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V Summary X 

V Summary 

Idiopathic pulmonary fibrosis (IPF) is the most common and most severe form of the 

idiopathic interstitial pneumonias (IIP). Unresponsive to any currently available therapy it 

leads to architectural distortion of the lung parenchyma and rapidly to respiratory failure. 

Although the pathogenesis of the disease is not completely understood, it is well accepted that 

initial alveolar epithelial cell injury is followed by enhanced fibroblast proliferation and 

activation to myofibroblasts. These fibroblasts are considered as key effector cells in IPF. The 

so called fibroblast foci represent hallmark lesions of the disease as they are responsible for 

the increased ECM deposition that leads to impaired gas exchange and ultimately to fibrosis. 

The present study aimed to reveal possible profibrotic paracrine effects of recently identified 

profibrotic mediators that trigger the disturbed crosstalk between alveolar epithelial cells type 

II (ATII) and fibroblasts. Recently, WNT/β-catenin signaling has been demonstrated to be 

involved in the pathogenesis of IPF. In particular it has been reported that WNT3a and 

WNT1-inducible signaling protein (WISP) 1 are secreted by ATII cells in IPF.  

In the present project it was hypothesized that WNT3a and WISP1 act in a paracrine fashion 

on fibroblasts, thereby contributing to the impaired ATII cell ̶ fibroblast crosstalk in the 

pathogenesis of IPF. 

It was shown that active WNT/β-catenin signaling takes place in NIH-3T3 fibroblasts in vitro 

as assessed by Western Blot analysis and quantitative RT-PCR. To reveal functional effects of 

active WNT/β-catenin signaling, thymidine [H3] incorporation proliferation assay, 

immunofluorescence, Sircol Collagen Assay, as well as quantitative (q) RT-PCR were 

performed.  

WNT3a stimulation of fibroblasts caused a significantly increased production of the 

extracellular matrix component collagen and led to transcriptional upregulation of fibroblast 

activation markers. Interestingly, WNT3a stimulation did not affect fibroblast proliferation. 

The paracrine effects of WISP-1, which is encoded by a WNT target gene, were analyzed in a 

comparable way. Like WNT3a, WISP-1 led to enhanced collagen deposition as well as 

upregulation of fibroblast activation markers. Proliferation of the fibroblasts remained 

unaffected. 

These results provided evidence that both molecules, WNT3a and WISP1, are capable of 

activating lung fibroblasts and causing increased collagen production in these cells. Therefore 

it is strongly suggested that WNT3a and WISP-1, which are aberrantly secreted by ATII cells 

in IPF, are profibrotic mediators that act in a paracrine fashion on fibroblasts during the 

pathogenesis of this fatal disease. 
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VI Zusammenfassung 

Die idiopathische pulmonale Fibrose (IPF) ist die häufigste und schwerwiegendste Form der 

idiopathische interstitiellen Pneumonien (IIP). Sie ist therapierefraktär, führt zu Zerstörung 

der Architektur des Lungenparenchyms und rasch zu respiratorischem Versagen.  

Die Pathogenese der Erkrankung ist größtenteils ungeklärt, wobei neue Studien eine initiale 

Schädigung von Alveolarepithelzellen (AT) vermuten lassen, woraufhin es zu gesteigerter 

Fibroblastenproliferation und Aktivierung von Fibroblasten in so genannten Fibroblasten Foci 

kommt. Diese Foci sind für die gesteigerte Produktion extrazellulärer Matrix verantwortlich, 

welche zum fibrotischen Umbau des Gewebes führt.  

Das Ziel der vorliegenden Studie war es, mögliche Effekte bereits identifizierter 

profibrotischer Mediatoren zu untersuchen, die die Kommunikation zwischen AT II Zellen 

und Fibroblasten stören. 

Kürzlich konnte gezeigt werden, dass der WNT/β-catenin Signalweg in der Pathogenese der 

IPF eine Rolle spielt. Insbesondere wurde gezeigt, dass WNT3a sowie das WNT1-inducible 

signaling protein-1 (WISP-1) im Rahmen der IPF von ATII Zellen sezerniert werden.  

Für das hier vorgestellte Projekt wurde die Hypothese aufgestellt, dass WNT3a und WISP1 

parakrin auf Fibroblasten wirken und somit zur gestörten Kommunikation zwischen ATII- 

Zellen und Fibroblasten im Rahmen der Pathogenese von IPF beitragen. 

Mittels Western Blot Analyse und quantitativer RT-PCR konnte gezeigt werden, dass der 

WNT/β-catenin Signalweg in NIH-3T3 Fibroblasten in vitro aktiviert werden kann. Weitere 

Effekte einer Aktivierung des WNT/β-catenin Signalwegs wurden mittels Thymidin [H3] 

Proliferations Assay, Immunfluoreszenz, Sircol Collagen Assay und quantitativer RT-PCR 

durchgeführt. 

WNT3a führte zu einer deutlich erhöhten Kollagenproduktion. Zudem kam es zu einer 

erhöhten Transkription von typischen Markern einer Fibroblastenaktivierung. 

Interessanterweise beeinflusste WNT3a die Fibroblastenproliferation nicht. Die parakrinen 

Effekte von WISP-1, welches von einem WNT Targetgen kodiert wird, wurden ebenfalls 

untersucht. Vergleichbar mit WNT3a führte WISP-1 zu einer erhöhten Kollagenbildung und 

Fibroblastenaktivierung. Die Proliferationsrate der Fibroblasten änderte sich hingegen nicht. 

Die vorliegenden Ergebnisse zeigen, dass beide Proteine, WNT3a und WISP-1, zu einer 

Aktivierung sowie einer erhöhten Kollagenproduktion von Lungenfibroblasten führen 

können. WNT3a und WISP-1, welche in IPF verstärkt von ATII Zellen sezerniert werden, 

wirken parakrin auf Fibroblasten und stellen somit bedeutende profibrotische Mediatoren in 

der Pathogenese der IPF dar.  



. 



1. Introduction 1 

1. Introduction 

1.1 Interstitial lung diseases 

Interstitial lung diseases (ILDs) or diffuse parenchymal lung diseases (DPLDs) are a 

heterogenous group of chronical disorders that mainly affect the interstitium of the lung 

containing the space between the basement membranes of the alveolar epithelium and the 

capillary endothelium 1. Common feature of these diseases is an increase of connective tissue 

that ultimately leads to fibrosis accompanied by reduced lung compliance and impaired gas 

exchange. Without an appropriate therapy this process results in cor pulmonale and 

respiratory failure 2. The ILDs are divided into two groups: 1) disorders that occur secondary 

to a known cause, and 2) disorders that lack an obvious origin. Known causes for ILD are 

infections, inhalation of anorganic and organic dusts, and circulation disorders. They occur 

also in association to systemical diseases, like sarcoidosis or collagen vascular diseases. The 

second group includes all cases with an idiopathic entity, such as the rare pulmonary 

histiocytosis x (HX), lymphangioleiomyomatosis (LAM), eosinophilic pneumonia and the 

more frequent idiopathic interstitial pneumonias (IIPs) 1,3.  

The IIPs include seven entities that can be mainly distinguished by histologic and radiologic 

patterns as well as clinical features: idiopathic pulmonary fibrosis (IPF), nonspecific 

interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP), acute interstitial 

pneumonia (AIP), respiratory bronchiolitis-associated interstitial lung disease (RB-ILD), 

desquamantative interstitial pneumonia (DIP), and lymphocytic interstitial pneumonia (LIP) 1 

 

 

 

Figure 1. Scheme of DPLD classification 
1
 

 



1. Introduction 2 

1.2 Idiopathic pulmonary fibrosis 

1.2.1 Epidemiology  

Idiopathic pulmonary fibrosis (IPF), also known as cryptogenic fibrosing alveolitis (CFA), 

represents the most common form of the IIPs 4. It mostly occurs in 50 - 70 year old patients 

with an incidence of 7 – 10 cases per 100.000 and is more common in men 5,6. Unresponsive 

to any currently available therapy, with a median survival time of 2.5 – 3.5 years, it is also 

considered as the most aggressive form with the worst prognosis of the seven entities 1,7-9. The 

following figure shows the worse survival in IPF patients compared to NSIP and other 

ILDs 10. 

                            

 

Figure 2. Survival of IPF/UIP patients compared to �SIP and other DPLD 

In comparison to NSIP and other DPLDs IPF exhibits the worst prognosis with a median survival about 3 
years 10. 

 

1.2.2 Clinical and histopathological features  

The patient usually shows dyspnoea and non productive cough. On auscultation often Velcro-

type inspiratory crackles are audible over the basal areas of the lung. Digital clubbing can be 

observed frequently 1,6,7. Radiological characteristics are reticular opacities and 

honeycombing that mainly affect the peripheral, basal and subpleural parts of the lung 1,4. 

Lung function test mostly depicts a restrictive pattern with reduced lung compliance and 

impaired gas exchange that in the course of the disease leads to decrease of the physical 

capacity and loss of life quality. In the late stages the patient develops a cor pulmonale. 

Respiratory failure is the most common reason for lethal outcome of the disorder 1,2,11. 

Because of its devastating character and its lack of effective medicamentous therapy, it is 

important to differentiate between IPF and the other IIPs 1,12. Table 1 shows diagnostic  
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criteria for IPF, determined by the ATS consensus of 2002, which have to be considered when 

no surgical lung biopsy is available 1. A correct clinical diagnosis of IPF is probable in 

presence of all major as well as at least three of the four minor diagnostic criteria in the 

immunocompetent adult 1. 

 

Major Criteria  

 

• Exclusion of other known causes of ILD such as certain drug toxicities, 

environmental exposures, and connective tissue diseases 

 

• Abnormal pulmonary function studies that include evidence of restriction 

(reduced VC, often with an increased FEV1/FVC ratio) and impaired gas 

exchange [increased P(A–a)O2, decreased PaO2 with rest or exercise or 

decreased DLCO] 

 

• Bibasilar reticular abnormalities with minimal ground glass opacities on 

HRCT scans 

 

• Transbronchial lung biopsy or BAL showing no features to support an 

alternative diagnosis 

Minor Criteria 

 

• Age > 50 yr 

 

• Insidious onset of otherwise unexplained dyspnoea on exertion 

 

• Duration of illness > 3 mo 

 

• Bibasilar, inspiratory crackles (dry or “Velcro”-type in quality) 

 

Table 1. ATS/ERS Criteria for diagnosis of IPF in absence of surgical lung biopsy 
1
. 
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To confirm the diagnosis IPF histologically, it is important to get a surgical lung biopsy. The 

corresponding histologic pattern is called usual interstitial pneumonia (UIP) and sometimes 

used synonymously to the term IPF 1.  

 

Key Histologic Features 

 

• Dense fibrosis causing remodeling of lung architecture with frequent 

“honeycomb” fibrosis 

• Fibroblastic foci typically scattered at the edges of dense scars 

• Patchy lung involvement 

• Frequent subpleural and paraseptal distribution 

 

Pertinent Negative Findings 

 

• Lack of active lesions of other interstitial diseases (i.e., sarcoidosis or 

Langerhans’ cell histiocytosis) 

• Lack of marked interstitial chronic inflammation 

• Granulomas: inconspicuous or absent 

• Lack of substantial inorganic dust deposits, i.e., asbestos bodies (except for 

carbon black pigment) 

• Lack of marked eosinophilia 

 

Table 2. Histologic features of Usual interstitial pneumonia (UIP) 
1
. 

 

Architectural distortion of the lung parenchyma as an obligatory consequence of the disorder 

is marked by fibrosis that consists of dense interstitial extracellular matrix (ECM) alternating 

with cystically dilatated bronchioli, the so called honeycomb cysts. Another characteristic 

lesion are aggregates of activated myofibroblasts, also referred to as fibroblast foci 4,13,5 The 

prognostic value of fibroblast foci during IPF pathogenesis is controversially discussed. Some 

authors did not find an association between an increased number of fibroblast foci and a 

worse prognosis 14. However, other studies report an inverse correlation between the number 

of fibroblast foci and the survival of the patient 15,16. According to these reports, an increasing 

number of fibroblast foci correlates to an impairment of lung function. Therefore, the number  
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of fibroblast foci can be considered as an important factor that enables indicating the 

individual prognosis of the patient 15,16. 

 

A.      B. 

 

 

 

 

 

 

 

 

 

C.      D. 

 

 

 

 

 

 

 

 

 

Figure 3. Histopathological changes in IPF. 

(A) Structures of a healthy lung (magnification 10×). (B) Structures of an IPF lung (magnification 10×). (C) 
Fibroblast focus in an IPF lung. The fibroblast focus is indicated with arrow (magnification 40×). Tissue sections 

were stained for smooth muscle actin, and with hematoxylin and eosin. (D) Honeycomb cystic changes in an IPF 
lung 17.  

 

1.2.3 Pathomechanisms of idiopathic pulmonary fibrosis 

Despite a lot of research efforts, the initial cause and the pathogenic mechanisms of IPF 

remain enigmatic 18. The (myo-) fibroblast foci and increased interstitial ECM deposition are 

currently regarded as a consequence of proliferation and activation of fibroblasts, which is 

initiated by chronic alveolar epithelial cell damage 4. In the other 6 forms of IIPs the role of 

inflammation as the preceding trigger for the development of pulmonary fibrosis is more 

emphasized 7. 
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A. Current hypothesis in IPF pathogenesis: epithelial injury as the initial trigger  

For a long time most forms of pulmonary fibrosis were regarded as a predominant  

inflammatory response to an unknown stimulus 5,18. In this concept enhanced ECM deposition 

and fibrosis are caused by inflammatory cells, cytokines, and growth factors in order to repair 

the affected tissue 19. In IPF, this hypothesis has been challenged. This is mainly due to 

several observations: 1) anti-inflammatory drugs do not lead to the expected therapeutic 

success, and 2) IPF patients´ histology does not exhibit high, but rather mild to moderate 

degrees of inflammation at different stages of the disease 7,12,18 . Thus, the current suggestion 

of IPF pathogenesis abandons the emphasis of inflammation and claims repetitive epithelial 

microinjuries and subsequent cell death next to hyperplastic and inappropriate repair 

processes as key pathogenic mechanisms in the development of the disease. Consequences are 

disruption of the epithelial integrity in the alveoli lacking the ability to re-epithelialize, and 

the release of profibrotic cytokines and growth factors by the damaged epithelial cells. 

Migration and accumulation of fibroblasts occur subsequently and further on generate 

enhanced ECM deposition 7,12. However, the “inflammatory” concept should not be excluded 

from the pathogenesis, but rather included as an associating factor into the more prominent 

force: the alveolar epithelial injury 2,12.  

 

B. Fibroblasts in IPF pathogenesis: key effector cells 

As members of the connective tissue cell family, fibroblasts are mesenchymal derived cells. 

They occur in every tissue, where they can be activated to synthesize and secrete components 

of the ECM that consists of collagens, elastins, and proteoglycans. In the lung, fibroblasts 

play a crucial role for maintaining normal lung function, ventilation, and gas exchange 20,21. 

By providing an organ with ECM as a tissue scaffold during repair processes, fibroblasts are 

pivotal for tissue remodelling and wound healing processes 22. Contributing to that function, 

they additionally posses the ability to secrete growth factors, cytokines, express integrins or 

release oxidants, thereby being able to influence other cell types´ proliferation, migration, and 

apoptosis 23. Fibroblasts do not appear in a fixed phenotype. Depending on the circumstances 

and requirements of their surroundings, they can change their phenotype and appear as a 

migratory, proliferative phenotype or as profibrotic, activated phenotypes 24.  

In IPF pathogenesis, fibroblasts can be regarded as key effector cells. They are responsible for 

the impaired physiological balance of ECM deposition that finally leads to destruction of  

normal lung architecture and accumulation of fibrotic scar tissue. Fibroblast foci represent  
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hallmark lesions of the disease. They comprise myofibroblasts that constitute a synthetically 

active contractile phenotype and secrete an overabundance of ECM components 13,25,26,27, 

which also occurs in skin wound healing processes 22. The fact that they are localized in the  

subepithelial layer in close proximity to injured alveolar epithelium underlines the assumption 

that an impaired crosstalk between both cell types mediates the progression of the 

disease 13,25. It remains unclear, which mechanism initially triggers the differentiation of the 

fibroblasts, but a possible role of local growth factors and cytokines is well accepted 8,28. 

Source of these profibrotic molecules are probably hyperplastic alveolar epithelial cells type 

II (ATII), which release growth factors and cytokines 7,12 that can influence phenotype and 

behaviour of fibroblasts in a paracrine fashion. Identification of such possibly profibrotic 

mediators and analysis of their effects could provide new information about pathogenic 

mechanisms in IPF, including crosstalks to signaling pathways that are already known to be  

involved in the progression of the disease. Thereby, new therapeutical options targeting these 

mediators may be developed.  

 

 

 

 

 

Figure 4. Hypothetical scheme of the primary pathogenic events in IPF 
12

. 

Alveolar epithelial cells are activated by unknown injuries and release factors that influence phenotype and 
behaviour of fibroblasts. In the lesion, myofibroblasts can induce epithelial cell apoptosis and disruption of 
basement membrane contributing to abnormal re-epithelialization. Additionally, activated fibroblasts secrete 
excessive amounts of ECM 12. 

 

 

 

Fibroblast activation 
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1.3 W�T signaling  

1.3.1 W�T family of signaling molecules – classification and physiology 

The WNT family of signaling molecules consists of secreted glycoproteins that play an 

important role as ligands in receptor mediated signaling pathways. The name WNT is 

composed of two homologous genes:  Wingless (Wg), a segment polarity gene from  

Drosophila and Int1, a proto-oncogene associated with mammary tumors 29,30. 

In mammals, 19 WNT members are known, encoded by Wnt genes. Names of gene and 

corresponding protein are the same: WNT 1, 2, 2b, 3, 3a, 4, 5a, 5b, 6, 7a, 7b, 8a, 8b, 9a, 9b, 

10a, 10b, 11 and 16 I. The proteins, in length of usually 350-400 amino acids (aa), have a 

highly conserved sequence that is characterized by a signal domain and a cysteine pattern 31,32. 

Before they are secreted, WNT ligands undergo posttranslational modifications, such as 

glycosylation and palmitoylation. In palmitoylated form, the ligands, like the representative 

WNT3a, transduce signals into the cytoplasm of different target cells 33,34. Signal transduction 

in the cytoplasm of different target cells leads to changed expression of various target genes 

and subsequently can influence proliferation, migration, differentiation and cell fate 

specification. Active WNT signal transduction is a key process during development and is 

also described in cancer 35,36. Currently, three different pathways are known, which describe 

the downstream signaling of WNT binding to the cell surface. The first and best understood 

pathway is the β-catenin dependent canonical WNT pathway (WNT/β-catenin pathway). The 

second involves Ca2+ and further one is associated with the c-Jun N-terminal kinase (JNK). 

The latter one is also related to as the Planar Cell Polarity Pathway (PCP) 31,35-38.  

 

1.3.2 The W�T/β-catenin signaling pathway 

WNT/β-catenin signaling, also referred to as canonical WNT signaling, involves the 

transcriptional regulator β-catenin as an intracellular key molecule. Known ligands that 

induce this pathway are: WNT 1, 2, 2b, 3, 3a, 7a, 7b, 8, 10. In absence of WNT, the 

intracellular β-catenin level is low, because the molecule is destined to proteasome-mediated 

degradation by a so-called degradation complex. This complex is composed of Axin, 

adenomatous polyposis coli (APC) and glycogen synthase kinase- (GSK) 3β. GSK3β together 

with casein kinase γ (CK γ ) is responsible for constitutive phosphorylation of β-catenin that  

in this form is targeted for ubiquitination and afterwards degradation 31,35. When WNT/β-

catenin signaling is activated, this degradation pathway is inhibited. In this case, WNT ligands  
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bind to the seven transmembrane receptors Frizzled (FZD) that form the primary receptors at 

the cell membrane 39. The following Fzd receptors are already known to interact with WNT 

and activate the signaling cascade: Fzd 1, 2, 3, 4, 5, 7, 8 and 9 I. WNTs bind to an 

extracellular cysteine rich domain of one of these receptors that builds a complex with a 

single pass transmembrane coreceptor. This coreceptor, in Drosophila encoded by the gene 

arrow, is called low density lipoprotein receptor-related protein (LRP) 5 or 6 40. After ligand  

binding to the receptors the signal is transduced to Dishevelled (DSH), another intracellular 

pathway component with the ability to interact with Axin. Axin is recruited by DSH and binds 

directly to the cytoplasmatic tail of LRP5/6 41. Without Axin the degradation complex is 

inhibited and β-catenin is not phosphorylated anymore. Subsequently, hypophosphorylated β-

catenin accumulates in the cytoplasm and is translocated to the nucleus. There it replaces the 

repressing factor Groucho from transcription factors of the T-cell-specific transcription 

factor/lymphoid enhancer-binding factor (TCF/LEF) family and thereby activates the 

transcription of WNT target genes 31,35,42. Effects of WNT/β-catenin signaling differ cell-type 

specific. Hence, the target cell determines the response 35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Overview of canonical W�T signaling pathway 
36

. 

Degradation of cytosolic β-catenin in absence of WNT(left). Signaling cascade in presence of WNT ligand at the 
cell surface (right). 
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According to the fact that different cell types or tissues respond in distinct manners to WNT 

binding, ligand-receptor affinity varies depending not only on the particular WNT ligand and 

FZD receptor, but also on the cell type 35.  

Extensive research, mostly via microarray analysis, has led to the identification of numerous 

direct and indirect WNT target genes. One group of WNT-inducible genes are components of 

the pathway themselves, indicating a feedback control 35,I. Other target genes, such as the cell  

cycle regulators myc 43 and Cyclin D1 (CycD1) 44,45 or the matrix metalloproteinase 7 (Mmp7) 

/matrilysin 46 are listed on the WNT Homepage. They point the functional relevance of WNT 

signaling in different organs, tissues and cells. Mutations or other defects causing disturbed or 

constitutively active signal transduction can result in developmental abnormalities or 

diseases 35. 

 

1.3.2.1 W�T/β-catenin signaling in diseases 

The fundamental importance of WNT signaling during development and for balanced tissue 

maintenance is reflected in diseases occurring in association to mis-regulated signaling. Most 

of them were firstly identified by mutant phenotype analysis in mice, but actually numerous 

human diseases can be correlated to disturbed WNT/β-catenin signaling. 

Currently, the most frequent and therefore best studied issue is the relation of WNT signaling 

to cancer. As many WNT target genes are involved in proliferation, apoptosis, and cell cycle 

regulation – functions that are out of order during tumorigenesis – a contribution of the 

canonical pathway to these processes suggests itself 47. Mutations in Axin, part of the 

degradation complex result in increased canonical signaling and were found in colon cancer 

as well as hepatocellular carcinoma 48,49. Constitutive activation of the pathway can also be 

caused by truncation of APC or mutations in β-catenin and are reported to induce colon 

cancer and familial adenomatous polyposis (FAP), a hereditary disorder characterized by 

precancerous polyps 50. Involvement of WNT signaling in pancreatic, ovarian, prostate and 

mammary cancer has been also reported 50. In lung cancer it was shown that overexpression 

of WNT1 and some of its target genes is associated with tumor progression and impairment of 

the prognosis 51,52. Also, it was already suggested that a WNT inhibitory factor has the 

capacity to arrest cell growth in lung cancer 53.  

Wound healing and skin represent other areas, in which the role of canonical signal  

transduction is examined. Active WNT/β-catenin signaling is involved in the recruitment of  
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fibroblasts and influences their behaviour, thereby playing a role in fibromatosis and wound 

healing in general 54,55. Furthermore it contributes to the development of fibrotic diseases that 

are characterized by pathologic tissue remodelling 56-58: 

In experimental liver fibrosis the expression of WNT and FZD was demonstrated. 

Additionally, WNT antagonism was able to inhibit activation of hepatic stellate cells that 

represents one of the main pathologic events in liver fibrosis 56. WNT4 and WNT/β-catenin 

signaling respectively were reported to be involved in the pathogenesis of renal fibrosis as 

well as WNT inhibition was able to affect the progression 57,58.  

 

In sum, many reports have established involvement of WNT/β-catenin signaling in cancer and 

fibrotic diseases. From this emanate possible approaches for new therapies that require further 

investigation in the field.  

 

1.3.2.2 W�T/β-catenin signaling in the lung and in IPF 

The WNT/β-catenin signaling pathway plays a fundamental part in lung development. Several 

WNT proteins are expressed in the lung, in the adult organ as well as during development 35.  

In mice with deficiency of WNT5a or WNT7b various lung defects affecting both epithelium 

and mesenchymal cells could be observed at different developmental stages. Given that these 

two proteins are expressed only in the epithelium, the defects can be referred to autocrine and 

paracrine signaling mechanisms as well 59. Lack of β-catenin, the intracellular key molecule 

of canonical signaling, leads to misformation of the distal airways that are required for 

appropriate gas exchange 60. These and other observations that reflect the relevance of WNT 

in lung development indicate that it can also be involved in pathologic processes in the adult 

organ. This suggestion was followed by Chilosi and colleagues 61, who reported an increase of 

β-catenin in fibroblast foci and alveolar epithelial cells type II (ATII) indicative of an aberrant 

activation of WNT signal transduction in IPF 59. Furthermore, in our laboratory an increase of 

functional WNT signaling in IPF was observed. More precisely, we found an increase of 

WNT1, 7b and 10b, Fzd2 and 3, β-catenin, and Lef1 expression in IPF lungs and 

demonstrated a significant increase of WNT signaling in ATII cells derived from IPF patients. 

Immunohistochemical stainings revealed that β-catenin localization in ATII cells of IPF lungs 

is enhanced in the cytoplasm and nucleus, whereas it is more membranous in donor lungs, 

also indicating an activation of the signaling in IPF. 
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A.                                                             B.                  

       

 

Figure 6. Immunohistochemical stainings of β-catenin in ATII cells and fibroblasts in IPF lungs. 

(A) Cytoplasmatic and nuclear accumulation of β-catenin in ATII cells (arrow) 62. (B) Nuclear accumulation of 
β-catenin in fibroblasts in subepithelial fibroblast foci 61 
 

Furthermore, unbiased microarray screens have revealed an increased expression of WNT 

target genes, such as matrix metalloproteinase (Mmp) 7, or secreted frizzled-related protein 

(Sfrp) 2 in IPF 63,64. 

To reveal the functional significance of WNT/β-catenin signaling activation in IPF further 

investigation is required. Both, characterization of the stimuli that cause the β-catenin 

elevation and elucidation of the resulting mechanisms could provide new targets for inhibiting 

the progression of the disease. 

 

1.3.3 W�T1-inducible signaling protein 1 in IPF 

WNT1-inducible signaling protein (WISP) 1 is encoded by the WNT target gene Wisp1 and 

was first discovered in a monkey epithelial cell line. It belongs to the CCN family of growth 

factors 65. This family consists of six regulatory, multimodular cysteine-rich proteins about 

30-40 kDa 66: cysteine-rich 61 (Cyr61/CCN1), connective tissue growth factor 

(CTGF/CCN2), nephroblastoma overexpressed (NOV/CCN3), WNT1-inducible signaling 

protein 1 (WISP1/CCN4), - 2 (WISP2/CCN5) and – 3 (WISP3/CCN6). 
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Figure 7. Scheme of CC� family members and their functional domains 
67

. 

SP, Signal Peptide ; IGFBP, Insulin-like Growth Factor Binding Protein-like module ; VWC, Von Willebrand 
Factor-like module ; TSP1, Thrombospondin-like module ; CT, cysteine knot containing family of growth 
regulator-like module. HO : homology ; ID : identity 67. 

 

Their biological function comprises stimulation of mitosis, adhesion, apoptosis, ECM-

production, growth-arrest, and migration by transducing signals to target cells like fibroblasts, 

epithelial cells, endothelial cells, smooth muscle cells, and neuronal cells 66. Based on these 

functions, a role of CCN family members in developmental and pathologic processes is  

strongly suggested. However, acting mechanisms remain unclear. So far, an integrin-mediated 

signaling by binding and activating integrins at the cell surface is discussed at least for Cyr61 

and CTGF 68 that is followed by intracellular signal transduction. Wisp1 or Ccn4 was 

identified as a WNT/β-catenin downstream target gene that encodes a protein of 367 aa 69. Its 

messenger RNA (mRNA) was found to be upregulated in colon tumors 69. This observation 

accompanied by the ability of WISP1 to have antiapoptotic and proliferative effects on 

epithelial and mesenchymal cells, strongly indicate a role of WISP1 in tumorigenesis 70-74. For 

instance, it was already shown to be associated with epithelial cell hyperplasia in breast 

cancer cell lines 75 as well as its presence in lung cancer was described 76. In regard to lung, a 

novel role of WISP1 during IPF pathogenesis was recently revealed 77. In our laboratory 

increased secretion of WISP1 by alveolar epithelial cells type II (ATII) in IPF was observed 

by an unbiased approach. Furthermore our group found autocrine effects of WISP1 on the 

ATII cells, which exhibited hyperplasia and expression of profibrotic cytokines after WISP1 

treatment. In this context, also paracrine mechanisms of the ligand on fibroblasts seemed 

probable. 
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2. Hypothesis and aim of the study 

Idiopathic pulmonary fibrosis (IPF) is a devastating disease. It represents the most aggressive 

form of the idiopathic interstitial pneumonias (IIP). Unresponsive to any currently available 

therapy it exhibits the worst prognosis of the seven known IIPs 1,7-9.  

Despite of extensive research, many aspects of the pathomechanisms of IPF remain unclear. 

Currently, repetitive alveolar epithelial cell type II (ATII) injury and subsequent repair 

processes are considered as the initial trigger of the disease, which is followed by the 

activation of fibroblasts 4,7. Activated myofibroblasts form fibroblast foci, which represent 

hallmark lesions of IPF. They secrete abundant extracellular matrix (ECM), what finally leads 

to the fibrotic transformation of the lung 4,5,13,25-27. 

New mediators, which can influence the crosstalk between ATII cells and fibroblasts in this 

context and thereby trigger the progression of IPF were recently identified: WNT/β-catenin 

signaling has been demonstrated to be involved in the pathogenesis of IPF 61. In particular, it 

has been reported that WNT3a and WNT1-inducible signaling protein (WISP) 1 are secreted 

by ATII cells in IPF 62,77. It remains to be analyzed how the crosstalk between ATII cells and 

fibroblasts is affected by these proteins. 

 

 

Based on this rationale following was hypothesized for the present project: 

 

The proteins W�T3a and WISP1, which are aberrantly secreted by ATII cells in IPF, 

act in a paracrine fashion on fibroblasts and thereby contribute to an impaired ATII cell 

– fibroblast crosstalk in the pathogenesis of IPF. 
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Figure 8. Hypothetical scheme to depict aberrant expression of W�T3a and WISP1 by ATII cells, 

paracrine binding to lung fibroblasts and possible functional effects. 

 

To test this hypothesis following specific aims were formed: 

 

- Analysis of WNT/β-catenin pathway expression and activation in fibroblasts. 

- Analysis of the effects of WNT3a or WISP1 treatment on  

a) proliferation ([3H]-thymidine proliferation assay) 

b) collagen production (Sircol Collagen Assay) 

c) gene expression (qRT-PCR) 
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3. Materials and Methods 

3.1 Materials 

3.1.1 Cells / Cell line 

NIH-3T3 fibroblasts (Swiss mouse embryo) German Collection of Microorganisms and Cell 

Cultures (DSMZ), Germany 

 

3.1.2 Machines / Software 

Fluorescence microscope; LEICA AS MDW  Leica, Germany 

Fusion A153601 Reader     Packard Bioscience, Germany 

GS-800TM Calibrated Densitometer   Bio-Rad, USA 

Nanodrop ND-100 spectrophotometer  Nanodrop Technologies, USA 

PCR-thermocycler      MJ Research, USA 

Quantity One software    Bio-Rad, USA 

7500 Fast Real-Time PCR System   Applied Biosystems, USA 

 

3.1.3 Reagents 

The following chemicals and reagents were purchased from the indicated companies. 

 

3.1.3.1 Chemicals and biochemicals 

Acetic acid      Roth, Germany 

Acetone      Merck, Germany 

Acrylamide solution, Rotiphorese Gel 30   Roth, Germany 

Agarose      Promega, USA 

APS       Promega, Germany 

BSA        Sigma-Aldrich, Germany 

β-Mercaptoethanol     Sigma-Aldrich, Germany 

Bromphenol Blue     Sigma-Aldrich, Germany 
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CompleteTMProtease Inhibitor   Roche, Germany 

Dako Mounting medium    Dako, USA 

Dapi       Roche, Germany 

DNA Ladder 100bp     Promega, USA 

D-MEM      Gibco BRL, Germany 

EDTA       Promega, USA 

EGTA       Sigma-Aldrich, Germany 

Ethanol absolute     Riedel-de Haёn, Germany 

EtBr       Roth, Germany 

FCS        Gibco BRL, Germany 

Glycin       Roth, Germany 

Glycerol      Merck, Germany 

HCl       Sigma-Aldrich, Germany 

Igepal CA-630 (NP-40)    Sigma-Aldrich, Germany 

Methanol      Fluka, Germany 

NaCl       Merck, Germany 

Paraformaldehyde     Sigma-Aldrich, Germany 

PBS       PAA, Austria 

Quick Start™ Bradford Dye Reagent  Bio-Rad, USA 

Rotiszint Eco plus     Roth, Germany 

SDS       Promega, USA 

Sodium orthovanadate    Sigma-Aldrich, Germany 

TEMED      Bio-Rad, USA 

TRIS       Roth, Germany 

Trypsin/EDTA     Gibco BRL, Germany 

Tween-20      Sigma-Aldrich, Germany 

[3H]-thymidine     Amersham Biosciences, 

Piscataway, New Jersey 

 

3.1.3.2 Ligands, recombinant proteins 

WISP1/CCN4 (recombinant, human)  R&D Systems, USA 

WNT3a (recombinant, mouse)    R&D Systems, USA 

TGF-β1      R&D Systems, USA 
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3.1.3.3 qRT-PCR reagents 

dNTP-Mix      Promega, USA 

MgCl2, 50 mM     Invitrogen, Germany 

10x PCR buffer (without MgCl2)   Applied Biosystems, USA 

PCR Nucleotide Mix     Promega, USA 

Random Hexamers     Promega, USA 

RNase Inhibitor     Applied Biosystems, USA 

Reverse Transcriptase MuLV RT    Applied Biosystems, USA 

 

3.1.3.4 Antibodies 

primary antibody origin  dilution company, catalog number 

anti-αSMA  mouse  1:100  Sigma-Aldrich, Germany, A-2547  

anti-COLT1  rabbit  1:100  Chemicon, AB765P 

 

anti-Cyclin D1 rabbit  1:3000  Santa Cruz Bitotech, USA, sc-753 

anti-β-Catenin  rabbit  1:3000  Cell signalling, USA, 9562 

anti-Lamin a/c  rabbit  1:3000  Santa Cruz Biotech, USA, sc-20681 

 

secondary antibody  origin  dilution company, catalog number 

Alexa 555 α rabbit IgG goat  1:1000  Invitrogen, Germany, A21429 

FITC α mouse IgG  goat  1:100  Dako, USA, F0479 

 

HRP α rabbit IgG  goat  1:3000  Pierce, USA, 31460 

 

3.1.3.5  Buffer 

for Protein extraction:  Lysis-buffer: 

20 mM TRIS pH 7.5      

150 mM NaCl       

1 mM EDTA        

1 mM EGTA       

0.5 % NP-40 (= Igepal CA-630) 

CompleteTMProtease Inhibitor [40 µl/ml] 

Sodium orthovanadate Na3VO4    
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for DNA agarose  

gel electrophoresis:  1× TAE buffer: 

40 mM Tris-acetate, pH = 8.0 

1 mM EDTA, pH = 8.0      

 

for Western Blot analysis 10× SDS-loading buffer:  

625 mM Tris-HCl, pH = 6.8    

50 % (v/v) glycerol     

20 % (w/v) SDS     

9 % (v/v) β-mercaptoethanol     

0.3 % (w/v) bromophenol blue    

 

SDS-running buffer:   

25 mM Tris 

    50 mM glycine 

    0.1 % (w/v) SDS 

    

Transfer buffer: 

25 mM Tris 

192 mM glycine      

20 % (v/v) methanol 

 

1× PBST:      

1× PBS       

  0.1 % (v/v) Tween-20 

 

    1× TBST: 

    10 mM TRIS 7.5 pH 

    150 mM NaCl 
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Blocking solution:     

5 % (w/v) non-fat dry milk     

  1× PBST      

                or       

5 % (w/v) BSA 

1× TBST 

 

    Stripping buffer: 

    62.5 mM Tris-HCl, pH = 6.8 

    2 % (w/v) SDS 

    100 mM β-mercaptoethanol 

 

3.1.3.6 Gels 

Agarose gel:   1× TAE buffer 

0.2 % Agarose 

0.5 µg/µl EtBr 

 

Stacking gel:   5 % acrylamide: bisacrylamide  

125 mM Tris-HCl, pH = 6.8 

0.1 % (w/v) SDS 

0.1 % (w/v) APS 

0.1 % (v/v) TEMED 

 

Resolving gel:   10 % acrylamide: bisacrylamide  

375 mM Tris-HCl, pH = 8.8 

0.1 % (w/v) SDS 

0.1 % (w/v) APS 

0.1 % (v/v) TEMED 
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3.1.4 Kits 

       company, catalog number 

RNeasy Mini Kit     Qiagen, Germany, 74104 

RNase-free Dnase Set     Qiagen, Germany, 79254 

SircolTM, Soluble Collagen Assay   Biocolor, UK, S1000 

Platinum®SYBR®Green q PCR Super Mix-UDG Invitrogen, Germany 11733-04 

 

3.2 Methods 

3.2.1 Cell culture 

NIH-3T3 mousefibroblasts were cultured in DMEM, supplied with 10 % FCS and maintained 

in 250 ml culture flasks in an atmosphere of 95-100 % air humidity, 5 % CO2 at 37 °C. 

Passaging was carried out in an almost confluent stadium. After one washing step with 1× 

PBS, 3 ml of Trypsin/EDTA solution were added for 2 minutes (min) to catalyze their 

detachment from the underlay. This process was stopped by addition of 7 ml culture medium. 

Afterwards the 10 ml cell suspension either were distributed to new culture flasks in a dilution 

of 1:10 or seeded accordingly to protocols of upcoming experiments. For stimulation 

experiments, fibroblasts were kept in medium with reduced serum content of 0.5 % for at 

least 12 hours (h) to synchronize their metabolic activity before treatment. If not mentioned 

separately the final concentrations for WISP1 were 1 µg/ml and for WNT3a 100 ng/ml. 

 

3.2.2 [
3
H]-thymidine proliferation assay 

The proliferation assay is based on cleavage-dependent DNA incorporation of thymidine that 

is marked by the β-radiator 3H. The proliferation rate can be indirectly quantified by 

measuring the radioactive incorporated thymidine. 

Fibroblasts were seeded at a density of approximate 104/well on 48 well plates in 500  µl of 

culture medium. Adherent fibroblasts were synchronized in 0.5 % FCS medium and 

stimulated with WISP1 and WNT3a in 200 µl of 0.5 % and 5 % medium, respectively, for 

20 h. In the last 6 h of the stimulation, [3H]-thymidine [0.5 µCi/ml] was added to incorporate 

into the DNA of proliferating cells.   

Subsequently, fibroblasts were washed twice with PBS and lysed with 300 µl of sodium  
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hydroxide (NaOH) per well. 8 ml of Scintillation liquid were added to each sample. Then the 

measurement of residual radioactivity was performed with a β-scintillation counter, to asses 

occurrence of proliferation. 

 

3.2.3 Protein extraction and quantification 

Fibroblasts were plated on 10 cm diameter culture dishes or six well plates at a density of 

60 % or 90 %, respectively, and incubated until they were adherent. Synchronisation in 0.5 % 

FCS medium was followed by stimulation of the fibroblasts with WISP1, WNT3a or TGFβ-1. 

After the stimulation endpoints, proteins were lysed in lysis buffer (described in 3.1.3.5) and 

carefully harvested by scraping with a rubber policeman. The suspensions were transferred to 

Eppendorf tubes and incubated on ice for 30 min. During that time the tubes were vortexed 

each 10 min. After centrifugation at 13.000 rpm and +4 °C for 15 min, the supernatant 

containing the proteins was collected. 

The protein concentration in the cell extracts was determined colorimetrically using the 

Bradford Protein Assay. This method is used for measurement of the protein content in 

solutions. It is based on a change in the absorption spectrum of Coomassie Brilliant Blue G-

250 dye when the dye binds to cationic nonpolar and hydrophobic side chains of amino acids. 

After binding the reagent is stable in its deprotonated anionic sulfatic form. Accompanied by 

deprotonation it changes to a blue colour. The absorption maximum moves from 465 nm to 

595 nm. Accordingly, the absorption changes proportional to the amount of proteins in the 

sample. 

To perform the measurement, protein probes were diluted 1:10. Each sample was mixed with 

200 µl of the Bradford dye and transferred to a 96well plate. Different dilutions of bovine 

serum albumin (BSA) (0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6 µg/µl) were used as a protein standard 

to construct a protein standard curve.  

After 15 min incubation, the absorption was measured at a wavelength of 570 nm in a Fusion 

A153601 Reader. The corresponding protein concentrations were calculated by interpolation 

using the standard curve.  

 

3.2.4 SDS polyacrylamide gel electrophoresis 

In order to perform Western Blot analysis, protein extracts were separated by SDS 

polyacrylamide gel electrophoresis (SDS-Page). The dissociating agent SDS denatures the  
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proteins, binds to the polypeptides and provides a consistent negative charge to the 

polypeptides, so that they migrate to the positive electrode. The mobility of the proteins 

increases linear to the protein size. Smaller molecules migrate faster than larger ones and the 

proteins can be separated according to their molecular weight. For the separation two 

polyacrylamide gel layers were used: a resolving gel and a stacking gel, which were produced 

according to the recipe, described in 3.1.3.6. Ammonium persulfate (APS) and N,N,N,N,N`-

tetramethylenediamine (TEMED) were added at last to initiate the polymerisation of the gels. 

20 µg of each protein sample were mixed with 10× SDS-loading buffer and denaturated in a 

water bath at 100 °C for 5 min. After loading the proteins onto the gel, electrophoresis was 

performed in SDS-running buffer at 110 V. 

 

3.2.5 Immunoblotting 

After separation of the proteins by SDS-Page, immunoblotting (IB) was performed to 

visualize and detect specific proteins. The proteins were transferred to 0.25 µm pure 

nitrocellulose membrane in transfer buffer at 120 V for 1 h. Membranes were blocked in 

blocking solution at room temperature (RT) for 1 h. For blocking either PBST with 5 % milk 

or TBST with 5 % BSA were used, depending on manufacturers´ recommendations for the 

corresponding antibody. Afterwards the nitrocellulose membranes were incubated with the 

appropriate primary antibody, diluted in the blocking solution, at 4 °C overnight. 

Concentrations of the different antibodies are listed in 3.1.3.4. 

The incubation was followed by washing the membranes three times for 10 min with 1×TBST 

or 1×PBST, respectively, and then incubated with horse radish peroxidase labelled secondary 

anti-rabbit antibody for 1 h at RT. After washing, the protein detection was performed by 

chemiluminescence with the help of an enhanced chemiluminescence IB system and exposure 

to radiographic film. To be able to re-probe the membranes with another antibody, they were 

stripped with stripping buffer (described in 3.1.3.5) at 52 °C for 5 min, washed, blocked and 

subsequently treated with antibodies as described above. 

 

3.2.6. Densitometry 

To perform densitometric analysis, a GS-800TM Calibrated Densitometer and 1-D analysis 

software Quantity One were used. Protein expression was normalized to Lamin A/C levels, 

which served as a loading control. 
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3.2.7 Sircol Collagen Assay 

The Sircol Collagen Assay can be used for measuring collagen content of cells or tissues in 

vitro quantitatively by dye-binding. The dye contains Sirius Red Anions with acid sulphonic 

side chains that can bind to the basic amino acids of collagen, particularly to the helical [Gly-

x-y] n structure of all collagens. Specific binding to collagen is furthermore enforced by the 

parallel attachment of the long dye molecules to the likewise long and rigid triple helix 

structure of collagen II. 

According to the instructions, 50 µg of protein were taken from each sample and each mixed 

with 1 ml of the Sircol dye at room temperature for 30 min. Afterwards the samples were 

centrifuged for 10 min at 10 000 x g. The supernatant including unbound dye was aspirated 

carefully and 1 ml of Alkali solution was added to the pellet. Alkali solution contains 0.5 M 

NaOH and dissolves the dye from the dye-collagen-complex. Same procedure was performed 

with samples of acid soluble collagen type-1 [2.5; 5; 10; 20; 30; 40; 50 µg], which were used 

to construct a standard curve based on their absorption. Pellets were re-dissolved by vortexing 

and the samples as well as the collagen standards were transferred to a 96well plate in order to 

measure their absorption in a spectrophotometer at 540 nm. The calculation of the collagen 

content was performed via interpolation using the standard curve.  

 

3.2.8 R�A isolation and measurement  

Isolation of total RNA from fibroblasts was performed according to the manufacturers’ 

instructions using the RNeasy Mini Kit. Furthermore, during the procedure a recommended 

DNase digestion was carried out with an RNase free DNase set to avoid any contamination 

with DNA. The concentration and quality of the obtained RNA was determined by measuring 

the optical density of the obtained solutions with a Nanodrop ND-100 spectrophotometer.  

The wave length for maximal absorption of nucleic acids is 260 nm. Absorption of single 

stranded (ss) RNA solution at this wave length is 1, when the concentration is 33 µg/ml. This 

is the so called Optical Density at 260 nm (OD260nm). 

Proteins, that often form a contamination source, have an absorption maximum of 280 nm. 

Hence, by calculating the quotient OD260nm/OD280nm the pureness of the nucleic acid could be 

assessed. The value should not be below 1.8 to exclude a contamination with proteins. The 

quotient of a pure RNA solution is 2.0. 
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3.2.9 cD�A synthesis  

To be able to analyze the transcript (mRNA) level by quantitative reverse transcription 

polymerase chain reaction (qRT-PCR), the RNA was transcribed into complementary cDNA. 

This process is catalyzed by reverse transcriptase (RT) an RNA-dependent DNA polymerase. 

The following protocol was used: 

500 ng RNA were used and if necessary put to a volume of 10 µl with RNase free water. 

The RNA samples were initially heated to 70 °C in a Thermo Cycler for 10 min. This 

denaturation step was followed by 5 min of cooling down and centrifugation. Then the 

Mastermix was added:  

 

Reagent       Volume Company 

10x PCR buffer (without MgCl2)   2 µl  Applied Biosystems, USA 

MgCl2 (25 mM)     4 µl  Invitrogen, Germany 

dNTPs       1 µl  Promega, USA 

Random Hexamers (50 µM)    1 µl  Promega, USA 

RNase Inhibitor (20 U/µl, 2000 U)   0.5 µl  Applied Biosystems, USA 

Reverse Transcriptase MuLV RT (50 U/µl, 5000 U) 1 µl  Applied Biosystems, USA 

ddH2O       0.5 µl 

∑ 10 µl + 10 µl RNA (500 ng) 

 

The Random Hexamers have a random base sequence and serve as primers that attach to 

ssRNA. The RT starts to put dNTPs in 5´-3´direction to the strand. The mixtures (20 µl) were 

transferred to the Thermo Cycler using the following protocol:  

1. Attachment of the Random Hexamers  20 °C for 10 min 

2. Reverse Transcription    43 °C for 75 min 

3. Inactivation of the Reverse Transcriptase  99 °C for 5 min 

4. Cooling      4 °C 

Obtained cDNA was storaged at -20 °C. 

 

3.2.10 Quantitative reverse transcription polymerase chain reaction (qRT-

PCR)  

PCR is a method that allows the enzymatic amplification of any DNA/cDNA sequences in 

order to detect them. Each reaction cycle consists of three steps that run at different  
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temperatures: 1) denaturation of the DNA sample, 2) hybridisation of the primer 

oligonucleotides, and 3) elongation of the target sequence by a thermostabile DNA-dependent 

DNA polymerase. In 20-50 of such cycles the desired dsDNA product increases exponentially 

and can be detected. One entire PCR reaction can be distributed into four phases that refer to 

the manner of product increase: 

                                        

                                                   number of cycles 

 

Figure 9. Phases of a PCR reaction 

 

Semiquantitative PCR requires subsequent analysis of the PCR product, so called endpoint 

analysis. Mostly, the sequences are separated via gelelectrophoresis. During quantitative PCR, 

however, a simultaneously quantification of the initial amount of the amplificated sequence 

can be performed next to the amplification. Therefore, DNA-specific fluorescence signals are 

used. Those conduct proportional to the product accumulation and are measured during the 

reaction and the end of each cycle respectively. Hence, all data are obtained in „real-time“. 

Additional working steps are not necessary, which decreases the risk of contamination 

considerably.  

 

3.2.10.1 Measurement of fluorescence with SYBR Green I 

One possibility of online-detection is the fluorescence measurement with SYBR Green I, an 

asymmetric cyanine dye that binds sequence independently to the minor grooves of double 

stranded (ds) DNA. The emission of fluorescent light of the bound dye increases 1000-fold 

compared to the free dye. Thus, product (dsDNA) accumulation can be detected by signal 

increase. This occurs firstly in the hybridisation (annealing) phase, when the primer binds to 

the ssDNA and steadily increases until the end of the elongation phase. Measurement is  
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performed at the end of the elongation phase of each cycle because then the amount of 

dsDNA and therefore also the fluorescence intensity reach their maxima. The occurrence of 

non-specific products like primerdimers alters the amplification efficiency and thereby causes 

a systematic quantification error that has to be avoided by optimising the quantitative 

analysis. In sequence-specific detection methods these non-specific products also occur but 

are not detected. Thus, with SYBR Green I a further characterization of the used primerset is 

allowed which the sequence-specific detection is lacking 78.  

 

3.2.10.2 Primerdesign and efficiency test 

Primer sequences were taken from gene bank of the NCBI. The design of the definite primers 

was carried out with the program primer express 3.0, considering the following criteria as 

accurately as possible: 

- length about 20 – 30 nucleotides to ensure a relatively high annealing temperature. 

- almost same frequency of each of the four bases. 

- not suitable are regions with particular sequence parts (oligopurine, oligopyrimidin) 

and regions with pronounced secondary structure. 

- avoiding of homo and heterodimeric complementarity at the 3` end that could increase 

the development of primer dimers. 

- optimal annealing temperature: > 45 °C. 

- to minimize unspecific binding primers should have strong binding 5` and less strong 

binding 3` ends. 

- melting temperature should be the same for both primers of a pair (forward and 

reverse). 

- Estimation of melting temperature, if number of nucleotides is ≥ 20: Tm = [(Number of 

A + T) × 2 °C + (Number of G + C) × 4 °C]. 

For each primer pair the amplification efficiency was determined by serial dilution 

experiments with at least two dilution steps to cover a high dynamic range. The amplification 

efficiency should have a value between 1.8 and 2.0. 

The primers listed in Table 3 (6.1) were used at a final concentration of 200 nM. 

Porphobilinogen deaminase (Pbgd), an ubiquitously and constitutively expressed gene in 

mice cells that is free of pseudogenes, was used as a reference gene in all qRT-PCR reactions. 
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3.2.10.3 Melting curve analysis 

SYBR Green I binds to any dsDNA. A melting curve analysis allows the identification of the 

PCR product because of temperature-dependent signal decrease as a consequence of the 

melting of the product. By definition, the melting temperature (Tm) describes the temperature 

at which half of the DNA is present as a denaturated single strand. Tm is characterized by 

length and GC content of the dsDNA. 

After the 45 PCR cycles, the samples are heated slowly to 90 °C, the products denature at 

different timepoints and different temperatures, respectively. Melting is accompanied by 

release of SYBR Green I and thus a rapid decrease of fluorescence. The timepoint of 

fluorescence decline allows concluding the Tm. Unspecific products, such as primerdimers, 

are shorter (40 - 45 basepares (bp)) compared to the amplicon (100 - 200 bp). Thus, they have 

a lower melting temperature. 

In the negative derivative of the melting curve each peak value represents a Tm. As the Tm 

deviate between specific and non-specific product, the melting curve allows to confirm the 

amplification of the correct target. Furthermore the area under the curve (AUC) of the 

maxima is proportional to the product amount 78.  

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Melting curves 

Melting curves of two primersets with different Tm. Detected primerdimers are marked with an arrow. 

 

3.2.10.4 Quantification and analysis of data 

To analyze the data, the fluorescence signal is plotted against the number of cycles 

(amplification plot). The baseline of this graph is determined by the initial phase that 

corresponds to the cycles in which the fluorescence has not yet started to increase 

considerably. 
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The crucial point for quantification is the exponential phase of product accumulation. In this 

phase, the so-called “threshold” regarding the fluorescence signal has to be assessed. For one 

gene this value should not change between different samples and runs. The cycle number 

when the signal reaches this threshold is called Ct (threshold cycle) or crossing point. It 

depends linear on the logarithm of the initial product concentration and therefore allows its 

determination. To obtain a relative quantification of the mRNA level of the wanted gene, their 

Ct values were analyzed as the difference to the reference gene Pbgd: ∆Ct = Ct reference 

gene – Ct gene x. Aim of this work was to judge the effects of stimulation on gene expression. 

Therefore, the relative mRNA level changes of the stimulated samples compared to the 

unstimulated controls were determined and expressed as ∆∆Ct. ∆∆Ct = ∆Ct stimulated – ∆Ct 

control. The ∆∆Ct corresponds to the binary logarithm of the fold change. 

 

3.2.11 D�A agarose gelelectrophoresis 

Agarose gel electrophoresis is a method to separate and visualize DNA fragments according 

to their size. Negatively charged nucleic acids are moved through the electric field in the gel. 

The shorter a molecule is, the faster it moves through the gel, what means, that after a certain 

time period short molecules have covered a longer distance than longer ones. For the 2 % gel, 

agarose was mixed with 1× TAE buffer. It was additionally supplied with 0.5 µg/µl ethidium 

bromide (EtBr) to make the fragments visible. EtBr is a dye that intercalates with DNA and 

fluoresces under ultraviolet light. Before loading onto the gel covered by 1× TAE buffer, the 

undiluted and 1:10 diluted DNA samples were mixed with 6× DNA loading buffer. Same was 

performed with the empty control sample. Then electrophoresis was run at 100 V/cm. 

 

3.2.12 Immunofluorescence 

Immunofluorescence enables the detection of antigen structures in cells with the help of 

antibodies. Here, immunofluorescence labeling with fluorochroms was used in order to 

visualize and localize selectively macromolecules inside the cell. Cells are incubated with a 

first antibody against the antigen to be analyzed. Next step is the binding of a specific 

fluorchromalized secondary antibody against the first one. Then the localizations of binding 

can be observed with a fluorescence microscope. The experiment was performed as 

following: 15000 fibroblasts per well were plated on special chamber slides. After attachment, 

synchronisation and stimulation (see above) cells were fixed with acetone/methanol (1:1). To  
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avoid unspecific binding a blocking step was performed with PBS enriched with 10 % (m/vol) 

BSA for at least 1 h followed by incubation with the first antibody in accordant dilutions. For 

secondary binding antibodies were also used in the appropriate dilutions, conjugated with 

either fluorescein-5-isothiocyanate (FITC) or AlexaFluor. Nuclei were visualized by labeling 

with 4´.6-diamidino-2-phenylindole (DAPI). After incubation, the fibroblasts were fixed with 

4 % paraformaldehyde and the slides were covered with DAKO. The fibroblasts were viewed 

with an immunofluorescence microscope and pictures were taken with a Leica Q Win 

program. 

 

3.2.13 Statistical analysis  

Proliferation assay data were analyzed using the Wilcoxon Rank sum test and the Signed 

Rank test. All ∆∆Ct values obtained from qRT-PCR and densitometry results from Western 

Blots were analyzed using the two-tailed, one-sample t-test. All p values obtained from 

multiple tests were adjusted using the procedure from Benjamini & Hochberg 79. Results were 

considered statistically significant when p < 0.05 (* p < 0.05). 
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4. Results 

4.1 Analysis of occurrence of W�T/β-catenin signaling in 

fibroblasts 

4.1.1 Phenotype of �IH-3T3 fibroblasts 

As a fibroblast cell line NIH-3T3 cells are supposed to produce and secrete collagen. To 

determine the expression of type I collagen, indirect immunofluorescence was performed with 

rabbit anti-collagen type 1 antibody (anti-COLT1). In the cytoplasm of almost all fibroblasts 

collagen expression was observed (Figure 11.A.). Extracellular staining indicated secretion of 

collagen and thus pointed to its role as extracellular matrix (ECM) component (Figure 11.A. 

arrows). Alpha smooth muscle actin (αSMA) is known as a (myo-) fibroblast activation 

marker. In order to ensure that no autoactivation of the cells takes place during culture, 

expression of this marker was checked with mouse anti-αSMA antibody. Only few cells 

exhibited SMA expression (Figure 11.B).  

A.  

 

 

 

 

 

 

 

B.  

 

 

 

 

 

 

 

 

Figure 11. Localization and presence of COLT1 and αSMA in the fibroblast cell line �IH-3T3 

(A) Immunofluorescent detection of COLT1 expression with secondary Alexa 555-labelled antibody (red) 
(original magnification from left to right: 10×, 20× and 40×). Extracellular staining is marked with arrows. (B) 
Immunofluorescent detection of αSMA with secondary FITC-labelled antibody (green) (original magnification 
from left to right: 10×, 20× and 40×). Cell nuclei were visualized by DAPI staining (blue). All pictures are 
representative for at least three independent experiments. 
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4.1.2 Expression analysis of W�T pathway components in fibroblasts 

To investigate, whether WNT signaling can take place in fibroblasts, the expression of WNT 

pathway components was analyzed. Therefore, the expression of WNT ligands, receptors, 

coreceptors and intracellular components of the signaling cascade was determined by qRT-

PCR. Investigated WNT encoding genes were Wnt1, Wnt3a, Wnt8b, Wnt10a, Wnt10b and 

Wnt11. On the receptor level primers for Frizzleds (Fzds) 1-8 and the coreceptors lipoprotein 

receptor-related protein (Lrp) 5 and 6 were analyzed. Additionally, mRNA levels of the 

intracellular pathway components β-catenin (β-cat) and glycogen synthase kinase (Gsk) 3β, T-

cell-specific transcription factor (Tcf) 1, 3 and 4 and lymphoid enhancer-binding factor (Lef) 

were assessed (compare dissociation curves in 6.2). 

Primer efficiency was determined as indicated in 3.2.10.2. PCR products were visualized by 

DNA agarose electrophoresis. While the quantification during the PCR run was performed 

simultaneously to the amplification cycles, the gel electrophoresis formed an endpoint 

analysis after all 45 cycles. Thus, even for molecules, that are not used for quantification (“not 

expressed”), product length, as well as melting temperature can be analyzed (compare 6.2, 

Figure 20). Specific PCR products are shown in Figure 12.A. 

To further quantify the gene expression, relative mRNA levels were determined. In Figure 

12.B. they are presented as ∆Ct. All WNT ligands were low expressed compared to the 

reference gene Pbgd. Wnt3a and Wnt11 were not expressed (n.e.) at all (Figure 12.B first 

diagram). On the receptor level, mRNA of all analyzed Fzds was present, except of Fzd6 and 

8. The ∆CT values of Fzd2 and 7 revealed high expression of these receptors. Same pattern 

occurred for the coreceptor Lrp6 (Figure 12.B second diagram). β-cat and Gsk3β, key 

molecules of canonical WNT signaling were highly expressed. Also the presence of 

transcription factors Tcf3 and Tcf4 was observed, whereas Tcf1 and Lef1 revealed no or low 

expression (Figure 12.B third diagram).  
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Figure 12. mR�A expression of W�T pathway components in lung fibroblasts 

(A) Agarose gel electrophoresis of PCR products. Gels are representative for three independent experiments.  
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B.         

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. mR�A expression of W�T pathway components in lung fibroblasts 

(B)  Relative mRNA level of relevant molecules were determined via qRT PCR. Pbgd was used as a reference 
gene. For each pair of primers the ∆Ct value is shown. Expression pattern of WNT ligands, WNT receptors and 

coreceptors and intracellular components of the pathway. 
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4.1.3 Induction of W�T/β-catenin signaling in fibroblasts by stimulation 

with W�T3a 

In order to check if WNT/β-catenin signaling can be operable in fibroblasts, protein 

expression of β-catenin (β-CAT) and CyclinD1 (CYCD1), a known target molecule of 

canonical signaling, was examined via Western blot analysis after stimulation with WNT3a. 

The blots revealed increased levels of total β-catenin after stimulation for 3, 6, and 12 h 

(Figure 13.A). These results were confirmed by densitometric analysis. Statistically 

significant was the upregulation after 6 h (Figure 13.B). CYCD1 protein expression was 

enhanced as early as 6 h after WNT3a treatment (Figure 13.A).  

To further corroborate the activation of the canonical WNT signaling pathway, mRNA level 

of the known target genes WNT inducible signaling protein (Wisp) 1 and CycD1 were 

quantified by qRT-PCR. The results of qRT-PCR are presented as mean of ∆∆Ct ± s.e.m. In 

accordance to the increasing protein level, the mRNA expression of CycD1 was increased 

significantly 6 h after treatment (6 h: 2.75 ± 0.67, 12 h: 1.71 ± 0.69). (Figure 13.C). Increased 

expression of Wisp1 was observed after 12 h (6 h: 1.57 ± 0.94, 12 h: 1.03 ± 0.26) (Figure 

13.C). 
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Figure 13. W�T responsiveness of  fibroblasts. 

(A) β-Catenin and CYCD1 protein expression levels of control and WNT3a [100 ng/ml]-treated fibroblasts for 3, 
6 and 12 h assessed by IB. Lamin a/c served as a protein loading control. Blots are representative for three 
independent experiments. (B) The results obtained by IB were densitometrically analyzed (n=3, * p< 0.05), 
statistical analysis included two-tailed t-test. (C) Fibroblasts were stimulated with WNT3a (100 ng/ml; 6 or 12 h, 
as indicated mRNA level of WNT target genes CycD1 and Wisp1 were determined via qRT-PCR. Pbgd was 
used as a reference gene. Results are presented as mean of ∆∆Ct ± s.e.m. (n=3, *p< 0.05). 
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4.2 Functional analysis of paracrine effects of W�T3a on 

fibroblasts 

4.2.1 Effects of W�T3a on lung fibroblast proliferation 

The WNT/β-catenin signaling pathway was found to be activated in lung fibroblasts after 

stimulation with WNT3a (comp. 4.1.3). In order to investigate its functional relevance, 

potential effects of WNT3a on cell proliferation were analyzed. Cell proliferation was 

quantified using the 3[H]-thymidine proliferation assay. First, fibroblast proliferation due to 

varying serum conditions was determined. As expected, proliferation of the fibroblasts 

elevated with increased fetal calf serum (FCS) content (Figure 14.A). Interestingly, fibroblasts 

stimulated with WNT3a for 20 h in the presence of different concentrations of FCS (0.5 % or 

5 % FCS, respectively) did not reveal any significant changes in the proliferation compared 

with the unstimulated control (108 % ± 13 % and 96 % ± 13 %, respectively ) (Figure 15.B 

and C). 
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Figure 14. Proliferation of lung fibroblasts after stimulation with W�T3a 

Proliferation of fibroblasts was assessed with 3[H]-thymidine proliferation assay. (A) Absolute proliferation 
[cpm] in different serum conditions. (B) Relative proliferation in medium with 0.5 % FCS after 20 h stimulation 
with 100 ng/ml WNT3a. Cells from unstimulated medium of the same condition were used as control. (n=3) (C) 
Relative proliferation in medium with 5 % FCS after 20 h stimulation with 100 ng/ml WNT3a. (n=3) 
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4.2.2 Effects of W�T3a on collagen deposition of lung fibroblasts 

Enhanced extracellular matrix (ECM) deposition and collagen production of activated 

myofibroblasts is one of the key events in IPF pathogenesis. To examine a potential role of 

WNT/β-catenin signaling on this profibrotic processes, the collagen content was determined 

by immunofluorescence and quantified by Sircol Collagen Assay. For indirect 

immunofluorescence fibroblasts were stimulated with WNT3a in D-MEM, supplied with 

0.5 % or 10 % FCS, respectively. Collagen type I was assessed using a rabbit anti-COLT1 

antibody. In both serum conditions, specific collagen expression was observed in the 

cytoplasm of stimulated and unstimulated fibroblasts (Figure 15.A and B). Cells incubated in 

0.5 % FCS generally showed slighter staining (Figure 15.A), whereas 10 % FCS led to a 

stronger collagen staining in the cytoplasm as well as extracellular, indicating production and 

secretion of collagen type I by fibroblasts in response to WNT3a (Figure 15. B arrow). 

To further quantify the amount of collagen production, the total collagen content was 

determined using the Sircol Assay. Fibroblasts treated with TGF-β1, which is a well known 

mediator of increased collagen production in fibroblasts 80, were used as a positive control. 

The whole experiment was performed with fibroblasts in a subconfluent growth stadium 

(60 %) as well as in almost confluency (90 %). After stimulation with WNT3a at 

subconfluency, fibroblasts exhibited significant elevation of collagen contenbout 3 ± 0.4 fold 

change, while TGF-β1 stimulated fibroblasts exhibited a 2.5 ± 0.2 fold change (Figure 15.C). 

Under confluent conditions fibroblasts exhibited a lower increase of collagen content (1.4 ± 

0.1 fold for TGF-β1 and 1.6 ± 0.09 fold for WNT3a) (Figure 15.D). 
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Figure 15. Localization and content of collagen in fibroblasts after stimulation with W�T3a 

(A) + (B) Cell nuclei were visualized by DAPI staining (blue). Immunofluorescent detection of COLT1 
expression with secondary Alexa 555-labelled antibody (red) (original magnification upper row: 20×, lower row: 
40×).  (A) COLT1 staining after stimulation with WNT3a in medium with 0.5 % FCS. (B) COLT1 staining after 
stimulation with WNT3a in medium with 10 % FCS. All pictures are representative for three independent 
experiments. Extracellular staining is marked with arrows. 
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Figure 15. Localization and content of collagen in fibroblasts after stimulation with W�T3a 

 (C) + (D) Collagen content of fibroblasts after stimulation with 100 ng/ml of WNT3a was determined with 
Sircol Assay and is shown relative to the unstimulated control. TGF-β1 stimulated cells were used as a positive 
control. (n=3, *p< 0.05) (C) Changes in collagen content of fibroblasts that were stimulated in a subconfluent 
stadium. (D) Changes in collagen content of fibroblasts that were stimulated in almost confluent stadium.  

 

4.2.3 Effects of W�T3a on gene expression of ECM molecules and (myo-) 

fibroblast markers  

Enhanced collagen production of fibroblasts after WNT3a stimulation had suggested 

profibrotic effects of WNT/β-catenin signaling on fibroblasts. To further confirm these effects 

and reveal other potential pathomechanisms, the mRNA level of different profibrotic marker 

genes were analyzed using qRT-PCR after WNT3a treatment for 6 and 12 h. Interestingly, the 

expression of type I collagen alpha 1 (Col1a1) and type I collagen alpha 2 (Col1a2) was not 

significantly altered after stimulation (mean of ∆∆CT ± s.e.m.: Col1a1 6 h: -0.28 ± 0.11, 12 h: 

-0.76 ± 0.32, Figure 16.A). In addition, the expression of the glycoprotein fibronectin1 (Fn1), 

an ECM component that plays a role in stabilizing the attachment of the ECM, was not 

significantly affected by WNT3a treatment (6 h: 0.76 ± 0.71, 12 h: -0.82 ±-0.14). 

In contrast, a significant increase of the (myo-) fibroblast activation marker alpha smooth 

muscle actin (αSma) was observed after 6 h stimulation (6 h: 0.9 ± 0.17, 12 h: 0.64 ± 0.3). 

Additional fibroblast markers, such as the fibroblast specific protein 1 (Fsp1), also known as 

S100a4, and Vimentin were not differently expressed (6 h: 1.09 ± 0.83, 12 h: -0.33 ± 0.65 and 

6 h: -0.32 ± 0.34, 12 h: 0.04 ± 0.37 respectively, Figure 16.B). 

The cytokine transforming growth factor (TGF) -β is already known to play a role in IPF 

pathogenesis. It can act in a profibrotic way by driving EMT, fibroblast activation, and 

induction of ECM production 26. 

 

 

0

1

2

3

4

control W�T3a TGF-〒〒〒〒1

re
la

ti
v

e 
co

ll
a

g
en

 c
o

n
te

n
t

**

0

1

2

3

4

control W�T3a TGF-〒〒〒〒1

*

*

re
la

ti
v

e 
co

ll
a

g
en

 c
o

n
te

n
t



4. Results 41 

To analyze a possible crosstalk between WNT and TGF-β signaling the effects of WNT 

treatment on the expression of Tgfβ-1 were checked additionally. Neither after 6 nor after 12 h 

significant changes were observed (6 h: 0.22 ± 0.82, 12 h: 0.25 ± 0.12, Figure 16.C). 

Furthermore, the expression of arginase (Arg) 1 and 2 was examined, as arginase mediates 

collagen deposition in lung fibrosis 81. Therefore a responsibility for the collagen increase on 

protein level after WNT3a treatment can be suggested. Both enzymes were not affected 

significantly after stimulation (6 h: -1.53 ± 0.91, 12 h: -0.83 ± 0.67 and 6 h: 0.12 ± 0.89, 12 h: 

-0.96 ± 0.96 respectively, Figure 16.C).  

Taken together, these results revealed that WNT can contribute to fibroblast activation and is 

a potent inducer of collagen in fibroblasts, however our analysis thus far suggests that WNT 

signaling does not interfere directly with the transcriptional regulation of collagens. 
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Figure 16. mR�A level of ECM molecules and (myo-) fibroblast markers after stimulation with W�T3a 

Fibroblasts were stimulated with WNT3a (100 ng/ml; 6 or 12 h, as indicated), and the mRNA levels of different 
ECM components or (myo-) fibroblast activation markers were analyzed by qRT-PCR (n=4). Results are 
presented as mean of ∆∆CT ± s.e.m., * p < 0.05. 
(A) ∆∆CT of ECM components. (B) ∆∆CT of (myo-) fibroblast markers. (C) ∆∆CT of possible crosstalk 
partners. 
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4.3 Functional Analysis of effects of WISP1 on fibroblasts 

The WNT1-inducible signaling protein (WISP) 1 is encoded by a target gene of WNT/β-

catenin signaling. In our laboratory high secretion of WISP1 by distorted ATII cells of IPF 

lungs has already been observed. To analyze, if WISP is a mediator for the reported WNT 

effects, the effects of WISP1 treatment on fibroblast proliferation, collagen content and 

marker gene expression were investigated, similar to the approaches described above. 

4.3.1 Effects of WISP1 on fibroblast proliferation 

Cell proliferation was assessed using the 3[H]-thymidine proliferation assay. Fibroblasts 

stimulated with WISP1 in medium either supplied with 0.5 % or 5 % FCS for 20 h did not 

reveal significant changes in the proliferation compared to the respective control (89 % ± 8 % 

and 105 % ± 9 %, respectively). (Figure 17.A and B). 
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Figure 17. Proliferation of lung fibroblasts after stimulation with WISP1 

Proliferation of fibroblasts was assessed with 3[H]-thymidine proliferation assay. (n=3) (A) Relative proliferation 
in medium with 0.5 % FCS after 20 h stimulation with 1 µg/ml WISP1. (B) Relative proliferation in medium 
with 5 % FCS after 20 h stimulation with 1 µg/ml WISP1. 
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4.3.2 Effects of WISP1 on collagen deposition of fibroblasts 

To analyze WISP1 effect on matrix deposition during IPF, collagen deposition of fibroblasts 

was assessed after stimulation with WISP1. Immunofluorescence and Sircol Collagen Assay 

were performed to determine and quantify collagen content in the fibroblasts, respectively. 

For indirect immunofluorescence fibroblasts were stimulated with WISP1 in D-MEM, 

supplied with 0.5 % or 10 % FCS, respectively. Collagen type I was assessed using a rabbit 

anti-COLT1 antibody. In both serum conditions, specific collagen expression was observed in 

the cytoplasm of the fibroblasts, similar to the localization patterns in 4.2.2. Stimulated cells 

exhibited specific collagen staining in the cytoplasm (Figure 18.A+B). The staining after 

incubation in 0.5 % FCS–medium was slighter than in 10 %. But in both serum conditions, 

control and WISP1 stimulated cells exhibited distinct cytoplasmic and extracellular (arrow) 

collagen staining pattern (Figure 18.A+B). 

To determine collagen quantity in the fibroblasts after WISP1 treatment, Sircol Collagen 

Assay was performed. The collagen content was determined 20 h after stimulation with 

WISP1. Fibroblasts stimulated with TGF-β1 were used as a positive control. The whole 

experiment was performed with fibroblasts in a subconfluent growth stadium (60 %) and in 

almost confluency (90 %). After stimulation with WISP1 at subconfluency, fibroblasts 

exhibited significant elevation of collagen content about 2.4 ± 0.1 fold change (Figure 18.C). 

Under confluent conditions, fibroblasts revealed significant increases of collagen content of 

1.5 ± 0.2 fold change after stimulation with WISP1 (Figure 18.D). 
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Figure 18. Localization and content of collagen in lung fibroblasts after stimulation with WISP1 

(A) + (B) Cell nuclei were visualized by DAPI staining (blue). Immunofluorescent detection of COLT1 
expression with secondary Alexa 555-labelled antibody (red) (original magnification upper row: 20×, lower row: 
40×). (A) COLT1 staining after stimulation with WISP1 in medium with 0.5 % FCS. (B) COLT1 staining after 
stimulation with WISP1 in medium with 10 % FCS. All pictures are representative of three independent 
experiments. Extracellular staining is marked with arrows. 
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C.              D.  

 

 

 

 

 

 

 

 

Figure 18. Localization and content of collagen in lung fibroblasts after stimulation with WISP1 

 (C) + (D) Collagen content of fibroblasts after stimulation with 1 µg/ml of WISP1 was determined with Sircol 
Assay and is shown relative to the unstimulated control. TGF-β1 stimulated cells were used as a positive control. 
(n=3, *p< 0.05) (C) Changes in collagen content of fibroblasts that were stimulated in a subconfluent stadium. 
(D) Changes in collagen content of fibroblasts that were stimulated in almost confluent stadium. 

 

4.3.3 Effects of WISP1 on gene expression of ECM molecules and (myo-) 

fibroblast markers  

Enhanced collagen content in fibroblasts after stimulation with WISP1 as well as its upstream 

molecule WNT3a had indicated profibrotic effects of the pathway on fibroblasts. To 

investigate if WISP1 acts as a mediator leading to fibroblast activation and collagen transcript 

expression, different genes were analyzed using qRT-PCR after WISP1 treatment for 6 and 

12 h, as described above after WNT3a stimulation. The results of qRT-PCR are presented as 

mean of ∆∆Ct ± s.e.m. Following factors belonging to the ECM were determined: Col1α1, 

Col1α2, collagen 4 (Col4), collagen 7 (Col7) and Fn1. Col1a1 and Col1a2 were regulated by 

WISP1 (Figure 19.A). After 12 h significant increase of the expression of both could be 

observed: ∆∆Ct ± s.e.m. of 2.5 ± 0.52 for Col1a1 and 3.02 ± 0.82 for Col1a2. Interestingly, 

Col4 expression was enhanced after 6 h (6 h: 1.76 ± 0.6), but significantly downregulated 

after 12 h (12 h; -1.61 ± 0.78). Col7 was generally low expressed in the fibroblasts (∆CT not 

shown) and not altered significantly (6 h: 0.18 ± 0.42, 12 h: -0.93 ± 0.51). Fn1 expression 

exhibited a significant increase after 6 h of stimulation, whereas after 12 h no changes were 

observed (6 h: 1.02 ± 0.29, 12 h: -0.05 ± 0.3, Figure 19.A). Next, a possible influence of 

WISP1 on fibroblast activation was checked by examining the expression levels of typical 

(myo-) fibroblast activation markers. The expression of αSma was increased significantly  

after 6 h stimulation (6 h: 0.62 ± 0.09, 12 h: 0.15 ± 0.22). Fsp1 expression was enhanced at  
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both timepoints (6 h: 0.46 ± 0.18, 12 h: 0.67 ± 0.23). The mRNA level of Vim were not 

changed (6 h: -0.36 ± 0.31, 12 h: -0.07 ± 0.35, Figure 19.B).  

Next to the crucial role of the TGF-β system in IPF 26, a role of Plasminogen activator 

inhibitor (PAI) -1 was already reported 82. To reveal possible crosstalks to these signaling 

pathways, expression of Pai1 and Tgf-β1 in fibroblasts was analyzed after stimulation with 

WISP1. Pai1 was upregulated after 12 h (6 h: -0.91 ± 0.09, 12 h: 0.96 ± 0.47), whereas TGF-

β1 was not altered on mRNA level after WISP1 treatment (6 h: 0.04 ± 0.22, 12 h: -0.08 ± 

0.09, Figure 19.C). 

In summary, our results revealed that WISP1 can induce collagen expression in fibroblasts on 

transcriptional and protein level. Furthermore, it led to an increased expression of ECM 

components and (myo-) fibroblast activation markers. 
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Figure 1. mR�A level of ECM molecules and fibroblast markers after stimulation with WISP1 

Fibroblasts were stimulated with WISP1 (1 µg/ml; 6 or 12 h, as indicated), and the mRNA levels of different 
ECM components or (myo-) fibroblast activation markers were analyzed by qRT-PCR (n=4). Results are 
presented as mean of ∆∆CT ± s.e.m., * p < 0.05.  
(A) ∆∆CT of ECM components. (B) ∆∆CT of (myo-) fibroblast markers. (C) ∆∆CT of possible crosstalk 
partners. 
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5. Discussion 

5.1. Fibroblasts in IPF pathogenesis 

Idiopathic pulmonary fibrosis (IPF) represents the most common and most severe form of the 

idiopathic interstitial pneumonias (IIP). In spite of extensive research on the field, the 

pathomechanisms are still not understood. Refractory to medicamentous therapy the disease 

rapidly leads to the death of the patient because of respiratory failure. 

The initiation of the disease currently is ascribed to alveolar epithelial cell injury and 

subsequent inadequate repairmechanisms 2,7,18. 

In the present study fibroblasts as key effector cells in the pathogenesis of IPF were in the 

focus of our research. Being activated to myofibroblasts and forming fibroblast foci that are 

responsible for an extensive collagen-rich extracellular matrix accumulation in the 

interstitium of the lung, fibroblasts are considered as triggers for the progression of the 

disease 26,27. However, the origin of these fibroblasts remains unclear. As one possible origin 

for the fibroblasts, bone marrow-derived fibrocytes are discussed 83. Circulating to the lung 

during fibrosis, they could serve as precursors for the interstitial fibroblasts 84-86. A second 

theory claims epithelial-to-mesenchymal transition (EMT) being the source of the fibroblasts. 

It includes a phenotypic switch of epithelial to fibroblast-like cells, subsequently to changes in 

gene and protein expression of ATII cells 87-89.  

Thirdly, a possible role of local growth factors and cytokines triggering the activation and 

differentiation of the fibroblasts is well accepted 8,28,90. Source of profibrotic molecules are 

probably hyperplastic ATII cells that are known to express growth factors like transforming 

growth factor-β1 (TGF-β1), platelet derived growth factor (PDGF), and the cytokine tumor 

necrosis factor-α (TNF-α) 7,12. TGF-β1 as one example has profibrotic effects in human lung 

fibroblasts, inducing an altered secretion of collagens and total ECM and thereby influencing 

the pathogenesis of IPF 26,80.  

The present report was focused on the third theory by analysing possible trigger molecules 

that could have paracrine effects on lung fibroblasts and thereby contribute to the 

development of the fibroblast phenotype that is found in IPF. 
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5.2. W�T/β-catenin signaling in lung fibroblasts 

In regard to the pathophysiological mechanisms of IPF progression, the WNT/β-catenin 

system is of particular interest. On the one hand, a role of WNT/β-catenin signaling in 

different diseases is well established. On the other hand, presence of WNT in the respiratory 

system can be stated. It is functionally involved in lung development as well as in lung 

cancer 31,35,50,51,91. Increased WNT/β-catenin signaling in IPF was reported by Chilosi et al. 

(2003) 61 and recently by our group 62,77. 

WNT/β-catenin signaling is neither limited to a special tissue nor to a cell type. Actually, the 

functional response differs cell type specific 35. Therefore in every tissue and organ it is 

important to examine different cell types and their affection by WNT signaling separately. 

This project focused on lung fibroblasts and their relation to WNT/β-catenin signaling in IPF. 

Several reports deal with WNT/β-catenin signaling in fibroblasts. Recently, WNT 

responsiveness and induction of already known and also new target genes in human 

fibroblasts were described 92. In their publication about aberrant WNT/β-catenin pathway 

activation in IPF, Chilosi and colleagues (2003) reported nuclear β-catenin accumulation in 

fibroblasts based on immunohistochemical observations 61. Thus, the conclusion stands to 

reason that lung fibroblasts constitute WNT target cells in association with IPF. This was 

recently emphasized by our report about functional WNT signaling in IPF that examines cell-

specific expression patterns of WNT ligands and pathway components 62. Although receptors 

and intracellular signal transducers of the WNT/β-catenin pathway mainly localize in the 

bronchial and alveolar epithelium, primary human fibroblasts also exhibited presence of these 

pathway components. These observations underline the suggestion that paracrine extracellular 

WNT binding can activate the downstream signaling pathway inside the cell. 

Additionally to the expression and localization analysis, an increased phosphorylation of 

WNT signal transducing molecules in IPF was observed 62, which is the most sensitive 

indicator of WNT activity in tissue sections 62,93,94.  

 

In the present project experiments were performed with mouse fibroblasts. Expression 

analysis of WNT ligands and WNT/β-catenin pathway components did not suggest WNT 

secretion by fibroblasts, but responsiveness to extracellular paracrine ligand binding on the 

cells. This was further confirmed by an increase of intracellular total β-catenin, the key 

molecule of the signaling pathway, after stimulation with WNT3a, a known inducer of 

WNT/β-catenin signaling. Accumulation of β-catenin is a consequence of dephosphorylation, 

which requires an activated WNT/β-catenin pathway. Significant elevation, of the WNT  
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target molecule and cell cycle regulator Cyclin (CYC) D1 was another finding that indicated 

active WNT signaling. The occurring double band of CYCD1 might be due to 

posttranslational modification, like phosphorylation, which is known to regulate presence, 

localization, and activity of CYCD1 inside the cell 95. In accordance to the protein increase, 

the mRNA level of CycD1 was significantly upregulated after 6 h of stimulation. Pathway 

activation was further confirmed by upregulation of Wisp1, another known target gene 65, 

after 12 h of stimulation with WNT3a. 

Having shown that the WNT/β-catenin signaling pathway can be activated in lung fibroblasts 

by stimulation with WNT3a, the functional relevance thereof was analyzed considering the 

hypothesis of WNT3a having profibrotic effects .  

In particular, changes in proliferation, collagen deposition and marker gene expression after 

stimulation with WNT3a were investigated. 

Concerning proliferation, descriptions of fibroblast phenotypes in pulmonary fibrosis differ in 

literature. High proliferation rates are reported as well as low rates. This diversity may be 

related to different states of the disease, as reviewed by Selman et al. (2001) who assume a 

phenotypic change of fibroblasts in the course of the disease from a first migratory, then 

proliferative and finally synthetically active type 7. Latter exhibit the typical myofibroblast 

characteristics that are contractility and abundant production of extracellular matrix 

components 25. In this phenotype proliferation takes a back seat, what stands in accordance to 

the observation that more advanced fibrosis is associated to low fibroblast proliferation 

rates 96. In the present report fibroblast proliferation was checked after stimulation with 

WNT3a in different serum conditions. Proliferation was not affected after stimulation with 

WNT3a. The lacking proliferation change in 5 % could be referred to an already maximal 

proliferation due to the overabundance of nutrients by the serum. However, in 0.5 % a definite 

capacity for the cells to proliferate is left (compare Figure 14.A). The observation that this is 

not induced by stimulation with WNT3a leads to the conclusion that activated WNT/β-catenin 

signaling in vitro does not have direct proproliferative effects on fibroblasts. In contrast, the 

non canonical ligand WNT5a in a recent study revealed proproliferative effects on 

fibroblasts 97. 

At this point in time the lacking influence on proliferation did not allow excluding the 

contribution of paracrine canonical WNT effects to the synthetic activation of the fibroblasts. 

In fact, there are several reports that claim the synthetic activity of fibroblasts in IPF being 

more emphasized than the proliferation capacity. Raghu et al. (1988) 96 and Hetzel et al. 

(2005) 98 observed higher proliferation rates in normal fibroblasts in response to growth factor  
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stimulation, whereas IPF fibroblasts exhibited enhanced synthetic activity. 

To analyze alteration of the synthetic activity of the fibroblasts by WNT3a or WISP, collagen 

content as a representative ECM component that is expressed and secreted by fibroblasts was 

determined. Before its secretion into the interstitium, procollagen undergoes a large number 

of posttranslational modifications 99. Immunofluorescence staining of stimulated as well as 

unstimulated cells demonstrated that cultured fibroblasts in general produce collagen and 

contain it in their cytoplasm. Staining between the cells indicated secretion of the protein 

reflecting in vivo processes of ECM formation 99. However, stainings did not allow 

quantifying a difference between collagen amount of unstimulated and stimulated fibroblasts. 

Thus, quantitative collagen measurement was performed. The presented data reveal the ability 

of active WNT signaling to increase collagen content in fibroblasts, suggesting an activation 

of de novo collagen synthesis by the ligand. These findings could deliver an explanation for 

the lacking effects on proliferation. Rhudy et al. (1988) reported that fibrillar collagen, which 

is the natural form of type I collagen, acts as a negative regulator on fibroblast 

proliferation 100. 

Actually, for IPF these results indicate a contribution of WNT in a profibrotic manner as de 

novo ECM/collagen synthesis and deposition by fibroblasts represent a characteristic trigger 

of fibrosis 80. This is underlined by the observation that WNT induced collagen increase 

exceeds the one caused by TGF-β1, which was used as a positive control. 

However, it has to be respected that increased collagen production is not necessarily followed 

by increased ECM secretion. Regarding this, it would be interesting to asses ECM/collagen 

secretion of lung fibroblasts after WNT stimulation by supernatant analysis. To confirm the 

results and further quantify the collagen amount, Hydroxyprolinassay could be performed. 

While overexpression of WNT target genes in IPF lungs has already been revealed by 

unbiased microarray screens 64,101,102, the present report aimed to analyze the functional 

relevance of active WNT/β-catenin signaling. Either ECM components or myofibroblast 

marker encoding genes were chosen to be analyzed by quantitative RT-PCR after stimulation 

with WNT3a. Interestingly, for type I collagen α1 (Col1a1) and type I collagen α2 (Col1a2) 

no significant regulations on the mRNA level were observed, while collagen protein was 

significantly increased. 

This discrepancy between the WNT induced increase of total collagen protein amount and the 

unaffected mRNA levels of Col1a1 and Col1a2 could be referred to mRNA upregulation of 

other fibrillar collagen types than the analyzed ones. Furthermore, a significant change in 

collagen amount was observed after 20 h. During this time not necessarily directly WNT  
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induced pathways do have to lead to different protein patterns inside the fibroblasts. The 

discrepancy between mRNA and protein level suggests more complex ways of regulation 

including crosstalks to other profibrotic pathways or expression of still unknown target genes 

as intermediary effectors. Moreover, the large number of posttranslational modification of 

collagen before being secreted offers contact points for regulation mechanisms. These 

different explanation approaches should be included in further investigations, as well as a 

protein analysis that is able to distinguish between different collagen types.  

Transcription of Fibronectin (Fn), another ECM component that is expressed in interstitial 

fibroblasts and recently has been assigned a causative role in pulmonary fibrosis 103 was not 

significantly regulated, proposing WNT/β-catenin signaling not to be directly contributing to 

this part of the pathogenesis. In contrast, the main known myofibroblast activation marker 

αSma exhibited significant upregulation after 6 h stimulation whereas fiboblast-specific 

protein (Fsp) 1 104 and Vimentin (Vim) were not regulated. This is in accordance with the 

assumption of WNT being causative for a phenotypic switch of inactive fibroblasts to 

activated myofibroblasts as αSma is the most specific marker for this fibroblast phenotype. 

To reveal possible crosstalks to pathways already known to be involved in IPF pathogenesis, 

effects on transcription of Tgf-β1 80,105 and arginase (Arg) 1 and 2 81,106 were analyzed. TGFβ-

1 is known to induce collagen production in fibroblasts 21,80 and a connection between 

WNT/β-catenin pathway and TGF-β has already been reported 107. Additionally, by catalyzing 

L-arginine the arginases provide L-proline that is generated sequentially from L-ornithine and 

L-arginine and forms an important part of the procollagen polypeptide 81. Our analysis did not 

reveal any regulation of either Tgfβ-1 or Arg on the mRNA level, suggesting a different origin 

of collagen increase so far. 

In their study about the functional role and species specific contribution of arginases in 

pulmonary fibrosis, Kitowska et al. (2008) also emphasize the importance of posttranslational 

processing for regulating mechanisms of collagen 81. They showed that TGFβ-1 induces Arg 1 

expression as well as a collagen increase on mRNA and protein level in mouse fibroblasts. 

Whereas Arg inhibition attenuated the TGFβ-1 induced collagen increase on protein level, the 

inhibitory effect did not affect the mRNA level. This discrepancy between collagen mRNA 

and protein level stands in accordance to the observations in the present study. 

After analysing the functional effects of WNT3a on fibroblasts, a similar investigation was 

performed with WNT1-inducible Signaling Protein 1 (WISP1) or CCN4. This member of the 

CCN family of secreted cysteine-rich regulatory proteins 65 was chosen for different reasons: 

WISP1 is encoded by a WNT/β-catenin downstream target gene 69 and thus, an effector of  
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WNT/β-catenin signaling that is involved in pulmonary fibrosis 61,62. Additionally, a role of 

CCN family members as signal transducers in developmental and pathologic processes is 

strongly suggested 66,69-75. In detail, not only the association to WNT signaling suggests a role 

of WISP1 in lung fibrosis, moreover the molecule itself has already been shown to be 

upregulated in IPF lung homogenates 63. In our laboratory, an increased expression of WISP1 

in homogenates and alveolar epithelial cells type II (ATII) was observed in samples of 

experimental lung fibrosis and IPF. Localized next to hyperplastic ATII cells in vivo and vitro 

the protein was shown to have autocrine proproliferative effects on this cell type. 

Furthermore, WISP1 treatment resulted in an increase of profibrotic cytokines like Mmp7 
108 

in these cells. Together with the observation that lung fibrosis in vivo could be attenuated by 

inhibition of WISP1 these data suggest a key pathogenic role of this WNT target in initiation 

and perpetuation of IPF. Whereas ATII cells were the cell type that exhibited expression as 

well as autocrine affection by WISP1, in fibroblasts - the key effector cells of the disease - 

enhanced expression of the protein was not observed. In this context we considered 

fibroblasts as possible target cells of paracrine WISP1 binding 66. This suggestion was 

strengthened by the observation that CTGF, another member of the CCN family, has already 

been shown to stimulate fibroblast matrix production and myofibroblast differentiation in a 

paracrine fashion 109. 

Finally, all these findings allowed the hypothesis that WISP1 contributes to IPF pathogenesis 

by having profibrotic effects on lung fibroblasts. Therefore, its functional effects were 

analyzed in the same way as before with WNT3a. 

A recent publication by Colston et al. 73 demonstrated a proproliferative effect of WISP1 on 

cardiac fibroblasts, which suggested a role of the protein in remodeling of myoacardial 

infarction. In contrast to these observations, in the present study no influence on fibroblast 

proliferation was detected. Thus, not just cell type specific but also organ specific 

downstream effects of WISP1 can be proposed. These differences could possibly be explained 

by elucidating still unclear mechanisms of intracellular mechanisms after WISP binding to the 

cell surface considering variable environmental conditions of the cells in different tissues and 

organs. 

To analyze activation of the fibroblasts and the possible influence of WISP1 on ECM 

deposition, localization, and amount of collagen in the cells were determined. 

Immunofluorescence staining of collagen inside the cytoplasm of all cells and also slightly 

beyond indicated general ability of the fibroblasts to produce and secrete collagen, but did not  

allow determining quantitative differences between stimulated and unstimulated fibroblasts.  
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In regard to quantitative measurement of collagen content by Sircol Collagen Assay, 

demonstrated results align with the effects described by Colston et al. (2007) 73. Though, they 

observed a significant collagen increase of cardiac fibroblasts after 72 h, whereas in the 

current study the increase was already discovered after 20 h of stimulation with WISP1.  

The relevance of these possibly profibrotic effects can be emphasized as the increase of 

collagen production of subconfluent fibroblasts was even higher than after treatment with 

TGF-β1, similar to the results of the stimulation experiments with WNT3a.  

In contrast to the results for WNT3a, enhanced collagen synthesis after WISP1 treatment of 

the fibroblasts can be explained by preceding activation of the cells and transcriptional 

upregulation of fibrillar collagens. This can be stated because of increased expression of type 

I collagen α1 (Col1a1) and type I collagen α2 (Col1a2) mRNA after 12 h stimulation with 

WISP1. Whereas other collagen types IV (Col4) and VII (Col7) did not reveal relevant 

upregulation, the expression of the ECM component Fibronectin (Fn) 1 was increased after 

6 h, underlining the capacity of WISP1 to trigger the enhancement of ECM deposition.  

A contribution of WISP1 to the phenotype switch of inactivated fibroblasts to myofibroblasts 

and thereby activation of the cells can be assumed because of transcriptional upregulation of 

the (myo)-fibroblast activation marker αSma and fibroblast-specific protein 1 (Fsp1), which 

was already reported to play a role in epithelial-to-mesenchymal transition (EMT) in tissue 

fibrosis 104.  

Disturbed ECM degradation belongs to pulmonary fibrosis as well as excessive production. 

To reveal possible effects of WISP1 in this subarea, further research projects are necessary. 

However, to touch on this subject, transcriptional regulation of a potentially involved 

molecule was checked: Plasminogen activator inhibitor (PAI) 1 belongs to the plasmin 

system, which plays a crucial role for ECM degradation. By inhibiting plasminogen 

activators, PAI-1 is able to regulate the activation from plasminogen to plasmin. Thereby it 

has the capacity to inhibit plasmin induced ECM degradation or activation of degrading 

molecules respectively 82. Expression of PAI-1 is known to be elevated in experimental 

fibrosis models and pulmonary fibrosis 82. Transcriptional regulation via WISP1 in fibroblasts 

could have delivered information about the involvement of the ligand in ECM degradation. 

Increase of Pai-1 after stimulation would have argued for profibrotic features of WISP1. 

However, no significant upregulation has been observed for the investigated time points. 

Summarizing the presented data a profibrotic role of WISP1 on lung fibroblasts can be stated. 

Increased expression of (myo-) fibroblast activation markers argues for this conclusion as 

well as enhanced collagen production on protein level with according upregulation of type I  

 

 



5. Discussion 54 

collagen on mRNA level. These observations predominantly have to be considered as 

paracrine effects of WISP1 on fibroblasts in IPF as its expression was exclusively enhanced in 

alveolar epithelial cells 77. An autocrine role of the ligand in IPF fibroblasts is rather unlikely 

because in our laboratory we neither detected increased mRNA nor protein expression of 

WISP1 in fibroblasts from experimental lung fibrosis and IPF lungs 77. Therefore, the 

explanation approach that WISP1 is encoded by a WNT responsive gene and thus, could have 

been an intermediary effector for profibrotic WNT effects, takes a back seat. In fact, data 

from the present study suggest WISP1 as a paracrine profibrotic ligand on lung fibroblasts as 

a result from enhanced expression and secretion by hyperplastic ATII cells within the 

progression of IPF. 

 

5.3. Conclusions and future perspectives in regard to IPF 

pathogenesis 

Idiopathic pulmonary fibrosis (IPF) still has the worst prognosis of all idiopathic interstitial 

pneumonias (IIP). Appropriate therapies do not exist yet, which is mostly due to the fact that 

the pathomechanisms of the disease are not completely understood. However, extensive 

research in this issue has revealed WNT/β-catenin signaling including the WNT-target 

molecule WISP1 to be involved in processes leading to progression of fibrosis 36.  

Experiments of this study were performed in order to test the hypothesis that WNT/β-catenin 

signaling can be activated in lung fibroblasts by paracrine binding of WNT ligands and that 

WNT3a and the WNT target molecule WISP1 have profibrotic effects on lung fibroblasts, 

thereby contributing to the impaired crosstalk between ATII cells and fibroblasts during the 

pathogenesis of IPF. Data are received from in vitro experiments with NIH-3T3 mouse 

fibroblasts. To evaluate the relevance of the obtained results in regard to IPF pathogenesis 

further experiments with primary and human cells as well as in vivo experiments are desirable 

and necessary. Nevertheless, the used fibroblast cell line is well established in culture and 

frequently used for basic research indicating reactions of the human system. 

Concerning the question, if WNT/β-catenin signaling can be activated in fibroblasts, it was 

demonstrated that pathway components are expressed constitutively in these cells and target 

genes after stimulation with WNT3a. These observations confirmed that fibroblasts exhibit 

WNT responsiveness. Functional relevance thereof was demonstrated by pointing out 

paracrine effects of WNT3a particularly with regard to a possible profibrotic role. Whereas 

proliferation remained unaffected, a collagen increase on protein level indicated influence of  
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WNT in a profibrotic manner. Furthermore, a contribution of activated WNT/β-catenin 

signaling to the phenotype switch of inactivated fibroblasts to activated myofibroblasts can be 

assumed because of transcriptional upregulation of a fibroblast activation marker. The 

collagen increase on protein level could not be clearly ascribed to upregulation on mRNA 

level. As this discrepancy could not be explained by analysis of potential crosstalk partners or 

molecules possibly involved in posttranslational modification changes, further experiments 

are required to enlighten reasons for the unambiguous collagen increase inside the cells after 

activation of the β-catenin pathway by binding of WNT3a to the cell surface.  

The glycoprotein WISP1, encoded by a WNT target gene, was also analyzed as a paracrine 

ligand with potential profibrotic effects on fibroblasts. Experimental results demonstrate that 

WISP1 leads to fibroblast activation as well as enhanced ECM deposition. Here, a causative 

connection between collagen increase on protein level and upregulation of corresponding 

mRNA can be stated. 

Analysing fibroblast activation markers and collagen production in fibroblasts was mainly 

aimed at elucidating possible effects of WNT3a or WISP1 on one of the key pathogenic 

mechanisms that characterize the fatal course of IPF: extensive ECM deposition by activated 

fibroblasts. However, ECM imbalance during fibrosis not only consists of extensive ECM 

accumulation but also disturbed degradation. Thus, another interesting research focus would 

be to check expression, synthesis and secretion of molecules that are involved into ECM 

degradation like matrixmetalloproteinases (MMP) or tissue inhibitors of metalloproteinases 

(TIMP) 80. These molecules could be influenced during IPF as well as mediators of 

apoptosis 72. As this part was not the focus of the current study, on transcriptional and protein 

level further investigation is possible and required to reveal the functional effects of both 

ligands entirely.  

From the results of the present study can be concluded that WNT3a and WISP1 act in a 

paracrine fashion as profibrotic mediators on fibroblasts in vitro. Together with current 

research results about IPF and WNT signaling this detection strongly suggests WNT/β-

catenin signaling and its effectors to be functional in fibroblasts during the pathogenesis of 

IPF. Inhibiting WNT/β-catenin signal transduction or antagonizing its downstream effectors 

could possibly prevent fibroblasts from advancing the diseases´ progression. Thus, elucidating 

the downstream mechanisms and the effects of WNT and WISP on fibroblasts in vivo and in 

the human system is a worthwhile aim for further investigation.  
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6. Appendix 

6.1 Primer sequences and amplicon sizes 

Gene Accession  Sequences (5´ � 3´) Length Amplicon 

for gga acc cag aga gag cat ga 20bp 
Arg1 NM007482 

rev ttt ttc cag cag acc agc tt 20bp 
132bp 

for acc agg aac tgg ctg aag tg 20bp 
Arg2 NM009705 

rev tga gca tca acc cag atg ac 20bp 
141bp 

for tca aga gag caa gct cat cat tct  24bp 
β-Cat NM007614 

rev cac ctt cag cac tct tgt g 22bp 
115bp 

for cca aga aga cat ccc tga agt ca 23bp 
Col1a1 NM007742 

rev tgc acg  tca tcg cac aca 18bp 
128bp 

for agc ttt gtg gat acg cgg act 21bp 
Col1a2 NM007743 

rev tcg tac tga tcc cga ttg ca 20bp 
86bp 

for ctt ctg cga ttt cgg ctc c 19p 
Ctgf NM010217 

rev tgc ttt gga agg act cac cg 20bp 
115bp 

for atg cca gag gcg gat gag a 19bp 
CycD1 NM007631 

rev atg gag ggt ggg ttg gaa at 20bp 
98bp 

for gtg tag cac aac ttc caa tta cga a 25bp 
Fn NM010233 

rev gga att tcc gcc tcg agt ct 20bp 

 

90bp 

for agg agc tac tga cca ggg agc t 22bp  

Fsp1 

 

NM011311 rev tca ttg tcc ctg ttg ctg tcc 21bp 

 

102bp 
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Gene Accession  Sequences (5´ � 3´) Length Amplicon 

for aaa cag cac agg ttc tgc aaa a 22bp 
Fzd1 NM021457 

rev tgg gcc ctc tcg ttc ctt  18bp 
58bp 

for tcc atc tgg tgg gtg att ctg 21bp 
Fzd2 NM020510 

rev ctc gtg gcc cca ctt cat t 19bp 
66bp 

for gcc tat agc gag tgt tca aaa ctc a 25bp 
Fzd3 NM021458 

rev tgg aaa cct act gca ctc cat atc t 25bp 
78bp 

for gcc cca gaa cga cca caa 18bp 
Fzd4 NM008055 

rev ggg caa ggg aac ctc ttc at 20bp 
64bp 

for ccc acc gca cgt ttt cc 17bp 
Fzd5 NM02272 

rev gct ttt cat ttc gct tgt tat c 25bp 
63bp 

for gtt cta ccc tgt cgg aaa ttg tg 23bp 
Fzd6 NM008056 

rev gtg gat gag aag tta cag gaa cag tgt 27bp 
146bp 

for gcc agg tgg atg gtg acc ta 20bp 
Fzd7 NM008057 

rev ccg caa tgc atc cac act ag 20bp 
68bp 

for gca agg agg ccc aac taa gac 21bp 
Fzd8 NM008058 

rev gag gcc caa gcg gat ca 17bp 
58bp 

for ttt gag ctg gta ccc tag gat ga 23bp 
Gsk3β NM019827 

rev ttc ttc gct ttc cga tgc a 19bp 
75bp 

for ggc ggc gtt gga cag at 17bp 
Lef1 NM010703 

rev cac ccg tga tgg gat aaa cag 21bp 
67bp 
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Gene Accession  Sequences (5´ � 3´) Length Amplicon 

for caa cgt gga cgt gtt tta ttc ttc 24 bp 
LRP5 NM008513 

rev cag cga ctg gtg ctg tag tca 21 bp 
138 bp 

for cca ttc ctc tca ctg gtg tca a 22 bp 
LRP6 NM008514 

rev gcc aaa ctc tac cac atg ttc ca  23 bp 
146 bp 

for gtc ttt ccg acc aag agc ag 20 bp 
Pai1 NM008871 

rev gac aaa ggc tgt gga gga ag 20 bp 
104 bp 

for atg tcc ggt aac ggc ggc 18 bp 
Pbgd NM135511 

rev ggt aca agg ctt tca cga 22 bp 
121 bp 

for gct ggt gat gat gct ccc a 19 bp 
αSma NM007392 

rev gcc cat tcc aac cat tac tcc 21 bp 
80 bp 

for agg tca ccc gcg tgc taa t 19 bp 
Tgfβ-1 NM011577 

rev ggc act gct tcc cga atg t 19  bp 
115 bp 

for caa atg gca att ccg aaa cc 20 bp 
Wnt1 NM021279 

rev gat tgc gaa gat gaa cgc tg 20 bp 
111 bp 

for gca cca ccg tga gca aca 18 bp 
Wnt3a NM009522 

rev ggg tgg ctt tgt cca gaa ca 20 bp 
56 bp 

for tgg gac cgt tgg aat tgc  18 bp 
Wnt8b NM011720 

rev ccg gtt agc gct tcg aag t  19 bp 
72 bp 

for atg agt gcc agc atc agt tcc 21 bp 
W10a NM009518 

rev gcg tag gcg aaa gca ctc tc 20 bp 
123 bp 
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Gene Accession  Sequences (5´ � 3´) Length Amplicon 

for tgg gac gcc agg tgg taa 18 bp 
Wnt10b NM011718 

rev ctg acg ttc cat ggc att tg 20 bp 
60 bp 

for ccc cca act acc tgc ttg ac 20 bp 
Wnt11 NM009519 

rev ggc cga cag ggc ata cac 18 bp 
68 bp 

  

Table 3. Primer sequences and amplicon sizes. 

The primer sets work under identical real-time PCR cycling conditions with similar efficiencies to obtain 
simultaneous amplification in the same run. Sequences were taken from GeneBank, Accession numbers are 
given. 

 

6.2 Dissociation curves 
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Figure 14. Dissociation curves 

Primer sets of WNT/β-catenin pathway components 
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