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1. Introduction 

1.1. Acute Respiratory Distress Syndrome 

The Acute Respiratory Distress Syndrome (ARDS) is a severe disease characterized by a 

widespread inflammation within the lungs, extensive flooding of the alveolar airspace with 

protein-rich exudate fluid and impaired gas exchange capacities, leading to respiratory 

failure and resulting in mortality rates of 40-58% (1, 2). 

ARDS, as defined by the Berlin definition from 2012, includes an acute onset of disease, 

radiological finding of bilateral infiltrates due to non-cardiogenic reasons and impaired 

oxygenation of PaO2/FiO2 (partial pressure of oxygen/ fraction of inspired oxygen) 

≤300mmHg (3). ARDS can be subdivided according to the degree of hypoxemia into mild 

(200-300mmHg, matching the former definition of Acute Lung Injury, ALI), moderate (100-

200mmHg) and severe ARDS (≤100mmHg). ARDS can be triggered either by direct lung 

injuries, e.g. pneumonia, toxic inhalation or near drowning, or by indirect systemic injuries, 

e.g. sepsis, pancreatitis or burn. Pneumonia caused by viral or bacterial infection is the most 

frequent underlying condition (4). 

Disease progression of ARDS can be separated into three phases (2, 5). First, in the acute 

phase (Fig. 1.1), ARDS presents with extensive interstitial and alveolar flooding (edema) 

that leads to severely reduced oxygen uptake (hypoxemia) and carbon dioxide excretion 

from the blood (hypercapnia). Neutrophil, macrophage and red blood cell infiltrates are 

found in the alveoli, a diffuse injury to both endothelium and epithelium is present and the 

formation of hyaline membranes can be detected. During this first phase of ARDS, high 

levels of inflammatory mediators, proteases and oxygen radicals are found in the alveolus, 

and inactivation of surfactant leads to microatelectasis. Resolution of edema is usually 

delayed as the injury to the endo-epithelial barrier prevents adequate removal of alveolar 

edema fluid. Importantly, mortality in ARDS patients has repeatedly been found to correlate 

with persistence of alveolar edema (2, 5–8). The acute phase is followed by a subacute phase 

of ARDS (day 7-14), where fibroblasts infiltrate the lung and epithelial type II cells 

proliferate, promoting the repair of the alveolar epithelial barrier. A third chronic phase is 

characterized by the resolution of neutrophilic infiltrates by mononuclear phagocytes and 

alveolar macrophages but also a vast fibroproliferative response, which is not found in all 

ARDS patients and can progress into pulmonary fibrosis. 
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Figure 1-1 Schematic overview of pathological changes to the alveolar compartment during the acute phase of 

ARDS, adapted from Matthay and Zeman, 2011 (2).  Depicted is on the left-hand side a healthy alveolus with an intact 

epithelial barrier consisting of type I and type II epithelial cells. After injury (right-hand side), leukocytes and red blood 

cells intravasate into the alveolar airspace. Disruption of the endothelial and epithelial barrier leads to edema formation. 

1.2. Microanatomy And Physiology Of The Lung 

The primary function of the lung is to provide an interface for gas exchange of inhaled, 

atmospheric oxygen and carbon dioxide carried in by the bloodstream. The lung therefore 

comprises of a thin but large surface area, which also renders the alveolo-capillary barrier a 

vast and important site for initial pathogen-host interactions (9, 10). Epithelial but also 

endothelial cells maintain barrier integrity (9) thus preventing edema formation and are also 

important for the primary induction of innate immune responses. Resident alveolar 
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macrophages, dendritic cells and stimulus-dependent recruited neutrophils, monocytes and 

lymphocytes play a crucial role in alveolar defense strategies but also in resolution of 

inflammation (10–13). 

1.2.1. The Alveolar Mononuclear Phagocyte System  

Resident and recruited cells of the mononuclear phagocyte system play a key role in the 

activation and regulation of innate and adaptive immune responses towards invading 

pathogens. Resident alveolar macrophages (AM) originate from fetal monocytes that 

initially colonize the lung during embryonic development (14). These fetal monocytes, in 

turn, derive from a hematopoietic stem cell (HSC) that during embryonic development 

populates the fetal liver and later on the bone marrow and gives rise to a common 

monocyte/dendritic cell (DC)-precursor (MDP) (15–17). The MDP can further differentiate 

into a common monocyte precursor (cMoP) (18) and, successively, monocytes that enter the 

blood stream and finally extravasate into the lung tissue (Figure 1-2).  

 
Figure 1-2 Origin and dynamics of murine macrophages, adapted from Hussel and Bell, 2014 (19). In the adult 

murine system, blood circulating monocytes derive from a hematopoietic stem cell (HSC) that gives rise to a common 

monocyte/dendritic cell (DC)-precursor (MDP) and subsequentially to a common monocyte precursor (cMoP) 

intermediate. The cMoP can differentiate into Ly6Clow monocytes patrolling the endothelial luminal surface and Ly6Chigh 

monocytes that are recruited to inflamed tissues. Within their niche, tissue-resident macrophages tolerate mild injuries by 

proliferation and self-renewal, but are supplemented with monocyte-derived macrophages upon severe injuries and 

depletion. 

 

Under steady-state conditions, the resident AM is a long-lived cell capable of self-renewal 

and thus sustaining the AM population (20–22). It can be identified by the markers F4/80+ 
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GR1low CD11chigh SiglecFhigh MHCII low and remains sessile in close connection to the 

alveolar epithelial cells (23, 24). Their role is to elicit immediate innate immune responses 

towards invading pathogens, but at the same time they need to remain relatively inactive 

towards innocuous stimuli (19). Therefore the AM inflammatory response is dampened by a 

number of epithelial expressed blocking agents such as CD200, SIRPα (signal-regulatory 

protein alpha), MARCO (macrophage receptor with collagenous structure) and surfactant 

proteins A and D, and also by macrophage autocrine anti-inflammatory signaling elicited by 

TGF-β (transforming growth factor beta) and IL-10 (interleukin-10) (19, 25–30). The 

conversion of resident AM to pro-inflammatory active cells is triggered by a loss of 

epithelial regulatory ligands, presence of necrotic cells and signaling by diverse pattern 

recognition receptors (PRR) (13, 31). PRR expressed by AM are various toll-like receptors 

(TLR) (32, 33), nucleotide oligomerization domain (NOD)-like receptors (34, 35), and 

intracellular helicases like retinoic acid inducible gene I (RIG-I) (36, 37) or protein kinase R 

(PKR) (38, 39) recognizing several pathogen-associated molecular patterns (PAMP). In 

response, AM produce a range of inflammatory cytokines (e.g. type I interferons) that 

further perpetuate the innate immune response and lead to the recruitment of additional 

inflammatory cells, such as neutrophils, exudate macrophages or lymphocytes, to the 

alveolar compartment (13, 40, 41).  

In general, the more pro-inflammatory, classically activated macrophages are termed M1 

macrophages and are associated with activation of the pro-inflammatory transcription factor 

IRF-5 (interferon regulatory factor 5) and production of mediators like TNF-α (tumor 

necrosis factor alpha), IFN-γ (interferon gamma), IL-1β, IL-6 or IL-12 (42, 43), and 

antimicrobial agents such as nitric oxide or L-arginine (44). Yet it is well described that 

macrophages can also differentiate into an anti-inflammatory, regenerative phenotype 

termed M2. Factors inducing differentiation into the M2 phenotype include IL-4, IL-10, IL-

13, IL-1ra (IL-1 receptor antagonist), T-helper cell 2 released IL-25 and IL-33, Lipoxin A4 

and phagocytosis of apoptotic neutrophils (43, 45–47). M2 macrophages then produce the 

anti-inflammatory cytokines IL-1ra, IL-10, and TGF-β (46, 48). They are involved in the 

resolution of inflammation by promoting the cessation of monocyte and neutrophil 

migration, the removal of apoptotic granulocytes, the initiation of repair processes and their 

own maturation to resident alveolar macrophages (49). Macrophages show a broad plasticity 

in their capability to flexibly change phenotype in response to different environmental 

stimuli (43). 
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Even if normally long-lived and self-renewable, the resident AM might be driven into cell 

death in severe inflammatory conditions, e.g. influenza A infection (14, 50). An above-

average depletion of this cellular subset in the adult lung leads to the recruitment of 

circulating blood Ly6Chigh monocytes to the alveolar lumen to replenish the local 

macrophage pool (51) (Figure 1-2). These monocytes can be further characterized as 

CD11clow CD11bhigh, but change to a CD11chigh CD11bnegative phenotype as they achieve a 

sessile macrophage phenotype (52). Experimentally, these so-called “exudate” macrophages 

can be studied by using bone marrow-derived macrophages (BMM) cultured ex vivo in 

presence of GM-CSF (granulocyte-macrophage colony-stimulating factor) that approximate 

an exudate M1-like phenotype with the F4/80high CD11clow CD11bhigh signature and 

expression of  M1-associated cytokines such as TNF-α, IL-6 or IL-1β (53). 

In vivo, the recruitment of blood-circulating monocytes into the alveolar compartment 

crucially depends on the monocyte expression of CCR2 (C-C chemokine receptor type 2) 

and its interaction with its major ligand CCL2 (C-C chemokine ligand 2). Lack of CCR2 

inhibits migration of bone marrow monocytes into the blood stream as well as monocyte 

extravasation from the blood stream to the site of inflammation (54, 55). 

1.2.2. Epithelium 

The proximal airways are lined by columnar goblet cells or cuboidal Club cells, secreting 

mucus, thus preventing desiccation of the airway but also trapping incoming particles, and 

ciliated cells that serve to transport foreign particles out of the lung. In the distal lung 

compartment, the alveolar epithelium provides the initial barrier to environmental 

influences. More than 95% of the alveolar surface consists of flat, squamous type I 

pneumocytes (alveolar epithelial cells I, AEC I). Their primary function is to enable gas 

exchange by limiting the diffusion distance between inhaled air and the pulmonary, capillary 

blood vessels (56). Due to their large surface, AEC I are prone to damage by environmental 

and mechanical stress. Loss of AEC I is compensated by proliferation and differentiation of 

type II pneumocytes (AEC II) to AEC I, that in addition to their regenerative potential 

produce surfactant – a mixture made of ampiphilic phospholipids and specific proteins that 

prevents the alveoli from collapsing during exhalation (57). Moreover, AEC II play a role in 

recognition of pathogens and initiation of innate immune responses, in ion conductance as 

well as fluid homeostasis in the lung (58).  
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Both AEC I and AEC II are well-polarized and tightly interconnected cells (Fig. 1-3), thus 

providing a structural and functional barrier tightly regulating alveolar fluid homeostasis as 

well as transport of proteins and solutes in the lung (outlined below). Within this cellular 

network, adherens junctions provide the physical anchorage in cell-cell adhesion by strong 

interaction of the extracellular domains of neighboring cells as well as by being linked to the 

intracellular actin cytoskeleton (59). In the alveolar epithelium, they are formed by E-

Cadherin and proteins of the Catenin family (59, 60). By limiting the movement of 

membrane-integral proteins, adherens junctions are important for the establishment of cell 

polarity. The tight junctions are an apically located multiprotein complexes consisting of 

claudins, occludins, junctional adhesion molecules (JAM) and scaffolding proteins such as 

zona-occludens protein 1 (ZO-1), that in concert form a continuous circumferential ring. 

Tight junctions are therefore essential in limiting paracellular transport and as well 

maintenance of cell polarity (61). Desmosomes are additional adhesive molecules found in 

the alveolar epithelium and they provide resistance to mechanical stress by being closely 

connected to the intermediate filament network (62).  

 

 
Figure 1-3 Schematic presentation of the alveolar barrier, adapted from (63). Flat AEC I and squamous AEC II build 

the epithelial barrier. AEC are connected by tight and adherens junctions, thus allowing for vectorial sodium transport into 

the interstitium by apical ENaC and basolateral Na,K-ATPase, accompanied by paracellular water transport.  

 

The structural integrity of the alveolar epithelium results in low paracellular permeability to 

solutes. This promotes - in combination with its polarity providing an asymmetric 

distribution of ion transporters - the accumulation of sodium ions in the underlying 

interstitium. Sodium ions are taken up by the alveolar epithelial cells by the apically 

expressed amiloride-sensitive epithelial sodium channels (ENaC) as well as via the 

amiloride-insensitive sodium channels (9, 64, 65), accompanied by transport of chloride ions 

through CFTR (cystic fibrosis transmembrane conductance regulator) (66). The primary 

AEC I 

AEC II 
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driving force of sodium accumulation in the interstitial space is the basolaterally expressed 

ion transporter Na,K-ATPase, that exchanges intracellular sodium ions against extracellular 

potassium ions at a ratio of 3:2 under consumption of ATP (64, 67, 68). The interstitial 

accumulation of sodium ions creates an osmotic force that passively drains excessive water 

out of the alveolar airspace to the interstitial space and successively, to the lung lymphatic 

vessels and the pulmonary microcirculation, a process vital for alveolar fluid homeostasis 

(69–72). Interestingly, the Na,K-ATPase does not only play a crucial role in alveolar 

epithelial barrier function, but is also involved in the formation of junctional integrity (73). 

Of note, it has been shown that the integrity of the epithelial layer is dominant over the 

endothelial barrier in limiting formation and persistence of alveolar edema, as the disruption 

of the endothelial barrier alone has been reported to have no influence on epithelial 

permeability and formation of alveolar edema (74, 75).  

1.3. Sodium-Potassium Adenosine Triphosphatase (Na, K-ATPase) 

1.3.1. Structure 

The Sodium-Potassium Adenosine Triphosphatase (Na,K-ATPase) is an ion transporter 

belonging to the family of P-type ATPases, consisting of more than 500 ion and lipid pumps 

characterized by the ability to catalyze their own autophosphorylation at conserved aspartate 

residues (76). As typical for most P-type ATPases, the Na,K-ATPase oscillates between two 

conformational states E1 and E2. In E1, three sodium ions and consequently a molecule of 

ATP bind to the protein complex. Hydrolysis of ATP to adenosine diphosphate and 

autophosphorylation of the Na,K-ATPase lead to a conformational change to E2, where 

sodium (Na) is released into the extracellular space and two potassium (K) ions are bound. 
 

Figure 1-4 Schematic presentation of Na,K-

ATPase protein, adapted from Geering, 2008 (77). 

The catalytic α-subunit (black) is composed of 10 

membrane spanning domains. The extracellular loop 

between α-helices 7 and 8 interacts with the β-

subunit extracellular domain (green). The β-subunit 

consists of a short intracellular N-terminus, a single 

membrane spanning domain and a highly 

glycosylated extracellular domain. The FXYD 

subunit (light grey) interacts with α-helix 9 as well as 

the intracellular domain of the α-subunit. 
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Dephosphorylation of the pump reverts it to E1, accompanied by release of the K ions into 

the intracellular compartment. The Na,K-ATPase is built of a heterodimer consisting of a 

catalytic α-subunit and a largely extracellular β-subunit, but is often found to be complexed 

with a third regulatory subunit called γ-subunit or FXYD. 

There are four known isoforms of the α-subunit, showing a specific tissue- and 

developmental distribution, with the α1 isoform being the most ubiquitously expressed 

isoform (78). The different isoforms are transcribed from different loci instead of being 

produced by alternate splicing, and form integral membrane proteins with 10 membrane 

spanning domains of approximately 100-110kDa. The α-subunit harbors the binding 

domains for both Na and K ions as well as for ATP, phosphate and the Na,K-ATPase 

inhibitor ouabain. The β-subunit is a type II glycoprotein, expressed in 5 known isoforms, 

with β1 being the most frequently expressed isoform (79). The β-subunit core consists of 

32kDa protein with a short membrane-spanning domain and a large extracellular domain. 

The mature protein is usually highly glycosylated and thus can be found in sizes varying 

between 42 and 55kDa. The β-subunit acts as chaperone for correct α-subunit folding, 

induces correct transport of the α/β-complex to the cellular basolateral membrane, has 

influence on the affinity of the α-subunit to Na/K ions and is involved in intercellular 

junction formation  (73, 80, 81). 

The regulatory FXYD subunit is a small type I membrane protein. It is found to interact with 

the α/β-heterodimer at the α-helix 9 as well as at the intracellular domain of the α subunit, 

and may also interact with the β-subunit (82, 83). Seven isoforms are known in mammals, 

all shown to modulate Na,K-ATPase maximal ion conductance, affinity to Na or K ions, or 

ATP (77). 

1.3.2. Function 

The Na,K-ATPase is an ubiquitously expressed protein and is essential to cellular survival. 

It does not only control intracellular concentration of ions, thus regulating cellular osmotic 

properties and preventing swelling as well as maintaining membrane potential necessary for 

neuronal signaling; it is also indispensable for the transport of solutes such as amino acids, 

glucose or phosphates, that rely on the ion gradient produced by the Na,K-ATPase (77). It is 

also crucial in the regulation of osmotically driven, paracellular water transport, thus 

enabling renal reabsorption but importantly also fluid homeostasis in the alveolar airspace, 

which ensures normal gas exchange in the alveolar compartment (79, 84). Na,K-ATPase is 



Introduction 

 

14 

 

commonly found to be deregulated in ARDS, which greatly impacts on formation and 

persistence of edema and consequently, on the survival of the patient (85).  

Independent of its ion pumping activity, the Na,K-ATPase has also been found to be 

involved in the formation and maintenance of cell-cell adhesions (73, 86). The β-subunit has 

been shown to colocalize with adherens junctions, playing an essential role in junctional 

formation and polarization in canine kidney epithelium (MDCK cells) (87, 88).  

Additionally, it has become more and more apparent that Na,K-ATPase is involved in a 

number of signal transduction events. Several studies revealed that the non-receptor tyrosine 

kinase Src is bound to the Na,K-ATPase α1-subunit in an inactive state (89–91). Src can be 

released and thus activated by low nanomolar concentrations of ouabain and is involved in 

the activation of MAP kinase signaling by EGFR (epidermal growth factor receptor) and 

Ras-GTP, in phospholipase C γ (PLCγ) and PI3K (Phosphatidylinositol-4,5-bisphosphate 3-

kinase) mediated Akt signaling (92–95). Accordingly, Na,K-ATPase as signaling molecule 

is currently thought to be involved in cellular proliferation, differentiation and metabolic 

regulation (78). 

1.3.3. Regulation 

As described above, the Na,K-ATPase is vital for cellular function and survival, but is also 

making up to 50% of cell total energy consumption (96, 97). Thus, its expression and 

activity levels need to be tightly regulated. This is in part accomplished by the tissue-

specific distribution of different isoforms for the α- and β-subunit and the regulatory 

influence of different FXYD proteins (77). Additionally, up to 70% of Na,K-ATPase is 

stored in intracellular pools, from which additional proteins can quickly be recruited to the 

cell membrane and consequently allow the cell to respond to environmental stimuli (98, 99). 

Further short-term regulations include variations of ion affinity and the catalytic rate of the 

Na,K-ATPase, as well as ubiquitin-dependent degradation of membrane-located ion pump 

(71, 100). Long-term changes are regulated by transcriptional and post-transcriptional 

events, and have recently been shown to be influenced by histone deacetylase 2 (HDAC2)-

dependent epigenetic changes of the β-subunit gene locus (101, 102). 

A deregulation of Na,K-ATPase cellular homeostasis has been widely described in lung 

injury as response mechanism to hyperoxia, hypercapnia, ventilator-, endotoxin-, oleic  acid- 

and alcohol-induced lung injury, causing elevated levels of alveolar edema (100). The 

significance of Na,K-ATPase expression in edema formation in lung injury was underlined 
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by studies showing that overexpression of Na,K-ATPase by electroporation-based methods 

or adenoviral transfer increased alveolar fluid clearance and could even protect from LPS-

induced injury (103–106).  

Upstream signaling events and molecules leading to the decrease in plasma membrane 

expressed Na,K-ATPase include nitric oxide (107), oxidant generation (108–110), 

coagulation factors (111) and also hormonal signals (112–114). The decrease of plasma 

membrane located Na,K-ATPase caused by hyperoxia or hypercapnia has been studied in 

detail and was shown to rely on the PURED (phosphorylation - ubiquitination - recognition - 

endocytosis - degradation) pathway (100, 115). 

 
Figure 1-5 PURED pathway mediated degradation of plasma membrane Na,K-ATPase, adapted from Lecuona, 

Trejo and Sznajder, 2007 (100). Na,K-ATPase α1-subunit is phosphorylated at Serin 18 by PKC-ζ, followed by 

ubiquitination of N-terminal lysine residues. Ubiquitinated Na,K-ATPase is endocytosed by an AP2-/ clathrin-dependent 

mechanism, transported to the endosome and degraded in the lysosome. 

 

It was established that hypoxia results in formation of mitochondrial reactive oxygen species 

(ROS) that can activate the cellular energy sensor and stress kinase adenosine-

monophosphate (AMP)-activated kinase (AMPK) (108). AMPK is a heterotrimeric 

serine/threonine kinase consisting of a catalytic α-subunit and two regulatory subunits β and 

γ with a central role in cellular energy metabolism. It senses energy shortages by binding of 

AMP, antagonized by presence of ATP, that renders it sensitive to phosphorylation and thus 

activation by its upstream kinases, the liver kinase B1 (LKB1), the Calcium/Calmodulin-

sensitive kinase kinase beta (CaMKKβ), and TGF-β-activated kinase 1 (TAK1) (116). 

AMPK activation generally increases the availability of energy, e.g. by enhancing Glut4-

dependent glucose uptake, and decreases energy consuming processes, e.g. protein synthesis 

or glycogen synthesis (117–119). Not only hypoxia, but also hypercapnia, induces an 
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AMPK-dependent degradation of the Na,K-ATPase (120). Besides ROS, adrenergic or 

dopaminergic receptor signaling mediated by MAPK and ERK activation has been described 

to reduce plasma membrane located Na,K-ATPase (121). Mediators known to upregulate 

Na,K-ATPase ion transport activity include catecholamines (98, 122) and the growth factors 

KGF (keratinocyte growth factor) and EGF (epidermal growth factor) (123–125).  

1.4. Influenza A Virus 

Influenza A viruses (IAV) cause a respiratory disease in humans that can progress to lung 

injury with fatal outcome. They transmit by respiratory droplets and primarily infect the 

epithelia of the proximal as well as the distal respiratory tract and result in a primary viral 

pneumonia causing severe damage to the alveolar compartment, the acute respiratory 

distress syndrome (ARDS) (126–128). IAV infections lead to substantial morbidity and 

mortality worldwide (129, 130). Often, additional secondary superinfections with 

Streptococcus pneumonia, Staphylococcus aureus and Haemophilus influenzae induce a 

secondary, bacterial pneumonia worsening outcome substantially (131, 132). 

1.4.1. Taxonomy 

Influenza A viruses belong, together with influenza B, influenza C, thogoto- and isaviruses, 

to the family of Orthomyxoviridae that are characterized by a single stranded, negative 

oriented and segmented RNA genome. They are coated by a host cell-derived lipid 

membrane. The genera can be differentiated by the molecular and serological characteristics 

of the viral matrix und nuceloproteins and have different amounts of gene segments (133), 

of which influenza A viruses possess eight. IAV are further separated into subtypes by 

antigenic characteristics displayed by their hemagglutinin (HA) and neuraminidase (NA) 

proteins, of which we currently know 16 and 9 subtypes, respectively, found circulating in 

wild birds and waterfowl (134), as well as a unique HA-NA combination found recently in 

bats (H17N10) (135). IAV are named by genus, host species (if not human), place of 

isolation, number of the isolate, year of isolation and its subtype (for example: A/Puerto 

Rico/8/34 (H1N1)). 

1.4.2. Structure 

IAV form pleomorph particles of 80-120nm diameter. Inside, the viral RNA is complexed 

with the viral nucleoprotein NP and the polymerase complex, generating the viral 

ribonucleoprotein (RNP). The viral RNA consists of 13,6k basepairs and is - due to its 
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negative orientation - per se not infectious (136). It encodes for 11 viral proteins: non-

strucutral proteins NS1 and NS2, important for regulation of host innate immune responses 

and export of viral RNA from the nucleus, respectively; the matrix proteins M1 and M2, the 

neuraminidase (NA), nucleoprotein (NP), hemagglutinin (HA), the polymerase subunits PA, 

PB1 and PB2 and PB1-F2. The viral protein pairs PB1 and PB1-F2, M1 and M2, NS1 and 

NS2 are each generated by alternative splicing from one RNA segment, whereas the other 

RNA segments encode for one viral protein each (137–139). The flanking 3’ and 5’ ends of 

each segment contain a non-coding region serving as promoter and bind the viral 

polymerase complex. The viral matrix protein M1 lines the viral envelope that derives from 

the host outer cell membrane from the inside. Embedded into the viral membrane are the 

viral proteins M2, the viral transmembrane proton channel, HA, that is relevant for 

adsorption and fusion of host and virus membrane, and NA, the viral sialidase (Fig.1-6). 

Viral proteins that cannot or only in scarce amounts be found in the viral particle are NS1, 

NS2 and PB1-F2. 

 

 

 

Figure 1-6 Schematic depiction of an influenza A 

virus particle, taken from Subbarao and Joseph,  

2007 (140). Eight gene negative oriented, single 

stranded (ss) RNA segments are associated with the 

nucleoprotein and the polymerase subunits PA, PB1, 

PB2. The matrix protein M1 is lining the lipid 

membrane, in which the ion channel M2, hemagglutinin 

(HA) and neuraminidase (NA) are embedded. 

 

 

1.4.3. Replication 

For efficient replication (Fig. 1-7), IAV attach to a host cell via interaction of HA with 

cellular N-actetyl sialic acids (SA). Avian influenza strains show a preference for α2,3-

linked SA prominently expressed in the avian intestinal tract, whereas human IAV prefer 

α2,6-linked SA (141). Virions are then endocytosed and trafficked to the endosome where 

the acidification of the surrounding medium triggers a conformational change in the viral 

HA leading to the fusion of viral and endosomal membrane (142). Additional activation of 

M2 ion conductance minimizes interactions between NP and M1, promoting the release of 
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the RNP into the cytoplasm (143, 144). RNPs are then imported into the nucleus through 

cellular importin-α and transcribed into viral mRNA (145, 146). HA, NA and M2 are 

translated in the endoplasmatic reticulum and enter the exocytic pathway. The remaining 

mRNAs are translated in the cytoplasm (147). Polymerase proteins, NP and M1 are 

transported back into the nucleus, triggering synthesis of negative-oriented viral RNA, form 

new RNPs and are transported out of the nucleus by an NS2- and cellular Crm1-mediated 

mechanism (148). Viral proteins are then transported to the apical cell membrane, 

accumulating at lipid-raft domains (149). Budding of new virions is facilitated by clustering 

of M1 monomers, and pinching off has been proposed to involve the small RAS-like 

GTPase Rab11 (150). Also, the viral NA is crucial for efficient viral replication, as its 

sialidase activity prevents the newly formed virions from sticking to the host cells and 

forming immobile virus-aggregates (151).  

 
Figure 1-7 Influenza A virus replication cycle (152). The virion adsorps to the host cell via interaction between HA and 

sialic acids and is endocytosed. Viral and endosomal membrane fuse and released vRNA is transported into the nucleus, 

where it is transcribed to positive sense mRNA. Translation of viral proteins takes place in the cytoplasm and 

endoplasmatic reticulum. New virions containing newly synthesized, negative sense RNA assemble and bud from the 

apical host cell membrane and are released from the cell by action of NA. 
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1.4.4. Epidemiology 

Seasonal influenza epidemics typically occur during the cold season in temperate regions 

and are caused by virus subtypes that are proposed to persist and evolve in a virus reservoir 

in the East and Southeast human population where influenza is less seasonal as well as by 

dynamic migration between Northern and Southern hemispheres (153–155). As the viral 

polymerase lacks a proof-reading function present in mammalian DNA polymerases, IAV 

exhibit a mutation rate of 10-5 mutations per nucleotide (156). This results in a large pool of 

genetically and antigenetically different IAV strains and a high adaptive flexibility towards 

selective pressure deriving from the host innate and adaptive immunity, leading to a gradual 

but constant change in antigen properties (antigenic drift). Seasonal IAV display a 

substantial morbidity with an incidence of influenza-associated acute respiratory failure of 

2.7 per 100.000 persons per year (157). Pandemic influenza events are preceded by 

introduction of new virus subtypes into the human population by antigenic shift, the event of 

reassortment or exchange of virus RNA segments between different virus strains. Typically 

reassortment between an avian and human virus strains results in the introduction of an 

antigenetically altered virus strain into an immunologically naïve human population. The 

introduction of reassortant IAV strains into the human population is characterized by a 

succession of pandemic waves with increased mortality (158), a higher transmissibility than 

seasonal influenza (159) and a dramatic increase in mortality in younger populations (159–

162). The 1918 H1N1 pandemic was caused by a virus of avian origin (163) and caused an 

estimated 40 million deaths worldwide (164). Further reassortment events of the circulating 

human virus strains with avian viruses led to the emergence of the 1957 H2N2 and 1968 

H3N2 influenza pandemics (165), and multiple reassortments between avian, swine and 

human viruses resulted in the 2009 H1N1 pandemic influenza strain (166). Since 1997, 

recurring infections of humans with avian viruses of the subtypes H5N1, H7N7, H9N2, 

H7N2 and H7N9 partly displaying high mortality rates of 34-60% (167–171) cause concern 

about high pathogenic avian viruses crossing the species barrier and gaining pandemic 

potential. Avian influenza viruses are restricted in their replication in humans but can adapt 

to the mammalian host by introducing changes in the HA, NA and the polymerase proteins 

(172–177).  

Inhibitors of viral NA protein activity, Oseltamivir, Zanamivir, Laninamivir and Peramivir, 

are used to control seasonal or pandemic influenza, but an increasing prevalence of resistant 

influenza strains leads to a limited efficacy of these antivirals (178). A better understanding 
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of influenza pathophysiology is therefore of utmost importance as it might provide cellular 

targets for new treatment options. 

1.5. Interactions At The Host-Virus Interface 

Replication of IAV in a host cell greatly impacts on cellular function and structure. First of 

all, it leads to impaired protein biosynthesis of cellular proteins, as components of the 

transcriptional and translational machinery are recruited for viral RNA processing (179, 

180). IAV infection also impacts on the functional integrity of the alveolar epithelium. It 

directly affects tight junction stability, through the action of NS1. Its carboxylterminus 

domain contains a PDZ-ligand binding motif that can interact with host factors scribble and 

Dlg1 (Disks large homolog 1), leading to tight junction disruption accompanied by lower 

transepithelial resistance and higher protein diffusion rates of the epithelial cell layer (181). 

HA binding to the cell surface leads to rapid activation of Src, phospholipase C and protein 

kinase C (PKC) that decrease the activity of the apical epithelial sodium channel ENaC 

(182, 183). M2 also affects ENaC as M2 expression leads to enhanced levels of reactive 

oxygen species (ROS) formation, subsequent PKC activation and proteosomal degradation 

of ENaC (184). M2 further has been demonstrated to affect the chloride channel CFTR, 

driving it to ubiquitin-mediated degradation by M2-mediated changes in secretory organelle 

pH (185).  

The cellular recognition of pathogen-/danger- associated molecular patterns (PAMPs/ 

DAMPs) by diverse pattern recognition receptors induces the activation of inflammatory, 

anti-viral signal cascades (Fig. 1-8). Detection of uncapped 5´-triphosphorylated RNA by 

RIG-I (RNA helicases retinoic acid inducible gene-I) and subsequent interaction with 

MAVS (mitochondria-associated antiviral signaling protein) and TRIM25 (Tripartite motif-

containing protein 25) and IPS-1 (Interferon-beta Promotor Stimulator-1) leads to an IRF-3 

and IRF-7 (interferon regulatory factor)-dependent transcription and translation of type I 

interferons (IFN) (36, 186). Furthermore, recognition of viral patterns by protein kinase R 

(PKR) activates NF-κB (nuclear factor 'kappa-light-chain-enhancer' of activated B-cells) 

translocation to the nucleus and transcriptional activation of pro-inflammatory, pro-

apoptotic and anti-viral gene clusters (187–189). Besides RIG-I and PKR, the NLRP3 

(NOD-like receptor family, pyrin domain containing 3) inflammasome, but also 

endosomally located TLR3 and TLR7 (190–192) are able to sense IAV infection. Activation 

of NLRP3 induces caspase-1 dependent release of pro-inflammatory IL-1β and IL-18 (193), 
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whereas TLR3/TLR7 act via IRF-3, IRF-7and NF-κB, again triggering the induction of the 

IFN and pro-inflammatory cytokine response (194).  

 
Figure 1-8 Host immune responses to IAV infection, adapted from (152). Presence of intracellular viral RNA activates 

TLR3/7 signaling via IRF3, IRF7 and NFκB, inducing of transcription type I interferons and pro-inflammatory mediators. 

RIG-I responds to 5’ uncapped dsRNA, interacts with MAVS and NOD-2 to activate IRF3 and NFκB. Also the NLRP3 

inflammasome responds to IAV infection by scission and activation of caspase-1, resulting in release of IL-1β and IL-18. 

 

In addition, IAV infection  leads to a high release of pro-inflammatory mediators by both 

tissue-resident and monocyte-derived recruited alveolar macrophages that amplify lung 

injury after IAV-infection, as shown for highly pathogenic avian influenza H5N1 or the 

pandemic 2009 H1N1 (195–198). In particular, exuberant production of IFN and IFN-

dependent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) have 

been demonstrated to impact on the epithelial barrier integrity, severity of lung injury and 

mortality and also hamper resolution of inflammation (45, 126, 199–201).  

1.5.1. Interferon Signaling 

IFN are antiviral cytokines that can be divided into three groups, type I, II and III IFN. Type 

I IFN are mainly produced by AM, AEC and DC after IAV infection (201–203) and consist 

of IFN-α, -β and the less known IFN-ω, -κ and –τ, whereas IFN-γ and IFN-λ are assigned to 
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the type II and III IFN, respectively (204, 205). IAV infection primarily triggers the 

production and secretion of type I and III IFN in response to PRR signaling (206). Type I 

IFN secreted by infected cells bind to their respective receptors, termed IFN-α/-β receptor 

(IFNAR), on surrounding cells to induce a specific signaling program establishing an 

antiviral state in these cells. Receptor binding of IFN to IFNAR results in activation of ISRE 

(interferon-sensitive response elements) promotor elements (204–206). These ISRE 

elements are found upstream of more than 100 different genes, the transcription of which 

they regulate, termed interferon stimulated genes (ISG). Of note, type I IFN have not only 

been ascribed antiviral activity in IAV infection, but have also been shown to add to IAV-

induced pathogenesis by promoting TRAIL-mediated apoptosis of the alveolar epithelial 

cells (201, 207). 

1.5.2. TNF-Related Apoptosis Inducing Ligand (TRAIL) 

Together with Fas ligand and TNF-α, TRAIL (or Apo2L) belongs to the superfamily of TNF 

ligands, consisting of mostly homotrimeric type II transmembrane proteins whose 

extracellular domains can be cleaved by specific metalloproteinases to generate soluble 

cytokines (208). In the human system, five different binding partners for TRAIL are present: 

the membrane-bound death receptors DR4 and DR5 that both induce a pro-apoptotic 

signaling cascade, the as well membrane-bound anti-apoptotic decoy receptors DcR1 and 

DcR2 and the soluble interaction partner osteoprotegerin (OPG) (209). In the murine 

system, only DR5 has been identified to ligate TRAIL (210). Ligand-binding to DR4 and 

DR5 results in the cleavage and activation of the effector caspase-3 that affects a large 

variety of substrates and drives the cell into apoptosis (211).  

In IAV infection, TRAIL is specifically released from infected alveolar macrophages 

depending on an autocrine signaling loop (Figure 1-9). Upon infection, NFκB translocates to 

the nucleus due to PKR activation and induces transcription of IFN-β. Binding of IFN-β to 

macrophage-expressed IFNAR activates a JAK/STAT-dependent release of TRAIL, which 

then acts through its receptor DR5 on the alveolar epithelial cells thereby inducing apoptosis 

and affecting structural barrier integrity, with significant impact on morbidity and mortality 

(45, 201). 
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Figure 1-9 IFN-β dependent TRAIL-mediated pro-apoptotic AM-AEC cross-talk in IAV-induced lung injury (201). 

Upon IAV infection of AM, PKR is activated an NFκB translocates to the nucleus. This results in IFN-β formation and 

release. IFN-β binds in autocrine fashion to AM-expressed IFNAR, inducing STAT-dependent production and release of 

TRAIL, which in turn acts on AEC. Ligation of TRAIL to DR5 induces an apoptotic signaling cascade promoting lung 

injury by structural barrier disruption.  
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2. Aim Of This Work 

The aim of the presented work was to address if and by which signaling events Na,K-

ATPase was deregulated after IAV-infection, as - despite its prominent function in sodium 

ion conductance and therefore in fluid homeostasis - the particular role of Na,K-ATPase in 

the clearance of IAV-induced alveolar edema has not been addressed so far. 

Therefore, a potential deregulation of Na,K-ATPase α1 subunit was analysed on mRNA and 

protein level in primary isolated murine or human alveolar epithelial cells after ex vivo and 

in vivo IAV infection. Furthermore, it was addressed in a co-culture model of primary 

alveolar epithelial cells with resident alveolar or bone marrow-derived macrophages if 

presence of IAV-infected mononuclear phagocytes would further impact on Na,K-ATPase 

regulation.  

To study if any underlying host- or virus-induced molecular mechanisms leading to a 

deregulation of Na,K-ATPase were amenable to manipulation and thus could provide 

possible targets to improve alveolar fluid clearance after IAV infection, Na,K-ATPase 

expression was determined after IAV infection in presence of specific chemical inhibitors, 

adenoviral transfer of dominant-negative protein constructs and in lung epithelial cells of 

respective knockout mouse lines. 

Additionally, the impact of those signaling mechanisms on epithelial fluid transport was 

analysed in vivo after IAV infection of wildtype or knockout mice as well as after in vivo 

application of adenoviral over-expression constructs.  

Moreover, this work also aimed to reveal if Na,K-ATPase subcellular localization and 

trafficking was affected by host or viral factors after IAV infection, as a correct basolateral 

membrane-insertion of Na,K-ATPase is crucial for efficient vectorial fluid transport and 

thus edema reabsorption. 

Together, the ultimate aim of this study was to elucidate the cellular and molecular 

mechanisms of Na,K-ATPase deregulation during IAV pneumonia, to design novel 

therapeutics, to improve fluid clearance and outcome in patients with severe virus-induced 

ARDS. 
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3. Methods 

3.1. Mouse Strains 

Wildtype C57BL/6 mice (wt) were purchased from Charles River Laboratories. wt, trail−/−  

mice (212),  ifnar−/−  mice (213), dr5−/−  mice (214) and ccr2-/- mice (215) were housed under 

specific pathogen-free conditions (SPF) and transferred to IVC conditions upon treatment 

and monitored 1-3 times per day. Animal experiments were performed at the Northwestern 

University of Chicago, Department of Pulmonary and Critical Care Medicine within the 

framework of the IRTG1062 graduate program, and partially at the Justus-Liebig University 

of Giessen. 

3.2. Human Material 

Human lung tissue was obtained from patients who underwent lobectomy after informed 

written consent (Departments of Pathology and Surgery, Justus-Liebig-University, Giessen). 

Use of human lung tissue samples was approved by the University of Giessen Ethics 

Committee (Az. 10/06). 

3.3. Cell Culture 

Cell lines were cultured in cell culture flasks in adequate media at 37°C and 5% CO2.  For 

passage, cells were detached and singularized with Trypsin-EDTA after washing with PBS. 

For experiments, cells were passaged on 6-, 12-well or 12-well permeable transwell supports 

24h prior to further treatment. 

 

cells origin media composition 

A549 human adenocarcinoma lung 

epithelial cell line 

 HAM F-10, 10% FCS, 1% Amphotericin, 1% 

Penicillin/Streptomycin, 1% L-Glutamine 

MDCK 

II 

canine kidney epithelial cell 

line (clonal) 

DMEM, 10% FCS, 1% Penicillin/Streptomycin, 1% 

L- Glutamine, 2.5% HEPES 

MLE-

12 

mouse lung epithelial cell line 

(SV40 transformed) 

DMEM, 10% FCS, 1% Penicillin/Streptomycin, 1% 

L- Glutamine, 2.5% HEPES 

 

DMEM and HAM F-10 were purchased from Gibco/Life Technologies, Carlsbad (USA). 

  



Methods 

 

26 

 

3.4. Primary Murine Alveolar Epithelial Cells 

Murine alveolar epithelial cells (AEC) were isolated based on the protocol developed by 

Corti et al (216). Mice were sacrificed by cervical dislocation. The chest cavity was opened 

and lungs were perfused with steril HBSS via the right ventricle. To insert dispase into the 

lung, a small incision was made into the trachea to insert a shortened 21-gauge cannula. This 

cannula was fixed and 1.5ml of sterile dispase followed by 500µl of prewarmed low-melting 

agarose (1% in PBS) was administered into the lungs to allow enzymatic seperation of distal 

but not proximal epithelial cells. After agarose jellied at room temperature (RT) lungs and 

trachea were removed, washed in PBS and placed in dispase for 40min at RT. Next, heart, 

trachea and large airways were removed and the remaining lung tissue was dissected in 

DMEM/2,5% HEPES plus 0.01% DNase in C tubes using the gentleMACS Dissociator. 

(Milteny Biotec). Cells were filtered through 70, 40 and 20µm cell filters, washed, 

resuspended in DMEM/2,5% HEPES and counted. Then cells were incubated with 

biotinylated anti-mouse CD31, CD16/32 and CD45 antibodies for 30 min at 37°C to remove 

remaining endothelial and lymphoid cells. Antibody amounts were calculated by following 

equations: 

number cells/1,000,000 *0,9 = µl of CD45 antibody 

number cells/1,000,000 *0,675= µl of CD16/32 antibody 

number cells/1,000,000 *0,4 = µl of CD31 antibody 

After incubation, cells were washed and streptavidin-linked magnetic beads (washed thrice 

with 1ml PBS) were added for 30 min at room temperature with gentle rocking. Amounts of 

magnetic beads were calculated by following equation: 

number cells/1,000,000 /3*50µl = µl of magnetic beads 

After incubation, magnetic separation was performed for 15 min and remaining cells were 

washed and resuspended in mAEC medium. The purity of freshly isolated mAEC was 

assessed by flow cytometry for murine EpCAM (staining epithelial cells) and pro-surfactant 

protein C (staining type II AEC). Cell suspensions with a purity ≥ 90% were used for further 

experiments. Cell viability was examined by trypan blue staining and was ≥95%. Murine 

AEC were plated at a density of 120-150,000 cells/cm2 and grown for 3 days to confluency 

prior to further treatment. 
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3.5. Primary Human Alveolar Epithelial Cells 

Fresh tissue samples were sheared with forceps and scissors and extensively washed with 

hAEC medium and filtered through a 100µm cell filter. The lung tissue was then stored in 

hAEC medium at 4°C until further digestion by 2,5% dispase II in 2mM calcium and 1.3mM 

magnesium for 180 min at 37 °C. Cells were filtered through 100, 40 and 20µm cell filters. 

Epithelial cells were centrifuged for 25min at 1500rpm and 20°C and separated by ficoll 

density centrifugation for 15 min at 2500rpm at RT. The interphase was collected, washed 

and resuspended in hAEC medium for subsequent depletion of leukocytes by anti-human 

CD45 magnetic beads. Beads were added according to manufacturer’s protocol and 

incubated for 15min at 4°C, followed by magnetic separation. The purity of remaining 

alveolar epithelial cells was assessed by flow cytometry (usually 90-98% epithelial cells). 

Viability was determined by trypan blue exclusion and was always >95%. Human AEC 

were plated at a density of 300-450,000 cells/cm2 and grown for 5 days until confluency 

prior to further treatment. For measurement of vectorial water transport, hAEC were seeded 

at 250,000 cells/cm2 in transwell permeable support inserts and cultured for 10 days. 

Medium was exchanged every second day and cells were exposed to air at the apical side 

from day 5. 

3.6. Primary Alveolar and Bone Marrow-Derived Macrophages 

Primary alveolar macrophages (AM) were isolated from bronchoalveolar lavage fluid 

(BALF), whereas bone marrow-derived macrophages (BMM) were isolated from femur and 

tibia. Mice were sacrificed by cervical dislocation. For BALF, a small incision was made 

into the previously exposed trachea to insert a shortened 21-gauge cannula. Mice were 

lavaged with 10x 500µl PBS/ 2mM EDTA. BALF was stored on ice until further treatment. 

AM were pelleted by centrifugation at 1600rpm for 8min at 4°C and resuspended in AM 

medium (RPMI, 2%FCS, 1% Penicillin/Streptomycin, 1% L-Glutamine). AM were seeded 

at a density of 75-100,000 cells/cm2 and left to adhere for 2h before further treatment. For 

isolation of BMM, femur and tibia were removed, cleaned from surrounding tissue and 

washed in prewarmed BMM medium (DMEM, 10%FCS, 1% Penicillin/Streptomycin, 1% 

L-Glutamine). Next, the epiphyses were cut, a 18mm-gauge cannula was inserted to flush 

out the bone marrow with BMM medium. Bone marrow cells were washed with PBS, 

centrifuged at 1600rpm for 8min at 4°C and filtered through a 40µm cell filter. Cells were 

split into three T75 cell culture flasks, allowed to adhere for 1h to select for BMM and 
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washed with BMM medium. BMM were then cultured in BMM media containing 25ng/ml 

GM-CSF, polarizing them towards an M1-like, inflammatory macrophage phenotype. Cells 

were cultured for 9 days and plated into cell culture plates 24h prior to further treatment at a 

density of 100-125,000 cells/cm2. 

3.7. Virus Strains 

A/Puerto Rico/8/1934 H1N1  seasonal, mouse adapted Influenza virus originated from 

Stephan Pleschka, Virology, Gießen (GER) and propagated 

on MDCK II cells 

A/Udorn/1972 (H3N2) seasonal Influenza virus, egg-grown, kindly supplied by 

Scott GR Budinger, Chicago (USA) 

Ad-Null, Adenovirus replication deficient adenovirus carrying no construct, 

purchased from Viraquest, North Liberty (USA) 

Ad-DN-AMPK, Adenovirus replication deficient adenovirus carrying a dominant 

negative form of the kinase AMPK, purchased from 

Viraquest, North Liberty (USA) 

3.8. Influenza A Virus Propagation And Titration 

The virus A/Puerto Rico/8/34 (H1N1) (PR8) was propagated on canine epithelial MDCK II 

cells. Cells were passaged in a T75-cell culture flask at a ratio of 1:3 a day prior to infection 

to achieve a 85-90% confluency of the cells at the time point of infection. Cells were washed 

with PBS and infected with a multiplicity of infection (MOI) of 0.001. The virus dilution 

was prepared in MDCK II infection media (MDCK medium as described above but 

supplemented with 0.2% BSA instead of FCS). Cells were inoculated with 5ml virus 

dilution for 1h at 37°C and 5% CO2, were then washed and further incubated with 10ml 

infection medium. Cell culture supernatants containing virus particles released from the 

infected cells were harvested after 72h and centrifuged at 3000rpm at 4°C for 30min. 

Supernatants were stored as aliquots at -80°C. 

To determine the amount of virus particles capable of multicycle replication (plaque forming 

units, pfu), MDCK II cells were seeded in 6-well plates a day prior to infection to achieve a 

confluency of 85-90% at the timepoint of infection. Cells were washed with PBS and 

infected with 333µl of subsequent 1:10 dilutions of the virus stock in PBS/0.2%BSA, 

covering a range of dilutions from 1:103 to 1:109. Virus dilutions were inoculated at 37°C 

5% CO2 for 1h, cells were then washed and covered with 1.5ml Avicel medium (2xMEM, 
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1% Penicillin/Streptomycin, 0.1% NaHCO3, 0.2% BSA, 2µg/ml Trypsin-TPCK, 1.25% 

Avicel). Due to its high viscosity, Avicel prevents viral spread through the cell culture by 

diffusion of viral particles in the surrounding media and only allows virus spread from cell 

to cell. Cells were incubated for further 48h at 37°C 5% CO2 to allow formation of plaques 

caused by local cell death of infected MDCK II cells. After this incubation, cells were fixed 

with 4 %PFA for 20min at 4°C followed by permeabilization by 0.3% Triton-X-100 for 

15min at RT. Blocking of unspecific antigenic epitopes was performed using Normal Horse 

Serum (NHS) diluted 1:100 in PBS/0.2%BSA. Plaques were visualized by 

immunohistochemical staining with anti-Influenza NP antibody diluted 1:100 in PBS/10% 

NHS/0,05% Tween 80 for 1h at RT followed by a Horse raddish peroxidase (HRP)-marked 

secondary anti-mouse antibody diluted 1:200 for 1h at RT. Addition of TrueBlue, an HRP-

substrate yielding a blue colour after enzymatic progressing, allowed counting of plaques 

per well. 

The titer of the virus stock was calculated by: 

number of plaques per well*dilution-1*1ml/333µl = pfu/ml 

3.9. In Vivo Experiments And Preparation Of Animal Materials 

3.9.1. Intratracheal Intubation 

For in vivo IAV infection, mice were premedicated with Atropin (application 0.05mg/kg; 

diluted in 0.9% sterile NaCl to 0.05mg/ml and applied subcutaneously at 0.02ml per 20g 

body weight) and anesthesized with Xylazine hydrochloride (application 16mg/kg; diluted 

in 0.09% sterile NaCl to 3.33mg/ml) and Ketamine hydrochloride (application 100mg/kg; 

diluted in 0.09% sterile NaCl plus 3.33mg/ml Xylazine hydrochloride to a concentration of 

25mg/ml) applied intraperitonally at 0.2ml per 20g body weight. 

Mice were kept on a heating pad to minimize loss of body temperature. Achieved anesthesia 

was verified by pinching of the tip of the tail. Mice were then fixed at the upper teeth and 

hindlegs in supine position on an intubation stand, and an endotracheal tube was inserted 

orally, passing the vocal chords into the trachea. Using a Hamilton syringe, mice were 

inoculated with 500pfu (plaque forming units) of PR8 or 105pfu A/Udorn/307/1972 (H3N2) 

(Udorn) diluted in 70µl sterile PBS-/-. Endotracheal delivery of adenoviruses was performed 

at 1x109 pfu in 70µl of 50% sterile PBS and 50% surfactant vehicle (Chiesi, Hamburg 

(GER)) to ensure equal distribution of the replication-deficient virus in the distal lung (217). 
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Control groups were inoculated with 70µl of sterile PBS without additives. Treated mice 

were monitored 1-3 times per day. 

3.9.1. Adoptive Transfer 

For adoptive transfer of exudate macrophages, wt mice were infected with 500pfu of PR8 

and lavaged to obtain BALF (as described in 3.6) on d7 pi. The BALF was then centrifuged 

at 1400rpm for 10min at 4°C and the pelleted cells were incubated with a mixture of 

antibodies (CD45, Ly6G, CD11b, SiglecF, CD11c) in 250µl MACS-buffer (PBS, 7.4% 

EDTA, 0.5% FCS pH 7,2) for 20min at 4°C. The cells were washed to remove unbound 

antibodies and were resuspended in 3ml of MACS-buffer. Exudate macrophages (CD45pos 

Ly6Ghi CD11bhi SiglecFlow CD11clow) were then flow-sorted using a BD FACSAria™ III 

Cell Sorter. The purity of sorted exudate macrophages was ≥ 93%. Sorted exudate 

macrophages were resuspended in sterile PBS-/- and 30.000 cells per 50µl were transferred 

(i.t.) to PR8-infected ccr2-deficient mice on d3 pi, and the effects of transfer with respect to 

Na,K-ATPase-mediated fluid clearance were analyzed on d7 pi. 

3.9.2. Alveolar Fluid Clearance 

The rate of fluid removal from the alveolar airspace was assessed by measurements of 

changes in Evans Blue tagged albumin in an isoosmolar alveolar instillate over 30 minutes 

as described previously (106). Mice were anesthetized as described in 3.9.1 and maintained 

supine. Body temperature was monitored using an anal probe and maintained with a heating 

pad and lamp. The trachea was cannulated with a 20-gauge angiocath. Mice were paralyzed 

with 2.0mg/kg pancuronium bromide applied intraperitoneally and directly connected to a 

mouse ventilator (Harvard Apparatus) using a tidal volume of 10 ml/kg at a frequency of 

160 breaths per minute and 100% of oxygen. After instillation of 300µl isoosmolar 

(324mOsm) NaCl solution containing 5% Evan’s blue tagged (0.15 mg/ml) bovine serum 

albumin followed by 200µl of air, mice were ventilated over 30 minutes. Then fluid was 

reaspirated from the endotracheal catheter and Evans Blue concentrations were analysed 

using a microplate reader (Bio-Rad, 620nm filter) and AFC calculated as follows:  

AFC = 1-(C0/C30),  

where C0 is the protein concentration before instillation, and C30 is the protein concentration 

of the sample reaspirated after  30 minutes of  ventilation. 
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3.9.3. Blood Gas Analysis 

Arterial blood was gained from punctuation of the left ventricle of mice anesthetized as 

described in 3.9.1 and collected in a capillary. Blood was sampled by the Radiometer ABL 5 

containing three electrodes measuring pO2, pCO2 and pH. 

3.9.4. Preparation Of Lung Homogenate For Flow Cytometry 

For analysis of protein expression on lung distal cells by flow cytometry, mice were 

sacrificed by exsanguination. Lungs were perfused via the right ventricle with sterile PBS. 

The lung was removed, heart, trachea and the larger airways were dissected and the 

remaining lobes washed with cold PBS. Lungs were kept in PBS on ice until further 

processing. Lobes were sheared with forceps and scissors and single cell suspensions made 

by dissociation of the remaining tissue in 5ml PBS. Cells were pelleted by centrifugation at 

800rpm for 8min at 4°C, resuspended in 1ml PBS, counted and adjusted to 107cells/ml. 

3.10. In Vitro Experiments 

3.10.1. Influenza A Infection Of Cultured Cells 

To infect epithelial cell lines or primary cells with PR8, the virus stock was diluted in 

PBS++, 0.2% BSA to the indicated MOI. The final concentration of the inoculums was 

calculated as follows: 

Number of cells/well*MOI*1ml/inoculation volume µl = pfu/ml 

The cells were washed with PBS and inoculated with the final virus dilution for 1h 37°C 5% 

CO2. After this incubation the virus dilution was removed and replaced by infection medium 

containing 0.2% BSA instead of FCS. For co-culture experiments, bottom seeded alveolar or 

BMM were combined with AEC seeded on transwells after PR8 inoculation. Chemicals 

were added together with the infection medium at the indicated concentrations. Infected 

cells were kept at 37°C 5% CO2. 

3.10.2. Adenoviral Transduction Of A549 Cells 

For adenoviral transduction of epithelial A549, 85-95% confluent cells were starved over 

night by replacement of A549 medium for HAM F12 containing Penicillin/Streptomycin 

and L-Glutamine but no FCS. Cells were washed after 12-16h and 5ml of adenoviruses Ad-

Null or Ad-DN-AMPK diluted in infection medium to a MOI of 10 were added to the cells. 

After 6-8h of incubation at 37°C 5% CO2, cells were washed and the virus inoculum was 
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replaced by A549 medium. Cells were incubated at 37°C 5% CO2 for 48h prior to IAV 

infection for additional 24h. 

3.10.3. Transfection Of A549 Cells 

A549 were transfected with plasmids for microscopy or with small interfering (si)RNA for 

knockdown of the Calcium-/Calmodulin kinase kinase β (CaMKKβ) using Lipofectamine 

2000. Prior to transfection, cells grown in 6cm cell culture dishes to a confluency of 50-60% 

were starved over night by replacement of A549 medium for HAM F12 containing 

Penicillin/Streptomycin and L-Glutamine without FCS. The next morning, 400pmol siRNA 

and 20µl Lipofectamine were mixed in a volume of 3ml OptiMEM, handshaked for 1min 

and incubated at RT for 30min to allow formation of siRNA containing micelles. After this 

incubation, cells were washed with PBS and supplemented with 3ml of micelle-containing 

OptiMEM. Cells were incubated at 37°C 5% CO2 and swirled every 30min. The supernatant 

was exchanged for A549 medium 8h post transfection to minimize Lipofectamine-induced 

cytotoxic effects. siRNA-transfected cells were incubated at 37°C 5% CO2 prior to IAV 

infection for additional 24h prior to further analyis. The following plasmids were used in 

this study: 

pCAGGS plasmids carrying polymerase II driven viral proteins PA, PB1, PB2 and NP or  

pPol I plasmids coding for HA, NA and M proteins were a kind gift of Thorsten Wolff, RKI 

Berlin. pCAGGS constructs encoding for polymerase II driven M2 tagged with mCherry 

fluorescent protein on C- or N-terminus were a kind gift from Alexandra Dudek, Peter 

Reuther and Martin Schwemmle, Institute of Virology, Freiburg. GFP-Na,K-ATPase α1 

(GFP-NKAα1) plasmid was provided by Emilia Lecuona and Iasha Sznajder, Department of 

Pulmonary and Critical Care Medicine, Chicago. For knockdown experiments, the following 

siRNAs were used: 

siRNA CaMKKβ 5′-UUUCGAAUCAUGGUCUUUACCAGGA-3′ 

siRNA scrambled 5′- ACGUUGUUAUCUAAUCGUCUCGAGA-3′  

3.10.4. Vectorial Water Transport 

Vectorial transport of water over an electrochemical resistant cell layer of human AEC was 

determined by changes of FITC-dextran (70kDa) concentrations in apical and basal cell 

culture media. hAEC were seeded as described in 3.5 in 0,4µm pore size transwell cell 

culture dishes and cultured until achieving electrochemical resistances of ≥800Ω /cm2 as 

measured by Millicell-ERS2 device. Cells were infected with PR8 at MOI 0.1 or PBS 
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treated for 1h at 37°C and then supplied with 3mg/ml 70kDa FITC-dextran (Sigma Aldrich) 

labeled cell culture media including selected inhibitors at indicated concentrations. After 6h 

of incubation at 37°C, apical and basal media were analysed for FITC-dextran concentration 

by (FLX 800, Bio-Tek Instruments). Cells were analyzed microscopically for bound FITC-

dextran without apparent differences in the treatment groups. Vectorial water transport 

(VWT) was calculated by changes in FITC-dextran concentration between apical (Ca) and 

basal (Cb) media in comparison to starting conditions (C0):  

C0 = [1 - (C0/Ca)] - [1-(C/Cb)] 

3.11. Analysis Of Gene Expression 

3.11.1. RNA Isolation 

For RNA isolation, cells were washed with PBS and then lysed with 350µl RLT buffer 

provided by the RNeasy Kit (Qiagen), leading to cell lysis, protein denaturation and thus 

RNase deactivation. Samples were processed according to the manufacturer’s instructions. 

By adding 350µl ethanol, RNA was precipitated and then bound to a silica membrane, 

washed and finally eluted in small volumes. RNA amounts were measured using the 

spectrophotometer Nanovue Plus (GE Healthcare). 

3.11.2. cDNA Synthesis 

For cDNA synthesis 250ng of isolated RNA plus dH2O in a total volume of 13.5µl were 

heated up to 70°C for 5min to break up secondary RNA structures and linearize the RNA. 

Samples were then put on ice for 3-5min. Next, 11.5µl of PCR Master Mix were added 

including a reverse transcriptase needed for transcription of RNA into cDNA according to 

the manufacturer’s instructions. Samples were kept at 37°C for 1h and then heated up to 

95°C for 5min to inactivate the reverse transcriptase. All incubation steps were performed in 

a PeqSTAR thermocycler (Peqlab, Erlangern (GER)).  

3.11.3. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

qRT-PCR was performed with SYBR green in the AB Step one plus Detection System 

(Applied Bioscience) using the reaction setup provided by the manufacturer’s instructions. 

β-Actin expression served as normalization control. Data are presented as ∆Ct (Cttarget gene – 

Ctreference gene). The following primers were used:  

β-Actin FP, 5′-ACCCTAAGGCCAACCGTGA-3′  
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 RP, 5′-CAGAGGCATACAGGGACAGCA-3′ 

Atp1a1  FP, 5′-CGGAACAGATTTGAGCCGAGG-3′ 

RP, 5′-ATTCGGGAGTAGTGGGAGGG-3′ 

Atp1a2  FP, 5′-TGCTTCTTAGCCTACGGTATCC-3′ 

RP, 5′-CCGGTGACGATAACTACAGCC-3′ 

Atp1a3  FP, 5′-AGAATGCCTACCTGGAGCTTG-3′ 

RP, 5′-ATGAGACCCACAAAGCAAAGG-3′ 

Atp1b1  FP, 5′-GCTGCTAACCATCAGTGAACT-3′ 

RP, 5′-GGGGTCATTAGGACGGAAGGA-3′ 

Fxyd  FP, 5′-GAGAATCCCTTCGAGTACGACT-3′ 

RP, 5′-CAGCGGAACCTTTTGCTGAGA-3′ 

Trail  FP, 5′-GAAGACCTCAGAAAGTGGC-3′ 

RP, 5′- GACCAGCTCTCCATTCTTA -3′ 

Primer specificity was validated by analyzing the melt curve of the qRT-PCR product.  

3.12. Analysis Of Protein Expression 

3.12.1. SDS-PAGE And Western Blotting 

To analyze quantitative changes in total protein abundance of infected versus control 

conditions, cells were treated with NP40-lysis buffer (20mM Tris (pH 7.5), 150mM NaCl, 

1mM EDTA (pH 8.0), 1mM EGTA (pH 8.0), 0.5% NP40, 2mM Sodium Orthovanadat (pH 

10.0), protease inhibitor, at 20µl/cm2 confluent cell layer). Cell lysates were transferred to 

ice for 10min and centrifuged at 10,000rpm for 10min at 4°C to remove cellular debris. The 

protein concentration in the remaining supernatant was determined using the Dc Protein 

Assay Kit (Bio-Rad) according to the manufacturer’s instructions. The Bradford Assay uses 

the changes of absorption and emission spectra of triphenylmethane upon binding to protein 

residues in acidic solution for colorimetric quantification of protein concentration. 

Colorimetric quantification was performed using a 96-well microplate reader (Bio-rad) at a 

wavelength of 640nm. For primary cells, 40-50µg protein/sample were processed for SDS-

PAGE, for cell lines 20-25µg of protein were used. To determine Na,K-ATPase levels, 

samples were diluted in Laemmli buffer (8% SDS, 40% glycerol, 240mM Tris pH 6.8, 

0.04% bromphenol blue) and heated up to 37°C for 30min to prevent agglutination of the 

highly hydrophobic Na,K-ATPase α1 subunit. For all other analyses samples were heated up 

to 95°C for 4min. Protein samples were briefly cooled down on ice and centrifuged and then 
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loaded on 7,5-10% protein TGX mini gels. PAGE (polyacrylamide gel electrophoresis) was 

performed under denaturing and reducing conditions for 1,5h at 90-120V and 40mA. 

Proteins were transferred on PVDF membranes at 100V 265mA for 70min. Unspecific 

epitopes were blocked by incubating the membranes in PBS containing 0.05% Tween 20 

and 5% milk powder (blocking buffer) for 1h. The membrane was then incubated with the 

first antibody diluted in blocking buffer over night at 4°C, then washed three times for 

10min in PBS/0.05% Tween 20 and incubated for 1h with an HRP-linked secondary 

antibody also diluted in blocking buffer. Protein bands were visualized using the 

chemiluminescent reaction of HRP with luminol, enhanced with ECL plus kit (Bio-Rad), 

detected with the MicroChemi system (DNR Bio-Imaging Systems Ltd.). Bands were 

quantified in relation to internal controls (β-Actin, Glut1, AMPK) using ImageJ software. 

3.12.2. Surface Biotinylation 

To analyze plasma membrane expressed proteins at a given time point, cells were incubated 

with non-cell permeable EZ-link Sulfo-NHS-SS-Biotin binding unspecifically to all surface 

located and therefore exposed amine-residues. To prevent internalisation and degradation 

processes during labeling, all steps were performed with pre-cooled reagents on ice. Cells 

were washed thrice with PBS and then incubated with PBS++ containing 1mg/ml biotin for 

20min shaking regularly. To remove unbound biotin, cells were then washed thrice for 

10min with 10mM glycine in PBS. Remaining wash solutions were completely aspirated 

prior to lysis of cells with NP-40 lysis buffer. Cell lysates were kept on ice for 30min, 

intensively vortexed and then centrifuged at 10,000rpm for 10min at 4°C to pellet cellular 

debris. The supernatant was subjected to Bradford quantification as described in 3.12.1 . 

300µg of protein in a total volume of 300µl lysis buffer were supplemented with 60µl 

streptavidin-coupled beads and incubated at a rotation speed of 40rpm over night at 4°C, 

allowing a specific binding of biotin-labeled proteins to the beads. To remove unspecifically 

bound residues, beads were then washed once with Solution A, twice with Solution B and 

thrice with Solution C (see 3.5), each time using a volume of 300µl and centrifuging the 

beads at 10.000rpm for 3min at 4°C. To remove bound protein, beads were resuspended in 

20µl Laemmli buffer and heated up to 37°C for 30min. Beads were centrifuged and the 

remaining supernatant loaded onto an SDS-PAGE. 

Wash Buffers for biotinylation: 

- Solution A             150mM NaCl , 50mM Tris pH 7.4, 5mM EDTA  pH 8.0 



Methods 

 

36 

 

- Solution B          500mM NaCl , 50mM Tris pH 7.4, 5mM EDTA  pH 8.0 

- Solution C          500mM NaCl , 20mM Tris pH 7.4, 0.2% BSA 

3.12.3. Co-Immunoprecipitation 

To test for interaction between viral proteins and the Na,K-ATPase, A549 cells grown to 

confluency in a T75cm2 cell culture flask were infected with an MOI of 0.1 for 16h. Cells 

were then transferred to ice and washed with pre-cooled PBS. Cells were lysed by addition 

of 1ml IP lysis buffer (20mM HEPES pH 7.4, 150mM NaCl, 0.5% NP-40, 2mM EDTA, 

2mM EGTA, 5% glycerol) containing freshly added protease inhibitor and phosphatase 

inhibitor for 15min on ice. Cells were scraped, vortexed and incubated for additional 10min 

on ice. Cell lysate was centrifuged at 10,000rpm 5min at 4°C, and supernatants subjected to 

protein quantification by Bradford Assay. 40µg were incubated with 3µg anti-Na,K-ATPase 

α1 antibody, anti-Influenza M1, anti-Influenza M2, anti-Influenza NS1, anti-Influenza PB1 

or respective IgG controls for 5h at 4°C gently rotating at 20rpm. 30µl protein A/G Plus-

agarose beads were blocked for unspecific protein binding with 300µl 3% BSA in PBS for 

5h at 4°C. Beads were then centrifuged at 2,000rpm for 3min at 4°C. Cell lysate/antibody 

suspensions were added to the beads and incubated for additional 4h rotating gently at 4°C. 

Beads were then washed 5 times with 300µl IP wash buffer (20mM HEPES pH 7,4,  

150mM NaCl, 0,1% NP-40, 2mM EDTA, 2mM EGTA, 5% glycerol) containing freshly 

added protease and phosphatase inhibitor and finally resuspended in 30µl Laemmli buffer. 

Samples for detection of Na,K-ATPase were warmed up at 37°C for 30min, all other were 

heated to 62°C for 20min and then subjected to SDS-PAGE and Western Blotting. 

3.12.4. Enzyme Linked Immunosorbent Assay (ELISA) 

Commercially available ELISA kits were used according to the manufacturer’s instructions 

to determine concentrations of IFN-α, IFN-β, TGF-β, TNF-α and TRAIL released from cells 

into the cell culture supernatants. Samples stored at -80°C were thawn on ice, and used 

undiluted or in a 1:2 dilution for ELISA. Samples and standards were transferred to an 

antibody-coated 96well plate and incubated for specific antibody-epitope reaction. Next, 

wells were washed, incubated and stained with a soluble, cytokine-specific primary and 

secondary antibody and cytokine abundance was then quantified by addition of a 

luminescent substrate and colorimetric detection at the given wavelength in a microplate 

reader (Bio-rad). Cytokine concentrations were calculated on basis of samples of known 

concentrations in a standard curve. 
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3.12.5. Cytometric Bead Array (CBA) 

Besides applying ELISA for cytokine quantification, commercially available CBA kits (BD 

Bioscience) were used for analyzing murine MCP-1, KC, IL-1α and RANTES in cell culture 

supernatants. CBAs allow the parallel detection of multiple cytokines in a single sample, as 

single cytokines are captured by beads having different fluorescent characteristics. These 

fluorescent variations are detected by flow cytometry (3.12.6), allowing a separate 

evaluation of multiple bead populations equaling the individual cytokines. The 

quantification is performed using a detector antibody of different fluorescent characteristics 

than the capture beads, whose intensity is compared to intensities measured for samples of 

known concentrations in a standard curve. 

3.12.6. Flow Cytometry 

Multicolor flow cytometry was performed with an LSR Fortessa using DIVA software (BD 

Bioscience). 1-5 x 105 cells resuspended in FACS buffer (PBS, 7.4% EDTA, 0.5% FCS pH 

7,2, 0,01% NaAz) were stained directly after production of single cell suspensions from lung 

tissue or cell cultures in 96-well plates. Cells were pelleted by centrifugation at 1200rpm for 

3min at 4°C, then resuspended and blocked with 10µl Sandoglobulin®. Cells were incubated 

with fluorochrome-labeled or unlabeled antibodies for 15min at 4°C. Cells were washed 

between staining steps with 100µl FACS buffer and routinely stained before analysis with 7-

AAD for dead cell exclusion.   

Staining protocol for analysis of Na,K-ATPase α1 subunit expression: 

Staining step Antibody Dilution 

1 goat anti-Influenza A Virus  1:75 

2 donkey anti-goat APC 

rat anti-CD74 

1:400 

1:100 

3 goat anti-rat PE 1:800 

4 rat anti-mouse CD326 APC/Cy7 

rat anti-mouse Podoplanin PE/Cy7  

mouse anti-human/mouse/rat Na,K-ATPase α1 

AlexaFluor 488 or respective mouse IgG AlexaFluor 488 

1:50 

1:40 

1:20 

5 7-AAD 3.5µl/sample 

 

For evaluation of cell purity, murine and human AEC were first permeabilized with 0.2% 

Saponin in PBS for 20min at 4°C and then stained with rabbit anti-human pro-S-PC 
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followed by goat anti-rabbit APC (1:400) and rat anti-mouse CD326 APC/Cy7 or anti-

human CD326 FITC (1:100), respectively. Corresponding isotype antibodies were used as 

negative controls. Data are presented as median fluorescent intensity (MFI) and were 

normalized to control groups set to 1 for ex vivo experiments. NKAα1+ AEC from in vivo 

experiments are given as percentage of the epithelial (EpCAM+) cell population. 

3.13. Microscopy 

3.13.1. Fixation And Preparation Of Lung Tissue For Histology 

For histological staining of mouse lung tissue, lungs were clipped at the trachea before 

opening of the chest cavity, then perfused, removed and fixed for 24h in 4% PFA. Lungs 

were embedded in Parrafin (Leica ASP200S), cut into 3-5µm thick sections and stained with 

hematoxylin and eosin in the following procedure: 

Xylene 5min (twice), 100% ethanol 30sec (twice), 96% ethanol 30sec, 96% ethanol 30sec, 

70% ethanol 30sec, 70% ethanol 30sec, hematoxylin 3min, 0.1% HCl 2sec, H2O 5min, 

Eosin G solution 3min, H2O 30sec, 70% ethanol 30sec, 90% ethanol 30sec, 100% ethanol 

30sec (twice), xylene 5min (twice). 

Analysis was performed with a Leica DM 200 microscope. 

3.13.2. Fixation Of Cell Cultures For Immunofluorescence Microscopy 

For immunofluorescence microscopy, cells were washed with PBS and then air-dried for 

1min at RT. Cells were fixed and permeabilized by a pre-cooled (-20°C) 1:1 

aceton/methanol suspension that was left on the cells for 3min at RT. Cells were then 

washed thrice with PBS/0.3% BSA and blocked with 3% BSA in PBS over night at 4°C. 

3.13.3. Fixation Of Lung Tissue For Immunofluorescence Microscopy 

Murine lungs were perfused with PBS and then filled with 1.5ml of a 1:1 TissueTek:PBS 

mixture via an intratracheal 21-gauge cannula. Lungs were then clipped at the trachea, 

removed and washed in PBS. Lung were then embedded in TissueTek:PBS, frozen in liquid 

nitrogen and stored at -80°C. Cryoslices of 4-5µm thickness were prepared using a Leica 

CM 1850 UV cryotome. Cryoslices were air-dried and  fixed for 20min with 4% PFA at RT. 

Cryoslices were washed with PBS/0.2% BSA and permeabilized with 0.3% Triton-X-100 

for 10min at RT. Cryosliced lungs were blocked using 10% Normal Horse Serum in PBS for 

1h at RT.  
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3.13.4. Antibody Staining and Fluorescent Laser-Scanning Microscopy 

For fluorescent microscopy, fixed and blocked samples were incubated with fluorescent-

labeled or unlabeled primary antibodies diluted in PBS/0.2% BSA over night at 4°C. If 

visualization with a secondary, fluorescent-labeled antibody was necessary, samples were 

washed 5 times for 5 min RT with PBS/0.2% BSA. The secondary antibody was diluted in 

PBS/0.2% BSA and incubated for 1h RT in the dark. Samples were intensely washed once 

more before mounting under cover glasses with Vectashield Hard Set mounting medium 

containing DAPI for nuclear staining. Antibodies were used at the following dilutions: 

mouse anti-human/mouse/rat Na,K-ATPase α1 subunit AlexaFluor 555 1:20, mouse anti-

Influenza A NP FITC 1:20, mouse anti-Influenza A M1/M2 1:250/1:50, rabbit anti-mouse 

Occludin 1:20,  rabbit anti-mouse ZO-1 1:40, donkey anti-rabbit APC 1:400, chicken anti-

goat AlexaFluor 488 1:400. Fluorescent laser-scanning microscopy was performed using a 

Leica TCS SP5 confocal microscope with 63x ocular and pinhole of 60µm. Z-Stacks were 

acquired using a 0.4µm distance between stacks. Acquired pictures were analyzed using 

LAS AF software. 

3.13.5. Live Cell Imaging 

Live cell imaging was performed with A549 cells 24h post transfection with plasmids 

encoding for Na,K-ATPase α1 subunit coupled with GFP (green fluorescent protein) (GFP-

NKAα1) and viral matrix protein 2 coupled to mCherry (mCherry-M2). Data were acquired 

in cooperation with Vladimir Gelfand and Joshua Rappoport, Northwestern University of 

Chicago, at a Nikon eclipse Ti inverted microscope with a 63x ocular, with approximately 8-

10 frames per laser/filter per minute in xy axis. Colocalization and -transport were analyzed 

using FIJI/ImageJ software. 

3.14. Statistics 

All data are given as mean ± SEM. Statistical significance of two groups was analyzed by 

unpaired Student’s t test. Statistical difference of three or more groups were analyzed by 

one-way ANOVA and post-hoc Tukey (GraphPad Prism 5). A p value less than 0.05 was 

considered significant, *p<0.05; **p<0.01; ***p<0.005 

 

4. Results 
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4.1. Impaired alveolar fluid clearance after IAV infection is associated with decreased 

expression of Na, K-ATPase α1 subunit on alveolar epithelial cells  

To address the extent of acute lung injury in mice infected with IAV, alveolar fluid 

clearance capacities, oxygenation and alveolar edema formation was monitored in animals 

infected with 500PFU of PR8 (H1N1). A substantial impairment of alveolar fluid clearance 

(AFC) was present already at day 2 (d2) and was even more pronounced at d7 post infection 

(pi) (Figure 4-1 A). Reduced AFC capacities d7 pi were paralleled by severe hypoxemia 

(Figure 4-1 B) as well as alveolar edema formation (Figure 4-1 C). 

 
Figure 4-1 Murine PR8 infection promotes formation of alveolar edema. (A) In vivo alveolar fluid clearance (AFC) 

capacities 2 or 7 days after inoculation of mice with PBS (ctrl) or 500PFU PR8 (IAV) in n = 3-6 mice. (B) Arterial partial 

pressure of oxygen (pO2) measurements 7 days after inoculation of mice with PBS (ctrl) or 500PFU PR8 (IAV) in n = 3 

mice. (C) Representative sections of n=3 murine lungs 7 days after PBS (ctrl) or 500PFU PR8 inoculation in vivo, stained 
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with hematoxylin and eosin. Arrows mark edematous regions in overview, boxes represent regions magnified in the lower 

panel. 

 

To determine whether IAV infection would impact on expression levels of Na,K-ATPase as 

the main driving force of AFC, the expression of Na,K-ATPase α1 subunit (NKAα1) which 

mediates the channel function of the ion pump complex was analyzed in primary isolated 

alveolar epithelial cells (AEC) after ex vivo PR8 infection. In murine AEC, mRNA of Na,K-

ATPase subunit isoforms α1, α2, α3, β1 and FXYD protein was detectable (Figure 4-2). Yet, 

gene expression levels of NKAα1 were not significantly altered at 6h and 24h post IAV 

infection in cultured AEC.  

 

 
Figure 4-2 Na,K-ATPase subunit mRNA expression in murine (m-) AEC 6 hours and 24 hours post infection (hpi). 

Murine AEC were treated with PBS (ctrl) or infected with PR8 at MOI 0.1 (IAV) and processed for quantitative real-time 

PCR 6h and 24hpi. Bar graphs represent means ± SEM of 3 independent experiments. 

 

However, when looking at protein abundance of NKAα1 by Western blot, levels of total 

protein were significantly decreased at 16 and 24hpi in murine (m)AEC (Figure 4-3 A) and 

at 16hpi in human (h)AEC (Figure 4-3 B), demonstrating that IAV infection impacts on 

NKAα1 protein expression in AEC. 
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Figure 4-3 Total abundance of NKAα1 protein is decreased in AEC after PR8 infection. (A,B) Densitometric 

quantification of western blot analyses of Na,K-ATPase α1 subunit (110kDa) expression in relation to β-Actin (42kDa) in 

total cell lysates of (A) murine AEC inoculated ex vivo with PR8 at MOI 0.1 for the indicated time points or (B) human 

AEC inoculated with PBS (ctrl) or PR8 at MOI 0.1 for 16h. Representative Western blots and bar graphs show means ± 

SEM of 7-9 independent experiments. 

 

Na,K-ATPase is stored in large quantities in internal reservoirs but is only actively 

contributing to ion transport and fluid clearance when expressed on the basolateral cell 

membrane (98, 99). Therefore, we investigated NKAα1 surface expression by cell 

membrane biotinylation and subsequent pulldown or by flow cytometry in ex vivo infected 

AEC (gating strategy shown in Figure 4-4 A).  

Indeed, surface abundance of NKAα1 was reduced on mAEC in the time course of infection 

(Figure 4-4 B, C) and profoundly decreased on hAEC at 16hpi (Figure 4-4 D, E). FACS 

analyses revealed that NKAα1 was expressed on both type I and type II AEC, identified by 

staining with Podoplanin/T1α or CD74 (218, 219), respectively (gating Figure 4-4 F), and 

equally decreased following infection (Figure 4-4 G, H). 

Of note, plasma membrane expressed NKAα1 was also significantly reduced on distal lung 

epithelial cells isolated from in vivo infected mice 2d pi. This decrease was even more 

pronounced at 7d pi (Figure 4-4 I). The kinetics of the decrease in membrane bound NKAα1 

correlated closely with the reduction of alveolar fluid clearance and the increase in 

formation of edema in the murine lung (Figure 4-1 A, C). 
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Figure 4-4 Plasma membrane expressed NKAα1 is decreased upon IAV infection ex vivo and in vivo. (A) Gating 

strategy showing representative dot plots for live cells (7AADneg), epithelial cells (EpCAMpos) and a representative 

histogram of NKAα1pos staining or the respective IgG controls from AEC cultures. (B, D) Relative median fluorescent 

intensities intensity (MFI) of Na,K-ATPase α1 detected by FACS on live (B) mAEC or (D) hAEC treated ex vivo with PBS 

or PR8 at MOI 0.1 for 24h or 16h, respectively. (C, E) Densitometric analysis of Na,K-ATPase α1 subunit expression in 

comparison to the housekeeping protein Glucose transporter 1 (Glut1, 55kDa) within the cell surface fraction of PR8-

infected (C) mAEC at the indicated time points or (E) hAEC 16hpi. (F) Gating strategy showing representative dot plots for 

AEC I (T1αpos) or AEC II (CD74pos). (G, H) Relative median fluorescent intensities intensity (MFI) of NKAα1 detected by 

FACS on live (G) AEC I or (H) AEC II treated ex vivo with PBS or PR8 at MOI 0.1 for 24h. (I) Flow cytometric analysis 

of NKAα1 expression on EpCAMpos epithelial cells from distal lung homogenate of PBS (ctrl) or 500 PFU PR8 (IAV) 

inoculated wt mice 2d or 7d pi. Values of PBS-treated control conditions were normalized to 1. Bar graphs represent means 

± SEM of 5-6 independent experiments for (B, D, E, G, H) and 8 independent experiments for (C).  
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4.2. A paracrine epithelial-macrophage crosstalk via epithelial type I IFN and IFN-

dependent macrophage TRAIL reduces NKAα1 surface expression on AEC 

Interestingly, the analysis of plasma membrane expressed NKAα1 in correlation to the 

expression of viral hemagglutinin (HA) in infected AEC (gating Figure 4-5 A) yielded that 

surface expressed NKAα1 on mAEC as well as on hAEC was predominantly reduced within 

the non-infected, HA negative fraction of AEC (Figure 4-5 B, C). This finding was 

confirmed in vivo, where distal lung epithelial cells similarly displayed a decrease of 

NKAα1 primarily in non-infected cells (Figure 4-5 D), suggesting that NKAα1 was not 

decreased directly by a viral factor within the infected cell, but that a paracrine cross-talk 

within the alveolar epithelium might be involved.  

 
Figure 4-5 Plasma membrane expressed NKAα1 is decreased by paracrine cross-talk elicited by infected epithelial 

cells. (A) Gating strategy showing representative histograms for IAV infected mAEC positive for viral hemagglutinin 

(HApos) and NKAα1 expression on HAneg or HApos AEC. (B, C) depict NKAα1 MFI of the HApos versus HAneg cell 

population in mAEC (B) or hAEC (C) cultures infected ex vivo with PR8 at MOI 0.1 for 24h and 16h, respectively. (D) 

Flow cytometric analysis of NKAα1 expression on HAneg/pos epithelial cells from distal lung homogenate of wt mice 

infected with 500PFU at 7d pi. (E) Analysis of NKAα1 MFI of mAEC treated for 2h with conditioned media from 16h 

infected (IAV) or PBS-treated (ctrl) cells. For (B-F), values of PBS-treated control conditions were normalized to 1. Bar 

graphs show means ± SEM of n = 3 experiments for (B, C), n = 6 for (D) and n = 4 for (E). 
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Figure 4-6 Na,K-ATPase subunit mRNA expression in murine (m-) AEC co-cultured with AM 6 hours and 24 hours 

post infection (hpi). Murine AEC were co-cultured with AM without infection (control), infection of only AM (AM), or 

both cell types (AEC/AM) at MOI 0.1. AEC were processed for quantitative real-time PCR 6h and 24hpi. Bar graphs 

represent means ± SEM of 3 independent experiments. 

 

Indeed, treatment of mAEC with conditioned media of infected, but not of PBS-treated 

mAEC was sufficient to decrease NKAα1 surface expression (Figure 4-5 E). Given previous 

findings that both resident alveolar (AM) and bone marrow-derived (BMM) lung 

macrophages substantially contribute to AEC damage (175, 182), a co-culture model of 

AEC and macrophages was applied to address whether presence of AM or BMM would 

further decrease Na,K-ATPase expression. In line with our results from the AEC 

monoculture model, NKAα1 gene expression levels were not changed in co-culture with 

alveolar macrophages (AM), independently of infection of either cell type (none of the cell 

types infected (ctrl), only AM infected (AM), or both cell types infected (AEC/AM)) (Figure 

4-6). However, we observed that in the co-culture model, presence of infected AM or BMM 

alone significantly reduced AEC total (Figure 4-7 A, B) and surface expressed (Figure 4-7 

C, D) NKAα1 protein, respectively. Infection of both cell types (AEC/AM or AEC/BMM) 
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added to the effects observed in cultures of infected mAEC (Figure 4-7). As epithelial cells 

and macrophages were in no physical contact to each other, these results implied an 

additional involvement of a macrophage-released mediator in the observed downregulation 

of plasma membrane NKAα1. 

 

 
Figure 4-7 Total and plasma membrane expressed NKAα1 is decreased in presence of infected macrophages. (A-C) 

Densitometric analysis of total (A, B) or surface expressed (C) NKAα1 in mAEC co-cultured with AM (A) or BMM (B, C) 

without infection (ctrl), infection of only macrophages (AM; BMM) or of both cell types (AEC/AM; AEC/BMM) for 24h 

with PR8 at MOI 0.1. (D) Relative median fluorescent intensities intensity (MFI) of NKAα1 detected by FACS on live 

mAEC co-cultured with BMM without infection (ctrl), infection of only macrophages (BMM) or of both cell types 

(AEC/BMM) for 24h with PR8 at MOI 0.1. Bar graphs represent means ± SEM of n = 7-9 experiments for (A-C) and n = 6 

for (D). 

 

To identify soluble factors within the AEC-macrophage cross-talk network that mediated the 

observed effect on NKAα1 abundance, we analyzed co-culture supernatants for pro-

inflammatory cytokines by ELISA and Cytometric Bead Array (Figure 4-8). Interferon-α 

(IFNα) and -β (IFNβ) were found to be highly released from infected AEC (Figure 4-8 A, 

B), whereas TRAIL (TNF-related apoptosis-inducing ligand), TNF-α (tumor necrosis factor 

alpha), TGF-β (transforming growth factor beta), KC (keratinocyte chemoattractant), 

RANTES (regulated on activation, normal T cell expressed and secreted), MCP-1/CCL2 

(monocyte chemoattractant protein 1) and IL-1α (Interleukin-1 alpha) were primarily 

detected in presence of BMM (Figure 4-8 C-I).  
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Figure 4-8 Cytokine expression in cell culture supernatants 24h after IAV infection. Cell culture supernatant was 

collected from AEC monocultured (black bars) and treated with PBS (ctrl) or infected with PR8 at MOI of 0.1 for 24h 

(IAV) or from AEC co-coltured with BMM (grey bars) without infection (ctrl), infection of only BMM (BMM) or infection 

of both cell types (AEC/BMM) with PR8 at MOI 0.1 for 24h. Analysis of IFNα (A), IFNβ (B), TRAIL (C), TNF-α (D) and 

TGF-β (E) were performed by ELISA, whereas KC (F), RANTES (G), MCP-1/CCL2 (H) and IL-1α (I) were analyzed by 

cytometric bead array. Bar graphs represent means ± SEM of n = 3-5 experiments.  

 

It was recently demonstrated that type I IFN-dependent release of TRAIL by IAV-infected 

AM is a major contributor to IAV-induced pathogenesis, leading to alveolar epithelial 

apoptosis und hence disrupting the structural integrity of the alveolar epithelial barrier (45, 

201). Therefore, type I IFN and TRAIL were considered as top candidates to impact on 

NKAα1-dependent fluid clearance in the non-infected AEC fraction after IAV infection. 

As shown before for AM (201), the release of TRAIL by BMM was type I IFN-dependent, 

demonstrated by use of BMM isolated from type I IFN receptor-deficient mice (ifnar-/-) 

(Figure 4-9 A). Treatment of uninfected AEC with either IFNα or TRAIL diminished 

plasma membrane expressed NKAα1, and combined treatment with both IFNα and TRAIL 

reduced NKAα1 to similar levels as co-infection of AEC and BMM (Figure 4-9 B). 
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Recombinant IFNβ did not influence NKAα1 levels directly. When using ifnar-/- AEC to 

block paracrine IFNα signaling between PR8 infected and non-infected AEC in mono-

culture, NKAα1 abundance was rescued at 24hpi, whereas trail -/- AEC still displayed a 

strong decrease in NKAα1 expression (Figure 4-9 C), suggesting that in absence of 

macrophages, NKAα1 surface downregulation was solely dependent on signaling through 

type I interferon.  

 

 

Figure 4-9 PR8-induced loss of Na,K-ATPase surface expression is dependent on an IFN-TRAIL signaling loop 

involving epithelial IFNα and type I IFN-induced macrophage TRAIL.  (A) TRAIL mRNA expression quantified by 

qRT-PCR in non-infected (ctrl) or PR8 infected (IAV; MOI 1, 16hpi) BMM isolated from wt or interferon-α/-β receptor 

(IFNAR) deficient mice. (B- D) NKAα1 relative MFI on (B) mAEC treated with 10ng recombinant IFNβ (rIFNβ), 25U/ml 

mouse recombinant IFNα (rIFNα) or/and 100pg/ml mouse recombinant TRAIL (rTRAIL) for 16h; (C) mAEC derived from 

IFNAR or TRAIL deficient mice inoculated with PBS (ctrl) or PR8 at MOI 0.1 (IAV) and incubated for 24h. (D) mAEC 

derived from wt, IFNAR-/- or death receptor (DR5) deficient mice co-cultured with BMM from wt or TRAIL-/- mice and 

infection of none (ctrl) or both cell types (AEC/BMM) with PR8 at MOI 0.1 for 24h ex vivo. Values of PBS-treated control 

conditions were normalized to 1. Bar graphs represent means ± SEM of 3 independent experiments for (A), 6-8 independent 

experiments for (B) and 4-6 independent experiments for (C, D).  

 

Next, co-culture infections were performed using AEC and BMM from wildtype (wt),  

ifnar-/-, trail -/-, or dr5-/- (death receptor 5; TRAIL receptor) mice to define the role of the type 

I IFN/TRAIL/DR5 signaling network in basolateral NKAα1 plasma membrane abundance 

after IAV infection. These studies revealed that lack of IFNAR signaling in AEC together 
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with lack of TRAIL in BMM completely prevented NKAα1 surface downregulation on 

AEC. Partial blockade of the IFN-TRAIL signaling loop by combination of ifnar-/- AEC 

with wt BMM (allowing BMM TRAIL action), or of either wt AEC with trail -/- BMM or 

dr5-/- AEC with wt BMM (allowing AEC type I IFN signaling) correspondingly resulted in 

partial decrease of plasma membrane NKAα1 (Figure 4-9 D). Together, these data indicate 

that IAV-induced downregulation of epithelial surface NKAα1 depends on a signaling 

network between AEC and macrophages, involving epithelial type I IFN and IFN-dependent 

macrophage TRAIL interacting with its receptor DR5. 

4.3. IAV-induced reduction of NKA α1 in AEC is mediated by the kinases  

CaMKK β and AMPK  

Na,K-ATPase internalization was found to be mediated by activation of AMP-activated 

protein kinase (AMPK) during lung injury-associated epithelial dysfunction (108, 120). It 

was therefore tested if AMPK was involved in regulation of NKAα1 abundance after IAV 

infection. As shown in Figure 4-10 A&B, AMPK was activated after PR8 infection in AEC 

mono-cultures and AEC/BMM co-cultures, demonstrated by phosphorylation of the AMPK 

downstream substrate acetyl-CoA carboxylase (pACC) (220).  

Incubation of AEC with conditioned media of IAV-infected AEC and treatment with 

rTRAIL or rIFNα were sufficient to induce AMPK activation (Figure 4-10 C, D). Treatment 

of AEC with the AMPK activator AICA-Riboside (AICAR) served as positive control 

(Figure 4-10 D) (221, 222). AICAR treatment led to decreased abundance of basolateral 

NKAα1 in non-infected AEC but did not further decrease it in IAV-infected AEC. 

Importantly, chemical inhibition of AMPK by Compound C restored NKAα1 levels in AEC 

after IAV infection (Figure  4-10 E) (223). Compound C treatment increased basolateral 

NKAα1 levels beyond those found in uninfected controls in AEC/BMM co-cultures after 

IAV infection of either BMM alone or both AEC and BMM (Figure 4-10 F). In addition, 

adenoviral overexpression of a dominant-negative AMPK (DN-AMPK) in A549 cells 

rescued NKAα1 expression after IAV infection (Figure 4-10 E). 

Both transforming growth factor beta-activated kinase 1 (TAK1) and Calcium/Calmodulin-

dependent protein kinase kinase β (CaMKKβ) are possible upstream kinases of AMPK 

(224). It could be demonstrated that chemical inhibition of CaMKKβ by STO-609 resulted 

in complete inhibition of AMPK activity and restored surface NKAα1 on mAEC after IAV 

infection, whereas inhibition of TAK1 by (5Z)-7-Oxozeanol (Oxozeanol) (225) caused
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Figure 4-10 IAV-induced loss of Na,K-ATPase a1 subunit surface expression is mediated by activation of AMPK. 

(A-D) Representative Western blots of n = 3-4 independent experiments of the AMPK substrate phospho-acetyl-CoA 

carboxylase (pACC, 280kDa) and AMP-activated protein kinase (AMPK, 62kDa). (A) mAEC were infected with PBS (ctrl) 

or PR8 (IAV) and incubated for 24h. (B) Co-cultures of murine AEC and BMM were left un-infected (ctrl), only 

macrophages were infected (BMM) or both cell types were infected (AEC/BMM). (C) mAEC were treated with 

conditioned media (CM) of 16h PR8-infected (IAV) or PBS-treated (ctrl) mAEC for 2h. (D) mAEC treated with the AMPK 

activator AICAR (1mM), rTRAIL (100pg/ml) or rIFNα (25U/ml) for 16h. (E) Relative MFI of NKAα1 on mAEC 

inoculated with PBS (ctrl) or PR8 (IAV) and incubated for 24h without additional treatment or in presence of 1mM AICAR 

or 20µM of the AMPK inhibitor Compound C. (F) Relative MFI of NKAα1 on mAEC co-cultured with BMM without 

infection (ctrl), infection of only macrophages (BMM), or both cell types (AEC/BMM) ex vivo with PR8 and treated with 

20µM Compound C for 24h. Values of PBS-treated control conditions were normalized to 1. (G) Relative MFI of NKAα1 

on A549 cells transduced with DN-AMPK for 24h prior to treatment with PBS (ctrl) or PR8 for additional 24h. All bar 

graphs represent means ± SEM of 4-6 independent experiments. 

 

partial inhibition of AMPK activity without affecting NKAα1 expression (Figure 4-11 A, 

B). SiRNA knockdown of CaMKKβ fully restored NKAα1 expression on A549 cells after 

IAV infection and prevented AMPK activation (Figure 4-11 C, D). In addition, chelation of 

intracellular calcium needed for CaMKKβ activation by BAPTA-AM increased NKAα1 

expression on mAEC after IAV infection (Figure 4-11 B). To determine whether restored 

surface NKAα1 levels after IAV-infection would result in improved vectorial water 

transport, FITC-dextran containing media was added to transwell-grown, highly confluent 

hAEC and analyzed increase in FITC-dextran concentrations in the apical versus basal



Results 

 

51 

 

 

 
 

Figure 4-11 Calcium-dependent activation of CaMKKß is upstream of IAV-induced AMPK activation and 

subsequent loss of Na,K-ATPase a1 subunit surface expression. (A) Representative Western blot of n = 3-4 independent 

experiments of AMPK and its downstream substrate pACC from 24h PR8-infected mAEC without additional treatment or 

in presence of 20µM Compound C, 0,1µM TAK1 inhibitor (5Z)-7-Oxozeanol or the 0,5µM CaMKKß inhibitor STO-609. 

(B) Relative MFI of NKAα1 on mAEC inoculated with PBS (ctrl) or PR8 (IAV) and incubated for 24h without additional 

treatment or in presence of 20µM Compound C, 0.1µM (5Z)-7-Oxozeanol, 0.5µM STO-609 or 10µM of the Ca2+ chelator 

BAPTA-AM and schematic depiction of the used inhibitors. Bar graphs represent means ± SEM of 4-6 independent 

experiments. (C) Representative Western blot of 3 independent experiments of A549 cell lysates for CaMKKβ (68kDa) and 

β-Actin 72h after transfection with scrambled or CaMKKβ-specific siRNA. (D) Representative Western blot (3 

independent experiments) for AMPK or its substrate pACC in A549 cell lysates 72h after transfection with scrambled or 

CaMKKβ-specific siRNA and 24h after PR8 infection. (E) Relative MFI of NKAα1 on A549 cells treated with CaMKKβ-

specific siRNA for 48h prior to treatment with PBS (ctrl) or infection with PR8 for additional 24h. Bar graphs represent 

means ± SEM of 3 independent experiments. (F) Vectorial water transport of confluent hAEC culture at 6h after 

inoculation with PBS (ctrl) or PR8 (IAV) without additional treatment (-), in presence of 25µM Ouabain, 10µM Compound 

C or 0.5µM STO-609.  Bar graphs represent means ± SEM of 4-6 independent experiments. 
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medium in presence of the different inhibitors. Indeed, inhibition of Na,K-ATPase function 

by ouabain or IAV infection decreased, whereas blockade of AMPK or CaMKKβ 

significantly improved vectorial water transport after IAV infection (Figure 4-11 E). 

Collectively, these data demonstrate that IAV-induced IFNα and TRAIL-dependent loss of 

epithelial surface NKAα1 and fluid reabsorption is mediated by Calcium-dependent 

CaMKKß and AMPK signaling. 

4.4. IAV-induced paracrine reduction of plasma membrane NKAα1 protein and AFC 

capacity require the presence of IFNAR and TRAIL and macrophage 

recruitment in vivo.  

To address whether Na,K-ATPase levels were also decreased after IAV infection in vivo, 

NKAα1 surface expression on distal lung epithelial cells was analyzed by flow cytometry. 

NKAα1 was significantly downregulated on the cell surface at d2 pi and further decreased at 

d7 pi (Figure 4-12 A). Of note, ifnar-/- mice were completely protected from IAV-induced 

surface loss of NKAα1 at d7 pi. Consistent with our in vitro findings demonstrating a role 

for TRAIL from monocyte-derived macrophages in the reduction of basolateral Na,K-

ATPase protein abundance during IAV, both mice lacking C-C chemokine receptor type 2 

(ccr2-/-), which are unable to recruit macrophages to the lung after IAV-infection (30), and 

TRAIL-deficient (trail -/-) mice showed increased expression of surface NKAα1 on distal 

lung epithelial cells in response to IAV infection. Corresponding to the IFN/TRAIL-

mediated loss of NKAα1 expression, AFC was significantly reduced after IAV infection in 

wt mice, and this reduction in AFC was attenuated in ifnar-/-, trail-/- and ccr2-/- mice. (Figure 

4-12 B). Moreover, reduced AFC upon IAV infection could be mimicked in ccr2-/- mice 

after adoptive transfer of wt but not trail -/- exudate macrophages (Figure 4-12 C).  

Furthermore, inhibition of AMPK activity by intratracheal application of adenoviral-

expressed DN-AMPK prior to infection prevented the IAV-induced reduction in NKAα1 

surface expression and restored AFC to baseline levels (Figure 4-12 D, E). These data 

highlight a crucial role for cross-talk involving IFN, TRAIL and AMPK signaling for loss of 

Na,K-ATPase-driven alveolar edema clearance capacity after IV infection in vivo. 
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Figure 4-12 IAV-induced reduction of epithelial NKAα1 surface expression and AFC capacity require the presence 

of IFNAR and TRAIL as well as macrophage recruitment and are mediated by AMPK in vivo. (A) Flow cytometric 

analysis of NKAα1 subunit expression on EpCAMpositive epithelial cells from distal lung homogenate. Wt mice were 

inoculated with PBS (ctrl) or wt, ifnar-/-, trail -/- or ccr2-/- mice were inoculated with PR8 (IAV) and sacrificed 7 days post 

infection. (B, C) In vivo measurements of alveolar fluid clearance (AFC) rates over a time interval of 30 minutes. (B) Wt, 

ifnar-/-, trail -/- or ccr2-/- mice were inoculated with PBS (ctrl) or PR8 (IAV) 7 days prior to analysis. (C) Ccr2-/- mice were 

inoculated with 500pfu of PR8 and AFC was analyzed 7d pi without further treatment (CCR2-/-) or after adoptive transfer 

of exudate macrophages from 7d infected wt  (wt to CCR2-/-) or trail -/- (trail-/- to CCR2-/-) mice at day 3 pi. In (D) and (E), 

wt animals were inoculated with PBS (ctrl), or with adenovirus delivery of  either no construct (Ad-Null) or a dominant-

negative form of AMPK (Ad-DN AMPK) for 7 days prior to infection with PBS or Udorn (IAV) 2 days prior to AFC 

analysis. (D) Flow cytometric analysis of NKAα1 subunit expression on EpCAMpositive epithelial cells from distal lungs of 

wt mice inoculated with PBS (ctrl), Ad-Null or Ad-DN AMPK for 7 days prior to infection with PBS or Udorn (IAV) at 2 

days post infection. (E) In vivo measurements of AFC rates over a time interval of 30 minutes.  

 

4.5. Na,K-ATPase activity is necessary for efficient IAV replication 

As the flow cytometric analysis revealed that the paracrine IFN/TRAIL/DR5 network was 

acting on non-infected cells, whereas infected cells maintained their baseline expression of 

Na,K-ATPase (Figure 4-5), it became of interest to test whether the preservation of Na,K-

ATPase expression levels in infected cells was directly influenced by IAV infection or even 

manipulated by the virus to provide efficient IAV replication. Therefore, viral replication 

was monitored in presence of ouabain, a specific inhibitor of Na,K-ATPase ion pumping 
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activity. Viral RNA levels, quantified by qRT-PCR of IAV M segment, tended to be 

decreased after ouabain treatment in MLE-12 cells, a mouse cell line displaying AEC type 

II-like characteristics (Figure 4-13 A). Importantly, IAV replication measured by flow 

cytometric analysis of NPpos (nucleoproteinpositive) epithelial cells, was significantly impaired 

by ouabain (Figure 4-13 B), suggesting a crucial role for Na,K-ATPase activity for IAV 

replication cycle in lung epithelial cells. 

 
4-13 IAV replication is impaired in presence of ouabain. MLE-12 cells were infected with PR8 MOI 5 and then 

supplemented with infection media containing no, 1mM or 2mM ouabain. Cells were harvested at 6h, 8h, 10h and 12h pi. 

Viral replication was monitored by (A) quantification of vRNA by qRT-PCR for IAV M segment or (B) quantification of 

viral protein by flow cytometry for NPpositive epithelial cells. Bar graphs represent means ± SEM of 3 independent 

experiments. 

4.6. Na,K-ATPase is relocalized to the apical cell membrane in IAV-infected  

epithelial cells 

Na, K-ATPase can only establish a sodium ion gradient from the alveolar lumen to the 

interstitial space and thus contribute to effective edema clearance when correctly inserted 

into the basolateral membrane of the alveolar epithelial cells. Consequently, it was assessed 

by confocal imaging if Na,K-ATPase was found to preserve its typical distribution after IAV 

infection, especially in the infected AEC that still displayed normal levels of total plasma 

membrane expressed NKAα1 (Figure 4-5). In IAV infected AEC, viral replication could be 

monitored by staining for the viral NP that could be detected from 6h pi in the nuclear 

compartment, indicating synthesis of viral proteins and formation of progeny RNP 

(ribonucleoproteins) in the nucleus (Figure 4-14, B). At later time points, NP was found at 

the apical cell compartment, demonstrating accumulation of viral protein for budding and 

virion formation (Figure 4-14, C, D). In non-infected alveolar epithelial cells, NKAα1 

showed a predominantly basolateral localization pattern as a prerequisite for vectorial 
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sodium ion transport. However, the basolateral localization of NKAα1 was lost in NPpos 

AEC in the time course of IAV infection, and was subsequently found to be relocalized to 

the apical cell surface (Figure 4-14 C, D), probably adding to decreased edema clearance in 

IAV infection in vivo by impairing directed transport of sodium ions, or even by driving 

reverse fluid accumulation in the alveoli. 

 
Figure 4-14 NKAα1 is relocalized to the apical cell membrane after IAV infection. Murine AEC were infected with 

PR8 at MOI 0.1 and fixed at (A) 0hpi, (B) 6hpi, (C) 16hpi and (D) 24hpi. Expression and localization of viral NP and 

NKAα1 were addressed by immunostaining and confocal microscopy and are depicted as xy top view (left panel). 

Crosshairs represent intersections chosen for  xz visualization (right panel). Scale bars represent 15µm length. 

 

To test whether apical localization of Na,K-ATPase was an unspecific, infection-related 

event caused by loss of cell polarity, the localization pattern of the tight junction proteins 

occludin and zona occludens-1 (ZO-1) was analyzed in mAEC after IAV infection. Both 

proteins remained to be localized to the lateral membrane of the cells up to 24h after IAV 

infection (Figure 4-15), indicative of polarity maintenance in infected mAEC. 

To investigate if Na,K-ATPase was also relocalized in vivo, immunostaining of cryoslices 

from d3 or d5 IAV-infected mice were used to analyze the localization of NKAα1 and 

occludin after IAV infection within the alveolar compartment. PBS-treated wt mice 

displayed a basolateral distribution of NKAα1 and occludin. Analysis of cryoslices from d3 

or d5 IAV-infected animals revealed that after IAV infection, viral protein accumulated at 
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Figure 4-15 Localization of the junctional proteins occluding and ZO-1 is not altered after IAV infection. Murine 

AEC were treated with PBS (ctrl) or infected with PR8 at MOI 0.1 and fixed 24h pi. Expression and localization of viral 

NP, occludin (upper panel) and ZO-1 (lower panel) were visualized by immunostaining and confocal microscopy and are 

depicted as xy top view and xz intersection and represent n = 3-5 independent experiments. Scale bars represent 15µm 

length. 

 

 
Figure 4-16 NKAα1 is relocalized to the apical cell membrane after IAV infection in vivo. Wt mice were treated with 

PBS (ctrl) or infected with 2000pfu PR8 and sacrificed at d3 or d5 pi. Expression and localization of viral NP (green), 

NKAα1 (red) and occludin (cyan) were visualized by immunostaining and confocal microscopy of cryosliced lung 

preparations. Scale bars represent 15µm length. Arrowheads mark viral budding site. Yellow color indicates co-localisation 

of NP and NKAα1 at the apical regions of AEC. 
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the apical, luminal-oriented cell compartment as observed during apical viral budding. 

Accordingly, NKAα1 was expressed at the apical cell surface, whereas occludin remained, 

with rare exceptions, localized to the basolateral cell membrane (Figure 4-16). 

4.7. Na,K-ATPase apical relocalization is caused by interaction with IAV matrix 

protein 2 

Previous results suggested that Na,K-ATPase is involved in viral replication (Figure 4-13). 

To study whether vice versa, viral replication is necessary for NKAα1 relocalization during 

IAV-infection, a heat-inactivated PR8 virus was used for inoculation. The heat-inactivated 

PR8 can bind to host cells and is internalized, but is replication-deficient. In comparison to 

PR8 infected cells (ctrl), heat-inactivated virus did not induce apical NKAα1 relocalization 

(Figure 4-17). 

 
Figure 4-17 Heat-inactivated IAV does not induce relocalization of NKAα1. Murine AEC were infected with PR8 

(upper panel) or heat-inactivated PR8 (lower panel) at MOI 1 and fixed 24h pi. Expression and localization of viral NP and 

NKAα1 were visualized by immunostaining and confocal microscopy and are depicted as xy top view and xz intersection 

and represent n = 3-5 independent experiments. Scale bars represent 15µm length. 

 

Reports by Shuofo et al. (226) implied that NKAβ1 is able to directly interact with viral M2 

proton channel protein using a yeast-two-hybrid approach. To determine if in mammalian 

cells NKAα1 redistribution was depending on a viral protein, IAV segments that share 

endoplasmatic- and Golgi-dependent translation and maturation with the Na,K-ATPase (HA, 

NA and M, the last encoding for both the viral proteins M1 and M2), were overexpressed 

using a plasmid-based system. Human lung epithelial A549 cells were transfected with pPol-

I constructs that allow the synthesis of negative-oriented viral RNA (vRNA), for viral HA, 

NA or M segment. In addition, pCAGGS-based expression vectors were co-transfected, 

encoding for Pol-II constructs of viral NP, PA, PB1 and PB2. This allowed formation of the 

viral polymerase complex and consequently transcription of mRNA encoding for HA, NA or 

M segment protein from the vRNA generated by the pPol-I constructs. Analysis of these 
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cells 24h after transfection suggested that only presence of the viral M segment, but not HA 

or NA, could induce a redistribution of Na,K-ATPase to the apical cell membrane (Figure 4-

18). 

 
Figure 4-18 Expression of the viral M segment is sufficient to induce relocalization of NKAα1. A549 were transfected 

with pCAGGS-based vectors encoding for Pol-II constructs of viral NP, PA, PB1 and PB2, allowing formation of the viral 

polymerase complex, plus pPol-I constructs for viral HA (top panel), NA (middle panel) or M segment (bottom panel). 

Cells were fixed 24h after transfection. Expression and localization of viral NP and NKAα1 were visualized by 

immunostaining and confocal microscopy and are depicted as xy top view and xz intersections and represent n = 3 

independent experiments. Scale bars represent 15µm length. 

 

As the viral M segments encodes for both viral proteins M1 and M2, co-immuno-

precipitation experiments were used to analyze whether NKAα1 was able to interact with 

M2 or M1 protein after IAV infection. Indeed, using NKAα1 as bait, M2, and to a minor 

extent also M1, could be identified as interaction partners for NKAα1 (Figure 4-19 A). The 

reciprocal experiment demonstrated that only M2, but not M1 or the viral PB1 or NS1, can 

pull-down the NKAα1 (Figure 4-19 B).  

Furthermore, live-cell imaging of a plasmid-based overexpression of GFP-tagged NKAα1 

and mCherry-tagged M2 in A549 demonstrated that both proteins colocalize in intracellular, 

motile and vesicular structures (Figure 4-20), suggesting a co-transport of both proteins 

targeting a common cellular compartment. Taken together, co-immunoprecipitation and 

live-cell imaging identified the M2-NKAα1 interaction as possible mechanism for 

basolateral-to-apical plasma membrane relocalization of Na,K-ATPase upon IAV infection 

that might further decrease AFC capacities in the infected epithelium and add to edema 

formation. 
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Figure 4-19 NKAα1 and M2 do co-immunoprecipitate. A549 were infected for 8h with MOI 1, then lysed and subjected 

to co-immunoprecipitation. In (A), NKAα1 or the respective IgG were used as bait and immunoblot was done for viral M1 

(25kDa) and M2 (9kDa). In (B), viral proteins M2, M1 and respective IgG or PB1 and NS1 were used as bait and 

immunoblot was done for NKAα1 (110kDa). Representative Western blots of n = 3 independent experiments are shown. 

 

 

Figure 4-20 NKAα1 and M2 colocalize upon coexpression in A549 cells. A549 cells were transfected for 24h with 

plasmids encoding for (A) a GFP-tagged NKAα1 (green) and (B) mCherry-tagged M2 protein (red) and then visualized 

using live cell microscopy. (C) Overlay image showing partial colocalization of NKAα1 (green) and M2 (red). Scale bar in 

(C) represent 10µm length. Boxed region in (C) is enlarged in (D). Arrowheads point at motile vesicular structures stained 

positive for both proteins. Scale bar in (D) represents 1µm length. 
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5. Discussion 

IAV pneumonia is characterized by infection of alveolar epithelial cells and can rapidly 

progress to ARDS with poor outcome. A functional and structural impairment of the 

alveolar epithelial barrier after IAV infection leads to pulmonary edema, and decreased fluid 

reabsorption  is closely correlated to mortality in ARDS patients (6, 7).  

In this work putative effects of IAV infection on regulation and function of alveolar 

epithelial Na,K-ATPase were investigated as a number of studies revealed its importance in 

alveolar fluid transport in lung injury (100, 103, 105, 217). The data demonstrate that the 

total protein and the plasma membrane expression of the NKAα1 subunit of the ion pump is 

reduced after IAV infection, indicating that the fraction of Na,K-ATPase relevant for active 

sodium extrusion out of the cell is affected (100, 103, 105, 217). Vectorial sodium and fluid 

transport is a coordinated process that requires the electrochemical gradient provided by 

basolaterally located Na,K-ATPase, thereby constituting the driving force of alveolar water 

reabsorption. Partially, sodium and water transport can also be modified by regulation of the 

apically located epithelial sodium channels (ENaC) and chloride channels such as the cystic 

fibrosis transmembrane receptor (CFTR). In contrast to ENaC and CFTR, that are directly 

degraded by action of the viral protein M2 expressed in IAV infected cells (184, 185, 227),  

Na,K-ATPase plasma membrane abundance was disproportionately reduced in neighboring, 

non-infected epithelial cells. This suggests that NKAα1 reduction is not mediated by direct 

interaction with a viral component but essentially relies on paracrine signals released from 

the infected epithelial cells and macrophages. Using a co-culture system, the importance of 

epithelial IFNα and IFN-induced macrophage TRAIL in this process could be demonstrated. 

Both mediators were able to reduce plasma membrane NKAα1 even in absence of viral 

components. 

The role of type I IFNs in IAV infection is controversial. They are key cytokines in innate 

antiviral immune responses and are rapidly produced by infected alveolar epithelial cells 

after viral challenge (228, 229). IFNs activate antiviral transcriptional programs in both 

epithelial and immune cells in the lung that are important for viral clearance and may play a 

role in limiting the severity of the immune response via the induction of production of IL-10 

(228–230).  Accordingly, IFNs have been suggested as a therapeutic option to promote anti-

IAV host defenses (231, 232). An important source of IFN but also of other pro-

inflammatory cytokines in IAV-induced innate immune responses are alveolar and CCR2-

recruited bone marrow-derived macrophages (196, 197, 233). Resident alveolar 
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macrophages are one of the first cell types sensing viral infection and thus promote initial 

innate but also later adaptive immune responses to IAV infection (152). In concert with 

further macrophage populations recruited upon infection, they establish a pro-inflammatory 

environment by production and release of mediators such as IFN, leading to enhanced viral 

clearance and better disease outcomes (196, 234). However, it is well recognized that 

excessive production of cytokines during IAV infection contributes to lung injury and is also 

closely correlated to severity and outcome of disease (199, 235), as shown for infection with 

the highly pathogenic avian influenza H5N1 or the pandemic 2009 H1N1 virus (198, 236). 

Particularly, alveolar and recruited macrophages have been shown to play an important role 

in amplifying lung injury after IAV-infection and were attributed a central role in enhanced 

immunopathology by raising an exuberant inflammatory response to IAV infection (45, 197, 

198, 201, 233). Especially, mediators expressed early in the anti-viral response and 

associated to innate immune responses, largely consisting of IFN and IFN-dependent 

signaling mediators, worsen IAV-induced lung inflammation, lung injury severity and 

mortality and also hamper resolution of inflammation (152, 199).  

TRAIL has been widely associated with induction of extrinsic apoptosis in a variety of cells, 

including leukocyte subsets and cancer cells, via its receptor DR5 (DR; death receptor) (237, 

238). In the current study a novel role of a macrophage TRAIL/epithelial DR5 interaction 

could be elucidated, resulting in down-regulation of Na,K-ATPase from the surface of AEC 

by activating the energy sensor AMPK. AMPK regulates cellular energy metabolism, by up-

regulating ATP-generating and down-regulating ATP-consuming mechanisms, thus 

generally promoting cellular survival (116, 239, 240). AMPK activation has been 

demonstrated to occur in response to stimuli that threaten metabolic homeostasis including 

alveolar hypercapnia and hypoxia and resulted, in line with this work, in Na,K-ATPase 

endocytosis and degradation (108, 120).  

The DR5-mediated AMPK activation precedes apoptotic events in AEC such as caspase-3 

cleavage, occurring at 48hpi (201), suggesting induction of two independent signaling 

pathways. Indeed, the TRAIL/AMPK pathway was previously associated with non-apoptotic 

autophagy in epithelial cells, highlighting the complexity of the IFN/TRAIL network in 

cellular injury and protection in response to cellular stress (241).  

We demonstrate activation of AMPK signaling by paracrine mediators in response to IAV 

infection, which results in reduced vectorial sodium transport. Inhibition of AMPK in vivo 

largely restored Na,K-ATPase activity and AFC rates in IAV-infected mice, highlighting 
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AMPK as central regulator of AFC in various conditions of pulmonary injury in vivo and 

supporting it as a therapeutic target for the treatment of IAV (242).  

The presented ex vivo studies provide complementary lines of evidence demonstrating an 

additive role for epithelial produced IFNα and IFN-dependent macrophage- induced TRAIL 

in the downregulation of basolateral Na,K-ATPase plasma membrane abundance during 

IAV infection. Accordingly, ifnar-/- mice lacking the receptor for IFNα but also for IFNβ, a 

crucial inducer of TRAIL in AM, displayed similar Na,K-ATPase levels as uninfected 

animals, highlighting the crucial role of type I IFN in Na,K-ATPase regulation after IAV 

infection. Similarly, trail -/- mice and mice lacking bone marrow-derived macrophage 

recruitment (ccr2-/-) were protected from IAV-induced epithelial loss of surface NKAα1. 

Consequently, restored levels of AEC surface Na,K-ATPase resulted in significantly 

improved AFC in IAV-infected ifnar-/-, trail-/- and ccr2-/- mice, whereas adoptive transfer of 

wt macrophages but not trail -/- macrophages in ccr2-/- mice diminished AFC after IAV 

infection. Notably, AFC was significantly but not completely restored in ifnar-/- mice, which 

can be attributed to the severely compromised viral clearance in these mice, likely 

associated with increased or persistent epithelial injury which may further affect clearance 

capacity (230, 243–245). However, it cannot be excluded completely that other IFN-

independent macrophage-released mediators additionally affect NKAα1 expression in vivo. 

Moreover, the presented data suggest that signaling of IFN and TRAIL through their 

respective epithelial cytokine receptors IFNAR and DR5 activates AMPK via a pathway that 

requires CaMKKβ but not TAK1 kinase activity. CaMKKβ itself is in turn activated by 

increases in intracellular calcium (242). Chelation of intracellular calcium was shown to 

prevent activation of AMPK and degradation of Na,K-ATPase. Previous studies 

demonstrated that in hypoxic conditions, influx of extracellular calcium through stromal 

interaction molecule 1 (STIM1)-activated calcium release-activated calcium (CRAC) 

channels can lead to CaMKKβ- and AMPK-mediated endocytosis of Na,K-ATPase (108).  

Wang et al. (2008) demonstrated that the calcium-dependent tyrosine kinase Pyk2 interacts 

with the IFNAR-associated tyrosine kinases Jak1/Tyk2, providing a possible link to 

CaMKKß activation. However, the cell-specific signals involved in the context of IAV 

infection remain to be elucidated. 

Alterations of sodium currents within the IAV-infected cell inhibit viral replication as 

suggested by the here presented data as well as previous reports, in which ouabain, the 

specific inhibitor of Na,K-ATPase activity, significantly reduced viral infection levels (247). 
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A recent report by Burkard et al. demonstrated that, in contrast to coronaviruses, Na,K-

ATPase is not involved in viral entry of IAV (248), suggesting, in concert with the presented 

data, that viral replication is affected after nuclear import of vRNA and, most likely, occurs 

at post-transcriptional level. Confocal microscopy studies revealed that NKAα1 is 

mistargeted to the apical cell membrane in IAV infected AEC. This process most probably 

adds significantly to a reduced AFC capacity of the alveolar epithelium, as the net amount of 

basolateral Na,K-ATPase adding to vectorial sodium and water transport is further 

decreased. Assuming that Na,K-ATPase located to the apical membrane might retain its ion 

pumping activity, sodium ion transport direction might even be reversed, yielding in 

elevated sodium and thus water contents in the alveolar lumen. Further immunoprecipitation 

and live cell imaging studies revealed that it is most likely the interaction with the viral M2 

protein that drives the apical relocalization of NKAα1 protein. Interestingly, Na,K-ATPase 

has been found to be incorporated into IAV virus-like particles (249), indicating that host 

NKAα1 might have an important function within the viral membrane and is therefore 

targeted to the budding site by binding to the M2 protein. The above mentioned data 

strongly suggest that Na,K-ATPase activity and localization are closely interconnected to 

efficient virus replication. Therefore, it seems probable that the decrease of Na,K-ATPase in 

adjacent cells depending on IFN-dependent signaling might in first place be a host strategy 

to build up an antiviral state in non-infected cells. In this regard, Moseley et al. 

demonstrated that treatment of mice with the AMPK activator AICAR, that was here 

identified to decrease Na,K-ATPase levels in non-infected AEC (Figure 4-10 E), prior to 

infection can reduce IAV-induced mortality (242). Thus, a limited decrease in Na,K-ATPase 

levels in non-infected cells in IAV infection might limit viral spread but still enable sodium 

ion conductance levels that ensure sufficient fluid reabsorption rates. However, a further 

decrease in Na,K-ATPase expression later in IAV infection, potentially by recruitment of 

additional macrophages to the alveolar space and the following overshooting inflammatory 

response including signaling by macrophage-released TRAIL, might then contribute to 

reduced AFC rates, edema formation, prolonged hypoxemia and increased mortality.  

In conclusion, the presented data provide evidence that IAV infection causes reduction in 

the surface expression of Na,K-ATPase in non-infected AEC and an M2-mediated apical 

mistargeting of NKAα1 in infected AEC resulting in significantly impaired AFC (Figure 7). 

The interaction between Na,K-ATPase and the viral M2 protein in infected AEC induces a 

relocalization of NKAα1 from the basolateral to the apical cell membrane most probably 
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decreasing or even reverting sodium ion transport and fluid clearance towards the interstitial 

space. Importantly, a prominent decrease of NKAα1 plasma membrane expression in non- 

infected alveolar epithelial cells is induced via CaMKKβ and AMPK by a paracrine 

signaling elicited by infected epithelial cells and macrophages. This decrease is mediated by 

alveolar epithelial cell-released IFNα directly and is amplified through IFN-induced release 

of TRAIL from recruited macrophages resulting in significant inhibition of lung edema 

clearance. As the AMPK-mediated loss of Na,K-ATPase and AFC capacities were found to 

be amenable to manipulation in vivo, a timely and well-balanced modulation of Na,K-

ATPase abundance and activity might represent a novel strategy to improve fluid 

reabsorption and hypoxia and thus outcomes in IAV-induced lung injury and ARDS. 

 

 

 
Figure 6-1 Model of type I IFN-mediated loss of Na,K-ATPase–mediated edema clearance in IAV infection and M2-

dependent mistargeting af NKAα1 to the apical compartment of IAV infected AEC. IAV infection results in alveolar 

epithelial cell (AEC) release of IFNα and induction of IFNβ-dependent release of TRAIL in alveolar macrophages (AM). 

Ligation to their receptors, IFNAR and DR5, results activation of the stress kinase AMP-activated kinase (AMPK). 

Activation of AMPK initiates endocytosis and degradation of Na,K-ATPase from the cell plasma membrane and impacts 

on fluid reabsorption. In parallel, expression of the viral proton channel M2 in IAV infected AEC leads to a mistargeting of 

Na,K-ATPase from the basolateral to the apical cell membrane. Both effects, reduced NKAα1 expression in non-infected 

AEC as well as NKAα1 mislocalization in infected AEC, are most likely to increase the persistence of lung edema after 

IAV infection 
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6. Summary 

Influenza A viruses (IAV) cause primary viral pneumonia resulting in acute respiratory 

distress syndrome (ARDS) associated with severe alveolar edema formation. As impairment 

of edema resolution in ARDS patients is correlated with high mortality, this study 

investigated metabolism and function of Na,K-ATPase, a major regulator of fluid 

homeostasis, to define mechanisms affecting alveolar fluid clearance (AFC) in IAV-

infection. 

In vivo IAV infection of wildtype (wt) mice resulted in reduced AFC, edema formation and 

hypoxia that occurred in parallel with a decrease in total and plasma membrane expressed 

Na,K-ATPase α1 subunit (NKAα1). NKAα1 was primarily decreased in non-infected cells 

in a monoculture of alveolar epithelial cells (AEC) and in presence of co-cultured, infected 

macrophages. We found paracrine signaling of type I interferons (IFN) and the macrophage 

released, IFN-dependent cytokine TRAIL (TNF-related apoptosis inducing ligand) to be 

sufficient to decrease NKAα1 in a CaMKKβ- and AMPK-dependent way. Blockade of this 

pathway using specific chemical inhibitors, adenoviral overexpression or siRNA approaches 

restored NKAα1 levels as well as vectorial water transport in ex vivo infected AEC. 

Additionally, trail -/- or ifnar-/- mice, mice transduced with a dominant-negative form of 

AMPK or ccr2-/- mice lacking pulmonary macrophage recruitment showed improved 

NKAα1 levels and AFC after IAV infection. In parallel, inhibition of Na,K-ATPase channel 

activity by ouabain reduced the amount of IAV infected cells, implying a role for Na,K-

ATPase in the IAV replication cycle. IAV infection or transfection of the viral M segment 

led to a mistargeting of NKAα1 from the basolateral to the apical cell surface in infected 

AEC, associated with a close interaction between the viral M2 protein and the NKAα1, 

likely resulting in impaired or even reverted fluid clearance in the infected fraction of AEC. 

Together, this work demonstrates that AFC is inhibited after IAV infection both in infected 

cells by M2-mediated mistargeting and in non-infected neighboring cells by paracrine 

IFN/TRAIL/DR5 signaling resulting in AMPK-mediated decrease of plasma membrane 

NKAα1. Targeting these pathways may be a novel therapeutic strategy to improve AFC, 

oxygenation and finally outcome in patients with IAV-induced ARDS. 
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7. Zusammenfassung 

Influenza A Virus (IAV) Infektionen des distalen Respirationstraktes führen zu einer viralen 

Pneumonie und zum akuten Lungenversagen (ARDS) des Erwachsenen. Ein Hauptmerkmal 

des ARDS ist die Ausbildung eines alveolären Ödems, und die Überlebenschancen des 

Patienten korrelieren eng mit dessen Fähigkeit, diese überschüssige Flüssigkeit aus dem 

Alveolarraum zu resorbieren (alveolar fluid clearance, AFC). Da die Na,K-ATPase durch 

die Etablierung eines Natrium-Gradienten hin zum Interstitium maßgeblich zur alveolären 

Flüssigkeitsresorption beiträgt, wurden deren Regulation und Lokalisation nach der IAV 

Infektion näher charakterisiert. 

Es konnte gezeigt werden, dass die in vivo IAV Infektion von Wildtyp (wt) Mäusen zu 

deutlich reduzierten AFC Raten, Hypoxie und einer Ödemausbildung führte. Gleichzeitig 

konnten signifikant verringerte Mengen Totalprotein wie auch Zellmembran-ständigen 

Oberflächenprotein der Na,K-ATPase α1 Untereinheit (NKAα1) detektiert werden. Diese 

NKAα1 Reduktion wurde nicht in IAV infizierten, sondern ausschließlich in nicht-

infizierten, benachbarten alveolären Epithelzellen (AEC) beobachtet. Darüber hinaus konnte 

eine NKAα1 Reduktion in primär isolierten, nicht-infizierten AEC durch Kokultivierung mit 

infizierten Makrophagen oder durch Transfer von Zellkulturüberständen infizierter Zellen 

induziert werden. Im weiteren Verlauf der Arbeit wurden epithelial produziertes Interferon 

(IFN)-α und das IFN-β abhängige, von Makrophagen sezerniererte TRAIL (TNF-related 

apoptosis-inducing ligand) als Mediatoren identifiziert, die die Expression der NKAα1 über 

die Aktivierung der Kinasen CaMKKβ und AMPK signifikant reduzieren. 

Die  Inhibition beider Kinasen über adenovirale Überexpression dominant negativer 

Varianten oder mittels siRNA konnte in IAV-infizierten AEC die NKAα1 Expression wie 

auch die Kapazität zum vektorialen Flüssigkeitstransport in vitro wiederherstellen. 

Desweiteren zeigte die Infektion von TRAIL-, IFNAR (IFN-Rezeptor)-, und CCR2-

defizienten Mäusen und von Mäusen mit Inhibition der AMPK Funktion, dass eine 

Blockade des IFN/TRAIL/DR5/AMPK Signalweges in vivo zu einer erhöhten NKAα1 

Expression und einer und wiederhergestellten AFC Raten führt. 

Gleichzeitig konnte in IAV-infizierten AEC eine Interaktion zwischen NKAα1 und dem 

viralen Protein M2 gezeigt werden, die eine Mislokalisierung der NKAα1 von der basalen 

zur apikalen Zellmembran induzierte, was – zusätzlich zur verringerten Expression der 

Na,K-ATPase in nicht-infizierten Zellen - ebenfalls die vektoriale Flüssigkeitsresorption des 

alveolären Epithels behindert. 
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Zusammengefasst zeigt diese Studie, dass die Freisetzung von IFNα durch AEC und von 

TRAIL durch Makrophagen in der IAV Infektion zur verminderten Expression der NKAα1 

in nicht-infizierten AEC führt, während in infizierten AEC eine M2-abhängige 

Mislokalisierung der NKAα1 hin zur apikalen Zellmembran stattfindet, wodurch die 

Kapazität des alveolären vektorialen Flüssikgeitstransportes nach der IAV Infektion 

signifikant verringert ist. Die Modulation der zugrunde liegenden Signalwege stellt eine 

neue Möglichkeit dar, AFC, Oxygenierung und letztlich auch die Überlebenschancen von 

IAV-infizierten ARDS-Patienten deutlich zu verbessern. 
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9. Supplement 

9.1. List of Figures 

Figure 1-1 Schematic overview of pathological changes to alveolar compartment during the 

acute phase of ARDS, adapted from Matthay and Zeman, 2011 (2).   7 

Figure 1-2 Origin and dynamics of murine macrophages, adapted from Hussel and Bell, 

2014 (19). 8 

Figure 1-3 Schematic presentation of the alveolar barrier, adapted from (64). 11 

Figure 1-4 Schematic presentation of Na,K-ATPase protein, adapted from Geering, 2008 

(78). 12 

Figure 1-5 PURED pathway mediated degradation of plasma membrane Na,K-ATPase, 

adapted from Lecuona, Trejo and Sznajder, 2007 (101). 15 

Figure 1-6 Schematic depiction of an influenza A virus particle, taken from Subbarao and 

Joseph,  2007 (141). 17 

Figure 1-7 Influenza A virus replication cycle (153). 18 

Figure 1-8 Host immune responses to IAV infection, adapted from (197). 21 

Figure 1-9 IFN-β dependent TRAIL-mediated pro-apoptotic AM-AEC cross-talk in IAV-

induced lung injury (204).  23 

Figure 4-1 Murine PR8 infection promotes formation of alveolar edema. 40 

Figure 4-2 Na,K-ATPase subunit mRNA expression in murine (m-) AEC 6 hours and 24 

hours post infection (hpi). 41 

Figure 4-3 Total abundance of NKAα1 protein is decreased in AEC after PR8 infection. 42 

Figure 4-4 Plasma membrane expressed NKAα1 is decreased upon IAV infection ex vivo 

and in vivo. 43 

Figure 4-5 Plasma membrane expressed NKAα1 is decreased by paracrine cross-talk elicited 

by infected epithelial cells. 44 

Figure 4-6 Na,K-ATPase subunit mRNA expression in murine (m-) AEC co-cultured with 

AM 6 hours and 24 hours post infection (hpi). 45 

Figure 4-7 Total and plasma membrane expressed NKAα1 is decreased in presence of 

infected macrophages. 46 

Figure 4-8 Cytokine expression in cell culture supernatants 24h after IAV infection. 47 
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Figure 4-9 PR8-induced loss of Na,K-ATPase surface expression is dependent on an IFN-

TRAIL signaling loop involving epithelial IFNα and type I IFN-induced macrophage 

TRAIL.   48 

Figure 4-10 IAV-induced loss of Na,K-ATPase a1 subunit surface expression is mediated by 

activation of AMPK. 50 

Figure 4-11 Calcium-dependent activation of CaMKKß is upstream of IAV-induced AMPK 

activation and subsequent loss of Na,K-ATPase a1 subunit surface expression. 51 

Figure 4-12 IAV-induced reduction of epithelial NKAα1 surface expression and AFC 

capacity require the presence of IFNAR and TRAIL as well as macrophage recruitment and 

are mediated by AMPK in vivo. 53 

4-13 IAV replication is impaired in presence of ouabain. 54 

Figure 4-14 NKAα1 is relocalized to the apical cell membrane after IAV infection. 55 

Figure 4-15 Localization of the junctional proteins occluding and ZO-1 is not altered after 

IAV infection. 56 

Figure 4-16 NKAα1 is relocalized to the apical cell membrane after IAV infection in vivo. 56 

Figure 4-17 Heat-inactivated IAV does not induce relocalization of NKAα1. 57 

Figure 4-18 Expression of the viral M segment is sufficient to induce relocalization of 

NKAα1. 58 

Figure 4-19 NKAα1 and M2 do co-immunoprecipitate. 59 

Figure 4-20 NKAα1 and M2 colocalize upon coexpression in A549 cells. 59 

Figure 6-1 Model of type I IFN-mediated loss of Na,K-ATPase–mediated edema clearance 

in IAV infection. 74 

9.2. Materials 

9.2.1. Chemicals And Consumables 

2-Propanol  Sigma-Aldrich, Taufkirchen (GER) 

Ampicillin Sigma-Aldrich, Taufkirchen (GER) 

Amphotericin  Sigma-Aldrich, Taufkirchen (GER) 

Atropin B.Braun, Melsungen (GER) 

Avicel AMC Biopolymers, Brüssel (BEL) 

BSA (bovine serum albumin) Sigma-Aldrich, Taufkirchen (GER) 

Calciumchloride Sigma-Aldrich, Taufkirchen (GER) 

dNTP's (desoxynucleoside triphosphate) Thermo Scientific, Waltham (USA) 
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DMSO (Dimethyl sulfoxide) Sigma-Aldrich, Taufkirchen (GER) 

EDTA (Ethylenediaminetetraacetic acid) Roth, Karlsruhe (GER) 

EGTA (ethylene glycol tetraacetic acid) Sigma-Aldrich, Taufkirchen (GER) 

Ethanol Sigma-Aldrich, Taufkirchen (GER) 

Evans Blue Sigma-Aldrich, Taufkirchen (GER) 

EZ-link Sulfo-NHS-SS-Biotin  Thermo Scientific, Waltham (USA) 

FCS (fetal calf serum) Life Technologies, Carlsbad (USA)  

Ficoll GE Healthcare, Chalfont St Giles (UK) 

FITC-Dextran (70kDa) Sigma-Aldrich, Taufkirchen (GER) 

Glycin Roth, Karlsruhe (GER) 

HEPES Merck Millipore, Darmstadt (GER) 

ITS (Insulin-Transferrin-Selenium) Biozym Scientific, Hessisch Oldendorf (GER) 

Ketaminhydrochloride (Ketavet) Pharmaci & Upjohn, Peapack (USA) 

L-Glutamin [200mM] Gibco BRL, Karlsruhe (GER) 

Lipofectamine 2000 Life Technologies, Carlsbad (USA) 

Low melting Agarose Sigma-Aldrich, Taufkirchen (GER) 

Magnesium sulfate Sigma-Aldrich, Taufkirchen (GER) 

β-Mercaptoethanol Sigma-Aldrich, Taufkirchen (GER) 

Methanol Roth, Karlsruhe (GER) 

Milk powder BD Biosciences, San Jose (USA) 

NHS (Normal Horse Serum) Sigma-Aldrich, Taufkirchen (GER) 

NP40 Thermo Scientific, Waltham (USA) 

Peqgold protein marker V Peqlab, Erlangern (GER) 

PBS Life Technologies, Carlsbad (USA) 

PBS++ (containing MgCl) PAN-Biotech, Aidenbach (GER) 

Parafilm American National, Greenwich (USA) 

Paraformaldehyde (PFA) Merck, Darmstadt (GER) 

Penicillin/Streptomycin [5000 U/ml] Gibco BRL, Karlsruhe (GER) 

Phosphatase inhibitor (100x) Cell Signaling, Cambridge (UK)  

Potassium chloride Sigma-Aldrich, Taufkirchen (GER) 

Protease inhibitor cocktail Roche, Basel (CH) 

Protein A/G Plus-agarose beads Santa Cruz Biotechnology, Dallas (USA) 

PVDF-Membran (Hybond™) Amersham Biosciences, (UK) 

Sandoglobulin Novartis, Basel (CH) 

Saponine Merck Millipore, Darmstadt (GER) 

SDS (Sodiumdodecylsulfate) Roth, Karlsruhe (GER) 
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Sodiumchloride Roth, Karlsruhe (GER) 

Sodiumhydrogene carbonate Sigma-Aldrich, Taufkirchen (GER) 

Sodiumdihydrogene phosphate Sigma-Aldrich, Taufkirchen (GER) 

Sodium orthovanadate Sigma-Aldrich, Taufkirchen (GER) 

Streptavidin Agarose Resin Thermo Scientific, Waltham (USA) 

SYBR Green I Life Technologies, Carlsbad (USA) 

TissueTek Sakura, Alphen aan den Rijn (NL) 

Tris (Trishydroxymethylaminomethane) Acros Organics, New Jersey (USA) 

Triton-X-100 Roth, Karlsruhe (GER) 

True Blue™ Peroxidase Substrate PKL, Gaithersburg (USA) 

Tween 80 Sigma-Aldrich, Taufkirchen (GER) 

Vectashield Mounting Medium (DAPI) Vector Laboratories, Burlingame (USA) 

Xylazine hydrochloride, Rompun Bayer AG, Leverkusen (GER) 

Biotin-binder magnetic beads Life Technologies, Carlsbad (USA) 

Cell culture flasks 75cm2 Greiner, Nürtingen (GER) 

Cell culture plates, single- and multi-well Greiner, Nürtingen (GER) 

Cell scaper, 28cm and 40cm handle Greiner, Nürtingen (GER) 

Cell strainer filters 40, 70 and 100µm   BD Biosciences, San Jose (USA) 

Cell nylon filters 20µM Merck Millipore, Darmstadt (GER) 

GentleMACS C tubes Miltenyi Biotec, Bergisch Gladbach (GER) 

Minigel protean TGX Bio-Rad, Hercules (USA) 

Polystyrene tubes, 15ml and 50ml  Greiner, Nürtingen (GER) 

Polystyrene round-bottom tubes 5ml BD Biosciences, San Jose (USA) 

Reaction tubes 0.5ml and 1.5ml Eppendorf, Hamburg (GER) 

Syringe 1ml, 10ml and 20ml  B.Braun, Melsungen (GER) 

Transwell permeable supports Corning Life Sciences, Tewksbury (USA) 

9.2.2. Enzymes, Recombinant Proteins And Inhibitors 

Dispase Corning Life Sciences, Tewksbury (USA) 

Dispase II Böhringer, Ingelheim am Rhein (GER) 

DNase Serva, Heidelberg (GER) 

MLV-RT Life Technologies, Carlsbad (USA) 

Trypsin-EDTA Merck Millipore, Darmstadt (GER) 

Trypsin-TPCK Worthington Biochemical, Lakewood (USA)  

mouse recombinant GM-CSF R&D Systems, Minneapolis (USA) 

mouse recombinant interferon-α pbl interferon source, Logan (USA) 
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mouse recombinant interferon-β pbl interferon source, Logan (USA) 

mouse recombinant TRAIL R&D Systems, Minneapolis (USA) 

(5Z)-7-Oxozeanol (Curvularia sp.) Merck Millipore, Darmstadt (GER) 

AICA-Riboside Merck Millipore, Darmstadt (GER) 

BAPTA-AM Life Technologies, Carlsbad (USA) 

Compound C (Dorsomorphin) Merck Millipore, Darmstadt (GER) 

STO-609 Merck Millipore, Darmstadt (GER) 

9.2.3. Antibodies 

β-Actin Ply6221 Biolegend, San Diego (USA) 

AMPK α 40H9 Cell Signaling, Cambridge (UK)  

CaMKKIIβ C-20 Cell Signaling, Cambridge (UK)  

CD74 ln-1 BD Biosciences, San Jose (USA) 

CD326 (Ep-CAM) G8.8 APC/Cy7  Biolegend, San Diego (USA) 

Glucose transporter 1 (Glut1), polyclonal Merck Millipore, Darmstadt (GER) 

Influenza A Virus Nucleoprotein Abcam, Cambridge (UK) 

Influenza A Matrix Protein 1, polyclonal Bio-Rad, Hercules (USA) 

Influenza A Matrix Protein 2, MA1-082 Thermo Scientific, Waltham (USA) 

Influenza A Virus, polyclonal Abcam, Cambridge (UK) 

IgG Alexa Fluor 488, mouse Merck Millipore, Darmstadt (GER) 

Na,K-ATPase α1 Alexa Fluor 488 C464.6  Merck Millipore, Darmstadt (GER) 

Occludin, polyclonal Abcam, Cambridge (UK) 

phospho-ACC S79 Cell Signaling, Cambridge (UK)  

Podoplanin 8.1.1 PE/Cy7 Biolegend, San Diego (USA) 

Rb-X Hu pro-SP-C Merck Millipore, Darmstadt (GER) 

ZO-1, polyclonal Abcam, Cambridge (UK) 

secondary goat APC Life Technologies, Carlsbad (USA) 

secondary goat Alexa Fluor 488 Life Technologies, Carlsbad (USA) 

secondary rabbit APC Life Technologies, Carlsbad (USA) 

secondary rat PE Life Technologies, Carlsbad (USA) 

secondary mouse HRP Cell Signaling, Cambridge (UK)  

secondary rabbit HRP Cell Signaling, Cambridge (UK)  

biotinylated rat anti-mouse CD16/32 BD Biosciences, San Jose (USA) 

biotinylated rat anti-mouse CD31 BD Biosciences, San Jose (USA) 

biotinylated rat anti-mouse CD45 BD Biosciences, San Jose (USA) 

mouse anti-human CD45 magentic beads Miltenyi Biotec, Bergisch Gladbach (GER) 
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9.2.4. ELISA and CBA Kits 

ELISA 

mouse TRAIL, detection limit 1.8 pg/ml R&D Systems, Minneapolis (USA) 
mouse TNF-α, detection limit 2 pg/ml R&D Systems, Minneapolis (USA) 
mouse TGF-β, detection limit 4.6 pg/ml R&D Systems, Minneapolis (USA)  

mouse interferon α, detection limit 12.5pg/ml pbl interferon source, Logan (USA) 

Cytometric Bead Array (CBA) 

mouse MCP-1, detection limit 2.7 pg/ml BD Biosciences, San Jose (USA) 

mouse KC, detection limit 0.1 pg/ml BD Biosciences, San Jose (USA) 

mouse IL-1α, detection limit 0.8 pg/ml BD Biosciences, San Jose (USA) 

mouse RANTES, detection limit 3.3 pg/ml BD Biosciences, San Jose (USA) 

9.2. List of Abbreviations 
A Ampere 
ACC Acetyl-CoA carboxylase 
Ad-Null Adenovirus, expressing no contruct 
Ad-DN-AMPK Adenovirus, expressing dominant negative 

AMPK 
AEC Alveolar epithelial cells 
AFC Alveolar fluid clearance 
AICAR AICA-Riboside 
Al altera 
AM Alveolar macrophage 
AMP Adenosine monophosphate 
AMPK AMP-dependent kinase 
APC allophycocyanin 
BMM Bone marrow-derived macrophage 
BALF Bronchoalveolar lavage fluid 
BSA bovine serum albumin 
°C Celsius 
CaMKKβ Calcium/Calmodulin kinase kinase beta 
CBA Cytometric bead array 
CCR2 C-C chemokine receptor type 2 
CD Cluster of differentiation 
cDNA Complementary DNA 
Cl Chloride 
CO2 Carbon dioxide 
C-Terminus Carboxyterminus 
dH2O Deionisized water 
DMEM Dulbecco’s modified Eagle’s medium 
DMSO  Dimethylsulfoxide 
DNA Desoxyribonucleic Acid 
dNTP Desoxynucleosidtriphosphate 
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DR5 Death receptor 5 
DTT Dithiotreitol 
EDTA Ethylendinitrilotetraacetic acid 
EGTA Ethylene glycol tetraacetic acid 
ELISA Enzyme Linked Immunosorbent Assay 
EpCAM Epithelial cell adhesion molecule 
FACS Fluorescence activated cell sorting, flow 

cytometry 
FCS Fetal calf serum 
FP Forward primer 
g Gramms 
GFP Green fluorescent protein 
Glut1 Glucose transporter 1 
GM-CSF Granulocyte macrophage colony-stimulating 

factor 
h Hours 
HA Hemagglutinin 
HA Hemagglutinin 
HCl Hydrochloric acid 
HRP Horseradish peroxidase 
IFN Type I interferon 
IFNα Interferon alpha 
IFNβ Interferon beta 
IFNAR Interferon-alpha/beta receptor 
IL-1α Interleukin 1 alpha 
Ig Immunglobuline 
ITS Insulin-Transferrin-Selenium 
IAV Influenza A virus 
IVC Induvidually ventilated cages, conventional  
k  Kilo 
K Potassium 
KC Mouse keratinocyte-derived cytokine 
kDa Kilodalton 
l  Liter 
K Potassium 
m Milli 
M Molar 
mAEC Murine alveolar epithelial cells 
M1 Matrixprotein 1 
M2 Matrixprotein 2 
MCP-1 Monocyte chemotactic protein 1 
MCDK Madin Darbey Canine Kidney 
MEM Minimal Essential Medium 
min Minute 
MLE-12 Mouse lung epithelium clone 12 
mol Mol 
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MOI Multiplicity of infection 
mRNA Messenger RNA 
µ Micro 
n Nano 
NA Neuraminidase 
Na Sodium 
NHS Normal horse serum 
NKAα1 Sodium, Potassium ATPase alpha 1 subunit 
NP Nukleoprotein 
nt Nucleotide 
N-Terminus Amino-terminus 
Osm Osmolar 
PA Polymeraseprotein, acidic 
PAGE Polyacrylamidgelelectrophoresis 
PB1 Polymeraseprotein basic 1 
PB2 Polymeraseprotein basic 2 
PBS Phosphate buffered saline 
pACC Phospho-Acetyl-CoA carboxylase 
pCO2 Partial pressure carbon dioxide 
PCR Polymerase chain reaction 
PE Phycoerythrin 
PFA Paraformaldehyde 
pfu Plaque forming units 
pH  Potentia hydrogenii 
Pol Polymerase 
pO2 Partial pressure oxygen 
proSP-C Pro-surfactant protein C 
PR8 Influenza virus A/Puerto Rico/8/34 (H1N1) 
qRT-PCR Quantitative real time polymerase chain 

reaction 
RANTES Regulated on activation, normal T cell 

expressed and secreted 
RP Reverse primer 
RNA Ribonucleic acid 
RNP Ribonucleoprotein 
rpm Rounds per minute 
RT Room temperatue 
s Seconds 

SA Sialic acid 

SDS Natriumdodecylsulfate 
siRNA Small interfering ribonucleic acid 
SPF Specific pathogen-free 
TGF-β Transforming growth factor beta 
TNF-α Tumor necrosis factor alpha 
TRAIL TNF-related apoptosis-inducing ligand 
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Tris Trishydroxymethylaminomethane 
U Unit 
Udorn Influenza virus A/Udorn/1972 (H3N2) 
V Volt 
wt Wildtype 
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9.3. Affirmation - Eidesstattliche Erklärung 

 

Ich erkläre:  

Ich habe die vorgelegte Thesis selbständig, ohne  unerlaubte fremde Hilfe und nur mit den 

Hilfen angefertigt, die ich in der Thesis angegeben habe. Alle Textstellen, die wörtlich oder 

sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften entnommen sind, und 

alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. 

Bei den von mir durchgeführten und in der Thesis erwähnten Untersuchungen habe ich die 

Grundsätze guter wissenschaftlicher Praxis, wie sie in der Satzung der Justus-Liebig-

Universität Gießen zur Sicherung guter wissenschaftlicher Praxis’ niedergelegt sind, 

eingehalten. 

 

 

 

Christin Becker 


