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We measured perceptual judgments of category,
material attributes, affordances, and similarity to
investigate the perceptual dimensions underlying the
visual representation of a broad class of natural dynamic
flows (sea waves, smoke, and windblown foliage). The
dynamic flows were looped 3-s movies windowed with
circular apertures of two sizes to manipulate the level of
spatial context. In low levels of spatial context (smaller
apertures), human observers’ judgments of material
attributes and affordances were inaccurate, with
estimates biased toward assumptions that the flows
resulted from objects that were rigid, ‘‘pick-up-able,’’
and not penetrable. The similarity arrangements showed
dynamic flow clusters based partly on material, but
dominated by color appearance. In high levels of spatial
context (large apertures), observers reliably estimated
material categories and their attributes. The similarity
arrangements were based primarily on categories
related to external, physical causes. Representational
similarity analysis suggests that while shallow
dimensions like color sometimes account for inferences
of physical causes in the low-context condition, shallow
dimensions cannot fully account for these inferences in
the high-context condition. For the current broad data
set of dynamic flows, the perceptual dimensions that
best account for the similarity arrangements in the high-
context condition are related to the intermolecular bond
strength of a material’s underlying physical structure.
These arrangements are also best related to affordances
that underlie common motor activities. Thus, the visual
system appears to use an efficient strategy to resolve
flow ambiguity; vision will sometimes rely on local,
image-based, statistical properties that can support
reliable inference of external physical causes, and other
times it uses deeper causal knowledge to interpret and
use flow information to the extent that it is useful for
everyday action decisions.

Introduction

In daily life, our visual system receives a constant
flow of image patterns; an important subset of these
arise from the dynamics of material substances, such as
sea waves, smoke, foliage, and cloth. Such image
patterns are complex functions of intrinsic physical
properties (e.g. stiffness), photometric properties that
affect how light is scattered and reflected, and the
viewing conditions of illumination and relative motion
between the viewer and substance. It is remarkable that
given the complexity, high rate, and dimensionality of
the retinal input (;10 Mbps; Koch et al., 2006), the
visual system manages to almost instantaneously
transform dynamic flow information into useful
decisions and actions, such as deciding whether and
how to interact with the underlying substance. These
behaviors depend on perceptual inferences that span a
range of abstraction in the causes of flows, involving
processes that boil down a high-dimensional input to a
relatively small set of perceptual dimensions that
support useful tasks. The purpose of our study is to
identify key perceptual dimensions that are used in
comparing natural flows within and across categories,
with a view to understanding how these dimensions
may support a broader range of tasks.

We can get initial insight into the perceptual
dimensions of flow by considering how natural flows
are generated, in particular by using information from
physics-based computer-graphics research that synthe-
sizes dynamic flows. The generation of realistic flows
begins with models of structure that can be described as
going from ‘‘deep’’ to ‘‘shallow’’ causes (Figure 1),
roughly corresponding to the standard distinction
between distal and proximal stimuli. The deepest level
models the interaction of external forces, such as
gravity and wind, and internal forces, such as a
material’s surface tension and resistance to stretching,
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Figure 1. The image generation and perceptual representation of dynamic flows falls along a shallow-to-deep continuum. Dynamic

flows can be synthesized using deep or shallow approaches. On the deep end, the movement of dynamic flows that have strong

intermolecular bonds—such as cloths, hairs, and other deformable solids—can be simulated with (A) mesh-based approaches (e.g.,

mass-spring models), while those with weaker intermolecular bonds, such as smoke or fast-moving shallow water, can be simulated

with (B) mesh-free approaches (e.g., smoothed-particle hydrodynamics). (C) In the next step of this deep image-synthesis technique,

the lighting, viewpoint, shape, and optical properties are rendered through a shading model (e.g., Phong, 1975) that produces an

image frame of the flow. (D) On the shallow end of the continuum, the flow can be synthesized based on image features such as color,

contrast, spatiotemporal frequency, orientation, and optic flow (e.g., Portilla & Simoncelli, 2000). A perceptual systems

representation of dynamic flows can also fall at any point along this continuum. For example, an observer might infer nonoptical

properties from (A) or (B), like stiffness and viscosity, with a deep representation—say from the characteristic way the particles move

from one frame to the next (A, B)—or a shallower representation—say from the generated shape at the rendering step (short arrows

going from (A, B) to (C)); or from local, image-based, statistical properties (long arrows going from (A, B) to (D)). Shallow

representations provide an account consistent with the response properties of early-level visual neurons that behave by responding

to simple images features. Deep representations require processes that compute material attributes, including nonoptical

dimensions. The visual system can use its deep representations to generate actions or affordances, like how to pick up an object, in

the world. Computing shallow representations can be quick and efficient; computing deep representations can in theory be complex

and demanding (e.g., inferring the position and movement of every one of 150,000 or so strands of hair), but human vision likely

relies on computational heuristics.
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bending, and twisting. These internal forces determine
the intermolecular bond strength of the material’s
underlying physical structure, with solids tending to
have stronger intermolecular bonds than liquids and
gases. Less deep are midlevel generative photometric
processes that depend on configuration, viewpoint,
shape, and material properties (e.g., reflectance, spec-
ularity, and transparency), followed by even shallower
modes of processing that capture the effects of deep
and midlevel processes on the resulting image patterns
and statistics.

Computationally intensive physics-based approaches
are usually necessary to provide convincing realism,
suggesting that the visual system is well tuned to the
characteristic dimensions, arising from both shallow
and deep causes, of many natural flows. However, the
human visual system has neither the need nor the
computational resources to infer the parameters of a
full generative model. For example, it is unnecessarily
deep to require vision to keep track of every one of the
150,000 or so strands of hair on a head and how they
interact with other strands, gravity, friction, elasticity,
and so on (for a review on hair simulation, see Ward et
al., 2007). In fact, while some ‘‘deep’’ properties are
easily perceived (e.g., the elasticity of silly putty or the
relative viscosity of water versus honey), other causal
factors are not at all obvious to human perception (e.g.,
how the folding, coiling, and meandering of a thin

thread of honey depend on contact and speed; Bergou,
Audoly, Vouga, Wardetzky, & Grinspun, 2010).

One solution to the computational problem of deep
causal modeling has been to characterize flows at
shallower, descriptive levels of representation, recog-
nizing the fact that human vision can often deal with
complex patterns using lower dimensional statistical
summaries, as has been exploited in static textures with
stationary statistics (e.g., Portilla & Simoncelli, 2000,
figure 2). Dynamic flows that exhibit stationarity
properties in space and time (e.g., sea waves, smoke,
foliage), have been generated by a number of different
image-based approaches (e.g., Doretto, Chiuso, Wu, &
Soatto, 2003; Kwatra, Schödl, Essa, Turk, & Bobick,
2003; Lizarraga-Morales, Guo, Zhao, Pietikäinen, &
Sanchez-Yanez, 2014). However, as with the modeling
of static textures, these synthesized flows can miss
important perceptual details that are captured by
physics-based models, which suggests that human
visual inferences of causal parameters span a range of
abstraction from shallow to deep depending on the
task.

As an example, human vision can predict the path of
a liquid, suggesting the use of deep knowledge that
approximately simulates physical properties (e.g.,
Bates, Yildirim, Tenenbaum, & Battaglia, 2015; Ku-
bricht et al., 2016; see Figure 1A and 1B). For other
tasks, vision might estimate the deeper nonoptical

Figure 2. Examples of image synthesis with a shallow approach. Photographs of textures (top row) and their synthesized counterparts

(bottom row). The synthesized images were originally white-noise patterns that were transformed with the Portilla–Simoncelli (2000)

algorithm to match the spatial statistics of the original photograph. While these textures to a large extent resemble the original

textures, they miss the details captured by physics-based approaches, resulting in images that do not always appear how one would

expect a photograph of the material to look. Photographs from the last two columns are single frames courtesy of the DynTex movie

database (Péteri et al., 2010).
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shallower versus deeper causes, flows were viewed
through either small or large apertures. The rationale is
that interpretability increases with the larger spatial
context provided by an increased number of pixels,
allowing us to tap perceptual dimensions from shallow
to deep causes (Figure 3, Movie 1). For example, we
might expect perceptual similarity extracted from small
apertures to be based on shallow dimensions, such as
color or spatiotemporal statistics, whereas larger
apertures provide more information to infer deeper
causes of flow patterns, such as nonoptical material
attributes (e.g., viscosity, elasticity, rigidity), optical
attributes (e.g., transparency), and category labels (e.g.,
smoke). In anticipation of the importance of color, we
also included a larger aperture condition in which color
information was removed.

In order to evaluate how well candidate dimensions
could explain flow similarities, we posited a set of
dimensions from shallow to deep. Shallow dimensions
were features based on easily computable image
measures, such as color, that are known to be
important for image synthesis and perception (Table 1).
To aid in identifying higher level or deeper dimensions
that are not easily computable from the images, we also
asked observers to assign nonoptical material attributes
to the flows that are known to be important in
computer graphics (Tables 1 and 2) and human vision
(e.g., Paulun, Schmidt, van Assen, & Fleming, 2017;
van Assen & Fleming, 2016), and to categorize the
flows by name. In order to evaluate how well action
requirements could explain flow similarities, we also
asked observers to rate the flows on affordance
properties (e.g., penetrability; Table 2).

Methods

Participants

Observers (N ¼ 50) with normal or corrected-to-
normal visual acuity were enrolled in the University of
Minnesota Research Experience Program to receive
extra credit in their undergraduate psychology classes.
The observers provided informed written consent under
an experimental protocol that was approved by the
institutional review board at the University of Minne-
sota.

Stimuli

Dynamic flows were looped 3-s movie clips. The
movie clips were cropped versions of original videos
that were captured with an iPhone or adapted from the
DynTex database (Péteri, Fazekas, & Huiskes, 2010),

Figure 3. The role of spatial context in material perception (see 
Movie 1). An image of Movie 1 at a small aperature size. At the 
smallest aperture size, the perceptual dimensions available are 
shallow. Observers tend to disagree on the flow’s underlying 
material. As the aperture size grows, a sense of fluidity 
emerges, suggesting that inferring deeper perceptual dimen-

sions requires greater context. At the largest aperture size, 
observers can use both shallow and deep perceptual dimen-

sions and tend to be in greater agreement as to the flow’s 
underlying material. (Original movie clip courtesy of Thomas 
Porett).

properties using shallow, but sufficiently diagnostic 
spatiotemporal image statistics (e.g., Bouman, Xiao, 
Battaglia, & Freeman, 2013; see Figure 1D). An 
example is vision’s use of shallow knowledge, such as 
image-based dynamic deformations, to infer optical 
properties such as transparency (Kawabe, Maruya, & 
Nishida, 2015).

In summary, vision’s representation of images can be 
posited to fall along a continuum from ‘‘shallow’’ to 
‘‘deep’’ (Figure 1). At one end of the continuum is the 
distal stimulus; at the other end is the proximal 
stimulus. If vision represents an image by the proximal 
stimulus, then the same object or material in the world 
would typically have different representations (due to 
changes in lighting, viewpoint, etc.). A completely 
shallow representation may be sufficiently invariant in 
some cases (e.g., predicting lightness based on contrast 
in some situations) but would not work in other 
instances (e.g., recognizing objects or material attri-
butes such as viscosity across changes in lighting, 
viewpoint, material properties, etc.). If vision represents 
an image at the distal end of the continuum, then it 
knows every physical aspect of the object, a completely 
deep representation. However, it is computationally 
too expensive for vision to represent every aspect of an 
object (e.g., inferring the position and movement of 
every one of 150,000 or so strands of hair). Thus, in 
general, human vision represents image information 
along the shallow–deep continuum, at a location 
determined by the trade-offs between computation and 
the requirements of the behavioral task.

In the following experiment, we have sought to 
characterize key dimensions that underlie the percep-
tion of dynamic flows. Given a potentially large range 
of useful dimensions from shallow to deep, we began by 
measuring human similarity arrangements of dynamic 
flows over a database of 86 natural flows to determine 
dominant perceptual dimensions. In order to gain 
understanding into how comparisons depend on
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Dimension Features Rationale

Shallow

Color

(Color)

Marginal statistics for LAB color space Color has an important role in low-level

vision, but also in higher level vision (e.g.,

Hansen, Olkkonen, Walter, & Gegenfurtner,

2006).

LAB color space is a color-opponent space

that approximates human vision.

Color is important for synthesizing images

that can be recognized (e.g,, fire and

smoke cannot be differentiated in

grayscale).

Spatiotemporal

(XYT)

Marginal statistics, local autocorrelation, cross

correlation, and phase correlation

Spatiotemporal image statistics can explain

different aspects of material perception

(e.g., Bouman, Xiao, Battaglia, & Freeman,

2013; Kawabe, Maruya, & Nishida, 2015;

Motoyoshi et al., 2007) and can be used to

synthesize textures that appear like their

original texture (e.g., Portilla & Simoncelli,

2000).

Optic flow

(Flow)

Marginal statistics for speed, overall motion

direction, absolute curl, absolute

divergence, gradient, and Laplacian

In physics-based computer graphics, the

Navier–Stokes equations use the gradient,

divergence, and Laplacian of particle

systems in 3-D to simulate the flow of

liquids and gases.

Patterns of optic flow have been used to

account for material perception from

dynamic flow (e.g., Doerschner et al., 2011;

Kawabe, Maruya, Fleming, & Nishida,

2015).

Deep

Material attributes

(A&A)

Compressibility, elasticity, rigidity, and

viscosity (based on human attribute

estimates)

These attributes are motivated from models

in physics-based computer graphics known

for producing realistic simulations for

deformable solids, liquids, and gases. Some

of these attributes are also known to be

important in human vision (e.g., Paulun,

Schmidt, van Assen, & Fleming, 2017; van

Assen & Fleming, 2016).

Category

(Category)

Features related to material category: water,

nonwater liquids, cloth, solids, plants, other

fluids

Features related to simulation model: strong,

intermediate, and weak intermolecular-

bond strength, wind

Features related to conceptual theme:

human-made, natural, food, water objects

(based on human category judgments)

Higher level features could be important for

similarity arrangements.

Table 1. The shallow and deep dimensions extracted from the dynamic flows and their relative importance in material perception or
image synthesis. We define a perceptual dimension as a feature or a group of features arising from a common quality or theme that
represents aspects of the image (shallow dimensions) or physical scene that generated the image (deep dimensions). The shallow
dimensions were computed from readily available image-processing tools. The deep dimensions were based on human observers’
estimates on attributes and material identity (see the Appendix for further details).
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the National Park Service, Shutterstock, YouTube, or
Vimeo. The cropped videos captured a small portion of
a scene whose foreground showed movement domi-
nated by the flow of a material substance (e.g., hair,
foliage, snow, water, wood). The 86 dynamic flows used
in these experiments included fluids (such as water,
paint, lava, caramel, fire, and smoke), hair, plants,
cloths, and other solids. The data set (not including the
Shutterstock videos, due to their copyright) can be

downloaded at https://sites.google.com/site/
yanivmorgenstern/stimuli.

We divided the 86 movies into two data sets as
follows. Similar kinds of dynamic flows with only two
occurrences within the 86 flows (e.g., fire, lava, and
milk bubbles) were divided between the two sets. The
remaining flows were assigned randomly, half to Data
set 1 and the other half to Data set 2. The type of flows
ranged from materials whose particles are held together

Attribute Description

Nonoptical material attribute

Elasticity Elasticity is the ability of an object or material to return to its normal shape after being stretched or

compressed.

Materials high on elasticity strain when stretched and quickly return to their original state once the stress is

removed (e.g., latex). Materials low on elasticity do not quickly return to their original state (e.g., gum).

Please assign a rating from 0 to 100 on the material’s elasticity, where 0 is the lowest possible elasticity and

100 is the highest possible elasticity.

Compressibility Compressibility describes the material’s ability to be forced into less space.

Consider filling a cylinder with this material. Imagine closing the cylinder with a piston that can move

downward in the cylinder. The more compressible the material, the further the piston can move

downwards. For example, air is more compressible than oil, so the piston in an oil cylinder will not move

much, while the piston in the air cylinder will move downward some distance.

Please assign a rating from 0 to 100 on the material’s compressibility, where 0 is the lowest possible

compressibility and 100 is the highest possible compressibility.

Rigidity Rigidity is an object’s ability to resist being altered by force.

Consider dropping an object of that material. A rigid object would show very little squash or deformation

when it hits the surface (e.g., a wooden or metal spoon). A flexible object would stretch as it is thrown

and squash when it hits the surface (e.g., gum or cloth).

Please assign a rating from 0 to 100 on the object’s rigidity, where 0 is the lowest possible rigidity and 100 is

the highest possible rigidity.

Viscosity Viscosity is the property of a fluid that resists the force tending to cause the fluid to flow.

Consider pouring a fluid made of this material down a tilted surface such as a slide. A fluid high on viscosity

will tend to resist flowing down the slide (e.g., honey, motor oil). A fluid low on viscosity will tend to not

resist the force of flow down the slide (e.g., water).

Please assign a rating from 0 to 100 on the fluid’s viscosity, where 0 is the lowest possible viscosity and 100

is the highest possible viscosity.

Affordance

Penetrability Penetrability describes the ease of passing through a material.

Consider thrusting your fist onto a surface made from this material.

The material is highly penetrable if your fist easily pierces the surface (e.g., air) and less penetrable if it

harder to pierce the surface (e.g., a brick wall).

Please assign a rating from 0 to 100 on the material’s penetrability, where 0 is the lowest possible

penetrability and 100 is the highest possible penetrability.

Pick-up-ability Pick-up-ability is the ability to apprehend and also to move an object or material with our hands through

grasping or cupping.

An object or material high on pick-up-ability would be easy to apprehend and move (e.g., a spoon). An

object or material low on pick-up-ability would not be easy to apprehend or move (e.g., air).

Please assign a rating from 0 to 100 on the object/material’s pick-up-ability, where 0 is the lowest possible

pick-up-ability and 100 is the highest possible pick-up-ability.

Table 2. The attributes and descriptions observers used to guide their ratings.

Journal of Vision (2017) 17(12):7, 1–25 Morgenstern & Kersten 6

Downloaded from jov.arvojournals.org on 07/10/2019

https://sites.google.com/site/yanivmorgenstern/stimuli
https://sites.google.com/site/yanivmorgenstern/stimuli


by strong intermolecular forces (e.g., textiles, plants) to
substances held together with weaker intermolecular
forces (e.g., steam, snow, sand; see Figure 1). These
flows also fit the two broad categories of simulation
techniques, from mesh-based to mesh-free approaches,
which are used to create different types of flows in
computer graphics. A total of 32 flows in these videos
were dynamic textures that were judged by the
experimenter (YM) to have local statistics that were
stationary in space and time (e.g., water movies from
Clips 7, 8, and 16 in Data set 1). The remaining flows
were judged to be nonstationary in both space and
time (e.g., highly viscous flows, like the honey in Clip
28).

Aperture manipulation

Each observer participated in one of three context
manipulations: the small color condition (n ¼ 16), the
large color condition (n ¼ 16), and the large gray
condition (n¼ 18). By windowing the movies with a
small (diameter¼1.838, 78 pixels) or a large (diameter¼
10.768, 460 pixels) circular aperture, we varied the level
of spatial context for the stimuli in the small and large
conditions. By converting the large-context movies into
grayscale, we varied the color context for the stimuli in
the large color versus the large gray condition.

Procedure

The experimental procedures were run in MATLAB
2013a using the multiarrangement code provided by
Kriegeskorte and Mur (2012) and adapted for the
Psychophysics Toolbox (Brainard, 1997; Kleiner et al.,
2007). The experiments were run on a 27-in. iMac (3.4
GHz Intel Core i7) with a resolution of 2,560 3 1,440
pixels. Observers were seated approximately 57 cm
from the screen, at which distance a single pixel
subtended 0.02358. The experiment was completed in
three sessions lasting approximately 1 hr each. In the
first part of the experiment, participants performed
similarity judgments using a multiarrangement method.
In the second part, they rated each flow along several
perceptual dimensions. In the final part, they were
asked to label the flows.

Similarity arrangements

There are a large range of potentially useful
perceptual dimensions that observers can use to
make material judgments and comparisons (Figure
1). We explored which dimensions are useful by using
a multiarrangement method that, within a testing
trial, allows observers to arrange the 2-D distances

between a subset of dynamic flow stimuli based on 
perceived dissimilarity. Compared to other ap-
proaches, the multiarrangement method quickly 
acquires judgments reflecting higher dimensional 
dissimilarity structures by allowing the placement of 
one item to reveal multiple similarity judgments with 
other items. In the first trial, the multiarrangement 
method presents all stimuli (from Data set 1 or 2) as 
animated icons (scaled versions of the flows) in a 
circular arrangement around an arena (Supplementary 
Figure S1 and Movie S1; diameter ¼ 22.388, 966 
pixels). The icons were placed at regular angular 
intervals in random order. Observers used the drag 
and drop operations of the computer’s mouse to 
arrange these icons on the computer screen according 
to their similarity. Specifically, observers were told 
that the distance between two objects represents their 
similarity, where similar objects are put close 
together and dissimilar objects are put further apart. 
Observers were not explicitly instructed by which 
similarity criteria to arrange the icons. The subse-
quent trials showed a subset of the stimuli from Trial 
1 based on an algorithm that selects stimuli with a 
lower dissimilarity signal-to-noise ratio (i.e., stimuli 
that tend to be placed nearby one another) and also 
takes into account the trial cost (i.e., the time taken 
to arrange the subset; Kriegeskorte & Mur, 2012).

On the right of the arena, the dynamic flows for the 
current and last icon selection were presented at their 
actual sizes. The observers were instructed to judge the 
similarity of these proper-size movies since they were 
shown at the correct resolution. A checkerboard frame 
highlighted the selected icon and the proper-size 
dynamic flow (on the right).

Once the arrangements were complete, the observers 
pressed the Return key to go the next trial. The 
subsequent trials presented a subset of the dynamic 
flows from the first trial based on the lift-the-weakest 
algorithm described by Kriegeskorte and Mur (2012). 
The arrangements ended after 25 min. had passed. On 
average, observers completed 12.8 trials, with the final 
result being pairwise dissimilarities (in terms of 
distances) for the set of dynamic flows. These 
dissimilarities were assembled as a representational 
dissimilarity matrix (RDM), which had height and 
width corresponding to the number of dynamic flows 
presented on Trial 1 and was symmetric along the 
diagonal.

The multiarrangement method was used to acquire 
observers’ arrangements for Data sets 1 and 2 in 
separate sessions (selected in a random order). After the 
arrangements, observers were asked to report the 
strategy they used to arrange objects according to their 
similarity.

Journal of Vision (2017) 17(12):7, 1–25 Morgenstern & Kersten 7

Downloaded from jov.arvojournals.org on 07/10/2019

http://jov.arvojournals.org/data/Journals/JOV/936521/jovi-17-10-03_s05.mov
http://jov.arvojournals.org/data/Journals/JOV/936521/jovi-17-10-03_s10.pdf
http://jov.arvojournals.org/data/Journals/JOV/936521/jovi-17-10-03_s10.pdf


Ratings and identification
We related the similarity arrangements to image 

features, nonoptical material attributes, affordances, 
and categorical grouping of the flows into classes 
having shared characteristics (see Estimating affor-
dances and shallow and deep perceptual dimensions in 
the Appendix). These nonoptical material attributes 
and affordances were estimated from human-observer 
ratings of the dynamic flows. The categorical groupings 
were based on human-observer dynamic flow identifi-
cation.
Rating dynamic flows on affordances and material 
attributes: Observers rated the flows on four material 
attributes that are related to parameters used for 
simulating material flows in computer graphics (non-
optical material attributes) but could also be important 
for guiding our actions or affordances with these flows 
(Table 2). The other two attributes were motor 
activities related to a large range of action decisions 
(affordances). The attributes were rated on a continu-
ous scale from 0 to 100. Observers were given the 
option of responding ‘‘not applicable’’ if they thought a 
particular flow could not be rated on that attribute.

The ratings for one subject in the large color 
experiment and one in the small color experiment were 
removed because they showed ratings negatively 
correlated to the remaining subjects, suggesting that 
they had inverted (or misunderstood) the meaning of 
the scales.
Dynamic flow identification: Observers were asked to 
identify flows from a series of options arranged in terms 
of a hierarchal tree structure (Supplementary Figure 
S2). Observers were presented with a dynamic flow (on 
the right of the screen) and asked to click on the label 
(on the left) that best characterized the texture. At first 
the labels showed the top layer of the hierarchy, which 
were general (e.g., animate or inanimate). The next 
screen again displayed the flow with a series of options, 
but instead of labels indicating the top layer of the 
hierarchy, observers were shown the next more specific 
layer; for example, if inanimate had been clicked on in 
the first screen, a following screen would show the 
labels fiber, light emitting, liquid, particles, solid, vapor, 
other, and go back, for which the observer would again 
be prompted to indicate the best suited label. This 
would continue until the entire tree branch was 
traversed or the observer clicked on other. If observers 
clicked on other the subsequent screen would allow 
them to type in the dynamic flow category label. 
Observers were instructed to go as deep into the tree 
structure as possible before clicking on the other 
option. The go back option would present them with 
the previous screen (i.e., the preceding level on the 
hierarchy).

The ratings and identification responses were con-
verted into model similarity matrices. The dimensions

were evaluated by comparing each model similarity
matrix to the human similarity judgments (see Appen-
dix for details).

Results

Part I describes the results of the judgments of
material attributes, affordances, and flow identifica-
tion. We show that ratings of attributes tend to become
more consistent and distinct across observers under
higher levels of context. We then analyze the relation-
ships between these judgments and show that under the
highest degrees of flow-identification uncertainty,
observers have strong biases towards rigidity. Part II
describes the results of the similarity judgments. The
results are analyzed in terms of shallow and deep
dimensions that contribute to the patterns of similarity.

Part I: Judgments of material attributes and
affordances

Are the attributes meaningful?

We begin by analyzing observers’ estimates of
material attributes and affordances that underlie many
important action decisions. For simplicity, we will refer
to both material attributes and affordances as attributes.
One possibility is that observers interpreted the meaning
of the attributes differently, resulting in a dynamic flow
that has a high value for one subject and a low value for
another. On the other hand, if observers tended to agree

Figure 4. Mean correlations between observers for each rating

scale. Error bars show standard errors of the r scores. Especially

at large apertures, observer ratings of penetrability, pick-up-

ability, rigidity, and viscosity tend to be highly correlated,

suggesting that the meanings of these attributes and affor-

dances were interpreted in the same way. Thus, these attributes

could be a meaningful way to interpret material identity.
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on the ratings for a given flow, the attributes could be a
meaningful way to estimate a material’s identity. Figure
4 shows the mean correlation between observers for each
rating scale. Consistency across observers tended to be
highest for penetrability, pick-up-ability, rigidity, and
viscosity. The higher correlations for these scales suggest
they may be more meaningful attributes to evaluate
material identity for this data set than compressibility
and elasticity. Another finding is that the correlation for
penetrability, pick-up-ability, and rigidity is higher in the
large gray condition than in the large color condition,
while the correlation for viscosity decreases. This
suggests that under grayscale, observers tend to see flows
as arising from stiffer objects. Figure 4 also shows that
the correlation for these scales tended to increase when
viewing the flows under a larger aperture, suggesting
that reliably estimating these attributes requires greater
context.

Are the attributes distinct?

To what extent do these attributes reveal different
aspects of the material? To some degree, some
attributes will correlate with one another. For example,
the highest positive correlation is between pick-up-
ability and rigidity (Figure 5), and intuitively one
would expect these to be highly correlated, because
rigid objects are easier to grip and pick up than
nonrigid objects. The lowest correlations were for
penetrability with pick-up-ability and rigidity (Figure
5). This again makes sense, because things that are
penetrable, like water, are harder to pick up and tend to
be less rigid. The correlation trends between the
attributes are highly correlated across all aperture
conditions; the correlations between the attributes
across the large color and small color conditions in
Figure 5 is 0.76 (Pearson; p , 0.01); across large color
and large gray, 0.91 (Pearson; p , 0.01); and across

small color and large gray, 0.94 (Pearson; p , 0.01).
However, the attributes tend to be least correlated to
one another in the large color condition. This indicates
that observers can treat the attributes as more distinct
in larger contexts.

Attribute estimates are biased for highly ambiguous
dynamic flows

In order to recognize materials, the visual system
reduces its high-dimensional input into a smaller
dimensional summary. Sometimes vision will only need
to rely on local, image-based properties; for example,
fire has a distinctive pattern of colors that flows
upward. Other times vision will need deeper knowl-
edge, for example, to decide whether textiles with
similar optical properties are made from silk or hemp.
Local image properties are available at small apertures,
while nonoptical properties, such as the attributes in
Table 2, are better evaluated at larger contexts (Figures
4 and 5).

In this section, we examine the relationship between
attribute estimation and material identification as a
function of context. We begin by evaluating percent
correct identification of the flows by setting the mode of
the label responses in the large color condition as the
ground-truth labels for the dynamic flows (Figure 6A).
(Note that in this evaluation of percent correct we do
not take into account semantic similarities within the
labels—that is, responses such as lake and river were
treated as different labels in scoring percent correct.)
Thus, percent correct reflects consistency across ob-
servers for the ground-truth label. Consistency was
highest for the large-aperture conditions.

Does the poorer label-identification performance in
the small color condition correspond with an inability
to reliably estimate material attributes? To get a handle
on this question, we separately analyzed the attribute

Figure 5. Correlation matrix relating estimates of material attributes and affordances to each other. Colors indicate the correlation

coefficient, as specified by the color bar. The correlations between most attributes are highest in the small color and large gray

conditions. The attributes appear to decorrelate somewhat at higher contexts, suggesting that they become more distinct. Stars

indicate that the correlation in the cell is significantly different from zero (p , 0.05).
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group, observer responses tend to hover around ground
truth for the large color condition but are biased in the
small color condition. The biases along the most
meaningful attributes (those that are rated most
consistently across observers; Figure 4) show higher
rigidity and pick-up-ability estimates than ground truth
and lower penetrability estimates. This pattern is also
evident in the correlation trends between these three
attributes: positive correlation between rigidity and
pick-up-ability and negative correlation between pen-
etrability and both rigidity and pick-up-ability (Figure
5). These biases are consistent with a prior on rigid
objects (Grzywacz & Hildreth, 1987; Ullman, 1979). A
closer look at the attribute scores in the minor-
contextual-effects subgroup shows that the small color
estimates, which are near ground truth, are also biased
toward the direction of this prior. (Note that elasticity
shows a bias in the opposite direction, but elasticity
ratings are also less reliable across observers; see Figure
4.) In other words, the small color estimates in the
minor-contextual-effects group are slightly more rigid
and pick-up-able and less penetrable than ground
truth. That these biases appear in response to the most
ambiguous stimuli (i.e., the major-contextual-effects
subgroup) and sway estimates in less ambiguous scenes
show that they are important attributes and assump-
tions in human vision.

One important way that the visual system may use
these assumptions is to integrate them with other
perceptual dimensions (e.g., color, orientation) to
identify material labels. Qualitatively, some of the

Figure 7. Estimating material attributes and affordances. The

mean ratings relative to ground truth for stimuli from the

minor- and major-contextual-effects subsets. The ground-truth

response for each stimulus was taken to be the median

attribute response across observers in the large color condition.

The standard errors were based on 100 bootstrapped samples.

Under the highest degrees of ambiguity (stimuli from the major-

contextual-effects subset of the small color condition), observ-

ers tend to have strong biases towards more rigid and pick-up-

able, and less penetrable, objects.

Figure 6. Flow identification. Percent correct dynamic flow 
identification across observers for (A) the 86 stimuli in the small 
color, large color, and large gray conditions, and (B) two subsets 
of the stimuli in (A) that are grouped depending on whether the 
contextual effects are large (major contextual effects) or small 
(minor contextual effects). The mode of observer responses for 
the large color condition were taken as ground truth. The 
accuracy does not take into account semantic similarities within 
the labels (i.e., responses such as lake and river were treated as 
different labels when scoring percent correct). The standard 
errors were based on the standard deviation of the samples 
within each group. Observers are generally better at identifying 
flows in the larger aperture conditions. However, for a subset of 
the experimental stimuli, observers did not require more 
context to identify some flows (e.g., minor-contextual-effects 
group).

estimates and labeled responses from two subsets of the 
86 stimuli. The first subset consists of six dynamic flows 
that were identified with high consistency with respect 
to ground truth across observers for the large color 
condition (.80% accuracy) and high consistency for 
the small color condition (.85% accuracy). We call this 
subset of stimuli the minor-contextual-effects group. 
For these flows, the additional spatial context provided 
by the larger aperture did not help observers much in 
assigning labels. The second subset consists of five 
flows with high consistency relative to ground truth for 
the large color condition (.80% accuracy) and low 
consistency for the small color condition (,15%
accuracy). We call this subset of stimuli the major-
contextual-effects group. For these flows, the addi-
tional context substantially improved flow identifica-
tion (Figure 6B). Supplementary Figures S3 and S4 
show the label responses for the major- and minor-
contextual-effects groups, respectively.

The mean attribute responses for these two sub-
groups relative to ground-truth responses (the median 
attribute response across observers in the large color 
condition for a particular flow) are shown in Figure 7. 
In the minor-contextual-effects group, observer re-
sponses hover around ground truth for most attributes 
across all conditions. In the major-contextual-effects
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errors in labeling could be due to biases that substances
are more rigid and less penetrable than their ground-
truth labels. In the small color condition for minor-
contextual-effects stimuli, for example, the mistakes in
identifying fire are lava, sun, and torch, which may be
interpreted as substances that are stiffer than fire (e.g.,
if one interprets the sun as a celestial body and a torch as
being composed of wood; see Supplementary Figure S3).
As another example, the cilia of aquatic plants are
confused for more rigid body parts. Similarly, for the
major-contextual-effects subgroup, in the small color
condition caramel (last row in Supplementary Figure S4)
is identified as many other substances with a similar tan
color, such as honey, sand, and dust, suggesting that
shallow dimensions such as color can sometimes
dominate flow recognition. Some of these labels are
also more rigid than caramel (e.g., copper, wood, torch,
and leather), suggesting that the rigidity prior may play
a role in these decisions.

Part II: The role of affordances and shallow and
deep perceptual dimensions in dynamic flow
similarity perception

In the following, we explore the role of affordances
and shallow and deep perceptual dimensions on human
similarity judgments of dynamic flow.

Similarity arrangements

Figure 8 shows the dissimilarities (in terms of
distances) assembled as an RDM (on the right), with
height and width corresponding to the number of
stimuli in the data set and symmetric along the
diagonal. The positions of the stimuli along the RDM
were arranged by the experimenter to approximately
reflect the intermolecular bond strength of the
dynamic flows’ underlying materials, with weak
intermolecular forces (i.e., particle-based flows like
steam, snow, and sand) on one side of the continuum
and strong intermolecular forces (e.g., cloths and
solids) on the other side. This ordering to some degree
also approximately arranges the stimuli such that
similar materials are positioned close to each other. In
the large color condition, the RDM pooled across
observers (n ¼ 16) shows that flows more similar to
each other in terms of their material category and the
strength of their intermolecular forces have smaller
dissimilarities (Figure 8A; blue regions). On the other
hand, the most dissimilar flows (in yellow) tended to
come from stimulus pairs whose difference in inter-
molecular force strength was  large.  This result can be
visualized by arranging the stimuli in two dimensions
using MDS (multidimensional scaling) such that the
pairwise distances approximately reflect the distances

in the RDM (left image of Figure 8A). These results 
were consistent with observers’ subjective reports: 
Most observers tended to rely primarily on higher 
level categories (e.g., object, material, man-made, 
plants, foods) and secondarily on appearance, group-
ing flows based on material attributes (e.g., viscosity, 
fluffiness) and shallow features (e.g., color, motion, 
spatial frequency). Similar results were found with the 
43 dynamic flows from Data set 2 (Supplementary 
Figure S5A) and in grayscale (Supplementary Figure 
S6).

In the small color condition, the RDM pooled across 
observers (n ¼ 16) still showed some perseveration of 
grouping based on material category (e.g., blue regions 
in Figure 8B’s RDM for water and other liquids), but 
this was much less prevalent than in the large-aperture 
conditions. The small color RDM also did not tend to 
have its largest dissimilarities depend on the disparity 
between intermolecular bond strength. The similarity 
arrangements visualized by using MDS (Figure 8B, left) 
show that groupings were based primarily on color. In 
their subjective reports, most observers stated using 
primarily color and motion, and secondarily category. 
Similar results were found under small apertures with 
the 43 dynamic flows from Data set 2 (Supplementary 
Figure S5A).

Evaluating shallow and deep perceptual dimensions

We compared these arrangements to dimensions 
along the shallow-to-deep continuum. The dimensions 
toward the shallow end were related to the response 
properties of neurons in the early visual system, which 
included statistical summaries from color (from LAB 
color space), multiple spatial and temporal scales
(based on a multiscale pyramid decomposition), and 
optic flow (e.g., magnitude, curl, divergence, gradient; 
Table 1). These shallow dimensions were extracted 
from the dynamic flows with freely available image-
processing tools (Portilla & Simoncelli, 2000; Sun, 
Roth, & Black, 2010). The deeper dimensions included 
nonoptical material properties, affordances, and 
categories (Tables 1 and 2). We used human-observer 
responses (see Methods) to estimate these dimensions, 
since reliable machine-vision methods do not exist or 
were not readily available. This led to five types of 
perceptual dimensions: color (Color), spatiotemporal 
(XYT), optic flow (Flow), the affordances and non-
optical material attributes (A&A) listed in Table 2, 
and categories (Category), which are categorical 
groupings of the flows into classes having shared 
characteristics and based on observers’ flow-identifi-
cation responses (see Estimating perceptual dimen-
sions and affordances in the Appendix for further 
details).
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Each type of perceptual dimension could consist of
multiple features (e.g., the Category dimension type
consisted of 14 features; see Table 1), so we combined
the features belonging to a perceptual dimension by
regressing them to the pooled human similarity
arrangement. We also used regression to combine the

shallow perceptual dimensions (i.e., the features in
Color, XYT, and Flow were combined and called
Shallow), deeper perceptual dimensions (i.e., the
features in A&A and Category were combined and
called Deep), and all features (i.e., the features from
every perceptual dimension were combined and called

Figure 8. Stimulus arrangements and representational dissimilarity matrices (RDMs) for the pooled data in the (A) large color and (B) 
small color conditions for Data set 1. For each pair of stimuli, each RDM (right) color-codes the dissimilarity. The experimental stimuli 
have been arranged (on the left) such that their pairwise distances approximately reflect the distances in the RDM (multidimensional 
scaling; dissimilarity: distances, criterion: metric stress). (A) is associated with Movie 2A, and (B) with Movie 2B. In each arrangement, 
dynamic flows placed close together were also arranged this way in the experiment. The correlations between the high-dimensional 
RDMs and the two-dimensional Euclidean distances in the figure are 0.83 (Pearson) and 0.84 (Spearman) for the small-aperture 
condition and 0.78 (Pearson and Spearman) for the large-aperture condition, suggesting that the 2-D visualization (on the left) 
captures much of the variance. The RDMs are separately rank-transformed and scaled into [0, 1]. (See Supplementary Figure S5 for 
Data set 2 and Supplementary Figure S6 for the large gray condition.) In (A) the large-aperture conditions, similar stimuli (depicted in 
blue on RDM) tended to come from the same material category and to have similar strength in their intermolecular forces. Dissimilar 
stimuli in (A)—depicted in yellow on the RDM—tended to come from stimuli with contrasting strength in their intermolecular forces. 
In (B) the small color condition, the RDMs show that stimuli within the same category are sometimes similar (in blue). However, large 
disparities between the strength of the intermolecular forces do not tend to lead to the strongest dissimilates. The MDS visualization 
on the left shows that color dominates the small color arrangement.
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All). We compared the fitted models to the human
similarity arrangements using representational similar-
ity analysis (Kriegeskorte, Mur, & Bandettini, 2008; for
further details, see Representational similarity analysis
in the Appendix). This evaluation was done separately
for the large color (Figure 9A and Supplementary
Figure S7A), small color (Figure 9B and Supplemen-
tary Figure S7B), and large gray (Supplementary
Figure S8) conditions.

Shallow dimensions best account for the small-aperture
condition

The role of shallow and deep dimensions in the small
color condition is unclear from the attribute estimates
and label responses. In the small color condition,
observers’ attribute estimates are less reliable (Figure 4)
and biased (Figure 7), and their ability to recognize
materials greatly diminishes (Figure 6A). However, the
small color similarity arrangements show some mate-
rial grouping (e.g., water in Figure 8B), and sometimes
identification is accurate (minor-contextual-effects
group, Figure 6B). How much do observers rely on
shallow and deep dimensions in their arrangements? To
explore what dimensions observers rely on under these
conditions, we compared several model RDMs (Krie-
geskorte et al., 2008) to the human similarity judgments
(Figure 9B). The performance of the fitted Color model
(Color), Shallow model (Shallow), and All model (All)
approaches the noise ceiling, suggesting that these
models almost fully explain the similarity judgments.
The pairwise model comparisons show that these three
models outperform models representing deep dimen-
sions. This finding suggests that shallow models, in
particular the Color dimension, can explain variance in
the similarity judgments that deeper models cannot
explain. This is consistent with observers’ subjective
reports and the similarity arrangements visualized with
MDS (Figure 8B). The fact that the performance of the
Color model approaches the noise ceiling indicates that
there is not much room for model improvement. This
means that the single-subject similarity judgments do
not seem more similar to each other than to the color
model. The Category model, on the other hand, was far
from the noise ceiling and not significantly correlated to
the human arrangements. Thus, one possible explana-
tion for material categorization and accurate identifi-
cation of some flows at smaller apertures is observers’
reliance on shallow dimensions for inferences as to
material identity.

Deeper dimensions best account for large-aperture
conditions

In the large color condition, observers’ attribute and
affordance estimates (Figure 4) become more consis-

tent, as do their inferences on material category (Figure 
6). How important are these attributes and category 
labels in determining flow similarity? In the large color 
condition, the model RDMs consisting of features 
arising from deeper dimensions (Category, Deep, and 
All) approached the noise ceiling (Figure 9A); the Deep 
model is not much different from the All model, while 
the Shallow model is significantly different. However, 
most model RDMs consisting of deeper features do not 
significantly outperform the models containing the 
shallow features (Shallow, Color, XYT, and Flow). 
This suggests that, while features along the deeper end 
of the continuum better explain the similarity judg-
ments in the larger aperture condition, the shallow 
features also play a role.

What are the important deep perceptual dimensions?

The shallow dimensions evaluated here are sufficient 
for textures synthesis (Figure 2; Portilla & Simoncelli, 
2000) and have been used to account for a range of 
perceptual phenomena (e.g., Doerschner et al., 2011; 
Kawabe, Maruya, & Nishida, 2015; Motoyoshi, Nishi-
da, Sharan, & Adelson, 2007). The shallow dimensions 
have a significant role in the large-aperture arrange-
ments, for both data sets in the large color and large 
gray conditions, but they do not account for as much 
variance in human similarity arrangements as deep 
dimensions. The Shallow models are sometimes signif-
icantly less predictive of the human similarity data than 
the Deep models (Data set 1 in the large gray condition; 
Supplementary Figure S8A) and always significantly 
less predictive than the All models, while the Deep 
models are never significantly different from the All 
models. These findings suggest that the perception of 
dynamic flow similarity is deeper than can be accounted 
for by shallow explanations that are evaluated here.

Intuitively, in the large-aperture condition it makes 
sense that deep dimensions provide better accounts of 
the similarity arrangements. The human similarity 
arrangements show higher level groupings, such as ones 
based on food products that do not have many shallow 
dimensions in common. The large-aperture similarity 
arrangements visualized by MDS show the flows 
arranged into several of these groups or clusters. 
Careful inspection of nearby flows shows their tendency 
to have similarities within shallow dimensions (e.g., 
color, motion), which shows that shallow features do 
play a role in the large-aperture similarity arrange-
ments. Those flows that are farther apart have very 
little in common in terms of shallow dimensions and 
reveal an overarching principle for the global arrange-
ments.

To get an idea of the principles that underlie the 
global arrangements, we explored how well each 
feature in the Category dimension accounts for the
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Figure 9. Model performance for similarity judgments in the (A) large and (B) small color conditions for Data set 1. The deep 
dimensions tend to explain the similarity arrangements better in the large-aperture condition, while the shallow dimensions, in 
particular color, tend to better account for the small-aperture similarity arrangements. The bar graphs show the correlations between 
the similarity-judgment RDM and each of the feature (or model-prediction) RDMs. Significant correlations between a feature RDM 
and the similarity-judgment RDM are indicated by an asterisk (stimulus-label randomization test, p , 0.05 corrected for family-wise 
error). Significant differences between models in how well they can account for the similarity judgments are indicated by the black 
horizontal lines plotted above the bars (stimulus-bootstrap test, p , 0.05 corrected for family-wise error). Error bars show the 
standard error of the mean based on bootstrap resampling of the stimulus set. The noise ceiling, indicated by the red and green 
horizontal bars, is the expected RDM correlation achieved by the (unknown) true model, given the noise in the data. The red bar 
represents the high noise ceiling, calculated by taking the correlation between each subject’s RDM and the average of all subject 
RDMs. The green bar represent the low noise ceiling, calculated by taking the correlation between each subject’s RDM and the 
average of the RDMs belonging to the remaining subjects. The noise-ceiling bars are centered on their mean (computed across 
subjects) with a width that corresponds to their standard error. All models are based on a weighted combination of features. Similar 
results were found for Data set 2 (see Supplementary Figure S7) and the large gray condition (Supplementary Figure S8) .
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similarity arrangements. Each feature divides the flows
that belong to a class that have shared characteristics
from those that do not. Thus, features from the
Category dimension with higher correlations with
human similarity provide better explanations of the
arrangements as two clusters of flows than features
with lower similarity. Thus, these features hint at a
more general or global arrangement strategy.

Figure 10 shows the relationship between each
feature from the Deep dimension and the human
similarity data. The features from the Category
dimension (in blue) that are most related to the large-
aperture arrangements (pooled over data set and color
conditions) tend to come from physical properties
related to simulation (e.g., whether flows tend to have
strong intermolecular bonds or not) or other higher

Figure 10. Relationship of category features to human similarity arrangements. The bar graphs show the correlations between the 
similarity-judgment RDM and each of the category-dimension RDMs (in blue) and action and attribute RDMs (in orange) for data 
pooled across the large-aperture conditions (both Data sets 1 and 2 from the large color and large gray conditions). The categorical 
features (in blue) best related to human similarity are those that indicate material properties relevant to simulation, such as the 
strength of the material’s intermolecular bonds or wind. The affordances (in orange) are best related to human similarity, suggesting 
that our everyday action decisions underlie the degree of the visual system’s representation of dynamic flow. Significant correlations 
between a feature RDM and the similarity-judgment RDM are indicated by an asterisk (signed-rank test, subject as random effect, p , 
0.05). Significant differences between models in how well they can account for the similarity judgments are indicated by the black 
horizontal lines plotted above the bars (subject bootstrap test, p , 0.05 corrected for family-wise error). Error bars show the standard 
error of the mean based on human-model correlations across subjects. Supplementary Figures S9 and S10 show similar correlation 
trends across data sets and conditions for the category features and attributes and affordances, respectively.
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level conceptual categories (e.g., whether the flow is 
natural or not). Strong intermolecular bonds best 
account for the human arrangements in the large-
aperture condition (leftmost feature in Figure 10 in 
blue), and this is true across data sets and conditions 
(Supplementary Figure S9). These results suggest that 
flows with similar physical consistency (i.e., whether 
their intermolecular bond strength is strong or weak), 
whether or not the material category is the same, tend 
to be grouped closer together than flows with dissimilar 
consistency. Thus, flow similarity is guided by percep-
tual information that is physically deeper than optical 
material properties (Figure 1).

Affordances can guide depth of the perceptual 
representation

The depth of the visual system’s representation of 
dynamic flow should be sufficient to carry out its basic 
functions (i.e., to gain information about the physical 
world that is useful for navigating, recognizing objects, 
and planning future actions). The deep dimensions that 
best account for the similarity arrangements of a broad 
set of natural dynamic flows were related to the 
strength of a flow’s underlying intermolecular forces. If 
this depth is necessary for useful action decisions, then 
there should be affordances that are about equally 
related to the human similarity arrangements. Figure 
10 shows that affordances (penetrability, and pick-up-
ability in orange) are about equally correlated with the 
human similarity arrangements as categorical group-
ings based on whether the flow’s intermolecular bond 
strength was strong or not. Thus, material inferences 
based on deep features can reveal information relevant 
to common motor decisions. On the other hand, 
inferences based on shallow features, like color, are 
poorly related to motor decisions (Figure 9B; low 
correlation between A&A dimension and human 
similarity in the small color condition). Moreover, in 
the small color condition, observers’ affordances tend 
to be biased relative to ground truth (Figure 7), further 
suggesting that shallow features do not provide the 
necessary visual information relevant for many action 
decisions. These results are consistent with the idea that 
the depth of the visual system’s inferences on the 
physical causes of images is guided by important action 
decisions.

Discussion

Previous studies on the visual perception of optical
material properties have accounted for visual phe-
nomena with representations that spanned from
shallow (e.g., gloss perception: Marlow, Kim, &

Anderson, 2012; Motoyoshi et al. 2007; distinguishing
shiny versus matte: Doerschner et al., 2011) to deep
(e.g., lightness perception: Brainard & Maloney, 2011;
Knill & Kersten, 1991). Previous works on the
perception of nonoptical material properties has relied
more heavily on shallow representations (e.g., viscosity:
Kawabe, Maruya, Fleming, & Nishida, 2015; elasticity:
Kawabe & Nishida, 2016; stiffness: Bi & Xiao, 2016),
unless an observer is made to simulate a future
outcome, such as predicting the path of liquid flow
(Bates et al., 2015; Kubricht et al., 2016), rather than
estimate the material property itself.

The contribution of the ratings and similarity
analysis as a function of small and large apertures was
to understand the relative roles of shallow versus deep
representations in perceiving and comparing flows. We
show that shallow dimensions dominate similarity
arrangements in the small-aperture condition, when
flows are highly ambiguous as to the external physical
causes. In these conditions, our experiments suggest
that the visual system cannot reliably estimate the
strength of the underlying flow’s intermolecular forces;
instead, observers’ responses are consistent with a built-
in, prior, assumption that the flow’s underlying
physical structure is strong and rigid, and use color to
aid identification. Shallow dimensions also play a role
in the large-aperture arrangements, but not as much as
deeper dimensions that partially reveal the strength of
flow’s intermolecular forces. These deeper dimensions
are about as highly correlated with the human
similarity arrangements as some affordances, such as
pick-up-ability and penetrability, suggesting that in-
ferences on deep dimensions are necessary to guide our
everyday action decisions. That these affordances
cannot reliably be inferred from the flow in the small-
aperture conditions (observers instead use built-in prior
assumptions; see Figure 7) suggests that, overall,
shallow dimensions are used when they provide
sufficient information to complete the task at hand.
When shallow representations are insufficient for a task
or action, the visual system relies on representations of
the deeper underlying physical causes of the images.

The computation of deeper representations
may require spatial and temporal
inhomogeneity

Dynamic spatial textures, such as sea waves, have
stationary statistics—that is, they can be characterized
by local statistics that change little over space and time.
By taking advantage of these stationarity properties,
like various texture-synthesis algorithms (e.g., Portilla
& Simoncelli, 2000), the visual system can represent a
texture in terms of local statistics (Figure 2). In the
small-aperture condition, consistent with using statio-
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narity properties for visual representation, shallow 
perceptual dimensions better describe perceptual judg-
ments of similarity. These shallow dimensions are 
sometimes sufficient to group flows that are based on 
similar categories, such as whether they are flowing 
water or windblown foliage (Figure 8 and Supplemen-
tary Figure S5).

In the large-aperture condition, many dynamic flows 
in the data set become inhomogeneous in their pixel 
statistics across space and time. These nonstationary 
image sequences (e.g., viscous fluids, hair or a flag 
blown by wind) have important departures from 
homogeneity, and our analysis suggests that such 
departures provide contextual cues that vision can use 
to infer aspects of the scene, such as the strength of a 
material’s underlying intermolecular forces. This also 
suggests that information represented in shallow 
dimensions is inadequate for inferring many aspects of 
the world. Consistent with this idea, Figure 2 shows 
that synthesized textures qualitatively appear more 
rigid than their original texture, suggesting that deeper 
dimensions are needed to adequately model intermo-
lecular surface structure.

The role of shallow perceptual dimensions in 
the large-aperture condition

Our stimulus set contained flows that spanned the 
entire spectrum of physical causes at the deepest level, 
from flows that consist of weak to strong intermolec-
ular forces (Figure 1), and the RDM analysis revealed 
shallow and deep dimensions consistent with observers’ 
comparisons across Data sets 1 and 2 and in color and 
grayscale. With the present data set, however, the 
shallow dimensions could not fully account for human 
similarity arrangements in the large-aperture condi-
tions, possibly because dynamic flows varied in many 
dimensions (intermolecular forces, other nonoptical 
and optical material properties, viewpoint, illumina-
tion, orientation, etc.), causing vastly different image 
sequences. Thus, the shallow features between different 
flows varied greatly, causing observers to sometimes 
rely on one shallow feature, such as color, to group 
Stimulus A next to Stimulus B but then use another 
shallow feature from Stimulus A, such as motion 
direction, to group it next to Stimulus C. This led to an 
arrangement in the large-aperture condition that was 
globally dominated by the deepest causal features
(Figure 1; intermolecular force) rather than by different 
kinds of shallow features that were used primarily for 
local arrangements.

The shallow dimensions evaluated in the present 
study were hand-selected features that are commonly 
used in explaining visual phenomena (see Table 1), 
produce synthetic images that appear natural (e.g., see

Figure 2), and are related to the response properties of
neurons in the early visual cortex. One could imagine
there exist more complex image features that better
account for the human similarity measurements or
other aspects of the distal stimulus. Rather than hand
selecting these features, an alternative method of
feature selection is machine learning. For example,
convolutional neural networks could be used to learn
features for a task, such as flow recognition, producing
a larger set of features, some of which may be more
reflective of the human similarity arrangements or
other aspects of the distal stimulus (e.g., Bell,
Upchurch, Snavely, & Bala, 2015).

The role of deep perceptual dimensions in the
large-aperture condition

There are at least several reasons why intuitively
important deep features (e.g., elasticity and compress-
ibility) were not rated consistently across observers
(Figures 4 and 10). One possibility is that the duration
needed to estimate these features was not adequate. For
example, Kawabe And Nishida (2016) have shown that
increasing the simulated movie frame duration (the
time of a single movie frame) of a falling cube from 33
to 266 ms also increases the impression of its elasticity.
Another possibility is that looping the video clip acted
like temporal noise that introduced oscillatory behav-
iors inconsistent with the normal elastic motion of the
objects, leading to noisy and inconsistent ratings on
some of the attributes. Another possibility is that the
chosen stimuli did not exhaust the perceptual range
over those dimensions. To further explore the role of
shallow dimensions in inferences of physical causes and
also determine the importance of other relevant deep
features (like elasticity, surface reflectance, and illumi-
nation), future work can use a larger stimulus set across
a smaller subset of dynamic flows (e.g., flowing water
or windblown textiles; Bi & Xiao, 2016). Focusing on
more specific stimulus sets based on intermediate or
weak intermolecular bonds may reveal the importance
of other attributes, such as elasticity, and the actions
decisions that guide inferences on these attributes.

The present analysis is missing several deep features
known to be important in human perception, including
optical material properties (e.g., reflectance: Brainard
& Maloney, 2011; Knill & Kersten, 1991). However,
some of the model RDMs are close enough to the noise
ceiling (Figure 9) to suggest that adding additional deep
features, such as those based on optical material
properties, will have a minor overall effect. Further-
more, given that flows in the present data set consist of
materials with a broad set of reflectance values (e.g.,
textiles), global similarity groupings based on optical
material properties is expected to be minimal.
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The depth of visual representation depends on 
task

In reality, vision relies on both shallow and deep 
representations of images, and this will depend on task. 
Consider, for example, the image of a highly localized 
edge. Shallow representations will be sufficient if local 
information unambiguously signals what is needed to 
successfully complete the task (e.g., edge orientation or 
color). They will not, however, be sufficient for some 
tasks. For example, imagining the physical cause of a 
highly localized edge quickly reveals that there is a high 
degree of uncertainty as to whether that edge is due to a 
discontinuity in depth, a change in surface pigment, a 
shadow, a texture, or a reflection from a shiny surface. 
The visual system resolves this ambiguity by relying on 
prior assumptions about external physical states or by 
combining the localized image with other contextual 
information (e.g., other sparsely sampled image patches) 
to arrive at a probable interpretation of the scene. 
Similarly, in the present set of experiments, we find that 
with identification, observers judged highly ambiguous 
flows in the small color condition by incorporating their 
built-in prior assumptions that materials were rigid 
with the color information from the image 
(Supplementary Figure S4). On the other hand, in the 
small color similarity arrangements, the prior on 
rigidity—a deep feature—was not as highly correlated 
with the arrange-ments (Figure 9), suggesting that 
observers relied more heavily on image features in this 
task.

Conclusion

Shallow perceptual dimensions like color can some-
times account for perceptual similarity and material
inference of natural dynamic flow (e.g., fire can be
identified by its distinctive pattern of colors that flows
upward). Other times, when shallow perceptual di-
mensions are ambiguous about the underlying causes,
vision relies on deeper perceptual dimensions that
reveal the generative physical causes of images (e.g., a
solid can be differentiated from a liquid or gas by the
strength of its intermolecular forces). We find that
perceived dynamic flow similarity and inferences based
on deeper dimensions require greater visual spatial
context and enable the estimation of important action
decisions, such as pick-up-ability and penetrability,
while inferences based on shallow dimensions, like
color, do not. Thus, visual inference of material from
dynamic flow appears to fall along a shallow-to-deep
continuum, with the depth of the representation guided
by behaviorally important action decisions.

Keywords: flow perception, material perception,
dynamic textures, natural image statistics, visual
inference

Acknowledgments

We thank Kendrick Kay for helpful discussions on
data analysis, and Shinho Cho, Erik Wingerson,
Hanlin Zhu, and the reviewers for helpful comments.
We would also like to thank Renaud Péteri, Sándor
Fazekas, Mark J. Huiskes, the National Park Service,
Jakob Op den Brouw, Randy Perry, Philip Moore,
Nicole Alfonzo, Thomas Porett, Idan Radai, Dan
Meyer, Simon Bolz, Age of Rockets Production and
Design, R&A Collaborations (Richard Foot and Arron
Fowler), Jean Slosberg, theFilmArtist, Dmitrii Lezine,
Boris Godfroid, Justin Lewis, and Sebastian Sadowski
for allowing us to use portions of their films as stimuli.
The work was funded by Office of Naval Research
Grant N000141210883 to DJK.

Commercial relationships: none.
Corresponding author: Yaniv Morgenstern.
Email: yaniv.morgenstern@psychol.uni-giessen.de.
Address: Department of Psychology, Justus-Liebig-
Universität Giessen, Giessen, Germany.

References

Bates, C. J., Yildirim, I., Tenenbaum, J. B., &
Battaglia, P. W. (2015). Humans predict liquid
dynamics using probabilistic simulation. In D. C.
Noelle et al. (Eds.), Proceedings of the 37th Annual
Meeting of the Cognitive Science Society (pp. 172–
177). Austin, TX: Cognitive Science Society.

Bell, S., Upchurch, P., Snavely, N., & Bala, K. (2015).
Material recognition in the wild with the materials
in context database. Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion (pp. 3479–3487). Washington, DC: IEEE.

Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., &
Grinspun, E. (2010). Discrete viscous threads.
ACM Transactions on Graphics, 29(4), 1–10.

Bi, W. Y., and Xiao, B. (2016). Perceptual constancy of
mechanical properties of cloth under variation of
external force. In SAP ’16: Proceedings of the ACM
symposium on applied perception (pp. 19–23). New
York: ACM.

Brainard, D. H., & Maloney, L. T. (2011). Surface
color perception and equivalent illumination mod-

Journal of Vision (2017) 17(12):7, 1–25 Morgenstern & Kersten 18

Downloaded from jov.arvojournals.org on 07/10/2019

mailto:yaniv.morgenstern@psychol.uni-giessen.de
http://jov.arvojournals.org/data/Journals/JOV/936521/jovi-17-10-03_s10.pdf


els. Journal of Vision, 11(5):1, 1–18, doi:10.1167/11.
5.1. [PubMed] [Article]

Bouman, K. L., Xiao, B., Battaglia, P., & Freeman, W.
T. (2013). Estimating the material properties of
fabric from video. In P. Kellenberger (Ed.),
Proceedings of the IEEE International Conference
on Computer Vision (pp. 1984–1991). Washington,
DC: IEEE Computer Society.

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10, 433–436.

Diedrichsen, J., Ridgway, G. R., Friston, K. J., &
Wiestler, T. (2011). Comparing the similarity and
spatial structure of neural representations: A
pattern-component model. NeuroImage, 55(4),
1665–1678.

Doerschner, K., Fleming, R. W., Yilmaz, O., Schrater,
P. R., Hartung, B., & Kersten, D. (2011). Visual
motion and the perception of surface material.
Current Biology, 21(23), 2010–2016, doi:10.1016/j.
cub.2011.10.036.

Doretto, G., Chiuso, A., Wu, Y. N., & Soatto, S.
(2003). Dynamic textures. International Journal of
Computer Vision, 51(2), 91–109.

Grzywacz, N. M., & Hildreth, E. C. (1987). Incre-
mental rigidity scheme for recovering structure
from motion: Position-based versus velocity-based
formulations. Journal of the Optical Society of
America A, 4(3), 503–518.

Hansen, T., Olkkonen, M., Walter, S., & Gegenfurtner,
K. R. (2006). Memory modulates color appearance.
Nature Neuroscience, 9(11), 1367–1368.

Jozwik, K. M., Kriegeskorte, N., & Mur, M. (2016).
Visual features as stepping stones toward seman-
tics: Explaining object similarity in IT and percep-
tion with non-negative least squares.
Neuropsychologia, 83, 201–226.

Kawabe, T., Maruya, K., Fleming, R.W., Nishida, S.
(2015). Seeing liquids from visual motion. Vision
Research, 109, 125–138.

Kawabe, T., Maruya, K., & Nishida, S. (2015).
Perceptual transparency from image deformation.
Proceedings of the National Academy of Sciences,
USA, 112(33), E4620–E4627.

Kawabe, T., & Nishida, S. Y. (2016). Seeing jelly:
Judging elasticity of a transparent object. J. In
Editor (Ed.), Proceedings of the ACM Symposium
on Applied Perception (pp. 121–128). New York:
ACM.

Khaligh-Razavi, S. M., & Kriegeskorte, N. (2014).
Deep supervised, but not unsupervised, models may
explain IT cortical representation. PLoS Compu-
tational Biology, 10(11), e1003915.

Kleiner, M., Brainard, D., Pelli, D., Ingling, A.,
Murray, R., & Broussard, C. (2007). What’s new in
Psychtoolbox-3. Perception, 36(14), 1.

Knill, D. C., & Kersten, D. (1991) Apparent surface
curvature affects lightness perception. Nature, 351,
228–229.

Koch, K., McLean, J., Segev, R., Freed, M. A., Berry,
M. J., Balasubramanian, V., & Sterling, P. (2006).
How much the eye tells the brain. Current Biology,
16(14), 1428–1434.

Kriegeskorte, N., & Mur, M. (2012). Inverse MDS:
Inferring dissimilarity structure from multiple item
arrangements. Frontiers in Psychology, 3, 245.

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008).
Representational similarity analysis: Connecting
the branches of systems neuroscience. Frontiers in
Systems Neuroscience, 2, 4.

Kubricht, J., Jiang C., Zhu, Y., Zhu, S.-C., Terzo-
poulos D., & Lu, H. (2016). Probabilistic simula-
tion predicts human performance on viscous water-
pouring problem. In A. Papafragou et al. (Eds.),
Proceedings of the 38th Annual Meeting of the
Cognitive Science Society (pp. 1805–1810). Phila-
delphia, PA: Cognitive Science Society.
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Appendix

Estimating perceptual dimensions and
affordances

We use the phrase perceptual dimension to refer to a
feature or a group of features arising from a common
quality or theme that represents aspects of the image or
physical scene that generated the image. Color, for
example, is a perceptual dimension, and two of its
features can be the mean and standard deviation of a
single pixel from the R, G, or B color layer. In contrast,
an affordance is a possible action with the image or
scene.

In order to evaluate how well candidate dimensions
could explain flow similarities, we posited a set of
dimensions from shallow to deep. Shallow dimensions
were features based on easily computable image
measures, such as color, that are known to be

important for image synthesis and perception (Table 1).
To aid in identifying higher level or deeper dimensions
that are not easily computable from the images, we also
asked observers to assign nonoptical material attributes
to the flows that are known to be important in physics-
based computer graphics, and to categorize the flows
by name. In order to evaluate how well our action
decisions could explain flow similarities, we also asked
observers to rate the flows on affordance properties
(e.g., penetrability).

We analyzed the dynamic flows, extracting percep-
tual dimensions along the shallow-to-deep continuum.
The dimensions near the shallow end were related to
the response properties of neurons in the early visual
systems (e.g., color, information summarized from a
multiscale spatiotemporal pyramid decomposition, and
optic flow) and computed with common image-
processing tools. Perceptual dimensions near the deeper
end of the continuum included intermediate-level
material properties (e.g., viscosity), and categories. We
used human-observer responses to estimate these
dimensions, since reliable machine-vision methods do
not exist or were not readily available.

In the experiments, the dynamic flows were viewed
within a circular aperture. The shallow dimensions of
these flows were extracted from a square region within
the circular aperture. For the small-aperture condition
(aperture diameter ¼ 1.838, 78 pixels), one side of this
square region amounted to 1.138 (48 pixels). For the
large-aperture condition (aperture diameter ¼ 10.768,
460 pixels), one side of the square region amounted to
7.508 (320 pixels).

Following are descriptions of how we extracted these
perceptual dimensions.

Color

The RGB color images for each movie frame were
converted to LAB color space. We computed the mean,
variance, skew, and kurtosis by marginalizing across
space (i.e., for each movie frame). Then these margin-
alized spatial statistics were marginalized across time
(i.e., across the movie frames), but separately for each
color layer, producing the mean, variance, skew, and
kurtosis for each of the four marginalized spatial
statistics. This led to 48 features (4 statistical summa-
ries across frames3 4 statistics3 3 color layers) for the
color dimension.

Multiscale spatiotemporal statistics

The spatiotemporal statistical features were based
on a pyramid decomposition (Simoncelli & Freeman,
1995) that breaks up an image into a high-pass
component, a number (Nf) of frequency sub-bands
(which are further separated into No orientation
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bands), and a low-pass component. We took this
decomposition and summarized the dynamic flows in
terms of the core features that the Portilla–Simoncelli
model (Portilla & Simoncelli, 2000) uses to synthesize
novel textured images of the original image. These
core sets of features are based on the original image
and its pyramid decomposition’s marginal statistics,
local autocorrelation, cross correlations with other
sub-bands and orientations, and cross-scale phase
statistics.
Marginal statistics: The marginal statistics characterize
the pixel-intensity distribution of the original image
and the pyramid decomposition at different spatio-
temporal scales. The statistics include mean, variance,
skew and kurtosis of the original image and of the
magnitude (absolute value) at each sub-band and
orientation, including the low- and high-pass compo-
nents. Thus, the total number of marginal statistical
features was 4 (mean, variance, skew, and kurtosis for
the original image)þ 4 3 (Nf 3 Noþ 2 (high- and low-
pass components)).
Local autocorrelation: The local autocorrelation char-
acterizes the salient spatial frequencies and the regu-
larity of the images, as represented by periodic or
globally oriented structures (Portilla & Simoncelli,
2000). Here the local autocorrelation is taken to be a
region of 9 pixels for each of the Nf frequency sub-
bands. We include the real autocorrelation for each
frequency sub-band (with all orientations included) and
the autocorrelation of the magnitude of each sub-band
and orientation band. By taking each 9-pixel autocor-
relation to be a single feature (rather than each of the 9
pixels being a unique feature), we have as the total
number of local autocorrelation features Nf (real
autocorrelation at each band across orientations) and
Nf 3 No (autocorrelation of magnitude at each sub-
band and orientation band).
Cross correlation: The correlation of sub-band magni-
tudes of an image’s pyramid decomposition has been
previously used to represent structures such as edges,
bars, and corners in image textures. Here we take these
products in three ways:

a. We cross-correlate each sub-band magnitude with
its cousins—that is, those of the other orienta-
tions at the same scale. The number of pairwise
cousin products for each scale is No(No � 1)/2.
From taking the No(No � 1)/2 cousin products
along a single scale to be a single feature, there are
Nf features.

b. We also cross-correlate the sub-band magnitudes
with their parents—that is, all orientations at the
next (coarser) scale (until there are no more
parents). The number of child–parent products is
the product of the number of orientations at each
scale (No 3 No). From taking the No 3 No child–

parent products across one scale as a single
feature, there are Nf � 1 features.

c. Finally, we also cross correlate the real sub-band
image with its cousins—that is, other orientations
at the same scale. The number of pairwise cousin
products for each scale is No(No� 1)/2. We treat
all the pairwise cousin products for a given scale
as a single feature; thus, there are Nf features.

In total, there are 3 3 Nf � 1 features.
Phase correlation: The phase correlation distinguishes
edges from lines, and helps in representing gradients
due to shading and lighting effects (Portilla &
Simoncelli, 2000). The phase correlation is based on the
child–parent cross correlation of the real part of the
child with both the real and imaginary parts at all
orientations at the next coarser level. The number of
cross products is the No (number of orientations at the
finer scale) 3 2 (1 for real part and 1 for the imaginary
part) 3 No (the number of orientations at the coarser
scale). We treat all child–parent products across one
scale as a single feature; thus, there are Nf� 1 features.

Spatiotemporal statistics for dynamic flows

A movie clip of a dynamic flow can be visualized as a
three-dimensional volume, which has two spatial
dimensions (x and y) and a temporal dimension (t). We
used the pyramid decomposition introduced by Portilla
and Simoncelli (2000) to separately summarize statistics
across the spatial dimensions and the two space-time
dimensions (x and t and also y and t) for grayscale
versions of the dynamic flows. Along the x-y dimen-
sions, we decomposed images into Nf spatial scales with
No orientations. We took multiple decomposed samples
across the opposite dimension (i.e., time or frames).
For the large-aperture condition, Nf ¼ 4 and No ¼ 4.
For the small-aperture condition, Nf¼ 2 and No¼ 4. In
total, we took 64 samples. Along the x-t and y-t
dimensions, we decomposed images along the opposite
spatial dimension, into Nf spatiotemporal sub-bands
with No orientations. For the large-aperture condition,
Nf¼4 and No¼4. The number of samples—pixels along
the opposite spatial dimension—was 320. For the
small-aperture condition, Nf ¼ 3 and No ¼ 4. The
number of samples was 48. We then summarized the
three types of pyramid decomposition (x-y, y-t, and x-t)
in terms of the multiscale spatiotemporal features.
Since there were many samples for each dimension
(e.g., 64 samples along x-y), the final feature value for a
dynamic flow was taken to be the average of that
feature across the sampled dimension.

Optic flow

We extracted optic-flow fields F (Fx for horizontal
vector and Fy for vertical vector) for successive frames
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(using MATLAB code provided by Sun et al., 2010)
from grayscale versions of the dynamic flows. We
summarized these optic flow fields as follows:
Speed: We summed the scalar of the motion vector
extracted from optic-flow fields marginalized across
space. We calculated the mean, variance, skew, and
kurtosis for these values marginalized over time.
Direction: We summed the scalar of the motion vector
extracted from optic-flow fields marginalized across
space and time. We computed the angle relative to a
reference vector pointing toward (0,1).
Absolute curl: The vector field’s curl represents its
magnitude of rotation. The curl is computed by
subtracting the differences in the values of the vector
field along the axis orthogonal to the vector compo-
nents:

Fcurl ¼ r3F ¼ ]Fx

]y
� ]Fy

]x
:

Its discrete form is

Fcurl i; j; tð Þ ¼ Fx i; jþ 1; tð Þ � Fx i; j� 1; tð Þ
2

� Fy iþ 1; j; tð Þ � Fy i� 1; j; tð Þ
2

� �
:

We computed the mean, variance, skew, and kurtosis
for the absolute curl of the vector field marginalized
across space, then calculated the mean, variance, skew,
and kurtosis of these values marginalized over time.
Absolute divergence: The vector field’s divergence
represents the extent to which there is more flow exiting
a region of space than entering it. In fluid simulation,
converging flows—such as a narrowing river—act like
funnels that cause the overall flow velocity to increase.
Diverging flows, on the other hand, spread the particles
out, causing the flow speed to decrease. The divergence
is calculated by summing the differences in the values of
the vector field along the axis parallel to the vector
components:

Fdiv ¼ r � F ¼
]Fx

]x
þ ]Fy

]y
:

The discrete form is

Fdiv i; j; tð Þ ¼ Fx iþ 1; j; tð Þ � Fx i� 1; j; tð Þ
2

þ Fy i; jþ 1; tð Þ � Fy i; j� 1; tð Þ
2

:

We computed the mean, variance, skew, and kurtosis
for the absolute value of the divergence of the vector
field across space, then calculated the mean, variance,
skew, and kurtosis of these values over time.
Gradient: The vector field’s gradient represents the
direction of the greatest rate of increase. In fluid
simulation, the gradient describes the movement of

particles with pressure change; high-pressure regions
push low-pressure regions, just like concentrated pres-
sure on dough will force the dough to spread out to lower
pressure regions. The gradient is computed as the slope of
the variation in scalar of motion vector components
along the axis parallel or orthogonal to the vector:

Fgrad ¼~rF ¼
]F

]x
Iþ ]F

]y
J;

where I and J are standard unit vectors. The discrete
form is

Fgrad i; j; tð Þ ¼ F iþ 1; j; tð Þ � F i� 1; j; tð Þ
2

� �2
"

þ F i; jþ 1; tð Þ � F i; j� 1; tð Þ
2

� �2
#1

2

We computed the gradient along the horizontal Fgrad_x

and vertical Fgrad_y vector fields across space. We also
combined them as a root sum of squares:

Fgrad xy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
grad x þ F2

grad y

q
:

We computed the mean, variance, skew, and kurtosis for
Fgrad_x, Fgrad_y, and Fgrad_xy of the vector fields across
space, then calculated the mean, variance, skew, and
kurtosis of these values over time.
Laplacian: The Laplacian operator represents the
divergence of the gradient of a vector field:

Flap ¼ r �~rF ¼
]2F

]x2
þ ]2F

]y2

The discrete form is

Flap i; j; tð Þ ¼ �4F i; j; tð Þ þ F iþ 1; j; tð Þ
þ F i� 1; j; tð Þ þ F i; jþ 1; tð Þ
þ F i; j� 1; tð Þ:

In fluid simulation, the Laplacian operator describes
how a particle moves relative to its neighbors. We
computed the Laplacian along the horizontal Flap_x and
vertical Flap_y vector fields across space. We also
combined them as a root sum of squares:

Flap xy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
lap x þ F2

lap y

q
:

We computed the mean, variance, skew, and kurtosis
for Flap_x, Flap_y, and Flap_xy of the vector fields across
space, then calculated the mean, variance, skew, and
kurtosis of these values over time.

Optic-flow statistics for dynamic flows

We assumed that observers attend to larger changes
in motion magnitude for similarity judgments. Thus,
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we analyzed only flow vectors (computed over a two-
frame distance) that had a magnitude . norminv(0.9) 3
SD, where SD is the standard deviation of the
magnitudes of all flow vectors in a given frame. This
also serves to denoise the flow data. Moreover, given
the multiscale nature of neurons in the early visual
cortex and the tendency for improvements in optic-flow
outputs with blur, we extracted optic-flow fields for the
dynamic flow movie clips at several coarser spatial
scales. For the large-aperture conditions, the optic flow
was computed for movies whose length was resized
from 7.58 to 3.758, 1.888, 0.948, and 0.478. For the small-
aperture conditions, it was computed for movies whose
length was resized from 1.138 to 0.568, and 0.288.

Material and affordance attributes

Observers rated the dynamic flows along six
attributes (Table 2). The attributes closely related to the
material properties are viscosity, elasticity, rigidity, and
compressibility, while those related more to important
action decisions are pick-up-ability and penetrability.
To compute a given flow’s feature value, we first scaled
each observer’s estimated attributes from 0 to 1. The
flow’s feature value was then the average of the scaled
observers’ ratings for that flow (missing values or ‘‘not
applicable’’ rating scores were ignored). This provided
an overall pooled feature value for each flow and each
attribute.

Categories

We created categorical features based on observers’
dynamic flow identification (Supplementary Figure S2).
Within each feature, a flow was assigned a value of 1 if
the feature was present and 0 if it was absent. There
were a total of 14 categorical features that fell into three
broad classes based on whether the stimulus belonged
to some material category, had some aspect of the
simulation model (Figure 1A and 1B), or was based on
some conceptual theme.
Features related to the material category: The following
categorical groups are related to a flow’s identified
material category. Since materials from the same class
have similar properties, objects within a category will
have similar simulation, rendering, and image-statistic
properties (Figure 1).

a. Water. Observers categorized the flow as some
form of water. See Supplementary Figure S2 for
what is considered a water classification.

b. Nonwater liquids. Observers categorized the flow
as some form of liquid other than water (e.g.,
milk).

c. Cloth. Observers categorized the flow as a cloth or
flag. 

d. Solids. Observers categorized the flow as a solid. 
See Supplementary Figure S2 for what is consid-
ered a solid classification.

e. Plants. Observers categorized the flow as a plant.
f. Other fluids. Observers categorized the flow as a 
fluid other than a liquid, such as vapor, fire, or 
smoke. 

Features related to the simulation model: The following
categorical groups are related to properties from the
simulation stage. This category will to some extent also
reflect the rendering and image-statistics stage, as
materials that fall into the same simulation category
will also have similar properties (Figure 1). However, as
opposed to the material-category variables just dis-
cussed, the simulation-model variables will group
stimuli across material categories, so there will be
greater variation in rendering properties and image
statistics.

a. Strong intermolecular bonds. Observers catego-
rized the flow as a solid, cloth, plant, web, hair, or
Jell-O.

b. Intermediate intermolecular bonds. Observers
categorized the flow as water, nonwater liquid, or
lava.

c. Weak intermolecular bonds. Observers catego-
rized the flow as vapor, fire, smoke, steam, or an
object consisting of many tiny particles (e.g.,
snow, dust, powder, sand).

d. Wind. The previous three categories are related to
material properties. Wind and gravity, on the
other hand, contribute to the forces that guide the
object’s behavior during simulation (Figure 1).
The wind category represents these external
forces. Here observers categorized the flow as
something that is blown by the wind. This
includes land plants, cloths, hair, and webs.

Features related to the conceptual theme: The following
categorical groups are related to higher level scene
analysis.

a. Human-made. Observers categorized the flow as
something that is human-made. This includes
human-made liquids (coffee, Coca-Cola, etc.),
cloths, and solids. Humans are partially respon-
sible for making the objects underlying these
flows.

b. Natural. Observers categorized the dynamic flow
as something that is natural (i.e., not artificial, or
objects such as cloths that are human-made). This
includes liquids (such as water or milk), animate
objects, webs, fire, and smoke.

c. Food. Observers categorized the flow as some-
thing that is edible and nonliving (e.g., honey,
Nutella, water, snow, oil).
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d. Water objects. Observers categorized the dynamic
flow as something that is made of water or found
in water. This includes water, aquatic plants, and
snow.

Adding category features for Color, XYT, Flow, and A&A
dimensions

In addition to real-valued features for the groups
already discussed, we added categorical features for
Color, XYT, Flow, and A&A. Each feature was
converted to three additional categorical features that
categorically grouped the data into whether they had
low, medium, or high values. For example, in the low-
value category feature, the real values that had a low
value were set to 1 and the remaining values were set to
0. The thresholds for what was considered low,
medium, or high were determined by separating the
range of real-valued outputs across stimuli for the
chosen feature into three roughly equal-sized groups.
We found that these categorical features used as
additional regressors improved model correlations with
human similarity arrangements.

Grouping perceptual dimensions

We created three additional perceptual dimensions
by grouping the perceptual dimensions listed above as
follows:

a. Shallow. This perceptual dimension was created
by merging the low-level features (color, multi-
scale spatiotemporal statistics, and optic flow).

b. Deep. This perceptual dimension was created by
combining the higher level features (affordances
and material attributes and categories).

c. All. This perceptual dimension included all
features.

Representational similarity analysis

Creating model RDMs

In order to compare the models to the similarity
judgments, the model responses were transformed into
the same space as the human responses. For each
model feature, we computed for each pair of dynamic
flows the square root of the squared difference between
their values on that feature (i.e., the Euclidean
distance). Once the computation for all pairwise
comparisons was complete, the dissimilarities were
assembled into the upper triangular portion of their
RDM and normalized to have unit sums of squares.

Reducing features before regression

Averaging highly correlated features: Following in the
footsteps of Jozwik, Kriegeskorte, and Mur (2016), to

increase the stability of the weights estimated during
regression, we iteratively combined high-correlated (r
. 0.9) vectors, alternately computing pairwise corre-
lations between the vectors and averaging highly
correlated vector pairs, until all pairwise correlations
were below threshold.
Removing features with outliers: We removed features
with outliers, since they tended to be poorly correlated
with the human arrangements, but also because of their
potential influence on model selection with the leave-
one-out cross-validation procedure discussed later. For
each feature, we computed the average distance of a
dynamic flow with all other flows. This led to a 43-

element vector per dataset, ~�di. The feature was removed

if its deviation ~�di �median ~�di
� �� �

= MAD ~�di
� �� �

from

the median (normalized by its median absolute

deviation) was greater than a threshold. The threshold
was determined as follows. For each feature, we
computed the maximum deviation from the median
(normalized by its median absolute deviation). The
threshold value was the 95th percentile of these
maximum values across all features.

Non-negative least-squares fitting of the representational
models

We used linear methods to find the optimal weighted
sum of model-RDM features that predict the measured
similarity representations (Diedrichsen, Ridgway,
Friston, & Wiestler, 2011; Jozwik et al., 2016; Khaligh-
Razavi & Kriegeskorte, 2014). To use these methods,
first we had to transform the human and model RDMs
from Euclidean distances to squared differences, since
squared differences can be added across dimensions. In
our case, both the human and feature RDMs are in
terms of Euclidean distances:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ik � f j

k

� �2q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Df ijk

� �2r
;

where dij is the distance between stimuli i and j on
feature k, f ik is the value on feature k for stimulus i, and
f j
k is the value on feature k for stimulus j.
By squaring the Euclidean distances to get the

squared differences between stimuli on a given feature,
we can apply traditional linear feature-combination
methods, since now our features, in terms of squared
differences, can be added:

dij
� �2 ¼ w2

1Df
2
1 þ w2

2Df
2
2 þ :::þ w2

kDf
2
k;

where wk is the weight given to feature k and Df 2k is the
squared difference between stimuli i and j on feature k.

We converted the human and feature RDMs from
Euclidean distances to squared differences and then
estimated the RDM weights with a non-negative least-
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squares fitting algorithm (Jozwik et al., 2016; Khaligh-
Razavi & Kriegeskorte, 2014; Lawson & Hanson, 1995)
in MATLAB (function lsqnonneg). In order to prevent
positive bias of the model performance estimates due to
overfitting to a particular set of stimuli, model-
prediction accuracy was estimated by cross validation
with a subset of the dynamic flows held out on each
fold. For each cross-validation fold, we selected 43 of
the 44 dynamic flows as the training set and used the
corresponding pairwise dissimilarities for estimating
the model weights. The model weights were then used
to predict the pairwise dissimilarities for the left-out
dynamic flow. This procedure was repeated until every
flow was left out and predictions were obtained for all
pairwise dissimilarities. Finally we converted these
pairwise dissimilarities from squared differences to
Euclidean distances and correlated them with the
human similarity arrangements.

Inferential analysis on model performance

We used the representational-similarity-analysis
toolbox for inferential analyses (Nili et al., 2014). We
quantified model performance by measuring the
Pearson correlation between the human dissimilarities
and the dissimilarities predicted by the models. For

each model, we computed the correlation coefficient 
between each subject’s data RDM and the RDM 
predicted by the model. Figure 9 and Supplementary 
Figures S7 and S8 show the subject-average correlation 
coefficients for the fitted models.

We first determined whether each of the model-
prediction RDMs is significantly related to each 
subject-average data RDM using a stimulus-label 
randomization test (10,000 randomizations per test). 
The test simulates the null hypothesis that the RDMs 
are unrelated (i.e., zero correlation). We conclude that 
the model-prediction and data RDMs are significantly 
related if the actual correlation falls within the top tail 
of the simulated null distribution. We used Bonferroni 
correction to adjust the alpha value for multiple 
comparisons. Next we tested for differences in model 
performance. We performed pairwise model compari-
sons using bootstrap resampling of the stimulus set
(1,000 bootstrap resamplings per test). This simulates 
the variability of model performance across random 
samples of stimuli. If the simulated distribution of 
model-performance differences is significantly greater 
than zero, we conclude that the actual model perfor-
mances significantly differ from each other. We 
corrected for multiple comparisons by adjusting alpha 
with Bonferroni correction.
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