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Abstract

For 2 ≤ N ∈ N and Γi ∈ R \ {0} we proof that functions of the form

HΓ(p1, . . . , pN ) =
∑
i ̸=j

ΓiΓjG(pi, pj) +

N∑
i=1

Γ2
iR(pi),

admit critical points under various circumstances. The pi will either belong

to an open, bounded subset Ω ⊂ Rd with smooth boundary for d ≥ 3 or to

a compact, two dimensional, riemanian manifold (Σ, g). Furthermore, G is a

(Dirichlet) Green's function of the negative Laplacian −∆ associated to Ω or

(Σ, g) and R is its Robin's function.

For the case of an open set, we also consider the function ϱ that is the least

eigenvalue of the matrix

(M(x1, . . . , xN ))Ni,j=1 :=

−G(xi, xj), i ̸= j

R(xi), i = j.

To achieve the critical points, we also calculate appropriate approximations of

the Green's function and Robin's function when close to their singularities.
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Chapter 1

Introduction

General notation

� (Σ, g) will be a two dimensional compact riemanian manifold. In some

cases, Σ will have boundary.

� Ω ⊂ Rd for some 3 ≤ d ∈ N.

� 2 ≤ N ∈ N and Γi ∈ R \ {0} for 1 ≤ i ≤ N .

� For a set X, we de�ne

FNX :=
{
x = (x1, . . . , xN ) ∈ XN : xi ̸= xj ∀i ̸= j

}
⊂ XN ,

� In a metric space, Uε(x) = {y ∈M : d(x, y) < ε} is the open ball and

Bε(x) = {y ∈M : d(x, y) ≤ ε} is the closed ball.

� ∆g is the Laplace-Beltrami-Operator of a riemanian manifold, i.e.

∆gf = div (∇f) ,

where ∇f(p) ∈ TpΣ is the gradient of f with respect to g. We suppress

in the notation that ∇ depends on g. When Σ = Ω ⊂ Rd then, ∆g is the

usual Laplacian

∆f =

d∑
i=1

∂iif.

� Ck(X) = {f : X → R : f is k-times continously di�erentiable} for k ∈
N ∪ {∞}.

1
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Functions of Kirchho�-Routh-type

We are interested in critical points of functions of the form

HKR : FNX → R, HKR(x) :=
∑
i ̸=j

ΓiΓjG(xi, xj) +

N∑
i=1

Γ2
iR(xi),

where G is the (Dirichlet) Green's function to the negative Laplace-Beltrami-

Operator −∆g and

R(xi) := lim
y→xi

G(xi, y)−Ψ(dg(xi, y)) .

Here, either X = Ω ⊂ Rd for d ≥ 3 is bounded and has smooth boundary or

X = Σ and

Ψ : (0,∞)→ R, Ψ(r) :=

− 1
2π ln(r), d = 2

cdr
2−d, d ≥ 3,

with cd := 1
d(d−2)vold(B1(0))

.

Functions of this form arise in various areas of Mathematics. In his work [21],

Kirchho� connected this function to �uid dynamics by using a point vortex

ansatz to the Euler equation for an incompressible and non-viscous �uid. Routh

generalized this to open subsets of R2, whereas it was Lin, who wrote this

generalization in a rigorous way [23, 24]. For the planar case, this gave reason

to study HKR. While HKR is de�ned in a �nite dimensional space there still

exist some di�culties in the study, i.e even when the Γi have the same sign,

HKR is unbounded from above and below, plus G is generally only given by a

partial di�erential equation. In [6, 22, 7] various critical points of HKR have

been obtained. Furthermore in [5], �rst general results on the dynamics of HKR

appear, i.e. the existence of periodic orbits.

Research also considered the case where HKR is not de�ned in an open subset,

but on a surface. In [8], Boatto and Koiler generalize the Theorem of Lin to two

dimensional, compact, orientable riemannian manifolds without boundary. In

[15], the equations of motion are formulated for surfaces with genus 0. They also

study some explicit examples. Moreover, Kimura investigated the vortex motion

in surfaces with constant curvature in [20]. In addition, in [1], the authors search

for so called vortex crystals, that is a con�guration which may move, whereas

the form of the con�guration does not change. Results on the planar case, but

also various surfaces are included. There are also results on critical points of a

function similar to HKR, i.e. where all points that relate to a negative Γi are

kept �xed, see [14]. Finally in the context of vortex motion, there is the book
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of Newton [26], which provides a good starting point into the matter of vortex

dynamics.

Leaving the vortex motion aside, there are other �elds in which critical points of

HKR arise. For example, in the papers [19, 13, 7] critical points of HKR are used

to construct blow-up solutions to the sinh-equation or the Lane-Emden-Fowler

problem with Dirichlet conditions.

Beside being also interested in HKR when d ≥ 3, we are moreover interested in

the function ϱ, which is the least eigenvalue of the matrix

(M(x))
N
i,j=1 =

−G(xi, xj), i ̸= j

h(xi, xi), i = j,

when G(xi, xj) = cd |xi − xj |2−d − h(xi, xj). Then ϱ can be written as

ϱ(x) = inf
|Γ|=1

⟨M(x)Γ,Γ⟩ = ⟨M(x)Γ(x),Γ(x)⟩

=

N∑
i=1

Γi(x)
2h(xi, xi)−

∑
i ̸=j

Γi(x)Γj(x)G(xi, xj).

Thus, with R(xi) = −h(xi, xi), we recognize the similarity to HKR. In [4, 3],

critical points of ϱ are related to blow-up points of solutions to −∆u = up for

the critical exponent p = d+2
d−2 and, therefore, are of interest as well.

Outline of this thesis

In chapter 2, we will discuss everything related to the cases where Ω ⊂ Rd for

d ≥ 3. We will establish an approximation of G near the boundary, i.e.

G(x, y) ≈ cd
(
|x− y|2−d − |x̄− y|2−d

)
,

where x̄ is the orthogonal re�ection of x at the boundary ∂Ω. This will yield

critical points of HKR, when Γi > 0, i.e. the following theorem:

Theorem 1.0.1. For Γ ∈ (R+)
N

the Kirchho�-Routh function HKR has at

least catΩN

(
ΩN ,∆NΩ

)
critical points, where ∆NΩ := ΩN \ FNΩ.

If Ω is not contractible, HKR has at least one critical point.

In chapter 3, we investigate the Green's function on a surface (Σ, g). When Σ

is closed, approximations of G are well known, but we could not �nd anything

similar to the approximation in the case when Σ has boundary. This means

we restate known approximations of the Green's function on closed manifolds
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according to [2] (see (C)). Furthermore, we give the following approximation

G(p, q) ≈ 1

2π
ln

(
dg(p̄, q)

dg(p, q)

)
,

where p̄ is the orthogonal re�ection of p at ∂Σ and dg is the distance induced

by g.

In chapter 4, we look into surfaces for which the corresponding boundary-less

surface is not homeomorphic to the sphere or RP 2. In the case without bound-

ary, we establish the following theorem:

Theorem 1.0.2. If Σ is closed and not homeomorphic to the sphere, RP 2 nor

the Klein bottle, and for Γ holds∑
i,j∈J
i̸=j

ΓiΓj ̸= 0 for every J ⊂ {1, . . . , N} with |J | ≥ 3, (1.0.1)

then HKR has a critical point.

These conditions on the Γi seem to be optimal even though we do not have

a proof that they are. When boundary is involved, we are able to generalize

the theorems of [22, 6] to surfaces. We have to exclude the sphere, RP 2 and

the Klein bottle, because they lack topology. To express that we exclude these

manifolds we use the expression closed manifold belonging to Σ. We will de�ne

this properly in chapter 3.2. Brie�y it is the surface that arises from glueing a

disc onto every boundary component of Σ. We prove the following theorems:

Theorem 1.0.3. If Σ has boundary and the closed manifold belonging to Σ is

neither homeomorphic to the sphere, RP 2 nor the Klein bottle and for Γ holds∑
i,j∈J
i̸=j

ΓiΓj ̸= 0 for every J ⊂ {1, . . . , N} with |J | ≥ 3 (1.0.2)

as well as∑
i∈J

Γ2
i >

∑
i,j∈J
i̸=j

|ΓiΓj | for every J ⊂ {1, . . . , N}, with |J | ≥ 2, (1.0.3)

then HKR has a critical point.

Theorem 1.0.4. If Σ has boundary and the closed manifold belonging to Σ is

neither homeomorphic to the sphere, RP 2 nor the Klein bottle, N ∈ {3, 4} and
for Γ holds

ΓiΓi+1 < 0 ∀i = 1, . . . , N − 1,∑
i,j∈J
i̸=j

ΓiΓj < 0 ∀J ⊂ {1, . . . , N} : |J | ≥ 3, (1.0.4)



5

then HΓ has a critical point.

Because we excluded the sphere in chapter 4, we focus on surfaces that

admit some symmetry in chapter 5. This gives a tool to overcome the lack of

compactness of FNΣ as well as the lack of topology of the sphere. We are also

able to �nd some conditions for critical points. In those cases, we have an idea

on how the critical points have to lie on the surface. So, let Σ admit an isometry

τ : Σ→ Σ with

{p ∈ Σ : τ(p) = p} ∼= S1∪̇ . . . ∪̇S1︸ ︷︷ ︸
l−times

,

for some l ∈ N. For example τ could be a re�ection along some plane. Then,

the following two theorems are proven in chapter 5:

Theorem 1.0.5. i) Let N be even i.e. N = 2k for k ∈ N, Γσ(i) = (−1)i for
some σ ∈ Sym(N) for all i = 1, . . . , N , then HKR has at least l ·k critical

points.

ii) Let N = 4, Γ1,Γ3 > 0 > Γ2,Γ4 and∑
J

i̸=j

ΓiΓj < 0 ∀ |J | = 3

|Γi| < |Γ1|+ |Γ3| i = 2, 4

|Γi| < |Γ2|+ |Γ4| i = 1, 3,

then HKR has at least 2l critical points.

Theorem 1.0.6. If Γ1 = Γ3 > 0 > Γ2 and Γ1 > −2Γ2, then HKR has a critical

point.

In the Appendices, we provide already known facts, which are still important,

and easy calculations from already known facts, which we use.



Chapter 2

Euclidean space

In this chapter, we will look at our Hamiltonian HKR in the case of an open

bounded set Ω ⊂ Rd for 3 ≤ d ∈ N. We will start with some properties of the

Dirichlet Green's function for that case. Furthermore, in this chapter, for i ∈ N,
the numbers Ci = Ci(·) > 0 will be constants depending on ·.

2.1 Green's function in euclidean space

Let 3 ≤ d ∈ N, Ω ⊂ Rd be open and bounded with at least C3-boundary.
Furthermore, we de�ne cd := 1

d(d−2)vold(B1(0))
and the function

Ψ : F2Ω→ R, Ψ(x, y) := cd |x− y|2−d
.

We also choose ε0 > 0 such that

Uε0(∂Ω) =
{
y ∈ Rd : dist(y, ∂Ω) < ε0

}
is a tubular neighborhood of ∂Ω. Now let Ω0 := Uε0(∂Ω) ∩ Ω, then for x ∈ Ω0

the orthogonal projection p(x) = px ∈ ∂Ω onto ∂Ω is well de�ned and C2.
Moreover, the maps x 7→ d(x) = dx := dist(x, ∂Ω) the distance to the boundary,

x 7→ ν(x) = νx the inner normal at px and x 7→ x̄ the re�ection of x at ∂Ω are

all well de�ned and C2. For x ∈ Ω0, the following identities hold:

dx = |x− px| ; ∇d(x) = νx =
x− px
|x− px|

x̄ = x− 2dxνx; px = x− dxνx.

6
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Now a generalized Green's function

G : F2Ω→ R, G(x, y) := Ψ(x, y)− h(x, y)

is a function for which the following axioms hold:

(A1) G is symmetric, i.e. G(x, y) = G(y, x) and h(x, y) = h(y, x), and G is

non-negative, i.e. G ≥ 0.

(A2) The function h : Ω× Ω→ R is C∞ and

R(x) := h(x, x)→∞, if dx → 0.

(A3) For all ε > 0 there exists C1 = C1(Ω, ε) > 0 such that

|R(x)|+ |∇R(x)| ≤ C1 for all x with dx ≥ ϵ

|G(x, y)|+ |∇xG(x, y)|+ |∇yG(x, y)| ≤ C1 for all x, y ∈ Ω with |x− y| ≥ ϵ.

(A4) There exists C2 = C2(Ω) > 0 such that the map

ψ : Ω0 × Ω0 → R, ψ(x, y) := Ψ(x̄, y)− h(x, y)

satis�es

|ψ(x, y)| ≤ C2dx |x̄− y|2−d
,

|∇xψ(x, y)|+ |∇yψ(x, y)| ≤ C2 |x̄− y|2−d
.

(A5) For all C > 0 exists εC > 0 such that

dx
|x− y|

≤ C, dx ≤ dy, dx ≤ εC ⇒ ⟨∂1G(x, y), νx⟩ > 0.

This results in our �rst theorem.

Theorem 2.1.1. The Dirichlet Green's function of Ω is a generalized Green's

function.

Proof: Let G be the Dirichlet Green's function. Then, for x ∈ Ω, we set

h(x, ·) as the solution of ∆h(x, ·) = 0 in Ω

h(x, ·) = Ψ(x, ·) on ∂Ω.
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Thus, G(x, y) = Ψ(x, y)− h(x, y). The Axioms (A1)-(A3) are well known facts

of G and will not be shown here. More information on these axioms can be

found in [18]. We will start with (A4). The proof follows [7], where they handle

the case d = 2 to reach similar axioms. Before we start proving (A4), we show

some general inequalities where Ci = Ci(Ω) > 0.

|x− y|
|x̄− y|

≤ 3, ∀x ∈ Ω0,∀y ∈ Ω. (2.1.1)

|x̄− y| ≥ dx, ∀x ∈ Ω0,∀y ∈ Ω. (2.1.2)

|⟨z − w, νz⟩| ≤ C3 |z − w|2 , ∀w, z ∈ ∂Ω. (2.1.3)∣∣∣|x̄− y|2 − |ȳ − x|2∣∣∣ ≤ C4(dx + dy) |px − py|2 , ∀x, y ∈ Ω0. (2.1.4)

|x̄− y|2 ≥ C5 |px − py|2 , ∀x, y ∈ Ω0. (2.1.5)

C6 ≤
|x̄− y|
|x− ȳ|

≤ C7, ∀x, y ∈ Ω0. (2.1.6)∣∣∣|x̄− y|−d − |ȳ − x|−d
∣∣∣ ≤ C8(dx + dy) |x̄− y|−d

, ∀x, y ∈ Ω0. (2.1.7)

We start with (2.1.1) and (2.1.2): Since Uε0(∂Ω) is a tubular neighborhood,

we have

dx = dist(x̄, ∂Ω) = inf
z∈Ω
|x̄− z| ≤ |x̄− y| .

Furthermore, using this, we have

|x− y| ≤ |x− x̄|+ |x̄− y| = 2dx + |x̄− y| ≤ 3 |x̄− y| .

Next, we show (2.1.3). For this, we will show that for every p ∈ ∂Ω exists an

open neighborhood Up of p and C(p) > 0 such that

|⟨z − w, νz⟩| ≤ C(p) |z − w|2 ∀z, w ∈ Up. (∗)

Then, the compactness of ∂Ω yields a �nite covering (Upi
)
k
i=1 and a Lebesgue

number δ > 0 with

w, z ∈ ∂Ω, |w − z| < δ ⇒ ∃1 ≤ i ≤ k : w, z ∈ Upi .

De�ning C3 := max
{
(C(pi))

k
i=1 ,

1
δ

}
we achieve

|⟨z − w, νz⟩| ≤ C3 |z − w|2

if |z − w| < δ. And if |z − w| ≥ δ, we have

|⟨z − w, νz⟩| ≤ |z − w| =
δ |z − w|

δ
≤ C3 |z − w|2 .
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It remains to show (∗).
Without loss of generality we have 0 = p ∈ ∂Ω and there exists an open neigh-

borhood Ũ of 0, ε > 0 and a C3 function F :
{
x ∈ Rd−1 : |x| < 2ε

}
→ [0,∞)

such that

Ũ ∩ Ω =
{
(x, t) ∈ Ũ : t > F (x)

}
.

Then, there is α ∈ R \ {0} such that ν(x,F (x)) = α

(
−∇F (x)

1

)
. For z, w ∈

Ũ ∩ ∂Ω, we set z = (x, F (x)) and w = (y, F (y)) and we de�ne

f1(x, y) :=
〈
(y, F (y))− (x, F (x)), ν(x,F (x))

〉
,

which is C2 since F is at least C3. Taylor's theorem now yields

f1(x, y) = f1(x, x)︸ ︷︷ ︸
=0

+ ⟨∇2f1(x, x), y − x⟩+ (Dy)
2f1(x, ξy)[y − x, y − x].

We will show that

⟨∇2f1(x, x), y − x⟩ = 0.

Then, using the compactness of Bε(0)×Bε(0) we establish

|f1(x, y)| ≤ C(p) |x− y|2 .

Especially for z, w ∈ Bε(0) ∩ ∂Ω ⊂ Rd, we have x, y ∈ Bε(0) ⊂ Rd−1 and it

follows

|⟨z − w, νz⟩| = |f1(x, y)|

≤ C(p) |x− y|2

≤ C(p)
(
|x− y|2 + |F (x)− F (y)|2

)
= C(p) |z − w|2 .

It remains to show that ⟨∇yf1(x, x), y − x⟩ = 0. We have

f1(x, y) =

d−1∑
i=1

(yi − xi)ν(x, F (x))i + (F (y)− F (x))ν(x, F (x))d.

Thus, for 1 ≤ i ≤ d− 1

∂yi
f1(x, y) = ν(x, F (x))i + ∂iF (y)ν(x, F (x))d.
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Bringing this together, we calculate

⟨∇2f1(x, x), y − x⟩ =
d−1∑
i=1

(yi − xi)ν(x, F (x))i + ν(x, F (x))d ⟨∇F (x), y − x⟩

=

〈
ν(x, F (x)),

(
y − x

⟨∇F (x), y − x⟩

)〉

= α

〈(
−∇F (x)

1

)
,

(
y − x

⟨∇F (x), y − x⟩

)〉
= 0.

With this, we showed (2.1.3).

We move on to (2.1.4). With x̄ = px − dxνx and y = py + dyνy, we have

|x̄− y|2 = |px − py|2 + |dxνx + dyνy|2 − 2 ⟨dxνx + dyνy, px − py⟩ .

Thus, with (2.1.3), we get∣∣∣|x̄− y|2 − |x− ȳ|2∣∣∣ ≤ 4dx |⟨νx, px − py⟩|+ 4dy |⟨νy, py − px⟩|

≤ 4C3(dx + dy) |py − px|2 .

This proves (2.1.4) with C4 := 4C3.

Going on, we show (2.1.5). Again using (2.1.3), we see

|x̄− y|2 = |px − py|2 + |dxνx + dyνy|2 − 2 ⟨dxνx + dyνy, px − py⟩

≥ |px − py|2 − 2C3(dx + dy) |px − py|2 ≥ (1− 4C3ϵ0) |px − py|2 .

If now ε0 <
1

4C3
(2.1.5) follows.

Next we prove (2.1.6). Using (2.1.4) and (2.1.5), we establish∣∣∣∣∣1−
(
|ȳ − x|
|x̄− y|

)2
∣∣∣∣∣ ≤ C4(dx + dy)

|px − py|2

|x̄− y|2
≤ 2C4

C5
ϵ0.

Thus, (2.1.6) follows.

Finally we show (2.1.7). First note that (2.1.7) is equivalent to

∣∣∣∣∣1−
(
|x̄− y|
|x− ȳ|

)d
∣∣∣∣∣ =

∣∣∣∣∣∣1−
(
|x̄− y|2

|x− ȳ|2

) d
2

∣∣∣∣∣∣ ≤ C7(dx + dy).
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The identity

|x̄− y|2 = |px − py|2 + |dxνx + dyνy|2 − 2 ⟨dxνx + dyνy, px − py⟩

= |x− ȳ|2 − 4 ⟨dxνx + dyνy, px − py⟩

yields
|x̄− y|2

|x− ȳ|2
= 1− 4 ⟨dxνx + dyνy, px − py⟩

|x− ȳ|2
.

Using (2.1.3) and (2.1.5), we see

4 ⟨dxνx + dyνy, px − py⟩
|x− ȳ|2

= O(dx + dy).

With (2.1.2) and (2.1.6), we see that if |x− ȳ| → 0, then dx, dy → 0. Thus

4 ⟨dxνx + dyνy, px − py⟩
|x− ȳ|2

→ 0 if |x− ȳ| → 0.

Finally, we have (1 + p)z = 1 +O(z) for z → 0 if p ≥ 1, with Taylor's theorem.

We conclude∣∣∣∣∣∣1−
(
|x̄− y|2

|x− ȳ|2

) d
2

∣∣∣∣∣∣ =
∣∣∣∣∣∣1−

(
1− 4 ⟨dxνx + dyνy, px − py⟩

|x− ȳ|2

) d
2

∣∣∣∣∣∣
= O

(∣∣∣∣∣4 ⟨dxνx + dyνy, px − py⟩
|x− ȳ|2

∣∣∣∣∣
)

= O(dx + dy),

which proves (2.1.7).

Equipped with these tools we can prove (A4). First, we show

|ψ(x, y)| ≤ C2dx |x̄− y|2−d
. (2.1.8)

We show this with the maximum principle. With

∆yψ(x, y) = ∆yh(x, y)−∆yΨ(x, y) = 0,

we see that y 7→ ψ(x, y) is harmonic and the maximum principle holds. Thus,

for every x ∈ Ω0

max
y∈Ω0

|ψ(x, y)| = max
y∈∂Ω0

|ψ(x, y)| .

Clearly (2.1.8) holds in ∂Ω0 \ ∂Ω, so we have to check it for y ∈ ∂Ω. If y ∈ ∂Ω,
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we have y = ȳ = py and we calculate

|ψ(x, y)| = |Ψ(x̄, y)− h(x, y)|

= cd

∣∣∣|x̄− y|2−d − |x− y|2−d
∣∣∣

= cd

∣∣∣|x− ȳ|2−d − |x̄− y|2−d
∣∣∣

= cd |x̄− y|−d

∣∣∣∣∣|x− ȳ|2
(
|x̄− y|
|ȳ − x|

)d

− |x̄− y|2
∣∣∣∣∣ .

Furthermore, again because of y ∈ ∂Ω, the equations

|x̄− y|2 = |px − py|2 − 2dx ⟨px − py, νx⟩+ d2x,

|x− ȳ|2 = |px − py|2 + 2dx ⟨px − py, νx⟩+ d2x

hold. We conclude

|ψ(x, y)| ≤ cd |x̄− y|−d

∣∣∣∣∣
(
1−

(
|x̄− y|
|ȳ − x|

)d
)(
|px − py|2 + d2x

)∣∣∣∣∣
+ cd |x̄− y|−d

∣∣∣∣∣2dx ⟨py − px, νx⟩
(
1 +

(
|x̄− y|
|ȳ − x|

)d
)∣∣∣∣∣ .

Using (2.1.3), (2.1.5) and (2.1.6), we estimate the second term

cd |x̄− y|−d

∣∣∣∣∣2dx ⟨py − px, νx⟩
(
1 +

(
|x̄− y|
|ȳ − x|

)d
)∣∣∣∣∣ ≤ C9dx |x̄− y|2−d

.

For the �rst term, we see with (2.1.2) and (2.1.5) that

|px + py|2 + d2x ≤ C9 |x̄− y|2 .

Combining this with ∣∣∣∣∣1−
(
|x̄− y|
|x− ȳ|

)d
∣∣∣∣∣ ≤ C8dx,

yields (2.1.8) for y ∈ ∂Ω and thus in general. Next, we show

|∇xψ(x, y)| ≤
C2

2
|x̄− y|2−d

. (2.1.9)

Therefore, we show

|∆xψ(x, y)| ≤
C10

dx
|x̄− y|2−d

. (2.1.10)

Before we show (2.1.10), we will use it to prove (2.1.9). For this we need the

following theorem.
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Theorem 2.1.2. If u ∈ C2(Ω) and ∆u = f in the open set Ω′ ⊂ Ω ⊂ Rd, there

exists C11 = C11(d) such that

sup
Ω′

dx |∇u(x)| ≤ C11

(
sup
Ω′
|u(x)|+ sup

Ω′
d2xf(x)

)
.

Proof: This is Theorem 3.9 in [18].

□

Combining this with (2.1.8) and (2.1.10), we let y ∈ Ω0 and compute

sup
x∈Ω′

dx |∇xψ(x, y)| ≤ C11

(
sup
x∈Ω′

|ψ(x, y)|+ sup
x∈Ω′

d2x |∆xψ(x, y)|
)

≤ C11

(
sup
x∈Ω′

C2dx |x̄− y|2−d
+ sup

x∈Ω′
C10dx |x̄− y|2−d

)
≤ C12 sup

x∈Ω′
dx |x̄− y|2−d

for any open set Ω′ ⊂ Ω0. Thus we conclude (2.1.9). It only remains to show

(2.1.10).

Because x 7→ h(x, y) is harmonic, we de�ne

fy : Ω0 → R, fy(x) := |x̄− y|2−d

and prove

|∆fy(x)| ≤
C13

dx
|x̄− y|2−d

.

For this we calculate ∆fy. If 1 ≤ i ≤ d, we have

∂if(x) = ∂i

(
|x̄− y|2−d

)
= ∂i

 d∑
j=1

(x̄j − yj)2


2−d
2

=
2− d
2

 d∑
j=1

(x̄j − yj)2
− d

2

· 2 ·
d∑

j=1

(x̄j − yj) ∂ix̄j

= (2− d) |x̄− y|−d
d∑

j=1

(x̄j − yj) ∂i (x̄j) .
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We further see

∂i∂if(x) = d(d− 2) |x̄− y|−d−2

 d∑
j=1

(x̄j − yj)∂i (x̄j)

2

+ (2− d) |x̄− y|−d
d∑

j=1

(∂i (x̄j))
2
+ (x̄j − yj) ∂ii (x̄j) .

Thus,

∆f(x) = d(d− 2) |x̄− y|−d−2
d∑

i=1

 d∑
j=1

(x̄j − yj)∂i (x̄j)

2

+ (2− d) |x̄− y|−d
d∑

i=1

d∑
j=1

(
(∂i (x̄j))

2
+ (x̄j − yj) ∂ii (x̄j)

)
.

Now let νi := (νx)i. With the identity x̄ = x − 2dxνx and ∇dx = νx, we infer

the following two equations

∂ix̄j = δi,j − 2∂i(dx)νj − 2dx∂iνj = δi,j − 2νiνj − 2dx∂iνj (2.1.11)

and

∂iix̄j = 2∂iνiνj − 4νi∂iνj − 2dx∂iiνj . (2.1.12)

Furthermore, we also will use

− d |x̄− y|−2
d∑

i=1

 d∑
j=1

(x̄j − yj)(δij − 2νiνj)

2

+

d∑
i,j=1

(δij − 2νiνj)
2 = 0.

(2.1.13)



2.1. GREEN'S FUNCTION IN EUCLIDEAN SPACE 15

We show (2.1.13) before we return to the calculations of ∆fy. First, we see

d∑
i,j=1

(δij − 2νiνj)
2 =

d∑
i=1

(1− 2ν2i )
2 +

∑
i ̸=j

4ν2i ν
2
j

=

d∑
i=1

( 1− 2ν2i︸ ︷︷ ︸
=ν2

1+···−ν2
i +···+ν2

d

)2 +

d∑
j=1
j ̸=i

4ν2i ν
2
j .



=

d∑
i=1

 d∑
l=1

ν4l +
∑
l1 ̸=l2

l1 ̸=i̸=l2

ν2l1ν
2
l2 − 2

d∑
i ̸=l=1

ν2i ν
2
l + 4

d∑
i ̸=l=1

ν2i ν
2
l


=

d∑
i=1

 d∑
j=1

ν2j

2

=

d∑
i=1

1 = d.

Thus, we only need to show

d∑
i=1

 d∑
j=1

(x̄j − yj)(δij − 2νiνj)

2

= |x̄− y|2 .

We see d∑
j=1

(x̄j − yj)(δij − 2νiνj)

2

=

d∑
j=1

(x̄j − yj)2(δij − 2νiνj)
2

+

d∑
j,l=1
j ̸=l

(x̄j − yj)(x̄l − yl)(δij − 2νiνj)(δil − 2νiνl).

So, like before, we conclude

d∑
i,j=1

(x̄j − yj)2(δij − 2νiνj)
2 =

d∑
i=1

(x̄i − yi)2

(1− 2ν2i )
2 +

d∑
j=1
j ̸=i

4ν2i ν
2
j


=

d∑
i=1

(x̄i − yi)2 = |x̄− y|2 .
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For l ̸= j, we continue with

d∑
i,j=1

(x̄j − yj)2(δij − 2νiνj)
2 =

d∑
i=1

(x̄i − yi)2

(1− 2ν2i )
2 +

d∑
j=1
j ̸=i

4ν2i ν
2
j


=

d∑
i=1

(x̄i − yi)2 = |x̄− y|2 .

Thus, we �nally established

d∑
i=1

 d∑
j=1

(x̄j − yj)(δij − 2νiνj)

2

= |x̄− y|2 ,

what concludes (2.1.13). Using (2.1.11) and (2.1.13), we calculate

∆f(x) = d(d− 2) |x̄− y|−2−d
d∑

i=1

2

 d∑
j=1

(x̄j − yj)(δij − 2νiνj)

 d∑
j=1

(x̄j − yj)(−2dx∂iνj)


+ d(d− 2) |x̄− y|−2−d

d∑
i=1

 d∑
j=1

(x̄j − yj)(−2dx∂iνj)

2

− (d− 2) |x̄− y|−d
d∑

i=1

d∑
j=1

(
2(δij − 2νiνj)(−2dx∂iνj) + 4d2x(∂iνj)

2 + (x̄j − yj)∂iix̄j
)
.

Having in mind that ν,∇ν,D2ν are bounded, and using (2.1.12) and (2.1.2), we

prove

|∆f(x)| ≤ C13

dx
|x̄− y|2−d

,

and thus showed (2.1.10). To conclude (A4), it remains to show

|∇yψ(x, y)| ≤
C2

2
|x̄− y|2−d

. (2.1.14)

Because of

ψ(x, y) = −h(x, y) + Ψ(x̄, y) + Ψ(x, ȳ)−Ψ(x, ȳ)

= ψ(y, x)−Ψ(x, ȳ) + Ψ(x̄, y),

we need to show

|∇x (Γ(x, ȳ)− Γ(x̄, y))| ≤ C13 |x̄− y|2−d
.
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With (2.1.11), we calculate

∂xi

(
|x̄− y|2−d − |x− ȳ|2−d

)
=(2− d) |x̄− y|−d

d∑
j=1

(x̄j − yj)(δi,j − 2(νx)i(νx)j − 2dx∂i(νx)j)

− (2− d)(xi − ȳi) |x− ȳ|−d

=− (2− d)(xi − ȳi) |x− ȳ|−d

+ (2− d) |x̄− y|−d
(x̄i − yi − 2(νx)i ⟨x̄− y, νx⟩ − 2dx ⟨x̄− y, ∂iνx⟩)

=(2− d)(xi − ȳi)
(
|x̄− y|−d − |x− ȳ|−d

)
− 2(2− d)(νx)i |x̄− y|−d ⟨px − py, νx⟩

− 2(2− d)dx |x̄− y|−d ⟨x̄− y, ∂iνx⟩

+ (2− d) |x̄− y|−d
(2(νx)i ⟨dxνx + dyνy, νx⟩ − 2dx(νx)i − 2dy(νy)i) .

With this, we conclude (2.1.14) by using (2.1.2), (2.1.3), (2.1.4), (2.1.5), (2.1.6),

(2.1.7) as well as |νx − νy| = O(|x− y|) and

1− ⟨νx, νy⟩ = O(|x− y|2). (2.1.15)

This follows from the following calculation:

2 (1− ⟨νx, νy⟩) = ⟨νx − νy, νx⟩+ ⟨νy − νx, νy⟩

=

d∑
i=1

((νx)i − (νy)i) (νx)i + ((νy)i − (νx)i) (νy)i

=

d∑
i=1

(νx)
2
i − 2(νx)i(νy)i + (νy)

2
i

=

d∑
i=1

((νx)i − (νy)i)
2

= |νx − νy|2 .

Thus, we proved (A4). To �nish our proof, we need to show (A5). This is done

in Appendix A

□

Before we �nish this section, we give the following lemma, which contains

useful expressions concerning the singularities when Green's functions are in-

volved.

Lemma 2.1.3. For a function G satisfying (A1)-(A4) the following holds:
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(i) R(x) = 22−dcdd
2−d
x +O(d3−d

x ), if x ∈ Ω0.

(ii) ∇R(x) = 22−d(2− d)cdd1−d
x νx +O(d2−d

x ), if dx −→ 0.

(iii) G(x, y) = Ψ(x, y)−Ψ(x̄, y) +O(dx |x̄− y|2−d
), if x ∈ Ω0.

(iv) ∂1G(x, y) = (d− 2)cd

(
y−x

|x−y|d + x−ȳ

|x−ȳ|d

)
+O(|x− ȳ|2−d

), if y ∈ Ω0 .

(v) |∇xh(x, y)| = O(|x̄− y|1−d
), if x ∈ Ω0.

(vi) ⟨∂1G(x, y), νx⟩+⟨∂1G(y, x), νy⟩ = (d−2)cd(dx+dy)
(
|x̄− y|−d

+ |x− ȳ|−d
)
+

O(|x− y|2−d
), if x, y ∈ Ω0.

(vii) |x̄− y|2 = |x− y|2 + 4dxdy + o(|x− y|2), if x, y −→ x∗ ∈ ∂Ω.

Proof: We go through every point in the following list.

(i) and (ii): With (A4) and x̄ = x− 2dxνx, we have

R(x) = Ψ(x̄, x)− ψ(x, x) = 22−dcdd
2−d
x − ψ(x, x).

With (A4), we directly see (i) and (ii), because of |x̄− x| = 2dx and ∇
(
d2−d
x

)
=

(2− d)d1−d
x νx.

(iii) and (iv): We have

G(x, y) = Ψ(x, y)− h(x, y) = Ψ(x, y)−Ψ(x̄, y) + ψ(x, y).

Thus, we directly see (iii) and (iv).

(v): We directly use (A4).

(vi): The proof of (vi) is a more involved. First, we see with (iv) that

1

cd(d− 2)
(⟨∂1G(x, y), νx⟩+ ⟨∂1G(y, x), νy⟩) =

(
⟨y − x, νx⟩
|x− y|d

+
⟨x− ȳ, νx⟩
|ȳ − x|d

)

+

(
⟨x− y, νy⟩
|x− y|d

+
⟨y − x̄, νy⟩
|y − x̄|d

)
+O(|x̄− y|2−d

).

Moreover, we see

|x− y|−d
(⟨y − x, νx⟩+ ⟨x− y, νy⟩) = |x− y|−d ⟨x− y, νy − νx⟩ = O(|x− y|2−d

).

Therefore, we need to calculate

⟨x− ȳ, νx⟩
|ȳ − x|d

+
⟨y − x̄, νy⟩
|y − x̄|d

.



2.1. GREEN'S FUNCTION IN EUCLIDEAN SPACE 19

Consequently, the following two identities hold〈
|x− ȳ|−d

(x− ȳ), νx
〉
=
〈
|x− ȳ|−d

(x− px), νx
〉
+
〈
|x− ȳ|−d

(px − ȳ), νx
〉
,〈

|y − x̄|−d
(y − x̄), νy

〉
=
〈
|y − x̄|−d

(y − py), νy
〉
+
〈
|y − x̄|−d

(py − x̄), νy
〉
.

Using py − ȳ = y − py, we conclude

|x− ȳ|−d ⟨px − ȳ, νx⟩ = |x− ȳ|−d
(⟨px − ȳ, νy⟩+ ⟨px − ȳ, νx − νy⟩)

= |x− ȳ|−d

⟨py − ȳ, νy⟩+ ⟨px − py, νy⟩︸ ︷︷ ︸
=O(|x−y|2)

+ ⟨px − ȳ, νx − νy⟩


= |x− ȳ|−d

(⟨y − py, νy⟩+ ⟨px − ȳ, νx − νy⟩) +O
(
|x− y|2−d

)
.

In the same way, we derive

|y − x̄|−d ⟨py − x̄, νy⟩ = |y − x̄|−d
(⟨x− px, νx⟩+ ⟨py − x̄, νx − νy⟩) +O(|x− y|2−d

).

Furthermore, using the identity dx = ⟨x− px, νx⟩, we have

(dx + dy)
(
|x̄− y|−d

+ |ȳ − x|−d
)

=
〈
|x̄− y|−d

(x− px), νx
〉
+
〈
|ȳ − x|−d

(x− px), νx
〉

+
〈
|x̄− y|−d

(y − py), νy
〉
+
〈
|ȳ − x|−d

(y − py), νy
〉
.

Thus, we see that

⟨∂1G(x, y), νx⟩+ ⟨∂1G(y, x), νy⟩

=(d− 2)cd

(
⟨x− ȳ, νx⟩
|x− ȳ|d

+
⟨x− x̄, νy⟩
|y − x̄|d

)
+O

(
|x− y|2−d

)
=(d− 2)cd

(
(dx + dy)

(
|x̄− y|−d

+ |ȳ − x|−d
))

+ (d− 2)cd

(
⟨px − ȳ, νx − νy⟩
|x− ȳ|d

+
⟨py − x̄, νy − νx⟩
|x̄− y|d

)
+O

(
|x− y|2−d

)
.

With (2.1.2) and (2.1.6), we calculate

|⟨px − ȳ, νy − νx⟩| ≤ |px − ȳ| |νy − νx| ≤ (|x− ȳ|+ dx) |νy − νx|

≤ C15 |x− ȳ| |νy − νx| .



20 CHAPTER 2. EUCLIDEAN SPACE

This, then yields

|x− ȳ|−d ⟨px − ȳ, νx − νy⟩ = O(|x− y|2−d
).

It remains to show

|x̄− y|−d ⟨py − x̄, νy − νx⟩ = O(|x− y|2−d
),

which can be done in an analogous way. Whit this, we proved (vi).

(vii): With

|x̄− y|2 = ⟨x̄− y, x̄− y⟩ = ⟨px − dxνx − py − dyνy, px − dxνx − py − dyνy⟩

= |px − py|2 − 2 ⟨px − py, dxνx + dyνy⟩+ ⟨dxνx + dyνy, dxνx + dyνy⟩

= |px − py|2 + d2x + d2y + 2dydx ⟨νx, νy⟩ − 2 ⟨px − py, dxνx + dyνy⟩︸ ︷︷ ︸
=o(|x−y|2)

and

|x− y|2 = ⟨x− y, x− y⟩ = ⟨px + dxνx − py − dyνy, px + dxνx − py − dyνy⟩

= |px − py|2 + 2 ⟨px − py, dxνx − dyνy⟩+ ⟨dxνx − dyνy, dxνx − dyνy⟩

= |px − py|2 + d2x + d2y − 2dxdy ⟨νx, νy⟩+ 2 ⟨px − py, dxνx − dyνy⟩︸ ︷︷ ︸
=o((|x−y|2)

,

we see

|x̄− y|2 − |x− y|2 = 4dxdy ⟨νx, νy⟩+ o
(
|x− y|2

)
.

We �nish with showing

4dxdy (⟨νx, νy⟩ − 1) = o(
(
|x− y|2

)
,

if x, y → x∗ ∈ ∂Ω. This follows from

⟨νx, νy⟩ − 1 = O
(
|x− y|2

)
,

because dx, dy → 0. The last equation holds as a result of (2.1.15)

□

Remark. According to [6], this lemma holds even in the case of d = 2.
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2.2 Critical points in euclidean space

Let G be a generalized Green's function. Let M : FNΩ→ RN×N be de�ned by

(M(x))i,j :=

−G(xi, xj), if i ̸= j

R(xi), if i = j.

Furthermore, we let

Γ : FNΩ→ RN

be a C1-function. We then de�ne

HΓ : FNΩ→ R, HΓ(x) := ⟨M(x)Γ(x),Γ(x)⟩

=

N∑
i=1

Γ2
i (xi)R(xi)−

∑
i ̸=j

Γi(x)Γj(x)G(xi, xj)

and are interested in critical points of HΓ.

Theorem 2.2.1. If Γ is bounded, inf Γi > 0 for all i and

0 = ⟨M(x)Γ(x), DΓ(x)[v]⟩ for all x ∈ FNΩ, v ∈ RdN ,

then HΓ has at least catΩN

(
ΩN ,∆NΩ

)
critical points, where ∆NΩ := ΩN\FNΩ.

Proof: Before we start with the proof, we remind the de�nition of the

Lusternik-Schnirlemann-category (in the following LS-category) and some con-

venient properties.

For a topological space X and subsets B ⊂ A ⊂ X the LS-category catX(A,B)

is the in�mum of all n ∈ N0 such that there exist open subsets U0, . . . , Un ⊂ X
with the following properties.

(LS1) A ⊂
⋃n

i=0 Ui, B ⊂ U0.

(LS2) U1, . . . , Un are contractible in X.

(LS3) There exists h : U0 × [0, 1]→ X continuous with h(x, 0) = x, h(x, 1) ∈ B
and h(b, t) ∈ B for all x ∈ U0, b ∈ B and t ∈ [0, 1].

If X is an ANR, i.e. there exists an imbedding i : X → Z into a metric space Z

such that i(X) is closed and there exists a neighborhood U ⊂ Z such that i(X)

is a retract of U , the following holds

i) If B ⊂ A ⊂ A′ ⊂ X, then

catX(A,B) ≤ catX(A′, B).
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ii) If B ⊂ A ⊂ X, C ⊂ X, then

catX(A ∪ C,B) ≤ catX(A,B) + catX(C).

iii) If B ⊂ A ⊂ X, C ⊂ X and there exists h : A×[0, 1]→ X with h(x, 0) = x,

h(x, 1) ∈ C and h(b, t) ∈ B for all x ∈ A, b ∈ B and t ∈ [0, 1], then

catX(A,B) ≤ catX(C, h1(B)).

iv) If B ⊂ A ⊂ X ′ ⊂ X, then

catX(A,B) ≤ catX′(A,B).

v) If B ⊂ A ⊂ X, then there exist neigborhoods U ⊂ X of A and V ⊂ X of

B such that

catX(A,B) = catX(U,B) = catX(A, V ∩A) = catX(U, V ).

These properties follow by using the de�nition of the LS-category. We omit the

proofs.

The proof of Theorem 2.2.1 follows from standard methods of critical point

theory. Essentially if c1 < c2 are regular values of HΓ and HΓ has no critical

points in H−1
Γ (c1, c2), the negative gradient �ow of HΓ can be used to contract

Hc2
Γ := {x ∈ FNΩ : HΓ(x) ≤ c2}

down to Hc1
Γ . Furthermore, there exists a neighborhood of ∆NΩ that itself can

be deformed into ∆NΩ. Even though this is one way we could proof this, we will

give a more abstract proof. To simplify our notation, we let x = (x1, . . . , xN ) ∈
ΩN and xi ∈ Ω. Before we can use the standard method which gives us at

least catΩ (Hc2
Γ , H

c1
Γ ) many critical points, we need to set up the involved sets

properly such the negative gradient �ow will do as we please. Explicitly, we

need to establish that we only have to handle situations where x ∈ FNΩ stays

away from the singularities of HΓ, when we deform it with the negative gradient

�ow, i.e. the �ow needs to stay away from ∂FNΩ. We will start with this now.

For ε > 0, we de�ne

Ωε := {x ∈ Ω : dxi
:= dist(xi, ∂Ω) ≥ ε} .

Again, let ε0 > 0 such that Uε0(∂Ω) is a tubular neighborhood of ∂Ω. Then,

like in section 1.1, the maps pxi
=: pi, νxi

=: νi and dxi
=: di are well de�ned
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and C2. We know that xi = pi + diνi and let

α : [0, ε]× [0, 1]→ R, α(s, t) := (1− t)s+ tε.

We de�ne

Dε : Ω× [0, 1]→ Ω, Dε(xi, t) :=

xi, xi ∈ Ωε,

pi + α(di, t)νi, xi ∈ Ω \ Ωε.

Then, Dε deforms Ω into Ωε and we have

|Dε(xi, t)−Dε(xj , t)| ≤ Lε |xi − xj | (2.2.1)

for some Lε > 0. Thus,

D : ΩN × [0, 1]→ ΩN , H(x, t) := (Dε(x1, t), . . . , Dε(xN , t))

is a deformation from ΩN into (Ωε)
N
. Furthermore, if x ∈ ∆NΩ, there exist

i ̸= j with xi = xj and thus (2.2.1) infers D(x, t) ∈ ∆NΩ for all t ∈ [0, 1].

Property iii) and iv) of the LS-category yield

catΩN (ΩN ,∆NΩ)
iii)

≤ catΩN

(
(Ωε)

N
,∆NΩε

) iv)

≤ cat(Ωε)
N

(
(Ωε)

N
,∆NΩε

)
,

for all ε < ε0. With this estimate, we can guarantee that we do not move close

to (∂Ω)N . Moreover, we will show later that (Ωε)
N

is positive invariant with

respect to the negative gradient �ow.

With the next part, we handle the rest of ∂FNΩ, i.e. ∆NΩ. Because we only

need to rely on the negative gradient �ow until we reach a certain sublevel set,

this boundary will not be a problem. We set this up in the following: There

exists µ0 > 0 such that

∆µ
NΩ :=

{
x ∈ ΩN : ∃i ̸= j with |xi − xj | < µ

}
can be deformed into ∆NΩ for all µ < µ0. For this see [12]. For c ∈ R we let

Hc
Γ := {x ∈ FNΩ : HΓ(x) ≤ c}

be the sublevel set of HΓ. Now assume that HΓ has only �nitely many critical

points. Then there exists a regular value a(µ) ∈ R of HΓ such that

x ∈ Ha(µ)
Γ ⇒ x ∈ ∆µ

NΩ.
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We prove this in the following. Assume the contrary, then there exists xn ∈
ΩN \∆µ

NΩ such that

−n ≥ HΓ(x
n) =

N∑
i=1

Γi(x
n)R(xni )︸ ︷︷ ︸
≥C

−
∑
i̸=j

Γi(x
n)Γj(x

n)G(xni , x
n
j )︸ ︷︷ ︸

=O(1)

≥ C̃

for some C, C̃ ∈ R, which is a contradiction. Furthermore, without loss of

generality a(µ) may be assumed as a regular value, because there are only

�nitely many critical points. Thus, we have

catΩN
ε

(
ΩN

ε ,∆NΩε
)
= catΩN

ε

(
ΩN

ε , H
a(µ)
Γ

)
, ∀ε < ε0, µ < µ0,

because we just saw that H
a(µ)
Γ can be deformed into ∆NΩε. We �x µ > 0

and with it a := a(µ). We will apply (A5) now. With this, we can guarantee

that (Ωε)
N

is positive invariant with respect to the negative gradient �ow ϕ of

ẋ = −∇HΓ(x) as long as ϕ(x, t) ̸∈ Ha(µ)
Γ . We apply (A5) next. Therefore, we

need to show that there exists a C > 0 such that

HΓ(x) > a⇒ di0
|xj − xi0 |

≤ C, ∀j ̸= i0; di0 = min
i=1,...,N

di.

Assume the opposite: This means we assume that there exists xn ∈ FNΩ,

HΓ(x
n) > a and k ̸= i0 such that

dn
i0

|xk−xi0 |
≥ n. Then,

a < HΓ(x
n) =

N∑
i=1

Γ2
i (x

n)R(xni )−
∑
i ̸=j

Γi(x
n)Γj(x

n)G(xni , x
n
j )

=
(
dni0
)2−d


N∑
i=1

Γ2
i (x

n)
(
dni0
)d−2

R(xni )︸ ︷︷ ︸
=O(1)

−
∑
i ̸=j

Γi(x
n)Γj(x

n)︸ ︷︷ ︸
≥α>0

(
dni0
)d−2

G(xni , x
n
j )

︸ ︷︷ ︸
→∞

→ −∞,

which is a contradiction. We used (i) and (iii) of Lemma 2.1.3 here. Now, with

(A5), we choose ε < ε0 such that

di0 = min
i=1,...,N

di = ε⇒ ∂νi0
G(xi0 , xj) > 0, ∀j ̸= i0, HΓ(x) > a. (2.2.2)

Let ϕ be the �ow of

ẋ = −∇HΓ(x).
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If x ∈ ΩN
ε , a < HΓ(ϕ(x, t)) for all 0 ≤ t ≤ T then ϕ(x, t) ∈ ΩN

ε . We prove

this statement now. Let x ∈ ΩN
ε , a < HΓ(x) and di0 = ε, then we also have

di0 = mini=1,...N di. Thus, (2.2.2) and (ii) of Lemma 2.1.3 yield

−
〈
(∇HΓ(x))i0 , νi0

〉
=

N∑
i0 ̸=k=1

Γi0(x)Γk(x)∂νi0
G(xi0 , xk)−Γ2

i0(x)∂νi0
R(xi0) > 0.

(2.2.3)

Before we continue and use this fact, we explain the �rst equality which uses

the assumption

0 = ⟨M(x)Γ(x), DΓ(x)[v]⟩ .

Having in mind that M(x) =M(x)T , we derive that

DHΓ(x)[v] = ⟨DM(x)[v]Γ(x),Γ(x)⟩+ 2 ⟨M(x)Γ(x), DΓ(x)[v]⟩

= ⟨DM(x)[v]Γ(x),Γ(x)⟩ .

Now v = (δk,i0νk)
N
k=1 leads to the equation in (2.2.3). Using (2.2.3), we see for

small t > 0 that

dist (ϕ(x, t)i0 , ∂Ω)− ε = dϕ(x,s)i0 |
t
s=0

=

� t

0

d

ds
dϕ(x,s)i0 ds

=

� t

0

〈
− (∇HΓ(ϕ(x, s)))i0 , νϕ(x,s)i0

〉
︸ ︷︷ ︸

>0

ds > 0.

Thus, we proved the claim, that if x ∈ FNΩε, then ϕ(x, t) does not leave (Ωε)
N

as long as a < HΓ(ϕ(x, t)).

We now are able to �nish our proof. For c ∈ R, we de�ne the critical sets

Kc := {x ∈ FNΩ : HΓ(x) = c and ∇HΓ(x) = 0} ∩ (Ωε)
N
.

For j = 1, . . . , cat(Ωε)N

(
(Ωε)

N
, Ha

Γ

)
let

cj := inf
{
c ≥ a : cat(Ωε)N (Hc

Γ, H
a
Γ) ≥ j

}
∈ (a,∞).

Note here that cj < ∞, because HΓ|FNΩε is bounded from above. We further

de�ne

Kj := Kcj .
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We will show that there exists a εj > 0 such that

cat(Ωε)N

(
H

cj+εj
Γ , Ha

Γ

)
≤ cat(Ωε)N

(
H

cj−εj
Γ , Ha

Γ

)
+ cat(Ωε)N (Kj) . (2.2.4)

With v), we have an open set Uj ⊂ FNΩε such that

cat(Ωε)N (Kj) = cat(Ωε)N (Uj) .

For this Uj , there exists εj > 0 such that

HΓ(x) ≤ cj + εj , x ̸∈ Uj ⇒ ∃t ≥ 0 : HΓ(ϕ(x, t)) ≤ cj − εj . (2.2.5)

We prove this. Assume the opposite, then there exist xn ̸∈ Uj such that

HΓ(x
n) ≤ cj +

1

n
and HΓ(ϕ(x

n, t)) > cj −
1

n
for all t ≥ 0 where ϕ(x, t) exists.

First, we see that ϕ(xn, t) has to be de�ned for all t ≥ 0. This is due to the fact

that ϕ(xn, t) does not leave (Ωε)
N
and because of HΓ(ϕ(x, t)) > cj− 1

n it has to

stay away from ∆NΩε. This means ϕ(xn, t) belongs to a compact set of FNΩ

and thus has to be de�ned globally. Further, following the same argument, we

see that there exists a compact set K ⊂ FNΩ such that xn ∈ K for all n. Thus

there exists x̃ ∈ K and a subsequence (again declared with n) with xn → x̃.

For x̃, we have

HΓ(x̃) = cj and ∇HΓ(x̃) = 0.

In other words x̃ ∈ Kj , but this contradicts that xn ̸∈ Uj and Uj being a

neighborhood of Kj .

With (2.2.5), iii) and iv), we see

cat(Ωε)N

(
H

cj+εj
Γ , Ha

Γ

)
≤ cat(Ωε)N

(
H

cj+εj
Γ \ Uj , H

a
Γ

)
+ cat(Ωε)N (Uj)

≤ cat(Ωε)N

(
H

cj−εj
Γ , Ha

Γ

)
+ cat(Ωε)N (Kj) .

Finally, we let cj−1 < cj = cj+1 = · · · = dj+p for some p ≥ 0 and conclude with

(2.2.4) that

cat(Ωε)N (Kj) ≥ cat(Ωε)N

(
H

cj+εj
Γ , Ha

Γ

)
︸ ︷︷ ︸

≥p+j

− cat(Ωε)N

(
H

cj−εj
Γ , Ha

Γ

)
︸ ︷︷ ︸

≤j−1

≥ p+ 1.

So cat(Ωε)N (Kj) ≥ 1 which means Kj ̸= ∅. If further there exist cj = cj+1, we

have cat(Ωε)N (Kj) ≥ 2 what implies |Kj | =∞.

□
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Corollary 2.2.2. For Γ ∈ (R+)
N

the Kirchho�-Routh function HΓ has at least

catΩN

(
ΩN ,∆NΩ

)
critical points.

If Ω is not contractible, HΓ has at least one critical point.

Proof: We will apply Theorem 1.4. The last statement is due to [11], i.e. if

Ω is not contractible we have

catΩN

(
ΩN ,∆NΩ

)
≥ 1.

Further, the application to HΓ is immediate, because Γ(x) ≡ Γ.

□

Remark. Originally we also aimed for critical points of ϱ, the least eigen-

value of M(x). But Theorem 1.4 is a bit to weak to also hold for ϱ, i.e. the

assumption inf Γi > is too strong. Nonetheless, we show in the following, that

the Theorem holds if we could weaken this assumption to Γi > 0 for all i.

We have the following identity

ϱ(x) = inf
Γ∈SN−1

⟨M(x)Γ,Γ⟩ .

In Appendix A of [4], it is proven that ϱ(x) is simple and achieved at an eigen-

vector with only positive components. We rewrite the proof here.

Let Γ ∈ SN−1 be an eigenvector of ϱ(x) such that we have

M(x)v = ϱ(x)v.

Then Γ := (|Γ1| , . . . , |ΓN |) also is an eigenvector of ϱ(x). For this, we calculate

ϱ(x) ≤
〈
M(x)Γ̄, Γ̄

〉
≤

N∑
i=1

Γ2
iR(xi)−

∑
i ̸=j

|ΓiΓj |G(xi, xj)︸ ︷︷ ︸
≥0

≤
N∑
i=1

Γ2
iR(xi)−

∑
i ̸=j

ΓiΓjG(xi, xj) = ⟨M(x)Γ,Γ⟩ = ϱ(x).

Therefore, we may assume without loss of generality that Γi ≥ 0.

We moreover assume there exists Γk = 0. For r > 0 and (ek)i = δi,k, we
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calculate

⟨M(x) (Γ + rek) ,Γ + rek⟩
|Γ + rek|2

=
⟨M(x)Γ,Γ⟩+ 2r ⟨M(x)ek,Γ⟩+ r2 ⟨M(x)ek, ek⟩

|Γ + rek|2

=
⟨M(x)Γ,Γ⟩
|Γ + rek|2

− 2r

∑N
k ̸=i=1 ΓiG(xk, xi)

|Γ + rek|2
+O(r2)

≤ ϱ(x)− 2r

∑N
k ̸=i=1 ΓiG(xk, xi)

|Γ + rek|2
+O(r2) < ϱ(x)

for r small enough. This is a contradiction to

ϱ(x) = inf
Γ∈SN−1

⟨M(x)Γ,Γ⟩ .

This proves that ϱ(x) has an eigenvector Γ where all components are positiv.

Because M(x) = M(x)T , there exists an orthonormal basis {Γ, v1, . . . , vN−1}.
Thus, we have

0 =
〈
Γ, vi

〉
.

Because all components of Γ are positive, there must exist positive and negative

components in every vector vi. With the same calculations as before, we see

ϱ(x) ≤
〈
M(x)v̄i, v̄i

〉
<
〈
M(x)vi, vi

〉
= EV (vi).

This results in the proof of ϱ(x) being simple. Thus we have an unique map

Γ : FNΩ→ SN−1 ∩
{
v ∈ RN : vi > 0∀i = 1, . . . , N

}
, x 7→ Γ(x)

where Γ(x) is the unique eigenvector of ϱ(x) in SN−1∩
{
v ∈ RN : vi > 0∀i = 1, . . . , N

}
.

The maps ϱ and Γ both are C1. To see this, we de�ne

f : FNΩ×R×SN−1∩
{
v ∈ RN : vi > 0∀i = 1, . . . , N

}
→ RN , f(x, s, v) :=M(x)v−sv.

We want to apply the Implicit Function Theorem. It is clear that f(x, ϱ(x),Γ(x)) =

0. Thus, we calculate

∂

∂s
f(x, s, v)[r] = −rv and

∂

∂v
f(x, s, v)[w] =M(x)w − sw.

Furthermore, we have

Tϱ(x),Γ(x)
(
R× SN−1

)
= Tϱ(x)R⊕ TΓ(x)SN−1 = R⊕ Γ(x)⊥.

We see

(−Γ(x)r,M(x)v − ϱ(x)v) = 0⇔ r = 0 and v = λΓ(x)
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for some λ ∈ R. This means (r, v) = 0, therefore ∂
∂(s,v)f(x, ϱ(x),Γ(x)) is injec-

tive. Thus, we conclude that ϱ and Γ are both C1. Finally,

1 ≡ ⟨Γ(x),Γ(x)⟩

implies

0 =
∂

∂x
⟨Γ(x),Γ(x)⟩ [v] = 2 ⟨Γ(x), DΓ(x)[v]⟩ for all x ∈ FNΩ, v ∈ RdN .

Thus, we proved the weakened assumptions of Theorem 2.2.1, when we set

inf Γi > 0 to Γi(x) > 0.



Chapter 3

The Green's Function on

Surfaces

In this section, we consider (Σ, g) to be a compact two dimensional Riemannian

manifold. Before we look for critical points of Kirchho�-Routh-functions again,

we will establish some approximations of the (Dirichlet) Green's function be-

longing to the negative Laplace-Beltrami operator −∆g with Dirichlet boundary

conditions if ∂Σ ̸= ∅.

3.1 The Green's function on surfaces without bound-

ary

We start with the case that Σ is closed, so that ∂Σ = ∅. In Appendix C, we see

the existence of a Green's function and if ∂Σ = ∅, we have

G(p, q) = − 1

2π
ln (dg(p, q)) + hΣ(p, q),

where dg is the metric induced by g and hΣ is in C∞
(
Σ2
)
. We combine this

with the fact that every surface is locally conformally �at, see [9], and want to

construct a chart φ : U → V such that for x = φ(p), y = φ(q) we have

G(p, q) = − 1

2π
ln |x− y|+ hφ(x, y),

where again hφ is a C∞-function. Therefore, we need to see how G changes

when we change the metric by a conformal factor.

Lemma 3.1.1. Let g̃ := e2ug be a metric conformal to g and G̃ a Green's

function associated with the negative Laplace-Beltrami-Operator −∆g̃. Then,

30
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there exists a function W ∈ C∞
(
Σ2
)
such that

G̃ = G+W.

Proof: In Einstein convention, we have

∆gf =
1√
|g|
∂i

(
gi,j
√
|g|∂jf

)
,

in a local chart, where g(x) = (gi,j(x))
d
i,j=1, g

−1(x) =
(
gi,j(x)

)d
i,j=1

and |g| =
det(g) > 0. We calculate

∆g̃f =
1√
|g̃|
∂i

(
g̃i,j
√
|g̃|∂jf

)
= e−un 1√

|g|
∂i

(
eu(d−2)

√
|g|∂jf

)
= e−2u∆gf +

∂ie
u(d−2)

eud
gi,j∂jf

= e−2u∆gf + (d− 2)e−2ugi,j∂iu∂jf.

Now, with d = 2, we see

∆g̃f = e−2u∆gf. (3.1.1)

Furthermore, in a chart φ = (x1, x2) : U → R2, we have

(dVg)x =
√
|g(x)|dx1 ∧ dx2.

Thus, �
Σ

fdVg̃ =

�
Σ

fe2udVg. (3.1.2)

A Green's function of the Laplace-Beltrami Operator is de�ned with the condi-

tion

(∆g)qG(p, q) = δ(p, q)− 1

volg(Σ)
∀p ∈ Σ

in a distributional sense, where δ(p, q) is the Dirac measure at p. Note that G is

de�ned up to a constant, when we require G(p, q) = G(q, p). With (3.1.1) and

(3.1.2), we see that for every f and A ⊂ Σ we have

�
A

(∆g)qG(p, q)f(q) dVg(q) =

�
A

(∆g̃)qG(p, q)f(q) dVg̃(q).
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Thus, again with (3.1.2), we have

(∆g)QG(p, q)− (∆g̃)qG(p, q) = −
1

volg(Σ)
+

e2u

volg̃(Σ)
,

because of �
A

f

volg̃
dVg̃ =

�
A

f · e
2u

volg̃
dVg.

We de�ne W1 ∈ C∞(Σ) as a function which satis�es

∆gW1 = − 1

volg(Σ)
+

e2u

volg̃(Σ)
.

Note that, because of

�
Σ

− 1

volg(Σ)
+

e2u

volg̃(Σ)
dVg = 0,

this has a solution. Therefore the function (p, q) 7→ G(p, q)−W1(q)−W1(p) is a

Green's function associated with the negative Laplace-Beltrami Operator −∆g̃

and we conclude the proof of this Lemma. □

This yields the following.

Proposition 3.1.2. For every p0 ∈ Σ, there exists a chart φ : U → V around

p0 with φ(p0) = 0, a C∞-function hφ : U × U → R such that

G(p, q) = − 1

2π
ln |φ(p)− φ(q)|+ hφ(φ(p), φ(q)) ∀p, q ∈ U.

Proof: According to [9], there exists a conformally �at chart around p0. We

elaborate this brie�y. With [9], we achieve a chart φ̃ : U → V and λ(x, y) : U →
(0,∞) such that

gφ̃(x, y) = λ(x, y)

(
1 0

0 1

)
= λ(x, y)I2.

Without loss of generality, we can assume that λ is bounded away from 0,

otherwise we use an open set Ũ with Ũ ⊂ U . Then, the metric g̃ := 1
λg, which

is de�ned on U , can be expanded to a to g conformal metric on the whole surface

Σ. In the chart φ := φ̃− φ̃(p0), we then have

g̃φ(x, y) =
1

λ(x, y)
gφ̃(x, y) = I2.
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Thus, φ(p0) = 0 and

dg̃(p, q) = |φ(p)− φ(q)| ∀p, q ∈ U.

For p, q ∈ U , we conclude the following:

G(p, q) = G̃(p, q) +W (p, q)

= − 1

2π
ln (dg̃(p, q)) + hΣ̃(p, q) +W (p, q)

= − 1

2π
ln (|φ(p)− φ(q)|) + hφ(φ(p), φ(q)),

where hφ(x, y) := hΣ̃(φ
−1(x), φ−1(y)) +W (φ−1(x), φ−1(y)).

□

Remark. In the following, we need the behavior of ∆g in a conformally �at

metric. In a �at chart, we see that

∆gf =
1√
|g|
∂i

(
gi,j
√
|g|∂jf

)
=

d∑
i=1

∂i∂if = ∆f,

where ∆ is the usual Laplacian on Rd. Thus, if g̃ = e2ug and g̃ is �at in the

chart φ : U → V , with (3.1.1), we derive the equation

∆gf(p) = e2u∆g̃f(p) = e2(u◦φ
−1)(φ(p))∆

(
f ◦ φ−1

)
(φ(p)) = e2uφ(x)∆fφ(x)

in that chart. In particular we will use that if f is a harmonic function in (Σ, g),

i.e. ∆gf = 0, then fφ := f ◦φ−1 will be a harmonic function in V and vice versa.

3.2 The Green's function on surfaces with bound-

ary

In this subsection, we achieve a good approximation of G when ∂Σ ̸= ∅. We

want to make use of an approximation of G when Ω is an open and bounded set

in R2. More speci�cally, in [7, 6] a generalized Green's function is de�ned as a

function

G : F2Ω→ R, G(x, y) = − 1

2π
ln |x− y|+ h(x, y),

which satis�es the following conditions:

(A1) G ≥ 0 and symmetric.
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(A2) h is C∞, bounded from above, and R(x) := h(x, x) → −∞ if dx =

dist(x, ∂Ω)→ 0.

(A3) For every ε > 0, there exists C1 = C1(Ω, ε) > 0 such that

|R(x)|+ |∇R(x)| ≤ C1 for every x ∈ Ω with dx ≥ ε

|G(x, y)|+ |∇xG(x, y)|+ |∇yG(x, y)| ≤ C1 for every x, y ∈ Ω with |x− y| ≥ ε.

(A4) There exists C2 = C2(Ω) > 0 such that ψ(x, y) := − 1
2π ln |x̄− y|+ h(x, y)

satis�es

|ψ(x, y)|+ |∇xψ(x, y)|+ |∇yψ(x, y)| ≤ C2 for every x, y ∈ Ω0.

Here Ω0 ⊂ Ω is a tubular neighborhood of ∂Ω and x̄ is the re�ection of x

at the boundary.

In [7], it is proven that the Dirichlet Green's function satis�es these axioms.

Our aim is to generalize these axioms to surfaces. As in chapter 1, the Axioms

(A1)-(A3) are well known. Thus, only a generalization of (A4) is missing. How-

ever, before we explicitly derive a generalization of (A4), we discuss the basic

principals of our generalization approach. The following statement provides a

simpli�ed summary of our generalization's aim: "around every point of Σ, there

exists a chart φ such that Gφ satis�es (A1)-(A4)". With this, we will be able

to generalize theorems that where proven in open sets of R2. However, it does

not provide a good approximation, when considering the manifold itself. Next,

we outline how we generalize (A4) such that we have a good notion of G and

can make use of the proof in [7].

First, the function G̃(x, y) := − 1
2π ln |x− y| is important. But on a surface,

|·| has to be adapted. The fact we will use is that G̃ is the Green's function

of the negative Laplacian in R2. Put di�erently G̃ is the Green's function of

the ambient space of Ω. In addition, the map h = hG̃ is de�ned by a partial

di�erential equation. We could say that with hG̃ the map

GΩ = G̃+ hG̃

is a projection of G̃ onto Ω. In the same way, the manifold Σ has an ambient

manifold Σ̃, which is compact and closed. Following this, Σ̃ has a Green's

function G̃ and, again with a partial di�erential equation, we will have that

GΣ := G̃+ hG̃
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is the Green's function of Σ. This leads to ψ(p, q) := G̃(p̄, q)+hG̃(p, q) and with

Proposition 3.1.2 will yield our generalization of G.

By the classi�cation theorem of compact manifolds with boundary, see [25,

Thm. 10.1], there exists a compact and closed 2-dimensional manifold Σ̃, k ∈ N,
Σ̃ ⊃ Di

∼= U1(0) ⊂ R2 for i = 1, . . . , k with Di ∩Dj = ∅ for i ̸= j such that

Σ = Σ̃ \
k⋃

i=1

Di.

Furthermore, we extend g̃ to a smooth riemanian metric on Σ̃ such that g̃|Σ = g.

We call such a surface Σ̃ the closed surface belonging to Σ.

Let Σ̃0 ⊂ Σ̃ be a tubular neighborhood of ∂Σ in Σ̃ as well as Σ0 := Σ̃0∩(Σ \ ∂Σ).
Then, like in chapter one, P (p) := Pp is the orthogonal projection of p onto ∂Σ,

ν(p) =: νp ∈ TPpΣ the interior normal at Pp and dp = dist(p, ∂Σ) are well

de�ned on Σ0 and C∞ when Σ is a C∞ manifold. Now, let G̃ be a Green's

function of the negative Laplace-Beltrami-Operator −∆g̃ on Σ̃. For p ∈ int(Σ),
we de�ne h(q, p) = hp(q) to be the solution of the boundary-value problem∆ghp = 0 in int(Σ)

hp(q) = −G̃(p, q) on ∂Σ.

Lemma 3.2.1. The map

G : F2Σ→ R, G(p, q) := G̃(p, q) + h(p, q)

is the Dirichlet Green's function of the negative Laplace-Beltrami-Operator −∆g

on (Σ, g).

Remark. Before we prove Lemma 3.2.1, note that

R(p) = lim
q→p

(
G(p, q) +

1

2π
ln (dg(p, q))

)
= R̃(p) + h(p, p) = h(p, p) +O(1)

holds, where the O(1) is in a C∞ sense.

Proof: The Dirichlet Green's function is the unique function which satis�es

− (∆g)q G(q, p) = δq(p) in Σ

in a distributional sense, and is 0 on the boundary: G(p, q) = 0 for q ∈ ∂Σ.

Hence, for every C2-function f , there must hold
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−f(p) =
�
Σ

G(p, q) ·∆gf(q) dVg(q) +

�
∂Σ

∂N(q) (G(p, q)) f(q)dsg(q)

where Vg is the volume element associated with g, the volume element sg of

∂Σ is induced by Vg and N(q) is the exterior unit normal vector at q ∈ ∂Σ.

This expression is justi�ed by the Green's formulas. Let p ∈ Σ, then we have

(∆g)q G(p, q) = 0 for every p ̸= q ∈ Σ. Moreover, if q ∈ ∂Σ, we have G(p, q) = 0.

Thus, for ε > 0, we see with Green's formulas

�
Σ

G(p, q)∆gf(q)dV (q)
ε→0←

�
Σ\Bε(p)

G(p, q)∆gf(q)dV (q)

GF
= −

�
∂Σ

∂NG(p, q)f(q)ds(q)

+

�
∂Bε(p)

G(p, q)∂Nf(q)ds(q)︸ ︷︷ ︸
=:I1→0

−
�
∂Bε(p)

∂NG(p, q)f(q)ds(q)︸ ︷︷ ︸
=:I2→f(p)

.

Therefore, our claim can be proven by demonstrating the convergence of I1 and

I2. Because ε → 0, there exists a local conformal �at chart φp : Up → Vp such

that ∂Bε(p) ⊂ U . Now, we set x = φ(p) = 0 and y = φ(q). We then have

φ(∂Bε(p)) = ∂Bε(0) and

G(p, q) = G̃(p, q) + h(p, q) = − 1

2π
ln |y|+ hφ(0, y) + h(p, q).

Because both maps hφ and h are C1, the integrals over them will vanish and

there only remain the ln parts. Thus,

lim
ε→0

I1 = lim
ε→0

�
∂Bε(0)

− 1

2π
ln(ε)∂Nf(y) ds(y) = lim

ε→0
− 1

2π
ln(ε)

�
∂Bε(0)

∂νf(y) ds(y)︸ ︷︷ ︸
∈[−Cε,Cε]

= 0,

for some C > 0. Further, we calculate ∂N ln |y| where N(y) = −y
ε is the exterior

normal vector at y ∈ ∂Bε(0). Note that exterior is meant in the sense of exterior

to Σ \Bε(p). We have

∂N ln |y| =
〈

1

|y|
· y
|y|
,−y

ε

〉
= −1

ε
.

Thus, we conclude

lim
ε→0

I2 = lim
ε→0

�
∂Bε(0)

− 1

2π
f(y)∂N ln |y| ds(y) = lim

ε→0

1

2πε

�
∂Bε(0)

f(y) ds(y) = f(0).
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□

We now de�ne

ψ : Σ0 × Σ0 → R, ψ(p, q) := G̃(p̄, q) + h(p, q).

Proposition 3.2.2. There exists C2 = C2(Σ) > 0 such that

|ψ|+ |∇pψ|+ |∇qψ| ≤ C2.

Furthermore, for every p0 ∈ Σ0 ∪ ∂Σ, there exists a chart φp0
: Up0

→ Vp0
such

that Gφp0
:= G ◦ φ−1

p0
is a generalized Green's function in the sense of [6], with

the small adjustment that only ∂Vp0
∩ φp0

(Up0
∩ ∂Σ) is the part of ∂Vp0

where

we re�ect at.

Proof: Beside some problems because of the localization, we follow the proof

of [7]. For many calculations involving − 1
2π ln |x− y|, we will refer to [7]. We

again use Theorem 2.1.2. However, this theorem only holds in open sets of Rd.

Thus, we need to apply it in a chart. Moreover, because Σ0 ∪ ∂Σ is compact,

this local application will also transfer, to the whole surface Σ0 ∪ ∂Σ.
First, we start with

|ψ(p, q)| ≤ C3dp ∀p, q ∈ Σ0. (3.2.1)

Let p ∈ Σ0. Then, the map q 7→ ψ(p, q) is harmonic and, thus the maximum

principle yields

max
q∈Σ0

|ψ(p, q)| = max
q∈∂Σ∪(∂Σ0\∂Σ)

|ψ(p, q)| .

For q ∈ ∂Σ0 \ ∂Σ, the claim follows, because if Pp ∈ ∂Σ is the projection of p

onto ∂Σ, we have P p = Pp and estimate

|ψ(p, q)| = |ψ(p, q)− ψ(Pp, q)| ≤ Cqd(p, Pp) = Cqdp.

The compactness of ∂Σ0 \ ∂Σ yields (3.2.1) on that part of the boundary. It

remains the other part of the boundary

max
q∈∂Σ

|ψ(p, q)| = max
q∈∂Σ

∣∣∣G̃(p̄, q)− G̃(p, q)∣∣∣ .
When p, q belong to the same neighborhood of a conformal �at chart φ, we see

in this �at chart

ψφ(x, y) =
1

2π
ln

(
|x− y|
|x̄− y|

)
︸ ︷︷ ︸

=O(dx)

+ hφ(x̄, y)− hφ(x, y)︸ ︷︷ ︸
=O(dx)

= O (dx) = O (dp) .
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For the part with hφ, we see this because hφ is C1 and, thus,∣∣∣h̃(x̄, y)− h̃(x, y)∣∣∣ ≤ Cφ |x̄− x| = 2Cφdx.

The ln part follows from Taylor's Theorem and (2.1.7) with d = 2. This �nishes

(3.2.1).

Our next step is to prove

|∇pψ| ≤ C4. (3.2.2)

For this, we will prove that for every q ∈ Σ0 and every p0 ∈ ∂Σ, there exists a
neighborhood Up0

such that ∇pψ|Up0
(·, q) is bounded. The claim then follows

because ∂Σ is compact and ∇pψ is bounded in (Σ0 \ U) × Σ0 when U is a

neighborhood of ∂Σ. This allows us to do the calculations in a chart.

So let p0 ∈ ∂Σ and let φp0
: Ũp0

→ Ṽp0
be a conformally �at chart around p0 in

Σ̃. We apply Theorem 2.1.2 to ψφp0
. To avoid problems with the distance, let

p0 ∈ Up0
⊂ Ũp0

be open such that

dist
(
p, ∂Ũp0

)
= dist(p, ∂Σ) = dp ∀p ∈ Up0 .

Now, if q ̸∈ Ũp0
, we see that ∇pψ|Up0

(·, q) is bounded, because q and p are

bounded away from each other. So let q ∈ Ũp0
. Next, we investigate the map

fq : Ṽp0
→ R, x 7→ ψ

(
φ−1
p0

(x), q
)
.

We show that ∇fq|Vp0
is bounded where Vp0 := φp0 (Up0). This proves (3.2.2).

With Theorem 2.1.2 and (3.2.1) the inequality

∆fq(x) ≤
C5

dx

remains to prove. We let y := φ(q) and conclude with Proposition 3.1.2 that

fq(x) = −
1

2π
ln |x̄− y|+ hφp0

(x, y) + h
(
φ−1
p0

(x), φ−1
p0

(y)
)
.

With

0 = (∆g)pG(p, q) = e2uφp0 ∆xGφp0
(x, y)

= e2uφp0 ∆x

(
− 1

2π
ln |x− y|+ hφp0

(x, y) + h
(
φ−1
p0

(x), φ−1
p0

(y)
))

= e2uφp0 ∆x

(
hφp0

(x, y) + h
(
φ−1
p0

(x), φ−1
p0

(y)
))
,
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we see

∆fq(x) = −
1

2π
∆x (ln |x̄− y|) .

Thus, with [7] the claim ∆fq ≤ C5

dx
follows. This means, that ∇ψ|Up0

(·, q) is
bounded for every q ∈ Σ0 and we obtain (3.2.2).

The �nal part we show is

|∇qψ| ≤ C6.

For every p, q ∈ Σ0, we have

ψ(p, q) = G̃(p̄, q) + h(p, q) = G̃(q̄, p) + h(q, p) +
(
G̃(q, p̄)− G̃(p, q̄)

)
= ψ(q, p) +

(
G̃(q, p̄)− G̃(p, q̄)

)
.

Thus, the claim follows, when

∇q

((
G̃(q, p̄)− G̃(p, q̄)

))
= O(1).

To derive this, we utilize a conformally �at chart φ again and see

(
G̃(q, p̄)− G̃(p, q̄)

)
=

1

2π
ln

(
|x− ȳ|
|y − x̄|

)
− hφ(x, ȳ) + hφ(x̄, y).

Thus, the claim follows, as hφ is C1 on Σ̃× Σ̃ and again with [7].

□

Remark. One may think that because in d = 2 the approximation of [7] can

be generalized to surfaces, that the approximation we did in chapter one may

also translate to manifolds. However, the proof from chapter 1 for higher di-

mensions can not be translated with the methods we used. The most important

reasons for the untranslatability of the approximation are the following:

� Not every manifold with dimension d ≥ 3 is locally conformally �at.

� The Laplace-Beltrami-Operator is not a conformal operator, because when

g̃ = e2ug, we have

∆g̃f = e−2u∆gf + (d− 2)e−2ugi,j∂iu∂jf.

� A Green's function of the Laplace-Beltrami-Operator of a closed manifold

Σ has an approximation of the form

G(p, q) = cd |x− y|2−d
+ h(x, y),

but h also has some singularities at x = y. See more in Appendix C.
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Even if we restrict to higher dimensional manifolds that are locally conformal

�at, the other points lead to problems. Especially when using Theorem 2.1.2,

we have problems calculating ∆xh(x, y), as we do not know if h is harmonic

with respect to the usual Laplacian in Rd. Moreover, it is not bounded by 1
dx
,

since it has a singularity at x = y.



Chapter 4

Critical points on all surfaces

excluding the sphere

We remind that we consider the function

HΓ : FNΣ→ R, HΓ(p) =
∑
i ̸=j

ΓiΓjG(pi, pj) +

N∑
i=1

ΓN
i R(pi) + Ψ(p),

where N ∈ N, Γ = (Γ1, . . . ,ΓN ) ∈ (R \ {0})N , (Σ, g) is a 2-dimensional, com-

pact, Riemannian manifold, G is a Green's function of the associated Laplace-

Beltrami-Operator, R is its Robin's function

R(pi) := lim
q→pi

(
G(pi, q) +

1

2π
ln (dg(pi, q))

)
and Ψ : ΣN → R shall be C∞. The closed manifold belonging to Σ is de�ned in

3.2. We will prove the following three theorems in this chapter:

Theorem 4.0.1. If Σ is closed and not homeomorphic to the sphere, RP 2 nor

the Klein bottle, and for Γ holds∑
i,j∈J
i̸=j

ΓiΓj ̸= 0 for every J ⊂ {1, . . . , N} with |J | ≥ 3, (4.0.1)

then HΓ has a critical point.

Theorem 4.0.2. If Σ has boundary and the closed manifold belonging to Σ is

neither homeomorphic to the sphere, RP 2 nor the Klein bottle and for Γ holds

41
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(4.0.1), as well as∑
i∈J

Γ2
i >

∑
i,j∈J
i̸=j

|ΓiΓj | for every J ⊂ {1, . . . , N}, with |J | ≥ 2, (4.0.2)

then HΓ has a critical point.

Theorem 4.0.3. If Σ has boundary and the closed manifold belonging to Σ is

neither homeomorphic to the sphere, RP 2 nor the Klein bottle, N ∈ {3, 4}, and
for Γ holds

ΓiΓi+1 < 0 for all i = 1, . . . , N − 1,∑
i,j∈J
i̸=j

ΓiΓj < 0 for all J ⊂ {1, . . . , N} : |J | ≥ 3, (4.0.3)

then HΓ has a critical point.

We will use two methods to achieve these theorems. For theorem 4.0.3, we

will generalize a method used in [6]. The theorem itself is a generalization of

the main theorem in that paper to surfaces. We can weaken the assumptions,

because the linking does not need further assumptions on Γ. The method is

changing the negative gradient �ow in such a way that it will stay away from

the boundary of FNΣ.

The proofs of the Theorems 4.0.1 and 4.0.2 will use calculations and the method

from [22]. Here, we use a more traditional treatment. Under the assumptions of

the theorems, it will be shown that HΓ satis�es the Palais-Smale-Condition and

thus, when combining this with a linking, will achieve critical points. Theorem

4.0.2 is a generalization of a theorem in [22].

We will start with showing the existence of the linking. We will begin with the

linking, because this is the main reason we have to exclude the homeomorphism

class of the sphere, RP 2 and the Klein bottle, since the linking does not hold in

the sphere, RP 2 or the Klein bottle. In chapter �ve, we will handle the sphere

and, in Appendix B, we see that Theorem 4.0.1 is false if Σ =
(
S2, gst

)
.

4.1 The linking

With linking we mean the existence of L ⊂ FNΣ and a (sequentially) compact

topological space S, and a map γ0 : S → FNΣ such that

−∞ < inf
p∈L

HΓ(p) ≤ sup
p∈L

HΓ(p) <∞ (Bound)

γ ≃ γ0 ⇒ γ(S) ∩ L ̸= ∅, (Link)
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where γ ≃ γ0 means that γ is homotopic to γ0.

Our linking approach is inspired by the linking in [14]. The rest of this section

will be dedicated to the proof of the following theorem, which yields a linking

in every situation needed in this thesis.

Theorem 4.1.1. If Σ is a compact two-dimensional Riemannian manifold

where the associated closed manifold is not homeomorphic to the sphere or RP 2,

then there exists L ⊂ FNΣ, a sequentially compact topological space S, and

γ0 : S → Σ, such that (Bound) and (Link) are satis�ed.

We start on a more abstract level. After we prove what we need in the

abstract sense, we will show the existence of all maps needed in the concrete

situation of any surface we consider.

For i = 1, . . . , N , let γi : S1 → Σ be simple closed curves with

γi
(
S1
)
∩ γj

(
S1
)
= ∅ ∀i ̸= j.

Furthermore, let Pi : Σ → γi
(
S1
)
be a retraction and ξi ∈ γi

(
S1
)
, such that

P−1
i (ξi) ⊂ int(Σ) is compact and

P−1
i (ξi) ∩ P−1

j (ξj) = ∅.

We de�ne ξ := (ξ1, . . . , ξN ),

γ0 :
(
S1
)N → FNΣ, γ0(t1, . . . , tN ) :=

(
γ1(t1), . . . , γ

N (tN )
)

P : FNΣ→ γ0
(
S1
)N

, P (p) := (P1(p1), . . . , PN (pN ))

and

L := P−1(ξ) =

N∏
i=1

P−1
i (ξi) .

Because P−1
i (ξi) ⊂ int(Σ) are compact and they do not intersect, we see that

L ⊂ FNΣ is compact. Thus, (Bound) is satis�ed. In the next Lemma, we show

that also (Link) is satis�ed.

Lemma 4.1.2. Let γ = h(1, ·) ≃ h(0, ·) = γ0, then

γ
((
S1
)N) ∩ L ≠ ∅.

Proof: We will show that for every η ∈ γ0
((
S1
)N)

, there exists tη ∈
(
S1
)N

such that P (γ (tη)) = η. Thus, we also have P
(
γ(tξ)

)
= ξ, which means

γ(tξ) ∈ L ∩ γ
((
S1
)N)

. We use the degree of maps f : M → M̃ between
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compact orientable N -dimensional manifolds. Note here, that

deg(f) ̸= 0⇒ f is onto,

and we want to prove that P ◦ γ :
(
S1
)N → γ0

((
S1
)N)

is onto. Because

γi : S1 → Σ are simple closed curves, the map

γ0 :
(
S1
)N → γ0

((
S1
)N)

is a homeomorphism and, thus, deg(γ0) ∈ {±1} depends on the choosen orien-

tations, on
(
S1
)N

and γ0

((
S1
)N)

. Therefore, we get

deg(P ◦ γ) = deg(P ◦ h(1, ·)) = deg (P ◦ γ0) = deg (γ0) ̸= 0.

We conclude that P ◦ γ :
(
S1
)N → γ0

((
S1
)N)

is onto and, thus, prove our

claim. □

Remark. In [14], it is allowed that γi
(
S1
)
∩ γj

(
S1
)
̸= ∅. This is possi-

ble, because the behavior of the function is known when the points come close

together. Thus, an analytical degree is used to prove a similar linking scheme.

Because the curves are allowed to intersect, there is only one simple closed curve

γ1 : S1 → Σ to be de�ned. Then, the application of this abstract scheme in an

explicit manifold is easier to achieve.

Now, we are going to de�ne the simple closed curves and the retractions in

an explicit closed surface Σ. First, we have to use the classi�cation theorem of

closed surfaces. We use it in such a form, that every closed surface is home-

omorphic to a sphere, the projective plain, a torus T , the Klein bottle, or to

the connected sum of a surface Σ′ and a torus. The classi�cation theorem is

proven with modern methods of mathematics in [17, Thm. 6.3]. Thus, if Σ is

not homeomorphic to S2, RP 2 or the Klein bottle, it is homeomorphic to the

torus T , or to T#Σ′, where # is the connected sum and Σ′ is a closed surface.

So, up to homeomorphism, there are three cases for which we need to de�ne a

retraction and the closed curves. The case Σ = T#Σ′ is the most di�cult one.

In this case, the image of the curves will be inside the torus. The retraction will

work the same way as the retraction of the torus, beside that Σ′ needs to be

handled and will be mapped to only one point.

We start with the case Σ ∼= T . We represent the torus with the square [0, 1]2,

where the parallel edges are identi�ed, i.e. (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y).

Considering that S1 ∼= [0, 1]/1∼0, we will de�ne γi : [0, 1] → [0, 1]2. Figure 4.1

shows a sketch of the curves and retractions.
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γ1
γ2

γN

Figure 4.1: Torus

The red lines are the γi. The retraction Pi map every point on the blue line

to the intersection with the red line, which belongs to the image of γi. We write

this rigorously in the following. Let N ∈ N and set ti :=
1

i+1 for i ∈ {1, . . . , N}.
Moreover, de�ne

γi : [0, 1]→ [0, 1]2, γi(s) := (s, ti) .

We see that γi ([0, 1]) ∩ γj ([0, 1]) = ∅ for i ̸= j. Furthermore, we de�ne

Pi : [0, 1]
2 → γi ([0, 1]) , Pi(s, t) := (s, ti) .

Then, Pi is a retraction onto γi ([0, 1]). For s0 ∈ [0, 1], we have

P−1
i (s0, ti) = {s0} × [0, 1],

which is compact. Thus, if, si ̸= sj ∈ [0, 1] for i ̸= j, we clearly have

P−1
i (si, ti) ∩ P−1

j (sj , tj) = ∅.

We choose s1, . . . , sN ∈ [0, 1] pairwise distinct and de�ne ξi := (si, ti). Then,

we pass over to the quotient spaces and have de�ned everything we aspired.

Let Σ ∼= T#Σ′. We will de�ne one simple closed curve γ : [0, 1] → T#Σ′ with

the retraction Pγ : Σ→ γ ([0, 1]) and then describe what has to be done to get all

the curves γi. As we explained, we want that γ ([0, 1]) ⊂ T and that Pγ(Σ
′) ≡ v.

In the process of the connected sum, we cut out a circle in every surface and

glue the arising boundaries together. Thus, if we want Pγ : Σ → γ ([0, 1]) with

Pγ(Σ
′) ≡ v in a continuous way, we have to construct Pγ : T \ B → γ ([0, 1])

with Pγ (∂(T \B)) ≡ v, where B is the ball we cut out. Furthermore, outside

of a neighbourhood of the ball we cut out, we want that Pγ and γ behave as
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they do in the case of the torus. In the following three images, we visualize our

de�nitions. We, again, use the square [0, 1]2 as a representation of the torus.

The cut out ball will also be a square, as this results in easier de�nitions. We

will start with Figure 4.2.

v

γ

Figure 4.2: Vertical lines not near the square

The red line is our γ. The green square is the cut out square. The point v

is located in the exact middle of the horizontal line γ. The yellow lines indicate

the part where we want to do the same as in the case of the Torus. Thus, for

all blue lines in the area, bounded by the yellow lines, where the square is not

located, the retraction Pγ maps every point on a vertical line to the intersection

with the red line.

Next, we handle the vertical lines in the area between the yellow lines with the

green square inside. This will be explained in the following two pictures.
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v

γ

Figure 4.3: Vertical lines intersecting the square

In Figure 4.3, we see the case, where a vertical line intersects with the green

square. The green square and the red line split the dark blue line into two

lines. Pγ will map these two parts onto the light blue line, which is a path on

γ ([0, 1]) from v to the intersection point with the dark blue line. This will be

done in such a way that the points of the green square are mapped to v and

the intersection of the red and dark blue line will be mapped to itself. The

remaining vertical lines are the ones between the green square and the yellow

lines.
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v

γ

Figure 4.4: Vertical lines near the square not intersecting it

In Figure 4.4, every point of an orange line between the dashed green lines

will be mapped to the right endpoint of the gray line. The rest of the orange

line will be parametrized onto the gray line, like in the previous picture. Thus,

the intersection point of the orange line and the red line will stay �xed and the

points exactly at the dashed green line will be mapped to the right endpoint of

the gray line. Furthermore, the length of the gray line will depend on how far

away the orange line is from the yellow line and the green square. If the orange

line intersects the green square, the most right point of the gray line will be v.

If the orange line is one of the yellow lines, the length of the gray line will be

zero, thus, everything will be mapped to the intersection of the orange line and

the yellow line.

Now, we will de�ne this rigorously. We set

B :=

(
3

8
,
5

8

)
×
(
3

8
,
5

8

)
⊂ [0, 1]2.

This is the square we cut out. We de�ne

γ : [0, 1]→ [0, 1]2 \B, t 7→ (t, 0).
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Next, we de�ne

α : [0, 1]×[0, 1]→ R, α(t, λ) = αt(λ) :=



t, t ∈
[
0, 14

]
∪
[
3
4 , 1
]

tλ+ (1− λ)
(
2t− 1

4

)
, t ∈

[
1
4 ,

3
8

]
tλ+ (1− λ)

(
2t− 3

4

)
, t ∈

[
5
8 ,

3
4

]
1
2 +

(
t− 1

2

)
λ, t ∈

[
3
8 ,

5
8

]
.

With the following calculations, we see that α is continuous:

1

4
λ+ (1− λ)

(
2 · 1

4
− 1

4

)
=

1

4
,

3

8
λ+ (1− λ)

(
2 · 3

8
− 1

4

)
=

1

2
+

(
3

8
− 1

2

)
λ,

5

8
λ+ (1− λ)

(
2 · 5

8
− 3

4

)
=

1

2
+

(
5

8
− 1

2

)
λ,

3

4
λ+ (1− λ)

(
2 · 3

4
− 3

4

)
=

3

4
.

The map α handles the scaling of the horizontal lines. The yellow lines are

the sets {(s, t) : t ∈ [0, 1]} with s = 1
4 or s = 3

4 . The point v is given by

v =
(
1
2 , 0
)
. We still need to parametrize the vertical lines, therefore, we use the

following two maps

β1 : [0, 1]→
[
5

8
, 1

]
, β1(λ) :=

5

8
+

3

8
λ,

β2 : [0, 1]→
[
0,

3

8

]
, β2(λ) :=

3

8
− 3

8
λ.

Note that β1 and β2 are homeomorphisms. We de�ne

Pγ : T → T, Pγ(t, s) :=


(
αt

(
β−1
1 (s)

)
, 0
)
, if s ∈

[
5
8 , 1
](

αt

(
β−1
2 (s)

)
, 0
)
, if s ∈

[
0, 38

]
(αt(0), 0) , if s ∈

[
3
8 ,

5
8

]
.

We have Pγ

(
[0, 1]2

)
⊂ γ ([0, 1]). Furthermore, if (t, s) ∈ B, we have

Pγ(t, s) = (αt(0), 0) =

(
1

2
+

(
t− 1

2

)
· 0, 0

)
=

(
1

2
, 0

)
= v.

Thus, we only have to show that Pγ induces a continuous map from T → T and

that Pγ(t, 0) = (t, 0). First, let s ∈ [0, 1], then (0, s) = (1, s) ∈ T . We calculate

Pγ(0, s) = (α0(λ), 0) = (0, 0) ∼ (1, 0) = (α1(λ), 0) = Pγ(1, s).
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This shows Pγ(0, s) = Pγ(1, s) ∈ T . Furthermore, with β−1
1 (1) = 1 and

β−1
2 (0) = 1, we see that

Pγ(t, 0) =
(
αt

(
β−1
2 (0)

)
, 0
)
= (αt(1), 0) =

(
αt

(
β−1
1 (1)

)
, 0
)
= Pγ(t, 1).

Therefore, we have, Pγ(t, 0) = Pγ(t, 1) ∈ T , which implies that Pγ : T → T is

well de�ned. Because of

Pγ(t, 0) = (αt(1), 0) = (t, 0),

we also have that γ ([0, 1]) is kept �xed. It only remains to show that Pγ is

continuous. Thus, we show that for s = 3
8 and s = 5

8 the possible de�nitions of

Pγ coincide. So, let s = 3
8 , then we have β−1

2

(
3
8

)
= 0 and, therefore,

Pγ

(
t,
3

8

)
=

(
αt

(
β−1
2

(
3

8

))
, 0

)
= (αt(0), 0) .

Furthermore, we have β−1
1

(
5
8

)
= 0 and, as a result, the de�nitions of Pγ also

coincide for s = 5
8 . By setting

Pγ : T#Σ′ → γ ([0, 1]) ,

Pγ(p), p ∈ T

v, p ̸∈ T,

we have our retraction.

Now, we de�ne γi and Pi for i ∈ {1, . . . , N}. We de�ne

γi : [0, 1]→ [0, 1]2 \B, t 7→
(
t,

1

3 + i

)
,

and vi =
(

1
2 ,

1
3+i

)
. For the retractions Pi, we again use the same horizon-

tal scaling α. Because we changed the height, we have to change the vertical

scalings. So, one de�nes appropriate scalings βi
1 and βi

2 and we can de�ne

Pi : [0, 1]
2 → [0, 1]2, Pi(t, s) :=


(
αt

((
βi
1

)−1
(s)
)
, 1
3+i

)
, s ∈ βi

1([0, 1])(
αt

((
βi
2

)−1
(s)
)
, 1
3+i

)
, s ∈ βi

2([0, 1])(
αt(0),

1
3+i

)
, s ∈

[
3
8 ,

5
8

]
.

Then, we can choose ξi :=
(

1
4+i ,

1
3+i

)
with which we have

P−1
i (ξi) = [0, 1]×

{
1

3 + i

}
.
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Passing to the quotient spaces, we end up with γi : S1 → Σ a retraction Pi onto

γi with

P−1
i (ξi) ∩ P−1

j (ξj) = ∅

and γi
(
S1
)
∩ γj

(
S1
)
= ∅, which are all the properties we required. Therefore,

we established the aspired linking, for all manifolds without boundary.

When Σ is a manifold with boundary, then, according to [25], there exists Σ̃,

k ∈ N and Σ̃ ⊃ Di
∼= U1(0) such that Di ∩Dj = ∅ with

Σ = Σ̃ \
k⋃

i=1

Di.

When Σ̃ has genus greater or equal than 2, we assume Σ = T#Σ′ i.e. all

boundary components lie in Σ′ and we do not have to change anything for our

retractions. Thus, the only remaining case is that Σ̃ is homeomorphic to the

torus T . We use the retraction already de�ned on the torus. As a reminder on

the torus, we de�ned ti =
1

i+1 ,

γiT : [0, 1]→ [0, 1]2, γiT (s) := (s, ti),

PT
i : [0, 1]2 → [0, 1]2, PT

i (s, t) := (s, ti).

The curves on Σ are just

γi : [0, 1]→ Σ, γi(t) := (s, ti)

and the retractions are

Pi : [0, 1]
2 → [0, 1]2, Pi(s, t) := (s, ti).

We have to be careful with the choice of ξi, because it has to satisfy
(
PT
i

)−1
(ξi) ⊂

int (Σ). We will do this , again with drawing a picture and choosing some ex-

plicit Σ.
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γ1
γ2

γ3

Figure 4.5: Torus with holes

So let k ∈ N and for i = 1, . . . , k let

εk :=
1

2k+3
<

1

2k + 4
<

1

4
, xik :=

(
i

k + 2
,
3

4

)
.

Then, we de�ne

Di
k := Uεk(x

i
k) =

{
y ∈ [0, 1]2 :

∣∣y − xik∣∣ < εk
}
.

Note that because of ti ∈
[
0, 12

]
, we have γi(S1) ⊂ int (Σ). Furthermore, we

see that D
i

k ∩D
j

k = ∅ if i ̸= j. Furthermore, we see that D
i

k ⊂ (0, 1) ×
(
1
2 , 1
)
.

So, nothing strange happens, when we use the quotient map from [0, 1]2 → T .

This means, Σk := T \
⋃k

i=1D
i
k is one representation of the di�eomorphism

class where k discs are cut out. The last step is to de�ne ξ. Thus, we let

si ∈
(
0, 1

k+2 − εk
)
with si ̸= sj for every i ̸= j and again de�ne ξi := (si, ti).

With this, we �nished all cases and, thus, established every linking.

4.2 The methods

In this section, we present the methods we will use. Beside the linking, which we

just established, we also will need some sort of compactness. For the Theorems

4.0.1 and 4.0.2, the compactness will be the Palais-Smale-condition. For Theo-

rem 4.0.3, we generalize the method of [6] where the Palais-Smale-condition is

replaced by another form of compactness.

4.2.1 Using the Palais-Smale-condition

Lemma 4.2.1. Let

ϕ :
⋃

q∈FN

(
t−(q), t+(q)

)
× {q} → FNΣ
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be the gradient �ow of HΓ. Furthermore, let L ⊂ FNΣ and γ0 : S → FNΣ

satisfy (Link) and (Bound). Then, for every γ ≃ γ0, there exists p ∈ γ(S) such
that

lim
t→T+(p)

HΓ(ϕ(t, p)) <∞.

Proof: This is standard and we refer to [22, Lem 3.5]. Because the proof

is short, we will write it down, but will not elaborate most details. Assume the

claim is wrong. Then, there exists γ ≃ γ0 such that for every p ∈ γ(S) we can
de�ne T (p) ∈ [0, t+(p)) by

T (p) := inf{s ≥ 0 : HΓ (ϕ(s, p)) = sup
q∈L

HΓ(q)︸ ︷︷ ︸
=:σ

+ 1}.

Note that σ < ∞, because of (Bound). Now, for every p ∈ γ(S) the map

t 7→ HΓ(ϕ(t, p)) is strictly increasing and thus the map

γ(S) ∋ p 7→ T (p) ∈ R

is continuous. Then,

D : [0, 1]× S → FNΣ, D(t, s) := ϕ (tT (γ(s)), γ(s))

de�nes a homotopy and, therefore, γ1 := D1 = D(1, ·) ≃ D(0, ·) = γ ≃ γ0.

With (Link), there exists s ∈ S such that D1(s) ∈ L, which means

σ = sup
q∈L

HΓ(q) ≥ HΓ (D1(s)) = HΓ (ϕ(T (γ(s)), γ(s))) = σ + 1.

□

By Lemma 4.2.1 and the linking, we achieved the existence of a �ow line

along which HΓ is bounded. This will yield a critical point, when HΓ satis�es

the Palais-Smale-condition. Note that we also look into the behavior of HΓ near

∂FNΣ when we prove the Palais-Smale-condition later.

4.2.2 The other method

We will write this method in an abstract setting. So let M be a Riemannian

manifold, let H,Φ : M → R be C∞ maps, L ⊂ M and γ0 : S → M satisfy

(Bound) with respect to H and (Link).

Theorem 4.2.2. Let a < infLH ≤ supLH < b and assume there exists a

regular value M0 > 0 of Φ such that

Φ(p) ≥M0, a ≤ H(p) ≤ b,∇H(p) = λ∇Φ(p)⇒ λ < 0
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and such that the set

∅ ≠ D := {p ∈M : Φ(p) ≤M0} ⊂ int(M)

is compact, as well as M0 > supS Φ ◦ γ0.
Then, H has a critical point p̄ with H(p̄) ∈ [a, b].

For the proof of this theorem, we de�ne a vector �eld with certain properties.

Therefore, we de�ne the set

Db
a := {p ∈ D : a ≤ H(p) ≤ b} = {p ∈M : Φ(p) ≤M0, a ≤ H(p) ≤ b} .

Lemma 4.2.3. LetM0 > 0 be a regular value of Φ such that D = {p ∈M : Φ(p) ≤M0} ⊂
int(M) is compact and for a < b ∈ R holds

Φ(p) ≥M0, a ≤ H(p) ≤ b,∇H(p) = λ∇Φ(p)⇒ λ < 0.

If H has no critical points in ∅ ≠ Db
a, then there exists a locally Lipschitz

continuous vector �eld V : M → TM (in a sense that it is local Lipschitz

continuous in every chart) with the following properties:

⟨∇Φ(p), V (p)⟩ ≤ 0 ∀ p ∈ Db
a ∩ ∂D (4.2.1)

⟨∇H(p), V (p)⟩ > 0 ∀ p ∈ Db
a (4.2.2)

⟨∇H(p), V (p)⟩ ≥ 0 ∀ p ∈M. (4.2.3)

Furthermore, we have V ≡ 0 outside of a compact neighbourhood of Db
a.

Proof: We �rst de�ne the vector �eld on the set Db
a ∩ ∂D and will extend

this vector �eld afterwards. So, we de�ne V0 : Db
a ∩ ∂D → TM with

V0(p) :=

∇H(p)− ⟨∇H(p),∇Φ(p)⟩
|∇Φ(p)|2 ∇Φ(p), if ⟨∇H(p),∇Φ(p)⟩ ≥ 0

∇H(p), if ⟨∇H(p),∇Φ(p)⟩ < 0.

First, note that V0 is Lipschitz continuous in any chart because any function

involved is C1. Also, (4.2.1) and (4.2.2) hold for V0 and every p ∈ Db
a ∩ ∂D. We

will show this in the following, beginning with (4.2.1). If ⟨∇H(p),∇Φ(p)⟩ < 0,
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then this is obvious. So, we let ⟨∇H(p),∇Φ(p)⟩ ≥ 0. Then, we calculate

⟨∇Φ(p), V0(p)⟩ =

〈
∇Φ(p),∇H(p)− ⟨∇H(p),∇Φ(p)⟩

|∇Φ(p)|2
∇Φ(p)

〉

= ⟨∇Φ(p),∇H(p)⟩ − ⟨∇H(p),∇Φ(p)⟩ ⟨∇Φ(p),∇Φ(p)⟩
|∇Φ(p)|2

= 0.

Thus, we have

⟨∇Φ(p), V0(p)⟩ =

0, if ⟨∇H(p),∇Φ(p)⟩ ≥ 0

⟨∇H(p),∇Φ(p)⟩ , if ⟨∇H(p),∇Φ(p)⟩ < 0

and can conclude (4.2.1).

To prove (4.2.2), we have to prove that V0(p) ̸= 0 for all p ∈ Db
a ∩ ∂D. Assume

the opposite. BecauseH has no critical points inDb
a, we conclude that V0(p) = 0

implies ⟨∇H(p),∇Φ(p)⟩ ≥ 0. But then, we have

0 = V0(p) = ∇H(p)− ⟨∇H(p),∇Φ(p)⟩
|∇Φ(p)|2

∇Φ(p).

With our assumptions, we conclude ⟨∇H(p),∇Φ(p)⟩ < 0 and, thus, a contra-

diction. As a closed subset of a compact set, Db
a∩∂D is compact and, therefore,

we have some m1 > 0 such that

|V0(p)| ≥ m1 > 0 ∀p ∈ Db
a ∩ ∂D

as well as

|∇H(p)| ≥ m1 > 0 ∀p ∈ Db
a ∩ ∂D.

If ⟨∇H(p),∇Φ(p)⟩ < 0, we have

⟨∇H(p), V0(p)⟩ = |∇H(p)|2 ≥ m2
1 > 0.

If ⟨∇H(p),∇Φ(p)⟩ ≥ 0, we calculate

⟨∇H(p), V0(p)⟩ = ⟨∇H(p), V0(p)⟩+ 0

= ⟨∇H(p), V0(p)⟩ −

〈
⟨∇H(p),∇Φ(p)⟩
|∇Φ(p)|2

∇Φ(p), V0(p)

〉
= ⟨V0(p), V0(p)⟩ = |V0(p)|2 ≥ m2

1 > 0.

Thus, we conclude (4.2.2).



56CHAPTER 4. CRITICAL POINTS ON ALL SURFACES EXCLUDING THE SPHERE

The next step is to extend V0 to V1, which will be de�ned on Db
a. Because M0

is a regular value of Φ, the set

∂D = Φ−1(M0)

is a compact submanifold of M . Thus, we have δ0 > 0 such that every maximal

geodesic γ of M with γ(0) = p ∈ ∂D will at least have length 2δ0. For p ∈ M ,

we de�ne

γp : (−δ0, δ0)→M

as the geodesic, with initial value conditionγ′ = νp := − ∇Φ(p)
|∇Φ(p)|

γ(0) = p.

Note here that νp is the inner normal vector of p ∈ ∂D. Furthermore, the map

χ−1 : ∂D × (−δ0, δ0)→M, (p, t) 7→ γp(t)

is C∞, because ∂D is compact. We de�ne

O := χ−1 (∂D × (−δ0, δ0)) .

Without loss of generality, we assume that O is a tubular neighbourhood of

∂D (if not we choose a smaller δ0 > 0). Then, χ−1 : ∂D × (−δ0, δ0) → O is

a C∞-di�eomorphism and we de�ne χ := (χ1, χ2) as its inverse. We have for

every p ∈ O that

p = γχ1(p)(χ2(p)) and d(p, χ1(p)) = χ2(p).

The second equation holds, because γp is parametrized by arc length, as |νp| = 1.

We now de�ne Xp : (−δ0, δ0) → TM with Xp(t) ∈ Tγp(t)M , as the parallel

transport of V0(p) along γp. So, Xp is uniquely determined by the initial value

problem ∇γ′
p(t)

u(t) = 0

u(0) = V0(p).

Before we extend V0, we look at the map

O ∋ p 7→ Xχ1(p)(χ2(p)) ∈ TpM

in any local chart. In a local chart, the initial value problem for Xp translates
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to an initial value problem of the formu′(t) = Ax(t)u(t)

u(0) = g(x),

where g is a Lipschitz continuous function, Ax(t) is a matrix, and (x, t) 7→ Ax(t)

is C∞. If now Ux(t) is a fundamental system to u′(t) = Ax(t)u(t), the map

(x, t) 7→ Ux(t) is also C∞. Then, we have

Xx(t) = Ux(t)
(
Ux(0)

−1g(x)
)

and conclude that (x, t) 7→ Xx(t) is Lipschitz continuous. Thus,

O ∋ p 7→ Xχ1(p)(χ2(p)) ∈ TpM

is Lipschitz continuous in a local chart. For 0 < δ < δ0, we de�ne Vδ : Db
a → TM

in the following way

Vδ(p) :=


δ−χ2(p)

δ Xχ1(p)(χ2(p)) +
χ2(p)

δ ∇H(p), p ∈ Db
a ∩ O, χ2(p) ≤ δ

∇H(p), p ∈ Db
a \ O or p ∈ Db

a ∩ O, χ2(p) > δ.

First, note that this is well de�ned, becauseXχ1(p)(χ2(p)) ∈ TpM . If p ∈ Db
a∩O,

we have χ2(p) ≥ 0. Furthermore, if p ∈ ∂D, we have χ(p) = (p, 0) and, thus,

Vδ(p) = Xp(0) = V0(p).

We immediately conclude that (4.2.1) holds for Vδ. Furthermore, the map

O ∋ p 7→
〈
∇H(p), Xχ1(p)(χ2(p))

〉
is continuous and for p ∈ ∂D we have

〈
∇H(p), Xχ1(p)(χ2(p))

〉
= ⟨∇H(p), V0(p)⟩ ≥ m2

1 > 0.

By continuity and d(p, χ1(p)) = χ2(p), we choose a �xed δ1 > 0 such that

〈
∇H(p), Xχ1(p)(χ2(p))

〉
> 0 ∀p ∈ Db

a ∩ O, χ2(p) ≤ δ1.

We de�ne V1 := Vδ1 . Then, also (4.2.2) holds for V1, because either

⟨∇H(p), V1(p)⟩ = ⟨∇H(p),∇H(p)⟩ > 0
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or

⟨∇H(p), V1(p)⟩ =
〈
∇H(p),

δ − χ2(p)

δ
Xχ1(p)χ2(p) +

χ2(p)

δ
∇H(p)

〉
=
δ1 − χ2(p)

δ1

〈
∇H(p), Xχ1(p)(χ2(p))

〉
+
χ2(p)

δ1
|∇H(p)|2 > 0.

So, (4.2.1) and (4.2.2) hold for V1. Finally, we de�ne V :M → TM with

V (p) :=


V1(p), p ∈ Db

a

δ1+χ2(p)
δ1

Xχ1(p)(χ2(p)), p ∈ O, 0 > χ2(p) ≥ −δ1
0, p ∈M \ O or p ∈ O, χ2(p) < −δ1.

The last remaining property we have to check is that V is locally Lipschitz

continuous. However, this follows, because in a chart V is built from Lipschitz

continuous functions, which coincide on the set where we change the de�nition.

□

We now prove Theorem 4.2.2 . Assume H has no critical point in Db
a. Let

V : M → TM be the vector �eld constructed in Lemma 4.2.3 . Because V is

locally Lipschitz and vanishes outside of a compact set, there exists a global

�ow ϕ :M ×R→M associated with the vector �eld V . Because of (4.2.1), the

�ow satis�es

p ∈ Db
a, a ≤ H(ϕ(p, t)) ≤ b∀t ∈ [0, T ]⇒ ϕ(p, t) ∈ Db

a ∀t ∈ [0, T ].

Furthermore, since (Link) holds, for every n ∈ N, we have ξn ∈ S such that

ϕ(γ0(ξn), n) ∈ L. Because of (Bound), we have a < H(ϕ(γ0(ξn), n)) < b.

Because S is sequentially compact, there exists ξ ∈ S such that ξn → ξ along a

subsequence. As a consequence, we have γ0(ξ) ∈ Db
a and a ≤ H(ϕ(γ0(ξ)), t) ≤ b

for all t ≥ 0. This is the contradiction we want to derive: Because of (4.2.2), we

have ⟨∇H(p), V (p)⟩ ≥ m1 > 0 for every p ∈ Db
a. Because of ϕ(γ0(ξ), t) ∈ Db

a,

we conclude

O(1) = H(ϕ(γ0(ξ), t))−H(ϕ(γ0(ξ), 0))

=

� t

0

⟨∇H(ϕ(γ0(ξ), s)), ϕ
′(γ0(ξ), s)⟩ ds

=

� t

0

⟨∇H(ϕ(γ0(ξ), s)), V (ϕ(γ0(ξ), s))⟩ ds

≥
� t

0

m1 ds = t ·m1
t→∞→ ∞.
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□

4.3 Achieving the compactness

In this section, we will show that our compactness conditions hold and, thus,

we will prove the Theorems 4.0.1, 4.0.2 and 4.0.3. We will split this into three

parts, whereas each part will handle one theorem.

4.3.1 Theorem 4.0.1

Lemma 4.3.1. Let Σ be closed and (4.0.1) hold. There exists µ > 0 such that

|∇HΓ(p)| > 1 for every

p ∈ ∆µ
NΣ ∩ FNΣ = {p ∈ FNΣ|∃i ̸= j : dg(pi, pj) ≤ µ} .

In particular, HΓ satis�es the Palais-Smale-condition.

Before we start the proof, note that this lemma is similar to [22, Prop. 4.1].

We will use the calculations from this paper to prove our lemma. We formulate

everything similarly to it to ease the comparison.

Proof: In [22], the author looks at the behavior of HΓ for some clusters C ⊂
{1, . . . , N} with |C| ≥ 2, i.e. when dg(pi, pj) < µ for every i, j ∈ C. Without loss

of generality, we assume µ > 0 to be small enough, such that if dg(pi, pj) < µ,

there exists a locally conformal �at chart φC : UC → VC such that pi ∈ UC if

i ∈ C. Now, we look at HΓ in a chart φ : U → V where φi = φC , if i ∈ C and

φj is some arbitrary chart if j ̸∈ C. With x = φ(p) = (φ1(p1), . . . φN (pN )), we

then have the following decomposition of HΓ :

(HΓ)φ (x) = − 1

2π
JC(x) +K(x),

where

JC(x) :=
∑
i,j∈C
i̸=j

ΓiΓj ln |xi − xj |

and

KC(x) := −
1

2π

∑
i∈C ̸∋j

ΓiΓjGφ (xi, xj)−
1

2π

∑
i ̸=j

i,j ̸∈C

ΓiΓjGφ(xi, xj) + Ψ̃(x).

Note that Ψ̃ is smooth and bounded. Next, we de�ne |x|C := |πCx|, where

πC :
(
R2
)N → {x = (x1, . . . , xN ) : xi = 0 for all i ̸∈ C}



60CHAPTER 4. CRITICAL POINTS ON ALL SURFACES EXCLUDING THE SPHERE

is the orthogonal projection. Now, following the calculations of [22, Lem. 4.2;

Lem. 4.3], we derive

|∇HΓ(x)| ≥ |∇HΓ(x)|C ≥
1

2π
|∇JC(x)| − |∇KC(x)|C

≥ CΓ

2π

(∑
i∈C

|xi − xC |2
)− 1

2

− C̃ ≥ CΓ

4π

(∑
i∈C

|xi − xC |2
)− 1

2

,

where xC is some cluster point, i.e. there exists µ̃ ∈ (0, µ) such that |xi − xC | <
µ̃ for every i ∈ C, C̃ > 0 is just a constant and CΓ is de�ned in [22] by

CΓ := min
P partition of {1,...,N}

C(P )̸=∅

min
C∈C(P)

∣∣∣∣∣∣∣∣
∑
i,j∈C
i̸=j

ΓiΓj

∣∣∣∣∣∣∣∣ ,
where C(P) = {I ∈ P : |I| ≥ 2}. Because of (4.0.1), we have CΓ > 0. Now,

we �nish the lemma with a contradiction. Assume there exists 0 < µn → 0,

pn ∈ ∆µn

N Σ ∩ FNΣ such that ∇HΓ(p
n) ≤ 1. Without loss of generality, we

assume µn ≤ 1, which implies

pn ∈ ∆µn

N Σ ∩ FNΣ ⊂ ∆1
N .

So there exists a p ∈ ∆1
N and a convergent subsequence (again denotet by pn)

with pn → p. Because pn ∈ ∆µn

N Σ, there exists i ̸= j such that p0 := pi = pj .

Thus, there exists a cluster

C := {l ∈ {1, . . . , N} : pl = p0} .

Now, going into a conformal �at chart φ around that cluster and de�ning xi :=

φi(pi), x0 := φC(p0), we then deduce

1 ≥
∣∣∣∇ (HΓ)φ (xn)

∣∣∣ ≥ CΓ

4π

(∑
i∈C

|xni − x0|
2

)− 1
2

.

We claim that, dg(φ
−1
C (xni ), φ

−1
C (x0)) ≤ µn, implies |xni − x0| ≤ C1µn := µ̃n,

where C1 > 0 is a constant. In order to see this let g̃ = e2ug be a to g conformal

metric and let γ = γp,q : [0, 1] → Σ be a path with γ(0) = p and γ(1) = q. We

remind, that the length of γ is de�ned by

Lḡ(γ) :=

� 1

0

√
ḡ (γ′(t), γ′(t)) dt ḡ ∈ {g, g̃}.
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Now, with eu ≤ C1, we see

Lg̃(γ) ≤ C1Lg(γ).

This implies

dg̃(p, q) = inf
γp,q

Lg̃(γp,q) ≤ C1 inf
γp,q

Lg(γp,q) = C1dg(p, q).

Now, with |xni − x0| = dg̃(φ
−1
C (xni ), φ

−1
C (x0)), the claim follows. Finally, we

observe µ̃n → 0 and, thus,

1 ≥
∣∣∣∇ (HΓ)φ (xn)

∣∣∣ ≥ CΓ

4π
√
|C|µ̃n

→∞.

The fact that HΓ satis�es the Palais-Smale-condition follows, because ∆µ
NΣ ∩

FNΣ is a neighborhood of ∂FNΣ. Thus, every Palais-Smale sequence stays

inside some compact subset of FNΣ and must have a convergent subsequence.

□

Proof of Theorem 4.0.1: According to the linking and Lemma 4.2.1,

there exists a �ow line along which HΓ is bounded, i.e. there exists p ∈ FNΣ

such that

lim
t→T+(p)

HΓ(ϕ(t, p)) ≤ C0 <∞,

where ϕ is the gradient �ow of HΓ and ϕ : (·, p) : (T−(p), T+(p)) → FNΣ.

First, we show that T+(p) = ∞. This is done like in [22, Lem 4.7]. Because

[t0, t1] ∋ s 7→ ϕ(s, p) is a path from ϕ(t0, p) to ϕ(t1, p), we see that

dg(ϕ(t0, p), ϕ(t1, p)) ≤
� t1

t0

|∇HΓ(ϕ(s, p))| ds

≤
√
t1 − t0

√� t1

t0

|∇HΓ(ϕ(s, p))|2 ds

=
√
t1 − t0

√
HΓ(ϕ(t1, p))−HΓ(ϕ(t0, p))

≤
√
|t1 − t0|

√
C0 −HΓϕ((t0, p)).

Now, assuming T+(p) < ∞, we see that there exists some p̄ ∈ FNΣ such that

ϕ(s, p) → p̄ for s → T+(p). If p̄ ∈ FNΣ, we are done, because then ϕ(·, p)
remains in a compact set of FNΣ. If p̄ ∈ ∂FNΣ, there exists a cluster C such

that p̄i = p̄j = p̄C for every i, j ∈ C and |C| ≥ 2. We choose a chart φ around p̄

such that φi = φC is a conformal �at chart around p̄C for every i ∈ C. In that



62CHAPTER 4. CRITICAL POINTS ON ALL SURFACES EXCLUDING THE SPHERE

chart, we follow [22, Lem 4.7] and see

(HΓ)φ (ϕ(t1, p))− (HΓ)φ (ϕ(t0, p))→∞ for t1 → T+(p).

This is a contradiction, hence T+(p) = ∞. Now, pn := ϕ(n, p) is a Palais-

Smale-sequence and, therefore has a convergent subsequence. The limit of this

subsequence then is a critical point of HΓ. □

Remark. One may wonder, if Theorem 4.2.2 could be used to achieve

Theorem 4.0.1. For this case we change the condition
∑

i,j∈I
i̸=j

ΓiΓj ̸= 0 to∑
i,j∈I
i̸=j

ΓiΓj < 0. In this case we are able to give a proof. We assume that

Φ(p) ≥M0, a ≤ H(p) ≤ b,∇H(p) = λ∇Φ(p)⇒ λ < 0

does not hold, where

Φ(p) =
∑
i ̸=j

|ΓiΓj |G(pi, pj).

This leads to pni → p∗ ∈ Σ for some i ∈ I. Going into a conformal �at chart

and de�ning zni = xni if i ∈ I and znj = 0 if j ̸∈ I, leads to

⟨∇H(xn), zn⟩ = − 1

2π

∑
i∈I

∑
i̸=j∈I

ΓiΓj

〈
xni − xnj , xni

〉∣∣xni − xnj ∣∣2 + o(1)

= − 1

4π

∑
i,j∈I
i̸=j

ΓiΓj + o(1),

as well as

⟨∇Φ(xn), zn)⟩ = − 1

4π

∑
i,j∈I
i̸=j

|ΓiΓj |+ o(1).

Thus, one can conclude

0 ≤ λn =
⟨∇H(xn), zn⟩
⟨∇Φ(xn), zn)⟩

=

∑
i,j∈I
i̸=j

ΓiΓj∑
i,j∈I
i̸=j

|ΓiΓj |
+ o(1) < 0.

These calculations also appear in [6]. With Theorem 4.2.2, this establishes a

critical point.

To keep our previous assumptions, it is necessary to show that also
∑

i,j∈I
i̸=j

ΓiΓj >

0 yields a contradiction. This will be a lot harder, because now one ends up

to sort the points by how fast they approach to p∗ and further by which Γi is

positive or negative. When Γi > 0 for 1 ≤ i ≤ N − 1 and ΓN < 0, the calcula-
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tions for this are similar to [14], because only one moving vortex with negative

sign behaves like a �xed one. But, when there are more Γi involved, the proper

sorting becomes more complicated.

Because we can rely on the calculations of [22], we prefer to use them instead.

4.3.2 Theorem 4.0.2

Besides our derivation of Theorem 4.0.1, we need to consider clusters around

points at the boundary of Σ. Most important for this, will be [22, Lem. 4.5].

Lemma 4.3.2. Assume Σ has boundary and (4.0.1), (4.0.2) hold. Further, let

p̃ ∈ ∂FNΣ with p̃i = p̃j for i ̸= j implies p̃i ∈ ∂Σ. Moreover, let C be a cluster,

i.e. p̃i = pC ∈ ∂Σ for all i ∈ C and p̃k ̸= pC for all k ̸∈ C. Then, there exists

δ > 0 such that

|∇ΓH(p)| ≥ εC
2π

∑
j∈C

d2pj

− 1
2

for every p ∈ Uδ(p̃) ∩ FNΣ,

where

εC :=
1

2

∑
i∈C

Γ2
i −

∑
i,j∈C
i̸=j

ΓiΓj

 > 0.

Proof: For every i ∈ C, we use a conformal �at chart φC around pC , for

every k ̸∈ C, we use some chart φk. This yields a chart φ such that for i ̸= j ∈ C,
we have

Gφ(xi, xj) =
1

2π
ln
|x̄i − xj |
|xi − xj |

+O(1),

where the O(1) is in a C1-sense. Further, for i ∈ C ̸∋ k, we have that

Gφ(xi, xk) = O(1) again in a C1-sense. The rest is the same as in [22, Lem. 4.4;

Lem. 4.5].

□

Proof of Theorem 4.0.2: First, we prove that for every

p ∈Mδ := {q ∈ FNΣ : dg(qi, qj) ≤ δ or dqi ≤ δ for some 1 ≤ i < j ≤ N} ,

we have |∇HΓ(p)| > 1. Arguing by contradiction suppose there exist δn → 0,

pn ∈ Mδn such that |∇HΓ(p
n)| ≤ 1. Because ΣN is compact, there exists

a convergent subsequence (again denoted with pn) and p0 ∈ ΣN such that

pn → p0. Because δn → 0, there exists i ̸= j such that p0i = p0j or dp0
i
= 0.
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If there exists a cluster C with int(Σ) ∋ pC = p0i for all i ∈ C, we reach a

contradiction like in the previous section. And for a cluster with ∂Σ ∋ pC = pi

for i ∈ C, with lemma 4.3.2, we obtain the contradiction

1 ≥ |∇HΓ(p
n)| ≥ εC

2π

∑
j∈C

d2pn
j

 1
2

≥ εC

2
√
|C|δn

→∞.

Thus, again, we see that HΓ satis�es the Palais-Smale-condition. With Lemma

4.2.1, we again �nd a p ∈ FNΣ such that

lim
t→T+(p)

HΓ(ϕ(p, t)) ≤ C0 <∞,

where ϕ is the gradient �ow of HΓ and ϕ(·, p) : (T−(p), T+(p)) → FNΣ. With

[22, Lem. 4.7], and the calculations we saw earlier, we deduce T+(p) = ∞.

Then, pn := ϕ(n, p) is Palais-Smale-sequence and the corresponding limit of the

convergent subsequence is a critical point of HΓ.

□

4.3.3 Theorem 4.0.3

Proof of Theorem 4.0.3: Let Σ have boundary and let (4.0.3) hold. We will

use Theorem 4.2.2 to prove it. We de�ne

Φ : FNΣ→ R, Φ(p) := −
∑
i ̸=j

|ΓiΓj |G(pi, pj) +
N∑
i=1

Γ2
ih(pi, pi).

Proposition 4.3.3. For every a < b ∈ R exists M0 > 0 such that

Φ(p) ≤ −M0, a ≤ HΓ(p) ≤ b, ∇HΓ(p) = λ∇Φ(p)⇒ λ > 0.

Proof: This is [6, Prop. 3.1] generalized to a surface. Thus, we only need

to do the localization. Every further necessary calculation can be found in [6].

Therefore, assume the opposite holds. Then, there exists a < b ∈ R, pn ∈ FNΣ,

λn ≤ 0 such that Φ(pn) → −∞, a ≤ HΓ(p
n) ≤ b and ∇HΓ(p

n) = λn∇Φ(pn).
Let p0 ∈ ΣN be the limit of pn (which exists along a subsequence, because Σ

is compact). Because Φ(pn)→ −∞ and H(pn) = O(1), there exists i ̸= j such

that p0i = p0j . Now, let φ be a chart around p0 where φi = φj for all i ̸= j with

p0i = p0j and each φi being a conformal �at chart. Then, Gφ is a generalized

Green's functions in the sense of [6], i.e. every point of [6, Lem 3.2] holds for

Gφ. Hence, with the calculations of [6], we reach a contradiction.

□
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Now, let a < b ∈ R satisfy (Bound). With the Proposition 4.3.3, we see that

for −Φ, there exists M0 > 0 such that

−Φ(p) ≥M0, a ≤ HΓ(p) ≤ b, ∇HΓ(p) = −λ∇Φ(p)⇒ λ < 0.

Note that this will hold true for any M1 > M0 . Thus, according to the Lemma

of Sard, we chooseM0 to be a regular value of −Φ and withM0 > supS −Φ◦γ0.
The only remaining step to apply Theorem 4.2.2 is to prove that

∅ ≠ D = {p ∈ FNΣ : −Φ(p) ≤M0} ⊂ int(FNΣ) = FN (int(Σ))

is compact. That ∅ ≠ D ⊂ int(FNΣ) is obvious. Furthermore, we see that D is

closed and that there exists δ1, δ2 > 0 such that

D ⊂
{
p ∈ ΣN : dg(pi, pj) ≥ δ1, dist(pi, ∂Σ) ≥ δ2

}
.

Hence, as a closed subset of a compact set, D itself is compact. We brie�y

show that δ1, δ2 exist. Assume the contrary, then there exists pn ∈ D such that

dg(p
n
i , p

n
j )→ 0 or dpn

i
→ 0. However, this means M0 ≥ −Φ(pn)→∞.

With Theorem 4.2.2 HΓ has a critical point.

Remark. Because so many methods and results, for critical points of HΓ,

of open sets in R2 translate to surfaces, it is possible that results on dynamics

also translate to surfaces. As this is not included in this thesis, it is a potential

route to continue research from this work onwards.



Chapter 5

Critical points under

symmetries

In this chapter, we assume that the closed d-dimensional Riemanian manifold

(Σ, g) is symmetric in the sense that there exists a C∞ isometry τ : Σ→ Σ, i.e.τ

is a C∞-di�eomorphism that satis�es

gp(X,Y ) = gτ(p) (Dpτ(X), Dpτ(Y )) for all p ∈ Σ;X,Y ∈ TpΣ. (Sym)

5.1 The Green's function under symmetries

Theorem 5.1.1. If G : F2Σ→ R is a Green's function of the negative Laplace-

Beltrami Operator −∆g, then

Gτ : F2Σ→ R, Gτ (p1, p2) = G(τ(p1), τ(p2))

also is a Green's function to the negative Laplace-Beltrami-Operator, hence G−
Gτ is constant. If there exists p1 ̸= p2 ∈ Σ such that τ(pi) = pi for i = 1, 2 then

G = Gτ .

For the proof of this, we need to show that

−f(p) = 1

volgΣ

�
Σ

f dVg +

�
Σ

Gτ (p, q)∆gf(q) dVg(q), ∀f ∈ C2(Σ).

Lemma 5.1.2. For every measurable set A ⊂ Σ with τ(A) = A and all contin-

66
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uous maps f : A→ R, there holds

�
A

f dVg =

�
A

f ◦ τ dVg.

Proof: Let φ = (x1, . . . , xd) : U → Rd be a chart of Σ. Further, let

gφ(x) = (gi,j(x))
d
i,j=1 be the local representation of g in φ. Also, let |gφ(x)| :=

det(gφ(x)) > 0. Per de�nition, we have

�
U

f dVg =

�
φ(U)

f ◦ φ−1
√
|gφ| dx1 . . . dxd.

Furthermore, the map φτ := φ ◦ τ−1 : τ(U) → Rd is a chart of Σ. Because of

(Sym), we have √
|gφ| =

√
|gφτ
|.

We calculate

�
τ(U)

f dVg =

�
φ◦τ−1(τ(U))

f ◦ (φ ◦ τ−1)−1 ·
√
|gφτ
| dx1 . . . dxn

=

�
φ(U)

(f ◦ τ) ◦ φ−1
√
|gφ| dx1 . . . dxn

=

�
U

f ◦ τ dV.

Now, let (Ui)
∞
i=1 be a disjoint family of sets Ui ⊂ Σ such that for every Ui there

exists a chart φi : Ui → Rd and

A = N ∪
∞⋃
i=1

Ui,

where N is a zero set. Then,

�
A

f ◦ τ dVg =

∞∑
i=1

�
Ui

f ◦ τ dVg

=

∞∑
i=1

�
τ(Ui)

f dVg =

�
τ(A)

f dVg =

�
A

f dVg.

□

Lemma 5.1.3. Let f be C2, then

∆g(f ◦ τ)(p) = ∆gf(τ(p)).
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Proof: In the chart φ, the Laplace-Beltrami Operator is given by

∆gf =
1√
|gφ|

∂i

(
gi,jφ

√
|gφ|∂j

(
f ◦ φ−1

))
,

where g−1
φ (x) =

(
gi,jφ (x)

)d
i,j=1

and we have used the Einstein summation con-

vention. Next, let φ be a chart around p ∈ Σ with φ(p) = 0. Again, let

φτ := φ ◦ τ−1. This is a chart around τ(p) and, with (Sym), there holds

gφ = gφτ
=: g. Hence, we calculate

∆gf(τ(p)) =
1√
|g|
∂i

(√
|g|gi,j∂j(f ◦ (φ ◦ τ−1)−1)

)
(0)

as well as

∆g(f ◦ τ)(p) =
1√
|g|
∂i

(√
|g|gi,j∂j(f ◦ τ ◦ φ−1)

)
(0)

=
1√
|g|
∂i

(√
|g|gi,j∂j(f ◦ (φ ◦ τ−1)−1)

)
(0).

□

We are now ready to prove Theorem 5.1.1. Using the two preceding lemmas,

we calculate

−(f ◦ τ)(p) = −f(τ(p)) = 1

volgΣ

�
Σ

f +

�
Σ

G(τ(p), q)∆gf(q) dVg(q)

=
1

volgΣ

�
Σ

f ◦ τ +
�
Σ

G(τ(p), τ(q))∆gf(τ(q)) dVg(q)

=
1

volgΣ

�
Σ

f ◦ τ +
�
Σ

Gτ (p, q)∆g(f ◦ τ)(q) dVg(q).

We see that for Gτ the equation we need to show holds for f ◦ τ if f : Σ→ R is

C2. Since τ is one to one, and τ as well as τ−1 are C∞, any C2 map f̃ : Σ→ R
can be written in the form f̃ = f ◦ τ , where f := f̃ ◦ τ−1, then is C2. Hence, Gτ

is a Green's function to the negative Laplace-Beltrami operator.

Since Gτ is a Green's function, we have G−Gτ ≡ const and with pi = τ(pi) we

have

G(p1, p2)−Gτ (p1, p2) = 0.

5.2 The Principle of Symmetric Criticality

In this section, we want to use the Principle of Symmetric Criticality to achieve

critical points of HΓ. The following theorem states this principle.
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Theorem 5.2.1. Let Σ be a closed riemanian manifold and G be a group of

isometries on Σ. Further, let f : Σ→ R be invariant under G i.e.

f(p) = f(τp) ∀τ ∈ G.

When FixG denotes �xed points of G, then FixG is a totally geodesic submanifold

of Σ and, if p ∈ FixG is a critical point of f |FixG , then p is a critical point of

f .

Proof: See [27] □

Now, let d = 2 and τ : Σ→ Σ be an isometry with τ2 = id such that

Fixτ =
l⋃

i=1

Di

for l ∈ N, and Di
∼= S1 are the connected components of Fixτ for all 1 ≤ i ≤ l.

For example, τ can be a re�ection along some plane, when Σ is imbedded in R3.

Moreover, let 2 ≤ N ∈ N and

H : FNΣ→ R, H(p) :=
∑
i ̸=j

ΓiΓjG(pi, pj) + Ψ(p)

with Ψ : ΣN → R being C∞ and with Ψ◦τ = Ψ. We make no di�erence between

τ : Σ→ Σ and

τ : ΣN → ΣN , τ(p) := (τ(p1), . . . , τ(pN )) .

In Theorem 5.1.1, we showed that G ◦ τ = G, hence H ◦ τ = H. This means we

can apply Theorem 5.2.1. In Addition, note that, because of (Sym), we have

dg = dg ◦ τ for the distance dg : Σ2 → R. Furthermore, the map

R(pi) := lim
q→pi

G(pi, q) +
1

2π
ln (dg(pi, q))

satis�es R ◦ τ = R. Hence, the map HΓ is contained in the class of maps that

are included here.

Theorem 5.2.2. i) Let N be even, i.e. N = 2k for k ∈ N, and Γσ(i) =

(−1)i for some σ ∈ Sym(N) for all i = 1, . . . , N . Then, H has at least

l · k critical points.
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ii) Let N = 4, Γ1,Γ3 > 0 > Γ2,Γ4 and∑
J

i̸=j

ΓiΓj < 0 for all J ⊂ {1, 2, 3, 4} with |J | = 3

|Γi| < |Γ1|+ |Γ3| i = 2, 4

|Γi| < |Γ2|+ |Γ4| i = 1, 3.

Then, H has at least 2l critical points.

Proof: Without loss of generality, we assume that σ = id. Due to Theorem

5.2.1, we only need to �nd critical points of H|Fixτ . We will search for sets

Li ⊂ Fixτ ⊂ FNΣ for 1 ≤ i ≤ l · k where in ii) k = 2. Thereafter, we will show

that infH|Li > −∞ and that the negative gradient �ow of H|Fixτ is invariant in

Li and exists for an in�nite time. This, will correspond to a critical point p ∈ Li.

We will see that the Li are distinct and, thus, yield the number of critical points

as claimed. Essentially, we will write p = (p1, . . . , p2k) = (q1, . . . , qk) where

qi = (p(2i−1), (p2i)). We derive the factor l · k by placing the qi ∈ Di ×Di and,

thus, have kl di�erent possibilities. In ii), its the same, but with N = 4 = 2 · 2
we have 2 · l = k · l.
Let α ∈ {1, . . . , l}k be a multiindex. We �rst de�ne Lα ⊂ Fixτ ⊂ FNΣ. A

point p = (q1, . . . , qk) ∈ FNΣ belongs to Lα, if the following holds:

� qi ∈ D2
αi

for every 1 ≤ i ≤ k.

� For every 1 ≤ j ≤ l, there exists a parametrization γj : [0, 1]→ Dj of Dj

such that γj(0) = γj(1) ̸= pi for every i = 1, . . . , N , γj be one to one as

a map (0, 1) → Dj \ {γj(0)}. Now, let {j1, . . . , j2s} be the set of indices
such that pji ∈ Dj for every 1 ≤ i ≤ 2s. Then, there exists tji ∈ (0, 1)

such that γj(tji) = pji . Without loss of generality, we assume tji < tji+1

for i = 1, . . . , 2s− 1. Then, there must hold

ΓjiΓji+1
< 0 for every i = 1, . . . , 2s− 1.

Note that because there is an even amount of points on Dj , this also yields

Γj1Γj2s < 0.

This means that we locate an even amount of points on Dj , the connected

component of Fixτ . The points are arranged such that the adjacent points

have a di�erent sign in the vorticities.

Lemma 5.2.3.

(pn)n ⊂ Lα, p
n → ∂FNFixτ ⇒ H(pn)→ −∞.
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Proof: pn → ∂FNFixτ yields dg(p
n
i , p

n
j )→ 0 for n→∞. Because Fixτ ⊂ ΣN

is compact, there exists a limit p0 ∈ Fixτ along a subsequence (again denotet

with n). This yields a partition I0, . . . , Im of {1, . . . , N} where i ∈ I0 i� p0i ̸= p0k
for every k ̸= i and j ∈ Ij i� p0j = p0k ̸= pks for every k ∈ Ij ̸∋ s. Because Fixτ
is a totally geodesic submanifold, there exists a conformal �at chart around p0

with xni = φi(p
n
i ) ∈ R× {0}, such that

Hφ(p
n) =

m∑
i=1

− 1

2π

∑
k,j∈Ii

k ̸=j

ΓjΓk ln
∣∣xnj − xnk ∣∣+O(1)

= − 1

2π

m∑
i=1

ln

 ∏
k,j∈Ii

k ̸=j

∣∣xnj − xnk ∣∣ΓjΓk

+O(1).

The rest follows from pn ∈ Lα and Lemma 5.2.4, which will be provided right

after the rest of the proof.

□

So maxH|Lα
exists. That maximum is a critical point of maxH|Lα

. Then

it also is a critical point of H|Fixτ
and as a consequence of the principle of

symmetric criticality also one of H. As a result, we found
∣∣{1, . . . , l}k∣∣ = k · l

critical points.

□

Remark. Before we prove the �nal lemma, we want to remark that the

amount of critical points we inferred from this method is not optimal. The

reason for this is that when we wrote p as k pairs of points, we could also have

written p = (q1, . . . , qk) with qi = (pσ(i), pσ(i+1)) such that Γσ(i)Γσ(i+1) < 0 for

some σ ∈ Sym(N). There are k! ways of doing this. However, when placing

qi ∈ D2
j , we would have to be more careful. If qk ∈ D2

j we could count a critical

point more than once, when using this method. We do not solve this shortcom-

ing in this study. However, it demonstrates potential for future lines of research.

Lemma 5.2.4. i) Let k ∈ N, (tni )n ⊂ R and tn1 < tn2 < · · · < tnk for every

n ∈ N. We de�ne

αn
2 :=

1

|tn1 − tn2 |
, αn

j :=


αn
j−1

1

|tn1 −tnj |
∏ j

2−1
i=1

|tnj −tn2i|
|tnj −tn2i+1|

, j even

αn
j−1

∏ j−1
2

i=1
|tn2i−1−tnj |
|tn2i−tnj |

, j uneven.

Then, αn
k → ∞, if |tn1 − tnk | → 0. Note that αn

k =
∏

i ̸=j

∣∣tni − tnj ∣∣ΓiΓj
, if
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Γi = (−1)i.

ii) Let 0 ≤ tn1 < tn2 < tn3 < tn4 and γi > 0, then

|tn3 − tn1 |
γ1γ3 |tn4 − tn2 |

γ2γ4

|tn1 − tn2 |
γ1α2 |tn1 − tn4 |

γ1γ4 |tn3 − tn2 |
γ2γ3 |tn3 − tn4 |

γ3γ4
→∞,

if tn1 , t
n
2 → 0 and if γ1γ3 − γ1γ2 − γ3γ2 < 0, γ4γ2 − γ1γ4 − γ1γ2 < 0,

γi < γ1 + γ3 for i = 2, 4 and γi < γ2 + γ4 for i = 1, 3.

Proof: i): We prove this by induction. Its clear that αn
2 →∞. If k is even,

we have

αn
k = αn

k−1

1

|tn1 − tnk |︸ ︷︷ ︸
→∞

k
2−1∏
i=1

|t2i − tk|
|t2i+1 − tk|︸ ︷︷ ︸

≥1

→∞.

If k is uneven, we have

αn
k = αn

k−1
→∞

·

k−1
2∏

i=1

∣∣tn2i−1 − tnk
∣∣

|tn2i − tnk |︸ ︷︷ ︸
≥1

→∞.

ii): Without loss of generality, we assume tn1 ≡ 0. Then,

|tn3 − tn1 |
γ1γ3 |tn4 − tn2 |

γ2γ4

|tn1 − tn2 |
γ1γ2 |tn1 − tn4 |

γ1γ4 |tn3 − tn2 |
γ2γ3 |tn3 − tn4 |

γ3γ4

=
|tn3 |

γ1γ3 |tn4 − tn2 |
γ2γ4

|tn2 |
γ1γ2 |tn4 |

γ1γ4 |tn3 − tn2 |
γ2γ3 |tn3 − tn4 |

γ3α4
.

We have to look into four di�erent cases. If tn3 ̸→ 0, we also have that |tn4 − tn2 | ̸→
0 and the claim follows.

Now, let
tn3
tn4

= o(1). Then, we have
tn2
tn4

= o(1). In this case, we need tn2 < tn3 and

|tn2 − tn3 | = tn3 − tn2 < tn3 to see that

|tn3 |
γ1α3 |tn4 − tn2 |

γ2γ4

|tn2 |
γ1γ2 |tn4 |

γ1γ4 |tn3 − tn2 |
γ2γ3 |tn3 − tn4 |

γ3γ4

≥ (tn3 )
γ1γ3−γ1γ2−γ2γ3 · |tn2 − tn4 |

γ2γ4

|tn4 |
γ1γ4 |tn3 − tn4 |

γ3γ4
.

Because of γ1γ3 − γ1γ2 − γ2γ3 < 0, we have (tn3 )
γ1γ3−γ1γ2−γ2γ3 →∞. Thus, we

show that
|tn2 − tn4 |

γ2γ4

|tn4 |
γ1γ4 |tn3 − tn4 |

γ3γ4
≥ β > 0
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and the claim will follow. For i = 2, 3, we have

|tni − tn4 |
tn4

= 1− tni
tn4

= 1 + o(1).

Thus, we infer

|tn2 − tn4 |
γ2γ4

|tn4 |
γ1γ4 |tn3 − tn4 |

γ3γ4

=(tn4 )
α4(γ2−γ1−γ3)

(
|tn2 − tn4 |

tn4

)γ2γ4

·
(

tn4
|tn3 − tn4 |

)γ3γ4

︸ ︷︷ ︸
→1

.

With γ2 − γ1 − γ3 < 0, we see that (tn4 )
α4(γ2−γ1−γ3) ̸→ 0 and our claim follows.

We continue with the third case,
tn4
tn2

= O(1), note that then also
tn4
tn3

= O(1). We

see that ∣∣tni − tnj ∣∣
|tnk − tnl |

= O(1) ∀i ̸= j, k ̸= l.

With this, we can deduce

|tn3 |
γ1γ3 |tn4 − tn2 |

γ2γ4

|tn2 |
γ1γ2 |tn4 |

γ1γ4 |tn3 − tn2 |
γ2γ3 |tn3 − tn4 |

γ3γ4

≥ β (tn2 )
(γ1γ3−γ1γ2−γ2γ3)+γ4(γ2−γ1−γ3) →∞,

for some β > 0.

The �nal case is
tn4
tn3

= O(1), but
tn4
tn2

= o(1). Then, we also have
tn2
tn3

= o(1). We

see

|tn3 |
γ1γ3 |tn4 − tn2 |

γ2γ4

|tn2 |
γ1γ2 |tn4 |

γ1γ4 |tn3 − tn2 |
γ2γ3 |tn3 − tn4 |

γ3γ4

=
|tn3 |

γ1γ3

|tn3 − tn2 |
γ3γ2 |tn4 − tn3 |

γ4γ3
· |t

n
4 − tn2 |

γ4γ2

|tn4 |
γ4γ1 |tn2 |

γ2γ1
.

We look into both factors separately. Since
tn3 −tn2

tn3
= 1+ o(1) and

tn4 −tn3
tn3

= O(1),

we calculate

|tn3 |
γ1γ3

|tn3 − tn2 |
γ3γ2 |tn4 − tn3 |

γ4α3
≥ β (tn3 )

γ3(γ1−γ2−γ4) →∞,

as γ1 − γ2 − γ4 < 0. Finally, with
tn4 −tn2

tn4
= 1 + o(1) and tn2 < tn4 , we infer

|tn4 − tn2 |
γ4γ2

|tn4 |
γ4γ1 |tn2 |

γ2γ1
≥ β (tn4 )

γ4γ2−γ1α4−γ1γ2 →∞,

as γ4γ2 − γ1γ4 − γ1γ2 < 0.
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□

Before we �nish this section, we state how γi relate to Γi. After going into a

chart, there will hold γi =
∣∣Γσ(i)

∣∣ for a σ ∈ Sym(4). The following chart states

all possibilities:

γ1 γ2 γ3 γ4
Γ1 Γ2 Γ3 Γ4

Γ2 Γ3 Γ4 Γ1

Γ3 Γ4 Γ1 Γ2

Γ4 Γ1 Γ2 Γ3

Γ1 Γ4 Γ3 Γ2

Γ2 Γ1 Γ4 Γ3

Γ3 Γ2 Γ1 Γ4

Γ4 Γ3 Γ2 Γ1

Remark. If we want to have better conditions for arbitrary N , we would

need to �nd conditions as in Lemma 5.2.4 ii). The possible arrangements are

growing fast and the proof would involve even more cases. Nonetheless, it should

be possible to achieve better conditions than Γi = (−1)i, as we saw better con-

ditions when N = 4.

5.3 Another way using symmetry

Again, we assume τ : Σ→ Σ to be an isometry with τ2 = id and with Fixτ ∼=
S1∪̇ . . . ∪̇S1. This time, we let N = 3. Further, we assume there exists σ ∈
Sym(3) such that Γσ(1) = Γσ(3) > 0 > Γσ(2). Without loss of generality, we

assume σ = id. We then look at

H : F3Σ→ R, H(p) =
∑
i ̸=j

ΓiΓjG(pi, pj) + Ψ(p)

where Ψ ◦ τ = Ψ and Ψ(p1, p2, p3) = Ψ(p3, p2, p1). Because of Γ1 = Γ3, we have

H(p1, p2, p3) = H(p3, p2, p1). These assumptions hold for HΓ, when Γ1 = Γ3.

Theorem 5.3.1. If Γ1 = Γ3 > 0 > Γ2 and Γ1 > −2Γ2, then H has a critical

point.

Proof: We de�ne the set

L := {(p1, p2, τ(p1)) : p2 ∈ Fixτ ̸∋ p1} ⊂ F3Σ,

and use the following lemma.
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Lemma 5.3.2.

(pn)n ⊂ L, p
n → ∂F3Σ⇒ H(pn)→∞.

Proof: If pn1 → Fixτ , but dg(p
n
1 , p

n
2 ) ̸→ 0, we have

H(pn) = −Γ1Γ3

2π
ln (dg(p

n
1 , τ (p

n
1 )) +O(1)→∞.

Thus, let pni → p∗ ∈ Fixτ . Therefore, there exists a conformal �at chart φ

around p∗ ∈ Σ. Thus, with zni := φ(pni ), we have

Hφ(p) = −
1

2π

∑
i̸=j

ΓiΓj ln
∣∣zni − znj ∣∣+O(1).

Because Fixτ is a totally geodesic submanifold, we further assume, that zn2 =

(xn2 , 0) ∈ R × {0}, zn1 = (xn1 , y
n
1 ) and z

n
3 = (xn1 ,−yn1 ). Hence, we need to show

that

|zn1 − zn3 |
Γ1Γ3

|zn1 − zn2 |
−Γ1Γ2 |zn2 − zn3 |

−Γ2Γ3
=

(
|zn1 − zn3 |

Γ1

|zn1 − zn2 |
−Γ2 |zn3 − z2|

−Γ2

)Γ1

→ 0

if |zn1 − zn2 | → 0. We see |zn1 − zn3 | = 2 |xn1 | and |zn1 − zn2 | = |zn3 − zn2 |. Without

loss of generality, we further assume zn2 ≡ 0. We calculate

|zn1 − zn3 |
Γ1

|zn1 − zn2 |
−Γ2 |zn3 − z2|

−Γ2
= 2Γ1

|xn1 |
Γ1

|zn1 |
−2Γ2

≤ 2Γ1 |zn1 |
Γ1+2Γ2 → 0,

as Γ1 + 2Γ2 > 0.

□

Now, let ϕ be the negative gradient �ow of H.

We also need the following lemma.

Lemma 5.3.3.

p ∈ L ⇒ ϕ(t, p) ∈ L ∀t < T+(p)

where ϕ(·, p) : (T−(p), T+(p))→ F3Σ.

First, we note that H ◦ τ = H and, thus, because of the chain rule, we have

DpH = Dτ(p)H ◦Dpτ.
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Now, Dpτ is an isometry on the tangent spaces TpΣ→ Tτ(p)Σ, i.e. we see

Dpτ (∇H(p)) = ∇H(τ(p)),

as

⟨Dpτ [∇H(p)] , Dpτ [X]⟩ = ⟨∇H(p), X⟩ = DpH[X] =
(
Dτ(p)H ◦Dpτ

)
[X]

= ⟨∇H(τ(p)), Dpτ [X]⟩ .

With this, we deduce τϕ(t, p) = ϕ(t, τ(p)). We prove this now. We see

τ(ϕ(0, p)) = τ(p) = ϕ(0, τ(p)).

Moreover, we calculate

d

dt
τϕ(t, p) = Dϕ(t,p)τ

[
d

dt
ϕ(t, p)

]
= Dϕ(t,p)τ [−∇H(ϕ(t, p)] = −∇H(τ(ϕ(t, p))

and
d

dt
ϕ(t, τ(p)) = −∇H(ϕ(t, τ(p))).

Thus, τϕ(t, p) = ϕ(t, τ(p)), because both satisfy the initial value problemu̇ = −∇H(u)

u(0) = τ(p).

Now, for p ∈ L, we want

τϕ1(t, p) = ϕ3(p, t) and ϕ2(t, p) ∈ Fixτ .

Because ofH(p1, p2, p3) = H(p3, p2, p1), we have ϕ1(t, (p1, p2, p3)) = ϕ3(t, (p3, p2, p1)),

as they will satisfy the same initial value problem. Thus, if p = (p1, p2, τ(p1)) ∈
L, we infer

τϕ1(t, p) = ϕ1(t, τ(p)) = ϕ1(t, (τ(p1), p2, p1)) = ϕ3(t, (p1, p2, τ(p1))) = ϕ3(t, p).

It remains to show that τϕ2(p, t) = ϕ2(p, t), if p ∈ L. We see this with the above

used facts. Again, let p = (p1, p2, τ(p1)) ∈ L:

ϕ(t, p) =

ϕ3ϕ2
ϕ1

 (t, (p3, p2, p1)) =

ϕ3ϕ2
ϕ1

 (t, τ(p)) = τ


ϕ3(t, p)ϕ2(t, p)

ϕ1(t, p)


 =

 ϕ1(t, p)

τ(ϕ2(t, p))

ϕ3(t, p)

 .
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This yields τϕ2(t, p) = ϕ2(t, p).

Now, with Lemma 5.3.2, we deduce T+(p) = ∞ for p ∈ L. Then, the

sequence ϕ(n, p) converges to a critical point of H.

□

Remark. If we assume Γ1 = Γ3 > 0 > Γ2, the assumption Γ1 > −2Γ2 is

optimal as we see in Appendix B. If Γ1 ̸= Γ3, the method can not work, because

of the loss of H(p1, p2, p3) = H(p3, p2, p1).



Appendix A

The axiom A5

As a remainder, we will show that for all C > 0, there exists εC > 0 such that

dx
|x− y|

≤ C, dx ≤ dy, dx ≤ εC ⇒ ⟨∂1G(x, y), νx⟩ > 0.

In this Appendix, we continue with Ci(·) being constants depending on ·.

We prove this by contradiction. Assume there exists C > 0, xn, yn ∈ FnΩ

such that

dxn := dnx ≤ dny =: dyn , dnx → 0 for n→∞,

dnx ≤ C |xn − yn| and ⟨∂1G(xn, yn), νnx ⟩ ≤ 0,

where νnz := νzn if zn ∈ {xn, yn}. Furthermore, let pnz := pzn . Along a subse-

quence we have

y0 := lim
n→∞

yn ∈ Ω and x0 := lim
n→∞

xn ∈ ∂Ω.

According to Hopf's Lemma (see [16] page 330), the following holds

⟨∂1G(p, z), νp⟩ > 0 ∀z ∈ Ω, p ∈ ∂Ω.

To prevent sign problems, note that we use the interior normal and not the

exterior normal. This yields

⟨∂1G(x0, y0), νx0
⟩ > 0

if x0 ̸= y0, because of continuity and, thus, a contradiction. This yields x0 = y0.
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Now, we have

dny
|xn − yn|

≤ 1 +
dnx

|xn − yn|
+

∣∣pnx − pny ∣∣
|xn − yn|

= O(1).

We investigate two cases, that is
dn
y

|xn−yn| = o(1) or not. If this does not hold,

we can use (A4) to reach a contradiction, our estimations for ψ where not

enough to reach a contradiction with just (A4) in every case. We elaborate

which calculations were missing throughout the proof. Nonetheless, we start

with
dn
y

|xn−yn| = o(1).

In this case, we reach the contradiction similar to [3] in Appendix B. To provide

a complete proof, we rewrite it in more detail. We use the transformation

TS,λ,a : Ω→ ΩS,λ,a, x 7→ S(λx− a)

where S ∈ O(d), λ > 0, a ∈ Rd. Note that TS,λ,a is one to one, where TS−1,λ−1,b

is its inverse, if b = −λSa. First, we calculate the change of G. In other words,

we will calculate the Dirichlet Green's function GS,λ,a of ΩS,λ,a in terms of G.

Thus, we calculate

|TS,λ,ax− TS,λ,ay|2−d
= |S (λx− a− λy + a)|2−d

= λ2−d |x− y|2−d
.

Furthermore, for a function u : Ω→ R with ∆u = 0, we have

∆
(
u
(
T−1
S,λ,az

))
=

1

λ2
∆u
(
S−1(λ−1z − b)

)
= 0.

Thus, we see that

G(x, y) = λd−2GS,λ,a (TS,λ,ax, TS,λ,ay) . (A.0.1)

We calculate this in detail now. We have

GS,λ,a (TS,λ,ax, TS,λ,ay) = cdΨ(TS,λ,ax, TS,λ,ay)− hS,λ,a (TS,λ,ax, TS,λ,ay)

= cdλ
2−dΨ(x, y)− hS,λ,a (TS,λ,ax, TS,λ,ay) .

Further, we just calculated, that for �xed x ∈ ΩS,λ,a we have∆yh(T
−1
S,λ,ax, T

−1
S,λ,ay) =

0. If y ∈ ∂ΩS,λ,a, we see

h(T−1
S,λ,ax, T

−1
S,λ,ay) = Ψ(T−1

S,λ,ax, T
−1
S,λ,ay) = λd−2Ψ(x, y) = λd−2hS,λ,a(x, y).
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This yields

hS,λ,a(x, y) = λ2−dh(T−1
S,λ,ax, T

−1
S,λ,ay),

what concludes (A.0.1). Now, we see that

∂1G(x, y) = λd−1∂1G(TS,λ,ax, TS,λ,ay).

We de�ne λn := 1
|xn−yn| , an := λnp

n
y and Sn ∈ O(d) such that

TSn,λn,an =: Tn : Ω→ Ωn := ΩSn,λn,an

yields νTnpn
y
= (0, 1) ∈ Rd−1 × R. Moreover, we set the following notations:

Tnd
n
z := dist(∂Ωn, Tnz

n) and Tnν
n
z := νTnzn for zn ∈ {xn, yn}.

Furthermore, we set Gn := GSn,λn,an and see

G =
Gn

|xn − yn|d−2
and 0 ≥ ⟨∂1G(xn, yn), νnx ⟩ =

⟨∂1Gn(Tnx
n, Tny

n), Tnν
n
x ⟩

|xn − yn|d−1
.

In addition, note that Tnp
n
y = 0 and

|Tnxn − Tnyn| = λn |xn − yn| = 1.

Thus, we see, for zn ∈ {xn, yn}, that

Tnd
n
z =

dnz
|xn − yn|

≤
dny

|xn − yn|
= o(1).

For t > 0, let Bt := Bt(0, t) be the closed ball with radius t around (0, t) ∈
Rd−1 × R. Next, we choose t0 > 0 such that

sup
Rn∋(z,0):|z|≤1

dist (z,Bt0) <
1

16
. (A.0.2)

This can be done, because Bt → Rd
+ for t→∞. For large enough n, we have

Bt0 \ {0} ⊂ Ωn.

We prove this last statement. First, note that Bs ⊂ Bt holds for t > s. Also,

Ω satis�es an interior ball condition, because ∂Ω is at least C3. So, for every

pny ∈ ∂Ω, there exists wn ∈ Ω such that Bdn
w
(wn) \ {pny} ⊂ Ω where wn can be

chosen such that dnw is bounded away from 0, because ∂Ω is compact. Then, we
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have Tnw
n = (0, Tdnw) where

Tnd
n
w =

dnw
|xn − yn|

→ ∞ and TnBdn
w
(wn) = BTdn

w
.

Hence, for large enough n, we have Bt0 ⊂ BTdn
w
⊂ Ωn \ {0}.

We de�ne B0 := Bt0 and G0 as the Green's function belonging to B0. Note here

that G0 is explicitly known, because B0 is a ball (see Appendix D). We further

set R := 1
8 and znx := Tnp

n
x +RTnν

n
x . If n is big enough, we again have

BR(z
n
x ) \ {Tnpnx} ⊂ Ωn and Tnp

n
x ∈ BR(z

n
x ).

Further, we let r := 1
32 and have Br(z

n
x ) ⊂ B0 if n is big enough. Note that

(A.0.2) is used here. For w ∈ BR(z
n
x ), we de�ne

vn(w) := e−αn|w−zn
x |2 − e−αnR,

where αn > 0 is chosen such that

0 ≤ ∆v(w) = αne
αn|w−zn

x |2
(
αn |w − znx |

2 − d
)

∀w ∈ BR(z
n
x ) \Br(z

n
x ).

For w0, w1 ∈ Rd, we let

[w0, w1] := {tw0 + (1− t)w1 : t ∈ [0, 1]} .

For w ∈ Br(z
n
x ), we have w ∈ B 1

2
(Tnx

n). Thus, we conclude

|t− w| > 1

4
∀t ∈ [0, Tny

n].

This holds, because [0, Tny
n] ⊂ B 1

4
(Tny

n) and |Tnxn − Tnyn| = 1. Now, Tay-

lor's theorem implies

G0(w, Tny
n) = G0(w, 0)︸ ︷︷ ︸

=0

+∂Tnνn
y
G0(w, 0)Tnd

n
y+O

(
sup

t∈[0,Tnyn]

∂2Tnνn
y
G0(w, t) (Tny

n)
2

)
︸ ︷︷ ︸

=O
(
(Tndn

y )
2
)

.

From the exact form of G0 (see Appendix C), we infer

∂Tnνn
y
G0(w, 0) = cd

t0 − |w − (0, t0)|2

|w|d
≥ C(t0) > 0 ∀w ∈ Br(z

n
x ).

This, yields

G0(w, Tny
n) ≥ C14Tnd

n
y ∀w ∈ Br(z

n
x ).
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We chose Mn > 0 with

max{sup vn, sup ∂νvn} ≤Mn.

Our aim is to use the maximum principle on the function

BR(z
n
x ) \Br(z

n
x ) ∋ w 7→ Gn(w, Tny

n)−
C14Tnd

n
y

Mn
vn(w).

If w ∈ ∂BR(z
n
x ), we have vn(w) = 0 and, thus,

Gn(w, Tny
n)−

C14Tnd
n
y

Mn
vn(w) = Gn(w, Tny

n) ≥ 0.

Further, if w ∈ ∂Br(z
n
x ), we estimate

Gn(w, Tny
n)−

C14Tnd
n
y

Mn
vn(w)︸ ︷︷ ︸

≥0

≥ Gn(w, Tny
n)− C14Tnd

n
y

≥ Gn(w, Tny
n)−G0(w, Tny

n) ≥ 0.

In the last inequality, we use the maximum principle and B0 ⊂ Ωn. Thus, we

see

Gn(w, Tny
n)−

C14Tnd
n
y

Mn
vn(w) ≥ 0 on ∂ (BR(z

n
x ) \Br(z

n
x )) .

Furthermore, we calculate

−∆w

(
Gn(w, Tny

n)−
C14Tnd

n
y

Mn
vn(w)

)
=
C14Tnd

n
y

Mn
∆wvn(w) ≥ 0,

for every w ∈ BR(z
n
x ) \Br(z

n
x ). Thus, the maximum principles yields

Gn(w, Tny
n)−

C14Tnd
n
y

Mn
vn(w) ≥ 0 in BR(z

n
x ) \Br(z

n
x ).

We continue with

Gn(Tnp
n
x , Tny

n)−
C14Tnd

n
y

Mn
vn(Tnp

n
x) = 0.

Thus,

∂Tnνn
x
Gn(Tnp

n
x , Tny

n) ≥
C14Tnd

n
y

Mn
∂Tnνn

x
vn(Tnp

n
x) ≥ C14Tnd

n
y ,

since Tnν
n
x is the inner normal of BR(z

n
x ) \ Br(z

n
x ) at pnx . Taylor's theorem
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therefore yields

∂Tnνn
x
Gn(Tnx

n, Tny
n) = ∂Tnνn

x
Gn(Tnp

n
x , Tny

n)+O

(
sup

t∈[Tnpn
x ,Tnxn]

(
∂Tnνn

x

)2
Gn(t, Tny

n)Tnd
n
x

)
.

Using Taylor's theorem another time, we reach

(
∂Tnνn

x

)2
Gn(t, Tny

n) =
(
∂Tnνn

x

)2
Gn(t, 0)︸ ︷︷ ︸

=0

+O

(
sup

s∈[0,Tnyn]

(
∂Tnνn

x

)2
∂Tnνn

y
Gn(t, s)Tnd

n
y

)
.

Since t ∈ [Tnp
n
x , Tnx

n] and s ∈ [0, Tny
n] are bound away from each other, we

�nally reach

∂Tnνn
x
G(Tnx

n, Tny
n) = ∂Tnνn

x
Gn(Tnp

n
x , Tny

n)︸ ︷︷ ︸
≥C14Tndn

y

+ o
(
Tnd

n
y

)
.

Thus, we conclude

0 ≥ ⟨∂1G(xn, yn), νnx ⟩ =
∂Tnνn

x
G(Tnx

n, Tny
n)

|xn − yn|d−1
> 0.

This �nishes the case
dn
y

|xn−yn| = o(1).

Next, let |xn−yn|
dn
y

= O(1). From Lemma 2.1.3, we see that, because of (A4),

we have

∂1G(x
n, yn) = (d− 2)cd

(
xn − yn

|yn − xn|d
+

xn − ȳn

|xn − ȳn|d

)
+ ∂2ψ(y, x).

We are interested in ⟨∂1G(xn, yn), νnx ⟩. Thus, we calculate each part of the sum.

The identities xn = pnx + dnxν
n
x and x̄n = pnx − dnxνnx will be used here.

⟨yn − xn, νnx ⟩
|xn − yn|d

=

〈
pny − pnx + dnyν

n
y − dnxνnx , νnx

〉
|xn − yn|d

=
dny − dnx
|xn − yn|d

+
(
1−

〈
νnx , ν

n
y

〉) dny

|xn − yn|d
+

〈
pny − pnx , νnx

〉
|xn − yn|d

and

⟨xn − ȳn, νnx ⟩
|xn − ȳn|d

=

〈
pnx − pny + dnyν

n
y + dnxν

n
x , ν

n
x

〉
|xn − ȳn|d

=
dnx + dny

|xn − ȳn|d
+
(
1−

〈
νnx , ν

n
y

〉) dny

|xn − ȳn|d
+

〈
pnx − pny , νnx

〉
|xn − ȳn|d

.
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In the next step, we estimate〈
pny − pnx , νnx

〉
|xn − yn|d

+

〈
pnx − pny , νnx

〉
|xn − ȳn|d

.

From (2.1.3), we have
〈
pnx − pny , νnx

〉
= O(|x− y|2). Furthermore, again using

Lemma 2.1.3, we have(
|xn − ȳn|
|xn − yn|

)2

= 1 +
4dnxd

n
y

|xn − yn|2
+ o(1).

Now, Taylor's theorem applied to (1 + z)p = 1 +O(z) for p ≥ 1 yields((
|xn − ȳn|
|xn − yn|

)d

− 1

)
= O

(
dnxd

n
y

|xn − yn|2

)
.

Thus, we reached〈
pny − pnx , νnx

〉
|xn − yn|d

+

〈
pnx − pny , νnx

〉
|xn − ȳn|d

= O

(
dnxd

n
y

|xn − ȳn|d

)
.

Combining all of the calculations, also including (2.1.15), we see

⟨∂1G(xn, yn), νnx ⟩ =
dny − dnx
|xn − yn|d

+
dnx + dny

|xn − ȳn|d
+⟨∂2ψ(yn, xn), νnx ⟩+o

(
dny

|xn − yn|d

)
.

Because of |xn−yn|
dn
y

= O(1), we have

|xn − ȳn|2(
dny
)2 =

|xn − yn|2(
dny
)2 + 4

dnx
dny

+ o(1) = O(1)

and, thus,

⟨∂2ψ(yn, xn), νnx ⟩ = O
(
|xn − ȳn|2−d

)
= o

(
dny

|xn − yn|d

)
.

We �nally see

|xn − yn|d

dny
⟨∂1G(xn, yn), νnx ⟩ = 1− dnx

dny︸ ︷︷ ︸
≥0

+

(
1 +

dnx
dny

)
|xn − yn|d

|xn − ȳn|d︸ ︷︷ ︸
>0

+ o(1) > 0.

This �nishes (A5), because at least one of the two summands will not tend to

0.
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Since we were not able to show

⟨∂2ψ(yn, xn), νnx ⟩ = o

(
dny

|xn − yn|d

)

in the �rst case, we had to treat it separately.



Appendix B

Some calculations on the

round sphere

In this appendix, we explicitly look at the case (Σ, g) = (S2, gst). In that case,

the Green's function is explicitly known.

B.1 The Green's Function of the round Sphere

According to [10, 20], we have

G(p, q) = − 1

2π
ln

(
sin

(
dg(p, q)

2

))
.

In spherical coordinates, it is possible to show

∆pG(p,N) =
1

4π
= −V ol2(S2)−1,

where N = (0, 0, 1) ∈ S2 is the north pole. Here, it is useful that

∆gf(φ, θ) =
1

sin(φ)

∂

∂θ

(
sin(θ)

∂f

∂θ

)
+

1

sin(θ)2
∂2

∂2φ
f

and that dg(N, p) = θ if p = Φ(φ, θ) in spherical coordinates. We omit the

exact calculations. The rotational invariance of ∆ yields ∆qG(p, q) = − 1
4π .

Furthermore, using sin(t) = t + O(t2) for small t, we see for p, g ∈ S2 with
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dg(p, q)→ 0 that

G(p, q) = − 1

2π
ln

(
sin

(
dg(p, q)

2

))
= − 1

2π
ln

(
dg(p, q)

2

)
+O(1)

= − 1

2π
ln(dg(p, q)) +O(1).

This also yields the Dirac property of G.

At this point, our aim is to bring this into an easier form. So, let p, q ∈ S2. By

rotational invariance of (S2, g), we assume p = (1, 0) ∈ C×R and q = (eiϕ, 0) ∈
C× R, where ϕ ∈ [0, π]. Then,

dg(p, g) = dg(e
0, eiϕ) = ϕ.

Now, if |x| :=
√
x21 + x22 + x23, we see with the Pythagorean Theorem that

∣∣1− eiϕ∣∣2 = sin(ϕ)2 + (1− cos(ϕ))2 = 2− 2 cos(ϕ)

⇔ϕ = arccos

(
1−

∣∣1− eiϕ∣∣2
2

)
for all ϕ ∈ [0, π].

Because |·| is rotationally invariant, this leads to

dg(p, q) = arccos

(
1− |p− q|

2

2

)
.

Next, with dg(p, q) ∈ [0, π] and the identity

sin2
(
t

2

)
=

1

2
− 1

2
cos(t),

we deduce

G(p, q) = − 1

2π
ln

(
sin

(
dg(p, q)

2

))

= − 1

2π
ln

sin

arccos
(
1− |p−q|2

2

)
2


= − 1

2π
ln

(1

2
− 1

2

(
1− |p− q|

2

2

)) 1
2


= − 1

4π
ln
(
|p− q|2

)
+

ln(4)

4π
.

Thus, we see that

G(p, q) = − 1

4π
ln
(
|p− q|2

)



88 APPENDIX B. SOME CALCULATIONS ON THE ROUND SPHERE

is a Green's function of the sphere. Moreover, we need the Robin's function:

R(p) = lim
q→p

G(p, q) +
1

2π
ln(dg(p, q))

= lim
q→p
− 1

2π

ln

 sin

(
dg(p, q)

2

)
︸ ︷︷ ︸

=
dg(p,q)

2 +O(dg(p,q)2)

− ln(dq(p, q))


= lim

q→p
− 1

2π
ln

(
1

2
+ o(1)

)
=

ln(2)

2π
.

Thus, the map

H : FNS
2 → R, H(p) :=

∑
i ̸=j

ΓiΓj ln |pi − pj |

yields the same dynamics as HΓ.

B.2 Critical points on the Sphere

In [26, Chapter 4], the map H is further investigated. We explicitly calculate

critical points of H. When N = 3, the critical points of H are completly

characterized. We look into the case Γ1 = Γ3 > 0 > Γ2. In this case [26, Ch. 4,

Thm 4.2.2] implies (p1, p2, p3) ∈ F3S
2 is a critical point of H, i�

Γ1(Γ1 + Γ2)p1 + 2Γ1Γ2p2 + Γ1(Γ1 + Γ2)p3 = 0.

Thus, we see that p1, p2, p3 lie in some plane. With the rotational invariance,

we assume pi ∈ S1 × {0}. In addition, we further assume p2 = (0, 1, 0). We let

pi = (xi, yi, 0) for i = 1, 3 and infer

Γ1(Γ1 + Γ2)x1 + Γ1(Γ1 + Γ2)x3 = 0

Γ1(Γ1 + Γ2)y1 + 2Γ1Γ2 + Γ1(Γ1 + Γ2)y3 = 0.

Thus, we have x1 = −x3. This yields |y1| = |y3|. From the second equation, we

see Γ1(Γ1 + Γ2) ̸= 0 and can deduce

y1 + y3 = − 2Γ1Γ2

Γ1(Γ1 + Γ2)
= − 2Γ2

Γ1 + Γ2
̸= 0.

Because |y1| = |y3| and y1 + y3 ̸= 0, we see that

y1 = y3 = − Γ2

Γ1 + Γ2
.
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We �nally reach

x1 = −x3 = ±

√
1−

(
Γ2

Γ1 + Γ2

)2

,

if
∣∣∣ Γ2

Γ1+Γ2

∣∣∣ < 1. Now, it is easy to check that this holds i�

Γ1 + 2Γ2 > 0.

Thus, the only critical point (up to rotation) is given by

p̄1 =


√
1−

(
Γ2

Γ1+Γ2

)2
− Γ2

Γ1+Γ2

0

 , p̄2 =

0

1

0

 , p̄3 =


−
√

1−
(

Γ2

Γ1+Γ2

)2
− Γ2

Γ1+Γ2

0

 .

Remark. This proves that the assumptions in section 5.3 can not be opti-

mized, as in the Theorem 5.3.1 Σ is allowed to be the sphere. Furthermore, we

see that theorem 4.0.1 can not include the sphere, because, if Γ1 = Γ3 > 0 > Γ2,

the condition of this theorem translates to

0 ̸= Γ1Γ2 + Γ1Γ3 + Γ2Γ3 = 2Γ1Γ2 + Γ2
1

⇔0 ̸= 2Γ2 + Γ1.

So if 2Γ2 +Γ1 < 0 then the assumption of theorem 4.0.1 are satis�ed but there

does not exist any critical point of HΓ on the sphere.



Appendix C

Existence and approximation

of the Green's function

Let (Σ, g) be a compact riemanian manifold. The aim of this Appendix is

to outline the proof of the existence of the (Dirichlet) Green's function of the

negative Laplace-Beltrami-Operator. Details are provided in [2, p.101-113]. On

the pages [2, p. 101-105], Aubin investigates eigenvalues of −∆ = −∇v∇v and

the existence of solutions to ∆u = f .

Theorem C.0.1. i) If Σ has no boundary there exists a solution φ ∈ H1 to

∆u = f i�
�
fdVg = 0. The solution φ is unique up to a constant and if

f ∈ Ck+α for k ∈ N and α ∈ (0, 1) then φ ∈ Ck+2+α.

ii) If Σ has boundary then there exists a unique solution φ ∈
◦
H1(Σ) to ∆u =

f . If f ∈ C∞(Σ) then also φ ∈ C∞(Σ) and φ|∂Σ̄ ≡ 0.

De�nition C.0.2. i) If Σ is closed with volume volg(Σ) =: V then the

Green's function to the negative Laplace-Beltrami operator is a function

that satis�es

−∆qG(p, q) = δp(q)− V −1

in a distributional sense, where δp is the Dirac function at p. In this case

G is only unique up to a map p 7→ w(p) or up to a constant if we call for

the symmetry G(p, q) = G(q, p).

ii) If Σ has boundary then the (Dirichlet) Green's function of the negative

Laplace-Beltrami-Operator is the unique map G such that

∆qG(p, q) = δp(q) on Σ× Σ

and vanishes on the boundary where p ∈ ∂Σ or q ∈ ∂Σ.
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If we de�ne

Ψ = Ψd : (0,∞)→ R, Ψ(r) :=

cdr2−d, if d ≥ 3,

− 1
2π ln(r), if d = 2

for 2 ≤ d ∈ N and cd := 1
d(d−2)vold(B1(0))

, then the map (x, y) 7→ Ψ ◦ |x− y|
is the fundamental solution of the negative Laplacian in Rd. This leads to the

idea to de�ne r(p, q) := dg(p, q) and that Ψ ◦ r has to be the leading part of G.

The problem here is that r is not C∞ on F2Σ and we thus need to change it a

little. We de�ne a positive decreasing cut-o� map α : R→ R where α ≡ 1 in a

neighborhood of 0 and α ≡ 0 on [δ,∞) where δ > 0 is the injectivity radius of

Σ. We then de�ne

H(p, q) = Hd(p, q) := Ψd(dg(p, q)) · α (dg(p, q)) .

Remark that

∆f =
1√

det(g)
∂i
(
gi,j∂jf

)
where g−1(x) =

(
gi,j(x)

)d
i,j=1

and we used the Einstein sum convention. With

this we can calculate ∆qH(p, q) and see that

|∆qH(p, q)| ≤ C1dg(p, q)
2−d. (C.0.1)

Before we state the existence theorem we also want to give an important lemma

so the construction will work.

Lemma C.0.3. Let Ω be a bounded open set of Rd and let X,Y : F2Ω→ R be

maps that satisfy

|X(p, q)| ≤ Const · (d(p, q))α−d
and |Y (p, q)| ≤ Const · (d(p, q))β−d

for some α, β ∈ (0, d). Then the map

Z : F2Ω→ R, Z(p, q) :=

�
Ω

X(p, s)Y (s, q) dV (s)

is continious and satis�es

|Z(p, q)| ≤ Const · d(p, q)α+β−d if α+ β < n

|Z(p, q)| ≤ Const · (1 + |ln(d(p, q))|) if α+ β = n

|Z(p, q)| ≤ Const if α+ β > n.

Theorem C.0.4. If Σ is a closed manifold then there exists a Green's function



92APPENDIX C. EXISTENCE ANDAPPROXIMATION OF THEGREEN'S FUNCTION

to the negative Laplace-Beltrami-Operator G : F2Σ → R with the following

properties.

a) For all functions φ ∈ C2 there holds

φ(p) = V −1

�
Σ

φ(q) dV (q)−
�
Σ

G(p, q)∆φ(q) dV (q).

b) G is C∞.

c) There exists a constant C > 0 such that

|G(p, q)| ≤ C(1 + |ln(dg(p, q))|), if d = 2

|G(p, q)| ≤ Cdg(p, q)2−d, if d > 2

|∇qG(p, q)| < Cdg(p, q)
1−d,∣∣∇2

qG(p, q)
∣∣ yCdg(p, q)−d.

d) There exists a constant A such that G(p, q) ≥ A. Since G is only de�ned

up to a constant we may choose A > 0.

e)
�
σ
G(p, q) dV (q) ≡ Const. We may choose G such that this integral van-

ishes.

f) G(p, q) = G(q, p).

Proof: First, we de�ne

Γ1(p, q) := ∆qH(p, q) and Γi+1(p, q) :=

�
Σ

Γi(p, s)Γ1(s, q) dV (s).

Then, we choose d
2 < k ∈ N and de�ne

G(p, q) := H(p, q) +

k∑
i=1

�
Σ

Γi(p, r)H(r, q) dV (r) + F (p, q)

where F shall satisfy

−∆qF (p, q) = Γk+1(p, q)− V −1.

With the lemma above and |Γ1(p, q)| ≤ C1dg(p, q)
2−d, we see that Γk is bounded

and thus, Γk+1 is a C1 map. This, then leads to the fact that a map F like this

exists and is unique up to a constant. The rest of the proof is to verify the

points a)-f) which we omit here.

□
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Remark. If d = 2 we see in this construction that G(p, q) = H(p, q)+h(p, q)

for a bounded map h.

In [2] follows a similar result for manifolds with boundary. But because we gave

a proof of the existence of G in Lemma 3.2.1 we omit the rest. We may just

remark that again G ≥ 0 and G(p, q) = G(q, p) when ∂Σ ̸= ∅.



Appendix D

The Green's function of balls

For R > 0, we calculate the Green's function of UR(0) ⊂ Rd for d ≥ 3. Our

calculations are not new and can be found in for instance [18]. We need to �nd

a function h(x, y) that satis�es∆xh(x, y) = 0 in UR(0)

h(x, y) = −cd |x− y|2−d
on ∂UR(0).

We de�ne

·̃ : BR(0) \ {0} → R2, ỹ :=
R2

y2
y.

Then, we let

h(x, y) :=

cd
∣∣∣ |y|R (x− ỹ)

∣∣∣2−d

if y ̸= 0

cdR
2−d if y = 0.

Because of ∆ |x|2−d
= 0, we see that ∆xh(x, y) = 0. If y = 0 and x ∈ ∂UR(0),

we see h(x, 0) = −cd |x− y|2−d
. If y ̸= 0 and x ∈ ∂UR(0) we see with |x− y|2 =

|x|2 + |y|2 − 2 ⟨x, y⟩ that

|y|
R
|x− ỹ| = |x− y| .

Hence, we have that

G(x, y) = cd |x− y|2−d
+h(x, y) =

cd |x− y|
2−d − cd

(
|y|
R |x− ỹ|

)2−d

if y ̸= 0

cd |x− y|2−d − cdR2−d if y = 0
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is the Green's function of UR(0). Now, let x ∈ ∂UR(0). Then, νx = − x
R is the

inner normal at x. Next, we calculate

〈
∇x |x− y|2−d

,− x
R

〉
=

〈
(2− d) x− y

|x− y|d
,− x

R

〉
= (d−2) R2

R |x− y|d
−(d−2) ⟨x, y⟩

R |x− y|d
.

For y = 0, we see

⟨∇xG(x, y), νx⟩ = cd(d− 2)
R2 − |y|2

R |x− y|d
.

So, let y ̸= 0. First, remember that |x− y| = |y|
R |x− ỹ|, because of |x| = R.

Thus, we see〈
∇x

(
|y|
R
|x− ỹ|

)2−d

,− x
R

〉
=

〈
(2− d)

(
|y|
R

)2−d
x− ỹ
|x− ỹ|d

,− x
R

〉

=

〈
(2− d) |y|

2

R2

x− ỹ
|x− y|d

,− x
R

〉

= (d− 2)
|y|2

R |x− y|d
− (d− 2)

⟨x, y⟩
R |x− y|d

.

We see

⟨∇xG(x, y), νx⟩ = cd(d− 2)
R2 − |y|2

R |x− y|d

again.
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