
INTRODUCTION

Polymethyl methacrylate (PMMA) is an important 
material in medicine, especially dentistry, and is used 
in several applications because of its compatibility 
with human tissue, reliability, processing features, and 
low toxicity1). However, when applied in the context of 
dental applications, the fracture behavior of PMMA is 
difficult to predict. The failure of a PMMA component in 
medical use will result in additional visits to the doctor, 
increased treatment costs, and symptoms such as, pain, 
aspiration risk, or similar health hazards for the patient. 
The aim of this study is to create a statistical model 
that allows the determination of a component’s fracture 
probability given the applied strain and strain rate, 
contributing to the statistical prediction of the fracture 
behavior of PMMA and, hence, ensuring patient safety 
in the design of medical supplies. The statistical model 
presented in this study can be integrated into finite 
element simulations, allowing both stochastic finite 
element simulations and designing medical restorations 
with specific statistical safety targets.

For example, PMMA is used as a bone cement, for 
screw fixation in the bone, as a filler for bone cavities 
and skull defects, and vertebral stabilization in 
osteoporotic patients1-5). PMMA is also used in and close 
to the human eye, such as in interocular lenses, rigid 
contact lenses, or eyeglass lenses1,6). Most importantly, 
PMMA is widely used in dental applications7-11). It is 
important to recognize that in all the aforementioned 
uses of PMMA (and similar amorphous thermoplastics 
such as polyethene, polypropylene, and polyether ether 
ketone), it is essential to possess good knowledge of the 
fracture behavior of the used components, as the fracture 
of a polymer-based component in vivo may have serious 

consequences for the health and safety of the patient 
and further will, in any case, require de novo medical 
treatment.

In dentistry, a common problem with restorations 
that are fabricated using PMMA are fractures in the 
application of fixed or removable dental prostheses 
(crowns, bridges, and partial or complete dentures)12,13). 
Studies on this topic have mostly focused on permanent 
dental materials (e.g. fixed partial dentures made of 
metal alloy or ceramics), so far, lacking data on the 
fracture behavior of semi-permanent materials (e.g. 
fixed and removable interim dentures made of PMMA). 
A precise prediction of fracture behavior is very difficult 
because many parameters, such as material properties, 
force peaks, chewing force, and chewing velocity, must 
be taken into account14). On the one hand, the failure 
risks of the respective materials are inherent in their 
properties. On the other hand, each patient has different 
boundary conditions for a dental biomaterial, ranging 
from different chewing velocities to varying chewing 
forces from patient to patient. Furthermore, load cases 
can range from low forces up to patients with bruxism, 
where chewing force peaks can occur, or in the extreme 
case, when masticating very hard food components, (e.g., 
cherry pit) all at once15). Possible consequences of denture 
fractures include discomfort, pain, and the occurrence of 
caries up to the possible loss of teeth. More dramatically, 
there is a risk of swallowing or aspiration of fragments, 
especially in cases of fractures during sleep16). In addition 
to the possible risks for the patient, the costs for new 
production, the costs within the dental practice, and 
the associated time and economic consequences must 
be mentioned. Even though the use of semi-permanent 
restorations is limited to a maximum of one year, new 
fabrication requires additional time and costs, as well as 
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an additional burden for the patients.
Therefore, it would be preferable to statistically 

approximate the probability of failure for different 
polymer-based biomaterials based on experimentally 
obtained material properties. Hence, the aim of the 
present study is to make a statement about a component 
failure risk based on three-point bending tests (3PBT). 
The tests are conducted on polymer-based biomaterials 
to ultimately increase patient safety and comfort by 
predicting the failure probability of restorations in 
consideration of rate-dependent material behavior. An 
implementation of finite element models, such as the 
simulation of dental prostheses by Schrader et al.17) is 
deemed worthwhile. It should be noted in advance that 
although we focused on dental PMMA in this study, the 
methodology developed in this study is considered usable 
for all kinds of above-mentioned dental biomaterials and 
other thermoplastics.

To serve this purpose, we advocate using Weibull 
statistics, as this is commonly used in the field of dental 
biomaterial science. For example, in the literature, 
the Weibull distribution has been used to describe 
the fatigue behavior of dental biomaterials18,19) and 
to compare the impact of surface treatments on a 
material’s fracture behavior or to report the strength of 
dental materials in general20-22). It is important to note 
that the aforementioned studies using Weibull statistics 
in dental materials science investigated the stresses at 
fracture. Although this seems sufficient for ceramics 
or other linear elastic materials, this approach is only 
reasonable for PMMA if fracture mirrors can be found 
and the stress in fracture could be approximated23). As 
PMMA shows stress relaxation to a significant extent24), 
the determination of failure stresses from experiments 
is problematic. Although the rate-dependency of the 
material behavior of PMMA has been investigated in an 
increasing number of studies in mechanical engineering 
(see Refs. 2, 25–29 for example), it has so far been mostly 
neglected in dental biomaterials science. Only recently, 
new studies have been investigating the influence of 
the rate-dependency on the behavior of provisional 
treatments consisting of PMMA, with the conclusion that 
the rate-dependency of PMMA must not be neglected 
because the fracture behavior of a provisional treatment 
consisting of PMMA is heavily impacted by the loading 
velocity17,24,30). As thermoplastics generally behave in this 
manner, it is likely that the same also applies to many 
other polymer-based materials or hybrid materials with 
a thermoplastic matrix, used in the medical field.

Hence, this study proposes a new approach to 
determine the failure risk of polymer-based components 
by considering the fracture strain and strain rate from 
3PBT. Here, we rely on the results obtained by Schmidt  
et al.24), who performed a large variety of 3PBT at 
different loading velocities. From this, we derive a 
methodology that can be used to model the failure risk 
of a component under different boundary conditions of 
the applied strain and strain rate.

We begin by summarizing the most important 
findings of subsequent studies on the rate-dependency 

of the tested material. Furthermore, we shall present 
the necessary theoretical background of the statistical 
procedure, including a brief overview of the two-
parameter Weibull (2PW) distribution, probability and 
parameter estimation, and the goodness of fit criterion. 
From these, the cumulative distribution functions (CDFs) 
at each tested strain rate were determined and tested 
for goodness of fit. To investigate the rate-dependency 
of the material fracture behavior, we would also present 
the Cramèr-von Mises test (CvM), which is used to 
investigate whether two samples of fracture strains 
obtained at different strain rates, would come from the 
same unknown continuous distribution. We shall also 
include remarks on the coefficient of determination, 
which is used to estimate the goodness of our proposed 
model. The central finding of the presented procedure is 
a model from which the fracture probability of the tested 
material can be determined for a given strain and strain 
rate. Eventually, we present the clinical application 
of our methodology and its clinical benefits as well as 
possible further applications.

MATERIALS AND METHODS

Investigated data
To statistically investigate the fracture behavior of a 
material under different clinically relevant loading rates, 
a large experimental database is necessary. Therefore, 
we referred to the results obtained by Schmidt et al.24) 
who had generated a large database for commercial 
dental PMMA using 3PBT. Their 3PBT results were 
examined for the fracture behavior of the tested 
material. Schmidt et al. had investigated the behavior 
of specimens consisting of Telio CAD (Ivoclar-Vivadent, 
Schaan, Lichtenstein; cross-linked PMMA, percentage by 
weight of 99.5%, pigments <1%, no further fillers7,9,10)) at 
different loading velocities, under laboratory conditions. 
The specimens used were sawed from Telio CAD blocks 
water-cooled with a high-precision saw (IsoMet 1000, 
Buehler, Esslingen, Germany), achieving specimen 
dimensions of 2×2×40 mm and 2×2×55 mm. In their 
study, it was found that elastic modulus and fracture 
strain were dependent on the initial strain rate ε̇ during 
3PBT. In Table 1, the tested rates, specimen geometries, 
and measurement systems that were used are provided 
as an overview. For a better overview, the strain rates 
tested by Schmidt et al.24) are referred to as ε̇1, …, ε̇6.

Furthermore, it was found that the fracture strain 
could be calculated from the linear elastic beam theory 
even during a quasistatic 3PBT, whereas the fracture 
stress could not, as stress relaxation was observed to a 
significant extent24).

Statistical procedure
1. Two-parameter Weibull distribution and parameter 
estimation
For ceramics and mineral glasses, the fracture 
probability is typically described by 2PW. For PMMA, 
it was also found to provide a good reproduction of the 
experimental data, as shown in the stochastic analyses 
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Table 1	 Strain rates tested by Schmidt et al.24)

Ref. Crosshead velocity Strain rate (1/s) Sample size (−) Testing machine and specimen geometry

ε̇1 1 mm/min 6.920×10−4 20
Servo-electric universal test machine Inspect 5 
(Hegewald & Peschke, Nossen, Germany), 
2×2×40 mm specimens, support distance of 17 mm

ε̇2 10 mm/min 6.920×10−3 20

ε̇3 100 mm/min 6.920×10−2 20

ε̇4 0.5 m/s 4.898 10
Impetus Pendulum System (4a technology, 
Traboch, Austria), 2×2×55 mm specimens, 
support distance of 35 mm

ε̇5 1.0 m/s 9.796 10

ε̇6 2.5 m/s 24.490 10

of fracture stress and strain by Brokmann et al.23) and 
Berlinger et al.31). The CDF of the 2PW is given by:

ε
P(ε)=1−exp[(−     )β]                                                    (1)η

with the scale parameter η and the shape parameter 
β32). The notation exp (x)=ex is used in the context of this 
work to improve readability. The scale parameter η is 
the expected value for the strain at which 1−e−1≈63.2% 
of all the specimens have already failed during the 
experimental procedure and, hence, is a physically 
relevant parameter. The shape parameter β is an  
indicator of dispersion in the fracture strain population; 
generally, large values for β yield narrower distributions, 
whereas small values yield broader distributions. 
However, it should be highlighted that β is only an 
indicator and not an independent measure of dispersion, 
as the parameter is dependent on η if the distribution is 
shifted in ε33). We also want to mention that the use of the 
2PW is suitable for this field of application because, in 
contrast to other common distribution functions such as 
the normal distribution, the 2PW is also able to capture 
skewed or asymmetric data probability densities.

The basis for statistical analysis is a set of 
experimentally measured fracture strains that do not 
contain information on their probability of occurrence. 
The single fracture strains εi, i ∈ {1,2,...,N }, in the set of 
size N  are an outcome of variate ε. Thus, εi is the quantile 
assigned to the probability pi of the unknown CDF 
P (ε). To estimate the parameters β and η of the CDF, 
first, the fracture strain sample is sorted in ascending 
order as ε1<ε2<...<εN. The occurrence probability for a  
new observation εN+1 being less than or equal to εi is  
P (εN+1≤εi)=pi. To define the sample quantiles εi=P−1 (pi), 
Weibull’s formula for the plotting positions is used, 
which assigns each εi to

i
pi=                                                                              (2)

N+1´

depending on position i in the order. The combination 
of the sample quantile and plotting position yields 
the coordinate points (εi│pi). Although many possible 
formulas for defining sample quantiles can be found 

in the relevant literature, the one by Weibull is chosen 
within the course of this study because it is sufficient for 
use with PMMA fracture strains31,33,34).

In practice, the 2PW is often fitted to the coordinate 
points by linear regression after transforming the 
coordinate system, yielding the Weibull probability 
plot35). However, as the coordinate transformation brings 
an unwanted weighting of the residual into the fit36), the 
given 2PW CDF function parameters are determined by 
minimizing the residual sum of squares (RSS):

RSS=ΣN
i=1[pi−P(εi)]2.                                                  (3)

2. Goodness of fit
To investigate the quality of an achieved CDF fit, the 
Generalized Anderson-Darling (GAD) test, which 
can account for the use of different definitions for the 
plotting positions, is used34). The test statistic A2

G for the 
GAD test is given as

A2
G=N{−1−ln[P(εN)(1−P(εi))]

P(εi+1)                    (1−P(εi+1)+ΣN
i
−
=

1
1[pi

2 ln(            )−(pi−1)2 ln(                 )]}.        (4)
P(εi)                       1−P(εi)

This test statistic is a measure of the deviation of the 
CDF from the coordinate points of the sample in which 
the function tails are weighted higher. To make a general 
statement on the statistical significance of the received 
test statistic, Table 2 is provided. Analogous to the 
procedure proposed by Ref. 34, the GAD test statistics 
are determined for commonly examined significance 
levels α. Thus, the calculated A2

G from Eq. (4) is rated by 
comparison with the listed thresholds.

A significance level of α=5% is usually considered as 
the limit for evaluation. If the test statistic A2

G is rated 
with a higher significance, the fitted CDF is assumed to 
match the experimental data.

3. Cramér-von Mises test
Within the course of this study, the two-sample CvM 
test37) is used to investigate whether the two samples 
of fracture strains obtained at different strain rates 
may come from the same unknown CDF. The CvM test 
statistic T is calculated as follows:
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Table 3	 Critical thresholds of Tα of the CvM38)

Significance level α

0.05 0.10 0.25 0.50

Tα 0.461 0.347 0.209 0.119

Table 2	 Limits of the GAD test at different significance levels α

sample size N
Percentage level (%)

15 10 5 2.5 1

5 0.562 0.607 0.682 0.756 0.859

10 0.600 0.662 0.774 0.892 1.057

15 0.606 0.676 0.801 0.935 1.127

20 0.606 0.680 0.812 0.954 1.158

Fig. 1	 Strain-rate dependent CDFs of the observed 
fracture strains.

NM
T=              (ΣN

i=1[FN(xi)−GM(xi)]2+ΣM
i=1[FN(yj)−GM(yj)]2)   (5)

(N+M)2

with the two samples x1,x2,…,xN and y1,y2, …, yN and 
their corresponding empirical distribution functions FN 
and GM (with sample sizes N and M, respectively). Here, 
the variance of T is

1  M+N+1  4MN(M+N)−3(M2+N2)−2MN
Var(T )=                                                                     .   (6)

45 (M+N)2                     4MN

By comparing

1        1
T                      

6   6(M+N )     1
Tmod=[                         ]+                                             (7)

45 Var(T )       6

with the critical threshold Tα of the limiting distribution, 
the significance of the observed value for Tmod can be 
determined. The null hypothesis of CvM that the two 
samples stem from the same distribution is rejected if 
the critical value Tα is exceeded by Tmod. Some selected 
critical values Tα are listed in Table 338).

4. Coefficient of determination
To estimate the goodness of the later proposed statistical 
model, the coefficient of determination39)

Σ[pi−P(εi)]2

R2=1−                                                                         (8)Σ[pi−p͂]2

is used. This provides a measure of how well the 
coordinate points of the sample reproduce the fitted CDF. 
The values for the coefficient of determination range 
from 0≤R2≤1, where a value of 0 indicates no correlation 
and a value of 1 indicates a perfect fit between the model 
and empirical data.

RESULTS

Fracture strain distributions
The obtained strain-rate dependent CDFs are displayed 
in Fig. 1. As can be observed, the coordinate points of 
the respective samples are neatly captured by the 2PW 
CDFs. In Table 4, the determined function parameters 
η and β as well as the corresponding RSS and A2

G values 
are listed for each strain rate. The results imply that 
the scale parameter η decreases, whereas the shape 
parameter β increases with the strain rate.

Furthermore, the distributions at high strain rates 
seem to correlate strongly with each other despite a 
strong increase in the strain rate between the samples. 
This indicates that a limiting distribution is formed 
at high strain rates. To statistically corroborate this 
observation, CvM is used for pairwise comparison. The 
T values obtained from the calculations are listed in 
Table 5. A significance level α of 0.01 is chosen to test the 
null hypothesis H0 stating that the two samples being 
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Table 4	 2PW CDF function parameters and corresponding goodness of fit

Ref. Strain rate (1/s) η β RSS AG
2

ε̇1 6.920×10−4 0.0851 5.003 0.0676 0.512

ε̇2 6.920×10−3 0.0726 4.945 0.0803 1.164

ε̇3 6.920×10−2 0.0567 6.024 0.0210 0.496

ε̇4 4.898 0.0362 10.614 0.0797 0.826

ε̇5 9.796 0.0348 12.775 0.0351 0.455

ε̇6 24.490 0.0347 10.061 0.0182 0.282

Table 5	 Results of the pairwise CvM comparison between strain rates

Sample 1 Sample 2 Tmod Tcrit,α=0.05 H0

ε̇4 ε̇5 0.0950 0.461 true

ε̇5 ε̇6 0.0350 0.461 true

ε̇4 ε̇6 0.0817 0.461 true

compared here are an outcome of the same distribution. 
Concerning Table 5, the null hypothesis can be 
considered true, with a probability of 99 % for each case. 
Therefore, we postulate that a lower limit of fracture 
strain distributions is reached at high strain rates with 
a minimum scale parameter ηdyn and maximum shape 
parameter βdyn.

Rate-dependency of the 2PW parameters
In addition to the distribution limit present at high strain 
rates, it is assumed that the quasi-static distribution can 
also be considered a limiting case, as it can be presumed 
for quasi-static loading that a further reduction in strain 
rate will no longer cause a change in the distribution of 
fracture strains. Thus, it can be stated that there also 
exists a physically reasonable limiting case of maximum 
dispersion (i.e., a minimal β) and a maximum scale 
parameter η. For scale parameter η, this behavior can 
be described phenomenologically, using an exponential 
equation:

η(ε̇,γ1,γ2)=[ηqs−ηdyn] exp(γ1ε̇γ2)+ηdyn,                             (9)

where ηqs is the experimentally obtained maximum 
quasi-static scale parameter, ηdyn is the experimental 
mean scale parameter that is achieved at high rates, 
and γ1 and γ2 are the fit parameters. It has already 
been established that there exists a limiting minimum 
βqs for the quasi-static case, but since the value for β is 
dependent on η(ε̇) resulting from a shift of the CDF with 
increasing ε̇, we assume that the function

β(η(ε̇,γ1,γ2),γ3,γ4)=γ3 exp(γ4η(ε̇,γ1,γ2))+βqs                    (10)

with the two fit parameters γ3 and γ4 for modeling, 
which is implicitly dependent on the strain rate. 

The selected fit function is carefully chosen such that 
the dependency of β on the strain rate possesses the  
observed limiting minimum βqs (which is obtained 
experimentally from the quasi-static test) and maximum 
βdyn, which will result from the fit.

To obtain the parameters γ1 of the proposed model,  
the η(ε̇,γ1,γ2) functions are fitted to the obtained 
parameters given in Table 4 through the RSS, yielding 
parameters γ1 and γ2 (cf. the progression shown in Fig. 
2). As the rate-dependency is strongest between smaller 
strain rates, a weighting function ψ(i)=1/i is multiplied 
by the squared residuals in Eq. (3) to assign weights to 
the parameters attained in the lower function areas. 
Then, β(η(ε̇)) is fitted to η(ε̇), yielding γ3 and γ4. For a 
better overview, this relationship is illustrated in Fig. 
3. The values of the fit parameters determined from this 
procedure are listed in Table 6.

The curves of η and β over the strain rate resulting 
from the proposed model are displayed in Fig. 2, with the 
experimentally obtained values for the scale and shape 
parameters at each tested strain rate. It can be observed 
that the rate-dependencies of both the scale and shape 
parameters are captured by the model function with 
good agreement.

To validate the model generated following this 
procedure, the CDFs from Fig. 1 are recreated with 
parameters following the model functions at the given 
strain rates. The modelled CDFs and original coordinate 
points are displayed in Fig. 4. It can be observed visually 
that the recreated CDFs correspond to the coordinate 
points with good agreement, which indicates that the 
proposed model for the description of rate-dependency for 
the form and shape parameters is reasonably accurate. 
The coefficients of determination between the plotting 
positions and respective recreated CDFs are listed in 
Table 7. The mean coefficient of determination of 90.3% 

181Dent Mater J 2023; 42(2): 177–186



Fig. 2	 Modelled rate-dependency of the 2PW parameters η and β.

Fig. 3	 Fitted relationship between β(η(ε̇)) and η(ε̇). Fig. 4	 Strain-rate dependent CDFs obtained from the 
proposed model.

Table 6	 Fitted parameters γ1 of the model functions

γ1 γ2 γ3 γ4

−4.701 0.620 158.587 −91.930

Table 7	 Correlation coefficients between measurements and modelled CDFs

Ref. Strain rate (1/s) R2

ε̇1 6.920×10−4 0.927

ε̇2 6.920×10−3 0.910

ε̇3 6.920×10−2 0.974

ε̇4 4.898 0.821

ε̇5 9.796 0.900

ε̇6 24.490 0.887

Mean: 0.903

also suggests that the model is in good agreement 
with the original coordinate points. By gathering more 
distribution functions at further strain rates between 
quasi-static and dynamic loading, the tuning of the rate-

dependency model could be improved, leading to smaller 
deviations between the model and original CDFs and a 
better fit on the coordinate points of the samples.
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Fig. 5	 Relationship between fracture strain, strain rate 
and occurrence probability obtained from the 
proposed model.

Fig. 6	 Implementation of the proposed model in stochastic finite element simulations.

Fig. 7	 Clinical implementation of the proposed model.

Fracture probability depending on strain and strain 
rate
By making the parameters η and β of the 2PW dependent 
on the strain rate, a function for the failure probability is 
obtained, which is explicitly dependent on the strain and 
implicitly dependent on the strain rate via the modelled 
rate-dependence of η(ε̇) and β(η(ε̇)), yielding:

ε
P(ε,ε̇)=1−exp[(−        )β(η(ε̇))]                                        (11)η(ε̇)

(cf. Eq. (1)). The resulting models for P(ε,ε̇) are shown 
in Fig. 5.

DISCUSSION

The obtained model of P(ε,ε̇) now allows the determination 
of the fracture probability of a component consisting of 
the investigated material at a given strain and strain 
rate. We shall highlight two special use cases for 
application of the model.

To begin with, we suppose that this model can be 
used in a scientific context, e.g., in stochastic finite 
element simulations. The approach for this use case 
is shown in Fig. 6; where, hypothetically, a random 
number generator could first be used to calculate a 
random occurrence probability, which is then used to 
obtain tabulated values of the fracture strain according 
to this probability, depending on the strain rate. These 
tabulated values can then be used as failure criteria for 
finite element simulations of various components under 
different boundary conditions. By checking on whether 
the simulation will result in a component failure, one 
obtains the probability of the component failing after 
multiple repetitions of the simulations. This approach 
could be used to conduct an increasing number of 
numerical studies, saving expensive and time-consuming 
component tests, which could be of particular benefit in 
the development of biomedical components. Thus, an 
increased number of simple material tests could reduce 
the need for a large number of component tests, as is 
seen commonly in the case of crash simulations in the 
automotive sector.

A second application could be designing a component 
with a statistical safety target (cf. Fig. 7), which we 
suppose could be of great use in a clinical context, e.g., 
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when designing fixed partial dentures or other dental 
restorations. In this use case, the practitioner must first 
select the accepted failure probability of a component. 
This target can then be used to select a failure criterion 
of fracture strains at different strain rates from the 
proposed P(ε,ε̇) model, similar to the previously described 
application. By simulating the desired component (akin 
to Schrader et al.17)) at the expected boundary conditions 
(i.e., chewing velocity and chewing force in the case 
of a dental restoration), one obtains an indication of 
whether the planned supply can withstand the expected 
load . If the simulated component happens to fracture, 
the restoration must be redesigned; otherwise, the 
planned restoration can be manufactured. This could 
be of potential use, especially in digital dentistry, as 
CAD models obtained from intraoral scans could be 
directly simulated with the desired safety target by the 
intraoral scanner software with expected chewing forces 
and velocities as estimated by the dentist, depending 
on the individual needs of the patient. Until now, in 
daily dental practice, the experience of the dentist or 
dental technician has often been relied upon in addition 
to the study results. With the presented methodology, 
the critical points in the design of a prosthesis can be 
recognized early. This, in effect, allows a patient’s 
individual design to ultimately improve patient safety, 
well-being, and the aesthetics of the resulting dental 
restoration.

In our study, we relied heavily on the results 
obtained by Schmidt et al.24). The data of Schmidt et 
al.24) was considered suitable for statistical evaluation in 
the course of this work as, to the authors knowledge, 
it is the only study to investigate the rate-dependent 
behavior of a commercial dental PMMA and provided 
a sufficiently large database to calibrate a statistical 
model. Furthermore, loading in 3PBT achieves uniaxial 
tension, which is the most critical load case for polymeric 
materials. The used material Telio CAD is cross-linked 
PMMA with a percentage by weight of 99.5%, to which 
pigments (less than 1% by weight) have been added7,9,10). 
The use of industrially produced and standardized blanks 
allowed a high degree of material homogeneity40-42).  
Furthermore, we considered it important to rely on a 
material that has been clinically approved and examined 
in numerous other studies (see, Refs. 7, 8, 10, 11).

It should also be noted that an additional 
experimental validation of the proposed model could be 
advantageous, especially in other loading rates than the 
ones to which the model was calibrated. Unfortunately, 
this could not be performed in this study due to lack 
of funding. However, considering the comparatively 
large underlying data base and the amount of sampling 
steps of the tested strain rates from Schmidt et al.24), it 
is believed that the model allows interpolation of the 
strain rate dependent behavior without a significant loss 
of accuracy.

We suppose that the proposed model can be 
directly applied to other polymer-based materials such 
as other thermoplastics or hybrid materials, as these 
generally show rate-dependent, stochastic fracture 

behavior to different extents. Because of the pragmatic 
phenomenological approach, models can be easily 
developed from a database of material tests at different 
strain rates by fitting the four parameters γ1, γ2, γ3, and 
γ4 to the obtained fracture statistics, which can then be 
implemented in different applications. Owing to different 
findings on the rate-dependency of the 2PW parameters 
η and β and careful selection of model functions in this 
study, an extrapolation of the model is also possible, 
allowing its use in many different applications.

However, there are still opportunities to expand the 
proposed failure model in future studies. For example, 
stress triaxiality cannot be considered in a database. 
Uniaxial tension, as obtained in 3PBT, is the most 
critical load case because polymers can bear higher 
loads in shear than in tension. However, a more detailed 
analysis characterizing the shear properties could provide 
valuable insights into the fracture behavior and improve 
the simulation results. Hence, we suggest to also study 
the influence of the stress profiles obtained with different 
loading geometries (e.g., 3PB, 2PB, pure bending and pure 
tension) in the fracture behavior. Furthermore, given the 
data of Schmidt et al.24), the influences of humidity and 
temperature were not investigated, which is of interest 
in vivo. Hence, incorporating the effects of temperature 
and humidity into the proposed stochastic model may 
also be an interesting topic for future studies. In the 
context of prostheses, it would certainly be of interest 
to consider fatigue behavior, e.g., by investigating the 
fracture strain at different numbers of load cycles. 
However, for all these studies, a very large database 
is necessary, as the parameters η and β would have to 
be determined for different conditions of the mentioned 
variables and related to these quantities by different 
(phenomenological) relationships. If such relationships 
are found, we assume that they can be integrated into 
the model of fracture probability according to Eq. (11).

The novel methodology presented makes it 
possible to predict the possible survival probability of a 
polymeric component in advance. This allows clinicians 
or researchers to clearly define in advance the kind of 
material that is suitable for clinical application. With the 
presented methodology, the critical points in the design 
of biomedical components can be recognized early. For 
example, considering the ever-increasing digitalization 
of dentistry, the implementation of intraoral scanners 
(IOS) or computer-aided design/computer-aided 
manufacturing (CAD/CAM) programs to produce patient-
specific treatments is also deemed possible. This would 
allow the IOS software to suggest a possible material 
selection directly after the scan and not define critical 
areas based on the minimum layer thicknesses alone, as 
is the case today. Furthermore, framework conditions can 
be created when planning future material examinations 
to sensibly determine which examination series should 
be carried out. Survival probabilities or thermal cycling 
are also conceivable because material characterization 
can also be carried out in advance with materials that 
have already been thermally pretreated. These results 
are later incorporated into the statistical analysis. Given 
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the wide and almost unmanageable choice of materials, 
a possible calculation of failure probability in advance is 
both appropriate and necessary.

CONCLUSIONS

The results of this study show a prominent rate-
dependent and stochastic fracture behavior of the 
investigated dental PMMA. Therefore, it is assumed 
that the investigation of both the rate-dependent and 
stochastic fracture behavior of dental biomaterials offers 
great potential for improving the structural safety of 
prostheses. This, in effect, may assist decreasing health 
risks for the patient if considered during a prosthesis’ 
design stage. Within the limitations of this study, the 
following conclusions are drawn.

•	 The rate-dependency of PMMA’s fracture strains 
was significant and must not be neglected in 
dental biomaterials science. A lower limit of 
fracture strain was reached at high strain rates.

•	 It is assumed that the proposed methodology 
for determining the structural safety of dental 
biomaterials under different loading conditions 
can likely be transferred to materials other than 
PMMA. A future application of the methodology 
to other biomaterials such as hybrid ceramics or 
resin composites is deemed worthwhile.

•	 The statistical investigation of a material 
in advance can save time and cost-intensive 
preliminary test series, which made material 
examinations more effective.
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