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1. INTRODUCTION 

Osteoporosis is one of the most debilitating diseases in the elderly population which 

results in decreased bone quality and delays the healing process, the underlying 

mechanism being an imbalance in the bone remodeling process. Recent epidemiological 

studies have shown an increase in the incidence of fractures with age thereby leading to 

morbidity and mortality in elderly people [1]. While anti-osteoporotic therapies 

significantly lower the risk of a fracture, osteoporotic fractures represent one of the most 

common causes of disability and affect the health and economic budget of many countries 

in the world. It is thus a matter of serious clinical concern. Manipulating the local fracture 

environment in terms of filling the defect gap with a bone graft or natural or synthetic 

material that aids new bone formation has been considered as the most current treatment 

option. Hence an ideal biomaterial, with excellent bio-compatibility and osteo-integration 

characteristics and potential to aid bone healing in osteoporotic fractures is preferable. 

Injectable calcium phosphate cements have been shown to have excellent 

osteoconductive properties thereby stimulating new bone formation [2]. Strontium (II) 

(Sr2+) has been also shown to optimize bone formation and resorption. It effectively 

stimulates bone formation and inhibits osteoclastic activity and has therefore been 

introduced into all day clinical practice as oral strontium ranelate medication against 

osteoporosis [3, 4]. Pharmacological studies in animals have also shown strontium 

ranelate decreases bone resorption and increases bone formation, resulting in increased 

bone mass. However, local administration of strontium mainly from functionalized 

titanium implant surfaces [5-10] or from strontium-substituted hydroxyapatite coatings 

[11, 12] have gained interest due to the positive effects of strontium on new bone 

formation. 

In this study, effort was made to use a composite material which combines the osteo-

conductive calcium phosphate cement and strontium in bone defects in order to leverage 

the osteo-anabolic and anti-osteoclastic activity of strontium in a local environment.  

For in vivo evaluation of the effects of strontium and the above mentioned biomaterial 

implants in new bone formation in osteoporotic bone, a clinically relevant animal model 

that mimics an osteoporotic fracture defect condition was used [13]. This model shows 

important reduction in the bone mineral density of the spine and femur (which are the 
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major anatomical sites affected during osteoporosis) after ovariectomy and special 

calcium, phosphorus- and vitamin D3-, soy- and phytoestrogen-free diet. The osteotomy 

was created in the metaphyseal region of the distal femur respecting the fact that 

metaphyseal fractures are the most common in osteoporotic patients and uses the 

clinically relevant technique of plate fixation in such a fracture defect. This was then 

filled with SrCPC, CPC cements or left empty. 

Thus the current study focuses on  

1. Histological, histomorphometric, immunologic, molecular biology analyses of the 

above mentioned implants that have been substituted in a critical size metaphyseal defect 

model in osteoporotic rats. 

2. Integrating TOF-SIMS technology together with biomaterials to visualize material 

behavior in vital tissue. 

1.1  BONE REMODELING 

The skeleton is a metabolically active organ that undergoes continuous remodeling 

throughout life. Bone remodeling involves the removal of mineralized bone by 

osteoclasts followed by formation of new bone matrix through the osteoblasts that 

subsequently becomes mineralized (Fig. 1). The remodeling cycle thus consists of three 	
  

	
  

Fig. 1: Bone remodeling. It begins when the osteoclasts resorb bone mineral and 
matrix. Mononuclear cells prepare the resorbed surface for osteoblasts, which generate 
newly synthesized matrix as they differentiate. Matrix mineralization and the 
differentiation of some osteoblasts into osteocytes completes the remodeling cycle. 
(Kapinas K, Delany AM - Arthritis Res. Ther. (2011), MicroRNA biogenesis and 
regulation of bone remodeling) 
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consecutive phases: resorption, during which osteoclasts digest old bone; reversal, when 

mononuclear cells appear on the bone surface; and formation, when osteoblasts lay down 

new bone until the resorbed bone is completely replaced. These processes control the  

reshaping or replacement of bone following injuries e.g. fracture. In the first year of life, 

almost 100% of the skeleton is replaced. In adults, remodeling proceeds at about 10% per 

year. An imbalance in either of the two processes i.e. bone resorption and bone formation, 

results in many metabolic bone diseases, such as osteoporosis. 

Bone remodeling serves to adjust bone architecture to meet changing mechanical needs 

and it helps to repair micro-damages in bone matrix preventing the accumulation of old 

bone. It also plays an important role in maintaining plasma calcium homeostasis. The 

regulation of bone remodeling is both systemic and local. The major systemic regulators 

include parathyroid hormone (PTH), calcitriol, and other hormones such as growth 

hormone, glucocorticoids, thyroid hormones, and sex hormones. Factors such as insulin-

like growth factors (IGFs), prostaglandins, tumor growth factor-beta (TGF-beta), bone 

morphogenetic proteins (BMPs), and cytokines are involved as well. As far as local 

regulation of bone remodeling is concerned, a large number of cytokines and growth 

factors that affect bone cell functions have been recently identified. Furthermore, through 

the RANK / receptor activator of NF-kappa B ligand (RANKL) / osteoprotegerin (OPG) 

system the processes of bone resorption and formation are tightly coupled allowing a 

wave of bone formation to follow each cycle of bone resorption, thus maintaining skeletal 

integrity. 

The bone remodeling comprises a series of highly regulated steps that depend on the 

interactions of two cell lineages, the mesenchymal osteoblastic lineage and the 

hematopoietic osteoclastic lineage. The initial “activation” stage involves the interaction 

of osteoclast and osteoblast precursor cells (Fig. 1) which leads to the differentiation, 

migration, and fusion of the large multinucleated osteoclasts. These cells attach to the 

mineralized bone surface and initiate resorption by the secretion of hydrogen ions and 

lysosomal enzymes, particularly cathepsin K, which can degrade all the components of 

bone matrix, including collagen, at low pH. The attachment of osteoclasts to bone may 

require specific changes in the so-called “lining cells” on the bone surface, which can 

contract and release proteolytic enzymes to uncover a mineralized surface. Osteoclastic 

resorption produces irregular scalloped cavities on the trabecular bone surface, called 

Howship lacunae, or cylindrical Haversian canals in cortical bone [14]. 
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Once the osteoclasts have completed their work of bone removal, there is a reversal phase 

during which mononuclear cells, which may be of the macrophage lineage, are seen on 

the bone surface. The events during this stage are not well understood, but they may 

involve further degradation of collagen, deposition of proteoglycans to form the so-called 

cement line, and release of growth factors to initiate the formation phase. During the final 

“formation” phase of the remodeling cycle, the cavity created by resorption can be 

completely filled in by successive layers of osteoblasts, which differentiate from their 

mesenchymal precursors and deposit a mineralizable matrix which helps in its 

mineralization process [15]. Thus, bone formation takes place as mesenchymal cells 

proliferate into osteoblast precursors and ultimately differentiate into mature osteoblasts. 

Osteoblasts in turn synthesize a matrix of osteoid composed mainly of type 1 collagen 

[16]. At a later stage, mature osteoblasts mineralize the osteoid matrix. Osteoblasts 

proliferation and differentiation are governed by many soluble factors such as Runt-

related Transcription Factor 2 (Runx2) [17] and a Zinc Finger-containing Transcription 

Factor (Osterix) [18]. 

Together, the cells that are responsible for bone remodeling are known as the basic multi-

cellular unit (BMU), and the temporal duration (i.e. lifespan) of the BMU is referred to as 

the bone remodeling period. BMU is thus composed of various cells responsible for 

dissolving and refilling an area of bone surface. Osteoclast-mediated bone resorption 

(dissolving) takes place in 3 weeks; while osteoblast-mediated bone formation requires 3 

- 4 months. Further, bone type is also relevant, trabecular bone remodeling takes place 

faster than cortical bone remodeling. The initiation of the process takes place when 

exposed to mechanical stress, cytokine signaling or tissue destruction [19, 20]. In this 

context, osteoblasts can initiate BMU through the expression of RANKL (Receptor 

Activator of Nuclear factor kappa B Ligand) [20]. Termination of BMU function, on the 

other hand, depends on inhibiting osteoclast activity. An in vitro study previously 

suggested that osteoclasts are inhibited upon engulfing osteocytes during bone resorption 

[21]. However, it has been established that the presence of either TGF-(Transforming 

Growth Factor - beta) or estrogens induce apoptosis in osteoclasts [22, 23]. 

In addition, other cell types such as macrophages (i.e. mononuclear cells) prepare the 

bone lacuna for osteoblasts right after the resorption is terminated. Macrophages 

synthesize a thin collagen layer and releases osteopontin, which facilitates the attachment 

of osteoblast [24].  
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The OPG / RANKL / RANK system is the main system regulating osteoblast and 

osteoclast interaction. Receptor activator of nuclear factor kappa-B ligand (RANKL), also 

known as tumor necrosis factor ligand super-family member 11 (TNFSF11), TNF-related 

activation-induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), and osteoclast 

differentiation factor (ODF). Critical for adequate bone metabolism, this surface-bound 

molecule is found on osteoblast’s helps in osteoclast’s activation. Osteoclastic activity is 

triggered via the osteoblast’s surface-bound RANKL activating the osteoclast’s surface- 

 
Fig. 2: The essential signaling pathway for normal osteoclastogenesis. Under 
physiologic conditions, RANKL produced by osteoblasts binds to RANK on the surface 
of osteoclast precursors and recruits the adaptor protein TRAF6, leading to NF-κB 
activation and translocation to the nucleus. NF-κB increases c-Fos expression and c-
Fos interacts with NFATc1 to trigger the transcription of osteoclastogenic genes. OPG 
inhibits the initiation of the process by binding to RANKL. NFAT, nuclear factor of 
activated T cells; NF-κB, nuclear factor-κB; OPG, osteoprotegerin; RANKL, receptor 
activator of nuclear factor-κB ligand; TRAF, tumor necrosis factor receptor associated 
factor. (Figure modified from Boyce and XingArthritis Research & Therapy 2007 
9(Suppl 1):S1  doi:10.1186/ar2165) 

bound receptor activator of nuclear factor kappa-B RANK. RANK is a member of the 

Tumor Necrosis Factor (TNF)–receptor family; its activation results in translocation of 

Nuclear Factor Kappa-light-chain-enhancer of activated B cells (NF-κB) to the nucleus, 

which causes an increase in the transcription of genes involved in osteoclastogenesis (Fig. 



	
  

	
   	
  
	
  

6	
  

CHAPTER	
  1:	
  INTRODUCTION	
  

2) [25]. This interaction and activation could be inhibited solely by the decoy receptor 

osteoprotegerin (OPG), which eventually terminates resorption. Support for the role of 

RANK / RANKL in osteoclastogenesis also comes from the in vitro studies which show 

the prevention of osteoclastogenesis when RANK is blocked. 

The decisive role played by these factors in regulating bone metabolism was 

demonstrated by the findings of extremes of skeletal phenotypes (osteoporosis vs. 

osteopetrosis) in mice with altered expression of these molecules [26]. 

1.2 BONE HEALING 

          DAY 1                            DAY 7                        DAY 21                       DAY 28 

 

Fig. 3: Course of bone healing in a standard closed fracture model in rat. Day 1) Bone 
matrix and blood vessels are disrupted, thereby leading to hematoma formation. Day 7) 
Chondrogenesis and bone formation from the periosteum. By the Day 14, beginning of 
cartilage calcification and start of the remodeling phase. Day 21) Callus is composed 
mainly of calcified cartilage. The cortical bone is almost partially bridged. Day 28) 
Newly formed woven bone and late stage of remodeling. (Figure modified from Bone 
Fracture, Chapter 6, 2004, Pearson Education Inc.) 

Fracture healing is an extremely important biological process that is necessary for the 

survival of the animal. It is a unique biological event that takes a considerably long period 

of time to complete. A short phase of endochondral external callus formation is followed 

by a prolonged remodeling phase. There is always a danger of non-union and possible 

fracture occurring during the endochondral phase [27, 28]. The healing process is 

primarily mediated by the periosteum, which is the source of precursor cells that develop 

into chondroblasts and osteoblasts. The bone marrow, endosteum, small blood vessels, 

and fibroblasts are other sources of precursor cells. Thus the key players involved in bone 
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healing apart from the above mentioned cells include growth factors, inflammatory 

cytokines, antioxidants, hormones, nutrients and amino acid. Upon bone fracture blood 

supply is disrupted, connective tissue is damaged and there is a loss of the mechanical 

stability. Bone healing takes place which includes the initial stage of hematoma formation 

and inflammation. Subsequently there is angiogenesis and cartilage formation followed 

by cartilage calcification, cartilage removal, bone formation and finally bone remodeling 

(Fig. 3) [29]. Thus the fracture healing process can be divided into three different, two of 

which can be further sub-divided to make a total of five phases are as follows: 

1. Reactive phase 

I. Fracture and inflammatory phase 

II. Granulation tissue formation 

      2. Reparative phase 

III. Cartilage callus formation 

IV. Lamellar bone deposition 
 

      3. Remodeling phase  

V. Remodeling to original bone contour 

1.2.1  Reactive phase 

The first stage in the repair of a bone fracture induces the formation of a fracture 

hematoma where the localized inflamed swelling is filled with blood clot as a result of 

disruption in the blood vessel [29]. Hematoma is followed and accompanied by 

inflammation [30]. The hematoma in turn initiates a cascade of cellular events, critical for 

fracture healing [31]. Cytokines and growth factors including TNF-α, PDGF, GDF and 

BMP are released from the site [29, 32]. IL-1 and IL-6 secreted by the inflammatory 

cells, are both known to recruit mesenchymal cells [33]. These MSCs in turn are 

stimulated by TGF-β and PDGF released by degranulating platelets in the clot to 

differentiate into chondrocytes and osteoblasts [31]. 

1.2.2  Reparative phase 

In this phase, the cells of the periosteum replicate and transform. During the first 7-10 

days the periosteum undergoes an intramembranous response and forms a procallus 

material that usually extends beyond the volume previously occupied by the uninjured 

bone. By the middle of the second week, abundant cartilage tissue overlies the fracture 
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site and this chondroid tissue initiates the calcification process [29]. In general at this 

stage, proteins produced by the osteoblasts and the osteoclasts begin to consolidate into 

what is known as soft callus which eventually hardens and forms the hard callus. Thus 

calcification of the callus takes place by two types of ossification. 

1.2.2.1  Intramembranous ossification 

It takes place in the hard callus. Hypertrophic chondrocytes are the dominant cell types 

which in turn form the vesicularized bodies also called as matrix vesicles. These in turn 

migrate to extracellular matrix to participate in the calcification process. These vesicles 

help by transporting calcium [34] and posses the proteolytic enzymes for matrix 

degradation, a vital step for preparation of the callus for calcification [35].  

1.2.2.2  Endochondral ossification 

The soft callus undergoes endochondral ossification. At this stage the woven bone is 

substituted by the lamellar bone formation. The lamellar bone begins forming soon after 

the collagen matrix of either tissue becomes mineralized. At this point, the mineralized 

matrix is penetrated by vessels and numerous osteoblasts. The osteoblasts form new 

lamellar bone upon the recently exposed surface of the mineralized matrix. This new 

lamellar bone is in the form of trabecular bone. Eventually, all of the woven bone and 

cartilage of the original fracture callus is replaced by trabecular bone, restoring most of 

the bone's original strength [29]. 

1.2.3  Remodeling phase 

The remodeling process substitutes the newly formed woven bone to lamellar bone. The 

bone is first resorbed by osteoclasts, creating a shallow resorption pit known as a 

"Howship's lacuna". Then osteoblasts deposit compact bone within the resorption pit. 

Eventually, the fracture callus is remodeled into a new shape which closely duplicates the 

bone's original shape and strength. The remodeling phase takes 3 to 5 years depending on 

factors such as age or general condition and there is a danger of non-union [34]. 

1.3  DELAYED AND NON-UNION HEALING 

Non-union is a serious complication of a fracture and may occur when there is permanent 

failure in fracture repair. The normal process of bone healing is interrupted or stalled, e.g. 
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pseudo-joint (pseudarthrosis) develops between the two fragments with cartilage 

formation and a joint cavity or a scar tissue found between the un-united fragments. 

Since the process of bone healing is quite variable, a nonunion may go on to heal without 

intervention in a very few cases. The differentiation between delayed union and non-

union is sometimes difficult. Non-union is defined as the cessation of all reparative 

processes of healing without bony union. Since all of the factors discussed under delayed 

union usually occur to a more severe degree in non-union, the differentiation between 

delayed and nonunion is often based on radiographic criteria and time. In humans, failure 

to show any progressive change in the radiographic appearance for at least 3 months after 

the period of time during which normal fracture union would be thought to have occurred, 

is evidence of non-union [36]. 

Statistical analysis shows in the United States 5-10 % of the over 6 million fractures 

occurring annually develop into delayed or non-unions [29]. Although advanced methods 

in trauma surgery are conducted, delayed and non-union are a matter of serious clinical 

concern [37]. In general, bone fractures have also a socio-economical impact. Large 

annual budgets cover not only primary treatment, and follow-up operations due to 

delayed or non-unions but also the cost of lost employment resulting from such 

procedures. Furthermore, it has been predicted that 40% of all postmenopausal women 

will suffer a new fracture in their lifetime with a high associated risk of non-union [38, 

39]. Hence, understanding prevention and treatment of such complications is desirable. 

The relationship between fracture healing and osteoporosis is complex. The underlying 

etiology and the therapies involved may all together affect the healing process. 

1.4  PROPERTIES AND CHARACTERISTICS OF OSTEOPOROTIC BONE 

Osteoporotic fractures represent the major cause for disability and account for the major 

health economic budget in the world, affecting almost 200 million people [40]. 

Estimations show that by 2020 approximately 41 million women will be osteoporotic or 

osteopenic [41]. In Europe it has been shown that the incidence of fracture will increase 

by 20% to 25% in 2025 [42]. Fragility fractures are especially meta-epiphyseal with slow 

healing process and morbidity [43]. 
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Fig. 4: Normal healthy bone (A, B, C) compared to an osteoporotic bone (D, E, F). The 
later shows a decrease in the trabecular bone in the metaphysis along with increased 
porosity (E) and thinning in the cortical bone (F) (Modified from Khassawna et. al 
2013, PLOS ONE).  

Bone mass and the mechanical performance of the bone is affected in osteoporosis due to 

changes in hormone levels especially estrogen levels in women. There is a loss not only 

in the cortical bone but also trabecular bone thereby leading to thinning and reduced 

connectivity. The loss of cancellous bone also adversely affects the fixation of 

osteoporotic fractures [44, 45]. In addition there is also a decrease in the bone mineral 

content of the osteoporotic tissues [46]. The decreased thickness and increased porosity of 

the cortical bone affects the fixation strengths of the implant as well as the postoperative 

complications and the recovery times [47]. The loss of density is seen both in the cortical 

and cancellous bone which increases in the elderly [48]. The figure showing a 
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comparison between the normal and the osteoporotic bone is given in Fig. 4 and the effect 

of osteoporosis on fracture healing is tabulated in Table 1. 

1.5 PRECLINICAL MODELS FOR BONE HEALING IN OSTEOPOROTIC 

BONES 

The relationship between fracture healing and osteoporosis is complex, the underlying 

etiology may include aging, hormonal imbalances and therapies commonly used for 

osteoporosis which may in turn affect fracture healing. Due to these complexities, animal 

osteoporotic models are considered more appropriate to study the effects of osteoporosis 

and to test drugs and biomaterials on the fracture repair process. Preclinical testing of 

those biomaterials requires clinical relevant models that allow for stimulation of the 

clinical relevant situation [49].  

Experimental fracture healing studies in the past have mostly concentrated on diaphyseal 

femur or tibia with intermedullary pin fixation of the fracture (Table 1) based on the 

model from Bonnarens and Einhorn (1984) [50]. However, osteoporosis mainly affects 

the metaphyseal trabecular bone and not at the diaphyseal part of long bones [51-54]. 

Thus, the models do not mimic the actual clinical relevant situation in osteoporotic 

patients. Furthermore there are differences in bone healing between the metaphysis and 

diaphysis [53, 55]. Thus studies on osteoporotic fracture healing should primarily focus 

on metaphysis than in diaphysis. There are two published model on metaphyseal fracture 

healing in rat tibiae in which just an osteotomy or a 0.5mm defect gap size was created 

[51, 56] and the effect of systemic anti-osteoporotic treatment such as estrogen, 

aledronate and raloxifene was tested. However, a defect of 0.5mm is too small to test 

locally applied biomaterials. Thus the preclinical studies on bone healing in osteoporotic 

bones do not represent the clinical relevant situation. The following table presents the 

different preclinical models for bone healing in osteoporotic bones. 
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Table 1: Different preclinical models addressing bone healing in osteoporotic bones 

STUDY INDUCTION OF 
OSTEOPOROSIS 

ANATOMIC 
REGION RESULTS 

Kubo et 
al. 1999 

[57] 

Test group: OVX-low 
calcium diet- Osteoporosis 

Control group (7 month old 
female Wistar rats) 

Femoral shaft 
fracture 3 

months post 
ovariectomy 

12 weeks post fracture a 
decrease in the BMD at 
the fracture site in the 
osteoporosis group. 

Meyer et 
al. 2000 

[58] 

Test group : OVX 

Control group: SHAM 
surgery (6 month old 

female Sprague-Dawley 
rats) 

Drilled hole in 
the 

intercondylar 
notch 

Lower bone rigidity and 
breaking load in the 
ovariectomized rats. 

Namkung 
et al. 

2001 [59] 

Test group: OVX-low 
calcium diet- Osteoporosis 

 Control group: SHAM 
surgery (2 month old 

female Sprague-Dawley 
rats used) 

Right femoral 
mid-shaft 

fracture created 
and stabilized by 
intramedullary 

pins 

Reduction in fracture 
callus and BMD in the 

healing femur of the OVX 
rats. 

Lill et al. 
2003 [60] 

Test group: Osteoporotic 

Control group: Healthy 
animals (Swiss female 
mountain sheep used) 

3mm mid-shaft 
tibial osteotomy 

stabilized by 
external fixator 

Delay in the bending 
stiffness of the callus in 

the osteoporotic animals. 

Xu et al. 
2004 [61] 

Test group: OVX- 
Osteoporotic 

Control group: SHAM 
surgery (Female wistar rats 

used) 

Femoral shaft 
fracture 3 

months after 
OVX. 

Decrease in the callus and 
BMD along with a 

decrease in the osteoblast 
count in the bone trabecula 

in OVX rats 

Islam et 
al. 2005 

[62] 

Test group: OVX-low 
calcium diet- Osteoporosis 

Control group: SHAM 
surgery (3 month old 

female Wistar rats used) 

Fracture in right 
side of 

mandibular 
ramus 3 months 

after OVX 

Prolonged endochondral 
ossification with an 

increased osteoclast no. in 
the osteoporotic group. 
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Wang et 
al. 2005 

[63] 

Test group: OVX- 
Osteoporosis 

Control group: SHAM 
surgery (4 months old 

Sprague Dawley rats used) 

 

Mid shaft tibia 
model 10 weeks 

after OVX. 

Decrease in the callus 
BMD, failure loss in the 
osteoporotic group along 

with a delay in the 
endochondral bone 

formation. 

Qiao et al. 
2005 [64] 

Test group: OVX- 
Osteoporosis 

Control group: SHAM 
surgery (6 month old 

Sprague Dawley rats used) 

Femoral shaft 
fracture 2 

months after 
OVX 

Decreased callus density 
and osteoclasts number in 

the OVX group. 

Kolios et 
al. 2009 

[56] 

Test group: 36 OVX . 
Divided into 3 groups of 12 
animals each and fed with 
phytoestrogen free food, 
estradiol supplement and 
alendronate supplement. 

Control group: 12 SHAM  
operated rats (12 weeks old 

female Sprague-Dawley 
rats used) 

Metaphyseal 
tibia osteotomy 

and standardized 
plate fixation 10 

weeks after 
ovariectomy. 

Qualitative and 
quantitative increase of 
metaphyseal fracture 
healing by estrogen 

whereas no visible effects 
of alendronate seen. 

Stuermer 
et al. 

2010 [55] 

Test group : OVX 

Control group: SHAM 
surgery (3 month old 

female Sprague-Dawley 
rats used) 

0.5mm 
metaphyseal 

osteotomy at the 
same time of 
ovariectomy 

Improved fracture healing 
in osteoporotic bone 

treated with estrogen and 
raloxifene. 

Alt et al. 
2013 [13] 

Test group: OVX- 
Osteoporosis-multi 

deficient diet devoid of 
Calcium. Phosphorus, Vit 

D3. 

Control group: SHAM 
surgery (10 week old 

female Sprague Dawley 
rats used) 

3mm and 5mm 
osteotomy in the 

metaphyseal 
region of femur, 

6 weeks after 
OVX 

1) Successful induction of 
osteoporosis using a 

combined approach of 
ovariectomy and multi-

deficient diet. 

2) Complete bridging in 
the 3mm defect when 
compared to the 5mm 

defect. 
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1.6  ANTI-OSTEOPOROSIS THERAPY AND FRACTURE HEALING 

Osteoporosis treatments are now classified into three groups: anti-catabolic 

(bisphosphonates, antibody to RANKL), anabolic (PTH) and dual action (catabolic + 

anabolic) mainly represented by the strontium ranelate categories.  

1.6.1 Effect of anti-catabolic drugs on osteoporosis 

Bisphosphonates is a widely used medication for osteoporotic patients [27]. They are 

anti-resorptive in nature which slows or stops the natural process that dissolves bone 

tissue, resulting in maintained or increased bone density and strength. This may prevent 

the development of osteoporosis. If osteoporosis already has developed, it exerts its effect 

by slowing the bone resorption through the inhibition of osteoclastic activity [65]. This 

however, raises the concern that its interference with bone remodeling may impair 

fracture healing. A human monoclonal body to RANKL has been recently developed for 

the treatment of osteoporosis [66, 67]. It is anti-catabolic in nature and exerts its action 

through prevention of the differentiation of osteoclast precursors into mature osteoclasts. 

1.6.2  Effect of anabolic drugs on osteoporosis 

Although anti-resorptive or anti-catabolic therapies are the medical options for the 

treatment of osteoporosis, at present a lot of focus has been paid on anabolic or 

potentially anabolic compounds that can increase bone density and restore the micro 

architecture. Parathyroid hormone being one of them marked the first anabolic agent for 

the treatment of osteoporosis. Its effect on bone metabolism depends on its duration of 

exposure. It is shown to increase bone resorption if administered continuously [68]. 

However, if administered intermittently, leads to an increase in bone formation by 

activation of the osteoblasts [69]. Although the exact mechanism of action of PTH has not 

been fully understood, an increased recruitment and differentiation of chondrocytes have 

been shown [70]. 

1.6.3  Effect of strontium ranelate in osteoporosis 

Strontium ranelate has been recently approved as an anti-osteoporotic medication in many 

countries. It exerts a dual mode of action, both anabolic and catabolic [3]. It produces an 

anabolic effect by increasing the differentiation rate of pre-osteoblasts to osteoblasts and 

through osteoblast modulation [71, 72]. On the other hand, it produces a catabolic effect 

by inhibiting the osteoclast formation [72]. 
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1.7  EFFECTS OF OSTEOPOROSIS MEDICATION ON FRACTURE HEALING  

Fracture healing is an extremely important biological process which is severely 

compromised in osteoporotic patients. As fractures are more common in people with 

osteoporosis who may be already undergoing anti-osteoporotic medication, it is of great 

clinical importance to know whether these drugs exert a positive or negative effect on the 

biological process of fracture repair. 

1.7.1  Effect of bisphosphonates on fracture healing 

Bisphosphonates have a pronounced inhibitory effect on the bone resorption process, 

especially in cases of high bone turnover [27]. Larger callus with increased bone mineral 

content was found in a sheep fracture model treated with pamidronate, with no effect on 

the mechanical properties [73]. Incadronate treatment given to growing rats with a 

femoral shaft fracture resulted in larger callus, increased stiffness and load of the same 

[74]. A similar effect was also found after administration of ibandronate in 

ovariectomized rats [75]. 

1.7.2  Effect of PTH (1-34) on fracture healing 

It is known to improve the biomechanical properties of fracture callus and accelerates 

callus formation, endochondral ossification and bone remodeling [76, 77]. It is also a 

potent agent for enhancing fracture healing in patients with osteoporosis [77]. Animal 

studies show an enhancement in the fracture repair by systemic administration of PTH 

[76, 78]. 

1.7.3  Effects of estrogen, raloxifene and vitamin D on fracture healing 

Estrogens and raloxifene improve fracture healing histologically and mechanically in 

closed tibial fractured ovariectomized rat model [55]. Similarly, vitamin D3 has been 

shown to improve both fracture healing and mechanical strength in the callus [79]. Thus 

vitamin D3 is implicated to increase the BMD and also promotes the cartilaginous phase 

of fracture healing [80].  
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1.7.4  Effect of strontium ranelate on fracture healing 

Strontium ranelate is implicated to stimulate bone formation and inhibit bone resorption 

[3]. This dual action thus enables it to be used as a possible therapeutic agent for 

enhancing fracture healing and increasing its mechanical properties. Local application of 

strontium salts in implants used in fracture fixation has been suggested for fracture repair 

promotion [81]. Strontium ranelate is also known to increase the callus volume in a 

closed femoral fracture experimental rat model, while the torsional strength is improved 

by strontium alone [75].  

1.8  STRONTIUM 

Strontium, a chemical element (Sr) with atomic number 38 is not freely available in 

nature due its property of oxidation. Interestingly, the human body absorbs strontium like 

calcium. Due to the chemical similarity of the elements, the stable forms of strontium are 

not harmful for human health [82]. 

Recent studies using strontium on osteoblasts in vivo showed marked improvement on 

bone-building osteoblasts [83]. The drug strontium ranelate, made by combining 

strontium with ranelic acid, also aids bone growth, increase bone density, and reduces 

vertebral, peripheral, and hip fractures [84, 85]. Women receiving the drug showed a 

12.7% increase in bone density compared to women receiving a placebo who had a 1.6% 

decrease. Half the increase in bone density (measured by X-ray densitometry) is 

attributed to the higher atomic weight of Sr compared with calcium, whereas the other 

half a true increase in bone mass [83].  

1.9  PHARMACOKINETICS OF STRONTIUM 

The gastrointestinal tract is the main route of entrance for strontium into the human body 

[82]. The absorption efficiency of strontium is almost the same as that of calcium. Almost 

all the absorbed strontium (99.1%) is deposited in bone, the prime site being the newly 

formed bone [86]. The blood being the second most important site for strontium in the 

body. In OVX rats, the administration of 0.3-1.2 nmol Sr/kg/day in the form of strontium 

ranelate prevented the trabecular bone loss [87]. Similarly administration of strontium 

after 3 months of OVX increased the bone turnover rate and the bone mineral content lost 

due to ovariectomy [88]. 
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Fig 5: Potential mechanisms of action of strontium on bone cells. Strontium stimulates 
pre-osteoblast replication, leading to an increase of matrix synthesis. On the contrary, 
strontium appears to inhibit osteoclast differentiation and activity. +: stimulatory 
effect; -: inhibitory effect (From Marie PJ. Bone. 2006; 38 (Suppl 1): S10-S14) 

Fig.6: Dual mechanism of action of strontium on bone cells through calcium-sensing 
receptors (CaSR). Strontium stimulates pre-osteoblast replication, leading to osteoblast 
differentiation and eventually new bone formation. It also increases the osteoprotegerin 
level which decreases the RANKL expression and prevents the cross talk with RANK on 
osteoclasts. This leads to inhibition of osteoclast differentiation, resulting in bone 
resorption. (PJ Marie Bone 2006 40: S5-S8) 
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The single most important excretion route is by the kidneys, and a secondary excretion 

route is by the intestines [82, 89]. The majority of animal studies of strontium are made 

on rodents which have a high bone formation rate and do not reach a steady-state of 

remodeling. Therefore care should be taken while interpreting the studies of bone 

formation and bone resorption performed in rodents and must be considered preliminary 

[90]. In a study by Raffalt et al. the content of strontium in bone was increased to 9 mg/g 

bone, when 3000 mg/kg/day strontium malonate was administrated orally [91]. The 

calcium content remained constant in spite of strontium administration. Boivin et al. 

found the average Sr/Ca ratio in bone can be as high as 1:10 after oral strontium ranelate 

administration for 13 weeks in monkeys [86]. He also showed a quick clearance of 

strontium after the bone treatment. However in this study, the strontium was applied 

locally. 

1.10  EFFECT ON BONE TISSUE  

When administrated orally as strontium ranelate, the strontium gets incorporated into 

hydroxyapatite instead of calcium at Sr/Ca ratio of 1:10 [86, 92]. Grynpas et al. has 

shown in rats fed on a normal calcium-containing diet, an increase in the bone formation 

by a relative low strontium dosage [93]. Several studies on humans, monkeys, and dogs 

show an increase in parameters of bone formation, such as osteoblast surface, mineral 

apposition rate, and S-alkaline phosphatase [94]. Ammann et al. also showed the positive 

effect of strontium on the mechanical properties of bone in rats where strontium increased 

the mechanical property by increase in the bone volume and improved micro-architecture 

[95]. Clinically, in the treatment of osteoporosis, strontium ranelate has not only been 

shown to reduce the risk of especially non-vertebral fracture but also vertebral fractures 

[96]. Similar studies on strontium containing bone graft substitutes in rats are also 

promising [97-99].  

1.11 MECHANISM OF ACTION AT THE MOLECULAR AND CELLULAR 

LEVELS 

Strontium is known to have dual mechanism of action (Fig. 5). Studies have shown that 

strontium stimulate the calcium-sensing receptor, CaSR, situated in the membrane of 

osteoblasts and osteoclasts [100-102] (Fig. 6). Stimulation of these receptors present in 

the surface of the osteoblast cell line triggers mitogenic signals leading to proliferation, 

differentiation, and activation of the osteoblasts [71, 72]. Similarly, when the CaSR 
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situated in the osteoclast cell line is stimulated, the cells retract and bone resorption is 

inhibited [72]. It is through the increased OPG production, strontium can also suppress 

the interaction of RANKL on osteoblasts with the RANK present on the surface of the 

osteoclasts, thereby leading to diminished proliferation, differentiation, and survival of 

the osteoclasts [71, 103]. Thus the effects of strontium on the cellular level are to increase 

the pool of active osteoblasts and decrease the number of less active osteoclasts.  

1.12  DETECTION OF ELEMENTS BY TOF-SIMS 

Fig. 7: Schematic diagram for TOF-SIMS analysis (ION-TOF GmbH) 

Time of flight secondary ion mass spectrometry (TOF-SIMS) originates from the material 

science with increasing applications in life science due to its ability to asses chemical 

composition of solid surfaces down to 100nm lateral resolution [104, 105]. In this 

technique, a high energetic primary ion beam from the machine is focussed to a solid 

sample. These primary ions (PI) hit the sample surface and results in the release of atomic 

and molecular fragments as well as electrons from the top surface layer.  

These charged atoms and molecules are called secondary ions (SI) which are collected via 

an electrical field and analysed in a mass analyser by their time of flight (Fig. 7). In this 

method the primary ion beam is scanning the surface and enables us to perform a mass 
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mapping of the sample surface. Moreover, a 3D mass distribution can also be achieved by 

using an additional more intensive ion beam onto the surface which in turn can be 

removed layer by layer. Although this technique results in a high fragmentation rate of 

organic molecules, it could be overcome by the use of modern cluster ion beams [106-

108]. 

TOF-SIMS has found numerous applications in life sciences. As shown by Borner et al. 

the possibility to image the distribution of cholesterol in frozen sections of rat cerebellum 

[109]. Hagenhoff et al. also showed the uptake and the localisation of nano-particles in 

the cytoplasm of mammalian cells [110]. Moreover TOF-SIMS was also used for the 

chemical analysis of bone-implant interfaces as shown by Palmquist et al. [111] and for 

the assessment of bone quality by Henss et al. [112]. 

The investigation of bone by mass spectrometry is very promising. Bone tissue being 

primarily composed of calcium hydroxyapatite crystals and collagen-type I fibrils makes 

it interesting for imaging mass spectrometry. Calcium and several calcium phosphate ions 

as well as numerous organic fragments derived from collagen can be detected precisely 

with TOF-SIMS.  
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2. OBJECTIVES OF THIS STUDY 

The study primarily focuses on the bone formation capabilities of strontium if any, when 

substituted into CPC and implanted in critical size metaphyseal defects in osteoporotic 

rats and its comparison with CPC and empty defect group. Thus the objectives of this 

study are to investigate: 

1. The effects of strontium modified calcium phosphate (SrCPC) on new bone 

formation in comparison with the pure calcium phosphate cement (CPC), devoid 

of any strontium and empty defect group in a metaphyseal bone defect model in 

osteoporotic rats. 

2. To assess the possibility to detect strontium release from SrCPC along with the 

estimation of calcium and collagen mass distribution in the defect area of 

metaphyseal bone using TOF-SIMS technology. 

Thus the hypothesis are:  

1. Strontium substitution into calcium phosphate cements optimizes bone formation 

and resorption in vitro, and improves bone mass in vivo compared to CPC and 

empty defect group. 

2. TOF-SIMS is able to detect the local release of strontium from SrCPC which in 

turn results in enhanced bone formation. 
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3.  MATERIALS AND METHODS  

3.1. EXPERIMENTAL DESIGN 

45 female Sprague-Dawley rats were randomly assigned to three different groups: (1) 

strontium modified calcium phosphate cement (SrCPC), (2) calcium phosphate cement 

(CPC) and (3) empty defect control group. The animals underwent induction of 

osteopenic bone status by bilateral ovariectomy combined with a multi-deficient diet as 

described later (3.5.1). A critical size defect of 4mm was then created in the metaphysis 

of these rats which were subsequently filled with SrCPC, CPC implant material in the 

metaphyseal region of the osteoporotic rat femur (Fig. 8), was used to study the effects of 

strontium loaded implants on bone remodeling. A control group with a critical size 

metaphyseal defect, without biomaterial implant was compared with test groups 

consisting of CPC and SrCPC respectively. Resulting bone formation was investigated 

using histomorphometry, immunohistochemistry, molecular biology and TOF-SIMS 

analysis. The TOF-SIMS analysis was carried out as a collaboration work with the 

Institute for Physical Chemistry, Justus-Liebig-University of Giessen. All interventions 

were performed in full compliance with the institutional and German protection laws and 

approved by the local animal welfare committee (Reference number: V 54 – 19 c 20-15 

(1) GI 20/28 Nr. 108/2011). 

 

 

 

 

 

 

 

Fig. 8: Schematic overview of metaphyseal osteotomy in the left femur depicting the 
wedge shaped defect and the plate fixation. The defect was then filled with CPC or 
SrCPC cements. 
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PROCEDURE EMPTY GROUP 
(CONTROL) 

CPC 
GROUP 

SrCPC 
GROUP 

Osteoporosis induction 15 15 15 

Defect creation and 
biomaterial implantation 15 15 15 

Sacrifice and harvest 11 13 15 

DXA 11 13 15 

Undecalcified histology* 6 7 8 

Histomorphometry* 6 7 8 

Immunohistochemistry* 6 7 8 

Molecular biology 5 6 7 

TOF-SIMS* 6 7 8 

 
Table 2: Experimental design showing animal groups and planned experiments.               
Star (*) indicates the consecutive sections from the same animal. Discrepancies in the 
total count are due to the animal deaths. 

3.2  CEMENT PREPARATION 

Calcium phosphate cement was used as a starting material. A hydroxyapatite-forming 

α-tricalcium phosphate (α-TCP) based bone cement and strontium-containing 

modifications, as previously described by Schumacher M. et al., 2013, were used in this 

study. In brief, calcium phosphate cement (CPC) comprised of 58 wt.% α-TCP 

(α-Ca3(PO4)2), 25 wt.% calcium hydrogen phosphate (CaHPO4) along with small 

amounts of hydroxyapatite (Ca10(PO4)6(OH)2) of almost 8.5 wt.% and calcium carbonate 

(CaCO3) of the same quantity which was supplied by InnoTERE GmbH, (Radebeul, 

Germany). In case of strontium-containing SrCPC, CaCO3 was replaced completely with 

strontium carbonate (SrCO3, 99.994%, Alfa Aesar, Karlsruhe, Germany), resulting in the 

formation of a Sr2+-substituted apatite cement matrix with a Sr/Ca ratio of 0.123. 

Cement precursor powders were supplied by InnoTERE GmbH (Radebeul, Germany) and 

were sterilized by γ-radiation at 25 kGy. Prior to implantation, cement powder was 

manually mixed with 4 wt. % aqueous Na2HPO4 to form a moldable paste. The liquid-to-

powder (l/p) ratio was varied to obtain comparable mould ability for the different cements 
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being used. Hence, a ratio of 0.40 and 0.35 ml/g for CPC and SrCPC was used 

respectively.  

3.3  SURGICAL INSTRUMENTATION 

 
Fig. 9: Instrumentation overview used for the surgical procedure (A, B) comprising of 
the Piezosurgery® Insert OTS7-3 (C) and the Leibinger® XS-miniplate (D). 

The wedge shaped osteotomy was performed on the distal end of the left femur (with a 

lateral length of 4 mm and a medial gap of 0.35 mm using Piezosurgery® Insert OTS7-3, 

(Fig. 9C) Mectron, Köln, Germany. It is a highly effective saw-like insert suitable for 

microsurgical applications. The cutting portion of the insert is 0.35 mm thick and 11 mm 

long. The presence of convenient laser-etched markings at 7 mm, 8.5 mm, and 10 mm 

indicate the osteotomy depth while performing the surgery. The insert is thinner and more 

suitable for microsurgical, minimally invasive procedures. In addition it also has a 

smaller cutting surface and is preferable when working in limited space/volume. 
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The Leibinger® XS-miniplate from Stryker (Schönkirchen, Germany) includes the T-

shaped mini-plate, screws (ranging from 4 mm to 20 mm in length and are 2.0 and 2.3 

mm in diameter) and drill-free screws. (Fig. 9D).   

3.4  ANIMAL MODEL 

Female Sprague-Dawley rats (Charles River, Sulzfeld, Germany) were used for the study 

group. The experimental procedures and protocols performed were approved by the local 

animal welfare committee and were in accordance with the institutional and German 

animal protection laws of district government of Giessen (Reference number: V 54 – 19 c 

20-15 (1) GI 20/28 Nr. 108/2011). 

3.5  ANIMAL MAINTENANCE AND SURGICAL PROCEDURE 

Forty-five, ten week old female Sprague-Dawley rats (Charles River, Sulzfeld, Germany) 

were maintained in a pathogen-free standard animal facility. The animals were kept in 

filter-topped plastic cages (2 - 4 rats/cage) and had free access to food and water until 

three months of age. The rooms were maintained at 22°C and 40 – 60% humidity. The 

study includes two operative procedures. The first procedure aimed at induction of 

osteoporosis by using the procedure of bilateral ovariectomy. The second procedure 

involved creating a femoral wedge-shaped osteotomy (which was left empty in control 

group) of 4 mm lateral gap and 0.35 mm medial fracture gap and subsequent biomaterial 

substitution in the test groups. After either of the operative procedure rats were kept 

single for one week to allow recovery.  

3.5.1  Osteoporosis induction 

The present animal model in this study is based on major risk factors accepted in general 

for osteoporosis: menopause and calcium restricted diet. Bilateral ovariectomy was 

performed on all the female Sprague Dawley rats by means of a low median laparotomy 

under general anesthesia. The animals received an intraperitoneal injection of ketamine 

(62.5 mg/kg bodyweight, Hostaket®, Hoechst) and xylazine (7.5 mg/kg bodyweight, 

Rompun®, Bayer. Care was taken to ligate the ovarian vessels twice. Post-operative pain 

medication was given as necessary. 

The ovariectomized group (OVX) received a calcium-phosphorous and vitamin D3, soy 

and phytoestrogen-free diet (10 mm pellets, Altromin-C1034, Altromin Spezialfutter 

GmbH, Lage, Germany).Whereas the SHAM group (placebo surgery) received normal 
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diet. SHAM group used for comparison in this study was taken from another project only 

to ensure a successful osteoporosis induction. 

 
Fig. 10: Surgical procedure for creation of metaphyseal osteotomy in the left femur. 
Under anesthesia, a medial incision was made to expose the left femur (A-D). T-shaped 
plate was first fixed (E) with the screws followed by measurement and determination 
for the wedge shaped defect (F) 4 mm in length and 0.35 mm medial gap. Defect was 
then created using an oscillating saw (G) and the osteotomized wedge was removed (H, 
I).  

3.5.2  Surgical procedure of the osteotomy 

Prior to the operation, all animals were weighed and the left hind portion, including the 

entire leg, was shaved and disinfected with povidone iodine (Braunol®, Braun, 

Melsungen, Germany). The animals were laid on their right side on a heating plate       

(37°C) covered with a sterile drape leaving the left hind exposed. A 4 cm skin incision 

was made over the lateral aspect of the left thigh and the lateral femur was exposed from 

the lateral condyle area to the midshaft area between the lateral vastus muscle and the 

lateral head of the femoral biceps muscle (Fig. 10). A 7-hole T-shaped miniplate 

(Leibinger® XS-miniplate, Stryker®, Schönkirchen, Germany) was slightly bended and 

fixed with 1.7 mm screws on the lateral femur (Fig. 10). There were two 8 mm long 
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screws in the distal fragment running perpendicular to the knee articular surface and one 

8 mm oblique screw from more proximal through the femoral condyles. The proximal 

part of the plate was fixed with four 6 mm screws at the midshaft area. 

 
Fig. 11: Surgical procedure for filling of the biomaterial in the osteotomized gap. The 
gap was left empty to serve as control (A), filled with CPC (B) and SrCPC (C).  

A wedge shaped defect with a lateral gap of 4 mm and medial gap of 0.35 mm was then 

created using an ultrasound bone saw Piezosurgery 3®, saw blade OT7S-3, Mectron Köln, 

Germany (Fig. 10). The bone segment was removed and filled with different materials 

(CPC and SrCPC) or left empty to serve as control (Fig. 11). The fascia of the muscle was 

sutured with absorbable sutures, the skin then closed with absorbable sutures and stapled 

with vickostat skin stapler, which were removed after 1 week during the wound care 

routine. The animals were closely monitored after the surgery. Necessary post-operative 

pain medication was also given. Afterwards the animals were observed daily, the wound 

was monitored, and weight was controlled weekly. 
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3.6 BONE DENSITY MEASUREMENTS USING DUAL ENERGY X-RAY  
ABSORPTIOMETRY (DXA) 

Bone mineral density (BMD in g/cm2) was measured by DXA (Lunar prodigy, GE 

Healthcare, Germany) before induction of osteoporosis (0 month) and three months after 

the described induction of osteoporosis (3 months), at the point the fracture defect was 

created in order to ensure onset of osteoporosis. BMD of the left femur at the site of 

defect region, right femur and spine were analyzed as these are the major anatomical sites 

affected during osteoporosis. Analysis was carried out using the small-animal mode of the 

enCORE software (GE Healthcare, v. 13.40).  

T score was calculated according the formula T score = (BMD-YN) / SD, where BMD is 

the mean bone mineral density of the experimental group (OVX + diet), YN is the “young 

normal mean” of the control group (SHAM) and SD is the standard deviation. The DXA 

measurements were done with compliance to the quality control and calibration as 

described by the manufacturer’s protocol. 

3.7  EUTHANASIA AND SPECIMEN COLLECTION 

6 weeks post fracture creation in the metaphysis of the left femur in the osteoporotic 

animals and biomaterial implantation, animals were euthanized with CO2 after general 

anesthesia. Soft tissue surrounding cortical bone surface of the femora was completely 

removed without disrupting the newly formed tissue. Specimens were assessed for 

stability before any further assessment. Bone was considered stable when both proximal 

and distal fragment did not dislocate after plate removal.  

3.8  PREPARATION OF TISSUES FOR HISTOLOGICAL ANALYSIS 

3.8.1  Protocol for Technovit 9100 - Embedding    

The time for fixing is usually between 12 and 48 h. The following method of fixation can 

be used when detecting antigens or enzymes. After the fixation with 4 % neutral buffered 

paraformaldehyde and 6 times washing with 0.1 M phosphate buffer pH 7.2 – 7.4, the 

dehydration and infiltration process is carried out as tabulated below (ingredients listed in 

table 3). The time of dehydration and infiltration depends on the size of the sample.    
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Table 3: Technovit® 9100 – embedding: Time plan for dehydration and infiltration of rat 

femur 

Solution Temperature Time; Shaking 

70 % Ethanol room temperature 2 days 

80 % Ethanol room temperature 3 days 

96 % Ethanol room temperature 2 days 

100 % (1) Ethanol room temperature 3 days 

100 % (2) Ethanol room temperature 3 days 

100 % (3) Ethanol room temperature 2 days 

100 % (4) Ethanol room temperature 3 days 

100 % p.A. Ethanol room temperature 3 days 

Xylene (1) room temperature 12 hours 

Xylene (2) room temperature 12 hours 

Preinfiltration 1 room temperature 3 days 

Preinfiltration 2 room temperature 3 days 

Preinfiltration 3 4°C 3 days 

Infiltration 4°C 6 days 

Polymerisation - 4°C 2 days 

 4°C 1 day 

 

Components 

1. Destabilising the basic solution 

Fill a chromatography column with 25-30 g aluminium oxide and 

allow the Technovit® 9100 NEW basis solution (Component No. 

1) to flow through it. A column prepared as above is sufficient to 

destabilise 3 – 4 litres of basic solution. Store the destabilised basis 

solution in portions in corked brown glass bottles. The storage 
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should be done either at 4°C for shorter time periods or at -15°C to 

-20°C for longer time period. 

2. Preparation of ready-to-use solutions 

Preinfiltration 1: Basic solution, stabilised: Xylene 1 : 1   

   300 ml + 300 ml in a 1000 ml plastic sample tube. 

   Store in dark at 4°C. 

Preinfiltration 2: Basic solution, stabilised + hardener 1 

   500 ml + 2.5 g hardener powder 1 in a 1000 ml plastic sample tube. 

   Store in dark at 4°C. 

Preinfiltration 3: Basic solution, destabilised + hardener 1 

   500 ml + 2.5 g hardener powder 1 in a 1000 ml plastic sample tube. 

   Store in dark at 4°C. 

Infiltration:  Basis solution, destabilised + PMMA (Granulate 2) + hardener 1 

   500 ml + 40 g PMMA + 2 g hardener  

 Use a magnetic stirrer to stir the mixture:  

Put 400 ml Basis solution, destabilised in a 1000 ml plastic sample 

tube; add PMMA portion by portion, stir for 30 minutes, add the 

hardener 1 and stir until the solution is clear. 

Fill to an end volume of 500 ml with Basic solution destabilised. 

Store in dark at 4°C. 

Polymerisation 

Stock solution A: 500 ml Basis solution, destabilised  

   80 g PMMA      

  3 g hardener 1       

Use a magnetic stirrer to stir the mixture:  
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Put 400 ml Basic solution, destabilised in a beaker; add PMM 

portion by portion, stir for 30 minutes, add the hardener 1 and stir 

until the solution is clear (approximate time is 2 hrs). 

Fill to an end volume of 500 ml with basic solution destabilised. 

Put in a 500 ml plastic bottle. Seal the bottle with parafilm, cover 

with aluminium foil and store in dark at -20°C. 

Stock solution B: 44 ml Basic solution, destabilised 

  4 ml hardener 2 

  2 ml regulator 

Put in a 100 ml plastic bottle. Seal the bottle with parafilm, cover 

with aluminium foil and store in dark at -20°C. 

Polymerisation mixture: 9 parts Stock solution A + 1 part Stock solution B 
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3.8.2 Sectioning of Technovit® 9100 blocks 

After embedding, technovit blocks were sectioned into 5 µm thickness with the aid of 

Kawamoto’s film in order to keep the biomaterials intact (Fig. 12). This was done using a 

counting microtome (Leica RM2155, Germany). The sections were then covered with a 

butter paper and pressed in a French Press at RT overnight before the staining procedure 

was applied. 

Fig. 12: Sectioning procedure using Kawamoto´s film. A: Place the film on the surface 
of the block, B. C: lower the block slowly over the edge of the knife and grab with pliers 
during the cutting and D: place the cut on a glass slide adhered to double sided tapes. 
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3.9  HISTOLOGY 

3.9.1  STANDARD STAINING 

3.9.1.1 Movat Pentachrome Staining 

Movat Pentachrome staining (ingredients listed in table 4) on undecalcified bone sections 

yield excellent contrast between mineralized and unmineralized compartments of the 

bone and also reflects the various stages of chondrocyte hypertrophy. It also allows easy 

distinction of different cell types. It stains the nuclei - black to bluish grey; cytoplasm-

red; collagen fibers - yellow; calcified cartilage - green; osteoid - red and the mineralized 

bone - yellow. This stain is thus useful for the study of the bone healing as it facilitates 

image analysis for histology and histomorphometrical measurements. 

Table 4: Preparation of the ingredients for movat pentachrome staining 

MATERIAL  

 

Alcian Blue 

Dissolve 1 g 8GS, (Chroma, 1A288) in 99 ml ddH2O and 

add 1 ml glacial acetic acid, filtrate before use 

 

Weigert's Iron Hematoxylin  

 

Solution A:  

(Roth, X906.1) 500 ml 

Solution B:  

(Roth, X907.1) 500 ml  

Working solution: mix A and B 1:1, filtrate before use → 

Can be stored for 7 days, 4°C.  

Brilliant Crocein-Fuchsin  

 

Solution A:   

0.1 g Brilliant Crocein R (Chroma 1B109)  

in 99.5 ml dd. water → add  0.5 ml glacial acetic acid 

Solution B: 

0.1 g acid fuchsin (Merck 7629)  

in 99.5 ml dd. water → add 0.5 ml glacial acetic acid  

Working solution: mix A and B 5:1, filtrate before use 
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PWS 5 % PWS (Merck, 1.00583.0250, 250 g) in ddH2O  

Saffron du Gâtinais Dissolve 6 g (Chroma 5A394) in 100 ml of 100% EtOH 
and incubate at 50°C for 48 hours. 

Filtrate before use 

Alkaline ethanol 

 

10 ml Ammonium hydroxide  

90 ml Ethanol 95% 

0.5 % acetic acid In distilled water: glacial acetic acid (Merck, 
1.00063.1000)    

Ethanol 

 

Ethanol 522 (with 1 % Petroläther, Stockmeier 

Chemie1001043227002) 

Xylene (Roth, 9713.3) 

Eukitt (Fluka, 03989) 

MEA  

(2-methoxyetyl)-acetate: 

(Merck, 8.06061.100) 

 

Protocol  

1. Deplastify sections via MEA 3 x 5 minutes and dehydrate using a descending 

percentage of ethanol 100%, 96%, 80%, 70% for 5 minutes each. 

2. Rehydrate in distilled water for 2 x 5 minutes 

3. Stain in Alcian blue for 30 minutes 

4. Wash in running tap water for 5 minutes  

5. Stain in alkaline ethanol for 1 hour 

6. Wash in running tap water for 5 minutes  

7. Rinse in distilled water  

8. Place in the Weigert’s iron hematoxylin stain for 14 minutes (stains connective 

tissues)  

9. Rinse in distilled water  

10. Wash in running tap water for 6 minutes  

11. Place in Brilliant Crocein-Fuchsin solution for 6 minutes 

12. Place in 0.5% aqueous acetic acid for 1 minute 
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13. Place in 5% PWS (phosphor/ Tungsten mix solution). Until collagen is clear and 

ground substance is blue   

14. Place in 0.5% aqueous acetic acid for 2 minutes with shaking  

15. Place in three changes of absolute ethanol for 2 minutes each  

16. Place in the Saffron du Gâtinais dye to stain collagen and connective tissue for 10 

minutes 

17. Dehydrate quickly in absolute ethanol, 3 changes. Then place it in absolute 

ethanol for 2 minutes  

18. Clear in xylene, two changes for 5 minutes each  

19. Cover slip slides using Eukitt 

3.9.1.2  Toluidine blue staining 

The toluidine blue staining (ingredients listed in table 5) is one of the standard staining 

for microscopic examination of the bone. It stains nucleic acids blue. Due its property of 

metachromasia it stains the polysaccharides purple and also increases the sharpness of 

histological slides due to high contrast. It stains the nuclei - blue, mineralized bone - light 

purple, osteoid - colorless or pale blue and chondrocytes - purple. The staining was used 

for histological analysis. 

Table 5: Preparation of ingredients for toluidine blue staining 

MATERIAL  

Solution A Dissolve 8 g Natrium Tetraborate, (Merck, 1.06306.0250) in 8 

g toluidine blue O (Chroma, 1B 481) 800 ml ddH2O for 15 

minutes using a magnetic stirrer 

Solution B 2 g Pyronin G (Merck, 7518) in 200 ml ddH2O for 15 minutes 

using a magnetic stirrer 

Working solution mix A and B 1:1 and filter twice 

 

Protocol  

1. Deplastify sections via MEA 3 x 5 minutes and dehydrate using a descending 

percentage of ethanol 100%, 96%, 80%, 70% for 5 minutes each  
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2. Rehydrate in distilled water for 2 x 5 minutes  

3. Stain with undiluted filtered toluidine blue for 10 seconds.  

4. Dehydrate gradually along an increasing gradient of alcohol 70%, 80%, 96%, 

100% quickly 

5. Clear in xylene, two changes for 5 minutes each  

6. Cover slip slides using Eukitt 

3.9.1.3  Von Kossa-Van Gieson staining 

Osteoid is the unmineralized and immature, organic portion of the bone matrix. It is 

secreted by the osteoblasts which eventually become mineralized to form the new bone 

tissue. A lack of proper nutrient minerals or osteoblast dysfunction hampers the 

mineralization process of the osteoblasts which in turn accumulates. To detect osteoid in 

the technovit sections, a double staining of Von Kossa-Van Gieson (ingredients listed in 

table 6) was thus used. The stain principle of Von Kossa is a precipitation reaction in 

which the silver ions react with phosphate (not calcium) in the presence of acidic 

material. Photochemical degradation of silver phosphate to silver then occurs under light 

illumination. The Van Gieson on the other hand is a mixture of picric acid and acid 

fuchsin. It is the simplest method of differential staining of collagen and other connective 

tissue. Thus such a dual staining stains the osteoid red and mineralized tissue black. 

Table 6: Preparation of the ingredients for Von Kossa-Van Gieson staining 

MATERIAL  

Silver nitrate solution 

 

Dissolve 3 g silver nitrate (Merck, 1512) in 100 ml 

ddH2O 

Sodium-carbonate formaldehyde 

solution 

10g Na2CO3 (Merck 6392) with 25 ml of 37% 

formaldehyde solution to 100 ml ddH2O  

Van Gieson's mixture Chroma 2E050 

Sodium thiosulfate 5 g Na2S2O3 (Merck, 6516) in 100 ml ddH2O 

Methyl green 1g in 100ml of 25% alcohol. 
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Protocol  

1. Deplastify sections via MEA (2-methoxyethylacetat) [Merck 806061] 3 x 5 

minutes and dehydrate using a descending percentage of ethanol 100%, 96%, 

80%, 70% for 2 minutes each  

2. Rehydrate in distilled water for 2 x 5 minutes  

3. Stain in 3% aqueous solution of silver nitrate (AgNO3) for 10 minutes  

4. Rinse 3 x in distilled water  

5. Incubate in sodium carbonate solution for 2 minutes  

6. Rinse in running tap water for 10 minutes  

7. Allow it to stay in 5% sodium thiosulfate solution (Na2S2O3) for 5 minutes 

8. Submerge in distilled water to stop the reaction.  

9. Counter-stain by soaking in methyl green for 15 minutes  

10. Rinse in running tap water for 10 minutes  

11. Rinse 5 x in distilled water  

12. Place in the Weigert’s iron hematoxylin stain for 6 minutes  

13. Rinse in running tap water for 10 minutes  

14. Place in Van Gieson's mixture for 3 minutes  

15. Dehydrate by rinsing in 96% ethanol  

16. Place in absolute ethanol, two changes for 1 minute each 

17. Clear in xylene, two changes for 5 minutes each  

18. Cover-slip after mounting with DEPEX (VWR 361254 D) 

3.9.2  Immunohistochemical staining 

Immunohistochemistry detects antigens (e.g., proteins) on cell surfaces or tissue sections 

by exploiting the principle of antibodies binding specifically to antigens in biological 

tissues. This provides a scope for qualitative evaluation of both specific cell types and 

matrix proteins. A colored reaction occurs depicting the antigen-antibody complex. 

Generally this technique employs unlabeled primary antibody, in which sections are 

incubated for 1 hour (may vary). Sections are then incubated with a normal serum 

originated from the same animal species. This is to avoid unspecific binding of the 

secondary antibody. The incubation with the secondary antibody is then carried out for 30 

minutes following which the incubation with avidin and biotinylated horseradish 

peroxidase macromolecular complex is performed (Vectastain Elite ABC KIT, VECTOR,  
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PK-6100). NovaRED substrate kit for peroxidase (Vector, SK-4800) was then used as a 

substrate solution which catalyzes the hydrolysis of a variety of phosphate containing 

substances producing a colored insoluble precipitate thus visualizing the antigen presence 

(Fig.15). For a better representation, tissue was counter-stained with hematoxylin 

(Shandon Instant Hematoxylin, 6765015). 

In some cases in this study, the Envision+System (Dako, K4006), HRP IHC staining 

technique was employed. This system is a two step process where the secondary antibody 

is conjugated with the HRP labeled polymer. The labeled polymer is devoid of avidin or 

biotin and thus avoids nonspecific staining resulting from the endogenous avidin-biotin 

activity (Vectastain Elite ABC KIT, VECTOR, PK-6100). In principle, endogenous 

peroxidase activity is quenched by incubating the specimen for 45 minutes with 

Peroxidase Block (6% H2O2). The specimen is then incubated with an appropriately 

characterized and diluted primary antibody, followed by incubation with the labeled 

polymer: Staining was completed by 5-10 minute incubation with 3, 3’-diaminobenzidine 

(DAB+) substrate-chromogen which results in a brown colored precipitate at the antigen 

site. 

3.9.2.1 Bone-morphogenetic protein 2- BMP2 

Bone morphogenetic protein 2, belongs to the transforming growth factor-beta (TGFB) 

super family, plays an important role in the development of bone and cartilage. BMP2 is 

known to stimulate the production of bone. It is involved in the hedgehog pathway, TGF 

beta signaling pathway and in cytokine-cytokine receptor interaction. BMP2 is osteo-

inductive in nature. It has potential to induce osteoblast differentiation in a variety of cell 

types. Sections were treated with BMP2 primary antibody (Acris AP20597PU-N) at a 

concentration of 1:200 in Dako Antibody Diluent with background reducing components 

(S3022); with protocol for IHC using the ABC system (Vectastain Elite ABC KIT, 

VECTOR, PK-6100). 

3.9.2.2 Osteocalcin 

Osteoblasts form woven bone during the reparative phase and compact bone in the 

remodeling phase of bone healing. Discrepancies in the count and location of osteoblasts 

affect bone healing. Osteocalcin is a protein secreted by osteoblasts and belongs to the 

non-mineralized bone extracellular matrix. It is often used as a marker for the bone 
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formation process. Also known as bone gamma-carboxyglutamic acid-containing protein 

(BGLAP), osteocalcin is a non-collagenous protein found in bone. It plays an important 

role in the body's metabolic regulation and is pro-osteoblastic, or bone-building. It is also 

implicated in bone mineralization and calcium ion homeostasis. Sections were treated 

with osteocalcin (Monoclonal Anti-human Osteocalcin, R&D, MAB1419) primary 

antibody using a dilution of 1:500 in Dako Antibody Diluent with background reducing 

components with protocol for IHC using the ENVISON system. 

3.9.2.3  Osteoprotegerin 

Osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor (OCIF), or 

tumor necrosis factor receptor super family member 11B (TNFRSF11B), is a protein that 

in humans is encoded by the TNFRSF11B gene. It is a decoy receptor for the receptor 

activator of nuclear factor kappa B ligand (RANKL). By binding RANKL, OPG inhibits 

nuclear kappa B (NF-κB) which is a central and rapid acting transcription factor for 

immune-related genes, and a key regulator of inflammation, innate immunity, and cell 

survival and differentiation. OPG can reduce the production of osteoclasts by inhibiting 

the differentiation of osteoclast precursors into mature osteoclasts and also regulates the 

resorption of osteoclasts. OPG binding to RANKL on osteoblasts, blocks the RANKL-

RANK ligand interaction between osteoblast cells and osteoclast precursors. This has the 

effect of inhibiting the differentiation of the osteoclast precursor into a mature osteoclast. 

Sections were treated with OPG (Rabbit Anti-Osteoprtegerin Polyclonal Antibody;  

Abbiotec; 250800) primary antibody using a dilution of 1:300 in Dako Antibody Diluent 

with background reducing components with protocol for IHC using the ABC system. 

3.9.2.4 Receptor activator of nuclear factor kappa-B ligand, RANKL 

Receptor activator of nuclear factor kappa-B ligand (RANKL), also known as tumor 

necrosis factor ligand super family member 11 (TNFSF11), TNF-related activation-

induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), and osteoclast 

differentiation factor (ODF), is a protein that in humans is encoded by the TNFSF11 

gene. It is needed for adequate bone metabolism. It is a surface-bound molecule (also 

known as CD254) found on osteoblasts which serves to activate osteoclasts. Osteoclastic 

activity is triggered via the osteoblasts surface-bound RANKL activating the osteoclasts 

surface-bound receptor activator of nuclear factor kappa-B (RANK). Sections were 

treated with 0.6 µg/ml of RANKL primary antibody (Polyclonal Antibody to CD254/ 
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RANKL-Aff-Purified, Acris, AP30826PU-N) with protocol for IHC using the ABC 

system. 

3.9.2.5  Platelet endothelial cell adhesion molecule, PECAM-1 

Platelet endothelial cell adhesion molecule (PECAM-1) also known as cluster of 

differentiation 31(CD31) is a protein encoded by the PECAM1 gene. It is found on the 

surface of endothelial cells and intercellular junctions. The encoded protein is a member 

of the immunoglobulin super family and is likely to be involved in new blood vessel 

formation. CD31 immunohistochemistry can thus be used to demonstrate angiogenesis. 

Sections were treated with PECAM-1 primary antibody (CD31 Antibody, Abbiotec, 

250590) using a dilution of 1:350 in Dako Antibody Diluent with background reducing 

components with protocol for IHC using the ABC system. 

3.9.2.6  Alpha smooth muscle actin, α-SMA 

Alpha-actin-2 also known as actin, aortic smooth muscle or alpha smooth muscle actin 

(α-SMA, SM actin, alpha-SM-actin, ASMA) is a protein that in humans is encoded by the 

ACTA2 gene. Alpha-smooth muscle actin (α-SMA) is commonly used as a marker of 

myofibroblast formation. It is used as a marker to detect the smooth muscle actin and 

myofibrils surrounding the blood vessels. Sections were treated with α-SMA primary 

antibody (Monoclonal mouse Anti-Human Smooth Muscle Actin, Dako, M0851) using a 

dilution of 1:1000 in Dako Antibody Diluent with background reducing components with 

protocol for IHC using the ENVISON system. 

3.9.2.7  ED1 

ED1 is a monoclonal antibody that recognizes a single chain heavily glycosylated protein 

of 90-110 kDa that is expressed on the lysosomal membrane of phagocytes as well as on 

the cell surface (weak expression). This antigen is the rat homologue of human CD68. 

The expression of this antigen in cells increases during phagocytic activity. The antigen is 

expressed by the majority of tissue macrophages and hence makes the monoclonal 

antibody a useful marker for rat macrophages. Sections were treated with ED-1 primary 

antibody (Mouse Anti-Rat Monocytes/Macrophages Monoclonal Antibody) using a 

dilution of 1:3000 in Dako Antibody Diluent with background reducing components with 

protocol for IHC using the ENVISON system. 
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Table 7: Preparation of the ingredients for immunohistochemistry 

MATERIAL  

Tris-NaCl-Buffer 

(TBS) 

(0.15 mol/l NaCl, 0.05 mol/l Tris/HCl)  

for 10 x:   60.57 g  (0.5 mol/l) Tris Base 

                    87.66 g (1.5 mol/l) NaCl    

                    in 1000 ml dH2O  

Dissolve Tris Base and NaCl in 800 ml dH2O, adjust pH with 25 % 
hydrochloric acid till it reaches 7.4 and make up to 1000 ml. 

TBS-Buffer 1 x Dilute the above in the ratio of 1:10 with distilled water 

Tris-Washbuffer  TBS 1 x, 0.025 % Triton-X-100 

To 100 ml TBS 10 x add 0.25 g of Triton X-100 and make the 
volume up to 1000 ml with dH2O 

 
Protocol for IHC using the ABC system 

1. Deplastify sections via MEA (2-methoxyethylacetat) [Merck 806061] 3 x 5 

minutes and dehydrate using a descending percentage of ethanol 100%, 96%, 

80%, 70% for 5 minutes each 

2. Rinse 3 x 5 min in wash-buffer 

3. Dry the slide on the back and around the section, mark around the section with 

PAP Pen. 

4. Add tested dilution of antibody in background reducing dilution buffer (DAKO).  

5. Incubate over night at 4°C in humid chamber. 

6. Discard the antibody. Wash every slide separately with washing buffer with 

disposable pipette, avoid contamination of different antibodies.  

7. Rinse 3 x 5 min in wash-buffer 

8. Incubate in secondary goat anti rabbit antibody 1:500 (DAKO, biotinylated) at RT 

for 30 minutes. Dilution of antibody is made in 1 % BSA in TBS with 1:8 serum 

of species of interest 

9. Rinse 2 x 5 min in wash-buffer 

10. Incubate with Vectastain ELITE ABC (Fa. Vector, PK 6100) in humid chamber 

for 30 minutes at RT 

11. Rinse 2 x in wash-buffer 
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12. Rinse 5 min in dH2O 

13. Stain with Nova Red: (Substrate kit for peroxidase, Vector) for 5 min at RT 

14. Rinse 5 min in ddH2O followed by rinsing in dH2O for 2 x 5 min 

15. Counter stain with hematoxylin (Shandon, Diluted 1 + 3 with double distilled 

water) for 5 sec at RT 

16. Rinse 10 minutes in running tap water 

17. Rehydrate using an ascending percentage of ethanol 70%, 80%, 96%, 100% for 5 

minutes each 

18. Clear in xylene, two changes for 5 minutes each 

19. Cover-slip after mounting with DEPEX (VWR 361254 D) 

Protocol for IHC using the ENVISON system 

1. Deplastify sections via MEA (2-methoxyethylacetat) [Merck 806061] 3 x 5 

minutes  

2. Dehydrate in 100% Acetone 2 x 5 minutes  

3. Rehydrate in Acetone + Wash-buffer (1:1) 2 x 5 minutes 

4. Rinse 3 x 5 min in wash-buffer 

5. Block the endogenous peroxidase using 6 % H2O2 in wash-buffer for 5 minutes at 

RT 

6. Rinse 3 x 5 min in wash-buffer  

7. Dry the slide on the back and around the section, mark around the section with 

PAP pen 

8. Add tested dilution of antibody in background reducing dilution buffer (DAKO). 

Incubate for 1 hour at RT in humid chamber 

9. Discard the antibody. Wash every slide separately with washing buffer with 

disposable pipette, avoid contamination of different antibodies 

10. Rinse 3 x 5 min in wash-buffer 

11. Treat the sections with serum from the animal of the same species (12.5 % rat 

serum [Sigma, R9759] in 1 % BSA in TBS 1 x) in order to avoid non-specific 

staining. This is done at RT for 15 min. Tipp off the solution 

12. Incubate in the labeled polymer for 30 mins at RT in a humid chamber 
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13. Rinse 3 x 5 min in wash-buffer and incubate in DAB + substrate at RT for 5-15 

minutes  

14. Rinse in ddH2O for 10 seconds using a disposable pipette and then rinse 4 x 5 

minutes in  dH2O  

15. Counter stain with hematoxylin (Shandon, Diluted 1 + 3 with double distilled 

water) for 30 seconds at RT 

16. Rinse 10 minutes in running tap water 

17. Rehydrate using an ascending percentage of ethanol 70%, 80%, 96%, 100% for 5 

minutes  

18. Clear in xylene, 2 x 5 minutes and cover-slip with DEPEX (SERVA, 18243.02) 

 

Fig. 13: Histomorphometric analysis using Adobe Photoshop CS6 A) Measurement of 
region of interest 1 (ROI1), implant, bone and unmineralized tissue area in 1st ROI. B) 
Measurement of region of interest 2 (ROI2), implant, bone and unmineralized tissue 
area in 2nd ROI. 
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3.10  HISTOMORPHOMETRY 

Standardized histomorphometrical analyses are essential to determine the therapeutic 

efficacy and address cellular and tissue responses during the bone repair process. These 

results in turn can be integrated with molecular, immunohistochemical and TOF-SIMS 

analysis. In this study the movat-pentachrome staining was thus used for semi-automated 

measurements represented as BV/TV (unit mm2). The VKVG staining was used for the 

measurement of the unmineralized tissue (UT/TV in mm2). Images were taken using a 

light microscope (Axioplan 2 imaging with photomodule Axiophot 2, Carl Zeiss, Jena, 

Germany) using a Leica DC500 camera (Leica, Bensheim, Germany), acquired with 

Leica IM1000 software and processed using Adobe Photoshop version CS6 (Adobe, 

Karlsruhe, Germany). The histomorphometry used in this study includes a semi-

automated quantification, sorts different tissues according to the color. In this 

measurement, yellow represents the ossified issue (bone) and green implies 

unmineralized tissue (cartilage in green and osteoid in red). The yellow colored tissue 

was not specific for ossified tissue, mineralized patches were also seen in the 

unmineralized tissue (mostly in the regions of high chondrocyte activity) and vice versa. 

Therefore, the calcified regions and the cartilage tissue were hand contoured and assessed 

(Fig. 13). 
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Fig. 14: Schematic diagram of a movat-pentachrome staining of undecalcified 
technovit sections with the two regions of interest (ROI’s) for quantitative 
histomorphometric evaluation: First ROI (within black outline) was used to evaluate 
the new bone formation at the tissue-implant interface (A). The second ROI (enclosed 
within black outline) comprises the entire defect region to examine the new bone 
formation in the initial fracture defect (B). Specific regions are labeled as follows: b, 
bone; m, material; sc, screw. 

Two regions of interest (ROI’s) were used for histomorphometric evaluations. The first 

ROI was made by directly tracing over the material followed by a 100 pixels increase to 

include the biomaterial tissue interface (Fig. 14A). The second ROI comprised the entire 

initial wedge-shaped osteotomized defect area (4 mm in the lateral side and 0.35 mm in 

the medial side of the left femur) to assess the new bone formation within the former 

fracture defect area (Fig. 14B). With the help of Adobe Photoshop CS6, the 

measurements for area of bone, ROI’s, implant, and the void were made respectively to 

determine bone versus tissue ratio (BV/TV). In principle, the analysis depends on the 

measuring of pixels of the same color, which were then scaled as area (unit mm2). A 
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count for macrophages (ED1 i.e. Macrophages/TV) positive cells was also performed. 

The consecutive sections were then used for all described methods. The measurements 

were done blind folded with regards to the test groups. The shifts in the cortices were also 

taken into consideration. The animals thus measured by histomorphometry had no plate 

breakages. 

3.11  mRNA PREPARATION AND EXPRESSION ANALYSIS 

3.11.1  Samples 

Left femurs obtained 6 weeks post-osteotomy were snap frozen in RNAlater® RNA 

stabilization solution (Ambion, CA, USA) and stored at - 80oC until RNA isolation for 

expression analysis of the target genes. For RNA isolation the area of interest chosen 

comprised the original defect area (containing CPC and SrCPC implants respectively) 

along with connecting bone or tissue. 

3.11.2  Quantitative RT-PCR 

The expression analysis was carried out for the following target genes. 

1. Alkaline phosphatase (ALP) as an osteoblast marker which helps in 

mineralization of the bone. 

2. Osteocalcin (OCN), a non-collagenous protein secreted by osteoblasts which 

plays a vital role in the mineralization and calcium homeostasis in the bone. 

3. Collagen type 10 alpha 1 (Col 10a1), a marker for hypertrophic chondrocytes. 

4. Runt-related transcription factor 2 (Runx 2), an essential protein for 

osteoblastic differentiation. 

5. Collagen type I alpha1 (Col1a1) which encodes the major component of type I 

collagen, the fibrillar collagen found in most connective tissues, including 

cartilage. 

6. Beta-2 microglobulin (B2M) was used as reference gene.  

 

 

 

 

 

 



	
  

	
   	
  
	
  

47	
  

CHAPTER	
  3:	
  MATERIALS	
  &	
  METHODS	
  

                             Table 8: Primer sequences  

Target gene Sense, antisense primers (5’-3’) 
sequence 

Amplicon 
length 
(bp) 

B2M 
TGT CTC AGT TCC ACC CAC CT 

GGG CTC CTT CAG AGT GAC G 
191 

OCN 
GAG GGC AGT AAG GTG GTG AA 

GTC CGC TAG CTC GTC ACA AT 
135 

ALPL 
ATC GGA CCC TGC CTT ACC 

CTC TTG GGC TTG CTG TCG 
78 

Runx2 
CCA TAA CGG TCT TCA CAA ATC C 

GCG GTC AGA GAA CAA ACT AGG 
137 

Col1a1 
TCC TGA CGC ATG GCC AAG AA 
CAT AGC ACG CCA TCG CAC AC 

145 

Col10a1 
CAT GTG AAG GGG ACT CAC G 

GAA GCC TGA TCC AAG TAG CC 
101 

 

Total RNA of the area of interest in control group (empty defect, 4 mm), CPC and SrCPC 

was isolated using the Lipid Tissue Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer's protocol. The quantity and quality of the RNA was measured using the 

Nanodrop 2000® (Thermo scientific, Schwerte, Germany) using an optical density of 

260/280 nm. The samples had an average RNA concentration between 113 ng/µl and 800 

ng/µl and the average of the 260/280 nm ratio varied from 2.01 to 2.13.  

In 0.5 µg of RNA contaminations of genomic DNA were removed and RNA was reverse-

transcribed with the Quantitect® Kit (Qiagen) as described in the manufacturer's protocol.  

3.11.3  Real-time RT-PCR 

Quantitative RT-PCR was performed using the LightCycler detection system (Roche, 

Mannheim, Germany) in combination with the Quantifast SYBR Green PCR mastermix® 

(Qiagen, Hilden, Germany) for Runx-2, ALPL, OCN, Col1a1, Col10a1primers as well as 

B2M reference gene-primers (Table. 8). For RT-PCR, 1 µl cDNA, 5 µl Quantifast SYBR 

Green PCR Mastermix x PCR mastermix and 0.1 µl of each primer (20 µM) 

supplemented with RNase free H2O to a final volume of 10 µl was used. The thermal 



	
  

	
   	
  
	
  

48	
  

CHAPTER	
  3:	
  MATERIALS	
  &	
  METHODS	
  

cycling program with Quantifast Master mix® comprised one initial denaturation step of 5 

min at 95°C followed by 40 cycles of 10 s at 95°C and 30 s at 60°C. Finally a melting 

curve was performed to verify the PCR product's specificity and identity by increasing the 

temperature from 60°C to 95°C in steps of 0.1°C every 1 s.  

All analyses were done in duplicates and the means were used for further calculations. 

The following were used as controls: (a) every sample processed without reverse 

transcription (−RT) to control for contamination with genomic DNA, (b) RT-PCR runs 

without template (H2O). Specificity of amplification was confirmed by melting curve 

analyses and 2 % agarose gel electrophoresis (Fig. 15). 

 

Fig. 15: Qualitative PCR for a) OCN (135bp) b) Col1a1 (145bp) c) ALP (78bp) d) 
Runx2 (137bp) and e) Col10a1 (101bp) run with a 100bp ladder. 

3.11.4 Data processing 

The amplification efficiency for the tested primer pairs varied from 1.93 to 2.00, which 

are the expected values for compared genes. The relative gene expression ratio for each 

gene was calculated using the REST© method, based on the PCR efficiency (E) and Ct of 

a sample compared with the control, and expressed in comparison to the reference gene, 

according to Pfaffl's mathematical model: Ratio = (Etarget) ΔCt target (control-

sample)/(Eref) ΔCt ref (control-sample). 

3.12  TOF-SIMS MEASUREMENTS 

All of the SIMS measurements were done with a TOF-SIMS 5-100 machine (IONTOF 

Company, Münster, Germany). The machine is equipped with a 25 kV Bi-cluster Primary 

Ion gun, 2 KV Cs+ and O2
+ sputter guns and a 10 kV C60-gun. For data evaluation the 

Surface Lab 6.3 software (IONTOF Company, Germany) was used. The PCA analysis 

was done with the NESAC/BIO MVA Toolbox, University of Washington. For the depth 

profiles of the cements Bi+-ions were used as primary ions and 1 or 2 keV oxygen ions 
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for sputtering. The primary ion gun was operated in the high current bunched mode (hc-

bu). The analysis area was 150 x 150 µm², and the sputter area being 250 x 250 µm². 

The measurements used for the Principle Component Analysis (PCA) were obtained in 

the hc-bu mode using Bi3
+ as primary ions for an area of 500 x 500 µm² with 128 x 128 

pixels and 100 scans applying a primary ion dose of <1012 ions cm-2 to maintain static 

conditions. From each sample 7 spots were collected in the positive as well as in the 

negative ion mode before and after having been immerged to obtain reproducibility 

within and between the samples. Positive and negative ion mass spectra were calibrated 

using H+, H2
+, CH3

+, C2H5
+, C3H7

+ and H−, H2
−, C−, C2

−, C3
−. The mass resolution 

(𝑚/∆𝑚)  at the C2H5
+ (𝑚/𝑧   = 29)  or C2H− (  𝑚/𝑧 = 25) peak was above 4000 for all 

measurements in the positive ion mode and above 3000 for all measurements in the 

negative ion mode. The data were normalised to the sum of selected peaks and scaled by 

SQRT-mean centring. Peak selection was done manually considering especially inorganic 

and organic mass signals derived typically from calcium phosphates and amino acids.  

Sample imaging of cells cultured on the cements was performed within an area of 200 x 

200 µm2 to 250 x 250 µm2 using Bi3+ cluster ions. 100 scans were taken and each scan 

provided an image with 128 x 128 pixels. Images were recorded using the hc-bu mode 

(m/Δm FWHM > 4000). To compare the TOF-SIMS images, optical images were taken 

using the 2D mode of a PLu neox 3D optical profiler (Sensofar, Terrassa, Spain) 

equipped with a blue LED (460 nm).The mass images of the bone cross sections were 

obtained by so called stage scans. The scans were done in hc-bu mode with Bi3
+ as 

primary ions. The pixel density was 120/mm with a patch size of 300 x 300 µm². More 

detailed images of smaller areas were also done with Bi3
+ in low current bunched (lc-bu) 

mode with lateral resolutions of 2 µm. In this case the pixel density was 1000/mm.  

3.13  STATISTICAL ANALYSES 

The test for significance was analysed using both Statistical Package PASW 21.0 (SPSS 

Inc., USA) and GraphPad Prism (GraphPad Software, Inc., USA). Histomorphometric 

results are presented as mean ± standard error of the mean (SEM). The Student’s t test 

and Mann-Whitney U test were used to check for the significance level. Data were not 

found normally distributed and Mann-Whitney U unpaired nonparametric data with 

Bonferroni correction was used. Gene expression analysis is presented as box plots and 
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was analyzed using REST-method. P-values of less than 0.05 were chosen to indicate 

significance. The Student’s t test can be used to determine if two sets of data are 

significantly different from each other. The Mann–Whitney U test (also called the Mann–

Whitney–Wilcoxon (MWW), Wilcoxon rank-sum test, or Wilcoxon–Mann–Whitney test) 

is a non-parametric test of the null hypothesis that takes the difference between the mean 

ranks as statistics. The Bonferroni correction is a method used to counteract the problem 

of multiple comparisons. All the results are shown as Mean ± SD. Statistical analysis 

were performed by Student’s t test, with p<0.05 (*) considered significant (** p<0.01, 

*** p< 0.001). 
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4. RESULTS 

4.1  INDUCTION OF OSTEOPOROSIS 

4.1.1  Decreased BMD in the OVX group in comparison to the SHAM   

BMD results are expressed as [Mean ± SD] and were measured at the baseline (day of 

bilateral ovariectomy) and after three months of osteoporosis induction (day of femur 

osteotomy). Two anatomical sites: spine and femur were taken into account, being the 

prominent sites affected during osteoporosis. At baseline no significant difference in 

BMD was found in either site between the OVX and SHAM groups (Fig. 16). BMD 

values at the spine in the SHAM group were [0.13 ± 0.01] compared to [0.13 ± 0.01] in 

the OVX group. Whereas at the femur, the values were [0.19 ± 0.04] for the SHAM 

group and [0.17 ± 0.01] for the OVX group. On the other hand, BMD measured 3 months 

after ovariectomy at the spine was [0.17 ± 0.01] in the SHAM group and [0.12 ± 0.01] in 

the OVX group, where a statistically significant decrease in the OVX group was seen 

when compared to the SHAM group (p<0.05). Similarly, BMD at the femur was found to 

be significantly lower in the OVX group [0.28 ± 0.02] when compared to the SHAM 

group [0.34 ± 0.027] (p<0.05).  

 

Fig. 16:  BMD in spine and femur in SHAM and OVX animals. (p≤ 0.05 calculated 
with Mann – Whitney U test, whiskers exhibit standard error of mean). 
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4.2  CLINICAL OBSERVATIONS 

The survival number in the entire observation period was 11 animals for the control, 15 

animals for the SrCPC and 13 animals for the CPC group. Three animals were lost during 

anesthesia, one animal died directly after ovariectomy and two other rats later after femur 

surgery. Thus, 39 out of the 45 animals survived which were then used for further 

assessment. In these animals the clinical healing of the surgical wounds and recovery of 

mobility was monitored and normal progress was seen with no uneventful visible adverse 

effects in all the groups until the end of the observation period at 6 weeks post femur 

surgery. At the time of femur harvesting, plate breakage was noted in 2 out of the 11 

animals in the control group, 4 out of 15 animals in the SrCPC group and 7 out of 13 

animals in the CPC group without any statistically significant differences between the 

groups (empty defect vs. CPC: p=0.58; empty defect vs. SrCPC: p=0.61; SrCPC vs. CPC: 

p=0.06). In total there were 74.4 % of intact plates in all the groups. The empty defect 

group had 18.2 % plate breakage (p=0.58 compared to CPC group, and p=0.61 compared 

to SrCPC group). In the CPC group there was 53.8% plate breakage (p=0.057 compared 

to the SrCPC group which had 26.7% plate breakage). 

4.3  DESCRIPTIVE HISTOLOGY 

4.3.1  New bone formation  

The implanted biomaterial was found in the correct position in all the animals where the 

wedge shaped defect was created initially, at the distal metaphyseal femur region in case 

of the SrCPC and CPC group. (Fig. 17B, C). With respect to fragmentation of the 

material, it was seen in 5 of 7 animals in the SrCPC group. In all these animals, the 

fragmented biomaterial was surrounded by new bone, osteoid, cartilage and fibrous tissue 

at the interface region (Fig. 17D, E). However in the CPC group only 2 out of 7 animals 

showed fragmentation of the material of which only one had very little fragmentation and 

was surrounded mostly by fibrous tissue. The empty defect showed mainly connective 

and granulation tissue (Fig. 17A). 
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Fig. 17: Movat-pentachrome photomicrographs showing overview of histological 
sections of empty defect (A), CPC (B) and SrCPC (C). Enlarged images at the 
biomaterial interface depicting large amounts of fibrous connective tissue and 
proliferating chondrocytes in the CPC group (D) in contrast to new bone formation 
with large amounts of cartilage and osteoid in the SrCPC group (E). Specific regions 
are labeled as follows: b, bone; c, cartilage; m, material; sc, screw; * indicates material 
in the soft-tissue; arrow indicates osteoid formation. 

4.3.2  Osteoid formation  

Von-Kossa/Van-Gieson staining was used to evaluate mineralization. It specifically 

differentiates mineralized tissue black and osteoid tissue dark pink, whereas connective 

tissue and bone marrow appeared light pink (Fig. 18A-C). Capability of mineralizing the 

extracellular matrix was indicated by the osteoid surface in the defect gap. Unmineralized 

osteoid was the most common tissue type (next to new bone formation) found in the 

defect region in the SrCPC group, mainly in vicinity of the biomaterial and on the medial 

aspect of the distal femur. (Fig. 18F). The CPC group showed comparatively less osteoid 

formation (Fig. 18E) and the empty group (Fig. 18D) almost lacked any osteoid in the 

initial defect area.  
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Fig. 18: Von-Kossa/Van-Gieson photomicrographs showing overview of histological 
sections of empty defect (A), CPC (B) and SrCPC (C). Enlarged images at the 
biomaterial interface depicting increased osteoid formation (dark pink region) in the 
SrCPC group (F) in comparison to the CPC (E) and Empty group (D).  

4.3.3  Cartilage formation  

In addition to the increased osteoid formation, mainly bone and cartilage tissue with 

hypertrophic chondrocytes were found in the SrCPC group in the defect region 

surrounding the biomaterial (Fig. 19). On the contrary, in the animals of the CPC group 

mainly cell dense fibrous tissue and proliferating chondrocytes were the predominant 

types (Fig. 19E) and in the empty defect it was the fibrous tissue (Fig. 19D). This was 

further confirmed by the movat-pentachrome staining which revealed a noticeably less 

cartilage formation in the empty defect control group compared to the other two groups 

(Fig. 20A, B, C). The empty defect was mostly filled with fibrous tissue (Fig. 20A). 
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Fig. 19: Toluidine-blue photomicrographs showing overview of histological sections of 
empty defect (A), CPC (B), and SrCPC (C). Enlarged images at the biomaterial 
interface depicting increased chondrocyte activity (mostly hypertrophic chondrocyte 
stained dark purple) in the SrCPC group (F), in comparison to the CPC (E), where 
proliferating chondrocyte is the most dominant type. In the empty group there is almost 
no chondrocyte activity seen (D).  
Moreover, in context to the medial side of the osteotomy (apex of the wedge-shaped 

defect), the gap was filled with cartilage and connective tissue in the SrCPC group 

whereas in the CPC group, and to a greater extent in the control group, large shifting of 

the cortical bones were seen (Fig. 21A, B, C). This space was predominantly occupied 

with fibrous tissue in case of the empty defect group (Fig. 21A, 22A). However, in case 

of the CPC (Fig. 22B) group small traces of connective tissue and cartilage were also 

seen besides fibrous tissue formation. The best gap closure was seen in case of the SrCPC 

group with the highest amount of cartilage, osteoid and bony tissue (Fig. 22C). 
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Fig. 20: Movat-pentachrome photomicrographs showing magnified images at the 
biomaterial interface of empty defect (A), CPC (B) and SrCPC (C) depicting large 
amounts of cartilage (green) and hypertrophic chondrocytes in the SrCPC group 
thereby validating the toluidine-blue findings. * indicates material. 

 
Fig. 21: Movat-pentachrome photomicrographs showing larger shifts of cortical bone 
(yellow) in the CPC group (B), in comparison to the SrCPC group (C). These shifts 
were also seen in case of the empty defect (A), being highest in the same due to 
instability. Due to large shifts in the cortical bone in CPC, only left cortical bone is 
visible. However, no visibility of the cortical bones in case of the empty defect, the shifts 
being the highest.  

Fig. 22: Movat-pentachrome photomicrographs at higher magnifications (medial side 
of the defect) showing tissue type in the defect gap in empty defect (A), CPC (B) and 
SrCPC (C) group. An increased amount of cartilage (green) and connective tissue 
(blue-green) was seen in the defect gap of SrCPC group. This space was filled with 
fibrous tissue in case of the empty defect and CPC group. Small traces of cartilage and 
connective tissue seen in CPC group. 
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4.4.  IMMUNOHISTOCHEMICAL ANALYIS 

4.4.1  Macrophage activity  

In order to investigate the resorption capacity and the rate of bone remodeling, bone 

sections were stained with ED1. The macrophages were stained brown due to the antigen-

antibody reaction. ED1-positive cells were found to be higher in the SrCPC group when 

compared to the CPC and empty defect group (Fig. 23A, B, C). The highest ED1 activity 

was seen at the biomaterial interface. A statistical evaluation was made to confirm the 

histological findings (4.5.3). 

 
Fig. 23: Macrophage count based on ED1staining. Photomicrographs of histologically 
stained sections with ED1 at higher magnification showing an elevated distribution of 
red stained cells in SrCPC group (C) when compared to CPC (B) and (A) empty control 
group.* indicates material remnants. 

 
4.4.2  BMP2 expression  

Bone morphogenetic protein 2 is known to potently induce osteoblast differentiation and 

thereby stimulate new bone formation. Immunohistological staining with BMP2 revealed 

a strong positive expression in the SrCPC group, mainly in the direct vicinity of the 

biomaterial i.e. at the biomaterial interphase and mid cortical regions. BMP-2 expression 

was almost negligible in CPC and in the control group (Fig. 24A-F). This increased 

BMP2 activity could be co-related to the increase in the bone formation as revealed by 

the histomorphometric analysis. 
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Fig. 24: BMP2 immunohistochemistry on undecalcified technovit sections showing an 
increased expression of the same in SrCPC group (A-C). Increased expression was 
seen at the tissue implant interface in the SrCPC group (C) when compared to the CPC 
group alone (B) and empty defect (A)). Arrows indicate areas of highest activity.* 
indicates material remnant in the defect region of CPC and SrCPC group. 

4.4.3  OPG/RANKL expression  

OPG/RANKL ratio is an important index for osteoclastogenesis. OPG a specific marker 

for active osteoblasts was used as a key factor to analyze the osteoclast regulation. An 

increased expression of OPG was seen at the proximal and mid level of the fracture gap 

in the SrCPC group when compared to CPC and empty defect group (Fig. 25A-F). At the 

same time, a simultaneous reduction in the RANKL expression in SrCPC was also 

detected (Fig. 26A-F). OPG expression was increased at the onset of mineralization and 

remained high throughout, thereby resulting in a lower RANKL/OPG ratio in mature 

osteoblasts. These changes indicate that mature osteoblasts may have different roles in the 

maintenance of the bone remodeling balance. 
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Fig. 25: Immunohistochemistry on undecalcified technovit sections showing an 
increased expression of OPG in the SrCPC group (C), compared to CPC (B) and empty 
defects (A). A high expression was seen at the tissue implant interface in the SrCPC 
group (F) when compared to the CPC group alone (E) and empty defect (D). Arrows 
indicate areas of highest activity.* indicates material remnant in the defect region of 
CPC and SrCPC group. 
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Fig. 26: Immunohistochemistry on undecalcified technovit sections showing a 
complete absence of RANKL activity in all the three subgroups (A, empty, B, CPC, C, 
SrCPC). Arrows indicate the areas of highest enzyme activity outside the defect gap i.e. 
the growth plate cartilage. With respect to the biomaterial interface, almost no activity 
was detected (D, empty, E, CPC, F, SrCPC). * indicates material remnant in the defect 
region of CPC and SrCPC group. 
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4.4.4  OCN expression  

 
Fig. 27: Immunohistochemistry on undecalcified technovit sections showing an 
increased expression of OCN in the SrCPC group (C, SrCPC). At the tissue implant 
interface in the SrCPC group an increased expression of OCN was seen when 
compared to the CPC group alone (E, CPC, F, SrCPC). Arrows indicate areas of 
highest activity. * indicates material remnant in the defect region of CPC and SrCPC 
group 

Osteocalcin is a specific marker for active osteoblasts and was used as a marker for the 

bone formation process. An increased OCN expression was seen in the distal and mid 

cortical region of the fracture gap in the SrCPC group when compared to CPC filled and 

empty defect group (Fig. 27A-F). Further, increased vascularization is known to induce 

osteogenesis. The results of osteoblast labeling are complemented with the examination 

of the endothelial derived cells that represent blood vessel formation. 



	
  

	
   	
  
	
  

62	
  

CHAPTER	
  4:	
  RESULTS	
  

4.4.5  Vascularization  

The analysis of new blood vessel formation using CD31 antibody revealed a 

comparatively higher number of positively stained vessels in the SrCPC group in 

comparison to the CPC group (Fig 28B, C). An increased positive reaction was seen with 

an increase in the biomaterial fragmentation (SrCPC) thereby leading to an increase in the 

granulation tissue and thus leading to an increased vessel formation. Based on this 

principle, the empty defect which was filled predominantly with the granulation tissue, 

showed a comparatively higher CD31 expression (Fig. 28A).  

 

Fig. 28: Immunohistochemistry on undecalcified technovit sections showing an 
increased expression of CD31 in the SrCPC group (C) when compared to the CPC 
group alone (B). The highest CD31 expression was seen in the empty defect group (A). 

4.4.6  Alpha (α) SMA expression  

The analysis of new blood vessel formation using α -smooth muscle actin antibody 

revealed a comparatively larger and higher number of positively stained vessels in the  

Fig. 29: Immunohistochemistry on undecalcified technovit sections showing an 
increased activity of alpha smooth muscle actin in the SrCPC group (C)  when 
compared to the CPC group alone (B). The highest expression was however seen in the 
empty defect group (A). 

empty and SrCPC group respectively (Fig. 29A, C). Interestingly, the CPC group 

demonstrated very scarcely stained blood vessels in the vicinity of the biomaterial 
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remnant (Fig. 29B). These vessels were comparatively fewer and smaller when compared 

to the other two groups. 

4.5  HISTOMORPHOMETRY 

4.5.1  Bone formation  

Histomorphometric analysis at the defined ROI’s showed a statistically significant 

increase in the bone formation for the CPC [0.042 ± 0.03] (p=0.0002) and the SrCPC 

[0.11 ± 0.01] (p=0.0001) treatment group compared to the empty defect [0.004 ± 0.002] 

in the former fracture defect zone (Fig. 30A). SrCPC treated animals showed a 

statistically higher new bone formation in relation to the defect areas filled with CPC 

(p=0.005). 

Furthermore, there was increased bone formation at the bone-biomaterial interface region 

for the SrCPC [47.5 ± 13.8] compared to CPC [6.4 ± 1.5] which was also statistically 

significant (p<0.01) (Fig. 30B). 

 

Fig. 30: Histomorphometrical analysis of new bone formation of SrCPC, CPC and 
empty control group in the initial fracture defect zone (A) and at the tissue-biomaterial 
interface (B) Asterisks indicate (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001, 
respectively. 

4.5.2  Unmineralized tissue  

The total unmineralized tissue area in the control group was the highest followed by the 

CPC and SrCPC (Fig. 33, p<0.05), indicating a better mineralization progress in the 

presence of CPC and SrCPC. Furthermore, SrCPC also showed a statistically significant 

decrease in the unmineralized tissue in comparison to the CPC alone (Fig. 31, p<0.05). 



	
  

	
   	
  
	
  

64	
  

CHAPTER	
  4:	
  RESULTS	
  

 

 

 

 

 

 

 

Fig. 31: Histomorphometrical analysis of unmineralized tissue of SrCPC, CPC and 
empty control group in the initial fracture defect zone. Asterisks indicate (*) p < 0.05, 
(**) p < 0.01 and (***) p < 0.001, respectively. 

4.5.3  Macrophage count  

The previously stained ED1-sections were used to perform the macrophage count. For 

statistical evaluation the macrophage counts were normalized to the trabecular area. ED1-

positive cells were found to be significantly higher in the SrCPC group [87.5±21.9] in 

comparison to the CPC group [CPC: 43.7 ± 2.6] (p=0.033) and the empty defect control 

group [30.6 ± 2.5] (p=0.005) (Fig. 32). Most of the ED1 positive cells were found in at 

the biomaterial-tissue interface region.  

 
Fig. 32: Macrophage count based on ED1-immunohistochemistry over trabecular area 
(Ma/Tb.Ar) of SrCPC, CPC and empty control groups in the initial fracture defect zone 
(A) and at the tissue-biomaterial interfaces (B). The asterisks indicate (*) p < 0.05, (**) 
p < 0.01 and (***) p < 0.001 respectively.  
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4.6  MOLECULAR BIOLOGY 

4.6.1  Genes involved in bone formation  

Expression of ALP, an osteoblast marker showed a significant increase indicating 

mineralization of bone was higher in the SrCPC group when compared to the CPC group 

(p=0.027). Likewise, on analysis of osteocalcin, a prominent bone formation marker 

showed a higher expression in the SrCPC group when compared to the CPC group 

(p≤0.001). In addition Col X, marker specific for hypertrophic chondrocytes also showed 

a significantly higher expression in case of SrCPC group when compared to CPC group 

(p=0.03) (Fig.33). However, Runx2 and Col1a1 expression analysis showed no 

significant difference between the SrCPC and the CPC group. 

Fig. 33: Relative gene expression analysis between SrCPC and CPC. Alkaline 
phosphatase (ALP), Runt-related transcription factor 2 (Runx2), collagen type X 
alpha1 (Col10a1), osteocalcin (OCN) as bone formation markers (A). β 2-microglobulin 
(B2M) was used as a reference gene. The asterisks indicate (*) p < 0.05, (**) p < 0.01 
and (***) p < 0.001 respectively. 

4.7  TOF-SIMS analysis 

4.7.1  Strontium release in SrCPC  

TOF-SIMS was used to estimate the strontium distribution in all the three groups (Fig. 

34). The evaluation of the strontium distribution in the empty defect showed a natural Sr 

background count rate of about 11 counts, which was taken as the standard count. In case 

of the CPC implants a mean Sr count rate of 24 counts was obtained. However, the 
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highest Sr count rate was obtained in the center region of the Sr2+ modified SrCPC 

implant which was about 3000 counts. Count rates ranging about 80 counts were also 

seen in the biomaterial-tissue interface up to a distance of 1 mm surrounding the 

biomaterial. Moreover, there was also a Sr concentration gradient seen in all the sides of 

the implant material which decreased with increasing distance from the implant. 

However, an increased Sr concentration could be detected up to a distance of 6 mm from 

the implant surface, which decreased with the increasing distance from the biomaterial. 

Calcium, one of the major components of the bone was found not only in the cortical 

bone in all three groups but also in the CPC and SrCPC cements itself. The bone marrow 

areas in all the specimens were almost devoid of Ca signals. Interestingly, Sr and Ca 

signals were also found at the region of newly formed bone (tissue-implant interface). 

These signals overlapped with the areas of the collagen signal, indicating its role in bone 

formation.  

 
Fig. 34: Overview of movat-pentachrome stained sections of representative specimens 
of the empty defect (A), CPC (B) and SrCPC group (C) used for TOF-SIMS analysis. 
The small images under the overview images show mass distribution of Ca+ (upper 
left), Sr+ (upper right), C4H8N+ (lower right) and an overlay image of the Ca+ and of 
the C4H8N+ signal (lower left). For better distribution analysis of Sr+, the local count 
rates of Sr+ are plotted versus the y-axis and placed over the Sr-images. 
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4.7.2  Strontium concentration gradient from the implant material into the bone 

The Ca distribution in Fig. 35 gives a measure of the bone quality. Nearly no calcium is 

found in the area of the empty defect. However, mass fragments of C4H8N+ can be seen 

everywhere since it has multiple origins e.g. bone matrix, cartilage as well as from the 

connective tissue. With respect to the strontium signal, low background intensity can be 

measured in the empty defect sample and in the sample with the CPC. A Sr histogram of 

a line scan (line scan position is marked in red; Fig. 34) is added to each Sr mass image. 

The Sr-image and the line scan show clearly that there is a Sr-concentration gradient from 

the implant material into the bone. The Sr thus released is incorporated into the 

surrounding connective tissue, newly formed bone and in the matured pre-existing bone.  

 

 

Fig. 35: Light microscopy images of movat-stained bone cross sections (top) and 
detailed mass images (bottom) of unstained bone cross sections: empty defect (A), bone 
with CPC (B), bone with S100 (C). The black rectangles in the light microscopy images 
mark the area scanned by mass spectrometry. They originate from the interface empty 
defect/bone and cement/bone respectively. Mass imaging was carried out with Bi3+ as 
primary ion species and a higher lateral resolution (2 µm). The mass images show the 
distributions of Ca+, C4H8N+, Sr+ and an overlay of the Ca+ in red and C4H8N+ in 
green. The mass images for each sample starting in the upper left corner in clockwise 
direction. The black rectangles in the light microscopy images mark the area scanned 
by mass spectrometry. 
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Fig. 35 shows more detailed mass images of the interface between the newly formed bone 

and the biomaterials CPC and SrCPC. The overlay and the strontium mass images (Fig. 

35C) show clearly that there is calcium- and strontium- mineralized tissue (new formed 

bone) close to the SrCPC implant. 
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5. DISCUSSION  

Calcium phosphate cements (CPC) used in this study are known for their favorable 

biological response having excellent biocompatibility, bioactivity and osteoconduction 

properties. When inserted in the receiving site, it does not cause any adverse immune 

reaction, is able to connect directly to the bone tissue and allows bone growth on its 

surface [2, 113]. Similarly, the second functionalizing agent strontium has been shown 

effectively to stimulate both bone formation and inhibit resorption [3]. Apart from being 

used as an oral medication against osteoporosis [3, 5], local administration from 

functionalized titanium implant surfaces [5-10] or from strontium substituted hydroxyl-

apatite coatings [11, 12] has accentuated the rate of new bone formation and eventually 

helps in better implant fixation. 

The purpose of the study conducted in this thesis was to investigate the effect of 

strontium when substituted in CPC. The main questions addressed were:  

1. Does Sr modified CPC play a better role in new bone formation than CPC? 

2. Can the released strontium be detected using TOFSIMS? 

To elucidate answers to these questions, this study was conducted where strontium was 

delivered to the surrounding bone tissue by strontium modified calcium phosphate cement 

(SrCPC). The effects were then compared to CPC and empty defect groups.  

5.1  A clinically relevant model 

Biomaterials should be investigated in a clinically relevant model targeting their intended 

clinical use. Although most calcium phosphate cements are applied in fracture defects in 

patients, in vivo testing of these materials is mainly done in simple drill hole defects that 

does not represent clinical reality [114, 115]. Rat long bones have been used as 

experimental models in order to assess bone healing [116]. As surgical site, the 

metaphyseal area was chosen, as osteoporosis mainly affects the metaphyseal trabecular 

bone e.g. distal radius, proximal humerus and femur or the vertebral bodies and not likely 

the diaphyseal part of the long bone [52-55]. The strength of the used animal model [13] 

is that it allows investigation of biomaterials in a clinical relevant situation. It exposes the 

materials to a fracture defect in the metaphyseal region of long bone in rats. Internal 

fixation with the T-shaped plate on the distal femur also corresponds to the human 

situation. Ovariectomy and special diet was shown to lead to a significant reduction of 

bone mineral density compared to sham animals [13, 117, 118]. The materials are 
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challenged with typical defect fracture healing processes for bone consolidation in this 

model under systemically impaired bone conditions. In this study we used a 4 mm 

fracture defect instead as it could fulfill all requirements for a critical size defect in the 

empty defect control group where it did not show any bony consolidation after 6 weeks in 

this study. Therefore, the 4 mm fracture defect is a good model to study potential bone 

enhancement effects of biomaterials.  

Plate breakages in this model could be regarded as a drawback. However, even this fact 

links the model to clinical reality as plate breakages in the human situation are a typical 

sign for implant failure in case of impaired bone healing such as delayed or non-unions 

[119]. Although, there was no statistical significant difference in plate breakages, with a 

p-value of p=0.06, there was a strong trend with fewer implant failure in the SrCPC 

compared to the CPC suggesting better bone healing for this parameter. 

5.2  Bone formation enhanced in SrCPC group 

Strontium ranelate has been studied in various rat and animal models, including intact 

animals, immobilization-induced osteopenia and ovariectomy induced osteoporosis [87, 

95, 120, 121]. The results from these in vivo experiments showed strontium ranelate to 

increase bone formation markers, decrease bone resorption markers, promote bone gain 

as revealed by increase in the external diameter of the long bones, enhanced bone mass 

evaluated by DXA and micro architecture improvement as assessed by 

histomorphometry. These observations are in accordance with the results of strontium 

ranelate in clinical trials that have shown uncoupling of bone markers, increase in DXA 

results [84] and histomorphometric bone improvement [94]. Furthermore, these positive 

effects on bone were obtained without affecting bone mineralization [122]. 

The bone gain induced by strontium ranelate treatment was predictive of increased bone 

strength that was indirectly confirmed by the reduction in fracture risk in clinical trials 

[84, 85]. This capacity of strontium ranelate to stimulate bone formation was 

subsequently shown in animal studies as they provide objective information  on all the 

structural determinants of bone strength e.g. bone geometry, cortical thickness and 

porosity, trabecular bone morphology and intrinsic properties of bone tissue [95]. The 

first set of experiments were on normal adult mice where administration of 1800 

mg/kg/day of strontium ranelate for a period of 2 years improved the bone mass [120]. 

This was further affirmed with improved bone mass in rats which were given a dose of 
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225-900 mg/kg [95]. There was not only an increase in the external diameter and cortical 

thickness of long bones but also an improvement in vertebral bone mass, trabecular bone 

volume, trabeculae number, trabecular thickness, connectivity and cortical thickness, 

reflecting improved bone geometry, cortical properties, porosity and trabecular bone 

morphology. Additionally, six month old ovariectomized rats treated over a period of 1 

year with strontium ranelate also showed a dose-dependent prevention of bone strength 

alteration and partial prevention of microarchitecture bone changes [95]. 

Although there are a lot of studies addressing the effects of anti-osteoporotic drugs on 

fracture healing, our study is one of its kind to study the in vivo effect of strontium 

modified calcium phosphate cement in traumatically induced fractures (a critical size 

defect in the metaphyseal area of the distal femur in ovariectomized rats). A statistically 

significant increase in new bone formation was seen in CPC and SrCPC compared to the 

empty defect, the highest bone formation being in SrCPC. The histological findings in 

case of SrCPC are in agreement with the literature [3, 87, 123]. It could be shown that the 

SrCPC treated animals not only exhibited an increased new bone formation at the 

biomaterial-bone interface but also in the entire fracture defect area compared to CPC and 

empty defect group suggesting that the local release of Sr from SrCPC has a positive 

influence on osteogenesis. This increase in matrix mineralization also supports the lack of 

any deleterious effect in vivo. Furthermore, the immunohistochemical data from the 

BMP2 and OPG stains indicate how Sr can be an important factor for bone formation. 

5.3  Bone formation markers up-regulated in SrCPC group 

Osteoblast differentiation is crucial for bone formation. The immunohistological 

investigations could confirm the enhanced new bone formation activities in the SrCPC 

group with enhanced expression of BMP2. Previous studies on animals show a positive 

effect of strontium in proliferation, differentiation and mineralization of osteoblasts by 

activation of calcium sensing receptors on their surface, the effect being proportional to 

the therapy period and the drug dosage administered [124, 125]. 

Strontium is also known to have a positive effect on osteoblasts by controlling its 

influence on the PGE2 production. Thus strontium ranelate acts through Ras/Map kinase 

pathway thereby phosphorylating ERK (extracellular signal regulated kinase), 

consequently increasing the expression of BMP2 [126] . 
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Immunological staining revealed a strong positive BMP2 expression in the SrCPC group 

which was restricted predominantly to the boundaries and in the vicinity of the 

biomaterial, highest concentration being on the proximal cancellous region and mid 

cortical regions. This could be explained on the binding of the strontium with the 

cancellous bone at the proximal level and the cortical bone at the mid level [127]. Since, 

cancellous bone differs from the cortical bone in many aspects including vascularity and 

density; this may in turn result in different dissolution of strontium in CPC when bonding 

with them. However, this kind of an expression was almost negligible in CPC and empty 

defect group. This indicates the substitution of strontium in the calcium phosphate 

cements increases the BMP2 activity, which might in turn lead to better osteoblast 

differentiation and thus in bone remodeling. 

In addition osteocalcin, a non collagenous protein secreted by osteoblasts which plays a 

major role in mineralization and calcium homeostasis [128], showed increased activity in 

the SrCPC group compared to CPC and the empty defect control group as revealed by the 

gene expression analysis. qPCR analysis also showed a significant up-regulation of 

osteoanabolic markers e.g. collagen type 10a1; a hypertrophic chondrocyte marker [129], 

ALP; an essential protein for osteoblastic differentiation [130] and Runx2; an essential 

protein for osteoblast differentiation [129]. These findings suggested that strontium 

increases the differentiation from early progenitor cells to mature osteoblasts. 

5.4  Decreased bone resorption in SrCPC  

There was an increased OPG/RANKL ratio as revealed by the immunohistochemical 

findings. These observations suggest that when strontium stimulates osteoblasts, two 

types of signals are produced simultaneously thereby activating the anabolic pathways in 

the pre-osteoblasts and osteoblasts, and an anti-catabolic pathway in the pre-osteoclasts 

and osteoclasts [3]. OPG (osteoprotegerin) is produced by the osteoblasts. In accordance 

with the previous studies about the positive effects of strontium with regards to the 

osteoblasts and differentiation of the osteocytes [3], an increased expression of OPG was 

seen at the proximal and mid level of the fracture gap in SrCPC group. This increase in 

the OPG concentration results in its competition with RANK. Thus OPG goes and binds 

to the RANKL present on the osteoblast surface, thereby blocking RANK/RANKL 

interaction, thereby inhibiting osteoclast precursors to become mature osteoclasts. This 

pronounced OPG activity in case of SrCPC group in turn led to a simultaneous reduction 
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in the RANKL expression. The supplementation of strontium in the calcium phosphate 

cement thus blocks osteoblast induced osteoclast osteogenesis. 

However the increase in the macrophage count as revealed by the ED1 count could be 

explained on the basis of a better surface activity in SrCPC cement which attracts 

macrophages in turn leading to enhanced biomaterial degradation. 

5.5  Enhanced vascularization in both SrCPC and empty group  

Bone development and remodeling depend on complex interactions between bone-

forming osteoblasts and other cells present within the bone microenvironment, 

particularly vascular endothelial cells (ECs) that may be pivotal members of a complex 

interactive communication network in bone. Therefore, adequate callus vascularization is 

required for normal fracture healing [131]. 

Lienau et al. (2009) established that a compromised healing situation would affect vessel 

formation molecularly as well as temporally. Due to the absence of a prominent vessel 

marker both CD31 and ASMA was used in order to confirm angiogenesis. High CD31 

and ASMA expression suggests concomitant new blood vessel formation in the SrCPC 

group. These findings are in line with better new bone formation and implant-bone 

contact of other in vivo studies on strontium substituted hydroxyapatite coatings [11] or 

strontium-doped hydroxyapatite bone graft extender [132]. However, the highest 

expression was seen in case of the empty defect group, which could be explained on the 

basis of the empty spaces available for in-growing of granulation tissue that allows the 

formation of blood vessels. 

5.6  Strontium release in the SrCPC group 

The strontium modified calcium phosphate bone cement used in the present study has 

been developed recently by complete substitution of the CaCO3 portion in the precursor 

mixture of a well established, α-TCP based cement by SrCO3. This simple approach 

which has been described in detail recently leads to a cement which releases strontium 

ions in relevant dosages in vitro [133]. A comparison of the in vitro strontium release and 

the findings of the current animal trial is difficult. However, this in vivo study can 

demonstrate that a considerable amount of strontium is released from the SrCPC into the 

interface region and into the surrounding tissue which is most likely related to enhanced 
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bone formation confirming the in vitro findings that biologically active doses of strontium 

can be released from SrCPC.  

Recent studies show that the local delivery of strontium from surface functionalized 

titanium implants could enhance bone-to-implant contact for implants in the femoral shaft 

of healthy female Wistar rats [5]. The authors concluded that strontium can be released 

into the local milieu of osseointegrating implants to accelerate bone in-growth into the 

implant surface. However, all previous works did not analyze the in vivo release of Sr into 

the bone which could be done in our study with the help of TOF-SIMS. The high Sr 

concentration in the interface region of the SrCPC implant implicated that the released Sr 

in the SrCPC cement is most likely to be responsible for increased new bone formation 

compared to the CPC group. This can be regarded as the paradigm that the local delivery 

of strontium from Sr-modified/loaded implants or biomaterials is possible and that 

strontium’s biological activity to stimulate new bone formation is preserved within the 

CPC.  

Ni et al. also reported a similar case about the detection of Sr, Ca etc. of a Sr-doped 

hydroxyapatite cement that was implanted into the proximal femoral intramedullary canal 

for 6 months by EDX and TOF-SIMS [127]. However, there was only a maximum count 

rate for Sr of 3 in the 70 mm thick hydroxyapatite interface layer. In contrast to this study, 

we found a high release of Sr up to a distance of 6mm to the implant. It is also known that 

due the almost similar physical and chemical properties of both Ca and Sr, the later is a 

natural bone-seeking trace element that accumulates in the skeleton. Johnson et.al showed 

the similarity in the incorporation of both these elements into the bone [134]. In 

accordance with this we also found increased Sr, Ca and the collagen signals in the same 

areas of the newly formed bone suggesting that the released Sr from SrCPC was 

incorporated into the new bone. It would be also interesting to know if the Sr thus 

detected stays in the bone or is later replaced by Ca and if the bone building with 

strontium shows the same stability as that from Ca. 

5.7  Biomaterial degradation highest in SrCPC group 

Body tissues in contact with biomaterials lead to a biologic response [135]. Body fluids 

represent extremely corrosive mixtures of fluid, ions and proteins which in turn help in 

further degradation of the biomaterials. Furthermore, the movement of the body also 

results in mechanical stress which further promotes biomaterial degradation. 
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Additionally, passive degradation is also carried out as a result of the inflammatory 

cellular response to foreign bodies, which includes immune cells, neutrophils, 

lymphocytes, macrophages and osteoclasts which in turn help in the resorption process. 

The degree and nature of this foreign body response is also dependant on the properties of 

the implant e.g. composition, three dimensional morphology including porosity, surface 

structure and chemistry [136]. The main strategy for recruiting these tendency of the body 

to attack external materials is i) to have inert materials which do not evoke inflammatory 

response and ii) to integrate the body’s innate repair mechanisms into such materials 

which can be slowly degraded and replaced by healthy tissue [136]. An ideal biomaterial 

should thus be biodegradable and resorb at the same rate as that of the tissue repair in 

bone. This allows sufficient space for cell adhesion, extracellular matrix regeneration, 

facilitates homogenous tissue formation, allows vascularization and proper nutrient 

delivery [137]. An increase in the biodegradability will also allow a faster recovery in 

patients as well [138-140]. In accordance with this the in vivo degradation behavior of 

SrCPC although minimal, was higher when compared to the CPC and should be 

improved through.   

The better degradation of SrCPC was associated with a statistically significant higher 

number of multinuclear cells in the vicinity of the biomaterial. With the assumption that 

at least some multinuclear cells are macrophages and foreign body giant cells, it can be 

suggested that the SrCPC degradation process is not impaired by a potential anti-

osteoclastic effect of the released Sr as shown by reduction of RANKL expression in 

immunohistochemistry. A better understanding of the foreign body reaction is important 

as it may impact the biocompatibility of the implanted material and may significantly 

affect short- and long-term tissue responses with tissue engineered constructs containing 

proteins, cells, and other biological components for use in tissue engineering and 

regenerative medicine. 
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6.  CONCLUSION AND FUTURE PROSPECTS  

6.1  Conclusion  

Using a systemic histological sampling methodology and defined histomorphometric 

analysis it is shown that both CPC and SrCPC revealed a statistically significantly 

enhanced new bone formation compared to the empty defect in a critical size defect in the 

metaphyseal area of the distal femur in ovariectomized rats. It could also be shown that 

the SrCPC treated animals exhibited a statistical significant higher new bone formation 

both at the biomaterial-bone interface and in the entire fracture defect area compared to 

CPC. The immunohistochemistry and molecular biology analysis could also be related 

accurately to the histology and histomorphometry data as these bear direct relevance to 

functional outcome. In addition, TOF-SIMS analysis could detect high count rates Sr 

from the SrCPC in the interface region and up to a distance of 6mm from the implant. 

This suggests that the enhanced new bone formation is attributable to local release from 

the SrCPC.  

6.2  Perspective and future research 

The thesis along with the previous findings supports the positive influence of strontium 

on bone healing in osteoporotic conditions. Despite the interesting results from this study, 

there are still scopes to investigate the in depth molecular characterization involved, the 

pathways associated and the optimal method of strontium delivery in the entire defect 

region. Since the maximum bone remodeling was seen at the biomaterial-tissue interface, 

it is encouraging to pursuit the ideal of having a uniform strontium delivery throughout 

which would aid in new bone formation. 

Analysis must be conducted for the mechanical strength of these biomaterials before 

implantation with additional in vivo investigations and at different strontium doses. 

Moreover, CPC cements may not be the most ideal carrier for strontium delivery mostly 

because of its delayed or insufficient degradation. Hence, different carrier cements should 

be tested for their ability for enhanced strontium delivery to the interface. 

On the other hand, 6 weeks after biomaterial implantation in the defect region might be a 

too short time gap for the study of new bone formation. Hence, analysis should be carried 

out over a prolonged time period in order to study the time related effects of strontium on 

bone formation. Additionally, more attention should be given to increase the process of 
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biomaterial degradation process or have rather more porous cement with highly 

interconnected networks which would facilitate proper tissue in growth. 

In spite of the enhanced performance seen in the SrCPC cement, the main conclusion 

seems to be that there is still need for sophisticated materials to be developed in order to 

match the biological complexity at the molecular level. The future biomaterial implants 

should be resorbable, developed with a porous tri-dimensional framework filled with 

osteoinductive and osteoanabolic agents. A gradual resorption of the framework would 

release the trapped bioactive factors thereby allowing the transplanted and host cells to 

grow in this intertwining pattern. This would provide the scope for bone growth not only 

at the surface of the implant but also within the framework. However, the task of tailoring 

the biomaterial’s surfaces for different purposes of implant integration and tissue 

regeneration seems a feasible challenge in the future, and requires a synergistic 

interdisciplinary work of materials science, engineering, biology, chemistry, physics and 

medicine.  
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SUMMARY	
  

SUMMARY 

In this thesis, CPC and SrCPC were used to evaluate bone healing in a critical size 

metaphyseal defect model in osteoporotic rats after 6 weeks and compared to an empty 

defect. Control empty defect showed a significantly lower bone formation. The highest 

bone remodeling was seen in the SrCPC group six weeks after biomaterial implantation. 

Trabecular bone formation in the SrCPC group was highest at the bone-implant interface 

when compared to CPC group (p<0.01). With respect to the entire defect region a similar 

scenario was seen in favor of SrCPC, where there was more bone formation when 

compared to both CPC (p=0.005) and empty control groups (p=0.0001). Moreover, an 

enhanced cortical bridging was seen in the SrCPC group in comparison to the others 

where large shifts in cortices were seen. In addition, these gaps were filled predominantly 

with cartilage and osteoid incase of the SrCPC group. Whereas fibrous tissue was the 

most common type in the CPC and empty control group. On examination of potential 

biomarkers for bone formation, a favorable condition was seen in the SrCPC group which 

exhibited an up regulation of bone formation markers such as bone morphogenic protein-

2, osteocalcin and osteoprotegerin. At this time point differential gene expression also 

exhibited a remarkable up-regulation of bone formation genes like alkaline phosphatase, 

collagen 10a1 and osteocalcin in SrCPC group as well. Finally, a significantly higher Sr 

count was found in the SrCPC group by TOF-SIMS mostly in the areas of the new bone 

formation thereby suggesting the release of strontium ions form SrCPC. In summation, 

SrCPC enhanced bone formation in comparison to CPC and empty defects. 
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ZUSAMMENFASUNG	
  

ZUSAMMENFASUNG 

In dieser Doktorarbeit werden Biomaterialien aus CPC und SrCPC und Leerdefekte als 

Kontrolle genutzt, um die Frakturheilung in einem metaphysären Defekt-Modell 

kritischer Größe in Ratten 6 Wochen post operationem zu evaluieren.  Die Leerdefekt-

Kontrolle zeigte eine signifikant niedrigere Knochenheilung. Der höchste Knochenumbau 

war in der SrCPC-Gruppe zu sehen. Die trabekuläre Knochenbildung war verglichen mit 

der CPC-Gruppe an der Knochen-Implantat-Grenzfläche am höchsten (p<0.01). Im 

Bezug auf die gesamte Defekt-Region kam es zu einem ähnlichen Ergebnis zugunsten 

SrCPC, wo mehr Knochenbildung, sowohl im Vergleich zu CPC (p=0.005) als auch im 

Vergleich zur Leerdefekt-Kontroll-Gruppe (p=0.0001) festgestellt wurde. Darüber hinaus 

wurde eine verbesserte Überbauung des Defekt-Spaltes der Kortikalis in der SrCPC-

Gruppe im Vergleich zu den anderen Gruppen festgestellt, in denen große 

Verschiebungen am Defekt-Spalt der Kortikalis zu sehen waren. Außerdem waren die 

Defekt-Regionen der SrCPC-Gruppe überwiegend mit Knorpel und Osteoid gefüllt, im 

Gegensatz zur  CPC- und Leerdefekt-Kontroll-Gruppe, in denen im Defekt-Spalt 

überwiegend Bindegewebe festgestellt wurde. Immunhistochemisch zeigte sich eine 

Hochregulation von BMP-2 (bone morphogenic protein-2), Osteocalcin (OCN) und 

Osteoprotegerin (OPG) in der SrCPC-Gruppe im Vergleich zur Kontrolle. Zu diesem 

Zeitpunkt zeigte sich außerdem in der Genexpressions-Analyse eine bemerkenswerte 

Hochregulation der Expression von den Knochenbildungs-Markern Alkalische 

Phosphatase (ALPL), Kollagen Typ X alpha 1 (COL10A1) und Osteocalcin (OCN) in der 

SrCPC-Gruppe im Vergleich zur CPC-Gruppe. Schließlich wurde in den Bereichen, in 

denen sich der Knochen neu gebildet hat, in der SrCPC-Gruppe eine signifikant höhere 

Menge an Strontium im TOF-SIMS gefunden, was die positive Wirkung von Strontium 

auf den Knochenaufbau bestätigt. Zusammenfassend ist zu sagen, dass Strontium einen 

positiven Einfluss auf die knochenaufbauenden Parameter ausübt, was in einer 

verbesserten Knochenbildung resultiert. 
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