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Abstract: Neotropical wild felids (NWF) are obligate carnivore species present in Central and South
America, and some are considered endangered due to constantly decreasing populations. NWF can
become infected by a wide range of protozoan and metazoan parasites, some of them affecting their
health conditions and others having anthropozoonotic relevance. Parasitological studies on NWF are
still very scarce, and most data originated from dead or captive animals. On this account, the current
study aimed to characterize gastrointestinal parasites of free-ranging jaguars (Panthera onca), pumas
(Puma concolor), ocelots (Leopardus pardalis), and jaguarundis (Herpailurus yagouaroundi), i.e., four out
of six NWF species endemic to Colombia. Fecal samples from jaguars (n = 10) and ocelots (n = 4)
were collected between 2012 and 2017 as part of the Jaguar Corridor Initiative from six geographic
locations in Colombia. In addition, cestode specimens were obtained during puma and jaguarundi
necropsies. Scat samples were processed by standardized sodium acetate-acetic acid-formalin (SAF),
sedimentation, and flotation techniques and by carbol fuchsin-stained fecal smears. Morphological
evaluation of feces showed the presence of one cestode (Spirometra sp.), a nematode (Toxocara cati), an
acanthocephalan (Oncicola sp.), and one cyst-forming coccidian (Cystoisospora-like oocysts). Feces
oocysts were submitted to a Toxoplasma gondii-specific PCR for species identification, but no product
was amplified. The cestodes isolated from a puma and jaguarundi were molecularly characterized
by sequencing cytochrome c oxidase subunit I, identifying them as Taenia omissa and as a T. omissa
sister lineage, respectively. These results collectively demonstrate the potential role of NWF as
natural reservoir hosts for neglected zoonotic parasites (e.g., Spirometra sp., T. cati) and highlight their
possible role in parasite transmission to human communities. Due to public health concerns, the
occurrence of these parasites should be monitored in the future for appropriate zoonotic management
practices in conservation strategies and wild felid health management programs.

Keywords: jaguar; puma; ocelot; jaguarundi; Spirometra sp.; Toxocara cati; Oncicola sp.; Cystoisospora sp.;
Taenia omissa

1. Introduction

The family Felidae (order: Carnivora) is currently composed of 45 recognized non-
hybrid extant wild species with a worldwide distribution throughout all biomes except
the Antarctic polar ice caps and insular Oceania [1,2]. All members are obligate carnivores
acting as apex predators or mesocarnivores in many terrestrial ecosystems. Large wild
felids serve as effective umbrella and keystone species, contributing to maintaining and
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regulating associated biodiversity and ecosystems where they occur [3]. Neotropical wild
felids (NWF) are well-known hosts of important zoonotic protozoan parasites, such as
Toxoplasma gondii [4,5], Cryptosporidium sp., and Giardia sp. [6,7] and are often reservoirs of
hemoparasites such as Trypanosoma cruzi [8] and tick-borne piroplasmids such as Babesia sp.,
Cytauxzoon felis [9], and Anaplasma sp. [10]. Moreover, the presence of metazoan parasites
has also been reported in non-domestic NWF, showing them as feasible hosts of gastropod-
borne metastrongyloid lungworms [11,12] or Dirofilaria immitis, the causative agent of
heartworm disease [13]. Other helminths, for instance, hookworms [14], trematodes [15],
and cestodes, [13,16–18] have also been reported in non-domestic wild felids as well as
ectoparasites like ticks, mites, and fleas [19]. The sophisticated ways in which parasite life
cycles have evolved to ensure transmission involve complex interactions with vertebrate
and invertebrate hosts, and parasite assemblage reflects the host’s trophic position within
the food web [20]. Thus, parasite populations and communities are useful indicators of
environmental stress, food web structure, and biodiversity [20,21]. The neotropics are the
most diverse region with the largest number of animal species in the world [22,23], felids
not being the exception. Colombia is home to six species of NWF (Table 1). Several of these
species co-occur or are wholly sympatric; for example, puma, jaguarundi, and ocelot are
sympatric to jaguar ranges in Colombia, but not necessarily the other way round [24–26].

Table 1. Neotropical wild felid (NWF) species of Colombia.

Risk Classification

Genus Species Common Name CITES a UICN b National b

Herpailurus yagouaroundi * Jaguarundi, Eyra cat Appx II LC NE
Leopardus pardalis * Ocelot Appx I LC NE
Leopardus wiedii Margay, Tree ocelot Appx I NT NE
Leopardus tigrinus Northern tiger cat Appx I VU NE
Panthera onca * Jaguar Appx I NT VU

Puma concolor * Puma, Cougar Appx I LC NE

* Species included in the current study. a All appendix I species are threatened with extinction. b LC: least concern;
NT: near threatened; VU: vulnerable; NE: not evaluated.

The potential multiplicity of NWF parasite species has never been evaluated in the
unique Central and South American hinge-joining key territory of Colombia. Despite
numerous data on the ecology and biology of non-domestic felids in Colombia [25,27,28],
little is known about free-ranging NWF-associated infectious diseases (e.g., virus, bacteria,
fungi) and their parasite fauna. Additionally, parasite surveillance in natural ecological
systems is an important tool to understand wildlife health, parasite biodiversity, ecology,
and conservation [29]. Hence, the current study aims to present the first description of
gastrointestinal parasite fauna from free-ranging jaguars, pumas, ocelots, and jaguarundis
at eight sampling locations in Colombia through copromicroscopic and necropsy-based
approaches on detailed morphology and further molecular identification.

2. Results
2.1. Copromicroscopical Evaluation

Parasitological evaluation of jaguar (P. onca) and ocelot (L. pardalis) faeces through
basic coprological standard techniques simultaneously evidenced three metazoan par-
asite taxa belonging to Platyhelminthes and Acanthocephala, plus a protozoan of the
phylum Alveolata (Subphylum: Apicomplexa). A high infection rate (~36%; 5/14) of
cestode eggs belonging to Spirometra sp. was found (Figure 1a). The oval-shaped di-
phyllobothriid eggs corresponded to Spirometra sp. These asymmetric yellowish eggs
showed a slightly distinct operculum at the cone-shaped pole (Figure 1b). Furthermore,
we also identified golden, slightly pear-shaped ascarid-type eggs with characteristic thick-
pitted eggshells (Figure 1c). Therefore, the traits of ascarid-type eggs depicted above cor-
responded well to the zoonotic nematode Toxocara cati. Additionally, pale and slightly
oval eggs of Oncicola sp., with a delicate external membrane, were detected. Finally, un-
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sporulated Cystoisopora-like oocysts (Sarcocystidae) were also identified in jaguar and
ocelot scat samples (Figure 1d,e, respectively).
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Figure 1. Illustrations of parasite eggs detected in faecal samples of free-ranging jaguars and ocelots:
(a) High number of Spirometra sp. eggs; (b) Single Spirometra sp. egg (60.72 µm × 33.38 µm); (c) Non-
embryonated Toxocara cati egg (63.86 µm × 53.43 µm) carrying a zygote; (d) Oncicola sp. egg (64.30 µm
× 46.68 µm); (e) Un-sporulated Cystoisospora-like oocyst (12 µm × 12 µm; Sarcocystidae). Scale-bars:
(a) 200 µm; (b–d) 20 µm; (e) 10 µm.

2.2. Cestode Identification and Characterization of Rostellar Hooks

The macroscopical analyses of helminth specimens collected from the small intestine
of a puma (P. concolor) and a jaguarundi (H. yagouaroundi) evidenced the presence of taeniid
cestodes in both felids during necropsy procedures. Both cestodes presented a ribbon-like
strobila with many proglottids. Immature and mature proglottids were wider than longer,
increasing in length towards the posterior part. Additionally, two rows of hooks in a
well-developed rostellum were noticed. All rostellar hooks of anterior row were larger
and alternated with those of second row, which were consistently smaller (please refer to
Videos S1 and S2). Armed rostellum evidences a total of 48 hooks. The basic morphological
measures of large and small hooks (n = 24, n = 21, respectively) were: 282.64 µm and
205.31 µm total length (TL), 135.26 µm and 99.57 µm total width (TW), 202.89 µm and
164.62 µm blade length (BL), 135.59 µm and 97.69 µm apical length (AL), 59.28 µm and
45.34 µm guard length (GL), 47.49 µm and 38.86 µm guard width (GW), 39.32 µm and
27.46 µm blade curvature (BC), and 45.03 µm and 22.07 µm handle (HW). Along the strobila,
each proglottid showed marginal alternating irregular genital pores, demonstrating the
presence of a single set of reproductive organs (Figure 2). These morphological traits
correspond well to the cyclophyllidean genus Taenia.
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Figure 2. Morphological traits of putative Taenia omissa specimens. (a) Scolex photograph of T.
omissa obtained from puma; (b) Large and (c) small rostellar hooks outline drawings of adult Taenia
sp. specimen from jaguarundi gastrointestinal tract (ileum); (d) jaguarundi, and (e) puma cestodes
ribbon-like strobila (red arrows indicate genital pores). TL: total length, TW: total width, BL: blade
length, AL: apical length, GL: guard length, GW: guard width, BC: blade curvature, HW: handle
width. Scale-bars: (b,c) 50 µm; (d,e) 1 mm.
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In order to identify the species of adult cestodes found in puma and jaguarundi,
858 bp-long fragments of cytochrome c oxidase subunit I (COI) gene of both specimens
were characterized and subjected to phylogenetic analysis. Representative COI sequences
of relevant Taenia species including all specimens reported from felids were included.
The specimen from puma clustered within the lineage composed of representatives of
Taenia omissa, while the jaguarundi isolate formed a sister lineage to them (Figure 3).
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Figure 3. Phylogenetic position of Taenia sp. isolates obtained from puma and jaguarundi. Maximum
likelihood tree from IQ-Tree based on cytochrome c oxidase subunit I gene sequences analyzed as
single partition using GTR + F + I + G4 model selected according to corrected Akaike information
criterion. Nodal values show standard bootstrap supports above 50 (100 replicates). Specimens
collected from puma and jaguarundi are shown in bold. GenBank accessions are given after taxa
names. The branch length scale bar indicates number of substitutions per site.
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2.3. Toxoplasma gondii PCR

None of the jaguar nor ocelot faecal oocyst samples analyzed showed effective ampli-
fication of the T. gondii-specific 529 bp DNA repetitive fragment. Nevertheless, both the
internal and positive controls of each test amplified normally, and negative controls never
showed amplification.

3. Discussion

Since the vast majority of available data on wild felid parasite fauna come from
captive, deceased, or highly anthropized individuals, and data on free-ranging NWF are
scarce [30], the findings presented here constitute an important contribution to baseline
understanding of the parasite fauna harbored by free-ranging wild felids (~67% of species)
of Colombia. Agricultural expansion negatively impacts the occupancy of wild felid
communities across human-modified landscapes [31,32], and these adverse anthropogenic
factors may in turn influence their respective parasite communities. Thus, more frequent
domestic animal–human–wildlife interface favors a plethora of infectious pathogens to
emerge, spread, cross species barriers, and eventually evolve [14,33]. Here, we describe
free-ranging wild felid parasites, including zoonotic parasites, heightening the importance
of NWF living in human-modified landscapes and highlighting the need for appropriate
zoonotic management practices in wild felid health management programs, due to public
health concern and conservation.

Sparganosis is a globally distributed neglected water- and food-borne disease caused
by larval stages of Spirometra sp. located in various human body tissues [34]. The occur-
rence of Spirometra infections across South America has been reported since the beginning
of the 20th century [35]. This cestode has been previously recorded in Geoffroy’s cat
(Leopardus geoffroyi), puma, and jaguarundi in western Paraguay [36]; the guiña (Leopar-
dus guigna) in Chile [37]; and jaguar, puma, and margay (Leopardus wiedii) in Brazil [16,38].
Additionally, ocelots from Peru [39] and Brazil [38] have been shown to represent feasible
definitive hosts of Spirometra sp. To the best of our knowledge, we report Spirometra sp.
here for the first time in Colombian free-ranging jaguars and ocelots. Human cases of
sparganosis have been previously reported in South America [40–42], but to date there is
only a single six-decades-old case report from Colombia [43]. In addition, ascarid nema-
todes were shown to be broadly prevalent in some wild felids, and T. cati is the dominant
parasite in some of them due to its complex life cycle, including lactogenic transmission
and a wide array of paratenic hosts (e.g., rodents) [44]. We report T. cati in jaguars and
ocelots, highlighting again the potential role of NWF in parasite transmission to local
human communities. Despite the worldwide distribution of anthropozoonotic T. cati and
its endemicity in most American countries [45], feline as well as human toxocarosis is still
poorly understood in Colombian rural areas, since most studies have been conducted in
urban areas, including large cities of the country [46].

Despite T. gondii negative molecular assays, here we describe un-sporulated Cys-
toisospora-like oocysts in wild jaguars and ocelots. Since there are at least eight Eimeria
species described previously in felids as spurious findings, meaning that identified Eime-
ria oocysts belonged to prey animals and passed through the felid’s gut into faeces [47],
it would be recommended to posteriorly identify if Cystoisospora-type oocysts reported
here belonged to Cystoisospora rivolta, Hammondia hammondi, or Besnoitia spp., frequently
reported as cyst-forming coccidians in domestic and wild felids [48]. Furthermore, the
cyclophyllidean cestode T. omissa, which was firstly reported in 1910 [49], was also evi-
denced during necropsy procedures of the deceased puma. To date, T. omissa molecular
data information is restricted to reports in natural intermediate hosts such as domesticated
alpacas (Vicugna pacos) [50] and free-living red brockets (Mazama americana). Meanwhile,
puma [51] and Eurasian lynx (Lynx lynx) [18] have also been reported as T. omissa-definitive
hosts. Therefore, the present study enlarges the sequence data for this tapeworm of felids,
expands the geographical distribution range of T. omissa to Colombia, and adds jaguarundi
as a new definitive host for an uncharacterised sister linage of T. omissa. In comparison to
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faeces, carcass evaluation increases the chance of parasite detection. The copromicroscopic
detection of Taenia sp. eggs tends to be of lower sensitivity when compared to carcass
evaluation, since taeniid eggs are usually passed within mature proglottids, and show
intermittent shedding analogously to other cestodes. [52]. The acanthocephalan genus On-
cicola, consisting of twenty-four recognized species, has been circulating in South American
felines for almost 9000 years [53,54]. Some scattered reports of O. canis, O. oncicola, and
O. venezualensis have been reported in jaguars, ocelots, pumas, and margays across the
American continent [13,55–60]. We report this parasite genus in free-ranging jaguars and
ocelots in Colombia for the first time since 1968 [61].

Based on the fact that parasites are associated with retarded growth, reproductive
disorders, tissue damage, inflammation, and mortality in wildlife [14], constant parasito-
logical investigations of Colombian NWF are needed. This should be considered not only
for conservation strategies and wild felid health management programs but also for public
health concerns. For a better comprehension of parasite fauna infecting free-ranging NWF
in Colombia, we also encourage further studies of the highly arboreal margay and the
rare Northern tiger cat (L. tigrinus) to complement baseline data for the complete set of
six endemic species reported to date in Colombian territories. Likewise, for comparative
purposes, further parasitological surveys of the species included in the present study (i.e.,
jaguar, puma, ocelot, and jaguarundi) should be performed at a larger sample size in differ-
ent biomes and seasons throughout the American continent. Finally, since the indirect life
cycles of Spirometra sp. and T. cati require two to three hosts, including humans as aberrant
hosts, it is desirable to analyze potential intermediate hosts (e.g., tetrapods, invertebrates,
and copepods) in agricultural and semi-aquatic landscapes for a better understanding
of these neglected parasites in the tropics and to delineate appropriate zoonotic health
management practices to avoid human infections. Intriguing felid metastrongyloid car-
diopulmonary nematodes have become spotlighted in the parasitology of wild felids [12,62].
Thus, we encourage future studies on epizootiological drivers of feline , aelurostrongylosis,
angiostrongylosis, crenosomosis, gurltiosis, and troglostrongylosis in NWF [12,37,63], as
these parasitoses have been discredited in populations of wild felids [11,37].

4. Materials and Methods
4.1. Study Area

The current study was conducted across the highly heterogeneous Colombian biomes
of the Andean, Amazonian, and Orinoquía regions. Based on the Köppen–Geiger climate
classification [64], the eight sampling geographic locations included in the present study
belong to tropical monsoon (Am), tropical rainforest (Af), and tropical wet and dry climate
(Aw) (see Table 2). The jaguar and ocelot faecal samples were collected from three locations
in Santander, and one from Antioquia, Casanare, and Córdoba departments, respectively.
Furthermore, cestode specimens (i.e., scolex, strobila, and proglottids) were collected from
a deceased wild puma in Caquetá and a road-killed jaguarundi in Cundinamarca (refer to
Figure 4).

Table 2. Detailed sampling areas and climate classification.

Department Municipality Sampling Location Climate a Sample Type

Antioquia Yondó Ciénaga de Barbacoas Am Af Feces o

Caquetá San José del Fragüa Puerto bello Af Metazoan ∆

Casanare Hato Corozal La Chapa Am Feces o

Córdoba Puerto Libertador La Esmeralda Af Feces o

Cundinamarca - - Aw Metazoan ♦

Santander El Hato Las Pampas Af Feces �

Santander Puerto Wilches Las Palmas Am Feces �

Santander Puerto Wilches Caño Limón Am Feces �

a Köppen–Geiger Am: Tropical monsoon; Af: Tropical rainforest; Aw: Tropical wet and dry. o Jaguar (Panthera
onca) faeces. � Ocelot (Leopardus pardalis) faeces. ∆ Puma (Puma concolor) collected helminths. ♦ Jaguarundi
(Herpailurus yagouaroundi) collected helminths.
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4.2. Sample Collection and Laboratory Procedures

The current study includes free-ranging wild jaguar (n = 10) and ocelot (n = 4) fae-
cal samples collected between 2012 and 2017 as part of the Jaguar Corridor Initiative, a
conservation and monitoring program carried out by the Panthera organization across
the jaguar’s range [65]. Collected faeces came from direct sampling sites of trails that
were regularly monitored by trap cameras (refer to Figure 5). Faeces were identified by
associated tracks and followed the general features and morphometric characteristics of
wild felid depositions [66]. The traditional ecological knowledge of locals was also very
helpful for monitoring and sampling these reclusive individuals [67]. Once identified in
the field, well-formed faeces were dry preserved and fixed in 70% EtOH until subsequent
copromicroscopic evaluation, as recommended for challenging tropical environments [68].
Furthermore, we collected a cestode sample serendipitously during the necropsy of a young
road-killed wild jaguarundi male in Cundinamarca. The cestode specimen was carefully
extracted from the ileum. Additionally, free cestode proglottids and whole tapeworms
firmly attached by their scolex to the jejunum mucosa of an adult deceased female puma at
Caquetá were collected. Cestode specimens were gently rinsed in physiological buffered
saline solution (PBS) and thereafter preserved in 96% EtOH until further molecular eval-
uation. All sampling procedures were performed in agreement with the Guidelines of
the American Society of Mammologists for the Use of Wild Mammals in Research and
Education [69,70], the EU Directive 2010/63/EU, and the final approval of the Ethics Com-
mittee for Animal Experimentation of the Universidad de Antioquia (AS No. 132) under
collection permit No. 0524 of 2014 (IDB0321), Colombia.

4.2.1. Basic Copromicroscopic Analyses

Since there is no single copromicroscopic method to diagnose all parasitic stages
concomitantly, the jaguar and ocelot faeces examination was performed by means of the
following qualitative techniques for cysts, oocysts, eggs, and parasite larvae detection to
optimize data collection: modified sodium-acetate aceticacid formaldehyde (SAF) tech-
nique [71], simple sedimentation technique [72], zinc sulfate centrifugal flotation technique,
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and fast carbol-fuchsin stained faecal smears [73]. The parasitic specimens were identified
through morphometry under an Olympus BX53 (Olympus Corporation, Tokyo, Japan) semi-
motorized direct light microscope (100×, 400×, and 1000×) equipped with an Olympus
DP74 (Olympus Corporation, Tokyo, Japan) digital camera using the cellSens standard imag-
ing software (Olympus Corporation, Tokyo, Japan). The parasites’ identification was based
on general morphology, shape, size, and color, according to Deplazes et al. (2016) [74].
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4.2.2. Molecular Phylogenetics

Adult cestodes obtained from the jejunum of the female puma and the ileum of
the male jaguarundi were carefully removed from the epithelium and/or lumen of the
small intestine, trying to preserve the scolex, strobila, and proglottids integrity. The
obtained helminths were first photographed using a stereomicroscope (Nikon SMZ25R,
Tokyo, Japan). Amplification of partial cytochrome c oxidase subunit I (COI) was achieved
with primers JB3 [75] and Cox1R [76] using Phusion High-Fidelity DNA Polymerase
(New England Biolabs, Inc., Ipswich, USA) and the following cycling conditions: 35 cy-
cles of 10 s at 98 ◦C, 15 s at 60 ◦C, and 50 s at 72 ◦C. PCR products were gel-checked,
purified with Exonuclease I and FastAP alkaline phosphatase (Thermo Fisher Scien-
tific, Waltham, USA), and directly Sanger-sequenced at SeqMe (Dobříš, Czech Republic).
Contiguous gene sequences were assembled and inspected for errors in Geneious 7.1.9
(http://www.geneious.com, accessed on 3 June 2021 [77]). COI coding sequences were aligned
using MAFFT’s L-INS-i [78] translational align of Geneious. The phylogenetic tree was
estimated by maximum likelihood in IQ-TREE 1.6.5 [79]. The best-fitting model of nu-
cleotide evolution was chosen according to the corrected Akaike information criterion
in IQ-TREE ([80,81]) and nodal supports estimated through running 100 standard nonpara-
metric bootstrap replicates.

4.2.3. Faecal DNA Isolation and Toxoplasma gondii Molecular Evaluation

Total DNA isolation was performed using the Class II type B2 BSC and the DNeasy
Blood & Tissue Kit (Qiagen, Venlo, Netherlands) following manufacturer’s instructions. A

http://www.geneious.com
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200- to 300-fold repetitive 529 bp DNA fragment conserved among 60 strains and more
sensitive than B1 gene was used for T. gondii molecular detection. Amplification of repeated
fragments was performed using Toxo4 and Toxo5 primers set under previously described
conditions [82]. Tachyzoites of the T. gondii RH- and ME49 strain were used as positive
DNA controls.

Supplementary Materials: The following material is available online at https://www.mdpi.com/article/
10.3390/pathogens10070822/s1, Video S1: 3D model of T. omissa rostellar large hook, Video S2: 3D model
of T. omissa rostellar small hook.
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27. Jędrzejewski, W.; Robinson, H.S.; Abarca, M.; Zeller, K.A.; Velasquez, G.; Paemelaere, E.A.D.; Goldberg, J.F.; Payan, E.; Hoogesteijn,
R.; Boede, E.O.; et al. Estimating large carnivore populations at global scale based on spatial predictions of density and
distribution—Application to the jaguar (Panthera onca). PLoS ONE 2018, 13, e0194719. [CrossRef] [PubMed]

http://doi.org/10.1186/s13071-020-3954-1
http://doi.org/10.1016/j.vetpar.2010.10.015
http://doi.org/10.1016/j.ijppaw.2015.12.001
http://doi.org/10.1128/AEM.02422-12
http://doi.org/10.1371/journal.pone.0067463
http://doi.org/10.1186/s13071-016-1808-7
http://doi.org/10.3389/fvets.2018.00293
http://doi.org/10.1016/j.vprsr.2019.100357
http://doi.org/10.3390/pathogens10010030
http://doi.org/10.7589/0090-3558-39.3.683
http://www.ncbi.nlm.nih.gov/pubmed/14567231
http://doi.org/10.1016/j.ijppaw.2017.03.007
http://doi.org/10.1645/GE-3519RN.1
http://www.ncbi.nlm.nih.gov/pubmed/17918383
http://doi.org/10.1016/j.ijppaw.2020.09.002
http://doi.org/10.1016/j.ijppaw.2019.12.004
http://www.ncbi.nlm.nih.gov/pubmed/31956480
http://doi.org/10.1017/S0031182012002120
http://doi.org/10.1016/j.ttbdis.2021.101706
http://doi.org/10.1016/j.ijpara.2005.01.015
http://doi.org/10.1016/j.tree.2006.04.007
http://doi.org/10.1126/science.1246752
http://www.ncbi.nlm.nih.gov/pubmed/24876501
http://doi.org/10.1073/pnas.1302251110
http://doi.org/10.1017/S0952836902003230
http://doi.org/10.1017/S0030605318000327
http://doi.org/10.1002/ecy.3128
http://doi.org/10.1371/journal.pone.0194719
http://www.ncbi.nlm.nih.gov/pubmed/29579129


Pathogens 2021, 10, 822 11 of 12

28. Boron, V.; Tzanopoulos, J.; Gallo, J.; Barragan, J.; Jaimes-Rodriguez, L.; Schaller, G.; Payán, E. Jaguar densities across human-
dominated landscapes in Colombia: The contribution of unprotected areas to long term conservation. PLoS ONE 2016, 11,
e0153973. [CrossRef]

29. Thompson, R.C.A.; Lymbery, A.J.; Smith, A. Parasites, emerging disease and wildlife conservation. Int. J. Parasitol. 2010, 40,
1163–1170. [CrossRef] [PubMed]

30. Otranto, D.; Deplazes, P. Zoonotic nematodes of wild carnivores. Int. J. Parasitol. Parasites Wildl. 2019, 9, 370–383. [CrossRef]
31. Payán, E.; Boron, V. The future of wild mammals in oil palm landscapes in the Neotropics. Front. For. Glob. Chang. 2019, 2, 61.

[CrossRef]
32. Boron, V.; Deere, N.J.; Xofis, P.; Link, A.; Quiñones-Guerrero, A.; Payan, E.; Tzanopoulos, J. Richness, diversity, and factors

influencing occupancy of mammal communities across human-modified landscapes in Colombia. Biol. Conserv. 2019, 232,
108–116. [CrossRef]

33. Reperant, L.A.; Cornaglia, G.; Osterhaus, A.D.M.E. The importance of understanding the human–animal interface. In One Health:
The Human-Animal-Environment Interfaces in Emerging Infectious Diseases; Mackenzie, J.S., Jeggo, M., Daszak, P., Richt, J.A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2012; Volume 365, pp. 49–81.
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