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Abstract

Male infertility is a frequent medical condition, compromising approximately one in twenty men, with infections of the
reproductive tract constituting a major etiological factor. Bacterial epididymo-orchitis results in acute inflammation most
often caused by ascending canalicular infections from the urethra via the continuous male excurrent ductal system.
Uropathogenic Escherichia coli (UPEC) represent a relevant pathogen in urogenital tract infections. To explore how bacteria
can cause damage and cell loss and thus impair fertility, an in vivo epididymo-orchitis model was employed in rats by
injecting UPEC strain CFT073 into the vas deference in close proximity to the epididymis. Seven days post infection bacteria
were found predominantly in the testicular interstitial space. UPEC infection resulted in severe impairment of
spermatogenesis by germ cell loss, damage of testicular somatic cells, a decrease in sperm numbers and a significant
increase in TUNEL (+) cells. Activation of caspase-8 (extrinsic apoptotic pathway), caspase-3/26 (intrinsic apoptotic
pathway), caspase-1 (pyroptosis pathway) and the presence of 180 bp DNA fragments, all of which serve as indicators of the
classical apoptotic pathway, were not observed in infected testis. Notably, electron microscopical examination revealed
degenerative features of Sertoli cells (SC) in UPEC infected testis. Furthermore, the passive release of high mobility group
protein B1 (HMGB1), as an indication of necrosis, was observed in vivo in infected testis. Thus, necrosis appears to be the
dominant cell death pathway in UPEC infected testis. Substantial necrotic changes seen in Sertoli cells will contribute to
impaired spermatogenesis by loss of function in supporting the dependent germ cells.
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Introduction

The mammalian testis is essentially composed of two main

compartments, ie. the interstitial space with the androgen-

producing Leydig cells and leukocytes and the seminiferous

tubules containing the developing germ cells in close physical

association with the columnar Sertoli cells. In the interstitial space,

testicular macrophages act as a first line of defense [1,2], whilst in

the seminiferous epithelium the Sertoli cells, beside their role in

supporting spermatogenesis, are undoubtedly of considerable

importance in the control of immune response against pathogens

arising from the ductal system. The recent discovery of microbial

pattern recognition receptors such as Toll-like receptor (TLR) on

Sertoli cells together with their ability to produce inflammatory

mediators, places them in a central position to orchestrate

protection from ascending canalicular microbial infection [3–5].

In turn many of the negative effects of infection/inflammation on

spermatogenesis may be attributed to impaired Sertoli cell

function with subsequent disruptive effects on germ cell develop-

ment and survival [6,7].

Given the predominant occurrence of uropathogenic E. coli

(UPEC) with urinary tract infections, it is not surprising that E. coli

(apart from other sexually transmitted microbes) is the most

frequently isolated pathogen from urine and semen samples of

patients with prostatitis and epididymo-orchitis [8–10]. Direct

characterization and analysis of bacterial traits or virulence genes

such as alpha-hemolysin (HlyA) confirmed the relevance of

uropathogenic E. coli (UPEC) in infectious male infertility and

subfertility which overall ranks first amongst the known reasons for

male factor infertility preceded only by idiopathic causes [11–13].

In men, bacterial epididymo-orchitis is treated with antibiotic

and antiphlogistic pharmacotherapy. Of note, even after eradica-

tion of the pathogen by antibiotic treatment, about 50% of men do

not recover normal sperm counts. As animal experiments indicate

an underlying reason could be the silent continuation of

inflammation that can affect both testes causing permanent

impairment of fertility by germ cell loss or alternatively duct

obstruction [14].

Cell loss following microbial infection is often the consequence

of programmed cell death (apoptosis and pyroptosis). Apoptosis is
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mainly mediated through one of two signaling cascades termed the

intrinsic and the extrinsic pathway. The extrinsic pathway is

initiated by the binding of death receptors to their cognate ligands

leading to the recruitment of FAS-associated death domain protein

(FADD) and pro-caspase 8, followed by dimerization and

activation of caspase 8, which then directly cleave and activate

executor caspases 3 and 7. Alternatively, the intrinsic pathway is

activated by stimuli that lead to outer mitochondrial membrane

permeabilization and activation of procaspase-9. Active caspase-9

then in turn activates the executioner caspases-3, -6 and -7.

Bacteria are able to trigger apoptosis by a variety of mechanism

that include virulence factors (e.g. Staphylococcus aureus, Listeria

monocytogenes ) or by repressing critical host survival pathways

(Yersinia enterocolica, Salmonella typhimurium) [15]. UPEC were shown

to induce apoptotic pathways by secretion of hemolysins as

virulence factor resulting in suppression of NF-kB activation,

decreased secretion of proinflammatory cytokines and recruitment

of neutrophils [16]. On the other hand, UPEC were able to induce

cell death of renal tubular cells in a caspase-independent manner

[17]. Unlike the formation of membrane bounded apoptotic

bodies observed during apoptosis, plasma membrane integrity is

rapidly compromised in necrotic cells and results in spilling of

intracellular contents into extracellular space. Therefore, necrosis

inevitably affects neighboring cells, usually provoking significant

inflammatory response and causing tissue injury. It is increasingly

recognized that apoptosis and necrosis can coexist in the same

tissue or even in the same cell type and that high-mobility group

box-1 protein (HMGB1) is a useful biochemical indicator of

necrosis, including pathogen induced necrosis [18]. Under

physiological conditions, HMGB1 is a chromatin binding nuclear

protein that remains firmly attached to chromatin in apoptotic

cells even after undergoing secondary necrosis and partial autolysis

[19]. However, in necrotic cells HMGB1 is passively released into

the cytoplasm and subsequently extracellular space, where it serves

as a late proinflammatory molecule [19].

Infertility affects approximately one in six couples worldwide

with roughly half of the cases being attributed to a male factor. In

view of the importance of infection in the etiology of male fertility

disturbances it is surprising that relatively little is known how

pathogens cause damage. Thus it was the aim of this study to

elucidate mechanism how bacteria can impair testicular function.

Materials and Methods

Animals
Adult male Wistar rats (249,270 g) were purchased from

Harlan (Borchen, Germany) and kept at 22uC with 12 h light:

12 h dark schedule and fed with standard food pellets and water ad

libitum. This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the German law of animal welfare. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the Regierungspraesidium Giessen, Giessen,

Germany (permit number GI 20/23–No. 16/2009).

Propagation of Bacteria
Uropathogenic E. coli strain CFT 073 was propagated overnight

on Columbia blood agar plates (Oxoid, Wesel, Germany). Fresh

cultures were inoculated in LB medium and grown to early

exponential phase (OD600 = 0.4,0.8) at 37uC in a shaker

incubator. The concentration of viable bacteria was calculated

using growth curves. Bacteria (26109 cfu) were centrifuged at

4,5006g for 8 min at room temperature. The pellet was washed

once at room temperature with PBS and diluted again in 10 ml

PBS.

Bacterial Induced Experimental Epididymo-orchitis
Bacterial epididymo-orchitis was elicited in male Wistar rats as

previously described [20]. Briefly, after general anesthesia, a

scrotal incision was made to expose the testis, epididymis and vas

deferens. Hundred ml of UPEC CFT073-saline suspension (about

46106 bacteria) was injected bilaterally into the vas deferens

proximal to the cauda epididymis using 30-gauge needles. Sham

operated rats were injected with saline. The vasa deferentia were

ligated at the site of injection to prevent spreading of infection.

After operation, animals were kept in standard housing condition

until being sacrificed with an overdose of isoflurane in the morning

of day 7 post injection. Both testicles and epididymides were

removed aseptically with weight and volume determined.

Determination of Testicular Infection
The testes from saline injected sham control and UPEC infected

rats were homogenized in 10 ml sterile PBS using a sterile glass

potter. Testicular homogenate (100 ml) from each sample were

streaked on agar plate and incubated overnight at 37uC. Bacterial

colonies were counted the next morning.

Histological Evaluation
For histopathological assessment, sections of Bouins fixed and

paraffin embedded testis and epididymis were stained with

hematoxylin and eosin. Two sections from different parts of each

testis were used for histopathological examination. Integrity of

spermatogenesis was evaluated in 25,30 randomly selected

seminiferous tubules from each section.

TUNEL Assay
DNA fragmentation of the testis was assessed semi-quantita-

tively with terminal deoxynucleotidyl transferase dUTP nick end

labeling (TUNEL) assay using the ApopTagH Fluorescein In Situ

Apoptosis Detection Kit (Millipore, MA, USA) following the

manufacture’s instruction. Anti-digoxigenin conjugated antibody

was used to visualize cells with DNA breakage. Labeled

cryosections were finally examined using fluorescence microscopy

(Axioplan 2 Imaging system, Carl Zeiss, Göttingen, Germany)

using a 512,542 nm filter.

DNA Isolation
For PCR analysis of the UPEC specific pili gene PapC, total

DNA was isolated from the testes with QIAampH DNA Mini kit

(Qiagen, Hilden, Germany; for PCR conditions and primer

sequence see Table 1). Briefly, 1 ml of DNA sample (200 ng/ml)

from each sample was used for PCR reaction. The PCR

conditions were as follows: an initial denaturation step at 95uC
for 5 min followed by 35 cycles of denaturation at 95uC for 30 s,

annealing at 62uC for 30 s, extension at 72uC for 1 min, followed

by a extension at 72uC for 10 min. The PCR product was

electrophoresed on 1.5% agarose gel.

For the detection of DNA degradation pattern about 20 mg

tissue from each testis sample were lysed in 600 ml lysis buffer

(50 mM Tris-HCl; 400 mM NaCl; 100 mM EDTA; 0.5% SDS;

0.5 mg/ml proteinase K, pH 8.0). Proteins were removed by

adding 200 ml of 5 M NaCl and subsequent centrifugation. DNA

was precipitated and dissolved in 16TE buffer (10 mM Tris-HCl,

1 mM EDTA, pH 8.0), followed by RNase A treatment at 37uC
for 1 h. After re-precipitation and resuspension equal amounts of

DNA samples were electrophoretically separated on 1.5% agarose
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gels and stained with ethidium bromide. A positive control for

apoptosis-induced DNA laddering was generated by treating

RAW 264.7 macrophages with 0.5 mM H2O2 for 24 h. Random

DNA degradation resulting in ‘‘DNA smear’’ on agarose gels

characteristic of necrotic cells was generated by repeatedly freeze –

thawing RAW 264.7 macrophages.

Quantitative Real Time PCR
Total RNA was extracted from UPEC infected testis by using

RNeasy mini kit (Qiagen). Two mg RNA was reverse transcribed

using oligo-dT primer and Moloney murine leukemia virus reverse

transcriptase (M-MLV RT) in 40 ml volume. Quantitative real

time PCR amplifications were performed by using an iCycler iQH
system (Bio-Rad, Munich, Germany) with iQTM SYBRH Green

supermix (Bio-Rad, Munich, Germany). PCR products were

examined on agarose gels for specific amplification. The relative

quantification of PCR products was determined by the compar-

ative Ct method. The mRNA expression of all investigated genes

was normalized by the non-regulated reference gene ß-2

microglobulin (ß2M). B2M expression was unaffected by treat-

ments and correlated with the amount of RNA used for reverse

transcription. Data were presented as relative expression (RE):

RE = 2DCt, DCt = Cttarget gene-Ctß2M.

Immunoblotting
For Western blot analysis 100 mg of testis was homogenized in

RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-

40, 1% Sodium deoxycholate and 0.1% SDS) supplemented with

proteinase inhibitor cocktail (Sigma Aldrich, Steinheim, Ger-

many). Thirty mg of protein was resolved by 15% SDS-PAGE with

subsequent blotting on nitrocellulose membranes (HybondTM

ECLTM 0.2 mm, GE Healthcare, UK). Blots were probed with

primary antibodies in 5% nonfat milk overnight at 4uC.

Immunoreactive proteins were detected with horseradish perox-

idase-conjugated anti-rabbit or anti-mouse IgG using enhanced

chemiluminescence (GE Healthcare). Membranes were stripped

and re-probed with mouse anti-b-actin antibody (Sigma-Aldrich,

Steinheim, Germany) as loading control. Rabbit anti-caspase-1

(Santa Cruz, CA), anti-caspase-3 (Abcam, Cambridge, UK), anti-

caspase-6, anti-caspase-8, mouse anti-IkBa (all from Cell Signaling

Technology, MA) and anti-HMGB1 (Abcam) were used as

primary antibodies.

Immunofluorescence Staining
Frozen tissue sections (10 mm) were fixed with ice cold methanol

and then permeabilized with 0.2% Triton-X 100. Tissue sections

were incubated with blocking agent (5% BSA +5% normal horse/

sheep serum) for 1 h at room temperature, followed by incubation

with primary antibodies at 4uC overnight. Rinsed samples were

incubated with anti-rabbit or anti-mouse Cy-3 conjugated

secondary antibody (1:1000 dilution) for 1 h at room temperature

in the dark and mounted with Vectashield H mounting medium

containing DAPI (Vector Laboratories, CA). Rabbit anti-E. coli

antibody (Abcam), rabbit anti-HMGB1 antibody and mouse anti-

p65 antibody (Santa Cruz) were used as primary antibodies.

Electron Microscopy
Anesthetized animals were perfused via the left ventricle with

either 2% glutaraldehyde and 2% formaldehyde in 0.1 mol/l

sodium cacodylate buffer (pH 7.3) as fixative. To investigate the

integrity of the blood-testis barrier and blood-epididymis barrier

1% lanthanum nitrate as established tracer was added to the

fixative. Testicular and epididymal specimens (1 mm3) were

excised and put in fixative for 1 h and subsequently in 1%

osmium tetroxide for another 3 h. Tissue blocks were embedded

in Epon 812 following dehydration. Semithin sections (1 mm) were

stained with toluidine blue, ultrathin sections (60 nm) were

Table 1. Primer information.

Gene Primer Sequence
Annealing
Temperature Accession No. Amplicon Size (bp)

BCL-2 FP 59-GGGATGCCTTTGTGGAACTA-39 RP 59-
CTCACTTGTGGCCCAGGTAT-39

59.6uC NM_016993 138

BID FP 59-CGACGAGGTGAAGACATCCT-39 RP 59-
AGACGTCACGGAGCAGAGAT-39

59.6uC NM_022684 119

BAX FP 59-TGTTTGCTGATGGCAACTTC-39 RP 59-
GATCAGCTCGGGCACTTTAG-39

59.6uC NM_017059 104

BIM FP 59-AGATACGGATCGCACAGGAG-39 RP 59-
ACCAGACGGAAGATGAATCG-39

59.6uC NM_171989 148

BAK1 FP 59-GGGAAGACCCTCACCTTCTC-39 RP 59-
ACATTGCAACCAGATCCACA-39

59.6uC NM_053812 142

UPEC PapC FP 59-GACGGCTGTACTGCAGGGTGTGGCG-39 RP 59-
ATATCCTTTCTGCAGGGATGCAATA-39

62.0uC NC_04431 328

IL-1a FP 59-CCGGGTGGTGGTGTCAGCAA-39 RP:59-
GCTGTGAGGTGCTGATCTGGGT-39

61.8uC NM_017019 148

IL-1ß FP:59-TGCCTCGTGCTGTCTGACCCA-39 RP:59-
AGGCCCAAGGCCACAGGGAT-39

61.8uC NM_031512 137

TNF-a FP:59-GCCTCTTCTCATTCCTGCTC-39 RP:59-
CCCATTTGGGAACTTCTCCT-39

59.6uC NM_012675 101

IL-6 FP:59-TCCTACCCCAACTTCCAATGCTC-39 RP:59-
TTGGATGGTCTTGGTCCTTAGCC-39

59.6uC NM_012589 79

ß2 macroglobulin FP 59-CCGTGATCTTTCTGGTGCTT-39 RP 59-
AAGTTGGGCTTCCCATTCTC-39

60.0uC NM_012512 109

doi:10.1371/journal.pone.0052919.t001
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contrasted using uranyl acetate and lead citrate for subsequent

electron microscopical examination.

Results

UPEC Invasion and Localization in the Testis
To analyze the presence and localization of UPEC in the testis a

number of independent techniques were applied. On the DNA

level, the presence of the UPEC pili gene encoded by PapC

revealed an amplicon of the expected size of 328 bp in DNA

isolated from infected animals, but not in samples of sham

operated controls (Figure 1A).

Furthermore, streaking testicular homogenates on agar plates

followed by overnight incubation generated numerous yellowish-

white bacterial colonies exclusively in infected testes samples

(Figure 1B). Interestingly, using fluorescence microscopy bacteria

labeled with anti-E. coli antibody were mainly observed in the

testicular interstitial compartment with rare occurrence inside the

lumen of the seminiferous tubules (Figure 1C). In agreement,

electron microscopical examination confirmed the presence of E.

coli mainly within the interstitial space of infected testis (Figure 1D).

Figure 1. Presence of UPEC inside testes of infected rats 7 days after inoculation in the vas deferens. (A) Genomic DNA was extracted
from testicular tissue and 200 ng DNA from each sample were amplified with PCR using UPEC pili primers. DNA isolated from one explanted testis
immediately after direct UPEC injection served as a positive control. PCR products were separated on 1.5% agarose gel and stained with ethidium
bromide. The same amount of DNA from each sample without PCR amplification was subjected to agarose gel electrophoresis and served as a
loading control. Lane 1:100 bp DNA marker; lane 2–4: samples from saline injected animals; Lane 5,7: samples from UPEC infected rat testes; Lane 8:
UPEC positive control; Lane 9: negative control. (B) Testicular homogenates from saline injected (left panel) and UPEC infected rats (right panel) were
streaked on agar plates without antibiotics and kept at 37uC overnight. Colonies were counted under translucent light. (C) Cryosections of testis from
control (left panel) and UPEC infected rats (right panel) were probed with anti-E. coli antibody and decorated with secondary anti-rabbit IgG antibody
conjugated to Cy-3 (orange). DAPI (blue) was used for nuclear counterstain (x20 objective). (D) Semithin cross-section of a seminiferous tubule
(asterisk) with adjacent interstitial space. Microbial presence in interstitial space is visible (arrow in the black frame, x20 objective). Inset: Electron
microscopical examination on the same area (primary magnification x3,000).
doi:10.1371/journal.pone.0052919.g001
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Integrity of BTB and BEB in UPEC Infected Rats
The results above suggest that UPEC are able to migrate from

the lumen across the seminiferous tubule wall to reach the

testicular interstitial space within 7 days post infection of the vas

deferens. To explore whether a disruption of the junctions forming

the blood-testis (BTB) and blood-epididymis barrier (BEB) may

facilitate passage of UPEC through the respective epithelial layers,

electron microscopy of tracer (lanthanum) perfused infected testes

(Figure 2A) and epididymides (Figure 2B) was performed. At 7

days post-infection, no breach of the BTB or BEB was observed as

the lanthanum tracer did not pass beyond the tight junctions of the

respective junctions following perfusion. These results suggest a

transcellular, route for UPEC passing the BTB and BEB.

UPEC Infection Impairs Testicular Functions
Seven days following treatment, epididymides (swollen cauda)

and testes (atrophy, increased vascularization with dilated vessels

as well as vasocongestion) as clear macroscopical indications of

infection were observed in UPEC injected rats (Figure S1A,B).

Accordingly, the weight of both testes was found to be decreased

by about 30% in UPEC infected rats compared to the saline

injected sham control animals (left: 1.0260.28 vs. 1.6360.09 g;

right: 1.0960.36 vs. 1.6160.10 g, p,0.001; Figure 3A). Further-

more, a clear reduction of the concentration of spermatozoa

retrieved from the cauda epididymidis was observed at day 7 after

infection (Figure 3B) compared to control rats indicating

impairment of spermatogenesis (100.2656.86106 vs.

249.86111.66106/g tissue, p,0.05). To investigate the damage

caused by UPEC infection, hematoxylin & eosin (H&E) stained

sections from testes and epididymides were evaluated using light

microscopy. Histopathological examination revealed gross mor-

phological alterations such as edema formation and impairment of

spermatogenesis to various degrees. Some tubules showed

complete loss of germ cells (Sertoli cell only), whilst in neighboring

tubules damage was milder with hypospermatogenesis and

occurrence of multinucleated giant cells (Figure 3C). Detailed

quantification demonstrated that in sections from infected testes

57.5% of tubules were damaged (in detail: 19.0% of tubules

spermatogenesis proceeded up to mid elongated spermatid; in

10.1% of tubules germ cells developed until round spermatids; in

20.9% of seminiferous cord cross-sections spermatogenesis ceased

at the stage of primary spermatocytes, whilst in 7.5% of tubules

Sertoli cell only (SCO) or SCO with only a few remaining

spermatogonia was evident, 42.5% of seminiferous tubules were

intact (Figure 3C). Epididymal sections of the caput (Figure 3D,

upper left panel) and cauda (Figure 3D, lower left panel) from

saline injected rats show normal morphology of the epithelial layer

and interstitial space. The lumen of the epididymides is filled with

spermatozoa. In contrast, immature germ cells sloughed from

infected testis appeared in the lumen of the caput/corpus

epididymidis (Figure 3D, upper-right panel). Closer to the

injection site in the cauda of the epididymis prominent signs of

severe interstitial fibrosis, inflammatory cell infiltration and a high

prevalence of immature germ cells with low numbers or even

absence of spermatozoa is evident in infected rats (Figure 3D,

lower-right panel).

UPEC Infection Causes DNA Damage in Germ Cells
Since apoptosis is the dominating mechanism in regulating

germ cell death under normal conditions, it was initially explored

whether apoptosis was implicated in UPEC induced impairment

of spermatogenesis and germ cell loss in vivo. Therefore, TUNEL

assay was carried out to detect DNA damage of testicular cells.

The results (Figure 4A;B) indicate that the number of TUNEL

Figure 2. Electron microscopical analysis reveals intact blood-testis barrier (BTB) and blood-epididymis barrier (BEB). (A)
Ultrastructural analysis shows that intercellular tracer penetration does not extend beyond the junctional complex of the BTB (arrow in inset) within
the seminiferous epithelium of UPEC infected rats (x3,000 magnification, inset x20,000 magnification). SC = Sertoli cells, orientation of the luminal and
basal compartment are highlighted (B) Ultrastructural analysis of a UPEC infected epididymis demonstrates intercellular tracer penetration (x3,000
magnification). Inset is a magnification of the area represented in the black frame showing the tight junctions. (x20,000 magnification).
doi:10.1371/journal.pone.0052919.g002
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positive cells increased more than 20 fold in infected testes

compared to uninfected controls (8.0562.99/tubule vs.

0.3460.07/tubule, p = 0.001). The majority of the TUNEL

positive cells were located within the seminiferous epithelium with

position and morphology typical for germ cells. Moreover, the

typical ring type chromatin aggregation underneath the nuclear

membrane as an indicator of early stage apoptosis [21] was also

observed in some TUNEL positive cells (Figure 4A,B; arrows). Of

note, there were a few TUNEL positive cells that lack the typical

apoptotic ring-like nuclear structure suggesting that they were

either at a different stage of apoptosis or alternatively undergoing

necrosis.

Expression Pattern of Apoptosis Related Genes in the
Testis

Based on the increase of DNA damaged cells seen by the

TUNEL assay, it was next sought to delineate the specific

mechanisms implicated in UPEC infection induced cell death in

testis. Bcl-2, an anti-apoptotic gene, was upregulated about two

times in the testis at day 7 post infection as determined by

quantitative real-time PCR (relative expression in control v. s.

infected testis: 0.0039 vs. 0.0090, p = 0.037; Figure 5). From the

proapoptotic genes, except for a slight upregulation of bid mRNA

levels in infected testes (relative expression in control vs. infected

testis: 0.0080 v. s. 0.0116, p = 0.037, Figure 5C), no changes were

observed in bax (relative expression in control vs. infected testis:

0.0198 vs. 0.0223, p = 0.552, Figure 5B) and bim (relative

expression in control vs. infected testis: 0.0309 vs. 0.0252,

p = 0.078, Figure 5D). The RNA level of another pro-apoptotic

gene bak was even found to be slightly down regulated (relative

expression in control vs. infected testis: 0.0071 vs. 0.0031,

p = 0.025; Figure 5E).

Lack of Caspase Activation in Infected Testis
Since caspase activation is a hallmark and essential step in

apoptosis execution, the activation of these factors was assayed in

total testis homogenates by Western blotting. As a positive control,

RAW 264.7 cells were treated with 50 mM sodium nitroprusside

(SNP) for 8 h to induce apoptosis. Activation of the extrinsic

pathway is indicated by the cleavage of caspase-8. Surprisingly, the

precursor protein of caspase-8 remained unchanged in all samples

investigated and no caspase-8 cleavage products were detected,

indicating that an activation of this initiator enzyme did not occur

(Figure 6A,D). Furthermore, no activation of either the executor

caspases-3 and -6, Figure 6B,D) nor of caspase-1 as key enzyme in

the pyroptosis pathway (Figure 6C,D) were visible in infected

testis.

DNA Degradation in the Testis following UPEC Infection
is Characteristic for Necrosis

Genomic DNA degradation represents a late event in cell death

with each death mode displaying a characteristic pattern. As an

example, an orderly DNA fragmentation pattern is usually

associated with caspase-dependent apoptosis. In apoptotic cells,

the activation of endonucleases results in oligonucleosomal DNA

fragments (DNA ladder) with steps of about 180 base pair (bp),

while DNA is cleaved into fragments of random size by nonspecific

lysosomal nucleases in necrotic cells. To determine which cell

death mode plays the predominant role in UPEC infected testis,

genomic DNA was analyzed by agarose gel electrophoresis. DNA

laddering with approximately 180 bp fragmentation was visible

only in RAW 264.7 cells treated with 5 mM H2O2 for 24 h

(Figure 7A, lane 9), which served as a positive control for apoptotic

DNA laddering. In saline injected control rats, total testis DNA

remained intact (Figure 7A, lane 2–4), whereas the DNA samples

extracted from infected testes (Figure 7A, lane 5,7) did not show

DNA laddering comparable to the apoptosis positive control

(Figure 7A, lane 9).

Electron Microscopical Examination Shows Typical Signs
of Necrosis in Infected Testis

Whilst typical necrotic changes such as condensation of

chromatin into small, irregular patches in poorly defined nuclei

prevailed, indications for apoptosis were not seen in infected testis

(Figure 7C). Of note, severe damage in SC was a frequent

observation with vacuolization and accumulation of lipid droplets

within the cytoplasm of SC as the most prominent signs

(Figure 7D), which were not seen in control specimens (Figure 7B).

HMGB1 is Released from the Nuclei in UPEC Infected
Testis

High-mobility group box 1 protein (HMGB1) has been

identified as a marker of necrosis as it is passively released into

the cytoplasm of necrotic or damaged cell, whilst it retains a

nuclear localization in healthy and apoptotic cell [19]. Although

the protein level of HMGB1 in total testis was not affected by

UPEC infection (Figure 8A,B), different patterns of HMGB1

subcellular localization were observed between infected and

control testes. In control testes, HMGB1 was exclusively found

in the nuclei of somatic cells, i.e., SC (arrows), PTC (arrow heads),

germ cells likely to represent spermatogonia and some interstitial

cells (Figure 8C, left column) confirming previous data of

Zetterström et al. [22]. In contrast, cytoplasmic and extracellular

distribution of HMGB1 was observed in somatic cells of infected

testes (Figure 8C, right column), thus indicating necrosis in the

infected cells.

NF-kB Signaling Pathway is not Involved in HMGB1
Release in UPEC Infected Testis

Recent work shows that activation of the proinflammatory NF-

kB pathway is leading to regulated secretion of HMGB1 from the

nuclei of intact activated macrophages as part of the inflammatory

response [23]. Activation and nuclear translocation of NF-kB is

essentially initiated by the degradation of its inhibitor IkBa. Seven

days following UPEC infection, the protein levels of IkBa were

comparable between UPEC infected and control testes (Figure 9A,

Figure 3. Morphological changes and histological evaluation of the testis and epididymis. (A) Testicular weight of control (n = 8) and
infected rats (n = 10) are presented as mean 6 standard deviation (SD). Student’s t-test was employed for statistical analysis and the level of
significance is indicated as **p,0.001. (B) Sperm concentration was assessed in seven animals of each group and the results are presented as mean
6 SD. Statistical analysis was performed with Student’s t-test and statistical significance is denoted as *p,0.05. (C) Tissue sections of paraffin
embedded testes were stained with hematoxylin and eosin. Histopathological assessment was performed on control (n = 5) and UPEC infected (n = 9)
testes using light microscopy. The images were captured using Axioplan 2 Imaging system at magnification x20 and representative figures are
shown. Various forms of impairment of spermatogenesis are visible exemplified by a Sertoli cell only tubule (star) and a hypospermatogenic tubule
(triangle). (D) Histopathological images of caput (D top panels) and cauda epididymis (D bottom panels, x20 objective). Representative results from
control (n = 5) and infected (n = 9) rats are depicted.
doi:10.1371/journal.pone.0052919.g003
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B). In agreement, the p65 subunit of NF-kB was retained in the

cytoplasm in all samples (Figure 9C). Similar observations were

found in rats after one day and three days of infection (data not

shown), indicating that the NF-kB pathway is not implicated in the

previously observed release of HMGB1 and following cell death in

this model.

Discussion

Infection and inflammation of the male urogenital tract is

established as an important etiological factor of infertility [13,24].

Bacterial infections of the upper reproductive tract usually

manifest as epididymitis or combined epididymo-orchitis [13,25].

Relevant bacteria include E. coli pathovars usually also found in

urinary tract infections and bacterial prostatitis such as alpha-

hemolysin (HlyA) producing uropathogenic E. coli (UPEC). A

recent survey revealed 40–50% of HlyA positive E. coli in the urine

of epididymitis patients [3]. Affected men are often characterized

by reduced numbers of germ cells and impairment of sperm

functional parameters, which in a substantial proportion of

patients persists even after successful clearance of the pathogen

[26]. Nevertheless, the underlying mechanisms by which patho-

gens elicit damage are poorly understood. Using an established rat

model of epididymo-orchitis, testes of animals infected with UPEC

strain CFT073 at 7 days post infection demonstrated clear signs of

inflammation manifested by swollen caudae epididymidis, atrophic

testes with increased vascularization and vasocongestion. Degen-

erative changes were indicated by a reduced testicular weight in

infected rats. Impairment of spermatogenesis was confirmed by a

more than 50% reduction of spermatozoa numbers that could be

retrieved from the cauda epididymis. Loss of capacity of the

seminiferous epithelium to produce germ cells in UPEC infected

rats was also indicated by the presence of numerous immature

germ cells visible in the lumens of caput epididymidis. Presence of

bacteria was identified by plating organ homogenates on LB-agar

plates, by a PCR amplification of the PapC gene of UPEC and

ultrastructurally. Surprisingly, in spite of the luminal inoculation of

UPEC in the vas and the occurrence of bacteria in the lumen of

the epididymis one day after infection (data not shown), at 7 days

post infection the vast majority of UPEC was localized in the

testicular interstitial space and not within the lumen or wall of the

seminiferous epithelium. Based on a study of Chassin et al. [27],

Figure 4. Increase of TUNEL positive cells in UPEC infected testis. (A) DNA strand breakage in testicular cells from control (upper panel) and
UPEC infected (lower panel) rats were analyzed using TUNEL assay. Nuclei were counterstained with DAPI (blue). TUNEL (+) cells (green) with ring-like
nuclear stain are indicated with arrows. (B) Numbers of TUNEL (+) cells are presented as mean 6 SD/seminiferous tubule. Student’s t-test was used for
statistical analysis and the level of significance is indicated as **p,0.01. (x20 objective).
doi:10.1371/journal.pone.0052919.g004

Figure 5. RNA expression pattern of the bcl-2 family genes in the testis. The expression of the anti-apoptotic gene bcl-2 (A), pro-apoptotic
genes bax (B), bid (C), bim (D) and bak (E) in the testis were determined with quantitative real time PCR. Target gene expression levels were
normalized with the endogenous control ß-2-microglobulin (ß2M). Data are present as 2DCt, DCt = Cttarget gene-Ctß2M. The Mann-Whitney U test was
employed for statistical analysis (* p,0.05). Each single symbol (circle and triangle) represents one individual testis sample.
doi:10.1371/journal.pone.0052919.g005
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Figure 6. Caspase-1, -3, -6 and-8 are not activated in UPEC infected testis. Total testis protein (20 mg) from four different animals in each
group were separated on 15% SDS-PAGE. Immunoblots were probed with anti-caspase-8 (A), anti-caspase-3 (B, upper panel), anti-caspase-6 (B,
lower panel) and anti-caspase-1 (C) antibodies and detected using chemiluminescence. RAW 264.7 cells treated with sodium nitroprusside (SNP)
served as a positive control. (D) The intensity of target bands on the films was measured with the ImageJ software (http://rsbweb.nih.gov/ij/). Semi-
quantitative results are presented as mean 6 SD and Student’s t-test was used for data analysis (Caspase-8, p = 0.875; Caspase-3, p = 0.686; Caspase-6,
p = 0.486; Caspase-1, p = 0.343).
doi:10.1371/journal.pone.0052919.g006

Figure 7. Oligonucleosomal DNA fragmentation measurement and ultrastructural examination of UPEC infected testis. (A) Genomic
DNA was extracted from testes after seven days of infection. For gel electrophoretic analysis, 5 mg of DNA from each sample were separated on 1.5%
agarose gels and stained with ethidium bromide. Lane 1:1 kbp DNA ladder. Lane 2–4: DNA extracted from testes of control rats (n = 3). Lane 5–7: DNA
samples extracted from testes of infected rats (n = 3). Lane 8: untreated RAW 264.7 cells. Lane 9: RAW 264.7 cells were treated with 0.5 mM H2O2 for
24 h as a positive control for apoptotic DNA laddering. Lane 10: RAW 264.7 cells were frozen and thawed repeatedly as a positive control for necrotic
DNA fragmentation. (B) Electron microscopical examination of control rat testis shows normal morphology of the seminiferous epithelium (x1,100).
(C) A representative ultrastructural image (x1,100) of infected testes demonstrates a hypospermatogenic seminiferous epithelium with germ cells
displaying necrotic nuclei (arrows) and SC with strong cytoplasmic vacuolization (right panel, asterisk) and various large lipid droplets (right panel,
arrowheads).
doi:10.1371/journal.pone.0052919.g007
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Figure 8. HMGB1 expression and localization in the testis. (A) For Western blot analysis, 20 mg of protein extracted from total testis of control
(n = 4) and UPEC infected (n = 4) rats were separated on a 12.5% SDS-PAGE. HMGB1 was detected by immunoblot using anti-HMGB1 polyclonal
antibody and chemiluminescence. ß-actin served as a loading control. (B) Intensity of target bands was measured with the ImageJ software (http://
rsbweb.nih.gov/ij/) and data are presented as the relative intensity = intensity of HMGB1/intensity of ß-actin. (C) Testis cryosections were probed with
anti-HMGB1 antibody decorated with Cy3-labeled secondary antibody (orange) and nuclei were counterstained with DAPI (blue, images taken with
x40 objective). In control samples (left column) some Sertoli and peritubular cells are indicated by arrows and arrowheads, respectively.
Representative results from two independent experiments are shown.
doi:10.1371/journal.pone.0052919.g008
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who demonstrated that UPEC CFT073 can pass the epithelial

barriers of murine renal medullar collecting duct cells by

disruption of the tight junctions, we investigated the integrity of

the blood testis barrier (BTB) and the blood epididymis barrier

(BEB) using lanthanum tracer injection. At least for this time point,

we could not detect any leakage of tracer indicating that probably

other mechanisms may be responsible for the passage of UPEC

from the lumen and subsequent dissemination in the interstitial

space. This could involve epithelial transcytosis which has been

shown for other E. coli strains such as HT91 and HT7 [27]. An

alternative option is a transient disruption of the BTB followed by

restructuring before day 7 post infection, an event that occurs in a

regulated manner during the transit of early meiotic cells through

the barrier on their way from the basal to the adluminal part of the

seminiferous epithelium. This process was found to be regulated

by transiently upregulated TNF-a secreted from SC and germ cells

[28]. In support, levels of TNF-a mRNA were significantly

elevated in UPEC infected testis (Figure S2D). An explanation

why UPEC are almost exclusively found in the interstitial space 7

days post infection could be derived from the expression pattern of

anti-bacterial defensins which could generate a spatial selection

pressure. Whilst all defensins found in the testis are expressed in

the seminiferous epithelium, partly at high levels, defensin

expression in the interstitial space is fairly faint [29].

To understand the molecular mechanisms of damage caused by

UPEC infection, TUNEL assay was employed. A dramatic

increase of TUNEL (+) testicular cells was seen in infected rats

with the majority of TUNEL (+) cells located in the seminiferous

epithelium. Based on their localization in the germinal epithelium

most TUNEL (+) cells appeared to be germ cells. TUNEL detects

DNA strand breaks which could occur as a late event in apoptosis,

but also in necrosis [21,30]. In apoptotic cells the activation of

endonucleases results in oligonucleosomal DNA fragments (DNA

ladder) with graded steps comprising about 180 base pairs, while

DNA is cleaved into fragments of random size by nonspecific

lysosomal nucleases in necrotic cells. In our study, we could not

detect the 180 bp laddering in DNA of infected cell indicating that

apoptosis is not the main death pathway. Apart from necrotic

germ cells, electron microscopical analysis revealed severe

degeneration of SC in infected testis as visualized by cytoplasmic

vacuolization and extensive lipid droplets accumulation. Vacuol-

ization of SC is not uncommon in degenerating SC and reported

in other models using toxins to occur from swelling and

coalescence of intracellular membrane bound organelles, partic-

ularly the endoplasmic reticulum and vesicles [31,32]. In contrast,

the presence of numerous large lipid droplets in SC may be related

to an increased phagocytic activity removing germ cell debris

following germ cell damage upon UPEC infection, but could also

indicate a perturbance of lipid metabolism [33].

Although it is increasingly acknowledged that necrosis and

apoptosis demonstrate more morphological and biochemical

similarities than initially thought, a distinction between the

different modes of cell death is still very relevant. This is

particularly evident by the fact that in contrast to apoptosis,

necrosis triggers a sterile inflammation that could sustain an

extended inflammatory response even after clearance of the

pathogen. One of the molecules responsible for late stimulatory

effects in the inflammatory cascade is HMGB1. This cytokine is a

member of the damage-associated molecular pattern (DAMP)

molecules released from necrotic cells [34]. Previous investigations

reported that HMGB1 can be upregulated by LPS as a general

inflammatory stimulus [35]. In our study the expression levels of

HMGB1 in testicular homogenates remained unchanged when

comparing infected and non-infected tissues, however, a clear cut

shift from a nuclear to a cytoplasmic or extracellular localization of

HMGB1 was visible in UPEC infected testis in vivo. Cytoplasmic

translocation and secretion of HMGB1 involves NFkB pathway

triggering [36], a mechanism that could be excluded in our study

as neither a degradation of the NFkB inhibiting molecule IkBa nor

a nuclear translocation of the p65 subunit of NFkB was observed

in infected testis after 7 days post infection. These results suggest

induction of a necrotic pathway in testicular cells, as apoptotic cells

firmly retain HMGB1 within nuclei even after undergoing

secondary necrosis and subsequent autolysis [19]. Extracellularly,

HMGB1 becomes a pro-inflammatory molecule with high affinity

to several receptors such as RAGE and TLRs [37,38]. Therefore,

released HMGB1 may serve as an inflammatory signal from

necrotic testicular cells to neighboring cells sustaining the

inflammatory response with associated subsequent further damage

to fertility.

Taken together, our study indicates that after ascending to the

testis UPEC causes necrosis as the dominant mechanism of cell

death in the rat testis. This is indicated by a lack of caspase

activation and oligonucleosomal DNA laddering, unchanged

expression levels of pro-apoptotic genes, and ultrastructural

damage characteristic of necrosis, as well as release of HMGB1

from nuclei of Sertoli cells in vivo. Our data indicate that inhibition

of HMGB1 may be useful as a further treatment option following

antibiotic therapy to limit the negative impact of microbial

infection of the testis.

Supporting Information

Figure S1 Morphological changes in the rat epididymo-
orchitis infection model. Typical appearance of epididymides

and testes from saline injected (left panel) and UPEC infected rats

(right panel) are visible.

(TIF)

Figure S2 Upregulation of pro-inflammatory cytokine
expression levels in infected testes. The expression pattern

of cytokines IL-1a (A), IL-1ß (B), IL-6 (C) and TNF-a (D) in the

testis were determined with quantitative real time PCR. Target

gene expression levels were normalized with the endogenous

control ß-2-microglobulin (ß2M). Data are present as 2DCt,

DCt = Cttarget gene-Ctß2M. The Mann-Whitney U test was

employed for statistical analysis (* p,0.05, **p,0.01). Each single

symbol (circle and triangle) represents one individual testis sample.

(TIF)
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