Justus-Liebig-Universitit
Gieflen

Dissertation

Critical Points of

Kirchhoff-Routh-Type

Functions

Autor Betreuer 2. Betreuer
T. Fiernkranz T. Bartsch M. Ahmedou

Eine Thesis zur Erlangung des Doktorgrades der naturwissenschaftlichen

Fachbereiche der Justus-Liebig-Universitit Giefsen

Dissertation: 19. Juni 2021
Disputation: 2. November 2021



i
Abstract

For 2< N eNandI'; € R\ {0} we proof that functions of the form

N
Hr(p1,...,pN) = Zrier(Pmpj) + ZF?R(M%
i£j i=1

admit critical points under various circumstances. The p; will either belong
to an open, bounded subset Q C R? with smooth boundary for d > 3 or to
a compact, two dimensional, riemanian manifold (X, g). Furthermore, G is a
(Dirichlet) Green’s function of the negative Laplacian —A associated to ) or
(3, 9) and R is its Robin’s function.

For the case of an open set, we also consider the function o that is the least

eigenvalue of the matrix

—G(wi,xj), i#]
(M(lj,...,xN))g\,fj:l = ( ])
R(x;), i =7

To achieve the critical points, we also calculate appropriate approximations of
the Green’s function and Robin’s function when close to their singularities.
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Chapter 1

Introduction

General notation

e (X,g9) will be a two dimensional compact riemanian manifold. In some

cases, % will have boundary.

e O C RY for some 3<deN.

2<NeNandT; eR\ {0} for 1 <i<N.

For a set X, we define

FnX ={z=(21,...,an) € XN 12 £ a;Vi#j} C XV,

In a metric space, U.(x) = {y € M : d(z,y) < €} is the open ball and
B.(z) ={y € M : d(z,y) < e} is the closed ball.

Ay is the Laplace-Beltrami-Operator of a riemanian manifold, i.e.
Af = div(V),

where Vf(p) € T,X is the gradient of f with respect to g. We suppress
in the notation that V depends on g. When ¥ = Q C R then, Ay is the

usual Laplacian
d

Af =Y 0uf

i=1

e CF(X) = {f: X =R : fis k-times continously differentiable} for k €
NU {oo}.
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Functions of Kirchhoff-Routh-type

We are interested in critical points of functions of the form
N
Hgp:FnX - R, Hgg(x) =Y TT;G(zi,2;)+ Y TiR(z),
i#] i=1

where G is the (Dirichlet) Green’s function to the negative Laplace-Beltrami-

Operator —A, and

R(z;) := lim G(z4,y) — ¥ (dg(l“i,y))-

Y—Tq

Here, either X = Q C R? for d > 3 is bounded and has smooth boundary or
X =% and

—QL In(r), d=2
U:(0,00) = R, U(r) = g
CdT2_d, = 3a

. . 1
with ca = Gy m o)
Functions of this form arise in various areas of Mathematics. In his work [21],

Kirchhoff connected this function to fluid dynamics by using a point vortex
ansatz to the Euler equation for an incompressible and non-viscous fluid. Routh
generalized this to open subsets of R?, whereas it was Lin, who wrote this
generalization in a rigorous way [23, 24]. For the planar case, this gave reason
to study Hxr. While Hgpg is defined in a finite dimensional space there still
exist some difficulties in the study, i.e even when the I'; have the same sign,
Hg g is unbounded from above and below, plus G is generally only given by a
partial differential equation. In [6, 22, 7] various critical points of Hxpr have
been obtained. Furthermore in [5], first general results on the dynamics of Hx g
appear, i.e. the existence of periodic orbits.

Research also considered the case where Hg g is not defined in an open subset,
but on a surface. In [8], Boatto and Koiler generalize the Theorem of Lin to two
dimensional, compact, orientable riemannian manifolds without boundary. In
[15], the equations of motion are formulated for surfaces with genus 0. They also
study some explicit examples. Moreover, Kimura investigated the vortex motion
in surfaces with constant curvature in [20]. In addition, in [1], the authors search
for so called vortex crystals, that is a configuration which may move, whereas
the form of the configuration does not change. Results on the planar case, but
also various surfaces are included. There are also results on critical points of a
function similar to Hg g, i.e. where all points that relate to a negative I'; are

kept fixed, see [14]. Finally in the context of vortex motion, there is the book



of Newton [26], which provides a good starting point into the matter of vortex
dynamics.

Leaving the vortex motion aside, there are other fields in which critical points of
Hp g arise. For example, in the papers [19, 13, 7] critical points of Hk g are used
to construct blow-up solutions to the sinh-equation or the Lane-Emden-Fowler
problem with Dirichlet conditions.

Beside being also interested in Hxr when d > 3, we are moreover interested in

the function p, which is the least eigenvalue of the matrix

_G(xiaxj)v ( 7é.]
h(xiaxi)a i:jv

when G(z;,2;) = cq|w; — z;]>~* = h(z;, ;). Then g can be written as

o(z) = inf (M(z)[,T) = (M(x)T'(z),['(x))

IT|=1
N
= Zfi(x)Zh(mi,mi) - ZFz(m)F](x)G(a:,,x])
i=1 i#j
Thus, with R(x;) = —h(z;,z;), we recognize the similarity to Hxp. In [4, 3],

critical points of ¢ are related to blow-up points of solutions to —Awu = u? for

the critical exponent p = % and, therefore, are of interest as well.

Outline of this thesis

In chapter 2, we will discuss everything related to the cases where Q C R? for

d > 3. We will establish an approximation of G near the boundary, i.e.

2—d _ 2—d
Gla,y) ~ ca (|l =y~ ~ 2 = y~*) |

where T is the orthogonal reflection of z at the boundary 02. This will yield

critical points of Hxr, when I'; > 0, i.e. the following theorem:

Theorem 1.0.1. For T € (R+)N the Kirchhoff-Routh function Hixr has at
least catqn (QN, ANQ) critical points, where An§) := QN \ FyQ.

If Q) is not contractible, Hxr has at least one critical point.

In chapter 3, we investigate the Green’s function on a surface (X, g). When X
is closed, approximations of G are well known, but we could not find anything
similar to the approximation in the case when X has boundary. This means

we restate known approximations of the Green’s function on closed manifolds
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according to [2] (see (C)). Furthermore, we give the following approximation

L1 (dal20)
Clp.a) ~ 2771 (dg(p, Q)) 7

where p is the orthogonal reflection of p at 9¥ and dj is the distance induced
by g.

In chapter 4, we look into surfaces for which the corresponding boundary-less
surface is not homeomorphic to the sphere or RP?. In the case without bound-

ary, we establish the following theorem:

Theorem 1.0.2. If ¥ is closed and not homeomorphic to the sphere, RP? nor
the Klein bottle, and for T holds

Z I,y #0 for every J C {1,...,N} with |J| >3, (1.0.1)

i,j€J
]

then Higr has a critical point.

These conditions on the I'; seem to be optimal even though we do not have
a proof that they are. When boundary is involved, we are able to generalize
the theorems of [22, 6] to surfaces. We have to exclude the sphere, RP? and
the Klein bottle, because they lack topology. To express that we exclude these
manifolds we use the expression closed manifold belonging to . We will define
this properly in chapter 3.2. Briefly it is the surface that arises from glueing a

disc onto every boundary component of .. We prove the following theorems:

Theorem 1.0.3. If ¥ has boundary and the closed manifold belonging to X is
neither homeomorphic to the sphere, RP? nor the Klein bottle and for I holds

Z iy #0 for every J C {1,...,N} with |J| >3 (1.0.2)
i,vj#E'J
177

as well as

ZF? > Z |5 for every J C {1,...,N}, with |J| >2, (1.0.3)
ic€J i,jf_J

then Hir has a critical point.

Theorem 1.0.4. If ¥ has boundary and the closed manifold belonging to X is
neither homeomorphic to the sphere, RP? nor the Klein bottle, N € {3,4} and
for T' holds

i1 <0 Vi=1,...,N —1,

Sises il <0 W C{l,...,N}:|J| >3, (1.0.4)
i#]



then Hr has a critical point.

Because we excluded the sphere in chapter 4, we focus on surfaces that
admit some symmetry in chapter 5. This gives a tool to overcome the lack of
compactness of FnyX as well as the lack of topology of the sphere. We are also
able to find some conditions for critical points. In those cases, we have an idea
on how the critical points have to lie on the surface. So, let ¥ admit an isometry
T3 — X with

{peX:7(p)=py=StU...USY,
I—times
for some [ € N. For example 7 could be a reflection along some plane. Then,
the following two theorems are proven in chapter 5:

Theorem 1.0.5. i) Let N be even i.e. N =2k fork € N, T'y(;y = (=1)¢ for
some o € Sym(N) for alli=1,...,N, then Hxr has at least | - k critical

points.

it) Let N =4,T1,T'3 >0>T5,T4 and

D> T <0 VIJ| =3
J
i#£j
T3 < [Tq| + T3 i=24
T < |To2f + [Ty i=1,3,

then Hir has at least 21 critical points.

Theorem 1.0.6. IfT'y =1'3 >0 >T15 and 'y > —2T'5, then Hxr has a critical
point.

In the Appendices, we provide already known facts, which are still important,

and easy calculations from already known facts, which we use.



Chapter 2

Euclidean space

In this chapter, we will look at our Hamiltonian Hkpr in the case of an open
bounded set Q C R? for 3 < d € N. We will start with some properties of the
Dirichlet Green’s function for that case. Furthermore, in this chapter, for i € N,

the numbers C; = C;(-) > 0 will be constants depending on -.

2.1 Green’s function in euclidean space

Let 3 < d e N, Q c R? be open and bounded with at least C3-boundary.

Furthermore, we define ¢4 := m and the function

U 0 — R, U(x,y) :=cqlx— y|2_d.
We also choose €5 > 0 such that
U, (09) = {y € RY : dist(y, Q) < g0}

is a tubular neighborhood of 9Q2. Now let Qg := U,,(9Q) N €, then for z € Qg
the orthogonal projection p(z) = p, € 0 onto 9N is well defined and C2.
Moreover, the maps x — d(x) = d, := dist(x,0Q) the distance to the boundary,
z — v(z) = v, the inner normal at p, and = — Z the reflection of z at 9Q are
all well defined and C2. For x € Q, the following identities hold:

dy = |z — po|; Vd(z) =v, =

T =12 — 2d,Uy; Pr =T — dply.
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Now a generalized Green’s function

G : F2Q2 — R, G(z,y) :=¥(z,y) — h(z,y)
is a function for which the following axioms hold:

(Al) G is symmetric, i.e. G(z,y) = G(y,z) and h(z,y) = h(y,z), and G is
non-negative, i.e. G > 0.

(A2) The function h: Q x Q — R is C* and

R(z) := h(z,z) = oo, if dy — 0.

(A3) For all € > 0 there exists C; = C1(Q2,e) > 0 such that

|R(z)| + |VR(z)| < C1 for all z with d, > €
G(z,y)| + VoG (2, y)| + [VyG(a,y)| <Gy forall 2,y € Q with [z —y[ >

(A4) There exists Cy = C3(€2) > 0 such that the map
w :QO XQO%Ra w($7y) = \Ij('fay)_h(‘r7y)
satisfies

(2, y)| < Cody |7 — y* 7,
IV (@,9)| + |V (z,y)| < Co |z —y[>~ .

(A5) For all C > 0 exists e > 0 such that

x

|z — y|

< C,dy <dy,dy <ec = (hG(x,y),vy) > 0.

This results in our first theorem.

Theorem 2.1.1. The Dirichlet Green’s function of 1 is a generalized Green’s

function.

Proof: Let G be the Dirichlet Green’s function. Then, for xz € €2, we set

h(z,-) as the solution of

Ah(z,-) =0 in Q
h(z,-) = U(x,-) on O.
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Thus, G(z,y) = ¥(x,y) — h(x,y). The Axioms (A1)-(A3) are well known facts
of G and will not be shown here. More information on these axioms can be
found in [18]. We will start with (A4). The proof follows [7], where they handle
the case d = 2 to reach similar axioms. Before we start proving (A4), we show

some general inequalities where C; = C;(Q2) > 0.

- y: <3, Ve Qo Wy e Q. (2.11)
T—y

T —y| > dy, Vo € Qo,Vy € Q. (2.1.2)
[z —w, )| < Cs|z —w|?, Yw, z € 0SL. (2.1.3)
|17 = 9* = 15 = al’| < Ca(ds + dy) Ipe = pyf*, Ve, € Q0. (2.1.4)
‘i' - y|2 > Cs |pw _py|2 , Va,y € Q. (2.1.5)
Ces < [z = Z,I| < Cr, Va,y € Q. (2.1.6)

|z — 9
17— 917 = 15— 2l ™| < Cslda +dy) l7 = 9™, Va,y € Q0. (2..7)

We start with (2.1.1) and (2.1.2): Since U,,(99) is a tubular neighborhood,
we have
dy = dist(z,00) = in%“2 |z —z| <|z—y.
ze

Furthermore, using this, we have
[z —yl <|z—Z|+|2—y|=2d; + | —y| <3|z —yl.

Next, we show (2.1.3). For this, we will show that for every p € 99 exists an
open neighborhood U, of p and C(p) > 0 such that

[(z—w,v2)| <Cp) |z —w*  Vzwel, (+)

Then, the compactness of 02 yields a finite covering (Um)f:1 and a Lebesgue

number § > 0 with
w,z€ 00 |w—2z2<d=31<i<k:w,zeclU,.
Defining C3 := max {(C(pi))f:1 , %} we achieve
(z —w,v2) < C3 |2 = w]?

if |z —w| < §. And if |z — w| > 4, we have

0]z — wl

5 < Cslz—wl?.

[{(z —w,v)| < |z —w| =
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It remains to show ().
Without loss of generality we have 0 = p € 902 and there exists an open neigh-
borhood U of 0, ¢ > 0 and a C? function F : {z € R¥"!: 2| < 2¢} — [0,00)
such that

UnQ = {(x,t) € U:t>F(w)}.

—VF
Then, there is o € R\ {0} such that v, p@)) = a( . (x)) For z,w €

UNoQ, we set z= (z, F(z)) and w = (y, F(y)) and we define

fl(xay) = <(y’F(y)) - (va(x))aV(w,F(w))>7

which is C2 since F is at least C3. Taylor’s theorem now yields
fl(xvy) = f1($7x) + <V2f1(.'177.%'),y - il?> + (Dy)2f1($7§y)[y — T,y — LL’]
=0

We will show that
<VQf1(«T, .T)7y - ‘I> = 0.

Then, using the compactness of B.(0) x B.(0) we establish

|f1(z,9)] < Cp) o —yl*.

Especially for z,w € B.(0) N9Q C R, we have z,y € B.(0) C R and it

follows
[(z —w,v2)| = | fr(z, y)]
< C(p) |z —y|”
<) (Jo—o* +|F @) = F)I*) = C(p) |2 — wl’.
It remains to show that (V, fi(z,z),y —z) = 0. We have
d—1
filz,y) = Z(yi —z)v(z, F(z)), + (F(y) — F(z))v(z, F(z)),-

Thus, for 1 <i<d-1

Oy, f1(z,y) =v(z, F(x)), + 0; F(y)v(z, F(x)),
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Bringing this together, we calculate
d—1

(Vafi(z, @),y —a) =Y (yi — wi)v(w, F(x)), + v(z, F(2)) 4 (VF(2),y - x)

i=1

= {v(z, F(x)), y—e

‘< (@ F(z)) <<VF<m>,y—x>>>

~o{ (7)) (et ) -
T R

With this, we showed (2.1.3).
We move on to (2.1.4). With z = p, — d,v, and y = p, + dyv,, we have

|z — y|2 = |ps _py‘2 + |dyve + alyl’y‘2 — 2(dyvy + dyvy, Py — py) -

Thus, with (2.1.3), we get

2= ol® o — 017 < e v — )] + 4y |y — )
< 4C3(dy + dy) ‘py _pm‘2~

This proves (2.1.4) with Cy := 4Cs.
Going on, we show (2.1.5). Again using (2.1.3), we see

|z — y|2 = |ps _py|2 + |dyve + alyl/y‘2 — 2(dyvy + dyvy, Dz — Dy)

> [pe — oyl — 2C3(dy + dy) [pe — py|” > (1 — 4Cs€0) [pa — py|* -

If now &9 < 347 (2.1.5) follows.
Next we prove (2.1.6). Using (2.1.4) and (2.1.5), we establish

-
[z =yl
Thus, (2.1.6) follows.
Finally we show (2.1.7). First note that (2.1.7) is equivalent to

- =gy

)|pw—py|2<@o
z—y> ~ Cs

wla,

_ 2
-

:1_<: y:2> < Crldy +dy).
r—=Yy
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The identity

|z — 9‘2 = |pz *py|2 + [davs + dy’/y|2 = 2(dyVy + dyvy, px — Dy)
= |£L' - g|2 - 4<sza: + dyl/yvpa: _py>
yields

|{E - y‘Q 1 4 <dac1/z + dyl/y,pz _py>
- 12
|z —

Using (2.1.3) and (2.1.5), we see

4 <da:Vx + dy’/yapx — py>
12
el

= O(d, +dy).

With (2.1.2) and (2.1.6), we see that if | — | — 0, then d,,d, — 0. Thus

4 <dac’/z + dyVyapz - py>
@ —gI*

—0 if |z —g| — 0.

Finally, we have (1 + p)? =1+ O(z) for z — 0 if p > 1, with Taylor’s theorem.

We conclude

d d

1_ |9E—y|2 : —h_(1— 4<dx1/:c+dyyy»pz_py> ’
_12 - 12
|z — 9 |z — g

which proves (2.1.7).
Equipped with these tools we can prove (A4). First, we show

4 <dex + dyVyapm - py>
o — gI”

) = O0(d, + dy),

[ (x,y)| < Cad |7 — y* . (2.1.8)
We show this with the maximum principle. With
Ay¢(x’y) = Ayh(‘x’ y) - Aylll(xay) = 07

we see that y — ¢ (x,y) is harmonic and the maximum principle holds. Thus,
for every z € Qg

ma. X = ma. X .
yeggé\zb( Y| ax [v(2,y)]

Clearly (2.1.8) holds in 99 \ 92, so we have to check it for y € 9Q. If y € 99,
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we have y =y = p, and we calculate

[ (, y)| = 19 (Z, y) — hz,y)|

_ 2—d 2—d
= cajz =y~ = o~y

_12—d — 2—d
= calz— g™~z =y~

_ d
2 |$—y| _ 2
lz — gl — |z —y

_ —d
:Cd|x_y| |gj—x|

Furthermore, again because of y € 0f2, the equations

|§j - y|2 = |p:z _py|2 - 2dw <pw _py>Vm> + di7
‘JJ - g|2 = |pw _py|2 +2d, <pw _pyal/w> + di

hold. We conclude

_ —d
Y (2, y)] < calz -yl

(- (222 ) -t
N2d, (py — pa,va) <1+ (:z:de)'

Using (2.1.3), (2.1.5) and (2.1.6), we estimate the second term

+ealz -yl

_ d
_ z— _
calz —y|™%|2d, (Py — Pa» Var) <1+ (:y_z:) ) < Cod, |7 —y[* ™%,
For the first term, we see with (2.1.2) and (2.1.5) that
Iz +py|* + 3 < Colz —y|*.
Combining this with
_ d
1- ('”” _?') < Cyd,,
|z — 7l
yields (2.1.8) for y € 99 and thus in general. Next, we show
Cy _
Vat(a,y)l < 1z -y (2.1.9)
Therefore, we show
C _
Asth(a,y)| < =21z -y (2.1.10)
x

Before we show (2.1.10), we will use it to prove (2.1.9). For this we need the

following theorem.
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Theorem 2.1.2. If u € C*(Q) and Au = f in the open set Q' C Q C R, there
exists C11 = C11(d) such that

sup . [Vatz)] < Cos (suplule)] +sup 25 (2)).
Q/ Q Q

Proof: This is Theorem 3.9 in [18].

Combining this with (2.1.8) and (2.1.10), we let y € Q¢ and compute

ze

sup d; [V, (z,y)| < Cna (sup [ (2,y)| + sup d7 IAww(x,y)l)
e xeQ)!
< Ciy (sup Cod, |i‘ — y\g_d -+ sup Chody |§7 — y|2_d>
e xeQ)!
_ 2—d
< Chz sup dg |7 —y|
e/
for any open set Q' C Qp. Thus we conclude (2.1.9). It only remains to show

(2.1.10).

Because x — h(z,y) is harmonic, we define

fy Q0 =R, fy(x) =z —y[**

and prove
Cis _
Afy(0)] < 2z -y
x
For this we calculate Af,. If 1 <14 < d, we have
2—d
d 2
_ —d _
aif@) =0 (le o) =00 | D (@~ )?
j=1
_d
9_d d 2 d
_ ) B -
=9 Z(xj Y;) 'Q'Z(% Y;) 0iZ;
j=1 j=1
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We further see

d 2
0:0;f () = d(d — 2) |z —y| ™"~ (Z(fcj—yj)ai(ﬂfj))

d
+@—d)|z—y™"> 0 () + (2 — yy) 0ui (7).

j=1
Thus,
d d 2
Af(x) = d(d - 2) Z(Z ))
=1 j=1

2

+(2-d) |xy|di§dj( 2~ ;) 0 (7))

1=1 j=1
Now let v; := (v,),. With the identity Z = = — 2d,v, and Vd, = v,, we infer

the following two equations

6@]' = 51’]’ — 28i(d$)l/j — deaiVj = 6i,j — 21/il/j — 2d$8il/j (2.1.11)

)

and
8i7;i'j = 28Z'l/il/j - 4Vi8il/j - 2dxa“V] (2112)

Furthermore, we also will use

d
—d|j—y|7 Z(Z —21/2-%) +Z ij QI/ZVJ =0.

=1 \j=1 3,j=1
(2.1.13)
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We show (2.1.13) before we return to the calculations of Af,. First, we see

d d
Z (57] — 21/1‘Vj)2 = Z(l — 21/7;2)2 + Z4VZV]2
1,j=1 i=1 i#]
d

d
Z ( 1—207 )2+Z4V1-2VJ2
j=1

=1

[
M=
M=
N
+
(]
3,
l\.’)
=
So
_|_
N
(]
R

=1\ =1 l1#£l> i£l=1 i£l=1
Iy #iF#lg
2
d d d
_ 2 _ _
= E E v; = E 1=d.
i=1 \j=1 i=1

d d
_ _ 2
Z Z(% yi)(0ij — 2viv5) | =z —y|".
i=1 \j=1
We see
d 2 d
@ =) 6i5 — 2wivy) | = (& —y)* (655 — 2viv;)?
j=1 j=1

Jil=1
L
So, like before, we conclude
d d
Z (Zj —y;)?(6ij — 2vivj)* = 2:(:%z —y)? | (1 —207)2 + 24%2%2
ij=1 i=1

J#l

d
=S (@ ) =z -y

i=1
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For [ # j, we continue with

d d
Z ({fj — yj)2(5ij — 2VZ‘VJ‘)2 = Z(i‘z — yi)2 1 — 21/ 2y Z4V
ii=1 i=1

J¢1

Thus, we finally established

d d 2
> (Z(fj = ;)05 — 2ViVj)> =z -y,

i=1 \j=1

what concludes (2.1.13). Using (2.1.11) and (2.1.13), we calculate

d
Af(w) = dd~2)|z—y| d22 (Z )(6ij2ij) (Z

7j=1
2

+d(d—2) |:C—y\72 dz Z z; — y;)(—2d,;0;v;)

=1 j=1

d d
—(d=2) |z =y Y (200 — 2viv5)(—2d20iv5) + Ad2(Biv;)* + (T —

i=1 j=1

Having in mind that v, Vv, D?v are bounded, and using (2.1.12) and (2.1.2), we
prove

O _
Af@) < 7>l =y
and thus showed (2.1.10). To conclude (A4), it remains to show

C’2|

IVy(a,y)| < =217 —y)* 7. (2.1.14)

Because of

1/J(37»y) = —h(l',y) + \I/(jvy) + \I’(J’J,g) - \IJ(JJ,Q)
=Yy, x) — ¥(z,9) + ¥(z,y),

we need to show

V. (D(z,9) — T(Z,y))| < Cuz |z —y|**

—2d,0; l/]))

Y;) 0 -
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With (2.1.11), we calculate

Or, (12 =y~ — o — ")
d
=2 —d) |z —y[""Y (@ —y;) (G5 — 2(v)i(va); — 2d0i(v2))

j=1

(@i — i) lv — 9]

= —@2-d)(@i—g) |z -7
+ Q2= D)NT -y @i~y — 2(v0)i (T~ y,ve) — 2dy (T — y, Oiv))

22 = d)(w2)i |7 — y| ™ (P — Dy V)
—2(2 — d)d, |7 — y| " (7 — y, Ova)
+(2—d) |7 =yl 2(va)i (dave + dyvy, V) — 2da(ve); — 2dy (v,);) -

With this, we conclude (2.1.14) by using (2.1.2), (2.1.3), (2.1.4), (2.1.5), (2.1.6),
(2.1.7) as well as |v, —vy| = O(|x — y|) and

1— (g, 1) = Oz — y|?). (2.1.15)

This follows from the following calculation:

2(1 — vz, vy)) = (Vo — vy, V) + (Vy — Vi, 1)

d
= Z (V)i — (vy)i) (a)i + ()i — (V2)i) (vy)s
i=1
d
= Z(Vw)z = 2(wa)i(vy)i + (vy);
i=1

Thus, we proved (A4). To finish our proof, we need to show (A5). This is done
in Appendix A

O

Before we finish this section, we give the following lemma, which contains

useful expressions concerning the singularities when Green’s functions are in-

volved.

Lemma 2.1.3. For a function G satisfying (A1)-(A4) the following holds:
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(i) R(x) =22"cqd? 1+ O(d3~?), if z € Q.

(i) VR(z) = 22742 — d)cydL =, + O(d2~ %), if d, — 0.

(iii) G(z,y) = U(x,y) — V(Z,y) + Od, |7 — y|*™"), if x € Q.

(iv) O1Glx,y) = (d = 2)ea (52 + =k ) + O — ™), if y € Qo .

() [Vah(z,y)| = O(|z — y|*™%), if x € Q.

(vi) (G(w,y), v2)HOG(Y, ), v) = (d=2)caldutdy) (]2 = 9]~ + |0 =51~ )+
Olz = y[*™), if 2,y € Q.

(vii) |z —y|* = |z —y|* + 4dody + o(jz — y|*), if x,y — z* € O

Proof: We go through every point in the following list.
(i) and (ii): With (A4) and & = © — 2d,v,, we have
R(z) = U(%,z) — ¢(x,x) = 22 cygd?~ 0 — o(x, ).

With (A4), we directly see (i) and (i), because of |z — z| = 2d, and V (d27%) =
(2 —d)d:v,.
(#4i) and (iv): We have
Thus, we directly see (iii) and (iv).
(v): We directly use (A4).

(vi): The proof of (vi) is a more involved. First, we see with (iv) that

b
Cd(d — 2)

(v—zv) <x—y,ux>>

d _ d
|z — vy |y — x|

«&G@w%%%H&G@JL%»:<

. <<x_y,w> . <y—mv”y>) + 0l - ).

d —_d
|z — vy ly — Z|

Moreover, we see

—d —d 2—d
=yl " ((y—zva) +(z—y,)) = [z —yl " (@ -y, vy —va) = O(lz —y[ ")
Therefore, we need to calculate

(x — ?ijz> (y — ja”y>
_ d _d
|y — | ly — Z|
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Consequently, the following two identities hold

(le =g~ @=g)v) = (lo =g (@ = pa)sva) + (lo = 917 (0o = )22
(ly=al™ =2)w) = (ly =2 =py)vy) + (ly = 31~ (0, — 7)., )
Using py, — § = y — py, we conclude

_—d _ _—d _ _
|m—y| (pm—y71/1>:\x—y| ((pz—y,uy>+<pm—y,uz—l/y>)

_—d _ _
= ‘SC—y| <py_yayy>+<pm_pyvl/y>+<p$_y7Vz_Vy>
—_———
=0(|z—yl?)

= o= g (= o) + (o = 5w = 1)) + O (e = 9).

In the same way, we derive

ly— 217 (py — 2, 1) = [y — 2 (2 = pr,va) + Py — T, v — ) + Oz —y[*7%).
Furthermore, using the identity d, = (x — p., V), we have
(o +dy) (o =y~ + 15— o)
=(lp =y @ pa)va) + (5ol (@ = pa)sve)
+{lz— o™ ) + (5 = p)w)-

Thus, we see that

I7y 7Vz )al/y>

— <>) +0 (- )

W ly — |

)
cda (u—y| “+lg-al™))

( _ c ( — Y, Vg — y>+<py_x7yy_yi>>
- d
|z —g|” |z -yl

+0 <|x - y|H) .

With (2.1.2) and (2.1.6), we calculate

| (P — Y,y — V)| < |pz — 7| |Vy — v < (Jo =gyl +dz) |Vy — Vg
< Cislz =gl |lvy — val -
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This, then yields
= g™ (ps — G, v — 1) = O(Jz — 9>~ ).

It remains to show

—d _ 2—d
|Z =yl " py — T, vy —vz) = O(lz —y[" "),

which can be done in an analogous way. Whit this, we proved (vi).
(vii): With

=y = (3 — 9.7 —y) = (Po — dave — py — dyVy, Po — dave — py — dyvy)

= P2 — pyl> = 2 (D — Py duv + dyvy) + (duve + dyvy, dpve + dy1r,)

= |ps — py|2 +d? + dz + 2dydy (Vg, vy) — 2 (py — Py, duVe + dyvy)
=o(|z—yl?)

and

2 —y* = (@ —y,x—y) = (o + dova — py — dyvy, o + dove — py — dyv)
= |ps — py|2 + 2Py — Dy, duVy — dyvy) + (duvy — dyvy, dyvy — dyvy)
= |po — pyl* + 2 + & — 2dydy (Ve vy) + 2 Py — Py, dovy — dyvy),

=o((lz—yl?)

we see
2=y = |z — yI = adady (v 13) + 0 (Jz = o).
We finish with showing
ddudy () 1) = of (Jo — o)
if x,y — x* € 9Q. This follows from
(varry) =1=0 (la = y),

because d,d, — 0. The last equation holds as a result of (2.1.15)

Remark. According to [6], this lemma holds even in the case of d = 2.
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2.2 Ciritical points in euclidean space

Let G be a generalized Green’s function. Let M : FxQ — RV*N be defined by

M =
()i R(x;), if § = j.

Furthermore, we let
[:FyQ—RY

be a C!'-function. We then define
Hr : FnQ = R, Hr(z) :== (M (z)T'(z),T'(z))

N
= THai)R(zi) = Y _Ti(@)T;(2)G (i, ;)
i=1 i#j

and are interested in critical points of Hp.

Theorem 2.2.1. IfT' is bounded, infI'; > 0 for all i and
0= (M(z)T'(z), DT(x)[v]) for all x € FyQ, v e RN

then Hr has at least caton (QN, ANQ) critical points, where An<) := QN\fNQ.

Proof: Before we start with the proof, we remind the definition of the
Lusternik-Schnirlemann-category (in the following LS-category) and some con-
venient properties.

For a topological space X and subsets B C A C X the LS-category catx (A, B)
is the infimum of all n € Ny such that there exist open subsets Uy, ..., U, C X
with the following properties.

(LS].) AC U?:O U;, B C Uy.
(LS2) Uy,...,U, are contractible in X.

(LS3) There exists h : Uy x [0,1] = X continuous with h(x,0) = z, h(x,1) € B
and h(b,t) € Bforall x € Uy, b€ B and t € [0,1].

If X is an ANR, i.e. there exists an imbedding i : X — Z into a metric space Z
such that #(X) is closed and there exists a neighborhood U C Z such that i(X)
is a retract of U, the following holds

i) f BC AC A’ C X, then

catx (A, B) < catx (A, B).
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i)  BCACX,CcCX,then

catx (AU C, B) < catx (A, B) + catx (C).

iii) f BC AcC X, C C X and there exists h : Ax[0,1] — X with h(z,0) = z,
h(z,1) € C and h(b,t) € Bforallz € A, b€ B and t € [0,1], then

catx (A, B) < catx(C, hi1(B)).

iv) f BC AC X' C X, then

catx (A, B) < catx: (A, B).

v) If B C A C X, then there exist neighorhoods U C X of A and V C X of
B such that

catx (A, B) = catx (U, B) = catx (A, V N A) = catx (U, V).

These properties follow by using the definition of the LS-category. We omit the
proofs.

The proof of Theorem 2.2.1 follows from standard methods of critical point
theory. Essentially if ¢; < co are regular values of Hr and Hrp has no critical
points in Hy ' (c1,¢2), the negative gradient flow of Hr can be used to contract

HIEQ = {LL' € FnQ: HF(.%‘) < 02}

down to H{'. Furthermore, there exists a neighborhood of Ax$ that itself can
be deformed into A 2. Even though this is one way we could proof this, we will
give a more abstract proof. To simplify our notation, we let z = (z1,...,zn) €
QN and z; € Q. Before we can use the standard method which gives us at
least catq (H{?, Hf') many critical points, we need to set up the involved sets
properly such the negative gradient flow will do as we please. Explicitly, we
need to establish that we only have to handle situations where = € Fyn{2 stays
away from the singularities of Hp, when we deform it with the negative gradient
flow, i.e. the flow needs to stay away from 0F N . We will start with this now.
For € > 0, we define

O :={xeQ:d,, =dist(x;,00) > ¢e}.

Again, let g9 > 0 such that U, (99) is a tubular neighborhood of 9). Then,

like in section 1.1, the maps p,, =: p;, vz, =: v; and d,, =: d; are well defined
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and C2. We know that z; = p; + d;v; and let

a:[0,e] x [0,1] = R, afs,t) := (1 —t)s +te.
We define

e
Zi, x; € QF,

D.:Qx[0,1] = Q, D.(x;,t) := o
pi +ald;, t)v;, x; € Q\ Q°.

Then, D, deforms Q into Q° and we have
|D5(.”L'Z‘,If) - Dg(xj7t)| S L6 ‘J}i — Ty (2.2.1)
for some L. > 0. Thus,

D: QN x[0,1] = QY,  H(z,t) := (D(x1,t),...,D(xn,1))
is a deformation from Q¥ into (QE)N. Furthermore, if z € AxQ, there exist
i # j with z; = z; and thus (2.2.1) infers D(z,t) € AxQ for all ¢ € [0,1].
Property iii) and iv) of the LS-category yield

iit) iv)

caton (O, AnQ) < caton ((QE)N,ANQE) < catig, |~ ((QE)N,ANQE),

for all € < ¢p. With this estimate, we can guarantee that we do not move close
to (9Q)N. Moreover, we will show later that (Q2°)" is positive invariant with
respect to the negative gradient flow.

With the next part, we handle the rest of 0F N2, i.e. Axy{. Because we only
need to rely on the negative gradient flow until we reach a certain sublevel set,
this boundary will not be a problem. We set this up in the following: There
exists po > 0 such that

AR = {:1: e OV : 3i # j with |z —z;| < ,u}
can be deformed into An € for all < po. For this see [12]. For ¢ € R we let
Hf :={x € FnQ: Hp(z) < c}

be the sublevel set of Hp. Now assume that Hr has only finitely many critical

points. Then there exists a regular value a(p) € R of Hp such that

ze HW =z e ALQ.
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We prove this in the following. Assume the contrary, then there exists 2" €
QN \ ALQ such that

N

—nZHp(x"):ZF ZF )G (i, o)

i=1 >C i#£]

—o(1)
>C

for some C,C € R, which is a contradiction. Furthermore, without loss of
generality a(u) may be assumed as a regular value, because there are only
finitely many critical points. Thus, we have

caton (QéV,ANQE) = catgn (Q?’,H{f(“)) , Ve < g, b < o,

because we just saw that Ha(”)

can be deformed into AyQ°. We fix 4 > 0
and with it @ := a(p). We will apply (A5) now. With this, we can guarantee
that (QE)N is positive invariant with respect to the negative gradient flow ¢ of
& = —VHrp(z) as long as ¢(z,t) ¢ H;(“). We apply (A5) next. Therefore, we
need to show that there exists a C' > 0 such that

Hr(z) > a= <C, Vj#ipdi,= minNdi.

|.’Ej — xio\ 1=1,...,

Assume the opposite: This means we assume that there exists 2" € Fn{Q,

Hr(z™) > a and k # iy such that = |>n Then,
T 110
N
a < Hp(z") =) T} a")R(}) =Y Ti(a")T;(=")G (], 2})
i=1 i#j
N
Zl"?(m") (dfo) ZI‘ (d”) G(xl 7%) — —00,

=0(1)

— 00

which is a contradiction. We used (i) and (iii) of Lemma 2.1.3 here. Now, with

(A5), we choose € < g¢ such that

diy = izrlnin di = & = 0y, G(ziy,75) >0, Vj#io, Hr() >a.  (2:2.2)

[RRRE)

Let ¢ be the flow of
& = —VHr(z).
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If v € O, a < Hr(¢(z,t)) for all 0 < ¢t < T then ¢(z,t) € QY. We prove
this statement now. Let z € QY a < Hr(z) and d;, = ¢, then we also have
d;, = min;—y, n d;. Thus, (2.2.2) and (i) of Lemma 2.1.3 yield

N
- <(VHF(x))1O ’Vi0> = ' Z Fio (Jf)rk(l‘)ayio G(xiovxk) _Fzzo (x)awo R(xlo) > 0.
v (2.2.3)

Before we continue and use this fact, we explain the first equality which uses
the assumption
0= (M(z)I'(z), DT'(z)[v]) -

Having in mind that M(x) = M (z)T, we derive that

DHy(z)[v] = (DM (z)[v]T'(2), T (2)) + 2 (M (2)T'(z), DT (z)[v])
= (DM(2)[v]T'(2),T'(2)) -

Now v = (6k,ioy;€)szl leads to the equation in (2.2.3). Using (2.2.3), we see for
small £ > 0 that

dist (¢(xa t)iov 89) —&= d¢(x,s)i0 |i:0

t

d
-/ = d
/Odsdw,s)m s

- /075 <_ (VHr(9(x,5))),, ,1/¢(x7s)i0>ds > 0.

>0

Thus, we proved the claim, that if © € FxQF, then ¢(x,t) does not leave (QE)N
as long as a < Hr(¢é(x,t)).
We now are able to finish our proof. For ¢ € R, we define the critical sets

K. :={x € FNQ: Hp(z) = ¢ and VHp(z) = 0} N ()Y .

For j =1,...,cat e~ ((QE)N ,Hfl) let

¢j := inf {c > a:catgeyv (Hp, HYY) > j} € (a,00).

Note here that ¢; < oo, because Hr|r,q- is bounded from above. We further
define
Kj = ch .
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We will show that there exists a €; > 0 such that

catigeyy (HEM HE) < catgeps (HE ™, HE) + catgon (). (2.24)
With v), we have an open set U; C FnQ° such that

cat(geyv (Kj) = catgeyw (Uj) -
For this U}, there exists €; > 0 such that
Hr(z) <c¢j+ej, e ¢U; =3t >0: Hp(P(z,t)) < ¢j —¢j. (2.2.5)

We prove this. Assume the opposite, then there exist 2™ ¢ U; such that
Hr(z") < ¢; + % and Hr(¢(z",t)) > ¢; — % for all t > 0 where ¢(x,t) exists.

First, we see that ¢(2”,¢) has to be defined for all ¢ > 0. This is due to the fact
that (2", t) does not leave ()" and because of Hr(¢(z,t)) > ¢; — + it has to
stay away from AnQ°. This means ¢(z",t) belongs to a compact set of Fy{2
and thus has to be defined globally. Further, following the same argument, we
see that there exists a compact set K C Fy{2 such that ™ € K for all n. Thus
there exists £ € K and a subsequence (again declared with n) with =, — Z.
For x, we have
Hr (%) = ¢; and VHp(Z) = 0.

In other words £ € Kj, but this contradicts that ™ ¢ U; and U; being a
neighborhood of K.
With (2.2.5), iii) and iv), we see

Cat(QE)N (H;j-‘rsj,Hg) S Cat(Qg)N (H;jJrsj \ U]? Hg) + Cat(Qg)N (Uj)

S Cat(QE)N (ch‘j_fj,HF) + Cat(Qg)N (Kj) .

Finally, we let ¢;_1 < ¢; = ¢j41 = -+ = d;4p for some p > 0 and conclude with
(2.2.4) that

catgeyn (Kj) > cat(geyn (Hlfj"_sj,Hf‘) — cat(gen (Hlfj_eﬂHfi) >p+1.

>p+j <j-1

So cat(geyv (K;) > 1 which means K; # 0. If further there exist ¢; = ¢;1, we
have cat -y~ (K;) > 2 what implies |K;| = oo,
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Corollary 2.2.2. ForT € (R*)N the Kirchhoff-Routh function Hr has at least
caton (QN, ANQ) critical points.

If Q) is not contractible, Hr has at least one critical point.

Proof: We will apply Theorem 1.4. The last statement is due to [11], i.e. if
Q) is not contractible we have

caton (U, ANQ) > 1.

Further, the application to Hr is immediate, because I'(z) = T'.

Remark. Originally we also aimed for critical points of p, the least eigen-
value of M(z). But Theorem 1.4 is a bit to weak to also hold for p, i.e. the
assumption inf I'; > is too strong. Nonetheless, we show in the following, that
the Theorem holds if we could weaken this assumption to I'; > 0 for all 4.

We have the following identity
= inf (M(xz)',T).
o) = _inf | (M@).T)
In Appendix A of [4], it is proven that o(x) is simple and achieved at an eigen-

vector with only positive components. We rewrite the proof here.

Let I' € SV~1 be an eigenvector of o(x) such that we have

Then T := (|T'y],...,|Tx|) also is an eigenvector of o(x). For this, we calculate

-

s
Il
—

o(x) < (M(2)T,T) <> TiR(z;) = [TiTy| G, ;)
———

i#] >0

I7R(x;) — ZDFJ‘G(%%) = (M(z)l,T) = o(x).
i

-

Il
-

K2

Therefore, we may assume without loss of generality that T'; > 0.

We moreover assume there exists I'y, = 0. For r > 0 and (ex); = i, we
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calculate

(M(z) (T +rep),T +rep)  (M(x)T,T) + 2r (M(z)eg, ) + 172 (M (z)ex, ex)

|F+7’ek|2 T —|—Tek\2
N
_ <M(I’)F,F> _ QTZk;éi:l FlG(fEk,.’El) —|—O(T’2)
|F—|—rek|2 |F—|—7’ek|2
> pgimt TiG (g, 1)
< o(w) —2r ¢&1W6F (r?) < o(x)
k

for » small enough. This is a contradiction to

o) = inf  (M()D.T).

This proves that o(x) has an eigenvector I' where all components are positiv.
Because M(x) = M(z)T, there exists an orthonormal basis {T',v!, ..., oV ~1}.
Thus, we have

0= <F, vi> .

Because all components of I" are positive, there must exist positive and negative

components in every vector v’. With the same calculations as before, we see
o(z) < (M(z)v",v") < (M(z)v',v") = BV (v").
This results in the proof of g(z) being simple. Thus we have an unique map
F:FyQ—= S In{veRY: iy, >0vi=1,...,N},z—TI(z)

where I'(z) is the unique eigenvector of o(z) in SN ~'N{v e RN : v; > 0Vi=1,...,N}.
The maps ¢ and I' both are C!. To see this, we define

I fNQXRxSN_lﬁ{U eERYN iy >0Vi=1,.. .,N} — RN, f(z,s,v) := M(z)v—sv.

We want to apply the Implicit Function Theorem. It is clear that f(z, o(x),T'(z)) =
0. Thus, we calculate

0 0
g — <z — M(z)w — sw.
8sf(a:, $,0)[r] rv and avf(x, s, v)[w] (2)w — sw
Furthermore, we have
Totw)rie) (R x SY71) = Ty)R ® Tr(r) S~ =R T(z) "

We see
(=T(x)r, M(x)v — p(x)v) =0 < r =0 and v = A\I'(z)
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for some A € R. This means (r,v) = 0, therefore ﬁf(x, o(z),T'(x)) is injec-
tive. Thus, we conclude that o and T' are both C'. Finally,

implies

jan)
I
—
=
&
~
—
—~
&
=
I

2(T'(z), DT'(x)[v]) for all z € FnQ,v € R,

Thus, we proved the weakened assumptions of Theorem 2.2.1, when we set
infI'; > 0 to I';(x) > 0.



Chapter 3

The Green’s Function on

Surfaces

In this section, we consider (¥, g) to be a compact two dimensional Riemannian
manifold. Before we look for critical points of Kirchhoff-Routh-functions again,
we will establish some approximations of the (Dirichlet) Green’s function be-
longing to the negative Laplace-Beltrami operator —A, with Dirichlet boundary
conditions if 9% # 0.

3.1 The Green’s function on surfaces without bound-
ary

We start with the case that X is closed, so that 0¥ = (. In Appendix C, we see
the existence of a Green’s function and if 9% = (), we have

G(p.g) =~ (dy (p,0)) + hs(p.0),

where dg is the metric induced by g and hy is in C* (£2). We combine this
with the fact that every surface is locally conformally flat, see [9], and want to

construct a chart ¢ : U — V such that for z = ¢(p), y = ¢(q) we have

1
G(p’ Q) = 7% ln|x - y| + h@(‘ray)v

where again h, is a C°°-function. Therefore, we need to see how G changes

when we change the metric by a conformal factor.

Lemma 3.1.1. Let §j := e2“g be a metric conformal to g and G a Green’s

function associated with the negative Laplace-Beltrami-Operator —Aj. Then,

30
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there exists a function W € C> (22) such that

G=G+W.

Proof: In Einstein convention, we have

Agf = Jlmai (6 VIglor)

in a local chart, where g(x) = (gi7j(a?))?j=1, g Hz) = (gi’j(yc))jj:1 and |g| =
det(g) > 0. We calculate

Agf =

(Vo)

—un 1 u -
=e " —=0 (e =2y \9|ajf)
Vgl
_ aieu(d_z) ..
=e A f + —ua 970
=e A, f + (d—2)e g™ 9;ud; f.
Now, with d = 2, we see

AGf =e "N, f. (3.1.1)

Furthermore, in a chart ¢ = (z1,22) : U — R?%, we have

(dVy)s = V/|g(z)|dz1 A dzs.

Thus,
/fdvgz/feQUdVg. (3.1.2)
z )

A Green’s function of the Laplace-Beltrami Operator is defined with the condi-
tion

(Ag)yG(p,q) = d(p,q) — VpeY

voly (%)

in a distributional sense, where 0(p, ¢) is the Dirac measure at p. Note that G is
defined up to a constant, when we require G(p, ¢) = G(g,p). With (3.1.1) and
(3.1.2), we see that for every f and A C ¥ we have

/ (8,)4G(p, @) f(a) AVy(q) = / (85)oC (0. 9) () dVi(q).
A A
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Thus, again with (3.1.2), we have

1 62u

voly(X) + volg(X)’

I ~_/ e
/Avolgdvg_ Af volgdvg'

We define Wy € C*°(X) as a function which satisfies

(Ag)oG(p,q) — (Ag),G(p,q) = —

because of

1 e

AW, = — .
UL wly () " voly(%)

Note that, because of

1 eQu
— dV, =0
/2 voly(X) + volg(X) 7 7

this has a solution. Therefore the function (p, q) — G(p, q¢) — Wi(q) — Wi(p) is a
Green’s function associated with the negative Laplace-Beltrami Operator —Aj
and we conclude the proof of this Lemma. O

This yields the following.

Proposition 3.1.2. For every py € %, there exists a chart ¢ : U — V around
po with ©(po) =0, a C®-function h, : U x U — R such that

G(p.a) = —5-Wlpp) = $(@)] + ho(olp).9la))  Vpg €.

Proof: According to [9], there exists a conformally flat chart around py. We
elaborate this briefly. With [9], we achieve a chart ¢ : U — V and A(z,y) : U —
(0,00) such that

gd%w=M%w<é?>=M%wb

Without loss of generality, we can assume that A is bounded away from 0,
otherwise we use an open set U with UcuU. Then, the metric g := %g, which
is defined on U, can be expanded to a to g conformal metric on the whole surface
Y. In the chart ¢ := @ — @(pg), we then have

§<p(:c,y) = /\(JL‘ y)g¢(w,y) =1I.
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Thus, ¢(po) = 0 and

dz(p,q) = p(p) — ¢(q)] Vp,q e U.

For p,q € U, we conclude the following:

G(p,q) = G(p,q) + W(p,q)

- _% In (d;(p, q)) + hs(p,a) + W(p, q)

= -1 (lep) — @(@)]) + hy(el), o(a),

where h,(z,y) == hi(so_l(x), e )+ W(e Hz), o7 (y)).
O

Remark. In the following, we need the behavior of A, in a conformally flat

metric. In a flat chart, we see that

1 - d
Ayf =—=0;9""/910,f) = 0;0:f = Af,

where A is the usual Laplacian on R%. Thus, if § = ¢?"g and g is flat in the
chart ¢ : U — V, with (3.1.1), we derive the equation

Agf(p) = €2 0;f(p) = 2(4¢ T NEIA (fop71) (p(p)) = e2*e @A S, (2)

in that chart. In particular we will use that if f is a harmonic function in (3, g),

ie. Ayf =0, then f, := fop~! will be a harmonic function in V and vice versa.

3.2 The Green’s function on surfaces with bound-

ary

In this subsection, we achieve a good approximation of G when 0% # (. We
want to make use of an approximation of G when (Q is an open and bounded set
in R2. More specifically, in [7, 6] a generalized Green’s function is defined as a
function

G: P — R, G(m,y):—%ln\x—m—kh(x,y),

which satisfies the following conditions:

(Al) G > 0 and symmetric.
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(A2) h is C*, bounded from above, and R(z) := h(z,z) - —oo if dy =
dist(x,00) — 0.

(A3) For every e > 0, there exists C; = C1(Q,e) > 0 such that

|R(z)| + |VR(z)| < Cy for every x € Q with d, > ¢
|G(x,y)| + |VoG(z,y)| + |V,G(x,y)| < Cy for every z,y € Q with |z —

(A4) There exists Co = C2(2) > 0 such that ¥ (z,y) :== —3= In|Z — y| + h(z,y)

satisfies
[V(x, y)| + Voo (z,y)| + [Vyb(z,y) < Co for every a2,y € Qo.

Here 0 C €2 is a tubular neighborhood of 02 and Z is the reflection of z
at the boundary.

In [7], it is proven that the Dirichlet Green’s function satisfies these axioms.
Our aim is to generalize these axioms to surfaces. As in chapter 1, the Axioms
(A1)-(A3) are well known. Thus, only a generalization of (A4) is missing. How-
ever, before we explicitly derive a generalization of (A4), we discuss the basic
principals of our generalization approach. The following statement provides a
simplified summary of our generalization’s aim: "around every point of X, there
exists a chart ¢ such that G, satisfies (A1)-(A4)". With this, we will be able
to generalize theorems that where proven in open sets of R%2. However, it does
not provide a good approximation, when considering the manifold itself. Next,
we outline how we generalize (A4) such that we have a good notion of G and
can make use of the proof in [7].

First, the function é(m,y) = —%lnpc —y| is important. But on a surface,
|| has to be adapted. The fact we will use is that G is the Green’s function
of the negative Laplacian in R2. Put differently G is the Green’s function of
the ambient space of Q. In addition, the map h = hg is defined by a partial
differential equation. We could say that with hs the map

is a projection of G onto Q. In the same way, the manifold ¥ has an ambient
manifold ¥, which is compact and closed. Following this, > has a Green’s
function G and, again with a partial differential equation, we will have that

Gx :Zé-l-hé
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is the Green’s function of . This leads to ¥(p, q) := G(p, q) +hea(p,q) and with
Proposition 3.1.2 will yield our generalization of G.

By the classification theorem of compact manifolds with boundary, see [25,
Thm. 10.1], there exists a compact and closed 2-dimensional manifold fl, keN,
YO D;=U(0) CR?fori=1,...,k with D; N D; = {) for i # j such that

k
Z:i\UDi.
=1

Furthermore, we extend § to a smooth riemanian metric on 3 such that Jls =g.
We call such a surface 3 the closed surface belonging to 3.

Let ¥y C X be a tubular neighborhood of 9% in X as well as ¥ := $oN (X \ 9%).
Then, like in chapter one, P(p) := P, is the orthogonal projection of p onto 9%,
v(p) =: v, € Tp, X the interior normal at P, and d, = dist(p,0%) are well
defined on ¥y and C> when ¥ is a C* manifold. Now, let G be a Green’s
function of the negative Laplace-Beltrami-Operator —Aj on 3. For p € int(%),
we define h(q, p) = hy(q) to be the solution of the boundary-value problem

Agh, =0 in int(3)

hp(¢) = —G(p,q) on O%.

Lemma 3.2.1. The map
G:FX =R,  Gpq)=Gp.q) +hpq)

is the Dirichlet Green’s function of the negative Laplace-Beltrami-Operator —A,
on (3,9).

Remark. Before we prove Lemma 3.2.1, note that

R(p) = lim (G<p, 0+

q—p

L i (d, o, q))> — R(p) + h(p,p) = h(p.p) + O(1)

holds, where the O(1) is in a C* sense.

Proof: The Dirichlet Green’s function is the unique function which satisfies

—(Ay),Gla,p) =d4(p)  In X

in a distributional sense, and is 0 on the boundary: G(p,q) = 0 for ¢ € 9%.

Hence, for every C2-function f, there must hold
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/Gp, Ay f(q) dVy(q /3N<q> (p,9)) f(q)dsy(q)

where V, is the volume element associated with g, the volume element s, of
0% is induced by V; and N(q) is the exterior unit normal vector at ¢ € 9%.
This expression is justified by the Green’s formulas. Let p € X, then we have
(Ag)q G(p,q) = 0 for every p # g € ¥. Moreover, if ¢ € 93, we have G(p, ¢) = 0.
Thus, for € > 0, we see with Green’s formulas

/ G(p,q) Ay f(q)dV (q) / G(p,q)Agf(q)dV (q)
= Z\B:(p)

L[ onG(p,q)f(g)ds(q)
ox

+ / G(p. q)0 f(g)ds(q) — / NG (p, ) f(a)ds(q).
8B:(p) 8B (p)

=:1;—0 =:I2—f(p)

Therefore, our claim can be proven by demonstrating the convergence of I; and
I>. Because ¢ — 0, there exists a local conformal flat chart ¢, : U, — V}, such
that 0B:(p) C U. Now, we set z = ¢(p) = 0 and y = p(¢q). We then have
¢(0B:(p)) = 9B:(0) and

N 1
G(p,q) = G(p,q) + h(p,q) = —5-n [yl + h (0, ) + h(p, q)-

Because both maps h, and h are C', the integrals over them will vanish and

there only remain the In parts. Thus,

. . 1 1
=t [ 0N ) ds() =l 5 Ine) | 2 dsty) =0
€[—Ce,Cé]
for some C' > 0. Further, we calculate Oy In |y| where N (y) = —¥ is the exterior

normal vector at y € 0B.(0). Note that exterior is meant in the sense of exterior
to ¥\ B:(p). We have

1 Y Y 1
y| € €

Thus, we conclude

o=l [ o f)onnly] dsty) = i o . S0 050 = 1O

e—0 aB.(0) T e—0 27e
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O

We now define
VT x T =R, Y(pq) = GBq) +hip,q).
Proposition 3.2.2. There exists Co = Co(X) > 0 such that
9]+ [Vpi| + [Vih| < Co.

Furthermore, for every py € ¥o U 0%, there exists a chart ¢, : Up, — Vp, such
that Gy, = Go gpzjol is a generalized Green’s function in the sense of [6], with
the small adjustment that only OV, N pp, (Up, N OX) is the part of OV, where

we reflect at.

Proof: Beside some problems because of the localization, we follow the proof
of [7]. For many calculations involving —z- In |z — y|, we will refer to [7]. We
again use Theorem 2.1.2. However, this theorem only holds in open sets of R?.
Thus, we need to apply it in a chart. Moreover, because g U 0% is compact,
this local application will also transfer, to the whole surface ¥ U 0%.

First, we start with

[Y(p,q)l < Csdp VY, q € Xo. (3.2.1)

Let p € Xy. Then, the map ¢ — ¢(p,q) is harmonic and, thus the maximum
principle yields

meax [v(p,q)| = seosiiBX o v (P, q)|-

For ¢ € 93 \ 9%, the claim follows, because if P, € X is the projection of p

onto 0%, we have Pp = P, and estimate

W’(P, q)| = |1/1(p, q) - w(PPa Q)| S qu(p7 PP) - qup'

The compactness of 9% \ 9% yields (3.2.1) on that part of the boundary. It
remains the other part of the boundary

Iax [v(p, q)| = max (G(ﬁ, q) —G(p,q)|-

When p, ¢ belong to the same neighborhood of a conformal flat chart ¢, we see
in this flat chart
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For the part with h,, we see this because hy, is C! and, thus,

Mz, y) — h(z,y)| < Cy |7 — x| = 2C,d,.

The In part follows from Taylor’s Theorem and (2.1.7) with d = 2. This finishes
(3.2.1).
Our next step is to prove

Vo] < Ch. (3.2.2)

For this, we will prove that for every ¢ € ¥y and every py € 0%, there exists a
neighborhood Uy, such that Vp9|y, (+,q) is bounded. The claim then follows
because 0% is compact and V,¢ is bounded in (X9 \U) x ¥y when U is a
neighborhood of d%. This allows us to do the calculations in a chart.

So let po € 9% and let @y, : Uy, — V,, be a conformally flat chart around py in
3. We apply Theorem 2.1.2 to v, . To avoid problems with the distance, let
po € Up, C Up, be open such that

dist (p, 8Up0) = dist(p,0%) = d, Vp € Up,.

Now, if q &€ Upo, we see that V9|, (,¢q) is bounded, because ¢ and p are

bounded away from each other. So let g € Upo. Next, we investigate the map

fq :VPO _>]Rv $H¢(¢;01($)7Q)~

We show that Vf,|v, is bounded where V,, := ¢p, (Up,). This proves (3.2.2).
With Theorem 2.1.2 and (3.2.1) the inequality

C
qu(:c) < dij

remains to prove. We let y := ¢(q) and conclude with Proposition 3.1.2 that
Falw) = — 5 I =yl + g, (29) + b (2 (2), 2 ()
With
0=(Ay),G(p,q) = €m0 A,Gy, (z,y)
= ctenn (=g e = o]+ By (000) 4 (03, () 5200) )

= e2u<ﬁ’p0 A, (hLPP() (‘T, y) +h (‘p;ol (LL'), 90;01 (y))) ’
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we see 1
Af(x) = == A, (]2 — ).
7T

Thus, with [7] the claim Af, < % follows. This means, that Vy|y, (-,q) is
bounded for every ¢ € ¥y and we obtain (3.2.2).

The final part we show is
|vq¢| < 06'

For every p,q € ¥, we have

¥(p.a) = G(5, ) + h(p,0) = G(@p) + hig.p) + (Cla.7) — G(p,0))

=¥(q,p) + (@(q,ﬁ) - G(p, (I)) :
Thus, the claim follows, when

Vo ((Gla.p) - Go.0))) = 0.

To derive this, we utilize a conformally flat chart ¢ again and see

(Ga.p) - G0.0) = 510 ({722 = ) + Do),

Thus, the claim follows, as h,, is C' on ¥ x ¥ and again with [7].
O
Remark. One may think that because in d = 2 the approximation of [7] can
be generalized to surfaces, that the approximation we did in chapter one may
also translate to manifolds. However, the proof from chapter 1 for higher di-
mensions can not be translated with the methods we used. The most important

reasons for the untranslatability of the approximation are the following:
e Not every manifold with dimension d > 3 is locally conformally flat.

e The Laplace-Beltrami-Operator is not a conformal operator, because when

§ = e*g, we have

Agf=e "Dy f + (d = 2)e g™ Oud; f.

e A Green’s function of the Laplace-Beltrami-Operator of a closed manifold

Y. has an approximation of the form
2—d
G(p,q) = calz —y|” * + h(z,y),

but h also has some singularities at £ = y. See more in Appendix C.
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Even if we restrict to higher dimensional manifolds that are locally conformal
flat, the other points lead to problems. Especially when using Theorem 2.1.2,
we have problems calculating A h(x,y), as we do not know if h is harmonic
with respect to the usual Laplacian in R?. Moreover, it is not bounded by é,

since it has a singularity at = = y.



Chapter 4

Critical points on all surfaces

excluding the sphere

We remind that we consider the function
N
Hy: FyX =R, Hr(p) =Y DilG(pi,p;) + Y _TNR(p:) + ¥(p),
i£] i=1

where N € N, T = (I'y,...,Ty) € (R\ {0})", (Z,9) is a 2-dimensional, com-
pact, Riemannian manifold, G is a Green’s function of the associated Laplace-

Beltrami-Operator, R is its Robin’s function

R(p;) := lim (G(p,;,q) + %ln (dg(pi,q))>

and ¥ : N — R shall be C*>°. The closed manifold belonging to ¥ is defined in
3.2. We will prove the following three theorems in this chapter:

Theorem 4.0.1. If ¥ is closed and not homeomorphic to the sphere, RP? nor
the Klein bottle, and for T holds

Z I, #0 for every J C {1,..., N} with |J| > 3, (4.0.1)
i,‘jf‘J

then Hr has a critical point.

Theorem 4.0.2. If ¥ has boundary and the closed manifold belonging to ¥ is
neither homeomorphic to the sphere, RP? nor the Klein bottle and for T' holds

41
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(4.0.1), as well as

STP> >Ny forevery J C{1,...,N}, with |J] >2,  (4.0.2)
e i,_j#e_J

then Hr has a critical point.

Theorem 4.0.3. If X has boundary and the closed manifold belonging to ¥ is
neither homeomorphic to the sphere, RP? nor the Klein bottle, N € {3,4}, and
for T holds

FiFi+1<0 forallizl,...,N—l,
S ey TiT; <0 forall J € {1,...,N}:|J] >3, (4.0.3)
i)

then Hr has a critical point.

We will use two methods to achieve these theorems. For theorem 4.0.3, we
will generalize a method used in [6]. The theorem itself is a generalization of
the main theorem in that paper to surfaces. We can weaken the assumptions,
because the linking does not need further assumptions on I'. The method is
changing the negative gradient flow in such a way that it will stay away from
the boundary of Fy3.

The proofs of the Theorems 4.0.1 and 4.0.2 will use calculations and the method
from [22]. Here, we use a more traditional treatment. Under the assumptions of
the theorems, it will be shown that Hr satisfies the Palais-Smale-Condition and
thus, when combining this with a linking, will achieve critical points. Theorem
4.0.2 is a generalization of a theorem in [22].

We will start with showing the existence of the linking. We will begin with the
linking, because this is the main reason we have to exclude the homeomorphism
class of the sphere, RP? and the Klein bottle, since the linking does not hold in
the sphere, RP? or the Klein bottle. In chapter five, we will handle the sphere
and, in Appendix B, we see that Theorem 4.0.1 is false if X = (S’z,gst).

4.1 The linking

With linking we mean the existence of £ C FnxX and a (sequentially) compact

topological space S, and a map vy : S — FyX such that

— oo < inf Hr(p) < sup Hr(p) < oo (Bound)
pel peL

Y=y = y(S)NL#D, (Link)
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where v ~ vy means that v is homotopic to ~p.
Our linking approach is inspired by the linking in [14]. The rest of this section
will be dedicated to the proof of the following theorem, which yields a linking

in every situation needed in this thesis.

Theorem 4.1.1. If ¥ is a compact two-dimensional Riemannian manifold
where the associated closed manifold is not homeomorphic to the sphere or RP?,
then there exists L C FnY, a sequentially compact topological space S, and
Yo : S — X, such that (Bound) and (Link) are satisfied.

We start on a more abstract level. After we prove what we need in the
abstract sense, we will show the existence of all maps needed in the concrete
situation of any surface we consider.

Fori=1,...,N,let v' : S* — ¥ be simple closed curves with
Y (SN (SY) =0 Vi#j

Furthermore, let P; : & — ~* (S') be a retraction and & € 4* (S'), such that
P71(&) C int(X) is compact and

P& NPT(E) = 0.

We define € := (&1,...,&N),

v : (SN = Fa3, Yoltr, - tn) = (Y (t1), - AN (tw))
P:FNY =y (Sl)Na P(p) := (P1(p1),---, Pn(pN))
and
N
L=pP Mo =]Ir" &)

Because P, '(¢;) C int(X) are compact and they do not intersect, we see that
L C FnX is compact. Thus, (Bound) is satisfied. In the next Lemma, we show
that also (Link) is satisfied.

Lemma 4.1.2. Let v = h(1,-) ~ h(0,-) = o, then
v ((sH)Y)ne o

Proof: We will show that for every n € v ((Sl)N), there exists t7 € (Sl)N
such that P (v (t7)) = n. Thus, we also have P (y(t%)) = &, which means
Y(t&) € LN~y ((SI)N). We use the degree of maps f : M — M between
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compact orientable N-dimensional manifolds. Note here, that
deg(f) # 0= f is onto,

and we want to prove that P o~y : (Sl)N — Y ((Sl)N> is onto. Because
~%: ST — 3 are simple closed curves, the map

70 (5™ =0 ((51)")

is a homeomorphism and, thus, deg(o) € {£1} depends on the choosen orien-
tations, on (Sl)N and g ((Sl)N>. Therefore, we get

deg(P o) = deg(P o h(1,-)) = deg (P o) = deg (7o) # 0.

We conclude that P o~ : (Sl)N - % ((Sl)N> is onto and, thus, prove our

claim. O

Remark. In [11], it is allowed that 7% (S*) N~ (S') # 0. This is possi-
ble, because the behavior of the function is known when the points come close
together. Thus, an analytical degree is used to prove a similar linking scheme.
Because the curves are allowed to intersect, there is only one simple closed curve
~': 81 — ¥ to be defined. Then, the application of this abstract scheme in an

explicit manifold is easier to achieve.

Now, we are going to define the simple closed curves and the retractions in
an explicit closed surface X. First, we have to use the classification theorem of
closed surfaces. We use it in such a form, that every closed surface is home-
omorphic to a sphere, the projective plain, a torus 7', the Klein bottle, or to
the connected sum of a surface ¥’ and a torus. The classification theorem is
proven with modern methods of mathematics in [17, Thm. 6.3]. Thus, if ¥ is
not homeomorphic to S2, RP? or the Klein bottle, it is homeomorphic to the
torus T, or to T#Y', where # is the connected sum and ¥’ is a closed surface.
So, up to homeomorphism, there are three cases for which we need to define a
retraction and the closed curves. The case ¥ = T#Y is the most difficult one.
In this case, the image of the curves will be inside the torus. The retraction will
work the same way as the retraction of the torus, beside that ¥’ needs to be
handled and will be mapped to only one point.

We start with the case ¥ =2 T. We represent the torus with the square [0,1]2,
where the parallel edges are identified, i.e. (x,0) ~ (z,1) and (0,y) ~ (1,y).
Considering that S* = [0,1]/1~0, we will define ~; : [0,1] — [0,1]%. Figure 4.1

shows a sketch of the curves and retractions.
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Figure 4.1: Torus

The red lines are the ;. The retraction P; map every point on the blue line
to the intersection with the red line, which belongs to the image of v;. We write
this rigorously in the following. Let N € N and set t; := H—Ll forie{1,...,N}.
Moreover, define

7" [0,1] — [0,1]3, 7i(s) == (s,t5) .
We see that v* ([0,1]) N 47 ([0,1]) = 0 for i # j. Furthermore, we define
P;:[0,1]* = ~*([0,1]), Pi(s,t) := (s,t;) .
Then, P; is a retraction onto v ([0, 1]). For so € [0, 1], we have
P (so,ti) = {s0} x [0,1],
which is compact. Thus, if, s; # s; € [0,1] for ¢ # j, we clearly have

Pt (s, ) N Pj_1 (sj,t5) =0.
We choose s1,...,sy € [0,1] pairwise distinct and define &; := (s;,¢;). Then,
we pass over to the quotient spaces and have defined everything we aspired.

Let ¥ = T#Y'. We will define one simple closed curve ~ : [0,1] — T#X’ with
the retraction P, : ¥ — 7 ([0, 1]) and then describe what has to be done to get all
the curves 7'. As we explained, we want that v ([0, 1]) C 7" and that P, (¥') = v.
In the process of the connected sum, we cut out a circle in every surface and
glue the arising boundaries together. Thus, if we want P, : ¥ — ([0, 1]) with
P,(¥') = v in a continuous way, we have to construct P, : T\ B — v ([0,1])
with P, (O(T \ B)) = v, where B is the ball we cut out. Furthermore, outside

of a neighbourhood of the ball we cut out, we want that P, and v behave as
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they do in the case of the torus. In the following three images, we visualize our
definitions. We, again, use the square [0,1]? as a representation of the torus.
The cut out ball will also be a square, as this results in easier definitions. We
will start with Figure 4.2.

Figure 4.2: Vertical lines not near the square

The red line is our . The green square is the cut out square. The point v
is located in the exact middle of the horizontal line . The yellow lines indicate
the part where we want to do the same as in the case of the Torus. Thus, for
all blue lines in the area, bounded by the yellow lines, where the square is not
located, the retraction P, maps every point on a vertical line to the intersection
with the red line.

Next, we handle the vertical lines in the area between the yellow lines with the

green square inside. This will be explained in the following two pictures.
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Figure 4.3: Vertical lines intersecting the square

In Figure 4.3, we see the case, where a vertical line intersects with the green
square. The green square and the red line split the dark blue line into two
lines. P, will map these two parts onto the light blue line, which is a path on
v ([0,1]) from v to the intersection point with the dark blue line. This will be
done in such a way that the points of the green square are mapped to v and
the intersection of the red and dark blue line will be mapped to itself. The
remaining vertical lines are the ones between the green square and the yellow

lines.
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Figure 4.4: Vertical lines near the square not intersecting it

In Figure 4.4, every point of an orange line between the dashed green lines
will be mapped to the right endpoint of the gray line. The rest of the orange
line will be parametrized onto the gray line, like in the previous picture. Thus,
the intersection point of the orange line and the red line will stay fixed and the
points exactly at the dashed green line will be mapped to the right endpoint of
the gray line. Furthermore, the length of the gray line will depend on how far
away the orange line is from the yellow line and the green square. If the orange
line intersects the green square, the most right point of the gray line will be v.
If the orange line is one of the yellow lines, the length of the gray line will be
zero, thus, everything will be mapped to the intersection of the orange line and

the yellow line.

Now, we will define this rigorously. We set

35 35
B:=|(%,2 - c 0, 1]2.
(8’8) X <8’8> c 0.4
This is the square we cut out. We define

v:1[0,1] = [0,1]*\ B, t > (t,0).
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Next, we define

g te[0,4]
w001 SR, altA) = a) = 4T *A)(z“?» fe[éé]
A+ (1=2)(2-5), tel§ ]
s+ (t—2)A te[3 3]

oon(ed-d) -}
roon (e -3 (-2
N R ()t
oon(ed-2)-

The map a handles the scaling of the horizontal lines. The yellow lines are
the sets {(s,t) : t € [0,1]} with s = 1 or s = 2. The point v is given by
v = (3,0). We still need to parametrize the vertical lines, therefore, we use the

following two maps

51 : [07 1] - |:271:| ’ ﬂl()‘) : §+ %Aa
3 3 3
Ba [07 1] - |:07 8:| ’ /82()\) = g - g/\

Note that 8, and (3 are homeomorphisms. We define

(ar (B7(5)),0), i s € [2,1]
P, T =T, P,y(t,s) = (at (551(8))70)7 fse [07 %]
(2:(0),0), if s e [2,2].

We have P, ([0,1]%) C v ([0, 1]). Furthermore, if (¢,s) € B, we have

P, (t,5) = (s(0),0) = (; + <t— ;) -o,o> _ (;o) _

Thus, we only have to show that P, induces a continuous map from 7" — T" and
that P, (t,0) = (¢,0). First, let s € [0,1], then (0,s) = (1,s) € T. We calculate

P5(0,5) = (a(X),0) = (0,0) ~ (1,0) = (a1(}),0) = Py(1,5).
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This shows P,(0,s) = P,(1,s) € T. Furthermore, with 87 '(1) = 1 and
B51(0) = 1, we see that

P’Y(tao) = (at (62_1(0)) ’0) = (Ozt(l),O) = (at (61_1(1)) ’0) = P’Y(tv 1)'

Therefore, we have, P, (t,0) = P,(t,1) € T, which implies that P, : T — T is

well defined. Because of
P’Y(tv 0) = (at(l)a 0) = (tv O)a

we also have that ([0, 1]) is kept fixed. It only remains to show that P, is

continuous. Thus, we show that for s = 2 and s = 5 the possible definitions of

P, coincide. So, let s = 2, then we have 85 ' (£) = 0 and, therefore,

£ (:2)- o (2) ) - .

Furthermore, we have 87" (2) = 0 and, as a result, the definitions of P, also
coincide for s = 2. By setting

P T#S — 4 ([0,1]), Ble), peT

v, p&T,

we have our retraction.
Now, we define 4 and P; for i € {1,..., N}. We define

. 1
“100,1 1>\ B t (t,—
0B e (g ).

27 3+
tal scaling . Because we changed the height, we have to change the vertical

and v; = (1 L ) For the retractions P;, we again use the same horizon-

scalings. So, one defines appropriate scalings 4i and (85 and we can define
(o ((8) 7 (9)) 5%) . s €Bi(l0,1])
)7 () k) s € Ao 1)

(ar0), 5%5) - se 3.8,

—~
VA

Then, we can choose &; := (%ﬂ.7 3%%) with which we have

P& =10,1] x {Siz}
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Passing to the quotient spaces, we end up with 7% : S — X a retraction P; onto
~; with
P& N P(E) =10

and ~° (Sl) N7 (Sl) = (), which are all the properties we required. Therefore,
we established the aspired linking, for all manifolds without boundary.

When ¥ is a manifold with boundary, then, according to [25], there exists 3,
k€Nand ¥ D D; = U;(0) such that D; N D; = § with

When ¥ has genus greater or equal than 2, we assume ¥ = T#Y' ie. all
boundary components lie in ¥’ and we do not have to change anything for our
retractions. Thus, the only remaining case is that ¥ is homeomorphic to the
torus T. We use the retraction already defined on the torus. As a reminder on

the torus, we defined ¢; = 7,

vr:[0,1] = [0,1]%, Ap(s) = (s, ta),
PT . [0,1)> = [0,1]2,  PI(s,t) = (s,t;).
The curves on ¥ are just
70,1 =X () = (s,t)
and the retractions are
P;:[0,1]% = [0,1]%,  Pi(s,t) := (s,t;).

We have to be careful with the choice of &;, because it has to satisfy (P) ! (&) C
int (X). We will do this , again with drawing a picture and choosing some ex-
plicit 3.
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Figure 4.5: Torus with holes

Solet ke Nand fori=1,... k let

1 < 1 < 1 i 3
e 1= -z = —,-].
POk T gk 4 T4k k424
Then, we define
p=U., (z)) ={y €[0,1)*: ‘y—xﬂ <er}-
Note that because of t; € [0, 1], we have 4/(S') C int (X). Furthermore, we
see that D) N D), = ) if i # j. Furthermore, we see that D; C (0,1) x (3.1).
So, nothing strange happens, when we use the quotient map from [0,1]2 — 7.
This means, X := T \ Ule Di is one representation of the diffeomorphism
class where k discs are cut out. The last step is to define £. Thus, we let
S; € (0, T}& -
With this, we finished all cases and, thus, established every linking.

€k> with s; # s; for every ¢ # j and again define & := (s;,t;).

4.2 The methods

In this section, we present the methods we will use. Beside the linking, which we
just established, we also will need some sort of compactness. For the Theorems
4.0.1 and 4.0.2, the compactness will be the Palais-Smale-condition. For Theo-
rem 4.0.3, we generalize the method of [6] where the Palais-Smale-condition is

replaced by another form of compactness.

4.2.1 Using the Palais-Smale-condition

Lemma 4.2.1. Let

¢: | (7 (@,t7(9) x {g} = FnE

qEFN
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be the gradient flow of Hr. Furthermore, let L C FnX% and vy : S — FyX
satisfy (Link) and (Bound). Then, for every v ~ ~o, there exists p € v(S) such
that

lim Hp(é(t,p)) < 0.

t—=T+(p)

Proof: This is standard and we refer to [22, Lem 3.5]. Because the proof
is short, we will write it down, but will not elaborate most details. Assume the
claim is wrong. Then, there exists v ~ ~, such that for every p € v(S) we can
define T'(p) € [0,t%(p)) by

T(p) :=inf{s = 0: Hr (¢(s,p)) = sup Hr(q) +1}.
qge

=0

Note that ¢ < oo, because of (Bound). Now, for every p € ~(S) the map
t — Hr(¢(t,p)) is strictly increasing and thus the map

(S)>p—=T(p) €R
is continuous. Then,
D:[0,1] xS = FyX,  D(t,s) := ¢ (tT(v(s)),7(s))

defines a homotopy and, therefore, v1 := Dy = D(1,:) ~ D(0,-) = v =~ 7.
With (Link), there exists s € S such that D;(s) € £, which means

7 = sup Hr(q) = Hr (D1(s)) = Hr (¢(T(y(s)),7(s))) = 0 + 1.
a
O
By Lemma 4.2.1 and the linking, we achieved the existence of a flow line
along which Hp is bounded. This will yield a critical point, when Hp satisfies
the Palais-Smale-condition. Note that we also look into the behavior of Hr near

OFnY when we prove the Palais-Smale-condition later.

4.2.2 The other method

We will write this method in an abstract setting. So let M be a Riemannian
manifold, let H,® : M — R be C*® maps, L C M and vy : S — M satisfy
(Bound) with respect to H and (Link).

Theorem 4.2.2. Let a < infy H < sup, H < b and assume there exists a
reqular value My > 0 of ® such that

®(p) > My,a < H(p) < b, VH(p) = AV®(p) = A <0
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and such that the set
0#£D:={peM:P(p) <My} Cint(M)

is compact, as well as My > supg ® o 7p.
Then, H has a critical point p with H(p) € [a, b].

For the proof of this theorem, we define a vector field with certain properties.

Therefore, we define the set
Dy:={peD:a<H(p)<b}={peM: d(p) < My, a < H(p) <b}.
Lemma 4.2.3. Let My > 0 be a regular value of ® such that D = {p € M : ®(p) < My} C
int(M) is compact and for a < b € R holds
®(p) =2 Mo,a < H(p) <b,VH(p) = A\Ve(p) = A <0.

If H has no critical points in O # DL, then there exists a locally Lipschitz
continuous vector field V. : M — TM (in a sense that it is local Lipschitz

continuous in every chart) with the following properties:

(VO(p),V(p) <0 Vpe D NoD (4.2.1)
(VH(p),V(p)) >0 Vpe Db (4.2.2)
(VH(p),V(p)) = 0 Vpe M. (4.2.3)

Furthermore, we have V = 0 outside of a compact neighbourhood of D?.

Proof: We first define the vector field on the set D2 N 9D and will extend
this vector field afterwards. So, we define Vg : D® N 9D — TM with

= VH(p) — FESERIVE(p), it (VH(p), VE(p)) > 0

Vo(p) =
" v, it (VH(p), V(p)) < 0.

First, note that Vj is Lipschitz continuous in any chart because any function
involved is C!. Also, (4.2.1) and (4.2.2) hold for V{ and every p € DX NdD. We
will show this in the following, beginning with (4.2.1). If (VH(p), V®(p)) < 0,
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then this is obvious. So, we let (VH (p), V®(p)) > 0. Then, we calculate

(VH(p), V®(p))

Vo(p), V =(V®(p),VH - 2
(Vo(p),Vo(p)) < (p), VH(p) [V (p)|

V<I>(p)>

(Ve(p), Vo(p))

= (V&(p), VH(p)) — (VH(p), VP
(Ve(p), VH(p)) — (VH(p), V&(p)) Vo)

=0.

Thus, we have

(VO (). Volp)) = {?

>0
VH(p),V®(p)), if (VH(p),V®(p)) <0

and can conclude (4.2.1).

To prove (4.2.2), we have to prove that Vy(p) # 0 for all p € D2 N dD. Assume
the opposite. Because H has no critical points in D%, we conclude that Vy(p) = 0
implies (VH (p), V®(p)) > 0. But then, we have

(VH(p), Ve(p))

0=Vo(p) =VH(p) - Vo)

Vo(p).

With our assumptions, we conclude (VH (p), V®(p)) < 0 and, thus, a contra-
diction. As a closed subset of a compact set, D?NJD is compact and, therefore,

we have some m; > 0 such that
Vo(p)l >m1 >0  V¥pe DiNoD

as well as
IVH(p)| > m1 >0 Vp e D’ NaD.

If (VH(p), V®(p)) < 0, we have
(VH(p), Vo(p)) = |[VH(p)|* > m? > 0.

If (VH(p), V®(p)) > 0, we calculate

(VH(p), Vo(p)) = (VH(p), Vo(p)) +0

= (VH(), Vo) - <WW(””

IVo(p)|
= (Vo(p), Vo(p)) = [Vo(p)* > m} > 0.

v<I>(17)J/o(p)>

Thus, we conclude (4.2.2).
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The next step is to extend V; to V4, which will be defined on D%. Because My
is a regular value of ®, the set

0D = o~ (M)

is a compact submanifold of M. Thus, we have dg > 0 such that every maximal
geodesic v of M with (0) = p € 9D will at least have length 2§y. For p € M,
we define
VTp (—(50,50) — M
as the geodesic, with initial value condition
V&(p)

!/ —
T =T TV
7(0) = p.

Note here that v, is the inner normal vector of p € dD. Furthermore, the map
X~ 0D x (=69,80) = M, (p,t) = p(t)
is C*°, because 0D is compact. We define
O :=x"1 (0D x (=80,00)) .

Without loss of generality, we assume that O is a tubular neighbourhood of
0D (if not we choose a smaller §y > 0). Then, x~! : 9D x (=8p,dp) — O is
a C*°-diffeomorphism and we define y := (1, x2) as its inverse. We have for
every p € O that

P = ") (x2(p)) and d(p, x1(p)) = x2(p).

The second equation holds, because v, is parametrized by arc length, as || = 1.
We now define X, : (—dp,00) — TM with X,(t) € T, )M, as the parallel
transport of Vy(p) along 7,. So, X, is uniquely determined by the initial value
problem

Vn,;(t)u(t) =0

u(0) = Vo(p)-

Before we extend Vj, we look at the map
O3p= Xy, (x2(p)) € T,M

in any local chart. In a local chart, the initial value problem for X, translates
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to an initial value problem of the form

where g is a Lipschitz continuous function, A, (¢) is a matrix, and (z,t) — A, (t)
is C*°. If now U,(¢) is a fundamental system to u'(¢t) = A, (¢)u(t), the map
(z,t) — U,(t) is also C*°. Then, we have

and conclude that (z,t) — X, (t) is Lipschitz continuous. Thus,
O>p— Xx1(p)(X2(p)) € TPM

is Lipschitz continuous in a local chart. For 0 < § < &y, we define V5 : D® — TM

in the following way

e x 0 (e(p) + 2P VH(p), peDiNO, xalp) <6

Vs(p) := ) ,
VH(p), p€D,\Oorpe D,;NO, xa(p) > 0.

First, note that this is well defined, because X, ) (x2(p)) € T,M. If p € DENO,
we have x2(p) > 0. Furthermore, if p € D, we have x(p) = (p,0) and, thus,

Vs(p) = Xp(0) = Vo(p).
We immediately conclude that (4.2.1) holds for V. Furthermore, the map

O3 p s (VH(p), Xy, (n) (x2()))
is continuous and for p € 0D we have
(VH(p), Xy, () (x2(p)) = (VH(p), Vo(p)) = mi > 0.
By continuity and d(p, x1(p)) = x2(p), we choose a fixed §; > 0 such that
(VH(p), Xy (5 (x2(p))) >0 Vpe DiNO, xa(p) < b1
We define V; := Vj,. Then, also (4.2.2) holds for V;, because either

(VH(p),Vi(p)) = (VH(p),VH(p)) >0
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@) Vi) = (VHE. DX )+ 2P v )
= 2220 (), Xy o) + 22 [V H G > 0

So, (4.2.1) and (4.2.2) hold for V;. Finally, we define V : M — T M with

Vi(p), pe D}
V(p) = 2tely o (a), peO,0>xap) > -
0, peEM\OorpeO, x2(p) < —61.

The last remaining property we have to check is that V is locally Lipschitz
continuous. However, this follows, because in a chart V is built from Lipschitz
continuous functions, which coincide on the set where we change the definition.

|

We now prove Theorem 4.2.2 . Assume H has no critical point in D°. Let
V : M — TM be the vector field constructed in Lemma 4.2.3 . Because V is
locally Lipschitz and vanishes outside of a compact set, there exists a global
flow ¢ : M x R — M associated with the vector field V. Because of (4.2.1), the
flow satisfies

pe Db a< H(é(pt)) <bVte|[0,T] = ¢(p,t) € Db Vte[0,T].

Furthermore, since (Link) holds, for every n € N, we have &, € S such that
d(v0(&n),n) € L. Because of (Bound), we have a < H(¢(y0(&n),n)) < b.
Because S is sequentially compact, there exists £ € .S such that &, — £ along a
subsequence. As a consequence, we have o(¢) € Dt and a < H(¢(70(€)),t) < b
for all £ > 0. This is the contradiction we want to derive: Because of (4.2.2), we
have (VH(p),V(p)) > m; > 0 for every p € D?. Because of ¢(vo(¢),t) € D,

we conclude

(1) = H(6(10(6). 1)) — H(d(0(£),0))
- / (VH(6(10(6), 9)). &' (0(¢). 5)) ds

_ / (VH(¢(10(€),9)), V(6(0(6), 8))) ds

t
t—
Z/mlds:t~m1 = .
0
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4.3 Achieving the compactness

In this section, we will show that our compactness conditions hold and, thus,
we will prove the Theorems 4.0.1, 4.0.2 and 4.0.3. We will split this into three
parts, whereas each part will handle one theorem.

4.3.1 Theorem 4.0.1

Lemma 4.3.1. Let X be closed and (4.0.1) hold. There exists p > 0 such that
|VHr(p)| > 1 for every

pe ANENFNE ={p € FnE|Fi #j:dy(pispj) < u}.

In particular, Hr satisfies the Palais-Smale-condition.

Before we start the proof, note that this lemma is similar to [22, Prop. 4.1].
We will use the calculations from this paper to prove our lemma. We formulate
everything similarly to it to ease the comparison.

Proof: In [22], the author looks at the behavior of Hr for some clusters C' C
{1,..., N} with |C| > 2, i.e. when d4(p;,p;) < pforeveryi,j € C. Without loss
of generality, we assume p > 0 to be small enough, such that if dg(pi,p;) < p,
there exists a locally conformal flat chart ¢ : Us — Ve such that p; € Ug if
1 € C. Now, we look at Hr in a chart ¢ : U — V where ¢; = ¢¢, if i € C and
; is some arbitrary chart if j & C. With = p(p) = (¢1(p1), ... on(pN)), We

then have the following decomposition of Hr :

(Hr),, (2) = —5 - Jo(@) + K(z),

where
JC(%) = Z Fifj In ‘Qj‘i — Ty
i,j€C
i
and

1 1 ~
Kc(l‘) = —7 Z FiFjGw (.T,Z‘,$j) — % Z FiFjG(P(.Z‘i,.Z‘j) + \I/(JU)

T
icCHj _iéjc
2V}

Note that ¥ is smooth and bounded. Next, we define |z|, := |7z, where

7rc:(R2)N—>{x:(x1,...,xN):xi:0foralli€0}
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is the orthogonal projection. Now, following the calculations of [22, Lem. 4.2;

Lem. 4.3], we derive

1
IVHr(2)] 2 [VHr(2)lc 2 o Ve (@) = [VEe(2)le
Cr 2 A Cr 2\
Z%T(lei_x()') —CZW<Z|$1‘—JCC|> )
ieC ieC

where z¢ is some cluster point, i.e. there exists & € (0, 1) such that |z; — 2¢| <
fi for every i € C, C > 0 is just a constant and Cr is defined in [22] by

Cr = min min E Ly,
P partitionof {1,....N} CEC(P) | <
c(P)#0 hyel
Eak)

where C(P) = {I € P:|I| > 2}. Because of (4.0.1), we have Cr > 0. Now,
we finish the lemma with a contradiction. Assume there exists 0 < p,, — 0,
p" € AR N FNE such that VHr(p") < 1. Without loss of generality, we
assume p, < 1, which implies

p" €AY N FNE C Al
So there exists a p € AL, and a convergent subsequence (again denotet by p™)

with p™ — p. Because p" € AR, there exists ¢ # j such that py := p; = p;.
Thus, there exists a cluster

C:={le{l,...,N}:pr =po}.

Now, going into a conformal flat chart ¢ around that cluster and defining x; :=

vi(pi), o := pc(po), we then deduce

Cr n 2\
> & (St o)
ieC

We claim that, d, (o' (z2), o (20)) < fin, implies |z} — zo| < Cipty = fin,

1
2

1> |V (Hr), (")

where C; > 0 is a constant. In order to see this let § = e?“g be a to g conformal
metric and let v = 7y, 4 : [0,1] — X be a path with v(0) = p and v(1) = ¢g. We
remind, that the length of v is defined by

Lyy) = / VIO @) dt g€ {9,
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Now, with e* < (4, we see

This implies
ds(p,q) = ’iynf L(p.q) < C1 j{nf Lg(vp.q) = Crdy(p, q).

Now, with |27 — zo| = dg(p5' (27), p5' (0)), the claim follows. Finally, we
observe ji, — 0 and, thus,

Cr
1> |V (H ") > —F——=—— 0
= [V 1= 5T,

The fact that Hr satisfies the Palais-Smale-condition follows, because ALY N
Fn2 is a neighborhood of dFNY. Thus, every Palais-Smale sequence stays

inside some compact subset of FyY¥ and must have a convergent subsequence.

O

Proof of Theorem 4.0.1: According to the linking and Lemma 4.2.1,
there exists a flow line along which Hr is bounded, i.e. there exists p € FyX
such that

lim  Hr(é(t,p)) < Cy < o0,

t—T+(p)

where ¢ is the gradient flow of Hr and ¢ : (-,p) : (T~ (p),T"(p)) — FnZ.
First, we show that 7" (p) = co. This is done like in [22, Lem 4.7]. Because
[to,t1] © s — &(s,p) is a path from ¢(to,p) to ¢(t1,p), we see that

dy((to, p) $(t1,p)) < / |V H(6(s,p))] ds

to

<\t — tO\//t 1 \VHr(6(s,p))|* ds

= V/t1 — tor/Hr(é(t1,p)) — Hr(é(to, p))
< V|t1 — to|/Co — Hroé((to, p)).

Now, assuming T (p) < oo, we see that there exists some p € FyX such that
¢(s,p) — p for s - TH(p). If p € FyX, we are done, because then ¢(-,p)
remains in a compact set of FyX. If p € 0Fn2, there exists a cluster C' such
that p; = p; = pc for every i,j € C and |C| > 2. We choose a chart ¢ around p
such that ¢; = ¢ is a conformal flat chart around pe for every ¢ € C. In that
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chart, we follow [22, Lem 4.7] and see

(Hr),, (6(t1,p)) — (Hr), (¢(to,p)) 00 forty — T (p).

This is a contradiction, hence T+ (p) = co. Now, p" := ¢(n,p) is a Palais-
Smale-sequence and, therefore has a convergent subsequence. The limit of this

subsequence then is a critical point of Hr. O

Remark. One may wonder, if Theorem 4.2.2 could be used to achieve

Theorem 4.0.1. For this case we change the condition Zi’jel I,y # 0 to
i#£]
Zi)jeI I;T'; < 0. In this case we are able to give a proof. We assume that

i#]

®(p) > My,a < H(p) <b,VH(p) =AVO(p) = A <0

does not hold, where
O(p) =Y |TiT;| G(pi, py)-
iy
This leads to p}* — p* € X for some ¢ € I. Going into a conformal flat chart
and defining z7* = 27 if i € [ and 2] = 0if j ¢ I, leads to

VH(z"), 2" __1 Fir.w+ol
J 2
2m i€l i#£jel ]x;‘ — a7
1
= > DT +o(1),
ijel

i#i

as well as

ny ,n 1
(VO(x"),2")) = == D [Tily| + o(1).
i,_jf_l

Thus, one can conclude

L TT
NN/ O s
T (Ve@n),2) X jer Tl

i#]

(1) <o.

These calculations also appear in [6]. With Theorem 4.2.2, this establishes a

critical point.

To keep our previous assumptions, it is necessary to show that also ), jerLil'y >
i#£j

0 yields a contradiction. This will be a lot harder, because now one ends up

to sort the points by how fast they approach to p* and further by which T'; is

positive or negative. When I'; > 0 for 1 <7 < N —1 and I'y < 0, the calcula-
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tions for this are similar to [14], because only one moving vortex with negative
sign behaves like a fixed one. But, when there are more I'; involved, the proper
sorting becomes more complicated.

Because we can rely on the calculations of [22], we prefer to use them instead.

4.3.2 Theorem 4.0.2

Besides our derivation of Theorem 4.0.1, we need to consider clusters around

points at the boundary of 3. Most important for this, will be [22, Lem. 4.5].

Lemma 4.3.2. Assume X has boundary and (4.0.1), (4.0.2) hold. Further, let
D € OFNY with p; = p; for i # j implies p; € 0%. Moreover, let C be a cluster,
i.e. Py = po € 0% for all i € C and py, # pc for all k ¢ C. Then, there exists
0 > 0 such that

1
2

5 .
|VrH(p)| > i Z d?,j for every p € Us(p) N Fn 2,
jeC

where

1 2
ec =15 Zr - Z ;| >o0.
e’ i,j€C
i#j

Proof: For every ¢ € C, we use a conformal flat chart ¢ around pc, for
every k & C, we use some chart . This yields a chart ¢ such that for i £ j € C,
we have ~

1 ‘$1 — ZL’jI

? J

where the O(1) is in a Cl-sense. Further, for i € C ¥ k, we have that
Gy (i, ) = O(1) again in a C'-sense. The rest is the same as in [22, Lem. 4.4;
Lem. 4.5].

O

Proof of Theorem 4.0.2;: First, we prove that for every
peMs:={qge€ FnE :dy(gi,q;) <dordg <dforsomel <i<j<N},

we have |VHp(p)| > 1. Arguing by contradiction suppose there exist 6" — 0,
p" € M;, such that |[VHr(p")| < 1. Because ¥V is compact, there exists
a convergent subsequence (again denoted with p”) and p° € XV such that

p" — p°. Because 6, — 0, there exists i # j such that p{ = p‘; or dy = 0.
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If there exists a cluster C' with int(X) > po = p{ for all i € C, we reach a
contradiction like in the previous section. And for a cluster with 90X > pc = p;
for i € C, with lemma 4.3.2, we obtain the contradiction

1Z\VHp(p”)\2;—i S| >

n > ——— = 0
JjeC " 2y C10n

Thus, again, we see that Hr satisfies the Palais-Smale-condition. With Lemma
4.2.1, we again find a p € FyX such that

li H , 1) < Ch < o0,
S r(¢(p,t)) < Co < o0
where ¢ is the gradient flow of Hr and ¢(-,p) : (T~ (p), T (p)) — FnE. With
[22, Lem. 4.7], and the calculations we saw earlier, we deduce T (p) = oc.
Then, p™ := ¢(n,p) is Palais-Smale-sequence and the corresponding limit of the
convergent subsequence is a critical point of Hp.
(Il

4.3.3 Theorem 4.0.3

Proof of Theorem 4.0.3: Let ¥ have boundary and let (4.0.3) hold. We will
use Theorem 4.2.2 to prove it. We define

N
O:FNS SR, O(p)i=— Y DL Gpi,py) + Y Tih(pi,pi).
i#j i=1

Proposition 4.3.3. For every a <b € R exists My > 0 such that
®(p) < =My, a < Hr(p) <b, VHr(p) = AVO(p) = A > 0.

Proof: This is [6, Prop. 3.1] generalized to a surface. Thus, we only need
to do the localization. Every further necessary calculation can be found in [6].
Therefore, assume the opposite holds. Then, there exists a < b € R, p"™ € Fny X,
An < 0 such that ®(p") — —o0, a < Hp(p"™) < b and VHr(p") = A, VO(p").
Let p° € ¥V be the limit of p" (which exists along a subsequence, because ¥
is compact). Because ®(p") — —oo and H(p™) = O(1), there exists ¢ # j such
that pQ = p?. Now, let ¢ be a chart around p° where ¢; = ¢; for all i # j with
p} = pY and each ¢; being a conformal flat chart. Then, G, is a generalized
Green’s functions in the sense of [0], i.e. every point of [, Lem 3.2] holds for
G. Hence, with the calculations of [6], we reach a contradiction.
O



4.3. ACHIEVING THE COMPACTNESS 65

Now, let a < b € R satisfy (Bound). With the Proposition 4.3.3, we see that
for —®, there exists My > 0 such that

—®(p) > Mo, a < Hr(p) < b, VHr(p) = =AV®(p) = A < 0.

Note that this will hold true for any M; > M, . Thus, according to the Lemma
of Sard, we choose M to be a regular value of —® and with My > supg —®o~p.
The only remaining step to apply Theorem 4.2.2 is to prove that

0#D={peFnE:—P(p) < Mo} Cint(FnX) = Fy (int(X))

is compact. That § # D C int(FyX) is obvious. Furthermore, we see that D is
closed and that there exists d1,d2 > 0 such that

D C {p € ZN : dg(piapj) > 51, dzst(pl,ﬁE) > (52} .

Hence, as a closed subset of a compact set, D itself is compact. We briefly
show that 1,02 exist. Assume the contrary, then there exists p” € D such that
dg(p},p}) — 0 or dyr — 0. However, this means My > —®(p") — oc.

With Theorem 4.2.2 Hr has a critical point.

Remark. Because so many methods and results, for critical points of Hr,
of open sets in R? translate to surfaces, it is possible that results on dynamics
also translate to surfaces. As this is not included in this thesis, it is a potential

route to continue research from this work onwards.



Chapter 5

Critical points under

symimetries

In this chapter, we assume that the closed d-dimensional Riemanian manifold
(X, g) is symmetric in the sense that there exists a C* isometry 7: X — X, i.e.7

is a C*°-diffeomorphism that satisfies

9p(X,Y) = gr(p) (Dp7(X), Dp7(Y)) forallpe ¥; X, Y € T,X. (Sym)

5.1 The Green’s function under symmetries

Theorem 5.1.1. If G : 72X — R is a Green’s function of the negative Laplace-
Beltrami Operator —A, then

G, : X =R, G:(p1,p2) = G(r(p1),7(p2))

also is a Green’s function to the negative Laplace-Beltrami-Operator, hence G —

G 1is constant. If there exists py # pas € X such that 7(p;) = p; fori = 1,2 then
G=G,.

For the proof of this, we need to show that

1
volgd

) = / favy+ / G (0, ) f(a) AVy(q), VS € C2(D),

Lemma 5.1.2. For every measurable set A C ¥ with 7(A) = A and all contin-

66
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wous maps f : A — R, there holds

/Adeg:/AfordVg.

Proof: Let ¢ = (z1,...,24) : U — R? be a chart of ¥. Further, let

gp(z) = (gi’j(w));‘ijzl be the local representation of g in ¢. Also, let |g,(x)| :=

det(g,(x)) > 0. Per definition, we have

/deg:/ foe /gyl day ... dzg.
U p(U)

Furthermore, the map ¢, := po7 1 : 7(U) — R? is a chart of ¥. Because of

Vool = 1o |

(Sym), we have

We calculate

deg=/ folpor™ ™)™ \/Igp.|dry ... day
(V) por=1(7(U))
[ 0enes il s,
e(U

)
z/fOTdV.
U

Now, let (U;):=, be a disjoint family of sets U; C ¥ such that for every U; there
exists a chart ¢; : U; — R¢ and

A:NUGUi,

i=1

where N is a zero set. Then,
/fonVg:Z fordy,
A = U;

1
S [ gav=[ g~ | ja,
i—1 7(U;) T(A) A

Lemma 5.1.3. Let f be C2, then

Ag(for)(p) =Agf(7(p)).
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Proof: In the chart ¢, the Laplace-Beltrami Operator is given by

1 -
Agf = 0, (4571 /19,10; (f 0 9~ )
gf ‘g<p| <ng ‘gzp| j (f ' )

where g ! (z) = (gf‘;j(x))j,j: , and we have used the Einstein summation con-
vention. Next, let ¢ be a chart around p € ¥ with p(p) = 0. Again, let
¢, = por ! This is a chart around 7(p) and, with (Sym), there holds

9o = 9o, =: g- Hence, we calculate

1 .
Ayf(t(p)) = —=0; “9i(fo(por ™)) (0
7r(e)) = =0 (Vg ,(f o (por™)7) ©)
as well as
8y(f o) = s (Vilg 0y (s omo 7)) 0

Vsl
1 .
= —=0; Z’jaj o or 1)t .
=0 (VIgl90,(f o (oo m)™)) 0

O
We are now ready to prove Theorem 5.1.1. Using the two preceding lemmas,

we calculate

~(for)p) = —f(r(p)) = 112 /Ef i / G(7(p). 0)Ayf(a) AV, (0)
1
B vong/EfOT+/EG(T(p)7T(Q))Agf(T(Q))dVg(q)

1
- voly® /zf oT /2 Gr(p, @) Ag(f 0 7)(q) dVy(q)-

We see that for G, the equation we need to show holds for forif f:3¥ — R is

Lare C®,any C2map f: X - R

C2. Since 7 is one to one, and 7 as well as 7~
can be written in the form f = for, where f := for 1, then is C2. Hence, G,
is a Green’s function to the negative Laplace-Beltrami operator.

Since G, is a Green’s function, we have G — G = const and with p; = 7(p;) we
have

G(p1,p2) — G-(p1,p2) =0.

5.2 The Principle of Symmetric Criticality

In this section, we want to use the Principle of Symmetric Criticality to achieve

critical points of Hp. The following theorem states this principle.
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Theorem 5.2.1. Let ¥ be a closed riemanian manifold and G be a group of

isometries on X. Further, let f : X — R be invariant under G i.e.

flp)=f(rp) Vreg.

When Fixg denotes fized points of G, then Fixg is a totally geodesic submanifold
of ¥ and, if p € Fixg is a critical point of f|riz,, then p is a critical point of

f.

Proof: See [27] O

Now, let d =2 and 7: £ — ¥ be an isometry with 72 = id such that
1
Fiz, = U D,
i=1

for I € N, and D; = S! are the connected components of Fix, for all 1 < i <.
For example, T can be a reflection along some plane, when ¥ is imbedded in R3.
Moreover, let 2 < N € N and

H:FyS—R,  H(p):=Y DT;G(pi,p;) + ¥(p)
i#]

with ¥ : ¥ — R being C* and with Yo7 = ¥. We make no difference between
7:3 — ¥ and

T:EN%EN, 7(p) == (7(p1),...,7(pn)) -

In Theorem 5.1.1, we showed that Go7 = G, hence H o7 = H. This means we
can apply Theorem 5.2.1. In Addition, note that, because of (Sym), we have
dy = dg o 7 for the distance d, : ¥? — R. Furthermore, the map

. 1
R(pi) := lim G(pi,q) + 5 In(dy(pi, q))

satisfies R o7 = R. Hence, the map Hp is contained in the class of maps that

are included here.

Theorem 5.2.2. i) Let N be even, i.e. N = 2k for k € N, and ['5;) =
(=1) for some o € Sym(N) for all i = 1,...,N. Then, H has at least

l -k critical points.
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i) Let N =4, T1,T's > 0> TI'5, Ty and

> T <0 for all J C {1,2,3,4} with |J| =3
iij
ITi| <[] + [Ta] i=2,4
ITi| < [T2| + [Ty i=1,3.

Then, H has at least 21 critical points.

Proof: Without loss of generality, we assume that o = id. Due to Theorem
5.2.1, we only need to find critical points of H|p;, . We will search for sets
L; C Fiz, C FyX for 1 <14 <[-k where in ii) k = 2. Thereafter, we will show
that inf H|;, > —oo and that the negative gradient flow of H|p;5, is invariant in
L; and exists for an infinite time. This, will correspond to a critical point p € L;.
We will see that the £; are distinct and, thus, yield the number of critical points
as claimed. Essentially, we will write p = (p1,...,p2k) = (¢1,.--,qx) Where
¢ = (P(2i—1), (p2:)). We derive the factor [ - k by placing the ¢; € D; x D; and,
thus, have kl different possibilities. In ii), its the same, but with N =4 =22
we have 2.l =k - [.

Let o € {1,...,1}* be a multiindex. We first define £, C Fiz, C Fy3. A
point p = (q1,...,qx) € FnX belongs to L, if the following holds:

e g€ D2 forevery 1 <i<k.

e For every 1 < j </, there exists a parametrization ~; : [0,1] — D, of D;
such that 7;(0) = ~,(1) # p; for every i = 1,..., N, 7, be one to one as
amap (0,1) = D; \ {7;(0)}. Now, let {ji,...,j2s} be the set of indices
such that p;, € D, for every 1 < ¢ < 2s. Then, there exists ¢;, € (0,1)
such that v;(t;,) = p;,- Without loss of generality, we assume t;, < t;,,
fori=1,...,2s — 1. Then, there must hold

r,r <0 foreveryi=1,...,2s — 1.

Jit Jit1
Note that because there is an even amount of points on Dj, this also yields
Ty, <O0.

This means that we locate an even amount of points on D;, the connected
component of Fiz,. The points are arranged such that the adjacent points

have a different sign in the vorticities.

Lemma 5.2.3.
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Proof: p" — 0F N Fix; yields dy(p},p}) — 0 for n — oco. Because Fix, C N
is compact, there exists a limit p° € Fiz, along a subsequence (again denotet
with n). This yields a partition Io, ..., I, of {1,..., N} where i € Iy iff p{ # p{
for every k # i and j € I; iff p? =p) # pk for every k € I; # s. Because Fix,
is a totally geodesic submanifold, there exists a conformal flat chart around p°
with 2 = ¢, (p?) € R x {0}, such that

m

1
Hw(p”):E o E Fjl"kln|x;-’—xﬁ’+0(l)
i=1 ki€l
P
1 — .
=52 | T [y —apl™™ | +00).
i=1 k€l
P

The rest follows from p™ € L, and Lemma 5.2.4, which will be provided right
after the rest of the proof.
O

So max H|., exists. That maximum is a critical point of max H|._. Then
it also is a critical point of H|p;,. and as a consequence of the principle of
symmetric criticality also one of H. As a result, we found |{1, e ,l}k| =k-Il
critical points.

O

Remark. Before we prove the final lemma, we want to remark that the
amount of critical points we inferred from this method is not optimal. The
reason for this is that when we wrote p as k pairs of points, we could also have
written p = (q1,...,qx) With ¢; = (Ds(i), Po(i+1)) such that T Toi41) < 0 for
some o € Sym(N). There are k! ways of doing this. However, when placing
i € D7, we would have to be more careful. If g, € D7 we could count a critical
point more than once, when using this method. We do not solve this shortcom-

ing in this study. However, it demonstrates potential for future lines of research.

Lemma 5.2.4. i) Let k € N, (t}), C R and t} <ty < --- <t} for every
n € N. We define

i1 |7ty )
PN S (- - ket cven
PN SRR b =R e A
S T T P | Pl .
1 2 Q1 Hi:1 Ttﬂ’ ] uneven.
) ;v .
Then, o — oo, if |t} —t¢| — 0. Note that o = [[,_; |t7 —t7] "7, if
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i) Let 0 <t} <ty <ty <t} and~y; > 0, then

8 — 1 | — 15

- - — OO
R T e e e ] e A ’

if 17,15 — 0 and if yiv3 — M2 — 372 < 0, a2 — Mys — 112 < 0,
Vi <1+ 73 fori =24 and v; < y2 +y4 fori=1,3.

Proof: i): We prove this by induction. Its clear that of — oco. If k is even,
we have
|ta;i — tk|
2i41 — til

1
n __ n
o=k L
~—_—————

>1

If k£ is uneven, we have
to —t
ay =a} | il k| — 00.
k k 1 tn _tn
= 21

>1

ii): Without loss of generality, we assume ¢} = 0. Then,

R

|t’{L _ t121|’)’172 |t? _ tz"Yl’M |t§L _ tg.lVZ"/S Itg. _ tZL"YS’YzL

|tg|’71V3 |t2 _ t72L|’Y2’Y4

= e e e — R e — oo

We have to look into four different cases. If t§ /4 0, we also have that |t} — 5| 4
0 and the claim follows.

Now, let % o(1). Then, we have : = o(1). In this case, we need t§ < t% and
[th —th] =ty — th < t% to see that

|5 Jey — 25

|t§z|’7172 |t2|’71’Y4 |t§ _ tg"yz’m |t§z _ t2|’7374

tg — 3

> (7 Y1Y3TY1Y2 Y273 | .
—( 3) |t2|’h’v4 |t§l _ t2|73’v4

Because of y173 — 7172 — 7273 < 0, we have (¢§)7'7* 771727727 o0, Thus, we

show that it — gn e

n|Y1Y4 |4n _ 4n|V374 ZB>O
AR A
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and the claim will follow. For i = 2,3, we have

-t _, 8
t t

Thus, we infer

t — 3"

A R

= (tZ)%(‘m*'Yr'ys) (M)ﬁ’m ) (tZ V34
| .

ty |ty — 1)

-1

With 5 — 71 — 3 < 0, we see that (tZ)a“(w_”_w’) # 0 and our claim follows.
We continue with the third case, 4 = O(1), note that then also e O(1). We

3 7
see that
n n
7 — 7]

L =0(1)  Vi#jk#L
|tk_tz|

With this, we can deduce

1 el il

‘Luzzl’h’)'z ‘tZ"Yl’M |t§ _ t51|72’73 Itg _ tz|’¥3’¥4

> IB(tg)(V1’73—71’Y2—72“/3)+’Y4(’Y2—’Y1—V3) 00,

for some 3 > 0.
The final case is % = O(1), but }Z = o(1). Then, we also have ﬁ—% =o(1). We
3 2 3

see

|tgz"¥1’¥3 |t2 _ tgl’m’m

|t721|’7172 |t2|’71"/4 |t§ _ tg"yz’m |t§1 _ t2|’73’74

|t§|’)’173 |t2L _ tg"m’)'z

Tl — T e — T e

We look into both factors separately. Since tgt?g =140(1) and tjft;t;‘ =0(1),

we calculate

|t§|’)’1"{3

(Mm—y2=74)
|ty — tg|’¥3’>'2 |t — t§L|'Y40é3 >3 (tg)’)’s M)y o

ti—ty
3

as 1 —y2 — Y4 < 0. Finally, with =1+ o0(1) and t§ < t¥}, we infer

1t — 5"
n\Y4v2— Y14 —7Y172
|t£L|'Y4’Yl |t§L|"/2’Yl 2 5 (t4) — 0,

as yave — 7174 — 1172 < 0.
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O
Before we finish this section, we state how ~; relate to I';. After going into a
chart, there will hold v; = |Ty(;)| for a o € Sym(4). The following chart states

all possibilities:

Remark. If we want to have better conditions for arbitrary N, we would
need to find conditions as in Lemma 5.2.4 ii). The possible arrangements are
growing fast and the proof would involve even more cases. Nonetheless, it should
be possible to achieve better conditions than I'; = (—1)?, as we saw better con-
ditions when N = 4.

5.3 Another way using symmetry

~

Again, we assume 7 : ¥ — X to be an isometry with 72 = id and with Fiz, =
S1U...US. This time, we let N = 3. Further, we assume there exists o €
Sym(3) such that I'y(1y = Ty(3) > 0 > I'y(2). Without loss of generality, we
assume o = id. We then look at

H:FX =R, H(p)=Y IilGp;,p;)+ ¥(p)
7]

where Uo7 =¥ and ¥ (py, p2, p3s) = ¥(ps, p2, p1). Because of 'y = I's, we have
H(p1,p2,ps) = H(ps,p2,p1). These assumptions hold for Hr, when I'; =T's.

Theorem 5.3.1. IfI'y =T'3 >0 >1I'5 and I'y > —2I'5, then H has a critical

point.

Proof: We define the set

L = {(p1,p2, 7(p1)) : p2 € Fix; Fp1} C F3X,

and use the following lemma.
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Lemma 5.3.2.

(»"),, C L,p" — 0F3X = H(p") — oo.

Proof: If p7 — Fixz,, but dy(p},p5) /4 0, we have

H(p") = — 22 In (dy 07 7 (27)) + O(1) — oc.

Thus, let p} — p* € Fiz,. Therefore, there exists a conformal flat chart ¢
around p* € X. Thus, with 2] := ¢(pl'), we have

1 T
H,(p) = ~3- ZI’Z-FJ In |z:” — sz| +0(1).
1#]
Because Fiz, is a totally geodesic submanifold, we further assume, that 2§ =
(25,0) € R x {0}, 2 = (z},y}) and 2§ = («}, —y}). Hence, we need to show
that

Iy
n _ . nl'ls n _ nil1
|21 — 23| _ |21 — 23] =0
o7

|2y — 2p| T2 g — 2p TR -

if |2} — 28] — 0. We see |2 — 25| = 2|27 and |2} — 23| = |2F — 2F'|. Without

loss of generality, we further assume 2§ = 0. We calculate

|3 — 25 _ory 2"
I e Bl

<20 [ 0,

as I'y +2I'y > 0.

Now, let ¢ be the negative gradient flow of H.

We also need the following lemma.

Lemma 5.3.3.
peEL=o(t,p el Vt<TT(p)

where ¢(-,p) : (T~ (p), T*(p)) = F3X.

First, we note that H o7 = H and, thus, because of the chain rule, we have

DyH = D, ;) H o D,r.
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Now, D,7 is an isometry on the tangent spaces T, — T,y %, i.e. we see

Dy7 (VH(p)) = VH(7(p)),
as

(Dp7 [VH(p)], Dp7[X])

(VH(p), X) = DyH[X] = (Dyy H 0 Dyr) [X]
(VH(r(p)), DyrlX]).

With this, we deduce 7¢(t,p) = ¢(t, 7(p)). We prove this now. We see

7(¢(0,p)) = 7(p) = (0, 7(p))-

Moreover, we calculate

ST90D) = Dty | 5000.0)| = Datyt [-VH(6(0,0)] =~V (r(0(01)

and

2 6(t,7(v) = ~VH(6(1, 7(0)).

Thus, 7é(t, p) = (¢, 7(p)), because both satisfy the initial value problem
= —VH(u)
u(0) = 7(p).

Now, for p € L, we want

T¢1 (tvp) = ¢3(p7 t) and (ﬁg(f,p) S F’LJ?T

Because of H (p1,p2,p3) = H(ps, p2,p1), we have ¢1(, (p1,p2,p3)) = ¢3(t, (p3, p2, 1)),
as they will satisfy the same initial value problem. Thus, if p = (p1,p2, 7(p1)) €

L, we infer

To1(t,p) = ¢1(t, 7(p)) = ¢1(t, (7(p1),p2,p1)) = ¢3(t, (p1,p2, 7(P1))) = B3(t, p).

It remains to show that 7¢s(p,t) = ¢2(p, t), if p € L. We see this with the above
used facts. Again, let p = (p1,p2,7(p1)) € L:

®3 ¢3 $3(t, p) b1(t, p)
o(t,p) = | g2 | (t:(ps;p2,p1)) = | b2 | (£, 7(0) =7 | | d2(t,p) = | 7(¢2(t,p)
b1 é1 ¢1(t,p) #3(t,p)
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This yields 7¢2(t, p) = ¢2(t, p).
Now, with Lemma 5.3.2, we deduce TF(p) = oo for p € L£. Then, the

sequence ¢(n,p) converges to a critical point of H.
O

Remark. If we assume I'y = I's > 0 > I'y, the assumption I'y > —2I'5 is
optimal as we see in Appendix B. If I'; # I'3, the method can not work, because

of the loss of H(p1,p2,p3) = H(p3,p2,p1)-



Appendix A

The axiom A5

As a remainder, we will show that for all C' > 0, there exists e > 0 such that

dy
|z —yl

<C,dy <dy,dy <ec = (01G(z,y),vz) > 0.

In this Appendix, we continue with C;(-) being constants depending on -.

We prove this by contradiction. Assume there exists C' > 0, 2", y™ € F,Q
such that
dyn = dy < dy =t dyn, d — 0 for n — oo,

dy <Cla™ —y"| and (:G(a",y"),vy) <0,

where V! := v, if 2" € {z",y"}. Furthermore, let p” := p,». Along a subse-

quence we have
Yo := lim y" € Q and z( := lim 2" € 9.
n— 00 n—oo
According to Hopf’s Lemma (see [16] page 330), the following holds
(" G(p, 2),vp) >0 Vz e Q,pe .

To prevent sign problems, note that we use the interior normal and not the

exterior normal. This yields
(01G(20,Y0), Vo) > 0

if zg # yo, because of continuity and, thus, a contradiction. This yields x¢y = yo.
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Now, we have

dn dar no__ . n
|z —y"| lz" —yn| - fam — g7
We investigate two cases, that is % = o(1) or not. If this does not hold,

we can use (A4) to reach a contradiction, our estimations for 1) where not

enough to reach a contradiction with just (A4) in every case. We elaborate

which calculations were missing throughout the proof. Nonetheless, we start
. dr

with ——— = o(1).

[zm—y |
In this case, we reach the contradiction similar to [3] in Appendix B. To provide

a complete proof, we rewrite it in more detail. We use the transformation
Tsaa: Q= Qs xar— S(Ar —a)

where S € O(d), A > 0,a € R%. Note that T,y , is one to one, where Ts-1 514
is its inverse, if b = —ASa. First, we calculate the change of G. In other words,
we will calculate the Dirichlet Green’s function Gg x,q of Qg4 in terms of G.

Thus, we calculate

Tsxat —Tsnayl” " =S Az —a— Ay +a)>

=N e -y

Furthermore, for a function v : Q — R with Au = 0, we have

A (u (Tgiaz>> = %Au (S7'(A 7tz —b)) =0.

Thus, we see that
G(’J), y) = )\d72G57)\7a (TS7)\7Q$, TS,)\,ay) . (AO].)
We calculate this in detail now. We have

Gsna (Tsna® Tsxay) = ca¥ (Tsxa, Tsxay) — hsxa (Tsxa® TS xay)
= g\ (2,9) — hsra (Tsxa, T xay) -

Further, we just calculated, that for fixed x € g ) , we have Ayh(Ts_j\ﬂx, TsT,,l\@y) =
0. If y € 005 x4, We see

MTG A Tsxat) = V(Ts 3 o T2 o0) = A 72W(2,y) = A Ph s a(z,y).
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This yields
hsaa(z,y) = X 7Oh(Tg ) 42, T5 ) 1),

what concludes (A.0.1). Now, we see that
1G(x,y) = A O1G(Tox,aw, Ts xaY)-

We define \,, := an = Anpy and S, € O(d) such that

.
Rk
Ts, an.an = Tn : Q= Qp =05 1, an
yields v, pn = (0,1) € R?I~! x R. Moreover, we set the following notations:
T,d} = dist(0Q,, Ty2") and T,v) := vr, » for 2" € {2",y"}.

Furthermore, we set G,, := Gg_ A and see

nsAn,n

Gn

|zn — yn |

—and 0> @Gy, v = DG T Tav)

= o — g

In addition, note that 7),py = 0 and
|Tnx”™ — Thy™| = A 2" —y"| = 1.

Thus, we see, for 2z € {z™,y™}, that

dz dx
Tod} = — = < —V__ —o(1).
e N

For ¢t > 0, let B; := B:(0,t) be the closed ball with radius ¢ around (0,t) €
R%1 x R. Next, we choose ty > 0 such that

1
sup dist (z,By,) < —

. A.0.2
R"3(z,0):]2|<1 16 ( )

This can be done, because B; — Ri for t — oo. For large enough n, we have
By, \ {0} C Q.

We prove this last statement. First, note that By C B; holds for ¢t > s. Also,
() satisfies an interior ball condition, because 9 is at least C3. So, for every
py € 09, there exists w™ € 2 such that Bgn (w™) \ {p;} C 2 where w" can be

chosen such that d;, is bounded away from 0, because 052 is compact. Then, we



81

have T,,w™ = (0,Td},) where

n

d
T,d" = |7“’| — o0 and Ty, Bgn (w"™) = Brgn .
n — yn w w

Hence, for large enough n, we have By, C Bran C Q, \ {0}.
We define By := By, and G as the Green’s function belonging to By. Note here
that Gy is explicitly known, because By is a ball (see Appendix D). We further

set R := ¢ and 2 := T,,p? + RT,v2. If n is big enough, we again have

Br(z2)\{Tuwp2} C Q, and T, p, € Bgr(zy).

Further, we let r := 35 and have B,(z1) C By if n is big enough. Note that

(A.0.2) is used here. For w € Bg(zZ), we define

—anfw—z]?

vp(w) :=e —oan ki

—e
where «,, > 0 is chosen such that

0 < Av(w) = ezl (ozn lw— 27| — d) Yw € Br(zy) \ Br(22).
For wg, wr € R%, we let

[wo,w1] := {two + (1 —t)wy : t € [0,1]}.

For w € B,(z), we have w € By (Tp2"). Thus, we conclude

1
[t —w| > 1 vt € [0, T, y"].

This holds, because [0, T,y"] C B1(Tny") and |Tha" — Toy"| = 1. Now, Tay-

lor’s theorem implies

Go(w, Thy") = Go(w, 0)+0r,,0 Go(w, 0)Trdy+0O sup 3%nynGo(w,t) (Toy™)? .
= ot

=o((1nd;)?)
From the exact form of Gy (see Appendix C), we infer

to — [w — (0,%0)*
d

01,07 Go(w, 0) = cq > C(tg) >0 Yw € B,(z}).

|wl

This, yields
Go(w, Tpy™) > C14Tydy Yw € B(z1).
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We chose M,, > 0 with
max{sup vy, sup 0,v, } < M,.

Our aim is to use the maximum principle on the function

CraTndr

Bgr(z2)\ Br(2y) 2 w — Gup(w, Toy™) — 7

vp(w).

If w € OBRr(%Y), we have v,(w) = 0 and, thus,

CraTod?!

Gn(vanyn> - M

vp(w) = Gp(w, Try™) > 0.

Further, if w € B, (22), we estimate

CraTnd]

Gn(wa Tnyn) - M

’Un('LU) Z Gn (U}, Tnyn) - Cl4TndZ
>0

> Gn(waTnyn) - Go(w,Tny") > 0.

In the last inequality, we use the maximum principle and By C £2,. Thus, we

see
CuuT,d}

Gn(vanyn) - M

va(w) >0 on & (Br(z)\ Bo(=).

Furthermore, we calculate

Cy4T,d? C14T,d™
—AW¢MWEW%-My%W)_ >

=—— " YA >
A A wn(w) >0,

for every w € Br(2}) \ By (22). Thus, the maximum principles yields

C(1411n d;l

vp(w) >0 in Br(z2) \ Br(z2).

We continue with

C1T,d?
G (T, Tay™) = — L0 (Tuplt) = 0.
M,
Thus,
n n Ci4T,,d" " n
aTnz/; Gy (Tnp;any ) > Mn Y 6Tny; Un(Tnpg;) > Cl4Tndya

since T, v is the inner normal of Br(z}) \ Br(2}) at p?. Taylor’s theorem
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therefore yields

8Tnu;} Gn (Tnxna Tnyn) = 8Tnug Gn(Tnp;ly Tnyn)+0 ( sup (8Tn1/;1)2 Gn(tv Tnyn)Tﬂd;L> :

te[Tynp?, Thx™)

Using Taylor’s theorem another time, we reach

(8Tny;)2Gn(t,Tny")(aTﬂ%L)ZGn(t,O)JrO( sup ](8Tn,,;)28Tnl,3Gn(t,s)TndZ>.
_/_/ sE O,T,Ly" ;

=0

Since t € [T,,p2, T,2™] and s € [0,T,y"] are bound away from each other, we

finally reach

01,,n G(Ty 2", Try™) = Or,0n G (Tnpy, Tny™) + 0 (Tnd;‘) .

>C14Tndy

Thus, we conclude

N 8Tn,,;l G(Tn.’tn7 Tnyn)

0> (hG(z",y"),vy) a—1
|z™ — y"|

> 0.

n

This finishes the case —% — = o(1).

[z —ym|

Next, let %;nyn‘ = O(1). From Lemma 2.1.3, we see that, because of (A4),

Yy
we have

n i3

—Y
ly —an|* e — g

" —y" T

G(x",y") = (d — 2)eq ( d) + Oo0(y, ).

We are interested in (01 G(z™,y™), ). Thus, we calculate each part of the sum.
The identities 2™ = p! + d2v? and 2" = p? — dv) will be used here.

" —am vy oy —ps +dyyy — dpvpvr)

jan —yn | | — yn|?
dr — dv dr n n,yn
S gy B )
|z —yn| |z —yn| |z —ym|
and
(e — g vp) _ (P —py +dyvy +divi,vp
jan — gn|? |z — |
dr +dn dr n o__ ”71/77‘
:miyd+(1*<’/ga’/£>) Y . <pz Dy §>
|xn_gn| |xn_gn| |$"—§"‘
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In the next step, we estimate

<pZ-pZ,V£>_+ (P — Py Vi)
|zn — yn|? |zn — gn|?

From (2.1.3), we have (p —pr,v) = O(lz — y|*). Furthermore, again using
Lemma 2.1.3, we have

_ 2
n_gn 4dndn
(H) 1B o,

|zm — y| |z — yn|

Now, Taylor’s theorem applied to (1 + 2)? = 14 O(z) for p > 1 yields
2" — | d dandr
() N Y
Thus, we reached

(v —vvm) | (vh—vpvn) O(”)

N S jan — g7

Combining all of the calculations, also including (2.1.15), we see

nom oy dy —dy dy +dy dy
<81G(1' Y ),l/x> - + <32¢(y ) L )a z>+0 | d |-
1 rn

o —yn|* - Jan — g —y"|
Because of Id% = O(1), we have
2" — g7 e — y"|? +4£ +o(1) = O(1)
7 = 2 " =
(d5) (d5) &
and, thus,

d’ﬂ
(O29(y",2"),vy) = O (\x" — g"\zfd> -0 (”) .
|27 —

y"|

We finally see

el (G ok di\ =" =yl 1)>0
dn 1 ( 7y ) > _dn+ +dn n _nd+0( )> '
y y/ |am — gy

>0 >0

This finishes (A5), because at least one of the two summands will not tend to
0.



Since we were not able to show

dr
(Oap(y",a"), vy) =0 ( .

jzn — yn |

in the first case, we had to treat it separately.

)
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Appendix B

Some calculations on the

round sphere

In this appendix, we explicitly look at the case (X, g) = (52, gs). In that case,
the Green’s function is explicitly known.

B.1 The Green’s Function of the round Sphere

According to [10, 20], we have

Gl = — o (s (20

In spherical coordinates, it is possible to show

1
A,G(p,N) = y —Voly(S*) 71,

7

where N = (0,0,1) € 5% is the north pole. Here, it is useful that

1 0 (.  Of 1 9
sin() 90 (Sm(g)ae) T sn@)2 277

and that d,(N,p) = 6 if p = ®(p,0) in spherical coordinates. We omit the
exact calculations. The rotational invariance of A yields A,G(p,q) = —ﬁ.

Agf(907 9) =

Furthermore, using sin(t) = t + O(¢?) for small ¢, we see for p,g € S? with

86



B.1. THE GREEN’S FUNCTION OF THE ROUND SPHERE 87

dg(p,q) — 0 that

Glp.q) = f% In (Sin <d9<§q))> Ly <d9(p’ Q)) + o)

21 2

_ 7% In(dy(p, q)) + O(1).

This also yields the Dirac property of G.

At this point, our aim is to bring this into an easier form. So, let p,q € S?. By
rotational invariance of (52, g), we assume p = (1,0) € C xR and q = (¢'?,0) €
C x R, where ¢ € [0, 7]. Then,

dg(pa g) = dg(eoa 6i¢) = (rb
Now, if |z| := /22 + 22 + 22, we see with the Pythagorean Theorem that
|1— ei¢’2 = sin(¢)? + (1 — cos(4))? = 2 — 2 cos(e)

512
e
&¢ = arccos | 1 — s for all ¢ € [0, 7].

Because || is rotationally invariant, this leads to

2
dy(p, q) = arccos (1 - |p2q|> '

Next, with dy(p, ¢) € [0, 7] and the identity

we deduce

2
1 arccos(l—M)
= ——1In | sin
2 2
9 1
1 1 1 —
__ 1y 1 1(, Ip—d
2T 2 2 2
1 2 111(4)
L)
=)+ =
Thus, we see that
1 2
=)
G(pg) =~ In{lp—d
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is a Green’s function of the sphere. Moreover, we need the Robin’s function:

R(p) = lim G(p,q) + % In(dy(p; q))

—lim—— || sin (dg(g’q)) — In(dy(p, )

d s
=242D 4 O(dy(p,g)?)

— lim 72i In (; + 0(1)> _ @)

2

Thus, the map
H:FnS? - R, H(p) ::ZFifjln|pi—pj|
i#£]

yields the same dynamics as Hr.

B.2 Ciritical points on the Sphere

In [26, Chapter 4], the map H is further investigated. We explicitly calculate
critical points of H. When N = 3, the critical points of H are completly
characterized. We look into the case I'y =T's > 0 > I's. In this case [26, Ch. 4,
Thm 4.2.2] implies (p1,p2,p3) € F35? is a critical point of H, iff

' (I 4+ To)py + 20 Tapy + T (I + T'2)ps = 0.

Thus, we see that p;, p2,ps lie in some plane. With the rotational invariance,
we assume p; € ST x {0}. In addition, we further assume py = (0,1,0). We let
pi = (zi,yi,0) for ¢ = 1,3 and infer

Fl(Fl + Fg)xl + Fl(Fl + F2)$3 =0
(T + T2y + 20Ty + T (T + Te)ys = 0.

Thus, we have 1 = —x3. This yields |y1| = |y3|. From the second equation, we
see I'1(I'; + T'y) # 0 and can deduce

2I' Ty 2T,
tys=— =- 0.
s (T +T2) I'h+7T9 7

Because |y1| = |ys| and y; + y3 # 0, we see that

)
NI P

Y1 =Y3 =
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+£4/1 RN
XrT1 = —Taq = — 5
1 3 T+ 1y

< 1. Now, it is easy to check that this holds iff

We finally reach

'y
Iy+T2

if

Ty + 2T > 0.

Thus, the only critical point (up to rotation) is given by

2 2
I I
B 1- (1"1—}-21“2) B 0 B - 1— (F1+2F2>
D1 = _ I , 2= |1, p3= __I»
I'i+02 0 I'+Is
0 0

Remark. This proves that the assumptions in section 5.3 can not be opti-
mized, as in the Theorem 5.3.1 ¥ is allowed to be the sphere. Furthermore, we
see that theorem 4.0.1 can not include the sphere, because, if 'y =T's > 0 > 'y,
the condition of this theorem translates to

0# D Ty + T3+ Tol'3 = 2T Ty + 7
&0 £ T +T.

So if 2I'y + I'y < 0 then the assumption of theorem 4.0.1 are satisfied but there

does not exist any critical point of Hr on the sphere.



Appendix C

Existence and approximation

of the Green’s function

Let (X,g9) be a compact riemanian manifold. The aim of this Appendix is
to outline the proof of the existence of the (Dirichlet) Green’s function of the
negative Laplace-Beltrami-Operator. Details are provided in [2, p.101-113]. On
the pages [2, p. 101-105], Aubin investigates eigenvalues of —A = —V'V,, and

the existence of solutions to Au = f.

Theorem C.0.1. i) If & has no boundary there exists a solution ¢ € Hy to
Au= fiff [ fdV, = 0. The solution ¢ is unique up to a constant and if
feckte fork € N and a € (0,1) then ¢ € CkT2+e,

it) If ¥ has boundary then there exists a unique solution ¢ € H{(X) to Au =
fo If f € C™(X) then also p € C(X) and plgs = 0.
Definition C.0.2. i) If ¥ is closed with volume vol,(¥) =: V then the

Green’s function to the negative Laplace-Beltrami operator is a function
that satisfies
—AqG(p, q) = 5p(Q) -v!

in a distributional sense, where d,, is the Dirac function at p. In this case
G is only unique up to a map p — w(p) or up to a constant if we call for

the symmetry G(p, q) = G(q,p).

ii) If ¥ has boundary then the (Dirichlet) Green’s function of the negative
Laplace-Beltrami-Operator is the unique map G such that

A G(p,q) = 0p(q) on ¥ XY

and vanishes on the boundary where p € 0% or ¢ € 0%.
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If we define
cqr?~?, if d > 3,
U=y, (0,00) — R, \I/(T) =
—In(r), ifd=2

. 1
fOYQSdENandCd.— m,
is the fundamental solution of the negative Laplacian in R%. This leads to the
idea to define 7(p, q) := d4(p, ¢) and that ¥ or has to be the leading part of G.

The problem here is that r is not C* on F»¥ and we thus need to change it a

then the map (z,y) — Vo |z —y|

little. We define a positive decreasing cut-off map o : R — R where « =1 in a
neighborhood of 0 and o = 0 on [J, c0) where § > 0 is the injectivity radius of
Y. We then define

H(p,q) = Ha(p,q) = Ya(dy(p,q)) - o (dg(p,q)) -

Remark that )
Af = 7(92 i’ja i
/ det(g) (g ]f)

where g7 (z) = (g™ (x))jjzl and we used the Einstein sum convention. With

this we can calculate Ay H (p, ¢) and see that
|AH(p,q)| < Cidy(p, q)*~ . (C.0.1)

Before we state the existence theorem we also want to give an important lemma

so the construction will work.

Lemma C.0.3. Let Q be a bounded open set of R? and let X,Y : F,Q1 — R be
maps that satisfy

| X (p, q)| < Const - (d(p, q))a_d and |Y (p,q)| < Const - (d(p, q))ﬁ_d
for some o, 8 € (0,d). Then the map
Z:FQ—R,  Zpq) = / X(p,s)Y(s,q)dV(s)
Q

is continious and satisfies

Z(p,q)| < Const - d(p,q)* "1 fat+pf<n
1Z(p,q)| < Const - (1 + [n(d(p, 9))|) ifa+B=n
|Z(p,q)| < Const if o+ B >n.

Theorem C.0.4. If X is a closed manifold then there exists a Green’s function
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to the negative Laplace-Beltrami-Operator G : F33 — R with the following

properties.

a) For all functions ¢ € C? there holds
v(p) = V‘l/zw(q) dV(q)—/EG(p, ) Ap(q) dV (q)-

b) GisC>.

¢) There exists a constant C > 0 such that

|G(p:q)| < C(1+ [In(dy(p, q))]), if d =2
G(p,q)| < Cdy(p,q)>~ %, if d>2
VoG (p,q)| < Cdy(p,q)* 7,
V2G(p, q)| yCdy(p, q) "

d) There exists a constant A such that G(p,q) > A. Since G is only defined
up to a constant we may choose A > 0.

e) [ G(p,q)dV(q) = Const. We may choose G such that this integral van-

ishes.

f) G(p,q) = G(q,p)-

Proof: First, we define

T'1(p.q) = Ay H(p,q) and Ty (p,q) = /E Ti(p, )T (5, g) AV (3).

Then, we choose g < k € N and define

k
Glp.0) = Hp.) + 3, [ Tilpr)Hlroq) V() + Flpva)
i=17%
where F shall satisfy

_AqF(pv q) = Fk-‘rl(pa Q) - V_l'

With the lemma above and |I'1 (p, ¢)| < C1d,(p, q)? ¢, we see that I'y, is bounded
and thus, 'y is a C! map. This, then leads to the fact that a map F like this
exists and is unique up to a constant. The rest of the proof is to verify the

points a)-f) which we omit here.
(I
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Remark. If d = 2 we see in this construction that G(p, q) = H(p, q)+h(p, q)
for a bounded map h.
In [2] follows a similar result for manifolds with boundary. But because we gave
a proof of the existence of G in Lemma 3.2.1 we omit the rest. We may just
remark that again G > 0 and G(p, ¢) = G(q,p) when 9% # (.



Appendix D

The Green’s function of balls

For R > 0, we calculate the Green’s function of Ur(0) C R? for d > 3. Our
calculations are not new and can be found in for instance [18]. We need to find

a function h(z,y) that satisfies

Agh(z,y) =0 in Ug(0)

h(z,y) = —cq |z — y|2_d on OUR(0).
We define )

“: Br(0)\ {0} — R=, y::?y.
Then, we let

2—d
o) a|Y@-5|  iyro
7 CdR27d if y=0.

Because of A |z|*™% = 0, we see that Ah(z,y) = 0. If y = 0 and = € HUR(0),
we see h(z,0) = —cq |z —y>~%. Iy # 0 and = € HUR(0) we see with |z — y|* =
jo” + Jy|* — 2 (z,y) that

W g =1e -y
R
Hence, we have that
2-d ol 2"
s cale =yl —ca (Wlo—3l)  ify#0
Glavy) = eale — >~ +h(a.y) = Y
cdlr —yl caR?~4 ify=
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is the Green’s function of Ur(0). Now, let x € OUg(0). Then, v, = —F is the

inner normal at x. Next, we calculate

- - R’ (z,y)
Voo -2 = @) B BN gy (g gy @)
(Valz 1yl =) << i 3 Rl G bl G by

For y = 0, we see

RQ _ 2
(VaG(2,y),vz) = ca(d — 2)7‘y|d.
Rz —y

So, let y # 0. First, remember that |x —y| = % |z — g|, because of |z| = R.

Thus, we see

=(d—2) vl (- (z,y)
Rz —y|" Rlz —y|*
We see 2 2
R2 —
<V93G(£L'7y), V:r> = Cd(d — 2)7|y‘d

again.
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