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Abstract 

The continuous increase of the greenhouse gas carbon dioxide (CO2) is expected to impact a wide range of 

processes within the soil-plant system, including biomass production and transpiration. In C3 and C4 plants, 

elevated CO2 (eCO2) is reported to decrease stomatal conductance which in turn reduces water loss through 

transpiration at the leaf level. However, eCO2 is observed to increase biomass production of C3 plants, 

which might counteract the water saving effect at the canopy level by increased leaf area. The direct CO2-

fertilizating effect is not observed for C4 plants, but a combination of eCO2 and drought stress has been 

observed to distinctly increase C4 biomass. Free-air carbon dioxide enrichment (FACE) experiments have 

been developed to investigate the effect of eCO2 on the soil-plant system under field conditions providing a 

number of parameters valuable for crop modelling. Process-based models, which are used to project climate 

change effects on agricultural systems, need to be capable of simulating the effects observed in the field. 

However, recent crop model ensemble studies revealed strong limitations, for instance in simulating the 

distinct biomass increase of the C4 crop maize under eCO2 and water stress. To improve the representation 

of the dynamic behavior of the soil-plant system, two independent process-based models with a high degree 

of process representation, i.e. a plant growth and a soil hydrological model, were coupled in this work, and 

straightforward CO2 response functions regulating stomatal conductance and biomass accumulation were 

implemented. A comprehensive parameter uncertainty analysis based on Latin Hypercube sampling has 

been undertaken for the established model. The coupled model was applied to long-term data of a FACE 

experiment on a temperate C3 grassland. Results imply that temperate, mown, wet-dry C3 grasslands could 

benefit from biomass increase while maintaining water consumption, already with a modest increase of CO2 

concentration of 20%. Further, the expected water saving effect at the leaf level could be offset at a stand 

level as a result of increased transpiration, caused by a biomass gain under eCO2. For simulating the 

combined effect of eCO2 and water stress on C4 crops, the coupled model was applied to a two-year long 

FACE experiment where maize was grown under combined eCO2 and water limited conditions. The clear 

benefit of maize biomass from eCO2 under water-limited conditions was well simulated. Results indicate 

that the coupled hydrological-plant growth model is capable of simulating the relevant climate change 

feedback mechanisms on plant growth of C4 plants. The obtained values of calibrated response parameters 

could be used in other crop models to project maize yields under climate change conditions. Based on the 

results of this work, the importance of plant‐specific CO2 response factors obtained by using comprehensive 

FACE data is emphasized. Further, for the rigorous assessment of crop models and their applicability to 

project yields and water fluxes under climate change, datasets that go beyond single criteria (only biomass 

response) and single effects (only eCO2) are needed. 
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1 Extended Summary 

1.1 Introduction 

1.1.1 Climate change effects on agricultural systems 

The concentration of atmospheric carbon dioxide (CO2) is projected to increase from preindustrial 280 ppm 

to about 700-900 ppm at the end of 21st century (Pachauri et al., 2014). The rise of CO2 is known to affect 

a large number of processes within the soil-plant system (Ainsworth and Long, 2005). The effect might vary 

among plant groups, e.g. C3 and C4 plants, in particular evapotranspiration and biomass accumulation are 

affected. According to Long et al. (2004) two essential responses build the basis for the effects of elevated 

CO2 (eCO2) on plants and ecosystems: a reduction of stomatal conductance and an enhancement of 

photosynthesis of C3 plants under eCO2. The decrease of stomatal conductance is caused by increased 

stomatal closure which in turn results in reduced water loss, i.e. transpiration, on the leaf level (Ainsworth 

and Rogers, 2007). At the same time, C3 plants (e.g. wheat, ryegrass, barley) show an increased 

photosynthesis caused by an accelerated CO2 assimilation rate, which leads to a higher biomass production. 

This increased biomass accumulation is linked to a higher leaf area index, which in turn might increase 

transpiration on a canopy level (Manea and Leishman, 2014; Tor-ngern et al., 2015). In contrast to C3 plants, 

the photosynthesis of C4 plants (e.g. sorghum and maize) is already saturated under ambient CO2 (aCO2) 

concentration (Ghannoum et al., 2000). However, C4 crops benefit from the CO2-induced water saving 

effect through stomatal closure, when eCO2 occurs in combination with periods of water stress. The 

conserved water enables the C4 plants to extend their growing in dry periods, leading to increased biomass 

under eCO2 compared to aCO2 (Kimball, 2016). The combined effect of transpiration and biomass 

accumulation can be summarized with the measure water use efficiency (WUE), derived by division of total 

aboveground biomass by the sum of evapotranspiration. In general, an improvement of WUE of about 10-

32% is expected under eCO2, depending on crop type and water ability (Deryng et al., 2014; O’Leary et al., 

2015; Roy et al., 2016).   

 

1.1.2 Experiments for climate impact analysis on crops 

Knowledge about effects of eCO2 on agricultural systems originates from various experiments, in which 

plants are exposed to increased CO2 concentrations. Based on more than 70 studies of chamber and 

greenhouse experiments, Kimball (1992) presented an average increase in crop yield of 33% under doubled 

CO2 concentration. However, chamber and greenhouse experiment are discussed to be accompanied with 

changes in for instance wind speed, air temperature and solar radiation which might lead to different 

responses of the vegetation compared to field grown crops (Lewin et al., 1994). In order to minimize the 
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‘chamber effect’, the free-air carbon dioxide enrichment (FACE) system was developed and applied in 1989 

for the first time (Hendrey and Kimball, 1994). FACE facilities consist of a set of vertical vent pipes that 

emit CO2 (often depending on the wind direction) to increase the CO2 concentration within the FACE 

experiment to a defined level (Lewin et al., 1994) (Figure 1-1). A sensor in the center of the rings measures 

the CO2 concentration. The CO2 fumigation usually runs during daylight hours only and is commonly 

interrupted when wind speed exceeds 6 m s-1 (Kuzyakov et al., 2019). Until today, FACE experiments have 

been utilized in many different ecosystems around the world covering a wide range of agroecosystems 

(including grassland), wetlands, deciduous and coniferous forests and a desert (Ainsworth and Long, 2005; 

Kimball, 2016; Norby and Zak, 2011). 

 

 

Figure 1-1: Example of a FACE system; Control ring (left) and CO2-fumigating ring (right) of the FACE 

experiment on the research field near Giessen, Germany, with C3 grass. 

 

A large number of parameters of the soil-plant system have been measured and investigated using FACE 

including the effects on aboveground biomass and water fluxes. A mean CO2-induced decrease in 

transpiration of 22% was described by Ainsworth and Roger (2007) who conducted a meta-analysis on 

FACE experimental data. They showed a significant decrease in stomatal conductance for all considered 

functional groups. Grassland, which covers one third of terrestrial area world-wide, has been studied in a 

number of grassland FACE experiments (Hovenden et al., 2019, 2014, 2006; Schneider et al., 2004; Suttie 

et al., 2005). On average, C3 grass is reported to respond to eCO2 with a decrease in stomatal conductance 

of more than 30% (Ainsworth and Rogers, 2007). However, the water saving effect through stomatal closure 

might be counteracted by an increase in aboveground biomass linked with an increase in leaf area index 

(Manea and Leishman, 2014; Tor-ngern et al., 2015). In general, an average rise in total aboveground 
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biomass of about 20% for 29 reviewed C3 species grown in FACE experiments, including the largest 

response with 28% for forests and a smaller response of 10% for C3 grass (475-660 ppm), was shown by 

Ainsworth and Long (2005). In a long-term FACE experiment on temperate C3 grassland in Giessen, 

Germany, where CO2 enrichment was 20% above aCO2 (Jäger et al., 2003), a significant increase in total 

aboveground biomass was observed, in particular under average local conditions (Andresen et al., 2018; 

Kammann et al., 2005; Obermeier et al., 2017). However, the impact on evapotranspiration and WUE of the 

grassland site has rarely been addressed to for the long-term. 

The absence of a CO2 response of C4 crops under well-watered conditions regarding biomass accumulation 

was observed in FACE experiments on maize and sorghum (Kimball, 2016). Sorghum (Sorghum bicolor 

L.) was cultivated under an eCO2 concentration of 561 ppm in Arizona, USA, showing no effect in biomass 

at final harvest (Ottman et al., 2001). In the FACE experiment in Illinois, USA, maize (Zea mays L.) was 

grown under eCO2 (550 ppm) resulting in no stimulation of yield, biomass or photosynthesis (Leakey, 

2006). In consistence with this, a FACE experiment in Braunschweig, Germany, observed no enhanced 

biomass production growing maize under eCO2 of 550 ppm (Manderscheid et al., 2014). However, when 

eCO2 was accompanied with periods of drought stress a distinct average increase in harvested biomass of 

18% was reported for C4 crops under 550 ppm CO2 (Kimball, 2016). For instance, Ottman et al. (2001) 

observed a 15% increase in sorghum biomass at harvest when eCO2 and water stress were combined. 

Manderscheid et al. (2014) even reported a substantial biomass increase of 25% at harvest for maize under 

eCO2 and water limited conditions. Both studies assume that the crops benefited under FACE during drier 

periods from saved water as a consequence of stomatal closure. This was confirmed by parallel sap flow 

measurements in the Braunschweig experiment which resulted in 20% lower transpiration rates under water 

stress when CO2 was increased (Manderscheid et al., 2016). 

 

1.1.3 Models for climate change projections on the soil-plant system 

Sophisticated environmental experiments such as FACE offer a range of measured soil, plant and 

atmospheric variables, i.e. they can be perfectly used for model development and testing. Models in turn are 

important tools for the investigation of CO2 effects by increasing process understanding, testing for 

hypothesis or by enabling for projections (Craufurd et al., 2013). The development of agricultural system 

models dates back to the 1960s (Jones et al., 2017), triggered by the believe in the ability to simulate these 

systems merging biological and physical principles. Since then, a combination of technological 

development, food security interests, interdisciplinary collaborations and climate change assessment 

promoted major advances in agricultural system modelling (Jones et al., 2017). Statistical models have been 

developed that mainly provide insights into past environmental-plant relationships. Yet the majority is not 
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well suited for projecting future developments as statistical models cannot reflect changes that are not 

represented in the monitored data (Lobell and Burke, 2010). Thus, most frequently, process-based models 

are used to investigate the climate change effect on the soil-plant system (Fodor et al., 2017), where 

prominent examples are WOFOST, WOrld FOod STudies (Diepen et al., 1989), APSIM, Agricultural 

Production Systems Simulator (Keating et al., 2003), and EPIC, Erosion-Productivity Impact Calculator 

(Williams et al., 1989).  

In a number of modelling studies, the impact of eCO2 on transpiration, soil moisture and plant growth has 

been simulated (Betts et al., 2007; Cheng et al., 2014a; De Kauwe et al., 2013; Gedney et al., 2006; Jin et 

al., 2018; Zaehle et al., 2014). Tubiello et al. (2007) find, that most crop model results are in line with FACE 

experimental observations. However, recent multi-model investigations, related to the Agricultural Model 

Inter-Comparison and Improvement Project (AgMIP), described the need for a better representation of 

biomass and water balance processes, as well as an improved representation of CO2 responses in C4 and C3 

crops such as maize and grassland systems (Bassu et al., 2014; Durand et al., 2017; Ruane et al., 2017; 

Sándor et al., 2016a, 2016b). For instance, a study by Durand et al. (2017) revealed clear limitations in 

simulating maize biomass under eCO2 and drought stress, applying 21 established maize models to the 

maize-based FACE dataset of Braunschweig, Germany. To move forward, accurate response functions that 

simulate the effect of eCO2 on biomass production and stomatal opening are needed and should be calibrated 

with recent FACE data. Morison (1987) reported a linear increase in stomatal resistance based on a literature 

analysis of 23 C3 and C4 studies. He further described a 40% rise in stomatal resistance when CO2 increased 

from 330 ppm to 660 ppm. These observations were implemented in the EPIC model and represented as a 

simple CO2 response function including the stomatal response factor p = 0.4, to consider the 40% increase 

in stomatal closure (Stöckle, 1992). This was observed before the first FACE experiment was conducted. 

Later, Wand et al. (1999) updated values for the factor p based on open-top chamber and FACE experiments, 

e.g. p = 0.24 for C3 grasses and p = 0.29 for C4 grasses. A simple approach for simulating the impact of 

eCO2 on net assimilation was presented by Goudrian et al. (1984). Soltani and Siclair (2012) adapted this 

approach to simulate the effect of eCO2 on the radiation use efficiency using the response factor b, where 

b = 0.8 for C3 and b = 0.4 for C4 plants. However, both CO2 response factors have not been updated using 

FACE data of maize or grassland. 

Recent model development suggest to use flexible programming environments to set up user-adapted 

models, instead of adding more and more routines into one model code (Clark et al., 2011). Further, 

regarding the simulation of hydrological processes, Eitzinger et al. (2004) recommended the use of multiple 

layer approach models after comparing three established crop models with different complexity of soil water 

models in their study, indicating that variation in soil water content is one of the major reasons for variations 

in simulated biomass. In line with this, this work is based on coupling a plant growth model with a 
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hydrological model. The Catchment Modelling Framework (CMF) and the Plant Growth Modelling 

Framework (PMF) are integrative and flexible tools that facilitate customized model setups specifically 

adapted to a given research question (Houska et al., 2014; Kraft et al., 2011; Multsch et al., 2011). An 

uncertainty analysis is essential before any modelling exercise (Pappenberger and Beven, 2006). In crop 

modelling, recent studies revealed distinct uncertainties, which have rarely been addressed to before (Rötter 

et al., 2011; Vanuytrecht and Thorburn, 2017). The coupled model used in this study comes along with a 

number of parameters. In order to avoid overfitting and to analyse parameter uncertainty, a sensitivity 

analysis was conducted, followed by an uncertainty analysis similar to the GLUE approach proposed by 

Beven and Binley (1992). The Monte Carlo based approach follows the concept of equifinality, i.e. different 

parameter sets can produce equally good results. Using Latin Hypercube sampling a number of parameter 

sets was created. Parameter sets that led to acceptable and so called ‘behavioral’ model runs were selected 

based on pre-defined criteria. Parameter sets which resulted in model runs that did not fulfil the pre-defined 

criteria were non-behavioral and therefor rejected, i.e. deleted. 

 

1.1.4 Objectives 

The aim of this dissertation was to couple a hydrological and a plant growth model for the investigation of 

climate change effects on agricultural systems. In detail, this work aimed at developing and testing a tool 

that is capable to accurately simulate the CO2 effect on biomass and water fluxes for both C3 and C4 plants. 

For this, two objectives were defined, which have been tackled in two accepted publications: 

1) Set up a process-based coupled hydrological-plant growth model to simulate effects of elevated 

atmospheric CO2 on the soil-plant system.  

The first objective was accomplished by coupling the hydrological model CMF with the plant growth model 

PMF. In order to enable the investigation of eCO2 on the soil-plant system, PMF was further developed in 

this work with an evapotranspiration model for sparse crops and straightforward CO2 response functions. 

For robust parametrization, a sensitivity test was conducted, followed by a parameter uncertainty analysis 

applying a rejectionist Monte Carlo approach and following the concept of equifinality. Applying the model 

to data of a long-term C3 grassland FACE experiment in Giessen, Germany, effects of eCO2 on biomass 

and water dynamics were investigated (Chapter 2).  

2) Investigate the model’s suitability to project the combined effect of eCO2 and drought stress on the C4 

crop maize. 

In order to achieve the second objective, the coupled hydrological-plant growth model CMF-PMF was 

applied to data of the two year FACE experiment in Braunschweig, Germany, where the C4 crop maize was 
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fumigated with CO2 under wet and a dry conditions in 2007 and 2008. The model was calibrated under wet 

conditions under aCO2 and eCO2 in 2007 including CO2 response parameters applying again the rejectionist 

Monte Carlo approach. Then, the model was successfully validated and the effect of eCO2 and drought on 

biomass and water fluxes was investigated (Chapter 3).    

 

1.2 Material and Methods 

1.2.1 Study sites and data  

1.2.1.1 Grassland FACE experiment (C3) 

For the simulation of the CO2 effect on C3 grassland (objective 1), long-term data (1999-2011) of a FACE 

experiment near Giessen, Hesse, Germany (50°32'N and 8°41'E, 172 m above sea level) was used 

(Figure 1-2). The still ongoing experiment started in 1998, including three ambient rings and three elevated 

rings with a 20%-increased CO2 concentration (Jäger et al., 2003). The vegetation type is tall oat-grass 

(Arrhenatheretum elatioris – Filipendula ulmaria sub-community, Kammann et al. (2005)), where C3 

grasses accounted for 73% of the total aboveground biomass, followed by forbes with 24% and legumes 

with 3%. The non-ploughed, temperate grassland was fertilized with 40 kg N ha-1 year-1. The soil is a Fluvic 

Gleysol and the soil type is a sandy clay loam with a soil porosity between 60 and 65%. 

As model input data, groundwater measurement data on weekdays and meteorological data was used which 

is measured on the study site, including daily values of minimum and maximum temperature, wind speed, 

solar radiation, sum of precipitation and relative humidity. Between 1999 and 2011 the study site was 

characterized with a mean annual precipitation of 573 mm and a mean annual temperature of 9.8°C. The 

CO2 concentration was on average 394 ppm in the ambient rings, and 483 ppm in the elevated rings between 

1999 and 2011.  

For model calibration, total aboveground dry matter and soil moisture between 1999 and 2011 was used. 

The grassland was harvested twice a year (Table S 2-2), showing on average higher yields at the first harvest 

compared to second harvest. Soil moisture data was available on several days per week measured in 0.15 m 

depth. On average the soil moisture content was 37.0% in the ambient rings and 38.4% in the elevated rings.  

1.2.1.2 Maize FACE experiment (C4) 

For the simulation of the combined effect of eCO2 and drought stress on the C4 crop maize (objective 2), 

data of a FACE experiment with Zea mays L. in Braunschweig, Germany (52°18'N and 10°26'E, 79 m above 

sea level) was used (Figure 1-2). The experiment was conducted in the years 2007 and 2008, including three 

ambient rings with 378 ppm and three elevated rings with 550 ppm CO2 (Manderscheid et al., 2014). The 

CO2-fumigation started in June, when the leaf area index reached 0.5 m2 m-2. The maize was fertilized with  
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Figure 1-2: Overview of the two study sites used in this study, including the Giessen FACE experiment 

(GiFACE) in Hesse, Germany with temperate C3 grassland and the Braunschweig FACE experiment (BS 

FACE) in Lower-Saxony, Germany, with maize (C4). 
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180 kg ha-1 mineral nitrogen fertilizer and was further managed according to standard farm practices. The 

soil was a loamy sand texture followed by a mixture of gravel and sand in deeper soil layers. In order to 

investigate the combined effect of eCO2 and drought stress, one half of each ring was well-watered (wet) 

whereas the other half was water limited (dry). 

As forcing data, meteorological data was given. The considered parameters sum of precipitation, wind 

speed, solar radiation, minimum and maximum temperature and relative humidity were measured on the 

study site. The mean temperature was 10.4°C in the year 2007 and 10.3°C in 2008. Precipitation in 

combination with irrigation resulted in 878 mm and 715 mm in the wet treatment in the two consecutive 

years. The water input was reduced to 835 mm and 552 in the dry treatment in the years 2007 and 2008 by 

excluding precipitation water with for instance rain shelters in 2008. 2007 was an exceptional wet year, 

resulting in a reduction of water input of only 43 mm compared to a reduction of 163 mm in 2008. 

For model evaluation, total aboveground biomass and soil moisture were taken. The biomass was measured 

three to four times per growing season. The soil water content was measured twice a week and in three 

different depths using portable TDR sensors (Manderscheid et al., 2014). 

 

1.2.2 The coupled hydrological-plant growth model 

Various model types are applied for the investigation of climate change impacts on agricultural system, 

most frequently these are process-based crop models (Fodor et al., 2017). In this work, the process-based 

coupled hydrological-plant growth model CMF-PMF was used to investigate climate change effects on the 

complex soil-plant system. The coupled model, including the further development of PMF with CO2 

response functions, is also described in detail in chapter 2.  

1.2.2.1 The hydrological model (CMF) 

The Catchment Modelling Framework (CMF), developed by Kraft et al. (2011), is an open-source 

programming library (Kraft et al. (2018), https://github.com/philippkraft/cmf) which can be used to create 

modular, process-based hydrological models. The core classes and functions are written in C++. However, 

CMF can easily be coupled with other models using the Python programming language as an interface. CMF 

can be used for one- to three-dimensional representation of a hydrological system (Djabelkhir et al., 2017; 

Houska et al., 2017; Maier et al., 2017; Windhorst et al., 2014). In this work, CMF was used to create a 1D 

plot model, including a site specific number of soil layers. Water fluxes between the layers were calculated 

with a daily time step according to the Richards‘ equation (Richards, 1931) and soil hydraulic properties 

were defined using the van Genuchten-Mualem function (van Genuchten, 1980), considering site specific 

https://github.com/philippkraft/cmf
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soil parameters for saturated conductivity (ksat), porosity (φ), pore size distribution (n) and the inverse of 

water entry potential (α).  

1.2.2.2 The plant growth model (PMF) 

The Plant growth Modelling Framework (PMF), developed by Multsch et al. (2011), is a modular, generic 

tool, which can be used to set up customized crop models. The framework is implemented in Python and 

available as free software (www.github.com/jlu-ilr-hydro/pmf). Similar to CMF, PMF is easily expandable 

and connectable to other models. PMF is composed of four core elements: Plant Model, Process Library, 

Crop Database and Plant Building Set. The Plant Model creates the connection of the structural organs and 

the related growth processes. The Process Library contains a set of independent classes defining next to 

others plant development and uptake of water. The Crop Database provides relevant crop specific 

parameters and the Plant Building Set connects the three core modules. Plant development is simulated 

applying the thermal time concept (Monteith and Moss, 1977), i.e. the plant passes various development 

stages according to a temperature sum. The temperature sum is obtained by accumulation of so-called 

growing degree days (GDD, [°days]) using GDD = (tmax + tmin)/2 - tbase with the daily maximum temperature 

tmax [°C], the daily minimum temperature tmin [°C] and the base temperature tbase [°C] which serves as a 

threshold below which no plant development occurs. Biomass accumulation is simulated with a daily time 

step applying the radiation use efficiency concept (Monteith and Moss, 1977), where photosynthetically 

active radiation is transformed into total dry biomass using the radiation use efficiency factor (rue). 

Produced biomass is then distributed to different aboveground (leaves, stem and storage organ) and 

belowground (roots) plant organs depending on the development stage. A response to water stress is 

considered in PMF based on Feddes et al. (1978), where a water stress factor, which is derived by the ratio 

of actual and potential transpiration, hampers biomass accumulation.   

1.2.2.3 Further development of PMF  

In order to enable the investigation of climate change effects on agricultural systems, the plant growth model 

PMF was further developed. In a first step, the sophisticated evapotranspiration model according to 

Shuttleworth-Wallace (SW) was implemented (Shuttleworth and Wallace, 1985). In a second step, CO2 

response functions to stomata and biomass accumulation were added (Figure 1-3).  

The SW approach calculates evapotranspiration from soil and vegetation as two different sources, including 

a network of five coupled resistances, e.g. soil surface resistance (𝑟𝑠
𝑠), aerodynamic resistance from soil to 

canopy (𝑟𝑎
𝑠), aerodynamic resistance from canopy to reference height (𝑟𝑎

𝑎), bulk boundary layer resistance 

of canopy (𝑟𝑎
𝑐) and the bulk stomatal resistance of the canopy (𝑟𝑠

𝑐), all resistances in [s m-1] (Hu et al., 2009; 

Shuttleworth and Wallace, 1985). In this study, 𝑟𝑠
𝑐 was affected by the effective leaf area index as well as 

by a product of three environmental stress functions that controlled stomatal response to a change in vapor 

https://deref-gmx.net/mail/client/3NAm3cibB-o/dereferrer/?redirectUrl=http%3A%2F%2Fwww.github.com%2Fjlu-ilr-hydro%2Fpmf
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pressure deficit (vpdres), temperature (tempres) and atmospheric CO2 (co2res). The simple response functions 

to air temperature and vapor pressure deficit where implemented according to Zhou et al. (2006), whereas 

as the CO2 response function was taken according to Stöckle et al. (1992). All three stomatal response 

functions return a value between 0 and 1, where 0 implies closed stomata and 1 means stomata are opened 

to the maximum. vpdres calculates an increasing stomatal closure, when the vapor pressure deficit is rising. 

This is counteracted by the simulated tempres, which describes an increase in stomatal opening from 0 (when 

the air temperature is below 0°C) to 1 (when the air temperature is above 25°C). co2res leads to stomatal 

closure, when the measured CO2 concentration increases (Figure 1-4a). The extent of this response is 

controlled by the plant-specific factor p. The larger the response parameter p, the stronger is the effect on 

the closure of the stomata. For an accurate estimation of the CO2 effect on stomatal opening, this factor 

needs to be parametrized using FACE data. 

 

 

Figure 1-3: Simplified representation of the coupled hydrological-plant growth model setup CMF-PMF as 

used for the Giessen study site, including water fluxes and CO2 responses. 

 

In addition to the SW approach including the stomatal response functions, a response function for the 

radiation use efficiency (rueCO2) was implemented after Soltani and Sinclair (2012). Here, rising measured 

CO2 concentrations (co2meas [ppm]), which exceed a reference CO2 concentration (co2ref [ppm]), result in an 
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improved radiation use efficiency. This effect is amplified by an increase in a factor b, e.g. the larger factor 

b, the stronger is the increase in rueCO2 and, in turn, the biomass accumulation (Figure 1-4b). Similar to 

factor p, factor b needs to be parametrized using FACE data, in order to achieve an accurate simulation of 

the CO2 effect on biomass accumulation. 

 

Figure 1-4: CO2 responses as implemented in PMF. Depending on the ratio of the measured (comeas) and the 

reference CO2 concentration (co2ref), a) shows the CO2 response of the stomata (co2res) for different values 

of the response factor p, and b) shows the CO2 response of the radiation use efficiency (rueCO2) for different 

values of the response factor b when the reference rue is set to 2.5 g MJ-1. 

 

1.2.2.4 Coupled CMF-PMF 

As recommended for scientific research by Perkel (2015), the Python programming language was used to 

couple the hydrological and the plant growth model. Considering the states of CMF at time step t-1, PMF 

simulates the evapotranspiration and biomass accumulation including development of the leaf area index at 

time step t. Thereafter, CMF proceeds taking into account the calculated plant water demand and the changes 

in interception capacity as a result of leaf area development. 

 

1.2.3 Sensitivity and uncertainty analysis 

In order to identify the most sensitive parameters, a Fourier amplitude sensitivity test (FAST) was 

established according to Saltelli et al. (1999). Applying the FAST method, the total contribution of every 

input parameter to the output’s variance can be calculated. The SPOTPY open-source python package 

developed by Houska et al. (2015) was used to run the sensitivity analysis on eighteen input parameters, 

including fourteen plant specific (PMF) parameters and four hydrological (CMF) parameters. A required 

minimum number of 39,000 model runs was estimated to fulfil the FAST algorithm’s criteria (Henkel et al., 

2012). A detailed description of the conducted analysis is available in the Supporting Information 

Figure S 2-1.  
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In order to analyse the parameter uncertainty, a rejectionist Monte Carlo approach was conducted (Beven 

and Binley, 1992) using SPOTPY. The method followed the concept of equifinality, i.e. instead of 

calibrating the coupled model to a single optimum parameter set, a collection of different parameter sets 

that produce equally good results, was analysed. Usually, the parameter sampling is executed using the 

Monte Carlo algorithm. To improve the sampling and in view of the large number of parameters to be 

calibrated, a Latin Hypercube (LH) sampling approach was applied according to McKay et al. (1979). 

Firstly, a potential range for each parameter was defined based on expert knowledge and literature values. 

Then, a number of parameter sets was picked by the LH sampling method, assuming a uniform distribution, 

and the model was run with each of the parameter sets. Finally, the behavioural runs were determined 

comparing simulated with measured data. In this work, the target values were biomass and soil moisture. 

Using objective functions, e.g. the root-mean-squared-error (RMSE), the coefficient of determination (r²) 

or the bias, acceptance criteria were defined and only those simulations that fulfilled the criteria were 

considered in the further analysis. The final selection of the objective functions is depending on the research 

question and has to be selected accordingly. In our studies, the rejectionist Monte Carlo method was applied 

iteratively in order to optimize the simulations and to increase the number of final parameter sets, i.e. based 

on the results of previous set of model run the parameter ranges were adapted and again, new parameter sets 

were created. 

 

1.3 Results and Discussion 

1.3.1 Simulating the effect of CO2 on grassland (C3) 

Grasslands cover one third of the global terrestrial area (Suttie et al., 2005) and represent an important 

ecosystem that has been rarely investigated regarding CO2 effects on water fluxes. The results of the 

simulated CO2 effect on a C3 grassland, including a sensitivity and uncertainty analysis of the coupled 

hydrological-plant growth model are described in detail in chapter 2 and are published in the publication:  

Kellner, J., Multsch, S., Houska, T., Kraft, P., Müller, C., Breuer, L., 2017. A coupled hydrological-plant 

growth model for simulating the effect of elevated CO2 on a temperate grassland. Agricultural and Forest 

Meteorology 246, 42–50. https://doi.org/10.1016/j.agrformet.2017.05.017 

 

1.3.1.1 Sensitivity and uncertainty analysis and model performance 

Applying the FAST approach to the coupled hydrological-plant growth model, the number of prior eighteen 

parameters was reduced to eleven sensitive parameters, including three hydrological parameters and eight 

plant specific parameters (Supporting Information Table S 2-3). The uncertainty analysis revealed an 

https://doi.org/10.1016/j.agrformet.2017.05.017
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uncertainty range of 5% in soil moisture and 19 g dry matter m-2 in biomass related to the eleven parameters. 

The CO2 response parameter for biomass accumulation, factor b, ranged between 0.1-0.3 for the long-term 

FACE experiment with temperate C3 grassland in Giessen, which was lower than the value of 0.8 suggested 

by Soltani and Sinclair (2012). The stomatal response parameter, factor p, showed at peak at 0.3, which was 

in line with results of Wu et al. (2012) who reported p = 0.24 for pastures with C3 grass. The performance 

of the coupled model was good in simulating biomass with an r² of 0.3-0.6, a bias of 0-80 g dry matter m-2 

and an RMSE of 122-155 g dry matter m-2. For example, Sándor et al. (2016b) reported r² < 0.3 when 

simulation grassland biomass with a model ensemble, though Moot et al. (2015) resulted in a smaller RMSE 

of 65 g dry matter m-2 when calibrating the APSIM model for lucerne. The pattern of measured higher yields 

at first harvest and lower yields at second harvest was well presented by the model (Figure 2-1a-e), but 

limitations in a harvest-wise analysis appeared comparing simulated increase in biomass (9% and 2%) at 

first and second harvest with measured data (6% and 13%). The course of higher soil moisture values in 

winter and lower soil moisture values in summer was well mapped by the coupled model (Figure 2-1f-j), 

with an r² of 0.4 to 0.7 vol.%, a bias of -7 to 0 vol.%. and an RMSE of 6 to 10 vol.%. The accurate 

representation of soil water processes has been described as a challenge in grassland ecosystem modelling 

resulting in an r² of 0.1-0.7 (Sándor et al., 2016b, 2016a). In periods when the soil was close to saturation 

according to the measured data, the coupled model underestimated the measured soil moisture. Different 

sources, e.g. limitation of the van Genuchten-Mualem analytical function (Schaap and Van Genuchten, 

2006), simplified consideration of soil parameters for the soil column, but also possibly larger errors in the 

monitoring data under almost saturated conditions (IMKO Micromodultechnik GmbH, 2001), might have 

contributed to this results. 

1.3.1.2 eCO2 effect on biomass, soil moisture and water fluxes 

A significant increase in the harvested grassland biomass by +6.5% was simulated under eCO2. This was in 

line with a measured increase in biomass of +9.1%. The results were in agreement with findings of 

Ainsworth and Long (2005), who reported an average gain in grassland biomass of +10% analyzing FACE 

studies with 475-600 ppm eCO2. Soil moisture content was not affected by eCO2 in the temperate grassland 

of the Giessen FACE. Likewise, the evapotranspiration remained the same, i.e. no significant increase was 

simulated. However, dividing evapotranspiration into evaporation and transpiration showed a decline in 

evaporation of -1.4% and a rise in transpiration of +0.8% (Figure 1-5a). A similar effect was reported for 

expanded grassland by Liu et al (2009) showing increased transpiration but decreased evaporation as a result 

of reduced soil evaporation. The enhancement of transpiration under eCO2 showed that water savings at leaf 

level, induced by closed stomata, were counteracted at stand level by an increased leaf area index. An offset 

of the stomatal effect in a temperate grassland due to an increased leaf area index under eCO2 was also 

shown by Manea and Leishman (2014). The water use efficiency, i.e. the ratio of annually harvested biomass 
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and accumulated evapotranspiration from March to September, was simulated to increase by +5.4% under 

eCO2 at the grassland research area in Giessen. Considering the moderate eCO2 fumigation level of 

483 ppm, the relatively small, though significant increase, is in line with a reported global raise of crop 

water use of 10-27% under 550 ppm (Deryng et al., 2016) or a 30% increase in water use efficiency of wheat 

under 550 ppm (O’Leary et al., 2015). In summary, the findings of this study indicate that temperate, mown, 

wet-dry C3 grassland might benefit from biomass increase while retaining water consumption, i.e. 

evapotranspiration, already when CO2 concentration is enhanced by 20% compared to aCO2. Further, the 

expected water saving at a leaf level can be offset at a stand level as a result of increased transpiration, 

caused by a biomass gain under a 20% increase of CO2.  

 

Figure 1-5: Simulated relative impact of eCO2 on biomass, water fluxes (evapotranspiration, evaporation, 

transpiration) and water use efficiency [%]; a) temperate grassland (C3) in Giessen, Germany with 20% 

increased CO2 for the years 1999-2011; b) maize (C4) in Braunschweig, Germany with aCO2 = 380 and 

eCO2 = 550 ppm in 2008 under wet and dry conditions (note the differences of the y–axis scale in both 

panels). 

 

1.3.2 Simulating the combined effect of eCO2 and drought on maize (C4) 

A recent study by Durand et al. (2017) revealed strong limitations in simulating the combined effect of eCO2 

and drought on maize using an ensemble of 21 established maize models. In this work, the coupled 

hydrological-plant growth model was applied to the same maize FACE data, including a calibration of CO2 

response factors b and p. The results of the uncertainty analysis and the model validation as well as the 

simulated combined effect of eCO2 and drought are described in detail in chapter 3 and are summarized in 

the publication:  
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Kellner, J., Houska, T., Manderscheid, R., Weigel, H.-J., Breuer, L., Kraft, P., 2019. Response of maize 

biomass and soil water fluxes on elevated CO2 and drought – from field experiments to process-based 

simulations. Global Change Biology 25, 2947-2957. https://doi.org/10.1111/gcb.14723 

1.3.2.1 Model calibration, validation and uncertainty analysis 

In this study, the two-years data set of the maize FACE experiment in Braunschweig, Germany, was splitted 

in order to calibrate the coupled model with biomass and soil moisture data of 2007 and to validate the 

model with data of 2008, where eCO2 was combined with distinctly reduced water input, leading to drought 

stress in 2008. The calibrated CO2 response parameter b for biomass accumulation resulted in very small 

values of <0.1 for the C4 plant maize based on data of FACE experiment in Braunschweig. Hereby, the 

biomass response to eCO2 was smaller than suggested by Goudriaan et al. (1984) for C4 plants (b = 0.4). 

The stomatal CO2 response parameter p showed values >0.7. This was above the value of p = 0.4 given by 

Stöckle et al. (1992) and the value of 0.29 adapted by Wand et al. (1999) for C4 pastures. In the calibration 

year 2007, model performance was very good in terms of biomass simulation with an RMSE of 1.3 Mg ha-1 

(Figure 3-2). In the validation year 2008, the RMSE was slightly higher, with an RMSE of about 1.7 Mg ha-1 

and 2.4 Mg ha-1 in the wet and dry treatment, respectively. Compared to other publications, this performance 

was very good. For example, Cavero et al. (2000) described an RMSE of 3.8 Mg ha-1 applying the EPIC 

model for simulating maize under water-limited conditions in Spain. Durand et al. (2017) reported an RMSE 

of 2.1 Mg ha-1 applying an ensemble of 21 established maize models to the Braunschweig FACE data in 

2007 and 2008. The performance of the coupled model regarding soil moisture was also very good with an 

RMSE of <6% in 2007 and <7% in 2008. A similar RMSE between 5-9% was calculated by Saseedran et 

al. (2005), who compared soil moisture measurement of different maize hybrids in the US to simulations 

with the CEREZ-Maize model. 

1.3.2.2 Combined effect of eCO2 and drought on biomass, soil moisture and water fluxes 

In both years, CO2 enrichment to 550 ppm was combined with a wet and dry treatment. In 2007, the 

reduction of water input was very small (<50 mm), leading to no simulated water stress in the dry rings in 

2007. In both treatments in 2007 and in the wet treatment in 2008, the CO2 enrichment resulted in no relevant 

simulated biomass gain, which was in line with the measured biomass data. Further, there was no increase 

in soil moisture simulated, which was in consistence with the observed data (Manderscheid et al., 2014). 

However, in the dry treatment in 2008, the coupled model simulated a significant CO2-induced increase in 

harvested biomass of +20% (Figure 1-5b). A distinct biomass gain was also observed in the field, showing 

an increase of 25%. The absence of a CO2 effect on biomass for the C4 crop maize in 2007 and in the wet 

treatment in 2008 could only be simulated with a very small CO2 response factor b, approving the small size 

of the factor. The masked increase of 20% in the dry treatment in 2008, was a result of the relative high 

stomatal CO2 response factor p. Values of p > 0.7 reduced water losses by reducing transpiration under 

https://doi.org/10.1111/gcb.14723
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eCO2, i.e. water stress was significantly diminished and hence, the plant could continue producing biomass 

in periods of water-limited conditions. In line with Durand et al. (2017), this study shows that an explicit 

stomatal response is needed to enable the simulation of a strong CO2 response under water limited conditions 

and to project a reduction in water stress.  

In 2007 and in the wet treatment in 2008, transpiration was reduced by -22% under eCO2, which is in 

agreement with Manderscheid et al. (2016), who observed a decrease of transpiration by -20% conducting 

sap flow measurements in the maize FACE experiment in 2007 and 2008 in Braunschweig. Further, a 

significant CO2-induced reduction of transpiration in the C4 crop maize was reported by Hussain et al. 

(2013), who analysed maize grown in a FACE experiment in the US under 550-585 ppm eCO2. The 

simulated reduction of transpiration, as a result of the high values of the stomatal response factor p, in turn 

contributed to a simulated increase in evaporation (+8-12.5%) and an overall reduction in total water 

consumption, i.e. evapotranspiration, in 2007 (-15%) and the wet treatment in 2008 (-14%). However, in 

the dry treatment in 2008, the simulated reduction in transpiration was small (-6%) under eCO2 (Figure 

1-5b). This was in line with the reported sap flow measurements that resulted in even no reduction under 

eCO2 (Manderscheid et al., 2016). The evapotranspiration was also only reduced by -2% under eCO2. This 

small overall reduction shows, that the water saving effect on a leaf level, was counteracted on a stand level 

by the 20% biomass increase, and hence leaf area increase. In summary, in this study, the clear benefit of 

the C4 plant maize from eCO2 under water-limited conditions was successfully simulated, including 

improved results compared to biomass simulations of a model ensemble with 21 maize models reported by 

Durand et al. (2017). The validation of the coupled hydrological-plant growth model was successful, 

although the environmental conditions were distinctly different during the calibration period. This proves 

the assumption that the coupled model covers the relevant climate change feedback mechanisms on plant 

growth. The obtained values of the calibrated response parameters can be used in other crop models to 

project maize yields under climate change conditions. 

 

1.4 Conclusion and Outlook 

In this work, a robust tool for the investigation of climate change effects on C3 and C4 plants was 

established, by further developing, calibrating and validating a coupled hydrological-plant growth model 

with up-to-date FACE experimental data. In two steps, a process-based coupled model was set up to simulate 

effects of eCO2 on the soil-plant system and then, the model’s suitability to project the combined effect of 

eCO2 and drought stress on the C4 crop maize was rigorously tested. Based on the experience gained in this 

work, a simple blueprint with recommendations regarding a comprehensive crop modelling method (i.e. 

selection of model structure, model optimization strategy, required experimental data) can be deduced. 
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Selection of model structure – Use a flexible tool! A flexible programming environment to set up customized 

process-based models is recommended, instead of inserting an increasing number of routines into one model 

code (Clark et al., 2011). In line with this, model frameworks such as CMF and PMF enable to set up models 

adapted to a specific research question and study site providing a simple way to add, select or deselect 

mechanisms. Using CMF, soil properties can be set according to available site specific information, such as 

depth of soil moisture and porosity measurements. The generic structure of PMF broadens the potential 

scope of application, e.g. various crop types, such as C3 and C4 plant species.  

Model optimization strategy – Do an uncertainty analysis! In order to obtain a robust tool for climate change 

projections on the plant-soil system, an uncertainty analysis of the model is needed (Pappenberger and 

Beven, 2006; Rötter et al., 2011). Until a few years ago, little has been done to assess the uncertainty of 

crop models (Jones et al., 2017). Parameter uncertainty, which shows to what extend the considered 

parameters contribute to the model output uncertainty can be analysed conducting a rejectionist Monte Carlo 

analysis as shown in this work. Other sources of uncertainty, i.e. input data and model structure, which were 

not investigated in this study, might need increased attention in future research. Even though, Nendel et al. 

(2009) tested the model structure regarding six different CO2 response algorithms and showed that they 

caused only minor differences in model performance. However, the need for improved model structures, 

i.e. more accurate representation of biomass production, soil temperature and soil water to reduce 

uncertainty, is illustrated by multi-model intercomparison projects for grassland models (Houska et al., 

2017; Ma et al., 2014; Sándor et al., 2016b, 2016a) and by a large number of intercomparison studies on 

wheat (Asseng et al., 2014; Kollas et al., 2015; Rosenzweig et al., 2014, 2013; Rötter et al., 2012). In 

addition, the use of benchmark data sets for plant growth models as reported by Asseng et al. (2015) is 

helpful to identify uncertainties. 

Required experimental data – Utilize FACE data for model calibration and validation! The methodology 

presented in this work is based on the use of available FACE data. A large number of parameters of different 

agricultural systems under free air conditions and eCO2 can be derived using FACE. Comprehensive datasets 

that provide soil moisture and biomass data and that include single effects (eCO2) and combined effects 

(eCO2 and drought) enable for a rigorous assessment of crop models and their applicability to project yields 

and water fluxes under climate change. To improve the simulations of eCO2 effects on crops, straightforward 

CO2 response mechanisms are suitable, but the relevant response parameter which originate from 

greenhouse and chamber experiments need to be updated with free air experimental data obtained with 

FACE studies. Thus, this work showed that the increase in radiation efficiency due to elevated CO2 is 

important for modelling the CO2 response of temperate C3 grassland, but should and can be excluded for 

the C4 plant maize. Finally, we should intensify and improve collaboration of experimentalists and modelers 
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(Seibert and McDonnell, 2002) in order to collect valuable data to improve the models that are used to 

project climate change effects on agricultural systems

In future studies, the coupled hydrological-plant growth model can serve for the investigation of further 

climate change effects on agricultural systems, for instance regarding temperature or progressive nitrogen 

limitation considering a number of various crops. In PMF, a stomatal response mechanism to varying air 

temperature is already implemented. Applying the model to FACE experimental data, where eCO2 is 

combined with increased air temperature the coupled model can be calibrated and validated. Subsequently, 

the coupled effect of increased temperature and eCO2 could be investigated and, running the model with 

climate projection data, also effects of different climate scenarios could be analysed. Increased CO2 may 

result in less available nitrogen, which is described as a progressive nitrogen limitation (Luo et al., 2006). 

In PMF, nitrogen demand and uptake can be calculated. Further, a nitrogen stress function is available, 

which reduces biomass production if nitrogen demand cannot be covered. To start with, information of the 

available nitrogen content in soil could be obtained by coupling the coupled CMF-PMF with a simplified 

nitrogen module, e.g. the decomposition model DECOMP (Wallman et al., 2006) could be included as 

previously shown by Kraft et al. (2010). The model should then be applied to FACE data, where coupled 

effect of eCO2 and different nitrogen fertilization levels are investigated. Finally, the coupled hydrological-

plant growth model can contribute to investigation CO2 effects especially on water fluxes in the soil-plant 

system, e.g. expensive experimental studies can be enhanced by simulating evapotranspiration, evaporation 

and transpiration. Further, process-based models like the coupled CMF-PMF can be used to test hypotheses, 

e.g. regarding the progressive nitrogen limitation. 
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2 A coupled hydrological-plant growth model for simulating 

the effect of elevated CO2 on temperate grassland 

 

This chapter is published in the journal Agricultural and Forest Meteorology 246, pages 42-50, 2017. 

https://doi:10.1016/j.agrformet.2017.05.017 

Kellner, J.1, Multsch, S.1, Houska, T.1, Kraft, P.1, Müller, C.2,3 and Breuer, L.1 

1 Institute for Landscape Ecology and Resources Management, Research Centre for BioSystems, Land Use and Nutrition (iFZ), 

Justus Liebig University, Giessen, Germany 
2 Institute for Plant Ecology, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University, Giessen, 

Germany 
3 School of Biology and Environmental Science, University College Dublin, Ireland 

 

 

 

Abstract 

Elevated CO2 (eCO2) reduces transpiration at the leaf level by inducing stomatal closure. However, this 

water saving effect might be offset at the canopy level by increased leaf area as a consequence of eCO2 

fertilization. To investigate this bi-directional effect, we coupled a plant growth and a soil hydrological 

model. The model performance and the uncertainty in model parameters were checked using a 13 year data 

set of a free-air carbon dioxide enrichment (FACE) experiment on grassland in Germany. We found a good 

agreement of simulated and observed data for soil moisture and total above-ground dry biomass (TAB) 

under ambient CO2 (~395 ppm) and eCO2 (~480 ppm). Optima for soil and plant growth model parameters 

were identified, which can be used in future studies. Our study presents a robust modelling approach for the 

investigation of effects of eCO2 on grassland biomass and water dynamics. We show an offset of the stomatal 

water saving effect at the canopy level because of a significant increase in TAB (6.5%, p < 0.001) leading 

to an increase in transpiration by +3.0 ±6.0 mm, though insignificant (p = 0.1). However, the increased 

water loss through transpiration was counteracted by a significant decrease in soil evaporation 

(-2.1 ±1.7 mm, p < 0.01) as a consequence of higher TAB. Hence, evapotranspiration was not affected by 

the increased eCO2 (+0.9 ±4.9 mm, p = 0.5). This in turn led to a significantly better performance of the 

water use efficiency by 5.2% (p < 0.001). Our results indicate that mown, temperate grasslands can benefit 

from an increasing biomass production while maintaining water consumption at the +20% increase of eCO2 

studied.  
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2.1 Introduction 

Transpiration contributes a large proportion to global water flows and is therefore an important component 

of the terrestrial water cycle (Schlesinger and Jasechko, 2014). In particular, a close relationship exists 

between atmospheric carbon dioxide (CO2) and transpired water losses (Field et al., 1995). CO2 

concentrations are projected to increase from preindustrial 280 ppm to up to 700-900 ppm by the end of this 

century (Pachauri et al., 2014). However, there is no clear consensus of the net impact of elevated CO2 

(eCO2) on the associated transpiration at ecosystem level (Cao et al., 2010; Cheng et al., 2014; Gedney et 

al., 2006, Manea and Leishman, 2014; Tor-ngern et al., 2015). 

To investigate the effect of eCO2 on transpiration and various feedback mechanisms, free-air carbon dioxide 

enrichment (FACE) experiments are conducted. They are designed to investigate the impact of eCO2 on 

above ground biomass, soil moisture and LAI under field-conditions. In FACE experiments, CO2 

concentrations are increased across a specific area where plants grow under otherwise ambient 

environmental conditions (Hendrey and Kimball, 1994; Lewin et al., 1994).  

A number of studies in which FACE data were used, showed reductions in transpiration under eCO2 (Cao 

et al., 2010; Cheng et al., 2014b; Gedney et al., 2006), e.g. by 10.5% at a forest site in Tennessee, USA 

(ORNL FACE, eCO2: 525~555 ppm) and by 13.8% at a grassland site in Minnesota, USA (BioCON FACE, 

eCO2: 560 ppm). The reason is a reduced stomatal conductance (gs) caused by eCO2 (Field et al., 1995). For 

example, a significant decline in gs has been reported for C3 grasslands by more than 30% on average 

(eCO2: ~567 ppm) and for wheat by 35% (eCO2: 550 ppm) (Ainsworth and Rogers, 2007; Houshmandfar 

et al., 2015). However, increased CO2 concentrations are also known to have a fertilizing effect on plants, 

i.e. plant biomass accumulation is accelerated. Ainsworth and Long (2004) reported an eCO2-induced 

increase in above-ground production of 28% for forests and 10% for grasslands (eCO2: 475-600 ppm). This 

increase is associated with a higher leaf area index (LAI) and in turn with a higher transpiration. Such an 

effect of increased LAI is reported to counteract and even offset the water saving effect at leaf level by 

stomatal closure (Manea and Leishman, 2014; Tor-ngern et al., 2015). However, a higher LAI is further 

reported to decrease evaporation of grasslands, which results in a net decrease in evapotranspiration (ET) 

(Liu et al., 2009). 

A relationship that summarizes changes in biomass and water consumption is the water use efficiency 

(WUE), here defined as total above-ground dry biomass (TAB) per water loss through ET. The number of 

available studies that quantify changes in WUE using FACE data of grassland experiments is limited. 

However, an increase in WUE is expected and reported by 10 to 32% under eCO2 (520-550 ppm), depending 

on crop type and water availability (Deryng et al., 2016; O’Leary et al., 2015; Roy et al., 2016).  
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Grasslands cover one third of the global terrestrial area (Suttie et al., 2005) and represent an important 

ecosystem that has been investigated in several grassland FACE experiments (Hovenden et al., 2006; Reich 

and Hobbie, 2012; Schneider et al., 2004). In a long-term FACE experiment in Giessen, Germany, 

extensively used grassland has been grown under eCO2 since 1998, i.e. the eCO2 concentration was on 

average 20% higher relative to the aCO2 (Jäger et al., 2003). The eCO2 has been reported to increase 

significantly the TAB in the Giessen FACE rings (Andresen et al., 2017; Kammann et al., 2005). Highest 

CO2 effects on TAB have been detected under local average conditions (Obermeier et al., 2017). While an 

effect of eCO2 on WUE has been described for the year 2012 (Haworth et al., 2015), the effect of eCO2 on 

evapotranspiration and WUE of the temperate, permanent, mown grassland has rarely been investigated and 

quantified for the long-term. 

As often with complex environmental experiments such as FACE experiments, they provide a number of 

further monitored soil, plant or atmospheric variables making them also ideal for model development, 

testing and projections. Several modelling studies have addressed the impact of eCO2 on transpiration (Betts 

et al., 2007; Gedney et al., 2006; Zaehle et al., 2014) and plant growth (De Kauwe et al., 2013). Recent 

multi-model intercomparison studies revealed the need for an improved representation of biomass and water 

balance processes in models for grassland systems (Sándor et al., 2016a, 2016b). Many intrinsic interactions 

of a variety of ecological, atmospheric and hydrological processes make it difficult to break down the 

responsible ecophysiological effects leading, for example, to changes in the WUE. Instead of implementing 

more and more processes into a fixed ‘one-model-suits-it-all’ code, recent model developments promote 

flexible programming environments to create tailor-made models for specific sites that allow rigorous 

hypothesis testing (Clark et al., 2011). 

In this study, we use such a coupled hydrological-plant growth model framework to investigate the impact 

of eCO2 on a temperate grassland. The coupled model was set up using the Catchment Modelling 

Framework (CMF) and the Plant growth Modelling Framework (PMF) which represent flexible and 

integrative tools to build individual models adapted to a specific research question and study site (Houska 

et al., 2014; Kraft et al., 2011; Multsch et al., 2011). The coupled model has been used in former studies, 

e.g. to simulate wheat development under different management strategies (Houska et al., 2014). In this 

study, we further develop PMF by implementing CO2 response functions and the well-established 

evapotranspiration module based on Shuttleworth and Wallace (1985) and test the coupled model with the 

long-term data set of the Giessen grassland FACE site. The use of the coupled model required a number of 

parameters to be calibrated, leading to parameter uncertainty. In line with Pappenberger and Beven (2006), 

we think that uncertainty analysis is a prerequisite for any modelling exercise. We therefore applied the 

established General Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) method to obtain 

an estimate of the uncertainty of parameters for the coupled hydrological-plant growth model. 
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The objective of this study was to investigate the effect of eCO2 on a temperate grassland’s biomass 

production and water consumption. The complex soil-plant-system was simulated by use of the coupled 

hydrological-plant growth model. We included the analysis of several hydrological and plant variables, such 

as TAB, soil water content and WUE with a special focus on transpiration. For robust parametrization, we 

conducted a sensitivity test followed by an uncertainty analysis under ambient and elevated CO2 conditions. 

 

2.2 Material and Methods 

2.2.1 Study site 

This study used long term data (1999 to 2011) from the FACE experiment in Linden (50°32.0’N and 

8°41.3’E, 172 m a.s.l.) close to Giessen, Germany. The ongoing experiment was established in 1998 

comprising six rings (three control rings with ambient CO2 (aCO2): A1, A2, A3 and three with 20% elevated 

CO2 (eCO2): E1, E2, E3) on a grassland research area (Jäger et al., 2003). The rings are paired along a small 

soil moisture gradient, with dry = A1 and E1, wet = A2 and E2 and intermediate = A3 and E3 (Supporting 

Information Table S 2-1). However, the vegetation type tall oat-grass (Arrhenatherum elatioris – 

Filipendula ulmaria sub-community) was the same in all rings (Kammann et al., 2005) and was dominated 

by C3 grasses with 73% of total biomass, followed by forbs with 24% and a small portion of legumes with 

3%. The soil is a Fluvic Gleysol with a clay layer in altering depths. The soil type is sandy clay loam. Soil 

porosity varied between 60 and 65% (Kammann et al., 2005). The grassland was not ploughed, but fertilized 

once a year with 40 kg N ha-1 year-1. 

Model forcing data included meteorological observations (daily sum of precipitation, minimum and 

maximum temperature, mean wind speed, solar radiation and relative humidity) and groundwater levels. 

From 1999 to 2011 the area received 573 mm mean annual precipitation and had a mean annual temperature 

of 9.8°C. The mean CO2 concentration in the control rings was 394 ppm and in the elevated rings 483 ppm.   

Above ground biomass was harvested twice per year (Supporting Information Table S 2-2) and the dry 

weight was taken for model evaluation. During the observation period, the mean dry matter in harvested 

biomass for ambient rings was about 399.5 (± 100.3) at the first and 263.6 (± 47.2) g m-2 at the second 

harvest. The mean dry matter in harvested biomass for elevated rings was 425.5 (± 93.6) and 294.2 (± 54.3) 

g m-2. We used soil moisture data for model testing, which was measured at a depth of 0.15 m below the 

soil surface during several days a week. Volumetric soil water content was about 37.0% (± 11.3) and 38.4% 

(± 10.4) on average for ambient and elevated rings, respectively. Since the hydrological model did not 

account for changes of the aggregate state of soil water during frost periods, frost days during the winter 

period were not considered for model evaluation.  
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2.2.2 Model setup 

For detailed simulation of the soil hydrological and plant growth processes two independent generic, 

deterministic models were set up and coupled. The hydrological model and the plant growth model were set 

up using the Catchment Modelling Framework, CMF (Kraft et al., 2011), and the Plant growth Modelling 

Framework, PMF (Multsch et al., 2011), respectively. Both modelling frameworks represent flexible and 

integrative tools to build individual models adapted to a specific research question and study site. For 

instance, the coupled model has been used to simulate wheat development under different management 

strategies (Houska et al., 2014). 

2.2.2.1 Catchment Modelling Framework: CMF 

CMF is a flexible modelling framework which can be used to set up individual hydrological models, e.g. a 

1-dimensional soil column, a fully integrated 3-dimensional landscape model or a lumped catchment model. 

The core classes and functions of CMF are implemented in C++ and can be linked by using the Python 

programming language, which serves as an interface for using CMF. For the simulation of the FACE 

experiment in this study a 1-dimensional model was set up. The soil column was set to a depth of 1.7 m to 

capture ground water levels and was subdivided into 18 layers. The soil column started with 0.01 m 

thickness for the first layer for an adequate representation of small scale processes in the upper soil layers 

and continued with rising thickness by 0.01 m with depth, i.e. 0.02 m thickness for second layer, 0.03 m for 

third layer, etc. Water flux was simulated by applying the Richards’ equation (Richards, 1931). Soil 

hydraulic properties were described with the van Genuchten-Mualem function (van Genuchten, 1980) and 

characterized by saturated conductivity (ksat), porosity (φ), the pore size distribution parameter (n) and the 

inverse of water entry potential (α). For simplicity, the 18 layers were described with the same parameter 

values. Measured groundwater levels and precipitation were used as forcing data.  

2.2.2.2 Plant growth Modelling Framework: PMF 

PMF divides the plant into the components root, shoot, stem, leaves and reproductive organs. Different 

biophysical process representations are available in a Process Library to simulate plant growth (Multsch et 

al., 2011). Plant development is calculated on the basis of the thermal time concept (Monteith and Moss, 

1977) and affected by day length (Zheng et al., 2014). Biomass accumulation is simulated according to the 

radiation use efficiency-concept (Monteith and Moss, 1977), which transforms absorbed photosynthetically 

active radiation into dry matter. Accumulated biomass is distributed to the plant components depending on 

the actual growth stage. Root growth is simulated by daily partitioning of root biomass between soil layers 

and limited by the soil moisture in each layer. Water uptake is calculated for each soil layer according to the 

root biomass distribution. Taking into account wet and dry conditions, a stress function according to Feddes 

et al. (1978) returns a water stress factor for each layer. 
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2.2.2.3 Coupling of CMF and PMF 

The Python programming language was used to couple the models as recommended for scientific research 

by Perkel (2015). Overall, PMF simulated ET and biomass accumulation including LAI development on 

time step t considering states of CMF at t-1, called operator split. Subsequently, CMF continued taking into 

account calculated plant water demand and considered partitioning of precipitation due to changes in 

interception capacity in the course of leaf development. The detailed processes in each model are described 

in the next sections.  

2.2.2.4 Further development of PMF 

For the simulation of the potential effect of eCO2 on biomass and transpiration, PMF has been enhanced by 

implementing a well-established ET module (Shuttleworth and Wallace, 1985) and a CO2 response function 

(Soltani and Sinclair, 2012).  

The Shuttleworth and Wallace (1985) (SW) equation determines evaporation and transpiration on a network 

of coupled resistances. The set of SW-equations was implemented according to Zhou et al. (2006) 

(Supporting Information Text S 2-1). The stomatal resistance rs
c [s m-1] combines the counteracting impact 

of increased LAI and stomata closure. As implemented in PMF, the resistance was governed by 

combinations of simple linear response functions to air temperature (tempres), vapor pressure deficit (vpdres) 

and atmospheric CO2 concentrations (co2res) (eq. 2-1). Each response function returns a value between 0 and 

1. The function was 0 when stomata were closed and 1 when stomata were maximally opened. An increase 

in air temperature lead to higher values for tempres, whereas an increase in atmospheric CO2 or vapor 

pressure results in lower values for vpdres and co2res, respectively: 

 rs
c = rmin

st / (laieff (temp
res

 vpd
res

 co2res )) (2-1) 

where laieff is the effective leaf area index [m² m-²] which constraints the portion of LAI that is active in 

transfer of vapor and heat. According to Gardiol et al. (2003) the laieff is defined to be equal to LAI as long 

as LAI ≤ 2. If LAI is between 2 and 4, the laieff is equal 2 and if LAI ≥ 4 the laieff is equal to 0.5*LAI. rmin
st 

is defined as the minimum stomatal resistance of individual leaves under optimal conditions [s m-1]. The 

linear response functions to temperature (eq. 2-2) and vapor pressure (eq. 2-3) were taken from Zhou et al. 

(2006) and the response to CO2 (eq. 2-4) was implemented according to Stöckle (1992) and Wu et al. (2012): 

 temp
res

 = 1.0 - (1.6 × 10-3 (298 - (temp
meas

 - 273.16) )) (2-2) 

 vpd
res

 = 1.0 - 0.409 (es - e a) (2-3) 

 co2res = (1 + p) - p co2meas/co2ref (2-4) 

where tempmeas is the measured air temperature [°C], es the saturated vapor pressure [kPa], ea the actual 

vapor pressure [kPa], p is a constant regulating the stomatal response to eCO2 when co2meas ≠ co2ref, co2meas 
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the measured atmospheric CO2 concentration [ppm] and co2ref the reference CO2 concentration, here 

394 ppm.  

To simulate the impact of eCO2 on plant biomass accumulation, a response function was implemented 

(Soltani and Sinclair, 2012) which increases the radiation use efficiency (RUE), i.e. the amount of biomass 

growth in relation to photosynthetic active radiation, depending on the measured CO2 concentration co2meas: 

 rueCO2 = rueref(1.0 + b ln(co2meas/co2ref)) (2-5) 

where rueCO2 is in [g MJ-1], rueref is the radiation use efficiency at reference level of 394 ppm in [g MJ-1] 

and b is a constant regulating the response of RUE to eCO2 when co2meas ≠ co2ref.  

 

2.2.3 Sensitivity analysis 

We conducted the Fourier amplitude sensitivity test (FAST) based on Saltelli et al. (1999) to identify the 

most sensitive parameters. The FAST method allows the calculation of each input factor’s contribution to 

variance of the output. Here, the considered eighteen input factors were fourteen plant specific parameters 

influencing biomass accumulation, plant development and evapotranspiration and four van Genuchten-

Mualem parameters. A minimum number of 39,000 model runs was estimated for the FAST algorithm 

(Henkel et al., 2012). With these model runs, 11 parameters were identified as most sensitive parameters 

(Supporting Information Table S 2-3) and only those 11 parameters were further considered for the GLUE 

analysis. The sensitivity test was conducted using the recently developed open source python package 

SPOTPY (Houska et al., 2015). Further details concerning the conducted FAST procedure are depicted in 

the Supporting Information Figure S 2-1. 

 

2.2.4 Parametrization and uncertainty analysis 

GLUE was first defined by Beven and Binley (1992) and follows the concept of equifinality, i.e. the basic 

idea is that different parameter sets can lead to ‘behavioural’, equally acceptable model runs. The parameter 

sampling is commonly carried out by Monte Carlo sampling. To improve sampling, the Latin Hypercube 

(LH) algorithm by (McKay et al., 1979) was used. The GLUE analysis was conducted to calibrate the model 

for the years 1999-2011 using SPOTPY (Houska et al., 2015). 

In the first step, the prior distribution was created. A uniform distribution was assumed for the 11 

parameters, with the benefit of needing no prior knowledge about proved parameter optima and with the 

cost of possible loss of efficiency to generate behavioural model runs. Using LH sampling 100,000 
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parameter sets, i.e. the prior distribution, were generated and used to simulate the ambient FACE rings. The 

100,000 model runs represented a trade-off between runtime and parameter space. 

In the second step, the posterior distribution was created. For this, simulated above ground biomass and soil 

moisture were compared with observed data by using six objective functions (three for each output variable). 

Only parameter sets fulfilling all user-defined criteria as listed in Table 2-1 were regarded as behavioural 

runs, which built up the posterior distribution.  

 

Table 2-1: User-defined criteria used for GLUE analysis. Only simulations fulfilling these were considered 

for further analysis. 

 r² bias RMSE 

soil moisture >0.3 <10 vol.% <10 vol.% 

biomass >0.3 <80 g dry matter m-2 <150 g dry matter m-2 

 

The GLUE method was conducted twice for ambient and twice for elevated rings. On basis of the results of 

the first GLUE, the parameter ranges were adapted, which increased the number of posterior parameter sets 

of the second GLUE for all rings (Table 2-2). The multiple GLUE analysis for ambient and elevated 

parameter resulted in 82 remaining model runs for the ambient rings A1-A3 and in 1398 for the elevated 

rings E1 and E3 (i.e. 82 sets extended by several combinations of the CO2 response factors p and b). Ring 

E2, which was the wettest ring, was rejected during the GLUE analysis and was therefore excluded in further 

analyses.  

Detailed descriptions of the objective functions and the conducted multiple GLUE analyses are available in 

the Supporting Information Text S 2-2 and Text S 2-3. 

In addition to the GLUE analysis, the effects of different levels of b and p on TAB and transpiration, 

respectively, were tested. For this, b and p were varied from 0.0-0.5 and the other parameters were set to fix 

values as listed in the Supporting Information Table S 2-5.  

 

 

 

 

 



A coupled hydrological-plant growth model for simulating the effect of eCO2 on temperate grassland 

27 

 

Table 2-2: Parameters as used for the multiple GLUE analysis including parameter name, description, unit 

and range. Based on the results of the 1. GLUE, narrowed parameter ranges were used for the 2. GLUE. 

Parameter Description and unit 1. GLUE  2. GLUE  

  
Min Max Min Max 

α inverse of the air entry potential [cm-1] 0.001 0.7 0.2 0.6 

b* constant regulating response of RUE to [CO2] 0 2 0.0 0.6 

cr leaf extinction coefficient [-] 0 0.8 0 0.5 

ksat   saturated conductivity [m day-1] 0.1 25 13 25 

leafweights specific leaf weight [g m-2] 20 90 20 90 

n shape parameter of retention curve, empirical [-] 1.1 1.5 1.1 1.2 

p* constant regulating stomatal response to [CO2] 0 0.5 0.0 0.5 

rootgrowth root elongation factor [cm d-1] 0.15 2.9 0.15 2.9 

rueref radiation use efficiency at 394 ppm CO2 [g MJ-1] 2.4 3 2.4 3 

rst
min min stomatal resistance of individual leaves under 

optimum conditions [s m-1] 

50 150 40 80 

tbase min temperature for plant growth [°C] 1 9 1 5 

ttemergence thermal time at emergence [°days] 70 150 70 120 

tttillering thermal time at end of tillering [°days] 200 463 200 340 

* only relevant under eCO2 

 

2.3 Results 

2.3.1 Model performance 

The coupled model showed a good performance in predicting biomass with an r² between 0.3 and 0.6 in 

combination with a bias ranging between 0 and 80 g dry matter m-2 for the five different FACE rings, 

indicating a slight overestimation of biomass (Supporting Information Table S 2-4). An outlier was the year 

2005, where at first harvest TAB was overestimated by 1.8 times compared to field observations (Figure 

2-1a-e). 
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Generally, a pattern of higher yields at first harvest and lower yields at second harvest was simulated, which 

is consistent with measured data. Moreover, the simulations resulted in a significant increase in TAB of 

about 6.5% (p < 0.001, two-sided t-test for related samples) under eCO2, which is in line with the significant 

increase in observed biomass (+9.1%). However, a simulated increase in TAB by 9% and 2% at first and 

second harvest in comparison to an observed increase by 6% and 13%, respectively, showed limitations in 

a harvest-wise analysis of the CO2 effect.  

 

 

Figure 2-1: Time series of TAB and soil moisture. Observed as well as simulated TAB (a-e) and soil 

moisture (f-j) in each ring (aCO2: A1, A2, A3 and eCO2: E1, E3) using the posterior distribution. Observed 

data: black dots; simulated data: median (red line) and uncertainty (grey area, where lower and upper 

boundary are 5% and 95% percentile). 

 

The pattern of higher soil moisture during winter and lower soil moisture in summer months was well 

represented in each ring (Figure 2-1 f-j). The model showed a good performance, reflected by the values of 

the respective objective functions: r² between 0.4 and 0.7 in combination with low bias of -7 vol.% to 

0 vol.% and an RMSE ranging between 6 vol.% and 10 vol.% (Supporting Information Table S 2-4). 

However, in periods of saturated soil conditions, i.e. where measured soil water content was >60 vol.%, the 

model tended to underestimate the observations by about 14 vol.% on average. eCO2 led to no decrease of 

the long-term soil moisture content (-0.3 vol.%). This is in line with the observed data (+0.3 vol.%). 
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2.3.2 Parameter distribution and uncertainty 

The GLUE analysis revealed improved parameter ranges and parameter distributions (Table 2-2 and in the 

Supporting Information Figure S 2-2). The range of b (eq. 2-5), for instance, was narrowed by 75% from 

prior 0-2, showing values mainly between 0.1 and 0.3 after the second GLUE. The parameter p (eq. 2-4), 

which determined the sensitivity of stomatal conductance to eCO2, revealed a maximum at 0.3. Further 

optima became visible, e.g. for the parameters n, tbase, cr and rueref at 1.12 [-], 3.5°C, 0.27 [-] and 2.5 [g MJ-1]. 

Specific distributions can be used to sample values for the prior distribution instead of a uniform distribution 

for further analysis. For example, the parameter distribution of rueref was skewed to the right. The GLUE 

method requires that the parameters do not correlate (Jin et al., 2010) which has been proven by visual 

inspection of scatter plots (Supporting Information Figure S 2-3).  

The uncertainty range of TAB was on average 19 g dry matter m-2, being low during winter periods and 

increasing towards the harvest dates. The uncertainty range of the predicted soil moisture was constant at 

5% using the 5 to 95% percentiles of the posterior simulations.  

A one-at-a-time uncertainty analysis was conducted to investigate the effect of different levels of the 

parameter b and p on the simulated TAB and transpiration, respectively. An increase of parameter b from 

0.0-0.5 resulted in an increase in TAB and led to an uncertainty range in TAB at harvest of 98.6 ± 30.8 g 

dry matter m-2 (Figure 2-2a). A stepwise increase of parameter p from 0.0-0.5 decreased transpiration and 

resulted in an uncertainty range of 12.5 ± 2.1 mm (Figure 2-2b). 

 

Figure 2-2: Effect of different levels of parameter b on the simulated TAB (a) and different levels of 

parameter p on the simulated transpiration (b) of the FACE ring E1. 
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2.3.3 CO2 effect on water use efficiency 

WUE was calculated for the entire growing season and derived by dividing annually harvested TAB by 

accumulated ET (from March to second harvest in September). A two-sided t-test for related samples was 

used to test for significant differences. The simulated TAB was on average about +40.7 ±24.0 g dry matter 

m-² (6.5%) higher under eCO2 compared to aCO2. ET remained with 0.9 ±4.9 mm (+0.2%, p = 0.5), 

evaporation was significantly reduced by -2.1 ±1.7 mm (-1.4%, p < 0.01), whereas according to our 

simulations transpiration increased on average by +3.0 ±6.0 mm (+0.8%, p = 0.1) during the growing season 

(Figure 2-3).  

 

 

Figure 2-3: Simulated mean differences between ambient and elevated TAB (ΔTAB), ET (ΔET), 

evaporation (ΔE) and transpiration (ΔT) in [%] at the grassland FACE site in Giessen, Germany, for the 

years 1999-2011. 

 

On average, the WUE was at ~2.5 kg m-3. An inter-annual variability of WUE was revealed by a minimum 

of 1.3 (in year 2010) and a maximum of 3.2 kg m-3 (in year 2005). The uncertainty range for WUE was 

equal for both CO2 treatments (0.7 kg m-3), i.e. not increasing under eCO2 using the 5 to 95% percentiles of 

the posterior simulations (Figure 2-4). 
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Figure 2-4: Absolute WUE over time. Simulated WUE [kg m-3] at the grassland FACE site in Giessen, 

Germany. Median through simulations (aCO2 = blue line, eCO2 = red line), uncertainty with 5% and 95% 

percentile as lower and upper limit (aCO2 = blue error bar, eCO2 = red error bar). 

 

On average a significant increase in WUE of 5.2% (0.1 ±0.06 kg m-3, p < 0.001) was found under eCO2. 

The positive impact of eCO2 on WUE was apparent for all years (Figure 2-5). Thus, the improvements in 

TAB (+6.5%) in combination with the remained ET (+0.2%) led to an overall better performance of the 

WUE. In particular, the strongest effect occurred in 2001 (10.0%) and 2002 (9.5%) despite of increased 

water loss through ET (+0.6 and +2.0%). The smallest effect on WUE appeared in 2004 (2.0%) in line with 

smallest effect on TAB.  

 

Figure 2-5: Relative change in TAB, ET and WUE over time. Impact of eCO2 on TAB, ET and WUE [%] 

at the grassland FACE experiment in Giessen, 1999-2011, Germany.  
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2.4 Discussion 

2.4.1 Model performance 

The Giessen FACE experiment is unique in investigating the effect of eCO2 over more than 18 years (since 

1998, still ongoing) using a moderate carbon dioxide fumigation level of 20% increase for a temperate well-

watered grassland. Taking the low CO2 enrichment at the Giessen study site in comparison to other FACE 

sites (Haworth et al., 2015), the predicted increase in TAB of about 6.5% under 20%-elevated CO2 is slightly 

lower compared with the meta-study by Ainsworth and Long (2004). They investigated different grassland 

FACE studies (eCO2: 475 - 600 ppm) resulting in an average increase of TAB of about 10%.  

Fitting the hydrological-plant growth model to the observed data by conducting the GLUE method showed 

that the coupled CMF-PMF model matched the observed TAB (r² between 0.3 and 0.6, bias between -80 

and 0 g dry matter m-2, RMSE between 122 and 150 g dry matter m-2). The obtained r² between 0.3 and 0.6 

showed a better performance in comparison with results of a multi-model comparison by Sándor et al. 

(2016b) who reported a r²<0.3 for grassland biomass simulation. The RMSE is in line with O’Leary et al. 

(2015), who investigated the model performance of six wheat models under aCO2 and eCO2. The study 

resulted in an r² between 0.56 and 0.64 for biomass and in a RMSE from 140 to 150 g m-2. However, other 

studies resulted in ranges with a lower RMSE, e.g. Moot et al. (2015) who calibrated the APSIM model for 

‘Grasslands Kaituna’ lucerne with a resulting RMSE of 65 g m-2. Pequeno et al. (2014) simulated biomass 

accumulation of Marandu palisade grass in Brazil under irrigated and rain fed conditions showing a RMSE 

between 46 and 53 g dry matter per m². At the first harvest in 2005, the model predicted a peak in TAB in 

each of the FACE rings (Figure 2-1). This is contrary to the observed data because the predicted TAB is 1.6 

fold higher. A likely reason for this is that biomass accumulation had reached its capacity limit, which was 

not captured by the plant model.  

In recent studies, the presentation of accurate soil water processes had been identified as a challenge in 

modelling grassland ecosystems with r² reported between 01. and 0.7 (Sándor et al., 2016a, 2016b). The 

coupled CMF-PMF showed a good performance in predicting soil moisture (r² between 0.4 and 0.7, bias of 

-7 vol.% to 0 vol.% and an RMSE ranging between 6 vol.% and 10 vol.%). Nendel et al. (2009), who used 

the HERMES model in combination with a six year long data set of FACE experiment on different crops in 

Braunschweig, Germany, tested different CO2 response algorithms and reported a mean average error in 

soil moisture between 9.9 and 14.4% and a bias ranging from minimum 2.4 to maximum -7.4%. Houska et 

al. (2015) presented a bias of 2% in the upper 0.3 m and a higher r² of 0.8 for the A1 ring of the FACE 

experiment in Giessen. As stated above, in periods where data showed almost saturated conditions (between 

60-65 vol.%) the coupled model did not match observed soil moisture. We want to point out that different 
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sources might have contributed to this divergence, a) the general limitation in soil moisture simulation under 

almost saturated conditions using the van Genuchten-Mualem analytical function (Schaap and Van 

Genuchten, 2006), b) the simplified representation of soil parameters for the entire soil and c) potentially 

larger errors in observed data at high soil water content (IMKO Micromodultechnik GmbH, 2001). 

The PMF model provides a detailed root growth mechanism, i.e. the biomass is allocated between the 

different soil layers according to the soil water and nutrient supply. The simulations indicated increased root 

biomass when comparing aCO2 and eCO2. This is in line with the observation from Carrillo et al. (2014) 

who reported an increase in root biomass of about 30% induced by eCO2 (600 ppm). Roy et al. (2016) 

observed a significantly increased root growth by 77% under eCO2 (520 ppm). In addition to increased root 

biomass production, the predominant allocation of the biomass in upper soil layers, as described for 

soybeans under eCO2 by Gray et al. (2016), could play an important role in affecting the water budget. 

However, there was no plant biomass data of single plant components, in particular roots, available for 

validation. 

 

2.4.2 Parameter distribution and uncertainty 

The GLUE analysis revealed the uncertainty range of soil moisture with 5% and of TAB with 

19 g dry matter m-2, which was related to parameter selection. The parameter b that determines the RUE 

response to eCO2 was between 0.1 and 0.3 at the C3 grassland FACE site in Giessen (Supporting 

Information Figure S 2-2).  Parameter p that determined the stomatal response to eCO2 was set to a fixed 

value of 0.4 in a study by Stöckle (1992) and was later adapted to 0.24 for pastures with C3 grasses (Wu et 

al., 2012). In this study, p reached its maximum at 0.3 for the C3 grassland in Giessen, Germany. The 

extinction coefficient of vegetation cr appeared to have its mathematical maximum at values <0.3. This is 

in contrast to other studies, where cr has been set to fixed values between 0.5 and 0.9 (Lantinga et al., 1999; 

Sándor et al., 2016b; Shuttleworth and Wallace, 1985). A decrease in cr results in reduced biomass 

production. Hence, we suppose that by sampling small cr-values the model covered a stress factor which 

was not explicitly included in the model but which occurred in the field, e.g. nitrogen stress or competition 

for light and space.  

Other sources of uncertainty, i.e. of input data and model structure, have not been investigated in this study. 

For example, Nendel et al. (2009) tested six different CO2 response algorithms, i.e. model structure, and 

showed only small differences in the performance. They reported an index of agreement ranging between 

0.94 and 0.99 for above ground dry matter and between 0.82 and 0.86 for soil moisture. Nevertheless, the 

need for improved model structures, i.e. improved representation of biomass production, soil temperature 

and soil water content, to reduce uncertainty is shown by a multi- model intercomparison project for 
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grassland models (Houska et al., 2017; Ma et al., 2014; Sándor et al., 2016a, 2016b) and by the vast number 

of model intercomparison studies on wheat (Asseng et al., 2014; Kollas et al., 2015; Rosenzweig et al., 

2014, 2013; Rötter et al., 2012). Moreover, the utilization of benchmark datasets for growth models as 

presented by Asseng et al. (2015) is helpful to identify uncertainties.  

 

2.4.3  CO2 effect on water use efficiency 

A distinct increase in TAB was predicted in this study for the temperate grassland study site, while the ET 

was predicted to remain the same. These predictions are in line with other studies (Ainsworth and Long, 

2004; Leakey et al., 2009). Splitting the ET into evaporation and transpiration revealed a decrease in 

evaporation and a net increase in transpiration. This is in line with a study by Liu et al. (2009) who studied 

effects of expanded grassland on vegetation-soil moisture feedback. They report an increase in transpiration, 

whereas evaporation was reduced as a consequence of reduced soil evaporation. The increase in 

transpiration means that the decrease in stomatal conductance as a consequence of eCO2 at the leaf level 

was counteracted at the stand level by the rise of the effective leaf area index (laieff). Manea and Leishman 

(2014) reported comparable results and described an offset of the stomatal effect in a temperate grassland 

due to an increase in leaf area index under eCO2.  

The coupled CMF-PMF predicted an increase in WUE of 5.2% on average under eCO2 for the grassland 

research area in Giessen. This is lower in comparison to the global increase in crop water use of 10-27% 

under 550 ppm as presented by Deryng et al. (2016). Further, O’Leary (2015) predicted an increase in WUE 

for wheat under eCO2 (ambient 365 ppm vs elevated 550 ppm) of more than 30%, defining WUE as 

produced grain yield per water loss including ET, deep drainage and run-off. De Kauwe et al. (2013) 

reported an observed increase of 66% and 93% under eCO2 (542 ppm and 547 ppm) for a conifer and a 

deciduous forest. A predicted significant increase of 5.2% at the Giessen FACE site is reasonable 

considering the moderate CO2 fumigation level of ~480 ppm. However, we conclude that more research 

with focus on CO2-induced change in WUE of temperate grasslands is necessary, including studies with 

moderate levels of eCO2.  

 

2.4.4 Conclusion 

We show that the coupled hydrological-plant growth model is a robust tool for the investigation of CO2 

effects of a permanent, temperate grassland system. In future studies, further grassland sites, crops and 

treatments, e.g. combined eCO2 x water regime studies, will be tested. In contrast to a number of prior 

studies, the current study reports a simulated increase in the transpiration of the temperate grassland under 
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eCO2. Thus, the expected water saving effect at the leaf level, caused by stomatal closure, was offset at the 

stand level, caused by the significantly increased TAB of the grassland. However, the net ET was simulated 

to remain the same under eCO2, as transpiration increased but soil evaporation significantly decreased. 

Finally, the combination of significantly increased TAB and constant net ET resulted in a significant 

increase in WUE under eCO2. Our results indicate that mown, temperate, wet-dry grasslands can benefit 

from enhanced biomass accumulation while maintaining water consumption already at a 20% increase in 

CO2 concentrations.  
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Supporting Information 

 

Table S 2-1: Averaged, observed soil moisture [Vol%] plus standard deviation (std) in the six FACE ring 

over the years 1999-2011. 

 A1 A2 A3 E1 E2 E3 

mean 32.7 42.6 36.0 37.2 40.5 37.5 

std 9.4 11.8 10.3 9.7 11.6 9.4 

 

 

Table S 2-2: Harvest dates from 1999-2011 at the grassland FACE site in Giessen, Germany. 

 First harvest Second harvest 

1999 June 14 August 31 

2000 May 23 September 11 

2001 May 28 September 10 

2002 June 3 September 09 

2003 May 19 September 18 

2004 June 1 September 06 

2005 June 13 September 13 

2006 May 29 September 11 

2007 May 30 September 10 

2008 May 27 September 8 

2009 May 25 September 7 

2010 May 25 September 6 

2011 May 23 September 5 
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Table S 2-3: Overview of the 18 parameters that were considered for sensitivity test (FAST) covering the 

parameter’s name, definition and unit as well as the defined lower and upper limit. FAST identified 11 most 

sensitive parameters (bold). Parameters that were not sensitive were assigned to fixed values (not bold). 

These values are presented in column ‘Fixed’. 

Parameter Description and unit Ranges  Fixed 

  
Min Max  

α inverse of the air entry potential, empirical [cm-1] 0.001 0.7  

Φ porosity [-] 0.6 0.65 0.63 

cr leaf extinction coefficient [-] 0.0 0.8  

ksat  saturated conductivity [m day-1] 0.1 25  

leafweights specific leaf weight [g m-2] 20 90  

n shape parameter of retention curve, empirical [-] 1.1 1.5  

rootgrowth root elongation factor [cm d-1] 0.15 2.9  

rueref radiation use efficiency at 394 ppm CO2 [g MJ-1] 2.4 3  

rst
min min stomatal resistance of individual leaves under optimum 

conditions [s m-1] 

50 150  

ttanthesis thermal time at end of anthesis [°days] 900 1091 996 

tbase min temperature for plant growth [°C] 1 9  

ttemergence

  
thermal time at emergence [°days] 

70 150  

ttleafdevelopment thermal time at end of leaf development [°days] 150 200 175 

ttmaturity thermal time at maturity [°days] 1672 1832 1752 

ttripening thermal time at end of ripening [°days]  1291 1672 1480 

ttseedfilling thermal time at end of seed filling [°days] 1091 1291 1191 

ttstemelongation thermal time at end of stem elongation [°days] 700 900 800 

tttillering thermal time at end of tillering [°days] 200 463  
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Table S 2-4: Best and worst results of the objective functions for the two output variables soil moisture and 

TAB for the rings A1, A2, A3, E1 and E3. 

  Soil moisture [%] TAB [g m-2] 

  A1 A2 A3 E1 E3 A1 A2 A3 E1 E3 

r2 best 

worst 

0.52 

0.43 

0.69 

0.44 

0.68 

0.52 

0.70 

0.56 

0.70 

0.55 

0.60 

0.49 

0.40 

0.30 

0.49 

0.37 

0.42 

0.31 

0.54 

0.44 

bias best 

worst 

-0.08 

-7.07 

0.80 

6.48 

-0.03 

-4.51 

0.00 

3.74 

-0.01 

-3.07 

0.43 

-49.11 

21.05 

79.88 

-0.52 

35.64 

0.02 

53.30 

2.97 

69.83 

RMSE best 

worst 

6.88 

9.99 

7.29 

9.98 

5.97 

8.03 

5.63 

6.93 

5.51 

7.04 

109.13 

145.42 

116.40 

133.40 

117.52 

133.83 

132.85 

150.00 

122.43 

136.52 

 

Table S 2-5: Selected parameter set that was used for the uncertainty analysis of the parameters b and p.  

Parameter Description and unit Value 

α inverse of the air entry potential [cm-1] 0.25 

cr leaf extinction coefficient [-] 0.14 

ksat   saturated conductivity [m day-1] 18.41 

leafweights specific leaf weight [g m-2] 39.05 

n shape parameter of retention curve, empirical [-] 1.12 

rootgrowth root elongation factor [cm d-1] 1.66 

rueref radiation use efficiency at 394 ppm CO2 [g MJ-1] 2.52 

rst
min min stomatal resistance of individual leaves under optimum conditions 

[s m-1] 

53.66 

tbase min temperature for plant growth [°C] 4.76 

ttemergence thermal time at emergence [°days] 101.8 

tttillering thermal time at end of tillering [°days] 200.6 

b constant regulating response of RUE to [CO2] 0.0-0.5 

p constant regulating stomatal response to [CO2] 0.0-0.5 
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Figure S 2-1: Overview of conducted FAST. Steps conducted to identify the most sensitive parameters 

occurring in the three FACE rings A1, A2 and A3. The sensitivity test (FAST) covers 4 hyrological and 14 

plant model related parameters. 39,000 parameter sets were created on the basis of the FAST algorithm. 

Every ring was then tested with the 39,000 parameter combinations. Due to computer capacity three FASTs 

with 13,000 parameter sets per ring were conducted. The union of sets resulted in the most sensitive 

parameters per ring. Finally, the intersection of sets identified those sensitive parameters that occurred in 

every ring. 

 

 

 

Figure S 2-2: Parameter distribution plot. Parameter distribution of posterior parameter sets of the FACE 

rings A1-A3, E1, E3. For parameter acronyms see Table S 2-5 in the Supporting Information. 
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Figure S 2-3: Parameter interaction plot. Parameter interaction and distribution of posterior parameter sets 

of the FACE rings. The items on the x-axis and y-axis show plant and soil hydraulic parameters. For 

parameter acronyms see Table S 2-5 in the Supporting Information. 

 

Text S 2-1: Shuttleworth-Wallace equations as implemented in PMF 

 λET = Cc ETc+ Cs ETs 
(B.1) 

where ET is the evapotranspiration [mm d-1], λ is the latent heat of water vaporization [MJ kg-1], ETc and 

ETs are equivalent to transpiration and evaporation using the Penman-Monteith equation for closed canopy 

and bare soil [MJ m-2d-1], Cc and Cs  are weighting factors [-]: 

 Cc = 1/(1+ (RcRa) / [Rs(Rc+Ra)]) (B.2) 

 Cs = 1/ (1+ (RsRa)/[Rc(Rs+Ra)] ) (B.3) 

where Ra, Rs and Rc are defined as follows: 

 Ra = (∆+γ)ra
a (B.4) 

 Rc = (∆+γ)ra
c+γ rs

c (B.5) 

 Rs = (∆+γ)ra
s +γ rs

s (B.6) 
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where Δ represents the slope of saturation vapor pressure curve [kPa °C-1], γ the psychrometric constant 

[kPa °C-1], ra
s and ra

a are aerodynamic resistances from soil surface to canopy and from canopy to 

measurement height, rs
s is the resistance of the soil surface, ra

c is the bulk boundary layer resistance and rs
c 

is the stomatal resistance. All resistances are given in [s m-1]. 

 

Text S 2-2: Objective functions 

We decided to use several objective functions capable of describing different model performances (Legates 

and McCabe Jr., 1999; Vis et al., 2015). To evaluate whether the model depicts the right timing of 

simulations we applied the coefficient of determination (worst, 0 ≤ r² ≤ 1, best), a criterion that is for 

example appropriate when evaluating the relationship between soil moisture and rainfall. Since r² does not 

account for under- or overestimation, we selected the bias as a second objective function (-∞ ≤ bias ≤ +∞), 

which is particularly helpful to estimate a model’s behaviour in predicting total biomass production over 

the year. Underestimation is expressed by negative values, overestimation with positive and no bias with 

bias = 0. Finally, the RMSE (root mean squared error) completed the set of chosen objective functions by 

providing a measure of differences between simulated and associated observed data, varying from 0 (perfect 

fit) to large positive values (large disagreement). This third criterion is often used (Moot et al., 2015; 

O’Leary et al., 2015; Pequeno et al., 2014). 

 

Text S 2-3: Multiple GLUE analysis 

For the ambient rings, the GLUE resulted in three posterior parameter sets. These sets contained similar 

parameter values, i.e. the parameter ranges could be narrowed. Taking the adapted parameter ranges, the 

GLUE (Table 2-2) was conducted a second time, resulting in 172 parameter sets for the ambient rings. 

For the elevated rings, the parameter list was extended by parameter p (eq. 2-4) and b (eq. 2-5). Using LH 

sampling 100 parameter sets were generated for p and b. Every parameter set of the 172 ambient sets was 

then extended by the 100 combinations of p and b. Hence, 17,200 parameters sets were generated and taken 

for the GLUE for the eCO2 rings. Based on the output the parameter range of b was narrowed and a second 

GLUE was run. The results showed 1398 posterior parameter sets for the rings E1 and E3, but no common 

sets for all elevated rings. Hence, ring E2 was excluded in the further analysis. 

In summary, the overlap of parameter sets of ambient and elevated rings resulted in 82 parameter sets for 

the ambient and in 1398 for the elevated rings (i.e. 82 sets extended by several p-b-combinations). 
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Abstract 

The rising concentration of atmospheric carbon dioxide (CO2) is known to increase the total aboveground 

biomass of several C3 crops, whereas C4 crops are reported to be hardly affected when water supply is 

sufficient. However, a free-air carbon enrichment (FACE) experiment in Braunschweig, Germany, in 2007 

and 2008 resulted in a 25% increased biomass of the C4 crop maize under restricted water conditions and 

elevated CO2 (550 ppm). To project future yields of maize under climate change, an accurate representation 

of the effects of eCO2 and drought on biomass and soil water conditions is essential. Current crop growth 

models reveal limitations in simulations of maize biomass under eCO2 and limited water supply. We use 

the coupled process-based hydrological-plant growth model CMF-PMF (Catchment Modelling Framework-

Plant growth Modelling Framework) to overcome this limitation. We apply the coupled model to the maize-

based FACE experiment in Braunschweig that provides robust data for the investigation of combined CO2 

and drought effects. We approve hypothesis I that CO2 enrichment has a small direct fertilizing effect with 

regard to the total aboveground biomass of maize and hypothesis II that CO2 enrichment decreases water 

stress and leads to higher yields of maize under restricted water conditions. Hypothesis III could partly be 

approved showing that CO2 enrichment decreases the transpiration of maize, but does not raise soil moisture, 

while increasing evaporation. We emphasize the importance of plant specific CO2 response factors derived 

by use of comprehensive FACE data. By now, only one FACE experiment on maize is accomplished 

applying different water levels. For the rigorous testing of plant growth models and their applicability in 
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climate change studies, we call for data sets that go beyond single criteria (only yield response) and single 

effects (only elevated CO2).  

 

3.1 Introduction 

The increase of atmospheric CO2 has various effects on the soil-plant system. C3 plants show an accelerated 

CO2 assimilation rate under elevated CO2 (eCO2), which is linked with an increase in biomass production 

(Ghannoum et al., 2000). In contrast to that, the photosynthesis of C4 plants is reported to be saturated under 

ambient CO2 (aCO2) conditions (Ghannoum et al., 2000). Free-air carbon dioxide enrichment (FACE) 

experiments are conducted to investigate the effect of eCO2 under field conditions (Ainsworth & Long, 

2004; Hendrey & Kimball, 1994; Leakey et al., 2009; Saban, Chapman, & Taylor, 2019). A number of 

FACE experiments have been accomplished for C3 plants showing a significant increase in biomass under 

eCO2 of 10-15% caused by a CO2-fertilizing effect (Andresen et al., 2018; Bernacchi et al., 2005; Weigel 

& Manderscheid, 2012). An average increase of up to 20% in the aboveground biomass was reported by 

Ainsworth and Long et al. (2004), who conducted a meta-analysis study with 29 different C3 crops and tree 

species at various FACE experiments. C4 plants such as maize and sorghum however do not respond with 

an accelerated biomass production under sufficient water supply. This was observed in two FACE 

experiments on maize in Illinois, USA, and in Braunschweig, Germany and in a FACE experiment on 

sorghum in Arizona, USA (Leakey, 2006; Manderscheid et al., 2014; Ottman et al., 2001). However, in the 

unique maize FACE experiment in Braunschweig also the combined effect of eCO2 and reduced water 

supply on the C4 crop was tested. The experiment showed a distinct CO2-induced increase in biomass 

(+25%) under limited water supply (Manderscheid et al., 2014). A distinct, though weaker (+15%) increase 

in biomass at harvest was also observed for sorghum under eCO2 and water stress (Ottman et al., 2001). A 

water saving effect caused by stomatal closure under eCO2, that led to an advantage in drier periods, where 

the maize plants could use the saved water for biomass production was assumed by Manderscheid et al. 

(2014) and Ottman et al. (2001). Accompanying sap flow measurements in Braunschweig indicated a 20%-

reduction of transpiration under eCO2, caused by increased stomatal resistance under sufficient and 

restricted water supply (Manderscheid et al., 2016). Saved water by reduced transpiration under eCO2 

increases soil moisture and might further lead to an increase in evaporation (Manderscheid et al., 2018). 

To project future yields under climate change, models with a correct response to CO2 are needed. Tubiello 

et al. (2007) find that most simulations of established crop models are in agreement with observations of up 

to date FACE experiments. Jin et al. (2018) simulated successfully the combined effect of eCO2 and drought 

for the C3 crop soybean. However, a recent study by Durand et al. (2017) revealed limitations in accurate 

simulations of biomass of the C4 crop maize under eCO2 and restricted water supply. The performance of 
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21 maize crop models was tested against data of the aforementioned two-year FACE experiment with maize 

in Braunschweig, Germany (Durand et al., 2017). The models reproduced only 30% of the measured, strong 

biomass increase, and failed to simulate the very low soil moisture values at anthesis (Durand et al., 2017), 

even though five of the 21 maize models included a sophisticated soil hydrology module based on the 

Richard equation (Bassu et al., 2014). Plant growth, e.g. biomass accumulation, is slowed and ceased when 

water stress occurs (Hammer et al., 2010). The effect of water stress is commonly simulated based on either 

the ratio of actual and potential transpiration, the ratio of water supply and water demand, or the soil moisture 

content (Jin et al., 2016). To improve the maize models, Durand et al. (2017) emphasized the need for a 

better representation of the strong reduction of transpiration under eCO2, to allow a stronger benefit of eCO2 

in periods of water stress. They emphasized in particular, these models must explicitly represent the stomatal 

response to eCO2. Fu et al. (2016) applied a single model to a drought / eCO2 experiment with sorghum, but 

they have investigated the effects independently and not in combination. 

To move forward, accurate CO2 response functions that describe the reaction of the plant stomata and the 

plant biomass accumulation to eCO2 are needed and should be calibrated with recent FACE data. Morison 

(1987) reviewed 23 studies where the effect of eCO2 on the plant stomata of different C3 and C4 crops was 

investigated in lab and open top chamber experiments. Here, a linear increase of the stomatal resistance was 

observed (Morison, 1987). The doubling from 330 ppm to 660 ppm CO2 resulted in a 40% increase 

(Morison, 1987). These effects were implemented in the EPIC model using a simple linear response function 

with a response factor p = 0.4, to account for the 40% change in the stomatal resistance of plants (Stöckle, 

1992). Later, the stomatal response factor was specified for C3 (p = 0.24) and C4 (p = 0.29) pastures based 

on results of open top chamber and FACE experiments (Wand et al., 1999). In a recent study, where the 

CO2 effect on C3 grassland was analysed by the use of a coupled hydrological-plant growth model and long-

term data of a FACE experiment on C3 grass, p led to best results when p = 0.3 (Kellner et al., 2017). For 

describing the effect of eCO2 on net assimilation Goudriaan et al. (1984) presented a simple response 

function. This was applied by Soltani and Sinclair (2012) to describe the effect of eCO2 on the radiation use 

efficiency rueCO2. In this function, a response factor b, which controls the change in rueCO2 under eCO2, was 

reported to be 0.8 for C3 plants and 0.4 for C4 plants. The study by Kellner et al. (2017) revealed values for 

b < 0.3 for a C3 grassland using long-term FACE data. Both CO2 response factors have not been calibrated 

yet using field data of maize. 

In this study, we apply the coupled process-based hydrological-plant growth model CMF-PMF, Catchment 

Modelling Framework (Kraft et al., 2011; Kraft et al., 2018) and Plant growth Modelling Framework 

(Multsch et al., 2011). To overcome the maize model limitations revealed by Durand et al (2017), we 

calibrate and validate the model, including the aforementioned two CO2 response factors for stomatal 

conductance (p) and biomass accumulation (b) using the data of the maize FACE experiment in 
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Braunschweig, Germany. We investigate the combined effect of eCO2 and different soil moisture conditions 

on the C4 crop maize and identify the important processes for the simulation of CO2 effects under sufficient 

and restricted water supply. We test the following hypotheses:  

Hypothesis I eCO2 has a small direct fertilizing effect with regard to the total aboveground biomass of 

maize.  

Hypothesis II eCO2 decreases water stress and leads to higher yields of maize under restricted water supply 

only.  

Hypothesis III eCO2 reduces the transpiration of maize, increases soil moisture and evaporation. 

We acknowledge that these hypotheses or parts of them have been proven already in experimental trials. 

However, current model approaches show evident limitations in reflecting the combined effect of water 

stress and elevated CO2 on maize production, indicating that those models underestimate the CO2-fertilizing 

effect on maize under drought (Durand et al., 2017). This is all the more surprising considering that maize 

is the most cultivated agricultural crop in the world and that agricultural relevant droughts are projected to 

occur more frequently and severe at least in Europe (Samaniego et al., 2018). Realistic plant growth models 

are therefore essential for predicting the effects of climate change on the future production of maize. 

 

3.2 Material and Methods 

3.2.1 Data and study site 

In this study, data from a FACE experiment in Braunschweig (longitude: 10.45, latitude: 52.29, 81 m a.s.l.), 

Germany, was used. Maize (Zea mays L., cv. Romario) was grown under ambient (aCO2 = 380 ppm) and 

elevated carbon dioxide concentrations (eCO2 = 550 ppm) in 2007 and 2008. In addition to different CO2 

levels, maize was cultivated under two levels of water supply using a combination of irrigation and rainout 

shelters in one half of each FACE ring. The soil at the study site was a Luvisol with loamy sand in the upper 

40 cm and sandy gravel below (Manderscheid et al., 2014). 

The maize was sown in spring (April/May) and harvested in autumn (September/October) and fertilized 

with 171 kg N/ha and 198 kg N/ha in 2007 and 2008. CO2-fumigation started in June and was stopped at 

harvest. More details of the setup and the management measures of the experiment are available in the 

Supporting Information Table S 3-1 and S 3-2 and in Erbs et al. (2012), Manderscheid et al. (2014) and 

Weigel et al. (2005).  

Daily sum of precipitation, solar radiation, and daily minimum and maximum of temperature as well as 

wind speed were measured by the German Meteorological Service at the study site and taken as model input 
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data. The average temperature was 10.4°C in 2007 and 10.3°C in 2008. Water input by natural rainfall and 

irrigation was 878 mm and 715 mm in the wet treatment in 2007 and 2008, respectively. In the dry treatment, 

water input was reduced to 835 mm and 552 mm, respectively in 2007 and 2008 by excluding irrigation and 

partial application of rain shelters. Detailed information about the water supply in the different treatments 

is available in the Supporting Information Table S 3-2. 

Measured total aboveground biomass (hereafter biomass) and soil moisture were used for model evaluation. 

Soil moisture was measured approximately twice a week using TDR sensors in three different depths (0.0-

0.16 m, 0.2-0.4 m and 0.4-0.6 m) from June until harvest in September/October in both years (Manderscheid 

et al., 2014). Biomass was measured once a month by destructive harvesting. 

 

3.2.2 Coupled hydrological-plant growth model 

For the investigation of climate change effects on the agricultural systems, different types of crop models 

are used. Most commonly, process-based crop models are applied, in which the most important processes 

of the soil-plant system are represented (Fodor et al., 2017). In this study, the process-based coupled 

hydrological-plant growth model CMF-PMF was applied to investigate the combined effect of eCO2 and 

drought on biomass accumulation and water consumption of the C4 crop maize. The coupled CMF-PMF 

has already been successfully tested for C3 plants such as wheat and grassland (Houska et al., 2014; Kellner 

et al., 2017). With the catchment modelling framework CMF individual hydrological models can be set up 

(Kraft et al., 2011; Kraft et al., 2018). In this study, CMF was applied as a 1-dimensional plot model that 

calculates the water transport and the dynamic of the soil moisture profile. Water flux was calculated with 

a daily time step on the basis of the Richards equation (Richards, 1931). Soil hydraulic characteristics were 

defined using the van Genuchten-Mualem function, including the parameters: soil porosity, the shape 

parameter of the van Genuchten retention curve (n) and the inverse of water entry potential (α) (van 

Genuchten, 1980). The modeled soil column of 0.9 m was divided into four blocks (Supporting Information 

Table S 3-3), each consisting of several layers. While soil porosity was set according to available measured 

values in the four blocks, the other important parameters of CMF to describe the soil hydraulic properties 

such as α, n and saturated conductivity (ksat) were considered in the calibration and uncertainty analysis 

(Table 3-1, Supporting Information Table S 3-3). The chosen hydrological parameters of the lowest block 

corresponded to a gravel layer according to the study site. Free drainage was chosen as boundary condition 

for the lowest layer.  

PMF is a plant growth modelling framework which can be used to set up plant models (Multsch et al., 2011). 

Using plant specific parameters, the generic model PMF can be adapted to simulate different crops. Biomass 

was calculated using daily time steps with the radiation use efficiency concept, where photosynthetically 
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active radiation is converted into dry biomass (Monteith & Moss, 1977). The total biomass was distributed 

to plant components which are available in PMF, such as leaves, stem, storage organs and roots. For this, 

allocation factors which are specific to every development stage were used. The plant development was 

driven on the basis of growing degree days, calculating a temperature sum according to the thermal time 

concept (Monteith & Moss, 1977). Water stress was calculated according to Feddes et al. (1978). The water 

stress factor limited plant growth by reducing above and below ground biomass accumulation. The factor 

was derived by dividing actual by potential transpiration. The evapotranspiration was calculated with the 

model for sparse canopies by Shuttleworth and Wallace (1985).  

With the implemented CO2 response functions, the effect of changing atmospheric CO2 concentrations on 

the stomatal resistance as well as the daily biomass allocation can be simulated with PMF. The crop specific 

CO2 response is taken into account using the crop specific response factors p (stomatal response) and b 

(biomass accumulation). The linear CO2 response function fCO2 governed the stomatal resistance and was 

implemented according to Stöckle (1992) and Wu et al. (2012): 

fCO2 = (1 + p) - p ∙ CO2meas/CO2ref                      eq. 3-1  

where CO2meas is the measured atmospheric CO2 concentration [ppm], CO2ref is the reference CO2 

concentration (here 380 ppm) and p is the dimensionless stomatal response factor. The factor p ranges 

between 0 and 1. An increase in p results in an increase of the stomatal resistance. 

The CO2 response function of the biomass rueCO2 was applied according to Soltani and Sinclair (2012): 

rueCO2 = rueref ∙ (1 + b ∙ ln(CO2meas/CO2ref))                     eq. 3-2 

where rueref is the radiation use efficiency at 380 ppm which converts photosynthetic active radiation into 

dry biomass [g MJ-1] and b is the dimensionless response factor. The factor b ranges between 0 and 1, where 

b = 0 means no increase in rueCO2 under eCO2 and thus no increased biomass accumulation. Since C4 plants 

react less to eCO2 than C3 plants, b is supposed to be smaller for C4 plant in comparison to C3 plants 

(Goudriaan et al., 1984). 

The two models were coupled using the Python programming language. Running the coupled model, PMF 

calculated the evapotranspiration and the biomass accumulation including leaf development on time step t, 

taking into account the states of CMF at the prior time step t-1. Then, CMF proceeded considering the 

simulated plant water demand and the leaf area for calculating intercepted precipitation. Further information 

of the coupled hydrological-plant growth model CMF-PMF are available in Kellner et al. (2017).  

For model calibration, eleven plant specific parameters of PMF were used, including three biomass 

allocation factors (leafleafdev, leafstemelong, shootleafdev), the minimum temperature for plant development (tbase), 
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the temperature sum for emergence (ttemergence), the reference radiation use efficiency at 380 ppm CO2 (rueref), 

the specific leaf weight (leafweights), the leaf extinction coefficient for the calculation of the net radiation (cr), 

the minimum stomatal resistance of leaves, which is relevant to transpiration (rst
min), and the two CO2 

response factors p and b (Table 3-1).  

 

3.2.3 Model calibration, validation and uncertainty analysis 

To avoid overfitting and to investigate parameter uncertainty, we were not optimizing to find one best 

parameters set during the calibration period, but applied a rejectionist Monte Carlo approach and followed 

the concept of equifinality, where several parameter sets can result in equally adequate model runs (Beven 

& Binley, 1992). The model was calibrated using the data of the FACE rings under aCO2 and eCO2 in 2007, 

where only a small difference in water supply occurred. The calibration approach followed the scheme 

outlined in Figure 3-1. The model was validated by comparing simulations with the final parameter sets 

with field measurement of the wet and dry, aCO2 and eCO2 treatments in 2008.  

 

Figure 3-1: Flow chart of the conducted model calibration approach. For reasons of optimization the prior 

parameter ranges were iteratively narrowed. Finally, 46 posterior parameter sets for all four treatments in 

the FACE experiment in Braunschweig in maize 2007 were identified. 
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Based on literature values and expert knowledge three CMF and eleven PMF parameters were selected and 

an upper and a lower limit was set for every parameter (Table 3-1). 50,000 parameter sets for the 14 

parameters were randomly picked assuming a uniform distribution within the defined ranges and using the 

latin hypercube algorithm (McKay et al., 1979) as implemented in the SPOTPY package (Houska et al., 

2015). Each of the four treatments was then simulated with each of the 50,000 parameter sets. Hereafter, we 

followed an independent multi-criteria model selection approach (Houska et al., 2017), i.e. we compared 

simulated and measured biomass and soil moisture data from 2007 as four independent criteria for model 

calibration. For the evaluation of a model run, the root-mean-squared error (RMSE) was taken as the 

objective function. RMSEcrit thresholds were defined as <6 vol.% for soil moisture and 

RMSEcrit  <1.30 Mg ha-1 for biomass. Only model runs that resulted in all four treatments of 2007 in smaller 

RMSE values than the user-defined thresholds of RMSEcrit were further considered. In this study, we 

conducted the rejectionist-based Monte Carlo approach iteratively to optimize the simulations. For this, the 

parameter ranges were adapted based on the results of the previous model run. Parameter sets were randomly 

picked using latin hypercube sampling. The posterior parameter ranges are listed in Table 3-1. Posterior 

parameter sets were validated by using biomass and soil moisture data of 2008. 

Table 3-1: Parameter ranges of the 14 parameters as used in the uncertainty analysis. Listed are the prior 

ranges at the beginning of the analysis and the final ranges that was found in the 46 posterior parameter sets.   

parameter description and unit prior posterior 

  ranges ranges 

Min      Max 
  

Min Max 

soil hydraulic parameters (CMF) 

α inverse of the air entry potential, empirical [cm-1] 0.01 0.70 0.02 0.04 

ksat saturated conductivity [m day-1] 0.1 12 5 6 

n shape parameter of the van Genuchten retention curve, 

empirical [-] 

1.1 1.5 1.4 1.5 

 

plant specific parameters (PMF) 

b CO2 response factor of rue [-] 0 1 0 0.3 

cr leaf extinction coefficient [-] 0.1 0.8 0.6 0.8 

leafleafdev leaf biomass allocation factor during leaf development [-] 0.70 0.95 0.70 0.95 

leafstemelong  leaf biomass allocation factor during stem elongation [-] 0.3 0.5 0.3 0.4 

leafweights specific leaf weight [g m-2] 20 110 80 110 

p CO2 response factor of stomata [-]  0 1 0.7 1 

rst
min min stomatal resistance of individual leaves under optimum 

conditions [s m-1] 

40 130 110 130 

rueref radiation use efficiency at 380 ppm CO2 [g MJ-1] 3.0 4.5 3.9 4.0 

shootleafdev shoot biomass allocation factor during leaf development [-] 0.4 0.6 0.5 0.6 

tbase min temperature for plant growth [°C] 5.0 12.0 5.0 5.5 

ttemergence thermal time at emergence [°days] 20 200 80 100 
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3.3 Results 

The rejectionist-based Monte Carlo approach identified 46 parameter sets for accurate simulation of biomass 

and soil moisture under aCO2 and eCO2 in combination with wet and dry conditions in the year 2007. The 

prior parameters ranges could be narrowed and revealed optima (Supporting Information Figure S 3-2). The 

coefficient b showed only values <0.1, which described a small response of biomass accumulation to eCO2. 

Factor p was >0.7, which represented a strong increase in stomatal resistance under eCO2. Radiation use 

efficiency rueref at 380 ppm had a maximum at 3.91 g MJ-1. The hydrological parameters n and α revealed 

optimal settings at 1.42 and 0.03 and ksat ranged between 5.2 and 5.6 m day-1. 

The coupled hydrological-plant growth model performed well for biomass simulations in all treatments in 

the calibration year 2007 with an RMSE <1.30 Mg ha-1 (Figure 3-2). The accurate model performance was 

further approved by a not significant difference between simulated and measured biomass (p > 0.1 in all 

treatments in 2007 (Supporting Information Table S 3-4)). On average, the simulated biomass at harvest 

was 21.2 ±0.3 and 21.3 ±0.2 Mg ha-1 under aCO2 and eCO2, similar to measured yields of 21.4 ±0.6 and 

21.7 ±0.8 Mg ha-1, respectively. Water stress was negligible in all treatments throughout the growing period 

in 2007 (Supporting Information Figure S 3-3). This resulted in similar yields in 2007, when comparing the 

wet and dry treatments (Figure 3-3a). In line with the field data, the coupled model simulated no CO2-

induced increase in biomass at harvest in 2007 (measured wet and dry: +2.1 and +0.7%, simulated wet and 

dry: +0.6 and +0.6%, Figure 3-3b). 

In the validation year 2008, results of the hydrological-plant growth model showed slightly higher RMSEs. 

In the wet treatment, the RMSE was below 1.2 and 1.7 Mg ha-1 under aCO2 and eCO2 for the biomass 

simulations. There was no significant difference observed between measured and simulated biomass in the 

wet treatment 2008 (p > 0.1, Supporting Information Table S 3-4). The model simulated again no relevant 

CO2-induced biomass increase in the wet treatment (+1.3%) which was in agreement with field observations 

(-1.0%). Simulated biomass at harvest was 22.9 ±0.6 and 23.2 ±0.6 Mg ha-1 under aCO2 and eCO2 in the 

wet treatment. Similar biomass yields were measured in the field with 23.0 ±0.1 and 22.8 ±1.0 Mg ha-1 

(Figure 3-3a). However, in the dry treatment a significant increase of +20% in biomass was simulated 

(Kruskal-Wallis test: p < 0.01). A marked biomass response was also observed under eCO2 with +25% in 

the dry treatment in 2008 (Figure 3-3b). The measured biomass under eCO2 was statistically slightly 

different from the simulated biomass (p = 0.024). The simulated water stress, which occurred during the 

growing period, was distinctly reduced by -37% under eCO2 from middle of July to harvest (Supporting 

Information Table S 3-3).  
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Figure 3-2: Time series of biomass and soil moisture in the different treatments: wet, dry, aCO2 and eCO2; 

a-d) mean total aboveground biomass (TAB), and e-h) mean soil moisture in 0-0.16 m depth with standard 

deviation of the Braunschweig FACE rings with maize. Measured values = dots, simulated = solid line, 

aCO2 = a), c), e) and g), eCO2 = b), d), f) and h). The number of posterior parameter sets was n = 46 (shaded 

area around the mean). 

 

In addition to the biomass, the CMF-PMF adequately simulated the course of the measured soil moisture in 

all treatments in 2007, showing an RMSE <6 vol.% (Figure 3-2). In the dry treatment, the simulated soil 

moisture for the depth 0-0.6 m was on average 19.3 ±2.1 and 20.9 ±1.5 vol.% under aCO2 and eCO2, while 

observations were only slightly smaller with 18.9 ±4.6 and 20.3 ±4.2 vol.%, respectively (Supporting 

Information Figure S 3-1). In the wet treatment, the simulated soil moisture was on average 20.6 ±1.8 and 

21.4 ±1.5 vol.% under aCO2 and eCO2. This was in agreement with the measurements, where the soil 

moisture was 19.4 ±4.7 and 21.2 ±4.0 vol.%. The model simulated no CO2-induced change in soil moisture 

(dry: +1.6 vol.%, wet: +0.8 vol.%), which was in line with the observed data (dry: +1.4 vol.%, wet: 

+1.8 vol.%). Minor deviations between observations and simulations should also been seen from the aspect 

of the measurement accuracy of 1-2% of the soil moisture sensors used. 

In the validation period 2008, the model uncertainty was small, with RMSEs below 6 and 7 vol.% in the 

wet and dry treatment, respectively. Especially, in the dry treatment in 2008, the model showed a good 

model performance and reproduced the measured low (around 10 vol.%) and higher soil moistures (around 

20 vol.%), especially in the upper 0.16 m of the soil column (Figure 3-2). In 2008, the coupled model 
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simulated an average soil moisture for the depth 0-0.6 cm of 15.0 ±2.9 and 16.9 ±2.0 vol.% in the wet, and 

9.2 ±4.3 and 10.3 ±4.1 vol.% in the dry treatment under aCO2 and eCO2, respectively. Observed soil 

moistures were in the same ranges with 16.7 ±3.6 and 17.8 ±3.2 vol.% (wet) and 10.6 ±4.0 and 13.1 ±3.9 

vol.% (dry) under aCO2 and eCO2. Under eCO2 the hydrological-plant growth model simulated no increase 

in soil moisture beyond the measurement accuracy (wet: +1.9 vol.% and dry: +1.1 vol.%). Likewise in the 

measurements no change in soil moisture was observed under eCO2 (wet: +1.1 vol.% and dry: +2.5 vol.%).  

 

Figure 3-3: Simulated and measured biomass in the wet and dry treatment in 2007 and 2008 in 

Braunschweig, Germany. a) Absolute total aboveground biomass (TAB) of maize [Mg ha-1] at harvest; gray 

boxes include 50% of the model runs and error bars include 90% of the model runs, median = solid line, 

mean = dotted line; black dots indicate mean of measured data, error bars show the standard deviation; b) 

Simulated (light gray) and measured (gray) relative impact of eCO2 on TAB of maize [%] at harvest, error 

bars indicate the relative standard deviation of the difference between the simulated means. 

 

CMF-PMF simulated a significant (p<0.05) reduction of the evapotranspiration under eCO2 in 2007 by -15% 

(wet and dry) and in 2008 by -14% (wet) and -2% (dry) during the respective growing period of maize. The 

simulated transpiration was reduced by -22% (dry and wet 2007, wet 2008) and -6% (dry 2008). In turn, the 
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evaporation increased under eCO2 by +8% in 2007 and by +12.5% and +10.4% in 2008 in the wet and dry 

treatment (Figure 3-4). 

The water use efficiency (WUE) was calculated by dividing the biomass at harvest by accumulated 

evapotranspiration from sowing to harvest. In both years a significant (p < 0.01) increase in WUE was 

simulated under eCO2. The strongest enhancement occurred in the dry treatment in 2008 (+22.0%) 

compared to +17.4% in the wet treatment 2008 and +17.8% in both setups in 2007 (Figure 3-4, Supporting 

Information Table S 3-5). 

 

 

Figure 3-4: Simulated relative impact of eCO2 [%] in the wet and dry treatments in 2007 and 2008 on total 

aboveground biomass (TAB), soil moisture (SW), evaporation (E), transpiration (T), evapotranspiration 

(ET) and water use efficiency (WUE). 

 

3.4 Discussion 

3.4.1 Model performance 

For investigating the combined effect of eCO2 and different water supply on the C4 crop maize we applied 

the coupled hydrological-plant growth model CMF-PMF. To identify the values of the implemented CO2 

response factors, the model was calibrated under ambient and elevated CO2 conditions using data from the 

maize FACE experiment in Braunschweig, Germany in 2007 (Manderscheid et al. 2014). For model 

validation, we used data of the consecutive year 2008. The model performance was evaluated using RMSE. 
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The RMSE of the biomass simulations was very small in 2007 with 1.3 Mg ha-1 for all treatments. In 2008, 

the RMSE was around 1.7 Mg ha-1 in the wet treatment and 2.4 Mg ha-1 in the dry treatment. This 

performance was good compared to other published studies. Cavero et al. (2000), who evaluated the 

EPICphase model using field data of a maize experiment under restricted water conditions in Zaragoza, 

Spain, reported for instance an RMSE of 3.8 Mg ha-1. Durand et al. (2017) estimated a mean RMSE of 

2.1 Mg ha-1 when simulating biomass at harvest of the FACE maize in Braunschweig in 2007 and 2008 with 

an ensemble of 21 crop models. The RMSE of the soil moisture was <6% in 2007 and <7% in 2008 all 

treatments. A similar performance has been shown in other studies. Saseendran et al. (2005) calculated an 

RMSE between 5 to and 9% using CERES-Maize model, when comparing simulated soil moisture with 

measurements of a field experiment with three maize hybrids in Colorado, US. Eitzinger et al. (2004) found 

RMSEs of soil water content between 1 and 7% comparing simulated soil moisture of the CERES-Wheat 

model with observed soil moisture in a field experiment with wheat and barley on different soils in 

Marchfeld, Austria. 

 

3.4.2 Hypothesis I: CO2 has a small fertilizing effect regarding biomass 

accumulation of maize 

We tested hypothesis I that CO2 enrichment only has a small direct-fertilizing effect with regard to the 

biomass of maize. This hypothesis could be approved. In 2007, there was no increase in either simulated or 

measured biomass. The absence of a fertilizing effect of eCO2 was also visible in the wet treatment of the 

validation year 2008. We were able to simulate the absence of a CO2 effect by calibrating the CO2 response 

factor of the biomass accumulation. This factor controls the plant biomass increase under eCO2 by changing 

the radiation use efficiency. Under aCO2 (=380 ppm) the calibrated radiation use efficiency rueref ranged 

between 3.9 and 4.0 g MJ-1. Stöckle et al. (1992) reported a similar value of 3.9 g MJ-1 for maize under 

350 ppm. Lindquist et al. (2005) suggested a rueref of 3.8 g MJ-1 for yield prediction under optimum 

conditions. For the simulation of a potential CO2 effect, rueref was adapted using factor b (see eq. 3-2). In 

this study, b was <0.1 in all final 46 parameter sets. This was low compared to former reported values of 

0.4 for C4 plants (Goudriaan et al., 1984) and 0.3-0.8 for C3 plants (Goudriaan et al., 1984, Kellner et al., 

2017). However, maize biomass accumulation was not stimulated by eCO2 as observed in the FACE 

experiment in Braunschweig (Manderscheid et al., 2014) and in the maize FACE experiment in the US 

(Leakey, 2006). Hence, for simulating the absence of the CO2 effect b needed to be small. Applying eq. 3-2 

with rueref = 4.0 g MJ-1 and b = 0.1, the increase of about 170 ppm CO2 led to a maximum rise of the 

radiation use efficiency under eCO2, rueCO2, to 4.1 g MJ-1. This in turn did not increase simulated biomass. 
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Hence, simulating the absence of a CO2 effect could be realized by calibrating and reducing the reported 

CO2 response factor with field data of the Braunschweig FACE experiment on maize.  

 

3.4.3 Hypothesis II: CO2 enrichment decreases water stress and leads to 

higher yields of maize under dry conditions 

Further, we tested hypothesis II that CO2 enrichment decreases water stress and leads to higher yields of 

maize under dry conditions only. This hypothesis could be approved as well. In 2007, there was no water 

stress simulated. However, water stress occurred in the dry treatment in 2008. In line with the field data, 

this led to a decreased biomass accumulation compared to the wet treatment. However, the water stress was 

significantly reduced under eCO2 (-37%). The reason for the strong reduction of water stress was a simulated 

increased stomatal resistance under eCO2. Factor p, which controls the change in stomatal response under 

eCO2, was >0.7 in all 46 final parameter sets, which represents a 70% increase in stomatal resistance. This 

was higher than the reported values of former studies, where p was 0.4 for C4 plants based on literature 

review (Morison, 1987), 0.29 for C4 pastures based on a meta-analysis (Wand et al., 1999) and 0.3 for a C3 

dominated grassland (Kellner et al., 2017). However, the linked reduced water stress allowed the plants to 

accumulate more biomass under eCO2 compared to aCO2. In line with this, our model succeeded in showing 

a distinct response of biomass to eCO2 under restricted water supply (+20%) in 2008. The simulated biomass 

increase was 5% lower than the observed increase in the field experiment (+25%). However, it was 

significantly higher than the response of the model ensemble of 21 maize crop models, which resulted in an 

increase of biomass of only 11% when applying the model ensemble to the FACE data of Braunschweig 

(Durand et al., 2017). In line with Durand et al. (2017), we emphasize the importance of an explicit stomatal 

control on transpiration in crop models. This enables the simulation of a strong CO2 response under dry 

conditions and facilitates to project reduced water stress. We emphasize the importance of up to date FACE 

data for calibrating CO2 response factors. Further optimization of the model, might be achieved by including 

for instance CO2 effects on plant architecture and partitioning between roots and shoots as indicated by 

Fodor et al. (2017). Anyway, more FACE experiments with maize under wet and dry conditions are needed 

to identify missing responses in recent crop models. 

 

3.4.4 Hypothesis III: CO2 enrichment reduces the transpiration of maize and 

hence, increases soil moisture and evaporation 

The third hypothesis tested was that CO2 enrichment reduces the transpiration of maize and hence, increases 

soil moisture and evaporation. The reduction of transpiration could be approved, however, a simulated 
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increase in soil moisture was not found above the measurement accuracy. The evaporation, however, was 

simulated to increase under eCO2. An accurate simulation of the transpiration is important, since an 

underestimated reduction of transpiration hampers the maize model to simulate a strong biomass increase 

under eCO2 (Durand et al., 2017). In our study, the simulated transpiration was reduced by 22% in 2007 

(wet and dry) and in 2008 (wet). A significant reduction in transpiration of maize has been observed in a 

FACE experiment in the US, where CO2 was increased from 376 ppm to 550 ppm (Hussain et al., 2013). 

Further, Manderscheid et al. (2016) indicated a decrease of transpiration by 20% when deriving transpiration 

rates from sap flow measurements of the maize in the FACE experiment in Braunschweig 2007 and 2008. 

In the dry treatment in 2008, the simulated reduction of transpiration under eCO2 was much smaller with 

only -6%. The small effect on transpiration was in line with observations by Manderscheid et al. (2016) who 

reported even no effect of sap flow on the dry treatment in 2008. The reduced water stress led to a significant 

increase in biomass production. The increased biomass in turn raised water consumption and finally 

counteracted the expected reduction of transpiration. In total, the evapotranspiration was reduced by -15% 

in 2007 (wet and dry) and in 2008 by -14% (wet) and -2% (dry). However, despite of an overall decreased 

water consumption, there was no increase in simulated soil moisture. The absence of increased soil moisture 

was already indicated by Manderscheid et al. (2014) who reported no significant increase in 2007 in both 

treatments and 2008 in the wet treatment. However, a significant increase in plant available water was 

detected on several dates during July and August 2008 in the dry treatment. The evaporation, which mainly 

depends on the water content and the incoming radiation at soil surface, was simulated to increase by 

8-12.5%. The water used for higher evaporation rates origins from the saved water by reduced transpiration 

under eCO2. A similar effect was reported by a recent study of Manderscheid et al. (2018), who investigated 

the effect of eCO2 (600 ppm) on evapotranspiration and water use of wheat. Finally, the simulated increase 

in water use efficiency of +22% in the dry treatment in 2008 conformed with an indicated water use 

efficiency of +25% in the same treatment by Manderscheid et al. (2014). We show an accurate simulation 

of the CO2 effect on biomass of the C4 plant maize under wet and dry conditions using the coupled 

hydrological-plant growth model CMF-PMF. We emphasize the importance of deriving plant specific CO2 

response factors using comprehensive FACE data. For the rigorous testing of plant growth models and their 

applicability in climate change studies, we call for data sets that go beyond single criteria (only yield 

response) and single effects (only elevated CO2). Using such data from the Braunschweig maize experiment, 

we were able to calibrate the CMF-PMF model independently for ambient and elevated conditions, 

including an uncertainty assessment. The validation was successful, even though the environmental 

conditions during the calibration period were significantly different. This supports our assumption that the 

CMF-PMF captures the relevant plant growth mechanisms induced by climate change. The parameters for 

the stomatal CO2 response can be transferred to other models of Zea mays growth to predict yields under 

global change conditions. The change in radiation use efficiency by elevated CO2 is crucial to model CO2 
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response for C3 plants, but should and can be omitted for C4 plants. This provides a simple blueprint to 

enable existing C4 plant models to include a response to coupled drought / CO2 effect on yield. The 

presented methodology is not limited to specific crop type or plant species, but a FACE dataset. We 

emphasize the need of further FACE studies, especially when dealing with global highly relevant C4 crops, 

such as maize, sorghum, millet and sugar cane, to enable the modelling community to update and test their 

process-based crop models. 
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Supporting Information 

 

Table S 3-1: Key dates of management of the maize crops in the FACE experiment in Braunschweig, 

Germany, in 2007 and 2008. 

 sowing harvest CO2 fumigation 

2007 30 Apr 01 Oct 09 Jun – 29 Sep 

2008 09 May 29 Sep 11 Jun – 02 Oct 

 

 

Table S 3-2: Water supply in the different treatments in 2007 and 2008 including the annual sums of rainfall, 

rainfall reduction, irrigation and total water input [mm]. 

year rainfall 

[mm] 

excluded rainfall  

[mm] 

irrigation  

[mm] 

total water supply  

[mm] 

  wet dry wet dry wet dry 

2007 844 - -9 34 - 878 835 

2008 609 - -57 119*, 94** - 728*, 703** 552 

* in aCO2 rings, ** in eCO2 rings 

 

 

Table S 3-3: Definition of soil hydraulic properties for the FACE experiment in Braunschweig as used in in 

CMF. The parameters ksat, α, n were considered in the uncertainty analysis. The parameters α2 and n2 were 

set to fixed values according to properties of a gravel layer. 

block depth  

[m] 

layers  

[m] 

porosity  

[%] 

ksat  

[m day-1] 

α  

[-] 

n  

[-] 

1 0.0 – 0.2  10 x 0.02  Φ1 = 44  ksat1 α1 n1 

2 0.2 – 0.4  5 x 0.04  Φ2 = 40 ksat2 = 0.66 · ksat1 α1 n1 

3 0.4 – 0.8   4 x 0.10  Φ3 = 38 ksat3 = 0.50 · ksat1 α1 n1 

4 0.8 – 0.9  1 x 0.10  Φ4 = 35 ksat4 = 25.0 α2 = 0.2  n2 = 1.5  
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Table S 3-4: Statistical analysis of difference between simulated and measured biomass using the Kruskal-

Wallis test, n = sample size. 

biomass measured biomass simulated n p-value 

2007 aCO2 wet measured  2007 aCO2 wet simulated  3/46 0.278 

2007 eCO2 wet measured 2007 eCO2 wet simulated 3/46 0.278 

2007 aCO2 dry measured  2007 aCO2 dry simulated  3/46 0.646 

2007 eCO2 dry measured 2007 eCO2 dry simulated 3/46 0.359 

2008 aCO2 wet measured  2008 aCO2 wet simulated  3/46 0.835 

2008 eCO2 wet measured 2008 eCO2 wet simulated 3/46 0.559 

2008 aCO2 dry measured  2008 aCO2 dry simulated  3/46 0.079 * 

2008 eCO2 dry measured 2008 eCO2 dry simulated 3/46 0.024 ** 

 

 

Table S 3-5: Mean WUE ±standard deviation [g m-2 mm-1] in all treatments. The columns Δwet and Δdry show 

the CO2-induced difference in WUE [%], two asterisks (**) indicates p<0.01, when testing significant 

difference between WUE under aCO2 and eCO2. 

 WUE 

wet treatment 

 WUE 

dry treatment 

 

year aCO2  eCO2 Δwet aCO2  eCO2 Δdry 

2007 5.4 ±0.1 6.4 ±0.2 +17.8** 5.4 ±0.1 6.4 ±0.2 +17.8** 

2008 5.0 ±0.1 5.8 ±0.2 +17.4** 4.7 ±0.2 5.7 ±0.3 +22.0** 
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Figure S 3-1: Soil moisture in 0-60 cm depth at the Braunschweig study site. Measured values = dots with 

standard deviation (n=3) and, simulated values = solid line with standard deviation (n=46), ambient CO2 = 

a) and c), elevated CO2 = b) and d). 

 

 

Figure S 3-2: Parameter density distribution of the 46 posterior parameter set using prior ranges. 
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Figure S 3-3: Time series of the simulated water stress factor (0 = full stress, 1= no stress) for the wet 

treatment (a and b), and the dry treatment (c and d); the solid black line represents the mean water stress 

factor of the simulations, the grey area indicates the standard deviation (n=46). 

 

Text S 3-1: Relative difference between the means 

The difference between the means, µe-a [Mg ha-1], was calculated by µe-a = µe -µa with µe = mean of TAB 

under eCO2 and µa = mean of TAB under aCO2. The relative difference, rµ [%], was then rµ = µe-a / µe * 

100. The standard deviation of the difference between the means, rσ e-a [%], was calculated by 𝑟𝜎𝑒−𝑎 =

√
𝜎𝑒

2

𝑛𝑒
+

𝜎𝑎
2

𝑛𝑎
 / µ𝑎 ∗ 100. 
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