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Bifurcation from homoclinic to periodic orbits in twé dimen-—
sions has been known for a long time [1,4]. L.P. 3il'nikov [8]
obtained the first result for arbitrary finite dimension. His
idea was to consider a point on the homoclinic trajectory as
fixed point of a suitably constructed map so that continuation
by the implicit function theorem yields fixed points which de-
fine periodic solutions. The difficulty involved is to show
smoothness of 8il'nikov's map. This requires a careful investi-
gation of trajectories close to a hyperbolic equilibrium. The
underlying vectorfields have to be at least c2-smooth [71.

In [9] we proved a result in infinite dimension: For the func-
tional differential eguation

%(t) = af{x(t-1))
with periodic nonlinearity f£:R + R in a certain class of func-
tions, there exists a critical parameter a = ag with a hetero-
clinic solution, and for a > ags periodic solutions of the se-
cond kind bifurcate off. This was done without recourse to Sil'-
nikov's idea, and required only C1-smoothness of £, but gquestions
of uniéueness and stability for the bifurcating solutions re-
mained unanswered.

Assuming more smoothness, M. Blazquez {2], S.N. Chow and B.
Deng [3] and the author [11] recently obtained results for pa-
rabolic [2,3] and functional [3,11] differential equations which
include uniqueness and stability. All these proofs employ modi-
fications of 8il'nikov's map, but the crucial parts - how to
derive smoothness - are different.

In [11] we tried to give a conceptually relatively simple

proof of smoothness. The key is a sharpened inclination lemma,



reals @ < 1, ¥ 2 B > 1 with (A.2) |1x| € alx| on 0, B|x| $ |Lx|
ytx{ on P, and with (A.3) (ay)/B < 1. Let (A.4) @ np) cp,

(U nQ <. ’ -

Then there exist an open neighborhood UcUof 0€Bandc>0,

Qe IA

€ (1,B) such that for all P, 2 P4 > 0 there is a constant

o o

> 0 with the following property: -
If a set H © U satisfies
p, < |px| < P, on H, gx # 0 and A(x) := |g§ <c } a.5)
on T_H ™ {0} for all x € H : :
with the projections p:B + P, g:B =+ Q given by (A.1), then
==k

lpx| < p,87", (a.6)
gx # 0 and A(x) < &lpx| (a.7)
~ -k
for all k € Ny, x € H := (Flu) " (@), x € T,H ~ {0}
Remarks For dim P = 1, |Lx| = |L||x| on P, and we may assume
B = |L| = ¥ so that (A.3) is automatically satisfied. - For

an arbitrary set Z < B, the set TXZ of tangent vectors at x € Z
is defined as usual, by derivatives of differentiable curves
which pass through x and have trace in %. In general, TXZ is
(A.6) and (A.7)im-
ply that inclinations A(y), X € T H > {0}, tend to 0 uniform-

not a vector space - but always, 0 € sz‘ -

1y with respect to x € H, as k > +o,
For other inclination lemmas in infinite-dimensional spaces,
see [5,6].

B. Preparations. In order to avoid technicalities we present the
core of our approach in the simplest nontrivial situation, with-
out parameters. Consider a local C2-flow X:Q9 B, <R x B,

on a finite-dimensional space B, with stationary point 0 =
X(t,0) for all t € R. We assume that the generétor of the 1li-

' . nearization T:R x B 3 (t,x) - Ttx € B-at 0 € B has a simple po-

e

sitive eigenvalue u, and that there are constants
A< - < 0with Rez2 < A <0<uc<uy for all
eigenvalues z # u. } (B.1)
Then (B.2) B =P ¢ Q with Tt
where ® is a unit eigehvector of the eigenvalue u, and there is

a constant cy > 0 such that for all t 2 0,

—invariant spaces P = R® and Q,

T X = " % on »p, ITtxl < CTeAtlxl on Q (B.3)

We assume in addition that (B.4) P and Q are invariant under the

nonlinear flow X, i.e. (t,x) € @ and x € P imply X(t,x) € P, and

analogously for Q. Write X(t,x) = Ttx + R(t,x), with a remainder
R:2 + B which is Cz—smooth. Note that (B.5) R leaves P and Q in-
variant. We have (B.6) R(t,0) = 0, D2R(t,0) = 0, D1D2R(t,0) =0
on R. :

We prepare both the construction of a shift I along trajec-
tories close to 0 € B, and the application of the preceding lem-
ma to a restriction of a time-N-map of X.

It is not hard to find a positive integer N, positive reals
o <1 and vy = B > 1, and an open set U such that the Cz—map

§:U 3 x +» X(N,x) € B, L:= D3(0) = Ty
satisfies conditions (A.1) - (A.4), and furthermore

a < eAN) B < euN, o < 1/8 (B.7)

In particular, (B.8) [0,N] x U < Q.

As in section A, write x = px + gx with px € P, gx € Q, for
all x € B. We choose ¢ > 0 and a convex open neighborhood U < U
of 0 € B with pU © U, qU © U so small that the lemma applies
with constants ¢ and B, and such that we have

|DypR(t,x) | + [DyaR(t,x)| < ¢ on [0,N] x U, . (B.9)
|D, (D,aR) (0,%) | + ]DZ(D1pR)(0,x)| <¢conU, (B.10)

and (B.11) a + ¢ < eAN, (B.12) ¢ < u, (B.13) c < B. - It follows

that there is some c* > 0 with (B.14) ]sz(t,x)l < ¢c* for t in
[0,N], x € U. Set g == §|U. We have

(B-c) |px| £ |pg(x)| s (B+c)|px| and } (B.15)
lgg (x| < (a+c)|gx| for all x € U.
Proof of the first estimate: Set r := g - L. Note pr(gx) = 0.

Apply the mean value theorem to pr(x) = pr(x) - pr(gx), use
(B.92) and (A.2). -

Similarly, (B.9) implies |pR(t,x)| £ c|px}, |gR(t,x)| £ c|ax|
on U. Using (B.3) and (B.15) one shows - without the variation-

of-constants formula - that there exist p > 0, ¢, > 0, cy > 0
such that for all x € U with X(s,x) € U on [0,t],

A

czept|px| < |pX(t,x) | c3eut[px], (B.16)

IA

|ax(t,x) | c3ekt|qx]. : (B.17)



e
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Finally, there are c, > O, Cg > 0 su¢h that for all x € U,
c4|px| < IpD1X(0,x)| < 05|px| and (B.18)
|qD1X(0,x)| < c5|qx|. (B.19)

Proof of the first estimate in (B.18): (B.5) yields pR(t,gx) =
0 on [O,N] x U, hence-D1pR(0,qx) = 0 on U. (B.10) and the mean
value theorem for D,pR(0, x) - D1pR(0,qx) give ]pD R(0,x)]| £

Ttpx =

u*px. Use X(t,x) = Ttx + R(t,x) on f, and (B.12).

c|px| on U. PT, X = px on R x B implies D1pT(0 x) (1) =

C. .The map I. Observe first that (B.16) yields
pX(t,x) € (0,»)-® for all x € U with px € (0,x)-@&
and X(s,x) € U on [0,t].
Fix r > 0 with r € U N P. Set H := rd +
8

} (. 1)

Q. Choose n1 > 0 and

1 > S so sTall that the open bog

E  :=E (n,8) := {x € B: px € (0,n)+%,|agx| < &}

n1, § = 5 satisfies ET < U, E'nH-= ¢, and that for
every x € et there exists o = o(x) > 0 with X(t,x) € U on [0,0],
pX(t,x) € (0,r)+® on [0,0), pX(o,x) = rd® (or X(o,x) € H),

b X(o,x)(1) # Q. Furthermore, we: can achieve that the map

with n =

o:ET (0,») is COntlnuously differentiable. - Let x € E'. By

(B.16), r= |pX(c x)| < c3e %lpx|, or
lOg F—I_P—}?r £ o{x). (C.2)
With (B 17), we obtain
Alu -
lax (o (x) ,x) | < c3|qx]<E£) lox| MY, (c.3)
3 .
Consider the C?—map T:ET 3 x - X(o(x),x) € H cB and its "&ilt-
nikov continuation” ¥ to the set
E := E(ng,8;) := {x € B: Tpx| < n1,|qx| < 8,3
defined by %(x) := rd on E ~ E". ¥ is C1—smooth on E ~ Q. Proof
of differentiability at points x € E 0 Q, with D¥(x) = 0
Suppose lim x_ = x, x €EN {x} for all n € N, and ik = X,

n->o k

€ E+ for a subsequence (n . Clearly E(xn) - ¥(x) = 0 if x

x) kel
- B(x) = X(o(xy) %)
- 0] - fallx

(C.3) and (B.1) show that dif-

n
¢ E'. For all k € N, £ (x,) - rd =

ax(o(x),%), and |x - x| 2 |px - x|, or

(14 ja) % - x| 2 |px,| > 0.

ference quotients for ¥ tend to 0 as k + +.

In the next sections we shall show that there exists 63 in
(0,61) with

sup |IpZ(x)| =+ 0 as n + 0.

(C.4)
X € B (n,63)

This implies continuity of D} at points x € Q with lax] < 8.

D. Discretization. The preimages Hﬁ := 0—1(kN) [= E+, k € N, are
k

nonempty for k sufficiently large and satisfy Hi c g () =:’Hk
for all k € N, with .
gk(x) = X(kN,x) = Z(x) on each Hk' (D.1)

Let x € E'. The tangent vector Wy, 1= D1X(0,x)(1) to the trajec-

tory X(+,x) at t = 0 satisfies

Do(x)wX = -1, (D.2)
since o(X(t,x)) - o(x) = -t for small t > 0. Therefore ¢ and
Hi are transversal whenever Hi # @, and Hﬁ is a submanifold of

codimension 1. (D.2) and TkN{kN} = {0} imply Wy 4 T HY for all
X € Hﬁ, k € N, so that

B = wa ® Txﬂi. (D.3)
P
x + T_H¥
xk
x /N
*
Hg
*
¥ ]wa \ Hk
Q >> Z
N2 N

L is constant along trajectories.
on each H} # 0.

Therefore (D 4) DZ(x)w =0

(D 1) gives (D. 5) DZ(x)x Dg (x)x for all

is to use (D.3) and (D.4) for an estimate of |DI(x)| , x € H*,

in terms of

and of the angle between the decom-
posing spaces in (D. 3), and to apply (A.6) and the pointwise
estimate (A.7) for the inclination of T H, to the majorizing

terms.
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E. Estimate of ng(x) on T H . Set p, := p, := r and recall

A(x) = 0<cCif 0 # ¥ € TxH = Q, X € H. We have (A.6) and some
& > 0 so that (A.7) holds. Let us sketch how to find cg > 0 with

AkN
S cge™ x|

|ng(x)x| for all k € N,x € H,X € T H (E.1)

k*
The first inequality in (B.11), (A.6) and (A.7) permit to
choose j € N such that for all integers k 2 j, x € ;o X € Hk—1’

x € T E ~ {0}, X € TSH 4 > {0} we have

(o + ¢ + coA(y)) ——;—%%%% < et (E.2)
Consider X € T _H {0}, x € H, k2 j. Set X := g(x) and ¥ :=
Dg(x)x € TgHp 4 {0}. We show (E 3) |xI = ellel: With qx # 0
#ax, ’ -I

+x+ +SX+ qul qul
% pX + qx|
qx Iqx
(A.2) and (B.9) give |gX| = |gly + @Dr(x)x| £ a|ax|+ c|x|
{a+c) |ax] + c|px|. Using this and (E.2), we get (E.3). - Final-

ly, iteration and an appropriate choice of Cg yield (E.1).

For points x € Hi, k € N, and vectors x € TXH*, we combine

(D.5), T Hi T Hk' (E.1), o(x) = kN and (C.2) and infer
Dz (x)x| < C7IPXI_A/“le with ¢, := cs(c3/r)"x/“; (E.4)

F. Estimate of DI(x) at x € Hf. We choose §, € (0,8,) with

(F.1) cg8, < c,/(28), e € (0,1) with (F.2) elg|/(1-€) < 1/2,
and j € N with (F.3) |pyx| € e|x| for all integers k 2 j and

all x € Hf, x € T Hf. - The latter is possible because of (A.6)

kl
and (A.7).
Let x € HY, k 2 J, |ax| < 8,. (F.3) and [pe| = [2| =1 > ¢
imply @ ¢ TxHi so that we have another decomposition
= * .
B P ¢ TXHk _ (F.4)
The associated projections px_onto P and g onto TXHi satisfy

pex = PX if X € P, p.x = px — (lax|/]agaxl) payx } (F.5)
if ¥ € B ~ D.
(The equation for x € B ~ P follows from PyX = PPyX = p(x -

- qX)s 0 #aX = 9a,X + 9P,X = d4.X.) Proof of
lp, = pl < 1/2, lg, - al = |id - p, - (id - p)| < 1/2 (F.6)

- consider x = y® + X with [x| =1, y € R, X € T_H%. Then

[pX|. By (F.3), |pX] s e|X]

I e, - )Xl = 1y2 - p(y2 + X)|

A

tax] s [al. Eence
1/2, with (F.2).

ellpX| + |aX]). Note |aX| = |a(y® + X)|
fpx| < e(lpx| + lal), |ex| s elal/(1-¢)
It follows that

A

|Z] s cgesup |Zgye + x) | (F.7)
-15y$1,x € T HE, |x]=

for all continuous linear maps IL:B ~+ B, where cg i= 1 + Ipl +

. - (D.2) gives p.w_ # 0. Next, we show
-A/u 1
|z (x)| < cglpxl (1 + TE;W;T) (r.8)
with ¢4 := c8c7(1 + (% + [q|)'05'(ﬂ1 + 5 1)+

(F.7) implies [DI(x)| s cg(|DZ(x)2| + sup
XE€T B, [x]=1

[p2 (x)p | /P | = I-DZ(x)qxwxl/lewxl-
-2
/Uquw

IDZ (x)x])-

From (D.4), IDZ(#)QI

Using (E.4), we arrive at |DIZ(x)| s cs(c7|px[ . pxwx|~1

p.4
+ o lpx| ™). (F.6), (B.18) and (B.19) yield |quw | s (1 + |al)

<Upwy| + Jaw ) s (1 + Jal)eg(|px]
obvious.,

lgx|), and (F.8) becomes

Now the pointwise estimate (A.7) becomes crucial. We derive
lpa |7 < (2/¢,) [px| ] (F.9)

XX X
and of the lower estimate in (B.18). For W, ¢ P, (F.5) gives

|pxwx| 2 |pwx| |aw, |A{gw,). Using (B.18) as before, (B.19)
for |qwx|, |ax| < 85, (F.1) and finally (a.7), we get |pxwx|

- in case Wy € P, this is a trivial consequence of p w_ = pw

cylpx| = (c,/28) 8- |px].
Altogether, we have shown in this section that for all inte-
gers k 2 j and all x € Hf with lax| < LY

I-A/u + |(-A/u) - (F.10)

[DZ(x) | < cqq(]px |px

where Sy 3= c9(1 + (2/04))-



G..Estimate at arbitrary points x € E+(n2,63). Choose positive

reals 63 < 62 and n, < n, so small that

for all x € E" (n,,68,), o(x) > jN and } (
G.1)

X(t,x) € E+(n1,62) on [0,N].

Let x € E+(n2,63). The largest integer k with kN £ o(x) < kN + N

satisfies k 2 j. Set % := X(o(x) - kN,x). Then X € E+(n1,62)

and o(x) = kN, or X € H¥. We have Z(x) = L(x) = I(X(o(x) -

kN,x)), and there is a neighborhood W c E+(n2,63) of x such

that for ally € W, I(y) = £(X(o(x) - kN,y)). Hence -|DE(x)| &

|DZ(§)!- DZX(G(X) - kN,x)|. (B.14) for t = o(x) - kN <N, x in

E+1n2,63) c U, and (F.10) yield
Dz | £ ey (lpx| ™M™ o |px] CMW) T Ty.ex, with (6.1) ana
(B.16) - and with (B.1) - we obtain

IDE(x) | £ oy (px)™™¥ 4 |px| TMW = T) (©.2)

where cyq == c10c*((c3euN)_A/u + (c3euN)(—A/U) - 1). Finally,

(G.2) and the hypothesis (B.1) on the spectrum imply (C.4).

H. Bifurcation. The simplest nontrivial situation with parame-
ters occurs for a local flow (t,x,a) + X(t,x,a) of class C2 in
a finite-dimensional space B, with parameters in an open inter-
val A 2 0. Suppose (1) 0 € B is a stationary point, the spectral
hypothesis (3) is satisfied, and X is locally normalized (4).
Then one can make the previous considerations locally uniform
with respect to the parameter. The result is that there exist

n, > 0 and 63 > 0 and an open interval A1'3 0 with .

sup |D1Z(x,a)| ~ 0 as n-=+20 (2.1)
X € E (n(63,a),a € A1
where I(x,a) = X(o(x,a),x,a) € Ha <.B for x € E+(n2,53,a), a. in
A B .

1As a conseqguence one obtains that D1f exists on the whole do-
main of ¥, and is continuous, now with respect to (x,a). As in
section C, D1§(r®0,0) = 0.

We show that existence of the partial derivative Dzi'follows
from the analogue of (C.3), asserting that there is cé > 0 with

la & (0 (x,2) a0 | 8 eylagxl (e/ey) M H p ] MY (c.31)

for all x € E+(n2,63,a) and all a € A1: Consider x € E(n2,63,a)

with px = 0, a € A1, so that Z(x,a) = r@a, and sequences of
points a_ € A; > {a}l with lim a_ = a. Differentiability of
n—-)-co
a* -+ Qa* shows that in case P, X € (—n2,0]'®a for all n, dif-
n

n
ference quotients Dn := (a_ ~ a) 1(Z(x,an) - i(x,a)) tend to

n

r+lin n(e,,, - 0). - If By X € (0,ny)+0, for all n, write
D, = rla, - a)"(@an -0 ) +a withd := (a, - a) (Ex,a) -
r@an) = (a, - a)_1qan2(x,an). By cl-smoothness of a* - P
there is °p > 0 with Ipa;xl = |(Pan - Patxl < #Pan - Pa[LXI g

cp(n2 + 63)|an - aif Using this and (C.3') and A < -u, we ob-

tain lim dn = 0. - Now it is easy to complete the argument.
n-o

We return to bifurcation. Suppose in. addition that (2) there

is a homoclinic trajectory x0 for a = 0. Then the map
8:3 x £ 3 (x,a) » £(x(8,x,a),a) € B

is defined, with some fixed 6 > 0 so that X(t,r@O,O) is in
E(n,,85,0) for all t 2z 6. % is as smooth as ¥. We have é(r@o,O)

= 1o, = xO(O),'and (H.2) D1§(r¢0,0) = 0. Altogether, we can use
a version of the implicit function theorem which guarantees
existence of a locally unique differentiable curve a - wa of
solutions to an equation F(y,a) = 0 through a given solution y*
at a = 0, provided both derivatives D1F and DZF exist, D1F is
continuous, and D1F(¢*,O) is an isomorphism.

We obtain a differentiable curve of fixed points x; of 8(-,a)
through.xo(O), which are all stable and attractive, due to (H.2).
If finally (5) X(G,r@a,a) € E+(n2,63,a) for a > 0, then it
can be shown that for a > 0 these fixed points define periodic
trajectories which are unique in a neighborhood of the homocli-

nic orbit, and stable and attractive with asymptotic phase.
Precise statements and complete proofs, in a moré difficult
situation with semiflows in an infinite-~dimensional space, are



contained in [11].
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