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Preface

The purpose of this work is to study the ideal structure of
the Chang-Marshall algebras QAp and Cy nH® of analytic
functions in the open unit disk ID. These were introduced

by Chang [3] and later studied by Chang and Marshall [4]

and also by Sundberg and Wolff [34]. In the first two parts
of>our work we deal with two special cases of Chang-Marshall

algebras, namely the disk algebra

\

A(ID)= {f: D~+C, f continuous on I and analytic in ID}
and the algebra ‘

QA = {f eH”: f(e'®) is of vanishing mean oscillation} .
The third fart will be devoted to the Chang-Marshall algebras

in general.

In § 1 we answer two questions of F. Forelli ([7], (81)
concerning divisibility problems in A(ID). In particular we
prove that every ideal of denominators in A(ID) has the
Forelli property; i.e., there exists a function f €¢I such
that its zero set Z(f) = {z ¢ID: f(z) =0} coincides with the

zero set Z(I) = [\ Z(f) of the ideal.
fel

In § 2 we study the relation between the ideals in A(ID)
and those of the algebra C(T) of all continuous complex-
valued functions on the unit circle T. For instance, in
Theorem 1 we give a complete characterization of those prime
ideals‘in A(ID) which are traces of prime ideals in C(T).
Our characterization is based on an extension of Havin's

notion of the F-property to ideals.
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In § 3 we show that, in analogy to A(ID), the algebra QA
is a Prebezout ring. Our proof is based on a generalization

of the corona theorem for QA.

In § 4 we continue the research on closed ideals in QA,
begun in the paper of Gorkin, Hedenmalm and the author [15].
Using the characterization theorem ([15), Theorem 2.5) for
closed ideals in QA, we present a complete description of
those closed ideals in QA which can be generated topological-
ly by a single function. Whereas in A(ID) every closed ideal
is the closure of a principal ideal, we shall see that in QA

the situation is quite different.

In 8§ 5 we use Hoffman's theory of the analytic structure
of the maximal ideal space of H” ([19]1) to establish the
precise relations between interpolating sequences and the
Gleason part structure of the maximal ideal space M(A) of

an arbitrary Chang-Marshall algebra A,

One of the main themes of this work will be developed in
§ 6, where we examine the relations between the ideals in a
Chang-Marshall algebra A and those in H”. In Theorem 6.5 we

shall prove that every ideal I in A whose zero set
Z(I) = {meM(A): #(m) =0 for all f eI}

does not meet the Shilov boundary 3A of A is the trace of a
unique ideal in H™. The interesting feature of this result
is that not only there exists an ideal J in Hf such that
JnA =1, but that J is uniquely determined. Our proof.is
based on the fact that every such ideal I is generated alge-

braically by a set of inner functions. This result generalizes



theorems of von Renteln [33] and Marshall (23]. As a useful
corollary we obtain that the inner functions in any Chang~-

Marshall algebra A separate the points of M(A) \3A.

Using the extension theorems of § 6 we shall be able to
give in §'7 a complete characterization of the finitely
generated prime ideals in an arbitrary Chang;Marshall algebra.
This theorem extends the results for Hm_proved by Gorkin [14]

and the author [191].

‘ § 8 is devoted to the study of the closed ideals in
Chang~Marshall algebras A. We present first a description
of the countably generated clased ideals in QAy. This result
contains that for H obtained earlier by the authof ([261
and [271). The proofs, however, are different. Also we prove
that any closed ideal in A which contains an interpolating

Blaschke product is an intersection of maximal _ideals.

We conclude this paper by exposing some peculiar pro-
perties of several Chang-Marshall algebras. For instanée, we
prove that there exists a Douglas algebra B such that in
contrast to Axler's multiplier theorem for B =L* ([1]) not
every function f ¢B nB can be multiplied into QAg+C by a

s . o«
unimodular function uel .

I am deéply indebted to Professor Pamela Gorkin for many
valuable discussions during her visits in Karlsruhe. Also
I thank Professor Frank Forelli for having simplified some
parts of the proof of Theorem 1.2. Finally, I want to thank
Professor Michael von Renteln for his kind support during

the preparation of this work.



Notations and conventions

Let D= {zeC: |z]| <1} denote the open unit disk, D=

{ze€: |z] $1} its closure and T =3DD= {z eC: |z| =1} the
boundary of ID. As usual, H” is the space of bounded analytic
functions in ID, whereas L” is the space of (equivalence
classes) of essentially bounded, Lebesgue measurable functions
on the unit circle T. Under the usual pointwise algebraic ope-
rations and the supremum norm (resp. essential supremum norm),

H” and L” are comnutative Banach algebras with identity element.

We assume that the reader is familiar with the theory of
bounded analytic functions as presented in the books of

Garnett [11] and Hoffman [18].

Throughout this paper a Blaschke product will be denoted
by the letter b and an inner function by the letter u. We
write Sing u for the set of boundary singularities of u,

that is

Sing u = {el® ¢ T: u cannot be extended holomorphically

to the point ety .
The zero set in ID of an inner function u is the set
Zpu)= {z eD: u(z) =0} .

If the inner function u is a greatest common divisor of the
inner parts of the functionsin a set I gHm, then u is called
the inner factor of I. Observe that u is uniquely determined

up to unimoddlar constants (see [18], p.85).

Let A be a commutative Banach algebra with identity ele-

ment and let M(A) be its maximal ideal space. For an element



feA,
Z(£) = {m eM(A): £(m) =0}

denotes the zero set of the Gelfand transform f of f.

‘Similarly,

2(I) = 1 2(E)
' fel

is the zero set (or hull) of an ideal I in A. A™! stands for
the set of invertible elements in A, A.uniform algebra A is
a commutative Banach algebra with identity element such that
the map £ + £ is an isometry of A onto A&, the space 'of
Gelfand transforms of A, suppiied with the supremum norm on
M(A) (see [11], p.185). Note that we can (and we will do
this) identify in a uniform algebra a function f with its
Gelfand transform (see [11], p.186).

Finitely generated ideals I in A are ideals.of the form

N
T = (fy,.u,fy) = {feA: £ = ] g,f,, g, €A} .
im}

Countably generated ideals are defined analogously:
n
I = (f;,f,,.-) = {feA: f= 121311’1, g; €A, neIN}.

An ideal is called principal, if it is generated by single

element.

Let B be a commutative algebra which contains A and let
I be an ideal in A. Then the ideal J generated by I in B will
be denoted by J =IB. Note that J = {f eB: f = f g:fys 84 €B,
fiel, n ¢ IN}. We shall say that an ideal I sAi:;n be lifted
to an ideal J ¢B if and only if JnA =I. The ideal I is then

said to be the trace of J in A.



A prime ideal P cA is a proper ideal such that fg e¢P im-
plies f eP or g eP. An ideal I in A is called (topologically)

primary, if it is contained in a unique maximal ideal.

By an integral domain we understand as usual a commutative
ring with identity element and without zero divisors. The

term "greatest common divisor" will be abbreviated by "gecd”.

Let A denote the Shilov boundary of the uniform algebra
A. A closed subset E c3A is called a peak set for A if there

exists a function p €A such that
p(x) = 1 for x eE and
Jp(x)| < 1 for every x edA \E .

The function p is called a peak function for E. A weak peak

set in A is an intersection of peak sets in A.



I. The disk algebra A(D)

Let A(ID) denote the disk algebra, that is the Banach algebra
of all those continuous functions in I which are analytic
in ID, under the usual pointwise algebraic operations and
the supremum norm. We may regard A(ID) as a subalgebra of
the space C =C(T) of all continuous functions on the Shilov

boundary T of A(ID) (see [11], p.200),°

For a compact set E¢T, I{E,A(DD)) will be the ideal of

all those functions in A(ID) which vanish on E, i.e.
I/E,A(D)= {f ¢A(ID): f =0 on E}

Let K<T be a nonempty compact set of Lebesgue measure zero
on T. Then it is well known that there exists a function

Px € A(ID) such that
pg(z) = 1 for z ¢eX and
[Pg(2)| < 1 for z e \K

(see [181, p.80,81). Hence K is a peak set for A(ID) and Px

is the associated peak function. If K =0, we put pg(z) =0.

Finally, let us mention for later references the famous
theorem of Beurling and Rudin on the characterization of the

closed ideals in A(ID).

Theorem (Beurling and Rudin, see [18], p.82 ff.).

(1) Let I 3$(0) be a closed ideal in A(ID) with inner factor
u. Then there exists a compact set E cT of Lebesgue

measure zero such that
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I = uI(E,A(DD)). ‘ (1)

In particular, Sing u € E and E =Z(I) nT.

(2) If u is an inner function whose boundary singularities
are contained in a compact set E ¢T of Lebesgue measure
zero, then conversely every closed ideal of the form

(1) is closed and non-zero.

(3) Every closed ideal I in A(ID) is the closure of a prin-
cipal ideal. If I $(0), the generator can be taken to
be the function u{l-pg), where u is the inner factor of

I and py is the peak function for the set E =Z(I) nT.

§ 1 Divisibility problems and ideals of denominators in

the disk algebra A(ID)

F. Forelli ([7], p.389) posed the problem of classifying
those ideals I in A(ID) which have the property that there
exists a function f €¢I such that the zero set of f agreés
with the zero set of the ideal I; i.e., for which ideals I
there is a function f eI with Z(f) =2Z(I)? Such a property
will be referred to as the "Forelli property". It is well
known that every closed ideal I in A(ID) has this property,
since by the Beurling-Rudin theorem I is the closure of a
principal ideal. On the other hand, as we have shown in
({271, p.261), gne cannot expect that finitely generated
ideals in A(ID) have the Forelli property. Nevertheless, we

could prove ([27], p.262) that finitely generated ideals I
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have the weak Forelli property, i.e., there exists a function

f €I such that Z(f) nT =Z(I) nT.

F. Forelli ([7], p.389) now asked in particular if in
A(ID) the ideals of denominators, defined in the following

way, have the Forelli property.

Definition 1. Let A denote either A(ID) or H™. Then an ideal
I ¢cA is said to be an ideal of denominators, if there exists
a quotient y =f,/f of two functions f, and f in A \ {0} such

that

I = Q(y) = {f eA: fy €A}

The situation in Hw, where in fact every ideal of deno-
minators is principal ([8], p.397), gives us some hints in
favour of a positive answer. Moreover, it was known that if
an ideal of denominators in A(ID) has the weak Forelli pro-
perty, then it already has the Forelli property (compare [8],
p.396). In Theoremy1.2 we shall now give a positive answer
to Forelli's question. Our proof is based on the following

lemma.

Lemma 1.1. Let u be a continuous positive function on an
open interval I ¢IR. Then there exists a continuously diffe-
rentiable function v on I (for short we write v eCl(I)) such

that

Ju-v] < %-u on I.
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Proof. We map the interval I by a continuously differentiable
function bijectively onto IR and apply, e.g., the approxima~-

tion theorem of Carleman ([9], p.135).

Definition 2. Let I be an ideal in A(ID). Then I is said to
have the Forelli property, if there exists a function f eI

such that Z(f) =Z(I).

Definition 3. Let E be an open subset of the unit circle T.
Then we denote by H; the algebra of bounded analytic functions
in ID which are continuously extendable to E (compare [111,

p.399). In particular, H: = A(ID) and H¢ =H .

Theorem 1.2, Every ideal of denominators in A(ID) has the

Forelli property.

Remark. First we present the main ideas of the proof. Let
Yy = Fy/F, be a quotient of two outer functions in A(ID) and
let d eH™ be a ged of the functions F, and F, (with respect

to the algebra H). We may assume that d has the form

*2 log (|F, |+|F [)(e'®)at
Z

d(z) = 1 et
z) = expyy g “TT.

F, Foy . .
(see [33], p.519). Then y = () /(TT) is a quotient of two

relatively prime factors in H”. In particular we have

F IF, ) 1

-2 = a.e. on T.
a7 TRTHIE,T T T

Let E be the largest open subset of T to which y is con~

tinously extendable. The clue of the proof is now to con-
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struct a function Gz eH;, which differs from Fz/d only
through multiplication by an invertible function in H™.

Then the function
f = (1-pT\E)G2

satisfies Z2(f) =Z(Q(Y)), where Q(Y) S A(ID) is the ideal of
denominators associafed to v. Also observe that in the al-
gebra H” the ideal of denominators associated to y is the
principal ideal generated by the function G, (or equivalent-

ly by F,/d).

Proof of the theorem. Let I be an ideal of denominators in

A(ID). Then there exists a quotient y =f1/fz of two functions
in A(ID) such that I =Q(y). Let u,Fy =f, and u,F, =f, be the
inner outer factorization of the functions f1 and f,. We may
assume without loss of generality that the inner factors uy
and u, are relatively prime, since this does not change the

values of y.

Step 1. Put v, =f,/F, and let Q(v;) be the associated
ideal of denominators in A(ID). We put E =T \Z2(Q(y,)). Ob-
serve that Z(Q(y,)) €T, because F, €Qly,). If a zelt ¢E,
then there exists a function f ¢Q(y,) with f(a) $0. In par-
ticular we.have Yy =g/f for some g ¢ A(DD), Since a was an
arbitrary point of E, we can thus conclude that Y, is con-

tinuous in IDuV E.

Let us now consider the function u =1/1+|y,| which is
defined and continuous on E. Because Z(Q(Yl)) has Lebesgue

measure zero, we can decompose the open set E cT into a (at
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most) countable union of pairwise disjoint, open arcs Iy=

-]

(ay,by) such that \/Tj~= T. By Lemma 1.1 there exists on
i=1

each interval Ij a cl-function vy such that

lvy-ul s Flul on I, (G=1,2,..) . (1)

Let v be defined on E by \r|Ij =vye Then we obtain

3

0 < 5 U on E . (2)

A

us v

N

In particular, log v € LI(T). Hence the function

it
- 1 e’ +z it
G,(z) = exp VEd f e log v(e™ ") dt
e* -z
is an outer function in H~ satisfying |G,| =v a.e. on T.

Because log v ¢ CI(E), it follows from ([11}, p.107) that
the function G, is continuous on DV E, i.e. G, eH:. By the

left inequality in (2), G, vanishes nowhere on E. By the

2
right inequality in (2) we obtain

£ 3
’Gz ff‘ = |G,y s |G21<1+|Y1|) = [v[Ql+[y, ) s 3 a.e.onT.
Since F, is outer, the extremal property for outer functions

(see [18], p.62) yields that
3
|sz1| < 5]}"21 holds on ID.
Hence g, = G,f{/F, is a bounded analytic function, and we
have v, = gI/Gz. Moreover, g, eH:.

Now'let £ =(1-pT\E)G2, where Po\g is the peak function
associated to T \E. Then f ¢A(ID) and fy, = fg,/6, =
(1—pT\E)g1 € A(ID). Hence f e¢Q(y,). Since G, does not vanish

on E, we have Z(f) =T \E =Z(Q(Y1)).

Step 2. Since Yy =Ylluz’ it is clear that we have the

following relation:
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g €Q(y) if and only if there exists h €Q(y,) such that

g =u,h and Sing u, ¢ Z(h).

Hence the zero set Z(Q(Yy)) contains 2(Q(v,)), Zp(u,) and
Sing u,. By the first step there exists a function f €Q(yy)

such that Z(f) =2(Q(y,)). Put g )Jf. Then

=u2(1-pZV(Q(Y))(\T
g € Q(y) and Z(g) =Z(Q(y)). Moreover, we see that the inner

factor of Q(y) is u,. o

An analysis of the proof shows that we also obtain the

following information about the zero set of Q(y).

Corollary 1.3. Let Q(y) be an ideal of denominators in A(IDD)

with inner factor 1. Then a point z ¢ D belongs to TN Z(Q(y))
if and only if there exists in I a neighbourhood U of z

such that |y| has continuous extension to U.

We want to derive now several interesting conclusions from

Theorem 1,.2.

Let @ $X ¢ D be a subset of the maximal ideal space of

A(ID). Then we define the ring Ay of fractions by

Ay = {é: f,g e A(ID), g vanishes nowhere in X} .

If £ ¢ ID, then the ring

A, = {é’ £,8 €A(ID), g(£) $0}

€
is called the local ring of fractions in A(ID). These rings
play an important rdle in ideal theory (see [22], p.22 f.).

F. Forelli now asked in ([7], p.389) and ([8], p.396) for a
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characterization of those sets X for which

A, = [\ A

(3)
X EeX

£ -
In the algebra H every ring of fractions is the intersection
of its local rings of fractions ({81, p.397). In the disk
algebra A(ID) one could prove the relation (3) only for
special sets X: Forelli ([8], p.396) has proven, e.g., that
(3) holds whenever X nT is closed. Using Theorem 1.2, we are

now in a position to give a complete solution to this problem.

Theorem 1.4. If X $0 is an arbitrary subset of the closed
unit disk, then the ring A, of fractions in A(ID) is the

intersection of its local rings of fractions, i.e.,

A :(‘\A .
X Eex £

Proof. Let ¥y e N AE Then for every £ €X, Y can be represented
in the form Y Ezﬁg, where g(£) $0. Thus g ¢ Q(y), the ideal

of denominators associated to y, and Z(Q(y)) nX =0. Choose

by Theorem 1.2 a function f € Q(y) such that Z(f) =2(Q(y)).
Then vy =fy/f eAx Hence N Ag The reverse inclusion is

Eex
trivial. 0

It is well known that not every ideal of denominators in
A(D) is principal (see [8], p.397); e.g. let vy =f,/f , where
£,(2) =1-2 and £, (2) =(1- z)exp(-———) Then Q(y) is the maxi-
mal ideal M(1) = {f eA(ID): f(1) =0}, which is surely not

principal.
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If, more generally, Y has the form Y =u1(1-p!)/uz(1-p!),
where the inner factors u; and u, are relatively prime and
where Sing u; v Sing u, = E, then Q(y) =u,I(E,A(ID)). Hence
every closed ideal in A(ID) is an ideal of denominators, in
contrast to Hm, where a closed ideal I is an ideal of de-
nominators if and only if I is a principal ideal generated
by an inner function. This follows from ([281, p.545) and

the fact that in H every ideal of denominators is principal.

It is now of interest to characterize in A(ID) those

ideals of denominators which are closed. The following pro-

position gives us a complete answer.

Proposition 1.5. An ideal of denominators Q(y) in A(ID) is

closed if and only if y e¢L”.

Proof. If ¥y eLw, then Q(y) is trivially closed. Conversely,
let Q(¥) be closed and let u be the inner factor of Q(y).
Then by the Beurling-Rudin theorem Q(y) =uI(E,A(ID), where
E =Z(Q(y)) nT.

Put Yy TYU. Then
I(E,ACD)) = 3 Q(y) ¢ {f eH™: fy, eH"} . (4)

Let Q ={f eH : fy, €H”}. Since Q is an ideal of denominators
in Hm, it is principal. But by (4) the gecd of the functions
in Q is 1. Hence Q =HQ, so that Yy €H”. This implies that

Y=l-‘lY1 eL”. O
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§ 2 Relations between ideals in A(ID) and C(T)

In this section we consider fér the pair (R,S) ;(C(T),A(ID)i
the following well known problem in idéal theory (see (1317,
§ 11). Let R be a ring, S a subring and I a prime (resp.
closed) ideal in S. Under what conditions does there exist
a prime (resp. closed) ideal J in R such that J nS =I? By
the Beurling-Rudin theorem it is easy to see that a closed
ideal I in A(ID) is the trace of a closed ideal J in C(T),
i.e. I=JnA(D) if and only if the inner factor of I is 1.
On the other hand, since the inner factor of a nonmaximal
prime ideal P ¢A(ID) is always invertible ([26], p.23 f.),
one cannot expect that this property is sufficient for a
prime ideal in A(ID) to be the trace of a prime ideal in

C(T). Indeed we have the following example.

Example 2.1. Let I be the ideal in A(ID) generated by the
function S(z)(1-z), where S(z) = exp (-%%%), and let M =
{F e A(ID): F outer}. Then I is disjoint from the multipli-
catively closed set M. Hence there exists by Zorn's lemma
an ideal P >I which is maximal with respect to PnM =0. By
Krull's lemma P is prime. This ideal cannot occur as the
trace of' any ideal J in C, since otherwise J (and hence P =
J nA(ID) ) would contain the outer function (1-z)? =

(5(z)(1-2)1S(z)(1-2), in contradiction to the choice of P. 0O

.

A more careful examination of the structure of the closed

ideals in A(ID) yields the following observation. EVery
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closed ideal I in A(ID) with inner factor 1 has the property
that whenever f €I then the outer part of f alsoc belongs to

I. This leads to the following definition.

Definition 1. Let I be an ideal in A(ID). Then I is said to
have the F-property if whenever f ¢I the outer part of f

also belongs to I. Such an ideal is called an F-ideal.

Note that the concept of F-ideals extends Havin's notion
of the F-property for subrings of H! (see [25]) to ideals.
The following theorem now shows that this is just the right
idea which enables us to give a complete answer to the pro-

blem mentioned above.

Theorem 2.1. A prime ideal P in A(ID) is the trace of a

prime ideal Q in C(T) if and only if P has the F-property.

Proof. Let P ¢A(ID) be the trace of a prime ideal Q in C(T)
and let f be a nonzero function in P. If f =uF is the inner-
outer factorization of f, then uF ¢ C(T). Hence F? = (UF)uF ¢

QnA(ID)= P. Since P is prime, we see that F ¢ P.

Conversely, let P be a prime F-ideal in A(ID) and let
J =PC(T) be the ideal generated by P in C(T). We claim that
JnA(ID)=P. Let f eJ nA(ID). Then there exist functions
£, eP.andnqi € C(T) such that f = iglqifi. In particular,
[f] s ¢ § [f4] on T for some constant C >0. By ({271, p.262)
i=1

there exists a function h e (fy,..,f,) ¢P with
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n
1 1£,1* s |h] onT.
i=1

The Cauchy-Schwarz inequality yields
n 2 n
1£]2 s c’[ ) |f1|] <C™? § |£,]% s C?n?|n| on T.
i=1 i=1
Let uH =h be the inner-outer factorization of h. Since P is

an F-ideal and h ¢ P, the function H also belongs to P. Be-

cause H is outer, we have
I£12 s ¢*n?|H] on D

(see [18], p.62)., Hence [f[“/|H| sC*n*[H| on D, from which
we can conclude that f*® =gH for some g ¢ A(ID). Thus f" ¢P.

Since P is prime, f ¢ P; consequently, J nA(ID) = P.

Let S =A(ID)\ P. Then S is a multiplicatively closed sub-
set of C(T) which is disjoint from the ideal J. Hence there
exists by Zorn's lemma and Krull's lemma a prime ideal Q 2J
with Q nS =@. Moreover, we have PcQ nA(ID)c P. Thus Q is

the desired prime ideal.

Definition 2. Let R be a commutative ring and let I be an
ideal in R. The ideal I is called radical if it is the set
of all elements in R having some power in I, i.e., if f el

whenever f® ¢I for some n e¢IN (see [221, p.17).

Using Zorn's and Krull's lemmas, it is easy to see that
an ideal I is ragical if and only if it is an intersection
of prime ideals. As an immediate consequence of Theorem 2.1

we obtain thus the following corollary.
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Corollary 2.2. A radical ideal P cA(ID) is the trace of a

radical ideal Q in C(T) if and only if P has the F-property.

The following example shows that there do exist non-maxi-

mal prime ideals in A(ID) having the F-property.

Example 2.2. Let o, ¢T be a sequence converging to a =1 and
let f ¢ A(ID) be a function with Z(f) = {a,: n e IN} U {1}.

Define

A

S = {f eC(T): either £(1) 40 or z =1 is an isolated
point of the zero set of f}

Then the ideal J = fC(T) is disjoint from the multiplicative-

P

ly closed set ©. Hence by Zorn's and Krull's lemmas there
existsa prime ideal Q 2J disjoint from S. Let P =Q nA(ID).
Then P is a non-maximal prime ideal in A(ID) which has the
F-property by Theorem 2.1. Note that O $P ¢M(1) and that

1-z ¢ P, O

Remark. The concept of F-ideals will be studied in more de-
tail in my common paper [16] with P. Gorkin. In particular,
we present the generalization of Theorem 2.1 and its corollary

to the algebras QAg.

Another important problem in the analysis of the ideal
structure of the pair (A(ID),C(T)) is to characterize those
ideals J in C(T) whose trace in A(ID) does not'collapse to
the trivial ideal I =(0). Since by the theorem of Szeg$ ([11],
p.64)
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[ log [£(el®)|dt > -= (1)
T

for any nonzero function f ¢ A(ID), every such ideal J ne-
cessarily contains a function f € C(T) satisfying (1). The

next proposition now shows that this is also sufficient.

Proposition 2.3. The trace in A(ID) of an ideal J in C(T)

is non-trivial, i.e. J nA(ID)# (0), if and only if J con-

tains a function q satisfying

[ log [q(et®)|dt > -= ., (2)
T

Proof. It oﬁly remains to show the sufficiency of (2). By

(2) the zero set Z(q) = {z e€T: q(2z) =0} is a compact set of
Lebesgue measure zero. Hence we can decompose T \ Z(q) into

a (at most) countable union of disjoint open arcs Iy = (aj,by).
By Lemma 1.1 there exist nonnegative functions uy ecl(Ij)

such that
Iuj-ql s%|q| on Iy (3)
and uj(aj) =uj(bj) =0.
In particular,
$lal s luyl s 3lal on 1y . W

Let u: T+IR be defined by u =u; on Iy (j=1,2,..). Then

u € C(T) and by the left inequality in (4), log u ¢ Liem.

Since u eCl(T \Z(q)) and u|Z(q) =0, the outer function

+z_ 1ogu(eit)dt

it
eit-z

£(z) = exp -2-117 )
T

belongs by ([321, p sz) to the disk élgebra A(ID). Moreover,
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£l . _u 9 .
we have lal * TaT < l‘Iql on T. Thus f/q € C(T) from which we

can conclude that f eqC(T) nA(ID)g Jn A(ID). 0

Remark. If we merely assume that the ideal J contains a
function q € C(T) whose zero set has Lebesgue measure zero,
then the conclusion of Proposition 2.3 does not hold. To this
end let

it { exp (--t'l?)’ t30, tel-m,m],
q(e™")

o, t=0. \

Then the ideal J =qC(T) does not contain any function f such

that [ log |f(e'®)|dt >-=. Hence J nA(D)= (0), though 2(q) =
T

{1}. 0

To conclude this section, we want to state two closely

related open problems.

Problem 1. Let I =(fy,..,fy) be a finitely generated ideal
in A(ID). Under what conditions on the generators fyse=sfy

can I be lifted to an ideal J in C(T) ?

Comment: We note that a necessary condition is that uF eI
implies F? ¢ I, where uF is the inner-outer factorization of

a function in A(ID).

Problem 2. Let I =(f;,..,fy) be a finitely generated ideal
in A(DD) which has the F-property. Does this imply that I is

a principal ideal generated by an outer function?
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I1I. The algebra QA of bounded analytic functions of

vanishing mean oscillation

It is well known that the Banach algebra H”, supplied with
the supremum norm, may be regarded via radial limits as a
subalgebra of Lu, the space of all essentially bounded Le-

besgue measurable functions on the unit circle T.
Sarason has shown that the space (under the usual norm)
H +C = {f+g: feH , geC =C(T}

is the smallest uniformly closed subalgebra of L” that con-
tains H* properly (see [11]), § 9). In connection with H”+C,

he considered the Banach algebra
QC = {f eH +C: F eH +C} ,

i.e., the largest C*-algebra contained in H +C, known as the
algebra of quasicontinuous functions, and its analytic sub-

algebra
QA = QC nH™ .

Using a famous theorem of Fefferman and Stein, Sarason proved
that QC coincides with the space of essentially bounded
functions of vanishing mean oscillation (VMO) on T (see [11],
p.377), i.e. QC =VMO nL”. Later on, T.H. Wolff [35] gave a
detailed study of the spaces QC and QA. His main result is
that every function f ¢ L” can be multiplied into QC by an
outer functioch F ¢QA ([353, p.321). He also showed that in
many situations QA behaves essentially in the same way as

the disk algebra A(ID): e.g., QA is a Dirichlet algebra on

the maximal ideal space M(QC) of QC ({351, p.325). Moreover,
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the analogue of the classical F. and M. Riesz theorem for
A(ID) (see [18], p.47) holds in QA. This fact, proved by
Wolff ([35], p.325) was used by Gorkin, Hedenmalm and the
author ([15]) to give a complete characterization of the
closed ideals in QA. Before we recall this result, we intro-

duce the following notations.

Let X be the normalized Lebesgue measure on T. Then o©
will denote the Borel measure determined on M(QC) by the
functional L(f) = [ fdx = [ fdo (f eQC). It is usually

T M(QC) )
called the lifted Lebesgue measure. For a closed subset E
of M(QC), let I(E,QA) be the ideal of all those functions

in QA whose Gelfand transform f, which we identify with f,

vanishes on E, i.e.
I(E,QA) = {f eQA: f|E =0}

The QA-analogue of the Beurling-Rudin theorem now takes the

following form:

Theorem ({151, Theorem 2.5). Let I $(0) be a closed ideal
in QA. Then there exists an inner function u and a closed
subset E of M(QC) with o(E) =0 such that I =uI(E,QA). In
particular, E =Z(I) nM(QC). The inner function u is called

the inner factor of I.

In this chapter we now present the QA-analogues of some
algebraic properties of the disk algebra A(ID), e.g., we
prove in § 3 that QA has the rather striking property that
}t is a Prebezout ring (in the terminology of P.M. Cohn

([5], p.260)). But there are also some differences., For
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example, it is known that unlike A(ID) not every closed
ideal in QA is the closure of a principal ideal ([151, § 2).
In § 4 we shall give a complete characterization of this

class of ideals.

§ 3 Divisibility in QA

It is well known that in QA the Corona Theorem is true
(C34], p.563), i.e., the open unit disk is dense in M(QA),
the maximal ideal space of QA. For the sake of completeness,
we present a short proof of the following equivalent al-
gebraic form. To this end recall that QC =QA+C, from which

we can easily deduce that
M(QA) = M(QC) vID (1)

(see [35], p. 323).

Corona Theorem for QA ([34], p.563). The ideal I =(f,..,fy)

generated by the functions f;,..,fy in QA coincides with the
whole algebra QA if and only if

N

! If;] 286 >0 holds in D

iml

for some constant § >0.

N
Proof. Let § |f;] 26 >0 in ID. Using a result of Shilov on
=1
extensions of maximal ideals ([12], § 12) applied to the

algebras QC and Lm, it is easy to see that a function in QC
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is invertible if and only if it is essentially bounded away

from zero on T. Hence

-
N i
=% Iny)?
=1
is a representation of the function 1 by means of QC functions.
Consequently, Z(I) nM(QC) =@. Since by hypothesis, the
functions f; have no common zero in H{, we have also Z(I) nID=

®. Thus, by (1), Z(I) nM(QA) =0. Hence I is not a proper

ideal. The converse assertion is trival. n]

As a consequence of the corona theorem we obtain the fact
that if vg [£,/ 26 >0 holds in ID, then 1 is a greatest common
divisor %;éd) of the functions fys.-,fy in QA. On the other
hand, however, two functions in QA may not have a gcd, as it
is the case in H” ([33], p.519). Take, e.g., the functions
£1(2) =1-z and f,(2) =(1-2) exp(-%é%). The surprising ingre-
dient of the next theorem is now that, whenever the ged of
the functions f,,..,fy exists in QA, then it is a linear com-
bination of the f; -and hence belongs to the ideal I =
(fyy..,fy). This fact, which we have already encountered in
A(ID) ([32], p.54), highly contrasts with the situation in

H®. In order to prove this theorem, we need the following

results of [16] and [15].

Proposition 3.2 ([16], Lemma 2.2). Let f,g ¢ QA with [f| <|gl|

on ID. Then there exists a function h ¢ QA such that f2 =hg.
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Proposition 3.3 ({181, Theorem 1.1). Let f;,..,fy € QA. Then

there exists a function f €I =(f;,..,fy) such that

N
1£] 2 oy 1211f1|2 on M(QC) .

Proposition 3.4 ([15], Lemma 2.3). Let f ¢ QA have the facto-

rization f zug, where u is an inner function and g eH”. Then
g € QA. Moreover, if m(f) =0 for some m ¢ M(QC), then m(g) =0.

In particular, QA has the F-property (in the sense of Havin).

We note that these propositions actually hold in the more
general setting of the algebras QAp (see [16]). We also ob-
serve that these are nontrivial generalizations of the cor-

responding results in the disk algebra A(ID) ([271]).

Lemma 3.5. Let Fy,..,Fy be outer functions in QA. Then there
exists an outer function F €¢QA which is a common divisor of

N
the F;'s and satisfies /\Z(Fy) = Z(F).
i=1

Observe that by our conventions, Z(F) denotes the zero
set of the Gelfand transform of F. Otherwise, our lemma would

be trivial (take F=1).
Proof. According to Proposition 3.3 we construct a function
he(F;,..,Fy) such that

N
§ IF;1? s [h] on M(QC) . (1)
i=1
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Let uH =h be the inner-outer factorization of h. By Pro-
position 3.4 we have H € QA and Z(H) =Z(h) nM(QC) Note that
M(QC) =M(QA) \ID Obviously, Z{(h) nM(QC) = f\ Z(F;). There-
fore, Z(H) = f\ Z(Fy). Let F =YH. By ([16], Lemma 3.3),

i=1
F €QA and Z(H) =Z(F). Since u is inner, we obtain by (1):

[Fg1? s JuH| < [H] = |F|* on M(QC) .
Hence |F;| <|F|? a.e. on T. Since F; and F are outer functions,
we get |[F;| s|F|? on ID. Proposition 3.2 now implies that
F{ =h,;F? for some (outer) functions h; €QA. Thus F 'divides

all the Fy (i =1,..,N). 0

We are now in a position to prove the main theorem of this
paragraph; it is an algebraic generalization of the corona

theorem.

Theorem 3.6. If the functions f1y.asfy in QA have a gcd d,

then there exist functions €15++18y € QA such that d = X figi

Proof. Let f, =B;S;F; be the canonical factorization of the
functions f;, where B; are the Blaschke products, Sj the
singular inner parts and F; the outer parts associated to f;.
Let I =(f1,..,fN}. We claim that Z(4d) =Z(I); Let B be the
Blaschke factor associated to d. Since d is a ged of the f,,
it is clear that B is that Blaschke product formed by the

common zeros of the B; (including multiplicities). Hence
Z(d) nID = Z(I) nID. (1)

According to Lemma 3.5, we construct an outer function F ¢ QA
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N
dividing all the F;'s such that /) Z(F,) = Z(F) and |F| s
i=1
|F|2 on ID. By Proposition 3.4, 2(f;) \ D= Z(Fi). Hence
N

Z(F) = /M Z(F;) = Z(I) \ ID. Moreover,
i=l

[£,1 s |F } s |F|? in D.
Hence by Proposition 3.2 we have f} =h,F? for some h, e QA.
Thus F is a common divisor of the f; (i =1,..,N). Since d

is a ged, F divides d. Consequently,

Z(I) nM(QC) = Z(F) ¢ Z(d) nM(QC) < Z(I) nM(QC) . (2)

(1) and (2) together now prove the claim Z(I) =2(d) (in-

cluding multiplicities in ID).

f 3
Let J =(i%,.-,7¥). From the hypothesis it follows that a
~ f ~
ged d of 7% (i=1,..,N) is 1. Hence Z(J) =Z(d) =0. Conse-
quently J is not contained in any maximal ideal of QA, i.e.,

1 ¢J. Thus we can conclude that d eI. 0

According to P.M. Cohn ({51, p.260), we call an integral
domain a Prebezout ring if the gcd of any two elements is a

linear combination of these whenever it exists.

Theorem 3.6 has now the following corollary.

Corollary 3.7. The algebra QA is a Prebezout ring.

Remark. The proof of Theorem 3.6 is a nontrivial generaliza-
tion of that of ([32], p.54), where it was proved that the

disk algebra is a Prebezout ring.
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§ u Closed ideals in QA

One of the main results in [15] is the description of the
closed ideals in QA. Moreover, we observed that the maximal
ideals of the Shilov boundary of QA are not topologically
generated by single elements, i.e. are not the closures of
principal ideals. This contrasts to the situation in A(ID).
The purpose of this paragraph is to give a complete characte-
rization of the closed ideals in QA which can be represented

as closures of principal ideals.

In analogy to § 1 we give the following definition.

Definition. An ideal I £QA is said to have the Forelli pro-

perty, if there exists a function f €I such that Z(f) =Z(I).

Theorem 4.1. Let I be a closed ideal in QA. Then the follow-

ing assertions are equivalent:
(1) I has the Forelli property.
(2) I is the closure of a principal ideal.

(3) 2(I) nM(QC) is a peak set or empty.

Proof. (1) => (2): Let I be .a closed ideal in QA. By ([15],
Theorem 2.5) I has the form I =ul(E,QA), where E s M(QC) and

u is the inner factor of I. By assumption there is a function
f ¢ I such that Z(f) =Z(I). Using Proposition 3.4, we may
assume without loss of genepality that f =uF, where F is the

outer part of f. Since closed ideals in QA are uniquely‘de-
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termined by the inner factor u and the zero set E, we see

that I =(f). This gives (2).

(2) => (3): Let I =(f) for some f ¢ QA. Since E :=
Z(I) nM(QC) = Z2(f) nM(QC) (by Proposition 3.4), E is a G-
set with o-measure zero ([351, p.325). By ([35], p.326)
every closed set of o-measure zero is a weak peak set for
QA. But by ([2], p.96) every G; weak peak set is a peak set.

This yields (3).

(3) => (1): Let E =2(I) nM(QC) and let Pg € QA be the
peak function associated to the peak set E. Then f =1-pg
vanishes exactly on E. (Note that by the maximum modulus
theorem |p (z)| <1 for every z ¢ D.) Thus by ([15], Theorem
2.5) I =(uf), where u is the inner factor of I. Hence Z(I) =

Z(uf). a

Remark. Since by ([20], p.298) no point in M(QC) can be a
peak point for QA, we obtain the result that a maximal ideal
M in QA has the Forelli property if and only if it is of the

form M =M(z,) ={f ¢ QA: f(2,) =0} for some 2z, ¢ ID.

Another fundamental difference between A(ID) and QA will
ariseﬂwhen we consider the structure of the closed primary
ideals. Whereas in A(ID) every maximal ideal contains an in-
finite chain of closed primary ideals (see [18], p.88), the

-

situation in QA is completely different.

Theorem 4.2. A closed ideal in QA is primary if and only if
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it is a maximal ideal or if it is an ideal of the form I =

(z-zo)n, for some z, e ID and n ¢ IN.

Proof. Let I be a closed primary ideal in QA. If Z(I) ={z.},
where 2z, ¢ ID, then I has trivially the form (z-zo)n for some

n e IN. Therefore, let Z(I) ={m} with m eM(QC). By ([151],
Theorem 2.5) I has the form I =uI(E,QA), where E =Z(I) nM(QC) =
{m}. So it remains to show that the inner factor u of I is
invertible. Suppose not. Then there exists a sequence (z,)

in I such that u(z,) +0 for n »=. Without loss of generality

we may choose (z_ ) to be thin, i.e.,

2.~2
k

lim I |—=| =1,
n+e kin|l-z z,

Hence S ={zn} is an interpolating sequence for QA ([34], p.553).
So its closure S in M(QA) is homeomorphic to BIN, the Stone-
Cech compactification of the set of integers. Choose an ar-
bitrary f € I =uI(E,QA). Then by continuity of the Gelfand
transform, f vanishes on S \S. Thus 5-S ¢Z(I). Hence I cannot
be primary, since $-S is homeomorphic to BIN \IN, which is

very huge ([11], p.187). 0

Remark. We observe that also in H™ every closed primary ideal
contained in a maximal ideal of the Shilov boundary is in

fact maximal ([301, p.221).
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III. The Chang~Marshall algebras QAg and Cg nH”

Let B be a Douglas algebra, that is, a uniformly closed sub--
algebra of L” containing H”. Sarason proved that the smallest
Douglas algebra containing H” properly, namely Hm+C, is
generated as an algebra by H” and the complex conjugate z

of the inner function z; more precisely, H"+C is the
(essential supremum) norm closure (denoted by [HN,E]) of

the set
(£fz": feH , ne Nu {0}}
(see (111, § 9).

In their famous theorem Chang and Marshall could generalize

this to arbitrary Douglas algebras:

Chang-Marshall Theorem. Let B be a Douglas algebra. Then B

is generated by H” and the set

B = {b: b interpolating Blaschke product and b inver-

tible in B} ,

i.e., B is the norm closure of the set

2 ="m ©

{£5,'5, : £eH, byeB, nyelN, mem} .

For short, B =[H",B].

For the proof the reader is referred to the book of J.
Garnett ([11], § 9). Recall that an interpolating Blaschke

product is a Blaschke product b with zeros z  satisfying

(1-]2,|*)|b'(z)] 26 >0 for all neNN

and some § >0.
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Associated to each Douglas algebra B are several natural

subalgebras. These are

1. the largest C*-algebra contained in B (with respect to

the complex conjugate operation), denoted by QB,

2. the smallest C*-algebra generated by the set U of inver-

tible inner functions in B, denoted by Cg,
and their analytic counterparts QAg resp. Cg nH”.
In other words, \

QB = BnB = {f ¢B: T ¢B} ,

L]

Cp

n

(U,01 = e { } Aqugur Ay €€ uy,u eB™!; n e IN} ,
i=1

QAg = QB nH

Cg nH” = [U,01nH",

where ¢l {..} denotes the norm closure.

Note that by a theorem of Frostman ([111, p.79) we may

define the algebra Cy also in the following way:

Cp = [B,B], where B is the set of all invertible Blaschke

products in B,

These algebras were introduced by Chang [3] and studied later
by Chang and Marshall [4] resp. by Sundberg and Wolff [34].
Therefore, we shall call in the sequel the algebras QA and

Cg nH™ "the Chang-Marshall algebras".

If especially B =H +C, then we obtain the following al-

gebras'studied in Sections I and II:
L]
QAH°°+C = QA ’ CH°+C nH = A(ID) .

oo

If B = L”, then QA = Cy nH™ = H
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Finally, let us mention that every Douglas algebra B has
the representation B =H°°+CB (see [11], p.386). From this we
immediately obtain the fact that QB =QAg+Cp. Hence every
function g € QB can be gpproximated (in the norm) by functions
of the form fb, where f €QAp and b is an invertible Blaschke

product in B (see also [31]).

§ 5 The maximal ideal space of the Chang-Marshall algebras

It is well known that the corona theorem is true in any
Chang-Marshall algebra A; this means that the open unit disk
is dense in the maximal ideal space of A (see (4], p.18 for

Ca nH" and ([34], p.563) for QAg). As an obvious corollary

we obtain the fact that every multiplicative linear functional
in A can be extended to a multiplicative linear functional in

H”. In other words, we have the following proposition.

Proposition 6.1 ([u4], p.18, [16], Lemma 3.4). Let A be a

Chang-Marshall algebra. Then the restriction map I': MCHT) +M(A)
defined by T'(m) =m|A is surjective. Moreover, I' is a continuous

open map.

It is easy to see that Proposition 5.1 actually is equi-

valent to the corona theorem in A (see [u4], p.18).

As a useful corollary we obtain:
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Corollary 5.2. The maximal ideal space of any Chang-Marshall

algebra is connected.

Proof. Since T is continuous, the assertion follows from the

fact that M(H") is connected ([181, p.188). 0

As a counterpart to Proposition 5.1, Chang and Marshall
proved in [4] the result that exactly the maximal ideals of
the Shilov boundary of Cy nH” can be lifted.to maxi%al ideals
of Cy. In the following we shall now generalize this to the

whole class of Chang-Marshall algebras.

A, The characterization of the Shilov boundary of QAg

and CB anH”

A former result of Chang and Marshall ([4], p.15) tells us
that the algebra Cy nH" is logmodular on M(Cg), i.e., that
the set {log |[f|: f invertible in C, AH"} is norm dense in
the space of all real valued continuous functions on M(Cg).
In [31] we proved that the algebras QAp are even strongly
logmodular on M(QB), i.e., that every real valued continuous
function q on M(QB) can be represented in the form q =1log |f],
for some function f invertible in QAp. Moreover, it is known
that by the Stone-WeierstraB theorem the C'-algebras QB. resp.
Cp are isometrically isomorphic to the spaces C(M(QB)) resp.
C(M(Cg)) of all complex valued continuous functions on M(QB)

resp. M(Cp).

Hence by a well known theorem (see [10], p.38), the Shilov
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boundary 3QAg of QAp (resp. 3(Cy nH") of Cp nH) can be
identified with the maximal ideal space of QB resp. Cg.
We are now in a position to present for the Chang-Marshall
algebras the analogon of D.J. Newman's characterization of
the Shilov boundary of H”. Note that our result contains as

a special case the corresponding result of Chang and Marshall

for Cq nH® ([u], p.18).

Theorem 5.3. Let A be any Chang-Marshall algebra and let

m € M(A). Then the following assertions are equivalent:
(1) meM(QB) resp. m eM(Cg)3

(2) medA;

(3) Ju(m)| =1 for every inner function u € A;

(4) |u(m)| >0 for every inner function u €A;

(5) |b(m)| =1 for every Blaschke product b eA.

Proof. First let us observe that the algebras QA and Cg nH®

contain exactly the same inner functions. The equivalence of

(1) and (2) now follows from the remarks above.

(1) => (3): Let m ¢ M(QB) and let u e€QAg, u inner. Then
U €QB; hence u is invertible in QB because uu =1 a.e. Thus
u(m)u(m) =1. Because ||u|l =1, we have |u(m)| =1. The same

proof works of course for rmeM(Cp).

»

(3) => (4) is trivial.

(4) =~> (5): Suppose there exists a Blaschke product b €A

such ‘that |b(m)| <1. Then the function
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b~ b(m)
1 -b(m)b

is inner and belongs to A. But u(m) =0, which contradicts

u =

the hypothesis.

(5) => (1): Let m ¢ M(QAg). We have to show that under the
hypothesis (5) m can be extended to a multiplicative linear

functional on QB.

Let S ={%b: f € QAp, b Blaschke product, b eQAB}. Then the
norm closure S of S equals QB. Define m,: S +C by mo(fﬁ) =
m(f)m(b). Then mo is a well defined map. In fact, let flsl =
f£,b, €S. Then £;b, = f,b;. Hence m(f;b,) =m(f,b;). Multipli-
cation by the factor ;?STBETEIS yields

m(£,)Im(b,dm(b,)m(b,) = m(f,Im(b,Im(b;dm(b,) .

Since |m(b;)|? =1, we have m(fl)E?E;T =m(fz)ETB:7. Thus by
definition, m (f,b,) =m (f,b,), which proves the claim. More-
over, m, is continuous, linear and multiplicative on S. Since
S is dense in QB, m, has a unique extension my to QB. More-
over, m; is again a multiplicative linear functional; hence

m; € M(QB). Since m1|QAB =m, m; is the desired extension. The

same proof works again for Cg nH”. g

Remark. We do not know if the condition [B(m)| >0 for every
Blaschke product b in A is sufficient for m to belong to the

Shilov bouncary 3A of A.

As a corollary we mention the well known fact that, in
" analogy to the disk algebra, the maximal ideal space of QA

is the disjoinf union of IDand the Shilov boundary M(QC) of
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QA. This fact is now characteristic for QA resp. A(ID), as

the following proposition shows.

Proposition 5.4. Let B be a Douglas algebra different from

H”+C. Then the maximal ideal space of any Chang-Marshall
algebra A associated to B contains a point which neither be-

longs to ID nor to the Shilov boundary of A.

Proof. By the Chang-Marshall theorem there exists an infinite
Blaschke product which is invertible in B. Now let m ¢ M(A) \ ID
be any point in the closure of the zero set of b in ID. Since
the Gelfand transform is continuous, b{m) =0. Thus, by Theorem

5.3, b ¢ A, 0

B. The Gleason part structure of QAp and Cg nH

It was K. Hoffman who first gave in his famous paper [19] a
detailed study of the maximal ideal space of H”. He discovered
the intrinsic relations between the Gleason parts of M(H™),

and interpolating sequences. In this section, we shall use

his results to describe the analytic structure in the maximal
ideal ‘space of any Chang-Marshall algebra A. Our main result
is a characterization of the nontrivial Gleason parts in M(A)

which is similar to that of Hoffman for M(H™).

-

Definition. Let A be a Chang-Marshall algebra and let

pplmy,m,) = sup {If(ml)l: feA, |[f]| s1, £(m,) =0}
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be the pseudohyperbolic distance of two points m; and m, in
the maximal ideal space M(A) of A. Then the Gleason parts of

M(A) may be defined as the equivalence classes of the relation

my ~m, <=> DA(ml,mz) <1.

We write
P(m) ={m"' eM(A): p(m,m') <1}

for the Gleason part containing the point m e M(A). We note
that p, coincides on ID with the usual pseuohyperbolic ' metric

p(z,w) = |—E:§i
1-2zw

Other general facts about p, may be found in (117, § 10).
A Gleason part is called trivial if P(m) reduces to {m};

otherwise, P(m) is called nontrivial.

As a generalization of a definition of Hoffman ([19],

p.88) (see also [111, p.410, and [261, p.60) we define

G, = {meM(A): m contains an interpolating Blaschke

product b €A} .

It is important to note that in contrast to H” the set Gp

does not coincide in general with the set

Hy = {meM(A): m lies in the closure of an A-inter-

polating sequencel ,

where as usual a sequence {z,} in ID is called A-interpolating
if for every bounded sequence (w_ ) of complex numbers there

exists~a function f €A such that f(z)) =w, for all neIN.

In fact, let {zn} be an infinite:.QA~interpolating sequence.
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Then by ([34], p.553) {z,} is thin, i.e., lim T p(z,,2z,) =1
n+o kin
(see § 4).

Let 5 denote its closure in M(QA). Then no points me 3 \ ID
contains an interpolating Blaschke product, since the only
inner functions of QA are the finite Blaschke products; but

those have modulus 1 on M(QA) \ID (by Theorem 5.3).

Combining this fact with the following proposition, we
can thus conclude that in general the set G, is a proper sub-

set of Hyp .

Proposition §.5. Let b ¢ A be an interpolating Blaschke pro-

duct. If b(m) =0 for some point .m eM(A), then m lies in the
(M(A)-) closure of the zero set Zp(b)= {z,} of b. Moreover,

{z,} is an A-interpolating sequence.
n p

Proof. Choose, according to Proposition 5.1, a point x e M(H™)
such that xIA =m. Obviously x(b) =0. By ([11], p.379), x lies
in the closure of {z,} with respect to the topology in M(HT).

Hence there exists a subnet (zn(a)) of the zero sequence of

b such that f(zn a)) +x(f) =m(f) for every f €A cH”. This

{
yields the assertion. That {z,} is even an A-interpolating

sequence” follows from ([34], p.554, Remark 1). 0

We are now able to state the main result of this para-

-

graph.
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Theorem 5.6. Let A be Chang-Marshall algebra and let meG,.
Then P(m) is an analytic disk (for a definition of this term,

see [11], p.401).

Moreover, there exists a bijective map L,: ID+ P(m) such
that, whenever (w,) is a net in ID converging to m, then
lim L"a = Ly, where

E+ wy

—— for £ e¢eID.
1 +wa£

Ly, (6) =

Proof. The proof works exactly in the same manner as that of
the corresponding result for H® (see {11], p.u08, Theorem

1.7). 0

The following theorem now completes the characterization
of the nontrivial Gleason parts in A. It shows that all ana-
lytic structure in M(A) comes about in the manner described

by Theorem 5.6.

Theorem 5.7. Let A be a Chang-Marshall algebra and let m e

M(A). Then the following assertions are equivalent:
(1) meM(A) \Gy3

(2) If u is an inner function in A and if u(m) =0, then
u=ugu,, where u;(m) =0 (i =1,2);

(3) The Gleason part P(m) is trivial;

(u) If (wy) is a net in ID converging to m, then lim ij

exists in M(A)P and is the constant map L(§) = m

(£ e D).
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Remark. M(A)™ is the space of all maps from ID into M(A).

Proof. (1) => (2): First we note that if an inner function
u €A is the product of two inner functions uy and u,, then
u; and u, belong to A. So let u(m) =0 and let bS =u be the
Riesz factorization of u, where b is a Blaschke product and
S a singular inner function. If S(m) =0, then (b/S)V/S =u
yields the desired factorization. If S(m) 40, then b(m) =0.
Assume that b does not admit the factorization (2), then m
is a single zero of u. Choose, by Proposition 5.1, x e M(H™)
such that x|, =m. Then x itself is a simple zero of b in
M(H™). By Theorem 5.3 of ({19], p.100), there exists an in-
terpolating subsequence {z,} of the zero sequence of b in ID
such that x belongs to the closure in M(H ) of {zy}. Hence
b =b;b,, where by is the interpolating Blaschke product
associated to {z,}. Since by,b, €A, we have by(m) =b;(x) =0.

Thus m €G,, which contradicts the choice of m.

(2) => (3): If me3A, then P(m) is trivial. This follows
from a general result of Hoffman (see [11], p.402) by ob-
serving that A is a logmodular algebra. So let m e M(A) \ 3A.
Choose m' eM(A) and m' $m. We claim that m' ¢P(m). If m' ¢3A,
we are done. So let m' ¢eM(A) \ 3A. Using Corollary 6.4 of the
next section, we see that there exists an inner function
ue A such that u(m) =0, but u(m') $0. The hypothesis (2) now
implies that u hés the factorization u =uy*seu,, where
uj(m) =0 (jJ =1,2,..,n3 neIN)., Thus by Lemma 1.2 in ([{11],
p.403), u vanishes identically on P(m). Hence m' ¢ P(m). Since
m' $m was an arbitrary point of M(A), we can conclude that

P(m) is trivial.
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Clearly (3) implies (u4), because any limit point of ij
in M(A)ID is an analytic map whose range is contained in

P(m) ({111, p.402, Lemma 1.1).

That (4) implies (1) follows from Theorem 5.6. 0

Before we proceed, we want to mention the following open

problem.

\

Open problem. Let m e¢M(A) \G, and f(m) =0. Does, in analogy

to Hw, f admit the factorization f =f,f , where fi(m) =£,(m)
=07

A positive answer can be given if m belongs to the Shilov
boundary of A. This follows from the next proposition and
the fact that every Chang-Marshall algebra is a logmodular

algebra.

Proposition 5.8. Let A be a logmodular algebra and let m be

a point of the Shilov boundary 3A of A. Then every function
f ¢ A which vanishes in m has a factorization of the form

£ =f,f,, where fi(m) =f, (m) =0.

Proof. Since A is logmodular, every maximal ideal admits a
unique representation measure on 3A (see [11], p.201). Hence
the Shilov boundary coincides with the Choquet boundary

(see [2], p.87). Thus every maximal ideal contains a bounded
approximate identity ([21, p.%901 and p.99). Cochen's factori-

zation theorem ([2], p.74) now yields the assertion. u]
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§ 6 A .comparison between the ideal structures of H”, QAg

and Cg nH°°

Let A be a Chang-Marshall algebra. In § 5 we have seen that
every maximal ideal in A can be lifted to a maximal ideal in
H . In [163 we proved that; more generally, every prime ideal
in QAp is the trace of a prime ideal in H™. Here we are now
studying this lifting process for ideals whose zero set does
not meet the Shilov boundary. We will encounter some new
phenomena. In fact, if I is an ideal in A which can be lifted
to an ideal in H (which is not always possible, see the re-
mark after Corollary 6.6), then one cannot expect in general
that the extension is unique. However, if the zero set of

the ideal I in A does not meet the Shilov boundary of A, then
I is the trace of a unique ideal in H”. This result will be
proved in Theorem 6.5. Our proof is based on several genera-
lizations of a result of Marshall ([23], p.20) which tells

us that, if I is an ideal in H® whose zero set is disjoint
from the Shilov boundary of Hm, then I does not only contain
an inner function, but is even generated algebraically by

the set of its inner functions (see also [33], p.52%). We
now present a first generalization. To this end we have to
observe that the maximal ideal space M(B) of any Douglas

algebra can be identified with the set

M(B) = {meM(H™): |u(m)| =1 for every inner function

u invertible in B}

({111, p.378).
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Theorem 6.1. Let B be a Douglas algebra and let I be an ideal
in H™ such that Z(I) nM(B) =@. Then I is generated (alge-
braically) by the set of inner functions invertible in B

and contained in I; in other words,
n - -]
I ={] uhg, u;elUy, hy eH, nem},
i=1

where

Ur = {ueB: u inner, u invertible in B, u eI} .

For short we write I =[UI]Hw.

Proof. Step 1. We claim that I contains an inner function u
which is invertible in B, i.e., for which |ulm)| =1 holds

for every m €e M(B). By hypothesis the ideal IB generated by

I in B is not proper, i.e. IB =B. Hence there exist functions
fi €I and q; €B such that 1 = E qif;. Let C < § €01, By
the Chang-Marshall theorem cho;;é h; €eH” and bi!:;", by

Blaschke products, such that
= 1
llqi-hibiﬂ < 7
Thus we have
} nyb BERARRAIE X
[ ¥ hybyfyl 2 Qfyl - 1 lag-n b | £,
11 i 101 iti ie1 177 i
) (1)
21~EC=% on M(B) .

h

Let g; =h; Mbyandb = T by. Then beB™!, i.e. [b] =1
#i =1

on M(B). Multiplying (1) by b, we obtain

¢ 1 1
|1215xfxl 2 5lb} = 3 on M(B) . (2)
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Let f = g g;f;. Then f eI. Let.uF =f be the inner-outer
factoriz;;;on of £. Since M(L”) €M(B), F does not vanish by
(2) on M(L”). Hence F is invertible in H~. So u =%(uF) el
Let m e M(B). Then u(m) =%(m)f(m) $0. Hence u is invertible
in B.

Step 2. Using an idea of Chang-Marshall [4], we are now

constructing a set of inner functions which generates I as

an ideal.

Let g eI. Without loss of generality we may assume ||g]| 5%.
Since u eB-l, we have u eHm nCg. Furthermore, dist (gG,HQ) =
inf [lgu-h|l < |lgull = gl = % < 1. Hence the hypothesis of
?ESJ, p.14%, Corollary 2.2) is fulfilled. Therefore we have
functions h eHw and u,y eCB, uy unimodular on T, such that
u; =gu +h. Let v =vg =g +uh. Then v eH and |v]| =|uuy| =1 a.e.

on T. Hence v is an inner function. Because g and u belong
to the ideal I, we have v € I. Thus we may conclude that I is

generated by u and the set of inner functions {vg: g eI}. O

Our next theorem will generalize the result of Marshall

mentioned above to the Chang-Marshall algebras QAp and Cg nH”.

Theorem 6.2. Let A be a Chang-Marshall algebra and let I be
an ideal in A whose zero set is disjoint from the Shilov
boundary of A. Then I is generated (algebraically) by a set

of inner functions.

Proof. A combination of the results in [31] (Theorem 3, Theo-

rem 1 and the second remark after Theorem 3) enables us to
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conclude that I contains an inner function u. Let gelI,

Hgll S%. Construct, as in the second step of the proof of
Theorem 6.1, an inner function v =vg ¢H” such that v =g +uh =
uu;, where u; ¢Cg and h eH”. In particular, v eCg. Hence v
is an inner function in CB anH”. Thus h = (v-g)u € QB nH” resp.
CB nH". Hence v € I. The set {vg: g ¢ I} and the function u

now generate 1I. 0

\

In case of the algebras Cy nH® we even obtain the follow-

ing stronger result.

Theorem 6.3. Let I be an ideal in Cy nH® such that Z(I) n
M(Cg) =®. Then finite linear combinations of inner functions

in I are dense in I.

Proof. Let f € I. Then the proof of Theorem ¢.2 shows that
there exist two inner functions u and v in I such that f =

v +uh for some h eCg nH". Approximating, according Theorem
4.1 ([4], p.14), the function h by finite linear combinations
of inner functions in Cg nH”, we see that f may be appoximated

by linear combinations of inner functions in I. 0

Remark. Theorem 6.3 contains as a special case the result of

Marshall for the algebra g ([23], p.20, Corollary 3.11).

As a useful corollary of Theorem 6.2 we obtain the follow-

ing separation property.
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Corollary 6.4. The inner functionsin any Chang-Marshall al-

gebra A separate the points of M(A) \3A.

Proof. Let m; $m, be two maximal ideals in M(A) \ 3A. Since
m; and m, are generated by sets of inner functions, there

exists an inner function u such that u(m;) =0, but u(mz) $40. O

Remark. The inner functions in A do not (in general) separate
the points of the Shilov boundary of A. Take, e.g., the al=-
gebra QA. Then the inner functions, which are the finite
Blaschke products, are constant on the maximal ideals of any

fibre My(QA) = {m eM(QA): z-a em} (a eT).

We are now in a position to prove the main result of this
section. It shows that the similarity in the proofs of Theorem
6.1 and 6.2 is not incidental, but has its source in the in-

timate relations between ideals in A and H .

Theorem 6.5. Let A be a Chang-Marshall algebra and B the
associated Douglas algebra. Then the ideals I c¢A satisfying
Z(I) n3A =0 are in a one-to-one correspondence with the ideals

J <H” such that Z(J) nM(B) = 0.

In particular, every ideal I in A whose zero set is dis-
joint from the Shilov boundary of A can be lifted to a unique

ideal in H”.

Proof. We have to show that the map J +*J nA is a bijection

from the set of ideals in H™ satisfying Z(J) nM(B) =0 onto
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the set of ideals I in A satisfying Z(I) n3A =@. To this
end let J be an ideal in H™ with Z(J) nM(B) =@. Then J con=-
tains by Theorem 6.1 an inner function u invertible in B.
Hence u €eJ nA =I. Therefore Z(I) n3A =@, since |u| =1 on 3A

by Theorem 5.1.

Conversely, let I be an ideal in A with Z(I) n3A =0. We
shall show that I can be lifted to an ideal J in H. Let
J=1IH . We claim that JaA =I. Let f eJnA. By Theorem 6.2
I is generated by a set of inner functions invertible in B.
Hence there exist functions - ¢H” and inner functions u, eI
such that f = f gju;. Using an idea of Chang and Marshall
(ful, p.18) wei:;all show that we have f = i§1fiui for some

functions f; €A.

n
Let u = 'nlul' By ([ul, p.14, Corollary 2.2) there exist
i=
functions hy eH and vi €Cp, |vyil =2||gﬂ|a.e. on T, such

that uu;g, =hy +v,. So

n n
£= Yug, = § uthi+v,dun
i=1 191 i=1 [ s R § i

n n -
u § hy+ § ougCudgvy) .
1=1 =1

Since u and uljv; =g; -hjuuy €Cy nH” and f €A, we see that

n n n
u J hy € A. Moreover, } hy = u[u ) hi) € Cy if A =Cy resp.
ni=1 . i=1 " p i=1 n
} hy €« QB if A=QB. Hence } h, €A, Thus f = § u,f,, where
i=1 n _ i=1 i=1
£y = ['E1hi +v1]uu1 and f; =uuyv; (i =2,..,n) are functions
i=

in A, Hence f €I, which proves the claim.

It only remains to show the uniqueness. Let Jy» J, be

.ideals in H~ such that J, nA =1 (i =1,2). Since Z(J,) nM(B) =0,

there exist by Theorem 6.1 sets U; of inner functions inver-
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tible in B such that J, =[U,;JH" (i =1,2). Since U, A, the
hypothesis J; nA =T yields that U; cI g[UZIH“. Hence

[UI}H°° s[UZJH“, and vice versa. Thus J, =J,. n}
Theorem 6.5 has the following useful corollary.

Corollary 6.6. Let B be a Douglas algbra. Let A be one of

the associated Chang-Marshall algebras and let TI: MCH™) +M(A)
be the restriction map (of Proposition $.1). Finally, let J
be an ideal in H” such that Z(J) aM(B) =0 and let I =J nA be

its trace in A. Then Z{(I) =T(Z(J)).

Proof. The proof follows from the fact that by Theorem 6.5
the ideals J and I are generated by the same set of inner

functions. 0

Remark. Let A be a Chang-Marshall algebra with A #Hw. Then
not every ideal in A can be lifted to an ideal in H . If A
is the disk algebra, we take the ideal I = (1-2).

If A =QAz, let u be an inner function such that u ¢A. Choose
by ([35], p.321) an outer function F € QA with uF ¢ QA. Then
uF EF'HG,-but uF ¢ F*QAg. Hence FeH" n QAg contains properly

the ideal I =F-QAg.

»

If we specialize Theorem 6.5 to maximal ideals, we obtain
the following information on the relations between the maxi-
mal ideal space of a Chang-Marshall algebra A and that of H.

Let us first give a definition.
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Definition. Let B be a commutative Banach algebra with
identity element and let A be closed subalgebra of B. Assume
that the restriction map T': M(B) +M(A) is onto. Let m ¢ M(A).

Then the set
I™ (m) = {x eM(B): m(f) =x(f) for all f ¢A}

is called the A-level set of m in B.

Remark. Note that, since T is continuous, the A-level sets

form a partition of M(B) into closed sets.

Corollary 6.7. Let A be a Chang-Marshall algebra and let

I': M(H") +M(A) be the restriction map (of Proposition 5.1).
Then the A-level sets in H~ of the maximal ideals m which
do not belong to the Shilov boundary of A are trivial, i.e.

consist only of one point in M(H”).

Remark. Note that in contrast to the above, the A-level sets
in H® associated to points of the Shilov boundary of A are
in general very huge. For example, in case of the disk al-
gebra A(ID), the A(ID)-level set of the maximal ideal M(a) =
{f €A(D): £(a) =0}, a €T, is the whole fiber M, (H”) =

{m eM(Hm):bz—a em}. In case of the algebra QA see the paper

of K. Izuchi [20].

We also note that the A-level sets in H™ of maximal ideals
of the Shilov boundary of A are entirely contained in the
maximal ideal space M(B) of the associated Douglas algebra B.

This follows from Theorem 6.5 and Theorem 5.3..
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Since T: M(H") +M(A) is open, we obtain the following

refinement of Corollary 6.7.

Corollary 6.8. The map ' is a homeomorphism of M(H™) \ M(B)

onto M(A) \3A.

We shall now study the behaviour of T on Gleason parts.
First we observe that if B is a Douglas algebra, then x € M(B)
implies that its Gleason part P(x) in H” is contained in M(B)

(L2211, p.u37).

Proposition 6.9. The map I' sends Gleason parts onto Gleason

parts. The Gleason parts in M(H”) \M(B) are in a one-to-one

correspondence with the Gleason parts in M(A) \ 3A.

Proof. Let Xy sX, eM(H”) and pH,(xl,xz) <1. Then

pA(T(xl),P(xz)) z :u: p(T(xl)(f),P(xz)(f))
€
1 £fl<1
sup p(f(xl),f(xz))
feA
HEll<1
& sup p(f(xl),f(xz))
feH
HEl<1

= pﬂw(xl,xz) < 1.

Hence F(xl) and T'(x,) lie in the same Gleason part.

Let us now prove the "onto" assertion. Let x e M(H™) \ M(B)
be a point whose Gleason part is nontrivial and let m e
M(A) \?A such that p,(m,T(x)) <1. We claim that r im) e P(x).

Since the Gleason part of I'(x) in A is nohtrivial, there
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exists by Theorem 5.6 a point z ¢ ID such that Lr(x)(z) =m.
Choose an interpolating sequence {z,} such that x lies in
the closure of {z,}. Hence lim feL, (2) = fel,(z) for every

f ¢eH”. On the other hand, if f €A, lim folg (2) = folp ., (2) =

T (x)
f(m), since zy *T(x) in the topology of M(A). Then L,(z)|, =m.
This means that by Corollary 6.8 P'l(m) =Lx(z). This proves

that T™1(m) e P(x).

The other assertion of the proposition follows immediate-

ly. g

§ 7 Prime ideals in QAg and Cg nH

In [29] we solved a problem of F, Forelli and J. Kelleher

by showing that a prime ideal in the algebra H® (resp. A(ID))
is finitely generated if and only if it is a maximal ideal.
of the form M(z,) ={f €H" (resp. A(ID)): f(z,) =0} for some
2z, € D. In [14] P. Gorkin could also give a similar characte-
rization of the finitely generated prime ideals in the al-
gebra QA. The proofs of these results are different. The
general case of an arbitrary Chang-Marshall algebra remained
open. In the following we now settle this problem. First we

present some well known lemmas.

Lemma 7.1 ({13), p.104). Let B be a commutative algebra and
let A be a subalgebra of B. If J is an ideal in B such that
JnA is prime, then there exists a prime ideal Q in B such

that QnA =J nA.



- 56 =

Proof. Let S =A\(JnA). Then S is a multiplicatively closed
subset of B with SnJ =@. By Zorn's lemma there exists an
ideal Q 2J in B which is maximal with respect to SnQ =8.

By Krull's lemma Q is prime. By construction we have JnA ¢

QnAcdnA. n]

Lemma 7.2 (lakayama's lemma ([22], p.50 ff., Theorem 76)).
Let A be a commutative ring with identity element, I a finite-
ly generated ideal in A and M an arbitrary ideal. Suppose
that IM =I. Then there exists an element f ¢ A of the form

f =1+4m, m ¢4, such that fI =0.
Now we state the main result of this section.

Theorem 7.3. Let A be a Chang~Marshall algebra. A prime ideal
P $(0) in A is finitely generated if and only if it is a maxi-

mal ideal of the form M(z,) = {f eA: f(z,) =0} (z, e D).

Proof. Let P =M(z,). Then P = (z~z,) and hence P is finitely
generated. Conversely, let P $(0) be a finitely generated
prime ideal in A. Assume there exists a point m of the Shilov
boundéry 9A of A which contains P. By Proposition 5.8 every
function f em can be decomposed in a product f =f,f, of two
functions f, and f, such that fy(m) =£,(m) =0. Since P is
prime we ob+ain the relation P =Pm. Because P is finitely
generated and A has no zero divisors, Nakayama's lemma im-
plies that P =(0). This is a contradiction. Thus Z(P) n3A =40.

By Theorem 6.5 P can be lifted to a unique ideal J in H”.
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Obviously, J has the same generators, hence J is finitely
generated. Lemma 7.1 implies that there exists a prime ideal

Q in H” such that QnA =P, Since by Theorem 6.5 the extension
of P is uniquely determined, we have Q =J. Thus Q is a finite-
ly generated prime ideal in H”. By ([291, p.300, or [14],
P.317) Q has the form Q = (f eH f(z,) =0}, 2z, ¢ ID. Hence
P=QnA = {f ecA: f(2,) =0}. 8]
Remarks. We can avoid Nakayama's lemma in the proof by using

the analytical method in ([29], p.300).

A main ingredient in the proof of the characterization of
the finitely generated prime ideals in H® was the fact that
every prime ideal in H® which contains an interpolating
Blaschke product is primary ([29], p.298). The analogous re-

sult now holds for any Chang-Marshall algebra.

Theorem 7.4. Let A be a Chang-Marshall algebra. Then every
prime ideal P in A that contains an interpolating Blaschke

product b is primary.

Proof. Since P contains the inner function b, Theorem 5.3
implies that Z(P) nd3A =@. Hence there exists by Theorem 6.5
and Lemma 7.1 a (unique)bprime ideal Q us such that Q nH” =P,
By ([29], p.298) Q is primary. Corollary 6.6 now yields the

assertion. 0

The following proposition now guarantees the existence

of non-maximal primary prime ideals.
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Recall that G, denotes the set of maximal ideals in A

whose Gleason part is an analytic disk (see § 5 B).

Proposition 7.5. Let B #Hm+C be a Douglas algebra and let A

be one of the associated Chang-Marshall algebras. Then every
maximal ideal m eG, \ID contains a non-maximal prime ideal

which is primary.

Proof. The assumption B $H +C implies that A $QA and A $A(DD).
Hence Gp \ID$ @ (see § 5 B). Choose m €Gp \ID and b ¢m, where

b is an interpolating Blaschke product. Let
S = {Fg: g,F ¢eA, F outer, g ¢m} .

Then S is a multiplicatively closed subset of A such that

Sn(b) =@, Zorn's and Krull's lemmas now imply the existence
of a prime ideal P ¢m which contains b and satisfies PnS =0.
In particular, z-a §P for every a eT. Thus P is non-maximal.

By Theorem 7.4, P is primary. ‘ 0

Remark. 1. Proposition 7.5 generalizes ([26], p.61). The
proof there cannot be used in the present general setting,

since the inner part of a function f ¢A may not belong to A.

2. Whereas in the disk algebra every prime ideal is primary
(see (261, p.22), we do not know if in QA there even exist
non-maximal primary prime ideals. On the other hand, there

exist many prime ideals in QA which are not primary. As a

t/n

concrete example take P = {S"/"f ¢QA: n ¢ N}, where S(z) =

exp (-%;%). This ideal is prime, since P =QA nQ, where Q is
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the (countably generated!) prime ideal Q =(Sl,Sb“,SI/a31/~".)
in H” (see (261, p.53). On the other hand, P is not primary.

This follows in the same manner as the proof of Theorem 4.2.

The existence of non-primary prime ideals in A, A $QA
and A $A(ID), which are even closed, will be clear when using
the Gleason part structure of A, Indeed, if meG, \ID, then

the ideal

P = {f eA: f vanishes identically on P(m)}

is a closed prime ideal (see [26], p.62). Recall that in A(ID)

and QA there do not exist any non-maximal closed prime ideals.

At the end of this section, we want to state an open pro-
blem. Inv[15] we have proved that every prime ideal in QAg
éan be lifted to a prime ideal in . Question: Is this also
true for the algebra A =Cy nH" ? Note that by Theorem 6.5

and Lemma 7.1 this can be done if Z(P) n3A =0.

§ 8 Closed ideals in QAg and Cg nH"

A major problem in the theory of Banach algebras is a cha-
racterization of the closed ideals. In the disk algebra A(D)
this problem was solved by Beurling and Rudin (see § 1). A
similar characterization of the closed ideals in QA could be
obtained in a joint work [15] of the author with P. Gorkin
and H. Hedenmalm (see §§ 3, 4). However, the situation in

the other Chang-Marshall algebras is much more difficult.
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Only partial results are known (see [30] and [161). The
following theorem now provides us at least with a complete
description of the countably generated closed ideals in QAg.’
Since it seems that our proof remains valid for a larger

class of algebras, we present it in this generalized form.

Theorem 8.1. Let A be closed subalgebra of H” such that
(1) A contains the algebra QA,

(2) the corona theorem holds in A, i.e., ID is dense in

M(A),

(3) A has the F-property in the sense of Havin, i.e., if uf €A,

where u is inner, then f €A.

Then a closed ideal I $(0) in A is countably generated if
and only if I is a pricipal ideal generated by an inner

function u in A.

Proof. Let 0 %1 =(f1,f2,.n) be a countably generated, closed
ideal in A. We may assume without loss of generality ||f,| s

"1 Let u (u eH") be the inner factor of I, i.e. the ged

2
of the inner parts of the functions in I. By hypothesis (3)

the ideal-
J = {feA: uf ¢I}

is also a closed countably generated ideal in A. Note that
the inner factor of J =(g1,g2,..), where g5 =fj/u, is 1. We
“shall show that J =A, from which we can conclude that I =

uJ =(u). In particular, we have u €A.



- 61 -

Suppose that J is a proper ideal in A. By ([351, p.321,
Theorem 1) and (1), J nQA $ (0). According to ([15], Theorem
2.5), we have J nQA =I(E,QA), where @ $E cM(QC). In parti-
cular, there exists an outer function F e I(E,QA) with [|F] =1.

By ([16], Lemma 3.3), VF ¢ QA. Hence VF ¢ I(E,QA) cJ.

Proposition 4.4 in ({261, p.u4) implies that each function
f €J can be represented in the form
n
f = Zhigi (n =n(f) ¢ IN) , '
i=1
where hy €A and (lh,| sC||f|| for a constant C >0, which is
' n
independent of f. Hence |VF| s C 1} lg;! on D for all n ¢ IN.

g =
Choose ny, € IN so that ) 2 t 5'6'16' Since we assumed that J

i=n,
was proper, there exists a point m e M(A) \ID such that J cm.

Thus in a neighbourhood U(m) of m in M(A) we have
No
1
! lggl s g -
i=1 1 &C

By hypothesis (2), the set U(m) nID is nonempty. Let z e

U(m) nID. Then for n sufficiently large we have

n

1 Trr o1 v ° -
1<9TF@T sc ] fgl < c[ T olg,l + 3 lgiﬂ
i=1 i=1 inno
1 1 1
< Clsctsd) =3 -
which is a contradiction. Thus, J =zA. 0

Remarks. 1. Theorem 8.1 generalizes Theorem 3.8 of [161],
where the finitely generated closed ideals in QAg were cha-
racterized by essentially the same method. As a further
special caée we obtain Theorem 4.6 of ([26], p.u7), see

also ([23], p.548), where the countably generated closed
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ideals in.H°° were characterized. The proof in ([26], [281)
is based on the fact that H is the smallest weak-#*-closed
subspace of L” containing the polynomials. Since the algebras
QAp,s B #Lw, are proper subspaces of Hm, we had thus to de-

velop new methods to prove Theorem 8.1.

2. An analysis of the proof above shows that if A is a
closed subalgebra of H satisfying (1) and (2), then one can
conclude that any closed ideal I in A whose inner factor is
1, is countably generated if and only if it is trivial, i.e.,
if I =(0) or I =A. As an example of such an algebra we mention
the algebra COP of all bounded analytic functions which are
constant on the Gleason parts of M(H™ +C) (L11]), p.uu2).

It is well known that this algebra can also be described in

the following way:

COP = By nH™ = {f eH: 1lim (1-]z|?)|f'(2)] = O} .

lzl+1

Here, B_ is the little Bloch space.

[]

Before we study the case of the algebras Cy nH”, we want
to present some general facts on countably generated closed
ideals. W. Dietrich ([6], p.72), e.g., proved that for any
such ideal in a uniform algebra A, its zero set restricted
to the Shilov boundary 3A of A is open-closed in 3A. The

following proposition is closely related to Dietrich's result.

Proposition 8.2. Let A be a uniform algebra and I $0 a

countably generated closed ideal in A whose zero set is no-

where dense in M(A). Assume that the Shilov boundary 3A of A



- 63 -

coincides with the Choquet boundary of A. Then the zero set

of I is disjoint from 3A.

Proof. We may assume without loss of generality that I =

(fl’fz"“)’ where Hfi" <y~1

(i =1,2,..). Suppose that

Z(I) n3A $0. Let meZ(I) ndA. Since by hypothesis 3A coin-
cides with the Choquet boundary, the proof of Proposition
5.8 shows that every function f ¢I can bé factorized in a
product TT—;—ii—"» = ggh; of two functions g; and h; such that
gi(m) =h;(m) =0 (i =1,2,..). Moreover, g, may be chosen in
the closure of the ideal generated by f, with h-ff—-—”- gi" s1
and with lIhgll sk for some constant k (see [2]1, p.76).

Let G; = /TIf W gy and Hy = /TTE;1 hy. Then (|G| s2-27*

and |[H; | sk2™*. Moreover, G; ¢I and f; =GH,

i
Again by ([261, p.u4, Proposition !4.14), every function
f eI can be represented in the form f = 2 q;f,, where q; €A,

i=]
la Il sclif|l for some C >0, and where n =n(f). Hence

-] 0 L 0
Dled s I Teheiegd=c §s e,
im] i= i=1

¢ 2C 2 ]fjl on  M(A) .

i=1

The Cauchy-Schwarz inequality now yields

I leyl® s [iglleil]z s “C’[izllfil]z : ch[izl|einii]’

i=1
L] @
s 4C? § 16,0* § [H;1? on M(A) .
i=1 i=]
[
Noting that Z(I) ={x eM(A): [ |G (x}] = 0}, we obtain on
j=1

M(A) \ 2(I)
Lo T om0
im} L
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o«

Let Z be the zero set of the function H = § lHi[‘.Note
i=1
that H e C(M(A)) and that Z €Z{(I). Since Z(I) is nowhere

dense, there exists a net x_, eM(A) \Z(I) such that H(xa) +0.

a
But H(xy) 2—1?, which is a contradiction. Therefore,
4C

Z(I) ndA = 0 . a

Using the fact that the algebras Cg aH" are logmodular
({41, p.15), we see that the hypotheses of Proposition 8.2

are fulfilled. Hence we obtain the following corollary.

Corollary 8.3. Let I be a countably generated closed ideal

in Cy nH" whose zero set meets the Shilov boundary. Then

= (0).

Our next theorem gives in any Chang-Marshall algebra a
characterization of the closed ideals which contain an inter-
polating Blaschke product. The proof is based on an idea of

H. Hedenmalm.

Theorem 8.4, Let A be a Chang-Marshall algebra and let I be
a closed ideal in A with inner factor 1. Assume that I con-
tains an interpolating Blaschke product b. Then I is an in-
tersection of ‘maximal ideals, i.e., I =I(Z2(I),A). Hence I

is saturated.

Proof. By ([34], p.554) the zero set {z,} of b in I is an

A-interpolating sequence. Therefore the map T: A/bA +1% de-
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fined by T(f+bA) =(f(zl),f(zz),..) is an algebra isomorphism
of the quotient space A/bA onto 1%, By ([121, p.17, § 2),
the closed ideals in A that contain the closed ideal bA are
in a one-to-one correspondence with the closed ideals in
A/bA, hence in 17, Since 17 is isometrical isomorphic to
C(BIN), where BIN is the Stone-Cech compactification of the
integers, every closed ideal in 17 is an intersection of
maximal ideals (see ({121, p.271, § 36). This yields the,

assertion. 0

As a corollary we obtain a generalization of ([30], p.223,

Theorem 3.1).

Corollary 8.5. Let P be a prime ideal in the Chang-Marshall

algebra A. Assume that P contains an interpolating Blaschke

product. Then P is dense in a unique maximal ideal.

Proof. The proof follows immediately from Theorem 7.4 and

Theorem 8.4. 0

Theorem 8.4 can also be applied to get more information

on the countably generated closed ideals in Cg nHT.

Corollary 8.6. Let I be a closed ideal in Cy nH with inner

factor 1. Assume that I contains an interpolating Blaschke

product. Then I is not countably generated.
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Proof. By Theorem 8.4, I is an intersection of maximal ideals.
These are all contained in M(Cp nHw)\M(CB). Hence there exists
by Theorem 6.5 a unique extension J to H®. Now it is easy to
see that J itself is an intersection of maximal ideals of H".
Because J is closed, Theorem 4.6 of ([26], p.47) implies that
J is not countably generated. Hence I =J nCp is not countably

generated, since the extension was unique. o

Remark. We do not know a complete characterization of the
countably generated closed ideals in Cg ﬂHw, but we guess
that they are just the principal ideals generated by inner

functions.

Using Theorem 6.5 and Corollary 8.3, we obtain neverthe-
less a characterization of the countably generated maximal

ideals in Cp nH”

Proposition 8.7. A maximal ideal min Cy nH® is countably ge-

nerated if and only if
o
m = M(z ) = {f eCgnH : £(z,) =0}

for some z, ¢ ID.

Proof. If m eM(Cg), then m cannot be countably generated by
Corollary 8.3. If meM(Cq nH™) \M(Cg), then the proof of
Corollary 8.6 shows that m is not countably generated unless

m=M(z,). 0
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§ 9 Some unusual properties of QAp

A. Algebraic properties of QAg

It is well known that the algebra H” is a Pseudobezout ring,
i.e. an integral domain such that any two functions in H”
have a ged (see [33], p.520). It is now a natural question
to ask for a characterization of those algebras of type QAg
which have this property. Having in mind the results of § 2,
we may also ask whether there exist, apart ffom QA, other
algebras of the form QAy which are Prebezout rings. The

following theorem gives a complete answer to both questions.

Theorem 9.1. Let A be an algebra of type QAg. Then we have:
(1) A is a Pseudobezout ring if and only if A =H",

(2) A is a Prebezout ring if and only if A =QA.

Proof. (1) In view of the previous discussion, we have only
to show that if A #H“, then there exist two functions in A
whose ged does not exist. In fact, let u be an inner function
which is not contained in QAg. We note that the Douglas-Rudin
theorem (L{11], p.192) implies that such a function exists,
since otherwise A would coincide with H™. By a theorem of

T. Wolff ([35], p.321), there is an outer function F € QA

such that uF € QA. It is now easy to check that the functions
" UF and F have no ged in QAg. Hence QA is not a Pseudobezout

. Y ©
ring if B $L .
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(2) In § 2 we have shown that QA is a Prebezout ring.
Hence it remains to show that the algebras QAg, B #H”+c are
not Prebezout rings. To this end choose an infinite Blaschke’
product b € QAg; its existence is guaranteed by the Chang-
Marshall theorem (see Proposition 5.4). Let a ¢T be a cluster
point of the zeros of b. It is obvious that the gecd of b and
z-0. is one. But on the other hand, the functions b and z-a
generate a proper ideal in QAg. Hence 1 4 (b,z-a). Thus, if

B $H +C, the algebra QAp cannot be a Prebezout ring. 0

Next we turn to a problem of L. Rubel of characterizing
subrings of H” which are coherent. We call an integral domain
coherent if and only if the intersection of any two finitely
generated ideals is finitely generated again. McVoy and Rubel
(241 proved that H” is coherent. In contrast to this we prove
that no algebra of the form QAB, B #Lw, has this property.

In fact, there exist in QAg, B #L”, two principal ideals
whose intersection is not even countably generated, as the

next proposition shows.

Proposition 9.2. No algebra of the form QAp is coherent with

the exception of QAy =H".

Proof. Let QApg =@m and let u be an inner function not con-
tained in QAg. Choose according to Wolff ([35], p.321) an

outer function F €QA with uF ¢ QA. We claim that the inter=-
section of the ideals I, =(F) and I, = (uF) is not countably

generated. Noting that QAp has the F-property, we obtain
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I; nI, = {uFf: uf €eQAy}. Since the ideal J :={uf: uf e QAp)
is the trace in QAg of the closed ideal un, J itself is
closed. Its inner factor is u. Since u ¢QAB, we can conclude
from Theorem 8.1 that J is not countably generated. Hence

I, nI2 = FJ is not countably generated. O

B. Separating properties of QAp

Let m be a nontrivial point in M(H™) \ID, i.e. a point whose
Gleason part P(m) is not trivial. Then the closure P(m) of
P(m) does not meet the Shilov boundary ([19], p.loé). Sur-
prisingly this cannot be generalized to arbitrary Chang-

Marshall algebras, as we shall show in this section.

Definition. Let {z,} be an interpolating sequence. We call

{z,} thin, if it is finite or if lim I plzys2.) = 1 (see
n k#n

§ 4). The Blaschke product b associated to a thin inter-

polating sequence is called a thin Blaschke product.

Let B, denote the Douglas algebra generated by 0 and the
complex conjugates of all thin interpolating Blaschke pro-
ducts. This algebra has been studied in recent years by
many authors (Guillory, Izuchi, Sarason (see [15] and [171)).
It is well known that an inner function u is invertible in
B, if and only if u is a finite product of thin interpolating
Blaschke products (see [17], Théorem 2.6). Hence we have the

rather curious situation that by Theorems 5.3,'5.6 and 5.7
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the maximal ideal space of the associated Chang-Marshall
algebra contains only nontrivial Gleason parts with the
exception of those of the Shilov boundary. We are now in a
position to present an example which shows that in the al-
gebras A =QAB°and A =C'B°nHo the closure of any nontrivial
Gleason part m ¢ M(A) \ID does not only meet the Shilov
boundary of A, but that P(m) \P(m) is entirely contained
in 23A.

Proposition 9.3. Let B, be the Douglas algebra generated by

H® and the complex conjugates of the thin interpolating
Blaschke products and let A, be one of the associated Chang-
Marshall algebras. If m is a maximal ideal in M(A,) \ D,

then P(m) \ P(m) is contained in the Shilov boundary of A .

Proof. We have only to consider the case where m {BAD.Then,
by the remarks above, P(m) is nontrivial. Let m, e P(m) \ P(m).
Assume there exists a thin Blaschke product b such that
|b(m;)| <1. Because |b(m)| =1 implies that b has modulus 1
on P(m) (see [19], p."78), we have |b(m)| <1. By ([17], Pro-
position 2.3) and Proposition 6.9 there exists a point m, ¢
P(m) such that b{m,) =0. Since boLmo(z) =eiaz, where l..-° de-
notes the corresponding analytic disk (see § 5 B) of ID onto
P(my) = P(m), we see that |b| =1 on P(m) \ P(m). In particular,
[blmy)]| =1, whicﬂ contradicts the choice of b. Thus |b(m,)| =1
for every thin Blaschke product. Since every inner function
in A, is a finite product of thin Blaschke products, Theorem

5.3 implies that m, beiongs to the Shilov boundary of A,. O
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Proposition 9.3 has now several unexpected consequences.

First we give some definitions.

Definition. For a €T let M (A) = {meM(A): z-a em} be the
fiber over a of the max%mal ideal space of the Chang-Marshall
algebra A. We shall say that A is regular on 3,A :=MQ(A) ndA
if for every closed subset E of 3,A and for every point x ¢
34AN E there exists a function f €A such that f vanishﬁs on

E but f(x) $0.

K. Hoffman ([18], p.87) prerd that H® is regular on
3an for every a € T. Our next proposition now shows that this

cannot be generalized to an arbitrary Chang-Marshall algebra.

Proposition 9.4. Let A be an algebra of the form QAg. Assume

there exists a nontrivial Gleason part P(m) $ID in A whose
closure meets the Shilov boundary. Then there exists a point

a €T such that A is not regular on 3,A.

Proof. Let a ¢ T be chosen so that m e My(A). Then it is easy
to check that P(m) cM, (A). Moreover, the'support'set SUPp Mgy
of the representing measure for m is contained in M,(A) n2A =
3 A ((18],_;.188). Also, Aluu(n) is a uniform closed sub-
algebra of C(H&fﬁ([lel, p.187). Let y € P(m) n3A. Then y €3,A.
Since m § 3A, the support set supp u, of the representing
measure y, for m contains a point x € 3,4A different from y.
"Choose an open set U in the éompact Hausdorff space 3,A such

that x eU, but y {U. Let E ={. We claim that every function
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which vanishes on E also vanishes in y. Hence A cannot be

regular on 3,A.

Let f e I(E,A) and let uF be its inner-outer factorization.
Since A has the F-property, F ¢A ([16]). Moreover, F ¢ I(E,A)
(see the remarks after Proposition 3.4). By ([18], pp.190/
191), F(m) =0, since F vanishes on an open set U which inter-
sects supp u,. Since YF eA ([16], Lemma 3.3), Lemma 1.2 of
({113, p.403) implies that F vanishes on P(m). In particular,

f =uF vanishes in y, which proves our claim.

A famous theorem of S. Axler [1] shows that if f eL”,
then there exists an inner function u e¢H  such that uf e H +C.
In view of this result, one may ask whether it generalizes

to the algebras QAg.

Problem. Let f ¢ QB. Does there exist an inner function u €QAp

such that uf € QAg+C ?

T. Wolff has shown that if B =Hm+C, even a much stronger
relation holds; in fact, QC =QA+C ([351, p.325), i.e., the
inner function in the problem above can be taken to be the
constant 1. Quite unexpected, P. Gorkin has now discovered
a Douglas algebra B for which the answer is negative (pri-
vate communication). The final proposition of this work now
strengthens her result. It shows that if A =QAp fails to be
regular on 34A, then there do not exist even unimodular
functions in L” which multiply some specified function fe QB

into QAg+C.
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Proposition 9.5. Let B be a Douglas algebra so that A = QAg

is not regular on 3,A for some a ¢ T. Then there exists a
function q € QB which cannot be multiplied into QAL+C by any
unimodular function u eL™. (As usual we call u e¢L” unimodular

if |u] =1 a.e. on T.)

Proof. By hypothesis there exist a €T, a closed subset E of
3,A and a point x €3,A \E such that f(x) =0 whenever f € QAy
and f vanishes on E. Choose q € QB so that q vanishes on E

but q(x) $0. This is possible, since QB =C(M(QB)) is a re-

gular algebra.

Assume there exists a unimodular function u € L™ such that

ug € QAg+C, then ug]| Let f =uq and let me¢E.

My (R) EQAB‘MQ(A)'
Choose x eMa(Lw) such that xIQB =m. Then m(f) =x(f) =x(ulx(q) =
x{u)m(q) =0. Hence f vanishes on E. By the choice of E, f(x) =0.

Now let y e M(L”) so that y]QB =x. Then
0 = x(f) = y(f) = y(uq) = y(u)y(q) .

Since |y(u)| =1, x(q) =y(q) =0. This is a contradiction to the

choice of q. O

Remark. We find this result rather surprising, since by Chang-

Marshall's result QB = QAg+Cp.

At the end of this work, we want to state the following

open problem.

Open problem. Let B be a Douglas algebra.For which B every
f €QB can be multiplied by unimodular functions u ¢ QB into

QAg+C ?
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