0,095	0,005

4.5.1 Autobahnen als Barriere zwischen Revieren

Bei der Betrachtung der Autobahnen als Barriere zeigte sich bei allen populationsgenetischen Parametern ein signifikanter Unterschied zwischen Revierkombinationen, die durch zwei Autobahnen voneinander getrennt waren und solchen, die nicht von einer Autobahn getrennt waren (Abb. 35). Der bestehende Unterschied bei der genetischen Distanz nach Reynolds und F_{st} war signifikant (* $\leq 0,05$), bei den anderen Parametern sehr signfikant (** $\leq 0,01$). Tabelle 25 zeigt die p-Werte.

Abbildung 35: Darstellung der Ergebnisse der Varianzanalyse zur Berechnung des Einflusses von Autobahnen als Hindernis; y-Achse: Mittelwerte der genetischen Distanz nach Nei (Nei GD); der unverzerrten, genetischen Distanz nach Nei (UNei GD), der genetischen Distanz nach Reynolds (Reynolds), der genetischen Distanz nach Cavalli-Sforza (Sforza) und des Heterozygotenüberschusses (F_{st}) als abhängige Variablen der Kategorien 0, 1 bzw. 2 kreuzende Autobahnen (x-Achse).

Tabelle 25:Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur
Berechnung des Einflusses von Autobahnen als Hindernis (Kategorie
0, 1 bzw. 2: Revierpaare mit je 0, 1 bzw. 2 kreuzenden Autobahnen;
Nei GD: genetische Distanz nach Nei; UNei GD: unverzerrte
genetische Distanz nach Nei; Reynolds: genetische Distanz nach
Reynolds; Sforza: genetische Distanz nach Cavalli-Sforza; F_{st} :
Heterozygotenüberschuss)

Populationsgenetischer	Katagarianyarglaigh	n-Wort		
Parameter	Kategorienvergieich	p-went		
	0 - 1	0,123		
Nei GD	1 - 2	0,209		
	0 - 2	0,010		
	0 - 1	0,087		
UNei GD	1 - 2	0,169		
	0 - 2	0,005		
	0 - 1	0,170		
Reynolds	1 - 2	0,186		
	0 - 2	0,013		
	0 - 1	0,077		
Sforza	1 - 2	0,275		
	0 - 2	0,009		
	0 - 1	0,225		
F _{st}	1 - 2	0,227		
	0 - 2	0,026		

4.5.2 Bahnlinien, Flüsse und Kanäle als Barriere zwischen Revieren

Zwei Reviere trennende Bahntrassen, Flüsse und Kanäle zeigten keine signifikante Auswirkung auf die populationsgenetischen Parameter. Im Falle trennender Bahnlinien steigen die genetischen Distanzen Nei GD und UNei GD zwischen zwei Populationen an, Die Effekt von Flüssen oder Kanälen als Barrieren waren nicht signifikant. Die Ergebnisse der Varianzanalyse des Einflusses von Bahnlinien sind in Abbildung 36 und Tabelle 26 aufgeführt, die für Flüsse in Abbildung 37 und Tabelle 27 und für Kanäle in Abbildung 38 und Tabelle 28.

Abbildung 36: Darstellung der Ergebnisse der Varianzanalyse zur Berechnung des Einflusses von Bahnlinien als Hindernis; y-Achse: Mittelwerte der genetischen Distanz nach Nei (Nei GD); der unverzerrten, genetischen Distanz nach Nei (UNei GD), der genetischen Distanz nach Reynolds (Reynolds), der genetischen Distanz nach Cavalli-Sforza (Sforza) und des Heterozygotenüberschusses (F_{st}) als abhängige Variablen der Kategorien 0, 1 bzw. 2 kreuzende Bahnlinien (x-Achse).

Tabelle 26:Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur
Berechnung des Einflusses von Bahnlinien als Hindernis (Kategorie
0, 1 bzw. 2: Revierpaare mit je 0, 1 bzw. 2 kreuzenden Bahnlinien;
Nei GD: genetische Distanz nach Nei; UNei GD: unverzerrte
genetische Distanz nach Nei; Reynolds: genetische Distanz nach
Reynolds; Sforza: genetische Distanz nach Cavalli-Sforza; F_{st} :
Heterozygotenüberschuss)

Populationsgenetischer	Katagorionvorglaigh	n Wort
Parameter	Kategorienvergieich	p-wert
	0 - 1	0,217
Nei GD	1 - 2	0,647
	0 - 2	0,409
	0 - 1	0,139
UNei GD	1 - 2	0,613
	0 - 2	0,304
	0 - 1	0,435
Reynolds	1 - 2	0,848
	0 - 2	0,352
	0 - 1	0,346
Sforza	1 - 2	0,856
	0 - 2	0,440
	0 - 1	0,383
F _{st}	1 - 2	0,833
	0 - 2	0,299

- Abbildung 37: Darstellung der Ergebnisse der Varianzanalyse zur Berechnung des Einflusses von Flüssen als Hindernis; y-Achse: Mittelwerte der genetischen Distanz nach Nei (Nei GD); der unverzerrten, genetischen Distanz nach Nei (UNei GD), der genetischen Distanz nach Reynolds (Reynolds), der genetischen Distanz nach Cavalli-Sforza (Sforza) und des Heterozygotenüberschusses (F_{st}) als abhängige Variablen der Kategorien 0 bzw. 1 kreuzende Flüsse (x-Achse).
- **Tabelle 27:**Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur
Berechnung des Einflusses von Flüssen als Hindernis (Kategorie 0, 1
bzw. 2: Revierpaare mit je 0, 1 bzw. 2 kreuzenden Flüssen; Nei GD:
genetische Distanz nach Nei; UNei GD: unverzerrte genetische
Distanz nach Nei; Reynolds: genetische Distanz nach Reynolds;
Sforza: genetische Distanz nach Cavalli-Sforza; F_{st} :
Heterozygotenüberschuss)

Populationsgenetischer Parameter	Kategorienvergleich	p-Wert
Nei GD	0 - 1	0,460
UNei GD	0 – 1	0,355
Reynolds	0 - 1	0,726
Sforza	0 - 1	0,341
F _{st}	0 - 1	0,761

- Abbildung 38: Darstellung der Ergebnisse der Varianzanalyse zur Berechnung des Einflusses von Kanälen als Hindernis; y-Achse: Mittelwerte der genetischen Distanz nach Nei (Nei GD); der unverzerrten, genetischen Distanz nach Nei (UNei GD), der genetischen Distanz nach Reynolds (Reynolds), der genetischen Distanz nach Cavalli-Sforza (Sforza) und des Heterozygotenüberschusses (Fst) als abhängige Variablen der Kategorien 0 bzw. 1 kreuzende Kanäle (x-Achse).
- **Tabelle 28**:Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur
Berechnung des Einflusses von Kanälen als Hindernis (Kategorie 0,
1 bzw. 2: Revierpaare mit je 0, 1 bzw. 2 kreuzenden Kanälen; Nei
GD: genetische Distanz nach Nei; UNei GD: unverzerrte genetische
Distanz nach Nei; Reynolds: genetische Distanz nach Reynolds;
Sforza: genetische Distanz nach Cavalli-Sforza; F_{st} :
Heterozygotenüberschuss)

Populationsgenetischer Parameter	Kategorienvergleich	p-Wert
Nei GD	0 - 1	0,847
UNei GD	0 - 1	0,984
Reynolds	0 - 1	0,633
Sforza	0 - 1	0,587
F _{st}	0 - 1	0,686

4.5.3 Innerdeutsche Grenze

Die ehemalige Innerdeutsche Grenze als lange Zeit bestehende künstliche Barriere hatte einen signifikanten ($p \le 0.05$) bis hochsignifikanten ($p \le 0.001$) Einfluss auf die populationsgenetischen Parameter (Abb. 39 und Tab. 29). Die berechneten Mittelwerte aller dieser Parameter von westdeutschen im Vergleich zu ostdeutschen Revieren waren signifikant unterschiedlich. Dies war auch der Fall für den Vergleich von westdeutschen mit Grenzrevieren, außer für F_{st} . Keine signifikanten Unterschiede waren zu beobachten zwischen ostdeutschen und Grenzrevieren.

Abbildung 39 Darstellung der Ergebnisse der Varianzanalyse zur Berechnung des Einflusses der ehemaligen Innerdeutschen Grenze als Hindernis; (Nei GD: Mittelwerte der genetischen Distanz nach Nei (Nei GD); der unverzerrten, genetischen Distanz nach Nei (UNei GD), der genetischen Distanz nach Reynolds (Reynolds), der genetischen Distanz nach Cavalli-Sforza (Sforza) und des Heterozygotenüberschusses (F_{st}) als abhängige Variablen der Kategorien 0 (ostdt. Paare), 1 (westdt. Paare) bzw. 2 (Grenzpaare) auf der x-Achse).

Tabelle 29:Signifikanz-Werte des Kategorienvergleichs der Varianzanalyse zur
Berechnung des Einflusses der ehemaligen Innerdeutschen Grenze
als Hindernis (Kategorie 0=Ostdt. Paare, 1=Westdt. Paare bzw.
2=Grenzpaare; Nei GD: genetische Distanz nach Nei; UNei GD:
unverzerrte genetische Distanz nach Nei; Reynolds: genetische
Distanz nach Reynolds; Sforza: genetische Distanz nach Cavalli-
Sforza; F_{st}: Heterozygotenüberschuss)

Populationsgenetischer	Katagamianwanglaiah	p-Wert
Parameter	Kategorienvergieten	
Nei GD	0 - 1	0,050
	1 - 2	0,001
	0 - 2	0,738
UNei GD	0 - 1	0,001
	1 - 2	0,001
	0 - 2	0,960
Reynolds	0 - 1	0,021
	1 - 2	0,038
	0 - 2	0,786
Sforza	0 - 1	0,006
	1 - 2	0,006
	0 - 2	0,926
F _{st}	0 - 1	0,027
	1 - 2	0,065
	0 - 2	0,703

5 Diskussion

Wildschweine sind eine weit verbreitete und sich stetig weiter ausbreitende Wildart, die in Deutschland mehr oder minder omnipräsent ist und durch die jährlich große wirtschaftliche Verluste, durch Flur- und Fruchtschäden, entstehen. Gerade durch die große Verbreitung und die ständig wachsende Population stellt das Wildschwein auch ein relevantes Reservoir für Erreger wirtschaftlich bedeutender Tierseuchen dar (z.B.: Ausbruch der Klassischen Schweinepest in einer Wildschweinpopulation in Nordrhein-Westfalen und Rheinland-Pfalz im Jahr 2009; Gefahr durch Verbreitung der Afrikanischen Schweinepest aus dem Osten). Außerdem ist das Wildschwein ein nicht zu unterschätzender Unfallverursacher auf Deutschlands Straßen. Nach dem Rehwild belegt das Wildschwein Platz zwei in der Wildunfallstatistik (vgl. Abschnitt 2.1.4; Tabelle 1).

In verschiedenen Arbeiten wurde die genetische Struktur der Wildschweinpopulationen in Europa untersucht; dabei betrachtete man besonders die Populationen in Italien, Portugal und Ungarn (FERREIRA et al., 2006; FERREIRA et al., 2008; DELGADO et al., 2008). Vergleichbare Informationen fehlen bislang für Deutschland; sie sollen daher mit der vorliegenden Arbeit zusammengetragen werden.

5.1 Methodenkritik

Diese Studie war als Feldstudie angelegt. Die Proben wurden im Rahmen vorangegangener Arbeiten bei Jagden auf dem Gebiet Deutschlands gesammelt. Die Wildschweine wurden auf Treib- und Drückjagden, jeweils in den Herbst- und Wintermonaten erlegt. Diese Jagdformen bieten die beste Möglichkeit, große Stückzahlen zu erreichen und zu beproben. Eine vergleichbare Probenanzahl im Frühjahr oder im Sommer mittels Einzelabschüssen zu erreichen, ist aus wildbiologischen und jagdrechtlichen Gründen praktisch nicht möglich. Dieser Umstand hat auf die Ergebnisse keinen Einfluss. Da die zu erwartende Jagdstrecke von vornherein schlecht abzuschätzen war, schwankt die Probenzahl in den einzelnen Revieren.

Das Untersuchungsgebiet wurde großräumig gewählt, um einen möglichst deutschlandweiten Überblick über die genetische Struktur der Wildschweinpopulation zu erhalten. Der Norden Nordrhein-Westfalens und die westlichen Teile Niedersachsens wurden nicht beprobt, da das Vorkommen der Wildschweine dort eher gering ist und keine Drück- und Treibjagden mit großer Streckenerwartung durchgeführt wurden. Das Gleiche gilt für die Gebiete südlich der Donau. Auf eine representative Stichprobennahmen wurde verzichtet, da keine Vergleichbarkeit zwischen den einzelnen Bundesländern erreicht werden sollte, sondern eine Vergleichbarkeit der untersuchten Subpopulationen untereinander.

Um ein möglichst aussagekräftiges Bild der genetischen Struktur erstellen zu können, wurde ein größere Anzahl an Revieren beprobt (n=40). Im Vergleich zu anderen Studien (siehe auch Abschnitt Tabelle 3) konnte eine recht hohe Probandenzahl (n=521) untersucht werden. Zu bemerken ist hier, dass beprobte Tiere aus einem Revier möglicherweise enger miteinander verwandt sind, als es im Durchschnitt bei der gesamten in einem Gebiet ansässigen Population der Fall wäre. Der Grund könnte hierfür eventuell im Fluchtverhalten liegen. Wildschweine flüchten zumeist in der Rotte (also auch im genetischen Familienverbund), geführt von der Leitbache (SODEIKAT & POHLMEYER, 2003). Im Jagdgeschehen werden häufig flüchtende Rotten mehrfach beschossen. Nach gängigen Abschussempfehlungen sollte eine Altersverteilung der Jahresstrecke bei etwa 75 % Frischlingen, 15 % Überläufern und 10 % alter Keiler und Bachen angestrebt werden (BRIEDERMANN, 2009). So könnte es zu einer Akkumulierung von verwandten Tieren auf der Strecke kommen. Geschwister auf der Strecke zu finden ist demnach wahrscheinlich. In der vorliegenden Arbeit wurde dies nicht beachtet. Weitere "anamnestische" Informationen, wie Alter und Geschlecht, wurden nicht mit berücksichtigt, da keine genauen Familienverhältnisse untersucht werden sollten, sondern das Hauptaugenmerk auf der reinen Populationsgenetik lag.

Die DNA-Vervielfältigung mittels PCR ist eine seit Jahren gebräuchliche Methode. Mit ihr gelingt eine Vervielfältigung kleiner DNA-Mengen in der Probe. Die im Voraus getesteten und ausgewählten Mikrosatelliten des Hausschweins eigneten sich gut zur Genotypisierung der Wildschweine. Zur besseren internationalen Vergleichbarkeit wäre eine Auswahl der Mikrosatelliten nach den Empfehlungen der Food and Agriculture Organization (FAO) und der International Society for Animal Genetics (ISAG) zu bevorzugen gewesen, allerdings zeigt sich bis dato in der vorhandenen Literatur keine einheitliche Auswahl an Mikrosatelliten. Häufig zeigten sich auch Mikrosatelliten im untersuchten Gebiet nicht polymorph, obwohl sie im Vorfeld beim Wildschwein in Europa Anwendung fanden. Außerdem ist kritisch anzumerken, dass sich Mikrosatellit SW2052 und Mikrosatellit S0228

beide auf Chromosom 6 mit einem Abstand von 4cM gekoppelt sind. Durch Austesten verschiedener Primerkonzentrationen konnte letztlich ein gleichmäßiges Bild im Sequenzierautomaten erzeugt werden. Die genaue Benennung einzelner Allele bereitete zu Beginn Probleme; verschiedene Allele zeigten sich aufgrund von Unregelmäßigkeiten im Polyacrylamidgel als das gleiche Allel. Dieses Problem konnte aber mittels der in Abschnitt 3.5.6 beschriebenen Methode gelöst werden. Das Werkzeug "Kurve" in Microsoft Powerpoint ermöglichte eine genaue Zuordnung der Banden zu einem bestimmten Allel. Mit den verwendeten Mikrosatelliten ließen sich 470 von 521 Tiere individuell unterscheiden, das entspricht 90,2 %. Um eine weitere Unterscheidung zwischen den Tieren bis auf die Ebene des Individuums vornehmen zu können, müssten weitere Mikrosatelliten verwendet werden.

5.2 Besprechung der Ergebnisse

5.2.1 Phylogenetische Berechnungen

5.2.1.1 Allele, Allelfrequenzen, Allelverteilung

Im Durchschnitt fanden sich 11 Allele pro Locus. Mit 20 Allelen zeigte Mikrosatellit SW1979 die größte und Mikrosatellit S0228 mit vier die geringste Variabilität. Die meisten Allele zeigten eine eindeutig lokale Akkumulation. Die lokale Verteilung der Allele ist den Abbildungen 15, 17, 19, 21, 23, 25, 27, 29 zu entnehmen. "Ausreißer" fanden sich häufig und sind auf die zufällig und ungerichtet wirkende genetische Drift zurückzuführen. Eine regional abtrennbare Verteilung der Allele ist unter natürlichen Verhältnissen unüblich und nicht zu erwarten. Es sind keine Abgrenzungen der Allelverteilung durch etwaige Barrieren zu erkennen.

5.2.1.2 Heterozygositäten

Die Gesamtpopulation hatte eine erwartete Heterozygosität von 0,757±0,052 und eine beobachtete Heterozygosität von 0,663±0,041. Die erwartete Heterozygosität ist größer als die beobachtete Heterozygosität. Diese Reduktion nennt sich Wahlund-Effekt und weist auf ein

Substrukturierung der Population hin (WAHLUND, 1928). Lediglich an Microsatellit SW1979 war die beobachtete Heterozygosität höher als die zu erwartende. Betrachtete man die Ergebnisse von H_e und H_o für die einzelnen Reviere, zeigte sich in lediglich vier Fällen (10 %) der Wahlund-Effekt, was darauf hinweist, dass innerhalb der kleinen Populationen im Allgemeinen keine Substrukturierung vorliegt.

5.2.1.3 Hardy-Weinberg-Gleichgewicht

Eine Population im Hardy-Weinberg-Gleichgewicht unterliegt keinerlei Selektions- und Evolutionsfaktoren (HARDY (1908) und WEINBERG (1908). Dieses Gleichgewicht setzt ideale Bedingungen, wie Panmixie, voraus und ist eher theoretischer Natur.

Das Hardy-Weinberg-Gleichgewicht wurde für jeden Locus einzeln berechnet. Keiner der Loci befand sich im Hardy-Weinberg-Gleichgewicht. Alle Loci wichen hochsignifikant vom Hardy-Weinberg-Gleichgewicht ab.

Dieses Ergebnis war zu erwarten, da allein durch die zum Teil sehr großen Entfernungen zwischen den Revieren keine Panmixie stattfinden kann. Allerdings zeigten sich bei der Überprüfung des Hardy-Weinberg-Gleichgewichts der einzelnen Populationen (Reviere) die meisten Loci und Reviere keine bzw. keine signifikante Abweichung vom Hardy-Weinberg-Gleichgewicht. Dies weist also darauf hin, dass die Gesamtpopulation Selektionsprozessen und Einschränkungen Fortpflanzungsgeschehen unterliegt; die kleineren im Einzelpopulationen aber der idealen Population viel näher kommen. Neben der offensichtlich möglichen Panmixie innerhalb der Reviere scheint innerhalb der Einzelpopulationen die Tierzahl und damit die Anzahl der Allele groß genug zu sein, um keine Abweichung vom Hardy-Weinberg-Gleichgewicht zu bewirken, denn eine hohe bzw. ausreichende Tierzahl ist eine der Voraussetzungen für das Hardy-Weinberg-Gleichgewicht und verhindert eine Heterozygotenreduktion durch Inzucht. Es ist zu bedenken, dass mögliche Nullallele, also heterozygote Allele, die aber nur eine Bande im Sequenzierautomaten zeigen und so homozygot erscheinen, eine stärkere Abweichung vom Hardy-Weinberg-Gleichgewicht bewirken (VAN OOSTERHOUT et al., 2004). Dies kann im vorliegenden Fall ausgeschlossen werden. Der Datensatz wurde mittels Micro-Checker 2.2.3 (VAN OOSTERHOUT et al., 2004) überprüft und es wurden keine Unregelmäßigkeiten detektiert.

5.2.1.4 Linkage disequilibrium

Auf die gleiche Art wie eine Abweichung vom Hardy-Weinberg-Gleichgewicht ein Vorhandensein einer differenzierteren Populationsstruktur anzeigt, zeigt ein Kopplungsungleichgewicht (Linkage Disequilibrium) zwischen nicht gekoppelter Loci eine Mischung verschiedener Subpopulationenen mit unterschiedlichen Allelfrequenzen (NEI & LI. 1972). Ein Linkage Disequilibrium findet innerhalb man. wenn der Genotypkonstellationen der Gesamtpopulation gewisse Allele unterschiedlicher Loci überhäufig miteinander kombinieren. Bei physikalisch nah beieinander liegenden Loci treten Kopplungsungleichgewichte auf; die können in vorliegendem Fall allerdings ausgeschlossen werden, da alle Loci (außer die Loci SW2052 und S0228 auf Chromosom 6) auf unterschiedlichen Chromosomen liegen. 27 der 28 Vergleiche zwischen den Loci zeigten ein signifikantes Kopplungsungleichgewicht. Diese hohe Zahl signifikanter Kopplungsungleichgewichte ebenfalls spricht für eine Substrukturierung der Gesamtpopulation (WILSON & GOLDSTEIN, 2000). Damit lassen sich die Interpretationen des Hardy-Weinberg-Gleichgewichts und des Wahlund-Effekts bestätigen.

5.2.1.5 F-Statistiken und Genfluss

Loci-übergreifend ergab sich ein F_{is} -Wert von -0,117. Bis auf Locus S0005 zeigten alle Loci einen negativen Wert. Negative F_{is} -Werte (Inzuchtkoeffizient) sprechen für einen Heterozygotenüberschuss; Inzuchtprozesse sind demnach nicht zu erwarten (WRIGHT, 1965). Ein hoher Grad an Differentiation innerhalb der Gesamtpopulation wurde angenommen, da lociübergreifend ein F_{st} -Wert von 0,199 errechnet wurde. Laut HARTL & CLARK (1997) zeigen Werte bis 0,05 eine vernachlässigbare genetische Differentiation, wohingegen Werte > 0,25 schon eine sehr große Differentiation bedeuten. Theoretisch kann der Wert zwischen 0 und 1 liegen. Desweiteren gibt F_{st} Auskunft über den Grad des Genflusses zwischen den Populationen (F_{st} =1: kein Genfluss; F_{st} =0: es findet ein reger Austausch zwischen den Populationen statt). Hier kann also von einem moderaten Genfluss zwischen den Substrukturen ausgegangen werden.

Die vorangegangenen Interpretationen weisen alle auf eine substrukturierte Gesamtpopulation hin, deren Untereinheiten eine hohe genetische Vielfalt zeigen. Weiterführende Berechnungen sollten nun den Grund bzw. die Einflüsse auf die Substrukturierung ermitteln. Als mögliche Faktoren wurden ein genetischer Flaschenhals, die geographische Entfernung und künstliche und natürliche Hindernisse angenommen.

5.2.1.6 Mantel-Test

Der Mantel-Test sollte eine mögliche Korrelation zwischen genetischer Distanz und geographischer Distanz aufdecken (MANTEL, 1967). Ein Korrelationskoeffizient von 0,159, wie in diesem Fall, bedeutet, dass lediglich 2,5 % der genetischen Distanz durch die geographische Distanz verursacht wurden. Bei größerer geographischer Distanz ist ein geringerer Genfluss und so eine größerer genetische Distanz zu erwarten – "isolation by distance" (WRIGHT, 1943). Die zufällige genetische Drift kann diese Differenz verstärken oder verringern. Demnach hängt im vorliegenden Fall die Substrukturierung nur in sehr geringem Maße von der physischen Entfernung ab. Es müssen also andere Einflüsse auf die Population wirken um die Substrukturierung auszulösen.

5.2.1.7 Genetischer Flaschenhals

Durch Vergleich der erwarteten mit der beobachteten Heterozygosität kann ein kürzlich entstandener genetischer Flaschenhals aufgedeckt werden. Abbildung 31 zeigt die Verteilung der Allelfrequenzen der Gesamtpopulation in unterschiedliche Kategorien. Bei einer Population mit ausgeprägter Diversität finden sich die meisten Allelfrequenzen in den ersten beiden Kategorien. Eine Linkslastigkeit spricht für ein Mutations-Drift-Gleichgewicht (CORNUET & LUIKART, 1997). In der untersuchten Population konnte kein Hinweis auf einen kürzlich durchlaufenen Flaschenhals gefunden werden. Vor rund 150 Jahren galt Deutschland als nahezu wildschweinfrei, was möglicherweise einen genetischen Flaschenhals hätte verursachen können. Allerdings lässt sich dieser nicht nachweisen, da genetischer Drift, Zuwanderung (speziell aus östlicher und westlicher Richtung) und Populationswachstum über die vergangenen Generationen die genetische Vielfalt wiederhergestellt haben. Die Population der Wildschweine in Europa wuchs im Besonderen nach dem Zweiten Weltkrieg stark an (SAEZ-ROYUELA, C. &. J.L. TELLERIA 1986, FEICHTNER 1986, DANILKIN 2001). Die große Diversität wurde auch durch das starke Populationswachstum nach dem Zweiten Weltkrieg verstärkt (SCANDURA et al., 2008). SCANDURA et al. (2008) gehen gar so weit, die letzte Eiszeit (vor 10.000 Jahren) als letzten entscheidenden Faktor, mit Effekt auf die Diversität, zu benennen. Also ist im vorliegenden Fall ein genetischer Flaschenhals als substrukturierender Faktor auszuschließen.

5.2.1.8 Neighbor-Joining und genetische Stammbäume

Ein lociübergreifendes Dendrogramm wurde auf Basis der genetischen Distanz (GOLDSTEIN et al., 1995) erstellt. Es fiel auf, dass häufig Tiere aus einer Subpopulation nach STRUCTURE 2.3.3 (PRITCHARD et al., 2000) bzw. Tiere eines Reviers in einem Cluster vereinigt waren bzw. in geographischer Nähe zu finden waren. Die enorme Größe des Dendrogramms ließ genauere Interpretationen auf Grund der geringen Übersichtlichkeit nicht zu.

5.2.1.9 Berechnungen mit STRUCTURE 2.3.3

Mit dem Programm STRUCTURE 2.3.3 gelang eine Differenzierung der Gesamtpopulation in zehn Subpopulationen (K=10, ungeachtet der geographischen Herkunft (PRITCHARD et al., 2000). Abbildung 34 zeigt die Verteilung der zehn Subpopulationen auf die Reviere. Es zeigte sich eindeutig, dass einzelne Subpopulationen lokal gehäuft auftraten. Einzelne "Ausreißer" ließen sich auf die zufällig und ungerichtet wirkende genetische Drift zurückführen. FERREIRA et al (2008) und FERREIRA et al. (2008) konnten mit STRUCTURE 2.3.3 (PRITCHARD et al., 2000) drei Subpopulationen, deren Verbreitung jeweils durch Flüsse abgegrenzt waren, in Portugal ausfindig machen. Eine derart strenge Einteilung der Subpopulationen, mit in geographisch durch Barrieren getrennte Verbreitungsgebiete, ließ sich im vorliegenden Fall allerdings nicht finden.

5.2.2 Varianzanalysen – Barrieren und Korridore

In der vorliegenden Arbeit wurden die Einflüsse verschiedener Barrieren im Detail mittels Varianzanalyse überprüft und deren Einfluss auf genetische Parameter berechnet. Die Wirkung von Bundesautobahnen, großen Bahntrassen, Kanälen und der ehemaligen Innerdeutschen Grenze als anthropogene Hindernisse und Flüsse als natürliche Hindernisse, wurde untersucht. Als genetische Parameter wurden die genetische Distanz nach Nei, die unverzerrte genetische Distanz nach Nei, die genetische Distanz nach Reynolds und F_{st} (F-Statistik) berechnet und einbezogen. Alle folgenden Angaben beziehen sich auf kilometerbereinigte Berechnungen; ein Einfluss der reinen geographischen Distanz ist also nicht vorhanden.

Es zeigte sich im Falle der Autobahnen eine signifikante Erhöhung der genetischen Distanz, wenn zwischen zwei Populationen Bundesautobahnen lagen. Je mehr Bundesautobahnen zwei Populationen trennten, umso größer wurde die genetische Distanz; der Genfluss war offensichtlich verringert. Die Barrierewirkung von Autobahnen auf große Landsäuger konnten FRANTZ et al. (2012) am Beispiel des Rothirschs belegen. Dabei konnte für das Wildschwein keine Barrierewirkung von Autobahnen festgestellt werden. Zwar stellen Autobahnen auch in der vorliegenden Studie keine absolute Barriere für Wildschweine dar, sie zeigen aber dennoch einen signifikanten Einfluss. Schaut man sich die Autobahnführung in Deutschland an, so kann man zwischen Bereichen in den Mittelgebirgen und solchen im Tiefland differenzieren. Unzählige Talbrücken in den Mittelgebirgen sprechen gegen eine absolute Barrierefunktion von Autobahnen. Diese Unterschiede wurden allerdings in der vorliegenden Arbeit nicht untersucht. Schon ein Blick auf eine Übersichtskarte von Deutschland, in der die Autobahnen eingezeichnet sind, legt den Verdacht nahe, dass, wie aus den untersuchten Daten hervorgeht, im Westen des Landes eine größere Differentiation vorliegt. Die geringste bei Populationen, die durch die ehemalige Innerdeutschen Grenze voneinander getrennt wurden. Stellten Autobahnen ein unüberwindliches Hindernis, also eine absolute Barriere dar, würde man stärkere genetische Differentiation erwarten; desweiteren müsste nach einigen Generationen und je nach Größe der Populationen ein gewisser Grad an Inzucht nachweisbar sein. Genvariationen könnten im Extremfall lediglich durch Zufallsereignisse und ohne Immigrationsprozesse entstehen. Weiter ist zu bedenken, dass Autobahnen (wie auch Bahnlinien) in ihrer heutigen Form zum großen Teil seit weniger als 100 Jahre bestehen. VERNESI et al. (2003) stellten fest, dass die genetische Variabilität beim Wildschwein recht hoch ist und dass der anthropogene Einfluss in den letzten Jahrzehnten nicht so gravierend war - im Vergleich zu anderen Wildarten (z.B. TAYLOR et al., 1994; HOULDEN et al., 1996; O'Ryan et al., 1998). Diesen Ansatz auf die Wirkung von Barrieren übertragen und die Ergebnisse von FRANTZ et al. (2003) bedenkend, liegt der Schluss nahe, dass, wenn Autobahnen einen Einfluss auf den Genfluss beim Wildschwein nehmen, dieser Befund auch auf andere, weniger invasive Tierarten übertragbar sein müsste. Diese These benötigt eine eingehende Prüfung und zeigt den Forschungsbedarf auf.

Bahnlinien, die Flüsse. Kanäle zeigten keinen signifikanten Einfluss auf populationsgenetischen Parameter. Bei Bahnlinien und Flüssen stieg die genetische Distanz bei Vorhandensein des Hindernisses nicht signifkant an. Bei Kanälen hingegen fiel die genetische Distanz tendenziell ab. Als Erklärung bietet sich an, dass im vorliegenden Fall hauptsächlich Kanäle im Osten des Landes Populationen voneinander trennten. Der Osten des Landes (östlich der Elbe bzw. östlich der ehemaligen Innerdeutschen Grenze) ist landschaftlich weniger strukturiert und fragmentiert. In dieser Landschaftsstruktur findet sich eine, verglichen mit dem Westen, signifikant verminderte genetische Fragmentierung. Flüsse, Hindernis. werden hierzulande Wildschweinen offensichtlich als natürliches von durchschwommen und zeigen keinen Einfluss auf die genetische Distanz und den Genfluss, während FERREIRA et al. (2006 & 2008) Flüsse als trennende Barrieren diskutieren. So wird in Portugal eine steilere Uferhanglage beschrieben, bei größeren Unterschieden der getrennten Populationen. Allerdings werden dort weiterhin drei verschiedene Migrationswege (aus Süd-, Zentral und Nordspanien) diskuttiert. Außerdem finden sich in Deutschland – speziell im untersuchten Gebiet und an den betrachteten großen Flüssen - keine steilen Ufer. Bahnlinien stellen keine Barriere dar. Der Grund hierfür liegt vermutlich in der geringeren Frequenz, in der Bahnlinien - im Vergleich zu Bundesautobahnen - befahren werden. Nach HOHMANN (2003) steigt die Barrierewirkung einer Straße mit steigendem Verkehrsaufkommen (siehe auch Tabelle 4). Die Barrierewirkung der Bahnlinien wird hier der Kategorie A (geringes Verkehrsaufkommen: <1000 Fahrzeuge/Tag) nach HOHMANN (2003) zugeordnet.

Desweiteren wurde mittels einer Varianzanalyse untersucht, ob die ehemalige Innerdeutsche Grenze einen (noch) nachweisbaren Einfluss auf die genetische Struktur der Wildschweinpopulation hatte. Die ehemalige Grenze ermöglicht den Wildschweinen tendenziell einen günstigeren Genfluss (P=0,61). Die ehemals unüberwindliche Grenze wurde

in den vergangenen 23 Jahren begrünt und bietet heute verschiedensten, auch seltenen Wildarten, Einstand und Rückzugsgebiet. (Abb. 40 und Abb. 41). Die Innerdeutsche Grenze bildet damit heute eher einen Korridor als eine Barriere. Der BUND strebt einen Europaweiten Biotopverbund an und unterstützt den Erhalt dieser Grünflächen mit verschiedenen Projekten (http://www.bund.net/spenden/spendenprojekte/das_gruene_band/). Möglicherweise wären bei Tieren, unmittelbar um den Zeitpunkt der Aufhebung der Grenze, Effekte gefunden worden. Die recht kurze Generationszeit der Wildschweine lässt vermuten, dass in der Zeit seit Grenzöffnung Effekte entstehen wie auch verloren gehen konnten. Zwar verweisen SCANDURA et al. (2008) auf einen erheblich längeren Zeitraum, um tiefgreifende Effekte nach Trennung erkennen zu können, aber im Falle der Innerdeutschen Grenze geht es um ein Gebiet von nur geringer Breite, die einen raschen Austausch zwischen zuvor hermetisch getrennten Populationen erwarten lassen.

Abbildung 40: Die ehemalige Innerdeutsche Grenze (Quelle: http://www.ddrfotos.de/deutsch-deutsche-grenze.htm)

Abbildung 41: Ein grünes Band - Die ehemalige Innerdeutsche Grenze heute (Quelle: http://www.bund.net/spenden/spendenprojekte/das_gruene_ band/?pk_campaign=Spenden&pk_kwd=das%20gr%C3%BCne%20 band)

5.3 Vergleich der Ergebnisse mit anderen Studien

In Tabelle 3 in Abschnitt 2.3.1.2 sind die Tierzahlen, die erwartete Heterozygosität, die beobachtete Heterozygosität, der Inzuchtkoeffizient und der F_{st} -Wert der hier untersuchten Population den Zahlen anderer europäischer Studien gegenübergestellt (VERNESI et al., 2003; FERREIRA et al., 2006;, SCANDURA et al., 2008; FERREIRA et al., 2009; NIKOLOV et al., 2009; VELIKOVIC et al., 2010; FRANTZ et al., 2012). Mit einer Probandenzahl von 521 Tieren war die vorliegende mit Abstand die größte Studie. Das Untersuchungsgebiet war ebenfalls erheblich größer als die Vergleichsgebiete.

Mit einer erwarteten Heterozygosität von 0,757 und einer beobachteten Heterozygosität von 0,663 liegt die deutsche Population jeweils etwas höher als die anderen europäischen Populationen. In allen oben genannten Populationen fand sich der Wahlund-Effekt, also die Reduktion der Heterozygosität gegenüber den Erwartungen. Demnach zeigen alle Populationen eine Differentiation in kleinere Untereinheiten unterschiedlichen Ausmaßes. Als einzige Gruppe zeigten die Wildschweine der vorliegenden Studie einen negativen F_{is}-Wert, also einen Heterozygotenüberschuss. Die anderen Wildschweinpopulationen zeigten einen geringgradig positiven Wert, was auf geringe Inzuchtprozesse hinweist. Auch der F_{st}-Wert der deutschen Population liegt mit 0,199 etwas über den Werten der anderen Gruppen; das spricht für etwas mehr Substrukturierung.

Insgesamt scheint die Wildschweinpopulation in Deutschland im Vergleich strukturierter zu sein, bei gleichzeitig größerer Diversität.

5.4 Bewertung und Ausblick

Die vorliegende Studie bereichert das Mosaik der phylogenetischen Studien des Wildschweins in Europa um einen wichtigen Baustein. Als Population, die in Zentraleuropa heimisch und so im Besonderen mannigfaltigen anthropogenen Einflüssen ausgesetzt ist und speziell aus östlicher und westlicher Richtung mit Populationen der Nachbarländer korrespondiert, ist sie von großem Interesse. Die Verwendung von Mikrosatelliten für phylogenetische Studien hat sich bewährt und kann uneingeschränkt weiter empfohlen werden. Die gewonnenen Erkenntnisse bestätigen in vielerlei Hinsicht Annahmen vorangegangener Studien und Theorien der Populationsgenetik. Für viele Spezies gilt, dass die geographische Verbreitung um einiges größer ist als die individuellen Wander- und Streuungskapazitäten, und so sind die meisten natürlichen Populationen in lokale Subpopulationen unterteilbar (NEI & LI, 1972; BALLOUX & LOGON-MOULIN, 2002). WRIGHT (1951) berichtet, dass ein gewisser Grad von Populationsstrukturen einen gewissen evolutionären Vorteil mit sich bringt; dies fördert eine höhere genetische Diversität als eine panmiktische Population. Die genetische Drift scheint nach SLATKIN (1994) in expandierenden Populationen reduzierte Effekte zu haben.

Weiterer Forschungsbedarf besteht in der Detailbetrachtung einzelner Populationen, dabei könnten konkrete Vergleiche zwischen Populationen, die in stark unterschiedlichen Habitaten leben bzw. sich in verschiedenen Stadien der Verinselung befinden, verwendet werden. Gleichzeitig könnte durch eine genauere Anamnese (Geschlecht, Alter, Zugehörigkeit zur gleichen Rotte, etc.) eine genauere Familienstruktur ermittelt werden. Eventuell wäre dazu eine Erweiterung des Mikrosatellitensets nötig, um intrafamiliär wirklich alle Tiere differenzieren zu können.

Um Ausbreitungswege von Tierseuchen besser bzw. überhaupt vohersagen zu können, wäre ein Vergleich der genetischen Struktur mit Vorkommen und Prävalenzen von ausgewählten Krankheitserregern sinnvoll und könnte nützliche Erkenntnisse bieten, um im Tierseuchenfall Sperrbezirke, etc., flexibler und den wahrscheinlicheren Verbreitungswegen angepasst zu bestimmen.

Ein weiterer Diskussionspunkt wäre, ob und wie frequentiert Wildschweine die straßenbautechnischen "Unterführungen" nutzen, seien es Kanäle zum Wasserabtransport oder Autobahnbrücken, die unterlaufen werden können. Gerade in deutschen Mittelgebirgen, wo die Autobahnen häufig mit Talbrücken geführt werden, könnten diese Stellen als Querungsmöglichkeit für Wild eine große Rolle spielen. Um diese zu quantifizieren, würde sich ein Vergleich zwischen Populationen anbieten, die dies- und jenseits von bezaunten bzw. mit Talbrücken besetzten Autobahnen, beheimatet sind. Gute Erfolge wurden beim Wildschwein und speziell auch bei gefährdeteren Arten mit kleinerer Home Range und geringeren Wanderdistanzen mit Grünbrücken erzielt (z.B.: CLEVENGER & WALTHO, 2005; GLOYNE & CLEVENGER, 2001), die Barriereeffekten durch Wildzäune entgegen wirken können. Eine eingehendere Untersuchung eventuell an einer definierten Stelle bzw. vorhandenen Grünbrücke wäre von Interesse.

Eine Kombination aus Genotypisierung und telemetrischer Erhebungen mittels GPS-Sendern könnte weitere Erkenntnisse über die Wander- und Verbreitungswege der Wildschweine liefern.

6 Zusammenfassung

Dem Wildschwein als Wildart mit hoher Dichte und steigender Ausbreitungstendenz kommt nicht nur von wissenschaftlicher Seite ein hohes Maß an Interesse zu. Durch die ihnen zu eigene, hohe Invasivität sind Wildschweine in fast ganz Deutschland in nicht unbeträchtlichen Zahlen beheimatet und kollidieren - auch immer häufiger im urbanen Raum - mit menschlichen Interessen; nicht zuletzt verursachen Wildschweine hohe wirtschaftliche Schäden in Land- und Forstwirtschaft.

521 Wildschweine aus den verschiedensten Regionen Deutschlands wurden mittels Mikrosatellitenanalyse genotypisiert. Dabei wurde ein Set von acht Mikrosatelliten (SW1701, SW1979, S0005, S0070, SW288, SW2052, S0228, S0359) verwendet. Die Mikrosatelliten-DNA wurde mittels PCR amplifiziert und unter Verwendung der Polyacrylamidgelelektrophorese optisch dargestell; anschließend erfolgte eine populationsgenetische und statistische Auswertung.

Mit den gewählten Mikrosatelliten ließen sich über 90 % der Tiere differenzieren. Die beobachtete Heterozygosität lag mit 0,663 etwas über dem Wert anderer europäischer Studien, ebenso die erwartete Heterozygosität (0,757). Der vorhandene Wahlund-Effekt spricht für eine Substrukturierung der Population, was durch die Ergebnisse des Hardy-Weinberg-Gleichgewichts und der F-Statistiken bestätigt wird. Hinweise darauf, dass die Population einen genetischen Flaschenhals durchlaufen hat, ließen sich nicht finden. Insgesamt zeigt die Population der Wildschweine in Deutschland eine hohe genetische Diversität und ist gleichzeitig stark differenziert und in verschiedene kleinere Einheiten bzw. Subpopulationen unterteilbar. Die starke Differentiation wirkt sich aber nicht reduzierend auf die Diversität innerhalb der Reviere bzw. Subpopulationen aus.

Während FRANTZ et al. (2012) keine Barrierewirkung durch Autobahnen in Belgien für das Wildschwein nachweisen konnten, zeigte sich in der vorliegenden Studie eine solche Barrierewirkung deutlich. Großen Bahntrassen, Kanälen und Flüssen ließen sich keine signifikanten Barrierewirkungen nachweisen. Auch erwies die ehemalige Innerdeutsche Grenze keinen, den Genfluss beeinflussenden, Effekt.

Diese Studie liefert erstmals einen deutschlandweiten Einblick in die genetische Struktur der Wildschweinpopulation. Das gewählte Mikrosatellitenset ermöglichte eine präzise Differenzierung und Identifizierung der einzelnen Individuen und anschließende Weiterverarbeitung der Ergebnisse. Die klassischen Parameter der Populationsgenetik konnten für die Gesatmtpopulation und die einzelnen Reviere erfolgreich erhoben werden. Des Weiteren konnte eine signifikante Habitatfragmentierung durch Bundesautobahnen offengelegt werden. Demnach wurde das Ziel, sich einen Überblick zu verschaffen, erreicht. Weiterer Forschungsbedarf besteht in der Verknüpfung der genetischen Struktur mit der Verbreitung von Wildkrankheiten.

7 Summary

The wild boar as a wide spread and further expanding species is a matter of particular interest – not only from the scientific view. In fact, populations are located in great quantities in almost every region in Germany. They often conflict with human interests even in urban areas. The economic consequences are considerable, especially in agriculture and forestry.

521 wild boars were genotyped with eight microsatellites (SW1701, SW1979, S0005, S0070, SW288, SW2052, S0228, S0359). The samples were derived from nearly every region in the country, with a high dispersal of wild boars. The DNA samples were amplificated with PCR and were visualized with polyacrylamide gel electrophoresis. Alleles were analysed with statistical and population genetical methods.

The values of observed and expected heterocygosity were slightly higher (0,663 and 0,757, respectively) than in other European studies. The located Wahlund-effect indicated a substructure of the population. This fact was confirmed from the results of the Hardy-Weinberg deviation and F-statistics. There were no hints that the population passed an genetic bottleneck recently. The population of wild boars in Germany showed a high degree of genetic diversity. At the same time it was highly differentiated and divisible in smaller units, respective subpopulations. The high level of differentiation had no reducing effect on the diversity within the subpopulations.

Instead of FRANTZ et al. (2012), who found no barrier effects of highways on the genetic structure of wild boar, this study showed such an effect. Railroad lines, rivers and channels had no significant effect as a barrier. Furthermore the former Inner German Border did not proved a influence on the geneflow.

This study allows for the first time a nationwide insight on the genetic structure of the wild boar population. The chosen set of microsatellites offered a precise differentiation and identification of individuals, which was important for the further processing. The typical population genetic parameters could be elevated successfully for the basic population and the subpopulations. In addition, a significant habitat fragmentation by highways was detected. The main aim to reach survey over the genetic structure of wild boar population in Germany was accomplished. There is some need to connect the genetic structure with dispersal of infectious diseases.
8 Literaturverzeichnis

ACHMANN R., CURIK I., DOVC P., KAVAR T., BODO I., HABE F., MARTI E., SÖLKNER J., BREM G. (2004): Microsatellite diversity, population subdivision and gene flow in the Lipizzan horse. *Animal Genetics*. 35: 285-292.

ALEXANDER L.J., ROHRER G. A., BEATTIE C.W. (1996): Cloning and characterization of 414 polymorphic porcine microsatellites. *Animal Genetics*. 27: 137-48.

ALLENDORF F.W., CHRISTIANSEN F.B., DOBSON T., EANES W.F., FRYDENBERG O. (1979): Electrophoretic variation in large mammals, I. The polar bear, Thalarctos maritimus. *Hereditas*. 9: 19-22.

ANDERSON E. C., THOMPSON E. A. (2002): A model-based method for identifying species hybrids using multilocus genetic data. *Genetics*. 160: 1217–1229.

ANDREWS A. (1990): Fragmentation of habitat by roads and utility corridors: A review. *Australian Zoologist.* 26: 130-141.

ASHLEY M.V., DOW B.D. (1994): The use of microsatellite analysis in population biology: background, methods and potential applications. In: SCHIERWATER, B.; B. STREIT; G. P. WAGNER u. R. DESALLE (Hrsg.): Molecular ecology and evolution: approaches and applications. *Experientia Supplementum* 69. Birkhäuser Verlag, Basel: 185-201.

BALKENHOL N., WAITS L.P. (2009): Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. *Molecular Ecology*. 18: 4151-4164.

BALLOUX F., LUGON-MOULIN N. (2002): The estimation of population differentiation with microsatellite markers. *Molecular Ecology*. 11: 155-165.

BIEBER C., RUF T. (2002): Populationsökologie des Schwarzwildes. Österreichisches Weidwerk. 8: 11-14.

BIEBER C., RUF T. (2005): Population dynamics in wild boar *Sus scrofa*: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. *Journal of Applied Ecology*. 42: 1203–1213.

BJORNSTAD G., RØED K.H. (2001): Breed demarcation and potential for breed allocation of horses assessed by microsatellite markers. *Animal Genetics*. 32: 59-65.

BLAB J. (1992): Isolierte Schutzgebiete, vernetzte Systeme, flächendeckender Naturschutz? Stellenwert, Möglichkeiten und Probleme verschiedener Naturschutzgebiete. *Natur und Landschaft.* 67: 419-424.

BLOCK S. (2004): Populationsgenetische Untersuchungen an slowakischen Braunbären mit Hilfe mitochondrialer und nukleärer DNS. *Gießen, Justus-Liebig-Universität, Dissertation*.

BOITANI L., MATTEI L., NONIS D., CORSI F. (1994): Spatial and activity patterns of wild boar in Tuscany, Italy. *Journal of Mammalogy*. 75: 655-658.

BORCHERS D.L., ZUCCHINI W., BUCKLAND S.T. (2002): Estimating animal abundance – Closed Populations. – Springer Verlag, London, Berlin 28: 269-274.

BRIEDERMANN L. (1967): Untersuchungen zur Ernährung des Schwarzwildes im Flachland der Deutschen Demokratischen Republik. Eberswalde, *Institut für Forstwissenschaften*.

BRIEDERMANN, L. (1971): Zur Reproduktion des Schwarzwildes in der Deutschen Demokratischen Republik. *Jagd- und Wildtierforschung* 7, 169-186.

BRIEDERMANN, L. (2009): Schwarzwild, Auflage 9, Kosmos, Stuttgart.

BROWN A.H.D., WEIR B.S. (1983): Measuring genetic variability in plant populations, in Isozymes. In: TANKSLEY S.D., ORTON T.J. (Hrsg.) Plant Genetics and Breeding, Part A, Elsevier Science Publications, Amsterdam: 219-239.

CALENGE C., MAILLARD D., VASSANT J., BRANDT S. (2002): Summer and hunting season home ranges of wild boar (*Sus scrofa*) in two habitats in France. *Game Wildlife Science* 19: 281-301.

CAVALLI-SFORZA L.L., EDWARDS A.W.F. (1967): Phylogenetic analysis: models and estimation procedures. *Evolution*. 32: 550-570.

CLEVENGER A., WALTHO N. (2005): Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. *Biological Conservation*. 121: 453-464.

CONNER J.K., HARTL D.L. (2004): A Primer of Ecological Genetics,: Sinauer Associates, Sunderland, Massachusetts.

CORNUET J.M., LUIKART G. (1997): Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. *Genetics*. 144: 2001-2014.

COULON A., GUILLOT G., COSSON J.-F., ANGIBAULT J.M.A., AULAGNIER S., CARNGNELUTTI B., GALAN M., HEWISON A.J.M (2006): Genetic structure is influenced by landscape features: empirical evience from a roe deer population. *Molecular Ecology*. 15: 1669-1679.

COULON A., GUILLOT G., COSSON J.-F., ANGIBAULT J.M.A., AULAGNIER S., CARNGNELUTTI B., GALAN M., MORELLET N., PETIT E., HEWISON A.J.M (2004): Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. *Molecular Ecology*. 13: 2841-2850.

CRAIGHEAD L., PAETKAU D., REYNOLDS H.V., VYSE E. R., STROBECK, C. (1995): Microsatellite analysis of paternity and reproduction in Arctic grizzly bears. *Journal of Heredity.* 86: 255-261.

DALLAS J.F. (1992): Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. *Mammalian Genome*. 5: 32-38.

DANILKIN A.A. (2001): The wild boar: the unprecedented spread or restoration of the species range? *Doklady Biological Science*. 380: 457-460.

DEBEAUX O., FESTA E. (1927): La ricomparsa del cinghiale nell'Italia settentrionaleoccidentale. *Memorie della Società Ltaliana di Sienze naturali e Museo Civico die Storia Naturale di Milano.* 3: 263-322. DELGADO R., FERNANDEZ-LLARIO AZEVEDO M., BEJA-PEREIRA A., SANTOS P. (2008): Paternity assessment in free-ranging wild boar – are littermates full-sibs? *Mammalian Biology*. 73: 169-176.

DI RIENZO A., PETERSON A.C., GARZA J.C., VALDÈS A.M., SLATKIN M., FREIMER N.B. (1994): Mutational processes of simple-sequence repeat loci in human populations. *Proceedings, Western Section, American Society of Animal Science*. 91: 3166-3170.

DJV-Handbuch, 2010, Bonn.

ECKERT I. (2003): DNA-Analysen zum genetischen Status der Wildkatze (Felis sylvestris) in Deutschland. *Kiel, Christian-Albrechts-Universität, Mathematisch-naturwissenschaftliche Fakultät, Dissertation.*

EDING J.U., LAVAL G. (1999): Measuring genetic uniqueness in livestock. In: EDWARDS A., CIVITELLO A., HAMMOND H.A., CASKEY C.T. (1991): DNA-typing and genetic mapping with trimeric and tetrameric tandem repeats. *The American Journal of Human Genetics*. 49: 746-756.

EDWARDS A., HAMMOND H.A., JIN L., CASKEY C.T., CHAKRABORTY R. (1992): Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. *Genomics*. 12: 241-253.

ERKINARO E., HEIKURA K., LINDGREN E., PULLIAINEN E., SULKAVA S.(1982): Occurrence and spread of the wild boar (*Sus scrofa*) in eastern Fennoscandia. *Memoranda scietatis pro fauna et flora fennica*. 58: 39-47.

ESTOUP A., CORNUET J.M. (1999): Microsatellite evolution: inferences from population data. In: Microsatellites - Evolution and application. Eds.: D. B. Goldstein and C. Schlötterer. Oxford University Press, Oxford, 49-64.

FEICHTNER B. (1998): Ursachen der Streckenschwankungen beim Schwarzwild im Saarland. Zeitschrift für Jagdwissenschaft. 44: 140-150.

FELSENSTEIN J. (1989): PHYLIP - Phylogeny Inference Package (Version 3.2). *Cladistics*.5: 164-166.

FERNÁNDEZ-LLARIO P., MATEOS-QUESADA P. (1998): Body size and reproductive parameters in the wild boar (*Sus scrofa*). *Acta Theriologica*. 43: 439-444.

FERREIRA E., SOUTO L., SOARES A.M.V.M, FONSECA C. (2008): Genetic structure of the wild boar population in Portugal: evidence of a recent bottleneck. *Mammalian Biology*. 74: 274-285.

FERREIRA E., SOUTO L., SOARES A.M.V.M., FONSECA C. (2006): Genetic structure of the wild boar (*Sus scrofa L.*) population in Portugal. *Wildlife Biology in Practice*. 2: 17-25.

FORMAN R.T.T., ALEXANDER L.E. (1998): Roads and their major ecological effects. *Annual Review of Ecology, Evolution, and Systematics*. 29: 207-231.

FORMAN R.T.T., SPERLING D., BISSONETTE J.A. (2003): Road Ecology. Science and Solutions. Island Press, Washington, DC.

FRANKHAM R., BALLOU J.D., BRISCOE D.A. (2002): Introduction to Conservation Genetics, Cambridge University Press: Cambridge.

FRANKHAM R., BALLOU J.D., BRISCOE D.A. (2004): A Primer of Conservation Genetics, Cambridge: Cambridge University Press.

FRANTZ A.C., BERTOUILLE S., ELOY M.C., LICOPPE A., CHAUMONT F., FLAMAND M.C. (2012): Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (*Cervus elaphus*), but not wild boars (*Sus scrofa*). *Molecular Ecology*. 21: 3445-3457.

FREDHOLM M., WINTERO A.K., CHRISTENSEN K., KRISTENSEN B., NIELSEN P.B., DAVIES W., ARCHIBALD A. (1993): Characterization of 24 porcine (dA-dC)n-(dT-dG)n microsatellites: genotyping of unrelated animals from four breeds and linkage studies. *Mammalian Genome*. 4: 187-192.

FRUZINSKI B. (1995): Situation of wild boar populations in western Poland. *Journal of Mountain Ecology*. 3: 186-187.

GEISSER H., REYER H.-U. (2004): Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. *Journal of Wildlife Management*. 68: 939–946.

GEISSER H., REYER, H.-U. (2005): The influence of food and temperature on population density of wild boar *Sus scrofa* in the Thurgau (Switzerland). *Journal of Zoology*. 267: 89–96.

GEORGII B. (2001): Defizite von Umweltverträglichkeitsstudie und Landschaftspflegerischen Begleitplan – vom Blick über den Straßenrand hinaus. In: Hutter, C.P., Jauch, E., Link, F.G. (Hrsg.): *Ein Brückenschlag für Wildtiere. Beiträge der Akademie für Natur- und Umweltschutz Baden-Württemberg.* 30: 61-73.

GEORGII B., HOLZGANG O., KELLER V., PFISTER H.P. (2002): Straßen und Wildtierlebensräume – mehr Vernetzung, weniger Zerschneidung. *Straßenverkehrstechnik.* 1: 24-33.

GERSTENBERGER J. (2002): Analyse alter DNA zur Ermittlung von Heiratsmustern in einer frühmittelalterlichen Bevölkerung. *Göttingen, Georg-August-Universität, Dissertation*.

GETHÖFFER F. (2005): Reproduktionsparameter und Saisonalität der Fortpflanzung des Wildschweins (*Sus scrofa*) in drei Untersuchungsgebieten Deutschlands. *Hannover*, *Tierärztliche Hochschule*, *Dissertation*.

GLOWATZKI-MULLIS M.-L., GAILLARD C., WIGGER G., FRIES R. (1995): Microsatellite-based parentage control in cattle. *Animal Genetics*. 26: 7-12.

GLOYNE C.C., CLEVENGER A.C. (2001): Cougar Puma concolor use of wildlife crossing structures on the Trans-Canada highway in Banff National Park, Alberta. *Wildlife Biology*. 7: 117-124.

GOLDSTEIN D.B., LINARES A.R., CAVALLI-SFORZA L.L., FELDMAN M.W. (1995): Genetic absolute dating based on microsatellites and the origin of modern humans. *Proceedings of the National Academy of Sciences*. 92: 6732-6727.

GOLDSTEIN D.B., LINARES A.R., CAVALLI-SFORZA L.L., FELDMAN M.W. (1995): An Evaluation of genetic distance for use with microsatellite loci. *Genetics*. 129: 465-471.

GOULDING M. J. (2001): Possible genetic sources of free-living wild boar (*Sus scrofa*) in Southern England. *Mammal Reviews*. *31*: 245-248.

GRAPES L., MALEK M., ROTHSCHILD M.F. (2000): Identification of Identical Twins and Mutation rate in pigs. *Swine Research Report.* 23: 83-84.

GRAU S (1998): Überblick über Arbeiten zur Landschaftszerschneidung sowie zu unzerschnittenen Räumen in der Bundes-, Landes- und Regionalplanung Deutschlands. *Natur und Landschaft.* 73: 427-434.

GROOT BRUINDERINK W.T.A., HAZEBROEK E., v.d.VOET H. (1994): Diet and condition of wild boar, *Sus scrofa scrofa*, without supplementary feeding. *Journal of Zoology*. 233: 631-648.

GROOT-BRUINDERINK G., HAZEBROEK E (1995): Modelling carrying capacity for wild boar *Sus scrofa scrofa* in a forest/heathland ecosystem . *Wildlife-Biology*. 1, 81-87.

GUO S.W., THOMPSON E.A. (1992): Performing the exact test for Hardy-Weinberg proportion for multiple Alleles. *Biometrics*. 48: 361-372.

HANCOCK J.M. (1999): Microsatellites and other simple sequences: genomic context and mutational mechanisms. In: Microsatellites - Evolution and application Goldstein, D. B., Schlötterer, C. *Oxford University Press*, Oxford, 1-6.

HARDY, G. H. (1908): Mendelian proportions in a mixed population. Science. 28: 49 - 50.

HARTL D.L. (2000): A Primer of Population Genetics 3rd Ed, Sunderland, Massachusetts: Sinauer Associates, Inc.

HARTL D.L., CLARK A.G. (1997): Principles of Population Genetics 3rd Ed, Sunderland, Massachusetts: Sinauer Associates, Inc.

HECK L., RASCKE G.(1985): Die Wildsauen. Verlag Parey, Berlin und Hamburg.

HEDRICK PW (2000): Genetics of Populations 2nd Ed, Boston: Jones and Bartlett.

HEISE-PAVLOV P.M., HEISE-PAVLOV S.R. (2003): Feral pigs in tropical lowland rainforest of northeastern Australia: ecology, zoonosees and management. *Wildlife Biology*. 9: 21-27.

HENNIG R. (1998): Schwarzwild: Biologie, Verhalten, Hege und Jagd. BLV, München, Wien, Zürich.

HENNIG W. (1998): Genetik. 2. Auflage. Springer-Verlag, Berlin.

HERRMANN M., MATHEWS A. (2007): Wirkung von Barrieren auf Säuger und Reptilien.ProjektdesDeutschenJagdschutz-Verbandese.V.(http://medienjagd.test.newsroom.de/herrmann_endberichtdok20.pdf Stand: 20.07.2012)

HERZOG A., HECHT W. (1998): Chromosomaler Polymorphismus bei Wildschweinen. In: HOFMANN, R.R. (Hrsg): 2. Schwarzwild-Symposion Giessen. Schriften des Arbeitskreises für Wildbiologie und Jagdwissenschaft an der Justus-Liebig-Universität Giessen, Sonderheft 2: 31-35.

HEYEN D.W., BEEVER J.E., DA, Y., EVERT R.E., GREEN C., BATES S.R.E., ZIEGLE J.S., LEWIN H.A. (1997): Exclusion probabilities of 22 bovine microsatellite markers in flourescent multiplexes for semi-automated parentage testing. *Animal. Genetics.* 28: 21-27.

HOHMANN U (2003): Gutachterliche Stellungnahme zur Barrierewirkung von Straßen für Rotwild (Cervus elaphus) dargestellt am Beispiel Pfälzerwald/Nordvogesen Literaturübersicht, Situationsanalyse, Empfehlungen. Internetdokument der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz. (http://www.waldrlp.de/fileadmin/website/fawfseiten/fawf/downloads/Veroeffentlichungen/strassen_und_rotwi ld.pdf Stand: 21.11.2013)

HOHMANN U., HUCKSCHLAG D (2004): Forschungsbericht: Grenzwertüberschreitende Radiocäsiumkontamination von Wildschweinfleisch in Rheinland-Pfalz - Eine Mageninhaltsanalyse erlegter Wildschweine aus dem westlichen Pfälzerwald. (http://www.fawf.wald-rlp.de)

HOLZGANG O. (2001): Korridore für Wildtiere in der Schweiz. *Schriftenreihe Umwelt. 326:* BUWAL, Bern.

HOULDEN B.A., ENGLAND P.R., TAYLOR A.C., GREVILLE W.D., SHERWIN W.B. (1996): Low genetic variability of the Koala Phascolarctos cinereus in south-eastern Australia following a serve population bottleneck. *Molecular Ecology*. 5: 269-281.

IBM Corp. Released 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.

JAEGER J.A.G., SCHARZ-VON RAUMER H.-G., ESSWEIN H., MÜLLER M., SCHMIDT-LÜTTMANN M. (2007): Time series of landscape fragmentation caused by transportation infrastructure and urban development: a case study from Baden-Württemberg (Germany). *Ecology and Society.* 12: 22-25.

JAMES J. W. (1970): The founder effect and response to artificial selection. *Genetical research*.16: 241–250.

JEZIERSKI W., MYRCHA A. (1975): Food requirements of wild boar population. *Polish Ecological Studies*. 1: 61-83.

JOB H. (2000): "Unzerschnittene verkehrsarme Räume (UVR)" als neue Kategorie des Freiraumschutzes. Wissenschaftlicher Jahresbericht des grenzübergreifenden Biosphärenreservats Pfälzerwald-Voges du Nord. 8: 109-119.

KALINOWSKI S.T. (2002): Evolutionary and statistical properties of three genetic distances. *Molecular Ecology*. 11: 1263-1273.

KEULING O., IHDE J., STIER N., ROTH M. (2005): How stable are wild boar groups *Sus scrofa* L.? In: Pohlmeyer, K. (Hrsg.): Extended Abstracts of the XXVIIth Congress of the International Union of Game Biologists, Hannover 2005. DSV-Verlag Hamburg, 131-132.

KIM K.S., YEO J.S, CHOI C.B. (2002): Genetic diversity of north-east Asian cattle based on microsatellite data. *Animal Genetics*. 3: 201-204.

KIMURA M., OTHA T. (1978): Stepwise mutation model and distribution of allelic frequencies in a finite population. *Proceedings of the National Academy of Sciences*. 7:, 2868-2872.

KINSER A., KOOP K., MÜNCHHAUSEN H.F.v. (2010): Die Rotwildverbreitung in Deutschland. *AFZ - Der Wald.* 32-34.

KRÜGER U. (2001): Die großräumige und systematische Aufhebung von Lebensraumzerschneidungen – eine realistische Forderung des Naturschutzes? In: C.P. Hutter; E. Jauch & F.G. Link (Hrsg.): *Ein Brückenschlag für Wildtiere. Beiträge der Akademie für Natur- und Umweltschutz Baden-Württemberg.* 30: 15-42.

KUEHN R., HALLER H., SCHROEDER W., ROTTMANN O. (2004): Genetic roots of the red deer (*Cervus elaphus*) population in eastern Switzerland. *Journal of Heredity*. 95: 136-143.

KUEHN R., HINDENLANG K.E., HOLZGANG O., SENN J., STOECKLE B., SPERISEN C. (2007): Genetic Effect of Transportation Infrastructure on Roe Deer Populations (*Capreolus Capreolus*), *Journal of Heredity*. 98: 13-22.

LEMEL J.; TRUVÉ J., SÖDERBERG B. (2003): Variation in ranging and activit behaviour of European wild boar *Sus scrofa* in Sweden. *Wildlife Biology*. 9: 29-36.

LI, C.C. (1962): Population Genetics. Univ. Chicago Press, Chicago.

LOPES F.J.V., BORGES J.M.F. (2004): Wild boar in Portugal. Galemys. 16: 243-251.

LOWDEN S., FINALYSON H.A., MACDONALD A.A., DOWNIMG A.C., GOODMAN S.J., LEUS K., KASPE L., WAHYUNI E., ARCHIBALD A.L. (2002): Application of *Sus scrofa* microsatellite markers to wild suiformes. *Conservation Genetics*. 3: 347–350.

LUIKART G.L., ALLENDORF F.W., CORNUET J.M., SHERWIN W.B. (1998): Distortion of allele frequency distributions provides a test for recent population bottlenecks. *Journal of Heredity*. 89: 238-247.

MANEL S., SCHWARTZ M., LUIKART G., TABERLET P. (2003): Landscape genetics: combining landscape ecology and population genetics. *Trends in Ecology and Evolution*. 18: 189-197.

MANTEL N. (1967): The detection of disease clustering and a generalized regression approach. *Cancer Research*. 27: 209-220.

MARKOV N. (1997): Population dynamics of Wild boar (*Sus scrofa*) in Sverdlovsk oblast and its Relation to climatic factors. *Russian Journal of Ecology*. 28: 269-274.

MARSHALLL T.C., SLATE J., KRUUK L.E., PEMBERTON J.M. (1998): Statistical confidence for likelihood-based paternity inference in natural populations. *Molecular Ecology*. 7: 639-655.

MARTINEZ A.M., DELGADO J.V., RODERO A., VEGA-PLA J.L. (2000): Genetic structure of the Iberian pig breed using microsatellites. *Animal Genetics*. 31: 295-301.

MASSEI G., GENOV P.V., STAINES B.W. (1996): Diet, food availability and reproduction of wild boar in a Mediterranean coastal area. *Acta Theriologica*. 41: 307-320.

METTA M., KANGINAKUDRU S., GUDISEVA N., NAGARAJU J. (2004): Genetic characterization of the Indian cattle breeds, Ongole and Deoni (*Bos indicus*), using microsatellite markers – a preliminary study. *BMC Genetics*. 5: 16.

MEYNHARDT H. (1984): Leit- oder Führungsbachen - ihre Bedeutung in Schwarzwildsozietäten. *Unsere Jagd.* 1: 300-301.

MEYNHARDT H. (1986): Untersuchungen an europäischen Wildschweinen zur sozialen Organisation, sozialen Rangordnung; Bedeutung der Leitbachen und Brunstsynchronisation hinsichtlich der Nutzung verhaltensbiologischer Erkenntnisse zur Haltung, Stimulierung und Leistung des Fortpflanzungsprozesses beim Hausschwein. Tagung. Berlin. Humboldt-Universität zu Berlin.

MEYNHARDT H. (1989): Biologie und Verhalten - Schwarzwild-Bibliothek Bd. 1. Verlag Neumann-Neudamm, Melsungen.

MEYNHARDT H. (1990): Schwarzwild-Report. Verlag Neumann, Leipzig-Radebeul.

MILLER M.P. (2005): Alleles in Space (AIS): Computer software for the joint analysis of individual spatial genetic information. *Journal of Heredity*. 96: 722-724.

MORETTI M. (1995): Birth distribution, structure and dynamics of a hunted mountain population of wild boar, Ticino, Switzerland. *Journal of Mountain Ecology*. 3: 192-196.

MÜLLER P. (2001): Zuverlässige Abschuss-Statistik als Voraussetzung für Wildlife-Management, dargestellt am Beispiel von Schweinepest und der raumzeitlichen Dynamik von Schwarzwildschäden. *Game Conservation Newsletter*. 2: 9-19.

NEEF J. (2009): Untersuchungen zur Reproduktionsdynamik beim mitteleuropäischen Wildschwein. *Gießen, Justus-Liebig-Universität, Dissertation.*

NEI M. (1972): Genetic distance between populations. American Naturalist. 106: 283-292.

NEI M. (1978): Estimation of average heterozygosity and genetic distance from a small number of individuals. *Genetics*. 89: 583-590.

NEI M., LI W. (1972): Linkage disequilibrium in subdivided populations. *Genetics*. 75: 213-219.

NEI M., MARUYAMA T., CHAKRABORTY R. (1975): The bottleneck effect and the genetic variability in populations. *Evolution*. 29: 1-10.

NEWTON C. R., GRAHAM A. (1994): PCR. 2. Auflage. Spektrum Akademischer Verlag. Heidelberg.

NIKOLOV I.S., GUM B., MARKOV G., KUEHN R. (2009): Population genetic structure of wild boar (*Sus scrofa*) in Bulgaria as revealed by microsatellite analysis. *Acta Theriologica*. 54: 193-205.

O'RYAN C., HARLEY E.H., BRUFORD M. W., BEAUMONT M.A., WAYNE R.K., CHERRY M.I. (1998): Microsatellite analysis of genetic diversity within fragmented South Africa buffalo populations. *Animal Conservation*. 1: 85-94.

OGGIER P., RIGHATTI A., BONNARD L. (2001): Zerschneidung von Lebensräumen durch Verkehrsinfrastrukturen COST 341. Schriftenreihe Umwelt Nr. 332. Bundesamt für Umwelt, Wald und Landschaft, Bundesamt für Raumentwicklung. Bundesamt für Verkehr; Bundesamt für Straßen. Bern.

OLIVER W. (1995): Taxonomy and conservation status of the suiformes – an overview. *Journal of Mountain Ecology.* 3: 3-5.

PAETKAU D., CALVERT W., STIRLING I., STROBECK C. (1995) Microsatellite analysis of population structure in Canadian polar bears. *Molecular Ecology*. 4: 347-354.

PAGE R.D.M. (1996): TreeView: An application to display phylogenetic trees on personal computers. *Computer Applications in the Biosciences*. 12: 357-358.

PEAKALL R., SMOUSE P.E. (2006): Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes*. 6: 288-295.

PEAKALL R., SMOUSE P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. *Bioinformatics*. 28: 2537-2539.

PEMBERTON J.M., SLATE J. (1998): Genetic studies of wild deer populations: a technical revolution. In: Milne, J.A. (Hrsg.) Recent Developments in deer biology. Proc. 3rd Internat. Congr. Biol. Deer, Macaulay Land Use Research Institute and Moredun Research Institute, 64-72.

PEMBERTON J.M., SLATE J., BANCROFT D. R., BARRETT J.A. (1995): Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. *Molecular Ecology*. 4: 249-252.

PEREZ-ESPONA S., PEREZ-BARBERIA F.J., MCLEOD J.E., JIGGINS C.D., GORDON I.J., PEMBERTON J.M. (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). *Molecular Ecology*. 17: 981-996.

PETTERSSON E., LUNDEBERG J., AHMADIAN A. (2009): Generations of sequencing technologies. Genomics. 93: 95-111.

PIRY S., LUIKART G., CORNUET J., BOTTLENECK M. (1999): A computer program for detecting recent reductions in the effective population size using allele frequency data. *Journal of Heredity*. 90: 502–503.

PRITCHARD J.K., ROSENBERG N.A. (1999): Use of unlinked genetic markers to detect populationstratification in association studies. *The American Journal of Human Genetics*. 65: 220-228.

PRITCHARD J.K., STEPHENS M., DONNELLY P. (2000): Inference of population structure using multilocus genotype data. *Genetics*. 155: 945–959.

RAYMOND M., ROUSSET F. (1995): GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. *Journal of Heredity*. 86: 248-249.

RECK H., KAULE G. (1993): Straßen und Lebensräume: Ermittlungen und Beurteilung straßenbedingter Auswirkungen auf Pflanzen, Tiere und Lebensräume, Abschlussbericht Bundesministerium für Verkehr. Bonn.

REINER G., KLIEMT D., WILLEMS H., BERGE T., FISCHER R., KÖHLER F., HEPP S., HERTRAMPF B., DAUGSCHIES A., GELDERMANN H., MACKENSTEDT U., ZAHNER H. (2007): Mapping of quantitative trait loci affecting resistance/susceptibility to Sarcocystis miescheriana in swine. *Genomics.* 89: 638-664.

REYNOLDS J., WEIR B.S., COCKERHAM C.C. (1983): Estimation of the coancestry coefficient: basis for a short-term genetic distance. *Genetics*. 105: 767-779.

RICHARDS R.I., SUTHERLAND G.R. (1994): Simple repeat DNA is not replicated simply. *Nature Genetics*. 6: 114-116.

RIQUET J., MILAN D., WOLOSZYN N., SCHMITZ A., PITEL F., FRELAT G., GELLIN J. (1995): A linkage map with microsatellites isolated from swine flow-sorted chromosome 11. *Mammalian Genome. 6: 623-8.*

ROBIC A., MILAN D., WOLOSZYN N., RIQUET J., YERLE M., NAGEL M., BONNET M., PINTON P., DALENS M., GELLIN J. (1997): Contribution to the physically anchored linkage map of the pig. *Animal Genetics*. 28: 94.

ROED K.H. (1998): Microsatellite variation in Scandinavian Cervidae using primers derived from Bovidae. *Hereditas*. 129: 19-25.

ROHRER G.A., ALEXANDER L.J., KEELE J.W., SMITH T.P., BEATTIE C.W. (1994): A microsatellite linkage map of the porcine genome. *Genetics*. 136: 231-245.

ROUSSET F. (2008): Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. *Molecular Ecology Resources*. 8: 103-106.

ROUSSET F., RAYMOND M. (1995): Testing heterozygote excess and deficiency. *Genetics*. 140: 1413-1419.

SAEZ-ROYUELA C., TELLERIA J.L. (1986): The increased population of wild boar in Europe. *Mammal Review*. 16: 97-101.

SAITOU N., NEI M. (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution*. 4: 406-425.

SCANDURA M., IACOLINA L., APOLLONIO M. (2011): Genetic diversity in the European wild boar *Sus scrofa*: phylogeography, population structure and wild x domestic hybridization. *Mammalian Reviews*. 41: 125-137.

SCANDURA M., IACOLINA L., CRESTANELLO B. (2008): Ancient versus recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? *Molecular Ecology*. 17:1745–1762.

SCHLEY L., ROPER T.J. (2003): Diet of wild boar *Sus scrofa*. Western Europe, with particular reference to consumption of agricultural crops. *Mammalian Review*. 33: 43-56.

SCHLÖTTERER C., TAUTZ D. (1992): Slippage synthesis of simple sequence DNA. *Nucleic Acids Research.* 20: 211-215.

SCHWEND K. (2001) Untersuchungen zur genetischen Variabilität der Kärntner Brillenschafe in Österreich. *Wien, Veterinärmedizinische Universität, Dissertation.*

SINGER F.J., SWANK W.T., CLEBSCH E.E.C. (1984): Effects of wild pig rooting in a deciduous forest. *Journal of Wildlife Management*. 48: 464-473.

SJARMIDI A., GERARD J.F. (1988): Autour de la systèmatique et la distribution des suidès. *Monitore zoologico italiano*. 22: 415-448.

SLATKIN M. (1987): Gene flow and the geographic structure of natural populations. *Sience*. 23: 787-792.

SLATKIN M. (1995): A measure of population subdivision based on microsatellite allele frequencies. *Genetics*. 139: 1463.

SODEIKAT G., PAPENDIECK J., POHLMEYER K. (2005): Wild boars' (*Sus scrofa*) resting site ranges, preferences and variability concerning drive hunts in mixed forest stands in Lower Saxony, Germany In: Pohlmeyer, K. (Hrsg.): Extended Abstracts of the XXVIIth Congress of the International Union of Game Biologists, Hannover 2005. DSV-Verlag Hamburg, 485-487.

SODEIKAT G., POHLMEYER K. (2002): Temporary home range modifications of wild boar family groups (*Sus scrofa* L.) caused by drive hunts in Lower Saxony (Germany). *Zeitschrift der Jagdwissenschaft.* 48: 161-166.

SODEIKAT G., POHLMEYER K. (2003): Escape movements of familiy groups of wild boar *Sus scorfa* influenced by drive hunts in Lower Saxony, Germany. *Wildlife Biology*. 9: 257-263.

SODEIKAT G., POHLMEYER K. (2003): Escape movements of family groups of wild boar *Sus scrofa* influenced by drive hunts in Lower Saxony, Germany. *Wildlife Biology*. 9: 43-49.

SPENCER P.B.S., HAMPTON J., LAPIDGE S.J., MITCHELL J., LEE J., PLUSKE J.R. (2006): An assessment of the genetic diversity and structure within and among populations of wild pigs (*Sus scrofa*) from Australia and Papua New Guinea. *Journal of Genetics*. 85: 63-66.

SPERLICH D. (1988): Populationsgenetik: Grundlagen und experimentelle Ergebnisse. 2. Auflage. Gustav Fischer Verlag, Stuttgart.

STUBBE C. (2008): Rehwild: Biologie, Ökologie, Hege und Jagd. 5. Auflage. Franckh-Kosmos Verlag, Stuttgart.

STUBBE C., MEHLITZ S., PEUKERT R., GORETZKI J., STUBBE W., MEYNHARDT H. (1989): Lebensraumnutzung und Populationsumsatz des Schwarzwildes in der DDR-Ergebnisse der Wildmarkierung. *Beitrag zur Jagd- u. Wildtierforschung.* 16: 212-231.

SUNDQVIST A.K., ELLEGREN H., OLIVIER M. VILA C. (2001): Y-chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers. *Molecular Ecology*. 10: 1959-1966.

TAUTZ D. (1989): Hypervariability of simple sequences as a general source for polymorphic DNA markers. *Nucleic Acids Research: Oxford Journals*. 17: 6463-6471.

TAUTZ D., SCHLÖTTERER, C. (1994): Simple sequences. *Genetics & Development*. 4: 832-837.

TAYLOR A.C, SHERWIN W.B., WAYNE R.K (1994): Genetic variation of microsatellite loci in a bottlenecked species: the northern hairynosed wombat Lasiorhinus krefftii. *Molecular Ecology*. 3: 277-290.

VALDES A.M., SLATKIN M., FREIMER N.B. (1993) Allele frequencies at microsatellite loci: the stepwise mutation model revisited. *Genetics*. 133: 737-749.

VAN OOSTERHOUT C., HUTCHINSON W.F., WILLS D.P.M., SHIPLEY P. (2004): Micro-Checker: software for indentifying and correcting errors in microsatellite data. *Molecular Ecology Notes.* 4: 535-538.

VELIKOVIC N., ZORIC D.M., OBREHT D., GAGRCRIN M., VAPA L. (2010): An Assessment of the genetic diversity in the wild boar population from the Podunavlje-Podravlje hunting area. *Archives of Biological Science Belgrade*. 6: 807-820.

VERNESI C., CRESTANELLO B., PECCHIOLI E., TARTARI D., CARAMELLI D., HAUFFE H., BERTORELLE G. (2003): The genetic impact of demographic decline and reintroduction in the wild boar (*Sus scrofa*): A microsatellite analysis. *Molecular Ecology*. 12: 585-595.

WAHLUND S. (1928): Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. *Hereditas*. 11: 65-106.

WANG M., SCHREIBER A. (2001): The impact of habitat fragmentation and social structure on the population genetics of roe deer (*Capreolus capreolus L.*) in Central Europe. *Heredity*. 86: 703-715.

WEINBERG W. (1908): Über den Nachweis der Vererbung beim Menschen. Jahreshefte des Vereins Vaterländische Naturkunde in Württemberg. 64: 369-382.

WELANDER J. (2000): Spatial and temporal dynamics of wild boar (*Sus scrofa*) rooting in a mosaic landscape. *Journal of Zoology*. 252: 263-271.

WILSON J.F., GOLDSTEIN D.B. (2000): Consistent long-range linkage disequilibrium generated by admixture in a Bantu-Semitic hybrid population. *The American Journal of Human Genetics*. 67: 926-935.

WILTON A.N., STEWARD D. J., ZAFIRIS K. (1999): Microsatellite variation in the Australian dingo. *Journal of Heredity*. 90: 108-111.

WRIGHT S (1965): Evolution and the genetics of populations. The theory of gene frequencies. The University of Chicago Press, Chicago.

WRIGHT S. (1943): Isolation by Distance. Genetics. 28: 114-38.

WRIGHT S. (1946): Isolation by distance under diverse systems of mating. *Genetics*. 31: 39-59.

WRIGHT S. (1951): The genetical structure of populations. Annual Eugenics. 15: 323-354.

WRIGHT S. (1965): The interpretation of population structure by F-Statistics with special regard to systems of mating. *Evolution*. 19: 395-420.

9 Anhang

Nr.	Tier	SW1	1701	SW1	979	S000)5	S00 7	70	SW2	288	SW20)52	S0228		S0359	
1	BW11	133	133	176	176	231	243	278	288	128	134	150	160	223	223	252	258
2	BW12	125	133	170	176	231	243	264	273	128	128	148	150	223	227	258	272
3	BW21	102	102	166	176	250	250	288	288	128	128	160	160	227	227	262	262
4	BW22	123	133	176	176	236	236	288	288	128	131	148	160	227	227	258	262
5	BW23	102	123	166	176	231	236	273	288	128	128	145	148	223	227	262	262
6	BW24	102	123	166	176	231	236	273	288	128	128	145	148	223	227	262	262
7	BW25	100	121	176	176	248	248	280	280	123	128	145	145	227	227	252	262
8	BW26	116	121	162	176	222	248	276	280	131	131	145	145	227	227	262	262
9	BW27	131	131	168	176	231	231	276	276	128	134	160	160	223	227	252	258
10	BW29	100	121	166	176	236	248	273	288	128	131	145	148	227	227	262	262
11	BW210	102	123	166	176	217	236	288	288	134	134	145	160	223	223	262	262
12	BW211	102	121	166	166	236	248	288	288	131	131	145	148	223	223	262	272
13	BW212	102	123	166	166	250	250	283	288	131	134	145	150	223	223	262	278
14	BW213	102	102	166	166	250	250	283	288	131	134	145	150	223	223	272	278
15	BW214	102	102	176	176	214	236	283	288	131	134	150	150	223	227	258	262
16	BW215	102	123	166	176	236	248	273	283	131	134	145	150	223	223	262	272
17	BW216	102	133	170	176	214	214	283	283	134	134	145	150	223	227	262	262
18	BW217	102	102	176	176	214	214	283	288	134	134	145	160	223	227	258	262
19	BW219	102	102	166	176	222	250	288	288	131	131	145	160	227	227	262	262
20	BW220	102	123	166	176	250	250	283	288	131	134	145	145	223	223	262	262
21	BW31	104	133	168	178	231	252	278	278	131	131	145	160	223	227	262	272
22	BW32	128	133	172	176	217	231	278	278	131	134	147	166	223	223	252	252
23	BW33	104	123	176	176	217	231	278	288	123	128	152	166	223	223	252	272
24	BW34	128	131	176	176	217	226	278	278	123	128	166	166	223	223	252	272
25	BW35	123	133	176	176	226	231	273	278	123	134	147	147	223	223	252	272
26	BW36	131	133	176	176	226	231	278	283	123	134	147	152	223	223	252	272
27	BW37	104	131	166	178	231	252	278	278	131	131	145	160	223	227	262	272
28	BW38	128	131	176	176	217	226	278	278	123	128	152	166	223	223	252	272
29	BY11	100	118	170	178	250	250	273	276	131	134	145	148	223	223	262	262
30	BY12	100	133	166	170	239	239	276	283	123	131	148	150	223	223	262	262
31	BY14	116	116	166	176	239	250	273	283	131	134	147	150	223	223	262	262
32	BY15	121	121	166	178	226	226	271	273	131	134	154	154	223	223	262	262
33	BY16	121	121	166	178	226	226	271	273	131	134	154	154	223	223	262	262
34	BY22	102	123	166	166	222	243	278	283	131	140	148	166	223	223	252	262
35	BY23	102	133	166	176	239	243	278	283	131	131	152	164	223	223	252	258
36	BY25	102	121	176	178	243	243	273	278	131	134	148	148	223	223	258	272
37	BY26	102	121	176	178	243	243	273	278	131	134	154	154	223	223	258	262
38	BY27	102	123	166	176	214	214	278	283	131	131	154	166	223	223	252	258

Nr.	Tier	SWI	1701	SWI	1979	S000)5	S007	70	SW2	288	SW20)52	S0228		S0359	
39	BY28	102	102	176	178	243	243	288	288	123	131	148	160	227	227	252	262
40	BY29	102	123	166	170	226	243	273	288	131	131	150	154	223	223	258	262
41	BY31	112	118	166	170	231	248	283	283	128	131	166	166	218	223	272	272
42	BY32	104	123	176	176	217	231	278	288	123	128	147	152	223	223	262	272
43	BY33	118	123	166	178	226	231	273	273	128	134	152	152	223	223	258	258
44	BY34	118	123	170	170	231	245	273	286	134	134	147	152	218	218	262	262
45	BY35	102	121	176	178	222	231	276	278	131	134	145	160	227	227	258	262
46	BY37	125	128	170	176	231	231	273	273	128	131	145	156	218	227	252	262
47	BY38	123	123	170	178	231	248	273	273	134	134	148	166	223	223	252	262
48	BY39	118	128	170	176	231	231	273	273	123	128	147	152	223	223	272	272
49	BY310	104	121	166	170	226	228	278	283	128	128	156	160	223	223	262	272
50	BY311	121	133	174	176	226	239	276	288	107	134	145	150	227	227	252	262
51	BY312	104	121	166	170	226	228	278	283	128	131	156	160	223	223	262	272
52	BY313	102	121	166	178	222	231	278	283	128	134	160	166	223	227	262	262
53	BY314	104	121	166	170	226	228	278	283	128	131	156	160	223	223	262	272
54	BY315	102	121	166	178	222	231	278	283	128	131	164	166	218	223	262	272
55	SL11	102	131	176	176	231	250	278	278	131	134	160	160	227	227	258	258
56	SL12	100	131	176	176	222	222	271	278	134	134	160	160	223	227	258	258
57	SL13	102	102	172	176	222	222	264	278	123	134	145	154	227	227	258	272
58	SL14	102	102	170	176	222	231	271	288	123	134	145	160	223	227	258	258
59	SL15	89	89	170	174	222	222	264	276	134	134	145	160	227	227	258	272
60	SL16	89	100	174	174	222	231	264	276	134	134	154	160	223	227	258	272
61	SL17	89	102	172	174	222	222	276	276	123	134	160	160	223	223	272	272
62	SL18	89	102	172	174	222	222	264	271	123	134	145	160	227	227	258	272
63	SL19	102	102	172	174	222	231	264	264	123	134	145	160	223	223	258	272
64	SL110	100	102	166	170	222	231	276	276	123	134	145	160	227	227	258	258
65	SL111	89	102	174	174	231	231	264	276	134	134	145	154	223	223	258	272
66	SL112	89	102	174	174	231	231	264	276	134	134	145	154	223	223	258	272
67	SL113	102	121	174	174	222	231	271	286	134	134	154	154	223	227	258	272
68	SL114	102	121	174	174	222	231	271	286	134	134	154	154	223	227	258	272
69	SL115	102	102	174	174	222	222	276	276	134	134	145	160	227	227	258	258
70	SL116	100	100	174	174	222	222	276	276	134	134	145	160	227	227	258	258
71	SL118	89	121	174	178	231	231	264	286	134	134	154	160	223	223	258	272
72	SL119	89	121	174	178	231	231	264	286	134	134	154	160	223	223	258	272
73	SL21	102	123	176	176	222	228	278	286	123	134	145	145	227	227	258	272
74	SL22	123	131	176	176	248	258	286	286	123	134	160	160	227	227	258	272
75	SL23	89	102	176	176	222	228	276	286	134	134	152	160	223	227	258	272
76	SL24	100	102	176	176	222	228	264	271	123	134	152	160	223	223	252	258
77	SL25	100	123	176	176	222	228	264	276	123	134	160	168	223	223	258	272
78	SL26	89	89	176	176	222	228	276	276	134	134	152	160	223	223	272	272
79	SL27	102	102	176	176	222	228	276	286	134	134	145	160	223	223	258	258

Nr.	Tier	SWI	1701	SW1	1979	S000)5	S007	70	SW2	288	SW20)52	S0228		S0359	
80	SL28	102	123	176	176	222	222	276	286	134	134	160	160	223	227	258	258
81	SL29	100	102	176	176	228	228	271	276	134	134	145	160	223	223	261	261
82	SL210	102	102	176	176	228	228	264	276	134	134	152	160	223	227	252	258
83	SL211	100	128	176	178	217	248	273	276	128	134	148	150	223	223	262	262
84	SL31	102	133	176	174	217	222	271	276	131	134	154	154	227	227	252	252
85	SL32	102	125	176	174	217	222	276	276	131	134	152	154	227	227	252	261
86	SL33	123	131	176	176	231	231	271	271	131	134	154	160	223	227	252	258
87	SL34	125	131	176	174	217	217	271	271	134	134	154	154	223	223	252	258
88	SL35	102	118	176	174	217	231	271	276	131	134	152	154	227	227	252	261
89	SL36	125	131	176	176	217	231	271	276	134	134	152	154	223	223	252	261
90	SL37	100	131	176	176	222	250	276	286	134	134	154	156	223	223	258	272
91	SL38	118	131	176	176	217	231	271	280	131	134	154	154	223	227	252	258
92	RP11	118	133	176	174	214	226	271	283	131	134	145	160	223	223	252	272
93	RP12	118	133	176	170	214	214	276	286	123	128	154	156	223	227	262	262
94	RP13	118	133	176	174	214	243	271	276	128	134	147	154	223	223	252	272
95	RP14	114	133	176	170	222	243	271	271	128	134	150	154	223	223	262	262
96	RP15	100	114	176	170	214	222	271	271	123	134	150	160	223	223	262	264
97	RP16	118	133	176	174	214	226	273	283	131	134	147	160	223	223	252	272
98	RP17	118	133	176	174	214	226	273	278	128	134	148	152	223	223	252	252
99	RP18	102	116	176	170	214	224	273	273	123	134	150	160	223	223	262	264
100	RP21	102	102	176	178	228	248	276	276	128	140	154	160	223	227	252	264
101	RP22	102	121	176	174	222	243	283	286	107	131	154	154	227	227	252	264
102	RP23	102	121	176	176	248	248	283	288	123	131	152	154	223	227	258	258
103	RP24	102	123	176	176	224	248	283	283	131	134	154	154	223	227	252	264
104	RP25	102	121	176	174	231	248	276	283	123	134	150	160	223	223	262	264
105	RP26	102	102	176	174	243	248	276	283	128	134	154	154	223	223	264	264
106	RP27	102	131	176	174	243	248	276	283	134	134	154	154	223	223	264	264
107	RP28	102	102	176	174	231	243	276	283	134	140	152	154	223	227	252	258
108	RP210	102	102	176	178	228	248	276	276	128	140	154	160	223	227	252	262
109	RP31	100	128	176	176	222	250	273	283	128	131	152	160	223	223	262	262
110	RP32	100	128	176	178	217	250	283	283	128	134	147	150	223	223	252	262
111	RP34	100	128	176	178	217	250	283	283	128	134	147	150	223	223	252	262
112	RP35	116	118	176	178	226	231	273	273	128	134	160	168	223	227	252	272
113	RP36	100	128	176	178	217	217	264	273	128	134	154	160	223	227	252	262
114	RP37	100	131	176	176	226	245	273	283	131	134	145	160	223	223	252	252
115	RP38	102	133	176	170	217	245	273	273	128	134	145	145	223	223	262	262
116	RP39	102	133	176	170	217	245	273	273	128	134	145	145	223	223	262	262
117	RP310	118	133	176	174	231	231	273	273	134	134	152	152	223	227	262	272
118	RP311	116	123	176	170	226	243	278	283	128	131	148	152	223	227	258	262
119	RP41	102	128	176	176	243	248	273	288	136	136	148	156	223	227	262	272
120	RP42	131	133	176	174	226	226	273	273	136	136	154	162	223	227	252	262

Nr.	Tier	SW1	701	SW1	1979	S000)5	S00 7	70	SW2	288	SW20)52	S0228		S0359	
121	RP44	125	133	176	174	222	231	273	283	136	136	162	162	223	227	262	272
122	RP45	102	102	176	174	214	245	273	283	136	136	154	154	227	227	252	272
123	RP46	102	102	176	174	245	248	273	278	136	140	148	156	223	227	252	262
124	RP48	133	133	176	174	231	231	273	278	123	123	158	166	227	227	262	272
125	RP49	102	133	176	176	231	231	273	273	123	136	162	166	227	227	262	272
126	RP51	118	118	176	170	231	239	276	280	128	140	152	154	223	223	252	252
127	RP52	118	118	176	174	222	239	266	280	123	123	164	168	223	223	252	252
128	RP53	118	118	176	174	243	258	266	280	128	134	154	160	223	223	252	252
129	RP54	118	118	176	176	217	239	276	276	123	128	152	152	223	227	252	261
130	RP55	118	118	176	174	222	258	266	280	134	134	154	160	223	223	252	252
131	RP56	118	131	176	174	222	250	276	280	123	134	150	168	218	223	252	272
132	RP57	118	131	176	174	222	222	276	286	123	134	150	168	223	223	252	252
133	RP58	89	118	176	174	217	222	271	276	128	134	154	156	218	223	252	258
134	RP59	89	118	176	176	224	258	271	276	123	128	150	154	227	227	252	261
135	RP510	89	102	176	174	222	258	280	286	123	128	152	154	223	223	252	261
136	RP511	89	118	176	174	222	222	266	276	128	134	154	154	218	227	252	252
137	RP512	118	131	176	174	222	239	271	286	123	123	148	154	223	223	252	252
138	HE11	118	118	176	174	222	233	271	276	134	134	147	150	223	223	262	264
139	HE13	89	121	176	174	222	233	271	273	134	134	148	148	218	223	262	262
140	HE14	118	121	176	174	214	222	271	271	131	134	148	152	223	227	262	262
141	HE15	118	118	176	170	214	233	271	273	134	134	148	152	223	227	262	262
142	HE16	118	118	176	174	214	239	271	276	131	134	147	148	223	227	258	262
143	HE17	89	116	176	174	231	231	273	273	134	134	147	148	223	227	262	262
144	HE18	116	121	176	174	231	231	273	278	128	134	148	150	223	223	262	262
145	HE19	102	116	176	174	222	231	271	273	134	134	148	150	223	227	262	272
146	HE110	89	121	176	174	214	231	271	271	134	134	148	150	223	223	262	272
147	HE111	116	116	176	176	226	226	273	278	131	134	147	148	223	223	258	262
148	HE112	116	121	176	174	228	231	273	278	128	134	148	148	227	227	252	258
149	HE21	123	123	176	174	222	231	273	280	128	134	152	152	223	227	262	262
150	HE23	89	104	176	174	224	231	273	273	134	134	147	160	223	223	262	262
151	HE24	125	125	176	174	214	222	273	273	134	134	148	160	223	223	262	262
152	HE25	104	125	176	176	245	245	273	273	134	134	147	160	218	227	252	262
153	HE31	104	118	176	176	217	226	273	283	107	134	150	150	223	227	252	262
154	HE32	118	118	176	176	226	233	273	273	134	134	148	168	223	227	262	262
155	HE33	104	118	176	176	226	226	273	283	134	134	150	168	223	227	262	262
156	HE34	104	118	176	176	222	222	273	273	134	134	150	150	223	227	262	262
157	HE35	104	118	176	176	226	226	273	278	123	134	150	150	223	227	262	272
158	HE36	104	121	176	176	231	231	273	283	123	134	147	154	223	227	262	262
159	HE37	125	125	176	174	222	250	283	283	123	134	147	150	223	227	252	262
160	HE38	118	125	176	174	224	224	271	273	123	131	148	150	223	227	262	262
161	HE39	104	118	176	174	222	224	273	273	131	134	150	150	223	227	262	262

Nr.	Tier	SW1	1701	SW1	1979	S000)5	S007	70	SW2	288	SW20)52	S0228		S0359	
162	HE310	118	125	176	174	224	224	271	273	123	131	148	150	223	227	262	262
163	HE311	118	125	176	174	224	224	271	273	123	131	148	150	223	227	262	262
164	HE312	104	121	176	174	224	231	273	283	123	134	147	154	223	227	262	262
165	HE313	118	125	176	174	224	224	271	273	123	131	148	150	223	227	262	262
166	HE42	100	102	176	170	222	243	271	280	123	134	147	150	223	223	261	261
167	HE43	102	121	176	174	224	231	276	280	128	134	152	160	223	225	261	261
168	HE44	102	140	176	174	224	233	271	280	123	128	150	152	223	223	261	261
169	HE45	102	121	176	176	224	231	266	280	134	134	150	160	223	223	252	261
170	HE46	100	102	176	174	224	224	266	271	123	134	150	152	223	225	261	261
171	HE47	102	121	176	176	224	224	266	280	123	134	150	152	223	223	252	261
172	HE48	100	133	176	170	222	222	266	271	123	131	145	152	223	223	261	261
173	HE49	102	125	176	174	224	233	276	283	123	123	145	147	223	223	261	261
174	HE410	118	123	176	174	222	224	271	278	134	140	145	148	223	223	252	261
175	HE411	104	121	176	176	224	224	273	280	123	123	152	152	223	223	261	261
176	HE412	104	121	176	176	224	224	273	280	123	123	152	152	223	223	261	261
177	HE413	121	133	176	176	222	239	266	280	123	134	150	152	223	223	261	261
178	HE414	100	116	176	174	222	222	266	280	134	134	150	152	223	223	261	264
179	HE415	118	123	176	174	222	233	271	271	134	134	145	148	223	223	261	261
180	HE416	100	102	176	174	222	222	266	278	123	134	150	152	223	223	261	264
181	HE417	100	116	176	174	222	222	266	278	123	134	150	150	223	223	252	261
182	HE418	100	104	176	176	222	222	271	280	123	134	145	152	223	227	261	261
183	HE419	100	121	176	176	224	239	271	280	123	134	148	150	223	223	261	261
184	TH11	121	121	176	174	226	231	273	278	123	134	147	148	223	223	258	262
185	TH12	121	123	176	174	222	231	273	288	131	134	147	154	223	227	252	262
186	TH13	123	123	176	176	222	222	273	288	123	131	154	160	223	223	252	262
187	TH14	121	123	176	176	222	231	273	288	131	134	147	154	223	227	252	262
188	TH15	123	123	176	176	222	255	273	288	123	131	154	160	223	223	252	262
189	TH16	123	123	176	176	222	231	288	288	131	134	154	154	218	223	252	262
190	TH21	118	121	176	178	252	255	283	283	134	134	145	152	223	223	264	264
191	TH22	102	121	176	178	245	252	278	283	128	131	152	152	223	223	252	272
192	TH23	102	108	176	178	226	252	283	283	128	134	152	158	223	223	252	262
193	TH24	102	125	176	166	226	226	271	278	134	134	145	150	223	223	262	264
194	TH25	121	123	176	178	252	252	264	283	131	136	152	158	223	227	252	262
195	TH26	121	121	176	178	217	226	273	283	128	134	152	152	223	223	262	262
196	TH27	118	121	176	178	252	252	264	283	131	136	152	158	223	227	252	262
197	TH28	102	121	176	178	245	252	278	283	128	128	152	152	223	223	252	272
198	TH29	121	125	176	174	226	226	283	283	128	134	152	152	223	227	262	262
199	TH210	102	125	176	166	226	226	271	278	134	134	145	150	223	223	262	264
200	TH211	102	108	176	178	226	252	283	283	128	134	152	158	223	223	252	262
201	TH212	104	121	176	174	222	222	271	271	123	134	154	154	223	223	262	264
202	TH213	104	121	176	174	226	226	271	271	123	134	154	154	223	223	262	264

Fortsetzung Tabelle A 1: Auflistung aller Tiere und der dazu gehörigen Genotypen an allen untersuchten Loci

Nr.	Tier	SW1	701	SW1	979	S000)5	S00 7	70	SW2	288	SW20)52	S0228		S0359	
203	TH214	102	121	176	174	217	222	264	273	131	134	148	160	223	227	262	262
204	TH215	121	125	176	166	222	222	271	283	123	128	148	152	223	223	262	262
205	TH216	102	118	176	166	231	231	271	273	134	134	154	160	223	223	264	264
206	TH217	102	121	176	176	226	248	276	283	107	134	145	148	223	223	262	264
207	TH218	102	121	176	166	222	228	264	271	134	134	154	160	223	223	264	264
208	TH219	102	121	176	166	222	231	271	273	134	134	154	160	223	223	264	264
209	TH220	102	125	176	166	226	226	271	278	134	134	145	150	223	223	262	264
210	SN11	89	121	176	176	222	222	273	278	123	131	147	160	223	227	252	262
211	SN12	89	131	176	176	243	243	273	280	131	134	147	150	223	223	262	262
212	SN13	104	118	176	174	222	222	273	278	123	134	147	160	227	227	252	262
213	SN14	125	125	176	174	226	245	276	280	131	134	147	147	227	227	252	262
214	SN15	102	104	176	174	228	243	264	286	131	134	147	154	223	225	252	262
215	SN16	102	104	176	174	228	243	264	286	131	134	147	154	223	225	252	262
216	SN17	102	131	176	176	226	243	273	280	134	134	154	154	223	223	258	262
217	SN18	102	131	176	176	245	252	273	276	134	134	154	160	223	223	258	262
218	SN19	89	121	176	174	222	222	273	278	123	131	147	160	223	227	252	262
219	SN110	102	131	176	176	245	252	273	276	134	134	154	160	223	223	258	262
220	SN21	121	131	176	174	211	222	280	283	123	131	148	150	223	227	252	252
221	SN22	121	131	176	174	211	222	280	283	123	131	148	150	223	227	252	252
222	SN23	102	131	176	176	243	243	273	278	123	136	148	154	223	223	252	262
223	SN24	102	131	176	174	248	250	278	283	123	123	148	150	223	227	262	272
224	SN25	102	131	176	176	211	243	273	278	123	136	147	152	223	223	252	262
225	SN26	102	131	176	176	245	250	278	283	123	131	147	148	223	227	252	252
226	SN27	102	131	176	176	245	252	278	283	123	136	148	154	225	227	262	272
227	SN28	102	131	176	176	243	243	273	278	123	136	148	154	223	223	252	262
228	SN29	102	131	176	176	243	243	273	278	123	136	148	154	223	223	252	262
229	SN210	102	131	176	174	248	250	278	283	123	123	148	150	223	227	262	272
230	SN211	121	131	176	174	211	222	280	283	123	131	148	150	223	227	252	252
231	NW11	104	125	176	176	224	233	273	278	128	131	148	150	223	223	258	264
232	NW12	104	125	176	178	224	224	278	283	128	131	147	148	223	223	262	264
233	NW13	125	125	176	176	231	239	273	283	128	131	148	166	227	227	258	262
234	NW14	104	118	176	178	226	233	278	278	131	134	147	148	223	223	262	264
235	NW15	104	118	176	176	222	222	278	283	128	131	147	148	223	223	262	264
236	NW17	104	116	176	176	226	233	273	278	134	134	147	148	223	223	262	264
237	NW18	104	125	176	174	233	233	278	283	134	134	147	148	223	223	262	264
238	NW19	104	104	176	174	226	233	273	278	134	134	147	148	223	223	262	262
239	NW110	116	116	176	176	222	222	271	278	128	134	148	168	227	227	262	262
240	NW111	104	104	176	166	231	238	273	283	128	131	148	166	227	227	258	262
241	NW112	104	121	176	176	226	233	271	278	123	131	147	164	223	223	264	264
242	NW113	118	121	176	176	222	222	271	278	128	134	148	168	227	227	262	262
243	NW114	104	125	176	176	224	233	271	283	131	134	148	150	223	227	252	252

Fortsetzung Tabelle A 1: Auflistung aller Tiere und der dazu gehörigen Genotypen an allen untersuchten Loci

Nr.	Tier	SW1	701	SW1	979	S000)5	S00 7	70	SW2	288	SW20)52	S0228		S0359	
244	NW115	118	121	176	176	224	226	278	283	131	134	148	164	223	227	262	262
245	NW21	104	121	176	170	217	231	273	273	131	134	152	152	223	223	258	262
246	NW22	104	121	176	170	226	226	273	283	128	131	150	152	223	227	258	262
247	NW23	104	121	176	170	226	226	273	283	131	134	148	152	223	223	252	262
248	NW24	102	125	176	170	226	233	273	283	128	131	152	152	227	227	258	262
249	NW25	104	123	176	174	226	233	271	273	131	131	152	168	225	227	262	264
250	NW26	121	123	176	176	217	233	271	278	131	134	150	150	225	225	262	264
251	NW27	121	125	176	170	217	233	271	278	131	134	152	154	225	225	262	262
252	NW31	102	125	176	174	222	250	283	283	131	131	147	150	223	223	252	262
253	NW32	102	125	176	170	233	250	278	283	131	134	148	150	223	223	252	252
254	NW33	102	102	176	174	233	250	278	283	131	134	147	154	223	227	252	252
255	NW41	112	121	176	174	222	224	271	283	131	134	147	164	223	227	264	264
256	NW42	125	125	176	170	231	238	271	278	131	131	148	152	223	227	258	264
257	NW43	102	104	176	166	222	222	271	273	131	131	147	164	223	227	264	264
258	NW44	104	118	176	176	224	233	273	273	131	134	152	164	223	227	252	262
259	NW45	104	118	176	174	228	231	283	283	134	134	147	150	223	227	262	264
260	NW51	102	102	176	170	243	245	273	288	136	136	164	168	218	227	252	262
261	NW52	102	123	176	166	236	245	280	283	134	136	148	166	218	223	252	272
262	NW54	123	131	176	174	239	243	280	283	134	136	148	148	218	225	252	252
263	NW55	125	131	176	174	236	243	273	273	136	136	148	148	218	225	252	252
264	NW56	118	123	176	174	231	236	278	283	134	134	148	166	218	225	252	252
265	NW57	118	125	176	170	236	236	273	288	136	136	148	166	225	227	252	252
266	NW58	125	131	176	174	236	236	273	288	134	136	148	148	223	227	252	252
267	NW59	123	123	176	174	236	252	271	280	134	136	148	152	223	223	252	262
268	NW510	118	123	176	174	231	236	283	283	134	134	156	166	223	223	252	262
269	NW511	102	123	176	174	239	245	278	280	134	136	152	152	218	218	252	252
270	NW512	118	125	176	174	231	243	271	273	134	136	152	162	218	227	252	262
271	NW513	102	102	176	166	243	245	278	288	136	136	152	166	218	223	262	272
272	NW514	102	118	176	174	233	243	271	273	134	134	145	145	218	223	252	252
273	NW515	102	125	176	174	239	243	271	286	134	134	154	168	218	227	262	272
274	NW516	118	123	176	174	233	233	278	286	123	134	147	168	223	223	262	272
275	NW517	102	123	176	170	231	243	278	286	134	134	145	166	227	227	262	262
276	NW518	118	123	176	174	238	248	271	280	131	131	147	147	218	218	252	262
277	NW520	118	125	176	174	222	233	273	278	128	134	154	154	218	218	252	272
278	NW521	118	125	176	174	222	233	273	278	131	134	154	160	223	223	252	272
279	NW522	102	131	176	174	238	243	286	286	131	134	147	168	218	218	252	252
280	NW523	102	125	176	174	228	231	271	278	123	134	147	168	218	223	252	262
281	NW524	102	118	176	166	243	248	278	283	123	134	147	154	218	218	272	272
282	NW525	118	123	176	174	233	248	273	280	131	134	147	147	223	227	252	272
283	NW526	89	131	176	174	238	238	271	286	131	134	147	160	218	223	252	252
284	NW527	118	131	176	174	239	243	286	286	131	134	147	160	223	223	252	258

Fortsetzung Tabelle A 1: Auflistung aller Tiere und der dazu gehörigen Genotypen an allen untersuchten Loci

Nr.	Tier	SW1	1701	SW1	1979	S000)5	S00 2	70	SW2	288	SW20)52	S0228		S0359	
285	NW528	118	118	176	174	231	248	278	283	131	131	154	154	218	223	252	258
286	NW529	131	131	176	174	233	248	273	283	123	134	154	168	223	223	252	262
287	NW530	102	133	176	174	233	236	273	283	123	134	145	172	218	227	252	252
288	NW531	89	125	176	174	243	245	271	273	131	134	160	168	218	223	262	272
289	NW532	118	123	176	174	238	239	283	286	128	131	147	160	223	227	252	262
290	NW533	123	123	176	174	233	238	286	286	134	134	147	168	223	223	258	272
291	NW534	118	123	176	174	238	239	283	286	128	134	147	147	223	227	252	262
292	NW535	118	123	176	170	233	233	273	283	128	134	147	154	223	225	262	272
293	NW536	118	123	176	174	233	233	283	286	128	131	154	160	218	227	252	258
294	NW61	118	121	176	176	217	238	271	271	134	134	145	147	227	227	252	262
295	NW62	118	125	176	176	222	222	273	273	131	134	148	150	223	223	262	264
296	NW63	118	118	176	176	222	231	278	283	131	134	148	148	223	223	262	262
297	NW64	118	118	176	176	222	231	271	278	134	134	148	148	223	223	262	262
298	NW65	118	131	176	176	231	231	278	283	131	134	148	154	223	223	252	262
299	NW66	131	131	176	176	231	248	273	278	131	134	148	148	223	223	252	262
300	NW67	123	131	176	174	231	248	276	283	123	131	152	152	223	225	252	262
301	ST11	102	114	176	176	214	226	278	278	134	134	152	160	223	223	252	272
302	ST12	123	133	176	176	226	231	276	278	123	131	147	148	223	223	262	262
303	ST13	102	114	176	174	214	243	278	278	128	131	148	148	223	223	262	262
304	ST15	102	118	176	174	231	236	278	283	128	131	148	152	223	223	262	272
305	ST16	102	118	176	174	231	236	278	283	128	131	148	148	223	223	262	272
306	ST17	116	118	176	176	228	236	278	283	123	131	148	154	223	223	252	272
307	ST18	102	118	176	174	231	236	278	283	128	131	148	154	223	223	262	272
308	ST21	121	133	176	176	228	228	278	283	123	131	152	154	225	225	252	262
309	ST22	121	133	176	166	245	252	278	278	134	136	154	154	223	225	272	272
310	ST23	112	123	176	174	250	252	278	283	123	123	145	152	218	223	252	252
311	ST24	104	121	176	176	248	248	278	278	134	136	148	152	218	223	252	262
312	ST25	112	125	176	174	228	243	273	278	131	131	145	152	223	223	262	262
313	ST26	112	116	176	170	228	245	278	283	123	123	145	150	223	223	252	262
314	ST27	102	116	176	176	233	243	264	283	128	134	148	152	225	227	252	262
315	ST28	123	133	176	174	231	252	264	283	123	131	147	152	225	227	262	262
316	ST29	114	121	176	178	231	245	278	283	131	134	147	152	223	223	252	262
317	ST210	102	104	176	178	243	252	264	271	131	131	147	152	223	225	252	262
318	ST211	123	128	176	176	231	245	283	283	123	131	147	152	225	227	262	272
319	ST212	123	133	176	178	226	226	283	283	123	131	147	152	225	227	262	272
320	ST213	108	112	176	176	245	250	278	283	123	131	147	150	223	225	262	262
321	ST214	102	104	176	172	248	252	264	278	131	131	147	152	223	225	262	272
322	ST215	102	131	176	178	239	243	278	283	134	136	148	152	223	227	262	272
323	ST216	114	123	176	176	222	231	276	278	131	134	152	152	223	223	252	262
324	ST218	102	108	176	176	222	228	273	283	107	123	147	147	225	225	252	252
325	ST219	102	123	176	176	239	245	278	278	131	131	150	150	223	225	262	262

Nr.	Tier	SW1	1701	SW1	1979	S000)5	S007	70	SW2	288	SW20)52	S0228		S0359	
326	ST220	121	123	176	172	252	252	278	283	131	134	147	147	223	223	252	262
327	ST221	118	133	176	176	236	248	276	278	131	134	148	152	223	223	252	252
328	ST31	102	128	176	178	226	245	278	283	131	134	147	152	223	223	252	262
329	ST32	114	123	176	178	211	211	278	283	131	134	150	154	223	225	252	262
330	ST33	102	118	176	170	226	239	273	278	134	136	154	162	223	223	252	252
331	ST34	102	121	176	176	231	243	278	283	134	134	148	154	223	225	252	262
332	ST35	102	121	176	176	231	243	276	276	134	134	148	152	223	225	252	262
333	ST36	104	118	176	176	231	250	278	283	131	134	148	154	223	223	252	262
334	ST37	102	102	176	172	243	243	278	283	131	134	154	162	223	223	262	262
335	ST39	118	125	176	176	231	231	278	283	123	134	152	154	223	223	252	262
336	NI11	102	121	176	176	222	231	283	283	131	134	154	154	227	227	262	262
337	NI12	102	121	176	176	211	236	283	283	128	131	154	160	223	227	262	262
338	NI13	121	131	176	176	211	228	264	278	131	131	148	154	223	223	262	262
339	NI14	102	121	176	176	222	228	283	283	131	134	148	154	227	227	262	262
340	NI15	118	131	176	176	224	243	264	278	123	131	148	154	218	223	252	262
341	NI16	128	131	176	176	231	243	264	283	131	131	148	154	218	223	262	262
342	NI17	123	128	176	176	224	228	283	283	128	131	154	154	218	223	262	272
343	NI18	102	131	176	178	228	231	278	278	131	131	154	160	218	223	252	262
344	NI19	102	131	176	178	226	243	264	278	123	134	154	154	223	223	262	262
345	NI110	121	131	176	178	231	243	264	283	131	131	148	148	223	223	262	262
346	NI111	131	133	176	162	214	231	283	283	131	131	148	154	223	227	252	272
347	NI112	100	123	176	178	228	239	271	278	128	131	148	148	223	227	262	272
348	NI113	121	131	176	178	226	243	264	278	131	131	148	160	218	223	262	272
349	NI114	102	123	176	178	226	231	278	278	123	134	148	154	218	223	262	262
350	NI115	100	123	176	178	228	239	271	278	128	131	147	147	223	227	262	272
351	NI116	102	123	176	178	222	231	283	283	123	134	147	152	218	223	262	262
352	NI117	102	131	176	178	214	239	278	283	131	131	147	152	227	227	252	272
353	NI118	102	123	176	178	231	239	264	271	123	131	147	152	223	223	252	261
354	NI21	121	123	176	176	214	222	273	278	134	134	148	154	223	227	262	262
355	NI22	121	123	176	176	231	233	283	283	123	131	148	154	218	223	262	278
356	NI23	102	123	176	178	222	243	278	283	123	131	154	154	223	227	252	262
357	NI24	102	133	176	178	236	243	278	283	131	131	147	152	223	223	252	252
358	NI25	102	133	176	178	222	231	271	283	128	134	148	160	223	223	252	262
359	NI26	102	102	176	174	231	231	276	283	131	134	154	154	223	227	262	262
360	NI27	102	102	176	178	231	233	283	283	123	131	148	154	218	223	262	278
361	NI28	118	123	176	178	226	252	278	283	134	134	148	154	223	227	262	262
362	NI29	102	112	176	174	214	231	276	283	131	131	154	154	223	223	252	252
363	NI211	102	133	176	178	222	222	271	283	128	131	147	158	223	223	252	262
364	NI212	118	123	176	178	231	233	283	283	131	131	147	152	223	227	262	262
365	NI31	118	123	176	176	226	243	278	283	131	134	160	166	223	223	264	272
366	NI32	104	125	176	176	217	231	283	283	131	131	148	160	223	223	261	261

Nr.	Tier	SW1	1701	SW1	1979	S000)5	S007	70	SW2	288	SW20)52	S0228		S0359	
367	NI33	102	104	176	178	217	231	273	283	131	134	148	160	223	227	272	272
368	NI34	104	123	176	178	201	231	283	283	131	134	150	154	223	223	262	262
369	NI35	102	102	176	178	217	226	273	283	134	134	150	160	223	227	272	272
370	NI36	123	125	176	178	217	233	273	273	134	134	150	160	223	227	272	272
371	NI37	112	112	176	176	217	226	278	278	131	131	148	166	223	223	262	272
372	NI38	102	123	176	176	201	238	276	283	131	131	148	148	223	223	262	272
373	NI39	89	123	176	176	226	233	278	283	128	131	148	160	223	223	252	262
374	NI310	100	102	176	178	214	222	273	278	131	134	147	160	223	223	252	262
375	NI311	112	125	176	178	214	222	283	283	123	131	147	154	223	223	252	272
376	NI312	118	118	176	178	226	238	278	283	131	134	147	160	223	223	252	272
377	NI41	102	123	176	176	222	228	278	278	134	136	152	154	223	225	252	252
378	NI42	118	123	176	176	222	231	280	283	123	134	154	154	223	225	252	252
379	NI43	118	123	176	176	228	243	278	280	123	134	154	158	223	225	252	262
380	NI44	118	123	176	176	228	228	273	278	134	134	148	152	223	223	252	272
381	NI45	123	123	176	176	231	243	271	276	123	134	152	154	227	227	252	252
382	NI46	118	123	176	172	228	243	280	280	134	134	154	160	223	225	252	252
383	NI47	118	121	176	172	231	231	271	283	134	134	148	154	223	227	262	262
384	NI52	89	123	176	176	250	252	271	278	131	131	152	158	223	225	262	272
385	NI53	89	89	176	174	211	245	276	276	131	131	148	152	223	223	262	262
386	NI55	104	123	176	174	231	239	273	283	128	134	147	147	223	225	262	264
387	NI56	104	123	176	176	231	250	276	283	128	131	147	147	223	225	262	264
388	NI58	89	118	176	176	231	245	276	276	131	131	148	152	223	223	252	262
389	NI59	118	133	176	176	250	252	283	283	134	134	147	147	223	223	262	262
390	NI510	89	123	176	174	211	245	264	271	123	131	148	152	223	225	252	262
391	NI513	123	133	176	174	231	245	276	283	107	123	147	152	223	225	262	262
392	NI514	118	118	176	172	248	250	276	283	131	134	147	147	223	223	262	262
393	NI516	116	123	176	174	211	228	264	276	123	131	152	156	223	225	252	262
394	NI518	102	116	176	176	231	231	271	283	131	131	147	152	223	223	262	262
395	NI519	118	131	176	176	250	250	276	278	123	131	152	158	223	225	252	262
396	NI522	123	131	176	176	248	252	276	276	123	131	152	152	223	223	262	272
397	NI523	123	123	176	176	231	231	276	283	123	131	147	147	223	227	262	262
398	NI524	104	123	176	176	224	224	276	283	134	134	147	158	223	223	262	262
399	NI525	104	131	176	174	211	245	283	283	123	123	152	156	223	223	262	272
400	NI527	104	123	176	176	231	239	273	283	123	134	147	147	223	225	262	264
401	NI528	102	131	176	174	231	252	271	283	123	131	148	148	223	223	262	262
402	BB11	121	125	176	172	231	236	273	278	131	134	154	154	223	223	252	262
403	BB12	123	128	176	176	222	243	264	288	128	131	154	154	223	227	262	278
404	BB13	102	121	176	176	214	226	264	264	128	134	154	154	225	225	252	262
405	BB14	121	125	176	172	222	231	278	278	131	134	154	158	223	227	262	262
406	BB15	121	125	176	176	231	238	266	266	131	131	154	158	223	227	262	272
407	BB17	118	118	176	178	222	228	278	278	131	134	147	148	223	225	252	278

Fortsetzung Tabelle A 1: Auflistung aller Tiere und der dazu gehörigen Genotypen an allen untersuchten Loci

Nr.	Tier	SW1	1701	SW1	1979	S000)5	S007	70	SW2	288	SW20)52	S0228		S0359	
408	BB18	116	118	176	178	222	222	264	278	131	134	148	152	223	223	252	261
409	BB19	102	118	176	172	222	243	264	278	107	131	152	152	223	225	252	272
410	BB110	116	121	176	178	222	222	278	283	131	131	150	154	223	225	262	262
411	BB112	102	125	176	178	211	211	264	273	128	134	150	154	223	227	252	272
412	BB113	123	125	176	172	222	231	278	278	131	134	154	160	223	227	262	262
413	BB114	102	123	176	178	214	214	273	283	128	131	154	160	225	227	262	272
414	BB115	131	131	176	174	233	239	264	283	131	131	154	154	225	225	252	252
415	BB22	108	118	176	174	214	238	276	288	131	131	150	154	223	225	252	262
416	BB24	118	118	176	174	226	228	276	276	131	131	152	152	223	223	252	272
417	BB25	102	118	176	174	211	222	276	283	107	128	147	150	223	223	262	262
418	BB26	118	118	176	174	228	236	271	276	131	131	147	148	223	225	262	262
419	BB27	118	118	176	174	222	228	276	276	131	131	147	147	223	225	252	262
420	BB28	118	118	176	174	228	239	271	276	131	131	147	147	223	223	262	262
421	BB29	100	125	176	174	214	239	264	276	107	131	147	154	223	223	252	272
422	BB210	102	102	176	174	222	238	276	288	134	134	148	154	223	225	262	272
423	BB31	102	102	176	176	214	248	266	266	123	131	148	148	225	227	262	272
424	BB32	102	121	176	176	222	248	276	278	134	134	148	154	225	227	262	278
425	BB33	102	118	176	162	214	248	278	283	131	134	147	154	223	227	262	262
426	BB41	104	104	176	174	228	250	278	278	131	131	152	152	223	223	252	262
427	BB42	102	121	176	174	217	238	278	288	123	134	148	152	223	223	252	278
428	BB44	100	104	176	174	243	245	280	280	123	131	145	154	223	227	261	272
429	BB45	123	125	176	174	222	228	271	288	131	131	145	152	223	223	261	272
430	BB46	108	121	176	176	222	245	276	276	128	134	150	152	223	225	272	278
431	BB47	121	125	176	174	217	224	276	280	131	134	145	150	218	223	261	272
432	BB410	102	104	176	174	217	245	280	288	131	134	145	154	223	225	252	272
433	BB411	102	121	176	174	224	243	280	288	123	128	152	152	218	223	252	261
434	BB412	108	108	176	174	217	224	276	276	131	134	145	152	223	223	261	261
435	BB413	102	121	176	176	228	243	276	276	128	128	147	152	223	225	261	272
436	BE11	108	123	176	174	222	243	276	276	128	134	154	154	227	227	252	262
437	BE12	108	108	176	172	231	243	283	283	128	134	154	166	223	227	252	262
438	BE13	108	118	176	172	222	222	283	283	128	134	168	168	227	227	252	262
439	BE14	102	102	176	166	243	243	276	283	134	134	152	164	227	227	262	262
440	BE21	108	123	176	170	222	222	278	283	134	134	152	152	227	227	262	262
441	BE22	108	123	176	172	243	243	283	283	134	134	150	152	223	227	252	262
442	BE23	102	123	176	164	222	243	273	276	134	134	150	152	223	227	252	262
443	BE24	102	123	176	172	243	243	283	283	128	134	152	168	223	227	252	262
444	BE25	108	123	176	164	222	222	276	283	134	134	152	162	223	223	262	262
445	BE26	102	104	176	166	222	243	276	278	102	134	154	164	223	223	262	262
446	BE27	108	108	176	166	222	243	276	278	134	134	154	164	223	227	262	262
447	BE28	108	123	176	164	243	243	276	283	123	134	154	164	223	227	262	262
448	BE29	102	123	176	172	243	250	283	283	134	134	154	164	223	227	262	262

Nr.	Tier	SW1	701	SW1	979	S00 ()5	S00 7	70	SW2	288	SW20)52	S0228		S0359	
449	MV11	121	123	176	174	222	231	264	278	131	134	148	154	227	227	262	272
450	MV12	118	121	176	174	226	252	278	283	131	134	154	154	223	223	262	272
451	MV16	121	123	176	176	243	252	278	278	131	131	148	154	225	225	262	272
452	MV17	114	123	176	174	252	252	264	273	131	134	152	154	223	227	262	262
453	MV18	123	123	176	174	231	231	273	283	131	134	148	154	223	223	262	272
454	MV19	102	123	176	174	222	243	264	283	131	131	148	148	223	227	252	272
455	MV110	123	123	176	174	231	231	273	283	131	134	148	154	223	223	262	272
456	MV41	125	125	176	178	226	228	264	283	131	134	152	162	223	227	252	262
457	MV42	121	123	176	178	226	226	273	283	131	134	147	150	225	227	262	272
458	MV43	118	118	176	178	243	245	273	283	134	134	150	162	223	223	252	262
459	MV44	118	121	176	178	243	245	273	283	134	134	147	162	225	225	252	252
460	MV45	102	121	176	178	231	243	278	283	131	131	148	150	223	227	252	272
461	MV46	121	123	176	176	214	248	278	283	131	131	150	152	223	227	252	272
462	MV47	118	123	176	162	217	248	283	283	131	131	147	152	223	223	262	262
463	MV21	123	123	176	174	224	231	278	283	131	131	154	158	223	223	262	272
464	MV22	123	123	176	174	228	231	278	283	131	134	150	152	223	225	262	272
465	MV23	100	121	176	174	239	243	283	283	128	131	152	152	223	225	252	262
466	MV24	121	128	176	174	222	226	264	283	131	131	150	152	225	227	252	262
467	MV25	102	121	176	174	222	238	276	283	131	134	152	152	227	227	262	262
468	MV26	102	133	176	176	222	245	264	276	131	134	152	152	225	227	252	262
469	MV29	121	125	176	176	222	243	283	283	134	134	152	162	223	225	252	272
470	MV210	125	133	176	176	250	250	276	278	131	134	152	152	223	227	272	272
471	MV211	102	123	176	172	243	243	278	283	131	134	148	152	223	225	262	272
472	MV212	123	123	176	174	222	228	278	283	131	131	152	154	225	225	262	262
473	MV213	100	121	176	174	243	243	278	283	131	131	152	152	225	225	262	262
474	MV214	123	123	176	174	243	252	273	278	131	134	152	152	225	225	252	252
475	MV215	102	118	176	174	214	222	278	283	128	131	148	150	223	225	252	252
476	MV216	102	128	176	174	214	243	278	278	128	131	152	152	223	225	262	272
477	MV217	100	102	176	174	222	252	273	278	131	134	152	152	223	225	252	272
478	MV32	123	128	176	168	231	233	264	278	134	134	152	158	223	227	252	262
479	MV33	102	123	176	176	214	214	278	283	134	134	152	158	223	225	252	272
480	MV34	102	123	176	176	222	231	278	283	131	134	152	158	223	225	262	272
481	MV35	100	123	176	166	222	228	278	283	131	134	152	152	223	227	262	262
482	MV36	125	125	176	178	226	226	278	283	134	134	152	152	223	227	272	272
483	SH11	108	108	176	176	226	252	264	283	128	131	154	154	223	223	252	262
484	SH12	100	123	176	176	243	252	273	278	128	134	154	160	223	223	262	262
485	SH13	108	108	176	176	226	252	264	283	128	131	154	154	223	223	252	262
486	SH14	118	121	176	174	226	252	278	283	128	131	158	158	223	223	262	262
487	SH15	102	123	176	176	226	252	273	278	131	131	154	160	223	223	262	262
488	SH16	108	118	176	176	226	250	264	278	128	131	154	154	223	223	262	262
489	SH17	108	118	176	176	226	250	264	278	128	131	154	154	223	223	262	262

Nr.	Tier	SW1	701	SW1	1979	S000)5	S00 7	70	SW2	288	SW20)52	S0228		S0359	
490	SH18	108	118	176	176	226	250	264	278	128	131	154	154	223	223	262	262
491	SH21	118	121	176	178	252	255	283	283	128	131	152	152	223	223	262	262
492	SH22	102	121	176	178	245	252	276	283	128	131	152	152	223	223	252	272
493	SH23	102	108	176	178	226	252	283	283	128	134	152	158	223	223	252	262
494	SH24	118	121	176	178	222	226	283	283	128	134	152	152	223	223	262	262
495	SH25	121	125	176	178	252	252	264	283	131	136	152	158	223	227	252	262
496	SH26	118	121	176	176	222	224	283	283	128	134	150	152	223	223	262	262
497	SH27	121	123	176	176	252	252	264	283	131	131	150	152	223	223	262	262
498	SH28	102	121	176	176	245	252	278	283	128	131	150	152	223	223	252	272
499	SH29	102	108	176	176	224	224	283	283	128	134	152	158	223	223	252	262
500	SH210	108	118	176	176	224	250	264	278	128	131	152	152	223	223	262	262
501	SH31	118	123	176	176	222	222	271	283	134	134	164	164	223	223	252	262
502	SH32	123	123	176	172	222	252	278	283	131	134	164	164	223	223	262	262
503	SH33	118	118	176	172	222	252	283	283	134	134	160	164	223	223	252	262
504	SH34	118	123	176	172	226	248	283	283	131	134	154	164	223	223	252	262
505	SH36	118	123	176	172	222	252	283	283	131	134	164	164	223	223	262	262
506	SH37	118	123	176	172	222	252	283	283	134	134	160	164	223	223	262	262
507	SH38	118	123	176	172	222	252	283	283	134	134	164	164	223	223	252	262
508	SH39	121	123	176	172	226	252	278	283	131	134	154	164	223	223	262	262
509	SH311	118	123	176	176	222	252	283	283	131	131	160	164	223	223	252	262
510	SH312	123	123	176	176	222	252	283	283	131	134	164	164	223	223	262	262
511	SH313	123	123	176	174	248	252	283	283	131	131	164	164	223	223	262	262
512	SH41	123	123	176	176	236	252	280	280	131	134	152	158	223	227	261	261
513	SH42	116	118	176	172	236	252	276	280	131	134	158	158	223	227	261	261
514	SH43	104	118	176	172	236	252	276	276	131	134	158	158	223	223	261	261
515	SH44	104	123	176	174	236	252	276	280	131	134	158	158	223	223	261	261
516	SH45	116	118	176	172	236	252	276	280	131	134	156	158	223	223	261	261
517	SH46	104	123	176	174	236	252	276	280	131	134	158	158	223	223	261	261
518	SH47	102	121	176	170	226	252	280	280	131	134	145	152	223	227	252	261
519	SH48	123	123	176	174	222	222	280	280	131	131	158	162	223	223	261	261
520	SH49	102	121	176	170	226	252	280	280	131	134	147	152	223	227	252	261
521	SH410	123	123	176	174	222	222	280	280	131	131	158	162	223	223	261	261

Fortsetzung Tabelle A 1: Auflistung aller Tiere und der dazu gehörigen Genotypen an allen untersuchten Loci

Genotyp	Beob.	Erwart.	Genotyp	Beob.	Erwart.	Genotyp	Beob.	Erwart.
162-162	0	0,008	162-172	0	0,119	166-176	28	30,331
162-164	0	0,012	164-172	0	0,089	168-176	2	1,857
164-164	0	0,004	166-172	0	1,458	170-176	32	27,236
162-166	0	0,188	168-172	0	0,089	172-176	28	19,189
164-166	0	0,141	170-172	0	1,309	174-176	165	114,515
166-166	4	1,152	172-172	0	0,461	176-176	158	199,628
162-168	0	0,012	162-174	0	0,710	162-178	0	0,299
164-168	0	0,009	164-174	0	0,533	164-178	0	0,225
166-168	0	0,141	166-174	0	8,700	166-178	6	3,668
168-168	0	0,004	168-174	0	0,533	168-178	1	0,225
162-170	0	0,169	170-174	1	7,812	170-178	2	3,294
164-170	0	0,127	172-174	3	5,504	172-178	0	2,321
166-170	7	2,069	174-174	7	16,423	174-178	2	13,848
168-170	0	0,127	162-176	4	2,476	176-178	67	48,282
170-170	1	0,929	164-176	3	1,857	178-178	0	2,919

Tabelle A 2:Alle Genotypen und ihre Frequenzen des Mikrosatellits SW1979

Tabelle A 3:Alle Genotypen und ihre Frequenzen des Mikrosatellits S0070

Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.
264-264	2	1,559	276-278	9	22,841	271-286	5	2,948
264-266	0	0,875	278-278	22	19,194	273-286	1	4,791
266-266	2	0,123	264-280	0	3,118	276-286	6	3,655
264-271	6	5,251	266-280	7	0,875	278-286	3	6,142
266-271	2	1,474	271-280	7	5,251	280-286	1	1,750
271-271	10	4,422	273-280	6	8,534	283-286	4	8,107
264-273	5	8,534	276-280	10	6,510	286-286	4	0,491
266-273	0	2,395	278-280	2	10,940	264-288	1	2,462
271-273	16	14,372	280-280	8	1,559	266-288	0	0,691
273-273	23	11,678	264-283	14	14,441	271-288	2	4,146
264-276	9	6,510	266-283	0	4,054	273-288	12	6,737
266-276	1	1,827	271-283	10	24,322	276-288	3	5,139
271-276	12	10,964	273-283	31	39,524	278-288	5	8,637
273-276	5	17,816	276-283	22	30,150	280-288	2	2,462
276-276	21	6,795	278-283	71	50,672	283-288	6	11,401
264-278	14	10,940	280-283	6	14,441	286-288	0	1,382
266-278	2	3,071	283-283	50	33,443	288-288	7	0,972
271-278	16	18,426	264-286	4	1,750			
273-278	34	29,942	266-286	0	0,491			

Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.
89-89	3	0,461	114-118	0	1,152	116-128	0	0,474
89-100	1	1,131	116-118	5	3,743	118-128	1	2,735
100-100	1	0,693	118-118	21	10,797	121-128	1	2,225
89-102	6	6,367	89-121	6	3,630	123-128	4	2,917
100-102	8	7,804	100-121	5	4,449	125-128	1	1,185
102-102	28	21,975	102-121	36	25,056	128-128	0	0,173
89-104	1	1,874	104-121	14	7,376	89-131	2	1,874
100-104	2	2,298	108-121	1	3,278	100-131	3	2,298
102-104	8	12,939	112-121	1	1,171	102-131	19	12,939
104-104	3	1,905	114-121	1	0,937	104-131	2	3,809
89-108	0	0,833	116-121	4	3,044	108-131	0	1,693
100-108	0	1,021	118-121	13	17,562	112-131	0	0,605
102-108	5	5,750	121-121	4	7,142	114-131	0	0,484
104-108	0	1,693	89-123	3	4,760	116-131	0	1,572
108-108	5	0,376	100-123	5	5,835	118-131	8	9,069
89-112	0	0,298	102-123	31	32,860	121-131	6	7,376
100-112	0	0,365	104-123	10	9,674	123-131	5	9,674
102-112	1	2,054	108-123	5	4,299	125-131	4	3,930
104-112	0	0,605	112-123	1	1,536	128-131	3	1,149
108-112	1	0,269	114-123	3	1,228	131-131	4	1,905
112-112	1	0,048	116-123	2	3,992	89-133	0	1,309
89-114	0	0,238	118-123	27	23,033	100-133	2	1,605
100-114	1	0,292	121-123	13	18,733	102-133	11	9,036
102-114	2	1,643	123-123	21	12,284	104-133	1	2,660
104-114	0	0,484	89-125	1	1,934	108-133	0	1,182
108-114	0	0,215	100-125	1	2,370	112-133	0	0,422
112-114	0	0,077	102-125	11	13,349	114-133	1	0,338
114-114	0	0,031	104-125	6	3,930	116-133	0	1,098
89-116	1	0,774	108-125	0	1,747	118-133	8	6,334
100-116	2	0,948	112-125	2	0,624	121-133	4	5,152
102-116	4	5,340	114-125	0	0,499	123-133	6	6,756
104-116	1	1,572	116-125	0	1,622	125-133	3	2,745
108-116	0	0,699	118-125	10	9,357	128-133	1	0,802
112-116	1	0,250	121-125	9	7,610	131-133	3	2,660
114-116	0	0,200	123-125	3	9,981	133-133	2	0,929
116-116	3	0,324	125-125	7	2,027	89-140	0	0,030
89-118	4	4,463	89-128	0	0,565	100-140	0	0,036
100-118	1	5,470	100-128	5	0,693	102-140	1	0,205
102-118	12	30,806	102-128	3	3,902	104-140	0	0,060
104-118	12	9,069	104-128	0	1,149	108-140	0	0,027
108-118	6	4,031	108-128	0	0,511	112-140	0	0,010
112-118	1	1,440	112-128	0	0,182	114-140	0	0,008
116-140	0	0,025	123-140	0	0,154	131-140	0	0,060
118-140	0	0,144	125-140	0	0,062	133-140	0	0,042
121-140	0	0,117	128-140	0	0,018	140-140	0	0,000

Tabelle A 4:Alle Genotypen und ihre Frequenzen des Mikrosatellits SW1701

Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.
201-201	0	0,002	222-238	2	2,920	222-250	6	7,215
201-211	0	0,029	224-238	0	0,767	224-250	1	1,894
211-211	2	0,108	226-238	1	1,550	226-250	3	3,829
201-214	0	0,079	228-238	0	0,832	228-250	1	2,056
211-214	0	0,590	231-238	3	2,496	231-250	3	6,167
214-214	6	0,807	233-238	1	0,702	233-250	2	1,733
201-217	0	0,075	236-238	0	0,555	236-250	0	1,370
211-217	0	0,561	238-238	1	0,139	238-250	0	0,685
214-217	0	1,535	201-239	0	0,061	239-250	1	1,290
217-217	2	0,730	211-239	0	0,461	243-250	1	3,950
201-222	0	0,344	214-239	3	1,259	245-250	2	1,612
211-222	4	2,577	217-239	1	1,198	248-250	3	1,733
214-222	7	7,043	222-239	3	5,497	250-250	7	0,846
217-222	4	6,700	224-239	1	1,443	201-252	0	0,121
222-222	36	15,375	226-239	2	2,917	211-252	0	0,907
201-224	0	0,090	228-239	3	1,566	214-252	0	2,479
211-224	0	0,677	231-239	5	4,699	217-252	0	2,358
214-224	1	1,849	233-239	1	1,321	222-252	8	10,822
217-224	2	1,759	236-239	0	1,044	224-252	0	2,842
222-224	4	8,074	238-239	2	0,522	226-252	12	5,744
224-224	11	1,060	239-239	1	0,491	228-252	0	3,083
201-226	0	0,182	201-243	0	0,188	231-252	4	9,250
211-226	0	1,368	211-243	1	1,411	233-252	0	2,600
214-226	5	3,738	214-243	3	3,856	236-252	7	2,056
217-226	6	3,556	217-243	0	3,668	238-252	0	1,028
222-226	2	16,320	222-243	13	16,835	239-252	0	1,935
224-226	1	4,285	224-243	2	4,420	243-252	4	5,925
226-226	16	4,331	226-243	6	8,935	245-252	8	2,418
201-228	0	0,098	228-243	6	4,797	248-252	3	2,600
211-228	2	0,734	231-243	12	14,390	250-252	3	2,539
214-228	0	2,007	233-243	2	4,044	252-252	6	1,905
217-228	0	1,909	236-243	2	3,198	201-255	0	0,006
222-228	15	8,761	238-243	1	1,599	211-255	0	0,043
224-228	1	2,300	239-243	6	3,010	214-255	0	0,118
226-228	5	4,650	243-243	14	4,608	217-255	0	0,112
228-228	4	1,248	201-245	0	0,077	222-255	1	0,515
201-231	1	0,294	211-245	3	0,576	224-255	0	0,135
211-231	0	2,202	214-245	1	1,574	226-255	0	0,274
214-231	3	6,020	217-245	3	1,497	228-255	0	0,147
217-231	9	5,726	222-245	2	6,871	231-255	0	0,440

Tabelle A 5:	Alle Genotypen und ihre	Frequenzen des	Mikrosatellits	S0005
	~ 1	1		

Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.
222-231	27	26,283	224-245	0	1,804	233-255	0	0,124
224-231	5	6,901	226-245	3	3,647	236-255	0	0,098
226-231	7	13,949	228-245	1	1,958	238-255	0	0,049
228-231	5	7,488	231-245	5	5,873	239-255	0	0,092
231-231	23	11,233	233-245	0	1,651	243-255	0	0,282
201-233	0	0,083	236-245	1	1,305	245-255	0	0,115
211-233	0	0,619	238-245	0	0,653	248-255	0	0,124
214-233	1	1,692	239-245	2	1,228	250-255	0	0,121
217-233	3	1,609	243-245	6	3,762	252-255	2	0,181
222-233	5	7,387	245-245	1	0,768	255-255	0	0,004
224-233	5	1,940	201-248	0	0,083	201-258	0	0,010
226-233	8	3,920	211-248	0	0,619	211-258	0	0,072
228-233	0	2,105	214-248	3	1,692	214-258	0	0,197
231-233	4	6,314	217-248	2	1,609	217-258	0	0,187
233-233	4	0,887	222-248	2	7,387	222-258	2	0,859
201-236	0	0,065	224-248	1	1,940	224-258	1	0,226
211-236	1	0,489	226-248	2	3,920	226-258	0	0,456
214-236	1	1,338	228-248	2	2,105	228-258	0	0,245
217-236	1	1,273	231-248	6	6,314	231-258	0	0,734
222-236	0	5,841	233-248	2	1,774	233-258	0	0,206
224-236	0	1,534	236-248	4	1,403	236-258	0	0,163
226-236	0	3,100	238-248	1	0,702	238-258	0	0,082
228-236	2	1,664	239-248	0	1,321	239-258	0	0,154
231-236	8	4,992	243-248	4	4,044	243-258	1	0,470
233-236	1	1,403	245-248	1	1,651	245-258	0	0,192
236-236	3	0,555	248-248	3	0,887	248-258	1	0,206
201-238	1	0,033	201-250	0	0,081	250-258	0	0,202
211-238	0	0,245	211-250	0	0,605	252-258	0	0,302
214-238	1	0,669	214-250	0	1,653	255-258	0	0,014
217-238	2	0,636	217-250	2	1,572	258-258	0	0,012

Fortsetzung Tabelle A 5: Alle Genotypen und ihre Frequenzen des Mikrosatellits S0005

Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.
145-145	7	2,154	158-158	5	0,523	152-166	3	4,439
145-147	2	7,523	145-160	17	6,494	154-166	2	4,559
147-147	16	6,569	147-160	11	11,341	156-166	1	0,312
145-148	8	9,581	148-160	9	14,442	158-166	1	0,792
147-148	14	16,730	150-160	7	9,208	160-166	2	2,423
148-148	17	10,653	152-160	7	17,932	162-166	1	0,336
145-150	10	6,108	154-160	25	18,417	164-166	1	0,744
147-150	12	10,667	156-160	3	1,260	166-166	2	0,300
148-150	22	13,584	158-160	0	3,199	145-168	0	1,350
150-150	8	4,331	160-160	7	4,895	147-168	4	2,358
145-152	8	11,895	145-162	0	0,900	148-168	3	3,003
147-152	22	20,773	147-162	1	1,572	150-168	3	1,915
148-152	21	26,454	148-162	0	2,002	152-168	2	3,728
150-152	16	16,867	150-162	1	1,276	154-168	2	3,829
152-152	35	16,423	152-162	4	2,486	156-168	0	0,262
145-154	5	12,217	154-162	3	2,553	158-168	0	0,665
147-154	13	21,334	156-162	0	0,175	160-168	3	2,036
148-154	27	27,169	158-162	2	0,443	162-168	0	0,282
150-154	8	17,322	160-162	0	1,357	164-168	2	0,625
152-154	14	33,733	162-162	1	0,094	166-168	0	0,504
154-154	39	17,322	145-164	0	1,993	168-168	1	0,212
145-156	1	0,836	147-164	3	3,481	145-172	1	0,064
147-156	0	1,460	148-164	1	4,433	147-172	0	0,112
148-156	2	1,859	150-164	0	2,826	148-172	0	0,143
150-156	0	1,185	152-164	3	5,504	150-172	0	0,091
152-156	2	2,308	154-164	6	5,653	152-172	0	0,178
154-156	3	2,370	156-164	0	0,387	154-172	0	0,182
156-156	0	0,081	158-164	0	0,982	156-172	0	0,012
145-158	0	2,122	160-164	3	3,005	158-172	0	0,032
147-158	2	3,705	162-164	0	0,417	160-172	0	0,097
148-158	0	4,719	164-164	6	0,461	162-172	0	0,013
150-158	0	3,009	145-166	1	1,607	164-172	0	0,030
152-158	13	5,859	147-166	1	2,807	166-172	0	0,024
154-158	4	6,017	148-166	8	3,575	168-172	0	0,020
156-158	1	0,412	150-166	0	2,279	172-172	0	0,000

Tabelle A 6:	Alle Genotypen u	nd ihre Frequenzen	des Mikrosatellits SW2052					
--------------	------------------	--------------------	---------------------------					
Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.
---------	-------	---------	---------	-------	--------	---------	-------	---------
218-218	6	1,152	223-225	45	53,528	223-227	125	153,489
218-223	26	31,601	225-225	11	3,306	225-227	13	18,958
223-223	238	216,691	218-227	8	11,192	227-227	46	27,180
218-225	3	3,903						

Tabelle A 7:	Alle Genotype	n und ihre Frequenzen	des Mikrosatellits S0228
--------------	---------------	-----------------------	--------------------------

Tabelle A 8:Alle Genotypen und ihre Frequenzen des Mikrosatellits S0359

Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.
252-252	42	32,189	252-264	3	11,931	264-272	1	6,495
252-258	15	18,393	258-264	2	3,409	272-272	11	9,540
258-258	10	2,628	261-264	2	3,086	252-278	2	2,237
252-261	15	16,654	262-264	22	20,453	258-278	0	0,639
258-261	0	4,758	264-264	9	1,106	261-278	0	0,579
261-261	23	2,154	252-272	37	35,047	262-278	5	3,835
252-262	103	110,361	258-272	19	10,013	264-278	0	0,415
258-262	18	31,532	261-272	4	9,066	272-278	2	1,218
261-262	0	28,549	262-272	56	60,081	278-278	0	0,039
262-262	120	94,595						

Tabelle A 9:Alle Genotypen und ihre Frequenzen des Mikrosatellits SW288

Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.	Genotyp	Beob.	Erwar.
102-102	0	0,000	123-131	39	40,173	128-136	0	4,332
102-107	0	0,009	128-131	45	37,701	131-136	3	11,434
107-107	0	0,039	131-131	60	49,752	134-136	11	14,701
102-123	0	0,125	102-134	1	0,397	136-136	8	0,657
107-123	2	1,123	107-134	3	3,576	102-140	0	0,007
123-123	11	8,109	123-134	48	51,651	107-140	0	0,060
102-128	0	0,117	128-134	46	48,472	123-140	0	0,873
107-128	1	1,054	131-134	111	127,935	128-140	3	0,820
123-128	13	15,221	134-134	96	82,244	131-140	1	2,163
128-128	7	7,142	102-136	0	0,036	134-140	2	2,781
102-131	0	0,309	107-136	0	0,320	136-140	1	0,249
107-131	3	2,781	123-136	6	4,616	140-140	0	0,024

Tabelle A 10:	Üb	erprüfun	g des	Hardy-We	einberg-Gle	ichgew	ichts für je	des Re	evier
	an	jedem	Loci	(Revier:	Schlüssel	siehe	Abschnitt	3.1;	DF:
	Fre	iheitsgra	ıd; Chi	Sq: Chi S	quare; p: W	ahrsche	einlickeit; S	ignifik	anz:
	* p	< 0,05; *	** p<(),01; *** p	< 0,001; n.s	s.: nich	t signifikant)	

Revier	Locus	DF	ChiSq	р	Signifikanz
1	SW1701	1	0,222	0,637	n.s.
1	w1979	1	0,222	0,637	n.s.
1	S0005	1	2,000	0,157	n.s.
1	S0070	6	6,000	0,423	n.s.
1	SW288	1	0,222	0,637	n.s.
1	SW2052	3	2,000	0,572	n.s.
1	S0228	1	0,222	0,637	n.s.
1	S0359	3	2,000	0,572	n.s.
2	SW1701	21	46,913	0,001	***
2	SW1979	10	2,843	0,985	n.s.
2	S0005	21	34,931	0,029	*
2	S0070	10	20,556	0,024	*
2	SW288	6	7,591	0,270	n.s.
2	SW2052	6	6,448	0,375	n.s.
2	S0228	1	2,000	0,157	n.s.
2	S0359	10	8,431	0,587	n.s.
3	SW1701	10	7,000	0,725	n.s.
3	SW1979	10	16,066	0,098	n.s.
3	S0005	6	6,667	0,353	n.s.
3	S0070	6	0,426	0,999	n.s.
3	SW288	6	12,053	0,061	n.s.
3	SW2052	10	17,680	0,061	n.s.
3	S0228	1	0,163	0,686	n.s.
3	S0359	3	5,388	0,146	n.s.
4	SW1701	10	15,000	0,132	n.s.
4	SW1979	6	3,750	0,710	n.s.
4	S0005	3	5,556	0,135	n.s.
4	S0070	6	5,000	0,544	n.s.
4	SW288	3	5,000	0,172	n.s.
4	SW2052	10	12,500	0,253	n.s.
4	S0228	Monomorph			
4	S0359	Monomorph			
5	SW1701	6	3,938	0,685	n.s.
5	SW1979	6	7,560	0,272	n.s.
5	S0005	10	7,778	0,651	n.s.
5	S0070	6	9,800	0,133	n.s.
5	SW288	6	1,120	0,981	n.s.
5	SW2052	21	21,000	0,459	n.s.

Revier	Locus	DF	ChiSq	р	Signifikanz
5	S0228	1	7,000	0,008	**
5	S0359	6	4,900	0,557	n.s.
6	SW1701	36	44,740	0,151	n.s.
6	SW1979	10	10,854	0,369	n.s.
6	S0005	28	26,756	0,532	n.s.
6	S0070	15	26,601	0,032	*
6	SW288	10	11,016	0,356	n.s.
6	SW2052	36	45,733	0,128	n.s.
6	S0228	3	6,483	0,090	n.s.
6	S0359	6	9,475	0,149	n.s.
7	SW1701	21	15,310	0,807	n.s.
7	SW1979	15	40,784	0,000	***
7	S0005	21	67,654	0,000	***
7	S0070	21	16,996	0,711	n.s.
7	SW288	6	1,974	0,922	n.s.
7	SW2052	21	67,041	0,000	***
7	S0228	1	5,673	0,017	*
7	S0359	10	61,431	0,000	***
8	SW1701	21	14,044	0,868	n.s.
8	SW1979	1	0,889	0,346	n.s.
8	S0005	6	6,428	0,377	n.s.
8	S0070	6	2,556	0,862	n.s.
8	SW288	1	1,653	0,199	n.s.
8	SW2052	6	1,653	0,949	n.s.
8	S0228	1	2,000	0,157	n.s.
8	S0359	6	7,000	0,321	n.s.
9	SW1701	15	30,667	0,010	**
9	SW1979	3	8,000	0,046	*
9	S0005	10	6,500	0,772	n.s.
9	S0070	15	14,222	0,509	n.s.
9	SW288	6	6,095	0,413	n.s.
9	SW2052	28	29,111	0,407	n.s.
9	S0228	1	0,036	0,850	n.s.
9	S0359	6	11,769	0,067	n.s.
10	SW1701	6	1,331	0,970	n.s.
10	SW1979	3	3,645	0,302	n.s.
10	S0005	15	8,438	0,905	n.s.
10	S0070	6	2,813	0,832	n.s.

Revier	Locus	DF	ChiSq	р	Signifikanz
10	SW288	15	13,500	0,564	n.s.
10	SW2052	6	6,000	0,423	n.s.
10	S0228	1	0,257	0,613	n.s.
10	S0359	6	5,425	0,491	n.s.
11	SW1701	28	41,667	0,047	*
11	SW1979	6	4,444	0,617	n.s.
11	S0005	21	22,222	0,387	n.s.
11	S0070	6	4,269	0,640	n.s.
11	SW288	3	4,568	0,206	n.s.
11	SW2052	28	36,150	0,139	n.s.
11	S0228	1	0,625	0,429	n.s.
11	S0359	6	1,208	0,977	n.s.
12	SW1701	10	5,631	0,845	n.s.
12	SW1979	1	2,160	0,142	n.s.
12	S0005	21	24,780	0,257	n.s.
12	S0070	6	2,160	0,904	n.s.
12	SW288	3	2,458	0,483	n.s.
12	SW2052	15	21,778	0,114	n.s.
12	S0228	1	1,120	0,290	n.s.
12	S0359	3	4,511	0,211	n.s.
13	SW1701	6	6,563	0,363	n.s.
13	SW1979	3	6,122	0,106	n.s.
13	S0005	28	19,320	0,888	n.s.
13	S0070	10	9,500	0,485	n.s.
13	SW288	6	4,139	0,658	n.s.
13	SW2052	28	24,481	0,656	n.s.
13	S0228	3	3,374	0,338	n.s.
13	S0359	6	0,831	0,991	n.s.
14	SW1701	10	12,621	0,246	n.s.
14	SW1979	3	7,639	0,054	n.s.
14	S0005	21	24,348	0,277	n.s.
14	S0070	6	7,749	0,257	n.s.
14	SW288	3	0,952	0,813	n.s.
14	SW2052	6	3,514	0,742	n.s.
14	S0228	3	0,673	0,879	n.s.
14	S0359	10	7,578	0,670	n.s.
15	SW1701	6	7,111	0,311	n.s.
15	SW1979	1	1,440	0,230	n.s.

Revier	Locus	DF	ChiSq	р	Signifikanz
15	S0005	10	10,000	0,440	n.s.
15	S0070	1	0,082	0,775	n.s.
15	SW288	1	0,082	0,775	n.s.
15	SW2052	6	8,000	0,238	n.s.
15	S0228	3	3,360	0,339	n.s.
15	S0359	1	0,082	0,775	n.s.
16	SW1701	6	11,047	0,087	n.s.
16	SW1979	1	1,765	0,184	n.s.
16	S0005	21	26,809	0,177	n.s.
16	S0070	6	3,813	0,702	n.s.
16	SW288	6	7,583	0,270	n.s.
16	SW2052	10	18,669	0,045	*
16	S0228	1	13,000	0,000	***
16	S0359	3	0,221	0,974	n.s.
17	SW1701	45	60,670	0,059	n.s.
17	SW1979	3	3,485	0,323	n.s.
17	S0005	15	11,816	0,693	n.s.
17	S0070	21	30,768	0,078	n.s.
17	SW288	10	2,813	0,985	n.s.
17	SW2052	15	14,526	0,486	n.s.
17	S0228	3	0,149	0,985	n.s.
17	S0359	3	0,720	0,868	n.s.
18	SW1701	1	0,375	0,540	n.s.
18	SW1979	1	0,240	0,624	n.s.
18	S0005	6	4,167	0,654	n.s.
18	S0070	3	3,467	0,325	n.s.
18	SW288	3	3,600	0,308	n.s.
18	SW2052	6	5,333	0,502	n.s.
18	S0228	3	0,667	0,881	n.s.
18	S0359	3	6,000	0,112	n.s.
19	SW1701	21	15,822	0,780	n.s.
19	SW1979	6	16,372	0,012	*
19	S0005	36	38,939	0,339	n.s.
19	S0070	15	10,300	0,800	n.s.
19	SW288	15	20,599	0,150	n.s.
19	SW2052	21	48,871	0,001	***
19	S0228	1	0,247	0,619	n.s.
19	S0359	6	15,455	0,017	*

Revier	Locus	DF	ChiSq	р	Signifikanz
20	SW1701	21	36,000	0,022	*
20	SW1979	1	1,111	0,292	n.s.
20	S0005	15	28,267	0,020	*
20	S0070	15	28,413	0,019	*
20	SW288	3	2,874	0,411	n.s.
20	SW2052	6	3,069	0,800	n.s.
20	S0228	3	3,333	0,343	n.s.
20	S0359	3	6,694	0,082	n.s.
21	SW1701	3	11,000	0,012	*
21	SW1979	1	0,952	0,329	n.s.
21	S0005	21	43,701	0,003	**
21	S0070	6	15,714	0,015	*
21	SW288	3	5,272	0,153	n.s.
21	SW2052	10	20,900	0,022	*
21	S0228	3	3,816	0,282	n.s.
21	S0359	3	7,508	0,057	n.s.
22	SW1701	10	14,778	0,140	n.s.
22	SW1979	6	0,662	0,995	n.s.
22	S0005	21	46,235	0,001	**
22	S0070	6	5,372	0,497	n.s.
22	SW288	6	8,388	0,211	n.s.
22	SW2052	15	13,077	0,596	n.s.
22	S0228	1	6,644	0,010	**
22	S0359	6	14,346	0,026	*
23	SW1701	10	10,850	0,369	n.s.
23	SW1979	3	3,938	0,268	n.s.
23	S0005	6	7,778	0,255	n.s.
23	S0070	6	10,889	0,092	n.s.
23	SW288	3	3,938	0,268	n.s.
23	SW2052	10	3,694	0,960	n.s.
23	S0228	3	5,110	0,164	n.s.
23	S0359	6	3,938	0,685	n.s.
24	SW1701	15	26,213	0,036	*
24	SW1979	6	4,840	0,565	n.s.
24	S0005	21	23,111	0,338	n.s.
24	S0070	6	5,533	0,477	n.s.
24	SW288	1	0,036	0,850	n.s.
24	SW2052	15	13,067	0,597	n.s.

Revier	Locus	DF	ChiSq	р	Signifikanz
24	S0228	1	2,880	0,090	n.s.
24	S0359	6	6,222	0,399	n.s.
25	SW1701	21	23,281	0,329	n.s.
25	SW1979	6	34,000	0,000	***
25	S0005	55	59,777	0,306	n.s.
25	S0070	21	23,123	0,337	n.s.
25	SW288	10	16,484	0,087	n.s.
25	SW2052	66	97,183	0,008	**
25	S0228	6	3,075	0,799	n.s.
25	S0359	6	4,571	0,600	n.s.
26	SW1701	10	5,036	0,889	n.s.
26	SW1979	1	0,041	0,839	n.s.
26	S0005	10	16,528	0,085	n.s.
26	S0070	10	10,889	0,366	n.s.
26	SW288	3	3,150	0,369	n.s.
26	SW2052	15	21,438	0,123	n.s.
26	S0228	3	7,058	0,070	n.s.
26	S0359	3	2,160	0,540	n.s.
27	SW1701	15	22,400	0,098	n.s.
27	SW1979	1	1,120	0,290	n.s.
27	S0005	15	16,625	0,342	n.s.
27	S0070	3	2,160	0,540	n.s.
27	SW288	6	14,000	0,030	*
27	SW2052	10	7,875	0,641	n.s.
27	S0228	Monomorph			·
27	S0359	3	4,486	0,214	n.s.
28	SW1701	78	59,956	0,936	n.s.
28	SW1979	15	2,878	1,000	n.s.
28	S0005	66	68,595	0,389	n.s.
28	S0070	15	13,116	0,593	n.s.
28	SW288	15	22,217	0,102	n.s.
28	SW2052	15	24,970	0,050	n.s.
28	S0228	6	7,186	0,304	n.s.
28	S0359	3	3,572	0,312	n.s.
29	SW1701	28	28,444	0,441	n.s.
29	SW1979	6	0,889	0,989	n.s.
29	S0005	21	25,680	0,219	n.s.
29	S0070	6	16,000	0,014	*

Revier	Locus	DF	ChiSq	р	Signifikanz
29	SW288	6	2,880	0,824	n.s.
29	SW2052	15	11,556	0,712	n.s.
29	S0228	1	0,426	0,514	n.s.
29	S0359	1	2,000	0,157	n.s.
30	SW1701	36	31,518	0,682	n.s.
30	SW1979	6	8,033	0,236	n.s.
30	S0005	66	70,518	0,329	n.s.
30	S0070	15	11,695	0,702	n.s.
30	SW288	6	6,551	0,364	n.s.
30	SW2052	15	46,521	0,000	***
30	S0228	3	6,627	0,085	n.s.
30	S0359	10	7,179	0,708	n.s.
31	SW1701	28	22,880	0,739	n.s.
31	SW1979	1	2,035	0,154	n.s.
31	S0005	36	44,240	0,163	n.s.
31	S0070	6	1,653	0,949	n.s.
31	SW288	6	1,747	0,941	n.s.
31	SW2052	15	13,333	0,577	n.s.
31	S0228	1	0,245	0,621	n.s.
31	S0359	10	14,722	0,143	n.s.
32	SW1701	6	4,771	0,573	n.s.
32	SW1979	1	0,194	0,659	n.s.
32	S0005	6	3,920	0,688	n.s.
32	S0070	15	13,125	0,593	n.s.
32	SW288	3	1,120	0,772	n.s.
32	SW2052	10	3,571	0,965	n.s.
32	S0228	3	5,349	0,148	n.s.
32	S0359	3	2,458	0,483	n.s.
33	SW1701	28	27,677	0,482	n.s.
33	SW1979	3	1,469	0,689	n.s.
33	S0005	36	55,160	0,021	*
33	S0070	15	12,941	0,607	n.s.
33	SW288	10	9,330	0,501	n.s.
33	SW2052	10	15,468	0,116	n.s.
33	S0228	3	2,000	0,572	n.s.
33	S0359	6	2,663	0,850	n.s.
34	SW1701	28	35,252	0,163	n.s.
34	SW1979	6	5,078	0,534	n.s.

Revier	Locus	DF	ChiSq	р	Signifikanz	
34	S0005	55	67,568	0,119	n.s.	
34	S0070	15	18,040	0,261	n.s.	
34	SW288	6	3,449	0,751	n.s.	
34	SW2052	21	25,499	0,226	n.s.	
34	S0228	3	3,701	0,296	n.s.	
34	S0359	10	4,533	0,920	n.s.	
35	SW1701	10	18,809	0,043	*	
35	SW1979	1	8,000	0,005	**	
35	S0005	28	19,333	0,888	n.s.	
35	S0070	10	2,880	0,984	n.s.	
35	SW288	6	15,339	0,018	*	
35	SW2052	10	10,993	0,358	n.s.	
35	S0228	1	0,889	0,346	n.s.	
35	S0359	3	3,259	0,353	n.s.	
36	SW1701	3	0,750	0,861	n.s.	
36	SW1979	1	0,120	0,729	n.s.	
36	S0005	3	3,000	0,392	n.s.	
36	S0070	6	6,000	0,423	n.s.	
36	SW288	3	2,333	0,506	n.s.	
36	SW2052	3	2,333	0,506	n.s.	
36	S0228	3	3,000	0,392	n.s.	
36	S0359	3	0,750	0,861	n.s.	
37	SW1701	21	25,528	0,225	n.s.	
37	SW1979	1	4,444	0,035	*	
37	S0005	28	23,333	0,716	n.s.	
37	S0070	10	14,629	0,146	n.s.	
37	SW288	6	4,333	0,632	n.s.	
37	SW2052	15	9,309	0,861	n.s.	
37	S0228	6	1,837	0,934	n.s.	
37	S0359	10	9,150	0,518	n.s.	
38	SW1701	10	10,458	0,401	n.s.	
38	SW1979	15	13,000	0,602	n.s.	
38	S0005	6	2,611	0,856	n.s.	
38	S0070	6	4,737	0,578	n.s.	
38	SW288	6	1,170	0,978	n.s.	
38	SW2052	21	23,624	0,312	n.s.	
38	S0228	1	0,138	0,710	n.s.	
38	S0359	1	1,170	0,279	n.s.	

Revier	Locus	DF	ChiSq	р	Signifikanz
39	SW1701	15	19,437	0,195	n.s.
39	SW1979	6	7,875	0,247	n.s.
39	S0005	45	54,639	0,154	n.s.
39	S0070	6	5,833	0,442	n.s.
39	SW288	1	0,032	0,857	n.s.
39	SW2052	15	13,623	0,554	n.s.
39	S0228	3	8,591	0,035	*
39	S0359	3	3,365	0,339	n.s.
40	SW1701	28	31,574	0,292	n.s.
40	SW1979	3	6,667	0,083	n.s.
40	S0005	66	53,571	0,864	n.s.
40	S0070	10	8,791	0,552	n.s.
40	SW288	3	2,778	0,427	n.s.
40	SW2052	15	18,469	0,239	n.s.
40	S0228	3	2,400	0,494	n.s.
40	S0359	3	0,685	0,877	n.s.
41	SW1701	10	10,000	0,440	n.s.
41	SW1979	6	0,918	0,989	n.s.
41	S0005	15	17,500	0,290	n.s.
41	S0070	3	5,000	0,172	n.s.
41	SW288	1	0,313	0,576	n.s.
41	SW2052	1	0,918	0,338	n.s.
41	S0228	3	5,000	0,172	n.s.
41	S0359	3	0,625	0,891	n.s.
42	SW1701	21	27,960	0,141	n.s.
42	SW1979	3	0,720	0,868	n.s.
42	S0005	28	24,723	0,643	n.s.
42	S0070	10	13,640	0,190	n.s.
42	SW288	6	13,680	0,033	*
42	SW2052	10	21,600	0,017	*
42	S0228	1	0,015	0,904	n.s.
42	S0359	3	8,998	0,029	*
43	SW1701	3	1,338	0,720	n.s.
43	SW1979	3	3,592	0,309	n.s.
43	S0005	6	10,796	0,095	n.s.
43	S0070	3	0,274	0,965	n.s.
43	SW288	1	0,039	0,843	n.s.
43	SW2052	3	0,952	0,813	n.s.

Revier	Locus	DF	ChiSq	р	Signifikanz
43	S0228	Monomorph			
43	S0359	1	0,952	0,329	n.s.
44	SW1701	15	34,514	0,003	**
44	SW1979	6	6,694	0,350	n.s.
44	S0005	6	20,000	0,003	**
44	S0070	1	0,023	0,880	n.s.
44	SW288	1	4,444	0,035	*
44	SW2052	15	13,333	0,577	n.s.
44	S0228	1	0,625	0,429	n.s.
44	S0359	1	0,123	0,725	n.s.

Tabelle A 11:Überprüfung des Hardy-Weinberg-Gleichgewichts mit "Fisher's
exact Test" für die Gesamtpopulation (P: Wahrscheinlichkeit)

Locus	р	Standardfehler			
SW1701	0,0000	0,0000			
SW1979	0,0000	0,0000			
S0005	0,0000	0,0000			
S0070	0,0000	0,0000			
SW288	0,0000	0,0000			
SW2052	0,0000	0,0000			
S0228	0,0000	0,0000			
S0359	0,0000	0,0000			
Chi Quadrat: unendlich					
Freiheitsgrad (DF): 16.0000					
Wahrscheinlichkeit: Hoch signifikant					

Revier	Но	σ	He	σ	Revier	Но	σ	He	σ
1	0,750	0,094	0,500	0,053	23	0,750	0,080	0,640	0,025
2	0,542	0,039	0,637	0,038	24	0,734	0,064	0,666	0,050
3	0,672	0,105	0,583	0,076	25	0,765	0,047	0,746	0,040
4	0,525	0,156	0,518	0,114	26	0,518	0,089	0,537	0,074
5	0,661	0,114	0,598	0,063	27	0,696	0,113	0,546	0,090
6	0,732	0,074	0,737	0,035	28	0,719	0,051	0,701	0,052
7	0,534	0,062	0,614	0,050	29	0,719	0,074	0,595	0,065
8	0,656	0,081	0,564	0,050	30	0,694	0,057	0,660	0,048
9	0,781	0,110	0,645	0,078	31	0,656	0,082	0,627	0,079
10	0,694	0,050	0,596	0,044	32	0,625	0,081	0,568	0,063
11	0,700	0,078	0,645	0,063	33	0,625	0,049	0,621	0,069
12	0,643	0,071	0,596	0,056	34	0,712	0,028	0,700	0,036
13	0,688	0,077	0,605	0,059	35	0,641	0,096	0,582	0,051
14	0,670	0,054	0,595	0,051	36	0,708	0,076	0,556	0,047
15	0,500	0,082	0,484	0,086	37	0,763	0,056	0,693	0,050
16	0,644	0,088	0,555	0,064	38	0,625	0,070	0,571	0,055
17	0,632	0,103	0,569	0,087	39	0,714	0,059	0,680	0,044
18	0,708	0,098	0,524	0,048	40	0,692	0,042	0,643	0,048
19	0,650	0,086	0,648	0,071	41	0,700	0,076	0,578	0,058
20	0,725	0,075	0,648	0,055	42	0,569	0,109	0,540	0,094
21	0,784	0,073	0,602	0,050	43	0,489	0,099	0,389	0,070
22	0,643	0,101	0,625	0,057	44	0,600	0,087	0,511	0,070

Tabelle A 12:Beobachtete Heterozygosität (Ho) und erwartete Heterozygosität
(He) lociübergreifend jeweils mit Standardabweichung (σ) jedes
Reviers

Tabelle A 13:Überprüfung auf ein Kopplungsungleichgewicht (LD): Vergleich der
Loci und ihrer Genotypverteilung untereinander (p:
Wahrscheinlichkeit mit Signifikanz; * p< 0,05; ** p< 0,01; *** p<
0,001; n.s.: nicht signifikant)

Locus 1	Locus 2	p mit Signifikanz	Standardfehler
SW1701	SW1979	0,00152 (**)	0,001520
SW1701	S0005	0,026820 (*)	0,015548
SW1979	S0005	0,000000 (***)	0,000000
SW1701	S0070	0,000580 (***)	0,000580
SW1979	S0070	0,000000 (***)	0,000000
S0005	S0070	0,000000 (***)	0,000000
SW1701	SW288	0,013540 (*)	0,010574
SW1979	SW288	0,000000 (***)	0,000000
S0005	SW288	0,000000 (***)	0,000000
S0070	SW288	0,000000 (***)	0,000000
SW1701	SW2052	0,011490 (*)	0,008670
SW1979	SW2052	0,000000 (***)	0,000000
S0005	SW2052	0,044010 (*)	0,020018
S0070	SW2052	0,000000 (***)	0,000000
SW288	SW2052	0,000000 (***)	0,000000
SW1701	S0228	0,032890 (*)	0,014133
SW1979	S0228	0,327950 (n.s.)	0,033801
S0005	S0228	0,000000 (***)	0,000000
S0070	S0228	0,000000 (***)	0,000000
SW288	S0228	0,400030 (*)	0,035896
SW2052	S0228	0,000660 (***)	0,000445
SW1701	S0359	0,000000 (***)	0,000000
SW1979	S0359	0,000000 (***)	0,000000
S0005	S0359	0,001330 (**)	0,001330
S0070	S0359	0,000000 (***)	0,000000
SW288	S0359	0,000000 (***)	0,000000
SW2052	S0359	0,000000 (***)	0,000000
S0228	S0359	0,000000 (***)	0,000000

Tabelle A 14:Ergebnisse der Berechnungen mit BOTTLENECK 1.2.02 jeweils
unter Annahme eines anderen Mutationsmodells für Mikrosatelliten
 $(H_e:$ erwartete Heterozygosität; $H_{eq}:$ erwartete Heterozygosität im
Mutations-DriftGleichgewicht; $\sigma:$ Standardabweichung; $H_o:$
beobachtete Heterozygosität; p: Wahrscheinlichkeit)

Unter Annahme des "infinite alleles model" (IAM)						
Locus	H _e	Heq	σ	$H_o - H_e / \sigma$	р	
SW1701	0,884	0,728	0,108	1,440	0,0020	
SW1979	0,575	0,569	0,164	0,039	0,4330	
S0005	0,913	0,780	0,087	1,525	0,0000	
S0070	0,847	0,597	0,157	1,596	0,0010	
SW288	0,717	0,535	0,171	1,062	0,1270	
SW2052	0,878	0,695	0,122	1,502	0,0000	
S0228	0,524	0,308	0,198	1,090	0,1680	
S0359	0,728	0,488	0,183	1,314	0,0520	
Unter Annahr	ne des "stepwis	se mutation mo	del" (SMM)			
Locus	H _e	Heq	σ	$H_o - H_e / \sigma$	р	
SW1701	0,884	0,890	0,020	-0,330	0,3040	
SW1979	0,575	0,799	0,045	-5,005	0,0010	
S0005	0,913	0,913	0,023	-0,021	0,4170	
S0070	0,847	0,821	0,039	0,655	0,2950	
SW288	0,717	0,772	0,056	-0,990	0,1310	
SW2052	0,878	0,874	0,024	0,168	0,5130	
S0228	0,524	0,551	0,116	-0,235	0,3170	
S0359	0,728	0,737	0,067	-0,135	0,3610	
Unter Annahr	ne des Zwei-Ph	asen Modells ('	ГРМ)			
Locus	H _e	Heq	σ	$H_o - H_e / \sigma$	р	
SW1701	0,884	0,869	0,030	0,475	0,3770	
SW1979	0,575	0,770	0,057	-3,427	0,0040	
S0005	0,913	0,897	0,021	0,716	0,2690	
S0070	0,847	0,789	0,052	1,122	0,0900	
SW288	0,717	0,740	0,069	-0,344	0,2840	
SW2052	0,878	0,851	0,036	0,746	0,2390	
S0228	0,524	0,515	0,135	0,065	0,4270	
S0359	0,728	0,707	0,079	0,264	0,4700	

Abbildung A 1: Stammbaum aller Tiere mit der Neighbor-Joining-Methode berechnet und mit TreeView visualisiert. Der farbliche Balken zeigt die, dem Tier von STRUCTURE 2.3.3 zugeordnete Subpopulation an (siehe Abschnitt 4.4); Tiere jeweils über Kürzel identifizierbar: 2 Buchstaben: Bundesland; 1. Ziffer: Nummer des Reviers, 2. und 3. Ziffer: Tiernummer innerhalb des Reviers. Teil 1.

Abbildung A 2: Stammbaum aller Tiere mit der Neighbor-Joining-Methode berechnet und mit TreeView visualisiert. Der farbliche Balken zeigt die, dem Tier von STRUCTURE 2.3.3 zugeordnete Subpopulation an (siehe Abschnitt 4.4); Tiere jeweils über Kürzel identifizierbar: 2 Buchstaben: Bundesland; 1. Ziffer: Nummer des Reviers, 2. und 3. Ziffer: Tiernummer innerhalb des Reviers. Teil 2.

Abbildung A 3: Stammbaum aller Tiere mit der Neighbor-Joining-Methode berechnet und mit TreeView visualisiert. Der farbliche Balken zeigt die, dem Tier von STRUCTURE 2.3.3 zugeordnete Subpopulation an (siehe Abschnitt 4.4); Tiere jeweils über Kürzel identifizierbar: 2 Buchstaben: Bundesland; 1. Ziffer: Nummer des Reviers, 2. und 3. Ziffer: Tiernummer innerhalb des Reviers. Teil 3.

Abbildung A 4: Stammbaum aller Tiere mit der Neighbor-Joining-Methode berechnet und mit TreeView visualisiert. Der farbliche Balken zeigt die, dem Tier von STRUCTURE 2.3.3 zugeordnete Subpopulation an (siehe Abschnitt 4.4); Tiere jeweils über Kürzel identifizierbar: 2 Buchstaben: Bundesland; 1. Ziffer: Nummer des Reviers, 2. und 3. Ziffer: Tiernummer innerhalb des Reviers. Teil 4.

Abbildung A 5: Stammbaum aller Tiere mit der Neighbor-Joining-Methode berechnet und mit TreeView visualisiert. Der farbliche Balken zeigt die, dem Tier von STRUCTURE 2.3.3 zugeordnete Subpopulation an (siehe Abschnitt 4.4); Tiere jeweils über Kürzel identifizierbar: 2 Buchstaben: Bundesland; 1. Ziffer: Nummer des Reviers, 2. und 3. Ziffer: Tiernummer innerhalb des Reviers. Teil 5.

Abbildung A 6: Stammbaum aller Tiere mit der Neighbor-Joining-Methode berechnet und mit TreeView visualisiert. Der farbliche Balken zeigt die, dem Tier von STRUCTURE 2.3.3 zugeordnete Subpopulation an (siehe Abschnitt 4.4); Tiere jeweils über Kürzel identifizierbar: 2 Buchstaben: Bundesland; 1. Ziffer: Nummer des Reviers, 2. und 3. Ziffer: Tiernummer innerhalb des Reviers. Teil 6.

Abbildung A 7: Stammbaum aller Tiere mit der Neighbor-Joining-Methode berechnet und mit TreeView visualisiert. Der farbliche Balken zeigt die, dem Tier von STRUCTURE 2.3.3 zugeordnete Subpopulation an (siehe Abschnitt 4.4); Tiere jeweils über Kürzel identifizierbar: 2 Buchstaben: Bundesland; 1. Ziffer: Nummer des Reviers, 2. und 3. Ziffer: Tiernummer innerhalb des Reviers. Teil 7.

Abbildung A 8: Stammbaum aller Tiere mit der Neighbor-Joining-Methode berechnet und mit TreeView visualisiert. Der farbliche Balken zeigt die, dem Tier von STRUCTURE 2.3.3 zugeordnete Subpopulation an (siehe Abschnitt 4.4); Tiere jeweils über Kürzel identifizierbar: 2 Buchstaben: Bundesland; 1. Ziffer: Nummer des Reviers, 2. und 3. Ziffer: Tiernummer innerhalb des Reviers. Teil 8.

Abbildung A 9: Stammbaum aller Tiere mit der Neighbor-Joining-Methode berechnet und mit TreeView visualisiert. Der farbliche Balken zeigt die, dem Tier von STRUCTURE 2.3.3 zugeordnete Subpopulation an (siehe Abschnitt 4.4); Tiere jeweils über Kürzel identifizierbar: 2 Buchstaben: Bundesland; 1. Ziffer: Nummer des Reviers, 2. und 3. Ziffer: Tiernummer innerhalb des Reviers. Teil 9.

Abbildung A 10: Stammbaum aller Tiere mit der Neighbor-Joining-Methode berechnet und mit TreeView visualisiert. Der farbliche Balken zeigt die, dem Tier von STRUCTURE 2.3.3 zugeordnete Subpopulation an (siehe Abschnitt 4.4); Tiere jeweils über Kürzel identifizierbar: 2 Buchstaben: Bundesland; 1. Ziffer: Nummer des Reviers, 2. und 3. Ziffer: Tiernummer innerhalb des Reviers. Teil 10.

Subpopulationen nach STRUCTURE:

0.1

Danksagung

Herrn Prof. Dr. Dr. habil. Gerald Reiner gilt mein besonderer Dank für die Überlassung des interessanten Themas, die uneingeschränkte wissenschaftliche Betreuung bei der Durchführung der Arbeit, die vielen Ideen und Impulse bei unseren Diskussionen und die kritische Durchsicht des Manuskripts.

Herrn Prof. Dr. habil. Hermann Willems danke ich für die umfassende Betreuung der Laborarbeite. Als Ansprechpartner bei allen Problemen und Dank seiner geduldigen Hilfsbereitschaft war er für mich während der ganzen Zeit unersetzlich.

Herrn AOR Dr. Werner Hecht für seine Beratung und Hilfe beim Einstieg in die Populationsgenetik.

Herrn Dr. Klaus Failing danke ich für die statistische Beratung.

Allen Mitarbeitern der Klinik für Schweine der Justus Liebig Universität Gießen danke ich sehr für die gute Zusammenarbeit und die große Hilfsbereitschaft während der ganzen Zeit.

Besonderer Dank gilt auch meinen Doktorandenkollegen Natalie, Till, Frauke und allen anderen. Ich danke Euch für die schöne Zeit im Labor, im Seminar oder beim Bäcker, für das Probensammeln im Vorfeld und für den tollen Zusammenhalt.

Meinen Eltern Oskar und Reinhild Müller und meinem Bruder Till möchte ich herzlich für die allumfassende und andauernde Unterstützung danken, ohne die die Anfertigung dieser Arbeit nicht möglich gewesen wäre.

VVB LAUFERSWEILER VERLAG STAUFENBERGRING 15 D-35396 GIESSEN

Tel: 0641-5599888 Fax: -5599890 redaktion@doktorverlag.de www.doktorverlag.de

Photo cover: © Photohunter - Fotolia