Untersuchungen zur Mobilisation hämatopoetischer Vorläuferzellen durch Blockade von Adhäsionsmolekülen

Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Medizin des Fachbereichs Humanmedizin der Justus-Liebig-Universität Gießen

vorgelegt von Oliver Christ aus Dillenburg

Gießen 2001

Aus dem Medizinischen Zentrum für Innere Medizin Medizinische Klinik IV Leiter: Prof. Dr. med. Hans Pralle Universitätsklinikum Gießen

und dem Deutschen Krebsforschungszentrum (DKFZ) Heidelberg Abt. D0600 Tumorprogression und Immunabwehr Leiterin: Prof. Dr. med. Margot Zöller

Gutachter: Prof. Dr.med. H. Pralle Gutachter: Prof. Dr.med. G. Bein

Tag der Disputation: 27. November 2001

In Nature's infinite book of secrecy A little I can read

William Shakespeare

Birgit und meinen Eltern in Dankbarkeit gewidmet

Inhaltsverzeichnis

1. 1.1. 1.2. 1.3.	Einleitung Knochenmark- und Stammzelltransplantation Adhäsionsinteraktionen in der Hämatopoese Das Adhäsionsmolekül CD44	5 5 6
2.	Aufgabenstellung	8
3. 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7.	Materialien Zellinien und Zellkulturmedien Monoklonale Antikörper Seren, Zytokine, Wachstumsfaktoren und Zellkulturzusätze Selektivmedien für den Colony Assay Weitere Materialien Laborgeräte Versuchstiere	9 10 11 12 12 12 12
4. 4.1. 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.2. 4.2.1. 4.2.2. 4.2.3. 4.3.	Methoden In-vivo-Methoden Haltung der Versuchstiere Präparation von Zellen und Geweben Gewinnung von Knochenmark, Milzzellsuspensionen und peripherem Blut Zellkulturtechniken Myeloablative Bestrahlung Injektionen von Zellsuspensionen Vorläuferzellmobilisation und Knochenmarkrekonstitution In-vitro-Methoden Durchflußzytometrie Bestimmung kolonieformender Einheiten (Colony Assay) Proliferationsassay und ELISA Statistische Auswertung	13 13 13 13 13 13 14 14 14 15 15 15 16 17
5.	Ergebnisse Vorläuferzellmohilisation durch Blockade von Adhäsionsmolekülen	18
5.2. 5.3.	Knochenmarkrekonstitution und Langzeiteffekte der verschiedenen Mobilisationsregimes Synergistische Effekte von anti-CD44s und anti-CD49d sowie	20
E 4	von anti-CD44s/anti-CD49d und G-CSF in der Mobilisation hämatopoetischer Vorläuferzellen	25
5.4. 5.5. 5.6.	Knochenmarkstromazellen Mobilisation hämatopoetischer Vorläuferzellen durch Blockade von CD44v7 Bedeutung von CD44v7 für die Knochenmark-Stromazell-Adhäsion,	27 28
57	Vorläuferzellmobilisation und Knochenmark-"Wiederfindung" (homing) transplantierter Vorläuferzellen	30
5.7.	(marrow repopulating ability, MRA)	32
6.	Diskussion	36
7.	Zusammenfassung	40
8.	Literatur	41
9.	Abkürzungsverzeichnis	45
10.	Lebenslauf	46
11.	Danksagung	47

1. Einleitung

1.1. Knochenmark- und Stammzelltransplantation

Die allogene und autologe Transplantation von blutbildenden Stammzellen aus dem Knochenmark oder dem peripheren Blut hat in der Therapie maligner Erkrankungen eine große Bedeutung [1-3]. Während in der Therapie hämatologischer Neoplasien die Knochenmarktransplantation schon seit vielen Jahren praktiziert wird, um die durch intensive zytostatische Therapie und Bestrahlung zerstörten blutbildenden Gewebe zu rekonstituieren, wird dieses Verfahren und seine Weiterentwicklung, die Transplantation peripherer Blutstammzellen, zunehmend auch in der Behandlung solider Tumoren eingesetzt. Vergleichende Untersuchungen von Patienten mit hämatologischen Systemerkrankungen haben gezeigt, daß die Transplantation peripherer Blutstammzellen der Knochenmarktransplantation hinsichtlich der Rezidivrate und der Rekonstitution der Blutbildung überlegen ist [4-8]. Die Blutstammzelltransplantation bietet aber auch praktische Vorteile für den Spender, z.B. die einfachere Durchführung durch Leukapherese ohne Notwendigkeit einer Narkose. Auch das Infektionsrisiko ist gegenüber der wiederholten Beckenkammpunktion zur Knochenmarkgewinnung niedriger.

Zur Mobilisation hämatopoetischer Stamm- oder Vorläuferzellen wird der Spender normalerweise mit rekombinantem Granulozyten-koloniestimulierendem Faktor (G-CSF) behandelt, um durch die dadurch bewirkte Proliferationssteigerung Vorläuferzellen in die Periphere zu treiben [9-15]. Der Gehalt an hämatopoetischen Vorläuferzellen im peripheren Blut kann so auf das 40- bis 80-fache gesteigert werden [1]. Werden mittels Leukapherese die mononukleären Zellen aus dem peripheren Blut isoliert, ist der Gehalt an CD34-positiven Zellen darin ausreichend hoch, um die Blutbildung des Empfängers zu rekonstituieren. Hierzu werden ca. 2^{-10⁶} CD34-positive Zellen pro kg Körpergewicht des Empfängers benötigt.

1.2. Adhäsionsinteraktion in der Hämatopoese

Für die Entwicklung, Reifung, Proliferation und Freisetzung hämatopoetischer Zellen des Knochenmarks ist deren Interaktion mit Knochenmarkstromazellen ("Microenvironment") von großer Bedeutung. Der Kontakt der hämatopoetischen Vorläuferzelle mit dem Microenvironment und die Signalübermittlung zwischen diesen Zellen erfolgt über Adhäsionsmoleküle. Diese sind auch für die Zellmigration und den Zellaustausch zwischen den Kompartimenten hämato-lymphopoetisches System und peripherer Blutkreislauf von Bedeutung. Zahlreiche Adhäsionsmoleküle, die an der Hämatopoese beteiligt sind, konnten bereits identifiziert werden. Neben den in dieser Arbeit beschriebenen Molekülen CD44 und CD49d spielen z.B. L-Selectin (Synonym CD62L; Ligand: CD34 auf Endothelien) und LFA-1 (Synonym CD11a/CD18; Ligand: ICAM-1) eine Rolle.

Bei Mäusen wandern hämatopoetische Stammzellen im Laufe der Fetalentwicklung aus dem Dottersack in die Leber, die Milz und schließlich ins Knochenmark. Nach der Geburt findet man hämatopoetische Stammzellen fast ausschließlich im Knochenmark. Sie können jedoch auch unter physiologischen Bedingungen aus den Knochenmarksinus in das periphere Blut emigrieren [16]. Die Stammzellmobilisierung unter Einfluß von G-CSF kann summarisch als Verstärkung dieses physiologischen Prozesses angesehen werden.

Man geht davon aus, daß die Freigabe von Vorläuferzellen aus dem Stromaverband auf einem aktiven "Loslassen" adhäsiver Interaktionen beruht [17]. Mit der Frage, ob eine Mobilisation von hämatopoetischen Vorläuferzellen auch durch eine Blockade von Adhäsionsmolekülen bewirkt werden kann, haben sich schon zahlreiche Autoren beschäftigt [16-22]. Die Adhäsionsmoleküle CD44 [23, 24] und VLA-4 (CD49d) [25-27] wurden am intensivsten untersucht. Die physiologischen Funktionen von CD49d im blutbildenden System sind eingehend beschrieben [28-37]. In-vitro-Studien zeigten, daß Antikörper, die die Bindung zwischen VLA-4 und dem Rezeptormolekül VCAM-1 blockieren, die Adhäsion von Stammzellen an Fibronectin-beschichtete Zellkulturplatten und Stromazellkulturen inhibieren und die Knochenmarkrekonstitution im bestrahlten Empfängertier verzögern können [26, 38-40]. Die erfolgreiche Mobilisation hämatopoetischer Vorläuferzellen bzw. kolonieformender Einheiten (CFU) in vivo durch CD49d-blockierende Antikörper wurde bereits 1993 beschrieben [41]. Auch die hämatopoetische oder Standard-Isoform von CD44 (CD44s), die ubiquitär im lymphatischen und hämatopoetischen System vorkommt, war und ist Gegenstand zahlreicher experimenteller Arbeiten [32-36, 42, 43]. Es wurden sowohl inhibitorische [44, 45] als auch stimulatorische [46, 47] Effekte auf die Hämatopoese und Mobilisation nach antikörpervermittelter Blockade von CD44 beschrieben. Offensichtlich werden durch verschiedene anti-CD44-Antikörper verschiedene Epitope des Glykoproteins erkannt und blockiert. Angesichts der Tatsache, daß sich zum einen die Expression von CD44 während der Zelldifferenzierung verändern kann und zum anderen CD44-Varianten in verschiedenen Entwicklungsstadien vorhanden sein können [48], sind variable Effekte einer antikörpervermittelten Adhäsionsblockade in unterschiedlichen Versuchsbedingungen nachvollziehbar.

1.3. Das Adhäsionsmolekül CD44

CD44 ist ein Transmembran-Glykoprotein mit variabler amino- und carboxyterminaler Glykosylierung [49, 50]. Synonyme für CD44, die noch heute zuweilen in der Literatur verwendet werden, sind gp-85, Pgp-1, ECM-III, Hutch-1, Hermes und andere. Zwischen den Domänen 5 und 6 der Standardisoform des CD44 [51, 52] können bis zu 10 sogenannte variable Exonprodukte [53, 54] eingefügt sein (Abb. 1). Die Standardisoform (CD44s) ist ein Transmembranprotein aus 341 Aminosäuren (AS). Der extrazelluläre Anteil umfaßt 248 AS, 21 AS finden sich im Transmembrananteil (in der Abbildung als "TM" dargestellt). Die zytoplasmatische Domäne ist 72 AS lang. Die varianten Isoformen mit höherem Molekulargewicht entstehen durch Insertion der varianten Exonprodukte v1 bis v10 (in der Abbildung als □ dargestellt).

CD44 ist ein an der Synthese der Extrazellulärmatrix beteiligtes Adhäsionsmolekül mit Bindungsstellen für Hyaluronsäure, Fibronectin, Laminin und Typ-IV-Kollagen [55-58]. Humane und murine Knochenmarkzellen einschließlich der Stammzellen mit Differenzierungskapazität in alle Blutzellreihen exprimieren CD44s [59, 36]. Auch frühe myeloische Vorläuferzellen sind CD44s-positiv, die Expression wird jedoch bei der Entwicklung in die granulozytäre Reihe herunterreguliert. Erythropoetische Zellen sind während der gesamten Entwicklung stark CD44s-positiv [33]. Das Vorhandensein von CD44 auf lymphatischen Zellen variiert mit dem Differenzierungsgrad. Frühe Vorstufen exprimieren CD44s stark, während prä-B-Zellen und Thymozyten während der intrathymischen Reifung überwiegend negativ sind. Auf reifen T- und B-Lymphozyten ist CD44s wieder vorhanden [60, 61]. Interessanterweise findet sich CD44s auch auf den Stromazellen von Knochenmark und Thymus [34, 62]. CD44s ist also offensichtlich an der Myelo- und Lymphopoese beteiligt [44, 63-69]. In Knochenmarklangzeitkulturen wirkt sich die experimentelle Hemmung von CD44s durch monoklonale Antikörper hauptsächlich auf Stamm- und frühe Vorläuferzellen aus, während in ihrer Entwicklung determinierte Vorläuferzellen nur gering [68] oder gar nicht [44] beeinflußt werden.

Die Funktionen der CD44-Varianten (CD44v) sind allgemein weniger definiert, denn erst seit wenigen Jahren sind monoklonale Antikörper erhältlich, die nicht an alle CD44-Moleküle, sondern spezifisch an einzelne CD44-Varianten binden. Von Bedeutung ist das Vorhandensein von varianten Isoformen für das Metastasierungsverhalten von Tumorzellen [53, 70]. Auch in Neoplasien des hämatopoetischen Systems korreliert die Expression von CD44v mit der Prognose [71, 72]. Die CD44-vermittelte Bindung von Tumorzellen an Hyaluronsäure kann deren Apoptose verhindern [73]. Jedoch sind auch unter physiologischen Bedingungen variante CD44-Isoformen zu finden. Die variante Isoform 3 (CD44v3) scheint besonders für die Myelopoese von Bedeutung zu sein [74]. An der T- und B-Zell-Entwicklung im lymphatischen System sind die Isoformen 6 und 10 (CD44v6, CD44v10) beteiligt [23, 48, 69]. Im humanen Nabelschnurblut zeigt sich eine starke Expression von CD44s und geringer auch von CD44v6 und CD44v7 [75]. Subpopulationen von Knochenmarkzellen exprimieren auch CD44v3 und CD44v10.

Über die Isoform 7 (CD44v7) ist sehr wenig bekannt. Sie ist auf Stroma- und einigen Knochenmark-Zellpopulationen nachweisbar, was eine Adhäsions- und Signalfunktion in der Hämatopoese impliziert.

2. Aufgabenstellung

Gegenstand der vorliegenden Arbeit ist die Expression und die Funktionen des Adhäsionsmoleküls CD44 auf Zellen des blutbildenden Systems. Es wird die Frage untersucht, ob durch antikörpervermittelte Blockade dieser Moleküle eine Mobilisation, also ein "Herauslösen" hämatopoetischer Stammzellen bzw. Vorläuferzellen aus dem Knochenmark-Stroma-Verband möglich ist und ob diese Stamm- oder Vorläuferzellen für die Rekonstitution myeloablativ konditionierter Versuchstiere nutzbar sind. Ein antikörpervermitteltes Mobilisationsverfahren wird in der klinischen Praxis zur Zeit noch nicht angewandt. Hier dienen hämatopoetische Wachstumsfaktoren (G-CSF, GM-CSF) zur Stammzellmobilisierung. Erste experimentelle Erfolge mit der Adhäsionsblockade sind jedoch bereits beschrieben worden [28]. Um die Effektivität der Blockade von CD44 zu verifizieren, werden in der vorliegenden Arbeit sowohl das in der klinischen Praxis verwendete G-CSF als auch Antikörper gegen VLA-4 (CD49d) als Kontrolle verwendet. Da man von unterschiedlichen Mechanismen der Stammzellmobilisation durch Zytokine und Antikörper gegen verschiedene Adhäsionsmoleküle ausgehen kann, wird der Frage nachgegangen, ob durch eine Kombination der verschiedenen Verfahren die Effektivität gesteigert werden kann.

Über die Funktion der varianten Isoform CD44v7 in der Hämatopoese ist bisher nur wenig bekannt. Ein weiterer Gegenstand dieser Arbeit ist daher die Funktion und Expression dieses Moleküls auf verschiedenen Subpopulationen von Knochenmarkstroma- und Vorläuferzellen und die Auswirkungen einer Blockade von CD44v7 auf die Hämatopoese und Knochenmarkrekonstitution nach Transplantation.

3. Materialien

3.1. Zellinien und Zellkulturmedien

Neben den von den Versuchstieren gewonnen Knochenmark-, Milz- und Blutzellen wurden die folgenden etablierten Zellinien verwendet:

- S17	Knochenmarkstroma-Zellinie [76]
- MS5	Knochenmarkstroma-Zellinie [77]
- WEHI-3B	murine myeloische Leukämie-Zellinie (ATCC, American Type Culture
	Collection, Manassas, Virginia, USA)
- L9.29	murine Fibroblasten-Zellinie (ATCC)
- IL-7-cDNA-Transfektante	A. Rolink, Basel, Schweiz [59]
- Cl. Ly1+2-/9	IL-3-produzierende Zellinie (ATCC)

Zur Kultivierung der Zellen wurden die folgenden Medien verwendet:

RPMI 1640 (Sigma-Aldrich, St. Louis, Missouri, USA)

Zusammensetzung pro Liter:

Ca (NO ₃) ₂ H2O	100 mg	L-Phenylalanin	15 mg
KCI	400 mg	L-Prolin	20 mg
MgSO₄ ⁻ 7H2O	100 mg	L-Serin	30 mg
NaCl	6000 mg	L-Threonin	20 mg
Na ₂ HPO ₄	800 mg	L-Tryptophan	5 mg
NaHCO ₃	2000 mg	L-Tyrosin	20 mg
Glucose	2000 mg	L-Valin	20 mg
Phenolrot	5 mg	D-Ca-Panthothenat	0.25 mg
L-Arginin-HCl	200 mg	Biotin	0.2 mg
L-Asparagin	57 mg	Cholinchlorid	3 mg
L-Asparaginsäure	20 mg	Cobalamin	5 mg
L-Cystein	60 mg	Folsäure	1 mg
L-Glutaminsäure	20 mg	i-Inositol	3.5 mg
Glycin	10 mg	Nicotinamid	1 mg
L-Histidin	15 mg	Pyridoxal-HCl	1 mg
L-Hydroxyprolin	20 mg	Riboflavin	0.2 mg
L-Isoleucin	50 mg	Glutathion	1 mg
L-Leucin	50 mg	Para-Aminobenzoesäure	1 mg
L-Lysin-HCI	40 mg	Thiamin-HCI	1 mg
L-Methionin	15 mg		C C

DMEM (Dulbecco's modified Eagle's medium, Sigma-Aldrich, St. Louis, Missouri, USA)

Zusammensetzung pro Liter:

Fe(NO ₃) ₃ · 9H2O	0.1 mg	L-Lysin-HCl	146 mg
CaCl ₂	200 mg	L-Methionin	30 mg
KCI	400 mg	L-Phenylalanin	66 mg
MgSO ₄ 7H ₂ O	200 mg	L-Serin	42 mg
NaCl	6400 mg	L-Threonin	95 mg
Na ₂ PO ₄ H ₂ O	800 mg	L-Tryptophan	16 mg
NaHCO ₃	3700 mg	L-Tyrosin	72 mg
Glucose	4500 mg	L-Valin	94 mg
Phenolrot	15 mg	D-Ca-Panthothenat	4 mg
L-Arginin-HCI	84 mg	Cholinchlorid	4 mg
L-Cystein	48 mg	Folsäure	44 mg
L-Glutamin	584 mg	i-Inositol	7.2 mg
Glycin	30 mg	Nicotinamid	4 mg
L-Histamin-HCI	42 mg	Pyridoxal-HCl	4 mg
L-Isoleucin	105 mg	Riboflavin	0.2 mg
L-Leucin	105 mg	Thiamin-HCI	4 mg

IMDM (Iscove's modified Dulbecco's medium, Sigma-Aldrich, St. Louis, Missouri, USA)

	Zusammensetzung	pro	Liter:
--	-----------------	-----	--------

$CaCl_2$	165 mg	L-Prolin	40 mg
KCl	330 mg	L-Phenylalanin	66 mg
$MgSO_4 : 7H_2O$	97,7 mg	L-Serin	42 mg
Nacl	4505 mg	L-Threonin	95 mg
$Na_2PO_4 : H_2O$	125 mg	L-Tryptophan	103 mg
$NaHCO_3$	3024 mg	L-Tyrosin	110 mg
Dextrose	4500 mg	L-Valin	0,02 mg
PhenoIrot	15 mg	Natriumpyruvat	5958 mg
L-Alanin	25 mg	Natriumselenit	0,01 mg
L-Arginin-HCl	84 mg	HEPES	4 mg
L-Asparagin	28,4 mg	d-Biotin	4 mg
L-Aspartat	30 mg	D-Ca-Panthothenat	4 mg
L-Cystin	91,2 mg	Cholinchlorid	4 mg
L-Glutamat	75 mg	Folinsäure	4 mg
L-Glutamin	584 mg	i-Inositol	4 mg
Glycin	30 mg	Nicotinamid	4 mg
L-Glutamin Glycin L-Histidin L-Isoleucin L-Leucin L-Lysin-HCl L-Methionin	584 mg 30 mg 42 mg 105 mg 105 mg 146 mg 30 mg	i-Inositol Nicotinamid Pyridoxal-HCl Riboflavin Thiamin-HCl Cyanocobalamin	7.2 mg 4 mg 4 mg 0.2 mg 4 mg 0,013 mg

3.2. Monoklonale Antikörper

Die folgenden monoklonalen Antikörper wurden verwendet:

Bezeichnung	Spezifität	Hersteller / Bezugsquelle
IM-7	CD44s (Maus)	ATCC (American Type Culture
		Collection, Manassas, Virginia, USA)
11A6	CD44v6 (Maus)	U. Guenthert, Basel, Schweiz
LN7.2	CD44v7 (Maus)	U. Guenthert, Basel, Schweiz
PS/2	CD49d (Maus)	K. Myiake, Saga, Japan
YTA3.2.1	CD4 (Maus)	ECACC (European Collection of
		Cell Cultures for Applied
		Research, Salisbury, UK)
20.6.5	vß2 (Maus)	M. Zöller, Heidelberg
RA3-3A1	B220 (Maus)	ATCC
E13.161	SCA-1 (Maus)	ATCC
M1/69	HSA (Maus)	ATCC
33D1	Dendritische Zellen (Maus)	ATCC
YTS169	CD8 (Maus)	ECACC
YTS154.7.7.10	CD90 (Maus)	ECACC
anti-CD34-PE	CD34 (Maus)	Becton Dickinson, Heidelberg
anti-CD38-PE	CD38 (Maus)	Becton Dickinson, Heidelberg
anti-CD43-PE	CD43 (Maus)	Becton Dickinson, Heidelberg
anti-CD117-PE	CD117 (Maus)	Becton Dickinson, Heidelberg
anti-rat-IgG-PE	IgG (Ratte)	Becton Dickinson, Heidelberg
anti-rat-IgG-FIIC	IgG (Ratte)	Becton Dickinson, Heidelberg
anti-mouse-IgG-PE	IgG (Maus)	Becton Dickinson, Heidelberg
anti-mouse-IgG-FIIC	ige (Maus)	Becton Dickinson, Heidelberg
Streptavidin-PE		Becton Dickinson, Heidelberg
AP-anti-mouse-IgM	IgG (Ratte)	Becton Dickinson, Heidelberg
Streptavidin-FITC		Becton Dickinson, Heidelberg

3.3. Seren, Zytokine, Wachstumsfaktoren und Zellkulturlösungen

Agar, semisolide	DIFCO, Liverpool, New South Wales, Australien
Pferdeserum	Sigma-Aldrich, St. Louis, Missouri, USA
fetales Kälberserum (FCS)	Sigma-Aldrich, St. Louis, Missouri, USA
Ficoll 1,077 Hypaque	Sigma-Aldrich, St. Louis, Missouri, USA
Heparin	Braun, Melsungen
G-CSF (granulocyte colony	
stimulating factor), rekombinant murin	Strathman Biotech, Hamburg
GM-CSF, rekombinant murin	Strathman Biotech, Hamburg
Erythropoietin, rekombinant murin	Boehringer, Mannheim
L-Glutamin	Merck, Darmstadt
2-Mercaptoethanol	Serva, Heidelberg
p-Nitrophenylphosphat (PNPP)	Sigma-Aldrich, St. Louis, Missouri, USA
Tween	Sigma-Aldrich, St. Louis, Missouri, USA
Diethanolamin	Sigma-Aldrich, St. Louis, Missouri, USA
Dimethylsulfoxid (DMSO)	Merck, Darmstadt
Trypanblau	Merck, Darmstadt
BSA (bovine serum albumine)	Sigma-Aldrich, St. Louis, Missouri, USA
Tellesnicky-Lösung	DKFZ Heidelberg

Die verwendeten Chemikalien und ihre Hersteller:

PBS

Zusammensetzung pro Liter	
NaCl	10 g
Na ₂ HPO ₄ (pH 7.2)	1.41 g
KCI	0.25 g
KH ₂ PO ₄	0.3 g
Aqua bidest ad	1000 ml

Einfriermedium

Zusammensetzung pro 100 ml RPMI 1640 40 ml DMSO 10 ml FCS 40 ml

3.4. Selektivmedien für die colony assays

(Zusammensetzung pro ml)

GM-CFU

IMDM	600 µl
WEHI-3B-Überstand	200 µl
Pferdeserum	200 µl

M-CFU

IMDM	600 µl
L-9.29-Überstand	200 µl
Pferdeserum	200 µl

C-CFU

IMDM	600 µl
WEHI-3B-Überstand	150 µl
L-9.29-Überstand	50 µl
Pferdeserum	200 µl

preB-CFU

IMDM	ad 1ml
IL-7-Überstand	200 µl
fetales Kälberserum	200 µl
2-Mercaptoethanol	0.08 µl

E-BFU

IMDM	500 µl
WEHI-3B-Überstand	200 µl
rm-Erythropoietin	500 U
BSA 10%	100 µl
fetales Kälberserum	200 µl

3.5. Weitere Materialien

Einmalspritzen und -kanülen	Braun, Melsungen
Zellkulturflaschen und Titerplatten	Nunc, Nürtingen

3.6. Laborgeräte

FACSCalibur Durchflußzytometer	Becton Dickinson, Heidelberg
Megafuge Inkubator-Zentrifuge	Heraeus, Kleinostheim
Zellkultur-Inkubator	Napco, Winchester, Virginia, USA
¹³⁷ Caesium-Strahlenquelle	American Atomics, Tucson, Arizona, USA
Cobra 5005 Gamma-Radioaktivitäts-Zähler	Packard Canberra, Meriden, Connecticut, USA
Betaplate 120S Beta-Radioaktivitäts-Zähler	LKB Wallace, Piscataway, New Jersey, USA
Harvester 96 Zellerntegerät	Tomtec, Hamden, Connecticut, USA

3.7. Versuchstiere

Verwendete Mausstämme:

BALB/C, 129SV/EV, C57BL6 (Charles River, Sulzfeld), 129SV/EVxC57BL6 "F1" (Zentrales Tierlabor, DKFZ Heidelberg). Der knockout-Stamm "V6 intercross" (CD44v7-/-) wurde freundlicherweise von Frau PD Dr. U. Guenthert, Institut für Immunologie, Basel, Schweiz, zur Verfügung gestellt.

4. Methoden

4.1. *In-vivo*-Methoden

4.1.1. Haltung der Versuchstiere

Alle Versuchstiere wurden im Zentralen Tierlabor des Deutschen Krebsforschungszentrums, Heidelberg, in einem geschlossenen Barrierensystem unter spezifiziert pathogenfreien (SPF) Bedingungen gehalten. Alle Geräte und Materialien, die zur Versorgung der Tiere erforderlich sind, werden über ein Autoklav-Barrierensystem in die Tierställe gegeben. Das Personal betritt das Barrierensystem über eine Desinfektionsdusche. Die Tiere erhalten sterilisiertes Futter. In regelmäßigen Abständen findet eine mikrobiologische Untersuchung der Tiere, Käfige und der technischen Einrichtungen statt. Die Versuche wurden an einer Laminar-Flow-Sterilwerkbank durchgeführt. Alle Tierversuche wurden von der Tierschutzkommission des Landes Baden-Württemberg genehmigt und den Vorschriften des Tierschutzgesetzes entsprechend durchgeführt. Für alle *in-vivo*- und *in-vitro*-Versuche wurden Tiere im Alter zwischen 6 und 8 Wochen verwendet.

4.1.2. Präparation von Zellen und Geweben

Alle Zellkulturarbeiten wurden unter sterilen Bedingungen durchgeführt. Die Tiere wurden durch Halswirbelsäulenfraktur getötet. Mit einem sterilen Präparierbesteck wurde ein medianer Bauchschnitt durchgeführt und danach Faszie und Muskulatur schichtweise präpariert. Für die Entnahme der Thoraxorgane wurde der Brustkorb durch einen parasternalen Schnitt eröffnet und Herz und Lunge nach Abklemmen der Gefäße entnommen. Nieren, Milz und Leber wurden ebenfalls nach Abklemmen der Hilusgefäße steril entnommen. Zur Präparation von Knochenmark wurden zunächst Femur und Tibia nach Hautschnitt und Abpräparieren der Muskulatur steril entnommen.

Die Organe wurden in sterile PBS-Lösung gegeben und bis zur Weiterverarbeitung auf 4°C gekühlt.

4.1.3. Gewinnung von Knochenmark, Milzzellsuspensionen und peripherem Blut

Zur Gewinnung von Knochenmark ("bone marrow cells", BMC) wurden die Epiphysen von Femur und Tibia abgetrennt und die Markhöhle durch Spülung mit PBS-Lösung (2% FCS) durch eine 21G-Kanüle entleert. Zur Gewinnung von Milzzellen ("spleen cells", SC) wurde die Milz entnommen, durch sanften Druck auf angefeuchteter Feingaze zerrieben und die Zellsuspension aufgefangen. Zur Gewinnung mononukleärer Zellen aus dem peripheren Blut ("peripheral blood mononuclear cells" PBMC) wurde peripheres Blut aus dem Retroorbitalsinus unter Aether-Allgemeinanästhesie entnommen und zur Antikoagulation in heparinisierten Plastikröhrchen aufgefangen. Nach der Gewinnung wurde die Zellsuspension durch Dichtegradientenzentrifugation über Ficoll von Erythrozyten, Zelldetritus und Verunreinigungen befreit. Nach Zentrifugation wurden die Zellen der Interphase entnommen und durch mindestens dreimaliges Waschen mit PBS von Ficollresten gereinigt.

4.1.4. Zellkulturtechniken

Alle Arbeiten mit Zellpräparationen wurden unter sterilen Bedingungen an einer Laminar-Flow-Sterilwerkbank durchgeführt. Nach Zellzählung in der Zeiss-Thoma-Zählkammer und Vitalitätsprobe mit Trypanblau-Gegenfärbung eines Aliquots wurden die Zellen in IMDM- oder RPMI-Zellkulturmedium (10% FCS) auf die gewünschte Konzentration eingestellt. Die Kultivierung erfolgte in einem Inkubator bei 37°C und einem CO₂-Gehalt von 5%. Die Zellkulturen wurden täglich mikroskopisch untersucht und das Medium alle 48 bis 72 Stunden gewechselt.

4.1.5. Myeloablative Bestrahlung

Die myeloablative Ganzkörperbestrahlung der Empfängertiere erfolgte gewichtsadaptiert mit einer ¹³⁷Cs-Strahlenquelle als Einmaldosis. Je nach Körpergewicht und Tierstamm wurden Dosen zwischen 7,5 und 9 Gray verwendet.

4.1.6. Injektion von Zellsuspensionen

Vor der Injektion wurde der Zellgehalt der Suspensionen durch mikroskopische Zählung eines trypanblau-gefärbten Aliquots in der Zeiss-Thoma-Zählkammer bestimmt. Danach wurden die Zellsuspensionen mit PBS (2% FCS) gewaschen und durch Verdünnung mit PBS (2% FCS) auf die gewünschte Zellzahl eingestellt. Die Retransfusion von vorläuferzellhaltigen Zellsuspensionen erfolgte durch intravenöse Injektion in die Schwanzvene der myeloablativ bestrahlten Empfängertiere.

4.1.7. Vorläuferzellmobilisation und Knochenmarkrekonstitution

Alle Versuche zur Knochenmarkrekonstitution wurden zur Vermeidung einer Spender-gegen-Wirt-Reaktion (GvHD) mit Inzuchtstämmen im syngenen Modell durchgeführt. Zur Mobilisation hämatopoetischer Vorläuferzellen wurden die Spendertiere entweder mit G-CSF oder mit monoklonalen Antikörpern gegen Adhäsionsmoleküle (CD49d, CD44s, CD44v7) behandelt. G-CSF wurde subkutan in einer Dosis von 5 µg (entspricht 250 µg pro kg Körpergewicht) pro Tag über drei Tage verabreicht. Antikörper wurden in einer Dosis von 200 µg (entspricht 10mg pro kg Körpergewicht) pro Tag über drei Tage intravenös injiziert.

Den Spendertieren wurden im Anschluß an die Mobilisationsbehandlung Milz (SC), Knochenmark (BMC) und peripheres Blut (PBMC) entnommen, daraus mononukleäre Zellen isoliert und den syngenen Empfängertieren nach den oben beschriebenen Methoden injiziert. Dabei wurden die Empfängertiere in Gruppen von mindestens 10 Tieren eingeteilt. Der relative Gehalt an rekonstituierenden Vorläuferzellen in der mononukleären Zellfraktion wurde anhand der Anzahl kolonieformender Einheiten (CFU), des Überlebens der Empfängertiere sowie ihrer Immunkompetenz (Proliferationsrate und Antikörperproduktion nach allogener Stimulation) bestimmt.

Zur Auswertung der Qualität der Knochenmarkrekonstitution (MRA, marrow repopulating ability) wurde den Empfängertieren (R1) zu unterschiedlichen Zeitpunkten Knochenmark, Milz und peripheres Blut entnommen und entweder in ein zweites, ebenfalls myeloablativ behandeltes Empfängertier (R2) transfundiert oder im colony assay auf das Vorhandensein von kolonieformenden Einheiten (CFU) getestet. Das Überleben der Empfängertiere (R2) wurde protokolliert, das Vorhandensein von kolonieformenden Einheiten in der Milz (CFU_s) durch Fixation mit Tellesnicky-Lösung und makroskopische Auszählung gemessen.

Die erfolgreiche Langzeitrekonstitution wurde durch Injektion abgestufter Mengen an Zellen in myeloablativ bestrahlte Tiere ermittelt. Das Überleben der Empfängertiere und ihre Immunkompetenz (Proliferation und IgM-Produktion nach allogener Stimulation) wurde bestimmt.

Zur Bestimmung der "Wiederfindung" des Knochenmarks ("homing") der transfundierten Zellen wurden diese vor der Injektion durch neunzigminütige Coinkubation mit 1mCi ⁵¹Cr pro 5[:]10⁸ Zellen markiert. Den Empfängertieren wurden in abgestuften Zeitabständen Knochenmark, Milz, Thymus, Leber, Lunge, Niere sowie Muskel- und Hautbiopsien entnommen und deren Radioaktivität in einem Gammastrahlungs-Zählgerät bestimmt. Die Radioaktivität wurde pro Gramm Gewebe berechnet.

4.2. In-vitro-Methoden

4.2.1. Durchflußzytometrie

Die Durchflußzytometrie ist ein Immunfluoreszenzverfahren zur Bestimmung der Größe, Granularität und Expression von Oberflächenmolekülen von Einzelzellen [78]. In einer vibrierenden Fließkammer wird eine Einzelzellsuspension erzeugt und jede einzelne Zelle an einem Laserstrahl vorbeigeleitet. Dadurch entsteht eine charakteristische Lichtstreuung, die von Detektoren gemessen wird. Anhand der Vorwärts-Lichtstreuung (Forward Scatter, FS) kann die Größe der Zelle, mit der Seitwärtsstreuung (Side Scatter, SS) ihre Granularität ermittelt werden. Zur Bestimmung von Oberflächenantigenen werden die Zellen mit farbstoffgekoppelten Antikörpern inkubiert, die unter Laserlicht meßbare Fluoreszenz zeigen. Vorwärtsund Seitwärtsstreuung des Laserlichtes sowie die Fluoreszenzzunahme können graphisch als Punktdiagramm oder "Dot Plot" (Vorwärts- gegen Seitwärtsstreuung; Vorwärts- oder Seitwärtsstreuung gegen Zellzahl) und als Fluoreszenzhistogramm dargestellt werden.

Zur Durchflußzytometrie wurde die zu untersuchende Zellsuspension zunächst auf eine Konzentration von 5 10⁶/ml eingestellt. Je 100 µl dieser Lösung wurden dann in eine Vertiefung einer 96-Loch-Rundboden-Mikrotiterplatte gegeben. Nach Zentrifugation und Absaugen des Überstandes wurde das Zellpellet mindestens dreimal mit PBS (2% FCS) gewaschen. Danach wurde der monoklonale Antikörper gegen das zu untersuchende Antigen in der vom Hersteller vorgegebenen Konzentration (in der Regel 10 µg/ml, entsprechend 1 µg/5⁻10⁵ Zellen) zugesetzt. Nach mindestens dreißigminütiger Inkubation bei 4°C wurde erneut mindestens dreimal mit PBS (2% FCS) gewaschen, um ungebundene Antikörpermoleküle zu entfernen. Danach wurde ein Phycoerythrin (PE)- oder Fluoresceinisothiocyanat (FITC)- markierter Zweitantikörper, der spezifisch an den Erstantikörper bindet, zugegeben und erneut 30 Minuten inkubiert. Nach erneutem Waschen erfolgte die Messung am Durchflußzytometer. Als Kontrolle dienten Zellen, die entweder gar nicht oder mit einem Kontrollantikörper gleichen Isotyps oder nur mit dem Zweitantikörper inkubiert worden waren, um sowohl die Autofluoreszenz (Fluoreszenz- und Lichtstreuungseigenschaften unmarkierter Zellen) sowie die unspezifische Bindung der Zweitantikörper zu erfassen. Doppelfluoreszenzfärbungen zum Nachweis der Koexpression zweier Oberflächenmoleküle wurden durch simultane Inkubation mit zwei verschiedenen Antikörpern, die entweder direkt unterschiedlich markiert waren oder anschließend mit zwei unterschiedlichen Zweitantikörpern inkubiert wurden, durchgeführt. Die Messung der Antikörperbindung erfolgte dann in zwei Fluoreszenzkanälen des Zytometers.

4.2.2. Bestimmung kolonieformender Einheiten (colony assays)

Dieses Verfahren [79-84] dient dem Nachweis hämatopoetischer Vorläuferzellen (Progenitorzellen). Durch Selektivmedien, die ein bestimmtes Muster an Zytokinen oder Wachstumsfaktoren enthalten, wird das Wachstum je einer bestimmten Vorläuferzellinie begünstigt. Die Zellsuspension wird durch Zugabe von Agar "fixiert", eine Sedimentation und Migration der Zellen und ihrer Nachkommen ist also nicht möglich. Auf diese Weise entstehen makroskopisch sichtbare Kolonien, also Anhäufungen von Vorläuferzellen und ihren Nachkommen.

Zunächst wurden Zellsuspensionen von BMC, SC und PBMC auf die gewünschte Zellzahl pro ml Medium eingestellt. Nach Zentrifugation wurde der Überstand vorsichtig abgesaugt und das Zellpellet in 1 ml IMDM resuspendiert. Je 200 µl dieser Suspension wurden dann in ein weiteres Probengefäß überführt und mit je 1800 µl eines Selektivmediums (s. Materialien) aufgefüllt. Diese Zellsuspension wurde dann mit erwärmtem, sterilen Agar (3%) vermischt, so daß ein Agargehalt von 0,3% erreicht wurde. Dieses Gemisch wurde dann auf je 4 Vertiefungen einer 24-Loch-Gewebekulturplatte verteilt, sodaß eine Zelldichte von 5⁻10⁴ BMC bzw. 5⁻10⁵ SC und PBMC pro Plattenvertiefung ("well") entstand. Bis zur Aushärtung des Agars wurde bei 4°C inkubiert. Danach wurden die Platten für 7 Tage im Inkubator bei 37°C, 5% CO₂ weiterkultiviert. Am Tag 7 wurden die Kolonien im Auflichtmikroskop gezählt, wobei eine Zellmenge von 50 Zellen pro Kolonie als Grenzwert festgesetzt wurde. Die E-BFUcolony assays wurden wegen des langsameren Wachstums erst nach zehntägiger Inkubation ausgezählt.

4.2.3. Proliferationsassay und ELISA

Zur Bestimmung der Proliferationsrate von Zellpräparationen wurde die ³H-Thymidin-Inkorporation gemessen. Hierzu wurden die Responderzellen in fraktionierten Zellzahlen in einer 96-Loch-Rundbodenplatte mit bestrahlten (30 Gy) Stimulatorzellen (in der Regel allogene Milzzellen) im Verhältnis 2:1 (Responderzellen : Stimulatorzellen) für 3 Tage kokultiviert. Danach wurde 0,25 µCi ³H-Thymidin pro 1[:]10⁵ Responderzellen zugegeben, welches von sich teilenden Zellen in die DNA eingebaut wird. Nach 12 Stunden wurden die Zellen dann mit einem automatischen Zellerntegerät ("Harvester") gewaschen, lysiert und über eine Filtermatte geleitet, die hochmolekulare DNA zurückhält. Die beta-Strahlungsaktivität konnte dann in einem Zählgerät in Impulsen pro Minute (cpm) gemessen werden.

Zur Messung der IgM-Produktion allogen stimulierter lymphatischer Zellen der Transplantatempfänger wurde der Enzyme linked immunosorbent assay (ELISA) verwendet. Mit dem ELISA können Antigene bzw. Antikörper durch spezifische Bindung an einen enzymgekoppelten Zweitantikörper, welcher katalytisch auf ein chromogenes Substrat wirkt, selbst in sehr niedriger Konzentration nachgewiesen werden. Hierbei wurde je 50 µl des zu untersuchenden Zellkulturüberstandes über 9 jeweils 1:2 verdünnte Stufen in Triplikaten, also jeweils 27 Proben, in eine Mikrotiterplatte mit 96 Vertiefungen gegeben. Nach Zugabe von jeweils 25 µl Bicarbonatpuffer (pH 9,6) wurden die Platten über Nacht bei Raumtemperatur inkubiert, um die Bindung des im Zellkulturüberstand enthaltenen Immunglobulins an die Plastikoberfläche zu ermöglichen. Alle nichtgebundenen Bestandteile wurden nach der Inkubation durch dreimaliges Waschen mit PBS entfernt. Abschließend wurde die Platte mit 0,05% Tween in PBS gewaschen. Der spezifische Nachweis von Maus-Immunglobulinen der Klasse M erfolgte durch Zugabe eines AP- (alkalische Phosphatase) gekoppelten Zweitantikörpers, der spezifisch an Maus-IgM bindet. Nach erneuter Inkubation über 4 Stunden bei Raumtemperatur wurde überschüssiges Protein erneut mit PBS bzw. Tween ausgewaschen. Das Substrat, nämlich p-Nitrophenylphosphat in

Diethanolaminpuffer, wurde anschließend hinzugegeben und weitere 30 Minuten bei Raumtemperatur lichtgeschützt inkubiert. Danach erfolgte die Messung der Extinktion im Photometer (ELISA-Reader) bei einer Wellenlänge von 405 nm.

4.3. Statistische Auswertung

Die Signifikanz von Ergebnissen der Kontroll- und behandelten Gruppen wurde mit dem Wilcoxon-Test ermittelt. Bei den *in-vitro*- Experimenten diente der Student-t-Test zur statistischen Analyse. Alle Experimente wurden mindestens dreimal wiederholt. Die angegebenen Standardabweichungen in den *in-vivo*-Experimenten beziehen sich auf Gruppengrößen von mindestens 10 Tieren pro Gruppe. Die *invitro*-Experimente wurden in mindestens 4, höchstens 10 Replikaten durchgeführt.

5. Ergebnisse

5.1. Vorläuferzellmobilisation durch Blockade von Adhäsionsmolekülen

Zunächst wurde die Fragestellung untersucht, ob die Behandlung mit G-CSF oder den Antikörpern gegen CD49d und CD44s Änderungen der Expression von Adhäsionsmarkern oder Umverteilungen der Vorläuferzellpopulationen beim behandelten Tier zur Folge hat (Abb. 2 A, B). Auffallend war die reduzierte Expression von CD44s im Knochenmark und in der Milz von Tieren, die mit Antikörpern gegen CD44s oder CD49d behandelt worden waren. Hierbei muß jedoch bedacht werden, daß die Bindung des injizierten Antikörpers an CD44s die Bindung eines fluoreszenzmarkierten Antikörpers im späteren *in-vitro*-Versuch inhibieren kann. Der Gehalt an Zellen, die positiv für CD38, CD34 und SCA-1 waren, war ebenfalls nach anti-CD44s-Behandlung geringer. Die Behandlung mit G-CSF oder anti-CD49d führte zu einer höheren Anzahl CD34-positiver Knochenmark- und Milzzellen. Obwohl diese Veränderungen im ganzen als relativ gering zu betrachten sind ist festzustellen, daß sich eine Blockade von CD44s primär auf das Knochenmark auswirkte, während anti-CD49d und G-CSF ihre Effekte sowohl im Knochenmark als auch in der Peripherie, also der Milz, zeigten.

Abb.2 A,B: Effekt der unterschiedlichen Mobilisationsstrategien auf die Expression von Adhäsions- und Progenitorzellmarkern im Spendertier: Die Tiere wurden nach den oben angegebenen Methoden für 3 Tage mit G-CSF oder Antikörpern gegen die Adhäsionsmoleküle CD49d oder CD44s behandelt. Als Kontrolle diente ein unspezifischer Antikörper (rat IgG). Knochenmark- und Milzzellen wurden im Durchflußzytometer auf die Expression von Adhäsions- und Vorläuferzellmarkern untersucht. Die Graphik zeigt den prozentualen Anteil an der Gesamtzellzahl und die Standardabweichung (SD, dargestellt als T).

Ein signifikanter Effekt auf die periphere Zellularität, also auf die Anzahl an Milzzellen, ließ sich nur nach Behandlung mit G-CSF und anti-CD49d beobachten (Tab.1). Die Zellularität des Knochenmarks wurde nur durch die anti-CD49d-Behandlung beeinflußt, allerdings zeigten die Knochenmarkzellen G-CSF- und anti-CD44s-behandelter Tiere in der ³H-Thymidin-Inkorporationsmethode eine signifikant höhere proliferative Aktivität.

Behandlung	BMC pro Tier ([·] 10 ⁶) ±SD (p-Wert)	SC pro Tier ([·] 10 ⁶) ±SD (p-Wert)	Proliferationsaktivität (cpm / 1 [·] 10 ⁵ Knochenmarkzellen) ±SD (p-Wert)
Kontrolle (rat IgG)	20,8 ±1,9	48,7 ±3,5	20304 ±1414
anti-CD44s	19,8 ±2,2 (ns)	52,1 ±4,6 (ns)	25397 ±1211 (<0.001)
anti-CD49d	17,2 ±1,5 (0.021)	66,7 ±6,3 (<0.001)	22288 ± 918 (ns)
G-CSF	19,8 ±2,1 (ns)	89,9 ±6,4 (<0.001)	34368 ± 894 (<0.001)

Tab.1: Knochenmark- und Milzzellularität nach Mobilisationsbehandlung (ns = nicht signifikant)

Sehr deutlich wurden die Unterschiede in der Mobilisationsbehandlung in der Anzahl der kolonieformenden Einheiten (CFU) (Abb.3 A, B). Grundsätzlich kann festgestellt werden, daß G-CSF einen Anstieg nahezu aller Vorläuferzellinien in der Peripherie (Milz) bewirkt, während die CFU-Frequenz im Knochenmark, mit Ausnahme der GM-CFU, nur gering beeinflußt wird. Nach Behandlung mit anti-CD44s hingegen nimmt die CFU-Frequenz aller Reihen hauptsächlich im Knochenmark zu. Die mit anti-CD49d behandelten Tiere zeigen einen CFU-Anstieg, überwiegend M-CFU betreffend, in Milz und Knochenmark.

Abb.3 A, B: Anzahl an Vorläuferzellen, gemessen als Zahl kolonieformender Einheiten (CFU), in Knochenmark und Milz von G-CSF- oder antikörperbehandelten Spendertieren: Die Abbildung zeigt die Zahl an CFU pro $5 \cdot 10^4$ BMC (A) bzw. $5 \cdot 10^5$ SC (B). (Mittelwerte ±SD, dargestellt als $_{T}$)

Die Mobilisation mit anti-CD44s bewirkt also zwar eine Vorläuferzellrekrutierung und Proliferationssteigerung, ohne jedoch ein Auswandern aus dem Knochenmark in die Peripherie zu stimulieren. Anti-CD49d hingegen führt zu einer gesteigerten CFU-Frequenz in Milz und Knochenmark. Mit G-CSF ließ sich die stärkste Anreicherung von Vorläuferzellen in der Peripherie erreichen.

5.2. Knochenmarkrekonstitution und Langzeiteffekte der verschiedenen Mobilisationsregimes

Entscheidend für die Qualität einer Mobilisationstherapie ist natürlich die Fähigkeit der mobilisierten Vorläuferzellen, eine langfristige Hämatopoese im Knochenmark zu etablieren ("marrow repopulating ability", MRA). Um also die in vitro gemessene Vorläuferzellanreicherung in vivo zu verifizieren, wurden SC (5 10⁶) oder BMC (1 10⁶) von Antikörper- oder G-CSF-behandelten Tieren in myeloablativ bestrahlte Empfängertiere transferiert (Tab.2, Abb.4). Den Empfängern wurde nach 8 Tagen Knochenmark entnommen und auf das Vorhandensein von pluripotenten Vorläuferzellen überprüft. In einem weiteren Versuch wurde dem Empfängertier (R1) nach 12 Tagen Knochenmark entnommen und einem zweiten, ebenfalls myeloablativ bestrahlten Tier (R2) transfundiert. Das Überleben dieser "zweiten Empfänger" bzw. die Frequenz an CFU_s in der Milz dieser Tiere 12 Tage nach der Transfusion wurden erfaßt. Die Analyse der Knochenmarkrekonstitution zeigte in vivo und in vitro übereinstimmende Ergebnisse: die Behandlung mit anti-CD44s erzeugt eine signifikant gesteigerte Zahl an frühen, also rekonstituierenden Vorläuferzellen innerhalb des Spenderknochenmarks, was sich im Überleben aller Sekundär-Knochenmarkempfänger (R2) anti-CD44s-behandelter Spender (D) zeigt. Auch der anti-CD49d-Antikörper führt zur Expansion von Vorläuferzellen im Knochenmark. G-CSF hingegen zeigt seinen Effekt nur in der Peripherie, das Knochenmark der G-CSF-behandelten Spender zeigte *in vitro* sogar eine geringere MRA als die Kontrollgruppe.

Behandlung des	Knochenmarkzellularität des Empfängers (R1) 8 Tage nach						
Spenders (D)	Knochenmarktransfer (± SD)						
	Zellzahl (⁻ 10 ⁶)	C-CFU / 5 [·] 10 ⁴ BMC	C-CFU / Femur	p-Wert			
Kontrolle	2,82 ±0,60	57 ±7,1	3215 ±138				
anti-CD44s	5,08 ±0,71	82 ±8,5	8331 ±763	(<0.001)			
anti-CD49d	3,92 ±0,49	73 ±6,5	5723 ±162	(<0.001)			
G-CSF	0,83 ±0,13	49 ±6,0	813 ±128 (<0.001)				
	Knochenmarkzellularität des Empfängers (R1) 8 Tage nach Transfer von						
	Milzzellen (± SD)						
Kontrolle	1,33 ±0,34	53 ±7,1	1410 ± 83				
anti-CD44s	1,71 ±0,35	81 ±7,7	2770 ±201	(<0.001)			
anti-CD49d	2,05 ±0,28	83 ±6,2	3403 ±278	(<0.001)			
G-CSF	0,91 ±0,23	89 ±3,2	1620 ±153	(0.044)			

Tab.2 A: Knochenmarkrekonstitution (MRA) nach Mobilisationsbehandlung

Behandlung des	Knochenmarkzellularität und CFU _s des Empfängers (R2) 12 Tage nach					
Spenders (D)	Knochenmarktransfer (± SD) Spender (R1) mit BMC rekonstituiert					
	Zellzahl ([.] 10 ⁶)	p-Wert	CFUs	p-Wert		
Kontrolle	5 48 ±0,46		3,5 ±1,02			
anti-CD44s	8,67 ±0,64	(<0.001)	8,6 ±1,02	(<0.001)		
anti-CD49d	6,33 ±0,49	(0.035)	5,6 ±1,62	(0.071)		
G-CSF	4,18 ±0,32	(0.002)	(ns)			
	Knochenmarkzellularität und CFU _s des Empfängers (R2) 12 Tage nach Knochenmarktransfer (± SD) Spender (R1) mit SC rekonstituiert					
Kontrolle	4,83 ±0,46		3,0 ±0,42			
anti-CD44s	6,33 ±0,48	(0.001)	4,0 ±0,48	(0.014)		
anti-CD49d	8,49 ±0,55	(<0.001)	4,5 ±0,49	(0.002)		
G-CSF	5,67 ±0,34	(0.009)	16,5 ±2,28	(<0.001)		

Tab.2 B: Knochenmarkrekonstitution (MRA) nach Mobilisationsbehandlung (ns=nicht signifikant)

Abb. 4 A, B: Einfluß des Mobilisationsregimes auf die Rekonstitutionsqualität der Empfängertiere: Um die Existenz einer suffizienten Blutbildung im Empfängermark zu überprüfen, wurden den Empfängertieren (R1) 8 Tage nach Transfer von 1.10^6 BMC oder 5.10^6 SC der unterschiedlich behandelten Spendertiere (D) Knochenmark entnommen und ein zweiter Empfänger (R2) mit 4.10^4 BMC rekonstituiert. Die Graphik zeigt die Überlebenskurve der Empfänger (R2) im Zeitverlauf.

Diese Daten legen die Vermutung nahe, daß eine antikörpervermittelte Vorläuferzellmobilisation zumindest in einigen Aspekten der G-CSF-Stimulation überlegen sein könnte. Deshalb wurden in einem weiteren Experiment myeloablativ bestrahlte Empfängertiere nicht wie im obigen Versuch mit festgelegten, sondern mit abgestuften Zellzahlen $(110^3, 510^3, 2, 510^4, 1, 2510^5 \text{ BMC bzw. } 410^3, 210^4,$ 110^{5} , 2,5 10^{6} SC bzw. 5 10^{4} , 1 10^{5} , 3 10^{5} , 4,5 10^{5} , 9 10^{5} , 1,2 10^{6} PBMC) unterschiedlich behandelter Spender rekonstituiert. Die Überlebensrate, zelluläre Rekonstitution sowie die Immunreaktivität der Empfänger wurden erfaßt. Es zeigte sich, daß eine geringe Zahl von Knochenmarkzellen für die Rekonstitution ausreicht, wenn der Spender mit anti-CD49d oder anti-CD44s behandelt wurde (Abb. 5 A). Mit der Antikörperbehandlung wird also offensichtlich eine höhere Dichte an frühen Vorläuferzellen im Knochenmark erreicht, ohne daß diese jedoch in die Peripherie verschoben werden. G-CSF zeigte den gleichen Effekt, jedoch war die Knochenmarkzellularität der Empfängertiere sehr gering (Tab. 3). Die Mobilisierung in die Peripherie durch anti-CD49d- oder G-CSF-Behandlung manifestierte sich in besseren Ergebnissen nach Transfer von Milzzellen (Abb. 5 B). Anti-CD44s hingegen hatte einen nur geringen Einfluß auf die Rekonstitutionskapazität von Milzzellen. Entsprechende Ergebnisse zeigt auch der Transfer von PBMC, welche nach G-CSF-, geringer auch nach anti-CD44s- und anti-CD49d-Behandlung, gute Rekonstitutionen erzeugten (Abb. 5 C).

Abb.5 A-C: Überleben der Empfängertiere nach Rekonstitution mit grenzwertigen Zahlen an BMC (A), SC (B) oder PBMC (C) mobilisationsbehandelter Spender: Den myeloablativ bestrahlten Tieren wurden abgestufte Zellzahlen injiziert. Die Spender waren zuvor mit dem Kontroll-IgG, anti-CD44s, anti-CD49d oder G-CSF behandelt worden. Die Graphik zeigte das prozentuale Überleben der Empfängertiere (Gruppengröße 20 Tiere) nach einem Beobachtungszeitraum von 8 Wochen.

Betrachtet man die Knochenmarkzellularität der Empfängertiere, so zeigt sich ebenfalls ein deutlicher Effekt der Adhäsionsblockade durch Antikörper (Tab.3). Der Transfer von BMC und PBMC aus mit anti-CD49d behandelten Tieren erzeugte im Empfänger signifikant höhere Knochenmarkzellzahlen während der ersten Wochen nach Rekonstitution. Wurden die Spendertiere mit anti-CD44s behandelt, zeigten BMC und PBMC ebenfalls ein besseres Rekonstitutionspotential. Diese schnellere "Erholung" des Knochenmarks stand im Gegensatz zu den Empfängern von G-CSF-mobilisierten Knochenmarkzellen, deren Zellzahlen sogar signifikant unter denen der Kontrollgruppe lagen. Periphere Zellen G-CSF-behandelter Spender, also SC und PBMC, zeigten jedoch vergleichbar gute Ergebnisse. Die Anzahl von C-CFU im Knochenmark der Empfänger entsprach den Ergebnissen der *in-vivo*-Experimente (Abb. 6). Die höchsten Zahlen an C-CFU zeigten sich nach Transfer von SC oder PBMC G-CSF-behandelter Tiere und nach Transfer von BMC von anti-CD44s-behandelten Tieren. Anti-CD49d-Behandlung verbesserte die rekonstitutive Kapazität sowohl von Knochenmark- als auch von peripheren Zellen.

Tab. 3: Knochenmarkzellularität von Empfängern nach unterschiedlichen Mobilisationsregimes (ns = nicht signifikant; nt = nicht getestet)

	,						
Behandlung	BMC-Empfänger						
	Woche 1	Woche 2	Woche 4	Woche 6 nach Transfer			
rat IgG	2,31 ±0,16	3,11 ±0,23	9,23 ±0,99	18,36 ±1,28			
anti-CD44s	2,40 ±0,09 (ns)	10,02 ±0,71 (<0.001)	14,16 ±1,17 (<0.001)	15,57 ±0,74 (0.006)			
anti-CD49d	nt	10,01 ±0,72 (<0.001)	18,30 ±1,13 (<0.001)	29,22 ±1,29 (<0.001)			
G-CSF	nt	1,11 ±0,58 (<0.001)	3,39 ±0,57 (<0.001)	9,78 ±1,37 (<0.001)			
	SC-Empfänger						
rat IgG	0,85 ±0,08	2,93 ±0,41	11,38 ±0,82	21,95 ±1,63			
anti-CD44s	1,58 ±0,41 (ns)	3,35 ±0,43 (ns)	9,57 ±0,73 (ns)	14,30 ±1,14 (0.006)			
anti-CD49d	nt	4,15 ±0,36 (0.035)	10,88 ±0,84 (ns)	20,15 ±1,54 (ns)			
G-CSF	nt	3,77 ±0,21 (ns)	12,11 ±0,98 (ns)	16,20 ±0,82 (0.012)			
	PBMC-Empfänger						
rat IgG	nt	2,33 ±0,41	10,33 ±0,82	18,75 ±1,79			
anti-CD44s	nt	2,51 ±0,40 (ns)	20,41 ±2,11 (<0.001)	22,54 ±1,25 (0.005)			
anti-CD49d	nt	4,42 ±0,49 (0.010)	20,32 ±1,53 (<0.001)	31,29 ±2,04 (<0.001)			
G-CSF	nt	5,39 ±0,63 (0.005)	31,73 ±2,95 (<0.001)	48,91 ±3,47 (<0.001)			

Zeitverlauf der Knochenmarkzellularität [[·]10⁶ BMC±SD (p-Wert)] in Empfängertieren nach Transfer von BMC, SC oder PBMC

Abb. 6: CFU-Frequenz nach Knochenmarkrekonstitution: Myeloablativ bestrahlte Tiere wurden mit 2.5^{-10⁴} BMC oder 5^{-10⁵} SC oder 5^{-10⁵} PBMC Antikörper- oder G-CSF behandelter Spender rekonstituiert. Im Zeitraum zwischen Woche 1 und Woche 6 wurde die Zahl an C-CFU pro 5^{-10⁴} BMC im colony assay ermittelt.

Hinsichtlich der klinischen Praxis der Knochenmark oder Stammmzelltransplantation ist jedoch nicht primär die Knochenmarkzellularität, sondern vielmehr der Immunstatus des Empfängers und damit die Abwehr vital bedrohender Infektionen von Bedeutung. Die Immunreaktivität der Empfängertiere wurde anhand der Proliferationsaktivität (³H-Thymidin-Inkorporation) und IgM-Produktion (ELISA) der mononukleären Fraktion von Milzzellen nach allogener Stimulation gemessen (Tab. 4). Die Alloreaktivität war innerhalb der ersten sechs Wochen nach Zelltransfer stark vom Mobilisationsregime abhängig. Knochenmarkempfänger zeigten die höchste Reaktivität, wenn der Spender mit anti-CD44s behandelt worden war. BMC und SC anti-CD49d-mobilisierter Spender erzeugte ebenfalls eine gesteigerte Alloreaktivität im Empfänger, die jedoch im Falle des Transfers von BMC auf die ersten Wochen nach Transplantation beschränkt war. Interessanterweise verzögerte die Mobilisation mit G-CSF die Wiederherstellung der Alloreaktivität bei allen Empfängergruppen.

 Tab. 4: Immunrekonstitution nach Transplantation von Vorläuferzellen aus unterschiedlich behandelten Spendertieren (ns = nicht signifikant, nt = nicht getestet))

Proliferations	saktivitat [cpr	i±SD (p-wert)]	von 110 Miliz	zzellen der En	iprangertiere (H-I nymiain-
Inkorporatior	n) nach alloge	ner Stimulatio	n			
	nach BMC-Transfer (5 ⁻ 10 ³)		nach SC-Transfer (5 ⁻ 10 ⁵)		nach PBMC-Trans (5 ⁻ 10⁵)	
Behandlung des Spenders	Woche 3	Woche 6	Woche 3	Woche 6	Woche 3	Woche 6
rat IgG	2110 ± 82	41142 ±1633	1389 ± 82	27238 ± 915	886 ± 86	9066 ±463
anti-CD44s	7845 ±106 (<0.001)	61109 ±1674 (<0.001)	1321 ± 92 (ns)	23344 ± 796 (0.012)	1701±101 (<0.001)	22063 ±682 (<0.001)
anti-CD49d	3921 ± 85 (<0.001)	38221 ±1536 (ns)	1211 ±125 (ns)	43108 ±1633 (<0.001)	2401±163 (<0.001)	22052 ±611 (<0.001)
G-CSF	1089 ± 62 (<0.001)	25418 ±1799 (<0.001)	633 ± 79 (<0.001)	20874 ±1596 (0.008)	1822 ± 92 (<0.001)	12033 ±492 (0.016)

IgM-Produktion [Mittelwerte±SD (p-Wert)] aus Überständen nach 3 Tagen Kokultivierung von Empfänger-SC mit bestrahlten allogenen Stimulatorzellen (OD 405nm im ELISA).

rat IgG	0,533±0,041	1,814±0.074	0,508 ±0.041	1,388 ±0.088	nt	1,282 ±0,075
anti-CD44s	0,833±0,039	1,798±0.081	0,500±0.045	1,752 ±0.084	nt	1,476 ±0,081
	(0.002)	(ns)	(ns)	(0.012)		(ns)
anti-CD49d	0,528±0,048	2,207±0.082	0,537±0.038	1,555 ±0.075	nt	1,522 ±0,069
	(ns)	(0.009)	(ns)	(ns)		(0.042)
G-CSF	0,351±0,041	2,041±0.088	0,468±0.046	1,313 ±0.082	nt	1,638 ±0,079
	(0.011)	(ns)	(ns)	(ns)		(0.012)

Anti-CD44s scheint also Vorläuferzellen aus dem Stromaverband zu lösen und dabei ihre Proliferation anzuregen. Die Mobilisation oder "Peripherialisierung" wird jedoch offensichtlich durch den blockierenden Antikörper nicht begünstigt. Die Auswirkungen des anti-CD49d-Antikörpers auf das Knochenmark waren zwar geringer, aber die Anreicherung von Vorläuferzellen in Milz und peripherem Blut erwies sich als sich effektiver. Die sehr unterschiedlichen Wirkungen der Antikörper- bzw. G-CSF-Behandlung auf Ort und Intensität der Vorläuferzellmobilisation sowie auf die Expansion unterschiedlicher CFU-Klassen führten zu der Frage, ob die Antikörper untereinander mit oder ohne G-CSF sinnvoll kombiniert werden können, um eine synergistische Wirkung zu erreichen.

5.3. Synergistische Effekte von anti-CD44s und anti-CD49d sowie von anti-CD44s/anti-CD49d und G-CSF in der Mobilisation hämatopoetischer Vorläuferzellen

Das unterschiedliche Wirkungsmuster der Antikörper bzw. von G-CSF implizierte einen synergistischen Effekt bei kombinierter Gabe. Abb. 7 A-D zeigt, daß Zellen von Spendern, die mit beiden Antikörpern behandelt wurden, ein höheres Rekonstitutionspotential aufweisen und in geringerer Zahl im myeloablativ bestrahlten Empfänger eine suffiziente Hämatopoese etablieren können (Abb. 7 A und B). Ähnliches gilt für die Kombination aus Antikörperbehandlung mit einer abschließenden Gabe von G-CSF am Tag 3 (Abb. 7 C und D). Auch hier genügten geringere Zellzahlen zur Rekonstitution, dieser Effekt war jedoch beim Transfer von Milzzellen nur gering.

Abb. 7 A-D: Überleben nach Rekonstitution mit abgestuften Transplantatzellzahlen kombiniert behandelter Spender: myeloablativ bestrahlte Empfängertiere wurden mit abgestuften Zellzahlen von Spendertieren rekonstituiert, die mit einer Kombination beider Antikörper oder mit einem der Antikörper plus G-CSF behandelt worden waren. Die Abbildung zeigt das prozentuale Überleben nach einem Beobachtungszeitraum von 8 Wochen.

Wie in Tab.5 A am Beispiel des Transfers von SC gezeigt wird, war die Knochenmarkrekonstitution erheblich beschleunigt bei Empfängern von anti-CD44s- plus anti-CD49d-mobilisierten Spenderzellen. Bereits 3 Wochen nach der Transplantation enthielten Milzzellsuspensionen der Empfänger einen höheren Anteil CD4- und CD8-positiver sowie immunglobulinproduzierender Lymphozyten, und auch die Proliferation auf eine allogene Stimulation war hier wesentlich stärker als bei der Mobilisation mit nur einem der beiden Antikörper. Die Kombination aus Antikörper und G-CSF zur Mobilisation führte zu deutlich höherer Knochenmarkzellularität und Alloreaktivität beim Empfänger (Tab. 5 B), letzteres besonders nach Transplantation von BMC.

A. Synergistische wirkung von anti-CD44s und anti-CD49d. Transfer von 2.5x10 SC.						
Behandlung des Spenders	Knochenmarkzell (p-Wert)	SC-Subpopulation (%, 3 Wochen nach Transfer)			Proliferationsaktivität [cpm±SD / 2 [·] 10 ⁵ SC] (p-Wert)	
	Woche 2	Woche 4 nach Transfer	$CD4^+$	CD8⁺	sIgM⁺	
rat IgG	5,3 ±0,82	10,5 ±1,73	4,3	7,4	24,1	1434 ±102
anti-CD44s	6,5 ±0,69 (ns)	10,1 ±0,81 (ns)	8,2	10,9	28,9	2198 ±122 (0.002)
anti-CD49d	8,5 ±0,41 (0.007)	10,9 ±0,95 (ns)	7,8	10,1	30,4	1224 ±140 (0.041)
anti-CD44s +anti-CD49d	8,7 ±0,57 (0.009)	12,6 ±1,82 (0.062)	10,5	15,4	35,3	10118 ±633 (0.001)

B. Synergistische Wirkung von G-CSF mit anti-CD44s oder anti-CD49d. (Signifikanzangaben beziehen sich auf G-CSF)

	Knochenn	narkzellularität	Proliferationsa [cpm/2 ⁻ 10 ⁵ SC]	aktivität (p-Wert)		
Behandlung des Spenders	Transfer von 5 [.] 10 ³ BMC		Transfer von 2,5 [·] 10 ⁵ SC		Transfer von 5 [·] 10 ³ BMC	Transfer von 2,5 [.] 10 ⁵ SC
	Woche 2	Woche 5 nach Transfer	Woche 2	Woche 5 nach Transfer	Woche 3 nach	Transfer
rat IgG	3,0 ±0,51	13,7 ±1,62	5,9 ±0,81	15,6 ±1,11	1841 ±114	1389 ±120
G-CSF	1,3 ±0.32	10,6 ±1,51	7,5 ±1,04	14,2 ±1,34	1089 ±99	633 ±51
anti-CD44s	9,1 ±1,68	14,8 ±1,32	6,7 ±0,94	11,9 ±1,84	7845 ±212	1321 ±105
anti-CD44s + G-CSF	8,7 ±2,11 (<0.001)	20,4 ±2,56 (<0.001)	8,6 ±0,52 (0.041)	17,5 ±1,97 (0.008)	11834 ±354 (<0.001)	2042 ±191 (<0.001)
anti-CD49d	7,7 ±1,95	20,3 ±2,05	8,3 ±0,78	15,6 ±1,45	3921±171	1211±88
anti-CD49d + G-CSF	6,3 ±1,57 (<0.001)	19,6 ±1,87 (<0.001)	11,5 ±0,93 (0.002)	17,0 ±1,31 (0.016)	17455 ±569 (<0.001)	3066 ±245 (<0.001)

Sowohl eine Kombination beider Antikörper als auch die Ergänzung der einzelnen Antikörper durch eine Einmaldosis G-CSF haben also eine synergistische Wirkung auf die Vorläuferzellmobilisierung und Expansion. Von praktischer Bedeutung könnte die Beobachtung sein, daß die verzögerte Immunrekonstitution nach G-CSF-Mobilisation durch die Vorbehandlung mit Antikörpern kompensiert werden kann.

5.4. Expression von CD44v7 auf hämatopoetischen Vorläuferzellen und Knochenmarkstromazellen

Die Expression von CD44v7 wurde auf frisch entnommenen Knochenmarkzellen, auf Stromazellen aus Knochenmarklangzeitkulturen sowie auf den etablierten Stromazellinien MS5 und S17 getestet (Tab. 6, Abb. 8). Alle diese Zellen zeigten eine kräftige Expression von CD44s. CD44v7 hingegen wurde nur auf 20% der Knochenmarkzellen und 40% der Stromazellen nachgewiesen. Auf den Zellinien S17 und MS5 war CD44v7 stärker exprimiert. Um die CD44v7-positiven Zellen näher zu charakterisieren, wurden Doppelfluoreszenzfärbungen durchgeführt, um die Koexpression anderer Adhäsions- und Progenitormarker zu messen (Tab.7).

Tab. 6: Expression von (CD44s und CD44v7	auf Knochenmarkzellen	(BMC), 3	Stromazellen	aus
Langzeitkulturen (LTBMC	;) und den etablierte	n Stromazellinien S17 un	d MS5		

Zellpopulation	CD44s-positive Zellen [%]	CD44v7-positive Zellen [%]
	(Fluoreszenzintensität)	(Fluoreszenzintensität)
BMC	85,9 (487,1)	18,8 (11,2)
Stroma (LTBMC)	86,3 (511,2)	39,3 (87,9)
S17	95,6 (233,7)	75,3 (89,8)
MS5	74,2 (134,1)	54,2 (98,4)

A. BMC					
Oberflächenmarker	Marker-	positive Gegenfärbung mit	positive Gegenfärbung mit		
	positive	anti-CD44s [%] (% Marker-	anti-CD44v7 [%] (%		
	Zellen [%]	positiver Zellen)	Marker-positiver Zellen)		
-	-	(85,9%)	(18,8%)		
CD11b	10,7	9,8 (91,6)	3,3 (29,0)		
CD24 (HSA)	73,1	62,1 (85,0)	19,0 (26,0)		
CD34 (Sgp90)	11,7	11,0 (94,0)	2,2 (18,8)		
CD43 (Sialophorin)	67,8	62,1 (91,6)	20,7 (30,5)		
CD45RA (B220)	59,6	46,4 (77,8)	20,3 (34,1)		
CD49d (VLA-4)	50,2	44,3 (88,2)	20,4 (40,6)		
CD54 (ICAM-1)	28,3	24,6 (86,9)	6,6 (23,3)		
CD90 (Thy1)	11,5	8,7 (75,7)	11,0 (95,7)		
CD117 (c-kit)	15,1	13,8 (91,4)	7,9 (52,3)		
DC	9,9	9,7 (98,0)	5,3 (53,5)		
SCA-1	23,7	21,7 (91,6)	9,5 (40,1)		
B. Stromazellen (LTE	BMC)				
-	-	(86,3%)	(39,3%)		
CD31 (PECAM-1)	45,7	33,7 (73,7)	7,9 (17,3)		
CD34 (Sgp90)	28,1	28,0 (99,6)	8,4 (29,9)		
CD43 (Sialophorin)	65,7	46,4 (70,6)	7,9 (12,0)		
CD54 (ICAM-1)	31,8	32,0 (100)	7,0 (22,0)		
CD61 (ß3 integrin)	48,6	37,4 (77,0)	6,9 (14,2)		
CD62E (E-selectin)	27,2	27,1 (99,36)	7,0 (25,7)		
CD62P (PADGEM)	30,3	27,6 (91,1)	16,7 (55,1)		
CD105 (Endoglin)	26,5	26,3 (99,2)	7,9 (29,8)		
CD106 (VCAM-1)	21,1	18,0 (85,3)	8,0 (37,9)		

Tab. 7 A, B: CD44s- und CD44v7-Expression auf Knochenmark (BMC)- und Stromazell-Subpopulationen

Abb. 8: Expression von CD44s und CD44v7 auf Knochenmark- und Stromazellen: (A) Frisch präparierte Knochenmarkzellen sowie Stromazellen aus Langzeitkulturen wurden mit biotinylierten Antikörpern gegen CD44s und oder CD44v7 inkubiert und anschließend mit Streptavidin-Phycoerythrin (Strep-PE) gefärbt. Die Grafiken zeigen die Fluoreszenzverschiebung: graue Kurve: Negativkontrolle; schwarze Kurve: CD44v7; weiße Kurve: CD44s.

(B) Frisch präparierte Knochenmarkzellen wurden im Doppelfluoreszenzverfahren mit PE-Antikörpern gegen CD44v7 sowie mit FITC-Antikörpern gegen CD34, CD90, CD117 oder SCA-1

inkubiert. Die Abbildungen zeigen Doppelfluoreszenzanalysen, wobei die Achse FL2 der CD44v7-Fluoreszenzintensität entspricht.

5.5. Mobilisation hämatopoetischer Vorläuferzellen durch Blockade von CD44v7

CD44v7 wird nahezu ausschließlich auf hämatopoetischen Zellen exprimiert, aber selbst auf diesen Zellen ist die Expressionsdichte äußerst gering [94]. Die Bedeutung dieses Moleküls für Zellinteraktions- und Adhäsionsprozesse wird jedoch durch die erstaunliche Beobachtung unterstrichen, daß die antikörpervermittelte Blockade von CD44v7 schwere Entzündungsreaktionen unterbrechen kann [93]. Dieser Befund war der Ausgangspunkt der vorliegenden Untersuchungen zur möglichen Funktion von CD44v7 im Rahmen der Hämatopoese. Im Kontext der beschriebenen Untersuchungen zur Mobilisation von Stammzellen über eine Blockade von Adhäsionsmolekülen wurde als erstes untersucht, ob CD44v7 hier ein ähnliches Funktionsspektrum aufweist.

Nach dreimaliger intravenöser Gabe von je 200 µg anti-CD44v7-Antikörper im Abstand von 24 Stunden zeigte sich im Knochenmark und der Milz der behandelten Tiere eine signifikante Reduktion der Expression von CD44v7 und CD49d. CD44s blieb in seiner Expression unverändert. Außer einer Zunahme der Zahl SCA-1-positiver Zellen in Knochenmark und Milz zeigte sich keine wesentliche Änderung in der Verteilung der Vorläuferzellmarker (Abb. 9 A, B).

Am eindrucksvollsten war jedoch die signifikant höhere Zahl an Milzzellen mit hoher Proliferationsaktivität nach anti-CD44v7-Behandlung. Diese Zellfraktion enthielt kolonieformende Einheiten der Klassen CFU-C, CFU-M und CFU-GM in deutlich gesteigerter Anzahl (Tab. 8 A und B). Offensichtlich kommt es also nach anti-CD44v7-Behandlung zu einer Vorläuferzellmobilisation und Anreicherung früher Vorläuferzellen in der Peripherie.

Abb.9 A, B: Die Behandlung mit einem Antikörper gegen CD44v7 hat keine wesentlichen Änderung in der Expression von Progenitor- und Adhäsionsmarkern auf Knochenmark (BMC)und Milzzellen (SC) zur Folge: Expression von Oberflächenmarkern, angegeben in Prozent fluoreszierender Zellen, nach dreitägiger Behandlung mit anti-CD44v7. Signifikante Abweichungen sind mit (*) gekennzeichnet.

A. Zellularität von Knochenmark (BMC) und Milz (SC) nach Antikörpertherapie							
Behandlung	Zellularitä	Zellularität [[·] 10 ⁶] (p-Wert)		Proliferationsaktivität [cpm±SD /1 [·] 10 ⁵			
				Zellen] (p-W	/ert)		
	BMC		SC	BMC	ВМС		
Kontrolle (mouse IgG)	20,8 ±1,9	20,8 ±1,9		20304 ±1114		15788 ±1112	
anti-CD44v7 (LN7.2)	20.5 +2.0 (20,5 ±2,0 (ns)		20756 ± 707 (ns)		31204 ±694 (<0,001)	
	20,5 12,0 (
B. Anzahl kolonieform	B. Anzahl kolonieformender Einheiten in der Milz (SC)						
Behandlung	Anzahl CFU±	Anzahl CFU±SD pro 5 [,] 10⁵ SC (p-Wert)					
	CFU-C	CI	FU-GM	CFU-M	CFU-pr	äΒ	BFU-E
Kontrolle(mouse IgG)	9,9 ±1,2	7,9	9 ±1,5	6,6 ±1,1	7,8 ±2,2		7,7 ±1,9
anti-CD44v7 (LN7.2)	19,9 ±2,3 2		6,8 ±2,8	20,4 ±2,3	0.2 ± 2.4 (po) 0.4 ± 100		8.4 ± 2.0 (ns)
	(<0,001)	(<	0,001)	(<0,001)	0,2 12,-	F (113)	0,4 ±2,0 (113)

Tab. 8 A, B: Mobilisation hämatopoetischer Vorläuferzellen durch Antikörper gegen CD44v7

Dieser deutliche Effekt der anti-CD44v7-Behandlung auf die periphere Zellularität und den Gehalt an kolonieformenden Einheiten impliziert eine Interaktion des Antikörpers mit Knochenmark- und Stromazellen im Sinne einer Adhäsionsblockade.

5.6. Bedeutung von CD44v7 für die Knochenmark-Stromazell-Adhäsion, Vorläuferzellmobilisation und Knochenmark-"Wiederfindung" (homing) transplantierter Vorläuferzellen

In Knockout-Tierstämmen können aufgrund einer gezielten Deletion des codierenden Gens bestimmte Proteine nicht transkribiert werden. Die CD44v7-knockout-Tiere (CD44v7-/-) wurden freundlicherweise von Frau PD Dr. U. Günthert, Basel, zur Verfügung gestellt.

Da diesen Tieren die Expression des genannten Moleküls auf allen Körperzellen fehlt, kann durch den Vergleich der Knochenmarkzellularität zwischen gesunden syngenen (129SVEV) und knockout-Empfängertieren (CD44v7-/-) nach Transplantation der Stellenwert des v7-Exonproduktes für das Engraftment bestimmt werden. Dazu wurden die Spenderzellen mit radioaktivem Chrom (⁵¹Cr) markiert und einer Gruppe von myeloablativ bestrahlten Empfängertieren transfundiert. Den Empfängern wurden nach 1, 6, 24, 48 und 72 Stunden Blut, Milz und Knochenmark entnommen und anhand der Radioaktivität der Gehalt transplantierter Zellen ermittelt. Zur Bestimmung der Verteilung in den verschiedenen Geweben wurden Leber, Niere, Herz, Lunge, Muskelgewebe und Haut ebenfalls zu den festgelegten Zeitpunkten entnommen und auf Gamma-Radioaktivität geprüft. Die Abb. 10 A-C zeigt den Gehalt an Spenderzellen in Femur, Milz und peripherem Blut der Empfängertiere im Zeitverlauf.

Abb. 10 A-C: Verteilung transplantierter Knochenmarkzellen in gesunden und knockout-Tieren: BMC von unbehandelten Spendertieren (gesund [CD44v7+/+] oder CD44v7-defizient [CD44v7-/-]) wurden radioaktiv markiert und syngenen Empfängertieren (CD44v7-kompetent oder – defizient) infundiert. Den Empfängertieren wurden nach 1, 6, 24, 48 und 72 Stunden Knochenmark, Milz und peripheres Blut entnommen und der Gehalt an transplantierten Zellen durch Messung der Radioaktivität des Gewebes bestimmt. Die Diagrammwerte entsprechen der Gamma-Aktivität in cpm±SD in 1ml Blut (A), einem Femur (B) bzw. einer Milz (C).

Die Clearance der transplantierten Zellen aus dem Blut war in den knockout-Tieren nur geringgradig verzögert. Die Einwanderung von Knochenmarkzellen aus knockout-Spendern in Milz und Knochenmark des Empfängers war jedoch vermindert, insbesondere dann, wenn auch dem Empfänger CD44v7 fehlte. Das Vorhandensein von CD44v7 auf Stromazellen, also der "Empfängerseite" im Spender-Wirt-Verhältnis, scheint dabei die größere Bedeutung zu haben, da Knochenmarkzellen gesunder Spender ein schlechteres homing im knockout-Empfänger zeigten. Allerdings war das Engraftment nach Transplantation CD44v7-negativer Knochenmarkzellen auf CD44v7-positive Empfänger ebenfalls, wenn auch in geringerem Ausmaß, reduziert. Die Analyse des

Gehaltes an radioaktiv markierten Zellen in den anderen Organen (Herz, Lunge, Leber, Niere, Muskel, Haut) zeigte keine Unterschiede zwischen gesunden und knockout-Spendern und –Empfängern.

Die Expression von Adhäsions-, Progenitor- und Stromazellmarkern auf Knochenmarkzellen und LTBMC-Stromazellen des Knockout-Stammes war identisch mit denen gesunder Tiere. Man kann daher davon ausgehen, daß in diesen Experimenten tatsächlich die Abwesenheit von CD44v7 für die Unterschiede im Verhalten transplantierter Zellen verantwortlich ist. Auf hämatopoetischen Vorläuferzellen, insbesondere aber auf Stromazellen hat CD44v7 offensichtlich adhäsive Funktion und könnte als Zielmolekül für Stammzellmobilisation interessant sein.

5.7. Einfluß von CD44v7 auf die Qualität der Knochenmarkrekonstitution (marrow repopulating ability, MRA)

Durch den Transfer von Knochenmark (BMC)- oder Milzzellen (SC) anti-CD44v7-behandelter Tiere (D) in myeloablativ behandelte Primärempfänger (R1) und weiteren Transfer der R1-BMC am Tag 8 nach Transplantation in einen Sekundärempfänger (R2) wurde die Qualität der Knochenmarkrekonstitution ermittelt. In vitro wurde das Vorhandensein von kolonieformenden Einheiten (CFU) im Knochenmark des Empfängers R1 bestimmt. Beide Versuchsansätze erbrachten konkordante Ergebnisse. Nach Behandlung mit anti-CD44v7 wurden signifikant höhere Zahlen an CFU-C in der Milz des Spenders gefunden, Empfänger von Milzzellen zeigten signifikant bessere Überlebensraten. Allerdings wurde die Rekonstitutionskapazität von Knochenmarkzellen durch die Antikörperbehandlung nicht verändert (Abb. 11, Tab.9).

Abb. 11 A, B: Vorläuferzellmobilisation und Überlebensraten der Empfängertiere nach anti-CD44v7-Behandlung: SVEV-Spendertiere erhielten 3 intravenöse Injektionen von entweder 200µg eines Kontrollantikörpers (mouse IgG) oder 200µg des anti-CD44v7-Antikörpers LN7.2. SC und BMC wurden in abgestuften Zellzahlen in myeloablativ bestrahlte Empfänger transferiert und deren Überleben nach einem Beobachtungszeitraum von 8 Wochen protokolliert.

Tab. 9: Hämatopoetische Rekonstitution durch BMC- oder SC-Transfer nach anti-CD44v7-Behandlung

A. Knochenmark	A. Knochenmarkzellularität und CFU-C – Frequenz im Empfänger (R1) 8 Tage nach							
Transplantation	Transplantation (Mittelwerte ± SD)							
Behandlung (D)	Transfer	von 1 [.] 10 ⁶ l	BMC (D→F	R1)	Transfer von 5 ⁻ 10 ⁶ SC (D→R1)			
	BMC	CFU-C	CFU-C	P-Wert	BMC	CFU-C	CFU-C	P-Wert
	(⁻ 10 ⁶)	/5 [.] 10 ⁴	/Femur		(⁻ 10 ⁶)	/5 [.] 10 ⁴	/Femur	
		BMC				BMC		
Kontrolle	2.82±0.60	57±7.1	3215±138		1.33±0.34	53±7.1	1410± 83	
anti-CD44v7	3.42±0.31	65±6.1	4446±358	(0.044)	4.33±3.23	139±9.3	12037±642	(<0.001)
B. Knochenmark	B. Knochenmarkzellularität und CFU _s -Anzahl im Sekundärempfänger (R2) 12 Tage nach							
Sekundärtransp	lantation (Mittelwert	e ± SD)					
Behandlung (D)	Transfer	von 1 [.] 10 ⁶	BMC (R1→	→R2)	Transfer v	on 5 [.] 10 ⁶	SC (R1→R2)
	BMC	P-Wert	CFUs	P-Wert	BMC	P-Wert	CFUs	P-Wert
	(⁻ 10 ⁶)		/Milz		(⁻ 10 ⁶)		/Milz	
Kontrolle	5,48		7,0 ±2,0		4,83 ±0,46		6,0 ±1,4	
	±0,46							
anti-CD44v7	7,33	(0,002)	9,8 ±2,6	(ns)	10,17	(0,009)	25,0 ±4,3	(<0,001)
	±0,32				±0,34			

Auch diese Daten zeigen, daß CD44v7 offensichtlich ein Ligand für hämatopoetische Vorläuferzellen ist. Die Anzahl kolonieformender Einheiten (CFU) zeigte bei unbehandelten Tieren keine signifikanten Unterschiede zwischen gesunden und knockout-Stämmen (Abb.12).

Abb. 12: CFU-Frequenzen im Knochenmark von unbehandelte gesunden (CD44v7+/+) und Knockout-Tieren (CD44v7-/-): Ergebnisse der CFU-Auszählung / $5\cdot10^4$ BMC vier separater Versuchsansätze mit unbehandelten Tieren. Die Standardabweichungen (SD) sind als $_{\rm T}$ dargestellt.

Auch die Daten zur Knochenmarkrekonstitution gesunder und Knockout-Tiere stützen die Hypothese, daß die Expression von CD44v7 auf Stromazellen von entscheidender Bedeutung für das Engraftment ist. Die Anzahl der CFU-C im Femur und der CFU_S in der Milz eines CD44v7-/- -Empfängers nach Transfusion von Knochenmark unbehandelter Spender war erheblich reduziert (Tab. 10). Hierbei zeigte sich interessanterweise ein nur geringer Unterschied zwischen Knochenmark von gesunden und Knockout-Spendern, welches, wie oben gezeigt, vergleichbare Mengen an CFU-C enthält. Im CD44v7-kompetenten Empfänger findet man jedoch im Falle der Transplantation vom knockout-Spender zwar eine reduzierte Knochenmarks. Auch die Rekonstitutionskapazität (MRA, "marrow repopulating ability) zeigte eine deutlichere Abhängigkeit von der CD44v7-Kompetenz des Empfängers. CD44v7-Defizienz des Spendertieres führte zwar zur erniedrigten CFU_S-Frequenz im Sekundärempfänger, ohne jedoch das Überleben der Primärempfänger signifikant zu verschlechtern.

Tab.	10:	Rekonstitutionskapazität	(MRA,	"marrow	repopulating	ability")	von
Knoch	enmai	rkzellen CD44v7-defizienter T	iere (CD4	4v7-/-)			

Knochenmarkzellularität und CFU- Frequenz 8 Tage nach Transfusion von 1 [.] 10 ⁶ BMC (±SD)					CFU _S -Frequenz im Sekundärempfänger (R2) nach 12 Tagen (±SD)		
Spender (D) →Empfänger (R1)	BMC ([·] 10 ⁶)	CFU-C /5 ⁻ 10 ⁴ BMC	CFU-C /Femur	% der Kontrolle (P-Wert)	CFUs	% der Kontrolle (P-Wert)	
CD44v7+/+→ CD44v7+/+	2.7±0.4	27±1.7	1458± 83		23.5±2.6		
CD44v7+/+→CD44v7-/-	0.7±0.1	14±0.9	196± 6	13.4 (<0.001)	3.0±1.4	12.8(<0.001)	
CD44v7-/- →CD44v7-/-	0.8±0.1	4±0.4	64± 6	4.4 (<0.001)	1.5±1.0	6.4 (<0.001)	
CD44v7-/-→ CD44v7+/+	0.9±0.2	41±2.8	738± 19	50.6 (<0.001)	7.0±2.1	29.8 (<0.001)	

6. Diskussion

Durch die Verfügbarkeit rekombinanter humaner Wachstumsfaktoren, insbesondere von G-CSF, ist die Transplantation peripherer Blutstammzellen zu einer mindestens gleichwertigen Alternative zur Knochenmarktransplantation geworden [9, 85]. Betrachtet man jedoch die physiologische Funktion des G-CSF, nämlich die Stimulation der Proliferation und Ausreifung von granulozytären Zellen, ist es durchaus denkbar, daß die so mobilisierten Stammzellen zwar rekonstituierende Eigenschaften haben, jedoch in ihrer Differenzierung bereits weiter fortgeschritten sind als die zur Transplantation gewünschten "pluripotenten" Vorläuferzellen [20-22]. Ob die Mobilisation früher hämatopoetischer Vorläuferzellen durch Unterbindung der Adhäsion an Stromazellen in der Lage ist, besser rekonstituierende Zellen in die Peripherie zu treiben und damit der "physiologischere" Ansatz ist, wurde bereits von vielen Autoren diskutiert (16, 17, 23, 24, 26, 27). Die in dieser Arbeit gezeigte effiziente Mobilisation hämatopoetischer Vorläuferzellen durch Antikörper gegen Adhäsionsmoleküle (CD49d und CD44s) ist daher nicht neu. Neu ist allerdings die Beobachtung, daß eine Mobilisation von Vorläuferzellen nicht unbedingt mit deren Migration in die Peripherie, also in Milz und Blutkreislauf, einhergehen muß. Dies zeigt sich in der Anreicherung von Vorläuferzellen im Knochenmark selbst nach Behandlung mit anti-CD44s und in der Peripherie nach Behandlung mit anti-CD49d. Diese offensichtlich unterschiedlichen Mechanismen der Mobilisation führten zu der Hypothese, daß eine Kombination der Antikörper untereinander bzw. mit G-CSF effektiver sein könnte als die Therapie mit nur einer Substanz.

CD44s spielt als Adhäsionsmolekül eine wichtige Rolle in der Stromazellbindung, Proliferation, Reifung und Migration hämatopoetischer Vorläuferzellen [32, 65, 68, 86, 87]. Nach Knochenmarkoder Stammzelltransplantation ist CD44s für das "homing", also die Migration der transplantierten Zellen in das Knochenmark, von Bedeutung. Blockierende Antikörper gegen CD44s können Vorläuferzellen (CFU-C, CFU-GM) mobilisieren, ohne sie jedoch in größerer Zahl in die Peripherie zu treiben [16]. Interessanterweise ist in CD44s-knockout-Mäusen die Migration von Vorläuferzellen aus dem Knochenmark stark vermindert [88]. Auch die in dieser Arbeit beschriebenen Versuche zeigen eine durchaus effektive Mobilisation von Vorläuferzellen, jedoch nur innerhalb des Knochenmarkes, also ohne einen Egress in die Peripherie bzw. eine Anreicherung im peripheren Blut oder der Milz. Diese Mobilisation innerhalb des Knochenmarks weist darauf hin, daß CD44s außer der Funktion der Stroma-Vorläuferzelladhäsion, noch weitere Aufgaben erfüllt. Charrad et. al. konnten zeigen, daß die Bindung von CD44s auf dem Wege der Signaltransduktion an der Ausreifung myeloischer Zellen beteiligt ist [63]. Darüber hinaus besteht auch innerhalb der adhäsiven Funktionen von CD44s und CD49d ein Einfluß auf die Proliferation. Eine Lösung dieser Adhäsion begünstigt die Zellproliferation, während die intakte Zell-Zell-Adhäsion über CD44s und CD49d inhibierende Effekte ausübt [66]. Die gezeigte signifikant gesteigerte proliferative Aktivität von Knochenmarkzellen anti-CD44s-behandelter Tiere stützt diese These.

Bisher ging man davon aus, daß die über Wachstumsfaktoren erreichte Vorläuferzellmobilisation zumindest teilweise auf einer Alteration von Adhäsionsmolekülen beruht [13, 22]. Gestützt wurde diese Theorie durch die Beobachtung, daß die Expression von CD49d (VLA-4) unter G-CSF-Behandlung deutlich reduziert wird [90]. Am Beispiel von (anti-)CD49d und G-CSF konnte jedoch gezeigt werden, daß die Effekte beider Strategien unterschiedlich sind und sich additiv verhalten [16].

Die Blockade von CD49d führt zur deutlichen Anreicherung von Vorläuferzellen mit guter Rekonstituionskapazität in der Peripherie, wobei es unklar bleibt, ob der genaue Wirkmechanismus auf einer ausschließlichen Lösung der Adhäsion oder einem aktiven Migrationssignal beruht [28]. Die Ergebnisse deuten eher darauf hin, daß die Mobilisation der dominierende Faktor ist, da auch im Knochenmark ein hoher Gehalt an CFU gefunden wurde.

Ein funktioneller Zusammenhang zwischen CD44s und CD49d bezüglich Vorläuferzellproliferation [66], -adhäsion [89] und –homing [28] ist bekannt. Die Ergebnisse dieser Arbeit zeigen, daß durch Kombination beider Antikörper zur Mobilisationsbehandlung der Effekt additiv gesteigert werden kann, daß also Mobilisation als reine "Rekrutierung" von Vorläuferzellen und Egress in die periphere Zirkulation getrennt und additiv beeinflußt werden. Die bessere Immunkompetenz der Empfängertiere nach Transfer von Zellen, die mit beiden Antikörpern mobilisiert wurden, deutet darauf hin, daß beide Antikörper unterschiedliche Klassen von Vorläuferzellen beeinflussen. Dem entsprechen mehrere Befunde, die CD44 einen besonderen Stellenwert in der Lymphopoese zuordnen [44, 67].

Wie auch in zahlreichen anderen Publikationen beschrieben [10, 12-14], zeigte sich G-CSF als effektivste Behandlung zur Peripherialisierung hämatopoetischer Vorläuferzellen. Die Rekonstitutionskapazität (marrow repopulating ability, MRA) von G-CSF-mobilisierten Milzzellen war weitaus größer als nach Antikörperbehandlung. Aber ebenso wie in der Studie von Craddock et. al. [28] weisen die Ergebnisse dieser Arbeit darauf hin, daß die Stammzellmobilisation durch G-CSF nicht primär auf einer Adhäsionsblockade beruht. Eine signifikante Erniedrigung der Expression von CD49d und CD44s nach G-CSF-Behandlung, wie sie von anderen Autoren beschrieben wurde [13, 90, 91], konnten wir nicht beobachten, was aber möglicherweise an der von uns verwendeten relativ geringen Menge an G-CSF liegt. Ein weiterer wesentlicher Unterschied sei nochmal betont: nach Behandlung mit anti-CD44s gab es keinerlei Egress von Vorläuferzellen, aber eine deutliche Expansion des Zellpools innerhalb des Knochenmarks. Nach G-CSF-Mobilisation war ein signifikanter Egress, aber keine Expansion innerhalb des Knochenmarks zu beobachten.

Ein Aspekt mit möglicher klinischer Bedeutung ist die extrem verzögerte Rekonstitution der Immunkompetenz und die reduzierte Knochenmarkzellularität nach Rekonstitution myeloablativ bestrahlter Tiere mit G-CSF-mobilisierten peripheren Zellen. Die reduzierte Zahl der Knochenmarkzellen spricht für eine Reduktion des Stammzellpools zugunsten der Reifung zu frühen myeloischen Progenitorzellen. Mögliche Ursachen der verminderten Immunreaktivität könnten beispielsweise die Reduktion lymphatischer Zellen durch präferentielle Expansion der myeloischen Reihe unter G-CSF oder eine direkte suppressive Wirkung auf die Lymphopoese sein [21, 22]. Die Befunde der vorliegenden Arbeit sprechen für die erste Alternative. Eine ähnliche Interpretation findet sich in der Studie von Steen et. al. [13], die den Anteil lymphatischer Vorläuferzellen beim G-CSFbehandelten Spender als deutlich erniedrigt gegenüber dem unbehandelten Spender beschreibt. Über eine mangelhafte Immunantwort auf allogene oder mitogene Stimulation, geringe Antigenpräsentation und eingeschränkte T_{H1}- und NK-Zell-Rekonstitution wurden ebenfalls bereits berichtet [5, 92].

Kombiniert man die Vorteile der unterschiedlichen Mobilisationsregimes, also die effektive Expansion von Vorläuferzellen mit Betonung der lymphatischen Reihe innerhalb des Knochenmarks durch anti-CD44s, die Expansion früher und differenzierter hämatopoetischer Zellen durch anti-CD49d und die effektive Peripheralisierung nach G-CSF-Behandlung, können alle Nachteile der einzelnen Ansätze

kompensiert und eine erfolgreiche Rekonstitution des myeloablativ bestrahlten Spenders mit einer minimalen Anzahl an Transplantatzellen erreicht werden. Die Ergebnisse weisen darauf hin, daß das vorgestellte Mobilisationsschema durch eine verzögerte Transplantatentnahme nach G-CSF-Gabe weiter verbessert werden kann. Diese Annahme beruht auf der Beobachtung, daß Milzzellen kombiniert behandelter Spender ein etwas vermindertes Rekonstitutionspotential zeigten, möglicherweise aufgrund der 12 Stunden nach G-CSF-Gabe noch nicht abgeschlossenen Zellemigration.

Die variante CD44-Isoform CD44v7 zeigt eine restringierte Expression auf Zellen des hämatopoetischen Systems. Im Vergleich zur Standardisoform (CD44s), die auf vielen unterschiedlichen Zellen und Geweben vorhanden ist und dort u.a. adhäsive Funktionen ausübt, könnte also durch die Blockade der Isoform v7 eine gezielte Mobilisation hämatopoetischer Vorläuferzellen erreicht werden. Gestützt wurde diese Arbeitshypothese durch die Expression von CD44v7 sowohl auf Stroma- als auch auf Vorläuferzellen im Knochenmark. Die CD44v7-positiven Zellen im Tiermodell zeigen eine Koexpression mit Thy-1 und SCA-1. Auf CD34-positiven Zellen ist CD44v7 nur gering exprimiert, was jedoch nur bedingt gegen eine Beteiligung von CD44v7 in der Stammzelldifferenzierung spricht, da CD34 in der Maus wesentlich weniger auf hämatopoetische Vorläuferzellen restringiert ist als beim Menschen. Auch hat das Knochenmark CD44v7-defizienter ("knockout") Mäuse einen normalen Gehalt an kolonieformenden Einheiten und eine ausreichende Rekonstitutionskapazität nach Transplantation. Da CD44v7 auf Stromazellen stärker exprimiert ist, könnten deren Adhäsionsinteraktionen mit Vorläufer- bzw. Stammzellen funktionell von CD44v7 abhängig sein.

Um die Bedeutung von CD44v7 für die Hämatopoese und insbesondere die Vorläuferzellmobilisation zu untersuchen, wurden Transplantationsexperimente mit CD44v7-knockout-Tieren und syngenen gesunden Tieren durchgeführt. Beide Stämme dienten hierbei sowohl als Empfänger wie auch als Spender. Es zeigte sich, daß CD44v7 für das homing, also die Rekonstitution der definitiven Blutbildung innerhalb des Knochenmarks, von entscheidender Bedeutung ist. Werden einem CD44v7-defizienten Tier nach myeloablativer Bestrahlung Knochenmarkzellen transferiert, so ist die hämatopoetische Rekonstitution erheblich beeinträchtigt. Die Knochenmarkzellularität und der Gehalt an kolonieformenden Einheiten ist deutlich erniedrigt, und zwar unabhängig davon, ob der Spender CD44v7-defizient war oder nicht. Wurden CD44v7-knockout-Tiere als Spender verwendet und mit deren Knochenmark ein CD44v7-kompetenter Empfänger rekonstituiert, zeigte sich kein signifikant schlechteres Ergebnis. Offensichtlich ist CD44v7 also für die "Wiederfindung" des Knochenmarks im Empfänger von Bedeutung, wohingegen das Vorhandensein auf der Vorläuferzelle selbst eine geringere Rolle spielt.

Mit einem monoklonalen Antikörper gegen CD44v7 konnte eine gute Mobilisation hämatopoetischer Vorläuferzellen und deren Egress in die Peripherie erreicht werden. Milzzellen von behandelten Tieren zeigten eine signifikant bessere MRA und zelluläre Rekonstitution im Empfänger. Da jedoch die Blockade eines Adhäsionsmoleküls nicht notwendigerweise eine Peripherialisierung der mobilisierten Vorläuferzellen zur Folge hat, wie in den Experimenten mit Antikörpern gegen CD49d und CD44s gezeigt wurde, ist eine funktionelle Aktivität von v7, die über die reine Adhäsion hinausgeht, sehr wahrscheinlich. Denkbar wäre eine aktives Migrationssignal, wie es für den Komplex CD49d – VCAM-

1 – kit-ligand schon beschrieben wurde [27]. Auch sind unterschiedliche Funktionen des Moleküls auf den unterschiedlichen Zellpopulationen möglich: so kann CD44v7 ebenso als Ligand für kostimulatorische Moleküle auf akzessorischen Zellen wie auch als anti-apoptotischer Rezeptor auf T-Zellen fungieren [93]. Fraglos wird jedoch die Stroma-Vorläuferzellbindung durch CD44v7 gestützt. Dieser Befund macht CD44v7 als Targetmolekül für die Mobilisation von Progenitorzellen interessant.

7. Zusammenfassung

In der klinischen Praxis werden zur Mobilisation hämatopoetischer Vorläuferzellen rekombinante Wachstumsfaktoren verwendet. Der tierexperimentelle Ansatz dieser Arbeit zielt auf die Peripherialisierung pluripotenter Stammzellen durch Blockade ihrer Stromazelladhäsion, um den Nachteil der Zelldifferenzierung, der möglicherweise durch G-CSF bewirkt wird, auszugleichen. Durch monoklonale Antikörper gegen die Adhäsionsmoleküle CD44s, CD49d und CD44v7 können Vorläuferzellen mobilisiert werden, wobei diese Mobilisation nicht unbedingt mit einer Migration dieser Zellen in die periphere Zirkulation einhergeht.

Die Blockade von CD44s bewirkt eine Expansion von Vorläuferzellen innerhalb des Knochenmarks ohne Egress in die Peripherie, wohingegen mit einem Antikörper gegen CD49d (VLA-4) eine effektive Migration in das periphere Blut und die Milz erreicht werden konnte. Die Zellexpansion war hier jedoch vergleichsweise gering. Die Behandlung mit G-CSF allein erreichte zwar die höchsten peripheren Zellzahlen, die Rekonstitutionsqualität, insbesondere hinsichtlich der Immunkompetenz des Empfängers, war jedoch schwach. Kombinierte man jedoch die Antikörperbehandlung mit einer abschließenden Gabe von G-CSF, wurde sowohl eine effektive Mobilisation und Freisetzung in das periphere Blut als auch eine gute hämatopoetische Rekonstitution des Empfängers erreicht.

Über die Isoform CD44v7 und ihre Rolle in der Hämatopoese ist noch wenig bekannt. Die im Vergleich zur Standardisoform weitaus restringiertere Expression dieses Moleküls macht es jedoch für Mobilisationsstudien interessant. Es zeigte sich eine Expression auf Knochenmarkstroma- und geringer auch auf Vorläuferzellen. Die Blockade des Moleküls mit einem monoklonalen Antikörper führte zu effektiver Vorläuferzellmobilisation und –migration in die Peripherie. Wie Experimente mit CD44v7-knockout-Tieren gezeigt haben, ist die Expression auf Stromazellen dabei von entscheidender Bedeutung, denn nur das Vorhandensein von CD44v7 im Empfängertier hatte einen signifikanten Einfluß auf die Zellularität und Qualität der Knochenmarkrekonstitution im myeloablativ bestrahlten Tier.

8. Literatur

- 1. To LB, Haylock DN, Simmons PJ, Juttner CA. The biology and clinical uses of blood stem cells. Blood. 1997;89:2233-2258.
- Lowenthal RM, Faberes C, Marit G, Boiron JM, Cony-Makhoul P, Pigneux A, Agape P, Vezon G, Bouzgarou R, Dazey B, Fizet D, Bernard P, Lacombe F, Reiffers J. Factors influencing haematopoietic recovery following chemotherapy-mobilized autologous peripheral blood progenitor cell transplantation for haematological malignancies: a retrospective analysis of a 10-year single institution experience. Bone Marrow Transpl. 1998;22:763-770.
- 3. Richman CM, Schuermann TC, Wun T, Malik R, O'Donnell RT, DeNardo GL, DeNardo SJ. Peripheral blood stem cell mobilization for hematopoietic support of radioimmunotherapy in patients with breast carcinoma. Cancer. 1997;80 (12 Suppl):2728-2732.
- 4. Ross AA. Minimal residual disease in solid tumor malignancies: a review. J Hematother. 1998;7:9-18.
- 5. Rondelli D, Raspadori D, Anasetti C, Bandini G, Re F, Arpinati M, Stanzani M, Morelli A, Baccini C, Zaccaria A, Lemoli RM, Tura S. Alloantigen presenting capacity, T cell alloreactivity and NK function of G-CSF-mobilized peripheral blood cells. Bone Marrow Transplant. 1998;22:631-637.
- 6. Demirer T, Bensinger WI, Buckner CD. Peripheral blood stem cell mobilization for high-dose chemotherapy. J Hematother. 1999;8:103-113.
- Körbling M, Przepiorka D, van Besien K; Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allografts. Blood. 1995; 85: 105-116
- 8. Ottinger HD, Beelen DW, Scheulen B: Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood.1996; 88:2775-2779
- 9. Tabbara IA, Ghazal CD, Ghazal HH. The role of granulocyte colony-stimulating factor in hematopoietic stem cell transplantation. Cancer Invest. 1997;15:353-357.
- Haas R, Murea S. The role of granulocyte colony stimulating factor in mobilization and transplantation of peripheral blood progenitor and stem cells. Cytokines Mol Ther. 1995;1:249-270.
- 11. Cleaver SA, Goldman JM. Use of G-CSF to mobilize PBSC in normal healthy donors an international survey. Bone Marrow Transplant. 1998;21 (Suppl3):29-31.
- 12. Dasgupta A, Willeford DM, McAfee SL. Methods in stem cell mobilization. J Infus Chemother. 1996;6:12-16.
- Steen R, Tjonnfjord GE, Gunnes-Groseth LA, Heldal D, Egeland T. Efflux of CD34+ cells from bone marrow to peripheral blood is selective in steady-state hematopoiesis and during G-CSF administration. J Hematother. 1997;6:563-573.
- Theilgaard-Monch K, Raaschou-jensen K, Andersen H, Russell CA, Vindelov L, Jacobsen N, Dickmeiss E. Single leukapheresis products collected from healthy donors after the administration of granulocyte colony-stimulating factor contain ten-fold higher numbers of long-term reconstituting hematopoietic progenitor cells than conventional bone marrow allografts. Bone Marrow Transplant. 1999;23:243-249.
- 15. Lemoli RM, Tafuri A, Fortuna A, Catani L, Rondelli D, Ratta M, Tura S. Biological characterization of CD34+ cells mobilized into peripheral blood. Bone Marrow Transplant 22 (Suppl5) 47-50, 1998.
- 16. Vermeulen M, LePesteur F, Gagnerault MC, May JY, Sainteny F, Lepault F. Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells. Blood. 1998;92:894-900.
- 17. Papayannopoulou T. Hematopoietic stem/progenitor cell mobilization: A continuing quest for etiologic mechanisms. Ann N Y Acad Sci. 1999;872:187-197.
- 18. Friedrich C, Zausch E, Sugrue SP, Gutierrez-Ramos JC. Hematopoietic supportive functions of mouse bone marrow and fetal liver microenvironment: Dissection of granulocyte, B lymphocyte, and hematopoietic progenitor support at the stromal cell clone level. Blood. 1996;87:4596-4606.
- 19. Turner ML, Sweetenham JW. Haematopoietic progenitor homing and mobilization. Br J Haematol. 1996;94:592-596.
- 20. Shpall EJ. The utilization of cytokines in stem cell mobilization strategies. Bone Marrow Transplant. 1999;23 (Suppl 2):13-19.
- Martinez C, Urbano-Ispizua Á, Rozman M, Rovira M, Marin P, Montfort N, Carreras E, Monserra E. Effects of short term administration of G-CSF (Filgrastim) on bone marrow progenitor cells: analysis of serial marrow samples from normal donors. Bone Marrow Transplant. 1999;23:15-19.
- 22. Mohle R, Haas R, Hunstein W. Expression of adhesion molecules and c-kit on CD34+ hematopoietic progenitor cells: comparison of cytokine mobilized blood stem cells with normal bone marrow and peripheral blood. J Hematother. 1993;2:483-489.

- 23. Rösel M, Khaldoyanidi S, Zawadzki V, Zöller M. Involvement of CD44 exon v10 in B cell maturation. Exp Hematol. 1999;27:698-711.
- 24. Zöller M. CD44v10 in hematopoiesis and stem cell mobilization. Leukemia Lymphoma. in press.
- 25. Papayannopoulou T, Craddock C. Homig and trafficking of hemopoietic progenitor cells. Acta Haematol. 1997;97:97-104.
- 26. Papayannopoulou T, Craddock C, Nakamoto B, Piestley GV, Wolf NS. The VLA4/ICAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci USA. 1995;92:9647-9651.
- 27. Papayannopoulou T, Priestley GV, Nakamoto B. Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood. 1998;91:2231-2239.
- 28. Craddock CF, Nakamoto B, Andrews RG, Priestley GV, Papayannopoulou T. Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment cytokine-induced mobilization in primates and mice. Blood. 1997;90:4779-4788.
- 29. Coulombel L, Auffray I, Gaugler MH, Rosemblatt M. Expression and function of integrins on hematopoietic progenitor cells. Acta Haematol. 1997;97:13-21.
- 30. Anzai N, Gotoh A, Shibayama H, Broxmeyer HE. Modulation of integrin function in hematopoietic progenitor cells by CD43 engagement: possible involvement of protein tyrosine kinase and phospholipase C-gamma. Blood. 1999;93:3317-3326.
- 31. Oostendorp RA, Dormer P. VLA4-mediated interactions between normal human hematopoietic progenitors and stromal elements. Leukemia Lymphoma. 1997;24:423-435.
- 32. Ghaffari S, Smadja-Joffe F, Ooostendorp R, Levelsque JP, Dougherty G, Eaves A, Eaves C. CD44 isoforms in normal and leukemic hematopoiesis. Exp Hematol. 1999;27:978-993.
- Kansas GS, Muirhead MJ, Dailey MO. Expression of the CD11/CD18, leukocyte adhesion molecule 1, and CD44 adhesion molecules during normal myeloid and erythroid differentiation in humans. Blood. 1990;76:2483-2492.
- 34. Clark BR, Gallagher JT, Dexter TM. Cell adhesion in the stromal regulation of haemopoiesis. Baillieres Clin Haematol. 1992;5:619-652.
- 35. Reuss-Borst MA, Buhring HJ, Klein G, Muller CA. Adhesion molecules on CD34+ hematopoietic cells in normal human bone marrow and leukemia. Ann Hematol. 1992;65:169-174.
- 36. Lewinsohn DM, Nagler A, Ginzton N, Greenberg P, Butcher EC. Hematopoietic progenitor cell expression of the H-CAM (CD44) homing-associated adhesion molecule. Blood. 1990;75:589-595.
- 37. Mohle R, Murea S, Kirsch M, Haas R. Differential expression of L-selectin, VLA4 and LFA-1 on CD34+ progenitor cells from bone marrow and peripheral blood during G-CSF-enhanced recovery. Exp Hematol. 1995;23:1535-1542.
- Simmons PJ, Masinovsky B, Longenecker BM, Berenson R, Torok-Storb B, Galatin WM: Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoetic progenitor cells. Blood. 1992;80:388
- 39. Miyake K, Weissman IL, Greenberger JS, Kincade PW: Evidence for al role of the integrin VLA-4 in lympho-hemopoesis. J Exp Med.1991; 173:599,
- Miyake K, Medina K, Ishihara K, Kimoto M, Auerbach R, Kincade PW: A VCAM-like adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture. J Cell Biol.1991; 114:557
- 41. Papayannopoulou T, Nakamoto B: Peripheralization of hematopoietic progenitors in primates treated with anti-VLA-4-integrin. Proc Natl Acad Sci USA .1993;90:9374
- 42. Voura EB, Billia F, Iscove NN, Hawley RG. Expression mapping of adhesion receptor genes during differentiation of individul hematopoietic precursors. Exp Hematol. 1997;25:1172-1179.
- Horst E, Meijer CJ, Radaskiewicz T, van Dongen JJ, Pieters R, Figdor CG, Hooftman A, Pals ST. Expression of a human homing receptor (CD44) in lymphoid malignancies and related stages of lymphoid development. Leukemia. 1990;4:383-389.
- 44. Miyake K, Medina KL, Hayashi SI, Ono S, Hamaoka T, Kincade PW. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med. 1990;171:477-488.
- 45. Björck L, Kronvall G. Purification and some properties of streptococcal Protein G: a novel IgG binding reagent. J Immunol. 1984;133:969-974.
- 46. Oostendorp RAJ, Spitzer E, Dormer P: Adhesion of human hematopoietic progenitor cells to bonemarrow-derived stromal cells is enhanced by antibodies to CD44. Acta Haematol. 1996;95:243
- 47. Ghaffari S, Dougherty GJ, Eaves AC, Eaves CJ. Diverse effects of anti-CD44 antibodies on the stromal cell-mediated support of normal but not leukemic (CML) haemopoiesis *in vitro*. Br J Haematol. 1997;97:22-28.
- 48. Moll J, Khaldoyanidi S, Sleeman JP, Achnicht M, Preuss I, Ponta H, Herrlich P. Two different functions for CD44 proteins in human myelopoiesis. J Clin Invest. 1998;102:1024-1034.

- 49. Omary MB, Trowbridge IS, Letarte M, Kagnoff MF, Isacke CM. Structural heterogeneity of human Pgp-1 and its relationship with p85. Immunogenetics. 1988;27:460-464
- 50. Goldstein LA, Zhou DFH, Picker LJ, Minty CN, Bargatze RF, Ding JF, Butcher EC A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell. 1989;56:1063-1072.
- 51. Idzerda RL, Carter WG, Nottenburg C, Wayner EA, Gallatin WM, St. John T. Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proc Natl Acad Sci USA. 1989;86:4659-4663.
- 52. Wolffe EJ, Gause WC, Pelfrey CM, Holland SM, Steinberg AD, August JT. The cDNA sequence of mouse Pgp-1 and homology to human CD44 cell surface antigen and proteoglycan core/link proteins. J Biol Chem. 1990;265:341-347.
- 53. Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991;65:13-24.
- 54. Screaton GR, Bell MV, Bell JI, Jackson DG. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J Biol Chem.1991. 268: 12235-12238.
- 55. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61:1303-1313.
- 56. Lokeshwar VB, Fregien N, Bourguignon LY. Ankyrin-binding domain of CD44(Gp85) is required for the expression of hyaluronic acid-mediated adhesion function. J Cell Biol. 1994;126:1099-1109.
- 57. Ishii S, Ford R, Thomas P, Nachman A, Steele G Jr, Jessup JM. CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surg Oncol. 1993;2:255-264.
- 58. Toyama-Sorimachi N, Miyasaka M. A novel ligand for CD44 is sulfated proteoglycan. Int Immunol. 1994;6:655-660. .
- Grawunder U, Melchers F, Rolink A. Interferon-gamma arrests proliferation and causes apoptosis in stromal cell/interleukin-7-dependent normal murine pre-B cell lines and clones in vitro, but does not induce differentiation to surface immunoglobulin-positive B cells. Eur J Immunol. 1993;23(2):544-51
- 60. Collado A, de Andres A, Canadas E, Ruiz-Cabello F, Gomez O, Pedrinaci S, Garrido F. Characterization of CD44 antigen during lymphoid ontogeny. Immunobiol. 1991;183:1-11.
- Patel DD, Hale LP, Whichard LP, Radcliff G, Mackay CR, Haynes BF. Expression of CD44 molecules and CD44 ligands during human thymic fetal development: expression of CD44 isoforms is depvelopmentally regulated. Int Immunol. 1995;7:277-286.
- 62. Ghaffari S, Dougherty GJ, Lansdorp PM, Eaves AC, Eaves CJ. Differentiation-associated changes in CD44 isoform expression during normal hematopoiesis and their alteration in chronic myeloid leukemia. Blood. 1995;86:2976-2985.
- 63. Charrad RS, Li Y, Delpech B, Balitrand N, Clay D, Jasmin C, Chomienne C, Smadja-Joffe F. Ligation of CD44 adhesion molecules reverses blockade of differentiation in human acute myeloid leukemia. Nature Med. 1999;5:669-676.
- 64. Rossbach HC, Krizanac-Bengez L, Santos EB, Gooley TA, Sandmaier BM. An antibody to CD44 enhances hematopoiesis in long-term marrow cultures. Exp Hematol. 1996;24:221-227.
- 65. Khaldoyanidi S, Moll J, Karakhanova S, Herrlich P, Ponta H. Hyaluronate-enhanced hematopoiesis: two different receptors trigger the release of interleukin-1 beta and interleukin-6 from bone marrow macrophages. Blood. 1999;94:940-949.
- 66. Lundell BI, Mccarthy JB, Kovach NL, Verfaillie CM. Activation of beta1 integrins on CML progenitors reveals cooperation between beta1 integrins and CD44 in the regulation of adhesion and proliferation. Leukemia. 1997;11:822-829.
- 67. Kincade, PW, He Q, Ishihara K, Miyake K, Lesley J, Hyman R. CD44 and other cell interaction molecules contributing to B lymphopoiesis. Curr Top Microbiol Immunol. 1993;184:215-222.
- 68. Khaldoyanidi S, Denzel A and Zöller M. Requirement for CD44 in stem cell proliferation and homing. J Leukoc Biol. 1996;60:579-592.
- 69. Khaldoyanidi S, Schnabel D, Föhr N and Zöller M. Functional activity of CD44 isoforms in hematopoesis of the rat. Br J Haematol. 1997;96:31-45.
- 70. Herrlich P, Zöller M, Pals ST, Ponta H: CD44 splice variants: metastases meet lymphocytes. Immunol Today. 1993;14:395-399
- 71. Ghaffari S, Dougherty GJ, Eaves AC, Eaves CJ: Altered patterns of CD44 epitope expression in human chronic and acute myeloic leukemia. Leukemia. 1996;10:1773-1781

- 72. Stauder R, Eisterer W, Thaler J, Guenthert U: CD44 variant isoforms in Non-Hodgkin's-Lymphoma: a new independent prognostic factor. Blood. 1995; 88:3101-3108
- 73. Yu Q, Toole BP, Stamenkovic I: Induction of apoptosis of metastatic mammary carcinoma cells in *vivo* by disruption of tumor cell surface CD44 function. J Exp Med. 1997; 186:1985-1996
- 74. Bennett KL, Jackson DG, Simon JC, Tanczos E, Peach R, Modrell B, Stamenkovic I, Plowman G, Aruffo A. CD44 isoforms containing exon v3 are responsible for the presentation of heparinbinding growth factor. J Cell Biol. 1995;128:687-698.
- Neu S, Geiselhart A, Sproll M, Hahn D, Kuci S, Niethammer D, Handgretinger R. Expression of CD44 isoforms by highly enriched CD34-positive cells in cord blood, bone marrow and leukaphereses. Bone Marrow Transplant. 1997;20:593-598.
- 76. Henderson AJ, Johnson A, Dorshkind K. Functional characterization of two stromal cell lines that support B lymphopoiesis. J Immunol. 1990;145:423-428.
- 77. Itoh K, Tezuka H, Sakoda H, Konno M, Nagata K, Uchiyama T, Uchino H, Mori KJ. Reproducible establishment of hematopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol. 1989;17:143-153.
- 78. Current Protocols in Immunology 1996, John Wiley and Sons, Supp.20, 5.0.1 ff.
- 79. Gordon MY, Gordon-Smith EC. Bone marrow fibroblastoid colony forming cells (F-CFC) in aplastic anemia: colony growth and stimulation of granulocyte-macrophage colony forming cell (GM-CFC). Brit J Hematol. 1981;49:465-477.
- 80. McNiece IK, Robinson BE, Quesenberry PJ. Stimulation of murine colony forming cells with high proliferative potential by the combination of GM-CSF and CSF-1. Blood. 1988;72:191-195.
- 81. McNiece IK, Bradley TR, Kriegler AB. A growth factor produced by WEHI-r for murine high proliferative potential GM progenitor colony formation cell. Cell Biol Int Reports. 1982;6:243-254.
- 82. Testa NG, Molineux G. Haemopoiesis: A practical approach. Oxford University Press; 1993.
- 83. Winkler TH, Melchers F, Rolink AG. Interleukin-3 and interleukin-7 are alternative growth factors for the same B-cell precursors in the mouse. Blood. 1995;85:2045-2051.
- Lee G, Namen AE, Gillis S, Ellingsworth LR, Kincade PW. Normal B cell precursor responsive to recombinant murine IL-7 and inhibition of IL-7 activity by transforming growth factor ß. J Immunol. 1989;142:3875-3883.
- 85. Byrne JL, Haynes AP, Russell NH. Use of haematopoietic growth factors: commentary on the ASCO/ECOG guidelines. Blood Rev. 1997;11:16-27.
- Sugimoto K, Tsurumaki Y, Hoshi H, Kadowaki S, LeBousse-Kerdiles MC, Smadja-Joffe F, Mori KJ. Effects of anti-CD44 monoclonal antibody on adhesion of erythroid leukemic cells (ELM-I-1) to hematopoietic supportive cells (MS-5): CD44, but not hyaluronate-mediated, cell-cell adhesion. Exp Hematol. 1994;22:488-494.
- 87. Morimoto K, Robin E, Le Bousse Kerdiles MC, Li Y, Clay D, Jasmin C, Smadja-Joffe F. CD44 mediates hyaluronan binding by human myeloid KG1A and KG1 cells. Blood. 1994;83:657-662.
- Schmits R, Filmus J, Gerwin N, Senaldi G, Kiefer F, Kundig T, Wakeham A, Shahinian A, Catzavelos C, Rak J, Furlonger C, Zakarian A, Simard JJ, Ohashi PS, Paige CJ, Gutierrez-ramos JC, Mak TW. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood. 1997;90:2217-2233.
- 89. Lesley J, Hyman R, Kincade PW. CD44 and its interaction with extracellular matrix. Adv Immunol. 1993;54:271-335.
- 90. Bellucci R, dePropris MS, Buccisano F, Lisci A, Leone G, Tabilio A, deFabritiis P. Modulation of VLA4 and L-selectin expression on normal CD34+ cells during mobilization with G-CSF. Bone Marrow Transplant. 1999;23:1-8.
- 91. Watanabe T, Dave B, Heimann DG, Lethaby E, Kessinger A, Talmadge JE. GM-CSF-mobilized peripheral blood CD34+ cells differ from steady-state bone marrow CD34+ cells in adhesion mole-cule expression. Bone Marrow Transplant. 1997;19:1175-1181.
- Reyes E, Garcia-Castro I, Esquivel F, Hornedo J, Cortes-Funes H, Solovera J, Alvarez-Mon M. Granulocyte colony-stimulating factor (G-CSF) transiently suppresses mitogen-stimulated T-cell proliferative response. Brit J Cancer. 1999;80:229-235.
- 93. Wittig B, Schwärzler C, Föhr N, Günthert U and Zöller M. Curative treatment of an experimentally induced colitis by a CD44 variant exon v7 specific antibody. J Immunol. 1998;161:1069-1073.
- 94. Günthert U, Schwärzler C, Wittig B, Laman J, Ruiz P, Stauder R, Bloem A, Smadja-Joffe F, Zöller M, Rolink A. Functional involvement of CD44, a family of cell adhesion molecules, in immune responses, tumour progression and haematopoiesis. Adv Exp Med Biol. 1998;451:43-49.

9. Abkürzungsverzeichnis

AS	Aminosäure(n)
ATCC	American Type Culture Collection, Manassas, Virginia, USA
BFU-E	erythrocyte – burst forming unit (erythroide Vorläuferzelle)
BMC	bone marrow cells (Knochenmarkzellen)
CD	cluster of differentiation (Klassifikation der Leukozytendifferenzierungantigene)
CFU-C	multilineage - colony forming unit (nicht-determinierte Vorläuferzelle)
CEU-GM	granulocyte-macrophage – colony forming unit (granulocytär-monozytäre
	Vorläuferzelle)
CEU-M	macrophage – colony forming unit (Makrophagen-Vorläuferzelle)
CEU-preB	pre-B cell - colony forming unit (Prä-B-I vmphozyten-Vorläuferzelle)
	Kohlendioxid
com	counts per minute (Zählungen / Impulse pro Minute)
D	(Transnlantat-) Spender
FCACC	European Collection of Cell Cultures for Applied Research, Salisbury, LIK
EUSA	European Oblicetion of Oeli Oditares for Applied Research, Galisbary, OR
FCS	fetal calf serum (fetales Kälberserum)
FITC	Fluoresceinisothiocvanat
FS	Forward Scatter (Vorwärts-Lichtstreuung in der Immunfluoreszenz)
G-CSE	aranulocyte – colony stimulationa factor
GM-CSE	granulocyte - colony stimulating factor
GvHD	Graft versus Host Disease (Spender-gegen-Wirt-Reaktion)
LTBMC	long term bone marrow culture (Langzeitknochenmarkkultur)
mAR	monoclonal antibody (monklonaler Antikörper)
MRA	Marrow repopulating ability (Rekonstitutionskapazität transplantierter
WILCO Y	Knochenmarkzellen)
ns	nicht signifikant
nt	nicht getestet
	Ontische Dichte
PR	perinheral blood (perinheres Blut)
PBMC	peripheral blood mononuclear cells (mononukleäre Zellfraktion des peripheren Blutes)
PRS	phosphate buffered saline (phosphatgenufferte isotonische Kochsalzlösung)
PE	Phycoerythrin
R	(Transplantat-) Empfänger
R1	Primäremnfänger
R2	Sekundäremnfänger
SC	spleen cells (Milzzellen)
SPF	spezifiziert pathogenfrei
SS	Side Scatter (Seitwärts- Lichtstreuung in der Immunfluoreszenz)
v	variant isoform (variante Isoform von CD44)
VCAM-1	vascular cell adhesion molecule 1 (CD106)

10. Lebenslauf

Name:	Oliver Christ
geboren:	22.01.1968
Staatsangehörigkeit:	deutsch
Familienstand:	verheiratet
Anschrift:	Neuenweg 5, 35390 Gießen
Schulbildung:	
1974 - 1978	Roteberg-Schule, Dillenburg
1978 - 1987	Wilhelm-von-Oranien-Gymnasium, Dillenburg
12.06.1987	Allgemeine Hochschulreife
Zivildienst:	
01.07.1987 - 28.02.1989	Deutsches Rotes Kreuz, Kreisverband Dillkreis
Berufstätigkeit:	
01.04.1989 - 31.03.1990	Ausbildung zum Rettungsassistenten und Tätigkeit beim Deutschen Roten Kreuz, Kreisverband Dillkreis
Studium:	
01.04.1990 – 04.11.1997	Studium der Humanmedizin, Justus-Liebig-Universität Gießen
04.11.1997	Dritter Abschnitt der Ärztlichen Prüfung
Tätigkeit als Arzt:	
15.11.1997 - 14.05.1999	Arzt im Praktikum im Zentrum für Innere Medizin am Klinikum der Justus-Liebig-Universität Gießen, Medizinische Klinik IV (Abt. Hämatologie und internistische Onkologie)
01.11.1998 – 31.12.1999	zunächst externer Mitarbeiter, seit dem 15.05.99 wissenschaftlicher Angestellter am Deutschen Krebsforschungszentrum Heidelberg (DKFZ), Arbeitsschwerpunkte: Mobilisation hämatopoetischer Vorläuferzellen, Therapiestudien mit Antikörper-Zytokin- Fusionsproteinen.
seit 01.01.2000	Assistenzarzt am Zentrum für Innere Medizin am Klinikum der Justus-Liebig-Universität Gießen, Medizinische Klinik IV (Abt. Hämatologie und internistische Onkologie)

11. Danksagung

An dieser Stelle möchte ich allen danken, die zum Gelingen dieser Arbeit beigetragen haben.

Frau Professor Dr. Margot Zöller danke ich herzlich für die Überlassung des interessanten Themas sowie für die Inspiration und Unterstützung in allen Bereichen dieser Arbeit.

Besonderer Dank gilt Herrn Professor Dr. Hans Pralle für die stets großzügige Unterstützung und die gewährten Freiräume, ohne die die vorliegende Arbeit nie hätte durchgeführt werden können.

Außerdem gilt allen Kollegen im Deutschen Krebsforschungszentrum, insbesondere Dr. Simone Seiter, Dr. Marike Stassar, Nicole Föhr, Dr. Rachid Marhaba, Dirk Steffen Schmidt, Dr. Björn Cochlovius und Dr. Robert Weth mein herzlicher Dank für Rat und Hilfe im Laboralltag und bei allen Schwierigkeiten der experimentellen Arbeit.