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Microscopic identification of plant immune responses in phloem 

tissue of higher plants relating to bacterial infection 

Plants, like animals, sense microbial invaders by using receptor-based recognition of 

surface molecules and released effector proteins. Perception of bacterial components, 

among others, triggers signals that reach the phloem to promote systemical signaling, 

ultrastructural modification and sieve-element occlusion. Rapid and efficient sieve-element 

occlusion may forms a physical barrier to restrict pathogens and to accumulate signal 

molecules and reversibility ensures a systemic spread of signals. Reorganization of host 

cell (sub)structures may serve nutrient supply and systemic spread of the phytoplasmas or 

rather represents a defense reaction of the plant to prevent pathogen movement and 

nutrition flow. 

In this work, microscopical observations of the phloem of higher plants were performed in 

order to record immune responses to various bacterial stimuli.  

The effect of artificial infection on general immune responses of the phloem due to 

bacterial infection was examined using purified synthetic surface molecules. Flagellin-

triggered sieve-element occlusion was observed in Arabidopsis thaliana plants using 

CLSM. Absence of phloem sealing in flagellin-insensitive mutants indicated sieve-element 

occlusion as part of the receptor-based immunity cascade. Sieve-element occlusion 

observed in intact Vicia faba plants by dispersion of forisomes after flagellin treatment 

revealed Ca2+ to be involved in sieve-element occlusion. Nonappearance of forisome 

reaction in V. faba sieve-element protoplasts after flagellin treatment indicated the receptor 

not to be located in the sieve element-companion cell complex, pointing out the sites of 

flagellin perception and response to be spatially separated. The apparent exclusive 

presence of flagellin receptors in cortex cells still questioning the mode and composition of 

signal transfer to the sieve elements. 

The effect of natural infection on phloem responses was studied exploring the 

phytoplasma-phloem relationships at cellular level. CLSM analysis of V. faba infected with 

‘Candidatus Phytoplasma vitis‘ brought about Ca2+ influx into sieve tubes leading to sieve-

plate occlusion by callose deposition and/or protein plugging, presumptive dramatic effects 

on phytoplasma spread and photoassimilate distribution. EFM and TEM studies on 

Solanum lycopersicon infected with ‘Candidatus Phytoplasma solani’ showed a drastic re-

organization of sieve-element membrane structures in infected tissues. Next to typical 

macroscopical symptoms, structural modifications in the sieve-element plasma membrane 

- endoplasmic reticulum - cytoskeleton network appeared. However, the exact nature of 

these modifications remains speculative.  

In summary, the results of the present work lead to the conclusion that complex receptor-

mediated sieve-element occlusion and reorganization due to bacterial infection is part of 

the plant´s defense strategy against invasion and spread of harmful pathogens. Thus, we 

assume phloem based immunity belongs, next to other strategies, to the evolutionary 

concept of the plant immune response that completes a highly effective defense system to 

resist to potential infestation by microbial pathogens. 

Key words: phloem, plant immune response, flagellin, phytoplasma, microscopy 
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Mikroskopische Untersuchungen zur pflanzlichen Immunantwort im 

Phloem höheren Gefäßpflanzen in Antwort auf bakterielle Infektion 

In höheren Pflanzen, wie auch in Tieren, werden mikrobielle Eindringlinge über Rezeptor-abhängigen 

Erkennung von Oberflächen- und freigegebenen Effektormolekülen erkannt. Induzierte Immunabwehr 

führt, neben direkten Abwehrreaktionen, zur Freisetzung von intra- und extrazellulären Signalstoffen. 

Diese Signale erreichen das vaskuläre System und können dort im Phloem über den Massenstrom 

weitergeleitet werden. Neben der systemischen Wirkung durch Weiterleitung, Amplifizierung und 

Modifikation von Signalstoffen, können diese Signalmoleküle auch lokal in die Physiologie und 

Anatomie des Phloems eingreifen. Schneller und effektiver Verschluss der Siebelemente  könnte eine 

physikalische Barriere gegen Krankheitserreger darstellen und eine Anreicherung von Signalmolekülen 

in verschlossenen Siebelementen ermöglichen. Die Reversibilität des Verschlusses würde eine 

systemische Ausbreitung von Signalmolekülen gewährleistet. Reorganisation von Wirtszelle (Ultra)-

Strukturen können der Nährstoffzufuhr und systemischen Ausbreitung von Bakterien im Phloem dienen 

zugleich jedoch eine Abwehrreaktion der Pflanze darstellen, um die Bewegung und Ernährung der 

Erreger zu unterbinden. 

In der vorliegenden Arbeit wurden mikroskopische Untersuchungen des Phloems in höheren Pflanzen 

angestellt, um die Immunantwort des Siebelement-Geleitzell-Komplexes auf verschiedene bakterielle 

Reize zu untersuchen. 

Der Einfluss von artifiziellen Infektionen auf die generelle Immunantwort des Phloems wurde mit Hilfe 

synthetisch aufgereinigter Oberflächenmoleküle untersucht. Flagellin-induzierter Siebelement-

verschluss konnte in A. thaliana Pflanzen mit Hilfe der CLSM beobachtet werden. Das Ausbleiben des 

Verschlusses in Flagellin- unempfänglichen A. thaliana Mutanten wies auf eine Beteiligung des 

Siebelementverschlusses an der Rezeptor-vermittelten Immunität hin.  Die Dispersion von Forisomen in 

intakten V. faba Pflanzen nach Flagellin Applikation lies weiterhin Rückschlüsse auf eine Beteiligung 

von Ca
2+

 an dem Flagellin-vermittelten Siebelementverschluss vermuten. Fehlende Forisomreaktion in 

isolierten Siebelementzellen hingegen deuteten darauf hin, dass eine Flagellin Perzeption nicht direkt 

an den Zellen des Phloems ausgelöst werden. Die scheinbare Beschränkung der Flagellin-Rezeptoren 

auf Zellen des Cortex werfen bis zu diesem Zeitpunkt noch Zweifel an der Art und Weise der 

Signalübertragung zu den Siebelementen auf. 

Der Einfluss einer natürlichen Infektion auf Morphologie und Physiologie des Phloems wurden mit Hilfe 

der Phytoplasma-Wirts-Interaktion untersucht. CLSM Beobachtungen von Candidatus Phytoplasma 

vitis infizierten V. faba Pflanzen zeigten eine Ca
2+

-vermittelten Verstopfung des Siebelemente durch 

Callose- und Proteinablagerungen. Dieser Verschluss der Siebelemente hat neben der Einschränkung 

der Phytoplasmabewegung einen enormen Einfluss auf die Nährstoffverteilung im Phloem. EFM und 

TEM Untersuchungen zu Candidatus Phytoplasma solani infizierten S. lycopersicon Pflanzen zeigten 

weiterhin eine dramatische Umorganisation von Strukturen des Phloem. Neben den makroskopisch 

sichtbaren Veränderungen des Pflanzenkorpus, wiesen die Zellen des Phloems eine Reorganisation 

sowohl des Plasmamembran, des endoplasmatischen Retikulums als auch des Zytoskelettes auf. 

Durch die Komplexität der Infektion bleibt jedoch der zugrundeliegende Auslöser spekulativ. 

Zusammengefasst lassen die Ergebnisse der vorliegenden Arbeit den Schluss zu, dass ein Rezeptor-

vermittelten Siebelementverschluss und -reorganisation nach bakterieller Infektion Teil der Pflanze 

Verteidigungsstrategie gegen die Invasion und Ausbreitung von Erregern ist. Daher nehmen wir an, 

dass die Beteiligung des Phloem an der pflanzlichen Immunabwehr, neben anderen Strategien, zu 

einem evolutionären Konzept der pflanzlichen Immunantwort gehört, welche eine sehr effektive 

Abwehrsystem vervollständigt, um einen möglichen Befall durch mikrobielle Krankheitserreger 

standzuhalten. 

 

Schlagwörter: Phloem, pflanzliche Immunantwort, Flagellin, Phytoplasmen, Mikroskopie 
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1.1. Phloem 

475 million years ago plants conquered the land (Wellman et al. 2003). However, this 

important step was first possible with many adaptations of plant structure and 

reproduction. In the course of evolution, plants developed a cuticla to protect themselves 

against evaporation, they stabilized their body by strengthening tissue and formed a water 

independent-reproduction. Furthermore, the organization of the plant changed 

significantly: plants developed a tripartite body composed of root, shoot and leaves.  

The shoot forms the connection between the photosynthetically active leaves and the 

anchoring and water intake serving roots. Through this division and the ever-increasing 

distances between the different structures, plants developed specialized vascular tissue to 

spread nutrients and water throughout their different parts. While the structure and the 

function of xylem transport system are simple and limited, the phloem system represents a 

complex vascular tissue.  

 

1.1.1. Anatomy and function 

The phloem of vascular plants is composed of highly differentiated, longitudinally-

connected sieve tubes (Behnke and Sjolund 1990). To ensure symplastically transport,  

phloem cell complex undergoes complex differentiation processes during ontogenesis 

(Esau 1969; van Bel and Hess 2003).  

Originated from unequal division of common parental cells, the two parental cells develop 

different function and morphology (Esau 1969). While the companion cells (CC) are 

characterized by a dense, physiologically highly active cytoplasm, an enlarged nucleus 

and increased organelle frequency, the cell of the sieve element (SE) exhibits selective 

degenerative autolysis, a process which is referred to a partial programmed cell death (van 

Bel 2003). During this process the nucleus is degraded, the vacuolar membrane breaks 

down and ribosomes, Golgi apparatus and mitochondria are greatly reduced in number. 

The mature sieve elements retain only, next to the plasma membrane and a thin marginal 

cytoplasm area, the endoplasmic reticulum, the cytoskeleton and phloem-specific proteins 

and plastids (Knoblauch and van Bel 1998; Hafke et al. 2013). 

 

Due to the high hydrostatic pressure inside the sieve tubes, the sieve-element cell walls 

are strongly thickened (Esau and Cheadle 1958). In order to prevent cell isolation, sieve-

element cell walls are partial perforated by modified and enlarged pores. To connect the 

sieve element and the companion cells, highly branched pore-plasmodesma units (PPUs; 

van Bel 1996), lined with endoplasmic reticulum, enable sufficient transport of substances 
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such as assimilates, proteins (Yoo et al. 2002; Mitton 2009: Lattanzio et al. 2013) and RNA 

(Oparka and Santa Cruz 2000; Lucas et al. 2001) to provide nutrient and signal to the 

sieve elements, that lacks important metabolic functions necessary for cell maintenance 

(van Bel and Knoblauch 2000). At the longitudinal ends, circumscribed groups of sieve 

pores (van Bel 2003) afford an impermeable pipe that enable a systemic mass flow of 

water and solutes by a pressure gradient from source to sink (Münch 1930). 

 

The function of the phloem is to ensure symplastic long-distance transport of nutrients 

from source to sink tissues. The phloem system can be subdivided into three different 

phloem regions (van Bel 1996). The collective phloem is responsible for loading, the 

released phloem for unloading. The two phloem types are connected by the transport 

phloem, representing the largest phloem network (van Bel 2003).  

Synthesized in mesophyll cells of photosynthetic-active tissue, sucrose moves down a 

concentration gradient towards the sieve element through plasmodesmata (Turgeon and 

Ayre 2005; Schulz et al. 2005; Rennie and Turgeon 2009). As the sucrose symplastically 

reaches the phloem parenchyma-bundle sheath intersection, the sugar loading can 

species-dependent occur apoplastic or symplastic (van Bel 1993; Rennie and Turgeon 

2009; Slewinski and Braun 2010). Moreover, heterogeneous phloem loading and transport 

allows plants to rapidly adapt to environmental changes, such as biotic and abiotic 

stresses (Shalitin and Wolf 2000; Shalitin et al. 2002; Slewinski et al. 2013). In addition to 

sucrose, polyols (mainly sorbitol and mannitol) as well as oligosaccharides (of the raffinose 

family) can be loaded into the phloem (Rennie and Turgeon 2009). All types of 

carbohydrate serve as organic nutrients for energy metabolism. In addition, these 

molecules can act as a signal involved in growth and development (Koch 2004; Müller et 

al. 2011). 

 

Next to the transport of water and nutrients, this transmission of phloem-mobile signals 

from source to sinks is an essential part of phloem function. Multiple components of 

systemic signaling can regulate plant development. Systemic spread of signal molecules 

like proteins (Le Hir and Bellini 2013), phytohormones (Golan et al. 2013), diverse RNA 

species, such as microRNA (Kehr 2013) and mRNA (Hannapel et al. 2013), as well as 

RNA-binding proteins (Pallas and Gomez 2013) and electrical signal (Fromm et al. 2013) 

differ the mode of action on their target cells.  
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Next to the role in plant development and reproduction, long-distance transport of signal 

molecules is known to be essential for plant defense reaction in response to abiotic and 

biotic stresses. 

 

1.1.2. Phloem-based defense mechanism and signaling  

Even though plants lack circularly immune cell system as well as circulating immune 

receptors, plants are able to generate systemic immune responses. In this context, the 

phloem seems to play a critical role. Phloem-based defense signaling requires local 

generation, long-distance translocation, and perception of an inducing signal in remote 

tissues. Environmental interactions like pathogen infection or abiotic stresses stimulates 

phloem-mobile defense signaling that in turn induces systemic gene regulation, supposed 

to be integral parts of induced systemic resistance response of plants (van Bel and 

Gaupels 2004). 

 

As first line of defense, the plants developed preformed physiological barriers, such as 

waxy cuticle and strong cell walls, as well as constitutive antimicrobial molecules, such as 

saponins on the cell surface (Bednarek and Osbourn 2009) and defensins (de Beer and 

Vivier 2011), to restrict pathogen invasion and growth.  

 

By overcoming this first passive line, intimate plant-microbe interaction occurs, involving 

several plant and pathogen genes. Perception of pathogen invasion provides basal 

defense responses in plants (Jones and Dangl 2006). This pattern-triggered immunity 

(PTI) serves as the first active level of basal disease resistance, sufficient for most harmful 

pests.  

 

As second active line, immune response is activated in the presence of virulence effector 

proteins (Boller and He 2009). Release of effector proteins by pathogen invaders into the 

host cells serves to bypass or overcome PTI by suppressing plant cell death and immunity 

(Abramovitch et al. 2006; Zhang et al. 2007b; Block et al. 2008; Gohre et al. 2008) 

resulting in effector-triggered susceptibility (ETS). In turn plants sense effector in reliant on 

cytoplasmic resistance (R) proteins leading to effector-triggered immunity (ETI) to actively 

defend against host-adapted immune suppression (Nürnberger et al. 2004; Glazebrook 

2005; Jones and Dangl 2006).  

The co-evolution of violence and defense moreover culminates in pathogenic effector 

capability to interfere with ETI (Rosebrock et al. 2007) resulting again in ETS. This 
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evolutionary arm race (Bent and MacKey 2007) is explained by zick-zack model (Jones 

and Dongl 2006). 

However immune response related to ETI arise faster and stronger than the reactions of 

the PTI, suggesting that PTI is a weak variant of ETI (Tao et al. 2003; Jones and Dangl 

2006; Tsuda et al. 2009; Tsuda and Katagiri 2010), both seem to share similar network 

and activate a largely overlapping set of genes (Navarro et al. 2004; Zipfel et al. 2006 

Tsuda et al. 2009).  

 

Next to local immune responses such as cell wall reinforcement at the side of infection 

(Mauch et al. 1988), hypersensitive response (HR)-based cell death (Greenberg and Yao 

2004; Naito et al. 2008; Coll et al. 2010), local production of antimicrobial metabolites 

(Bednarek and Osbourn 2009) and enzymes (Mauch et al. 1988) as well as transcriptional 

reorganization (Ding and Voinnet 2007; Zhang et al. 2007), systemic immune responses 

are known to be initiated during plant-pathogen interaction (Ryals et al. 1996; Durrant and 

Dong 2004; Mishina and Zeier 2007; Dempsey and Klessig 2012).  

Upon pathogen attack (van Loon 1985), systemic expression of antimicrobial 

pathogenesis-related (PR) genes and oxidative burst are induced to develop enhanced 

systemic acquired resistance (SAR) in remote plant organs (Alvarez et al. 1998; Durrant 

and Dong 2004; Grant and Lamb 2006; Zhang and Zhou 2010). The long-lasting memory 

effect of SAR (Kuc 1987) and broad-spectrum disease resistance (van Loon and van 

Strien 1999) are associated with cell survival rather than cell death. SAR is accompanied 

by the local and systemic accumulation of salicylic acid (Malamy et al. 1990; Métraux et al. 

1990) as well as the production of other mobile signals such as methyl salicylic acid 

(MeSA), azelaic acid (AzA), jasmonic acid (JA), glycerol-3-phosphate (G3P), defective in 

induced resistance 1 (DIR1) and abietane diterpenoid dehydroabietinal (DA). The long 

distant transport of these mobile signal molecules is required for inducing SAR in distinct 

leaf tissues. Most likely, phloem mass flow provides the transmission of SAR-mediate 

signal molecules (Durrant and Dong 2004; Park et al. 2007; Attaran et al. 2009; Jung et al. 

2009; Mitton et al. 2009; Chanda et al. 2011; Chaturvedi et al. 2012). 

 

In addition to signal transmission, phloem cells are known to be involved in resistance 

response to pathogen and insects. Accumulation of defense-related compounds with toxic 

properties, such as sterols (Behmer et al. 2013) and alkaloids (Lee et al. 2007), as well as 

viscous and sticky compounds, like phloem proteins (Gaupels and Ghirardo 2013) 

interferes with biological pests.  
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Furthermore, direct phloem-based defense mechanisms like sieve tube sealing occur not 

only in abiotic interactions (Knoblauch et al. 2001; Furch et al. 2007; 2009; Thorpe et al. 

2010) but similarly in biotic relationship, provided by aphid styletpenetration (Jekat et al. 

2013), by fungal attacks (Gaupels et al. 2008) or by phytoplasmas (Musetti et al. 2010) 

and other fastidious prokaryotes (Koh et al. 2012). Thus, sieve-element occlusion seems 

to have an effective part in defense response.   

 

In response to stimuli, sieve-element occlusion is initiated by Ca2+ influx into the sieve 

tubes (Hong et al. 2001; Knoblauch et al. 2003), based on gating of Ca2+-permeable 

channels (Furch et al. 2009; Hafke et al. 2009). Reopening of sieve element is achieved by 

the degradation of callose and rearrangement of phloem proteins, most probably due to 

the activity of Ca2+-ATPases allowing Ca2+ efflux (Kudla et al. 2010; Huda et al. 2013). 

 

Sieve-element occlusion via callose deposition (Furch et al. 2007; 2009) and protein 

plugging (Ernst et al. 2012; Knoblauch et al. 2012) and most probably incorporating with 

components, such as sieve element plastids (Ernst et al. 2012), leads to impaired mass 

flow (Knoblauch and van Bel 1998) by sealing the sieve pores.  
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Figure 1: Phloem defense response. In response to injury, Ca
2+

 channels are activated leading to rapid 
Ca

2+
 influx from the apoplast and most probably from the endoplasmic reticulum. Previously parietal 

orientated phloem proteins as well as the giant protein body are relocated to the sieve pores. Furthermore, 
de novo synthesized callose seals the sieve pores. Both, callose deposition and phloem protein agglutination 
lead to Ca

2+
 dependent sieve-element occlusion. CalS: callose synthase, CC: companion cell, CW: cell wall, 

DF: dispersed forisome, ER: endoplasmic reticulum, P: protein, PC: parenchyma cell, S: stylet; SE: sieve 
element, SP: sieve plate. Green dots are indicating Ca

2+
 ions; insert shows higher magnification of callose 

synthase. Illustration Will et al. 2013 

 

Phloem proteins are usually parietal orientated or arranged as giant protein bodies to 

prevent dragging by mass flow and potential clogging of sieve pores (Ernst et al. 2012).   

In response to Ca2+ influx (Fig. 1 green ovals) phloem proteins agglutinate (Fig. 1 DF and 

red filaments) and function as one of the key players in rapid sieve tube sealing (Furch et 

al. 2007; 2009; Rüping et al. 2010; Ernst et al. 2011; 2012). In addition to phloem proteins 

callose is the second key player to accomplish long-lasting sealing of sieve plates (Fig. 1 

purple formation). In intact phloem tissue, callose deposition is involved in functioning and 

development of the sieve elements and mass flow regulation (Barratt et al. 2011; Xie et al. 

2011). Upon Ca2+ influx into the sieve element de novo synthesis of callose lead to sieve-

pore sealing (Furch et al. 2007; 2009). 
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1.3.1. Goal part “Flagellin”: 

Contrasting to the progress made in signal transduction and accumulation of defense-

related compounds, very little is known about classification of phloem-based immune 

responses. It is important to understand the mechanisms and reactions of sieve-element 

cells concerning immune reaction to bacterial infection. Exploring this particular field of 

pathogen-host interaction will help to understand the complexity of innate and adaptive 

plant immunity. Prospectively, this knowledge can lead to the development of innovative 

approaches for crop protection by developing new strategies and specific targets for 

resistance induction.  

 

Though, the role of phloem as route of systemic signaling in plant immunity is adequately 

reported (van Bel and Gaupels 2004), the roles of immunity-based modification of phloem 

function and morphology are insufficiently understood. In particular, information about the 

participation of phloem cells in pathogen perception and signal initiation as well as the 

involvement of sieve-element occlusion, as first line of defense, are lacking so far. 

Based on this deficiency, the aim of this part of the work was to identify phloem defense 

mechanism imposed by plant pathogens that are involved in resistance response of plants. 

Mass flow interruption as well as investigations on the receptor-mediated response of 

calcium-based phloem reaction was investigated using intact and dissected tissue in Light 

Microscopy (LM) and Confocal Laser Scanning Microscopy (CLSM). In particular we 

addressed following questions: (1) Does application of bacterial elicitor induces Ca2+ 

influxes into sieve-elements? And does this (2) induces calcium dependent forisome 

reaction and (3) sieve-element occlusion? And, (4) does the perception of bacterial elicitor 

occurs at the sieve-element cells? 
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1.2. Phloem-restricted pathogenic bacteria: Phytoplasmas 

Phytoplasmas are plant-pathogenic prokaryotes belonging to the class Mollicutes, a group 

of wall-less micro-organisms phylogenetically related to the low G+C Gram-positive 

bacteria (Weisburg et al. 1989). Given the high diversity of biological, phytopathological 

and molecular properties, the monophyletic group of ‘Candidatus Phytoplasma’, formerly 

known as mycoplasma-like organisms, is divided in several sub-taxa (IRPCM 2004) 

although they share a high 16S rRNA gene sequence similarity.  

Phytoplasmas have a minimal gene set, variable among phytoplasma strains between 

530-1350 kb (Fraser et al. 1995; Oshima et al. 2004), and lack many genes otherwise 

considered to be essential for cell metabolism (Marcone et al. 1999.) Thus the survival of 

phytoplasma is probably due to the absorption of host cell substances (Galetto et al. 

2007).  

 

Because of the absence of a rigid cell wall (Seemüller 1990), phytoplasmas are highly 

pleomorphic. Thus the size varies between 200 nm to 800 nm in diameter (Kirkpatrick 

1992; Lee et al. 2000). The bacterial body is surrounded by a double plasma membrane 

(Verdin et al. 2003), predominantly consisting of immunodominant proteins (Berg et al. 

1999), which represent the majority of total cellular proteins (Kakizawa et al. 2004). Based 

on non-homologous protein sequences in various phytoplasma strains the 

immunodominant proteins can be classified into 3 types (Bertaccini and Duduk 2009): (1) 

immunodominant membrane protein (Imp), (2) immunodominant membrane protein A 

(IdpA) and (3) antigenic membrane protein (Amp).  

 

The occurrence of phytoplasmas in the host plants is restricted to the sieve elements. In 

nature phytoplasmas are transmitted to healthy plants by sieve-tube sap feeding insects in 

a persistent manner (Hogenhout et al. 2008). The vector-born transmission of 

phytoplasma relies on phloem-sucking insects (Weintraub and Beanland 2006), such as 

Cicadellidea (leafhoppers), Fulgoridea (cicada), Psyllidae (psyllids) and Aphidoidea (plant 

lice). Once a vector fed from sieve elements of infected plants, phytoplasmas enter the 

vector through the insect stylet (Fig. 2 A). Inside the vectors the phytoplasmas move 

through the midgut and are thereby absorbed into the hemolymph (Christensen et al. 

2005). This leads to a systemically infection of the vector (Fig. 2 B). After replication inside 

the vector the phytoplasmas invade the salivary glands (Christensen et al. 2005). Inside 

the saliva, the phytoplasmas are transmitted to other plants by vectors feeding from the 
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phloem (Fig. 2 C). Inside the sieve elements the phytoplasmas moved systemically 

through the plant and lead to phytoplasma-related symptoms (Fig. 2 D).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Vector-born phytoplasma transmission. A) Diverse members of the Hemiptera order serve as 
vectors for phloem-restricted phytoplasma pathogens. By feeding from infected host phloem, the 
phytoplasmas enter the intestine. B) Inside the vector, the phytoplasmas multiply and systemically infect the 
vector by invading the hemolymph. C) After migration of the phytoplasmas into the salivary glands, infected 
vector transmit the phytoplasmas inside the host plant via phloem sucking. D) Inside the host phytoplasmas 
spread systemically and lead to typical disease symptoms. Illustration Sugio et al. 2011 

 

 
Since the first plant diseases symptoms were related to phloem colonizing bacteria (Doi et 

al. 1967) several hundred of diseases affecting economically important crops, such as 

ornamentals, vegetables, fruit trees and grapevine, before thought to be associate to viral 

agents, were related to phytoplasma infection (Lee et al. 2000).  

 

Despite their economic importance, progress on deciphering the plant-phytoplasma 

interactions has been slow as compared to other plant bacterial pathogens. To date, the 

physiological relationship between phytoplasmas and their hosts has remained largely 

unexplored (Hogenhout et al. 2008) since methods for in vitro culture of phytoplasmas are 

A 

B 

C 

D 
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not yet available, except of one that awaits further confirmation of feasibility (Contaldo et 

al. 2012). The current lack of technique keeps the door shut to transform or genetically 

modify phytoplasmas, or simply to isolate individual strains from mixtures present in nature 

(Seemüller et al. 2013). 

 

1.2.1. Phytoplasma-related disease symptoms: tactical calculus or defense 
response? 

Depending on phytoplasma strain, plant species, season and plant development stage 

(O’Mara et al. 1993), symptoms, such as incomplete lignification of canes (Milkus et al. 

2004), short internodes and increased cell proliferation of auxiliary shoots (Lee et al. 

1997), increase in size of the internodes looking like witches broom (Lee et al. 2000), 

flower abortion by phyllody (Dafalla and Cousin 1988) and virescence (Lee et al. 2000), 

curling and discoloration of leaves (Munyaneza et al. 2011) with intervein yellowing or 

reddening (Wahid and Ghani 2007) as well as vein swelling (Loebenstein et al. 2009) and 

stunting (Bertaccini 2007), lead to typical phenotype of phytoplasma infected plants.  

 

Symptoms are known to be related to reduced photosynthesis rate (Bertamini and 

Nedunchezhian 2001; Bertamini et al. 2002 a; b; 2004; Endeshaw et al. 2012) by 

accumulation of starch and disorganization of thylakoids (Musetti 2006) as well as stoma 

closure (Matteoni and Sinclair 1983; Vitali et al. 2013), misbalance of hormones (Leon et 

al. 1996; Tai et al. 2013) and altered gene regulation (Pracros et al. 2006). Furthermore, 

redistribution of carbohydrate such as anomalous accumulation of carbohydrates in source 

leaves, reduction in sink leaves and the roots (Lepka et al. 1999) and disrupted mass flow 

(Kartte and Seemüller 1991) are known to be associated to typical phytoplasma 

symptoms.  Many of these symptoms are believed to be induced by pathogen-host specific 

interaction since the resulting symptoms are, with few exceptions (Himeno et al. 2014), 

beneficial for phytoplasma viability and spread by insect vectors (Sugio et al. 2011).     

 

Phytoplasma genes, which are important in the relationship with host plants and/or insect 

vectors, seem to primarily encode small proteins (effectors) that target host cells 

(Hogenhout et al. 2008; Sugio et al. 2011). Effector proteins, both membrane-associated 

and cytoplasm released proteins, can interact directly with vector and host to influence 

developmental processes (Hogenhout et al. 2008).  
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Unlike plant pathogens that colonize apoplasmic area, intracellular phytoplasmas do not 

need protein secretion systems like type III secretion system present in other bacteria such 

as Pseudomonas spp. (Block et al. 2008) to release proteins from the bacterial body 

(Hogenhout et al. 2008). Instead, phytoplasma proteins are more likely secreted by the 

Sec secretion system. Genes coding SecA, SecY and SecE proteins, all essential 

components of the Sec translocation system, were found in diverse phytoplasma strains 

and known to be functional (Kakizawa et al. 2004; Bai et al. 2006; Lee et al. 2006). Sec 

translocation system among others includes transmembrane protein forming pore and the 

peripheral Adenosinetriphosphatase (ATPase), latter providing the motor of the export 

machinery. The ATP-dependent translocation of proteins secreted by the Sec pathway can 

be described in three stages: (1) Targeting of characteristic signal sequence at the N- 

terminal of the unfolded secretion protein. (2) Transmembrane crossing through a channel 

in the cytoplasmic membrane and (3) release of the protein into the ambient area 

(Economou 1999). Once inside the host cytoplasm, additional periplasmic factors trigger 

required protein fold into their correct conformation (Rizzitello et al. 2001). The proteolytic 

progressing of the secreted proteins by plant host factor (Matsubayashi 2011) enables the 

resulting small peptides to function as signaling molecules to interfere with host 

developmental processes (Sugawara et al. 2013). 

 

Because of the presence and the cleavage of the N-terminal signal sequence, an antigen 

membrane protein (AMP) is suggested to be transported by the Sec secretion system 

(Kakizawaet al. 2004). As above mentioned, the immunodominant membrane protein, one 

of the most abundant proteins in phytoplasmas, was identified in several phytoplasma 

strains (Kakizawa et al. 2006). After released by the phytoplasmas it remains at the 

bacterial surface, exposed to the environment, and interacts with vector cytoskeleton 

(Suzuki et al. 2006; Galetto et al. 2011) or plant-host actin filaments (Boonrod et al. 2012) 

indicating the interaction to be involved in phytoplasma transmissibility. The failure to 

interact with non-hosts or -vectors indicates phytoplasma species-specificity (Barbara et al. 

2001; Suzuki et al. 2010).    

 

Based on the presence of N-terminal signal peptides several secreted proteins are known 

to target host structures. Such, the secreted phytoplasma effector AY-WB protein 11 

(SAP11) was found to have a nuclear localization signal in the host (Bai et al. 2009). Once 

inside the host, SAP11 mediates phenotype modification of the plant body that makes the 

host more attractive to the vector and violate plant immune response to the advantage of 
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the insect vector (Sugio et al. 2011) and growth of bacterial pathogen (Lu et al. 2014). 

While SAP11 targets host structures beyond the phloem, the effector protein SAP54 leads 

to alteration of flower development resulting in leaves like flowers (MacLean et al. 2011) 

and tengu-su inducer (TENGU), inducing witches` broom effect (Hoshi et al. 2009), are 

proposed to target directly the phloem or neighboring cells (MacLean et al. 2014). 

Unloading of effector proteins is assumed to be achieved by plasmodesmatal transport 

(Hogenhout and Loria 2008). While it is reported that most effector proteins are less than 

40 kDa (Bai et al. 2009) the size exclusion limit in the sink tissue is about 50 kDa (Imlau et 

al. 1999), permitting effective protein transport.  

 

The morphological deformation effect and down regulation of immune responses implies 

the secreted proteins to act as virulence factors (Hoshi et al. 2009; MacLean et al. 2011; 

Sugio et al. 2011) inside and beyond the phloem cells.  

 

Recent study focused on the impact of secreted and membrane-associated proteins on 

alteration of plant morphology and defense response lacks the information about the origin 

of the occurring symptoms. While the structural effect of the effector can be driven by the 

phytoplasma (compatible interaction) to manipulate the plant metabolism as beneficial for 

the pathogen growth and distribution (Sugio et al. 2011; Lu et al. 2014), host plant may 

activate resistance genes, able to detect the presence of phytoplasma virulence factors to 

initiate an immune response (incompatible interaction), leading also to the morphological 

alteration (Zhong and Shen 2004).  

 

Usually pathogen effectors target host molecules that are involved in plant immunity to 

suppress immune reaction and in turn allow colonization of hosts (Guo et al. 2009). In 

presence of compatible resistance genes, plant initiate effector-triggered immunity (ETI) to 

defend against pathogen invasion (Jones and Dangl 2006; Nürnberger et al. 2004). In 

phytoplasma-host interaction it is unknown whether effector proteins activate ETI or further 

interfere with ETI during effector-triggered susceptibility (ETS) by acquiring additional 

effectors (Jones and Dangl 2006). Even though pathogenesis-related (PR) proteins are 

increased in diseased and symptomatic tissues (Zhong and Shen 2004), the high amount 

of phytoplasmas, the severe host symptoms and the suppression of salicylic acid-

mediated defense responses during infection tend to favor insufficient plant immunity or 

ETS. Moreover, effectors may be non-visible for plant immunity and thus serve as 
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signaling molecule to actively manipulate host immunity and so causing disease 

symptoms.  

 

Indeed, phytoplasmas lacks cell wall and genes coding for flagellin, thus no surface 

microbe-associated molecular pattern (MAMPs), like flg22, a 22-amino acid sequence of 

flagellin, are present in the host-pathogen interaction (Lee et al. 2000; Bertaccini and 

Duduk 2009). Nonetheless, phytoplasmas produce intracellular proteins, such as 

coldshock protein (CSPs; Tran-Nguyen et al. 2008; Wang et al. 2010; Andersen et al. 

2013) and elongation factor (EF-Tus; Schneider et al. 1997; Berg and Seemüller 1999; 

Koui et al. 2003) that can act as MAMPs in pattern-triggered immunity (PTI) in host-

phytoplasma interaction. During PTI microRNAs (miRNA), among others, target auxin 

receptor mRNAs and thus negatively regulate auxin signaling (Navarro et al. 2006; Hoshi 

et al. 2009; Robert-Seilaniantz et al. 2011) by post-transcriptional gene silencing to restrict 

pathogen growth. Both, phytoplasma infection (Ehya et al. 2013; Zhao et al. 2013; Gai et 

al. 2014) as well as  expression of effector proteins (Lu et al. 2014) in transgenic plants 

leads to host-pathogen-specific increased transcription of phytoplasma-responsive 

miRNAs, such as miRNA399 and miR393, the latter known to be also induced by flg22 

(Navarro et al. 2006). Thus secreted proteins as well as released MAMPs induce 

phytoplasma triggered PTI to participate in basal resistance against bacterial pathogens.  

 

Experiments focusing on regulation of diverse miRNA after phytoplasma infection, like 

down-regulation of miR166h-3p targeting III HD-Zip protein 6 involved in shoot meristem 

and vascular development or up-regulation of miR529b targeting chlorophyll synthase 

gene, lead to the conclusion that due to up- and down-regulation of miRNA, disorder 

symptoms can be caused by regulation of specific targets (Gai et al. 2014). Furthermore, 

studies on the impact of auxin signaling on regulation on plant developmental processes 

showed hormone balances to be involved in modification of plant architecture by cell 

proliferation and development (Nacry et al. 2005; Jain et al. 2007; Pérez-Torres et al. 

2008). This indicates the phytoplasma-induced miRNAs-based auxin modification as 

possible effects on symptoms, as in the past, alteration in auxin signaling due to 

phytoplasma infection has been supposed to be the driven force in phytoplasma-related 

symptoms (Musetti 2010).  Recent studies on miRNA overexpression in transgenic plant 

now confirming the assumption that typical phytoplasma-related symptoms, such as high 

degree of branching and the formation of small leaves, appear due to plant immune 

reaction in response to phytoplasma infection (Shikata et al. 2012; Ehya et al. 2013).  
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These results underline the role of the plant immune response not only in defense 

signaling against phytoplasma but likewise in architectural modification of host structure 

due to alteration of hormones, metabolism and development balances.  

 

1.2.2. Sieve-element immunity in phytoplasma infection  

It has long been assumed that the cells of the sieve elements are not directly involved in 

initiation of immune response to pathogenic infection, since there are a few drawbacks. 

While PRR-mediate immune responses occur in the extracellular space (Bent and Mackey 

2007), phytoplasma presence is restricted to the intracellular space of sieve-element cells. 

Thus phytoplasmas have the ability to hide from host recognition and immune defense 

reaction inside the phloem cells. Yet, they fail to remain undetected. One possible reason 

is the release of effector proteins into the cytoplasm, which can be recognized 

intracellularly (Bent and Mackey 2007) unlikely the sieve-element cells do not contain 

significant organelles like a nucleus, chloroplasts or the Golgi-apparatus (Knoblauch and 

van Bel 1998) indispensable for most plant immune responses. Again, they fail to remain 

undetected or succeed to be recognized.  

 

Probably, recognition occurs not directly in the sieve elements but most likely in the 

neighboring cells since effector proteins are produced in the phloem, but accumulate in 

nuclei of cells beyond the phloem (Bai et al. 2009). Released effector proteins or MAMPs 

induce signaling in adjacent cells, which in turn access the phloem cells to initiate immune 

responses affecting plant development (Hoshi et al. 2009). 

 

1.2.3. Impact of phytoplasma infection on phloem morphology and transport 

Not only increased attractiveness in favor of the vector is triggered by phytoplasma- 

induced macroscopical symptoms, but also microscopically anatomical aberration inside 

the phloem occurs in infected plants. Since phytoplasmas are not evenly distributed over 

the sieve tubes (Faoro 2005), despite the systemic spread via the phloem, phloem 

impairment and the subsequent development of the disease symptoms cannot be simply 

explained by the presence of phytoplasmas plugging the sieve elements, but also by the 

impact of phytoplasma-specific effector-based alteration of plant cells morphology and 

function (Hogenhout et al. 2008). Regardless whether the effector proteins are released 

and unloaded or remain bound to/in the bacterial body, both mechanism induce signals by 

targeting host molecules in infected area and via transport through phloem spread 

systemically.   
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Several studies demonstrated that phytoplasma infection induces important cytological 

and physiological modifications in the phloem of host plants, in several cases severely 

affecting phloem transport (Braun and Sinclair 1978; Kartte and Seemüller 1991; Lepka et 

al. 1999; Maust et al. 2003). Impaired function due to mass flow blockage and phloem 

cytological modification such as sieve-element necrosis (Braun and Sinclair 1978), 

phenolic incorporation (Musetti et al. 2000), abnormal callose deposition at the sieve 

plates (Christensen et al. 2005), phloem lignification (Gatineau et al. 2002) as well as 

disordering and thickening of sieve-element walls (Musetti et al. 2000) and collapse of 

sieve elements and companion cells (Kartte and Seemüller 1991), lead to alteration of host 

structure and result in symptoms such as reduction of productivity, general decline, 

reduced plant vigor (Kartte and Seemüller 1991).  

 

It has been speculated that mechanisms involved in phloem impairment could differ 

between pathosystems and vary with the plant susceptibility to infection (Kartte and 

Seemüller 1991; Musetti and Favali 1999). Due to sieve-tube blockage, accumulation of 

carbohydrate in source leaves and reduction in sink leaves and in roots (Lepka et al. 1999) 

occurs. Sieve-element occlusion would be among the key events leading to formation of 

physical barriers preventing movement of phytoplasmas in planta (Musetti et al. 2010) or 

either represents the first beneficial proceedings of phytoplasma to accumulate nutrition 

(Chen 2014).  

 

Expression of genes, responsible for callose deposition in sieve tubes is finely tuned. This 

is exemplified by the role of Glucan Synthase-Like 7 activity in normal sieve-element 

maturation as well as in the response to wounding (Barratt et al. 2011; Xie et al. 2011) 

showing that callose production is a balance act for plants. An analogous trade-off event 

must occur in infected plants: massive callose deposition restricts host colonization by 

phytoplasmas, but at the same time impedes photoassimilate transport. A high degree of 

sieve-tube occlusion, required to permanent immure of phytoplasmas is accompanied by 

an appreciable up-regulation of callose synthase, as reported in phytoplasma-infected 

apple plants and grapevines (Musetti et al. 2010; Santi et al. 2013). 

 

It is known that sieve plates are plugged by proteins in response to mechanical injuries 

prior to callose deposition (Furch et al. 2007; 2010). Structural proteins in sieve tubes have 

been observed for a long time (Cronshaw and Sabnis 1990). Some of these proteins, later 

named sieve element occlusion (SEO) proteins (Pelissier et al. 2008), are involved in 
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sieve-tube plugging. In Fabaceae, SEOs are aggregated in giant protein bodies called 

forisomes (Knoblauch et al. 2001). In response to different stresses, such as wounding, 

burning and cooling, forisomes undergo a conformational change from a condensed to a 

dispersed state, which plugs the sieve plates and prevents loss of photoassimilates 

(Knoblauch et al. 2001; Furch et al. 2007; Thorpe et al. 2010). Genes encoding SEO 

protein components do not only occur in Fabaceae (Pelissier et al. 2008), but also appear 

to be widespread among dicotyledonous plants (Rüping et al. 2010). Preliminary gene 

expression analyzes for SEO protein components revealed a tendential up-regulation in 

phytoplasma-infected apple trees as compared to healthy ones (Musetti et al. 2011) 

indicating potential involvement in phloem occlusion in response to phytoplasma 

colonization. 

 

Callose synthesis as well as phloem-protein aggregation are Ca2+-dependent phenomena 

(Köhle et al. 1985; Knoblauch et al. 2001) triggered by Ca2+ influx into the sieve elements 

(Furch et al. 2007; 2009; 2010). Occlusion events (Musetti et al. 2008) thus suggest that 

phytoplasma infection induces gating of Ca2+ channels and consequent influx of Ca2+ into 

sieve elements (Rudzińska-Langwald and Kamińska 2003; Musetti et al. 2008).  

 

1.2.4. Concentrated efforts of plant immunity in phytoplasma-host interaction  

Although plant immunity reaction seems to be insufficeient most of the infection time, 

leading to typical symptoms, a spontaneous remission of symptoms, called recovery, 

occurs in previously infected plants in nature (Caudwell 1961). A complete or partial, 

temporary or permanent recovery of symptomatic plants takes place in different species 

and regions (Osler et al. 2003).    

Based on environmental factors (Braccini and Nasca 2008) and plant variants (Bellomo et 

al. 2007) infection with arbuscular mycorrhizal fungi (Lingua et al. 2002), plant growth 

promoting rhizobacteria (D’Amelio et al. 2007), endophytic fungi (Musetti et al. 2007) and 

bacteria (Lherminier et al. 2003) are supposed to provoke recovery. Next to natural 

induction, artificial trigger such as abiotic stress, like mechanical injury (Osler et al. 1993; 

Borgo and Angelini 2002; Zorloni et al. 2002; Romanazzi and Murolo 2008), or non-

specific resistance inducer, like Indole-3-Acetic Acid (Curković Perica 2008) or 

Acibenzolar-S-Methy (Romanazzi et al. 2009) can lead to decreased symptom severity in 

infected plants.  

The absence of symptoms is associated with the disappearance of phytoplasmas in the 

crown probably due to restricted motility and agglutinations and degeneration of 
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phytoplasma cells in the aerial parts, which are still present and alive in the roots (Carraro 

et al. 2004). Induction of biochemical defense responses in the phloem, like accumulation 

of H2O2 in sieve elements (Musetti et al. 2005) and increased Ca2+ concentration (Musetti 

et al. 2008) as well as complete sieve tube-sealing by accumulation of proteins and callose 

(Musetti et al. 2010; Santi et al. 2013) are the basis of recovery (Osler et al. 1999; Musetti 

et al. 2004; 2007) and lead to host-induced antagonizing phytoplasma virulence (Musetti et 

al. 2005).   
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1.3.2. Goal part “Phytoplasma”: 

Knowledge about physiological plant-phytoplasma interactions is essential to understand 

the progression of phytoplasma disease symptoms and the molecular and ultrastructural 

impact on phloem cells. Profound knowledge in the respective field of phytoplasma-host 

interaction will help to understand phytoplasma virulence mechanism(s). In consequence, 

this can lead to the development of innovative control strategies aimed to prevent losses in 

crop yields related to phytoplasma diseases. Next to phytoplasma-resistant varieties and 

recovery induction, innovative technologies, such as RNAi (Zhang et al. unbublished), anti-

microbial peptides (Du et al. 2005) and plantibody (Le Gall et al.1998) specifically 

expressed in grafted phloem cells (Zhao et al. 2004; Maghuly et al. 2008) targeting Sec-

dependent secretion system can lead to an effective control of phloem pathogen motility 

and related host symptoms.  

 

Even if the macroscopic consequences of phytoplasma activity in the host plants are 

amply described (Bertaccini 2007), phytoplasma pathogenic effects on the sieve-element 

ultrastructure are poorly investigated. In particular, fundamental phytopathogenic traits 

such as mass flow interruption, adhesion capability to sieve-element membrane, as well as 

the relationship with the sieve-element endoplasmic reticulum and actin are lacking so far. 

As unequivocal in vivo evidence for phytoplasma-mediated sieve-tube occlusion is lacking 

thus far, one aim of this work was to design and optimize a method to perform in vivo 

observation of the phloem in phytoplasma-infected intact plants. Deposition of callose and 

phloem-protein conformation (forisomes), as well as phloem mass-flow, were examined 

and compared between healthy and phytoplasma-infected plants by using Confocal Laser 

Scanning Microscopy (CLSM). In particular, we evaluated if phytoplasmas induce Ca2+ 

influx leading to occlusion by callose deposition and/or protein plugging and inherent 

impairment of mass flow. Since phytoplasmas presumably may exert their action on plants 

by binding to sieve-element components (Christensen et al. 2005) second part of this work 

focused on the following questions: (1) Do phytoplasmas attach to the sieve-element 

plasma membrane and (2) what are the structural characteristics of such a link? (3) Do 

phytoplasmas interact with sieve-element actin or (4) sieve-element endoplasmic 

reticulum? To address these questions, the sieve-element plasma membrane– 

endoplasmic reticulum–actin network continuum was examined in relation to phytoplasma 

localization in healthy and phytoplasma-infected tissue by combined use of embedded 

tissue for Epifluorescence (EFM) and Transmission Electron Microscope (TEM).  
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2. Deep tissue imaging of phloem-complex  

Through its protected position inside the plant corpus, the phloem is a difficult candidate 

for microscopical investigations (Truernit et al. 2014).  

The most appropriate solution is the so-called “in vivo observation” method, developed by 

Knoblauch and van Bel (1998). This non-destructive technique allows the examination and 

imaging of in planta processes. Furthermore, in vitro methods like sieve-element protoplast 

isolation and precise sectioning of fresh plant material can reflect proximate natural 

conditions. Conducting analysis using embedded tissue and semi/ultrathin sectioning 

furthermore gains knowledge into ultrastructural characterization of vascular tissue.  

In this work, an integrated approach using combination of in vivo and in vitro experiments 

was set up using Light (LM), Confocal Laser Scanning (CLSM), Epifluorescence (EFM) 

and Transmission Electron Microscopy (TEM) in order to obtain a concept of the 

processes occurring in the phloem that occur during a pathogen infection.  
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2.1. Plant lines and growth conditions   

Vicia faba (‘cv Witkiem major‘ and ‘cv Aguadulce supersimonia‘) and Solanum 

lycopersicum plants (‘cv Micro-Tom’) plants were cultivated in pots in a greenhouse under 

standard conditions (21° C, 60-70% relative humidity, and a 14/10 h light/dark period). For 

growth in soil, Arabidopsis thaliana Col-0 and fls2-24 (Arabidopsis Biological Resource 

Center) seeds were germinated and grown in growth chambers (21° C, 60-70% relative 

humidity, and a 16/8 h light/dark period). Supplementary lamp light (model SONT Agro 400 

W; Philips Eindhoven, The Nederlands) led to an irradiance level of 200–250 µmol-2 s-2 at 

the plant apex. Plants were used in the vegetative phase just before flowering. For 

experiments, mature leaves with a size of approximately 8x6 cm (V. faba), 6x3 cm (S. 

lycopersicum) and 4x1.5 cm (A. thaliana) were used. 

 

 

2.2. Plant treatment  

2.2.1. Microbe-associated molecular pattern inoculation   

For experiments with artificial stimulus, plants were elicited with flagellin (flg22) synthetic 

peptides (GenScript, USA) solved in apoplasmic buffer (see 2.3.). A. thaliana leaves were 

pressure infiltrated 2 cm from the leave tip, 0.5 cm right and left of the midrib between the 

veins (Fig. 3).  

 
 

Figure 3: Technical procedure of pressure infiltration. A) Stabilization of the upper side of the leave. B) 
Infiltration of the liquid with gentle pressure on the syringe. C) Infiltration zones left the main vein in the 
center of the leaf (red circle). 

 

One finger on the upper side of the leaf stabilized the leaf while placing a syringe (without 

a needle) on the lower surface of the leaf (Fig.3 A). The solution was infiltrated with a 

gentle pressure on the plunger (Fig. 3 B), filling the intercellular space (Fig. 3 C). As a 

control, plants were infiltrated with apoplasmic buffer. For in vivo experiments V. faba 
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plants were treated by flooding the observation window with flg22 or buffer as a control. 

Protoplast reaction was induced via replacing the bath medium by a solution containing 

additional flg22. As a control, bath medium (see 2.4.) was exchanged by fresh medium.   

 

2.2.2. Phytoplasma infection  

For in planta experiments V. faba plants were infected with the phytoplasma associated to 

Flavescence Dorée (FD) of grapevines, ‘Candidatus Phytoplasma vitis’ (‘Ca. P. vitis’) 

strain C (16SrV-C; Lee et al. 2004). FD-infective leafhoppers (Euscelidius variegatus) were 

caged to inoculate 15-day-old broadbean seedlings in a controlled environment 

insectarium (22° C, 16 h photoperiod) for a week. Test plants were sprayed with an 

insecticide solution after the inoculation period and kept in a greenhouse for further 

growth. Control plants were not exposed to leafhoppers. Phytoplasma presence was 

assessed by real-time (RT)-PCR analyzes. Total DNA was extracted from 1 g frozen leaf 

midribs according to Doyle and Doyle (1990). Primers were designed on the 16S rRNA 

gene of ‘Ca. P. vitis’ (accession N° AY197645, M. Martini, unpublished data) and were 

16S(RT)F1 (5’-TTCGGCAATGGAAACT-3’) and 16S(RT)R1 (5’-

GTTAGCCGGGGCTTATTAAT-3’). RT-PCR analyzes were performed in a DNA Engine 

Opticon®2 System using 40 ng of DNA, 10X PCR Buffer, dNTPs 2.5 mM, MgCl2 25 mM, 

primers 300 nM each, 0.15 µl of AmpliTaq Gold DNA Polymerase 5 U/µl (Applied 

Biosystems, USA) and 10X SYBR® Green I in DMSO (Molecular Probes, Invitrogen, USA) 

in a total volume of 25 µl. Thermocycling was performed using the following conditions: 11 

min at 95 °C, 40 cycles of 15 sec at 94 °C, 15 sec at 57° C, 20 sec at 72° C, 8 min at 72° 

C. The melting curve was performed with a ramp from 65 to 95° C at 0.2° C/sec. 

Next to V. faba, S. lycopersicum plants were infected with the stolbur phytoplasma 

‘Candidatus Phytoplasma solani’ (‘Ca. P. solani’ subgroup 16 SrXII-A, Quaglino et al. 

2013), by grafting. Shoot tips from naturally infected S. lycopersicum plants grown in the 

field were used as scions and grafted onto healthy S. lycopersicum plants grown from 

seeds in a greenhouse. Control pants were growing without grafting. Phytoplasma 

presence was assessed in randomly collected leaf samples by real time RT-PCR 

analyzes. Total RNA was extracted from 1 g of frozen leaf midribs using RNeasy Plant 

Mini Kit (Qiagen GmbH, Germany). RNAs were reverse-transcribed using a QuantiTect 

Reverse Transcription Kit (Qiagen GmbH, Germany) with random hexamers, following the 

manufacturer’s instructions. Real time RT-PCR analyzes were performed using the 

primers 16S stol F2/R3 based on the 16S rRNA gene of ‘Ca. P. solani’ (accession n° 

AF248959, Santi et al. 2013). Real time RT-PCR reactions were set up with 2X Sso Fast™ 
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Eva Green® Supermix (Bio-Rad Laboratories Co., USA), primers at 400 nM each, and 10 

ng of cDNA in a total volume of 10 l. The reactions were performed in a CFX96 Real 

Time PCR Detection System (Bio-Rad Laboratories Co., USA) using the following 

conditions: 95° C for 2 min, 40 cycles of 95° C for 15 sec and 60° C for 1 min. The melting 

curve was performed with a ramp from 60 to 95° C. 

 

 

2.3. In vivo observation   

For in vivo observation of sieve tubes, cortical cell layers were removed from the lower 

side of the main vein of a fully expanded leaf, still attached to an intact plant, to create an 

observation window (Fig. 4; Knoblauch and van Bel 1998).  
 

 

 

 

 
 

Figure 4: Technical procedure of in vivo observation method. A) Cut off the cells of the midrib down to 
the phloem using a razor blade. B) Cover the resulting wound (red circle) with apoplasmic buffer. C) Stick the 
leave to a glass slide. D) Attach the experimental device including the intact plant to the microscope. 
Observe the phloem in transmission (E) or fluorescence mode (F).  

 
 

Access to the phloem was created by removing the cortical layer of the main vein by 

longitudinal slicing with a fresh razor blade (Fig. 4 A). After the exact number of cell layer 

was removed (one less, unclear image; one more, phloem injury) the open wound was 

protected with apoplasmic physiological buffer containing 1 mM CaCl2
.2H2O, 2 mM KCl, 50 

mM mannitol, 2.5 mM MES. H2O, 1mM MgCl2
.6H2O, pH 5.7 (Fig. 4 B). The leaf was 

adhered to a glass slide (Fig. 4 C) and attached to a microscope (Fig. 4 D). After the 

intactness of the phloem tissue was checked microscopically, transmission light (Fig. 4 E) 
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as well as a set of vital fluorescent probes (Fig. 4 F) was used to observe phloem anatomy 

and reaction.  

 

 

2.4. Protoplast isolation 

For analyzes at single cell-level, protoplast of V. faba plants were isolated as described in 

Hafke et al. 2007 with the following modifications (Fig. 5). For coarse mechanical isolation 

of stem phloem strands, tangential tissue sheets were sliced of the split internode and 

separated by threadbaring the internotes (Fig. 5 A; Knoblauch et al. 2003).  

 

Figure 5: Technical procedure of protoplast isolation. A) Longitudinal cuts of V. faba stem were 
transferred into enzyme mixture (B) containing cellulose and pectolyase. C) Overnight enzyme treatment 
digested the plant cell wall, releasing the protoplast into the solution. Only big ‘woody’ parts of the stem 
remain in the petri dish. D) Immersed in bath medium the protoplasts were located at the bottom of the well 
plate. E-F) Using increasing magnification sieve-element protoplasts (G) were identified by the presence of 
forisomes (white asterisk).  

 

The tissue was placed into a standard bath medium containing 600 mM mannitol, 1 mM 

DL-dithiotreitol (DTT), and 25 mM MES/NaOH, pH 5.7 (Fig. 5 B). After 15 min of 

incubation the tissue was transferred into an enzyme mixture containing 400 mM mannitol, 
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100 mM KCl, 5 mM MgCl2, 1 mM DTT, 0.2% (w/v) polyvinylpyrrolidone-25, 0.5% (w/v) 

bovine serum albumin, 0.5% (w/v) cellulase ‘Onuzuka’ RS (Yakult Honsha Co., Japan), 

0.03% (w/v) pectolyase Y-23 (Seishin Pharmaceuticals, Tokyo), and 25 mM MES/NaOH, 

pH 5.7 (compare with Hafke et al. 2007) and placed gently moving on a Lab Shaker (IKA, 

Germany) at 40 rpm overnight (Fig. 5 C). After incubation, remaining tissue was removed 

and protoplasts solution was transferred to microcentrifuge tube (Eppendorf, Germany) 

and centrifuged 1 min at less than 1000 rpm. The remaining supernatant was discarded 

and centrifugation was repeated. The lasting pellet was solved in fresh bath medium and 

transferred into a 96 well-plate (Fig. 5D). Sieve-element protoplasts were identified by the 

presence of huge protein polymers (Fig. 5 G; forisomes). The mechanism of forisome 

reaction was observed under inverted microscopy using transmission and fluorescence 

light.  

 

 

2.5. Free hand sectioning  

To observe the transport of fluorochromes in the mass flow of the sieve tubes in A. 

thaliana, free hand sections of fresh unfixed leaves were made. Keeping the detached leaf 

between the thumb and forefinger of one hand and the razor blade in the other hand result 

in precise and thin cross sections. Incurred sections were placed on a slide, mounted with 

apoplasmic medium. Covered with a coverslip, the samples were observed in light and 

fluorescence microscope mode.  

 

 

2.6. Embedding procedures and ultracut sectioning  

2.6.1 Immunocytochemistry and Transmission Electron Microscopy 

For fluorescence and immuno-electron microscopy randomly chosen leaf midrib segments, 

sampled, respectively from infected and healthy S. lycopersicum plants, were excised and 

cut into small portions (6-7 mm in length) and fixed in 0.2% glutaraldehyde, rinsed in 0.1 M 

phosphate buffer (PB), pH 7.4 and dehydrated in graded ethanol series (25-, 50-, 75%, 30 

minutes each step) at 4° C. After one hour of the final 100% ethanol step, the samples 

were infiltrated in hard grade London Resin White (LRW, Electron Microscopy Sciences, 

USA) - 100% ethanol mixture in the proportion 1:2 for 30 minutes, followed by 

LRW:ethanol 2:1 for 30 minutes, and 100% LRW (two immersion periods: the first for 1 

hour, followed by overnight infiltration) at RT. The samples were embedded in Eppendorf 

tubes using fresh LRW containing benzoyl peroxide 2% (w/w) according to manufacturer's 
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protocol and polymerized for 24 h at 60° C (Musetti et al. 2002). For Light and 

Fluorescence Microscopy semithin sections (1 to 2 m) were cut using a diamond knife on 

a Reichert Leica Ultracut E ultramicrotome (Leica Microsystems, Germany). Several serial 

semithin sections from each of the two plant groups (healthy and stolbur-diseased) were 

collected on glass slides. For Transmission Electron Microscope observation, several 

serial ultrathin sections (60–70 nm) of LR-White-embedded samples from each plant 

group (healthy or stolbur-diseased) were cut and mounted on carbon/formvar 400 mesh 

coated nickel grids (Electron Microscopy Sciences, USA). 

 

2.6.2. Conventional Transmission Electron Microscopy 

For ultrastructural analysis, randomly chosen leaf midrib segments, comprising 1–2 mm of 

blade on each side, sampled respectively from infected and healthy S. lycopersicum 

plants, were excised and cut into small portions (6–7 mm in length) and immersed in a 

solution of 3 % glutaraldehyde in phosphate buffer (PB) 0.1 M, pH 7.2, for 2 h at 4° C, 

washed for 30 min at 4° C in PB and post-fixed for 2 h with 1 % (w/v) OsO4 in the above 

buffer at 4° C (Musetti et al. 2011). Fixed samples were dehydrated in ethanol and 

propylene oxide, embedded in Epon/Araldite epoxy resin (Electron Microscopy Sciences, 

USA). Serial ultrathin sections (60-70 nm) of at least 100 samples from each plant group 

(healthy or stolbur-diseased) were cut using the ultramicrotome (Leica Microsystems, 

Germany) and collected on 200 mesh uncoated copper grids, stained and then directly 

observed under a PHILIPS CM 10 (FEI, Eindhoven, The Netherlands) Transmission 

Electron Microscope operating at 100 kV. 

 

 

2.7. Fluorescent probes and Confocal Laser Scanning Microscopic imaging 

In translocation experiments, phloem-mobile dyes were administered to the phloem after 

having removed the leaf tip. In the other studies, fluorochromes were administered directly 

on the bare-lying protoplast or phloem tissues at the observation window. All dyes were 

either solved in apoplasmic or phosphate saline buffer and incubated in the dark. The 

fluorochromes were imaged by Confocal Laser Scanning Microscopy using a Leica TCS 

4D/ TCS SP2, equipped with a HCX APO L 40X /0.80 W U-V-I water immersion objective 

(Leica Microsystems, Germany). Image capturing, processing and analysis were 

performed using Leica Confocal Software. To eliminate misinterpretations due to diffuse 

autofluorescence or reflection, all samples were observed by CLSM at the same excitation 

wavelengths and settings used for the below-mentioned fluorochromes as controls 
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(Supplemental Fig. 1-3). Transmission images were captured using the transmission 

detector in CLSM or by the use of a Leica DM LI inverted contrasting microscope equipped 

with a DFC300 camera (Leica Microsystems, Germany). Digital image processing was 

executed using Adobe Photoshop (CS, USA) to optimize brightness, contrast, and 

coloring. 

 

2.7.1. (5)6-carboxyfluorescein diacetate 

The phloem-mobile dye CFDA (Molecular Probes, Invitrogen, USA) was used to 

investigate phloem flow, according to Hafke et al. 2005.  In healthy A. thaliana Col-0, fls2-

24 and V. faba as well as FD-infected V. faba plants a droplet of freshly prepared 1 µM 

CFDA solution was applied, followed by an incubation period of 2 hours at RT. The phloem 

tissue was examined at a wavelength of 488 nm.  

 

2.7.2. Carboxy-2,7-difluorodihydrofluorescein diacetate 

To visualize reactive oxygen species (ROS) accumulation in sieve-element protoplasts of 

V. faba, H₂DFFDA (Invitrogen Molecular Probes, USA) was applied to the bath medium at 

a final concentration of 10 µM. After incubation of 30 min, protoplasts were washed and 

again immersed in bath medium. Observations were performed at 488 nm wavelength line.  

 

2.7.3. 4′,6-Diamidino-2-phenylindole 

Local staining by DAPI enabled detection of DNA, including plant and phytoplasma DNA, 

inside intact sieve elements. A drop of 1 µg/ml DAPI (Molecular Probes, USA) was applied 

to the observation window. After incubation for 15-20 min at RT in darkness, DAPI was 

removed, replaced by the apoplasmic buffer and the tissue was observed at wavelength of 

405 nm. In the majority of experiments, DAPI and CFDA were applied in succession (or in 

the reverse order) and the phloem tissue was observed at wavelength of 405 nm as well 

as 488 nm. 

 

2.7.4. 5-chloromethyl-fluoresceindiacetate/5-chloromethyl-eosin-diacetate 

CMEDA/CMFDA mixtures (Molecular Probes, USA), both membrane-permeant 

fluorochromes, were used to highlight forisome and protein accumulation in intact sieve 

tubes (Furch et al. 2007). Drops of a freshly prepared 1:1 mixture (v/v) were applied to the 

observation window and incubated for 1 h at RT. Tissues were observed at wavelength of 

488 nm. 
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2.7.5. Aniline-Blue  

In order to visualize callose depositions in sieve elements, a drop of aniline blue, (Merck, 

Germany) at the non-lethal concentration of 0.005% (Furch et al. 2007), was applied to the 

observation window and incubated for 30 min at RT. Aniline blue fluorescence was 

detected at wavelength of 405 nm. 

 

2.7.6. 1,2-bis(o-aminophenoxy)ethane-N,N,-N',N'-tetraacetic acid 

To reach a qualitative indication of Ca2+ concentrations in sieve elements, the membrane-

permeant Ca2+ marker Oregon Green BAPTA-1 (Invitrogen Molecular Probes, USA) was 

applied to the observation window at a concentration of 5 µM and incubated for 30 min. 

After removal of dye by rinsing with apoplasmic buffer for 30 min, observations of phloem 

tissue were performed at wavelength of 488 nm. 

 

 

2.8. Fluorescent probes, immunofluorescence staining and Epifluorescence 
Microscopy imaging 

In experiments using LRW embedded tissue, fluorochromes were administered directly on 

the semithin sections.  All dyes were dissolved in phosphate saline buffer and incubated in 

the dark. Transmission light and fluorescence imaging were captured by automated Leica 

DM4000 Epifluorescence Microscope equipped with a DFC digital camera and a 40X PL 

APO N.A. 1.25 oil immersion objective (Leica Microsystems, Germany). Image capturing, 

processing and analysis were performed using Leica Application Suite Advanced 

Fluorescence (LAS AF®). Digital image processing was executed using Adobe Photoshop 

(CS, USA) to optimize brightness, contrast, and coloring. To eliminate misinterpretations 

due to autofluorescence, unstained samples were observed at the same excitation 

wavelengths used for the fluorochromes as visual controls (Supplemental Fig. 4). 

 

2.8.1. 4′,6-Diamidino-2-phenylindole 

To detect phytoplasmas inside sieve elements as well as to localize nuclei in companion 

and parenchyma cells, sections were incubated in 0.3 µM of the DNA-specific dye DAPI 

(Invitrogen Molecular Probes, USA) for 2.5 hours (Loi et al. 2002). Briefly before 

examination of the sections, the dyes were removed and slides were washed twice with 

PB and air-dried. For observation, slides were consecutively exposed to excitation 

wavelengths within the spectral windows of 340 nm to 380 nm. Fluorescence signal was 

observed using long-pass filter starting from a wavelength of 425 nm.  



Material and Methods 

35 

2.8.2. N-(3-triethylammoniumpropyl)   -4-   (4-   (4-   (diethylamino)phenyl)butadienyl)  
pyridineiumdibromide 

To highlight plant cell and phytoplasma membranes, sections were treated with the 

membrane marker RH-414 (Invitrogen Molecular Probes, USA) for 2.5 hours at a final 

concentration of 4.3 µM (Furch et al. 2007). Again slides were washed twice with PB and 

air-dried. Observations were performed within an excitation wavelength of 470 nm to 490 

nm. Fluorescence signal was observed using long-pass filter starting from wavelength of 

505 nm.  

 

2.8.3. ER-Tracker Green 

To detect sieve-element reticulum, sections were incubated for 2.5 hours in 1 µM of ER-

Tracker Green (Molecular Probes, Invitrogen, USA; Furch et al. 2009). Briefly before 

microscopic examination, ER Tracker Green was removed and slides were washed twice 

with PB and then air-dried. For microscopic observation, slides were exposed to excitation 

wavelengths within the spectral windows of 450 nm to 490 nm. Fluorescence signal was 

observed using long pass filter starting from a wavelength of 515 nm. 

 

2.8.4. Texas Red conjugated antibody 

To identify and distinguish actin structures in healthy and stolbur-diseased S. lycopersicum 

leaf tissues, a secondary immunofluorescence technique was adopted (modified after 

Baskin et al. 1992). After blocking the unspecific binding sites in blocking solution (1% 

bovine serum albumin (BSA), 3% NaCl, 0.3% Triton X 100, 10% Tris HCl pH 9.5, 

dimethyldicarbonate (DMDC) H2O) for 30 min, slides were incubated in a commercially 

available unlabeled primary antibody against actin (clone 10-B3, monoclonal, 1:1000) 

diluted in 0.01 M PBS, pH 7.4, containing 15 mM sodium azide (Sigma-Aldrich Milan, Italy) 

for 30 min at RT. Subsequently, slides were incubated for 30 min at RT in a secondary a 

Texas Red (TR)-conjugated antibody targeted against mouse IgG, diluted 1:100 in 1x PBS 

(Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA). Between the incubation steps, free 

antibodies and blocking solution were removed by washing steps in PBS.  

To test the specificity of the first antibody, control setups were performed without primary 

antibody (Supplemental Fig. 4). For observation, slides were excited using a dichroic filter 

cube, excitation a wavelength of 540 nm to 580 nm and passing starting from 595 nm. 
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2.9. Immunogold labeling and Transmission Electron Microscopy 

For ultrastructural analysis of actin distribution in healthy and stolbur-diseased S. 

lycopersicum plants, experiments using LRW embedded tissue and immunogold labeling 

of plant actin was performed as follows (modified after White et al. 1994). To block 

unspecific binding sites, grids were placed on droplets of blocking solution made up of 

normal goat serum (NGS) diluted 1:30 in 1% BSA in PBS, pH 7.6, for 2 h at RT. Then, 

grids were incubated overnight at 4° C with primary mouse monoclonal antibody against 

actin (MAB anti-actin, clone C11, Agrisera, Vännäs, Sweden), diluted 1:200 in blocking 

solution. Control grids were incubated in 1 % BSA/PBS without primary antibody. All grids 

were then rinsed with PBS, and treated for 1 h at RT with secondary goat antimouse 

antibody coated with colloidal 5 nm gold particles (GAM 5, Auro Probe EM GAM G5 

Amersham, USA), diluted 1:40 in 1% BSA/PBS. Sections were stained in 3 % uranyl 

acetate and 0.1% lead citrate (Reynolds 1963) and observed under a PHILIPS CM 10 

(FEI, Eindhoven, The Netherlands) Transmission Electron Microscope operating at 100 

kV. 

 

 

2.10. Statistical analyzes 

Statistical analyzes were carried out using SPSS® (IBM® SPSS® Statistics 20). Required 

analysis on normally distributed date was performed on Shapiro-Wilk or Kolmogorov–

Smirnov test. Depending on variance analysis by Levene's test, the significance level was 

measured using Welch's t test or Student's t-test. Statistical significance level was set to 

5% (p<0.05). 
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3.1. Microscopical examination of artificial contaminated plant samples  

3.1.1. Spatial and temporal resolution of forisome in intact phloem 

3.1.1.1. Distribution and reactivity  

To observe phloem-based immune reactions triggered by bacterial elicitor, in vivo 

investigation of phloem tissue were made. This technique offers the opportunity to study 

phloem morphology and function in native plant tissue (Knoblauch and van Bel 1998). To 

assess knowledge about phloem immune responses, first the initial state of unstimulated 

phloem tissue was examined (Fig. 6). Based on the Light Microscopy z-stack analysis (Fig. 

6 A to E), to ascertain the exact localization, forisomes were classified in 12 different 

positions within the sieve element of V. faba (Fig. 6 F and G). Forisomes were first 

classified in terms of the location relative to the sieve element and the mass flow (Fig. 6 F).  

For this purpose the sieve elements were conceptually divided into three parts. Forisomes 

in the second third of the sieve element were classified as central. Forisomes upstream 

from the second third of the sieve element referred to as apical, downstream as basal.  
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Figure 6: Classification of V. faba forisome position based on 3-D analysis. A to E: Set of images taken 
at different focal planes of phloem tissue z-stack. Transmission images were collected at 4 µm intervals. 
Image (D) represents the main working plane. F to G: Schematic illustration of various locations and 
positions of forisomes in sieve elements. F) Depending on the direction of mass flow locations of forisomes 
can be grouped in basal, central and apical. G) In basal and apical location, forisomes can be located in 
contact to the sieve plate and the plasma membrane (1), only in contact to the sieve plate (2) or the plasma 
membrane (3) or without any contact to the sieve element (4). In central location, forisomes can only be 
located in position (3) and (4). CC: companion cell, ER: endoplasmic reticulum, P: plastids, PPC: phloem 

parenchyma cell, PPU: pore-plasmodesmata-unit, SE: sieve element, SP: sieve plate. Asterisk indicated 
forisome. Bars correspond to 10 µm. Illustration Furch et al. unpublished 
 

 

Following these location-specific differentiation, the forisomes were classified due to their 

contact to the sieve element (Fig. 6 G). Forisomes in contact to both, the sieve plate and 

the plasma membrane, are sub-divided in position 1. Forisomes only in contact to the 

sieve plate or the plasma membrane are termed position 2 and position 3, respectively. 

Forisomes without contact to the sieve element are grouped in position 4.    

 
 

Regarding the location of forisomes in unstimulated phloem of V. faba, forisomes were 

mainly located at the basal side of the sieve element (Fig. 7 A). Out of 1485 tested 

forisomes in V. faba about 82% were located basal in the direction of the mass flow, 11% 

central and 7% apical in the sieve element. Out of these basal (Fig. 7 B) and apical (Fig. 7 

D) located forisomes, around 80% of the forisomes showed a contact to the sieve element. 

In turns, more than 40% were in contact to both the sieve plate and the plasma 

membrane, including nearly 30% facing the companion cell membrane. In central located 

forisomes (Fig. 7 C) less than 35% of the forisome showed sieve-element contact.  
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Figure 7: Absolute frequency of forisome relative to location and positions in the sieve element of V. 
faba. A) Forisomes are grouped based on their appearance in the sieve element in basal, central and apical 
locations. B to D: Forisome position are furthermore sub-divided into forisomes that have contact to the sieve 
element with both ends (1) only one end (2,3) or do not have contact to the sieve element-membrane (4). 
Differentiation of the positions was made in basal (B), central (C) and apical (D) located forisomes. Black 
bars in B,C,D represent forisomes in contact to the companion cell membrane. 

 

 

The reactivity of the forisomes in intact V. faba plants were tested by carefully burning the 

leaf tip. After application of a distant heat shock, examinations of forisome reactivity at the 

respective locations were made (Fig. 8). Initiated by the burning of the leaf apex of V. faba, 

forisomes showed typical morphological modification (Furch et al. 2007). The dispersion of 

the forisome occurred in all cases in less than 30 seconds after heat application. While the 

reaction times (time lapse between stimulus and dispersion) were the lowest for basal 

forisomes, no significant differences between the locations or the positions as well as no 

clear correlation between reaction time and recondensation times could be shown (Fig. 8 

A,B; Significance was defined as p < 0.05; correlation coefficient R < 0,005). 
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Figure 8: Forisome reaction of V. faba in response to heat stimuli. Dispersion and recondensation time 
in defined locations (A; basal, central, apical) and positions (B; 1, 2, 3, 4) were recorded.  

 

 

However, immense variances were visible in the reactivity of the forisomes. More than 

70% of the basal forisomes showed a stimulus-based reaction, while less than 40% of the 

central and apical located forisomes showed a reaction (Fig. 8 A). Basal located forisomes 

in contact to the sieve plate showed with more than 70% due to heat stimulus the highest 

reactivity (Fig. 8 B). Forisomes without contact to the sieve plate or without any contact 

only showed 60% and less than 50% reactivity, respectively (Fig. 8 B).      

 

Considering the location of forisome after recondensation in relation to the position prior to 

dispersion, it is striking that forisomes mainly recondense in a slightly different position 

(Fig. 9). As reported above, in unstimulated sieve elements forisomes are most likely 

laying in the basal location in contact to both the sieve plate and the plasma membrane 

(Fig. 9 A). Already less than 20 seconds after burning the leaf tip, due to dispersion, the 

forisome is no longer visible in transmission light mode (Fig. 9 B). Only seconds after 

application of heat stimulus, the forisome reappears due to recondensation (Fig. 9 C). 

Comparing the angle of the forisome to the sieve plate before dispersion (Fig. 9 A) and 
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after recondensation (Fig. 9 C), the inclination reduced noticeable. While the forisomes 

prior to the stimulus were laying at a 20° angle inside the sieve elements (Fig. 9 A), 

forisomes after recondensation are laying in only 9° angle (Fig. 9C). Time-related 

movement of the forisome achieved the return of the initial position during the first 5 

minutes after heat stimulus (Fig. 9 D).    

 

 

Figure 9: Change of forisome position in V. faba due to distant stimulus. Prior to stimulus (A) basal 
forisome is laying in position 1 inside the sieve element. Shortly after dispersion (B) forisome recondense in 
position 2 (C) and moves back to position 1 within few minutes. PPC: phloem parenchyma cell, SE: sieve 
element, SP: sieve plate. In A,C,D asterisk indicated forisome; the angle is indicating the inclination of the 
forisomes to the sieve plate. Bars correspond to 10 µm. 
 

 

The results from in vivo observation of forisomes in V. faba shown above (some of them 

consistent from the master thesis “Controlling the movement of forisomes in Vicia faba and 

Phaseolus vulgaris by S.V. Buxa) correspond to the statement made by Furch et al. 2009.  

 

3.1.1.2. Flagellin-triggered forisome reaction 

To investigate the phloem-based immune responses triggered by bacterial elicitor, 

forisome reaction of V. faba in in vivo experiments was observed after replacing 

apoplasmic buffer against buffer containing diverse flagellin concentration (Fig. 10).  

In unstimulated V. faba plants condensed forisomes were located at the downstream side 

of the sieve element in contact to the sieve plate and the plasma membrane (Fig. 10 A, F, 
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K, and P). In response to application of 10 µM synthetic flagellin (n=14) to the apoplasmic 

buffer in the observation window (Fig. 10 B to E) the average forisome dispersion occurred 

2 minutes after application (shown for 4 min; Fig. 10 C) indicating a Ca2+-based forisome 

reaction (Furch et al. 2007). 

 
 
 

 
Figure 10: Forisome reaction to application of various flagellin concentrations to intact sieve 
elements of V. faba. Application of 10 µM (A to E), 1 µM (F to J) and 0.1 µM (K to O) purified flagellin lead 
to slow dispersion of forisomes. 0.01 µM did not induce forisome reaction (P to R). CC: companion cell, PPC: 
phloem parenchyma cell, SE: sieve element, SP: sieve plate. Asterisk indicated forisome; dotted line indicate 
dispersion started from the ends of the forisomes. Bars correspond to 10 µm. 

 

 

In average time between 10 min (shown for 15 min; Fig. 10 D) and 18 minutes (shown for 

16 min; Fig. 10 E) the forisome recondense slowly. Descending concentration of flagellin 

leads to a delayed reaction. Application of 1 µM flagellin (n=24; Fig. 10 G to J) triggers 

average forisome dispersion time of 4 to 6 minutes (shown for 4 min; Fig. 10 H) and 

average recondensation time between 15 minutes (shown for 29 min; Fig. 10 I) and 30 

minutes (shown for 30 min; Fig. 10 J) after application. Flagellin concentrations of 0.1 µM 

(n=12; Fig. 10 L to O) infrequent trigger forisome reaction (3 out of 12) while reaction time 
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remains stable compared to 1 µM flagellin stimuli. Of particular note is the initial dispersion 

of all forisomes apparently from the forisome tip (Fig. 10 B, G, and L spotted line).  

Flagellin concentrations lower than 0.1 μM are not able to trigger forisome reaction (n=15; 

Fig. 10 Q and R).   

 

3.1.2. Observation of mass flow interference  

To visualize alterations of sieve-element mass flow due to bacterial elicitor, phloem-mass 

flow was observed under Confocal Laser Scanning Microscopy (CLSM) using leaf cross-

sections and CFDA (Fig. 11). In plants, application of CFDA ((5)6 carboxyfluorescein 

diacetate) to exposed sieve elements leads to a phloem restricted transport of the 

fluorescent CF. The membrane-permeant, colorless CFDA enters sieve elements via the 

plasma membrane and, following de-esterification, the membrane-impermeant CF is 

translocated by mass flow through the sieve tubes (Oparka et al. 1994). Most of it is 

retrieved by companion cells and phloem parenchyma cells along the pathway and 

sequestered in the vacuoles (Knoblauch and van Bel 1998).  

In unstimulated plants the CF signal is visible along the flooded sieve elements of 

collateral vascular bundle in A. thaliana leaf main vein (n=8; Fig. 11 A and F). Both, basal 

cross sections (2 cm from leaf tip; Fig. 11 A), and apical sections (6 cm from leaf tip; Fig. 

11 F), showed CF fluorescence. 10 minutes after pressure infiltration of 1 µM flagellin (Fig. 

11 B and G) into the leaf, 4 cm from the leaf apex, phloem-mobile fluorescent dye was still 

visible at cross sections prior to the application side (n=5; Fig. 11 B) while no signal was 

visible at the cross sections behind the infiltration area (Fig. 11 G). However, 90 minutes 

after flagellin infiltration, fluorescence of CF was visible at both sides of the infiltration area 

(n=5; Fig. 11 C and H). A secondary lack of CF fluorescence 180 minutes after infiltration 

at cross sections behind the application side (n=5; Fig. 11 I) was again recovered 240 

minutes after flagellin treatment (n= 6; Fig. 11 J) indicate a lifting of sieve- tube blockage. 

In both time points CF signal was visible in cross section in front of the application side 

(Fig. 11 D and E).  
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Figure 11: Observation of mass flow in sieve tubes after pressure infiltration of 1 µM flg22 in the 
leaves of wild type A. thaliana (Col-0). The fluorescence of CF in the sieve elements of wild type A. 
thaliana was observed at cross-sections in front of and behind the infiltration area of flg22 at different time 
points. A to E: Cross sections 2 cm from leaf tip. F to J: Cross sections 6 cm from leaf tip.  In untreated 
plants (A,F), CF fluorescence was detected at both sides of the application site. 10 min and 3 hours after 
flg22 treatment, no CF fluorescence was observed behind the application site (G,J), however, CF signal was 
detected in front of the infiltration area (B,D). 1.5h (C,H) and 4 hours (E,J) after treatment CF fluorescence 
was detected at both cross-sections. P: phloem, X: xylem. Bars correspond to 20 µm. 

 

 

3.1.3. Signal perception, release and transduction in sieve-element occlusion 

To identify the role of phloem-based defense reactions in accordance to general plant 

immune responses, CF experiments were used for flagellin-insensitive fls2 mutants (Fig. 

12). These fls2 mutants lack flagellin-specific receptor fundamental for bacteria recognition 

(Gómez-Gómez and Boller 2000).  

In the Arabidopsis fls2 KO mutant, continuous CF fluorescence was observed (n=25; Fig. 

12) under CLSM. At any monitored time points, after pressure infiltration of 1 µM flagellin, 

CF signal was detected in front of (Fig. 12 A) or behind (Fig. 12 B) the infiltration area, 

indicating undisturbed mass flow through sieve tubes at all times. 
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180 min 180 min 

90 min 

90 min 

 
Figure 12: Observation of mass flow in sieve tubes after pressure infiltration of 1 µM flg22 in the 
leaves of A. thaliana (fls2). In the Arabidopsis fls2 KO mutant, the CF fluorescence in the sieve elements 
was detected in front of and behind the infiltration area of 1 µM flg22. Exemplarily shown for cross section 3 
hours after stimuli (A,B). P: phloem, X: xylem. Bars correspond to 20 µm. 

 

 

To study the role of phloem cells in initiation of plant immune responses, tissue-

independent analyzes of functional sieve-element protoplasts were investigated. Isolated 

plant cells are adequate tool to study physiological properties of cell-autonomous behavior 

of intact tissue (Davey et al. 2005), including observation of receptor-based plant immune 

responses (Hwang and Sheen 2001; Tena et al. 2001). Protoplast represents regular cell 

performance in perception and reaction to environmental changes as well as biochemical 

elicitors (Sheen 2001). Protoplasts were isolated according to Hafke et al. 2007 and 

observed under Transmission Light Microscopy (Fig. 13). 
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Figure 13: V. faba sieve-element protoplast reaction in response to application of flagellin and high 
mannitiol concentration. Intact sieve-element protoplasts were identified by the presence of condensed 
forisomes (A,D). After application of 1 µM flagellin, lacking forisome reaction was observed over a time-
period of 90 min (B,E). Exchange of bath medium containing 600 mM mannitol by hypo-osmotic solution 
containing only 60 mM mannitol, forisome disperses (C,F).  SP: sieve plate. In A,B,D,E asterisk indicated 
forisome, in C and F dotted line outline dispersed forisomes. Bars correspond to 10 µm. 
 

 

Identification of forisomes in V. faba sieve-element protoplasts offers the opportunity of 

tissue-specific observation (Hafke et al. 2007).  Intact sieve-element protoplasts from V. 

faba plants were characterized by the presence of condensed forisomes (Fig. 13 A and D 

black asterisk). 

Immediately to application of a final concentration of 1 µM flagellin to the bath medium, 

containing 600 mM mannitol and 1 mM free Ca2+ forisome reaction was observed (Fig. 13 

B and E). Even 90 min after flagellin stimulus none of the tested forisomes (n=14) showed 

a reaction (Fig. 13 B and E) indicating compromised perception of flagellin. Integrity of 

protoplast was tested by causing a turgor-induced shock (Hafke et al. 2007). After 

application of hypo-osmotic bath medium, containing only 60 mM mannitiol, forisomes 

disperse directly (Fig. 13 C and D dotted line), indicating Ca2+-dependent forisome 

dispersion (Hafke et al. 2007; Hafke and van Bel 2013).  

 

To test the vigor of the protoplast after enzymatic digestion, protoplast reactivity was 

verified using H2DFFDA. In plant cells application of colorless H2DFFDA (carboxy-2,7-

difluorodi-hydrofluorescein diacetate) leads to inclusion of fluorescent form when cleavage 

by intracellular esterases. Due to oxidation by reactive oxygen species, triggered by abiotic 

and biotic stimuli (for review see Shapiguzov et al. 2012), the fluorescent signal increases 

significantly.  

Using CLSM incubation of isolated protoplast did not lead to a remarkable signal in 

untreated cells (Fig. 14 A to C). Neither sieve-element protoplasts (black asterisk) nor 

mesophyll protoplast showed an oxygen-dependent signal. Only signals due to 

autofluorescence (red signal) coming from the chloroplasts showed up.  
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Figure 14: Observation of ROS production in isolated protoplasts. Protoplast solution of V. faba plants 
was incubated with H2DFFDA and observed under CLSM. Unstimulated protoplasts did not show H2DFFDA 
specific signal (A,B,C). 10 minutes after application of 1 µM flagellin mesophyll protoplast showed a 
fluorescent signal (D,E,F). Sieve-element protoplasts did not show a signal. In A,C,D,F asterisk indicated 
forisome. Bars correspond to 10 µm. 

 

 

Treatment of the protoplast solution with a final concentration of 1 µM flagellin induced a 

fluorescence signal in mesophyll cells (green signal) but not in the sieve-element 

protoplast (Fig. 14 D to F; n=6).  
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3.2. In planta observation of natural infection  

3.2.1. Plant materials and phytoplasma detection by PCR  

To identify innate host-pathogen interaction V. faba plants were phytoplasma infected via 

insect transmission. Control V. faba plants, not exposed to leafhoppers showed regular 

growth without disease symptoms (Fig. 15 A and B). In infected plants, typical FD 

symptoms, such as leaf-size reduction, leaf yellowing and curling (Fig. 15 C and D) 

emerged about one month after inoculation by the insect vectors.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Images of healthy (left half of the panel) and Flavescence Dorée (FD)-infected (right half) V. 
faba plants. Whole plants and leaf details. (A,B) Healthy V. faba plants showed regular growth and do not 
develop disease symptoms. In FD-infected plants (C,D) typical symptoms were visible, such as general 
decline, beginning leaf decoloration and leaf deformation. 

 

 

Real-time (RT)-PCR of ‘Ca. P. vitis’ 16S rRNA confirmed the presence of phytoplasmas in 

infected V. faba leaf samples before microscopy examination. Starting from 40 ng of total 

DNA, FD-phytoplasma 16S rRNA was detected in symptomatic samples, while no 

amplification of the 16S rRNA gene was obtained in healthy ones. DNA isolated from FD-

diseased Catharanthus roseus and FD-infected Vitis vinifera were also amplified as 

positive parallel controls (Supplemental Table 1).  

 

Observations were performed using four healthy and four diseased six-week-old V. faba 

plants, as soon as symptoms appeared on the infected ones. For Confocal Laser 

Scanning Microscopy (CLSM) observation, experiments were repeated on at least two 

different leaves per plant. 
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3.2.2. Optical phytoplasma detection and mass flow 

To assess phytoplasma-induced phloem modification in vivo experiments of healthy and 

phytoplasma-infected V. faba were investigated. Healthy sieve elements were 

characterized by the presence of condensed forisomes (Fig. 16 A, asterisk), while the 

sieve plates were free of visible occluding substances (Fig. 16 A) under transmission light.  

 

 

Figure 16: CLSM images of phloem tissue in intact healthy (upper part of the panel) and FD-infected 
(lower part) V. faba plants stained with CFDA. Healthy (A,B) and FD-infected (C,D) phloem under 
transmission light (A,C) and after distant CFDA application, observed at 488 nm wavelength (B,D). In healthy 
V. faba plants sieve elements were characterized by the presence of forisomes (A) and plastids (B). FD-
infected V. faba plants did not show remarkable content in transmission light (C). Following sieve-tube 
translocation of CFDA in healthy plants (B), CFDA was accumulated in the vacuoles of companion and 
phloem parenchyma cells. With the exception of the vacuoles of companion cell, fluorescence was absent in 

sieve elements of FD-infected plants (D), indicative of mass-flow inhibition. CC: companion cell, N: nucleus, 

PPC: phloem parenchyma cell, SE: sieve element, SP: sieve plate. In A and B asterisk indicated forisome, in 
B arrowheads indicate phloem plastids. Bars correspond to 10 µm. 
 

 

After CFDA ((5)6 carboxyfluorescein diacetate) application to visualize the mass flow in 

intact phloem, phloem-mobile CF was translocated through the sieve tubes of healthy V. 

faba plants and accumulated in the companion cells, which indicates a regular mass flow 

and a high degree of metabolic activity in companion cells (Fig. 16 B). As reported 

previously for other cell types (e.g. Goodwin et al. 1990), CF accumulated in the vacuoles 
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of phloem parenchyma cells. In stained sieve elements, several parietal plastids were 

visible (Fig. 16 B), probably anchored to the plasma membrane (Ehlers et al. 2000). Nuclei 

were recognizable both in companion and phloem parenchyma cells (Fig. 16 B) probably 

after CFDA movement through plasmodesmata. It was more difficult to focus and discern 

sieve tubes in FD-diseased plants due to the presence of thicker cell walls and sediments 

onto the sieve plates (Fig. 16 C). In such plants, only few sieve elements were weakly 

fluorescent after CFDA application indicating that mass flow was blocked or strongly 

reduced (Fig. 16 D). Even when mass flow in sieve tubes appeared to be reduced or 

eliminated, CFDA was observed to accumulate in the vacuoles of companion cells (Fig. 16 

D) which may evidence the maintenance of some metabolic ability.  

 

Figure 17: CLSM images of phloem tissue in intact healthy (upper part of the panel) and FD-infected 
(lower part) V. faba plants stained with DAPI. Healthy (E,F) and FD-infected (G,H)  phloem after DAPI 
staining, observed at wavelength of 405 nm (E,G) and under transmission light (F,H). In sieve elements of 
FD-infected plants, blue fluorescent dots mainly aggregated on both sides of the sieve plate (G). Phloem in 
healthy plants remained unlabeled apart from the stained nuclei (E). Under transmission light, in healthy 
plants (F) cell walls and sieve plate thickening seemed inconspicuously. Note the distorted thickened cell 
walls and sieve plate thickenings visible in FD-infected plants (H). CC: companion cell, N: nucleus, SE: sieve 
element, SP: sieve plate. In G and H arrows indicate phytoplasma/DAPI fluorescence. Bars correspond to 10 
µm. 
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After DAPI (4',6-diamidino-2-phenylindole) application to enable phytoplasma detection, no 

DAPI fluorescence showed up in sieve elements of healthy plants; only the nuclei of 

companion cells and phloem parenchyma cells were stained (Fig. 17 E). Under 

transmission light, the sieve elements were well-preserved and unstained in healthy plants 

(Fig. 17 F). In FD-diseased plants, dotted fluorescent aggregates were accumulated 

predominantly at the sieve plates (Fig. 17 G, arrows). In FD-diseased sieve elements, cell 

walls and sediments onto the sieve plates were thicker than in control plants (Fig. 17 H) as 

described above. 

 

Figure 18: CLSM images of phloem tissue in intact healthy (upper part of the panel) and FD-infected 
(lower part) V. faba plants stained with DAPI and CFDA. Subsequent local DAPI staining and distant 
CFDA application demonstrated that absence of DAPI staining (I) apart from the stained nuclei, concured 
with regular CFDA translocation (J) in the phloem of healthy plants. By contrast, DAPI fluorescence, 
indicating phytoplasma presence (K), seemed to coincide with impaired sieve-tube translocation in infected 
plants (L). CC: companion cell, N: nucleus, PPC: phloem parenchyma cell, SE: sieve element, SP: sieve 
plate. In K arrows indicate phytoplasma/DAPI fluorescence. Bars correspond to 10 µm. 
 

 

Successive local DAPI and distant CFDA staining demonstrated that the absence of DAPI 

staining is related with intense CFDA translocation in the phloem of healthy plants (Fig. 18 

I and J). By contrast, DAPI fluorescence (Fig. 18 K) coincides with impaired sieve-tube 

translocation in infected plants (Fig. 18 L). Both in healthy and in infected plants the 
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reverse CFDA/DAPI double-staining procedure produced results similar to those for 

DAPI/CFDA staining (Fig. 19 M to P). 

 

 

 

Figure 19: CLSM images of phloem tissue in intact healthy (upper part of the panel) and FD-infected 
(lower part) V. faba plants stained with CFDA and DAPI. The reverse CFDA/DAPI double-staining 
procedure rendered results similar to those obtained with DAPI/CFDA treatment both in healthy (M, N) and 
infected plants (O, P). CC: companion cell, N: nucleus, PPC: phloem parenchyma cell, SE: sieve element, 
SP: sieve plate. In P arrow indicate phytoplasma/DAPI fluorescence. Bars correspond to 10 µm. 
 

 

3.2.3. Occlusion events and Ca2+ concentration  

Combined CMEDA/CMFDA (5-chloromethyl-fluoresceindiacetate/5-chloromethyl-eosin-

diacetate) staining provided unequivocal information on the forisome conformation and 

protein distribution inside the sieve elements of healthy and FD-diseased plants in CLSM 

images (Fig. 20). The membrane-permeant, colorless CMEDA/CMFDA diffuse into the 

sieve elements via the plasma membrane and, following the cleavage of the acetate 

groups are by intracellular esterases, the membrane-impermeant chloromethyl-fluorescein 

is able to target proteins (Furch et al. 2007). In healthy plants, forisomes were always in 

the condensed, spindle-shaped form (Fig. 20 A and B) and were mostly located near the 

sieve plates at the downstream end of the sieve elements. In FD-diseased plants, discrete 

forisomes were not detectable (Fig. 20 C and D), which is indicative of their dispersion 
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(Knoblauch et al. 2001). Unidentified protein structures, dispersed forisomes or clogged P-

proteins, occurred in FD-diseased sieve elements (Fig. 20 C). 

 

 

Figure 20: CLSM images of phloem tissue in intact healthy (upper part of the panel) and FD-infected 
(lower half) V. faba plants stained with CMEDA/CMFDA. Phloem tissue, observed at wavelength of 488 
nm (A,C) and under transmission light (B,D) after combined CMEDA/CMFDA staining. In healthy sieve 
elements, forisomes occurred in the condensed conformation (A,B). In FD-infected phloem, forisome bodies 
were not visible (C,D) and non-identified proteinaceous dispersed material was present along the sieve 
elements (C). CC: companion cell, SE: sieve-element, PPC: phloem parenchyma cell, SP: sieve plate. In A 
and B asterisk indicated forisome, in C arrow indicate protein structures. Bars correspond to 10 µm. 

 

 

Aniline blue at non-lethal concentrations (Furch et al. 2007) was administered to bare-lying 

phloem tissue to acquire a qualitative in vivo estimate of callose deposition in sieve 

elements (Fig. 21). In healthy plants, callose was not detectable (Fig. 21 E) or occurred in 

minor amounts at the margins of the sieve plates (Fig. 21 G) and the sieve elements were 

well preserved containing condensed forisomes (Fig. 21 F and H). By contrast, aniline blue 

signals were much stronger in FD-diseased V. faba plants indicating massive callose 

depositions at the sieve plates and along the sieve elements, probably at the pore-

plasmodesmata-unit (PPU) orifices (Fig. 21 I; Furch et al. 2009) to the point of plug 

formation (Fig. 21 K, arrows).  
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Figure 21: CLSM of phloem tissue in intact healthy (upper part of the panel) and FD-infected (lower 
half) V. faba plants stained with aniline blue. Phloem tissue after aniline blue treatment, specific for 
callose detection in intact sieve tubes, observed at wavelength of 405 nm (E,G,I,K) and under transmission 
light (F,H,J,L). In healthy sieve elements, callose was not detectable (E) or deposited in small amounts at the 
sieve-plate margins (G). In infected plants, aniline blue staining indicated large callose depositions along the 
sieve elements in particular in the vicinity of the sieve plates (I) through to plug formation (K). Note that 
forisomes were invisible in sieve elements of infected plants. CC: companion cell, SE: sieve-element, PPC: 
phloem parenchyma cell, SP: sieve plate. In F and H asterisk indicated forisome, in I and K arrows indicate 
callose/aniline fluorescence, in J arrows indicate thickened sieve-element walls, in G arrow indicate the sieve 
plate. Bars correspond to 10 µm. 
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Upon Ca2+-binding, the fluorescence intensity of the cell-permeant dye Oregon Green 

BAPTA-1 (1,2-bis(o-aminophenoxy)ethane-N,N,-N',N'-tetraacetic acid, OGB-1) increases 

(Furch et al. 2009). The dye was used as a qualitative indicator of Ca2+ concentration 

inside the sieve elements (Fig. 22). No fluorescent signals were detected in intact sieve 

elements of uninfected V. faba plants (Fig. 22 A). The identical optical section observed 

under transmission light showed unstressed sieve elements as inferred by the presence of 

condensed forisomes (Fig. 22 B, asterisk). In the phloem of diseased plants, OGB-1 

fluorescence was often intense with strong signals at the sieve plates (Fig. 22 E and G).  
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Figure 22: CLSM images of phloem tissue in intact healthy (upper part of the panel) and FD-infected 
(lower half) V. faba plants stained with OGB-1.  Phloem after OGB-1 staining, observed at wavelength of 
488 nm (A,C,E,G) and under transmission light (B,D,F,H). In healthy sieve elements, OGB-1 fluorescence 
was absent (A) or weakly present in the sieve plate region (C). In infected plants, the fluorescence signal 
was very strong along the sieve-element plasma membrane (E) particularly at the sieve plates (G). Note the 
dark undefined substances in sieve elements of FD-infected plants (F,H) and the transparent sieve-elements 
of healthy plants (B,D). CC: companion cell, SE: sieve-element, PPC: phloem parenchyma cell, SP: sieve 
plate. In B asterisk indicated forisome, in C, E and G arrows indicate sieve plates. Bars correspond to 10 µm. 

 

 

Under transmission light, condensed forisomes did not occur (Fig. 22 F and H). Weak 

OGB-1 signals were sometimes found in healthy sieve elements that were mechanically 

stressed as a result of the preparation procedure as indicated by forisome dispersion (Fig. 

22 C, arrow).  
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3.3. Ultrastructural analysis of plant-pathogen interaction 

3.3.1. Plant materials and phytoplasma detection by PCR  

To identify innate host-pathogen interaction S. lycopersicum plants were phytoplasma 

infected via grafting. Control plants showed regular growth without disease symptoms. In 

stolbur-diseased plants, typical symptoms, such as diffuse yellowing, leaf-size reduction, 

witches’ brooms and stunting, emerged approximately 2 months after grafting (Fig. 23).  

 

Figure 23: Images of healthy (left half of the panel) and stolbur-diseased (right half) S. lycopersicum 
Micro-Tom plants. Healthy S. lycopersicum plant showed regular growth, normal leaves and flowers are 
present (A). In stolbur-diseased plants diffuse symptoms were visible, such as leaf-size reduction and along 
with yellowing, witches’ brooms and stunting (B). 

 

 

Real time RT-PCR of ‘Ca. P. solani’ 16S rRNA confirmed the presence of phytoplasmas in 

leaf samples from stolbur-diseased S. lycopersicon before treatment for microscopic 

examination. Starting from 40 ng of total cDNA, stolbur phytoplasma 16SrRNA was 

detected in infected plants, whereas no amplification of the 16S rRNA gene was obtained 

in control plants (Supplemental table 2). 

Observations were performed using four healthy and diseased S. lycopersicum plants, as 

soon as symptoms appeared on infected ones. Experiments were repeated on fifteen 

chosen leaf midrib segments, respectively from infected and healthy S. lycopersicum 

plants. For Light (LM), Epifluorescence (EFM) and Transmission Electron Microscopy 

(TEM) experiments several serial semithin and ultrathin sections of at least 100 samples 

from healthy and stolbur-diseased plants were collected and randomly chosen observed. 
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3.3.2. Imaging of phytoplasmas by Epifluorescence Microscopy 

To visualize phytoplasmas in sieve elements of S. lycopersicum plants, longitudinal (Fig. 

24 A to F), and cross sections (Fig. 24 G to J) from London Resin White (LRW)-embedded 

samples were cut, stained with the DNA specific marker DAPI (4′,6-diamidino-2-

phenylindole) and observed under the EFM.  

 

 

Figure 24: Light (LM) and Epifluorescence Microscopy (EFM) images from longitudinal and cross 
sections of main veins of healthy and stolbur-diseased S. lycopersicum leaves, stained with DAPI. In 
both longitudinal and cross-sections of phloem, autofluorescence of the chloroplasts (A and D) and 
unspecific signal of the cell walls was visible, the latter in particular in those of xylem vessels (A ,D) and 
close to the sieve plates (B,C,E,F). Fluorescence signals of the nuclei in companion cells and cortex 
parenchyma cells were discernible (G,H,I,J). In healthy leaves, fluorescent spots are absent inside sieve 
elements (A,B,C,G,H; arrows in H). In stolbur-diseased samples, fluorescent masses were accumulated 
along the sieve elements (D), in particular at the sieve plates (E,F), and fill up the lumina in some instances 
(I ,J; arrows in J). Transformation of sieve element structure and cell wall thickness occurred all along 
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infected areas (I, asterisk). CC: companion cell, Ch: chloroplast, CPC: cortex parenchyma cells, N: nucleus, 
PPC: phloem parenchyma cell, SE: sieve element, SP: sieve plate, X: xylem vessel. Bars correspond to 10 
µm. 

 

 

In longitudinal leaf sections, DAPI fluorescence was absent in sieve elements of healthy 

samples (Fig. 24 A to C); only signals due to chloroplasts (Ch) in parenchyma cells (Fig. 

24 A) as well as strong autofluorescence of the cell walls were detected (Fig. 24 B and C). 

In stolbur-diseased plants, fluorescent materials were accumulated all the way along the 

sieve elements (Fig. 24 D), in particular at the sieve plates (SP; Fig. 24 E and F). In cross-

sections of healthy leaves, the vein structure was well preserved (Fig. 24 G) and no 

fluorescent signal was detectable inside sieve elements (Fig. 24 H). Nuclei (N) of 

companion cells (CC) and phloem parenchyma cells (PPC) were well discernible (Fig. 24 

G and H). By contrast, infected samples showed several sieve elements filled with 

fluorescent masses (Fig. 1I and J), indicating phytoplasma accumulation. In addition, cell-

wall thickness and shape of the sieve elements were significantly altered and disorganized 

in affected areas (Fig. 24 I). Fluorescence signal associated with the nuclei was also 

discernible in companion cells and phloem parenchyma cells (Fig. 24 I and J), but not in 

non-vascular cells. 

 

3.3.3. Sieve-element membrane network visualization by Epifluorescence 
Microscopy and Transmission Electron Microscopy  

In order to visualize phytoplasma-related modification of phloem membrane system the 

fluorescent marker RH414 was used. In S. lycopersicum leaves the RH 414 (N-(3-

triethylammoniumpropyl)-4-(4-(4-(diethylamino)phenyl)butadienyl)pyridinium dibromide) 

allowed imaging of the plasma membranes, nuclear membranes and organelles delimited 

by a double membrane (Fig. 25 A to F) as well as organism, like phytoplasmas, likewise 

bound by a double membrane. In healthy leaves, the fluorescent patterns showed a 

regular distribution of the membrane network and organelle arrangement (Fig. 25 A to C). 

As expected (e.g. Knoblauch and van Bel 1998), fluorescence was exclusively localized to 

the periphery of the sieve elements (Fig. 25 B and C). In companion cells, phloem 

parenchyma cells and in the cortex parenchyma cells (CPC), fluorescence signal from 

organelles like the nuclei and chloroplasts was visible (Fig. 25 A though C). In stolbur-

diseased leaves, fluorescent signal in the sieve-element lumen indicated distortion of the 

membranes (Fig. 25 D to F). 
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TEM images of healthy control leaves showed a strict alignment of the sieve-elements 

plasma membrane (PM) with the cell wall (Fig. 25 G). In infected tissue, the plasma 

membrane network of the vascular cells appeared contorted and undulated (Fig. 25 H to 

J). The sieve-element and the phytoplasma membranes appeared to be in close contact 

(Fig. 25 J). Together, they may have developed a membrane-bound corridor to secure the 

connection (Fig. 25 K to N). Even after detachment of the plasma membrane due to 

plasmolysis, the phytoplasmas remained attached to the host membrane (Fig. 25 L). The 

characteristic pleomorphism and the presence of ribosomes inside the bodies (Fig. 25 J) 

identified them without doubt as phytoplasmas (P), although size and position were similar 

to that of sieve-element plastids (SEP; see Fig. 27 H and Ehlers et al. 2000). 

 

Figure 25: LM and EFM micrographs from cross-sections of main veins of healthy and stolbur-
diseased S. lycopersicum leaves stained with RH 414. In healthy leaves (A,B,C), fluorescent signals 
were closely appressed to the sieve element cell wall (A,B; arrows in B) or aggregated around nuclei (A,B, 
C) and organelles, like chloroplast (A), that were delimited by a double membrane. The sieve-element lumen 
remained unlabeled (B,C; arrows in B). In stolbur-diseased leaves, the plasma membrane appeared 
distorted (D,E,F) with a stronger fluorescence inside the sieve element than in healthy plants (E,F; arrows in 
E). G to N: Attachment of phytoplasma body to sieve-element plasma membrane was demonstrated by 
Transmission Electron Microscopy (TEM). TEM observations from uninfected S. lycopersicum leaves (G) 
showed the sieve-element plasma membrane closely aligned to the cell wall. In stolbur-diseased S. 
lycopersicum leaves (H,N) the plasma membranes of phloem parenchyma and companion cells were rippled 
(H, arrows) or bulge (I, arrows). In sieve elements, plasma membrane modifications of plasma membrane 
conferred an intimate association between phytoplasma and host membrane (J, arrows). A string-like 
structure seemed to connect phytoplasma and sieve-element plasma membrane (K to N, black circles). Even 
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after detachment of the sieve-element plasma membrane due to plasmolysis (L, asterisk) the bacteria 
remained connected to the sieve-element plasma membrane (black circle). CC: companion cell, Ch: 
chloroplast, CPC: cortex parenchyma cells, CW: cell wall, N: nucleus, P: phytoplasma, PM: plasma 
membrane, PPC: phloem parenchyma cell, SE: sieve element, X: xylem vessel. Bars correspond to EFM = 
10 µm; TEM (H,I,J,K,L,M,N) = 200 nm; TEM (G) = 400 nm; Insets (C and F) represent enlarged regions of 
interest of B and E, respectively.  

 

 

3.3.4. Sieve-element actin and SER network visualization and connections with 
phytoplasma cells 

The modification of actin structures (Fig. 26) in S. lycopersicum sieve elements was 

visualized using α-actin-Texas Red-conjugated (TR) antibodies. Control samples, 

incubated without primary antibody did not showed signals (Supplementary Fig. 4 E and 

F). In healthy tissue the signal intensity differed among the diverse plant tissues. In 

contrast to the high signal intensity in sieve elements, the level of fluorescence was low in 

cortex parenchyma cells (Fig. 26 A to C). In comparison to the controls, the TR distribution 

in stolbur-diseased sieve elements (Fig. 26 D to F) changed radically, suggesting a re-

arrangement of actin organizations in sieve elements of infected tissue. The sieve 

elements edges showed scattered signal distribution and actin structures appeared partly 

present in the sieve-element lumen (Fig. 26 E and F).  
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Figure 26: LM and EFM micrographs from cross-sections main veins of healthy and stolbur-diseased 

S. lycopersicum leaves stained with an -actin-Texas Red-conjugated antibody. In healthy samples 
(A,B,C) the fluorescence pattern indicates that actin structures network was localized at the periphery of the 
sieve elements (B,C; arrows in B). Intensity of TR fluorescence increased in sieve elements of stolbur-
diseased plants (D,E,F), which appeared to be clustered around the sieve element periphery and in the 
lumen (E,F; arrows in E). G to J: Arrangement of sieve-element actin in relation to the phytoplasma cells 
evidenced by TEM-immunogold technique. In healthy plants gold particles were always distributed at the 
margins of the sieve elements (G, i, ii, iii). In infected tissue, gold particles were clustered in the sieve-
element lumen in association with the phytoplasma membrane surface (H,I), forming groups mainly at one 
side of bacterial body (insets). Co-occurrence of gold particles was visible at the sieve pores and on 
phytoplasma membrane (J and insets). CC: companion cell, Ch: chloroplast, CPC: cortex parenchyma cells, 
CW: cell wall, P: phytoplasma, PPC: phloem parenchyma cell, SE: sieve element, SP: sieve pore, X: xylem 
vessel. Bars correspond to EFM = 10 µm; Scale bars TEM = 200 nm; Insets (C and F) represent enlarged 
regions of interest of B and E, respectively. 

 

 

The spatial relationship between actin structures and phytoplasma bodies was presented 

by labeling using α-actin-gold-conjugated antibodies (Fig. 26 G to J). In agreement with a 

recent report (Hafke et al. 2013), actin was localized at the periphery of the sieve elements 

in control samples (Fig. 26 G). In stolbur-diseased samples ultrastructural images showed 

that gold particles in the sieve element lumen were associated with phytoplasma cells, 

invariably clustered at one side of the phytoplasma membrane surface (Fig. 26 H to J).  

 

To identify alteration of ER in infected sieve elements the reticulum marker ER Tracker 

Green was applied. Like actin filaments, the sieve-element reticulum (SER) network (Fig. 

27) showed a re-organization after phytoplasma infection. Compared to healthy controls 

(Fig. 27 A to C) fluorescence intensity of the sieve-element ER Tracker Green increased in 

infected tissue (Fig. 27 D to F). Moreover structural modification of the sieve-element 

reticulum in infected tissue led to a difference in signal distribution. ER Tracker Green 

signal was aggregated at the edges of the sieve element and evident in sieve-element 

lumen after infection (Fig. 27 F).  

Sieve-element reticulum stacks were mostly oriented in parallel to the sieve-element 

plasma membrane in healthy samples (Fig. 27 G and H), whereas the sieve-element 

reticulum seems to be contorted in stolbur-diseased samples (Fig. 27 I to L). In stolbur-

diseased sieve elements, phytoplasma cells were in close proximity of the sieve-element 

reticulum (Fig. 27 I and K), but attachment structures jointing phytoplasma membrane and 

sieve-element reticulum via minute anchors were not observed. In infected plants, sieve-

element reticulum stacks frequently appeared fragmented into lobes and vesicles, 

protruding into the sieve-element lumen (Fig. 27 L). 
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Figure 27: LM and EFM micrographs from cross-sections of the main veins of healthy and stolbur-
diseased S. lycopersicum leaves stained with ER Tracker Green. In control leaves (A,B,C), fluorescence 
was localized to the periphery of sieve elements. In infected samples, fluorescence intensity had increased 
and distribution changed in sieve elements. (D,E,F). The sieve elements were “empty” in healthy samples 
(B,C; arrows in B) and appeared “filled” after infection (E,F; arrows in E). G to L: TEM pictures suggested an 
association between sieve-element reticulum and the phytoplasma body. In the healthy control samples, 
sieve-element reticulum network was organized in regular stacks, mostly parallel to the plasma membrane 
and closely associated with the plasma membrane (G,H, arrows). In stolbur-diseased tissues, sieve-element 
reticulum stacks were contorted (I,K,J, arrows) and in close contact with phytoplasmas (P in K). Fragmented 
sieve-element reticulum stacks also appeared as lobes and vesicles protruding into the sieve-element lumen 
(L, arrowheads). CC: companion cell, Ch: chloroplast, CPC: cortex parenchyma cells, CW: cell wall, M: 
mitochondria, N: nucleus, P: phytoplasma, PPC: phloem parenchyma cell, PM: plasma membrane, SE: sieve 
element, SEP: sieve-element plastid. Bars correspond to EFM = 10 µm; Scale bars TEM (G,H,J,K,L) = 200 
nm; TEM (I) = 400 nm; Insets (C and F) represent enlarged regions of interest of B and E, respectively. 
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4. Observation of phloem immune response to bacterial invasion 

Systemic signaling via vascular bundles is essential for plant development and adaption to 

environmental changes including biotic stress imposed by plant pathogens (Durrant and 

Dong 2004; Grant and Lamb 2006). The phloem system is involved in short- and long-

distance transport of signal molecules. Signaling via diverse RNA-species (Hannapel et al. 

2013; Kehr 2013), carbohydrates (Koch 2004; Müller et al. 2011), proteins (Le Hir and 

Bellini 2013; Pallas and Gomez 2013), oxygen species (Durner and Klessig 1999), 

secondary metabolite (Lee et al. 2007) and phytohormones (Golan et al. 2013) as well as 

electrical signals (Fromm et al. 2013) are supposed to be integral parts of induced 

systemic resistance response of plants (van Bel and Gaupels 2004). Moreover, reversible 

disruption of the mass flow in the phloem is assumed to be one of the first traits in plant 

immune defense (Schulz 1998; van Bel 2003). Rapid sieve-element occlusion due to 

callose and protein accumulation (Furch et al. 2007) might forms a physical barrier to stop 

uncontrolled lack of phloem sap, to restrict pathogen invasion and to accumulate defense 

and signal molecules. Its reversibility ensures a systemic spread of signals. Finally, 

dynamics of cytoskeleton and rapid endomembrane reorganization in response to stress 

may enhance the delivery of pathogen defense-related components, such toxins and 

pathogen-degrading enzymes, facing pathogen invasion (Opalski et al. 2005; Hardham et 

al. 2007; Tian et al. 2009).  

   

In fact, information about the effect of phloem on initiation and first reaction to microbial 

invasion as well as on structural modification, including sieve-element occlusion, during 

bacterial infection lacks so far. The profound knowledge about the impact of biotic stress 

on plant, especially on the sensible and essential phloem system, defense and signaling 

mechanisms are fundamental for a better understanding of the physiology of plants. In this 

work an integrated approach of diverse plant species and techniques was investigated to 

gain a detailed understanding of plant immunity inside the phloem, which impacts the 

sieve-element function and morphology.  

 

To explore the involvement of phloem cells on initiation of immune responses, bacterial 

elicitor was precisely applied and phloem reaction was directly observed using diverse 

(non)-invasive microscopy techniques. Long-term impact of bacterial infection on phloem 

physiology was studied using the intimate plant-phytoplasma interaction.   
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4.1. Distant flagellin-triggered signal induces Ca2+-mediated phasic sieve-element 
occlusion 

Bacterial invasion into host tissue causes various diseases in plants (Jackson 2009). But 

plants do not surrender to pathogen infection without a struggle. Initiated immune 

responses, such as pattern-triggered immunity (PTI) or effector-triggered immunity (ETI), 

face bacteria to restrict growth and reproduction (Jones and Dangl 2006). Next to local 

biochemical and structural defense-related mechanisms (Mauch et al. 1988; Greenberg 

and Yao 2004; Naito et al. 2008; Coll et al. 2010; Bednarek and Osbourn 2009; Ding and 

Voinnet 2007; Zhang et al. 2007), systemic induced immune responses are known to 

occur during plant-pathogen interaction (Ryals et al. 1996; Durrant and Dong 2004; 

Mishina and Zeier 2007; Dempsey and Klessig 2012). Because of the capability of long-

distance trafficking, the phloem plays a critical role in the transduction of SAR signals 

(Jenns and Kuc 1979; Guedes et al. 1980; Tuzun and Kuc 1985; van Bel and Gaupels 

2004).  

 

However, many studies focusing on molecules and mechanism of signal transduction in 

the phloem after pathogen attack (van Bel and Gaupels 2004), the specification of phloem-

based immunity in response to bacterial infection are poorly understood.  

 

Perception of bacterial invaders, among others trigger membrane depolarization 

(Jeworutzki et al. 2010) leading to an increase in cytosolic Ca2+ (Ranf et al. 2011). 

Increased Ca2+ concentration inside the plant cells are sensed by calcium-dependent 

protein kinases (CDPKs), known to initiate distinct immune reactions (Harmon et al. 2000; 

Harper and Harmon 2005). Among others, CDPKs can act, together or beside the 

mitogen-activated protein kinase (MAPK) cascade, to regulate reactive oxygen species 

(ROS) production (Kobayashi et al. 2007). Because of its chemical property to diffuse 

between cells, the membrane-permeable hydrogen peroxide (H2O2), a representative 

ROS, is assumed to propagate the initiated immune signal from cell to cell (Dubiella et al. 

2013). Furthermore, plasma membrane depolarization can directly induce electrical signals 

(Davies 2004). Even if the propagation of such signals is limited (Overall and Gunning 

1982), Ca2+ influx can trigger action potentials that induces self-amplification of electro 

potential waves (EPW) in adjacent cells (Davies and Stankovic 2006). Transmission of 

electric signals is known to generate local and distant immune reaction in response to 

mechanical and herbivore wounding (Mousavi et al. 2013).  
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It seems reasonable that ROS as well as EPWs might reach the sieve elements and 

leading to Ca2+ burst (Mori and Schroeder 2004; Felle and Zimmermann 2007), known to 

be affecting phloem physiology (Furch et al. 2007). Functional modulation of sieve-tube 

performance might provide physical barriers and accumulation of antimicrobial compounds 

and signal molecules to restrict pathogen growth and distribution.  

 

Indeed, many studies focus on direct defense reaction to abiotic stress (Furch et al. 2007; 

2010; Thorpe et al. 2010) but the identification of structural and functional changes during 

biotic interactions is insufficiently understood so far. Furthermore, information about the 

involvement of phloem in initiation of immune responses lacks and seems speculative, 

since sieve-element cells do not contain significant organelles like nuclei, chloroplasts or 

the Golgi-apparatus (Knoblauch and van Bel 1998) essential for initiation of most plant 

immune responses.  

Knowledge about the phloem-dependent immunity, signal transduction as well as 

physiological interference, are essential for a classification of phloem immune responses 

in accordance with complex bacterial-plant interaction.   

 

In the first part of the present work diverse preparation techniques, such in vivo 

observation, fresh hand sectioning as well as protoplast studies were used to investigate 

flagellin-triggered plant immune response. Observations of Light Microscopy and Confocal 

Laser Scanning Microscopy (CLSM) provide information on phloem defense mechanism 

imposed by bacterial infection. In particular, we focused on the effect of bacterial elicitor on 

phloem-based initiation of immune responses and on physiological modification of phloem 

cells during initiate immune responses.      

 

Techniques to study the phloem are difficult (Truernit et al. 2014), since phloem is sensible 

to even slightly injury and thus are covered by protective cell layers. Since differentiation of 

intended and accidental phloem reaction is problematic, a careful handling and preparation 

of plants material is essential for phloem analysis. Adequate approaches used for the 

present work can be divided into three parts:  

(1) The non-destructive phloem in vivo technique provides observation of intact plants 

(Knoblauch and van Bel 1998). After exposing the phloem by careful removal of the cells 

covering the phloem tissue, the plants were recovered for at least 30 min, avoiding 

misinterpretation due to injury reaction. Furthermore, the possibility to verify the vitality of 
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the plants by the presence of condensed forisomes, improved the validity of observed 

results. 

(2) Ultrathin sections are laborious and time-consuming, and only small portions of fixed 

and embedded tissue of interest can be examined. Fast and precise fresh-hand sectioning 

of plant tissue avoid the use of tissue fixation and embedding. The necessity to kill plant 

tissues causes instantaneous, irreversible and massive reactions of sieve elements to 

wounding (van Bel 2003), which may lead to pieces of misleading information and 

erroneous interpretations.  

(3) The use of sieve-element protoplasts provides the possibility to study membrane 

biology, including receptor-based reactions (Davey et al. 2005). Again, protoplasts were 

recovered after the last preparation step for at least 30 min and vitality of the sieve-

element protoplast was verified by the presence of condensed forisomes.  

 

Based on Light Microscopy and CLSM analysis, phloem immune reaction of broadbean 

(Vicia faba) and mouse-ear cress (Arabidopsis thaliana) stimulated by application of 

synthetic flagellin was observed. 

 

Summarized we could demonstrate that (1) application of bacterial elicitor lead to Ca2+-

mediate forisome reaction and (2) receptor-based sieve-element occlusion. In addition, we 

could demonstrate that (3) immune reactions, including phloem responses, were not 

initiated along the sieve-element cells, confirming previous assumption.      
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4.1.1. Flagellin-triggered Ca2+ influx leading to forisome reaction 

Forisomes are giant, crystalloid phloem proteins, which reversibly changes between a 

condensed, spindle-shaped form and a dispersed state (Knoblauch and van Bel 1998). A 

major difference between the two states is the increased volume of the dispersed protein. 

After a certain Ca2+ threshold is achieved inside the sieve-elements (Furch et al. 2009; 

Hafke et al. 2009) the forisome volume increase up to 6-folds (Knoblauch et al. 2003; 

2012), leading to a sealing of the sieve pores (Knoblauch and van Bel 1998). Ca2+ influx 

can be triggered by diverse abiotic stimuli such as heat or cold shock (Furch et al. 2007; 

2009; Thorpe et al. 2010) as well as biotic stimuli, such as fungal elicitor and 

phytohormones (Gaupels et al. 2008).  

Observation of more than 1000 forisomes in unstimulated phloem of V. faba revealed the 

forisomes not to be randomly distributed. In accordance with earlier studies on smaller 

sample size (Furch et al. 2009) forisomes can be classified into 12 different positions (Fig. 

6). Considering the absolute frequency of the various locations and positions (Fig. 7), more 

than 80% of the forisomes in intact and unstressed plants were located at the downstream 

side of the sieve tube (Fig. 7 A) in close contact to the sieve plate and the plasma 

membrane of the neighboring cells (Fig. 7 B). About 30% of the forisomes shows a contact 

with the sieve-element side facing the companion cell (Figs. 4, 5). Since the common 

interface between sieve element and companion cell amounts about 30% of the total 

sieve-element inner surface in transport phloem (van Bel 1996; 2003), there seems no 

preference for forisome contacts with the sieve-element side facing the companion cell. 

Despite the regular mass flow in intact sieve tubes, some forisomes are located either at 

the center (Fig. 7 C) or the upstream side of the sieve tubes (Fig. 7 D), contradicting the 

forisomes to be floating inside the phloem tissue. Apparently, forisomes seem to be 

attached to sieve-element structures (Furch et al. 2009), to clear constant downstream 

pressure due to mass flow direction. Anchoring, like phloem plastids and endoplasmic 

reticulum (Ehlers et al. 2000), of forisomes to the sieve-element frame suggest that 

forisomes are not free-floating inside the sieve elements which opens the perspective that 

forisome can be regulated in position and thus possibly in function (Furch et al. 2009).  

Comparing the forisome position and the phloem morphology, forisomes position is most 

likely connected to the places of high calcium storage (Kauss 1987; Gilroy et al. 1993; 

Sanders et al. 2002). Because high Ca2+ concentrations, necessary to trigger forisome 

reaction, cannot be reached in the whole sieve element due to the limited mobility range of 

Ca2+ ions (Gilroy et al. 1993), forisomes are facing structures which contain high 

abundance of Ca2+ channel (Fig. 7). Clustered Ca2+ channels in membranes as those of 
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endoplasmic reticulum and the plasma membrane generate kind of calcium hotspots, 

capable to initiate forisome reaction (Furch et al. 2009; Hafke et al. 2009; Hafke and van 

Bel 2013).  

Considering the reactivity of forisomes with respect to their location inside the sieve 

element, it is striking that, although the response time is not affected, the frequency of 

forisome reaction differs between the positions (Fig. 8). Whereas nearly three quarters of 

basal forisomes respond to application of heat stimuli, less than one half of the other 

positioned forisomes dispersed (Fig. 8 A). This is probably due to the fact that Ca2+-

permeable channels are more densely clustered at the downstream side of the sieve plate 

(Furch et al. 2009). Furthermore, increased reactivity of forisomes is associated with 

extended sieve-element contact (Fig. 8 B). This again renders credence to the view that 

contact of the forisome tips to Ca2+ hotspots, like in endoplasmic reticulum and the plasma 

membrane, are required for dispersion (Hafke et al. 2009). 

The high concurrency and reactivity of forisomes at the downstream side with close 

contact to the sieve element supports the conclusion, these forisomes to be the most 

reactive once. In a kind of ground stage, these forisomes regulate mass flow by rapid all-

or-nothing reaction due to Ca2+ influx into the phloem following the all-or-none principle of 

action potential (Fromm and Spanswick 1993). The regulatory properties of forisomes are 

consequently linked to the position inside the phloem. This becomes even more 

considerably regarding the forisome position prior to dispersion and after recondensation 

(Fig. 9). Forisomes seems to change the position from the high reactive ground stage (Fig. 

9 A) to a not as reactive position without contact to the sieve element (Fig. 9 C). While it is 

not as noticeable as in Phaseolus vulgaris, where forisomes even change their location 

from basal to apical (Furch et al. unpublished), it is striking that forisomes in V. faba only 

move back to their reactive ground stage after a recovery time of several minutes (Fig. 9 

D). This kind of movement inside the functioning mass flow again point to the theory of 

forisome anchoring (Furch et al. 2009), preferably in the vicinity of Ca2+ hotspots (van Bel 

et al. 2014). 

 

The regulation of mass flow not only guarantees fast defense response but, at the same 

time, prevents nutrient deficiency due to exceeding of impaired mass flow. Forisome-

based sieve-element occlusion thus might represent a monitoring tool for plant defense.  
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Flagellin, as a part of the bacterial flagellum, is known to act as bacterial elicitor to activate 

plant immune responses (Felix et al. 1999; Gómez-Gómez et al. 1999). Perception of 

microbial-associated molecular patterns (MAMPs) via pattern-recognition receptors (Boller 

and Felix 2009) provokes several downstream defense responses resulting in pattern-

triggered immunity (PTI) to restrict pathogen growth and distribution through structural 

barriers and providing antimicrobials (Dangl and Jones 2001; Boller and Felix 2009). 

Triggered by MAMP perception, plant immunity generates local immune responses, such 

as Ca2+ burst (Dodd et al. 2010) and reactive oxygen species (ROS) burst (Kobayashi et 

al. 2007), suggested to induce local chemical and electrical signals.  

Local phloem reaction in response to bacterial interaction, imitated by artificial flagellin, 

strongly depends on the diverse flagellin concentrations (Fig. 10). Prior to stimulus, the 

spindle-shaped forisome was typically observed to be closely associated with the sieve 

plate and the plasma membrane as normal for unstressed phloem (Fig. 10 A, F, K and P). 

The dispersion starts invariably at the forisome ends subsequent to detachment from the 

plasma membrane (Fig. 10 B, G and L), recondensation inversely starts from the center 

(Fig. 10 D; I and N). While flagellin concentration higher than 1 µM almost invariably 

triggers forisome reaction (Fig. 10 A to E and F to J), concentration of 0.1µM rarely triggers 

forisome dispersion (Fig. 10 K to O). Only one quarter of the irritated sieve elements show 

forisome reaction confirming that the conformational change is concentration-dependent. 

Furthermore, performing application of 0.01 µM flagellin, no phloem reaction occurred (Fig. 

10 P to R).    

Although forisome dispersion triggered by abiotic stress seems to underlie the all-or-

nothing principle due to action potential wave characteristics (Fromm and Spanswick 

1993), forisome reaction triggered by bacterial elicitor seems to be more complex. Average 

dispersion time seems, as the reaction itself, to be dose-dependent. Still the process of all-

or nothing expires, the higher the flagellin concentration is, the faster the dispersion and 

the slower the recondensation proceed (Fig. 10 A to O). This indicates again the regulatory 

properties of phloem reaction. Also characterized by the fact that, even if the elicitor 

remains continuous on the exposed plant tissue the forisome dispersion reflects partial 

defense response (Fig. 10), either by non-permanent signal transduction or active control 

through the phloem.     

 

We could show that reversible Ca2+-mediate forisome reaction occurs during bacterial 

infection, that might reflects regulation of defense mechanism, by fast accumulation of 

defense signal and in turn by systemically signal transduction. Furthermore, forisome-
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based occlusion might represent the first line of rapid barricade to prevent uncontrolled 

pathogen movement inside the phloem tissue. Thus, sieve-element occlusion imposed by 

bacterial infection seems to be initiated during host immune responses.  

 

Since the involvement of forisomes in sieve-tube sealing are harshly discusses (Peters et 

al. 2006; Knoblauch et al. 2014) and second line of sieve-element occlusion by other 

components, like callose or other phloem proteins, might occur, invisible in this procedure, 

further techniques were used to monitored the phloem immune responses, including sieve 

element occlusion.  

 

4.1.2. Flagellin-induced biphasic sieve-element occlusion 

There are evidences that callose (Furch et al. 2007; 2009), as well as phloem proteins 

(Ernst et al. 2012; Knoblauch et al. 2012) are involved in Ca2+-mediate sieve-tube 

occlusion due to sieve-pore sealing  (Hong et al. 2001; Knoblauch et al. 2003). The time-

shifted effect of sieve-element occlusion, first by protein subsequently followed by callose 

(Furch et al. 2007; 2009), is most likely based on the Ca2+ concentrations-dependent 

activity of protein and callose reaction inside the phloem (Colombani et al. 2004; Furch et 

al. 2009; Hafke et al. 2009). In addition, callose deposition is based on defense-related 

synthesis due to Glucan Synthase-Like 7 activity (Barratt et al. 2011; Xie et al. 2011), while 

protein plugging is based on agglutination of existing components (Knoblauch and van Bel 

1998). Both together reflect a sufficient interaction in defense reaction (van Bel et al. 2011) 

to seal the connection between the separate sieve elements. Reversibility of sieve-element 

occlusion, most likely due to removal of Ca2+ from the sieve tubes (Huda et al. 2013) 

ensures survival.  

We could show that application of bacterial flagellin to A. thaliana leads to abrupt mass 

flow impairment (Fig. 11). Through photobleaching effect and the subsequent transport of 

fluorescent mass flow inside the phloem, sieve-element occlusion is indicated 10 minutes 

(Fig. 11 G) and 180 minutes (Fig. 11 I) after flagellin application. While phloem proteins 

are known to have a rapid and short-term impact on phloem mass flow (Ernst et al. 2012; 

Knoblauch et al. 2012), the comparative long occlusion period, more than 30 min, is most 

likely based on callose deposition inside the phloem (Furch et al. 2007; 2009). In between 

the bi-phasic occlusion effect the mass flow seems to function regular (Fig. 11 H). 

Furthermore, subsequently to the last occlusion phase the phloem occlusion lifted 

permanent providing a regular mass flow (Fig. 11 J). The phasic characteristics of 
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occlusion event might be related to the bi-phasic ROS production (Baker and Orlandi 

1995) or degradation and new the synthesis of flagellin receptor (Smith et al. 2014).  

 

Again, the reversibility of sieve-element occlusion might ensure systemic spread of signals 

and prevent nutrient deficiency. The hypothesis of sieve-element occlusion function as a 

barrier to restrict pathogen invasion now seems rather questionable, since reopening of 

the sieve elements would allow a systemic distribution of phloem-pathogens. More likely, 

sieve-tube sealing ensures local accumulation of defense-related molecules and 

reversibility ensures signal spread.      

 

Perception of bacterial elicitor flagellin is mediated by the transmembrane receptor FLS2 

(Gómez-Gómez and Boller 2000). Based on the recognition of a single stretch of 22 amino 

acid residues in the N-terminus of flagellin (Felix et al. 1999) activates downstream 

defense events to provides basal defense responses in plants (Jones and Dangl 2006). In 

turn, plant carrying mutations in FLS2 show enhanced susceptibility to bacterial infection 

(Bauer et al. 2001; Zipfel et al. 2004). 

We could show, that in flagellin insufficient A. thaliana mutants, no sieve-element 

occlusion takes place (Fig. 12). This indicated the occlusion event to be part of the 

receptor-mediated plant immunity. During plant immune responses to bacterial perception, 

sieve-element occlusion might be initiated as downstream defense responses. Sealing the 

sieve tube system may prevent invasion of pathogens and released effectors/elicitors, 

redirect nutrient flows and enrich signal and defense molecules.  

 

4.1.3. Remote flagellin perception and signal transduction trigger phloem immune 
response 

Compared to the results obtained in in vivo experiments with abiotic stimuli (Furch et al. 

2007; 2009; Thorpe et al. 2010) the forisome reaction triggered by flagellin occurs delayed 

and slower (Fig. 10). Slow dispersion initiated from forisome tip raises the question about 

flagellin perception and signaling translocation.  It was long been assumed that the phloem 

is not directly involved in the introduction of immune response. While recognition of 

pathogen elicitor and effector proteins can occur extracellular and intracellular (Bent and 

Mackey 2007), respectively, initiation of phloem-associated immune reaction seems 

unlikely, since the sieve-element cells do not contain indispensable organelles, related to 

plant immune responses (Knoblauch and van Bel 1998). Probably, recognition occurs not 

directly in the sieve elements but most likely in the neighboring cells. Remote signaling in 
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nearby cells in turn enters the phloem cells to initiate immune responses affecting plant 

development (Hoshi et al. 2009). 

Surveillance of isolated V. faba sieve-element protoplasts in response to flagellin 

treatment, confirms the assumption that the sites of flagellin perception and response are 

spatially separated (Fig. 13). Compromised perception of flagellin in the sieve-element 

cells (Fig. 13) but not in mesophyll protoplast (Fig. 13 and 14) supports the conclusion that 

sieve-element cells are not involved in initiation of plant immune responses by bacterial 

infection.  

 

Presumably, phloem cells evolutionary have not developed systems for recognition of 

pathogen-associated molecular patterns, based on the fact that infection of plant, with the 

exception of vector-mediated transmission, does not primary infects the vascular tissue. 

The protective position of phloem tissue inside the plant corpus might not require 

autonomous perception of bacterial invasion, subsequently these infection are mainly 

associated with injury of the outer plant layer. Latter would initiate plant immune responses 

that reach the vascular bundle.  

 

 

 

Summarized, our finding shows the first time a phloem-based immune reaction initiated by 

bacterial invasion. The present studies provide evidence that pathogen elicitor triggers 

defense signals in cortex cells that reaches the phloem to set physiological reactions, 

including sieve-element occlusion, in affected sieve tubes.  

 

Together, the analysis revealed insights into the plant responses to bacterial infection but 

raise numerous questions. In particular, it remains unclear which signals and sieve-

element components are exactly involved in phloem-based defense reactions. Temporal 

and spatial correlation between ROS burst (Wi et al. 2012) and sieve-element occlusion 

might favor ROS as the major signal in phloem based immunity. Furthermore, the rapid 

and long-lasting effect of sieve-element occlusion indicated that both, callose and phloem 

proteins, are involved in sealing the sieve tubes (Furch et al. 2007; 2009).  

Above all, one can only speculate about the importance of impaired mass flow in plant 

immunity. Since the phloem is not directly part of the initiation of plant immune responses, 

the involvement of phloem-based immunity seems to be a downstream event of general 

plant immunity. Beside the possible function in signaling and defense, molecule 
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accumulation, due to metabolically active companion cells, the sieve-element occlusion in 

direct pathogen restriction seems to be unlikely. Even in case of phloem-restricted 

pathogens the reversibility of occlusion mechanism seems, at first sight, 

counterproductive. But reopening of barred sieve tubes might appear essential for survival 

to facilitate the systemic spread of defense signals rather than the systemic spread of 

pathogens.  

 

Investigations on sieve-element insufficient mutants would give a substantial progress in 

studies on phloem-based immunity. One consequence of insufficient control mechanism of 

sieve tubes (signaling and nutrient distribution) might be, probably based on alteration in 

signal transduction, a decreased resistance to different pathogens. Phloem reaction to 

local immune responses, like pattern-triggered-immunity and effector-triggered immunity, 

as well as systemic responses, like systemic acquired resistance, triggered by different 

pathogens need to be investigated in sieve-element occlusion insufficient mutants. 

Infection of such plants might help to develop a concept of plant immunity, including 

phloem-based responses.  
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4.2. Phytoplasma infection leads to Ca2+-mediate alteration of phloem morphology 

and transport  

Phytoplasmas are obligate, phloem-restricted phytopathogens that are disseminated by 

phloem-sap sucking insects (Christensen et al. 2005). There are evidences that 

symptoms, such as growth disturbance and flower abortion, are initiated during pathogen-

host specific interaction (Hogenhout et al. 2008). Next to impaired mass flow, subsequent 

expansion of the disease symptoms can not only based on phytoplasmas plugging the 

sieve elements, but it implies the involvement of phytoplasma-secreted effector proteins on 

plant cells morphology and function (Hogenhout et al. 2008; Bai et al. 2009). 

Phytoplasmas produce effector proteins that are known to interact and depredate host 

immune system (Hoshi et al. 2009; MacLean et al. 2011; Sugio et al. 2011) to increase 

bacterial motility (Suzuki et al. 2006; Galetto et al. 2011; Boonrod et al. 2012) as well as 

vector (Sugio et al. 2011) and pathogen fitness (Lu et al. 2014) leading to typical 

phytoplasma-related symptoms (Hoshi et al. 2009; MacLean et al. 2011). 

    

Even if many studies focused on macromolecular modulation of phytoplasma-related host 

symptoms, the identification of essential modifications on host tissue triggered by 

phytoplasma infection has been poorly understood (Rudzińska-Langwald and Kamińska 

2001; Santi et al. 2013). Furthermore, the studies lack to specify the structures involved in 

host-pathogen interaction. A part many effector-based symptoms, among others, 

carbohydrate redistribution (Lepka et al. 1999) and impaired mass flow (Kartte and 

Seemüller 1991) seem to be induced by deficiency of sieve-tube performance, so it seems 

reasonable that massive changes in phloem physiology can occur. Effector-based targeted 

modulation of phloem cells could be triggered by remote signaling, induced mainly in 

neighboring cells to interfere with phloem processes of defense and development. 

Cytological relationships between phytoplasmas and sieve elements are essential for the 

establishment of phytopathogenic activity in the host (Christensen et al. 2005), but 

identification of structural and functional changes during infection has not been 

investigated to date. Knowledge about the phytoplasma-interaction capability to modify 

sieve elements morphology, signaling and transport is essential for understanding the 

phytoplasma-host relationships.  

  

In the present work diverse microscopic techniques, such as Light-, Epifluorescence- 

(EFM) as well as Confocal Laser Scanning Microscopy (CLSM) and Transmission Electron 

Microscopy (TEM) were used to give new insight to phytoplasma-host interaction. 
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Observation of both, fresh and embedded tissue provides information on structural and 

biochemical modifications in sieve elements following phytoplasma infection. In particular, 

we focused on the effects of phytoplasma infection on phloem mass-flow performance and 

structural modification.  

 

The analysis can be divided into two parts:  

(1) Methods to study phytoplasma-induced alteration of host structures thus far provoked 

massive, native occlusion artifacts in sieve tubes. Hence, phytoplasma-phloem 

relationships were investigated in intact host plants. Computerized image-processing and -

analysis by CLSM using an array of vital target specific fluorescent probes appear the 

appropriate tool for in vivo investigation (Knoblauch and van Bel 1998). Phloem-specific 

phytoplasmas and their interactions with the plant host (Reichel and Beachy 1998) were 

investigated using healthy and phytoplasma-infected broadbean (Vicia faba) plants, used 

as hosts of ‘Candidatus Phytoplasma vitis’ (‘Ca. P. vitis’), the phytoplasma in nature 

associated to Flavescence Dorée (FD) disease of grapevines.  

(2) In conventional microscopy studies either ultrastructural analysis by TEM or 

identification of structures by EFM can be reached. To combine both analysis using serial 

semithin and ultrathin sections, hence, structural relationships between phytoplasmas and 

the sieve-element plasma membrane-ER-actin network was investigated using resin-

embedded leaf sections of healthy and phytoplasma-infected tomato (Solanum 

lycopersicon) plants, used as hosts of the ‘Candidatus Phytoplasma solani’ (‘Ca. P. 

solani’), the pathogen associated to stolbur disease. Combination of both, TEM 

immunogold-labeling and EFM (immuno)fluorescence-staining (Musetti et al. 2002; Bell et 

al. 2013), was used to achieve precise localization and identification of cellular targets.  

 

Summarized we could show that (1) apparently, phytoplasma infection brings about Ca2+ 

influx into sieve tubes leading to sieve-plate occlusion by callose deposition and/or protein 

plugging. In addition, Ca2+ influx may confer cell wall thickening of conducting elements. In 

conclusion, phytoplasma-triggered sieve-element occlusion presumptive has dramatic 

effects on phytoplasma spread and nutritiom distribution. Furthermore, we could 

demonstrate that (2) a drastic re-organization of sieve-element membrane structures in 

infected tissues occurs. The plasma membrane becomes undulated and the ER stacks are 

distorted and protruded toward sieve-element lumen. The actin aggregates on the 

phytoplasma surface provide evidence in favors of a coupling between phytoplasmas and 
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sieve-element cytoskeleton. Probably, all these modification have dramatic effects on 

phytoplasma fitness and host symptoms. 
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4.2.1. Phytoplasmas trigger Ca2+ influx leading to sieve-element occlusion 

The DNA-specific dye DAPI (4',6-diamidino-2-phenylindole) was used to detect 

phytoplasmas in diseased plants (Loi et al. 2002) and to identify phytoplasmas inside sieve 

elements in vivo (Fig. 17). Use of DAPI in living cells, as well as the fact that it does not 

affect cell viability, is well documented in literature, both for animal and plant cells 

(Subramaniam et al. 2001; Cai et al. 2008; Ocarino et al. 2008).  

Phytoplasmas were found to be distributed along the sieve elements, particularly in the 

vicinity of the sieve plates (Fig. 17 G). In the enucleate sieve elements (van Bel 2003), no 

interference with nuclear staining can occur (Fig. 17 E). Theoretically, sieve-element 

plastids, which are of the same size as phytoplasmas, may became stained as well, but 

there is no overlap between the location of the plastids and the DAPI-stained dots inside 

the sieve elements (Fig. 17 G and H). 

 

Environmental changes, such as burning (Furch et al. 2009) or cooling (Thorpe et al. 

2010) can trigger sieve-element occlusion, one of the first local responses to stress. In 

contrast to abiotic stress, knowledge about phloem reaction to biotic stress, such as 

pathogen attack, is insufficient. Some studies have reported nitric oxygen production in the 

companion cells of the phloem following application of fungal elicitor leading to forisome 

dispersion (Gaupels et al. 2008) indicating a sieve-tube occlusion (Knoblauch and van Bel 

1998).   

In diseased plants (Fig.16 D), mass flow was significantly reduced as compared to the 

healthy ones (Fig. 16 B), and, in most cases, had fully ceased. Thereby the effect of mass 

flow rate coincides with the presence of phytoplasma in infected sieve element (Fig. 18 K 

and L; Fig. 19 O and P). Sealing the sieve-tube system may prevent the invasion of 

pathogens and/or their released effectors/elicitors, redirect nutrient flows, and/or enrich 

signal and defense molecules. In addition, sieve-element occlusion might represent an 

important source of accumulated nutrition and energy for successful development of 

phytoplasma inside the phloem (Lepka et al. 1999). 

It is important to underline that even though sieve elements of infected tissue often seems 

collapsed and dysfunctional (Fig. 22 F and H) companion cell of the diseased plants still 

appears to be functional  (Fig. 18 L; Fig. 19 O) indicating that the companion cell activity is 

not totally impaired by infection, which could be important for phytoplasma survival. After 

having lost nuclei and most of their organelles during their ontogeny, sieve-elements rely 

on the metabolic activities of companion cells (van Bel et al. 2002) and may fail to fully 

nourish phytoplasmas. Companion cells are metabolically active and provide all the 
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compounds essential for sieve-element maintenance. As phytoplasmas lack many genes 

indispensable for cell metabolism (Christensen et al. 2005), compounds provided by 

companion cells might be an important source of nutrition for these pathogens or rather 

might represent the central position of host immunity inside the phloem. 

 

Although phytoplasma aggregates may be able to plug the sieve pores, it is more likely 

that phytoplasma-induced sealants are responsible for sieve-tube occlusion. One common 

observed mechanism for sieve-tube narrowing is via extracellular deposition of callose 

inside the sieve elements, mainly aggregated at the sieve plates and the plasmodesmata 

(Koh et al. 2012).  

Severe phytoplasma infection is inextricably bound up with callose deposition. Intensive 

accumulations of callose occur in the vicinity of the sieve plates of phytoplasma-infected  

tissue (Fig. 21 I and K) and sometimes in the adjacent zones, while only insignificant 

signal is emitted in healthy V. faba plants (Fig. 21 E and G). 

 

Next to sieve-tube constriction by callose, sieve pores can be blocked by phloem proteins 

(Furch et al. 2007). To repress further translocation phloem proteins are released from the 

parital position and agglutinate at the sieve plates (Knoblauch and van Bel 1998). In 

contrast to traditional phloem proteins, in Fabaceae, phloem proteins are aggregated in 

giant protein bodies called forisomes (Knoblauch et al. 2001). In response to different 

stresses, reversible conformational change from a condensed to a dispersed state enable 

to plug the sieve plates and prevents loss of photoassimilates (Knoblauch and van Bel 

1998; Knoblauch et al. 2001; Furch et al. 2007; Thorpe et al. 2010).  

In phytoplasma-diseased V. faba plants, spindle-shaped forisomes are dispersed (Fig. 20 

D; Fig. 21 J and L) and, hence, become invisible under the light microscope. Moreover, in 

infected plants high amounts of unidentified protein structures (Fig. 20 C) are visible at the 

sieve plate while, except the forisomes, only a minor amount of parietal proteinous 

aggregation at the sieve-element of healthy plants occurs (Fig. 20 A).   

 

Both, protein agglomeration and callose deposition are Ca2+-dependent (King and 

Zeevaart 1974; Thonat et al. 1993; Knoblauch et al. 2001) and are likely triggered by 

release of Ca2+ into the sieve element lumen (Furch et al. 2009; Hafke et al. 2009).  

In diseased plants, the Ca2+ concentration in the sieve elements was markedly elevated 

(Fig. 22 E and G) as compared to the healthy ones (Fig. 22 A and C). Especially at the 
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sieve-plate region, a significant increase of Ca2+ concentration seems to occur in 

phytoplasma-infected sieve elements.  

 

It appears that phytoplasma infection, possibly by secretion of phytoplasma effectors 

(Sugio et al. 2011), induces Ca2+ influx into the sieve elements. The scattered distribution 

of Ca2+ ions inside the sieve elements and callose deposition along the longitudinal walls 

indicates that phytoplasma do not only activate Ca2+ channels near the sieve plates, but 

also at other Ca2+ hotspots such as the pore-plasmodesma units between sieve elements 

and companion cells (Furch et al. 2009; Hafke et al. 2009). Recovery of the occlusion 

phenomena after a certain time demonstrated that occlusion can be reversed following 

Ca2+ extrusion (Furch et al. 2007; 2010). It seems, however, that in phytoplasma infected 

V. faba, phytoplasmas impose continuous gating of the Ca2+ channels given the 

permanent occlusion of infected sieve elements. 

 

In addition to sieve-plate occlusion, the sieve-element path may also be narrowed in 

diseased plants by thickening of the walls as revealed by recent observations. Increased 

sieve-element wall thickness and enhanced total phenolics have been reported for 

phytoplasma-diseased plants (Musetti et al. 2000; Choi et al. 2004). This would be 

consistent with accumulation of phenolic materials, probably by companion cells, since a 

Golgi system is absent in sieve elements, against the sieve-element walls. It has been 

demonstrated that a Ca2+ signal is required to induce phenylalanine ammonia-lyase (PAL) 

activity (Messiaen et al. 1993), a key enzyme of the phenol synthesis pathway, as well as 

PAL gene expression (Long and Jenkins 1998). This would add an interesting side-effect 

of Ca2+ influx on phytoplasma restriction. 

 

4.2.2. Phytoplasma infection is associated with re-organization of plasma 
membrane-ER network and actin structure in sieve elements 

The DNA-specific fluorescent dye DAPI was extensively used to detect phytoplasmas in 

fresh-sectioned plant materials (Loi et al. 2002) and is suitable for the identification of 

phytoplasmas in situ (see results above). Here, DAPI was used to detect phytoplasmas in 

LRW-embedded infected leaf samples. Although the signal was not as strong as in freshly 

sectioned material, the DNA fluorescence was sufficient to assess phytoplasma presence 

in both longitudinal and cross-sections (Fig. 24). 
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Adherence to host membranes is an established factor in pathogenesis (Razin et al. 1998) 

of several cultivable Mollicutes infecting humans and animals. It is largely unknown if 

phytoplasmas interact in such a fashion with host plants. In infected sieve element, 

phytoplasmas appear to be attached to the plasma membrane (Marcone 2010), although 

unambiguous proof of adherence to host membranes has not been given. However, 

several studies demonstrated the presence of a subset of adhesin-like membrane proteins 

in most phytoplasmas (for review see Kube et al. 2012).  

A drastic ultrastructural re-arrangement of membranes in stolbur-diseased sieve tubes 

(Fig. 25 D, E and F) is indicated by alteration of signal distribution in infected areas and by 

an increase in fluorescent signal in the sieve-element lumina. TEM images of stolbur-

diseased vascular areas reveal the signal alteration to be due to host membrane 

remodeling (Fig. 25 H and I) and phytoplasma presence (Fig. 25 J). High-resolution 

images (Fig. 25 K, L, M and N) disclosed intimate and strong connections between 

phytoplasma cells and the sieve-element plasma membrane, in the form of membrane 

junctions or overlays. This cytological observation correlates to what has been reported on 

pathogenic mycoplasmas, even if the latter have an extracellular localization (Razin et al. 

1998). Contact between the mycoplasma and host cell membrane may result in local, 

transient fusion of the two membranes or exchange of membrane components. Diverse 

proteases, involved in the breakdown of host proteins, are encoded in the phytoplasma 

genomes (Kube et al. 2012) and many of them are supposedly linked to phytoplasma 

virulence. Phytoplasma membrane proteases might be responsible for phloem impairment 

(Seemüller et al. 2013), a major effect of phytoplasma infection (Fig. 18 and 19). 

 

It has been extensively reported that pathogens actively modulate the host cytoskeleton 

for successful invasion (Rottner et al. 2005; Pizarro-Cerdá and Cossart 2006) and 

movement inside host cells (Tilney and Portnoy 1989; Sansonetti 1993; Opalski et al. 

2005). Interaction of phytoplasma with the plant host cytoskeleton is inferred by the 

presence of phytoplasma antigenic membrane proteins (AMP or IMP), which are able to 

dock onto the vector cytoskeleton (Suzuki et al. 2006; Galetto et al. 2011) or plant-host 

actin filaments (Boonrod et al. 2012). 

Our study indeed reveals a spatial overlap of invader pathogen and host sieve-element 

actin structures (Fig. 26 H and I). It is important to note that the unilateral binding between 

actin and phytoplasma indicates a polarity of phytoplasma body as has been extensively 

reported for other prokaryotic microorganisms (Lybarger and Maddock 2001; Dworkin 

2009). In particular, gram-positive intracellular pathogenic bacteria (i.e. Listeria 
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monocytogenes) have evolved a mode of motility dependent on the unipolar 

polymerization of host actin (Lybarger and Maddock 2001). This actin-based motility 

facilitates cell-to-cell spread of pathogens via bacterial projections delivering the bacteria 

into adjacent host cells (Lybarger and Maddock 2001). Phytopathogenic phytoplasmas 

may induce a similar asymmetric polymerization of host actin allowing pleomorphic 

changes in phytoplasma corpus (Rudzińska-Langwald and Kaminska 1999) to enable 

active movement in sieve elements as indicated by concurrent gold labeling near sieve 

plates and phytoplasmas (Fig. 26 J). The ability to bind to actin may enable phytoplasmas 

to spread along plant actin filaments in sieve element, especially through the narrow sieve 

pores. The sieve-pore diameters are mostly smaller (e.g. van Bel 2003) than the size of 

the phytoplasmas (Hogenhout et al. 2008). In plant cells, organelles, like plastids, 

frequently move along the interface between cytoskeleton and ER (Schattat et al. 2011). 

This raises the question if this also holds for phytoplasmas having a similar size.  

part from a role in pathogen movement, membrane fusion associated with actin-controlled 

events may open up a corridor for nutrient supply by delivery of vesicles and protein 

complexes from host to phytoplasmas (Mathur and Hülskamp 2002; Vantard and 

Blanchoin 2002). Increased intensity and modified distribution of the actin signals in sieve 

element following stolbur disease point to a large-scale remodeling of actin filaments in S. 

lycopersicum phloem. While actin in healthy sieve element is distributed along the 

periphery of the cell (Fig. 26 B and C; Hafke et al. 2013), the probable formation of new 

filaments (indicated by the increase in TR fluorescence) and/or re-organization of existing 

ones result in actin aggregation at the edges and in the sieve-element cell lumen, 

especially in severely infected areas (Figs. 26 E and F).  

Furthermore, the cytoskeleton supports numerous cellular processes including rapid 

reaction to abiotic and biotic stresses (Day et al. 2011), to protect the cell against 

destructive processes (Morelli et al. 1998; Wang and Riechmann 2007; Wang et al. 2010). 

Host actin remodeling and increase in actin filament abundance indicate that the 

cytoskeleton is a key element in plant defense (Opalski et al. 2005; Hardham et al. 2007; 

Tian et al. 2009) and thus may also play a role in pattern-triggered immunity (PTI) (Henty-

Ridill et al. 2013). Cytoskeleton re-arrangement and related increase in actin expression 

and distribution in stolbur-diseased S. lycopersicum may be involved in plant immunity as 

shown for other biotrophic interactions (Jin et al. 1999).  

 

Sieve-element endoplasmic reticulum also plays a part in the complex interaction between 

phytoplasmas and sieve elements. During differentiation of sieve element (Thorsch and 
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Esau 1981), endoplasmic reticulum usually becomes aggregated in regular stacks 

(cisternae) close to the plasma membrane along the lateral sieve-element walls (Sjolund 

and Shih 1983). The cisternae lie either parallel (Evert 1990) or perpendicular (Ehlers et al. 

2000) to the plasma membrane. The sieve-element reticulum stacks are tethered to the 

plasma membrane and to each other by anchors of unknown nature (Ehlers et al. 2000) to 

prevent dragging by mass flow and potential clogging of sieve pores. Structural and 

functional relationships between phytoplasmas and the endoplasmic reticulum are not well 

documented so far. Rudzińska-Langwald and Kaminska (2001) reported that endoplasmic 

reticulum is often situated in the lumen of sieve elements of Aster Yellows-infected 

Limonium sinuatum being detached from the plasma membrane and in close connection 

with phytoplasmas.  

We could show that closely connected to the actin, sieve-element reticulum shows re-

organization in infected areas (Fig. 27 D, E and F) accompanied by a contortion of the 

endoplasmic reticulum stacks (Fig. 27 J and K). Increased intensity and modified 

distribution of the ER signals following stolbur disease point to a large-scale clustering of 

ER network in S. lycopersicum sieve elements. As actin filaments are often aligned with 

the reticulum stacks (Boevink et al. 1998), sieve-element reticulum network may act as a 

second track for the bacterial movement with so far unknown connectors between sieve-

element reticulum and phytoplasmas. Beside this, the sieve-element reticulum expansion 

observed in the stolbur-diseased sieve elements, due to the formation of lobes as well as 

to the fragmentation into vesicles (Fig. 27 L), might be correlated to the requirement of 

increasing the reticulum surface thus providing a greater area for defense protein 

distribution into the lumen of the sieve elements, as demonstrated to happen in animal 

cells (Watson and Stephens 2005; Strating and Martens 2009). Finally, ER stacks are 

important cellular compartments for Ca2+ storage in sieve elements (Sjolund and Shih 

1983). Actin pulling may activate Ca2+ release from the ER system in sieve elements 

following phytoplasma infection (Rudzińska-Langwald and Kamińska 2001) as 

demonstrated above. Persistent connection between sieve-element reticulum and ER of 

the companion cells (Martens et al. 2006) may increase the potential calcium signaling in 

the phloem of infected plants. 
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In conclusion, our finding shows the first time that phytoplasma infection results in a 

significant re-organization of sieve-element structure in phloem tissue as well as almost 

completely breakdown of sieve-element function. The present studies provide evidence 

that infection of plants with phytoplasma leads to abnormalities in the sieve-element 

plasma membrane, sieve-element endoplasmic reticulum as well as actin network. 

Furthermore, Ca2+-mediated sieve-element occlusion due to sieve plate sealing by callose 

and proteins point to a complex interplay of host and invader during phytoplasma infection.  

 

Collectively, the analysis revealed insights into the host responses to phloem-restricted 

bacteria but raise numerous questions with one of the leading themes. One can only 

speculate about the importance of the contact between phytoplasmas and sieve-element 

structures and reduced mass flow concerning symptoms appearance and initiator.  

Macroscopical symptoms (Fig. 15 and 23) can either be induced by the phytoplasma 

impairing the mass flow and ultrastructural modification of phloem cells or rather represent 

phloem independent  alteration due to effector-based targeting in distant tissue.   

Furthermore, phytoplasmas may induce a targeted modulation by release of effector 

proteins, which initiate response, mainly in phloem associated cells since, as above 

mentioned in the results, the sieve elements not involved in response initiation. 

Phytoplasma bind to host structure to enable nutrient supply and systemically spread 

inside the sieve elements, which permits a fast distribution and proliferation of bacteria in 

the host plant. On the other hand, focal orientation of phloem substructures in the direction 

of the stress imposed by phytoplasma infection seems to reflect defense response of the 

plant. In addition, sieve-element occlusion is known to be initiated during host immune 

response but might be driven by the phytoplasma to permit accumulation of nutrients.  

 

Even if it still remains unclear whether structural alteration is based on insufficient host 

defense response inside/outside the sieve element or “willfully” induced by phytoplasmas 

hijacking and/or suppressing host immunity, the recent work give a novel view inside the 

complex phytoplasma-host interaction.  

The latter approach is favored by the fact that the symptoms mostly include an increment 

of vegetative plant tissues thereby generating a more extended phloem network for 

phytoplasma replication (Hogenhout and Šeruga Musić 2010) and accumulation of 

nutrition (Christensen et al. 2005) seems to be beneficial for phytoplasmas. All in all, 

phytoplasmas seem to induce changes in the expression of genes chiefly involved in 

hormone metabolism, stress response, electron transport, and protein modification or 
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degradation (Jagoueix-Eveillard et al. 2001; Pracros et al. 2006; Margaria and Palmano 

2011). It seems that the phytoplasmas win evolutionary arm race, to turn the host into a 

Zombie (Arduengo 2014) that provides board and lodging for the phytoplasma parasite. 

 

The discovery of phytoplasma effector proteins (Sugio et al. 2011) could give a boost to 

studies on the initial mechanisms involved in phloem/phytoplasma interactions. Application 

of phytoplasma effectors to intact plants might help to establish the time-course of the 

events involved in phloem reactions to infection. 
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Supplemental Image 1: Autofluorescence images of unstained healthy (A,B) and 
FD-infected (C,D) V. faba phloem tissue. Sieve elements of healthy plants, using 
405 nm (A), 488 nm (B) wavelength do not exhibit strong signals. Similar results 
were obtained for FD-infected sieve elements both at 405 nm (C) and 488 nm (D) 
wavelengths. In A and B arrowheads indicate autofluorescence of chloroplasts in 
the parenchyma cell above the sieve elements. CC, companion cell; PPC, phloem 
parenchyma cell; SE, sieve element; SP, sieve plate. Scale bars = 10 µm. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Supplemental Image 2: Autofluorescence and background 
images of unstained A. thaliana vascular tissue. Except signals 
from xylem and chloroplast (arrowheads), cross-sections 
excited to a wavelength of 488 nm do not show strong signals. 
P: phloem, X: xylem. Scale bars 20 µm. 
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Supplemental Image 3: Autofluorescence images of untreated protoplast from V. faba stem tissue. 
Except weak signal from chloroplast neither sieve-element nor mesophylls protoplasts show strong signal 
when exited by wavelength of 488 nm. To identify the green signal as emission from longer wavelength 
(point of reference) chlorophyll signal was collected simultaneously starting a wavelength of 600 nm (red 
signal). In A asterisk indicated forisome, in A and C arrowheads indicate chloroplast. Scale bars = 10 µm. 

 

 

 

 

 

Supplemental Image 4: Autofluorescence and background images of untreated (A-D) and secondary 
antibody-only treated (E-F) S. lycopersicum tissue. Overlay (A) of bright-field image and images excited with 
a wavelength of 340 nm (B), 450 nm (C) or 540 nm (D) served as a staining control, respectively. Overlay (E) 
of bright-field image and sample treated with secondary antibody-only excited with a wavelength of 540 nm 
(F) showing non-specific secondary binding. CC, companion cell; CPC, cortex parenchyma cells; CS, 
crystalline structure; PPC, phloem parenchyma cell; SE, sieve element; X, xylem vessel. Scale bars = 50 
µm. 
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Well Label Primers C(T) 

F1 Vicia To1 FD 16SRT f1r1 18,25 

F2 Vicia To2 FD 16SRT f1r1 19,70 

F3 Vicia To3 FD 16SRT f1r1 21,41 

F4 Vicia To4 FD 16SRT f1r1 18,55 

F5 Vicia To5 FD 16SRT f1r1 17,95 

F6 Vicia To6 FD 16SRT f1r1 17,18 

F8 C. roseus FD+ 16SRT f1r1 17,25 

F9 Grapevine FD+ 16SRT f1r1 19,20 

F10 Vicia1C-22_03_12 16SRT f1r1 None 

F12 H2O 16SRT f1r1 None 

 
Supplemental Table 1:  Molecular detection of 
‘Candidatus Phytoplasma vitis’’ in Vicia faba plants. 
Flavescence Dorée phytoplasma 16S rRNA was 
detected in infected plants, whereas no amplification 
was obtained in control plants. 

 
 
 

 

 

Well Label Primers C(T) 

F1 Stolbur-infected S. lyc 1 16SRT f2r3 17.98 

F2 Stolbur-infected S. lyc 2 16SRT f2r3 19.38 

F3 Stolbur-infected S. lyc 3 16SRT f2r3 17.54 

F4 Stolbur-infected S. lyc 4 16SRT f2r3 16.10 

F5 C. roseus Stol+ 16SRT f2r3 17.55 

F6 Grapevine Stol+ 16SRT f2r3 23.50 

F7 Tomato C- 16SRT f2r3 None 

F8 H2O 16SRT f2r3 None 

 
Supplemental Table 2:  Molecular detection of 
‘Candidatus Phytoplasma solani’ in Solanum 
lycopersicon plants. Stolbur phytoplasma 16S rRNA 
was detected in infected plants, whereas no 
amplification was obtained in control plants. 

 

 

 

 

 

 

F1 to F4: samples 

stolbur-infected S. lycopersicon  

F5: positive control 

stolbur-infected Catharanthus roseus,  

F6: positive control 

stolbur-infected grapevine 

F7: negative control 

healthy S. lycopersicon 

F1 to F6: samples 

FD-infected V. faba  

F8: positive control 

FD- infected Catharanthus roseus 

F9: positive control 

FD-infected grapevine  

F10: negative control 

healthy V. faba 
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