RAIRO-Theor. Inf. Appl. 46 (2012) 593-613 Available online at:
DOI: 10.1051/ita/2012020 www.rairo-ita.org

STRING ASSEMBLING SYSTEMS

MARTIN KUTRIB! AND MATTHIAS WENDLANDT!

Abstract. We introduce and investigate string assembling systems
which form a computational model that generates strings from copies
out of a finite set of assembly units. The underlying mechanism is based
on piecewise assembly of a double-stranded sequence of symbols, where
the upper and lower strand have to match. The generation is addition-
ally controlled by the requirement that the first symbol of a unit has to
be the same as the last symbol of the strand generated so far, as well as
by the distinction of assembly units that may appear at the beginning,
during, and at the end of the assembling process. We start to explore
the generative capacity of string assembling systems. In particular, we
prove that any such system can be simulated by some nondeterministic
one-way two-head finite automaton, while the stateless version of the
two-head finite automaton marks to some extent a lower bound for the
generative capacity. Moreover, we obtain several incomparability and
undecidability results as well as (non-)closure properties, and present
questions for further investigations.

Mathematics Subject Classification. 68Q05, 68Q42.

1. INTRODUCTION

The vast majority of computational models in connection with language the-
ory processes or generates words, that is, strings of symbols out of a finite set.
The possibilities to control the computation naturally depend on the devices in
question. Over the years lots of interesting systems have been investigated. With
the advent of investigations of devices and operations that are inspired by the
study of biological processes, and the growing interest in nature-based problems

Keywords and phrases. String assembling, double-stranded sequences, stateless, two-head
finite automata, decidability, closure properties.

I Institut fiir Informatik, Universitat Giessen, Arndtstr. 2, 35392 Giessen, Germany.
{kutrib,matthias.wendlandt}@informatik.uni-giessen.de

Article published by EDP Sciences © EDP Sciences 2012

http://dx.doi.org/10.1051/ita/2012020
http://www.rairo-ita.org
http://www.edpsciences.org

594 M. KUTRIB AND M. WENDLANDT

modeled in formal systems, a very old control mechanism has been rekindled. If
the raw material that is processed or generated by computational models is double
stranded in such a way that corresponding symbols are uniquely related (have to be
identical, for example), then the correctness of the complementation of a strand is
naturally given. The famous Post’s Correspondence Problem can be seen as a first
study showing the power of double-stranded string generation. That is, a list of
pairs of substrings (u1,v1), (u2,v2), ..., (uk, vg) is used to generate synchronously
a double-stranded string, where the upper and lower string have to match. More
precisely, a string is said to be generated if and only if there is a nonempty finite
sequence of indices i1,149,...,ir such that w; w, ... u;,, = vi, Vi, ... v, . It is well-
known that it is undecidable whether a PCP generates a string at all [11]. A more
recent approach are sticker systems [1,6,10], where basically the pairs of substrings
may be connected to form pieces that have to fit to the already generated part
of the double strand. In addition, for variants the pieces may be added from left
as well as from right. So, the generation process is subject to control mechanisms
and restrictions given, for example, by the shape of the pieces.

Here we consider string assembling systems that are also double-stranded string
generation systems. As for Post’s Correspondence Problem the basic assembly
units are pairs of substrings that have to be connected to the upper and lower
string generated so far synchronously. The substrings are not connected as may be
for sticker systems. However, we have two further control mechanisms. First, we
require that the first symbol of a substring has to be the same as the last symbol of
the strand to which it is connected. One can imagine that both symbols are glued
together one at the top of the other and, thus, just one appears in the final string.
Second, as for the notion of strictly locally testable languages [7,15] we distinguish
between assembly units that may appear at the beginning, during, and at the end
of the assembling process.

The paper is organized as follows: the next section contains preliminaries and
the definition of string assembling systems as well as some meaningful examples
that are a starting point to explore the generative capacity of the systems. Then
Section 3 deals with an upper and lower bound for the generative capacity. It
is shown that any string assembling system can be simulated by some nonde-
terministic one-way two-head finite automaton, while the stateless version of the
two-head finite automaton marks to some extent a lower bound for the genera-
tive capacity. More precisely, up to at most four additional symbols in the strings
generated, any stateless nondeterministic one-way two-head finite automaton can
be simulated by some string assembling system. Several incomparability results
are derived. In particular, we obtain incomparability with (deterministic) (linear)
context-free languages, regular languages, and sticker system languages. Though
not all regular languages belong to the family of languages generated by string
assembling systems, any regular language can be represented by such a system
and a weak homomorphism. The main subject of Section 4 are closure properties
of the family of languages generated by string assembling systems. In particular,
the non-closure under five of the six AFL operations is shown, where the remaining

STRING ASSEMBLING SYSTEMS 595

one, the iteration, is an open problem. Furthermore we obtain non-closure under
complementation. The only positive closure property is for reversal. In Section 5
we investigate several decidability problems. It turns out that emptiness, finite-
ness, inclusion, regularity, and context-freeness are all undecidable. In Section 6
we finally present untouched or unanswered questions which may be interesting
and fruitful for further research.

2. PRELIMINARIES AND DEFINITIONS

We write X* for the set of all words over the finite alphabet Y. The empty word
is denoted by A, and ¥ = X* \ {\}. The reversal of a word w is denoted by w®
and for the length of w we write |w|. For the number of occurrences of a symbol a
in w we use the notation |w|,. Generally, for a singleton set {a} we simply write a.
We use C for inclusions and C for strict inclusions. In order to avoid technical
overloading in writing, two languages L and L’ are considered to be equal, if they
differ at most by the empty word, that is, L — {\} = L’ — {\}.

As mentioned before, a string assembling system generates a double-stranded
string by assembling units. Each unit consists of two substrings, the first one is
connected to the upper and the second one to the lower strand. The corresponding
symbols of the upper and lower strand have to be equal. Moreover, a unit can only
be assembled when the first symbols of its substrings match the last symbols of
their strands. In this case the matching symbols are glued together on at the top
of the other. The generation has to begin with a unit from the set of initial units.
Then it may continue with units from a different set. When a unit from a third
set of ending units is applied the process necessarily stops. The generation is said
to be valid if and only if both strands are identical when the process stops. More
precisely:

Definition 2.1. A string assembling system (SAS) is a quadruple (X, A, T, E),
where

1. X' is the finite, nonempty set of symbols or letters;

2. AC Xt x X7 is the finite set of azioms of the forms (uv,u) or (u,uv), where

u€ Xt and v e X¥;

T C X x X7 is the finite set of assembly units; and

4. E C YT x X7 is the finite set of ending assembly units of the forms (vu,u) or
(u,vu), where u € ¥ and v € X*.

@

The next definition formally says how the units are assembled.

Definition 2.2. Let S = (¥, A, T, E) be an SAS. The derivation relation = is
defined on specific subsets of X7 x X1 by

1. (uwv,u) = (wvx,uy) if
(i) uv =ta, u = sb, and (azx,by) € TUE, for a,b € ¥, z,y,s,t € X*; and
(ii) ve = yz or vaz =y, for z € X*.

596 M. KUTRIB AND M. WENDLANDT

2. (u,uv) = (uy,uvx) if
(i) wv =ta, u = sb, and (by,ax) € TUE, for a,b € X, z,y,s,t € X*; and
(ii) vz =yz or vez =y, for z € X*.

A derivation is said to be successful if it initially starts with an axiom from A,
continues with assembling units from 7', and ends with assembling an ending unit
from E. The process necessarily stops when an ending assembly unit is added. The
sets A, T, and F are not necessarily disjoint.

The language L(S) generated by S is defined to be the set

L(S)={we X7 | (p,q) = (w,w) is a successful derivation },

where =" refers to the reflexive, transitive closure of the derivation relation =.
In order to clarify our notation we give three meaningful examples.

Example 2.3. The following SAS S = {({a,b,c}, A, T, E) generates the non-
context-free language { a"b"c™ | n > 1}.

A=A{(a,a)}, T=T,UT,UT,, E={(c,c)}, where
T, = {(aa’a)v (ab’ a)}v Ty, = {(bbvaa)v (bc, ab)}v
T. = {(CC, bb)v (Ca bC), (Cv CC)}'

The units in 7T, are used to generate the prefixes a™b. Initially, only the unit
(aa,a) is applicable repeatedly. Then only (ab,a) can be used to generate the
upper string a™b and the lower string a. After that the unit (bb, aa) from T}, has to
be used exactly as many times as the unit (aa,a) has been applied before. Then
an application of unit (bc,ab) is the sole possibility. This generates the upper
string ab"c and the lower string a™b. For the last part the units from T, are
used. Similarly as before, repeated applications of (cc, bb) yield to the upper string
a™b™c" and the lower string a™b™. So, it remains to complement the ¢’s in the
lower string. This is done by the units (¢, be), which can be applied only once, and
(¢, cc) which can be applied arbitrarily often. However, the derivation is successful
only if the number of ¢’s in the upper and lower string match when the unit from
FE is applied.

The construction of Example 2.3 can be extended to an arbitrary number of
symbols.

Corollary 2.4. Let k > 1 be a constant and X = {aq,as,...,ax} be an alphabet.
Then the language { atal ...a} | n > 1} is generated by an SAS.

The next example uses the same mechanism as the previous one, but extends
the substrings generated. The mechanism is to copy parts of the string generated
so far by using markers and the matching of the upper and lower strings.

STRING ASSEMBLING SYSTEMS 597

Example 2.5. Let X be an alphabet not containing the symbols {$1, $2, $35}. The
following SAS (X U {$1,$2,9$5}, A, T, E) generates the non-context-free language
{$1w$2w$3 ‘ w e >+ }

A:{($1,$1)}, T=T,UT,UTs, E:{($3,$3)}, where for x,y € X,
Ty = {($12,%1), (zy,$1), (%2, 81)}, T = {($27, $12), (xy, vy), (283, 2$2)},
T3 = {($3,$22), (83, 2y), ($3, 283) }.

Similar as in Example 2.3, the units from 73 are used to generate the upper string
$1w$o and the lower string $;. Then units from 75 are assembled to form the
upper string $; w$sw$s and the lower string $;w$s. Finally, one obtains $;w$sw$s
as upper and lower string by the units in T5.

The construction of Example 2.5 can be extended to an arbitrary number of
copies of w.

Corollary 2.6. Let k> 1 be a constant and X be an alphabet not containing the
symbols {$1,%2,...,8x}. Then the language { $rwow... $p_ 1wy | w € YT} is
generated by an SAS.

Now we turn to a basic example where the underlying technique is to utilize
the lengths difference between the upper and lower string.

Example 2.7. Let k > 2 be a constant. The following SAS ({a,b}, A, T, E) gen-
erates the language { bw | w € {a,b}*, |w|, mod k=0 }.

A:{(bvb)}’ E:{(xvx) \xe{a,b}},
T = {(za,), (zb,y2), (a,u), (b,u) | z,y,2 € {a,b},u € {a,b}*}.

The idea of the construction is to start with a b and then to add arbitrary symbols
to the upper string. Whenever an « is added, the difference between the lengths of
the upper and lower string is increased by one, while it remains as it is when a b is
added. The only possibility to complement the lower string is to add substrings of
length k. Therefore, in any situation, the difference between the lengths modulo &
is equal to the number of a’s in the upper string modulo k. So, if both strings are
identical, they do belong to the language as stated.

3. GENERATIVE CAPACITY

In order to explore the generative capacity of SAS we start with an upper bound.
In particular, we show that any SAS can be simulated by some nondeterministic
one-way two-head finite automaton. The family of languages accepted by such
devices is known to be a proper subfamily of languages accepted by nondetermin-
istic two-way two-head finite automata (see [3], for example). From the complexity
point of view, the two-way case is well explored. There is a strong relation to the

598 M. KUTRIB AND M. WENDLANDT

computational complexity class NL = NSPACE(logn). In [2] it has been shown
that NL is characterized by the class of nondeterministic two-way multi-head fi-
nite automata. So, together with the next theorem, we obtain that the family of
languages generated by SAS is properly included in NL.

A one-way two-head finite automaton is a finite automaton having a single read-
only input tape whose inscription is the input word in between two endmarkers.
The two heads of the automaton can move to the right or stay on the current tape
square. Denote such a device as (S, X, §,>, <, sg, F'), where S is the finite set of
internal states, X is the set of input symbols, > ¢ X and < ¢ X are the left and
right endmarkers, so € S is the initial state, ' C S is the set of accepting states,
and § is the partial transition function mapping S x (X' U{r>, <1})? into the subsets
of S x {0,1}?, where 1 means to move the head one square to the right and 0
means to keep the head on the current square. Whenever (s',dy, dz) € §(s, a1, a2)
is defined, then d; =0 if a; = <, for 7 € {1, 2}.

A one-way two-head finite automaton starts with both heads on the left end-
marker. It halts when the transition function is not defined for the current situa-
tion. The input is accepted if and only if the computation halts in an accepting
state.

Theorem 3.1. Let S = (¥, A, T,E) be an SAS. There exists a nondeterministic
one-way two-head finite automaton M that accepts L(S).

Proof. Basically, the idea of the construction of M is to guess dependent on the
currently scanned input symbols (the current overlappings) which assembly unit
comes next. Then the guess is verified by reading the upper strand with the first
and the lower strand with the second head. The last symbol is the new overlapping
and, thus, the heads stay on it for the new guess. After each verification, M
determines whether the assembling process is completed and guesses another unit
to be assembled otherwise. At the beginning one of the axioms is guessed and
verified as the ordinary units. In detail, for any (x()x(Dol), y()yé 9. yéi)) €A,

wherex()62f0r1<j<k y()62f0r1<j<€ we set

(P17, 1.1) € d(s0,)

() is a new state. This implements the guessing of the axiom. Further, for

€ AUT U FE we provide a new state p(Y and

(p'ELJ)rlv) 65(pn 7x5l)vy())

(qf),O,O) €6 (p,f L2y gt))
for 1 < n < k and new states pﬁj)ﬂ and qii), implements the verification of the
upper strand. Similarly,

where p;

any (z 5) S CRVILY CRPY)

(qs}rlvo’ 1) €0 (Qr(; "rl(cz)’ yr(L))

STRING ASSEMBLING SYSTEMS 999
for 1 < n < ¢ and new states q,(f}rl, implements the verification of the lower
strand. Finally, the automaton M guesses whether another unit, say unit j, is to

be assembled by
(pgj), ,O) cs (qéz),x,(c),yéz)) 7

where m,(j)) and y(z) = ygj) for some (xgj)xé 2 m(J,),y()y(2 yéf)) e TUE,

or whether the assembhng process is completed by

(5t71 1) € o (q[7x§g)7y[g))

{(Sa, 0, 0)} = 0(st,<, <)
for all (x()mg)) .73,(;), y()yéz) . yéi)) € E, where s, and s; are new states, and s,
is the only accepting state. U

The previous theorem and its preceding discussion together with the proper
inclusion of NL in NSPACE(n) (see, for example, [9]), which in turn is equal to the
family of context-sensitive languages, reveals the following corollary.

Corollary 3.2. The family of languages generated by SAS is properly included
in NL and, thus, in the family of context-sensitive languages.

Combining Theorem 3.1 and Example 2.3 we obtain the following relations to
context-free languages.

Lemma 3.3. The family of languages generated by SAS is incomparable with the
family of (deterministic) (linear) context-free languages.

Proof. By Example 2.3 the non-context-free language {a"b"c™ | n > 1} does
belong to the family of languages generated by SAS. Conversely, by Theorem 3.1
any SAS can be simulated by a nondeterministic one-way two-head finite automa-
ton. It is well known that the latter cannot accept the deterministic and linear
context-free language { wew® | w € {a,b}* }. O

Although the basic mechanisms of sticker systems and string assembling systems
seem to be closely related, their generative capacities differ essentially. While the
copy language { $1w$ow$s | w € YT} of Example 2.5 is generated by an SAS,
it is not generated by any sticker system. So, one could say, SAS can copy while
sticker systems cannot.

Conversely, some variant of the mirror language { w | w € {a,b}* and w = wf}
is generated by many variants of sticker systems (that can generate all linear
context-free languages), but cannot be generated by any SAS, since it cannot be
accepted by any nondeterministic one-way two-head finite automaton. So, sticker
systems can handle mirrored inputs while SAS cannot.

Following the discussion preceding Theorem 3.1, the simulation of SAS by
nondeterministic one-way two-head finite automata gives only a rough upper
bound for the generative capacity of SAS. Interestingly, the stateless version of

600 M. KUTRIB AND M. WENDLANDT

the two-head finite automaton marks to some extent a lower bound for the gener-
ative capacity. More precisely, up to at most four additional symbols in the words
generated, any stateless nondeterministic one-way two-head finite automaton can
be simulated by some SAS. Actually, such a stateless automaton is a one-state de-
vice so that the transition function maps the two input symbols currently scanned
to the head movements. Therefore, the automaton cannot accept by final state.
It rejects if any of the heads falls off the tape or if the transition function is not
defined for the current situation. If the transition function instructs both heads to
stay, the automaton halts and accepts [5,13].

Theorem 3.4. Let M = ({s}, X,d,1>,<,s,0) be a stateless nondeterministic one-
way two-head finite automaton and $, #, 2, ! ¢ X. There exists a string assembling
system S such that any word generated by S contains each of the symbols $, #, 2, !
at most once, and h(L(S)) = L(M), for the homomorphism h($) = h(#) = h(?) =
h(!) =X and h(a) = a, for a € X.

Proof. The underlying idea of the construction of S is to guess and assemble the
next symbol to the corresponding strand whenever a head moves to the right.
The guesses are subsequently verified by simulating transitions of M. Special care
has to be taken for the situation where M accepts. Moreover, by inspecting the
transition function we can check whether (0,0) € §(>,>). If so, language L(M) is
equal to X*. In this case we obtain an SAS immediately. So, in the following we
assume (0,0) & §(>>, >>).

We start the construction with the units from A that implement the guessing
of the first symbol.

A={(z,2) |z e X}.

The transitions of M are written in its short form, that is, we omit the unique
state. Next, we turn to the construction of T'. Let a,b € X be some symbols. Then
we define all following units for all z,y € X

(1) (z,ay) € T if (0,1) € §(t>,a) (4) (a,y) € Tif (0,1) € §(a,>)
(2) (z,a) €T if (1,0) € 6(>>,a) (5) (ax,y) € Tif (1,0) € 6(a,>)
(3) (z,ay) € Tif (1,1) € (>, a) (6) (ax,y) € Tif (1,1) € 6(a,>>).

The units from (1) to (6) simulate the behavior of M as long as one of its heads
stays on the left endmarker. After having guessed the first symbol by a unit from A,
now a new symbol z or y is guessed and assembled whenever a head moves, while
the previously guessed symbol a is verified by the simulation of a step of M. As
long as one head stays on the left endmarker, it has not verified the first symbol
of its strand and, so, for any possible first symbol a unit has to be provided (see
2 in units (1)—(3) and y in units (4)—(6)).

Once both heads have been moved off the left endmarker, symbols from both
strands are guessed and verified by simulations of steps of M as follows.

STRING ASSEMBLING SYSTEMS 601

(7) (a,by) € T if (0,1) € §(a,b (9) (ax,by) € T if (1,1) € (a,b).
]‘7

€ d(a,b)
(8) (az,b) € T if (1,0) € 8(a,b)

So far, the SAS generates its strands exactly as M would read them. Next
we turn to the accepting transitions of M. Here it may happen that M accepts
without reading the whole input. In this case, an arbitrary string can still follow.
We concatenate it with the help of the symbols $ and #.

The $ marks the rightmost position of a head when M accepts. Note that at
most one of the units (12) or (13) is applicable, dependent on which head is in
front.

Next, the other strand is complemented with the help of the $. Then a symbol #
is assembled with whose help an arbitrary string is concatenated to the lower
strand.

(14) ($,2y) €T (16) ($#,a8#) €T (18))
(15) (2y,$)eT (17) (z$#,$%) €T (19) (#,2y) e T.

When the process of concatenating symbols is completed, a symbol ! is assem-
bled that is used to complement the upper strand.

(20) (#,#1)eT (23) #',H)eT (26) (z',") eT
(21) (#,2')eT (24) (zy,")eT (27) (1,y!) eT.
(22) (#x,')eT (25) (Y,zy)eT

Units (20) and (21) finish the process of concatenating symbols. The units
(22)—(24) and (26) are used to complement the upper strand. Units (25) and (27)
can be used to complement the lower strand. They are needed in the following.

Before we turn to the construction of the set E, we consider situations where
at least one head of M reaches the right endmarker. In this case the process
of concatenating symbols is also finished but the simulations must be continued
until M finally accepts or rejects. We continue the simulation with the help of the
symbol 7.

(28) (az,y?) € T if (1,0) € 6(a, <) (32) (z?,ay) € T if (0,1) € §(<,a)
(29) (a?,y?) € T if (1,0) € 6(a, <) (33) (27,a?) € T if (0,1) € 6(<1,a)
(30) (az,?)e T if (1,0) € d(a, <) (34) (?,ay) € T'if (0,1) € 0(<, a)

(31) (a7,7) €T if (1,0) € 6(a, <) (35) (?,a?) € T'if (0,1) € 6(<, a).

602 M. KUTRIB AND M. WENDLANDT

Units (28) and (30) as well as (32) and (34) are used to add the symbol ?
by guessing, and to continue the simulation. Units (29) and (31) as well as (33)
and (35) are used to guess the completion of the complementation.

We consider the remaining accepting situations of M.

(36) (azx,y') e T if (0,0) € §(a, <) (42) (z!,a') € T if (0,0) € 6(<,a)
(37) (al,y!) €T if (0,0) € 6(a, <) (43) (71, aac) e Tif (0,0) € 6(<,a)
(38) (az,?') e T if (0,0) € §(a, <) (44) (?!,a?!) € T if (0,0) € §(<, a)
(39) (a7!,?71)eTif (0,0) € §(a, <) (45) (z',y) € T if (0,0) € 6(<,>)

(40) (=,)eTif(O 0) € 6(>, <) (46) (?',?1) € T if (0,0) € (<, <).
(41) (x',ay) € T if (0,0) € 6(<,a)

When M accepts with exactly one head on the right endmarker a symbol ! is
used to complement the remaining strand. When this symbol is added, M has to
distinguish whether the other head reaches the right endmarker in the next step
((37), (39), (42), (44)), whether the other head is still on the left endmarker ((40),
(45)), or whether the other head is not at an endmarker ((36), (38), (41), (43)).
Unit (46) is used when both heads arrive at the right endmarker at the same time.

Finally, we define the set £ by E = {(!,!)}. Ounly by using this unit the
generation of a word by S is successful. If and only if in the preceding process
a symbol ! is assembled, M has accepted. O

Stateless multi-head finite automata are studied in detail in [5,13]. Though it
is an open problem whether the additional symbols used in the simulation of the
previous proof are necessary, there is a language generated by SAS which is not
accepted by any stateless nondeterministic one-way two-head finite automaton.

Lemma 3.5. The language { a®" | n > 1} is generated by an SAS but not accepted
by any stateless nondeterministic one-way two-head finite automaton.

Since the family of languages generated by SAS is properly included in
the context-sensitive languages and incomparable with (deterministic) (linear)
context-free languages, it is natural to compare it with regular languages, too.

Theorem 3.6. The family of languages generated by SAS is incomparable with
the family of (unary) regular languages.

Proof. By the previous results it remains to be shown that there is a unary
regular language not generated by any SAS. To this end, we consider the lan-
guage L = {a}U{a®" |n>2}, and assume that it is generated by some SAS
({a}, A, T, E).

Since a € L, the unit (a,a) must belong to A as well as to E. Now we define
the three sets T, = { (a,a’) € T |i > 2}, T, = {(a’,a/) € T | i >j > 1}, and
T={(aa?)eT|1<i<j}

If T, is not empty, all its units are of the form (a*+2*,a%+2*) k > 0. Otherwise,
starting with unit (a,a) € A, assembling a unit from T, not of this form, and

STRING ASSEMBLING SYSTEMS 603

ending with unit (a,a) € E results in a string of length greater than one but not
of length a**2*. But this string does not belong to L. Now, starting with unit
(a,a) € A, assembling a fixed unit (a**+2%0 q*+2ko) from T, twice, and ending with
unit (a,a) € E results in the string a*T2Fo+4+2ko—1 of odd length. But the only
string in L of odd length is a. So, we conclude that T, must be empty.

If T, or T; is empty in addition, either the lower or the upper string gets longer
and longer compared with the other string. In this case only a finite language is
generated, which is a contradiction. Therefore, T;, and 1} both are not empty. Fix
a unit (a™,a’*) from T, and a unit (a2, a’2) from T;. Now, assembling jz — iz units
(', a’) and i; — j; units (a®,a’?) extends the upper as well as the lower string
by 4172 — i2j1 — i1 — j2 + i2 + j1 symbols. So, the effect is as assembling a unit
(ai1j2—i2j1—il—j2+i2+j1+1’ailjZ—iZjl—il—j2+i2+j1+1) from T,.. We conclude that T,
and 7T; both have to be empty, and obtain the same contradiction as above. O

The previous theorem shows that SAS cannot even generate all unary regular
languages. However, all finite regular languages L can be generated.

Proposition 3.7. Every finite reqular language is generated by an SAS.

Proof. Given a finite regular language, an SAS generating L is constructed as
follows. For all w € L a unit (w,w) is added to A, T is set to be empty, and
E={(z,z)|zeX}. O

Though not all regular languages belong to the family of languages generated
by SAS, all regular languages can be represented by an SAS and a weak homo-
morphism.

Theorem 3.8. Let L be a reqular language. There is an SAS S and a A-free
letter-to-letter homomorphism h such that L = h(L(S)).

Proof. Let a regular language L C X* be given by a complete deterministic finite
automaton with state set Q@ = {q1,q2,...,qn}, initial state ¢, set of accepting
states F, and transition function §. Let X’ = {a’ | a € X } be a copy of the input
alphabet. A A-free letter-to-letter homomorphism A : (XU X')* — X is defined as
h(a) = h(a') = a, for all a € X.

Next we construct an SAS S = (X U X/ AT, E) such that L = h(L(S)).
Basically, the idea of the construction is to extend the upper strings by blocks of
length n whose last symbol is primed. The current state of the simulated DFA is
encoded by the length difference between the upper and the shorter lower string.

We start by constructing the units of set A for all strings having at least length n.
Let anan—1...aza1 € X" and 6(q1,anan—1-..a2a1) = ¢;- Then the unit

i
(anGp_1...a201,GnQn_1...Gi+1)

is included in A. Note that only the last symbol of the overlapping of the upper
string is primed and that the length of the overlapping is 1 < ¢ < n, that
is, the index of the state the DFA is in after initially processing the input

604 M. KUTRIB AND M. WENDLANDT

string a,a,—1...a2a;. For all strings having a length of at most n that do
belong to L, we proceed as follows. Let arpag—_1 ...a2a1 € E’“, 1 <k <n and
0(q,axak—1 ...aza1) € F. Then the unit

i i
(apag—1...a207, axak_1 ...azay)

is included in A. Note that in this case there is no overlapping.
Next, the units of set T are constructed. Let ana,—1...a2a1 € X", api1 € X,
¢ €Q,bibi_1...by € X1 and b;y1 € X. Then the unit

1 l !
(an_Hanan_l ... a2aq, bi+1bibi_1 . b3b2an+1anan_1 . aj+1)
is included in T if 4 < n and 0(¢;, Gn@n—1 ...az2a1) = g;, and
1 ’oq I
(an+1anan,1 c..Q2ay, bi+1bibi71 N b3b2an+1anan,1 N aj+1)

if i = n and §(¢i, anan—1...a2a1) = g;. Since in any situation the overlapping
includes exactly one primed symbol, by aligning it is ensured that only such units
can be assembled that match the currently encoded state of the DFA.

In addition, units are provided that remove the overlapping when an accepting
state can be reached. Let arag_1...asa1 € Ek, 1<k<n,ap1 €Y, q €Q,
bibi_1...by € X1 and b4, € X. Then the unit

! I ! !
(ak+1akak_1 ... 20, bi+1bibi_1 e bngClkJrlakak_l . al)
is included in T if i < n and 0(g;, agak—1 . ..aza1) € F, and
! ! b/ b b b b ! !
(@hpqarar—1...azay, b, 1bibi_1...bsbaay arar—_1...a7)

if i = n and 6(qi, agak—1 ...a2a1) € F. Note that no further unit from 7" can be
assembled when there is no overlapping.

Finally, the set F terminates the generation successfully when there is no over-
lapping: E = {(d/,a’) |a € X' }.

Altogether, computations of the given DFA are simulated whereby primed
versions of input symbols are used to ensure that only correct units are assembled,
where correct means with respect to the current state encoded. The homomor-
phism just removes the primes and, hence, h(L(S)) = L. O

4. CLOSURE PROPERTIES

Finally we consider closure properties of the family of languages generated by
SAS. Closure under certain operations indicates a certain robustness of the lan-
guage families, while non-closure properties may serve, for example, as a valuable
basis for extensions. As it turns out the language family considered here is not
closed under five of the six AFL operations, where the remaining one, the iteration,
is an open problem. Furthermore we obtain non-closure under complementation.
The only positive closure property is for reversal.

STRING ASSEMBLING SYSTEMS 605

Lemma 4.1. Let L C X* be a language generated by an SAS. If |a* N L| = oo,
for some symbol a € X, then there exist constants p,q > 1 such that aPv € L,
v € X*, implies a?PTv € L.

Proof. Let S = (X, A, T,E) be an SAS generating L, a € X, |[a™ N L] = co, and
three sets defined by T. = { (a*,a’) € T |i > 2}, T, = {(a*,a?) €T |i >j>1},
and T; = { (a*,a?) e T |1<i<j}.

Since L includes infinitely many words from a™, set T,, or T}, and T} both are
non-empty. Otherwise only finitely many words from a™ are generated. If T, is
not empty, choose a unit (a‘,a’) € T, and set ¢ = i — 1. If, otherwise, T}, and T}
both are non-empty, choose a unit (a’,a’t) from T, and a unit (a’2, a’?) from Tj.
Assembling jo — io units (a’*, /') and i1 — j; units (a’2, a’?) extends the upper as
well as the lower string by i1j2 — i2j1 — 91 — j2 + 42 + j1 symbols. In this case set
q =i1j2 —i2j1 — i1 — J2 +i2 + J1.

Set p to be the length of the longest string appearing in a unit from A. Then any
derivation of a word a?v € L has to start with a unit of the form (a™,a™) € A.
So, assembling the unit(s) that extend(s) the upper as well as the lower string
by ¢ symbols a immediately after the start, and letting the remaining derivation
unchanged generates the string a?™9v. O

The next example applies the lemma to show that a language does not belong
to the family of languages generated by SAS.

Example 4.2. Let L be the language {a™b" | n > 1} Ua™, and assume L is
generated by an SAS. Then Lemma 4.1 can be applied with constants p,q > 1.
Since a”’b? € L we derive aPT9bP € L, a contradiction. So, L does not belong to
the family of languages generated by SAS.

Next, we turn to the closure properties under Boolean operations. The non-
closure under union can be seen by the previous example. The stronger result that
the family of languages generated by SAS is not even closed under union with a
symbol has already been shown in the Proof of Theorem 3.6, where it was proven
that the language {a} U { a®" | n > 2} is not generated by any SAS. Clearly, {a}
as well as { a®" | n > 2} are generated by SAS.

Theorem 4.3. The family of languages generated by SAS is not closed under
union (with a symbol).

In order to disprove the closure under complementation we can again apply
Lemma 4.1 to an appropriate witness language.

Theorem 4.4. The family of languages generated by SAS is not closed under
complementation.

Proof. By Corollary 2.4 the language L = { a"b™ | n > 1} is generated by an SAS.
In contrast to the assertion assume its complement L also belongs to the family of
languages generated by SAS. Since all words a’, for i > 1, belong to L, Lemma 4.1
can be applied with constants p,q > 1. So, aPb?T? € L implies a?tP+7 € L, a
contradiction. (]

606 M. KUTRIB AND M. WENDLANDT

The remaining Boolean operation is the intersection. Since the family of
languages generated by SAS is incomparable with the family of regular languages,
but includes the languages X*, for any alphabet Y, its non-closure under intersec-
tion with regular languages follows immediately:

Corollary 4.5. The family of languages generated by SAS is not closed under
intersection with regqular languages.

Furthermore, the family of languages in question is not closed under intersection.

Theorem 4.6. The family of languages generated by SAS is not closed under
intersection.

Proof. The following two SAS are generalizations of example 2.5.
S1={{a,b,$1,%2,%3,%4,85}, A, T1, E) generates the language

{ $1’LU$2’LL$3'U$4'LU$5 | U, V, W € {a‘7 b}+ }

A:{($17$1)}7 E:{($57$5)}7

Ty=T1 1 UT12UT 3UTy 4 UTy 5, where for z,y € X,

T ={($12,81), (zy, $1), (¥82,$1)}, Th2 = {($22,%1), (2y,$1), (283, $1)},
Ti3={($32,%1), (zy,$1), (@$4,%1)}, Th.4 = {($a2, $12), (zy, 2y), (285, 2$2)},
T15 = {($5, $22), ($5, 7y), (85, 283), (35, $37), ($5, 784), ($5, $47), (85, 2$5) }.

Duplicate units are included for readability. The units from 7} ; are used to gen-
erate the upper string $;w$s and the lower string $;. Then the upper string
is extended to $;w$su$s by the units from T} o, and further to $;w$ruzvs
by the units from 77 3. Then units from 7) 4 are assembled to form the up-
per string $1w$susv$ ws and the lower string $;w$s. Finally, one obtains
$1wou$3v$4w$s as upper and lower string by the units in 71 5.

Following a similar principle, So = ({a, b, $1,$2, $3,$4,$5}, A, T, E) generates
the language

{$1u$wzw4v$5 | u,v,w € {a,b} " }.

A={($1,%1)}, E={($58%5)},

To=T51UTsoUTs3UTs 4 UTs 5, where for x,y € X,

To1 = {($12,%1), (zy, $1), (282, $1), (82, $12), (82, zy), ($2,2%$2)},

To0 = {($22,9$2), (zy, $2), (283, $2)}, T3 = {($32, $22), (2y, zy), (2$4,283) },
Toa = {($4,$37), ($4,7Y), ($2,284)}, To 5 = {($47, $47), (vy, 2y), (v$5, 2$5)}.

Duplicate units are included for readability.

The intersection L(S1) N L(S2) = { $1w1$2weswosw1$s | wi,ws € {a,b} ™}
is not accepted by any nondeterministic one-way two-head finite automaton [14]
and, thus, by Theorem 3.1 not generated by any SAS. (]

STRING ASSEMBLING SYSTEMS 607

Concerning the catenation operation it is an open question whether the family
of languages generated by SAS is closed under iteration. However, it is not closed
under concatenation.

Theorem 4.7. The family of languages generated by SAS is not closed under
concatenation.

Proof. By Corollary 2.4 and Theorem 3.6 the languages L1 = {a"b™ | n > 1} and
Ly = a™ are generated by SAS. We consider their concatenation. It remains to be
shown that L;Ls does not belong to the family of languages generated by SAS.
Contrarily, we assume that it is generated by an SAS ({a,b}, A, T, E) and analyze
the derivation of a word a”b”adnz, where n is large enough and d + 1 is the length
of the longest string appearing in a unit from A, 7', or E. To this end, subsets of T
are defined as follows. T,(a) = {(a*,a’) € T | i > 2}, Ty(a) = {(a’,a?) € T | i >
j>1},and Ti(a) = {(a',a/) e T |1 <i<j}.

If T,,(a) contains a unit (a’*,a’t) and Tj(a) a unit (a’?,a’?), then the assembling
of jo —iy units (a'', a’') and 41 — j; units (a2, a’?) extends the upper as well as the
lower string by k = i1j2 —i2j1 — i1 — j2 +i2+ j1 symbols a. If T.(a) contains a unit
(a*,a?), its assembling extends the upper as well as the lower string by k =i — 1
symbols a. Let (a’,a’0) be the unit from A which starts the generation of the
string a™b"a®’ . Then the upper and lower string can be extended by k symbols
yielding (a’**, a/0**) while the remaining derivation is unchanged. Therefore,
string a"+*b"q"” is generated as well, which is a contradiction. We conclude
that Te(a) and one of T, (a) and Tj(a) must be empty. Without loss of generality,
we assume T;(a) is empty.

So, the initial part of the derivation of a"b"a®’ is of the form (a%,al0) =*
(a™b,a/1), 1 < j; <n and 1 <i; < d. We distinguish two cases for the continu-
ation of the derivation.

Case 1. All symbols b of the upper string are generated before the first b of the
lower string appears: (a"b't,a?') =* (a"b"a'?,a’?), 1 < jo < n and 0 < iy < d.
The next part of the derivation is until the first symbol a appears in the suffix of the
lower string: (a"b"a’?,a’?) =* (a"b"a™,a"b"a’®), 0 < i3 < 3dn and 1 < jz3 < d.
Since Te(a) and Tj(a) are empty, the upper and lower string cannot be matched
when i3 > j3 +d. If i3 < j3 + d then we obtain (a™b"a™, a"b"a’*), iy > js +d and
ga < jz+ (jz+d)(d—1) < (jzs +d)d < 2d?, after assembling at most jz + d further
units from T, (a). Again, since T.(a) and Tj(a) are empty, the upper and lower
string cannot be matched when iy > j4 + d. Thus, dn? is bounded by 2d? + d, a
contradiction.

Case 2. The first symbol b of the lower string appears before the first suffix a
of the upper string: (a™b’t,a’t) =* (a™b2,a"b2), 1 < iy < n, 1 < jo < d. If the
derivation continues such that the first symbol a of the suffix appears first in the
upper string, we obtain the same contradiction as in Case 1: (a"b%,a"b’?) =*
(a™b"a®,a™b’®), 1 < j3 < n, 1 <iz <d, or (a™b®2,a™b’?) =* (a"b"a’,a"b"a’®),
1 <isjs < d.

608 M. KUTRIB AND M. WENDLANDT

Therefore, we assume that the derivation continues such that the first symbol a
of the suffix appears in the lower string only: (a"b%,a"b’2) =* (a™b®, a"b"a’?),
1 <i3 <nand 1l < j3 < d. Consider the situation when the first suffix a also
appears in the upper string: (a"b"a’,a"b"a’*), 1 < iy < d and 1 < j,. Since
T.(a) and Tj(a) are empty, at most j4 + d — i4 further units from T, (a) can be
assembled until the upper and lower string cannot be matched anymore. After that
the length of the lower suffix is at most j4 + (js +d —i4)(d — 1) < jud +d* +i4 <
jad + d? 4+ d. Therefore, the only way to generate a suffix of length dn? is to
derive a situation where jsd + d? +d > dn?, that is, j4 + d + 1 > n? when the
first suffix a appears in the upper string. This implies that there must be a unit
(b,a?) € T where p > 2. Now the idea is to assemble this unit additionally in the
initial part of the derivation (a,a’) =* (a™b'*,a’'). For every two numbers n
and n’ the pairs (i1,n — j1) and (i1,n' — j1) must be different. Otherwise some
string a™b" @@ n # n/, could be generated. Since i; < d and T.(a) is non-empty
there are two numbers n; < ng such that their corresponding initial derivations
yield to (a™b®,a¥") and (a2b%2,a¥?), where x1 = x2 and |y; — yo| is a multiple
of p—1. Let y1 < y2 and yo —y1 = ¢(p — 1), ¢ > 1. Then, by assembling the
unit (b, a?) additionally ¢ times during the initial derivation of nq, we obtain the
result (a™b®, a¥rteP=1) = (a™1b®2, a¥?). So, the string a™bn2qd is generated,
a contradiction, which completes the proof. O

The next (non-)closure properties are for homomorphisms. It turns out that
the family in question is not closed even under weak, that is, non-erasing letter-
to-letter homomorphisms, and non-erasing inverse homomorphisms.

Theorem 4.8. The family of languages generated by SAS is not closed under
A-free letter-to-letter homomorphisms.

Proof. We start to construct an SAS that generates the language
{a'a$. .. $a® i >1}.
S = ({a,b,$,#}, A, T, E), where

A={(8a$,8)}, E={(##)}
T = {($a,$a), (aa, aa), (aaa$, a$), (aaa#, a$), (#, $a), (#,aa), (#, a#)}.

Initially, the upper string a and the lower string $ is generated. Now assume that
the upper string is a'a®$...$a**! and the lower string is a'a®$. .. $a> 1.
Then by assembling the unit ($a,$a), 2i times the unit (aa,aa), and the unit
(aaa$,a$) the upper string is extended to a'a®$... $a20TD+ and the lower
string to a'a3$...$a%!. After repeating this process, the derivation is termi-
nated by assembling the units containing a #.

The length of a word w; = a'a3$...$a* 14 € L(S)is (i + 1) +i+ 1+ 1.
Let the A-free letter-to-letter homomorphism % : {a,$,#}* — {a}* be defined by
h(a) = h($) = h(#) = a. So, we obtain h(L(S)) = {a” +t"+! | n > 2} which is

STRING ASSEMBLING SYSTEMS 609

a non-semilinear language. In particular h(L(S)) is non-regular. The main result
of [4] can be used to conclude that any unary nondeterministic one-way multi-head
finite automata language is regular and, therefore, by Theorem 3.1 that any unary
language generated by an SAS is regular as well. So, h(L(S)) does not belong to
the family of languages generated by SAS. (]

Theorem 4.9. The family of languages generated by SAS is not closed under
inverse A-free homomorphisms.

Proof. The following SAS generates the language { (ac)™b" | n > 1} U (ac)™.
S = {{a,b,c}, A, T, E), where

A ={(ac,a), (ac,ac)}, E ={(c,c),(bb)},
T = {(cac, cac), (cac, a), (cb, ac), (bb, cac), (b, cb), (b, bb)}.

Initially, it is guessed whether a string from { (ac)™b" | n > 1} or from (ac)™ is
generated. In the former case the derivation starts with the unit (ac,a) and in the
latter case with (ac,ac). In this way, during the generation of the (ca)™ part of
the word, the last symbol of the lower string indicates which case applies. If it is
a ¢, a word from (ca)™ is generated.

Now the A-free homomorphism h : {a,b}* — {a,b,c}* is defined as h(a) = ac
and h(b) = b. So, the language h=1(L(S)) is {a™b™ | n > 1} U a*, which is not
generated by any SAS by example 4.2.]

Finally, we turn to a sole positive closure property

Theorem 4.10. The family of languages generated by SAS is closed under rever-
sal.

Proof. Given an SAS S = (X, A, T, E) we construct an SAS Sg = (¥, Ar,Tr, ERr)
such that L(S) = (L(Sg))® by defining

Ap ={(u",0") | (u,0) € B},
Er = { (uvaR) ‘ (U,’U) € A}v and
Tr = { (W, v®) | (u,v) € T'}.

So, the strings in the units are reversed and the sets of axiom and ending units
are interchanged. Let the generation of a string w consist in assembling the units

(u1,v1), (u2,v2),...,(Un,vy), where (uj,v1) € A and (upn,v,) € E. Then it is
evident that the units (uff,vf), (uf |, o), ... (uf,of), (uft,vf) can be as-
sembled to generate the reversal w* of the string w. Since (uff,vf) € Ap and
(uft,vf) € Epg, string w? is generated by Sg. For symmetric reasons it follows
L(S) = (L(Sr))" 0

Finally, in Table 1 we summarize our results on closure and non-closure
properties.

610 M. KUTRIB AND M. WENDLANDT

TABLE 1. Closure properties of the family of languages generated
by SAS.

~ | u | n | Nrec : + | h | Y] R
| SAS no no | no no no no no yes

-~

5. DECIDABILITY PROBLEMS

It seems to be an obvious choice to proof the undecidability of several problems
for SAS by reduction of Post’s Correspondence Problem (PCP) (see, for exam-
ple, [12]).

Let X be an alphabet and an instance of the PCP be given by two lists
o = U, Ug,...,u, and B = vy,vs,...,v, of words from XT. It is well-known
that it is undecidable whether a PCP has a solution [11], that is, whether there
is a nonempty finite sequence of indices 1,149, ...,7; such that w; u;, ... u;, =
Vi, Viy - .- Vi), . In the sequel we call iy,142,...,7; as well as u;, u;, ... u;, a solution
of the PCP. We start to show that emptiness is undecidable from which further
undecidability results follow.

Theorem 5.1. Emptiness is undecidable for SAS.

Proof. In order to prove the assertion, for a given PCP we construct an SAS that
generates exactly the strings which are solutions of the PCP. Since it is undecidable
whether such a solution exists it is undecidable whether the SAS generates a string
at all, that is, non-emptiness and emptiness.

Let an instance of the PCP be given by the two lists o = wq,ug,...,uy
and 8 = vy, vs,...,v, of nonempty words over some alphabet Y. The SAS S =
(X, A, T, E) is defined by

A:{(ulvvl)‘lglén}v
T = {(zujyv;) |1 <i<nand z,y € T},
E={(z,z)|1<i<nandz e X}

If 41,49, .., is a solution of the PCP, then the string w;, w;, . . . w;, = vi,vi, ... v,
is generated by S as follows. The initial unit from A is (u;, , v,). Subsequently, the
units (T, Uiy, YiyViy) t0 (T4, Wiy, Yin iy,) from T' are assembled, where z;; matches
the last symbol of u;;,_, and y;; matches the last symbol of v;,_, . Finally, the unit
(z,z) from E is used to finish the generation, where x matches the last symbol
of u;, which is equal to the last symbol of v;, .

Conversely, any successful generation of S must begin with a unit from A, say
(i, ,v5,). Then there may follow units (zu;,yv;) from T, say (2;,ui,, Yi,Viy) tO
(w4, usy,, Yy, viy,), such that x;, matches the last symbol of w;; , and y;, matches
the last symbol of v;,_,. In order to complete the generation successfully, a unit
from FE has finally to be assembled. Since this unit does not extend the string

STRING ASSEMBLING SYSTEMS 611

generated any more, we derive that w;, u;, ... u;, = v, ...v;, and, thus, have
generated a solution of the PCP. This completes the proof. O

From the construction in the Proof of Theorem 5.1 and the undecidability of
emptiness we can derive several further undecidability results immediately.

Theorem 5.2. Finiteness, infiniteness, equivalence, and inclusion are undecid-
able for SAS.

Proof. An SAS which generates the empty language can effectively be constructed.
Therefore, the decidability of equivalence would imply the decidability of empti-
ness.

Similarly, the decidability of inclusion would imply the decidability of
equivalence.

Any PCP either has no solution or infinitely many solutions. So, the SAS
constructed in the Proof of Theorem 5.1 generates finitely many strings if and
only if the PCP has no solution. This implies the undecidability of finiteness and
infiniteness of SAS. (]

Since SAS have been seen to generate even non-context-free languages, the
questions whether regularity or context-freeness are decidable arise immediately.

Theorem 5.3. Regularity and context-freeness are undecidable for SAS.

Proof. First, we modify the construction given in the Proof of Theorem 5.1 such
that the SAS generates exactly the strings which are solutions to the given PCP
followed by the special symbol #. So, let an instance of the PCP be given by the
two lists & = uy,ug,...,u, and 8 = v1,v9,...,v, of nonempty words over some
alphabet X' not containing the symbols #,a,b,c. The SAS S = (Y U {#}, A, T, E)
is defined by

A={(u,v)|1<i<n},
T:{('ru’uyvl) | ISZSnandxvyeE}v
E={(att,a#) |1 <i<mnand z € X}

The only modification is that the final unit assembled from E now extends the

string by the special symbol.
Next, we modify S to the SAS S’ = (¥ U {#,a,b,c}, A, T', E’) such that

L(S") = {w#a™b"c" | n > 1 and w is a solution of the PCP }.

To this end, we consider the SAS S” = ({a,b,c}, A", T",E") from example 2.3
generating the language { a"b"c¢™ |n > 1}.

Let T = { (z#a, 2#0) | (4,7) € A”}, and define A’ = A, T" = TUT UT”, and
E’ = E”. Since the alphabets of S and S” are disjoint and both do not contain
the special symbol #, it is evident that

L(S") = {w#a"b"c™ | n > 1 and w is a solution of the PCP }.

612 M. KUTRIB AND M. WENDLANDT

If the PCP has no solution, the units from 7' can never be assembled and,
thus, language L(S’) is empty, that is, regular and context free. Conversely, a
straightforward application of Ogden’s lemma [8] shows that L(S’) is not context
free if the PCP has a solution. This shows the undecidability of context-freeness
as well as regularity. O

6. CONCLUSIONS

We have studied string assembling systems, which is a computational model
that generates strings from copies out of a finite set of assembly units. In partic-
ular; it turned out that any string assembling system can be simulated by some
nondeterministic one-way two-head finite automaton, while the stateless version
of the two-head finite automaton marks to some extent a lower bound for the gen-
erative capacity. The family of languages generated by SAS is properly included in
NL and, thus, in the family of context-sensitive languages. It is incomparable with
the family of (deterministic) (linear) context-free languages as well as with the
family of regular languages. It includes the language { a®" | n > 1} which is not
accepted by any stateless nondeterministic one-way two-head finite automaton. So,
SAS can copy substrings while sticker systems cannot. Conversely, some variant of
the mirror language { w | w € {a,b}* and w = w’ } is generated by many variants
of sticker systems (that can generate all linear context-free languages), but cannot
be generated by any SAS. So, one could say, sticker systems can handle mirrored
inputs while SAS cannot. It turned out that the language family considered is not
closed under five of the six AFL operations, where the remaining one, the iteration,
is an open problem. Furthermore we obtained non-closure under complementation.
The only positive closure property is for reversal. Moreover, emptiness, finiteness,
inclusion, regularity, and context-freeness are all undecidable for SAS.

Nevertheless, several fundamental questions for string assembling systems re-
main untouched or unanswered and may be interesting and fruitful for further
investigations. We mention three of them:

Is it possible to find a more precise lower bound for the computational capac-
ity? Are the additional symbols used in the simulation of a stateless two-head
automaton in the Proof of Theorem 3.4 necessary?

Is the family of languages generated by SAS closed under iteration? If not, it
forms an anti-AFL.

Is universality (L(S) = X*) decidable?

REFERENCES

[1] R. Freund, G. P&un, G. Rozenberg and A. Salomaa, Bidirectional sticker systems, in Pacific
Symposium on Biocomputing (PSB). World Scientific, Singapore (1998) 535-546.

[2] J. Hartmanis, On non-determinancy in simple computing devices. Acta Inf. 1 (1972) 336—
344.

STRING ASSEMBLING SYSTEMS 613

[3] M. Holzer, M. Kutrib and A. Malcher, Multi-head finite automata: origins and directions.
Theoret. Comput. Sci. 412 (2011) 83-96.

[4] O.H.Ibarra, A note on semilinear sets and bounded-reversal multihead pushdown automata.
Inf. Process. Lett. 3 (1974) 25-28.

[5] O.H. Ibarra, J. Karhuméki and A. Okhotin, On stateless multihead automata: hierarchies
and the emptiness problem. Theoret. Comput. Sci. 411 (2009) 581-593.

[6] L. Kari, G. Paun, G. Rozenberg, A. Salomaa and S. Yu, DNA computing, sticker systems,
and universality. Acta Inf. 35 (1998) 401-420.

[7] R. McNaughton, Algebraic decision procedures for local testability. Math. Syst. Theory 8
(1974) 60-76.

[8] W.F. Ogden, A helpful result for proving inherent ambiguity. Math. Syst. Theory 2 (1968)
191-194.

[9] C.H. Papadimitriou, Computational Complezity. Addison-Wesley (1994)

[10] G. P&un and G. Rozenberg, Sticker systems. Theoret. Comput. Sci. 204 (1998) 183-203.

[11] E.L. Post, A variant of a recursively unsolvable problem. Bull. AMS 52 (1946) 264-268.

[12] A. Salomaa, Formal Languages. Academic Press, New York (1973)

[13] L. Yang, Z. Dang and O.H. Ibarra, On stateless automata and P systems, in Workshop on
Automata for Cellular and Molecular Computing. MTA SZTAKI (2007) 144-157.

[14] A.C. Yao and R.L. Rivest, k + 1 heads are better than k. J. ACM 25 (1978) 337-340.

[15] Y. Zalcstein, Locally testable languages. J. Comput. Syst. Sci. 6 (1972) 151-167.

Communicated by C. Mereghetti.
Received November 8, 2011. Accepted June 13, 2012.

	Introduction
	Preliminaries and definitions
	Generative capacity
	Closure properties
	Decidability problems
	Conclusions
	References

