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Abstract 

This dissertation introduces the application of machine learning to isotope hydrology. The recent 

development of laser spectroscopy has made it feasible to measure stable isotopes of water in high 

temporal resolutions up to sub-hourly scales. High-resolution data provides the opportunity to 

identify the fine-scale, short-term transport and mixing processes that are not detectable at coarser 

resolutions. Despite such advantages, routine and long-term sampling of streams and groundwater 

sources at high temporal resolution is still far from being widespread. Novel approaches that are 

able to predict and interpolate infrequently measured data at multiple sources would be a major 

breakthrough. This dissertation focuses on the application of machine learning and hyperparameter 

optimization to efficiently predict high-resolution isotope concentrations of multiple stream and 

groundwater sources in the Schwingbach Environmental Observatory (SEO), Germany. In a first 

step, an automated mobile laboratory was utilized to automatically sample and analyse stable 

isotopes and water quality for multiple water sources at 20 min intervals in situ. Prompt responses 

of isotope concentrations to precipitation revealed that shallow subsurface flow pathways rapidly 

delivered water to the stream. A Spearman rank analysis indicated that precipitation is a main driver 

of event and pre-event water contribution. In a second step, Artificial Neural Network (ANN) and 

Support Vector Machine (SVM) were optimized to predict maximum event water fractions in 

streamflow on independent precipitation events using only precipitation, soil moisture and air 

temperature as input features. The optimized SVM outperformed that of ANN with an RMSE of 

9.43%, MAE of 7.89%, R2 of 0.83, and NSE of 0.78. A systematic hyperparameter optimization 

approach showed that an adequate number of hidden nodes and a suitable activation function 

enhanced the ANN performance, whereas the performance of SVM was directly related to the 

selection of the kernel function. Finally, a Long Short-Term Memory (LSTM) deep learning model 

was optimized using a Bayesian optimization algorithm to predict high-resolution time series of 

isotope concentrations in multiple stream and groundwater sources using a set of explanatory data 

that are more straightforward and less expensive to measure compared to the stable isotopes. The 

LSTM could successfully predict isotope concentrations of stream and groundwater sources using 

only short-term sequence (6 h) of measured water temperature, pH and electrical conductivity with 

an RMSE of 0.7‰, MAE of 0.4‰, R2 of 0.90, and NSE of 0.70. In conclusion, machine learning 

methods are promising tools for the prediction of variables that are difficult, expensive or 

cumbersome to measure.
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1 Extended Summary 

1.1 Introduction 

It is challenging to comprehend how a catchment responds to precipitation events owing to its 

complex underlying hydrological processes (Uhlenbrook et al., 2002; Zhou et al., 2021). A 

comprehensive understanding of runoff generation mechanisms and hydrological response 

characteristics of a catchment is crucial for the sustainability, protection and management of its 

water resources (Hrachowitz et al., 2011). Stable isotopes of water (δ2H and δ18O) are commonly 

used as conservative natural tracers in catchment hydrology to provide insight into hydrological 

processes. They are ideal tracers of water sources because they are naturally occurring constituents 

of water, they maintain hydrological information and they are able to characterize catchment-scale 

hydrological responses (Stadnyk et al., 2013). Such tracers have proved to be useful tools to study 

the source and formation of recharged water, the interactions between surface and groundwater, or 

the partitioning of evaporation, transpiration and mixing processes between different water sources 

(Kendall and McDonnell, 2012; Orlowski et al., 2016). Specifically at the catchment scale, stable 

isotopes of water have been widely employed to separate runoff components via hydrograph 

separation techniques (Klaus and McDonnell, 2013), to estimate mean transit times (McGuire and 

McDonnell, 2006), to explore flow pathways (Tetzlaff et al., 2015), to calculate groundwater 

recharge rates (Koeniger et al., 2016), to comprehend soil water mixing processes (Sprenger et al., 

2016) and to enhance hydrological model simulations (Windhorst et al., 2014).  

Isotope studies typically involve manual or automated sample collection followed by transport, 

storage and subsequent laboratory analysis. The time and effort involved in sample handling are 

often major constraints limiting the frequency and duration of sampling and thus scope of studies. 

Most of previous isotope studies dealing with the investigation of hydrological processes and 

catchment responses have collected daily to monthly data, at which the higher resolution behaviour 

is unobservable. As pointed out by Kirchner et al. (2004), sampling at intervals much longer than 

the hydrological response times of a catchment might lead to a significant loss of information. 

Particularly at the event scale, weekly or even daily data are often not able to accurately partition 

total runoff into event water (i.e., the new water from incoming precipitation) and pre-event water 

(i.e., the old water stored in the catchment) components through isotopic hydrograph separation 
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technique owing to the fact that the stable isotopes of water are highly variable during precipitation 

events. A few studies manually collected sub-daily water isotopes for subsequent laboratory 

analysis (McGlynn et al., 2004; Wissmeier and Uhlenbrook, 2007; James and Roulet, 2009; Fischer 

et al., 2017b). However, these studies tended to focus on a few precipitation events since manually 

sampling of sub-daily water isotopes is laborious and cost intensive. Although such studies are 

useful, they are still limited in giving insight into short-term response variability and mixing 

processes over a longer-term catchment behaviour and might fail in capturing of relevant events 

due to their erratic and difficult-to-plan nature.  

The recent development of compact and robust isotope analysers has significantly reduced the 

analytical costs and made it conceivable to automatically measure stable isotopes of water in high 

temporal resolution (i.e., sub-hourly) directly in the field. To date, only a few studies have 

implemented field-based automated systems for continuous high-resolution monitoring of water 

isotopes (Heinz et al., 2014; von Freyberg et al., 2017; Mahindawansha et al., 2018; Quade et al., 

2019; Sahraei et al., 2020). The result of these studies emphasized that the high-resolution data 

provide an opportunity to identify fine-scale, short-term transport and mixing processes that might 

be masked at coarser resolutions. However, despite its advantages, routine monitoring of water 

isotopes with high-resolution is still far from being common. Long-term, high-resolution sampling 

of multiple sources such as precipitation, stream and groundwater is even less common, although 

such measurements are likely to shed new light on hydrological processes and may help to delineate 

particular flow pathways that contribute to runoff generation. Thus, a proper predictive model that 

is able to interpolate infrequently measured data at multiple sampling sites with a set of explanatory 

data that are more straightforward and less expensive to measure compared to the stable isotopes 

of water would be a major breakthrough in the field of isotope hydrology. Here, machine learning 

could be an effective tool to fulfil such a purpose. 

Machine learning is a data-driven Artificial Intelligence (AI) approach that aims to give computers 

the ability to automatically learn and extract patterns from data (Samuel, 1959; Goodfellow et al., 

2016). In the last twenty years, machine learning models have been extensively used to efficiently 

simulate non-linear systems and capture noise complexity in corresponding data. A key advantage 

that has raised the application of machine learning models is their ability to represent highly 

non-linear and complex systems through simple-to-measure explanatory features and without any 

a priori assumption about the data structure and knowledge of the underlying physical processes 
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(Liu and Lu, 2014). In recent years, machine learning has been increasingly applied to predict 

streamflow, groundwater and lake water level, water quality parameters such as phosphorus, 

nitrogen and dissolved oxygen, soil moisture, soil hydraulic conductivity, water temperature and 

many other hydrological variables (Lange and Sippel, 2020; Zounemat-Kermani et al., 2020).  

Artificial Neural Network (ANN) is an immensely popular AI algorithm for the prediction of 

hydrological variables (Maier and Dandy, 2000; Maier et al., 2010). ANN is a parallel-distributed 

information processing system, which has been essentially inspired by the biological neural 

network (Haykin, 1994). One of the key advantages of ANNs is that they are universal function 

approximators (Khashei and Bijari, 2010). This means that they are able to automatically 

approximate a large class of functions with a high degree of accuracy. Moreover, ANN is developed 

through learning and not through programming meaning that no preliminary specification of fitting 

function is required in the model development process. Instead, the network function is derived 

from the patterns and characteristics of the data through the learning process (Khashei and Bijari, 

2010). Another key advantage of ANNs is that they have an intrinsic generalization capability. This 

means that they can recognize and respond to patterns that are analogous, but not identical to the 

patterns, with which they have been trained (Benardos and Vosniakos, 2007). With increasing 

research on ANN models, the limitations of ANN have been highlighted, such as local optimal 

solutions and gradient disappearance, which constrain the application of the model (Yang et al., 

2017; Zhang et al., 2018a). As an alternative, the Support Vector Machine (SVM) algorithm was 

introduced by Cortes and Vapnik (1995) offering a new structure in the field of machine learning. 

The major advantage of SVM is that it is based on the structural risk minimization principle, which 

aims to minimize an upper bound to the generalization error instead of traditional local training 

error, from which SVM is able to achieve good generalization ability (Liu and Lu, 2014). 

Furthermore, for the SVM implementation, a convex quadratic constrained optimization problem 

must be solved so that its solution is always unique and globally optimal (Schölkopf et al., 2002). 

Another major advantage of SVM is that it automatically identifies and incorporates support 

vectors during the training process and prevents the impact of the non-support vectors on the model. 

This allows the model to cope well with noisy conditions (Han et al., 2007). Reviews of numerous 

studies have shown strong promise of success for ANN and SVM models in various areas of 

hydrology and earth system science (ASCE Task Committee on Application of Artificial Neural 

Networks in Hydrology, 2000; Maier and Dandy, 2000; Dawson and Wilby, 2001; Maier et al., 
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2010; Raghavendra and Deka, 2014). However a drawback of ANN and SVM models, which have 

mainly been used for time series analysis in the past, is that any information on the sequential order 

of the inputs is lost (Kratzert et al., 2018). Therefore, for the problems that the sequential order of 

the inputs matters, more advanced machine learning models are required to efficiently handle the 

temporal dependencies. 

Deep learning is an advanced subfield of machine learning that has experienced an explosive 

growth in recent years due to improvements in computer technology, especially through Graphic 

Processing Units (GPU), and the availability of large data sets (Schmidhuber, 2015). Deep learning 

generally refers to large, multilayer neural networks that can extract high-level representations 

from complex and high-dimensional data through a hierarchical learning process using multiple 

non-linear transformations (Shen, 2018; Zuo et al., 2019). Deep learning is capable of digesting 

large quantities of data and is able to successfully generalize to new instances (Shen, 2018). 

Furthermore, it can extract substantial features without being explicitly instructed, and hence, is 

immune to raw and noisy data (Sahiner et al., 2019). Long Short-Term Memory (LSTM) is the 

state-of-the-art deep learning architecture that is widely employed to simulate sequential data like 

time series (Gers et al., 2002). LSTM is a type of Recurrent Neural Network (RNN) that can learn 

when to forget and how long to retain the state information (Hochreiter and Schmidhuber, 1997). 

Unlike the traditional RNNs, LSTM does not suffer from exploding and vanishing gradients, which 

allows the network to learn long-term dependencies (Hochreiter and Schmidhuber, 1997). This is 

desirable for modelling catchment processes like storage effects that have relatively long timescales 

compared to input-driven processes like direct surface runoff, and may play an important role in 

hydrological processes (Kratzert et al., 2018). So far, only a few attempts have been made to apply 

LSTM to predict time series of hydrological variables such as soil moisture (Fang et al., 2017), 

streamflow (Kratzert et al., 2018), water table depth (Zhang et al., 2018b), dissolved oxygen, 

turbidity and chemical oxygen demand (Liu et al., 2019a). The potential of LSTM has not yet been 

explored in the field of isotope hydrology; and in general, the application of machine learning in 

this field has rarely been investigated (Cerar et al., 2018).  
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1.2 General Objectives of the Dissertation 

The main aim of this dissertation is to predict high temporal resolution of the stable isotope 

concentrations in multiple stream and groundwater sources using machine learning. For this 

investigation, the dissertation is subdivided in three objectives, which will be addressed in separate 

chapters: 

1) Investigation of the response of runoff components to precipitation and the role of 

underlying controlling factors on the runoff generation process. 

To accomplish the first objective, an automated mobile laboratory, the Water Analysis Trailer for 

the Environmental Research (WATER), is utilized to automatically sample multiple water sources 

and analyse the stable isotopes of precipitation, stream and groundwater (δ2H and δ18O) and their 

water quality (water temperature, pH and electrical conductivity) in high temporal resolution 

(20-min intervals) directly in the field (Chapter 2). 

2) Prediction of the response of runoff components to precipitation using machine learning 

methods. 

To fulfil the second objective, two widely used machine learning algorithms, namely ANN and 

SVM, are optimized to predict maximum event water fractions in streamflow for independent 

precipitation events at times when no direct measurements of stable isotopes of water are available. 

Furthermore, the influence of hyperparameter configurations on the model performance is 

investigated (Chapter 3). 

3) Simulation of high temporal resolution of stable isotope concentrations in multiple water 

sources using deep leaning. 

To achieve the third objective, a Long Short-Term Memory (LSTM) deep learning model is 

optimized through a Bayesian optimization approach to predict high-resolution stable isotope 

concentrations of multiple stream and groundwater sources with a set of explanatory data that are 

more straightforward and less expensive to measure compared to the stable isotopes of water. A 

sensitivity analysis is further conducted to examine how different input features and sequence 

lengths affect the performance of the model (Chapter 4).  
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The investigation of the objectives for this dissertation requires data of high-resolution, multiple 

sources and a large number of variables. Particularly, the availability of high-resolution data of 

stable isotopes of various water sources is a limiting factor. Worldwide, such information is only 

available for a very few sites. One such catchment is the Schwingbach headwater, for which the 

analyses of dissertation were carried out. 

1.3 Materials and Methods 

1.3.1 Study area and monitoring network 

The study area is located in the headwater catchment of the Schwingbach Environmental 

Observatory (SEO) (50°28′40″N, 8°32′40″E) in Hesse, Germany (Figure 1.1a-e). The research area 

comprises a total area of 1.03 km2 with elevations ranging from 310 m in the north to 415 m a.s.l. 

in the south (Figure 1.1b). The climate is classified as temperate oceanic (Köppen climate 

classification), with a mean annual air temperature of 9.6°C and mean annual precipitation of 623 

mm (1969-2019) recorded at the near-by weather station Giessen-Wettenberg operated by the 

German Weather Service. The catchment area is covered by 76% of forest that is mainly located 

in the east and south, 15% of arable land in the north and west and 7% of meadows along the 

perennial Schwingbach stream (Figure 1.1c). The soils are classified as Cambisols mainly covered 

by forests and Stagnosols under arable land. Under the forest, soil’s texture is dominated by silt, 

fine sand and gravel from 0 to 3 m depths, with a low clay content between 0.6 and 3 m depths. 

Soils lay on slightly weathered clay shale bedrock. Under meadows and arable land, the soil texture 

is rich in silt and fine sand from 0 to 5 m depths with small amounts of clay and gravel between 

0.8 and 5 m depths. Here, soils developed on greywacke and weathered clay shale. 

An automatic climate station (AQ5, Campbell Scientific Inc., Shepshed, UK) operated with a 

CR1000 data logger measured precipitation depth, air temperature at 2 m height, relative humidity, 

air pressure, solar radiation and wind speed at 5 min intervals (Figure 1.2a). Six remote telemetry 

loggers (A753, Adcon, Klosterneuburg, Austria), three at the toeslope (SM1, SM2 and SM3) and 

three at the footslope (SM4, SM5 and SM6), were equipped with capacitance sensors (ECH2O 

5TE, METER Environment, Pullman, USA) to automatically measure soil moisture at 5, 15, 30, 

50 and 70 cm depths at 5 min intervals (Figure 1.2b-c). A stream gauge (RBC flume, Eijkelkamp 

Agrisearch Equipment, Giesbeek, Netherlands) equipped with a pressure transducer (Mini-Diver, 



Chapter 1 

7 

 

Eigenbrodt Inc., Königsmoor, Germany) automatically recorded water levels at 10 min intervals at 

the outlet (SW2) of the catchment (Figure 1.2d). The transducer readings were calibrated against 

manual measurements and continuous stream discharge was derived through the calibrated 

stage-discharge relationship provided by the manufacturer 

 

 

Figure 1.1 (a) Location of the Schwingbach Environmental Observatory (SEO) in Hesse, Germany (red 

square), (b) Schwingbach Environmental Observatory (SEO), (c) Study area in the Schwingbach headwater, 

(d) Measuring network along the stream reach of the Schwingbach headwater and (e) Landscape of the study 

area, with the mobile laboratory WATER and two solar power panels in the foreground right. 

(e) 
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Figure 1.2 Monitoring network: (a) Climate station, (b) Remote telemetry logger, (c) Soil moisture sensors 

at 5, 15, 30, 50 and 70 cm depths, (d) Stream gauge at SW2 (outlet), (e) Precipitation bucket, (f) Stream 

water sampling station at SW2 and (g) Groundwater sampling station at GW3. 

 

(a) (b) (c) 

(d) (e) 

(f) (g) 
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1.3.2 Water Analysis Trailer for Environmental Research (WATER) 

An automated mobile laboratory, the Water Analysis Trailer for the Environmental Research 

(WATER), was utilized to automatically sample and analyse the stable isotopes of water (δ2H and 

δ18O) and water quality for multiple water sources at 20 min intervals in situ (Figure 1.3a-c). The 

automatic sampling system allows to sample up to 12 water sources. A peristaltic pump (M1500, 

Verder GmbH, Haan, Germany) draws water from the sources and delivers it through a 5 µm 

polyester membrane (polyester filter, Pieper Filter GmbH, Germany) to a 1,000 mL sample 

reservoir, which is connected to a continuous water sampler (CWS) (A0217, Picarro Inc., Santa 

Clara, USA), coupled to a wavelength-scanned cavity ring-down spectrometer (WS-CRDS) 

(L2130-i, Picarro Inc., Santa Clara, USA) to analyse stable isotopes of water. A multi-parameter 

water quality probe (YSI600R, YSI Inc., Yellow Springs, USA) is installed on the sampling board 

of the WATER to measure temperature, pH and EC of sampled water.  

In the setup of this dissertation, the WATER automatically sampled two stream water reaches 

(SW1 and SW2), three groundwater sources (GW1, GW2 and GW3) and one precipitation collector 

(Figure 1.1d and Figure 1.2e-g). SW1 was sampled approximately 145 m upstream of the WATER 

close the arable land and water from SW2 was taken at the outlet of the catchment next to the 

location of the WATER. Piezometers of GW1 and GW2 were located at the toeslope on arable land 

and meadow, respectively. The piezometer of GW3 was installed at the footslope at the edge of the 

forest. Precipitation was sampled from a 5 L bucket falling on a funnel-type 3.3 m2 funnel-shaped 

tarp. The bucket was equipped with a sensor (tank electrode, Votronic GmbH, Lauterbach, 

Germany) to monitor the amount of the collected precipitation inside the bucket. Given the 

sampling resolution of 20 min, the system setup allowed the measurement of 72 water isotope 

samples per day. The sampling cycle was scheduled to sample n = 16 (with n the number of 

samples) for each stream water reach, n = 8 for each groundwater source and n = 8 for each 

standard water sample in case of no precipitation event. In the case of a precipitation event, the 

sampler automatically took a precipitation sample whenever the sample volume exceeded 1 L (0.3 

mm) inside the precipitation bucket. After sampling, the precipitation bucket was emptied, and the 

sampler was blocked for 60 min, allowing to take samples from other sources. 
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Figure 1.3 (a) Water Analysis Trailer for Environmental Research (WATER), (b) Sampling board and 

analytical instrumentation inside the WATER and (c) Continuous water sampler (CWS) coupled to a 

wavelength-scanned cavity ring-down spectrometer (WS-CRDS) for stable water isotopes analysis. 

(a) 

(b) (c) 
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1.3.3 Artificial Neural Network (ANN) 

Multilayer Perceptron (MLP) feedforward neural network is one of the most popular ANN 

architectures in hydrology (Tanty and Desmukh, 2015; Oyebode and Stretch, 2018). The MLP 

network consists of a set of nodes (i.e., neurons) organized into three different types of layers, i.e., 

input, hidden, and output layers (Figure 1.4). The input layer contains nodes, through which the 

input data is incorporated into the network. In the hidden layers, the nodes receive signals from the 

nodes in the previous layer via weighted connections, at which the weights determine the strength 

of the signals. The weighted values from the previous layer are summed together with a bias 

assigned with the nodes. The result is then passed through an activation function to produce a signal 

(i.e., activation level) for each node. The signals are then transmitted to the subsequent layer and 

the process is continued until the information reaches the output layer. The signals, which are 

produced in the output layer, are the model outputs. To train the MLP network, the backpropagation 

algorithm (Lecun et al., 2015) was used, in which the outputs generated in the output layer for the 

given inputs, are compared to the target values (i.e., observations) and the error is calculated 

through a loss function. If the output layer does not generate the desired values, the output errors 

are propagated backwards through the network, while the parameters of the nodes (i.e., weights 

and bias) in each layer are updated along the way with an optimizer. The learning process repeats 

in this manner for several rounds (i.e., epochs) until the loss function reaches an optimal value. 

 

Figure 1.4 Schematic diagram of an Artificial Neural Network (ANN), where the network consists of a set 

of nodes organized into input, hidden and output layers. 
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1.3.4 Support Vector Machine (SVM) 

Support Vector Machine (SVM) was developed by Cortes and Vapnik (1995) based on the 

statistical learning theory. The SVM is a novel classification algorithm, which employs the 

principle of structural risk minimization and transforms it into quadratic programming. It uses 

suitable kernel function to non-linearly map the original data in a higher dimensional feature space 

and solve a linear regression problem in the feature space. In the feature space, the SVM establishes 

decision boundaries to separate data points of different classes. Its intent is to create an optimal 

separating hyperplane between two classes to minimize the generalization error and thereby 

maximize the margin (Figure 1.5). If any two classes are separable from among the infinite number 

of linear classifiers, the SVM determines that hyperplane, which minimizes the generalization 

error. Conversely, if the two classes are non-separable, the SVM tries to search that hyperplane, 

which simultaneously maximizes the margin and minimizes a quantity proportional to the number 

of misclassification errors. Thus, the selected hyperplane will have the maximum margin between 

the two classes. The margin is defined as a summation of the distances between the separating 

hyperplane and the nearest points on either side of the two classes (i.e., support vectors). The SVM 

algorithm was extended to Support Vector Regression (SVR) to solve the regression problems with 

the introduction of the 𝜀-insensitive loss function (Vapnik et al., 1997; Smola and Schölkopf, 

2004). In this case, the SVR attempts to determine the optimal hyperplane, which minimizes the 

distance of all data points.  

 

Figure 1.5 Schematic diagram of a Support Vector Regression (SVM), with the hyperplane splitting up 

two classes of support vectors by maximizing the margin. 
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1.3.5 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is considered an evolutionary form of the Recurrent Neural 

Network (RNN) that is capable of learning long-term dependencies by overcoming the exploding 

and vanishing gradient problems of traditional RNN networks (Hochreiter and Schmidhuber, 

1997). The main characteristics of the LSTM are the specially designed units so called memory cell 

and gates. The memory cell consists of forget, input and output gates that together control the flow 

of information within the LSTM network. Each memory cell is interconnected through two vital 

components, at which the hidden state ℎ𝑡−1 is known as short-term memory and the cell state 𝑐𝑡 is 

referred to as long-term memory. By using the cell state, the LSTM is able to store essential 

information for a prolonged period. Figure 1.6a-d illustrates the LSTM learning process. In the first 

step, the forget gate parameter 𝑓𝑡 decides how much of the information is removed from the cell 

state. This decision is made by a sigmoid function (𝜎) with a linear calculation of the current input 

𝑥𝑡 and the previous output ℎ𝑡−1. In the second step, the input gate parameter 𝑖𝑡 controls which new 

information is updated to the cell state by the sigmoid function with a linear relation on 𝑥𝑡 and ℎ𝑡−1 

as well. The new cell state candidate 𝑐𝑡
′ is calculated by a hyperbolic tangent function (tanh) with 

a linear relation on 𝑥𝑡 and ℎ𝑡−1. In the third step, the old cell state 𝑐𝑡−1 is updated into the new cell 

state 𝑐𝑡 through an element-wise multiplication operator. Finally, the output parameter 𝑜𝑡 is 

calculated by the sigmoid function with a linear relation on 𝑥𝑡 and ℎ𝑡−1. The final output at the 

current time step ℎ𝑡 is the production of 𝑜𝑡 and the 𝑡𝑎𝑛ℎ function value of the cell state 𝑐𝑡. 

 

Figure 1.6 Schematic of Long Short-Term Memory (LSTM) learning process in four steps, where the 

memory cell consists of forget, input and output gates that together control the flow of information. 
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1.3.6 Hyperparameter optimization of machine learning algorithms 

Most of the machine learning algorithms have several settings that govern the entire learning 

process (Goodfellow et al., 2016). These settings are called hyperparameters. The hyperparameters 

are external to the model, they are not learned from the data and must be set prior to the learning 

process (Géron, 2019). The performance and computation complexity of machine learning models 

are crucially dependent on the hyperparameter setting. Hence, it is necessary to optimize the 

hyperparameters in order to enhance the model performance. However, investigations of different 

hyperparameters and comparison of their influence on the model performance are rarely reported 

in hydrology. This dissertation provides detailed discussion with respect to the optimization 

process of the machine learning algorithms. 

1.3.6.1 ANN setup 

As the base architecture, the ANN model applied in this work was defined by seven nodes in the 

input layer, and two hidden layers followed by a linear output layer with one node. The Adam 

optimizer was used for the optimization of the learning process (Kingma and Ba, 2014). Among 

the hyperparameters, the number of nodes in hidden layers, learning rate, and activation functions 

in hidden layers have the greatest impact on the performance of the model and its robustness 

(Smithson et al., 2016; Klein and Hutter, 2019). Therefore, a set of the aforementioned 

hyperparameters was defined to evaluate the performance of the ANN model configurations. Too 

few hidden nodes implies that the network does not have enough capacity to solve the problem. 

Inversely, too many hidden nodes implies that the network memorizes noise within training data, 

leading to poor generalization capability (Maier and Dandy, 2000; Thomas et al., 2016b). Given 

that, five different configurations were tested for the number of hidden nodes. Further, too small 

learning rates slow down the learning process and may cause the learning to become stuck with a 

high learning error. On the other hand, too large learning rates can lead the network to go through 

large oscillations during the learning process or that the network may never converge (Maier and 

Dandy, 1998; Goodfellow et al., 2016). The default learning rate of the Adam optimizer is set to 

0.001. Smaller (0.0001) and larger (0.01) learning rates were also tested. Finally, several activation 

functions where assessed. Sigmoid and tanh are the most common activation functions used in 

feedforward networks (Maier and Dandy, 2000). However, Rectified Linear Unit (ReLU) is usually 

a more suitable choice (Maier and Dandy, 2000). Hence, sigmoid, tanh and ReLU were checked as 
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varieties for activation functions of hidden layers. Each network was trained for a maximum of 

10,000 epochs to minimize the mean absolute error (MAE). 

1.3.6.2 SVM setup 

The performances of four commonly employed kernels in SVM studies, including the Linear, 

Sigmoid, Radial Basis Function (RBF), and Polynomial kernels combined with their optimal 

hyperparameters were examined in detail. The Linear kernel has two hyperparameters (𝐶, 𝜀), the 

Sigmoid and RBF kernels have three hyperparameters (𝐶, 𝜀, 𝛾) and the Polynomial kernel has four 

hyperparameters (𝐶, 𝜀, 𝛾, 𝑑) to be optimized. The penalty coefficient 𝐶 determines the tolerance 

of deviations larger than 𝜀 from the real value; i.e., smaller deviations are tolerable for larger values 

of 𝐶. The permitted error threshold 𝜀 affects the number of support vectors used in the regression 

function, i.e., the smaller the value of 𝜀, the greater the number of support vectors that will be 

selected. The kernel coefficient 𝛾, controls the influence radius of the support vectors, i.e., for high 

values of gamma, the radius of the influence area of the support vectors only includes the support 

vector itself. The degree of the polynomial function 𝑑, is the largest of the degrees of polynomial’s 

monomials with non-zero coefficient. 20 values for each of 𝐶, 𝜀 and 𝛾 based on geometric 

progression and 3 values for 𝑑 were tested. Therefore, 400 configurations for the Linear kernel, 

8,000 configurations for the Sigmoid and RBF kernels and 24,000 configurations for the 

Polynomial kernel were studied. Finally, the performances between the kernel functions in 

combination with their optimal hyperparameter configurations were compared. 

1.3.6.3 LSTM setup 

The LSTM architecture consisted of an input layer with as many neurons as input features, one 

LSTM layer, a dropout layer and a fully connected dense layer with a single unit for the output 

feature. The Adam optimizer was used for the optimization of the learning process (Kingma and 

Ba, 2014) and tanh and sigmoid functions as state and gate activation functions, respectively. The 

LSTM model was run in a sequence-to-one mode so that an input sequence of a fixed length was 

used to predict output value at the next time step. The sequence length, i.e., the look-back window, 

is the length of past input observations that the LSTM looks back to predict an output for the next 

time step. The Sequential Model-Based Optimization (SMBO) search with the Tree-structured 

Parzen Estimator (TPE) algorithm were used in the frame of a Bayesian optimization approach 

(Bergstra et al., 2011) to optimize the number of hidden, dropout rate, learning rate, number of 

epochs and batch size. Bayesian optimization is a very efficient optimization algorithm that has 
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been demonstrated to outperform well-established approaches i.e., grid and random search 

(Bergstra et al., 2013; Eggensperger et al., 2013). It develops a statistical model between the 

hyperparameters and the objective function and makes the assumption that there is a smooth but 

noisy function that maps between the hyperparameters and the objective function (Reimers and 

Gurevych, 2017). Given the search history of hyperparameters and the objective function, 

SMBO-TPE suggests hyperparameters for the next trial that are expected to improve the objective 

function. As the number of trials grows, the search history grows and eventually the 

hyperparameters become optimized. The optimization evaluation was run for 1,000 trials through 

the search space of the hyperparameters to minimize the objective function, in this case the mean 

squared error (MSE). 

1.3.7 Model evaluation 

To evaluate the generalization ability of the machine learning models, the data was divided into 

train, validation and test sets. The train set was used to learn the internal parameters (i.e., weights 

and bias) of the model. The validation set was used for the hyperparameter optimization and the 

test set was used to estimate the generalization capability of the model. For ANN and SVM models, 

ten times 10-fold cross-validation was performed such that eight folds were considered as a train 

set, one fold as the validation set and one fold as a test set. For the LSTM model, the data was split 

into 70%, 15% and 15% of train, validation and test sets, respectively, while maintaining the 

temporal order of the observations. The prediction performances of machine learning models were 

evaluated in terms of the root mean squared error (RMSE), mean absolute error (MAE), coefficient 

of determination (R2) and Nash-Sutcliffe efficiency (NSE). 

1.4 Main Results 

1.4.1 Objective 1: Investigation of the response of runoff components 

to precipitation and the role of underlying controlling factors on 

the runoff generation process 

The isotopic response of stream and groundwater during the precipitation events revealed a rapid 

mixing of event water (i.e., precipitation) with pre-event water (i.e., water stored in the sampling 

sources), indicating that the Schwingbach is a highly responsive catchment (Figure 1.7). It took, 
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on average, 6 h for stream water and 7 h for groundwater at the toeslope that the isotope signatures 

reach peak values implying that shallow subsurface flow pathways rapidly delivered water to the 

stream. Macropore and soil pipe networks along relatively flat areas in stream banks were likely 

relevant pathways for the rapid transmission of water.  

A two-component isotopic hydrograph separation technique was applied to quantify event and 

pre-event water fractions in stream and groundwater sources. The hydrograph of 20 precipitation 

events showed that more than 79% of runoff consisted of pre-event water. Due to the highly 

permeable soils, the contribution of overland flow was negligible and hence precipitation infiltrated 

to the subsurface and mobilized pre-event water instead of running off to the stream. The runoff 

coefficient, i.e., runoff divided by the corresponding precipitation amount, was very low across the 

events with a mean of 2.2%. The high porosity of the soils in the upper layers of meadows and 

arable land as well as the extremely dry conditions in summer 2018 were likely the major reasons 

for the low runoff coefficients. 

A Spearman rank correlation analysis was applied to investigate the control of precipitation and 

antecedent wetness conditions on the response characteristics of the catchment. The correlation 

values were considered statistically significant if p < 0.05. Total event water volume and event 

water fraction in total runoff significantly increased with the precipitation amount pointing out that 

the event water contribution increased with the precipitation amount. The positive correlation of 

the maximum event water fraction in groundwater sources with precipitation amount and initial 

soil moisture at the toeslope pointed out that not only the higher precipitation amount led to an 

increase of event water contribution but also that wetter conditions at the toeslope facilitated 

groundwater recharge mechanisms to switch on. Total pre-event volume moderately correlated 

with total precipitation amount suggesting that increasing precipitation led to the mobilization of 

pre-event water. Nevertheless, no significant correlation was observed between pre-event water 

fraction in total runoff and antecedent wetness of the catchment. This indicates that the effect of 

antecedent wetness was too low on pre-event water contribution, which was likely caused by the 

extreme dry conditions in 2018.  
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Figure 1.7 Time series of (a) Precipitation, (b) δ2H in precipitation, (c) δ2H in stream water sources and (d) 

δ2H in groundwater sources. The vertical grey bars indicate the 20 precipitation events investigated in detail. 

The numbers on top of panel (a) represent the event ID. 
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1.4.2 Objective 2: Prediction of the response of runoff components to 

precipitation using machine learning methods 

ANN and SVM algorithms were optimized to predict maximum event water fractions in 

streamflow on independent precipitation events in the SEO using only precipitation, soil moisture, 

and air temperature. The optimized ANN and SVM models were selected based on the average 

performance over 100 iterations derived from ten times 10-fold cross validation. The optimized 

ANN was chosen based on a combination of five nodes in the first hidden layer and three nodes in 

the second hidden layer [5, 3], a learning rate of 0.0001 and the tanh activation function in hidden 

layers. This configuration resulted in an RMSE of 12.91%, MAE of 10.27%, R2 of 0.70, and NSE 

of 0.63. The optimized SVM was achieved by a Polynomial kernel function with kernel 

hyperparameters of (𝐶 = 8.8587, 𝜀 = 0.0162, 𝛾 = 0.1833, 𝑑 = 2). The optimized SVM outperformed 

the ANN, with an RMSE of 9.43%, MAE of 7.89%, R2 of 0.83, and NSE of 0.78. SVM could better 

capture the dynamics of maximum event water fractions across the events (Figure 1.8). ANN 

tended to underestimate the events with high maximum event water fractions and to overestimate 

the events with low maximum event water fractions. 

 

Figure 1.8 Comparison of observed and predicted maximum event water fractions 𝑭𝑬𝒎𝒂𝒙
 at 40 precipitation 

events simulated by the optimized ANN and SVM models. The red and blue circles indicate the average of 

ten predicted values at each event and red and blue bands indicate the range of all ten predicted values (i.e., 

all runs) at each event derived from ten times 10-fold cross-validation by the optimized ANN and SVM 

models, respectively. 
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The influence of the hyperparameter configurations on the performance of the ANN and SVM 

models was further investigated. Choosing an appropriate number of hidden nodes and a proper 

activation function enhanced the ANN model performance, whereas changes of the learning rate 

did not have a major impact on the model performance when using the Adam optimizer. The result 

highlighted that increasing the complexity of the network not only declined the model performance 

but also decreased its stability. For the SVM, the model performance was directly related to the 

selection of the kernel function. The Polynomial and RBF kernels were found to be the most 

appropriate kernel functions for modelling of the non-linear behaviour, whereas the Linear and 

Sigmoid kernels were weaker and less stable over differently shuffled train and test sets. 

1.4.3 Objective 3: Simulation of high temporal resolution of stable 

isotope concentrations in multiple water sources using deep 

learning 

A LSTM deep learning model was developed to predict the complex and non-linear high-resolution 

(3 h) isotope concentrations of multiple stream and groundwater sources under different landuse 

and hillslope positions in the SEO. The core concept was to explore the prediction performance of 

an LSTM that was trained on multiple sites, with a set of explanatory data that were more 

straightforward and less expensive to measure compared to the stable isotopes of water. The 

explanatory data consisted of meteorological data, catchment wetness conditions and natural 

tracers, i.e., water temperature, potential of hydrogen (pH) and electrical conductivity. A sensitivity 

analysis was run to examine how different input feature scenarios and sequence lengths influence 

the prediction performance of the LSTM. The result showed that using the meteorological data and 

catchment wetness conditions alone as the input features did not lead to a satisfying prediction 

performance. The relations of these variables with the water isotope concentrations were not strong 

enough to transfer enough information that was required for an adequate learning of the LSTM to 

predict isotope concentrations. In contrast, using short sequence lengths (6-12 h) of the natural 

tracers, i.e., water temperature, pH and electrical conductivity of the sampling sites as the input 

features achieved good prediction performance. It indicates that these simple-to-measure tracers 

were able to indirectly model complex interactions between controlling drivers and water isotope 

concentrations in the catchment. This could be associated with the rapid response characteristics 
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of the Schwingbach catchment as well as the synchronized behaviour of isotopic compositions with 

electrical conductivity. 

A single LSTM model was trained and optimized with the input feature scenario and sequence 

length, at which the model performed on average the best for all of the sampling sites, rather than 

training and optimizing a separate LSTM model for each of the sampling sites. Based on the 

sensitivity analysis, the LSTM achieved the best performance when only measurements of the last 

6 h of water temperature, pH and EC were used as input features. On average across all sampling 

sites, an RMSE of 0.7‰, MAE of 0.4‰, R2 of 0.90 and NSE of 0.70 was achieved. The optimized 

LSTM was identified through the Bayesian optimization algorithm by a combination of 60 hidden 

units, a batch size of 40, a dropout rate of 0.4, and a learning rate of 0.0001 over 40 training epochs. 

The LSTM captured the timing of hydrologic events and base flow conditions of δ2H quite well, 

but struggled to predict the peak of the hydrograph (Figure 1.9). The overall performance of the 

LSTM indicated that it efficiently performed in stream and groundwater sources. A single LSTM 

that was simultaneously trained on multiple sampling site with different landuse and hillslope 

positions with a range of different isotope concentrations and magnitudes of response to 

precipitation events tended to balance the error so that it minimized the error between predicted 

and observed isotope concentrations for all of the sampling sites at the same time. 

 

Figure 1.9 Comparison of observed and predicted δ2H values by the best LSTM using a sequence length of 

6 h for water temperature, pH and electrical conductivity measurements (scenario S3-6 h) at GW3 site.  
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1.5 Implications and Outlook 

Powered by machine learning, AI is rapidly reshaping research and our lives. On the scientific 

front, machine learning is transforming many scientific disciplines, and is widely adopted and 

regarded as an indispensable tool for the future. In hydrology, the number of machine 

learning-related publications is skyrocketing in recent years. Several initiatives are pressing for 

paradigm shifts in the way hydrological modelling is done. The two key frontiers are the use of 

machine learning and the push for higher-resolution simulations (Klaus and McDonnell, 2013; 

Shen, 2018). Penna et al. (2018) call for a better incorporation of high-resolution modelling and 

observations in isotope hydrology. This dissertation aims to propel the isotopic modelling research 

by demonstrating the application of machine learning for the simulation of high-resolution stable 

isotopes in stream and groundwater sources. 

“If we want to understand the full symphony of catchment hydrochemical behaviour, then we need 

to be able to hear every note” (Kirchner et al., 2004). Long-term, high-resolution isotope 

measurements are essential to capture the full spectrum of complexity within hydrological 

processes so that notes from the seasonal down to the event scale can be detected. The study 

presented in Chapter 2 demonstrated that the automated high-resolution sampling revealed 

fine-scale hydrological responses that were not possible to be detected at coarser resolutions in 

previous studies. This provides new insights on catchment functioning and flow pathways. The 

hydrograph separation technique clearly showed that long-term, high-resolution isotopic analyses 

are crucial for capturing the unusual but informative events to more precisely constrain the event 

and pre-event water contribution. It furthered stressed the importance of sampling multiple sources 

that have been overlooked so far. The sampling of groundwater along the stream water underlined 

the vital role of shallow subsurface flow in runoff generation mechanisms. High-resolution isotope 

observations have a great potential for developing and testing of hydrological models and their 

process representation. Typical weekly or monthly monitoring programmes cannot capture the 

short-term dynamics that most closely reflect these hydrological processes. Therefore, 

high-resolution isotope observations coupled with hydroclimatic data could be beneficial in 

calibrating the next generation of hydrological models. Advancing the future research to carry out 

high-resolution sampling over longer periods under different hydroclimatic conditions would help 

to uncover the diversity of hydrological symphonies. 
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The estimation of maximum event water fractions in streamflow based on isotopic hydrograph 

separation provides significant insight into the mechanisms of runoff generation and hydrologic 

response characteristics of a catchment. However, such an estimate is not always possible due to 

the spatiotemporal difficulties in sampling and measuring of stable isotopes of water. Machine 

learning showed a strong promise of success for predicting the maximum event water fractions at 

times when no stable isotopes of water are available (Chapter 3). It used only precipitation, soil 

moisture and air temperature as explanatory data. This is convenient because such variables are 

available for far more catchments than measurements of stable isotopes of water.  

Hand tuning of the machine learning models can be a cumbersome process especially when the 

search space of hyperparameters is large (Wu et al., 2019; Sahu et al., 2020). A key innovation of 

this dissertation is the use of a systematic hyperparameter optimization approaches through 

cross-validation to test different model architectures for developing prediction models. The results 

showed that the optimization of hyperparameters had a great influence on the model performance 

that has been widely neglected in hydrological studies so far. Therefore, it is essential to examine 

the model performance by a large set of hyperparameters for future studies to determine the optimal 

hyperparameters and ensure the prediction ability of the model. Future work could apply the 

proposed ANN and SVM models to other catchments to allow assessing how well the models are 

transferable to catchments with different topography, landuse and climatic conditions. 

Furthermore, the proposed models could be compared to other machine learning models using 

different input scenarios of hydroclimatic data. 

Recently, deep learning has emerged as a revolutionary and versatile tool that is generating new 

and improved capabilities for scientific discovery and modelling. The adoption of deep learning in 

hydrology has so far been gradual, but the field is now ripe for breakthroughs. For the first time in 

the field of isotope hydrology, this dissertation adopted deep learning in isotope hydrology 

(Chapter 4). The proposed LSTM model could successfully predict stable isotopes of stream and 

groundwater sources when using only short-term sequence of measured water temperature, pH and 

electrical conductivity. The LSTM prediction can be utilized to predict and interpolate the 

continuous isotope concentration time series either for data gap filling or in case where no 

continuous data acquisition is feasible. This is very valuable in practice because measurements of 

these tracers as proxies are still much cheaper than stable isotopes of water and can be carried out 

continuously with relatively little maintenance. The strength of LSTM as a deep learning model is 
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that it can synthesize information from multiple sites and situations into a single model. An LSTM 

trained on multiple sites under different landuse and hillslope conditions can learn different patterns 

of isotopic behaviour. The trained LSTM is able to spatially estimate the isotope concentrations for 

multiple sites across the catchment with only simple-to-measure tracers. This leads not only to a 

significant reduction in measurement costs, but also to an increase in spatiotemporal knowledge of 

hydrological processes in the catchment.  

With the increased deployment of LSTM, there is a need to understand the sensitivity of its 

prediction performance to different input features and sequence lengths. The sensitivity analysis 

applied in this dissertation stressed the importance of sensitivity analysis for the model 

performance. Such an analysis could be used to inform about which data should be collected, and  

where data acquisition should be made to effectively optimize the investment in monitoring 

infrastructure. For future research, more data will be collected to improve the prediction 

performance of the LSTM. New input features like groundwater table could be also used to enhance 

the model performance.  

The data-hungry nature of deep learning models is a potential barrier to their application in 

data-scarce catchments. As many catchments of potential applications may lack the data length that 

is available in the SEO where this work has been carried out, the sensitivity of prediction 

performance to the length of the training data warrants further investigation. The use of “pre-trained 

LSTM” is a promising way to reduce the large data-demand for an individual catchment. The 

pre-trained model could be exploited to transfer learning from data-rich to data-scarce catchments 

since hidden layers that have been trained to distill shape information are also effective even when 

ported to data-scarce environments.  

Finally, future research direction also includes the application of LSTM to predict further water 

quality parameters for efficient managing water resources and protecting ecosystems by providing 

an early warning against water quality deterioration. This particularly addresses the measurement 

of variables that are cumbersome to measure or expensive to analyse, such as antibiotics, pesticides, 

or microplastics, among many others.  
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2 High-resolution, in situ monitoring of stable isotopes 

of water revealed insight into hydrological response 

behavior 

This chapter is published in the journal Water as: 

Sahraei, A.1, Kraft, P.1, Windhorst, D.1, & Breuer, L.1,2 (2020). High-resolution, in situ monitoring 

of stable isotopes of water revealed insight into hydrological response behavior. Water, 12(2), 565. 
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Nutrition (iFZ), Justus Liebig University Giessen, 35392 Giessen, Germany 

2Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, 

Senckenbergstrasse 3, 35390 Giessen, Germany 

Abstract 

High temporal resolution (20-min intervals) measurements of stable isotopes from groundwater, 

stream water and precipitation were investigated to understand the hydrological response behavior 

and control of precipitation and antecedent wetness conditions on runoff generation. Data of 20 

precipitation events were collected by a self-sufficient mobile system for in situ measurements over 

four months in the Schwingbach Environmental Observatory (SEO, temperate climate), Germany. 

Isotopic hydrograph separation indicated that more than 79% of the runoff consisted of pre-event 

water. Short response times of maximum event water fractions in stream water and groundwater 

revealed that shallow subsurface flow pathways rapidly delivered water to the stream. Macropore 

and soil pipe networks along relatively flat areas in stream banks were likely relevant pathways for 

the rapid transmission of water. Event water contribution increased with increasing precipitation 

amount. Pre-event water contribution was moderately affected by precipitation, whereas, the 

antecedent wetness conditions were not strong enough to influence pre-event water contribution. 

The response time was controlled by mean precipitation intensity. A two-phase system was 

identified, at which the response times of stream water and groundwater decreased after reaching 

a threshold of mean precipitation intensity of 0.5 mm h−1. Our results suggest that high temporal 

resolution measurements of stable isotopes of multiple water sources combined with hydrometrics 

https://doi.org/10.3390/w12020565
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improve the understanding of the hydrological response behavior and runoff generation 

mechanisms. 

2.1 Introduction 

Understanding the response of runoff components to precipitation and its controlling factors gives 

insight into runoff generation mechanisms. Total runoff responds to incoming precipitation via 

event water or pre-event water, the latter being water stored in the catchment prior to the onset of 

precipitation (Klaus and McDonnell, 2013). The fraction of event and pre-event water in total 

runoff and the timing of its responses may vary depending on the controlling factors such as 

topography, land use, precipitation, and antecedent wetness characteristics. 

The use of stable isotopes of water (δ18O and δ2H) and other conservative tracers in tracer-based 

hydrograph separation techniques enables the differentiation of source components of event and 

pre-event water and provides the opportunity to evaluate its controlling factors (Klaus and 

McDonnell, 2013). Several studies investigated the correlation of event and pre-event water 

contribution with topographical, land use, precipitation, and antecedent wetness characteristics. 

Shanley et al. (2002) noted that event water contribution correlated positively with catchment size 

and open land cover. Šanda et al. (2017) addressed the influence of land use on pre-event water 

contribution. They found that the pre-event water contribution decreased with increasing forest 

cover, particularly due to the retention of water via interception and transpiration losses of soil 

water. Several studies reported a positive correlation between precipitation amount and event water 

contribution (Pellerin et al., 2008; James and Roulet, 2009; Fischer et al., 2017a; von Freyberg et 

al., 2018). In contrast, Renshaw et al. (2003) showed a positive correlation between pre-event water 

contribution and precipitation amount, but only during peak discharge. Generally, wetter 

antecedent conditions result in an increase of pre-event water contribution, as they increase the 

connectivity of contributing areas (Pellerin et al., 2008; James and Roulet, 2009; Muñoz-Villers 

and McDonnell, 2012; Penna et al., 2015; von Freyberg et al., 2018). In contrast to those findings,  

Shanley et al. (2002) described positive correlations between antecedent wetness conditions and 

event water contribution. They hypothesized that infiltration must first fill storage deficits before 

event water can be rapidly transported via lateral flow pathways to stream. Response times (i.e., 

the time lag between the first detection of precipitation and maximum event water fraction) and 

their controlling factors have been only scarcely investigated, without finding a consensus 
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(McGlynn et al., 2004; James and Roulet, 2009). McGlynn et al. (2004) observed that response 

times increased with catchment size, whereas James and Roulet (2009) reported no strong 

correlation of response times with catchment characteristics. The latter work focused on small, 

forested headwater catchments. In such catchments, the canopy could possibly buffer the incoming 

precipitation signal. Another likely explanation is that different response times of groundwater blur 

the land use signal. 

Most of the previous isotope-based studies dealing with the investigation of catchment responses 

used daily to monthly data, at which the fine-scale response behavior of runoff components is 

overlooked. Kirchner et al. (2004) noted that a sampling period longer than the hydrological 

response time of a catchment might lead to a significant loss of information. Only a few studies 

employed high temporal resolution sampling (i.e., sub-daily) of stable isotopes of water (McGlynn 

et al., 2004; James and Roulet, 2009; Fischer et al., 2017a; von Freyberg et al., 2017, 2018). 

However, these studies are limited to sampling a low number of water sources, i.e., mainly stream 

water and precipitation. 

Manual high-resolution, multiple-source sampling is restricted to short durations and might fail in 

the sampling of relevant events due to their erratic and difficult-to-plan nature. Therefore, a few 

groups developed and utilized automatic sampling and analytical systems for in situ monitoring 

recently to overcome these problems (Heinz et al., 2014; von Freyberg et al., 2017; Mahindawansha 

et al., 2018). Such systems allow gaining insight into previously unknown hydrological dynamics. 

Von Freyberg et al. (2017) sampled stable water isotopes of stream water and precipitation every 

30 min to estimate event water fractions of eight precipitation events using hydrograph separation. 

However, their study is limited to sampling two water sources, i.e., stream water and precipitation. 

Heinz et al. (2014) presented the technical setup of an automated sampling system and provided an 

initial proof-of-concept to monitor multiple water sources (surface water and groundwater) in up 

to ten rice paddies of a field trial in the Philippines. Building on this system, Mahindawansha et al. 

(2018) investigated seasonal and crop effects on isotopic compositions of surface water and 

groundwater in these rice paddies. An important, yet poorly known mechanism is the response of 

several water sources in real catchments, including that of shallow groundwater to precipitation. 

Here we report about a newly developed system for high temporal resolution sampling of multiple 

sources, including groundwater, stream water, and precipitation. Previous studies in the 

Schwingbach catchment reported a fast response of the system to precipitation inputs (Orlowski et 
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al., 2014, 2016). They found that shallow groundwater head levels and streamflow responded 

rapidly to precipitation inputs. However, no obvious response was observed by Orlowski et al. 

(2016) in isotopic compositions of stream water and groundwater, potentially due to a rather coarse 

weekly sampling resolution. We, therefore, measured stable isotope composition of water in high 

temporal resolution (20-minutes) and of various sources. Sources included two stream sections, 

three different groundwater sources and precipitation. In order to investigate the hydrological 

response behavior and the role of controlling factors on the runoff generation process, we used a 

new, trailer-based mobile automatic sampling system for high-resolution water quality analysis. In 

particular, we studied the following objectives: 

I. Investigation if the short-term response behavior observed in the previous studies in the 

Schwingbach Environmental Observatory (SEO) is reflected in isotopic signatures of 

stream water and groundwater. 

II. Estimation of event-based contribution of event and pre-event water to total runoff. 

III. Quantification of the event-based response time of maximum event water fraction in stream 

water and groundwater. 

IV. Evaluation of the role of precipitation and antecedent wetness conditions as drivers of event 

and pre-event water contribution and response time. 

2.2 Materials and Methods 

2.2.1 Study area 

The study was conducted in the headwater catchment of the Schwingbach Environmental 

Observatory (SEO) in Hesse, Germany (Figure 2.1a–c). The 1.03 km2 catchment area is covered 

by 76% forests, 15% arable land, and 7% meadows, mainly found along the small perennial 

Schwingbach stream. The elevation ranges from 310 m in the north to 415 m a.s.l. in the south. 

The climate is temperate oceanic (Köppen climate classification), with a mean annual air 

temperature of 10.1 °C and total annual precipitation of 452 mm in the year 2018. Our study took 

place from August 8th to December 9th in 2018, which was an unusually dry and warm year (Vogel 

et al., 2019). Soil types and geology are similar to the neighbouring valley of the Vollnkirchner 

Bach (Orlowski et al., 2014). Cambisols dominate on forests stands, whereas Stagnosols are mainly 

found on arable land. Under the forests, the soil texture is dominated by silt, fine sand and gravel 
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at 0 to 3 m depths, with low clay content between 0.6 and 3 m depths. Soils lay on slightly 

weathered clay shale bedrock. Under meadows and arable land, the soil texture is rich in silt and 

fine sand (0–5 m depths) with small amounts of clay and gravel between 0.8 and 5 m depths. Here, 

soils developed on greywacke and weathered clay shale. 

 

Figure 2.1 (a) Schwingbach Environmental Observatory (SEO), (b) Study area in the Schwingbach 

headwater and (c) Measuring network along the stream reach of the Schwingbach headwater. ST and SF are 

the soil moisture stations at the toeslope and footslope, respectively. 

 

 



Chapter 2 

30 

 

An automatic climate station (AQ5, Campbell Scientific Inc., Shepshed, UK) operated with a 

CR1000 data logger measured precipitation depth and air temperature at 5 min intervals. 

Groundwater (GW) table depth was manually measured biweekly to obtain an estimate of the 

groundwater depth in the unconfined aquifer over the year. The mean groundwater table depth (i.e., 

mean of biweekly measurements) from November 2017 to September 2018 was 0.44 ± 0.33 m 

(mean ± standard deviation), 0.48 ± 0.33 m and 1.41 ± 0.48 m for GW1, GW2, and GW3, 

respectively. A stream gauge at SW2 (RBC flume, Eijkelkamp Agrisearch Equipment, Giesbeek, 

Netherlands) equipped with a pressure transducer (Micro-Diver, Eigenbrodt Inc., Königsmoor, 

Germany) automatically recorded water levels at 10 min intervals. The transducer readings were 

calibrated against manual measurements and continuous discharge was derived through the 

calibrated stage-discharge relationship of the RBC flume provided by the manufacturer 

(Eijkelkamp RBC flumes, 2013). The discharge was converted to mm h−1 (i.e., divided by the area 

of the catchment) to allow for a direct comparison with precipitation in the same unit. Two remote 

telemetry loggers (A753, Adcon, Klosterneuburg, Austria), one installed at the toeslope (ST) and 

one at the footslope (SF), were equipped with sensors (ECH2O 5TE, METER Environment, 

Pullman, USA) to measure soil moisture at 5, 30, and 70 cm soil depths, representing the densely 

rooted organic horizon, the topsoil, and subsoil, at 5 min intervals. 

2.2.2 Water Analysis Trailer for Environmental Research (WATER) 

A custom-made, automated mobile laboratory, the Water Analysis Trailer for Environmental 

Research (WATER), was utilized to automatically sample multiple water sources (e.g., stream 

water, groundwater, and precipitation) and analyse the stable isotopes of water (δ18O and δ2H) and 

water chemistry in situ (Figure 2.2). Constructing the trailer was based on previous experiences 

made by Heinz et al. (2014) and Mahindawansha et al. (2018). Figure 2.3 illustrates the technical 

set up of the WATER. The automatic sampling system allows us to sample up to 12 water sources. 

A peristaltic pump (M1500, Verder GmbH, Haan, Germany) draws water from the sources and 

delivers it through a 5 µm polyester membrane (polyester filter, Pieper Filter GmbH, Germany) to 

a 1000 mL sample reservoir, which is connected to a continuous water sampler (CWS) (A0217, 

Picarro Inc., Santa Clara, USA), coupled to a wavelength-scanned cavity ring-down spectrometer 

(WS-CRDS) (L2130-i, Picarro Inc., Santa Clara, USA) to analyze the water’s isotopic composition. 

The deployment of the Picarro A0217 and L2130-i requires the supply of at least two standard 

water samples with a known isotopic signature. We used heavy (+3.13‰ for δ18O and −1.52‰ for 
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δ2H) and light (−22.43‰ for δ18O and −164.60‰ for δ2H) standard water samples, which were 

calibrated via a WS-CRDS (precision of 0.02‰ for δ18O and 0.18‰ for δ2H) at the laboratory of 

the Institute for Landscape Ecology and Resources Management at the Justus Liebig University 

Giessen, Germany. To prevent the isotope analyser from falling dry between switching the samples, 

a backup reservoir is installed. A 10 L bucket filled with deionized water flushes the system 

between the sampling cycles. A 5 L bucket filled by precipitation falling on a funnel-type 3.3 m2 

tarp is connected to the WATER for automatic sampling (Figure 2.2). The bucket is equipped with 

a sensor (tank electrode, Votronic GmbH, Lauterbach, Germany) to monitor the amount of the 

collected precipitation inside the bucket. 

The WS-CRDS measured the isotopic composition of water vapour every 1.7 s. Due to the 

carry-over effects within the CWS, it took approximately 10 min until a steady isotope signal was 

reached. We averaged the last 3 min of the following 10 min sampling period to report the final 

isotope values. The overall sampling interval per sample summed up to 20 min. To minimize the 

carry-over effect, the sample reservoir was automatically rinsed with 60 mL sample water, emptied 

and again filled with 60 mL water to be analysed. Results are reported in (‰) for δ18O and δ2H 

relative to the Vienna Standard Mean Ocean Water (VSMOW). 

Further analytical instruments of the WATER (Figure 2.3) measure water quality parameters such 

as electrical conductivity, pH, and water temperature (via multi-parameter water quality probe, 

YSI600R, YSI Inc., Yellow Springs, USA) and NO3, DOC, TOC, and total suspended sediments 

via UV spectrometry (ProPS, Trios GmbH, Rastede, Germany). Results from water quality analysis 

are not reported in this study. 

An in-house developed software written in Python runs on an industry PC (NISE 101, SEPCTRA, 

Reutlingen, Germany) with the Ubuntu Mate operation system to control the sampling scheme and 

the delivery system, as well as to store results and communicate with the WATER. The 

measurement processes are controlled by a programmable logic controller (WAGO-I/O-SYSTEM 

750, WAGO Kontakttechnik GmbH, Minden, Germany). Raw data is stored every 5 min and 

automatically uploaded to a web-database for visualization, post-processing, and storage. Alarm 

messages (e.g., a low fuel gauge or system failure) are automatically triggered by SMS. A diesel 

backup-generator (with 5 kW peak), a Lithium-ion buffer battery (7.2 kWh), and two solar panels 

(with 1.7 kW peak) (Figure 2.2) supply the AC and DC power of the system and allow the system 

to support a continuous load of approximately 400 W. 
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Figure 2.2 Water Analysis Trailer for Environmental Research (WATER) (right), two solar panels 

supporting power supply (left) and the funnel-type tarp for collection of precipitation (further back in the 

middle) installed in the Schwingbach Environmental Observatory (SEO), Hesse (Germany). 

 

Figure 2.3 Schematic of the sampling board and analytical instrumentation inside the Water Analysis 

Trailer for Environmental Research (WATER). CWS = continuous water sampler, WS-CRDS = 

wavelength-scanned cavity ring-down spectrometer. 
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2.2.3 Sampling schedule 

In the setup of this project, the WATER sampled automatically from two stream water sources 

(SW1 and SW2), three groundwater sources (GW1, GW2 and GW3), and one precipitation bucket 

(Figures 2.1c and 2.2). SW1 was sampled approximately 145 m upstream of the WATER at the 

edge of arable land and water from SW2 was taken next to the location of the WATER. Shallow 

groundwater was sampled from piezometers made from perforated PVC tubes sealed with 

bentonite clay at the upper part of the tube to prevent contamination by surface water. Piezometers 

of GW1 and GW2 were located at the toeslope on arable land and the meadow, respectively. The 

piezometer of GW3 was installed at the footslope at the edge of the forest. 

Given the sampling resolution of 20 min, the setup of the system allowed the measurement of 72 

samples per day. The sampling cycle was scheduled to sample n = 16 (with n the number of 

samples) for each stream water source, n = 8 for each groundwater source and n = 8 for each 

standard water sample in case of no precipitation event. In the case of a precipitation event, the 

sampler automatically took a precipitation sample whenever the sample volume exceeded 1 L (0.3 

mm) inside the precipitation bucket. After sampling, the precipitation bucket was emptied to avoid 

carry-over effects, and the sampler was blocked for 60 min, allowing us to take samples from other 

sources. 

2.2.4 Event definition and characteristics 

We analysed autocorrelation for time series of precipitation depth measured over the sampling 

period to define independent precipitation events (Wenzel and Voorhees, 1981; Gaál et al., 2014). 

A plot of the correlation coefficient with respect to the lag time indicated the minimum lag time, 

for which the autocorrelation coefficient was close to zero. This lag time defined the minimum 

inter-event time, at which the precipitation events were considered independent. The 

autocorrelation plot for the precipitation depth at 5 min intervals (Figure 2.4) shows that correlation 

coefficients begin to level off close to zero at 5.7 h. We, therefore, considered precipitation events 

as independent if the inter-event time exceeded 6 h. In total, 20 events were selected, at which the 

application of hydrograph separation was possible due to the availability of isotope concentration 

data of precipitation, stream water, and groundwater. The beginning of an event was defined as the 

onset of precipitation and the end of an event as the time when 
𝑄𝑒𝑖

𝑄𝑒𝑚𝑎𝑥

 ≤ 0.05 (i.e., when the fraction 
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of event water relative to its maximum value reached 5% or less) or when a new event began, 

whichever happened first. 

 

Figure 2.4 Autocorrelation plot for the precipitation depth at 5 min intervals. The precipitation events were 

considered independent if the inter-event time exceeded 6 h. 

We calculated a number of hydrometrics to describe precipitation, antecedent wetness, and 

response characteristics of each event (Table 2.1). A Spearman rank correlation () analysis was 

used to assess the control of precipitation and antecedent wetness hydrometrics on response 

characteristics. The correlation values were considered statistically significant if p < 0.05. We 

described strength of the correlation strong if  ≥ 0.7, moderate if 0.4 < < 0.7, and weak if  ≤ 0.4. 
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Table 2.1 Hydrometrics to describe precipitation, antecedent wetness, discharge characteristics, maximum 

event water fraction, and response time for each event. 

Metric Description Unit 

Precipitation    

𝑃 Total precipitation per event mm 

𝑇 Precipitation duration h 

𝑃𝑖𝑛𝑡 Mean precipitation intensity (
𝑃

𝑇
) mm h−1 

Antecedent 

Wetness  
  

𝑄𝑖𝑛𝑖 
Initial discharge: 1 h averaged discharge before onset of 

precipitation 
mm h−1 

𝑆𝑇5𝑖𝑛𝑖, 𝑆𝑇30𝑖𝑛𝑖, 

𝑆𝑇70𝑖𝑛𝑖 

Initial soil moisture: 1 h averaged soil moisture before onset 

of precipitation at the toeslope (ST) at 5, 30 and 70 cm soil 

depths  

% 

𝑆𝐹5𝑖𝑛𝑖, 𝑆𝐹30𝑖𝑛𝑖, 

𝑆𝐹70𝑖𝑛𝑖 

Initial soil moisture: 1 h averaged soil moisture before onset 

of precipitation at the footslope (SF) at 5, 30 and 70 cm soil 

depths  

% 

Discharge   

𝑄𝑡𝑜𝑡𝑎𝑙 Total discharge volume per event mm 

𝑄𝑒 Total event water volume  mm 

𝑄𝑝𝑒 Total pre-event water volume  mm 

𝑄𝑡𝑜𝑡𝑎𝑙

𝑃
 Runoff coefficient % 

𝑄𝑒

𝑄𝑡𝑜𝑡𝑎𝑙
 Event water fraction in total runoff % 

𝑄𝑝𝑒

𝑄𝑡𝑜𝑡𝑎𝑙
 Pre-event water fraction in total runoff % 

𝐹𝐸𝑚𝑎𝑥
 Maximum event water fraction % 

𝑇𝐹𝐸𝑚𝑎𝑥
 

Response time: time lag between the first detection of 

precipitation and the maximum event water fraction 
h 
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2.2.5 Response characteristics 

A two-component hydrograph separation (Equation (2.1)) was applied to quantify event-water 

fractions 𝐹𝐸 in stream water and groundwater sources using isotopic composition of stream water, 

groundwater, and precipitation: 

𝐹𝐸 =
𝐶𝑆𝑊/𝐺𝑊 − 𝐶𝑝𝑒

𝐶𝑒 − 𝐶𝑝𝑒
 (2.1) 

𝐶𝑆𝑊/𝐺𝑊, 𝐶𝑒 and 𝐶𝑝𝑒 are the isotopic concentrations in the sampling sources (i.e., stream water SW 

and groundwater GW), event water (e) (i.e., precipitation) and pre-event (pe) water of sampling 

sources, respectively. 𝐶𝑝𝑒 was calculated as the average of the last five samples before the onset of 

precipitation. 𝐶𝑒 is the incremental weighted mean of precipitation samples (Mcdonnell et al., 

1990). The maximum event water fractions 𝐹𝐸𝑚𝑎𝑥
 in stream water and groundwater were derived 

for each event at the time steps that resulted from the sampling schedule. The uncertainty of the 

event water fractions 𝑊𝐹𝐸
  was quantified according to the Gaussian error propagation technique 

(Genereux, 1998) (Equation (2.2)): 

𝑊𝐹𝐸
= {[

𝐶𝑒 − 𝐶𝑆𝑊/𝐺𝑊

(𝐶𝑒 − 𝐶𝑝𝑒)
2 𝑊𝐶𝑝𝑒

]

2

+ [
𝐶𝑆𝑊/𝐺𝑊 − 𝐶𝑝𝑒

(𝐶𝑒 − 𝐶𝑝𝑒)
2 𝑊𝐶𝑒

]

2

+ [
−1

(𝐶𝑒 − 𝐶𝑝𝑒)
𝑊𝐶𝑆𝑊/𝐺𝑊

]

2

}

1
2

 

(2.2) 

𝑊𝐶𝑝𝑒
, the uncertainty in pre-event water was estimated using the standard deviation of the last five 

measurements before the onset of precipitation. 𝑊𝐶𝑒
, the uncertainty of the event water is the 

standard deviation of the incremental weighted mean of precipitation. 𝑊𝐶𝑆𝑊/𝐺𝑊
, the uncertainty in 

the sampling sources is the measurement precision of the CWS coupled to the WS-CRDS (0.23‰ 

for δ18O and 0.57‰ for δ2H), which we derived from the standard deviation of measurements 

during the last 3 min of the sampling period of stream water and groundwater sources. The 

uncertainty of event water fractions was higher using δ18O measurements than those of δ2H. 

Therefore, we performed an analysis based on the δ2H values only. 



Chapter 2 

37 

 

We estimated the response time of the maximum event water fraction 𝑇𝐹𝐸𝑚𝑎𝑥
 in stream water and 

groundwater sources for each event. The response time was defined as the time lag between the 

first detection of precipitation and maximum event water fraction. 

Total event water volume 𝑄𝑒 (Equation (2.3)) and total pre-event water volume 𝑄𝑝𝑒 

(Equation (2.4)) of each event were calculated from the event water fraction and discharge at each 

time step i (hourly) as: 

𝑄𝑒 = ∑𝐹𝐸𝑖
× 𝑄𝑖 (2.3) 

𝑄𝑝𝑒 = ∑(𝑄𝑖 − 𝑄𝑒𝑖
) (2.4) 

where 𝐹𝐸𝑖
, 𝑄𝑖 and 𝑄𝑒𝑖

 are the event water fraction in the stream water, the discharge recorded at 

the stream gauging site and the event water volume at time step 𝑖, respectively. In this study, we 

estimated 𝑄𝑒𝑖
 only for SW2 as stream discharge was only recorded at this site. Event water fractions 

𝐹𝐸 were interpolated linearly with respect to time step i. 𝐹𝐸 values were also interpolated linearly 

between the measurement gaps that happened due to system maintenance. Following, the event 

water fraction in total runoff 
𝑄𝑒

𝑄𝑡𝑜𝑡𝑎𝑙
, pre-event water fraction in total runoff 

𝑄𝑝𝑒

𝑄𝑡𝑜𝑡𝑎𝑙
 and the runoff 

coefficient 
𝑄𝑡𝑜𝑡𝑎𝑙

𝑃
 were calculated for each event. 

2.3 Results 

2.3.1 Time series of isotopic and hydrometric observations 

 

The dynamics of precipitation, discharge, soil moisture as well as the δ2H of precipitation, stream 

water, and groundwater sources from August 8th to December 9th in 2018 are shown in Figure 

2.5a–e. Over the sampling period, precipitation ranged between 0.01 and 3.71 mm h−1, and 

discharge between 0.0002 and 0.004 mm h−1 with the highest peak at event #19. The discharge 

time series shows some distinct peaks, whereas diurnal variations in discharge resulted in a rather 

flickering behavior of the hydrograph. The discharge response pattern to precipitation during the 

sampling period partly matches the shallow soil moisture development at the toeslope and 

footslope. Measured soil moisture indicated generally wetter conditions at all three soil depths at 
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the toeslope compared to the one at the footslope. Further, the temporal dynamics at the toeslope 

were also more pronounced, particularly at 5 cm soil depth. At both sites, the lowest soil moistures 

were recorded in late summer at 5 cm soil depth. 

 

Figure 2.5 Time series of (a) precipitation and discharge, (b) soil moisture measured at 5, 30 and 70 cm 

depths at the toeslope and footslope, (c) δ2H in precipitation, (d) δ2H in stream water sources and (e) δ2H in 

groundwater water sources. The vertical grey bars indicate the 20 events. The numbers on top of panel (a) 

represent the event ID. 
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The values of δ2H in precipitation ranged from −10.7‰ to −108.6‰ with high within-storm event 

variation. From the beginning of the sampling period until early November, the values of δ2H in 

precipitation were heavier than those in stream water and groundwater, whereas they became 

significantly lighter over the remaining sampling period. Isotopic concentrations in stream water 

and groundwater (i.e., 𝐶𝑆𝑊/𝐺𝑊) as well as in precipitation (i.e., 𝐶𝑒) were heavier than those in pre-

event water (i.e., 𝐶𝑝𝑒) until event 15, whereas they became lighter thereafter. Over the entire 

sampling period, stream water and groundwater isotopes were almost stable. The mean values of 

δ2H for the stream sampling positions SW1 and SW2 were −63.3 ± 2.1‰ (mean ± standard 

deviation) and −63.2 ± 1.7‰, respectively. On average, GW1 (−61.5 ± 1.2‰) and GW2 (−61.8 ± 

1.3‰) at the toeslope depicted slightly heavier mean δ2H values compared to the GW3 at the 

footslope (−63.3 ± 1.2‰). Distinct responses to precipitation were observed in stream water as 

well as groundwater during events #10, #17, and #19. However, different response behaviours were 

found during events #4 and #7, at which stream water isotopes showed clear responses to 

precipitation, whereas a slight reaction could be observed in the groundwater isotopes. 

2.3.2 Hydrometrics 

Hydrometrics of precipitation, antecedent wetness, and discharge characteristics, as well as 

maximum event water fraction, its uncertainty and response time of stream water and groundwater 

sources, were calculated for each of the 20 events (Tables S 2.1-2.3 in the Supplementary 

Materials). Figure 2.6a–f shows the variation of the total precipitation, mean precipitation intensity, 

initial soil moisture in shallower layers (i.e., 5 and 30 cm) at the toeslope and footslope, runoff 

coefficient, and event and pre-event water fraction in the total runoff for the 20 events. Total 

precipitation 𝑃 ranged between 0.3 and 19.6 mm (3.2 ± 5.2 mm, mean ± standard deviation). The 

largest total precipitation was observed at event #19 followed by event #7 (Figure 2.6a). Mean 

precipitation intensity 𝑃𝑖𝑛𝑡 ranged between 0.1 and 6.1 mm h−1 (1.4 ± 1.9 mm h−1). Larger 𝑃𝑖𝑛𝑡 was 

observed among the first nine events, with the largest value at event #1, followed by event #5 and 

#9 (Figure 2.6b). 

Initial soil moisture at the toeslope position showed an increasing trend over the sampling events 

at both, 5 and 30 cm soil depths (Figure 2.6c). 𝑆𝑇5𝑖𝑛𝑖 values were lower than those in 𝑆𝑇30𝑖𝑛𝑖 until 

event #7, and subsequently reached slightly higher values over the last events. By contrast, the 

initial soil moisture at the footslope was quite stable with a slight decrease over the sampling events 
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at 30 cm depth, whereas an increasing trend with variation in between was observed at 5 cm depth 

(Figure 2.6d). 

 

Figure 2.6 (a) Total precipitation per event 𝑷, (b) mean rainfall intensity 𝑷𝒊𝒏𝒕, (c) initial soil moisture at the 

toeslope 𝑺𝑻 in 5 and 30 cm depths, (d) initial soil moisture at the footslope 𝑺𝑭 in 5 and 30 cm depths, (e) 

runoff coefficient 
𝑸𝒕𝒐𝒕𝒂𝒍

𝑷
 and (f) event water fraction 

𝑸𝒆

𝑸𝒕𝒐𝒕𝒂𝒍
 and pre-event water fraction 

𝑸𝒑𝒆

𝑸𝒕𝒐𝒕𝒂𝒍
 of the 20 

precipitation events. 
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The runoff coefficient was relatively low, less than 2% for most of the events and with a mean of 

2.2 ± 3.5% (Figure 2.6e). The highest runoff coefficient amounted to 14.8% at event #1, with a 

total precipitation input of only 1 mm but with a relatively high 𝑆𝐹5𝑖𝑛𝑖 of around 13%. The overall 

trend of runoff coefficient across the events showed that the events with relatively higher total 

precipitation did not necessarily result in higher rainfall-runoff ratios. Very low runoff coefficients 

(<1%) were observed even at events with the highest total precipitation (i.e., event #7 and #19), 

and distinctly different values for 𝑆𝐹5𝑖𝑛𝑖, 𝑆𝑇5𝑖𝑛𝑖, and 𝑆𝑇30𝑖𝑛𝑖. 

The event water fraction in total runoff was also relatively low for the 20 events and varied from 

1.4 to a maximum of 20.8% (7.6 ± 5.6%). Only three events exceeded a value of 15%, and on 

average, 92.4 ± 5.6% of the discharge contained pre-event water (Figure 2.6f). Lowest event water 

fractions (i.e., less than 3%) were observed for events with low total precipitation inputs (less than 

1 mm), whereas highest event water fractions (i.e., more than 15%) were observed for events with 

the total precipitation higher than 1.5 mm. 

Figure 2.7a,b shows the maximum event water fraction 𝐹𝐸𝑚𝑎𝑥
 in stream water and groundwater 

across the 20 events. 𝐹𝐸𝑚𝑎𝑥
 ranged from 3.3 to 74.5% (20.6 ± 17.2%) and from 3.1 to 86.3% (21.4 

± 18.95%) in SW1 and SW2, respectively. Despite a slightly higher 𝐹𝐸𝑚𝑎𝑥
 at SW2 within most of 

the events, the difference between 𝐹𝐸𝑚𝑎𝑥
 of SW1 and SW2 was insignificant for most of the events 

(3.4%, mean absolute difference). The highest 𝐹𝐸𝑚𝑎𝑥
 in the stream water was recorded at event #19 

with the highest total precipitation 𝑃 among all events (19.6 mm). For the remaining events, 𝐹𝐸𝑚𝑎𝑥
 

was less than 50%. Those 𝐹𝐸𝑚𝑎𝑥
 of stream water with higher values than the mean were observed 

at the events with  𝑃 higher than 1.4 mm. At those events, in which 𝐹𝐸𝑚𝑎𝑥
 in groundwater was 

higher than the mean values, 𝐹𝐸𝑚𝑎𝑥
 in the stream water was also higher than the mean values (i.e., 

event #2, #10, #15, #18, and #19; only exception was event #17). The highest 𝐹𝐸𝑚𝑎𝑥
 in GW1 and 

GW2 was observed at event #19, whereas the highest 𝐹𝐸𝑚𝑎𝑥
 in GW3 was quantified for event #15. 

Differences between 𝐹𝐸𝑚𝑎𝑥
 of groundwater sources were marginal within most of the events. 

However, groundwater at the toeslope (GW1 and GW2) reached on average slightly higher 𝐹𝐸𝑚𝑎𝑥
 

than the at the footslope (GW3). 

Relatively large uncertainties of maximum event water fraction of 20% and more existed at events 

#15, #18, #19, and #20 (Figure 2.7a,b) due to the large temporal variation of isotope values in 
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precipitation and concurrent small differences between the isotopic composition of event and pre-

event water. For the remaining events, the uncertainty was on average roughly 6% and 5% for 

stream water and groundwater, respectively. 

The response time of maximum event water fraction 𝑇𝐹𝐸𝑚𝑎𝑥
 ranged from 0.3 h to 24 h and 0.6 h to 

33 h in stream water and groundwater, respectively (Figure 2.7c,d). On average, the event water 

fraction reached its maximum after 6 h in the stream water (i.e., SW1 and SW2). Differences 

between 𝑇𝐹𝐸𝑚𝑎𝑥
 in the two stream water sources were small (1.3 h mean absolute difference), 

except at event #12, #17, and #20, at which the differences were larger than 5 h, 2 h, and 3 h, 

respectively. In comparison, the event water fractions in groundwater at the toeslope (GW1 and 

GW2) and the footslope (GW3) took a little longer to reach their maxima with 7–8 h. The longer 

response times in the stream water (i.e., at event #2, #7, #15, and #19) as well as in the groundwater 

(i.e., at event #2, #17, and #19) were observed at times when 𝐹𝐸𝑚𝑎𝑥
 was above its mean value. 

 

Figure 2.7 (a,b) Maximum event water fraction 𝑭𝑬𝒎𝒂𝒙
 for stream water (SW) and groundwater (GW) 

sources, including the uncertainty of estimations (error bars) and (c,d) response time of maximum event 

water fraction 𝑻𝑭𝑬𝒎𝒂𝒙
 for the same water sources. SW1 was not sampled at event #2 and #3. Boxplots (right 

panels) represent the interquartile range, black bars the median, black squares the mean and the whiskers 

the range of all 20 events. 
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2.3.3 Correlations of hydrometrics 

In order to investigate the role of precipitation and antecedent wetness conditions on discharge 

characteristics, maximum event water fraction and response time, we tested their correlations 

(Table 2.2). Event water contribution increased significantly with the precipitation amount. In turn, 

total event water volume 𝑄𝑒 and event water fraction in total runoff 
𝑄𝑒

𝑄𝑡𝑜𝑡𝑎𝑙
 correlated positively with 

precipitation amount 𝑃, whilst total pre-event water volume 𝑄𝑝𝑒 was strongest related to the initial 

discharge 𝑄𝑖𝑛𝑖. No significant correlation was found for any of the soil moisture characteristics at 

the toeslope and discharge characteristics. By contrast, footslope soil moisture in deeper soil layers 

indicated a significant impact on total pre-event water contribution and the runoff coefficient. 

Maximum event water fraction 𝐹𝐸𝑚𝑎𝑥
 in the stream water increased with the amount and duration 

of precipitation. 𝐹𝐸𝑚𝑎𝑥
 in groundwater was also related to the precipitation amount but with a less 

strong correlation. Particularly noteworthy was the importance of initial soil moisture conditions 

at the toeslope. 

The response times 𝑇𝐹𝐸𝑚𝑎𝑥
 of GW1 and GW3 correlated moderately with total precipitation similar 

to 𝑇𝐹𝐸𝑚𝑎𝑥
 of SW1 and GW3 with precipitation duration and initial soil moisture of 70 cm depth at 

the toeslope (Table 2.2). No other significant correlations were established for any of the 

hydrometrics listed in Table 2.1. Nevertheless, we observed a clear two-state system with respect 

to the mean precipitation intensity 𝑃𝑖𝑛𝑡 (Figure 2.8). In the first state, no relationship could be 

depicted between 𝑇𝐹𝐸𝑚𝑎𝑥
 and 𝑃𝑖𝑛𝑡. After a certain threshold of 𝑃𝑖𝑛𝑡, the system swapped into a 

second state, at which 𝑇𝐹𝐸𝑚𝑎𝑥
 decreased with increasing 𝑃𝑖𝑛𝑡. In order to identify the threshold, we 

calculated the Spearman rank correlation between 𝑇𝐹𝐸𝑚𝑎𝑥
 and 𝑃𝑖𝑛𝑡 by leaving out one event after 

another starting from the event with the lowest 𝑃𝑖𝑛𝑡. The 𝑃𝑖𝑛𝑡 where we found the highest Spearman 

rank correlation coefficient was considered as the threshold. The Spearman rank correlation 

coefficients ranged between −0.99 and −0.88 (p < 0.001) for all water sources. The threshold values 

were 0.47 mm h−1 for SW1, SW2, GW2, and GW3 and 0.44 mm h−1 for GW1 (Figure 2.8). 
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Table 2.2 Spearman rank correlation coefficients () for the relationships of precipitation and antecedent 

wetness characteristics with discharge characteristic, maximum event water fraction and its response time 

(see Table 2.1 for acronyms). Green bolded cells represent statistically significant correlations with p < 0.05. 

 𝑷 𝑻 𝑷𝒊𝒏𝒕 𝑸𝒊𝒏𝒊 𝑺𝑻𝟓𝒊𝒏𝒊 𝑺𝑻𝟑𝟎𝒊𝒏𝒊 𝑺𝑻𝟕𝟎𝒊𝒏𝒊 𝑺𝑭𝟓𝒊𝒏𝒊 𝑺𝑭𝟑𝟎𝒊𝒏𝒊 𝑺𝑭𝟕𝟎𝒊𝒏𝒊 

𝑄𝑡𝑜𝑡𝑎𝑙 0.54 0.10 0.33 0.69 −0.39 −0.30 −0.37 −0.38 0.43 0.44 

𝑄𝑒 0.73 0.29 0.23 0.53 −0.36 −0.25 −0.34 −0.25 0.28 0.33 

𝑄𝑝𝑒 0.48 0.05 0.37 0.74 −0.43 −0.36 −0.44 −0.41 0.46 0.45 

𝑄𝑡𝑜𝑡𝑎𝑙

𝑃
 −0.39 −0.53 0.17 0.49 −0.42 −0.39 −0.32 −0.38 0.59 0.48 

𝑄𝑒

𝑄𝑡𝑜𝑡𝑎𝑙
 0.64 0.41 −0.06 0.05 −0.04 0.02 −0.04 0.04 −0.10 0.00 

𝑄𝑝𝑒

𝑄𝑡𝑜𝑡𝑎𝑙
 −0.64 −0.41 0.06 −0.05 0.04 −0.02 0.04 −0.04 0.10 0.00 

𝐹𝐸𝑚𝑎𝑥
 SW1 0.75 0.58 −0.12 0.25 −0.18 −0.17 −0.10 −0.29 −0.14 0.05 

𝐹𝐸𝑚𝑎𝑥
 SW2 0.75 0.56 −0.06 −0.01 0.03 0.01 0.09 −0.07 −0.21 −0.09 

𝐹𝐸𝑚𝑎𝑥
 GW1 0.46 0.33 −0.20 −0.27 0.47 0.46 0.50 0.26 −0.42 −0.18 

𝐹𝐸𝑚𝑎𝑥
 GW2 0.52 0.44 −0.20 −0.21 0.46 0.48 0.49 0.34 −0.34 −0.07 

𝐹𝐸𝑚𝑎𝑥
 GW3 0.45 0.30 −0.17 −0.28 0.50 0.46 0.45 0.36 −0.43 −0.23 

𝑇𝐹𝐸𝑚𝑎𝑥
 SW1 0.32 0.69 −0.42 −0.27 0.18 0.24 0.51 −0.15 −0.33 −0.11 

𝑇𝐹𝐸𝑚𝑎𝑥
 SW2 0.31 0.34 −0.13 −0.08 0.03 −0.03 0.13 −0.26 −0.23 −0.16 

𝑇𝐹𝐸𝑚𝑎𝑥
 GW1 0.53 0.39 −0.11 0.11 0.03 0.02 0.01 −0.16 0.03 0.08 

𝑇𝐹𝐸𝑚𝑎𝑥
 GW2 0.19 0.43 −0.26 −0.01 0.01 −0.03 −0.15 −0.04 −0.13 0.00 

𝑇𝐹𝐸𝑚𝑎𝑥
 GW3 0.53 0.45 −0.13 −0.37 0.38 0.23 0.15 0.15 −0.38 −0.33 
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Figure 2.8 Response time 𝑻𝑭𝑬𝒎𝒂𝒙
 of stream water and groundwater sources versus mean precipitation 

intensity 𝑷𝒊𝒏𝒕. The dashed line is the threshold, at which the response time decreased with increasing mean 

precipitation intensity. The threshold value was 0.47 mm h−1 for SW1, SW2, GW2, and GW3 and 0.44 mm 

h−1 for GW1. 
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2.4 Discussion 

2.4.1 The Schwingbach is highly responsive to precipitation 

Our findings show that the short-term response behavior observed in the previous studies in the 

SEO (Orlowski et al., 2014, 2016), is reflected in the isotopic signatures of stream water and 

groundwater. The isotopic responses in stream water and groundwater during the precipitation 

events often disclosed a rapid mixing of water in the sampling sources with event water indicating 

that the Schwingbach is a highly responsive catchment to incoming precipitation. The results 

reported that the average response time was 6 h in stream water and 7 h and 8 h for groundwater at 

the toeslope and footslope, respectively. Capturing event-based isotopic variation in stream water 

and groundwater emphasized the advantage of high-resolution sampling of multiple sources, giving 

insight into catchment response and runoff generation mechanisms. Firstly, the automated 

high-resolution sampling revealed the fine-scale hydrological responses of the stream water and 

groundwater, which could not be captured with manual isotope sampling in the previous study 

(Orlowski et al., 2016). Secondly, the high-resolution data constrained the interpretation of event 

water contribution derived from hydrograph separation by the continuous sampling of stream 

water. Thirdly, sampling of groundwater along the stream water, showed that the groundwater 

response times, particularly at the toeslope, were close to the stream water response times. This 

underlines the linkage between stream water and shallow subsurface flow and consequently, the 

vital role of shallow subsurface flow in runoff generation in the Schwingbach. 

2.4.2 Pre-event water dominates runoff generation 

Tracer-based hydrograph separations indicated that more than 79% of runoff consisted of pre-event 

water. Due to the highly permeable soils, the contribution of overland flow was negligible and 

hence precipitation infiltrated to the subsurface and mobilized pre-event water. Similar findings 

were reported in previous studies in other catchments, where pre-event water was also the major 

contributor to streamflow (Buttle, 1994; McGlynn and McDonnell, 2003; Jones et al., 2006; von 

Freyberg et al., 2018). 

The runoff coefficients we found were very low (mean of 2.2%). Low runoff coefficients are 

mainly a result of high soil permeability and dry catchment wetness conditions (Merz and Blöschl, 

2009). The high porosity of the soils in the upper layers of meadows and arable land (i.e., silty 
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sand), as well as the extremely dry conditions in summer 2018, were likely reasons for the low 

runoff coefficients we measured. Other studies also reported low event runoff coefficients of less 

than 2% (Blume et al., 2007; Scherrer et al., 2007). They found that the high porosity of the soil, 

lack of anthropogenic effects such as soil compaction and dry antecedent wetness conditions were 

the main reasons for low runoff coefficients. 

2.4.3 Shallow subsurface flow pathways rapidly deliver water to the 

stream 

The short response times of groundwater and stream water suggests the rapid movement of water 

vertically in the soil profile and in lateral downslope direction through shallow subsurface flow 

pathways. The short response times in the stream water (on average 6 h) as well as in the 

groundwater, particularly at the toeslope with on average 7 h, confirmed the linkage between 

stream water and shallow subsurface flow pathways. This linkage became likely stronger during 

events, at which maximum event water fractions in groundwater were above mean values such as 

event #10 and #19 (Figure 2.7a,b), and in turn, increased the event water fraction in total runoff 

(Figure 2.6f). Other studies also identified shallow subsurface as the dominant contributor to runoff 

generation (Brown et al., 1999; McGlynn and McDonnell, 2003; James and Roulet, 2009; von 

Freyberg et al., 2018). Possible flow pathways leading to fast response times in stream water and 

groundwater can be vertical and lateral macropore flow pathways through unsaturated or partially 

saturated soil matrix (Beven and Germann, 1982; McDonnell, 1990; Weiler and Naef, 2003; Jones, 

2010). During the dry summer of 2018, an extended crack network developed that had the potential 

to act as a drainage system. Water transmission can be very high through this vertically-oriented 

continuous network of macropores, even higher than rainfall intensities (Weiler and Naef, 2003). 

We conclude this to have happened in our system in view of the short response times we found in 

the groundwater. Furthermore, the relatively flat areas at the toeslope and the stream banks likely 

contributed to the rapid transmission of water. These areas have the potential to quickly saturate, 

store water, and rapidly release water to the stream network even during small precipitation events 

(Sidle et al., 2000; Penna et al., 2011). This assumption was supported by the distinct response of 

shallow soil moisture to precipitation events at the toeslope, which was not clearly visible at the 

footslope. 

 



Chapter 2 

48 

 

2.4.4 Variable controls of runoff generation 

Total event water volume and event water fraction in total runoff correlated positively with total 

event precipitation, pointing out that event water contribution increased with the precipitation 

amount (Table 2.2). Our results are consistent with previous studies, which also reported growing 

event water contribution with rising precipitation amounts (Pellerin et al., 2008; James and Roulet, 

2009; Penna et al., 2015; von Freyberg et al., 2018). Higher precipitation amounts led to an increase 

of maximum event water fraction, total event water volume, and event water fraction in total runoff. 

This suggests that the maximum event water fraction can be considered as a qualitative proxy to 

indicate the overall contribution of event water to runoff. The positive correlation of the maximum 

event water fraction in groundwater sources with precipitation amount and initial soil moisture at 

the toeslope underlined that not only the higher precipitation amount led to an increase of event 

water contribution but also that wetter conditions at the toeslope facilitated groundwater recharge 

mechanisms to switch on. 

Total pre-event volume correlated moderately with total precipitation amount (Table 2.2) 

suggesting that increasing precipitation led to the mobilization of pre-event water. Albeit the rising 

total pre-event water volume, the pre-event water fraction in total runoff decreased, indicating the 

gaining importance of event water contribution at the same time. Wetter antecedent conditions 

often lead to an increase of pre-event water contribution (Pellerin et al., 2008; James and Roulet, 

2009; Muñoz-Villers and McDonnell, 2012; Penna et al., 2015; von Freyberg et al., 2018). Despite 

significant correlations of initial discharge and initial soil moisture of deeper layers at the footslope 

with total pre-event volume, we did not observe significant correlations between pre-event water 

fraction in total runoff and antecedent wetness hydrometrics in our system. Moreover, for 

catchments where pre-event water prevails in runoff generation, it is usually expected that 

antecedent wetness conditions show a major influence on the runoff coefficient. Although we 

detected significant correlations of the runoff coefficient with storm duration and antecedent 

wetness conditions in the Schwingbach, correlations were not strong and in the case of soil moisture 

conditions at the toeslope, they were even insignificant. This could be due to the dry and warm 

weather conditions during the study period, which resulted in only a small range of antecedent 

wetness conditions impacting the correlation analysis. Therefore, we conclude that pre-event water 

contribution was only moderately affected by precipitation amount, whereas under extremely dry 
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conditions such as in the year 2018, the antecedent wetness was too low to impact the pre-event 

water contribution. 

With a closer look at the response time variation with respect to the mean precipitation intensity 

(Figure 2.8), we detected a threshold of mean precipitation intensity, at which the response time 

behavior changed. Whereas there was no clear pattern before the threshold, the response times in 

stream water and groundwater decreased with increasing mean precipitation intensity after the 

threshold. This suggests that an increase in the mean precipitation intensity after a certain 

precipitation sum enhanced infiltration and that water rapidly drained causing event water fraction 

to reach its peak faster. Surprisingly, this threshold was very low with only 0.5 mm h−1, from where 

rainfall intensity likely controlled the initiation of macropore flow. It underlines that macropore 

networks governed flow control beyond the threshold. For mean precipitation intensities lower than 

the threshold, the trigger was not strong enough to control the response behavior. 

2.5 Conclusions 

Here we reported on high temporal resolution (20-min intervals) measurements of stable isotopes 

from groundwater, stream water, and precipitation to investigate the response of runoff components 

and the underlying controlling factors of precipitation and antecedent wetness characteristics. The 

analysis focused on 20 precipitation events in the Schwingbach Environmental Observatory (SEO) 

in Germany. 

We conclude that high temporal resolution sampling of multiple sources, especially in systems with 

rapid hydrological responses, has a large potential to gain further insight into the runoff generation 

process. High temporal resolution sampling uncovered the event-based isotopic variation in stream 

water and groundwater and helped to constrain event and pre-event water contribution. The results 

of this investigation stress the importance of shallow subsurface flow contribution to the runoff in 

headwater systems. The sampling of groundwater in different hillslope positions and under 

different land uses increased the spatial resolution and led to better identify the main flow pathways 

during rapid delivery of water to the stream. We suggest that further studies be carried out over 

longer periods and that different land uses and slopes be taken into account in varying weather 

conditions. 
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Supplementary Materials 

Table S 2. 1 Precipitation, antecedent wetness and discharge characteristics for the 20 events. 

ID 

 

 

Event date 

 

 

𝑷 

(mm) 

𝑻 

(h) 

𝑷𝒊𝒏𝒕 

(mm h-1) 

𝑸𝒊𝒏𝒊 

(mm h-1) 

𝑺𝑻𝟓𝒊𝒏𝒊 

(%) 

𝑺𝑻𝟑𝟎𝒊𝒏𝒊 

(%) 

𝑺𝑻𝟕𝟎𝒊𝒏𝒊 

(%) 

𝑺𝑭𝟓𝒊𝒏𝒊 

(%) 

𝑺𝑭𝟑𝟎𝒊𝒏𝒊 

(%) 

𝑺𝑭𝟕𝟎𝒊𝒏𝒊 

(%) 

𝑸𝒕𝒐𝒕𝒂𝒍 

 

(mm) 

𝑸𝒆 

 

(mm) 

𝑸𝒑𝒆 

 

(mm) 

𝑸𝒕𝒐𝒕𝒂𝒍

𝑷
 

(%) 

𝑸𝒆

𝑸𝒕𝒐𝒕𝒂𝒍

 

(%) 

𝑸𝒑𝒆

𝑸𝒕𝒐𝒕𝒂𝒍

 

(%) 

1 9 Aug 1.0 0.2 6.1 0.003 18.2 21.2 39.3 13.3 8.7 21.6 0.151 0.0044 0.146 14.8 3.0 97.0 

2 25 Aug 1.5 3.0 0.5 0.002 12.8 19.0 37.6 6.8 8.7 21.2 0.038 0.0045 0.034 2.5 11.9 88.1 

3 27 Aug 0.3 2.6 0.1 0.002 13.1 19.2 37.8 6.6 8.5 21.1 0.029 0.0004 0.028 9.3 1.4 98.6 

4 29 Aug 2.7 6.1 0.4 0.002 12.7 19.1 37.6 6.6 8.5 20.8 0.110 0.0194 0.091 4.1 17.6 82.4 

5 7 Sep 1.4 0.2 5.5 0.002 12.5 18.5 39.2 6.3 8.5 20.7 0.028 0.0031 0.024 2.0 11.1 88.9 

6 21 Sep 4.2 1.9 2.2 0.002 11.7 17.8 37.2 6.1 8.3 19.7 0.045 0.0016 0.043 1.1 3.7 96.3 

7 22 Sep 17.1 20.3 0.8 0.001 11.7 17.8 37.6 6.0 8.2 19.7 0.067 0.0059 0.061 0.4 8.8 91.2 

8 24 Sep 0.9 0.3 3.4 0.001 20.7 19.1 39.0 12.2 7.9 19.6 0.007 0.0002 0.007 0.8 2.4 97.6 

9 1 Oct 0.8 0.2 4.6 0.001 18.1 19.2 38.9 10.0 8.0 19.7 0.006 0.0001 0.005 0.7 2.4 97.6 

10 2 Oct 1.5 3.7 0.4 0.001 18.0 19.4 39.5 9.5 7.8 19.5 0.008 0.0017 0.006 0.5 20.8 79.2 

11 3 Oct 0.8 5.4 0.2 0.001 20.7 19.5 39.4 9.6 7.6 19.5 0.013 0.0011 0.012 1.6 8.1 91.9 

12 24 Oct 0.9 7.8 0.1 0.001 16.0 20.3 39.8 7.2 7.9 19.9 0.005 0.0001 0.005 0.6 2.2 97.8 

13 25 Oct 0.6 4.9 0.1 0.001 15.9 20.3 40.1 7.3 8.0 19.9 0.009 0.0005 0.008 1.5 5.5 94.5 

14 10 Nov 0.9 0.5 1.9 0.001 22.3 21.0 40.0 7.1 7.9 19.7 0.010 0.0002 0.010 1.1 2.5 97.5 

15 10 Nov 4.2 15.4 0.3 0.001 23.7 21.1 40.3 7.1 7.8 19.7 0.029 0.0014 0.028 0.7 4.9 95.1 

16 24 Nov 1.3 2.4 0.5 0.001 29.2 25.9 39.9 12.8 7.7 19.5 0.012 0.0004 0.012 0.9 3.4 96.6 

17 28 Nov 1.6 3.8 0.4 0.001 29.1 25.9 39.7 12.8 7.8 19.5 0.007 0.0009 0.006 0.5 12.2 87.8 

18 30 Nov 1.3 6.7 0.2 0.001 28.0 26.3 39.9 13.4 7.8 19.9 0.006 0.0006 0.006 0.5 9.2 90.8 

19 1 Dec 19.6 41.8 0.5 0.001 27.9 26.6 39.9 13.8 7.8 19.9 0.070 0.0113 0.059 0.4 16.0 84.0 

20 6 Dec 1.0 4.8 0.2 0.001 28.2 29.1 40.0 17.8 8.2 20.0 0.006 0.0003 0.005 0.5 5.1 94.9 
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Table S 2. 2 Maximum event water fraction 𝑭𝑬𝒎𝒂𝒙
 , uncertainty of maximum event water fraction 𝑾𝑭𝑬

 and response time 𝑻𝑭𝑬𝒎𝒂𝒙
 of stream water and 

groundwater sources derived from δ2H values for the 20 events. 

𝑭𝑬𝒎𝒂𝒙
 ± 𝑾𝑭𝑬

  

(%) 
𝑻𝑭𝑬𝒎𝒂𝒙

 

(h) 

ID SW1 SW2 GW1 GW2 GW3 SW1 SW2 GW1 GW2 GW3 

1 6.2 ± 2.0 4.5 ± 2.2 2.4 ± 1.8 4.1 ± 1.9 5.4 ± 1.8 0.3 1.2 2.3 1.6 0.6 

2 - ± - 30.9 ± 11.6 16.3 ± 13.7 13.7 ± 9.0 10.7 ± 8.0 - 14.1 17.6 19.7 18.7 

3 - ± - 3.1 ± 2.5 2.3 ± 2.2 2.1 ± 1.3 2.4 ± 1.5 - 8.1 6.3 5.8 2.2 

4 40.7 ± 10.9 46.2 ± 9.6 3.3 ± 2.6 10.5 ± 3.5 6.3 ± 1.5 1.3 0.7 9.8 6.2 1.6 

5 23.1 ± 8.9 25.3 ± 8.5 8.4 ± 6.8 8.3 ± 6.7 7.3 ± 5.3 3.0 2.3 3.3 2.6 1.6 

6 15.1 ± 4.4 9.4 ± 4.0 3.5 ± 2.5 2.4 ± 1.2 4.6 ± 3.0 3.5 4.1 4.5 3.8 5.8 

7 36.0 ± 4.5 27.3 ± 3.4 1.8 ± 1.4 3.1 ± 1.5 2.6 ± 1.3 12.4 13.0 8.0 7.1 9.6 

8 8.1 ± 2.0 8.3 ± 2.1 2.3 ± 2.1 3.4 ± 2.2 4.3 ± 2.1 1.0 1.7 2.0 4.4 3.4 

9 3.3 ± 12.8 5.8 ± 8.2 2.0 ± 11.5 2.8 ± 11.4 4.5 ± 8.9 0.9 1.9 2.2 4.6 3.3 

10 33.1 ± 8.6 36.4 ± 9.6 25.1 ± 5.9 20.5 ± 5.9 22.2 ± 4.9 1.7 2.4 3.0 2.1 4.7 

11 16.9 ± 4.1 17.4 ± 3.5 5.3 ± 4.8 4.3 ± 3.3 8.1 ± 2.4 5.4 7.4 6.4 5.8 7.8 

12 3.5 ± 2.5 6.2 ± 1.5 6.3 ± 1.7 5.0 ± 2.7 4.1 ± 2.3 7.4 1.9 2.2 8.0 6.7 

13 11.8 ± 7.9 10.7 ± 9.4 3.1 ± 4.0 4.4 ± 4.0 6.3 ± 3.5 3.9 4.2 6.4 5.8 1.2 

14 10.2 ± 7.0 12.1 ± 1.9 9.8 ± 1.8 5.6 ± 2.1 6.3 ± 2.2 6.5 5.4 4.4 3.8 5.8 

15 32.8 ± 24.5 34.0 ± 25.0 30.3 ± 22.0 28.4 ± 13.9 34.9 ± 19.2 23.0 23.6 8.3 3.8 16.3 

16 10.6 ± 1.4 13.6 ± 1.5 6.6 ± 1.4 7.9 ± 1.4 7.1 ± 1.7 9.8 10.1 9.1 8.4 10.4 

17 14.5 ± 6.4 18.2 ± 7.7 29.8 ± 11.5 21.8 ± 8.5 22.6 ± 9.4 1.6 3.9 16.1 15.5 17.5 

18 22.1 ± 34.3 20.4 ± 28.3 15.3 ± 23.1 16.1 ± 17.7 13.2 ± 25.9 3.2 2.3 1.0 3.8 2.6 

19 74.5 ± 22.6 86.3 ± 27.0 31.9 ± 22.4 35.0 ± 25.9 19.2 ± 17.3 18.6 17.6 23.3 33.0 28.2 

20 7.6 ± 17.5 11.4 ± 25.6 3.8 ± 10.2 5.8 ± 11.9 7.0 ± 14.8 4.3 1.1 3.7 3.1 8.0 
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Table S 2. 3 Maximum event water fraction 𝑭𝑬𝒎𝒂𝒙
 , uncertainty of maximum event water fraction 𝑾𝑭𝑬

 and response time 𝑻𝑭𝑬𝒎𝒂𝒙
 of stream water and 

groundwater sources derived from δ18O values for the 20 events. 

𝑭𝑬𝒎𝒂𝒙
 ± 𝑾𝑭𝑬

  

(%) 
𝑻𝑭𝑬𝒎𝒂𝒙

 

(h) 

ID SW1 SW2 GW1 GW2 GW3 SW1 SW2 GW1 GW2 GW3 

1 6.4 ± 3.9 4.1 ± 4.1 2.6 ± 4.0 4.9 ± 3.8 3.6 ± 3.9 0.3 1.2 2.3 1.6 0.6 

2 - ± - 33.2 ± 18.6 13.1 ± 22.9 10.3 ± 17.8 11.9 ± 16.7 - 14.1 17.6 19.7 18.7 

3 - ± - 5.7 ± 7.8 4.2 ± 8.1 4.8 ± 7.8 3.8 ± 8.0 - 8.1 6.3 5.8 2.2 

4 40.2 ± 22.7 46.9 ± 15.9 3.0 ± 11.7 7.8 ± 11.3 6.6 ± 11.0 1.3 0.7 9.8 6.2 1.6 

5 24.1 ± 19.8 26.7 ± 21.3 8.0 ± 18.0 8.9 ± 17.1 7.8 ± 16.6 3.0 2.3 3.3 2.6 1.6 

6 15.4 ± 10.1 10.3 ± 9.7 5.3 ± 9.0 3.5 ± 9.0 6.1 ± 7.8 3.5 4.1 4.5 3.8 5.8 

7 38.9 ± 6.5 28.3 ± 6.1 1.5 ± 5.2 1.6 ± 4.8 1.6 ± 4.7 12.4 13.0 8.0 7.1 9.6 

8 8.6 ± 6.9 7.7 ± 7.0 3.6 ± 7.8 2.6 ± 7.3 4.1 ± 7.2 1.0 1.7 2.0 4.4 3.4 

9 4.0 ± 26.6 6.9 ± 26.5 3.0 ± 23.7 2.9 ± 20.4 1.6 ± 22.5 0.9 1.9 2.2 4.6 3.3 

10 27.1 ± 10.4 25.5 ± 10.0 26.7 ± 9.2 24.4 ± 10.0 24.1 ± 8.3 1.7 2.4 3.0 2.1 4.7 

11 14.1 ± 7.6 19.8 ± 7.2 8.0 ± 10.2 4.4 ± 11.5 10.9 ± 10.9 5.4 7.4 6.4 5.8 7.8 

12 6.0 ± 6.1 4.5 ± 4.7 4.7 ± 4.8 4.3 ± 6.1 3.8 ± 5.7 7.4 1.9 2.2 8.0 6.7 

13 12.3 ± 12.9 10.0 ± 13.8 6.1 ± 11.9 4.1 ± 12.8 7.9 ± 9.6 3.9 4.2 6.4 5.8 1.2 

14 9.6 ± 9.5 10.4 ± 4.3 10.0 ± 4.3 5.2 ± 4.2 7.0 ± 4.0 6.5 5.4 4.4 3.8 5.8 

15 33.5 ± 36.4 34.3 ± 38.6 33.0 ± 35.1 31.0 ± 15.9 35.5 ± 22.2 23.0 23.6 8.3 3.8 16.3 

16 9.3 ± 3.9 12.0 ± 4.0 5.2 ± 3.9 5.3 ± 4.1 4.0 ± 4.4 9.8 10.1 9.1 8.4 10.4 

17 16.2 ± 7.2 19.9 ± 8.5 31.8 ± 14.7 22.7 ± 9.2 21.5 ± 11.4 1.6 3.9 16.1 15.5 17.5 

18 19.5 ± 45.6 18.4 ± 38.7 13.3 ± 26.4 16.2 ± 25.9 13.1 ± 28.3 3.2 2.3 1.0 3.8 2.6 

19 70.5 ± 25.0 83.6 ± 31.6 31.5 ± 24.6 32.2 ± 27.1 17.5 ± 20.3 18.6 17.6 23.3 33.0 28.2 

20 9.4 ± 20.2 11.3 ± 28.0 4.0 ± 15.0 6.3 ± 15.4 8.0 ± 17.8 4.3 1.1 3.7 3.1 8.0 
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3 Application of machine learning models to predict 

maximum event water fraction in streamflow 
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Abstract 

Estimating the maximum event water fraction, at which the event water contribution to streamflow 

reaches its peak value during a precipitation event, gives insight into runoff generation mechanisms 

and hydrological response characteristics of a catchment. Stable isotopes of water are ideal tracers 

for accurate estimation of maximum event water fractions using isotopic hydrograph separation 

techniques. However, sampling and measuring of stable isotopes of water is laborious, cost 

intensive, and often not conceivable under difficult spatiotemporal conditions. Therefore, there is 

a need for a proper predictive model to predict maximum event water fractions even at times when 

no direct sampling and measurements of stable isotopes of water are available. The behavior of 

maximum event water fraction at the event scale is highly dynamic and its relationships with the 

catchment drivers are complex and nonlinear. In last two decades, machine learning algorithms 

have become increasingly popular in the various branches of hydrology due to their ability to 

represent complex and nonlinear systems without any a priori assumption about the structure of 

the data and knowledge about the underlying physical processes. Despite advantages of machine 

learning, its potential in the field of isotope hydrology has rarely been investigated. Present study 

investigates the applicability of Artificial Neural Network (ANN) and Support Vector Machine 

(SVM) algorithms to predict maximum event water fractions in streamflow using precipitation, 

soil moisture and air temperature as a set of explanatory input features that are more straightforward 

and less expensive to measure compared to stable isotopes of water, in the Schwingbach 

https://doi.org/10.3389/frwa.2021.652100
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Environmental Observatory (SEO), Germany. The influence of hyperparameter configurations on 

the model performance and the comparison of prediction performance between optimized ANN 

and optimized SVM are further investigated in this study. The performances of the models are 

evaluated using mean absolute error (MAE), root mean squared error (RMSE), coefficient of 

determination (R2) and Nash-Sutcliffe Efficiency (NSE). For the ANN, the results showed that an 

appropriate number of hidden nodes and a proper activation function enhanced the model 

performance, whereas changes of the learning rate did not have a major impact on the model 

performance. For the SVM, Polynomial kernel achieved the best performance, whereas Linear 

yielded the weakest performance among the kernel functions. The result showed that maximum 

event water fraction could be successfully predicted using only precipitation, soil moisture and air 

temperature. The optimized ANN showed a satisfactory prediction performance with MAE of 

10.27%, RMSE of 12.91%, R2 of 0.70, and NSE of 0.63. The optimized SVM was superior to that 

of ANN with MAE of 7.89%, RMSE of 9.43%, R2 of 0.83, and NSE of 0.78. SVM could better 

capture the dynamics of maximum event water fractions across the events and the predictions were 

generally closer to the corresponding observed values. ANN tended to underestimate the events 

with high maximum event water fractions and to overestimate the events with low maximum event 

water fractions. Machine learning can prove to be a promising approach to predict variables that 

are not always possible to be estimated due to the lack of routine measurements.  

3.1 Introduction 

Estimating how runoff reacts to precipitation events is fundamental to understand the runoff 

generation mechanisms and hydrological response characteristics of a catchment (Klaus and 

McDonnell, 2013). For this, the total runoff can be partitioned into event and pre-event water 

components during a precipitation event. The event water is referred to the “new” water from 

incoming precipitation and pre-event water is referred to the “old” water stored in the catchment 

prior to the onset of precipitation. Stable isotopes of water (δ18O and δ2H) are ideal tracers of these 

water components, since they are naturally occurring constituents of water, they preserve 

hydrological information and they characterize basin-scale hydrological responses (Stadnyk et al., 

2013). Many studies have utilized stable isotopes of water in hydrograph separation techniques to 

differentiate the event and pre-event water during precipitation events (Kong and Pang, 2010; 

Klaus and McDonnell, 2013). Particularly in responsive catchments, the “maximum event water 
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fraction”, at which the event water contribution to streamflow reaches its peak value during a 

precipitation event, can provide valuable information on the runoff generation mechanisms and 

response behavior for better selection and implementation of water management strategies. The 

maximum event water fraction (or vice versa, the minimum pre-event water fraction) mainly occurs 

at the peak streamflow and hence provides information to what extend the event and pre-event 

water components dominate the runoff during the peak streamflow (Buttle, 1994). This fraction 

can be used as a proxy to indicate overall contribution of event and pre-event water during a 

precipitation event and can be related to hydroclimatic variables such as precipitation, antecedent 

wetness conditions, land use or catchment size (Klaus and McDonnell, 2013; Fischer et al., 2017a). 

Many studies have used the maximum event water fraction to better comprehend runoff generation 

mechanisms and catchment hydrological responses to precipitation events (Sklash et al., 1976; 

Eshleman et al., 1993; Buttle, 1994; Genereux and Hooper, 1998; Brown et al., 1999; Hoeg et al., 

2000; Renshaw et al., 2003; Carey and Quinton, 2005; Brielmann, 2008; Pellerin et al., 2008; Penna 

et al., 2015, 2016; von Freyberg et al., 2017; Fischer et al., 2017a,b; Sahraei et al., 2020). 

The most accurate way to separate event water from pre-event water is to use isotopic hydrograph 

separation techniques (Klaus and McDonnell, 2013). If the two end-members (i.e., streamflow and 

precipitation) have a distinct difference in their isotopic signature, the stormflow hydrograph can 

be separated in their contributions based on a mass balance approach. Unlike the graphical 

techniques, isotopic hydrograph separation is measureable, objective and based on components of 

the water itself, rather than the pressure response in the channel (Klaus and McDonnell, 2013). 

Isotopic hydrograph separation techniques have been widely used in previous studies to accurately 

differentiate event and pre-event water components of flow in a wide range of climate, geology 

and land use conditions (Klaus and McDonnell, 2013). However, estimation of maximum event 

water fractions derived from isotopic hydrograph separation techniques is not always conceivable 

owing to the fact that sampling and measuring of stable isotopes of water is laborious, cost 

intensive, and often not feasible under difficult spatiotemporal conditions. Although the advent of 

laser spectroscopy technology has significantly reduced analytical costs of these isotopes (Lis et 

al., 2008), routine measurements are still far from being common. A proper predictive model based 

on a set of hydroclimatic variables would allow the estimation of maximum event water fractions 

in streamflow even at times when no direct sampling and measurements of stable isotopes of water 

are available.  
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In the last two decades, machine learning algorithms have been widely applied for efficient 

simulations of nonlinear systems and capturing noise complexity in respective datasets. The 

behavior of maximum event water fraction at the event scale is highly dynamic, which is derived 

from interaction of various catchment drivers such as precipitation, antecedent wetness conditions, 

topography, land use and catchment size (Klaus and McDonnell, 2013). The relationships between 

maximum event water fraction and the catchment drivers are complex and nonlinear. It is difficult 

to model these relationships accurately using process-based models. Process-based models are 

often limited by strict assumptions of normality, linearity, boundary conditions and variable 

independence (Tapoglou et al., 2014). One of the main advantages that has increased the 

application of machine learning algorithms is their ability to represent complex and nonlinear 

systems without any a priori assumption about the structure of the data and knowledge about the 

underlying physical processes (Liu and Lu, 2014). Nevertheless, machine learning is not a 

substitute for process-based models that provide valuable insights into the underlying physical 

processes (Windhorst et al., 2014; Kuppel et al., 2018; Zhang et al., 2019). In recent years, machine 

learning algorithms have been widely employed for efficient simulations of high dimensional and 

nonlinear relationships of various hydrological variables in surface and subsurface hydrology. They 

have been employed to predict streamflow (Wu and Chau, 2010; Rasouli et al., 2012; Senthil 

Kumar et al., 2013; He et al., 2014; Shortridge et al., 2016; Abdollahi et al., 2017; Singh et al., 

2018; Yuan et al., 2018; Adnan et al., 2019b; Duan et al., 2020; Adnan et al., 2021b), groundwater 

and lake water level (Yoon et al., 2011; Tapoglou et al., 2014; Li et al., 2016; Sahoo et al., 2017; 

Sattari et al., 2018; Malekzadeh et al., 2019; Sahu et al., 2020; Yaseen et al., 2020; Kardan 

Moghaddam et al., 2021), water quality parameters such as nitrogen, phosphorus and dissolved 

oxygen (Chen et al., 2010; Singh et al., 2011; Liu and Lu, 2014; Kisi and Parmar, 2016; Granata 

et al., 2017; Sajedi-Hosseini et al., 2018; Najah Ahmed et al., 2019; Knoll et al., 2020), soil 

hydraulic conductivity (Agyare et al., 2007; Das et al., 2012; Elbisy, 2015; Sihag, 2018; Araya and 

Ghezzehei, 2019; Adnan et al., 2021a), soil moisture (Gill et al., 2006; Ahmad et al., 2010; 

Coopersmith et al., 2014; Matei et al., 2017; Adeyemi et al., 2018), water temperature in rivers 

(Piotrowski et al., 2015; Zhu et al., 2018, 2019; Qiu et al., 2020; Quan et al., 2020) and many other 

hydrological variables. Comprehensive reviews have been published for the application of machine 

learning algorithms in hydrology and earth system science (Lange and Sippel, 2020; Zounemat-

Kermani et al., 2020). 
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Artificial Neural Network (ANN) is an extremely popular algorithm for the prediction of water 

resources variables (Maier and Dandy, 2000; Maier et al., 2010). ANN is a parallel-distributed 

information processing system, which has been basically inspired by the biological neural network, 

consisting of a myriad of interconnected neurons in the human brain (Haykin, 1994). One of the 

main advantages of ANN models is that they are universal function approximators (Khashei and 

Bijari, 2010). This means that they can automatically approximate a large class of functions with a 

high degree of accuracy. Their power comes from the parallel processing of the information from 

the data. Furthermore, ANN is developed through learning rather than programming. This means 

that no prior specification of fitting function is required in the model building process. Instead, the 

network function is determined by the patterns and characteristics of the data through the learning 

process (Khashei and Bijari, 2010). Another main advantage of ANNs is that they possess an 

inherent generalization ability. This means that they can identify and respond to patterns that are 

similar, but not identical to the ones with which they have been trained (Benardos and Vosniakos, 

2007). Minns and Hall (1996) successfully applied ANNs in earlier years to simulate streamflow 

responses to precipitation inputs. Chen et al. (2010) used an ANN with backpropagation training 

algorithm to forecast concentrations of total nitrogen, total phosphorus and dissolved oxygen in 

response to agricultural non-point source pollution for any month and location in Changle River, 

southeast China. They concluded that ANN is an easy-to-use modelling tool for managers to obtain 

rapid preliminary identification of spatiotemporal water quality variations in response to natural 

and artificial modifications of an agricultural drainage river. Wu and Chau (2010) compared the 

performance of ANN with that of Auto-Regressive Moving Average (ARMA) and 

K-Nearest-Neighbors (KNN) for predication of monthly streamflow. The result revealed that ANN 

outperformed the two other models. Coopersmith et al. (2014) investigated the application of ANN, 

classification trees and KNN in order to simulate the soil drying and wetting process at a site located 

in Urbana, Illinois, the USA. They reported that reasonably accurate predictions of soil conditions 

are possible with only precipitation and potential evaporation data using ANN model. Tapoglou et 

al. (2014) tested the performance of an ANN model using cross-validation technique to predict 

dynamic of groundwater level in Bavaria, Germany. They concluded that ANN can be successfully 

employed in aquifers where geological characteristics are obscure, but variety of other, easily 

accessible data, such as meteorological data can be easily found. Piotrowski et al. (2015) examined 

different types of ANNs such as Multilayer Perceptron (MLP), product-units, Adaptive Neuro 

Fuzzy Inference System (ANFIS) and wavelet neural networks to predict water temperature in 
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rivers based on various meteorological and hydrological variables. The result showed that simple 

MLP neural networks were in most cases not outperformed by more complex and advanced 

models. Sihag (2018) successfully applied ANN to simulate unsaturated hydraulic conductivity. 

Yuan et al. (2018) utilized the long short-term memory (LSTM) neural network for monthly 

streamflow prediction in comparison with backpropagation and Radial Basis Neural Network 

(RBNN). They found that the LSTM neural network performed better than the other ANN models. 

Sahu et al. (2020) analysed the accuracy and variability of groundwater level predictions obtained 

from a MLP model with optimized hyperparameters for different amounts and types of available 

training data. Yaseen et al. (2020) developed a MLP with Whale optimization algorithm for Lake 

water level forecasting. The result indicated that the proposed model was superior to other 

comparable models such as Cascade-Correlation Neural Network Model (CCNNM), Self-

Organizing Map (SOM), Decision Tree Regression (DTR) and Random Forest Regression (RFR). 

Comprehensive reviews have been published for the application of ANN (ASCE Task Committee 

on Application of Artificial Neural Networks in Hydrology, 2000; Maier and Dandy, 2000; 

Dawson and Wilby, 2001; Maier et al., 2010) in the field of hydrology. 

With increased ANN model research, the limitations of ANN have been highlighted, such as local 

optimal solutions and gradient disappearance, which limit the application of the model (Yang et 

al., 2017; Zhang et al., 2018a). Therefore, SVMs were introduced (Cortes and Vapnik, 1995) as a 

relatively new structure in the field of machine learning. The main advantage of SVM is that it is 

based on the structural risk minimization principle that aims to minimize an upper bound to the 

generalization error instead of the training error, from which SVM is able to achieve good 

generalization capability (Liu and Lu, 2014). Furthermore, for the implementation of SVM, a 

convex quadratic constrained optimization problem must be solved so that its solution is always 

unique and globally optimal (Schölkopf et al., 2002). Another main advantage of SVM is that it 

automatically identifies and incorporates support vectors during the training process and prevents 

the influence of the non-support vectors over the model. This causes the model to cope well with 

noisy conditions (Han et al., 2007). Lin et al. (2006) investigated the potential of SVM in 

comparison with ANN and ARMA models to predict streamflow. They found that prediction 

performance of SVM was superior to that of ANN and ARMA models. Ahmad et al. (2010) 

explored application of SVM to simulate soil moisture in the Lower Colorado River Basin, the 

USA. Results from the SVM were compared with the estimates obtained from ANN and 
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Multivariate Linear Regression model (MLR); and showed that SVM model performed better for 

soil moisture estimation than ANN and MLR models. Behzad et al. (2010) optimized SVM using 

cross-validation technique and compared its performance to that of ANN in order to predict 

transient groundwater levels in a complex groundwater system under variable pumping and 

weather conditions. It was found that even though modelling performance for both approaches was 

generally comparable, SVM outperformed ANN particularly for longer prediction horizons when 

fewer data events were available for model development. They concluded that SVM has the 

potential to be a useful and practical tool for cases where less measured data are available for future 

prediction. Yoon et al. (2011) successfully applied SVM to forecast groundwater level fluctuations 

at a coastal aquifer in Korea. Das et al. (2012) examined the application of SVM and ANN for 

prediction of field hydraulic conductivity of clay liners. The reported that the developed SVM 

model was more efficient compared with the ANN model. Jain (2012) found that SVM is also 

suitable to model the relationship between the river stage, discharge, and sediment concentration. 

Liu and Lu (2014) compared the optimized SVM with optimized ANN for forecasting total 

nitrogen and total phosphorus concentrations for any location of the river polluted by agricultural 

pollution in eastern China. The results revealed that even for the small sample size, SVM model 

still achieves good prediction performance. He et al. (2014) investigated the potential of ANN, 

ANFIS and SVM models to forecast river flow in the semiarid mountain region, northwestern 

China. A detailed comparison of the overall performance indicated that the SVM performed better 

than ANN and ANFIS in river flow forecasting. The results also suggest that ANN, ANFIS and 

SVM method can be successfully applied to establish river flow with complicated topography 

forecasting models in the semiarid mountain regions. Mohammadpour et al. (2015) employed 

SVM, ANN and RBNN to predict the water quality index. The research highlights that the SVM 

and ANN can be successfully applied for the prediction of water quality in a free surface 

constructed wetland environment. Adnan et al. (2019a) compared the prediction accuracy of 

Optimally Pruned Extreme Learning Machine (OP-ELM), Least Square Support Vector Machine 

(LSSVM), Multivariate Adaptive Regression Splines (MARS) and M5 model Tree (M5Tree) in 

modelling monthly streamflow using precipitation and temperature inputs. The test results showed 

that the LSSVM and MARS-based models provide more accurate prediction results compared to 

OP-ELM and M5Tree models. Malik et al. (2020) optimized SVM by six meta-heuristic algorithms 

to predict daily streamflow in Naula watershed, India. They reported that SVM optimized by Harris 

Hawks optimization algorithm showed superior performance to the other optimized SVM models. 
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Quan et al. (2020) proposed SVM for predicting water temperature in a reservoir in western China. 

They found that the prediction performance of optimized SVM was superior to that of ANN model. 

Comprehensive reviews have been published for the application of SVM (Raghavendra and Deka, 

2014) in the field of hydrology.  

So far, the potential of machine learning in the field of isotope hydrology has rarely been explored. 

Cerar et al. (2018) compared the performance of MLP with that of ordinary kriging, simple and 

multiple linear regression to predict isotope composition of oxygen (δ18O) in groundwater in 

Slovenia. Based on validation data sets, the MLP model proved to be the most suitable method for 

predicting δ18O in the groundwater. However, they did not optimize the employed MLP model to 

enhance the prediction performance. Most of the machine learning algorithms have several settings 

that govern the entire training process (Goodfellow et al., 2016). These settings are called 

“hyperparameters”. The hyperparameters are external to the model that are not learned from the 

data and must be set prior to the training process (Shahinfar and Kahn, 2018; Géron, 2019). The 

performance and computational complexity of ANN and SVM models are heavily dependent on 

configuration of their hyperparameters (Smithson et al., 2016; Zhang et al., 2018a). Hence, it is 

necessary to optimize the hyperparameters in order to enhance the model performance. However, 

investigations of different hyperparameters and comparison of their influence on the model 

performance are rarely reported in the field of hydrology. 

To the best of our knowledge, there is no study that applies machine learning algorithms for 

prediction of maximum event water fractions at the event scale. The novelty of this research is: (1) 

to investigate for the first time the applicability of two widely used machine learning algorithms, 

namely ANN and SVM, to predict maximum event water fractions in streamflow on independent 

precipitation events using precipitation, soil moisture and air temperature as a set of explanatory 

input features that are more straightforward and less expensive to measure compared to stable 

isotopes of water; (2) to summarize the influence of hyperparameter configurations on model 

performance; and (3) to compare the prediction performance of optimized ANN with optimized 

SVM. 
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3.2 Materials and Methods 

3.2.1 Study area and data set 

The study area is located in the headwater catchment (Area = 1.03 km2) of the Schwingbach 

Environmental Observatory (SEO) (50°28'40"N, 8°32'40"E) in Hesse, Germany (Figure 3.1). The 

elevation ranges from 310 m in the north to 415 m a.s.l. in the south. The climate is classified as 

temperate oceanic, with a mean annual air temperature of 9.6°C and mean annual precipitation of 

618 mm obtained from the German Weather Service (Deutscher Wetterdienst, Giessen-Wettenberg 

station, period 1969-2019). The catchment area is dominated by 76% of forest that is mainly located 

in east and south, 15% of arable land in the north and west and 7% of meadows along the stream. 

The soil is classified as Cambisol mainly covered by forest and Stagnosols under arable land. The 

soil texture is dominated by silt and fine sand with low clay content. For more details refer to 

Orlowski et al. (2016). 

 

Figure 3.1 Location of the Schwingbach Environmental Observatory (SEO) in Hesse, Germany (red square, 

right panel) and a map of the study area in the headwater catchment of the SEO including the measuring 

network. 



Chapter 3 

62 

 

Precipitation depth and air temperature were recorded at 5 min intervals with an automated climate 

station (AQ5, Campbell Scientific Inc., Shepshed, UK) operated with a CR1000 data logger. Soil 

moisture was measured at 5, 30 and 70 cm depths at the toeslope at 5 min intervals with a remote 

telemetry logger (A753, Adcon, Klosterneuburg, Austria) equipped with capacitance sensors 

(ECH2O 5TE, METER Environment, Pullman, USA). Stream water at the outlet of the catchment 

and precipitation were automatically sampled for stable isotopes of water in situ using an automated 

mobile laboratory, the Water Analysis Trailer for Environmental Research (WATER), from August 

8th until December 9th in 2018 and from April 12th until October 10th in 2019. If no precipitation 

occurred, stream water was sampled approximately every 90 min. Precipitation was automatically 

sampled if its depth exceeded 0.3 mm. It should be noticed that the SEO is not a snow-driven 

catchment. The precipitation events were all in form of rainfall with no snow included over the 

sampling period. After sampling, the precipitation sampler was blocked for 60 min. Isotopic 

composition of stream water and precipitation were measured using a continuous water sampler 

(CWS) (A0217, Picarro Inc., Santa Clara, USA), coupled to a wavelength-scanned cavity ring-

down spectrometer (WS-CRDS) (L2130-i, Picarro Inc., Santa Clara, USA) inside the mobile 

laboratory. For detailed description of the WATER and the sampling procedures see Sahraei et al. 

(2020). The SEO was chosen in this study because of its responsive characteristic to precipitation 

inputs as well as the available extensive hydrological knowledge and data on the catchment (Lauer 

et al., 2013; Orlowski et al., 2014, 2016; Aubert et al., 2016; Sahraei et al., 2020). The runoff 

generation processes of the Schwingbach are characterized by a rapid mixing of streamflow with 

event water through shallow subsurface flow pathways. The high-resolution sampling of isotope 

concentrations and hydroclimatic data employed in this study allowed the detection of fine-scale, 

short-term responses and mixing processes, which in turn provided the opportunity to capture a 

wide range of maximum event water fractions under different flow regimes and hydroclimatic 

conditions. The mean, standard deviation, Kurtosis and Skewness of the maximum event water 

fraction data are 32.4%, 24.2%, -0.4 and 0.8, respectively. These statistical values imply that the 

maximum event water fractions are highly dynamic in the SEO, which in turn provides the 

opportunity to test the capability and effectiveness of the ANN and SVM models for the prediction 

of maximum event water fractions at the event scale. 

In this work, the precipitation events were defined as independent if the inter-event time exceeded 

6 h, similar to the separation made by Sahraei et al. (2020). The dry period between two wet periods 
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is known as the inter-event time, and if the dry period is equal to or longer than the desired inter-

event time, the two wet periods are considered as two independent events (Balistrocchi and Bacchi, 

2011; Chin et al., 2016). In total, 40 events were selected over the sampling period (Figure 3.2), 

for which the application of isotopic hydrograph separation was possible. The isotopic hydrograph 

separation was not possible for other events because either the isotopic compositions of stream 

water and precipitation were not available or because the difference between the isotopic 

composition of stream water and precipitation was too small. For the selected events, the beginning 

of the event was defined as the onset of precipitation and the end of the event as the time when 

either the event water fraction declined to 5% of its peak value or another precipitation event began, 

whichever first occurred.  

The event water fractions 𝐹𝐸 was quantified for each event at approximately 90 min intervals using 

a two-component isotopic hydrograph separation according to Equation (3.1): 

 𝐹𝐸 =
𝐶𝑆 − 𝐶𝑃

𝐶𝐸 − 𝐶𝑃
 (3.1) 

where 𝐶𝑆, 𝐶𝐸 and 𝐶𝑃 are the isotopic concentrations (δ2H) in the stream water, event water (i.e., 

precipitation) and pre-event water, respectively. 𝐶𝑆 was measured at approximately 90 min 

intervals. 𝐶𝐸 is the incremental weighted mean of precipitation samples (Mcdonnell et al., 1990), 

which were measured if the precipitation depth exceeded 0.3 mm. After sampling, the precipitation 

sampler was blocked for 60 min. 𝐶𝑃 was calculated as the average of the last five samples, which 

were measured at approximately 90 min intervals before the onset of precipitation. The maximum 

event water fraction 𝐹𝐸𝑚𝑎𝑥
, at which the event water contribution to streamflow reaches its peak 

value during the precipitation event, was obtained from maximum of 𝐹𝐸 values over each of the 40 

events. The 𝐹𝐸𝑚𝑎𝑥
 was the target variable predicted by the ANN and SVM models. Sahraei et al. 

(2020) reported that higher precipitation amounts generally lead to an increase of the maximum 

event water fraction in the streamflow as can be observed in Figure 3.3. This behavior is consistent 

with previous studies, which also reported growing maximum event water fractions with rising 

precipitation amounts (Pellerin et al., 2008; Penna et al., 2015; von Freyberg et al., 2017). This 

suggests that the Schwingbach is highly responsive to precipitation inputs and precipitation is a 

main driver of hydrological response behavior in the stream.  
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Figure 3.2 Time series of (a) precipitation, (b) streamflow, (c) δ2H in precipitation and (d) δ2H in 

streamflow. The vertical grey bars indicate the 40 events. The numbers on top of panel (a) represent the 

event ID. 
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Figure 3.3 Maximum event water fraction 𝑭𝑬𝒎𝒂𝒙
 vs. total event precipitation. 
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The uncertainty of maximum event water fraction 𝑊𝐹𝐸𝑚𝑎𝑥
 was quantified according to the 

Gaussian error propagation technique (Genereux, 1998): 

 𝑊𝐹𝐸𝑚𝑎𝑥
= {[

𝐶𝐸 − 𝐶𝑆

(𝐶𝐸 − 𝐶𝑃)2
𝑊𝐶𝑃

]
2

+ [
𝐶𝑆 − 𝐶𝑃

(𝐶𝐸 − 𝐶𝑃)2
𝑊𝐶𝐸

]
2

+ [
−1

(𝐶𝐸 − 𝐶𝑃)
𝑊𝐶𝑆

]
2

}

1
2

 (3.2) 

𝑊𝐶𝑃
, the uncertainty in pre-event water, was estimated using the standard deviation of the last five 

measurements before the onset of precipitation. 𝑊𝐶𝐸
, the uncertainty of the event water, is the 

standard deviation of the incremental weighted mean of precipitation. 𝑊𝐶𝑆
, the uncertainty of the 

stream water measurements, is the measurement precision of the CWS coupled to the WS-CRDS 

(0.57‰ for δ2H), which we derived from the standard deviation of the measurements during the 

last 3 min of the sampling period of stream water. The uncertainty of maximum event water 

fractions ranged from 1.2% to 28.3% with a mean of 6.7 ± 7.2% (mean ± standard deviation).The 

quantified uncertainty for maximum event water fractions of all 40 events are reported in 

Supplementary Table S 3.1. 

As the inputs for the models, a set of hydroclimatic variables representing the precipitation and 

antecedent wetness characteristics of the Schwingbach catchment was selected. Total event 

precipitation (𝑃, mm), precipitation duration (𝐷, h), 3-day antecedent precipitation defined as the 

accumulated precipitation over a 3-day window before the onset of a precipitation event (𝐴𝑃3, 

mm), 1 hour averaged soil moisture before onset of precipitation at 5, 30 and 70 cm depths (𝑆𝑀, 

%) and mean daily air temperature (𝑇, °C) were selected for each of the 40 events. The selection 

of input variables was based on the combination of a priori knowledge obtained from Sahraei et al. 

(2020) and expert knowledge. The values of input and output variables are presented in the 

Supplementary Table S 3.1. 

3.2.2 Machine learning algorithms 

3.2.2.1 Artificial Neural Network (ANN) theoretical background 

In this study, the Multilayer Perceptron (MLP) feedforward neural network was applied, which is 

one of the most widely used ANNs in hydrology (Tanty and Desmukh, 2015; Oyebode and Stretch, 

2018). The MLP network consists of a set of nodes organized into three different types of layers, 

i.e. input, hidden and output layers (Figure 3.4). The input layer includes nodes, through which the 

input data is incorporated into the network. In the hidden layers, the nodes receive signals from the 
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nodes in the previous layer via weighted connections, at which the weights determine the strength 

of the signals. The weighted values from the previous layer are summed together with a bias 

associated with the nodes. The result is then passed through an activation function to generate a 

signal (i.e., activation level) for each node. Next, the signals are transmitted to the subsequent layer 

and the process is continued until the information reaches the output layer. The signals, which are 

generated in the output layer are the model outputs. In general, the mathematical operation of a 

MLP feedforward neural network is given by Equation (3.3): 

 
𝑦𝑗 = 𝑓 (∑(𝑤𝑖𝑗𝑥𝑖) + 𝑏𝑗

𝑛

𝑖=1

) 

 

(3.3) 

where 𝑥𝑖 is the 𝑖th nodal value in the previous layer, 𝑦𝑗 is the 𝑗th nodal value in the present layer, 𝑏𝑗 

is the bias of the 𝑗th node in the present layer, 𝑤𝑖𝑗 is a weight connecting 𝑥𝑖 and 𝑦𝑗, 𝑛 is the number 

of nodes in the previous layer, and 𝑓 denotes the activation function in the present layer. 

The backpropagation algorithm (Lecun et al., 2015) was used to train the network, in which the 

outputs produced in the output layer for the given inputs, are compared to the target values (i.e., 

observations) and the error is calculated through a loss function. If the output layer does not produce 

the desired values, the output errors are propagated backwards through the network, while the 

parameters of nodes (i.e., weights and bias) in each layer are updated along the way with an 

optimizer. The learning process repeats in this way for several rounds (i.e., epochs) until the loss 

function reaches an optimal value.  

 

Figure 3.4 Schematic diagram of an Artificial Neural Network (ANN). 
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3.2.2.2 ANN setup 

The performance of the ANN model is strongly dependent on the configuration of its 

hyperparameters. Among the hyperparameters, the number of nodes in hidden layers, learning rate 

and activation functions in hidden layers have the greatest influence on the model performance and 

its robustness (Smithson et al., 2016; Klein and Hutter, 2019). Therefore, a set of the 

aforementioned hyperparameters was defined to evaluate performance of 45 ANN model 

configurations resulting from discretizing the hyperparameters shown in Table 3.1. As the base 

architecture, an ANN model with seven nodes in the input layer, two hidden layers followed by a 

linear output layer with one node was defined. Previous studies have reported that networks with 

two hidden layers generally outperform those with a single hidden layer, since they are more stable, 

flexible and also sufficient to approximate complex nonlinear functions (Sontag, 1992; Flood and 

Kartam, 1994; Heaton, 2015; Thomas et al., 2017). The most challenging and time consuming 

aspect of neural network design is choosing the optimal number of hidden nodes (Thomas et al., 

2016b). Too few hidden nodes implies that the network does not have enough capacity to solve the 

problem. Conversely, too many hidden nodes implies that the network memorizes noise within 

training data, leading to poor generalization capability (Maier and Dandy, 2000; Thomas et al., 

2016b). The number of hidden nodes in the first and second hidden layers should be kept nearly 

equal to yield better generalization capability (Karsoliya, 2012). Given that, five different 

configurations shown in Table 3.1 were used for the number of hidden nodes according to 

Equation (3.4) and Equation (3.5) expressed by Thomas et al. (2016a): 

 𝑛ℎ = 𝑛1 + 𝑛2 (3.4) 

 𝑛1 = 𝑖𝑛𝑡(0.5𝑛ℎ + 1) (3.5) 

where 𝑛ℎ represents total number of hidden nodes, 𝑛1 and 𝑛2 represent number of nodes in the first 

and second hidden layer, respectively. The upper bound on the total number of hidden nodes was 

considered as half of the total number of samples (i.e., 𝑛ℎ = 20) suggested by previous studies 

(Tamura and Tateishi, 1997; Huang, 2003). The “Adam” optimizer was used for the optimization 

of the learning process, which is effective for dealing with nonlinear problems, including outliers 

(Kingma and Ba, 2014). Learning rate is a positive number below 1 that scales the magnitude of 

the steps taken in the weight space in order to minimize the loss function of the network (Maier 

and Dandy, 2000; Heaton, 2015; Goodfellow et al., 2016). Too small learning rates slow down the 
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learning process and may cause the learning to become stuck with a high learning error. On the 

other hand, too large learning rates can lead the network to go through large oscillations during the 

learning process or that the network may never converge (Maier and Dandy, 1998; Goodfellow et 

al., 2016). The default learning rate of the Adam optimizer is set to 0.001. The smaller (0.0001) 

and larger (0.01) learning rates were also tested. Sigmoid and hyperbolic tangent (Tanh) are the 

most common activation functions used in the feedforward networks (Maier and Dandy, 2000). 

However, Rectified Linear Unit (ReLU) is usually a more suitable choice (Heaton, 2015). Sigmoid, 

Tanh and ReLU as the activation functions of hidden layers were therefore tested. Each network 

was trained for a maximum of 10,000 epochs to minimize the mean absolute error (MAE).  

Table 3.1 Hyperparameter set for the ANN model. 

Hyperparameters Choices  

Number of nodes in two hidden layers [m, n] [3, 1], [5, 3], [7, 5], [9, 7], [11, 9] 

Learning rate 0.0001, 0.001, 0.01 

Activation functions in hidden layers ReLU, Sigmoid, Tanh 

Note: [m, n] refers to m nodes in the first hidden layer and n nodes in the second hidden layer. 

3.2.2.3 Support Vector Machine (SVM) theoretical background 

The Support Vector Machine (SVM) was first proposed by Cortes and Vapnik (1995). It is based 

on statistical learning theory and is derived from the structural risk minimization hypothesis to 

minimize both empirical risk and the confidence interval of the learning machine in order to achieve 

good generalization capability. In this study, the Support Vector Regression (SVR) was used, 

which is an adaptation of the SVM algorithm for regression problems (Vapnik et al., 1997; Smola 

and Schölkopf, 2004). The basic concept of the SVR is to nonlinearly map the original data in a 

higher dimensional feature space and to solve a linear regression problem in the feature space 

(Figure 3.5). Suppose a series of data points {𝑥𝑖, 𝑦𝑖}
𝑛
𝑖
, where 𝑛 is the data size, 𝑥𝑖 is the input vector 

and 𝑦𝑖 represents the target value, the SVR function is as follows: 

 𝑓(𝑥𝑖) = 𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏 (3.6) 
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where 𝑤 is a weight vector and 𝑏 is a bias. 𝜙(𝑥𝑖) denotes a nonlinear mapping function that maps 

the inputs vectors to a high-dimensional feature space. 𝑤 and 𝑏 are estimated by minimizing the 

regularized risk function, as shown in Equation (3.7): 

 𝑅(𝑤) =
1

2
‖𝑤‖2 + 𝐶 ∑𝐿𝜀(𝑦𝑖, 𝑓(𝑥𝑖))

𝑛

𝑖=1

 (3.7) 

where 
1

2
‖𝑤‖2 is a regularization term, 𝐶 is the penalty coefficient, which is considered to specify 

the trade-off between the empirical risk and the model flatness and 𝐿𝜀(𝑦𝑖 , 𝑓(𝑥𝑖)) is called the 

𝜀-insensitive loss function, which is defined according to Equation (3.8): 

 𝐿𝜀(𝑦𝑖, 𝑓(𝑥𝑖)) = max {0, |𝑦𝑖 − 𝑓(𝑥𝑖)| − 𝜀} (3.8) 

where 𝜀 denotes the permitted error threshold. 𝜀 will be ignored if the predicted value is within the 

threshold; otherwise, the loss equals a value greater than 𝜀. In order to represent the distance from 

actual values to the corresponding boundary values of the 𝜀-tube, two positive slack variables 𝜉 

and 𝜉∗ are introduced. Then Equation (3.7) is transformed into the following constrained form: 

 min 𝑓(𝑤, 𝜉, 𝜉∗) =
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉 + 𝜉∗)

𝑛

𝑖=1

 (3.9) 

 

Subject to: 

{
𝑦𝑖 − [𝑤 ∙ 𝜙(𝑥𝑖)] − 𝑏 ≤ 𝜀 + 𝜉, 𝜉 ≥ 0

[𝑤 ∙ 𝜙(𝑥𝑖)] + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉∗, 𝜉∗ ≥ 0
 

(3.10) 

This constrained optimization problem can be solved by the following Lagrangian function: 

 

max 𝐻(𝜕𝑖, 𝜕𝑖
∗) = −

1

2
∑∑(𝜕𝑖 − 𝜕𝑖

∗)

𝑛

𝑗=1

𝑛

𝑖=1

(𝜕𝑗 − 𝜕𝑗
∗)𝐾(𝑥𝑖, 𝑥𝑗)

+ ∑𝑦𝑖(𝜕𝑖 − 𝜕𝑖
∗) − 𝜀 ∑𝑦𝑖(𝜕𝑖 + 𝜕𝑖

∗)

𝑛

𝑖=1

𝑛

𝑖=1

 

(3.11) 

 

Subject to: 

∑(𝜕𝑖 − 𝜕𝑖
∗)

𝑛

𝑖=1

= 0, 𝜕𝑖 , 𝜕𝑖
∗ ∈ [0, 𝐶] 

(3.12) 
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Therefore, the regression function is as follows: 

 𝑓(𝑥) = ∑(𝜕𝑖 − 𝜕𝑖
∗)𝐾

𝑛

𝑖=1

(𝑥𝑖, 𝑥𝑗) + 𝑏 (3.13) 

where 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function and 𝜕𝑖 and 𝜕𝑖
∗ are the nonnegative Lagrangian multipliers, 

respectively. The kernel function can nonlinearly map the original data into a higher dimensional 

feature space in an implicit manner and solve a linear regression problem in the feature space. 

 

Figure 3.5 Schematic diagram of a Support Vector Regression (SVR). 

3.2.2.4 SVM setup 

The performance of the SVM model is directly related to the selection of the kernel function 

(Raghavendra and Deka, 2014; Zhang et al., 2018a). In this study, the performances of four 

commonly employed kernels in SVM studies including the Linear, Sigmoid, Radial Basis Function 

(RBF) and Polynomial kernels combined with their optimal hyperparameters were tested. The 

Linear kernel has two hyperparameters (𝐶, 𝜀), the Sigmoid and RBF kernels have three 

hyperparameters (𝐶, 𝜀, 𝛾) and the Polynomial kernel has four hyperparameters (𝐶, 𝜀, 𝛾, 𝑑) to be 

optimized. The penalty coefficient 𝐶, determines the tolerance of deviations larger than 𝜀 from the 

real value; i.e., smaller deviations are tolerable for larger values of 𝐶. The permitted error threshold 

𝜀, affects the number of support vectors used in the regression function, i.e., the smaller the value 

of 𝜀, the greater the number of support vectors that will be selected. The kernel coefficient 𝛾, 

controls the influence radius of the support vectors, i.e., for high values of gamma, the radius of 
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the influence area of the support vectors only includes the support vector itself. The degree of the 

polynomial function 𝑑, is the largest of the degrees of polynomial’s monomials with non-zero 

coefficient. 20 values for each of 𝐶, 𝜀 and 𝛾 based on geometric progression and 3 values for 𝑑 

were tested according to the set of hyperparameters shown in Table 3.2. Therefore, 400 

configurations for the Linear kernel, 8,000 configurations for the Sigmoid and RBF kernels and 

24,000 configurations for the Polynomial kernel were tested. Finally, the performances between 

the kernel functions in combination with their optimal hyperparameter configurations were 

compared.  

Table 3.2 Hyperparameter set for the kernel functions of the SVM model. 

Hyperparameters Choices 

𝐶 1 – 100 

𝜀 0.01 – 1 

𝛾 0.01 – 1 

𝑑 2, 3, 4 

 

3.2.3 Model evaluation 

Repeated 10-fold cross-validation was performed to estimate the performance of the ANN and 

SVM models with different hyperparameter configurations. The data was first randomly shuffled 

and split into ten folds such that each fold contained four samples. For the ANN model, eight folds 

were considered for train set, one fold for validation set and one fold for test set. For the SVM 

model, nine folds were considered for train set and one fold for test set. The procedure was repeated 

10 iterations so that in the end, every instance was used exactly once in the test set. Within each 

iteration of the cross-validation, the train set was normalized to be in the range [0-1]. To avoid data 

leakage, the test and validation sets were normalized using the parameters derived from train set 

normalization (Hastie et al., 2009). The train set was used to learn the internal parameters (i.e., 

weights and bias) of the network. The validation set was used for the hyperparameter optimization 

and the test set was used to estimate the generalization capability of the model (Goodfellow et al., 

2016). The ANN model was first trained on the train set for 10,000 epochs to minimize the MAE 

on the validation set. The number of epochs, at which MAE of the validation set reached its 

minimum value, was saved. The validation set was then added to the train set and the whole data 
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set was used to train the model for the fixed number of epochs derived from previous step. The test 

set was used to estimate the prediction performance of the ANN and SVM models. The estimation 

of model performance via one run of k-fold cross-validation might be noisy. This means that for 

each iteration of cross-validation, a different split of data set into k-folds can be implemented and 

in turn, the distribution of performance scores can be different, resulting in a different mean 

estimate of model performance (Brownlee, 2020). In order to reduce the noise and allow a reliable 

estimate of prediction performance, it is recommended to repeat the cross-validation procedure 

such that the data is re-shuffled before each round (Refaeilzadeh et al., 2009). The common 

numbers for repetition of cross-validation procedure are three, five and ten (Kuhn and Johnson, 

2013; Brownlee, 2020). To obtain a robust and reliable estimate for the model performance, the 

10-fold cross-validation was repeated ten times with a different seed for the random shuffle 

generator, resulting in 100 iterations for each configuration. The performance of the ANN and 

SVM models were evaluated in terms of the MAE, the root mean squared error (RMSE), the 

coefficient of determination (R2) and Nash-Sutcliffe Efficiency (NSE) according to Equations 

(3.14), (3.15), (3.16) and (3.17), respectively. The optimized (i.e., best) configurations of the ANN 

and SVM were selected based on the average performance over 100 iterations. The performance 

of the optimized configuration of the ANN was then compared with that of the optimized 

configuration of the SVM to choose the final predictive model.  

 𝑀𝐴𝐸 =
1

𝑁
∑|𝑂𝑖 − 𝑃𝑖|

𝑁

𝑖=1

 (3.14) 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑂𝑖 − 𝑃𝑖)2

𝑁

𝑖=1

 (3.15) 

 𝑅2 =

[
 
 
 

∑ (𝑂𝑖 − 𝑂)(𝑃𝑖 − 𝑃)𝑁
𝑖=1

√∑ (𝑂𝑖 − 𝑂)
2

𝑁
𝑖=1

√∑ (𝑃𝑖 − 𝑃)𝑁
𝑖=1

2

]
 
 
 
2

 (3.16) 

 𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖 − 𝑂)
2

𝑁
𝑖=1

 (3.17) 
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where 𝑁 is the number of observations (with 𝑁=4 for the test set in each iteration of the 

cross-validation), 𝑂𝑖 is the observed value, 𝑃𝑖 is the predicted value, 𝑂 is the mean of observed 

values and 𝑃 is the mean of predicted values. MAE and RMSE describe average deviation of 

predicted from observed values with smaller values indicating better performance. R2 indicates 

correspondence between predicted and observed values with higher values [0 to 1] indicating 

stronger correlations. NSE evaluates the model ability to predict values different from the mean 

and gives the proportion of the initial variance accounted for by the model (Nash and Sutcliffe, 

1970). NSE ranges between [-∞ to 1]. The closer the NSE value is to 1, the better is the agreement 

between predicted and observed values. A negative value of the NSE indicates that the mean of 

observed values is a better predictor than the proposed model. According to Moriasi et al. (2007), 

model performance can be evaluated as: very good (0.75 < NSE ≤ 1.00), good (0.65 < NSE ≤ 0.75), 

satisfactory (0.50 < NSE ≤ 0.65) and unsatisfactory (NSE ≤ 0.50). 

3.2.4 Model implementation 

In this research, the numerical experiments were conducted with Python 3.7 programming 

environment (van Rossum, 1995) on Ubuntu 20.04 with AMD EPYC 7452 32-core processor, 125 

GB of random access memory (RAM) and NVIDIA GTX 1050 Ti graphical processing unit (GPU). 

The ANN model was built with Keras 2.3.1 library (Chollet, 2015) on top of Theano backend 1.0.4 

(Al-Rfou et al., 2016). The SVM model was built with Scikit-Learn 0.22.2 library (Pedregosa et 

al., 2011). Numpy 1.18.1 (Van Der Walt et al., 2011), Pandas 1.0.1 (McKinney, 2010) and Scipy 

1.4.1 libraries (Virtanen et al., 2020) were used for preprocessing and data management. The 

Matplotlib 3.1.3 (Hunter, 2007) and Seaborn 0.9.1 (Waskom et al., 2020) libraries were used for 

the data visualization. 

3.3 Results and Discussion 

3.3.1 ANN prediction performance 

The performance of 45 different ANN configurations were evaluated based on the number of nodes 

in hidden layers, learning rate and activation functions in hidden layers. Table 3.3 shows the 

average prediction performance over 100 iterations of the cross-validation for each configuration 

in terms of MAE, RMSE, R2, and NSE. The best performance was obtained by a combination of 
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five nodes in the first hidden layer and three nodes in the second hidden layer [5, 3], a learning rate 

of 0.0001 and the Tanh activation function in hidden layers (configuration #12). This configuration 

resulted in a MAE of 10.27%, RMSE of 12.91%, R2 of 0.70, and NSE of 0.63.  

 

Figure 3.6 Boxplots of the performance criteria for prediction performance of 45 ANN configurations over 

100 iterations derived from the ten times 10-fold cross-validation. The average is indicated by a black square 

and the median by the bar separating a box. 
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Table 3.3 Average prediction performance of the ANN model with different hyperparameter configurations 

over 100 iterations of the cross-validation. The best configuration is bolded. 

Hidden nodes Learning rate Activation function Config. ID MAE (%) RMSE (%) R2 NSE 

[3-1] 0.0001 ReLU 1 15.57 18.78 0.31 0.19 

  Sigmoid 2 12.72 15.18 0.66 0.53 

  Tanh 3 10.91 13.55 0.68 0.53 

 0.001 ReLU 4 15.73 18.85 0.37 0.26 

  Sigmoid 5 11.57 14.34 0.67 0.55 

  Tanh 6 10.91 13.74 0.69 0.57 

 0.01 ReLU 7 17.66 21.00 0.24 0.11 

  Sigmoid 8 11.77 14.75 0.66 0.32 

  Tanh 9 11.14 14.18 0.66 0.33 

[5-3] 0.0001 ReLU 10 12.82 15.82 0.58 0.45 

  Sigmoid 11 11.01 13.65 0.66 0.56 

  Tanh 12 10.27 12.91 0.70 0.63 

 0.001 ReLU 13 12.71 15.68 0.60 0.50 

  Sigmoid 14 11.28 14.14 0.67 0.56 

  Tanh 15 11.47 14.32 0.65 0.57 

 0.01 ReLU 16 13.80 17.07 0.52 0.41 

  Sigmoid 17 11.54 14.57 0.66 0.55 

  Tanh 18 12.69 16.08 0.63 0.51 

[7-5] 0.0001 ReLU 19 12.12 14.43 0.61 0.50 

  Sigmoid 20 10.85 13.39 0.67 0.56 

  Tanh 21 10.67 13.22 0.65 0.55 

 0.001 ReLU 22 12.68 15.47 0.62 0.49 

  Sigmoid 23 10.78 13.45 0.69 0.55 

  Tanh 24 11.39 14.30 0.63 0.54 

 0.01 ReLU 25 13.42 15.98 0.60 0.48 

  Sigmoid 26 12.06 15.10 0.63 0.52 

  Tanh 27 12.15 15.15 0.65 0.54 

[9-7] 0.0001 ReLU 28 11.87 14.60 0.63 0.53 

  Sigmoid 29 10.90 13.63 0.68 0.57 

  Tanh 30 10.40 13.00 0.70 0.57 

 0.001 ReLU 31 13.23 15.96 0.61 0.51 

  Sigmoid 32 10.87 13.62 0.68 0.56 

  Tanh 33 11.51 14.34 0.64 0.56 

 0.01 ReLU 34 12.21 15.38 0.64 0.49 

  Sigmoid 35 11.71 14.69 0.66 0.52 

  Tanh 36 12.15 15.34 0.63 0.53 

[11-9] 0.0001 ReLU 37 11.12 13.79 0.67 0.52 

  Sigmoid 38 10.71 13.37 0.67 0.56 

  Tanh 39 10.39 13.09 0.68 0.56 

 0.001 ReLU 40 11.38 13.64 0.70 0.57 

  Sigmoid 41 11.32 14.13 0.66 0.55 

  Tanh 42 10.69 13.68 0.67 0.55 

 0.01 ReLU 43 13.06 16.52 0.60 0.45 

  Sigmoid 44 12.48 15.83 0.65 0.48 

  Tanh 45 12.87 16.24 0.62 0.49 

Note: number of nodes in input and output layers are seven and one, respectively and are kept fixed for all 

of the 45 ANN configurations. 
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Figure 3.6 shows the boxplots of statistical measures for prediction performance of 45 ANN 

configurations over 100 iterations of the cross-validation. The average is indicated by a black 

square and the median by the bar separating a box. It is clear from Figure 3.6 that configuration #1, 

#4 and #7 with three nodes in the first hidden layer and one node in the second hidden layer and 

ReLU activation function are the least stable networks, whereas the configuration #12 is the most 

stable network. Furthermore, it indicates that increasing the complexity of the network not only 

declines average model performance but also decreases the model stability as can be clearly seen 

on configurations #43 - #45. Table 3.3 shows that the performance of the 45 configurations based 

on the number of hidden nodes showed that increasing the number of nodes in hidden layers from 

eight [5, 3] to twenty [11, 9] did not have a major impact on the prediction performance and even 

the network with the highest number of hidden nodes [11, 9] did not yield the best prediction 

performance, whereas decreasing the number of hidden nodes to less than eight declined the model 

performance, particularly when the ReLU was used as the activation function. This implies that 

increasing the number of hidden nodes does not necessarily improve the ability of network to 

generalize, whereas decreasing the number of hidden nodes below a certain threshold may not be 

sufficient for the network to learn well. Similar behavior has been reported in the previous studies 

(Wilby et al., 2003; Yoon et al., 2011; Liu and Lu, 2014; Mohammadpour et al., 2015), 

emphasizing the importance of choosing an appropriate number of hidden nodes to ensure the 

model performance. Although the optimal number of hidden nodes depends on the essence and 

complexity of the problem (Maier and Dandy, 2000), the common challenge is to find an 

appropriate number of hidden nodes, which is sufficient to attain desired generalization capability 

in a reasonable training time (Maier and Dandy, 2000; Hagan et al., 2014; Goodfellow et al., 2016; 

Thomas et al., 2016b). The Adam optimizer is generally robust to the choice of its hyperparameters. 

However, the learning rate needs to be changed sometimes from the suggested default to improve 

the model performance (Kingma and Ba, 2014; Goodfellow et al., 2016). The smaller (0.0001) and 

larger (0.01) learning rates were therefore tested. In general, a change of the learning rate, while 

the number of hidden nodes and activation function were kept fixed, did not have a remarkable 

effect on the model performance. Nevertheless, the default learning rate still did not yield the best 

performance. An increase of the learning rate to 0.01 with fixed hidden nodes and activation 

function declined the performance, whereas the smaller learning rates (i.e., 0.0001 and 0.001) 

achieved slightly better performance. This implies that increasing the learning rate may cause the 

network to converge too quickly to a suboptimal solution, whereas smaller learning rate causes the 
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network to take smaller steps towards minimum of the loss function leading to a better performance 

(Maier and Dandy, 1998). Smaller learning rates usually guarantee the convergence of the neural 

network; however, it is a trade-off between the model performance and the time required for the 

learning process (Heaton, 2015; Liu et al., 2019b). It may be possible that our network achieves 

slightly better performance with the learning rates lower than 0.0001, but too long training time 

does not justify the use of smaller learning rates. It is almost impossible to make sure that the 

selected learning rate is the optimal learning rate, since any value falling between 0 and 1 can be 

considered for the learning rate (Najah Ahmed et al., 2019). However, it is suggested that testing 

the learning rate between 0.00001 and 0.1 by an order of magnitude usually ensures near-global 

optimal solution (Larochelle et al., 2007; Goodfellow et al., 2016; Géron, 2019). This range is 

usually shorter between 0.0001 and 0.01 when using the Adam optimizer (Poornima and 

Pushpalatha, 2019; Prasetya and Djamal, 2019; Feng et al., 2020). The Adam optimizer uses an 

adaptive learning rate algorithm leading the network to converge much faster compared to classical 

stochastic gradient descent (Kingma and Ba, 2014). Stochastic gradient descent maintains a single 

learning rate for all of its weight updates and the learning rate does not change during the learning 

process, whereas the Adam optimizer computes individual adaptive learning rates for different 

parameters from estimates of first and second moments of the gradients (Kingma and Ba, 2014). 

Among the activation functions, ReLU achieved the weakest performance with fixed hidden nodes 

and learning rate, whereas Sigmoid and Tanh activation functions yielded better, but nearly similar 

performances. The significant limitation of ReLU is that it easily overfits compared to the Sigmoid 

and Tanh activation functions (Nwankpa et al., 2018). ReLU is sometimes fragile during learning 

process causing some of the gradients to die. This leads to several nodes being dead as well, thereby 

causing the weight updates not to activate in future data points and hence, hindering a further 

learning as dead nodes give zero activation (Goodfellow et al., 2016; Nwankpa et al., 2018). 

Sigmoid and Tanh, both are monotonically increasing functions that asymptote a finite value as 

±∞ is approached (LeCun et al., 2012). The only difference is that Sigmoid lies between 0 and 1, 

whereas Tanh lies between 1 and -1. One of the main advantages of Sigmoid and Tanh activation 

functions is that the activations (i.e., the values in the nodes of the network, not the gradients) may 

not explode during the learning process, since their output range is bounded (Feng and Lu, 2019; 

Szandała, 2020). However, it should be pointed out that each activation function has its own 

strengths and limitations and its performance may be different based on the network complexity 

and data structure (Nwankpa et al., 2018; Feng and Lu, 2019). Therefore, choosing a proper 
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activation function should be prioritized to enhance the model performance. ANN model was 

trained for a maximum of 10,000 epochs to automatically optimize the number of epoch, at which 

the loss function (i.e., MAE) reaches its minimum on the validation set. Figure 3.7 shows MAE 

values over 10,000 training epochs on the normalized train and validation data over 100 iterations 

of the cross-validation for the optimized ANN model. The model converged within 6,000 epochs. 

The convergence behavior of the model indicates that the optimized model was robust and efficient 

in the learning process and that MAE was a proper loss function for the model to learn the problem. 

 

Figure 3.7 Loss function (MAE) versus epoch on the normalized train and validation sets over 100 iterations 

derived from the ten times 10-fold cross-validation for the optimized ANN. 



Chapter 3 

80 

 

3.3.2 SVM prediction performance 

The prediction performance of SVM was evaluated using various types of kernel functions in 

combination with the optimal hyperparameters of the kernel functions. Table 3.4 shows the average 

prediction performance over 100 iterations of the cross-validation for each kernel function with its 

optimal hyperparameters. The best prediction performance was obtained by a Polynomial kernel 

function with kernel hyperparameters of (𝐶 = 8.8587, 𝜀 = 0.0162, 𝛾 = 0.1833, 𝑑 = 2). This 

configuration achieved a MAE of 7.89%, RMSE of 9.43%, R2 of 0.83, and NSE of 0.78. The RBF 

kernel ranked second among the kernel functions. The Linear and Sigmoid kernels performed very 

similar to each other but slightly weaker than the RBF kernel. Figure 3.8 shows the boxplots of 

statistical measures for prediction performance of SVM kernels over 100 iterations of the 

cross-validation. It is observed that Linear and Sigmoid are the least stable kernels, whereas the 

Polynomial is the most stable kernel. The RBF kernel is more stable than Linear and Sigmoid 

kernels but less stable than Polynomial kernel. Our findings are in line with previous studies where 

Polynomial and RBF were found to be the most appropriate kernel functions that tend to give good 

performance for the modelling of the nonlinear systems (Raghavendra and Deka, 2014). However, 

the RBF kernel is the mostly used kernel in previous studies (Raghavendra and Deka, 2014), since 

it has less hyperparameters than the Polynomial kernel that affect the complexity of model 

selection. Unlike the linear kernel, it can capture the nonlinear relation between class labels and 

attributes and it tends to exhibit satisfactory performance under general smoothness assumptions 

(Raghavendra and Deka, 2014; Yaseen et al., 2015). The degree of polynomial function 𝑑 defines 

the smoothness of the function, which gives the polynomial kernel the advantage of increasing the 

dimensionality (Raghavendra and Deka, 2014). For 𝑑 = 2, the separation surfaces correspond to 

conic surfaces (i.e., an ellipse or hyperbola) in the feature space. Higher degrees can yield more 

complex decision boundaries, however, it may increase the risk of overfitting and hence, a decline 

in model performance (Yaman et al., 2012). Polynomial kernel takes the feature combinations 

implicitly into account instead of combining the features explicitly. By setting 𝑑, different numbers 

of feature conjunctions can be implicitly computed. In this way, Polynomial kernel performs often 

better than linear kernels, which do not utilize feature conjunctions (Wu et al., 2007). 
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Figure 3.8 Boxplots of the performance criteria for prediction performance of SVM kernels over 100 

iterations derived from the ten times 10-fold cross-validation. The average is indicated by a black square 

and the median by the bar separating a box. 
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Table 3.4 Average prediction performance of the SVM model using different kernel functions with their 

optimal hyperparameters (C, 𝜺, 𝜸, d) over 100 iterations of the cross-validation. The best configuration is 

bolded. 

Kernel 𝐶 𝜀 𝛾 𝑑 MAE (%) RMSE (%) R2 NSE 

Linear 2.0691 0.0886 - - 9.72 11.61 0.72 0.42 

Sigmoid 61.5848 0.0886 0.0336 - 9.71 11.60 0.72 0.51 

RBF 1.6238 0.0428 0.2976 - 9.38 11.30 0.73 0.67 

Polynomial 8.8587 0.0162 0.1833 2 7.89 9.43 0.83 0.78 

 

3.3.3 Comparative performance of machine learning models 

The optimized ANN and SVM models were selected based on the average performance over 100 

iterations derived from ten times 10-fold cross-validation for an in-depth comparison of the 

models’ capability in prediction of maximum event water fractions in the Schwingbach. Figure 3.9 

shows the distribution of statistical measures for learning and prediction performance of the 

optimized ANN and SVM models over 100 iterations of the cross-validation. The optimized SVM 

outperformed the optimized ANN model in terms of performance and its stability. In terms of 

performance capability, the SVM achieved better performance in the train as well as in the test sets. 

The average and median values over the train and test sets were lower in terms of the MAE and 

RMSE, and higher in terms of the R2 and NSE for the SVM compared to those of the ANN. In 

terms of performance stability, fewer variations were observed for the performance of the SVM 

model over the 100 iterations of cross-validation indicating that the SVM is a more stable model 

with respect to different train and test sets. 

The 10-fold cross-validation strategy provides the opportunity for each data point to be predicted 

exactly once. Repeating this procedure ten times, results in ten predicted values for each data point, 

though over differently shuffled train and test sets. Figure 3.10 shows the comparison of observed 

and predicted maximum event water fractions of the 40 events by the optimized ANN and SVM 

models. The red and blue circles indicate the average of ten predicted values at each event by the 

optimized ANN and optimized SVM, respectively. The red and blue bands depict the range of all 

ten predicted values at each event by the optimized ANN and optimized SVM, respectively. Both 
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models were able to reproduce the overall dynamic of maximum event water fractions across the 

events quite well. However, the optimized SVM model showed superiority over the optimized 

ANN model for predicting of the maximum event water fractions. Good match between observed 

and predicted maximum event water fractions was found using SVM model and generally, the 

predictions were closer to the corresponding observed values than those of the ANN model. The 

ANN tended to underestimate the events with high maximum event water fractions (e.g., events 4, 

19, 32 and 37) and to overestimate the events with low maximum event water fractions (e.g., events 

3, 6, 7 and 36). The main reason that the ANN may not be able to capture extreme values is the 

unavailability of the high number of extreme values in the training data, and hence the ANN cannot 

adequately learn the process in respect of extremes (Adnan et al., 2019a). The other main reason 

may be the fact that the ranges of extreme values in the training data are lower than those of the 

validation and/or test data (Adnan et al., 2019a; Malik et al., 2020). This leads to extrapolation 

difficulties in machine learning models (Kisi and Aytek, 2013; Kisi and Parmar, 2016). Several 

researchers have also reported this constraint in the application of the ANN in previous studies 

(Karunanithi et al., 1994; Minns and Hall, 1996; Dawson and Wilby, 1998; Campolo et al., 1999; 

Jimeno-Sáez et al., 2018; Singh et al., 2018; Najah Ahmed et al., 2019). It is evident that the range 

of all ten predicted values at each event was relatively high for the ANN model, particularly for 

the events with high maximum event water fractions. In contrast, this range was relatively low for 

the SVM model. It indicates that the performance of the SVM model for the prediction of maximum 

event water fraction is more reliable under randomly shuffled data compared to that of the ANN 

model. 

The overall prediction ability of the SVM model was superior to that of the ANN model in this 

study. SVM implements the structural risk minimization principle, which gives it superior 

generalization ability in the situation of small sample size, whereas the ANN implements empirical 

risk minimization principle, which makes it more vulnerable to overfitting and susceptible to 

consider noise in the data as a pattern (Wu et al., 2008; Behzad et al., 2010; Yoon et al., 2011; Liu 

and Lu, 2014).  

 

 

 



Chapter 3 

84 

 

 

Figure 3.9 Boxplots of the performance criteria of the optimized ANN and optimized SVM for the train 

and test sets of 100 iterations derived from the ten times 10-fold cross-validation. The average is indicated 

by a black square and the median by the bar separating a box. 
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Figure 3.10 Comparison of observed and predicted maximum event water fractions 𝑭𝑬𝒎𝒂𝒙
 of the 40 events 

predicted by the optimized ANN and optimized SVM models. The red and blue circles indicate the average 

of ten predicted values at each event derived from ten times 10-fold cross-validation by the optimized ANN 

and SVM models, respectively. The red and blue bands indicate the range of all ten predicted values (i.e., 

all runs) at each event derived from ten times 10-fold cross-validation by the optimized ANN and SVM 

models, respectively. 

3.3.4 Application of machine learning on small data set: challenges and 

strategies 

Generally, the performance of machine learning models excels when having more training data 

available (Schmidhuber, 2015). Machine learning has exhibited promising performance in many 

fields such as natural language processing and image recognition where big data set is employed 

in training procedure (Feng et al., 2019). However, collecting training data set that is large enough 

is a challenge for some research fields such as medical, material and natural sciences due to the 

complexity and high costs of data collection (Feng et al., 2019; Brigato and Iocchi, 2020). 

Compared to other areas of hydrological research, the available data is still limited in the field of 

isotope hydrology likely due to the laborious and cost intensive measurements of water isotopes. 

This lack of data is even more pronounced in case of high-resolution isotopic hydrographs at the 

event scale.  
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The key challenge on the application of machine learning on small data sets is that the model 

generalizes patterns in training data such that it correctly predicts unseen data on the test data set. 

The other main challenge is to ensure a reliable estimation for the generalization ability of the 

machine learning model. With the advance of machine learning during recent years, several 

strategies have been established to tackle data limitations that may affect the performance of the 

machine learning models. Resampling strategies like repeated k-fold cross-validation are the most 

appropriate for a small sample size (Kim, 2009; Refaeilzadeh et al., 2009; Beleites et al., 2013; 

Goodfellow et al., 2016). This strategy estimates the model performance by repeating the k-fold 

cross-validation procedure for number of times, where each time the data is shuffled randomly and 

subsequently the average performance over all iterations is reported. This is not only an unbiased 

estimate of model performance but also a reliable estimate of model performance and its stability 

with respect to different train and test sets (Kohavi, 1995; Beleites et al., 2013; Géron, 2019). 

Previous studies have successfully utilized cross-validation technique on small sample size ranging 

from 35 to 60 instances using SVM and ANN models (Behzad et al., 2010; Das et al., 2012; 

Khovanova et al., 2015; Shaikhina et al., 2015). 

Model complexity is a critical factor when only limited data set is available. Using too complex 

models increases the likelihood of overfitting (Maier et al., 2010). Overfitting occurs when the 

model learns the details and noises in the training data to the extent that it fails to generalize on 

new data. On the other hand, using too simple models may lead to underfitting. Underfitting occurs 

when the model is too simple and does not have enough capacity to learn the patterns in the training 

data set. Ideally, it is desired to select a model at the sweet spot between underfitting and 

overfitting. In order to reduce the risk of underfitting and overfitting, a validation set was used to 

optimize the complexity of the models. Figure 3.6 shows that increasing the complexity of the 

ANN architecture does not enhance the performance of the model, whereas using too simple 

architectures does not lead to a promising performance too. This implies the importance and 

necessity of model complexity optimization in order to enhance the model performance especially 

in situation of small data set, for which the risk of underfitting and overfitting is even higher 

compared to larger data sets. 

The choice of machine learning algorithm is another important factor that needs additional attention 

when dealing with limited data sets. SVM has shown to be a more suitable algorithm compared to 

ANN in the case of small sample sizes (Wu et al., 2008; Behzad et al., 2010; Das et al., 2012; Liu 
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and Lu, 2014). Structural risk minimization and statistical machine learning process are the bases 

of SVM. The structural risk minimization aims to minimize the upper bound to the generalization 

error instead of traditional local training error. Moreover, SVM offers a unique and globally 

optimal solution towing to the convex characteristic of the ideal problem and employs 

high-dimensional spaced set of kernel functions that subtly includes nonlinear transformation. 

Therefore, it has no hypothesis in functional transformation, which makes it essential to have 

linearly divisible data. At the same time, overfitting is unlikely to occur with the SVM, if the 

parameters are properly selected. Contrasting, ANN implements empirical risk minimization 

principle, which makes it more vulnerable to overfitting and falling into a local solution. The results 

showed that ANN was less stable compared to SVM (Figure 3.9). This might be due to the 

sensitivity of ANN to the initialization parameter values and training order (Bowden et al., 2002). 

ANN initialization and backpropagation training algorithms commonly contain deliberate degrees 

of randomness in order to improve convergence to the global optimal of the associated loss function 

(Wasserman, 1989; LeBaron and Weigend, 1998). Moreover, the order with which the training 

data is fed to the ANN may affect the level of convergence and produce erratic outcomes (LeBaron 

and Weigend, 1998). Such ANN volatilities limit the reproducibility of the results. The success of 

k-fold cross-validation to reduce the stability problems in ANNs has been discussed in previous 

studies (Maier and Dandy, 1998, 2000; Bowden et al., 2002). Nevertheless, additional care for 

optimization of hyperparameters and complexity of network needs to be taken when applying ANN 

to small sample size. 

3.4 Conclusion 

Estimating maximum event water fractions in streamflow based on the isotopic hydrograph 

separation gives valuable insight into runoff generation mechanisms and hydrological response 

characteristics of a catchment. However, such estimation is not always possible due to the 

spatiotemporal difficulties in sampling and measuring of stable isotopes of water. Therefore, there 

is a need for a proper predictive model to predict maximum event water fractions in streamflow 

even at times when no direct sampling and measurements of stable isotopes of water are available. 

As the relationships between the maximum event water fraction and its drivers are complex and 

nonlinear, predictions using process-based models are difficult. Recently, machine learning 

algorithms have become increasingly popular in the field of hydrology due to their ability in 
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representing complex and nonlinear systems without any a priori assumption about the structure of 

the data and knowledge about the underlying physical processes. However, the potential of 

machine learning in the field of isotope hydrology has rarely been investigated. This study 

investigates the applicability of ANN and SVM algorithms to predict maximum event water 

fractions on independent events in the Schwingbach Environmental Observatory (SEO), Germany. 

The result showed that maximum event water fraction could be successfully predicted using only 

precipitation, soil moisture and air temperature. This is very important in practice because sampling 

and measuring of stable isotopes of water are cost intensive, laborious and often not feasible under 

difficult spatiotemporal conditions. It is concluded that SVM is superior to the ANN in the 

prediction of maximum event water fractions on independent precipitation events. SVM could 

better capture the dynamics of maximum event water fractions across the events and the predictions 

were generally closer to the corresponding observed values. ANN tended to underestimate the 

events with high maximum event water fractions and to overestimate the events with low maximum 

event water fractions. Detailed discussion is provided with respect to the influence of 

hyperparameters on the model performance. 

Directions of future research include benchmarking the performance of the proposed machine 

learning models against process-based models in the field of isotope hydrology. Applying the 

proposed machine learning models with more training data and to other catchments in other parts 

of the world would allow assessing how well our method is transferable to catchments with 

different characteristics (e.g., weather patterns, topography, land use and catchment size). Further, 

the proposed algorithms could be compared to other machine learning algorithms using different 

input scenarios of hydroclimatic data.  

Using machine learning algorithms for the prediction of target variables that are difficult, expensive 

or cumbersome to measure provides a valuable tool for future applications. Such algorithms can 

also be of great value for gap filling procedures. Our study focuses on machine learning in the field 

of isotope hydrology, but further applications in hydro-chemistry, e.g. for the prediction of 

pesticides or antibiotics have great potential for future research.  

Machine learning does not substitute monitoring efforts as the model development is based on the 

robust data that covers diverse flow situations. However, machine learning is seen as a promising 

supplement for the establishment of long-term monitoring strategies of hydrological systems.  
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Supplementary Materials 

Table S 3. 1 Values of input and output variables. 

Event 

ID Date 
𝑃 

(mm) 
𝐷  
(h) 

𝐴𝑃3 
(mm) 

𝑆𝑀_5 
(%) 

𝑆𝑀_30 
(%) 

𝑆𝑀_70 
(%) 

𝑇 
(°C)  

𝐹𝐸𝑚𝑎𝑥 ±𝑊𝐹𝐸𝑚𝑎𝑥
 (%) 

1 09/08/2018 1.0 0.2 19.0 18.2 21.2 39.3 20.9 4.5 ± 2.2 

2 25/08/2018 1.5 3.0 0.8 12.8 19.0 37.6 12.4 30.9 ± 11.6 

3 27/08/2018 0.3 2.6 2.3 13.1 19.2 37.8 16.1 3.1 ± 2.5 

4 29/08/2018 2.7 6.1 0.3 12.7 19.1 37.6 17.6 46.2 ± 9.6 

5 07/09/2018 1.4 0.3 0.5 12.5 18.5 39.2 14.4 25.3 ± 8.5 

6 21/09/2018 4.2 1.9 0.0 11.7 17.8 37.2 15.3 9.4 ± 4.0 

7 22/09/2018 17.1 20.3 4.2 11.7 17.8 37.6 11.5 27.3 ± 3.4 

8 24/09/2018 0.9 0.3 17.1 20.7 19.1 39.0 8.3 8.3 ± 2.1 

9 01/10/2018 0.8 0.2 0.0 18.1 19.2 38.9 7.8 5.8 ± 8.2 

10 02/10/2018 1.5 3.7 0.8 18.0 19.4 39.5 6.9 36.4 ± 9.6 

11 03/10/2018 0.8 5.4 2.3 20.7 19.5 39.4 6.9 17.4 ± 3.5 

12 24/10/2018 0.9 7.8 0.0 16.0 20.3 39.8 11.6 6.2 ± 1.5 

13 25/10/2018 0.6 4.9 0.9 15.9 20.3 40.1 10.4 10.7 ± 9.4 

14 10/11/2018 0.9 0.5 1.4 22.3 21.0 40.0 9.5 12.1 ± 1.9 

15 10/11/2018 4.2 15.4 2.3 23.7 21.1 40.3 9.5 34.0 ± 25.0 

16 24/11/2018 1.3 2.4 0.0 29.2 25.9 39.9 3.1 13.6 ± 1.5 

17 28/11/2018 1.6 3.8 0.0 29.1 25.9 39.7 1.8 18.2 ± 7.7 

18 30/11/2018 1.3 6.7 1.8 28.0 26.3 39.9 2.6 20.4 ± 28.3 

19 01/12/2018 19.6 41.8 1.9 27.9 26.6 39.9 5.9 86.3 ± 27.0 

20 06/12/2018 1.0 4.8 9.4 28.2 29.1 40.0 7.8 11.4 ± 25.6 

21 13/04/2019 1.2 0.5 0.0 42.7 30.9 39.2 1.0 20.3 ± 1.2 

22 14/04/2019 3.0 9.0 1.2 42.7 30.9 39.3 1.0 37.4 ± 7.9 

23 17/04/2019 1.9 4.3 1.0 42.3 30.7 39.3 10.6 28.9 ± 1.9 

24 26/04/2019 4.2 9.3 2.7 38.7 30.4 39.8 9.0 48.6 ± 3.7 

25 27/04/2019 2.7 8.3 6.9 40.6 30.5 39.7 7.4 41.5 ± 4.9 

26 04/05/2019 9.1 4.8 0.0 40.8 30.3 39.7 3.1 58.2 ± 3.7 

27 08/05/2019 8.5 13.9 0.1 41.8 30.4 39.6 7.5 64.6 ± 2.1 

28 16/05/2019 3.4 13.2 0.0 44.5 34.5 39.7 7.4 41.0 ± 3.4 

29 28/05/2019 10.7 12.8 3.0 44.1 32.2 39.5 11.5 68.2 ± 3.8 

30 27/07/2019 0.5 2.8 0.0 24.9 30.3 37.8 21.2 26.5 ± 1.9 

31 30/07/2019 3.2 0.5 0.5 23.5 30.2 37.8 20.9 40.5 ± 2.7 

32 08/09/2019 26.5 25.3 0.4 18.1 30.1 38.2 11.7 87.6 ± 8.0 

33 23/09/2019 9.7 38.3 0.0 18.6 30.3 38.9 14.5 50.7 ± 4.3 

34 25/09/2019 1.3 6.4 9.7 25.9 30.3 39.4 14.1 13.1 ± 3.3 

35 26/09/2019 11.8 22.8 2.9 26.5 30.3 39.4 14.8 60.8 ± 6.5 

36 28/09/2019 1.3 3.9 12.8 30.8 30.4 39.5 14.0 3.7 ± 1.6 

37 01/10/2019 13.6 7.6 6.0 30.9 30.4 39.5 14.2 78.9 ± 3.8 

38 03/10/2019 0.9 0.7 15.3 32.0 30.5 39.6 8.5 7.6 ± 2.8 

39 08/10/2019 12.2 19.8 11.1 34.2 30.6 39.6 11.2 67.8 ± 4.6 

40 09/10/2019 3.0 1.8 20.9 37.1 31.1 39.6 10.1 22.6 ± 1.5 



Chapter 4 

90 

 

4 Deep learning for isotope hydrology: The application 

of Long Short-Term Memory (LSTM) to estimate high 

temporal resolution of the stable isotope 

concentrations in stream and groundwater 
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Abstract 

Recent advances in laser spectroscopy has made it feasible to measure stable isotopes of water in 

high temporal resolution (i.e., sub-daily). High-resolution data allow the identification of 

fine-scale, short-term transport and mixing processes that are not detectable at coarser resolutions. 

Despite such advantages, operational routine and long-term sampling of stream and groundwater 

sources in high temporal resolution is still far from being common. Methods that can be used to 

interpolate infrequently measured data at multiple sampling sites would be an important step 

forward. This study investigates the application of a Long Short-Term Memory (LSTM) deep 

learning model to predict complex and non-linear high-resolution (3 h) isotope concentrations of 

multiple stream and groundwater sources under different landuse and hillslope positions in the 

Schwingbach Environmental Observatory (SEO), Germany. The main objective of this study is to 

explore the prediction performance of an LSTM that is trained on multiple sites, with a set of 

explanatory data that are more straightforward and less expensive to measure compared to the 

stable isotopes of water. The explanatory data consist of meteorological data, catchment wetness 

conditions, and natural tracers (i.e., water temperature, pH and electrical conductivity). We analyse 

the model’s sensitivity to different input data and sequence lengths. To ensure an efficient model 
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performance, a Bayesian optimization approach is employed to optimize the hyperparameters of 

the LSTM. Our main finding is that the LSTM allows for predicting stable isotopes of stream and 

groundwater by using only short-term sequence (6 h) of measured water temperature, pH and 

electrical conductivity. The best performing LSTM achieved, on average of all sampling sites, an 

RMSE of 0.7‰, MAE of 0.4‰, R2 of 0.90 and NSE of 0.70.  The LSTM can be utilized to predict 

and interpolate the continuous isotope concentration time series either for data gap filling or in case 

where no continuous data acquisition is feasible. This is very valuable in practice because 

measurements of these tracers are still much cheaper than stable isotopes of water and can be 

continuously conducted with relatively minor maintenance. 

4.1 Introduction 

Catchment hydrological processes are complex and it is challenging to comprehend how the 

catchment responds to precipitation (Uhlenbrook et al., 2002; Zhou et al., 2021). Stable isotopes 

of water (δ2H and δ18O) have been widely employed as conservative natural tracers in catchment 

hydrology to shed light on the hydrological processes. Such tracers have proved to be valuable 

tools to investigate the origin and formation of recharged water, surface-groundwater interactions, 

mixing processes between various water sources, and differentiation of evaporation and 

evapotranspiration (Kendall and McDonnell, 2012; Orlowski et al., 2016). Particularly at the 

catchment scale, the stable isotopes of water have been used to differentiate runoff components via 

hydrograph separation techniques (Klaus and McDonnell, 2013), to estimate mean transit times 

(McGuire and McDonnell, 2006), to identify flow pathways (Tetzlaff et al., 2015), to explore 

groundwater recharge rates (Koeniger et al., 2016), to understand soil water mixing processes 

(Sprenger et al., 2016) and to improve hydrological model simulations (Windhorst et al., 2014).  

Recent advances in laser spectroscopy has made it feasible to measure stable isotopes in high 

temporal resolution (i.e., sub-daily) and in situ. High-resolution data allow the identification of 

fine-scale, short-term transport and mixing processes that are not detectable at coarser resolutions 

(Birkel et al., 2012). Previously, studies using sub-daily isotope data focused on single precipitation 

events (McGlynn et al., 2004; Wissmeier and Uhlenbrook, 2007; Berman et al., 2009). Whilst 

useful, they are still limited in providing insight into short-term response variability and mixing 

processes over a longer-term catchment behaviour. To overcome these limitations, a few research 
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groups recently developed automated systems for continuous monitoring of water isotopes directly 

in the field. Von Freyberg et al (2017) analysed isotopes of precipitation and stream water every 

30 min over 28 days to derive fractions of event water from hydrograph separation at eight 

precipitation events in the Erlenbach catchment, Switzerland. The result indicated that the 

high-resolution measurements allowed an in-depth comparison of event water fractions through 

endmember mixing analysis. Heinz et al. (2014) introduced the technical design of an automated 

system and reported a primary proof-of-concept to monitor isotopes of stream and groundwater in 

rice paddies in the Philippines. They concluded that the high-resolution measurements provided 

the foundation for insights into hydrological interactions that could not be studied previously, 

particularly with respect to spatially distributed sampling. Based on this setup, Mahindawansha et 

al. (2018) reported impact of seasons and crops on surface and groundwater isotope concentrations 

in these rice paddies. The result showed that groundwater isotopes reacted rapidly to irrigation 

under maize dry season, suggesting the process of preferential flow through deep roots and cracks. 

Quade et al. (2019) monitored soil water isotopic composition every 30 min during one growing 

season of sugar beet to partition evapotranspiration flux at the Selhausen agricultural research site, 

Germany. The comparison between non-destructive high-resolution and destructive coarser 

resolution sampling of soil water showed significant discrepancies between the isotopic 

compositions of evaporation led in turn to significant differences in evapotranspiration flux 

estimation. Sahraei et al. (2020) analysed isotopes of stream, groundwater and precipitation every 

20 min over approximately five months to investigate hydrological response behaviour and role of 

precipitation and antecedent wetness conditions in runoff generation in the Schwingbach 

Environmental Observatory (SEO), Germany. The result revealed that maximum event water 

fractions of stream and groundwater responded rapidly to precipitation events, indicating the fast 

delivery of water to the stream through shallow subsurface flow pathways.  

Despite the advantages of high-resolution water isotope data, the routine measurements are still far 

from being common. Long-term, high-resolution sampling of multiple sources are even less 

common despite the fact that such measurements are likely to provide new insight into hydrological 

processes and can help to constrain individual endmembers and flow pathways that contribute to 

runoff generation. Methods that can be used to interpolate infrequently measured data at multiple 

sampling sites would be an important step forward. Statistical time series methods such as simple 

exponential smoothing (SES), autoregressive (AR), moving average (MA) or autoregressive 
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integrated moving average (ARIMA) have been traditionally employed to predict time series 

problems. The main drawback of the statistical methods is that they assume that the series are 

derived from linear processes and hence they might be inadequate for water isotope time series that 

are non-linear (Zhang et al., 1998; Khashei et al., 2009). Another major limitation is that the 

statistical methods are local models, in which the free parameters are individually estimated for 

each time series. It means that it is not possible to share the learning over multiple time series to 

extract patterns that cannot be distinguished at an individual level (Calkoen et al., 2021). In 

contrast, machine learning provides a useful tool for the joint extraction of non-linear patterns form 

a collection of time series. The core idea is to predict isotope concentrations with a set of 

explanatory data that are more straightforward and less expensive to measure. If the machine 

learning algorithm is able to predict isotope concentrations from the explanatory data, data-driven 

interpolations of continuous isotope concentration time series can be acquired. 

Machine learning is a data-driven approach that aims to give computers the ability to automatically 

learn and extract patterns from data (Samuel, 1959; Goodfellow et al., 2016). Machine learning has 

been increasingly applied in hydrology and earth system science in recent years, owing to its 

capability to efficiently simulate highly non-linear and complex systems without any a priori 

knowledge of underlying physical processes. Extensive reviews have been released for the 

application of machine learning in water resources (Lange and Sippel, 2020; Zounemat-Kermani 

et al., 2020). Artificial Neural Network (ANN) is the most commonly used machine learning 

algorithm for the prediction of hydrological variables (Maier and Dandy, 2000; Maier et al., 2010). 

The main advantage of ANN models is that they are universal function approximators, meaning 

that they can automatically fit a wide range of functions with a high accuracy level (Khashei and 

Bijari, 2010). The other major advantage of ANNs is that they have an inherent generalization 

capability, meaning that they are able to recognize and respond to the patterns that are analogous, 

but not identical to those on which they have been trained (Benardos and Vosniakos, 2007). 

Nevertheless, a drawback of ANNs, which have primarily been employed for the analysis of time 

series in the past, is that any information about the sequence of input features is lost (Kratzert et 

al., 2018). Therefore, more advance machine learning models are required to efficiently handle 

these temporal dependencies.  

Deep learning is an advance sub-field of machine learning that has drawn significant attention 

recently. Deep learning generally refers to deep neural networks with multilayer structures that can 
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extract high-level representations from complex and high-dimensional data via a hierarchical 

learning process applying multiple non-linear transformations (Shen, 2018; Zuo et al., 2019). Long 

Short-Term Memory (LSTM) is the current state-of-the-art deep learning architecture that is widely 

adopted to simulate sequential data like time series (Gers et al., 2002). LSTM is a type of Recurrent 

Neural Network (RNN) that was originally developed by Hochreiter and Schmidhuber (1997). 

Unlike the traditional RNN networks, LSTM does not suffer from exploding and vanishing 

gradients, which allows the network to learn long-term dependencies (Hochreiter and 

Schmidhuber, 1997). This is beneficial to capture dynamics of catchment processes like storage 

effects, which may play an important role in hydrological processes (Kratzert et al., 2018). Fang et 

al. (2017) successfully applied LSTM for the first time in hydrological research to predict soil 

moisture using meteorological forcing data, static physiographic attributes and model-simulated 

moisture as inputs. They concluded that the LSTM generalizes well across regions with different 

climates and environmental conditions. Kratzert et al. (2018) used LSTM to model daily runoff 

using the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) data set 

over hundreds of catchments in the USA. The result demonstrated that the LSTM showed better 

prediction performance than traditional RNN due to its ability of learning and storing long-term 

dependencies. Zhang et al. (2018b) compared the performance of LSTM with that of a feed-forward 

ANN for the prediction of water table depths in agricultural areas in northwestern China. The result 

revealed that the LSTM outperformed the traditional feed-forward ANN. Liu et al. (2019) 

investigated the application of LSTM to predict water quality parameters such as turbidity, 

dissolved oxygen and chemical oxygen demand in China. They reported that the LSTM is a feasible 

and effective approach for water quality prediction.  

To the best of our knowledge, the potential of LSTM has not been investigated in the field of 

isotope hydrology yet; and in general, only few studies have explored the application of machine 

learning in this field. Cerar et al. (2018) compared the performance of multilayer feed-forward 

ANN network with that of ordinary kriging, simple and multiple linear regression for predicting 

the isotope composition (δ18O) of groundwater over several locations across Slovenia. They 

collected 83 groundwater samples from two campaigns, first in spring and second in autumn under 

base flow conditions. The result showed that feed-forward ANN achieved better performance than 

the other three models. Sahraei et al. (2021) investigated the potential of Support Vector Machine 

(SVM) and multilayer feed-forward ANN to predict maximum event water fractions of streamflow 
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in the Schwingbach Environmental Observatory (SEO), Germany. They found that the SVM 

outperformed the ANN model as it could better captured the dynamics of maximum event water 

fractions under distinct hydroclimatic conditions and flow regimes. 

For the first time in the field of isotope hydrology, we investigate the application of deep leaning 

to predict stable isotopes of water. We apply an LSTM to estimate complex and non-linear 

high-resolution isotope concentrations of multiple stream and groundwater sources under different 

land use and hillslope positions in the Schwingbach Environmental Observatory (SEO), Germany. 

We use an automated in situ mobile laboratory, the Water Analysis Trailer for Environmental 

Research (WATER), to sample and measure high-resolution (3 h) isotope concentrations in two 

stream reaches and three groundwater sources. Explanatory data comprise meteorological data, 

catchment wetness conditions, and natural tracers, i.e., water temperature, potential of hydrogen 

(pH) and electrical conductivity (EC) that are more straightforward and less expensive to measure 

compared to the stable isotopes of water. In particular, we report on: (1) how different combinations 

of input data affect the prediction accuracy of the LSTM; and (2) how short-, medium- and long-

term dependencies relate to the sequence length of input data in the LSTM.  

4.2 Materials and Methods 

4.2.1 Study area and data collection 

The study was carried out in the headwater catchment of the Schwingbach Environmental 

Observatory (SEO) in Hesse, Germany (Figure 4.1). The catchment area is 1.03 km2 with the 

elevation ranging from 310 m in the north to 415 m a.s.l. in the south (Figure 4.1a). The climate is 

categorized as temperate oceanic, with a mean annual precipitation of 623 mm and a mean annual 

air temperature of 9.6°C (Deutscher Wetterdienst, Giessen-Wettenberg station, period 1969-2019). 

76% of catchment area is covered by forest that is mostly located in the east and south, 15% by 

farmland in the north and west and 7% by meadows alongside the stream (Figure 4.1b). The soil is 

categorized as Cambisol, covered mainly by forests and Stagnosols under farmland. The soil 

texture is predominantly consists of silt and fine sand with a low clay content. Further details can 

be found in Orlowski et al. (2016). 
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An automated climate station (AQ5, Campbell Scientific Inc., Shepshed, UK) equipped with a 

CR1000 data logger recorded precipitation depth, air temperature, relative humidity, air pressure, 

solar radiation and wind speed at 5 min intervals (Figure 4.1c). Six remote-controlled data loggers 

(A753, Adcon, Klosterneuburg, Austria), three at the toeslope (SM1, SM2 and SM3) and three at 

the footslope (SM4, SM5 and SM6), were connected to sensors (ECH2O 5TE, METER 

Environment, Pullman, USA) to automatically monitor soil moisture at 5 and 15 cm depths at 5 

min intervals. A stream gauge (RBC flume, Eijkelkamp Agrisearch Equipment, Giesbeek, 

Netherlands) equipped with a pressure transducer (Mini-Diver, Eigenbrodt Inc., Königsmoor, 

Germany) automatically measured water levels at the outlet (SW2) of the catchment at 10 min 

intervals. The transducer measurements were calibrated against manual readings and continuous 

stream discharge was obtained via the calibrated stage-discharge relationship provided by the 

manufacturer. 

An automated mobile laboratory, the Water Analysis Trailer for the Environmental Research 

(WATER), was used to automatically sample and analyse the stable isotopes of water (δ2H and 

δ18O), water temperature, potential of hydrogen (pH) and electrical conductivity (EC) for multiple 

water sources in situ from August 8th until December 9th in 2018 and from April 12th until October 

10th in 2019. The WATER was equipped with a continuous water sampler (CWS) (A0217, Picarro 

Inc., Santa Clara, USA), coupled to a wavelength-scanned cavity ring-down spectrometer (WS-

CRDS) (L2130-i, Picarro Inc., Santa Clara, USA) to analyse the isotopic composition of sampled 

water. Isotopic ratios are reported in per mill (‰) deviations from the Vienna Standard Mean Ocean 

Water (VSMOW). We only used δ2H time series in the LSTM modelling, as δ18O had a similar 

variation but lower precision (precision 0.23‰ for δ18O and 0.57‰ for δ2H). The high-resolution 

δ2H data were verified with water samples that were manually collected from the sampling sites on 

a weekly basis. A multi-parameter water quality probe (YSI600R, YSI Inc., Yellow Springs, USA) 

was installed on the sampling board of the WATER to measure temperature, pH and EC of sampled 

water. For a detailed description of the WATER and the sampling setup refer to Sahraei et al. 

(2020). 

We measured the stable isotope composition (δ2H), water temperature, pH and EC of two stream 

water reaches (SW1 and SW2) and three groundwater sources (GW1, GW2 and GW3) (Figure 

4.1c). SW1 was sampled approximately 145 m upstream of the WATER at the edge of farmland 

and SW2 was sampled at the outlet of the catchment next to the WATER. Groundwater was 
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sampled from piezometers made from perforated PVC tubes sealed in the upper part with bentonite 

clay to prevent contamination by surface water. The piezometers of GW1 and GW2 were located 

at the toeslope on the farmland and meadow, respectively. The piezometer of GW3 was located at 

the footslope at the edge of the forest. The sampling schedule of the WATER allowed measuring 

isotopic composition, water temperature, pH and EC for each of the stream water reaches at 

1.5-hour and for each of the groundwater sources at 3-hour intervals. 

 

Figure 4.1 (a) Schwingbach Environmental Observatory (SEO), (b) Study area in the Schwingbach 

headwater and (c) Measuring network along the stream reach of the Schwingbach headwater.  
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4.2.2 Data pre-processing 

As the input features for our LSTM model, we selected a set of explanatory data that are more 

straightforward and less expensive to measure compared to the stable isotopes of water. The input 

features were categorized into meteorological, catchment wetness and natural tracer variables 

(Table 4.1). Our collected data set contained different sampling frequencies. To obtain a uniform 

frequency, which matches the frequency of the output variable, we aggregated all of the observed 

data to 3-hour intervals by averaging, except the precipitation, which was aggregated to 3-hour 

intervals by summing up. The winter period (10th December 2018-11th April 2019) was excluded 

from the data set because the WATER did not sample during this period due to the freezing weather 

conditions. When gaps occurred over small timescales due to faulty sensors or equipment 

maintenance, we used linear interpolation to estimate the missing values. The proportions of 

observations, which were gap filled through linear interpolation, accounted for at most 3% (73 

observations) of total length of the time series for each of the features. We split the observations of 

all the features into train (70%, 1700 observations), validation (15%, 365 observations) and test 

(15%, 365 observations) sets, while maintaining the temporal order of the observations. The train 

set was used to learn the internal parameters (i.e., weights and bias) of the model. The validation 

set was used to optimize the hyperparameter, and the test set was used to evaluate the generalization 

capability of the model. To stabilize the learning process and to speed up the convergence, the data 

needs to be normalized before feeding to the model. For this, the train set was normalized to be in 

the range [0-1]. The validation and test sets were normalized using the parameters obtained from 

the train set normalization to avoid data leakage (Hastie et al., 2009). 
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Table 4.1 Input and output features. The input features are categorized into meteorological, catchment 

wetness and natural tracer variables. The output feature is isotope composition (δ2H) at SW1, SW2, GW1, 

GW2 and GW3 sampling sites. 

Input features Symbol Unit 

Meteorological data   

Precipitation P mm 

Air temperature Ta °C 

Relative humidity RH % 

Air pressure PR hPa 

Solar radiation SR W m-2 

Wind speed WS m s-1 

Catchment wetness   

Stream discharge Q l s-1 

Soil moisture at 5 cm depth SM5 % 

Soil moisture at 15 cm depth SM15 % 

Natural tracers   

Temperature Tw °C 

Potential of hydrogen pH - 

Electrical conductivity EC µS cm-1 

Output feature   

Isotopic composition of water δ2H ‰ 

 

4.2.3 Long Short-Term Memory (LSTM) model  

The LSTM is a type of a Recurrent Neural Network (RNN) that is capable of learning long-term 

dependencies by overcoming the exploding and vanishing gradient problems of traditional RNN 

networks (Hochreiter and Schmidhuber, 1997). The main characteristics of the LSTM are the 

specially designed units so called memory cell and gates. The memory cell consists of forget, input 

and output gates that together control the flow of information within the LSTM network. The 

structure of the LSTM memory cell and the algorithms in the cell are shown in Figure 4.2. The 

memory cell contains a specific status for each time step, the so-called cell state 𝑐, which contains 

the information for long-term memory. The forget gate controls which information is removed 

from the cell state. The input gate defines which information is updated to the cell state and the 
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output gate specifies which information is used from the cell state. Suppose a sequence of inputs 

𝑥 = [𝑥1, . . . , 𝑥𝑇] with 𝑇 time steps, where each element 𝑥𝑡 is a vector that contains input at time 

step (1 ≤ 𝑡 ≤ 𝑇), the process within the LSTM cell is represented with the Equations (4.1-4.6). 

The LSTM cell updates six parameters at each time step. The first parameter is the forget gate 

parameter 𝑓𝑡 that decides how much of the information from the previous cell state 𝑐𝑡−1 needs to 

be forgotten by a sigmoid function (𝜎) with a linear calculation of the current input 𝑥𝑡 and the 

previous output ℎ𝑡−1. 𝑊’s and 𝑏’s with different subscripts represent the gate-specific network 

weights and bias parameters for the linear calculations. The second parameter is the input gate 

parameter 𝑖𝑡 that controls which new information is updated to the cell state by the sigmoid function 

with a linear relation on 𝑥𝑡 and ℎ𝑡−1 as well. The new cell state candidate 𝑐𝑡
′ is calculated by a 

hyperbolic tangent function (𝑡𝑎𝑛ℎ) with a linear relation on 𝑥𝑡 and ℎ𝑡−1. The cell state 𝑐𝑡 is then 

updated through an element-wise multiplication ⨀ operator. In the end, the output parameter 𝑜𝑡 is 

calculated by the sigmoid function with a linear relation on 𝑥𝑡 and ℎ𝑡−1. The final output at the 

current time step ℎ𝑡 is the production of 𝑜𝑡 and the 𝑡𝑎𝑛ℎ function value of the cell state 𝑐𝑡. 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4.1) 

 

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4.2) 

 

 𝑐𝑡
′ = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4.3) 

 

 𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑐𝑡
′ (4.4) 

 

 𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4.5) 

 

 ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ(𝑐𝑡) (4.6) 
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Figure 4.2 The architecture of LSTM memory cell. 

4.2.4 Hyperparameter optimization 

The majority of machine learning algorithms possess several settings that control the entire learning 

process (Goodfellow et al., 2016). These settings are referred to as hyperparameters. The 

hyperparameters are exterior to the model and need to be set before the learning process (Géron, 

2019). The performance and computational complexity of LSTM models strongly depend on the 

set of hyperparameters that determine many aspects of the algorithm’s behaviour (Nakisa et al., 

2018). Therefore, it is essential to optimize hyperparameters to boost the LSTM performance. In 

this study, we used a Sequential Model-Based Optimization (SMBO) search with the 

Tree-structured Parzen Estimator (TPE) algorithm, a Bayesian optimization approach (Bergstra et 

al., 2011). Bayesian optimization is a very effective optimization algorithm that has been shown to 

outperform well-established methods i.e., grid and random search (Bergstra et al., 2013; 

Eggensperger et al., 2013). It develops a statistical model between the hyperparameters and the 

objective function and makes the assumption that there is a smooth but noisy function that maps 

between the hyperparameters and the objective function (Reimers and Gurevych, 2017). Given the 

search history of hyperparameters and objective function, SMBO-TPE suggests hyperparameters 

for the next trial that are expected to improve the objective function. As the number of trials grows, 

the search history expands and eventually the hyperparameters become optimized. In this study, 
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we optimized the number of hidden units (i.e., neurons), dropout rate, learning rate, number of 

epochs and batch size (Table 4.2). We ran the optimization evaluation for 1,000 trials through the 

search space of the hyperparameters to minimize mean squared error (MSE) on the validation set. 

The complete set of optimized hyperparameters can be found in Table S 4.1 in the supplementary 

material.  

Table 4.2 Hyperparameter set for the LSTM model. 

Hyperparameter Choices 

Number of hidden units 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 

Learning rate 0.00001, 0.0001, 0.001, 0.01, 0.1 

Number of epochs 2, 3, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 

Batch size 32, 64, 128, 256 

 

4.2.5 LSTM model setup 

The architecture that we used in this study consists of an input layer with as many neurons as input 

features, one LSTM layer, a dropout layer and a fully connected dense layer with a single unit for 

the output feature. We used the Adam optimizer for the optimization of the learning process 

(Kingma and Ba, 2014) and tanh and sigmoid functions as state and gate activation functions, 

respectively. We ran the LSTM model in a sequence-to-one mode so that an input sequence of a 

fixed length was used to predict a δ2H value at the next time step. The sequence length, i.e., the 

look-back window, is the length of past input observations that the LSTM looks back to predict an 

output for the next time step.  

The performance of deep learning models improves by making more training data available 

(Schmidhuber, 2015). Building a single LSTM model that is trained and optimized on all of the 

sampling sites instead of training and optimizing a separate LSTM model for each of the sampling 

sites, allows the network to learn more general and abstract patterns of the input-output relationship 

(Kratzert et al., 2018). We therefore built a single LSTM model to predict the δ2H values at SW1, 

SW2, GW1, GW2 and GW3 sampling sites. The LSTM was simultaneously trained on train sets 

of all sampling sites to learn the internal parameters of the model. It simultaneously used validation 
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sets of all the sampling sites to optimize the hyperparameters and predict the δ2H values on each 

test set of the sampling sites to estimate the generalization capability of the model. 

4.2.6 LSTM model sensitivity to input features and sequence length  

We examined how different combinations of input features affect the prediction performance of 

the LSTM model. It allows us to identify which combinations give us the most accurate predictions 

of isotope concentrations in the stream and groundwater sampling sites. We tested seven different 

input feature scenarios shown in Table 4.3. The first three scenarios (S1, S2 and S3) investigate the 

effect of meteorological data, catchment wetness conditions and natural tracers on the prediction 

performance separately. S4, S5 and S6 test the prediction performance when we combine the first 

three scenarios together and S7 examines the predication performance when we use all of the input 

features for training of the LSTM. We also used the labels of the sampling sites as input features 

in all of the seven scenarios. By using the labels of sampling sites as input features, we allow the 

model to know on which site it trains and hence it produces a unique output for each individual 

site. This is especially beneficial when using the meteorological data as input features. Since the 

meteorological data is the same for all sites, the model would otherwise produce the same outputs 

for them if we do not consider their labels as input features. We used one-hot encoding technique 

to encode the site labels to the numeric features (Heaton, 2015). This technique creates unique 

binary columns for each of the labels so that SW1, SW2, GW1, GW2 and GW3 labels are encoded 

to [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] and [0, 0, 0, 0], respectively. Moreover, we used 

the month of the year of the measurements’ time stamp as an input feature in all seven scenarios to 

represent the inherent seasonality of the data. 

We also examined the effect of the sequence length of input data on the prediction performance of 

our LSTM model. The sequence length is intrinsically connected to the underlying physical 

processes driving the dynamics of output variables (Duan et al., 2020). A proper sequence length 

should be large enough to incorporate all historical information relevant to the prediction of the 

isotopic compositions. However, too large sequence lengths increase the model complexity and 

training time that can in turn reduce the performance (Duan et al., 2020). Some previous studies 

have set the sequence length to an arbitrary number (Zhang et al., 2018a; Le et al., 2019; Tennant 

et al., 2020), whereas some other studies have reported that the sequence length affects the model 

performance (Fan et al., 2020; Meyal et al., 2020; Xiang et al., 2020). We therefore investigated 
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the LSTM sensitivity to the sequence length. We defined nine different sequence lengths into three 

categories to represent short-, medium- and long-term dependencies. We tested sequence lengths 

of 6, 12 and 24 hours for short-term, 72 (3), 168 (7) and 336 (14) hours (days) for medium-term 

and 720 (30), 1,440 (60) and 2,160 (90) hours (days) for long-term dependencies. We examined all 

of these nine sequence lengths for each of the seven input feature scenarios resulting in 63 different 

scenarios for the sensitivity analysis. We trained the LSTM model and optimized its 

hyperparameters for each of these scenarios separately to ensure a fair comparison between them. 

Table 4.3 Input feature scenarios for the LSTM model. 

Scenario label Input features 

S1 Meteorological data 

S2 Catchment wetness 

S3 Natural tracers 

S4 Meteorological data, Catchment wetness 

S5 Meteorological data, Natural tracers 

S6 Catchment wetness, Natural tracers 

S7 Meteorological data, Catchment wetness, Natural tracers 

Note: Month of the year and label of sampling sites are used as input features in all of seven scenarios. 

4.2.7 Evaluation metrics 

We evaluated the prediction performance of the LSTM model using four statistical metrics 

(goodness-of-fit criteria). We used root mean squared error (RMSE), mean absolute error (MAE), 

coefficient of determination (R2) and Nash-Sutcliffe efficiency (NSE) according to Equations 

(4.7-4.10). 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑂𝑖 − 𝑃𝑖)2

𝑁

𝑖=1

 (4.7) 
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𝑁
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 (4.8) 
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where 𝑁 is the number of observations, 𝑂𝑖 is the observed value, 𝑃𝑖 is the predicted value, 𝑂 is the 

mean of observed values and 𝑃 is the mean of predicted values. RMSE and MAE describe the 

average deviation of predicted from observed values with smaller values indicating a better 

performance. R2 is a good indicator for the temporal correspondence between predicted and 

observed values ranging between [0 to 1], with higher values indicating stronger correlations. NSE 

evaluates the model ability to predict values different from the mean and gives the proportion of 

the initial variance accounted for by the model (Nash and Sutcliffe, 1970). The NSE is a preferred 

criterion in many hydrological studies as it particularly describes a model’s capability of matching 

higher values, extremes and outliers. NSE ranges between [-∞ to 1]. The closer the NSE value is 

to 1, the better is the agreement between predicted and observed values. A negative value of the 

NSE indicates that the mean of observed values is a better predictor than the proposed model. 

According to Moriasi et al. (2007), model performance can be evaluated as: very good 

(0.75 < NSE ≤ 1.00), good (0.65 < NSE ≤ 0.75), satisfactory (0.50 < NSE ≤ 0.65) and 

unsatisfactory (NSE ≤ 0.50). 

4.2.8 Setup of numerical experiments 

We conducted the numerical experiments with Python 3.7 programming environment (van 

Rossum, 1995) on Ubuntu 20.04 with AMD EPYC 745-core processor, 125 GB of random access 

memory (RAM) and NVIDIA GTX 1050 Ti graphical processing unit (GPU). The LSTM model 

was built with Keras 2.3.1 deep learning framework (Chollet, 2015) on top of TensorFlow backend 

2.0 (Abadi et al., 2016). Hyperopt 0.2.5 (Bergstra et al., 2013) and Hyperas 0.4.1 (Pumperla, 2019) 

libraries were used to implement hyperparameter optimization. Scikit-Learn 0.22.2 (Pedregosa et 

al., 2011), Numpy 1.18.1 (Van Der Walt et al., 2011), Pandas 1.0.1 (McKinney, 2010) and Scipy 

1.4.1 (Virtanen et al., 2020) libraries were used for pre-processing and data management. The 
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Matplotlib 3.1.3 (Hunter, 2007) and Seaborn 0.9.1 (Waskom et al., 2020) libraries were used for 

the data visualization. 

4.3 Results and Discussion 

4.3.1 Temporal dynamics 

In the following, we briefly describe the dynamics of the observed data over the sampling period 

(Figure 4.3-4.6). During the sampling period of 2018, precipitation is very low with respect to the 

long-term historical record (Deutscher Wetterdienst, Giessen-Wettenberg station, period 

1969-2019, mean annual precipitation of 623 mm), with a total annual precipitation of 452 mm 

(Figure 4.3), stating the unusual dry conditions in 2018 (Vogel et al., 2019). More precipitation is 

observed during the sampling period of 2019 with an annual sum of 624 mm. Air temperature, 

relative humidity, air pressure, solar radiation and wind speed show strong diurnal fluctuations 

during the sampling period (Figure 4.3). However, during the precipitation periods, these 

fluctuations tend to decrease particularly in case of air temperature and relative humidity, and tend 

to increase in case of wind speed. Air temperature, relative humidity and solar radiation represent 

seasonal trends, whereas air pressure and wind speed do not depict a clear trend during the sampling 

period. 

Stream discharge and soil moisture reflect the drought of 2018 with only few small peaks during 

the precipitation periods (Figure 4.4). The catchment wetness increases in 2019 and stream 

discharge as well as soil moisture react similarly to precipitation inputs. Soil moisture of shallower 

depth (i.e., 5 cm) generally shows more clear responses to precipitation than at deeper depths (i.e., 

15 cm) at all soil moisture stations. This response is more pronounced in the meadow (SM2, SM3 

and SM6) than in the farmland (SM1 and SM4). However, soil moisture of deeper depths in the 

farmland generally reveal a higher responsiveness to rainfall than equivalent depths in the meadow. 

The shallower depths of SM2 and SM3 at the toeslope depict a similar reaction pattern to SM6 in 

footslope suggesting the extension of linkage between toeslope and footslope during precipitation 

events. On average, SM1 and SM3 show the lowest (8 ± 4.3%, mean ± standard deviation, for 5 

cm depth, 14 ± 4.6% for 15 cm depth) and highest (29.4 ± 11%, 24.3 ± 6.8%) soil moisture among 

the SM stations, respectively.  
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Figure 4.5 displays that stream water temperature strongly matches the diurnal fluctuations of air 

temperature, whereas the groundwater temperature follows the overall long-term pattern of air 

temperature without any high-temporal fluctuations. SW1 and SW2 exhibit similar temperature 

patterns with means of 11.8 ± 2.7 °C and 11.7 ± 2.7 °C over the sampling period, respectively. 

However, groundwater temperatures at the sampling sites slightly differs from each other with the 

mean of 11.3 ± 1.8 °C, 13.0 ± 2.1 °C and 12.3 ± 1.8 °C for GW1, GW2 and GW3, respectively. 

The patterns of pH dynamics in stream and groundwater sources are almost identical over the 

sampling period (Figure 4.5). The pH shows an increasing trend while the air temperature decreases 

in 2018 and then remains almost stable in 2019 with some fluctuations. The EC of stream and 

groundwater is highly responsive to precipitation inputs (Figure 4.5). Rapid reductions of EC are 

observed upon in the course of precipitation events that are followed by a fast recovery. The EC of 

stream as well as groundwater is relatively high in 2018, followed by a smooth decline towards the 

end of the sampling period. The EC of SW1 (336.9 ± 59.3 µS cm-1) is slightly higher than that of 

SW2 (325.5 ± 58.3 µS cm-1), whereas the difference between the EC of groundwater sampling sites 

is higher with means of 228.7 ± 61.2 µS cm-1, 321.9 ± 59.9 µS cm-1 and 239.3 ± 50 µS cm-1 for 

GW1, GW2 and GW3, respectively.  

Figure 4.6 presents the high temporal resolution of δ2H at the stream and groundwater sampling 

sites. The δ2H of stream and groundwater responds promptly to precipitation, and is strongly 

synchronized with the response patterns of EC. These rapid isotopic responses in stream as well as 

groundwater indicate the strong linkage between stream and subsurface flow pathways during the 

precipitation events (Sahraei et al., 2020). The δ2H values are lighter with stronger diurnal 

variations in 2018 compared to those during sampling period of 2019. Seasonal variations are 

observed during the sampling period with heavier δ2H values in May-June and lighter in 

November-December. Figure 4.7 shows the distribution of the isotopic compositions in the stream 

and groundwater sources over the sampling period. Both stream sampling sites indicate similar 

variations for δ2H. The mean values of δ2H for SW1 and SW2 are -60.7 ± 2.7‰ and -60.6 ± 2.5‰, 

respectively. However, the variations of δ2H tend to increase from GW1 to GW3. On average, 

GW1 (-60.1 ± 2.1‰) and GW2 (-60 ± 1.9‰) at the toeslope depict slightly heavier mean δ2H 

values compared to GW3 at the footslope (60.5 ± 2.6‰).  
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Figure 4.3 Time series of meteorological data. From the top, we report precipitation, air temperature, 

relative humidity, air pressure, solar radiation and wind speed.  
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Figure 4.4 Time series of catchment wetness conditions. From the top, we report precipitation, discharge 

and soil moisture at SM1, SM2, SM3, SM4, SM5 and SM6 stations. 
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Figure 4.5 Time series of natural tracers at stream and groundwater sampling sites. From the top, we report 

precipitation, water temperature, pH and electrical conductivity (EC) at stream and groundwater sampling 

sites. 
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Figure 4.6 Time series of precipitation and stable isotope concentrations at stream and groundwater 

sampling sites. From the top, we report, precipitation and δ2H values at stream and groundwater sampling 

sites. 
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Figure 4.7 Boxplots of the isotopic compositions at stream and groundwater sampling sites. The average is 

indicated by a black square and the median by the bar separating a box. 

4.3.2 LSTM model sensitivity to input features and sequence length  

We investigated the impact of input features and sequence length on the prediction performance of 

the optimized LSTM model. Figure 4.8 shows the heatmaps of the prediction performance using 

four statistical metrics for the combination of seven input feature scenarios and nine sequence 

lengths at the stream and groundwater sampling sites (SW1, SW2, GW1, GW2 and GW3). It is 

apparent that using the meteorological data (scenario S1) and catchment wetness conditions 

(scenario S2) alone as the input features does not lead to a good prediction performance. Although 

using meteorological and catchment wetness data together (scenario S4) slightly decreases 

prediction errors for some cases, yet the performance is not satisfying. For these scenarios, the NSE 

values are mainly near to zero and even negative. This emphasizes that the model is not able to 

predict the peak values properly. It suggests that the relations of meteorological data and catchment 

wetness variables with the water isotope concentrations are not strong enough to transfer enough 

information that is required for an adequate learning of the LSTM to predict peak values of isotope 

concentrations. 
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Figure 4.8 Heatmaps of the prediction performance using four statistical metrics for the combination of 

seven input feature scenarios and nine sequence lengths at stream and groundwater sampling sites. The dark 

blue indicates good prediction performance (low values of RMSE and MAE and high values of R2 and 

NSE), whereas the light blue indicates poor prediction performance (high values of RMSE and MAE and 

low values of R2 and NSE). 
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In contrast, using the natural tracers (scenario S3), i.e., water temperature, pH and EC of the 

sampling sites, as the input features achieves good prediction performance. It indicates that these 

easy-to-measure tracers are able to indirectly simulate complex interactions between controlling 

drivers and water isotope concentrations in the Schwingbach catchment. With a closer look to the 

prediction errors across the sequence lengths of this scenario, we can see that the model performs 

the best at all of the sampling sites when we use short sequence lengths (6 and 12 h). This implies 

that the most recent input data contain the most relevant information for the prediction of isotope 

concentrations and that there is no significant benefit using older input data. This behaviour can 

also be noticed for the prediction of peak values, which is measured by NSE metric. The NSE 

values are higher for shorter sequence lengths indicating that the model can better predict the 

reaction of isotope signatures during precipitation events by using the recent input data. This can 

be associated to the rapid response characteristics of the Schwingbach catchment (Orlowski et al., 

2014, 2016; Sahraei et al., 2020). The responses of isotopes in stream and groundwater during 

precipitation events often reveal a rapid mixing of water at the sampling sites with the event water. 

It takes, on average, 6 h for stream water and 7 h to 8 h for groundwater at the toeslope (GW1 and 

GW2) and footslope (GW3), respectively, that the isotope signatures reach peak values. After that, 

they immediately return to pre-event water conditions (Sahraei et al., 2020). This short-term 

response behaviour together with the synchronized behaviour of isotopic compositions with 

electrical conductivity makes it sufficient for the model to extract the dynamics of isotopic 

compositions. In contrast, the model performance declines when we use medium and long sequence 

lengths. This is possibly due to the noise generated by irrelevant inputs (Xiang et al., 2020).  

We combined the natural tracers with meteorological and catchment wetness variables (scenarios 

S5 and S6) to test if this boosts the prediction performance of the LSTM model. Comparing 

scenario S3 with S5, we can see that the LSTM still performs better at scenario S3 when using 

short sequence lengths. However, the model tends to perform better at scenario S5 for medium and 

long sequence lengths. Similarly, the inclusion of catchment wetness (scenario S6) provides some 

improvements in the model performance for medium and long sequence lengths. The physical 

explanation underlying the improved performance of the model when we provide longer historical 

meteorological and catchment wetness information, may be related to the climatological and 

storage characteristic of the catchment. It could well be that long-term dependencies exist between 

the dynamics of isotope concentrations and climatic conditions as well as soil water content of the 
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catchment. The ability of the LSTM to learn and remember the long-term dependencies provides 

the opportunity to identify such storage effects within the catchments (Kratzert et al., 2018, 2019). 

A comparison between prediction errors of scenario S5 and S6 indicates that the model generally 

performs better at scenario S5. This suggests that the meteorological condition has a higher impact 

on the dynamic of isotope concentrations compared to the soil moisture state in the catchment, 

which is in line with the previous findings in the Schwingbach catchment (Orlowski et al., 2014; 

Sahraei et al., 2020). 

We also tested the prediction performance for all meteorological, catchment wetness and natural 

tracer variables as input features (scenario S7). In general, the model performance does not improve 

remarkably and it even deteriorates in some cases compared to performance of model at scenario 

S3, S5 and S6. The inclusion of too many input features increases the model complexity. Using too 

complex models augments the chance of overfitting (Maier et al., 2010). Overfitting arises when 

the model learns the details and noises in the training data to an extent that it is unable to generalize 

to new data. 

4.3.3 Visualization of the LSTM prediction performance 

We built a single LSTM model to predict the high-resolution δ2H values at SW1, SW2, GW1, GW2 

and GW3 sampling sites in the Schwingbach catchment. Ideally, we do not want to train and 

optimize the model specifically for each sampling site to achieve the best performance, but rather, 

we intend to train and optimize the model once for all of the sampling sites using only one specific 

input feature scenario and sequence length. Therefore, we trained and optimized the model with 

the input feature scenario and sequence length, at which the model performs on average the best 

for all of the sampling sites. According to the results presented in Figure 4.8, LSTM achieves the 

best performance when measurements of the last 6 h of water temperature, pH and EC are used as 

input features (scenario S3). It achieves, on average of all sampling sites, an RMSE of 0.7‰, MAE 

of 0.4‰, R2 of 0.90, and NSE of 0.70.  

In the following, we visualize the prediction performance of the best LSTM model on the test sets 

to better illustrate its generalization ability on the unseen data. Figures 4.9-4.10 show the 

performance of the LSTM using a sequence length of 6 h for scenario S3 at SW1 and GW3 

sampling sites, respectively. The LSTM captures the timing of hydrologic events and base flow 

conditions of δ2H at stream and groundwater sites quite well, but it still underestimates the peak of 
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the hydrograph. This is a commonly known issue with LSTMs and in general, ANN models that 

they cannot learn adequately the phenomenon in respect of extremes. The major reason that the 

LSTM may not be able to capture extreme values is the lack of a large number of extremes in the 

training data (Adnan et al., 2019). The other major reason could be the fact that the range of extreme 

values in the training data is smaller than those of the validation and test data (Adnan et al., 2019; 

Malik et al., 2020). This results in difficulties for extrapolation in ANN models (Kisi and Aytek, 

2013; Kisi and Parmar, 2016). Several scholars have also reported this limitation in the 

implementation of the LSTM in previous studies (Kratzert et al., 2018; Chen et al., 2020; Fan et 

al., 2020; Müller et al., 2020; Xiang et al., 2020). The prediction performances of the best LSTM 

at SW2, GW1 and GW2 sampling sites are provided in the supplementary material (Figures 

S 4.1-4.3). The development of the LSTM model assumed stable boundary conditions with regard 

to land use and cover. Changes of these during the study period have not been taking place in the 

SEO. However, such changes could be part of long-term simulations in the LSTM model if 

information were available on this. 

 

Figure 4.9 Comparison of observed and predicted δ2H values by the best LSTM using a sequence length 

of 6 h for water temperature, pH and electrical conductivity measurements (scenario S3-6 h) with an RMSE 

of 0.9‰, MAE of 0.5‰, R2 of 0.9 and NSE of 0.6 at SW1 site. 
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Figure 4.10 Comparison of observed and predicted δ2H values by the best LSTM using a sequence length 

of 6 h for water temperature, pH and electrical conductivity measurements (scenario S3-6 h) with an RMSE 

of 0.4‰, MAE of 0.3‰, R2 of 0.7 and NSE of 0.7 at GW3 site. 

The power of LSTM as a deep learning model is that it can synthesize information from multiple 

sampling sites and situations into a single model. An LSTM trained on multiple sites under different 

landuse and hillslope conditions can learn different patterns of isotopic behaviour. It is evident 

from Figures 4.9-4.10 and Figures S 4.1-4.3 that the LSTM performs efficiently at the stream as 

well as groundwater sites. Since we trained a single LSTM on stream and groundwater sites with 

different landuse and hillslope positions with a range of different isotope concentrations and 

magnitudes of response to precipitation events, the LSTM tends to balance the error so that it 

minimizes the error between predicted and observed isotope concentrations for all of the sampling 

sites at the same time. The trained LSTM can be used to spatially estimate the isotope 

concentrations for multiple sites across the catchment with only simple-to-measure tracers. This 

leads not only to a substantial reduction of the cost of measurements, but also to an increase in the 

spatiotemporal knowledge of hydrological processes in the catchment. 

One of the challenging tasks in hydrology is the spatial transferability of the models, particularly 

to data-scarce catchments. Most of hydrological models need to be rebuilt from scratch using newly 

collected data when the distribution of data is changed in the feature space. However, collecting 

adequate data is still challenging in many catchments due to the time consuming and expensive 
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measurement procedures. “Transfer learning” is a powerful technique of deep learning that reduces 

the need and effort to collect the data in data-scarce catchments. Transfer learning is a method that 

transfers the knowledge obtained in the source domain to the target domain when the latter has few 

data (Pan and Yang, 2010). Generally, if the deep learning model exhibits satisfying performance 

in the source catchment, it can be then generalized to target catchments and achieve good prediction 

performances without much additional data. The transfer learning is efficient in the LSTM because 

the hidden layers that have been trained to digest shape information, are still effective even when 

applied to data-scarce catchments (Shen, 2018). In order to apply the proposed LSTM to another 

catchment, the last fully connected layers are trained on the new data with initial random weights 

(Yosinski et al., 2014). Although the data is different from the one on which the model is already 

trained, the low-level features are similar. Therefore, transferring parameters from the “pre-trained 

LSTM” can provide the new target model with powerful feature extraction ability and reduce the 

data demand as well as computation or monitoring costs. 

The prediction performance of LSTM and in general deep learning models could be enhanced when 

having more training data available (Schmidhuber, 2015). Providing longer historical data from 

multiple years for the training process in future research may allow the model to capture long-term 

seasonal trends under various flow regimes and hydroclimatic conditions, and hence extract more 

related information that can effectively reproduce the dynamic of the isotope concentrations. It will 

be particularly interesting to investigate how extreme weather events impact on the LSTM 

outcome. For the future, we might be able to test this given the current rather wet weather patterns 

of 2021, which are substantially different to the study period of our current work, which considers 

rather dry weather conditions from 2018 and 2019. 

4.4 Conclusion 

This study investigates the application of Long Short-Term Memory (LSTM) deep learning model 

to predict high-resolution (3 h) isotope concentrations of multiple stream and groundwater sources 

under different landuse and hillslope positions in the Schwingbach Environmental Observatory 

(SEO), Germany. The core objective of this study is to explore the prediction performance of an 

LSTM that is trained on multiple sites, with a set of explanatory data that are more straightforward 

and less expensive to measure compared to the stable isotopes of water. The explanatory data 
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consist of meteorological data, catchment wetness conditions and natural tracers (i.e., water 

temperature, pH and electrical conductivity). This study further conducts a sensitivity analysis to 

examine how different input features and their sequence lengths affect the performance of the 

LSTM. The ability of the LSTM that inherently considers the impact of environmental factors such 

as evaporation and evapotranspiration on fractionation of water isotopes without an explicit 

representation of the underlying processes provides the opportunity to efficiently apply the 

proposed model to isotope hydrology. The result showed that the LSTM could successfully predict 

stable isotopes of stream and groundwater sites when using only short-term sequence (6 h) of 

measured water temperature, pH and electrical conductivity. The LSTM prediction can be utilized 

to predict and interpolate the continuous isotope concentration time series either for data gap filling 

or in case where no continuous data acquisition is feasible. This is very valuable in practice because 

measurements of these tracers are still much cheaper than stable isotopes of water and can be 

continuously carried out with relatively minor maintenance.  

For the future research, we will be collecting more data to enhance the prediction performance of 

the LSTM. There is still room to capture the peak isotope concentrations better. New input features 

like groundwater table should be used to potentially improve the model performance in the future. 

The data-hungry nature of deep learning models is a potential barrier for applying them in data-

scarce catchments. Since many catchments of potential application may lack the length of the data 

available in this work, the sensitivity of prediction performance to the length of the training data 

warrants further investigation. The use of pre-trained LSTM is a promising approach to mitigate 

the large demand for data in a single catchment. The future research direction also includes 

applying the LSTM to predict high-resolution water quality parameters such as nitrate, pH and 

water temperature. 
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Supplementary Materials 

Table S 4. 1 Optimized hyperparameters for the sensitivity analysis of the LSTM model. 

 Sequence length (h) 

Scenario 6 12 24 72 168 336 720 1440 2160 

S1 NH=40 

DR=0.3 

LR=1e-5 

NE=80 

BS=32 

NH=40 

DR=0.3 

LR=1e-5 

NE=80 

BS=32 

NH=50 

DR=0.3 

LR=1e-4 

NE=10 

BS=128 

NH=60 

DR=0.3 

LR=1e-2 

NE=35 

BS=128 

NH=50 

DR=0.3 

LR=1e-4 

NE=10 

BS=128 

NH=60 

DR=0.3 

LR=1e-2 

NE=35 

BS=128 

NH=80 

DR=0.2 

LR=1e-3 

NE=70 

BS=256 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=70 

DR=0.4 

LR=1e-4 

NE=90 

BS=128 

S2 NH=80 

DR=0.2 

LR=1e-3 

NE=70 

BS=256 

NH=80 

DR=0.2 

LR=1e-3 

NE=70 

BS=256 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.3 

LR=1e-2 

NE=35 

BS=128 

NH=70 

DR=0.3 

LR=1e-2 

NE=70 

BS=64 

NH=60 

DR=0.3 

LR=1e-2 

NE=35 

BS=128 

NH=70 

DR=0.1 

LR=1e-2 

NE=90 

BS=64 

NH=70 

DR=0.3 

LR=1e-2 

NE=70 

BS=64 

S3 NH=60 

DR=0.4 

LR=1e-4 

NE=40 

BS=32 

NH=60 

DR=0.4 

LR=1e-4 

NE=40 

BS=32 

NH=60 

DR=0.3 

LR=1e-2 

NE=35 

BS=128 

NH=60 

DR=0.3 

LR=1e-2 

NE=35 

BS=128 

NH=60 

DR=0.3 

LR=1e-2 

NE=35 

BS=128 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=70 

DR=0.1 

LR=1e-2 

NE=90 

BS=64 

NH=70 

DR=0.3 

LR=1e-2 

NE=70 

BS=64 

NH=70 

DR=0.3 

LR=1e-2 

NE=70 

BS=64 

S4 NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-4 

NE=40 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=70 

DR=0.4 

LR=1e-4 

NE=90 

BS=128 

NH=60 

DR=0.3 

LR=1e-2 

NE=35 

BS=128 

NH=70 

DR=0.4 

LR=1e-4 

NE=90 

BS=128 

NH=70 

DR=0.4 

LR=1e-4 

NE=90 

BS=128 

NH=80 

DR=0.2 

LR=1e-3 

NE=70 

BS=256 

NH=70 

DR=0.3 

LR=1e-2 

NE=70 

BS=64 

S5 NH=60 

DR=0.4 

LR=1e-4 

NE=40 

BS=32 

NH=70 

DR=0.4 

LR=1e-4 

NE=90 

BS=128 

NH=60 

DR=0.4 

LR=1e-4 

NE=40 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-4 

NE=40 

BS=32 

NH=70 

DR=0.4 

LR=1e-4 

NE=90 

BS=128 

NH=70 

DR=0.1 

LR=1e-2 

NE=90 

BS=64 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

S6 NH=60 

DR=0.4 

LR=1e-4 

NE=40 

BS=32 

NH=60 

DR=0.4 

LR=1e-4 

NE=40 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=80 

DR=0.2 

LR=1e-3 

NE=70 

BS=256 

S7 NH=60 

DR=0.4 

LR=1e-4 

NE=40 

BS=32 

NH=60 

DR=0.4 

LR=1e-4 

NE=40 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=60 

DR=0.4 

LR=1e-3 

NE=70 

BS=32 

NH=70 

DR=0.4 

LR=1e-4 

NE=90 

BS=128 

Note: NH, DR, LR, NE and BS stand for number of hidden units, dropout rate, learning rate, number of 

epochs and batch size, respectively. 
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Figure S 4. 1 Comparison of observed and predicted δ2H values by the best LSTM using a sequence length 

of 6 h for water temperature, pH and electrical conductivity measurements (scenario S3-6 h) with an RMSE 

of 1.0‰, MAE of 0.6‰, R2 of 0.9 and NSE of 0.6 at SW2 site. 
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Figure S 4. 2 Comparison of observed and predicted δ2H values by the best LSTM using a sequence length 

of 6 h for water temperature, pH and electrical conductivity measurements (scenario S3-6 h) with an RMSE 

of 0.5‰, MAE of 0.3‰, R2 of 0.9 and NSE of 0.8 at GW1 site. 
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Figure S 4. 3 Comparison of observed and predicted δ2H values by the best LSTM using a sequence length 

of 6 h for water temperature, pH and electrical conductivity measurements (scenario S3-6 h) with an RMSE 

of 0.6‰, MAE of 0.4‰, R2 of 0.8 and NSE of 0.7 at GW2 site. 
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