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1 Introduction

The classical empirical distribution function F,, of a sample of n independent and identically
distributed observations is the nonparametric maximum likelihood estimator of the underlying
distribution function F' if this is completely unknown, see e.g. section 2.1 in Owen |[25]. For
this and a considerable number of other reasons the empirical distribution function plays a
prominent role in statistical inference. For example, many classical goodness-of-fit statistics such
as the Kolmogorov-Smirnov statistic or the Cramér-von Mises statistic are based on it.

Suppose now that it is additionally known that the underlying distribution function is centered.
It may be considered as a drawback of the empirical distribution function F;, that it does not
take this auxiliary information into account, since [, xF,(dx) # 0 in general. By using non-
parametric maximum likelihood estimation under constraints, a centered empirical distribution
function F,, can be constructed, see Owen [22-25] and Qin and Lawless [27]. Zhang [31] has
established a functional central limit theorem for the empirical process v/n(F,, — F') based on F,,.
The asymptotic variance of this process is pointwise not greater than that of the classical em-
pirical process \/n(F,, — F), whose limit is a time-transformed Brownian bridge by the classical
functional central limit theorem of Donsker. A corresponding result holds for the covariance
matrices of the finite-dimensional distributions of the limit processes, see inequality (1.12) in
Genz and Héusler [12]. Furthermore, it follows from Example 2 in section 5.3 of Bickel et al. [5]
in combination with Zhang’s result that the estimator F;, is asymptotically efficient for F' in
the sense of the Hajek-Le Cam convolution theorem. For F' belonging to a parametric family
{F(-,9): 9 € O} of centered distribution functions, a functional central limit theorem for the
empirical process with estimated parameter based on Fy, i.e., for \/n(F,(-) — F(-,9,)) with a
suitable estimator ¥, for 9, was derived in [12], see also Genz [11]. If 9 is estimated appropri-
ately, e.g., by maximum likelihood, the asymptotic variance of this modified empirical process
is again seen to be pointwise less than or equal to the one of the classical empirical process
with estimated parameter \/n(F,(-) — F(-,9,)), for which a functional central limit theorem was
proven in the fundamental work of Durbin [7]|. In this case a corresponding result also holds
again for the covariance matrices of the finite-dimensional distributions of the limit processes,
see inequality (2.16) in [12]|. Note that in [22-25], [27], [31] and [12] more general auxiliary in-
formation than [, xF(dx) = 0 is considered, but we will restrict our attention to the case of
centered distributions.

While the model of independent and identically distributed centered data may not be of great
relevance in practice, in various other important statistical models like in many regression and
time series models the centeredness of the error variables is part of the model. Hence, in order
to estimate the error distribution function F' in such models nonparametrically at sample size
n, instead of the standard empirical distribution function Fj, ,¢s of the residuals one can use a
centered version ﬁ’nmes in the spirit above, which includes the model assumption explicitly. Some
investigations in this direction have already been made. For example, Genz [11] studied the
estimation of the error distribution by ﬁmms for autoregressive processes of order one in the case
that F' = F(-,4) for some ¥ € O and derived a functional central limit theorem for \/ﬁ(ﬁn’res() -
F(, émres)), the residual empirical process with estimated parameter based on ﬁn’res. He showed
that the distributional limit of this process is the same as that of the process \/7(Fy () — F (-, )
based on independent and identically distributed observations with common distribution function
F = F(-,9) for suitable estimators @nmes and 9, of 9. Since the ordinary residual empirical
process with estimated parameter \/n(F, res(-) — F (-, ﬁnms)) converges weakly to the same limit
as the process v/n(Fy () — F(-,Uy)) in the model of independent and identically distributed data
with distribution function F' = F'(-,4) when suitable estimators for ¢ are used, see section 3 in
Genz [11] and the references therein, it follows again that if ¢ is estimated appropriately, the




1 Introduction

asymptotic variance of the residual empirical process with estimated parameter based on ﬁn,res
is pointwise not greater than the one of the process based on F), ,¢s, and the analogous result also
holds for the covariance matrices of the finite-dimensional distributions of the limit processes.
For estimating the error distribution in a nonparametric homoscedastic regression model, Kiwitt
et al. [17] consider inter alia the centered empirical distribution function F), ;s of the residuals
and establish a functional central limit theorem for a corresponding stochastic process. They also
compare the resulting asymptotic mean squared error with the analogous term for the ordinary
empirical distribution function of the residuals and show for some examples of underlying error
distributions that the former is considerably smaller than the latter due to a reduction of bias,
see Example 4.1 in [17].

In models such as those above, for goodness-of-fit testing for F' it is natural to consider the
classical goodness-of-fit statistics with F,, and F, ;.s replaced by F;, and F}, ,¢s, respectively, so
that each of the classical test statistics based on the ordinary (residual) empirical distribution
function has a counterpart based on the centered (residual) empirical distribution function. In
view of the above, it seems reasonable to presume that the goodness-of-fit tests based on F,
and F}, res exhibit a better performance than their classical counterparts. To the best of our
knowledge, up to now this has only been studied in a few cases. For independent and identically
distributed observations, Genz and H&usler [12] considered testing the composite null hypothesis
Ho: F € {Fy(-/o): 0 € (0,00)} for certain centered distribution functions Fj and simulated the
power of the asymptotic bootstrap test based on the classical Kolmogorov-Smirnov statistic with
estimated parameter and of its counterpart using the centered empirical distribution function
against some fixed alternatives. Their results show that the tests based on F;, lead to a higher
power even for small sample sizes in most of the examples. Analogous results are derived by
Genz [11] also for autoregressive processes of order one. In [15] the asymptotic power of the
asymptotic tests based on the classical Cramér-von Mises statistic and on its modified version
using F), for testing the simple null hypothesis Hg: F' = Fy for certain centered distribution
functions Fp in the case of independent and identically distributed data is computed numerically
against a sequence of contiguous scale alternatives. It is found that in all of the investigated cases
the test based on F}, has substantially better asymptotic power than the one based on F,.

The object of this thesis is to provide further mathematical evidence that in the presence of
centered distributions the use of Cramér-von Mises statistics based on the centered (residual)
empirical distribution function instead of classical Cramér-von Mises statistics leads to improved
asymptotic test procedures for goodness-of-fit testing. We will investigate these tests not only in
the model of independent and identically distributed centered data, but also for certain stable
autoregressive processes of arbitrary order with independent and identically distributed centered
errors.

For comparing the performance of two sequences of tests for a given testing problem there are
various concepts of asymptotic relative efficiency discussed in the literature. The relative efficiency
of two sequences of tests is the ratio of the sample sizes needed with the two tests to obtain a given
power (3 at the significance level a. Then clearly the sequence of tests is preferable that needs less
observations to attain a power of 3. As the relative efficiency will generally depend on the values of
a, 3, and on the alternative under which the power is considered, it is hardly possible to determine
its value except in simple cases. For this reason several asymptotic procedures concerning the
relative efficiency have been proposed, see e.g. Nikitin |21] for a comprehensive account. Since the
quality of a sequence of tests can be assessed by its power at alternatives that are close to the null
hypothesis and at small significance levels, the limit of the relative efficiency when the alternative
approaches the null hypothesis and the level tends to zero is studied. In case of its existence,
this quantity is called the limiting (as @ — 0) Pitman asymptotic relative efficiency. Wieand [30]
established a condition under which it is possible to equate the limiting Pitman asymptotic
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relative efficiency to the limit of the approximate Bahadur asymptotic relative efficiency, which
is another concept for the comparison of two sequences of tests introduced by Bahadur [1]. As the
approximate Bahadur asymptotic relative efficiency is in general easy to compute, this provides
a means to determine the value of the limiting Pitman asymptotic relative efficiency. Using this
approach, we will compare the performance of the two competing Cramér-von Mises tests in
this thesis by examining their limiting Pitman asymptotic relative efficiency. In section 2 we will
describe the aforementioned concepts of asymptotic relative efficiency in more detail and adjust
Wieand’s results to our setting, which differs from the one considered in [30].

The explicit definition of the centered empirical distribution function fn based on a sample of
independent and identically distributed centered random variables is given in section 3 and some
results concerning its asymptotic stochastic behavior uniformly with respect to the underlying
distribution of the data are proven. These uniform results are then used in the next section to
verify Wieand’s condition for the Cramér-von Mises statistics based on Fvn

In section 4 we consider observations that are independent and identically distributed according
to a centered distribution function F' and determine the limiting Pitman asymptotic relative
efficiency of the asymptotic tests based on the classical Cramér-von Mises statistics and on their
counterparts using F), for testing the simple null hypothesis Hy: F' = Fjy against Hy: F' € G\{Fp},
where G is an appropriate set of continuous centered distribution functions, and for testing the
composite null hypothesis Hyo: F' € F; against Hi: F' € G\ F;, where F; is the scale family
generated by the exponential power distribution with fixed parameter 7 € (0,00). The class
of exponential power distributions, whose explicit definition is given in subsection 4.2, includes
both the normal and the double exponential distribution as special cases. The scale parameter
of the scale family F, will be estimated by maximum likelihood. For both of the above testing
problems we will show in section 4 that the limiting Pitman asymptotic relative efficiency of
the classical Cramér-von Mises test with respect to the modified test based on Fj, is equal to
the ratio of the largest eigenvalues of those Hilbert-Schmidt integral operators whose kernels are
the (time-transformed) covariance functions of the limit processes under the null hypothesis of
the empirical processes the test statistics are based upon. By results from [15] we will deduce
that this ratio is strictly less than one in all of the cases considered, so that the sequence of
tests based on the modified Cramér-von Mises statistic is preferable to the standard one in both
testing problems.

A paper prior to our investigations which studies the limiting Pitman asymptotic relative effi-
ciency of Cramér-von-Mises-type tests based on suitably weighted classical empirical processes
with and without estimated parameter in the case of independent and identically distributed data
is Wells [29]. Using the results of Wieand, Wells determined the limiting Pitman asymptotic rel-
ative efficiency of the test statistics with estimated parameter relative to their counterparts with
fully specified distribution function under some regularity conditions in a model of parametric
alternatives. Similar to the results above, he showed that the efficiency equals the ratio of the
largest eigenvalues of certain Hilbert-Schmidt integral operators and is less than or equal to one,
whence he concluded that the test procedure based on the statistic with estimated parameter is
better than the one with a fully specified distribution function.

An important basic model in time series analysis is the autoregressive process. We will restrict our
attention to certain stable autoregressive processes with independent and identically distributed
centered errors in section 5 and section 6. More specifically, we will investigate strictly stationary
stable autoregressive processes as well as stable autoregressive processes with fixed distribution
of the starting values that does not vary with the error distribution. For these processes we will
then consider goodness-of-fit tests for the error distribution using the classical Cramér-von Mises
statistics based on the residual empirical distribution function F, ,.s and the modified statistics

based on the centered residual empirical distribution function F}, yes.
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In section 5 we will discuss the residual empirical distribution functions F;, ;s and ﬁmres for the
aforementioned autoregressive processes in some detail and study in particular their asymptotic
stochastic behavior uniformly with respect to the underlying distribution of the errors. More-
over, we will investigate the uniform stochastic behavior of the least squares estimator for the
autoregressive parameter. These uniform results will then be used in section 6 to verify Wieand’s
condition for the Cramér-von Mises statistics based on F}, ;s and Fvn,res.

The limiting Pitman asymptotic relative efficiency of the asymptotic tests based on the afore-
mentioned Cramér-von Mises statistics is studied in section 6 for testing the same simple and
composite null hypotheses as in section 4, with F' denoting the distribution function of the error
variables of the autoregressive processes here. The set G of possible distribution functions is ad-
justed in this section to the model under consideration. The unknown autoregressive parameter
will be estimated by least squares. For testing the composite null hypothesis Hy: F' € F, we
will confine our investigations to strictly stationary stable autoregressive processes and stable
autoregressive processes that start in zero. The scale parameter of the parametric family F, will
be estimated by the residual-based version of the maximum likelihood estimator for the scale
parameter in the model of independent and identically distributed observations. Using Wieand’s
approach again, we will show that in both testing problems the limiting Pitman asymptotic
relative efficiency of the asymptotic tests based on the Cramér-von Mises statistics using Fn res
and Fn res respectively is the same as the one of the respective tests based on F),, and Fn in
the model of independent and identically distributed data determined in section 4. Hence, also
for the stable autoregressive processes under consideration the goodness-of-fit tests based on the
Cramér-von Mises statistics using F}, ,.s lead to better test procedures than the tests based on
the classical statistics.




2 Asymptotic relative efficiency of two sequences of tests

2 Asymptotic relative efficiency of two sequences of tests

There are various concepts of asymptotic relative efficiency for comparing the performance of
two sequences of statistical tests for a given hypothesis testing problem. In this section, we
will describe the concepts of approximate Bahadur asymptotic relative efficiency and Pitman
asymptotic relative efficiency and extend a result of Wieand that specifies conditions under
which the limit (as the alternative approaches the hypothesis) of the former efficiency coincides
with the limit (as the level tends to zero) of the latter.

To begin with, let us introduce some notation. Throughout this thesis, the end of a proof is
signaled by the symbol [J and the end of a remark by ¢. Moreover, the minimum and maximum
of two real numbers x and y will be denoted by z Ay and x V y, respectively.

Now let (G, d) be a metric space. For every nonempty set A C G, point v € G and € > 0 we set,
as usual, d(v, A) := inf{d(v,7): 7 € A} and Uc(A) := {y € G: d(7,A) < €}. If the set A is a
singleton, say A = {0}, we will write U(~p) instead of Uc({70}).

Let (£2,.A) be a measurable space and let v — P, be an injective mapping from G into the set of
probability measures on A. Consider now the statistical model (2, A, {Py: v € G}). It is required
to test

Hp: v€ Gy versus Hyj:ye G\ Gy, (2.1)

where Gy is a nonempty subset of G with
Ue(Go) N (G\ Go) #0 Ve>0. (2.2)

The foregoing condition ensures that the set Gp is not isolated in G, but can be approximated
by elements in G \ Gy. For each n € N, let T}, be a real-valued test statistic on (2, .A) for testing
(2.1) such that Hy is being rejected if and only if T;, > k(«) with k(«) € R such that

Py(T, > k() — a Vv e Go

for every a € (0,1). Thus, the sequence of tests corresponding to (7},)nen is asymptotically of
level «, and k(«) is the asymptotic critical value.

The following definition is due to Bahadur, cf. page 276 in Bahadur [1].
Definition 2.1

The sequence (T},)nen is said to be a standard sequence if the following conditions are satis-
fied.

(BI) For each v € Gy,
P,(T,<z) — G(z) Yz eR,
n
where G is a continuous distribution function.

(BII) There is a constant a > 0 such that

l _
lim —og(l QG(:E)) = —g.
z—00 T 2

(BIII) There is a function b: G \ Gy — (0, 00) with

Ty . .
Jn b(7) — 0 in Py-probability Vv e G\ Go.
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For a standard sequence (T},)nen We set k(o) = G71(1 — a) because of (BI), where G~! is the
quantile function of G. Condition (BIII) implies that 7,, — oo in probability under Hy, so that
the sequence of tests corresponding to (7}, )nen is consistent.

In [1] Bahadur studies the behavior of 1 — G(T},), the approzimate p-value or approximate level
attained by T,, for any standard sequence (T},)nen. He considers the random variable

K, = —2log(1 — G(T,)) (2.3)
and shows that for each v € Gy

nh_)n(f)lo Py(Kn <z) =Fg(z) Vo eR,
where FX% is the distribution function of the chi-square distribution with two degrees of freedom.
Moreover, he notes that

K, 2 . .

— — ab(y)® in Py-probability V-~ € G\ Go.

n n
The function e(vy) := ab(y)?, v € G\ Go, is called the asymptotic or approzimate slope of the
sequence (T )nen. For two standard sequences (T, )nen and (o, )nen with approximate slopes
c1(7y) and ca(7y) respectively Bahadur compares the approximate attained levels for fixed n € N.
He argues that the test based on Tj, is less successful than that based on T}, if the approximate
level attained by T3, exceeds that of T},, which is equivalent to K;, < Kj,, where K, and Kj,
are as in (2.3), ¢ # j € {1,2}. Since

Ky al)
Ko  n ca(y)

with P,-probability tending to one the test corresponding to 77, is less successful than that
corresponding to Thy, if ¢i1(y)/c2(y) < 1 and more successful if ¢;(y)/ca(y) > 1. The ratio
c1(7y)/ca(y) is thus called the approzimate Bahadur asymptotic relative efficiency (approrimate
Bahadur ARE) of the sequence (T1y,)nen relative to the sequence (1o, )nen.

in P,-probability Vv € G\ Go,

A drawback of the concept of approximate Bahadur ARE is that the approximate slope of a
standard sequence is not a very trustworthy measure for the performance of the corresponding
test, as Bahadur himself notes at the end of section 4 in [1], see also section 6 and 7 in Bahadur [2].
Nevertheless, the approximate Bahadur ARE has its merits. For example, it is generally easy
to compute and under certain conditions its limit as the alternative approaches the hypothesis
equals the limit as o — 0 of the Pitman asymptotic relative efficiency, a different efficiency
concept which we will describe next.

The concept of Pitman asymptotic relative efficiency is based on the notion of relative efficiency
of two sequences of tests. For this, let (T, )nen, ¢ = 1,2, be sequences of statistics for testing
the hypothesis testing problem (2.1). The index n here denotes the size of the random sample
the statistic Tj, is based on. As before, we assume that the sequence of tests corresponding to
(Tin)nen is asymptotically of level a and that {Tj, > k;(a)} is the rejection region of the test
based on Tj,, where k;(«) is the asymptotic critical value, i = 1, 2. Furthermore, we assume that
the test sequences based on (T1,)nen and (To,)nen are consistent. For fixed «, 8 € (0,1) and
v € G\ Gy we define

Ni(a,8,7) :=min{n € N: Py (Tin, > ki(a)) > BV m >n}, i=12. (2.4)

Note that the consistency of the respective test sequence ensures that N;(«, 3,7) € Nfori =1,2.
The number N;(a, 8,7) is the smallest sample size such that the power of the test based on
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(Tin)nen under the alternative v and the asymptotic significance level « is not less than /3 for
all sample sizes larger or equal to it. Hence, for given «, 8 and +, the sequence of tests based
on (Tin)nen is preferable to the one based on (Tjn)nen if Ni(o, 8,7) < Nj(a, 5,7), because it
needs less observations to attain a power of at least [ at the alternative 7 and the asymptotic
significance level a. We will call the ratio Na(«, 3,7)/Ni(a, B,7) the relative efficiency of the
sequence (T1,)nen with respect to the sequence (T, )nen.

In general, the relative efficiency depends on all three arguments «, 8 and =, and its explicit
computation is often very difficult. Since from a practical point of view small significance levels,
high powers and alternatives close to the hypothesis are especially relevant, several limiting
procedures have been proposed. One approach is to investigate the limit of the relative efficiency
as the alternative tends to Hy. If

1 NQ(aa /87 ’Y)
1m —
v€G\Go, Nl(aaﬁafy)
d(’ngO)_)O

exists, we will call it the Pitman asymptotic relative efficiency (Pitman ARE) of the sequence
(Thn)nen With respect to the sequence (T, )nen. The concept of Pitman ARE was introduced
by E. J. G. Pitman at the end of the 1940s in his unpublished lecture notes on nonparametric
statistical inference and has since then become one of the most popular types of asymptotic
relative efficiency.

In the literature, there are several variants of the notion of relative efficiency. For example, other
definitions of N;(a, 3,7) are used. Sometimes N;(«, 3,7) is defined to be the first sample size
such that the power of the test at the alternative v and the significance level « is larger than
or equal to B, without requiring the power to remain at this level for sample sizes larger than
Ni(a, B,7). If the power is an increasing function of the sample size, this definition of N;(«, 8,7)
coincides of course with the one above. Note moreover that often the sequence of exact level
a tests corresponding to (Tj,)nen is considered. In this case, the asymptotic critical value is
replaced by the exact critical value in the definition of N;(«, 8,7). Since we are only interested in
comparing sequences of tests as described above that are asymptotically of level «, the definition
of Ni(a, 3,7) as given in (2.4) is the most suitable for our purposes, and we will henceforth
only consider the relative efficiency and Pitman asymptotic relative efficiency as defined above.
A comprehensive description of the aforementioned and other notions of asymptotic relative
efficiency and related results can be found in the book of Nikitin [21].

As the Pitman ARE may depend on the values of o and (3, it is in general still difficult to
determine its value. Because of this, its limit as & — 0 is investigated. For G being an interval
and Gy = {10}, Wieand [30] gives conditions ensuring that the limit as & — 0 of an extended
version of Pitman asymptotic relative efficiency agrees with the limit of the approximate Bahadur
asymptotic relative efficiency as the alternative « approaches Gy. He shows that for this equality to
hold, it is sufficient to strengthen condition (BIII) locally. In what follows, we adjust Wieand’s
results to our definition of Pitman ARE and extend them to the general hypothesis testing
problem (2.1). Another extension of Wieand’s results was done by Kallenberg and Koning [16].

The following definition extends Wieand’s additional Condition IIT*.

Definition 2.2

The sequence (T),)nen is said to fulfill Wieand’s condition (WIII) if there exists a function
b: G\ Go — (0,00) so that there is an €* > 0 such that for each e > 0 and § € (0, 1) there is a
positive constant C'(e,d) with

P (|2 —v] = b)) < 5

for all v € U (Go) \ Go and for all n € N with \/nb(y) > C(e, 9).
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Note that condition (WIII) implies (BIII) locally, i.e., for all v € U (Gp) \ Go. Hence, the function
b in Wieand’s condition is locally unique, that is, if the sequence (T},)nen satisfies (WIII) with
two functions by and by, there is a ¢ > 0 such that bi(y) = ba(y) for all v € U,(Go) \ Go.

We will now state and prove a version of the theorem on page 1005 in Wieand [30] that is adjusted
to our setting. For this, let us consider two sequences (11, )nen and (o, )nen of test statistics
again. For functions and symbols such as G, a;, b;, ¢;, the subscript ¢ refers to the sequence

(ﬂn)n€N7 Z = 17 2

Theorem 2.3
Let (Tin)nen, @ = 1,2, be two sequences such that

(i) (Tin)nen fulfills conditions (BI), (BII) and (WIIIL) fori=1,2,
(ii) Gp and Gy are strictly increasing on (z,00) for some z € R,
(i1i)  bi(y) = 0 as d(,Go) — 0, v € G\ G, fori=1,2,

(iv) there exists

lim 216) =: B(Go) € R.
v€G\Go, 02(’7)
d(7,G0)—0

Then for all B € (0,1)

N. N.
B(Go) = lim liminf 200.87) _ lim sup 2, 8,7). (2.5)
a—0 'yeg\go, Nl(aaﬁ77) a—=0 'ng\Qo, Nl(O[,/B,’Y)
d(7,G0)—0 d(,90)—0

The common value in (2.5) is called the limiting (as o — 0) Pitman ARE of the sequence
(T'hn)nen with respect to the sequence (Toy,)nen. Note that it is independent of 3, since B(Gy)
does not depend on it.

As from a practical point of view the performance of a test under small significance levels and
alternatives close to Hy is of special importance, the limiting (as @ — 0) Pitman ARE is an
appropriate means for choosing between the two test sequences for the hypothesis testing problem
(2.1). If B(Gp) > 1, then the sequence of tests based on (7%, )nen is preferable to the one based
on (Ton)nen, and the test sequence based on (Tay,)nen is preferable if B(Gy) < 1.

The following proof of Theorem 2.3 is mainly based on the proof on page 1006 in Wieand [30]
but also borrows some ideas from the proof of Theorem 1 in Kallenberg and Koning [16].

Proof. For any fixed 8 € (0,1) we can choose a 6 € (0,3) with 8 € [§,1—]. For every € € (0,1)
by (BII) there is an 29 = xo(€) > z such that

a;

(1+ e)(—%)xz < log(1 — Gy(z)) < (1 — 6)(—5>x2

for all x > zp and ¢ = 1,2, where z is from (ii). Let o/ := min;—; 2(1 — G;(x¢)) (note that
o/ = d'(e) € (0,1)). Then for a € (0,a] it is ki(e) = G; ' (1 — @) > @ for i = 1,2, and therefore

a/i 2 ai 2
2\ k. < < (1 — )\ .
(1+0)(=5 ki) < log(a) < (1= ) (=5 Jhile)?,
which is equivalent to
1/2
—2log(a)

1/2
—2log(a)
a;(1+¢) )

< ki(a) < [al(l—e)




2 Asymptotic relative efficiency of two sequences of tests

Define o’ := min;_ 2 exp(—a;C; (¢, §)?), where C;(e, §) is as in (WIII) (note that o” = o/(¢, §)).
For a € (0,”) we have for i = 1,2 and for all v € G\ Gy that for n € N

— log(a) —log(a)\1/2
ZW = Vnbi(y) > (T) > Ci(e, ). (2.7)

We will now derive a lower bound for N;(«, 3, 7).

For € € (0,1) set M(e) := 2- (1 —€)/(1 +¢€)* — 1 and fix ¢¢ € (0,1) with M(ep) > 0. Then
2(1 —€)/(1 4+ €)* > 1 for every e € (0,¢] because the function M(e) is strictly decreasing in

€ (0,1). Further set K := exp(—(a1 Vag)/M(€p)). Note that by (iii) there is an 77 > 0 such that
bi(y) <1,i=1,2, for every v € G\ Gy with d(v,Go) < 7. For such ~ it follows for o € (0, K]
that

aibi 2
o< e (- 0)
for i = 1,2 and every 0 < € < €, so that
log()
M(e) > 1. 2.8
bl M) (2.
Thus, there is an n € N with
~log(a) —~2log(a)(1 - )
<n< , 2.9
TR =" bR+ o 29

because the difference of the bounds is at least one, as was shown in (2.8). So for v € G\ Gy with
d(v,G0) <1, € € (0,e0], @ € (0,min(K,’, ")) and such n we have

1/2
—2log(a)(1 —¢) 1—e\1/2
Vnbi(v)(1+e€) < [ (1t )2 ] < ki(a)<1 +6) < ki(a)
for i = 1,2 using (2.6), and therefore
Py(Tm > kz(a)) < P’Y (Tm > \/ﬁbz('y)(l + 6))

Now set €* := €] A €5 with € from (WIII) and take v € G\ Gy with d(v,Go) < € A 7. Since
n > (—log(a))/(a;b;(7)?) and v and « are such that Wieand’s condition (WIII) holds, we have

B>5>P(f[;n( —1‘>e>

P,Y({fj;<) 1—|—€}U{f7;)()<1—6})
Tin > Vnbi(y)(1 +¢))
Tm>k‘i(a)).

> Py
> Py (
Thus, for : = 1,2

—2log(a)(1 —¢)
a;bi(7)%(1 + €)*

for every v € G\ Go with d(v,Go) < €* A7, € € (0,€0] and a € (0, min(K, o/, a)).

Ni(aaﬁ)v) >

(2.10)




2 Asymptotic relative efficiency of two sequences of tests

Next, we want to find an upper bound for N;(a, 3, 7).

For this, let € € (0, o] and o € (0, min(K, o, ")) again. Note that by (iii) there is an 7 > 0 with
bi(v) < VeCi(e, 6) for v € Us(Go) \ Go and i = 1,2 (note that 7 = 7(e,0)). For the following
investigations let v € G \ Gy with d(~, Gy) < min(e*, 7, 7).

Then for n € N such that
- —2log(a)(1+¢€) - —log(a)
T oaibi(v)2(1 =€) T aibi()?
it follows with (2.6) that for ¢ = 1,2

Jibi(y)(1 =€) > (_21;’?((10‘1(1)* 6>)1/2 > k()T T e > ki(a).

Hence, by the monotonicity of the distribution of T3, under P, we have
Py (T > ki(a)) > Py(Tin > Vnbi(v)(1 —€)).

As o < o' and n is such that the left side of (2.7) holds, it follows from Wieand’s condition
(WIII) that

5§1—5<P(‘fb ~1|<e)=py(1-¢ \F];)()<1+6)
< Py (Tin > Vnbi(v)(1 =€)
< Py(Ty > k().

This implies

—2log(a)(1 + 6)1 (2.11)

Ni s M <

(o 8,7) [aibi('yﬁ(l P

for i = 1,2, where [y] := min{m € Z: m > y} for y € R. Now note that for i = 1,2
V' Ni(a, B,7) bi(y) > Ci(e, 9)

using (2.10), (2.9) and (2.7). But since b;(y) < /€ Cj(¢, ), this yields N;(a, 5,7) € > 1. Hence,

—2log(a)(1+¢)
aibi(7)*(1 —€)*’

NZ(OZ?B”Y)(l - 6) = Ni(a,ﬁ,"}/) —Ni(a,ﬂ,’}/)ﬁ < Ni(aaﬁvv) -1

where the last inequality follows from (2.11). Thus,

—2log(a)(1+¢)
aibi(y)*(1 — ¢)*
for every € € (0, €], @ € (0, min(K, o/, ")), v € G\ Go with d(v,Gp) < min(e* 7, 1) and i = 1, 2.
A combination of (2.10) and (2.12) yields

Ni(a, B,7) < (2.12)

a(y) (1-—ey> _ N(a,B,7)  aly) (l+e®
(7)) <1+e> S Ni@B,y) el (1_6) (2.13)

for every € € (0, €], @ € (0, min(K, o/, ")) and v € G\ Gy with d(v,Go) < min(e* 7, 1), whence
it follows that

NQ(OC7677) 1+€ 5
limsup ——————= < B(Gy) -
veG\Go, N1(e, B,7) (Go) <1—e)
d(’y,Qo)—)O

10



2 Asymptotic relative efficiency of two sequences of tests

for these values of € and . Now taking the limit superior as a — 0 of both sides of this inequality
first and letting € tend to zero afterward, we get

NQ(a7677)
Ni(a,B7) = B(Go)

limsup limsup
a—0 ’yeg\go7
d(’Y:gO)HO

) )

In the same way it follows from (2.13) that

liminf liminf ~2@57) 5 B(Go)
a—0 ~€G\Go, 1(0(, 67 7)
d('y,go)ﬁ)o
Hence, it is
Ng(a,ﬁ,’}/) N2(Oé7/8a7)

B(Go) < liminf lim inf < limsup liminf
=0 yeg\go, M1 (o, B,7) a—0  ~eG\Go, M1 (o, B,7)
d(7,60)=0 d(v,G0)—0

< limsup limsup ————=
a—0  yeG\Go, Ni(a, 8,7)
d(v,90)—0

and this implies

lim liminf —2°2
a—0 7eg\g0, Nl (O[,ﬁ,"}/)
d(’ngU)_ﬂ)

Analogously, we get

lim limsup 7]\[2(&’/8’7) = B(Go),

a—0 'YGg\go, Nl (Oﬁ,ﬁ,')/)
d(’ngU)*)O

which completes the proof. O

Oftentimes the verification of Wieand’s condition (WIII) is not straightforward, because in order
to establish it, it is necessary to study the behavior of the test statistics under Hy, and the
knowledge of this behavior is often limited. The following proposition thus sometimes facilitates
the verification of (WIII). It extends the lemma on page 1007 in Wieand [30] to composite null
hypotheses in an arbitrary metric space.

Proposition 2.4
Let {(Viy)nen: v € G} be a family of sequences of real-valued test statistics on (§2, A). Suppose
that there is a ¢ > 0 such that

(1) for every v € Uy(Go) \ Go there is a continuous distribution function Q. with

sup | Py(Voy <2) — Qy(z)] — 0 Va2 €eR,
v€U,(90)\Go "

(ii) sup |Q;1(a)| < o0 for all a € (0,1), where Q;l is the quantile function of Q.
’YEUQ(QO)\QO

Let g: Uy(Go) \ Go — (0,1] be an arbitrary function. Then for every e >0 and § € (0,1) there is
a constant C = C(e,8) such that for all v € Uy(Go) \ Go and all n € N with n > C/g(~)?

Ml <) > 14

vn

Py (

11



2 Asymptotic relative efficiency of two sequences of tests

Proof. Let € > 0 and § € (0,1). Choose M; € (0,00) so that

1 _ 0
- sup QVl(l_Z) < M.
€ y€U,(G0)\Go

Then Q(eM;p) > 1 — g for every v € U,(Go) \ Go. Moreover, choose a constant C7 > M2 such
that n > C; implies

sup ‘P’Y(Vn,y < 6M1) - Q'y(eMl)‘ <
v€U,(G0)\Go

S

Now 0 < g < 1 implies C1/g? > C; and thus it follows that for every v € U,(Go) \ Go and n € N
with n > C1/g(v)? we have

J )
P’Y(VTL,’Y S EMl) > Q’Y(EMl) - Z Z 1-— 5
Because of M? < C; < ng(~)? this implies
0
P’y(Vn,’y < 6\/59(’7)) >1- 5

for every v € U,(Go) \ Go and n € N with n > Cy/g(v)%.
Next, choose My € (0, 00) such that

1 )
—>)-  inf ) < M.
( e> 7eUgl(ngO)\g0 @ (4) 2
Then Q(—eMsz) < % for every v € U,(Go) \ Go. Let Cy > M3 such that n > Cy implies

sup ‘P,y(Vm7 > —eMs) — (1 — ny(—eMg))‘
v€U,(G0)\Go

= sup ’P’Y(Vn,'y < _€M2) - Q’Y(_GMQ)} <
€U (G0)\Go

PR

For all n € N with n > Cy and all v € Uy(Go) \ Go we then have

0 4]
P’y(Vn,'y > —EMQ) > P’Y(an'Y > —EMQ) >1-— Q,\/(—EMQ) — Z >1- 5

As above, Cy/g* > C5 because of 0 < g < 1. Thus, for every v € U,(Gp) \ Go and all n € N with

n > Cy/g(y)? it is
5

Py (Voy = —ev/ng(y)) > 1 - 3

because M3 < Cy < ng(y)2.

Combining these results, with C' := max(C}, C2) we have for every v € U,(Go) \ Go and all n € N
such that n > C/g(7)?

PV( Vnw‘ <e- 9(7)) = Py (Vay < Vneg(v)) + Py (Vay > —v/neg(v))

vn
— Py ({Vay < Veg()} U{Vay > —Veg(7)})
>1-4. O

Obviously, Proposition 2.4 can be extended to a finite sum of test statistics.

12



2 Asymptotic relative efficiency of two sequences of tests

Corollary 2.5

For fized K € N, let ( rg,lw))neN, cee (Vn(,{j))neN be sequences of test statistics, each fulfilling the
assumptions of Proposition 2.4. Then there is a o > 0 such that for an arbitrary function
g: Up(Go) \ Go — (0,1] and for every e > 0 and 6 € (0,1) there is a constant C = C(e,?)

with
(’Z ’<eg ))>1—5
for all v € U,(Go) \ Go and all n € N with n > C/g()?.

The next result states conditions under which it is possible to obtain convergence in distribution
uniformly in 7 as required in assumption (i) of Proposition 2.4 if every element of the sequence
of test statistics can be decomposed in a main term and a remainder term that converges to zero
in probability.

Proposition 2.6
Let {(Viy)nen: v € G} and {(Rny)nen: v € G} be families of sequences of real-valued measurable
functions on (2, A). Suppose there is a o > 0 such that

(1) for every v € Uy(Go) \ Go there is a continuous distribution function Q- with

sup | Py(Vpy <) — Qv(x)‘ — 0 VazekR,
YEUL(G0)\Go "

(1t) the family {Q~: v € Uy(Go) \ Go} is pointwise equicontinuous, i.e., for every x € R and
€ >0 there is a § = §(x,€) > 0 with

sup  |[Qy(z) — Qy(y)| < e forally € R with |[v —y| <6,
7€U,(%0)\Go

(ii3) sup  Py(|Rny| >€) — 0 Ve>0.
YEUL(G0)\%0 "

Then

sup | Py(Vay + Rpy < 2) — Qy(z)] — 0 VazeR.
Y€U(90)\Go "

Proof. For simplicity of notation, set U,(Gp) \ Go =: M. For every constant ¢ > 0, every x € R
and v € M we have

PW(VTL,W + Rn,v < LL’) - Qv(x)
< Py(Voy + Ry < 2, |Rny| <€) + Py(|Riy| > ) — Qy(2)
S Py(Viy S240) = Qy(z+0) + Qy(z + ) + Py(|Rny| > ) — Qy(2)

sup |Py(Viy <2 +¢) — Qy(z+¢)| + sup |Q~(z + ¢) — Q(x)| + sup Py(|Rny| > ¢). (2.14)
yeM yEM yEM

IN

Since
{Viy <z —c} C{Voy+ Rny <z} U{|Ry,| > c}

for every x € R,v € M and ¢ > 0, it also holds that

P,(Voy+Ryy <) > Py(Viy <o —c) = Py(|Ryy| > ),

13



2 Asymptotic relative efficiency of two sequences of tests

whence it follows that

Qy(x) — Py(Vayy + Rny < )
Qy(2) + Qy(z — ) = Qy(x — ) = Py(Voy Sz —¢) + Py(|Rny| > ©)

< sup [Py(Viy <2 —¢) = Qy(z — ¢)| + sup |Q(z) — Qy(x — c)| + sup Py(|Ry | > c). (2.15)
yeEM yeM yeM

IN

Now let € R and € > 0 be arbitrary, but fixed. Because of (ii), there is a 6 = §(x,€) > 0 such

that
€

sup |Q7(33)_Q'y(y)| < 3

yEM

for all y € R with |y — 2| < 4. Keep this ¢ fixed for the rest of the proof. It follows from (iii) that
there is an N = N(z,¢€) € N such that

sup Py (|Rny| > 0) <
yEM

V' n> N(z,e).

W ™

By (i) there are K/ = K'(x,¢), K" = K"(x,¢) € N with

sup [Py (Vay Sz 4+0) —Qy(z+9)| < o V n2 K’
yEM

Wl ™

and

sup [Py (Vny <2 —06) = Qy(z —9)| <
yeEM

vV n>K".

Using (2.14) and (2.15) with ¢ = 4, it thus follows that for all n > max(N, K', K”) and all v € M
we have

|Py(Viy + Ry <) — Qy(x)] < e O

We conclude this section with the following remarks.

Remark 2.7: Due to the monotonicity of every Q- the family {Q~: v € Uy(Go) \Go} is pointwise
equicontinuous if and only if for every € R and € > 0 there is a § = §(e, ) > 0 such that

sup  (Qy(z +0) = Qy(z —9)) < e ¢
Y€U,(G0)\%o

Remark 2.8: Note that all results of this section still hold true when replacing the index set N
of the sequences of test statistics by the subset {n € N: n > ng} for fixed ng € N. While this
is trivial for most of the results, the proof of Theorem 2.3 requires a simple modification in this
case:

Because the function M (e) = 2- (1 —¢)/(1+4€)* — 1 is continuous and strictly decreasing on [0, 1]
with M (0) =1 and M(1) = —1, we can fix ¢y € (0, 1) such that 0 < M (&) < 1/ng. By (2.8) this
ensures that the lower bound in (2.9) is larger than or equal to ng. The rest of the proof remains
unchanged, except of the substitution of the index set N by {n € N: n > ng}, of course. ¢

14



3 Preparatory results for independent and identically distributed centered random variables

3 Preparatory results for independent and identically distributed
centered random variables

In this section we will present the definition of the centered empirical distribution function F,
based on a sample of independent and identically distributed centered random variables. This
centered empirical distribution function is an estimator of the underlying distribution function
that takes the additional information about the mean into account. Moreover, we will investigate
the stochastic behavior of ﬁn and its components uniformly with respect to the distribution of
the data. These uniform results will be used in the next section to verify Wieand’s condition
(WIII) for the Cramér-von Mises statistics based on F},.

3.1 The centered empirical distribution function

Let (€2, A, P) be a probability space and (X;);en a sequence of random variables on it such that
X1, Xo,... are independent and identically distributed according to a distribution function F'
with

/ zF(dr)=0 and 0< / 22 F(dx) < oo. (3.1)
R R
For every n € N, n > 2, set

Q, :={min X; <0< max X;} ¢ A.
" {1§i§n ! 1<i<n i}

On Q,, by Lemma A.1 there is a unique t, = t¢(X1,...,X,) € R with

1 1 1 1
——1>7<t <<——1>7 3.2
(n max X; " n min X (3:2)
1<i<n 1<i<n

and
Z:: 1+ t X ' (3.3)

It follows from Lemma A.2 that for every n > 2 the function
tn: Q2w t(Xi1(w),..., Xn(w)) €R

is Q, N A, B*-measurable, where ,, N A is the trace o-algebra of A on €,, and B* denotes the
Borel o-Algebra on R. In order to extend t, to a measurable function on €2, we have to define it
measurably on Q,, := Q\ €,,. But the set Q,, is asymptotically negligible in the following sense:
Under the moment conditions (3.1) it is

P@Q,) = p(o # (min Xi, max X; )) — 0. (3.4)

1<i<n 1<i< n—00

To verify this, note that

P( X;, X) P(X;>0,i=1,....0)+P(X;<0,i=1,...,
O§é(lr<nll£1n » ax, ) (X; >0, n)+P(X; <0, i n)

n—oo

because under (3.1) neither X; > 0 almost everywhere (a.e.) nor X; < 0 a.e. is possible.

It follows from this that for asymptotic considerations such as the investigation of convergence in
probability and convergence in distribution, the definition of ¢,, on €2, is irrelevant, we can let ¢,

15



3 Preparatory results for independent and identically distributed centered random variables

be any Q,, N A, B*-measurable function on ,,. For this reason we will not specify the definition
of t, on €, and we will assume henceforth that €, holds whenever investigating t,, or functions
thereof. Then t,, is well-defined through (3.2) and (3.3).

For every n > 2 set

1
1< <
pTL’L (1 —|— tnX) — 4 n’
and
= 1
mel{x <z} = Z m lix;<z), z€R
Then p,; > 0,%=1,...,n, as shown in the proof of Lemma A.1, and

n n

- 1+t,X; tn X
melz 1+ tnX;) Zl—i—tX
by (3.3). Hence, ﬁn is a discrete distribution function that puts random mass p,; on each data
point X;. Moreover,
n
/ zF,(dz) = me-Xi =0
R i=1

because of (3.3), so that F,, is centered. Thus, if F is assumed to satisfy (3.1) but to be otherwise
unknown, Fj, can be used as an estimator for F' that takes the additional information about the
mean into account. We will call F}, the centered empirical distribution function of Xi,..., X,.

The function ﬁn can also be derived by an empirical likelihood approach as developed by Owen
[22-24], see also Owen [25]| for a comprehensive account. Using ideas from this concept for
the nonparametric estimation of distribution functions under auxiliary information, Qin and
Lawless [27] gave a closed-form expression of the nonparametric maximum likelihood estimator
(MLE) F), for the underlying but unknown F in the presence of some auxiliary information
about F', but in a more general setting than considered here. Zhang [31] studied some asymptotic
properties of this F),. The function F), as defined above is just the nonparametric MLE F, in the
special case that the additional information we have about F is [ 2F(dz) = 0.

Note that in contrast to ﬁn, the classical empirical distribution function F), of Xi,...,X,, i.e.,

1 n
1=

which is well known to be the nonparametric MLE for F' in the absence of additional information,
does not incorporate the additional information that the true distribution is centered, since

1 n
/R:UFn(d:r) = n;Xi #0

in general.
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3 Preparatory results for independent and identically distributed centered random variables

3.2 Uniform asymptotic results

Consider now a nonempty set M of distribution functions F': R — [0,1]. Let (£2,.4) be a mea-
surable space and F' +— Pp be an injective mapping from M into the set of probability measures

on A.

Definition 3.1

Let (an)nen be a sequence of positive real numbers, and for every F' € M let (Y, )nen be a
sequence of random variables on (€, A). We say that Y;, p = 0%(a,) in M as n — oo if and only
if Y, /a, converges to zero in Pp-probability uniformly in M, i.e., if and only if

Y,
sup Pr <‘ itk
FeM Qn

> e) — 0 VYe>O0.

n—oo
We say that Y, p = O%(an) in M as n — oo if and only if Y;, p/a, is stochastically bounded
with respect to Pg uniformly in M, i.e., if and only if

Yn,F
Gn

im limsup sup Pr > K) =0.

! (
K—00 n—soo FeM

Of course this definition covers the special case that the sequence of variables (Y, p)nen is the
same for every F' € M, i.e., (Yn r)nen = (Yn)nen, say, for every F' € M.

As in the usual case, the following rules apply, where the convergence of every term is understood
to be uniform in the same M as n — oo:

0 (1) + 0lp(1) = 0p(1), 0lb(L) - o(1) = o (1), (1) - OB(1) = ob(1), OB(L) - Op(1) = O(L).

For the rest of this subsection, let M now be a set of continuous distribution functions having zero
mean and finite variance. It follows from these assumptions that the variance of every F' € M is
strictly positive. Moreover, we assume that the model (2, A, {Pp: F € M}) is such that there
is a sequence (X;);en of random variables on (£2,.4) such that under Pr the X; are independent
and identically distributed with common distribution function F.

Note that for a given set M such a model always exists, e.g., we can always use the infinite
product measure space (RY, Rien B, Qicn Qr) =: (2, A, Pr), where Qr denotes the probability
measure on the Borel g-algebra B* induced by F, and let X; be the i-th coordinate projection.

Here and in the following, the subscript F' in functionals such as the expectation Er and the
variance Varp signifies that the respective term is understood to be with respect to the measure
Pr. Note that the above assumptions imply that Ef(X;) = Ep(X;) = 0 and Varp(X;) =
Varp(X1) = Ep(X?) =: 0% € (0,00) for every i € N and F € M.

We will now examine the asymptotic stochastic behavior of the centered empirical distribution
function F;, of X1,...,X,, and of its components uniformly in /' € M. If M is a singleton, i.e.,
if the distribution of the X; is fixed, this has already been studied for example by Owen [23],
Qin and Lawless [27], and Zhang [31] in a more general setting than considered here. Based
on these works, we will investigate in the following under which assumptions about M certain
results concerning the stochastic behavior of F,, and its components hold uniformly in M if it
contains arbitrarily many elements. For these investigations we introduce the following collection
of conditions:

- 2

Flg}fw RIL‘ F(dz) > 0, (3.5)
sup [ 2?F(dz) < oo, (3.6)
FeM JR
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3 Preparatory results for independent and identically distributed centered random variables

g(c) := sup 22F(dz) — 0 for ¢ — oo, (3.7)
FeM J{zeR: |z|>c}
inf F .
ot [ JalF(da) >0, (3.8)
sup / |z| F(dz) < oo. (3.9)
FeM JR

Note that the following implications hold
(3.7) = (36) = (3.9) and (3.8) = (3.5).

Observe moreover that if M is a singleton, i.e., M = {F'} with a centered continuous distribution
function F' that has finite second moment, then M obviously satisfies conditions (3.7) and (3.8).

Lemma 3.2
Assume the set M is such that (3.7) holds. Then

(1) max |X;| = o0%(y/n) in M as n — oo,
1<i<n

n
(i) > X;=0%(y/n) in M asn — oo,
i=1
1 n
(iii) — > X2 — 0% =0%(1) in M as n — oc.
ni=1

Proof. Keep in mind that (3.7) implies (3.6).
First, we show (i). For every F' € M and € > 0 it is

n

PF<\/15 12%};’)(” > 6) = Pp<i:LJ1{]X¢\ > ﬁe})

IN

nPF(|X1| > \/ﬁe)

1
€2

F(dx)

IN

2?F(dz) < ég(\/ﬁe),

=n
/{zeR: la|>/me} /{zeR: la|>/me}

and the right-hand side of the last inequality does not depend on F' and converges to zero as n
tends to infinity because of (3.7).

Next, we prove (ii). By using Markov’s inequality we see that for every F' € M and K > 0

5 _Ep(X}) _ 1 :
)=~ < e g B,

1 <« 1 1 <
PF(‘— X; >K>§—EF(‘— X,
Vi 2 P 2

and the supremum of the second moments is finite because of (3.6). Therefore

1
K><— Er(X?) — 0.
SR) S R r(X1) 0

1 n
lim sup sup PF(‘— X;
n—oo FeM \/ﬁ; ’

The proof of (iii) is based on ideas from the proof of the Kolmogorov-Feller weak law of large
numbers for independent and identically distributed random variables without finite mean, see
for example section VIL.7 in Feller [9]. Define new random variables Z; by truncating XZ-2 at an
arbitrary, but fixed, level b > 0, i.e.,

18



3 Preparatory results for independent and identically distributed centered random variables

Then we have for all F' € M and y > 0 that

PF(\i X? - anEF<Zi) >y) < PF(\znj Z; - anEF<Zi> >y) + Pp(znj X? # anZ)
=1 i=1 i=1 i=1 i=1 =1

1 n n
< 5 Varr (Z Zl-) + 3 Pr(X? # Z)
=1 =1

n

<z Ep(Z}) + nPr(Xi # 21),

where the second-to-last inequality follows from Chebychev’s inequality and the fact that

TR X2 £ 30 Zy € UL {X? # Z;}. In the last inequality the Bienaymé formula and

the fact that the variance is bounded by the second moment were used. But
Pp(X? # Z1) = Pp(X{1{xz5 4y # 0) = Pr(X{ > D).

Since Z7 > 0, we have
o0 o0
Ep(Z3) =2 / 2 Pp(Zy > x)dx = 2 / 2Pp(XT1(x2<yy > x)da
0 0 -
b
0 <
b
<2 / :EPF(X12 > :L')de‘.
0

Now set b = n and y = ne for arbitrary, but fixed, € > 0. Then using the above it is

I o2 1 2 " 5 5
PF(‘HZ;XZ- - Z;EF(Zi) > e) <5 /0 2Pp(X? > 2)dx +nPp(X} > n)
i= i=
2 " 2 2
<—- z sup Pp(X{ > z)dz +n sup Pp(X7 > n)
ne 0 FeM FeM
for every F' € M. But
- sup Pp(X7 > )= sup zF(dy) < sup y’F(dy) = 9(V)
FeM FeM J{yeR: y?>z} FeM J{yeR: |y|>/x}

for every x > 0, and g(y/z) — 0 as & — oo because of (3.7). This yields

1 n
n sup Pr(X? >n) < g(vn) — 0 and / z sup Pp(X} > z)dz — 0. (3.10)
FeM n—oo nJo FeM n—oo

To see the latter, define f(z) := x - suppey; Pr(X? > z), > 0. Then f >0 and f(z) - 0 as x
tends to infinity. Hence, for every € > 0 there is a K(€) > 0 with f(x) < € for all x > K(€). For
all n > K(€) we now have

n

i/onf(m)dx — i(/OK(é) f(x)dz + . f(x)d:v) < (/OK(E) f(x)dz + é(n — K(é))).

ince © f(x)dx < oo and € is ar itrary, the second statement in (3. ollows. Thus, we have
Since [, f(x)d d & is arb h d 3.10) follows. Th h

sup PF(‘;Z;XZZ - iZlEF(Zi)

>e) — 0. (3.11)

FeM n—00
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3 Preparatory results for independent and identically distributed centered random variables

Moreover, for every F' € M it is

‘% > Er(Z) - % Y Ep(X?)
=1 =1

= [Er(Z1) = Er(X7)| = Br(XT - Iix2s ny)s

and

2?F(dz) < sup 22F(dz) = g(v/n).

Ep(X7  lixesny) = / ‘ .
{z€eR: |z|>y/n} FeM J{zeR: |z|>/n}

Hence, (3.7) implies that

1 n
-» E — =Y Ep(X})] — 0
AP Z P = RO 5 O
and it obviously follows from this that
1 & 1 &
’5 ;EF(ZD T ;EF(XZZ) = 0p(1) in M as n — oo. (3.12)
1= 1=

A combination of (3.11) and (3.12) now yields the statement because of

‘;zn:Xf ’<‘—ZX2——ZEF ZEF ) — o], O
=1

Next, we want to examine the uniform asymptotic behavior of ¢, and functions thereof. Recall
that ¢,, is defined through (3.2) and (3.3) only on the set €2,,, and its definition on the complement
Q,, does usually not matter for asymptotic considerations, since this set is an asymptotic Pp-
nullset for every fixed F' € M, cf. (3.4). If we want to study the asymptotic behavior of ¢,, under
the measure Pp uniformly in F' € M, however, we cannot neglect the set €2, a priori, since
Pr(£2,) will not converge to zero uniformly in F € M in general.
There are several ways to overcome this problem. For one, we could of course explicitly define
t, on Q, and then study its uniform asymptotic behavior on €. Here, a natural definition would
certainly be to set t, = 0 on Q,, as Fvn would equal Fj, in this case. The uniform behavior of %,
would then of course depend on the respective definition chosen on Q,,.
Alternatively, we can impose additional conditions on the set M that ensure that Pp(£,) will
converge to zero uniformly in F. Then, as before, there is no need to specify t, on €2,. Since
similar to the proof of (3.4) we have
Pp(Q,) = PF(lgun X; >0)+ PF( max X; <0) = (1-F(0))" + F(0)",

the conditions

F1é1jf\’4 F(0) >0 and slell\%F(O) <1 (3.13)
imply that suppcy; Pr(Q,) — 0 as n — oo. Hence, if M satisfies (3.13), then the set Q, is
irrelevant for uniform asymptotic considerations. We will therefore in the following always work
under the assumption (3.13) and continue to assume that €2,, holds for every n > 2 when studying
t,, or functions thereof.

Lemma 3.3
If the set M is such that (3.5), (3.7) and (3.13) are satisfied, then

(1) /nt,=0%(1) in M as n — oo,
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3 Preparatory results for independent and identically distributed centered random variables

. 1 Wi
(i1) lrg%ﬁm =O0%(1) in M as n — oo,
112
(i) tn=—5— > Xi+op(1l/y/n) in M asn — oc.
o n =

Proof. First we show (i). For every n > 2, K > 0 and F € M it is

n

Pr(Vats] > K) < Pe(Valta]- [+ 3 X7 - Ko X, ] > k)

Op V/n 1<i<n
21 K
P ( x2 -2 X;| < 1) 14
+ r Fnz_; i \/ﬁfgax| | (3 )

To handle the first term on the right-hand side of the above inequality, we see as in Owen [23],

page 101, that
e o [
1+ \tn] max ]X| n !

and the last term is O%(1/y/n) in M as n — oo by Lemma 3.2 (ii). Now

, (3.15)

PF(\/ﬁ|tn]- [221273)(3 B ax X |} > K)

i ot Vn 1<i<n
_PF<\ﬂt - ——ZX2>K(1+H | max [X; |))
_ Vnltn| 2
_P<1+|tn|maX|X| P ZX > K)

Vnltn| 2
<P ( B e A )
= F 1+ |t,| max |X;] nz v I%QMUF
1<i<n i=1

Using (3.5), (3.15) and Lemma 3.2 (ii), this yields

lim limsup sup PF<f\t | - [ 2 1 ZXZ—— max | X; @ >K) =0.

K—00 nosoo FeM 7’L1<z<n

It remains to investigate the second term on the right-hand side of (3.14). For simplicity of
notation, set

2 1 K
L, := ZXQ and M, := — max |X;|.
o n \/ﬁ 1<i<n
Then

1 1
Pe(Ln =My <1) < Pr(Ly— My S 1LIMu| < 5) + Pr(1M0] > 5).

and

1 1
sup PF(]Mn| > 5) = sup Pr (— max |X;| > 0

—
FeM FeM \/ﬁ 1<i<n 2K> n—o0

by Lemma 3.2 (i). Also,

1 1 1
Pe(Ly =My < 1|My| < 5) < PF(Lnsg):PF(Ln—x—i) < Pe(|La=2]23),
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3 Preparatory results for independent and identically distributed centered random variables

and

1 21 1
Pr(ln =22 3) < s Pe(| 5 ZX2_2’Z§)

FeM
< sup P (‘ X2 >f inf o ) — 0
N FEJI\)/[ r Z 4ren’) noo

because of (3.5) and Lemma 3.2 (iii). Hence, the proof of (i) is finished.
To see that (ii) holds, note that if |¢,] max | X;| < 1/2, then we have for every i € {1,...,n}
<i<n

1 1
L £ 2 1= [t [ X] 2 1= [t max X > 1— 5 =2,

whence it follows that )

—_ <2
I T b X
Thus it is for every K € (2,00), n > 2 and every F € M

1
Pr(pmes T, 2 ) < Pl s X0 > )

1<z<n 1+t,X;

and the statement follows from (i) and Lemma 3.2 (i).

It remains to show (iii). Using the equality 1/(1+vy) =1 —y +y?/(1 +y) for y # —1, we have
by (3.3) for every n > 2

n

1 1 X3}
0=~ Zm —ZX t—ZX2+t2 Zm

n 3
—ZX — by~ Z(XQ—UQ)—thF-FthZl_:i L

=1

which is equivalent to
11
== ;
opmn 21

1 1 .1 <& X3
X?Z - 2y
2( )+a% nn;1+tnXi

Using (3.5), it is

1 1 1 1<

|t S (X2 = 0})| < —— [tal| = D (X2~ o)
o2 "'n & inf o n <
1=1 FeM i=1

= 0%(1/v/n)o%(1) = o%(1/y/n) in M as n — oo

by (i) and Lemma 3.2 (iii). Because of (3.6) we obviously have supp¢y; 0% = O%(1) in M as n —
oo. Therefore it follows with (3.5) and (3.6) that

1,1 X} 1 1
¢ J tn X; —) X?
‘012:” Z inf U%’ | 1128231’ - 1<<n1+tX nz
FEM
<4J—#| X, - : (E}W + sup o)
max —_— — 0% 4 sup o
- ]%n]f;éf 0'2 1<i<n 1<z<n 1+t,X; F Fe]%[ F
=

= Op(1/n)op(vn)Op(1)0p(1) = 0p(1/v/n) in M as n — oo
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3 Preparatory results for independent and identically distributed centered random variables

because of (i), (ii) and Lemma 3.2 (i), (iii). Hence, we have shown that

11
th = — ZX +0p(1/4/n) in M as n — oo. O
opn

For every n € N and F € M define

T

1 n
Un(@) = —~ Y Xilx,<a}pr Ur() :=Ep(Xil{x,<a)) = / yF(dy), = €R.

—00

Lemma 3.4
Let M be such that (3.6) and (3.8) hold. Then

sup |Up(z) — Up(x)| = o%(1) in M as n — oo.
T€R

Proof. Recall that (3.6) implies (3.9). With fT := f Vv 0 being the positive and f~ := —(f A0)
being the negative part of the function f, set

T

1 n
= Y X lxi<op Uf(e) = Er(X{ 1ix,<ay) 2/ y" F(dy),
=1

—0o0

for x € R, n € N and F € M, and define U,; and Uy analogously. Then U,, = U} — U, and
Up = U} — Ug. Obviously, 0 < Uf, U < Ep(X{") with U, (z) = Uf(z) = 0 for < 0 and
Up (z) = Ep(Xy ) for x > 0. An application of Lebesgue’s dominated convergence theorem shows
that U}',f and U are continuous on R with

lim Up(z)=0 and lim Uf(z) = Ep(X]).

Tr——00 T—00

Therefore we extend U and Uy continuously to [—o0,00] by defining Uz (—o00) = 0 and
Uz (<) := Er(X]) = Ep(X] ). Moreover, set

1 n
Ug(—00) =0, Uq(c0):==>» Xf.
(m00):=0, Up(e0)i= ) X,

The centeredness of F implies that Ex(|X1]) = Ep(X]") + Er(X;]) = 2Ep(X;"). Now define
1 1. .
a:= §;gp Er(|Xy]) = IggngF(Xf) and b:= §Flng\/[EF(|X1|) = Flgjt;/IEF(Xf)
Then 0 < b < a < oo under the assumptions.

For every m € N with m > 2 and m > a/b, 0 < a/m < 2a/m < ... < (m —1)a/m < a is an
equidistant partition of [0, a] with mesh a/m. Since we have for every F € M that a/m < b <
Er(X]) <a, it is

kp:=max{z €Z: z < %EF(XIJF)} = max{z € Z: z% <Epr(X{H} € {1,...,m}.

Now fix an F € M. Then either kr = Ep(X;") -m/a or kr < Er(X{)-m/a.

First, we consider the case kg - a/m = Ep(X{).

Because of Uj(—o0) = 0, Ut (00) = Er(Xy") = krpa/m and the continuity of U}, for every
k =1,...,kp — 1 there is a point xx € R with Uf(zx) = k - a/m by the intermediate value
theorem, and the monotonicity of U;f implies that x1 < ... <@y, 1.
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3 Preparatory results for independent and identically distributed centered random variables

Thus, —oo =1 29 < 1 < ... < Tgp—1 < Tk, ‘= 00 is a partition of [—oo, 00], so that for every
z € R there is exactly one k € {0,...,kp — 1} with « € [z}, zk11). Using the monotonicity of
U5 and U, this implies

Ui (2) — Ui (a) < Uyf(ape) — Up (en) = Uy (wrsn) — k-

3=

a
= U (zp41) — Up (zp11) + oo

a
< max lH‘ [H—
T 1<k<kp ‘ " (xk) (xk)| ™m

and

IN

U (2) = Uyl (2) < Ujf(anen) = Uyf (an) = Ugf () = Uyf () + —

<  max |Uf(x) — U;ﬂr(ﬂﬂkﬂ + %

0<k<kp—1
< . — U a
< 1£2§F|Un (k) UF(xk)’-i-m
Together, this yields
() - Ut < ag) — U °. 1
sup U () — UE ()] < ma U (i) = U (@) + 2 (3.16)
Analogously, it is
a
~(z) — Uz (2)| < () — Uy =, 1
jelglUn (@) =Up(@)] < max |U, (zx) = Up (@) + (3.17)

Next, we investigate the case kra/m < Ep(X;"). Just as in the first case, it follows from the
intermediate value theorem that for every k = 1,...,kp there is an z; € R with U;(:Ek) =
k-a/m,and —oo =: xg < 21 < ... < Tk, < Tpp41 = 00 partitions [—oo, 00]. Using the same
monotonicity arguments as before, we see that

+oN 7t < + ot a
sup Uy (@) = Up (@] < _max | [Us (k) = U (@)l +

Let € > 0. In both of the aforementioned cases we have for z € (—o0, oo] that
1
Pr(|U; (2) = Ug (2)| > €) < —Ep(X7) (3.18)
by using Chebychev’s inequality, the Bienaymé formula and the fact that the variance is bounded
by the second moment. Now choose m so that € > a/m. Then in case kra/m = Ep(X;") it follows

from (3.16) and (3.17) that

+ 7t < + _77E _ﬁ
Pre(sup U () — Ui (2)| > ) < Pr( max U7 (@r) = Uk ()] > e~ )

kp
+ a
< ;PF(\Uﬁm ~ U (@) > e— )
< —F  _Ep(X
(338)77,'(6—0/777,)2 F( 1)
m 2
< ———— - sup Ep(X7),

n-(e—a/m)* pem
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3 Preparatory results for independent and identically distributed centered random variables

where kr < m was used in the last inequality. For kra/m < Ep(X]") it follows along the same
lines that

+1
Pr(su Urjfx—Uim > € <m—'Su Ep(X7).
F(:cegl (x) F@)]>e) < n- (e —a/m)? Fe]I\)/[ r(X1)

Since suppe s Er(X?) < oo, we have in both cases

sup U (z) — UZ (x)] = 0%(1) in M as n — oc.

z€eR
Using
sup [Un (2) — Up(z)| < sup|U, (z) — Uf(2)| + sup|U,, (z) — Up ()],
z€eR zeR zeR
this concludes the proof of the lemma. O

We are now ready to state and prove a uniform asymptotic expansion of ﬁn — F,,. Before we do
this, let us set, as usual, || || := sup,cr | f(x)] for any bounded function f.

Proposition 3.5
Assume the set M satisfies (3.7), (3.8) and (3.13). Then
11
F,(x) — Fp(z) = —Up(:n)g—Qﬁ ZXi + R, r(x), z€R,
Pz

with | Ry, plle = 0%(1/y/n) in M as n — 0.

Proof. By using again that 1/(1+y) =1—y+ y?/(1 +y) for y # —1, we see that for every
x € R and n > 2 the following expansion of F}, is valid:

~ 1 X7
Fo(z) = Fo(z) — ;X Lixi<ap + 62 ZZ e “lix,<ay-
This implies that
~ 1 n X2
Fo(z) — Fo(z) = Z Xi-x,<ay + t Z lix<ay

14+1,X;

= ~taUp(x) ~ ta(Unle) ~ Up(w) = Up() 3" X, + Ur(e) 1%1 S,
=1 =1

n

n

+ 2 12 a5 “lex<ay
1+t X; =T

1 1
= —Up(z) ZX + Rin,p(2) + Ron () + R3n ()
ofn
for every F' € M, where
s 1o X7
Rin,p(z) =ty (Ur(z) — Un(x)), Ron(z):=1t; — Z 116X <o)

and




3 Preparatory results for independent and identically distributed centered random variables

Now

sup [Rin,p(z)| = [tn| - sup |Up(z) — Un(z)|
zeR z€R

= O%(1/y/n)-0%(1) = 0%(1/v/n) in M as n — co
by Lemma 3.3 (i) and Lemma 3.4. Moreover,

R < It X2
i2£| 2n($)| — |n| 1<z<}%1+tn z Z

OBt/ OB(L) - OB(1) — OB(Lm) = Gb(L/VA) in M as -

by Lemma 3.3 (i), (ii) and Lemma 3.2 (iii). Next, note that it follows from the proof of Lemma 3.4
that Up is continuous on R. Observe moreover that U is monotonically decreasing on (—oo, 0],
monotonically increasing on [0, c0), and non-positive on R. This and the centeredness of F' imply

sup,eg |Ur(2)| = [Up(0)] = | - Ep(X7 )| = Ep(X7 ) = Ep(X{) = 5 Ep(|X1]). Therefore
sup |Rsn p(z)] = sup |Up( X;
m€£| n.p ()] m€£| r(@ Z
1
<5 sup. Er(|X1]) - 0b(1/v/n) = op(1/+/n) in M as n — oo
Fe
because of Lemma 3.3 (iii). O

The next result is a uniform central limit theorem and follows from Theorem 3 on page 441 of
Eicker [8].

Lemma 3.6
Let the set M be such that (3.5) and (3.7) hold. Then

— 0, (3.19)

n—o0

1 X,
sup sup PF<— - < a:) — d(x
FEM z€R vn ; oF )
with ® denoting the distribution function of the standard normal distribution.

As a direct consequence of this, we get the following corollary.

Corollary 3.7
Under the assumptions of Lemma 3.0,

_a:) —H(a:)‘ — 0,

n—oo

1 X
(R
sup sup|Lr \/E;Up

FeM zeR

where H(x) = (2®(x) — 1)1jg)(z), = € R, is the distribution function of the standard half-

normal distribution.
Proof. For every x > 0 and F € M it is
1 «— X
([ 522 <) -t
’ vn ; o

n

= ’PF<\/1522 §x) —PF<\/15;Xi < —a:) — ®(z) + O(—2)

o
i-1 °F
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\/ﬁ P oF \/ﬁ P oF
Thus, (3.19) yields the statement. O
Lemma 3.8
Assume the set M satisfies (3 7) and (3 8). Then
: HUFHOO
i) sup sup|Pgr ( ‘ x)—Q )| — 0,
¥ FeM zeR \fz iop ]

where Qp(x) := H(z - 0p/||Urllso) = 1j0,00)() (2@(m- HU(;}hoo) - 1), z € R,

(ii) the family {Qp: F € MY} is uniformly equicontinuous,
(iii) sup |Qp'(a)| < oo for all a € (0,1).
FeM

Proof. (i) Since

sup|Pr (HUFHoo‘fZ

z€R

_:U) —H(l’)’

T-0 1 <X
() Falee (722,
= Sup|L°p
) <HUFHOO zeR \/ﬁ;UF
for every F' € M, the statement follows from Corollary 3.7.
(ii) To see that {Qp: F € M} is uniformly equicontinuous, note that Qr has Lebesgue density

Qp(@) = poe)(@) -2+ (- o) - i, @€ R,

1UFlloc/  UFll
with p(x) = 1/v/27 - exp(—2?/2), so that

1/2
sup|Qp(z)| < \/5 (supren 77) =K < o0
z€R ™

sinfren Ep(| X))

for every F € M, using ||Ur| s = 3 Er(|X1]) and (3.6) and (3.8). Thus, we have for ¢ > 0 and
0=¢/K

Qr(z) —Qr(y)] < Klr—y| < e
for every z,y € R with |x —y| < J and every F' € M.

(iii) For every F' € M it is

—1 oty |Uplls (at+1y Ep(IXi])
oy ( ) : oy ( ) : : 0,1),
Qr (@) 2 or 2 2or €O
so that by (3.5) and (3.9) we have
1 Er(|X
sup|Q}1(Oz)‘ < @_1<a+ )-SupFeM Gl 11/’2) < 0. O
FeM 2 2(ianEM 0'%;)
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4 The limiting Pitman ARE of the two tests for independent and
identically distributed centered observations

Let us now consider testing the fit of a sample of independent and identically distributed data
with zero mean. In the following we will examine testing both the simple null hypothesis that the
underlying distribution function is equal to some fully specified centered distribution function as
well as the composite null hypothesis that the true distribution function of the data belongs to a
certain scale family against appropriate nonparametric alternatives. For these testing problems
we will consider the respective classical Cramér-von Mises test as well as its modified counterpart
where the test statistic is based on the centered empirical distribution function fn instead of on
F,,. In order to compare the performance of the two competing tests for the respective testing
problem, we will determine in the following their limiting Pitman asymptotic relative efficiency
using the results of the previous sections. To begin with, we will introduce the set of distribution
functions that will be considered in the testing problems and equip it with a suitable metric.

For fixed ¢ € [2,00), let G, denote the set of all continuous distribution functions on the real line
with finite absolute g-th moment and zero mean, i.e.,

Gg = {F: F is a continuous distribution function With/ |z|1F (dx) < 0o and/ xF(dx) = 0}.
R R

Note that 0 < [ 2?F(dz) < oo for every F € G,. By setting F(—o0) := 0 and F(o0) := 1
for every distribution function F, it is obvious that G, C C[—o00, 00], which is the space of all
continuous real-valued functions on the extended real line [—o0,00]. In the following, we will
equip G, with a metric d, and derive some results concerning the metric space (Gg, dy).

We will measure the distance between two elements F' and G of G, with the Kantorovich-
Wasserstein or minimal Lq metric
dy(F,G) = inf{E(|X — Y|)"/%: (X,Y) € S(F,G)} € [0, 0), (4.1)

where S(F,G) is the collection of all pairs (X,Y) of random variables X and Y defined on
the same probability space such that F' and G are the distribution functions of X and Y,
respectively. The function dp is also known as Mallows metric. The following properties of d,
hold for 1 < ¢ < oo and can be found for example in the mathematical appendix of Bickel and
Freedman [4]: The function dg is a metric on the set of all distribution functions on R with finite
absolute ¢g-th moment and admits the following representation in terms of quantile functions

dy(F,G) = (/Ol\F—l(u) _ G—l(u)\qdu)l/q.

Furthermore, the convergence of a sequence (Gy,)nen to G with respect to dg is equivalent to

G, 5 G in addition to the convergence of [ |z|9G,(dz) to [ |z|?G(dx), where the symbol 5
denotes weak convergence.

Here and in the following, we will not distinguish between a metric on some set of distribution
functions and its restriction to subsets thereof.

It follows from the above that (G,,d,) is a metric space for all ¢ € [2, 00).

Let us denote by dx the Kolmogorov or supremum metric on Gg, i.e.,

dx(F,G) = ||F = G|l = Sup |F(z) — G(z)|
xe

for F, G € G,. Then dx(Gp,G) — 0 is equivalent to the weak convergence G, A G, since all
G € G, are continuous.
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Lemma 4.1
(i) For every r € [1,q| the function

(Gyrdg) > F /R 2" F(dz) € (R,]-])

1S continuous.

(ii) The identity function
id: (Gg,dq) > F — F € (Gq,dk)

1S continuous.

Proof.

(i) Let F1, F» € G,. Using Lyapunov’s inequality, we see that dq(F1, Fs) > d,(F1, Fy) for every
1 <r <gq. Thus, dy(F;;,F) — 0 as n — oo implies d,.(F};, F) = 0 as n — oo for all (F}}),en, F' €
G, But since convergence of Fj to F with respect to d, implies [ |z|"F(dz) — [ |z|"F(dz) as
n — oo, this completes the proof.

(ii) Let (F)nen, F € Gy with dy(F¥,F) — 0 as n — oo. Then F¥ 5 F, and this implies
dg (id(F}),id(F)) = dg(F, F) — 0 as n — co. O

Now let (€2, A) be a measurable space and {Pr: F € G,} be a family of probability measures on
A such that on (€2, A) there is a sequence X1, Xo,... of random variables that are under each
Pr, F € G4, independent and identically distributed according to the distribution function F'.
Note that under these assumptions the mapping F' — P is injective, as Pr = Pp, implies that
Fi(z) = Pr,(X) <) = Pp,(X1 < x) = Fy(z) for every z € R.

4.1 Simple null hypothesis

Assume now that we have observed a sample Xi,...,X,, n > 2, with distribution function
F € G4, but that F' is unknown to us. Then we consider testing the simple null hypothesis

Ho: F =Fy versus Hi: F € G\ {Fo} (4.2)

for some fixed Fy € G,. To test this hypothesis, we will use the classical Cramér-von Mises
statistic

W2 = / (Fu(z) — Fo(z))*Fo(dx)
and its counterpart

V2. /oo (Fu(z) — Fo(2))’ Fo(da)

—0o0
based on the centered empirical distribution function ﬁn Both of these test statistics are mea-
surable mappings from € to [0, o).

By Donsker’s theorem for the empirical process we have

Vn(F, —F) £ B°(F) in D[-o0,)

n

under the measure Pr, where D[—o00, 00| denotes the space of cadlag functions from [—oo, 00]

to R equipped with the Skorokhod metric so, B° is the Brownian bridge on [0,1], and « £,

n
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4 The limiting Pitman ARE of the two tests for iid centered observations

in D[—o00,00]” denotes convergence in distribution in D[—o0,o0]. Hence, it follows with the
continuous mapping theorem that under Hg

W, (/IBO(t)Zdt)l/QZ:W,
n 0

where W, = (W,%) Y2 The distribution function of W? was derived by Smirnov and others and
has been tabulated. Since the distribution function of W? is continuous, so is that of W. Thus,
for every a € (0,1)

Pr,(Wy > k(e)) —  Pp(W >k(a)) =a,

n—oo

where k(o) denotes the (1 —a)-quantile of the distribution of WW. Hence, the classical Cramér-von
Mises test defined by the decision rule

Reject Hy <= W, > k(o)

has asymptotic level « for the testing problem (4.2).

Moreover, as 07 = [p #*F(dz) € (0,00) for every F € G4, we have by Theorem 3.3. of Zhang [31]
that
VB, —F) 5 W in D[-o00,) (4.3)
n
under Pp, where W = (W(2)),e[-o0,00] 18 @ centered Gaussian process with continuous sample
paths and covariance function

Urp(z)Ur(y)
2 )

COVF(W(x), W(y)) =F(xANy)— F(z)F(y) — o2

z,y €R, (4.4)

with Up(x) = [*_ yF(dy) as in the previous section, see also Theorem B in Genz and Héusler [12]
and the remark thereafter. An application of the continuous mapping theorem to this functional
central limit theorem now yields that under Hg

Ve = (/1W(F01(t))2dt)1/2::v, (4.5)
0

n

where V,, = (Vg) 2 Since V is the Lo norm of the process W o Fgl, it follows directly from the
Karhunen-Loéve expansion of W o F{;~ ! that V is equal in distribution to

(i XiN?) " (4.6)

j=1

where the N; are independent and identically N(0,1)-distributed random variables (with
N (u,0?) denoting the normal distribution with mean g and variance ¢?) and (A})jen is the
decreasing sequence of positive eigenvalues of the Hilbert-Schmidt integral operator having ker-
nel

k(s,t) = covp, (W (Fy ' (s)), W (Fy (1))

1 s t
=sAt—s-t— — Fo_l(u)du/ FyYu)du, s,t € 0,1], (4.7)
9F J0 0

such that each positive eigenvalue is repeated in the sequence ()\;f)jeN as many times as its
multiplicity.
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4 The limiting Pitman ARE of the two tests for iid centered observations

It is obvious that the distribution function of the random variable in (4.6) is continuous, and its
distribution function is just the one of V. Using this, it follows that

P, (Vn > c(a)) — Pp, (V> c(e)) = a

for every o € (0, 1), where ¢(a) denotes the (1 — a)-quantile of the distribution of V. Hence, the
modified Cramér-von Mises test given by the decision rule

Reject Hy <=V, > c(a)

is also asymptotically of level « for testing Hy versus H; in (4.2).

Note that since the kernel £ depends on Fjp, so do the eigenvalues )\j and hence the distribution
of V. For some distribution functions Fy, the quantiles of V? were computed and tabulated in
section 6 of Hormann [15].

Remark 4.2: Evidently, G, \ {Fo} # 0, and for any F' € G, \ {Fp} and ¢t € (0,1) it is F} :=
tF+(1—t)Fy € G4\ {Fo} again. Now let (¢,)nen be a sequence in (0, 1) with t,, — 0 as n — oo.
Then we have lim,,_,~ F}, (x) = Fy(x) V2 € R and additionally

/|x|qFt (dz) =t, /|x\qF (dz) + (1 —ty) /|:z|qF0 (dx) — /|x\qF0 (dx),

whence it follows that dy(F},, Fo) — 0 as n — oo. Thus, for every € > 0 there is an n. € N with
dq(Fy,, Fy) < € for all n > ne, and this implies that

Uc(Fo) N (Gg \ {Fo}) #0 Y e>0.

Hence, condition (2.2) holds for the testing problem (4.2). ¢

As we are in the framework of section 2, we can use the results derived there to determine the
limiting (as & — 0) Pitman ARE of the classical Cramér-von Mises test based on (W),),>2 with
respect to the modified Cramér-von Mises test based on (V,)n>2. We will proceed by verifying
that both of the two sequences of test statistics are Bahadur standard sequences in the sense of
Definition 2.1.

It is well known and easy to see that (W, )n>2 is a standard sequence. Here, the constant a in
condition (BII) is equal to 1/A; with A\; := 1/7%, and the function in (BIII) is

o

b: G\ {Fo} > F +— (/ (F(:c) — FO(;E))ZFO(da:))l/Q € (0,1], (4.8)

—00

cf. Table 1 in section 5 of Wieand [30]. The fact that (W),),>2 satisfies condition (BIII) with b
as in (4.8) is an immediate consequence of the Glivenko-Cantelli theorem. To see this, note that
by Minkowski’s inequality we have for every F' € G, \ {Fp}

Mo (7 o) - me) ) < (

o — 00

e}

(Fulz) — F(x))2F0(da:)> Y

[e.e]

P = ([ (P - A Ran) " < ([ (B = @) R) "+ T2,

T —wm)| < ([ () - P@)Roa) " < 1~ Pl (19)

— 00
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4 The limiting Pitman ARE of the two tests for iid centered observations

and the statement follows from the Glivenko-Cantelli theorem. Hence, the approximate slope of
(Wa)n>2 18 b(F)? /A1, F € Gg \ {Fo}-

Let us show now that (V,),>2 is a standard sequence as well, i.e., that conditions (BI), (BII)
and (BIII) of Definition 2.1 also hold for (V,,),>2. This follows similarly to the verification of the
very conditions for (W, )n>2.

To check (BI) and (BII), we have to investigate the distribution of V. As was mentioned before,
the random variable V has a continuous distribution function, so that (BI) holds for (V,)n>2.
In order to see that this distribution function also satisfies condition (BII), we use the following
tail probability approximation, which follows from Remark 1 on page 1274 in Linde [19], see also
Theorem 2 in Beran [3] and Lemma 2.4 and the remark on page 121 in Gregory [13].

Lemma 4.3

Let (N;)ien be a sequence of independent and identically N(0,1)-distributed random variables
on a probability space (X, X, P), and let (a;);en be a monotonically decreasing sequence of non-
negative real constants with a; > 0 and ZieN a; < oco. Then

logP<Z a;N? > xz) )
lim =1 =——

z—00 22 2a1

As the kernel k in (4.7) is continuous, Mercer’s theorem implies that >,y A7 < oo. Hence,
a direct application of the above lemma to the random variable in (4.6) shows that condition
(BII) is satisfied for (V,)n>2 with a = 1/A}. It remains to verify condition (BIII). But using
Minkowski’s inequality again, it follows analogously to before that

Ze—un)| < ([ (B - F@)PR@) " < 1R-Fle @)

for every F' € Gy \ {Fo}, where b is as in (4.8). Now by Theorem 3.1 in Zhang [31] we have
||ﬁn — Fllc — 0 in Pp-probability,
n—oo

so that

3;% —b(F) e 0 in Pp-probability

for every F' € G, \ {Fo}.

To sum up, we have shown the following proposition.

Proposition 4.4
The sequence (Vn)n>2 is a standard sequence with approzimate slope b(F)?/X\i, F € G, \ {Fo}.
The approzimate Bahadur ARE of Wy )n>2 relative to (Vy)n>2 is thus Aj/Aq.

Note that the approximate Bahadur ARE of (W, )n>2 relative to (V,)n>2 is independent of the
alternative distribution F' € G, \ {Fp}, because the function b in condition (BIII) is the same for
both sequences of test statistics. Hence, the approximate Bahadur ARE of these two sequences
does only depend on Fp, namely through the eigenvalue A}. Moreover, it is \] < A1, as is shown
in Example B.1 in the appendix. Consequently, the ratio Aj/A; is always less than one. For some
specific distribution functions Fy the values of A] and Aj/A; are given in Table 1 on page 35.

In order to equate the approximate Bahadur ARE of (W,,),>2 with respect to (V;,)n>2 to the
limiting Pitman ARE with the aid of Theorem 2.3, we have to verify that the two sequences
(Wh)n>2 and (Vy)n>2 also meet Wieand’s condition (WIII). To show this for the latter sequence,
we require ¢q € (2,00) from now on.
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4 The limiting Pitman ARE of the two tests for iid centered observations

Theorem 4.5
The sequence (Vp)n>2 fulfills Wieand’s condition (WIIL) with b as in (4.8).

Proof. Let F' € G, \ {Fo} and n > 2. Using (4.10), we see that

y B _
’\/%—b(F)’ < [P = Fllo < 1Fn = Fulloo + [1Fn = Flloo-

We will now examine both summands on the right-hand side of the above inequality separately.
We start by showing that the Kolmogorov-Smirnov statistic v/n|| F;, — F'||« fulfills the assumptions

of Proposition 2.4. By the classical asymptotic theory of the Kolmogorov-Smirnov statistic,

Po(VillFo — Fllao <2) — Pp(|B°(F)|o <), #€R

and Pp(y/n||F,, — Flleo < +) as well as Pp(||B°(F)||co < -) do not depend on F' anymore, since F'
is continuous. Moreover, the distribution function of ||B°(F)||« is continuous. This shows that
condition (i) of Proposition 2.4 holds for every ¢ > 0. But since Q(+) := Pp(||B°(F)||co < ) does
not depend on F', condition (ii) of the very proposition is trivially met for every o > 0.

Next, we investigate the term || E, — Fp,|oo.

Let K := [ |z|Fo(dz)/2. Then K € (0,00) since Fy € G¢, and Lemma 4.1 (i) implies that there
are 01,02 > 0 such that

‘/ || Fo(dx) / |z]F(da:)‘ < K for all F' € G, with d,(F, Fp) < 01 (4.11)
R R

and
‘/ |x|9Fy(dx) — / ]:c|qF(dx)‘ < K for all F € G, with d,(F, Fp) < da. (4.12)
R R

Now set K’ := min(Fy(0),1 — Fy(0))/2. Note that K’ > 0 because neither Fy(0) = 0 nor
Fy(0) =1 is possible since Fy € G,. By part (ii) of Lemma 4.1 there is a d3 > 0 with

di (F, Fy) = sup |F(z) — Fy(z)| < K" for all F € G, with dy(F, Fy) < d3. (4.13)
zeR

Define ¢ := min(d1, d2,93) and M := Us(Fp) \ {Fo}. Then the set M is such that (3.7), (3.8) and
(3.13) hold. To see that (3.7) is satisfied, we have to show that
g(c) :== sup 22F(dx) — 0 for ¢ — oo.
FeM J{zeR: |z|>c}

But for every F € M and ¢ € (0,00) it is

|z]

/{|x|>c} ) :/{('i')H>1}$2F<dx) - /{(i')q_Q>1}x2' <7>q_2F(dl‘)

_ 1
< 2 q/R\af|qF(d:c) < CqQ(K—F/RMqFO(dx))

because of ¢ > 2 and (4.12). This implies

1

0 < g(e) < Cq2(K+/R|a:|qF0(da:)) = 0.

Next, we verify (3.8). Because of (4.11) we have [p |«|F(dx) > K for every F € M, and therefore
inf{ [ |z|F(dz): F € M} > K > 0.
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4 The limiting Pitman ARE of the two tests for iid centered observations

It remains to show (3.13). It follows from (4.13) and by definition of K’ that
0< Fp(0) - K' < F(0) < Fp(0)+ K' <1

for every F' € M, and this yields (3.13).

Since M satisfies all assumptions of Proposition 3.5, we get

~ 11
IFs = Fullo < Wl |32 + 1l
1=

F

with \/n|| Ry rllec = 0%(1) in M as n — oo. By parts (i) and (ii) of Lemma 3.8 we see that all
assumptions of Proposition 2.6 are met for

n

_ 11
Ver = Urlloo—s | = Y X

and Ry p = vn|Rnrlleo
F \/ﬁ i=1

with o = 9, so that

sup |Pp(Vy,p 4+ Rop < 2) — Qp(z)] — 0 VazeR, (4.14)
FeM n

where Qp is as in Lemma 3.8 (i) the distribution function of a half-normal distribution. Now
(4.14) and part (iii) of Lemma 3.8 imply that all assumptions of Proposition 2.4 hold for the
family of sequences {(V,,.r + Rp r)n>2: F € Gy}

Hence, by Corollary 2.5 there is a ¢ > 0 such that for every e > 0 and ¢ € (0, 1) there is a positive
constant C(e, ) with

PF< 3;% —b(F)‘ > eb(F))

11 o
< Pr(|1Fn = Flloo + [Urlloo—y |- 37 Xi| + | Rl 2 €b(F)) < &
=1

F

for all F' € U,(Fp) \ {Fo} and for all n > 2 with /nb(F) > C(e,¢), but this is just (WIII) for
(Vn)n>2- O

An analog of Theorem 4.5 holds for (W), ),>2 as well. Wieand [30] showed in Example 3 on page
1008 that W, satisfies condition (WIII) for parametric alternatives. This is easily seen to be true
also in the case of nonparametric alternatives considered here, since it follows immediately from
inequality (4.9) and the fact that the Kolmogorov-Smirnov statistic \/n||F,, — F'||o satisfies the
assumptions of Proposition 2.4 for every ¢ > 0, as was mentioned in the previous proof. Hence,
condition (WIII) also holds for (W),),>2 with b as in (4.8).

Our aim is now to equate the limit (as the alternative F' approaches Fp) of the approximate
Bahadur ARE of (W,,)n>2 relative to (V,)n>2 with the limiting (as a — 0) Pitman ARE of
these sequences using Theorem 2.3. To see that this theorem is applicable, we will check its
assumptions first:

By what we have already shown it follows that the sequences (Wy,)n>2 and (V,),>2 satisfy
condition (i) of Theorem 2.3. Moreover, the random variables W and V, to which W,, and V),
respectively converge to in distribution under Hg, have distribution functions that are strictly
increasing on (0, 00), since the distribution functions of WW? and V? are strictly increasing on
(0,00), see e.g. Lemma 5.1 in Hérmann [15]. Thus, condition (ii) also holds. In addition, as
0< b(F) < HF — FOHoo = dK(F, Fo) for all F' € Qq \ {FO} and dK(F, F()) — 0 as dq(F, FQ) — 0,
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4 The limiting Pitman ARE of the two tests for iid centered observations

F € G,\{Fv}, by Lemma 4.1 (ii), assumption (iii) is met as well. It remains to verify condition (iv)
of Theorem 2.3. But as mentioned before, the approximate Bahadur ARE of (W,,)n>2 relative
to (Vn)n>2 is independent of the alternative F', and therefore its limit as the alternative F
approaches Fy trivially exists and is equal to A /A;.

Now a direct application of Theorem 2.3 yields

Theorem 4.6
For Thp = Wh, Top, = Vy, n > 2, and every 8 € (0,1) it is

o lmint 2@ lim sup No(a, B, F) _ N

O‘4>OFEQ[I\{FO}7 NI(OZ?BvF) O‘HOFEQQ\{FO}, Nl(aaﬁvF) B )\71
dg(F,Fo)—0 dg(F,Fp)—0

(4.15)

Recall that A7 < A1, as is shown in Example B.1 in the appendix. Hence, the limiting Pitman ARE
in (4.15) is strictly less than one, so that the sequence of tests based on (V,),>2 is preferable to
the one based on (W), )n>2. Furthermore, by Remark 5.4 in [15] it is A} > 1/(27)2, which implies
that A} /A1 > 0.25.

We will now explicitly specify A\j/A; for some distribution functions Fy. For this, keep in mind
that the distribution of W does not depend on Fp, so that A1, which is the largest eigenvalue of
the Hilbert-Schmidt integral operator with kernel k(s,t) = s At — st, is the same for every Fj
and equals 1/72. In contrast to this, the kernel in (4.7) depends on Fy, hence the value of A}
may vary for different null-distributions.

In subsection 6.1 of [15] the numerical computation of A} is described for Fy being the distribution
function of one of the following distributions:

e the standard normal distribution N (0, 1),

e the double exponential distribution (denoted by Dexp) having Lebesgue density f(x) =
0.5exp(—|z|), = € R,

e the logistic distribution (denoted by Logistic) having distribution function F(x) =1/(1 +
exp(—x)), x € R.

Observe that since all of these distributions have finite moments of all order and zero mean,
their distribution functions are elements of G, regardless of the value of g. Using the R-function
eigenvalues () of appendix A.1 in [15], we determined A} for these distributions, the result of
which can be found in Table 1.

Fy A1 A A/
N(©,1) | 1/7%2 | 1/(27)? 0.25
Dexp 1/72 | 0.02983768 | 0.2944861
Logistic || 1/7% | 1/(27)? 0.25

Table 1: Values of A\ and A} for some distributions.
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4 The limiting Pitman ARE of the two tests for iid centered observations

4.2 Composite null hypothesis

Assume again that the observations Xi,...,X,, n > 2, are independent and identically dis-
tributed with common distribution function F' € G,, ¢ > 2 fixed, but that F' is unknown to us.
Consider now the testing problem

Hy: F € F; = {FT (;) 1o € (0,00)} versus  Hy: F e G, \ Fr, (4.16)

where F- is the distribution function of the generalized normal or exponential power distribution
having Lebesgue density
.

fr(z) = m -exp(—|:c|7), x € R,

with fixed 7 > 0 and
I'(z) :/ y* e Vdy, x>0,
0

being the Gamma function. For 7 = 2, this yields the N (0,1/2) distribution, and for 7 = 1 the
Laplace or double exponential distribution. If 7 < 2, the tails of the distribution with density
fr are heavier than those of the normal distribution, whereas for 7 > 2 the tails are lighter. In
Figure 1 the density f; is depicted for different values of 7. Note that since F: is continuous,
centered, and has finite moments of all order for every 7 > 0, it is indeed F; C G, for every
g > 2. For more details on the generalized normal distribution see e.g. Nadarajah [20].

0.5

0.4

() *27

0.2

0.1

0.0

Figure 1: Density f,. for different values of 7.

Let us introduce some notation. For every o € (0,00) and x € R set

F(x,0):= FT(§> and  f(z,0) = %f7(2>.

Then f(-,0) is the continuous Lebesgue density of F(-,0). Because 7 is kept fixed, we will not
mention the dependency of F(z,0) and f(z,0) on 7 in this notation.
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4 The limiting Pitman ARE of the two tests for iid centered observations

For testing the composite null hypothesis Hy against Hy, we will use the Cramér-von Mises
statistics

W2 = n/oo (Fu(x) — F(x,6,))° F(dz, &)

and

V2= n/oo (Fu(2) — F(x,6,))° F(dx, é7),

—0o0

where (65, ),>2 is the sequence of maximum likelihood estimators (MLE) for the scale parameter
o in F;, ie.,

b0 = 6n(X1s..., X 1/7( Z\X! ) (4.17)

for all n > 2, as is easily seen. Note that {5, = 0} is a Pp-nullset because of the continuity of
F'. Thus, we can and will always assume that ,, € (0,00). Note moreover that the MLE &, is
scale equivariant, i.e., 6, (X1,...,Xp) =c-,(X1/c,..., Xy /c) for every c € (0,00).

It is well known and easy to see that the scale equivariance of &, implies that 17\/\7? is scale
invariant, i.e.,

W2(X1,...,Xn) = W2A(X1/c,...,Xn/c) ¥ ce (0,00).

Now note that by the scale equivariance of &, the statistic 17,,12 is scale invariant on the set
Q, = {min;<j<, X; < 0 < maxj<;<, X;}. In order to verify this, recall that for every n > 2

- 1
- ; DL+ X))

=1

on Q, with ¢, = t,(X1, ..., X,) being the unique solution of the equation y ;" ; X;/(1+tX;) =0
in the open interval

see (3.2) and (3.3). Then for arbitrary ¢ > 0

n

1 = 1
e =Y ——— 1y, zER,
;n(l—i-tnXi) Xise} ;n( y;) sl

where £, := ct, and Y; := X;/c, i = 1,...,n. But £, = ct,(X1,...,X,) is just the unique
solution of " | Y;/(1 +tY;) = 0 in the set

(G ) ) s)
n max Y; \n min Y;/’

1<i<n 1<i<n

denoted by t,(Y1,...,Yy). Thus, ct,(X1,...,X,) = tn(Y1,...,Y,), and in combination with the
scale equivariance of &,, this yields the statement. Let us assume henceforth that V)2 is defined
on Q, in such a way that it is scale invariant on this set as well (for example, set V2 W2 on

Q,). On Q we then have

V2(X1,...,Xn) =V2(X1/c,...,Xn/c) ¥V c€ (0,00).
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4 The limiting Pitman ARE of the two tests for iid centered observations

In the following, we will construct asymptotic level « tests for the testing problem (4.16) based on

the test statistics Wn = ()7\/\712)1/2 and 1/}” = (ﬁ?)l/z, n > 2. Note that in order to determine the
asymptotic null distributions of these statistics, we can assume that F' = F. under Hy because
of the aforementioned scale invariance.

To start with, we observe that the following regularity conditions hold:

The mapping

((0,00),|+]) 2 ¢ = F(,0) € (C[-00,00], ]| [lo0) (4.18)
is differentiable at o = 1, i.e., there is a function A € C[—o0, 00| with

[F(;1+h) = F(-,1) = A()hlloc = o(|R]) as h — 0, (4.19)
namely A(z) = —zxf;(z), * € R, A(—o0) = A(co) = 0. Note that the differentiability of

o+ F(-,0) at 0 = 1 implies its differentiability on (0, c0).
Moreover, the MLE &,, admits the expansion

n

1 1
(X1 X)) =1 = — (XZ-T——) R, 4.20
a3 oK) 1= LSS )4 (1.20)

with v/nR, converging to zero in Ppg_-probability as n — oo. Let L(z) = |z|” — 1/7, x € R.
Then L is a measurable function with Ep (L(X1)) = 0 because of [ |z|"Fr(dz) = 1/7, and
Ep, (L(X1)?) = Varp, (|X1]7) = Ep, (IX1*7) — Er, (1X1|7)? = 1/7 < co since [, |2[*"Fr(dz) =
/72 +1/1.

These regularity conditions now imply that
Va(Fu(-) = F(-,6,)) = Z in D[—o00,] (4.21)
n

under P, where Z = (Z(2))ze[—o00,00] 15 @ centered Gaussian process with continuous sample
paths and covariance function

1
COVE, (Z($)7 Z(y)) = F‘r(x A y) - FT(SU)FT(:‘/) + xfT(:C);yfT(y)

+ 2 fr(2) Ep, (L(X1)1{x,<y}) + uf () Br, (L(X1)1{x,<0}) (4.22)
for all z,y € R, cf. Theorem 1 in Durbin [7], see also Theorem A in Genz and Héusler [12| and
the remark thereafter. Since for every z € R it is

z 1 1
B, (L0 xen)) = [ o Folo)dy = TFrle) = = afr(a),

where the last equality follows by integration by parts, the covariance function (4.22) reduces to
1
COVE, (Z(.CU), Z(y)) = FT(x A y) - FT(m)FT(y) - wf'r(x);yf'r(y)a T,y € R. (4'23)

Additionally, since [, 2F;(dx) = 0 and 07, = [p 2*F-(dz) € (0,00), it follows from Theorem 1
in Genz and Héusler [12] that under P,

Vi (Fo() = F(-,6,)) % V  in D[—o0, ) (4.24)

with a centered Gaussian processs V' = (V(2))ze[—o00,00] having continuous sample paths and co-
variance function

covr, (V(@), V() = Frlar Ay) — Fr (@) () — () Sy ) — 7Ly )

0%
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4 The limiting Pitman ARE of the two tests for iid centered observations

for z,y € R. Note that the additional two summands appearing in the covariance function of V'
in the general situation of Theorem 1 in [12] do vanish here because Ep,_(X1L(X1)) = 0.

Now observe that the density f; is infinitely often differentiable for all z € R* := R\ {0} with

fr(@) = fr(@)r|z|" - (= sgn(2)),
where sgn = 1(g o) — 1(~c0,0) 1S the sign function. Thus,
/ |z fL(x)|do = / |z|” fr(x)Tdr = T/ |z|" Fr(dz) =1, (4.26)
R* —0o0 —00

and by Lemma 2.5 in Hormann [15] in combination with Example 2.6 from [15] and the continuous
mapping theorem this implies that

W S ( / h Z(m)2FT(dx))1/ W (4.27)
and
Vo S (/OO V(x)2FT(d:c)>1/2 —. ) (4.28)

under Pr._. The Karhunen-Loéve expansion of the processes Z o F.-! and V o F-! then yields

W ~ (i Xij?)l/Q and U~ (i X;Nf)m (4.29)
=1 =1

with (Nj)jen independent and identically A(0, 1)-distributed and (Aj)jen and (A¥)jen being
the decreasing sequences of positive eigenvalues of the Hilbert-Schmidt integral operators having

kernels k(s,t) = covp (Z(F1(s)), Z(F71(t)) and k*(s,t) = covp, (V(E-1(s)), V(FS (1)),

-
respectively, where each positive eigenvalue is repeated as many times as its multiplicity. The

symbol ~ in (4.29) signifies equality in distribution.
It is obvious by (4.29) that the distribution functions of W and V are continuous. Hence, for
every a € (0,1)

Pr. (Wn > k(a)) —  Pr (W > k(a)) =«

n—oo
and

~

Pr, (Vo > &) — Pp.(V>éa)) =a,

n—oo

where k(a) and é(a) denote the (1 — a)-quantiles of the distributions of W and V, respectively.
For 7 = 1 and 7 = 2, the quantiles of the distributions of W? and V2 were computed and
tabulated in section 7 of Hérmann [15].

Because of the above, both the classical Cramér-von Mises test having decision rule

Reject Hy < W, > k(a) (4.30)
and the modified Cramér-von Mises test with decision rule

Reject Hy <=V, > &) (4.31)

are asymptotically of level « for testing (4.16).
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For the following considerations we assume that ¢ > max(2,7). Then

ma(F) = (T/R|x|TF(dx)>l/T € (0, 00)

for all F' € G,. Note that m,(F;) = 1, since Eg (|X1|7”) = 1/7. On G, we can now define a
relation ~p by
F ~p G << F(m(F)-)=Gm:(G)-).

Obviously ~p is reflexive, symmetric and transitive, so that it is an equivalence relation. For
every I' € G, its equivalence class under ~pg is just the scale family generated by F, i.e.,

[Flr :=={G € Gy: G~ F}={F(-/c): c€ (0,00)}.

Now the aforementioned scale invariance of the test statistics under consideration yields that the
mappings -
F ProW,! and F s ProV,!

from G, into the set of probability measures on B* are compatible with ~g, i.e.,
FropG = PFow\gl :]35;017\/\”_1 and PFo]/};l :Pgoﬁgl.

We have already made use of this fact when determining the asymptotic null distributions of

X

(Wn)nzg and (Vp,)n>2. But note that this also implies that the power of the tests in (4.30) and
(4.31) is invariant with respect to the scale of the underlying data. Because of this, the quantities

Ni(e, B, F) := min{n > 2: PF(W\m > l;:(a)) >pBVYm>n}
and
Na(a, B, F) :=min{n > 2: Pp(ﬁm > é(a)) > BV m=>n},

a,B€(0,1), F € G, \ Fr, are compatible with ~p as well, since N;(«, 8, F) = N;(a, 5, F(-/c))
for all ¢ > 0, ¢ = 1,2, by what has just been mentioned. Hence, for every fixed a, 3 € (0,1)
the relative efficiency Na(«, 3, F')/Ni(a, 8, F) of (Wn)nzg with respect to (]7n)n22 is invariant
on the equivalence classes of ~g, and therefore a reasonable investigation of the asymptotic
behavior of the relative efficiency when the alternative approaches the null hypothesis requires
the identification of distribution functions deriving from the same scale family. Because of this,
we will consider in the following the mappings

[Flg— PpoW;' and [Flg+ ProV;!
on the quotient set G,/~pr:= {[F|r: F € G,}. Note that these mappings are well-defined because

of the above.

We will now equip the quotient set G,/~pg with a suitable metric.

For this, observe that the test statistics )7\/\” and 971 can be written as

A ) () A ) ()
c c c c

for every ¢ € (0,00). Thus, for fixed ¢ > 0 they compare the unknown underlying distribution
function F' deriving from a scale family [F|gr to [F;]g, the scale family under Hy, by measuring

the distance of an estimator of F(m,(F)/c - ) to Fr(-/c) = Fr(m.(F;)/c - ) in the Lo(Fr(-/c))
metric.

Wn:ﬁ)

and 17n:\/ﬁ‘

La(Fr(-/c)) La(Fr(-/c))

In analogy to this, let us introduce the following metrics on G,/~pg:
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Lemma 4.7
For every fized ¢ > 0, set

dgc([F]R, [G]R) := dg(F(m-(F)/c ), G(mr(G) /e )

for every [Fg, [G]r € Gq/~r, where dg is the Kantorovich-Wasserstein metric defined in (4.1).
Then

(i) ciqvc is well-defined and a metric on Gg/~p,

(ii)  for any two constants c1,ca € (0,00) the metrics ch and ch,CQ are uniformly equivalent.

Proof.
(i) To see that quc is well-defined, note that for every F;, G; € Gy, i = 1,2, with F ~g Fy,
G1 ~R GQ it is

Fi(mr(F1) - ) = Fo(m,(Fy) - ) and  Gi(m,(G1) - ) = Ga(m(Ga) - )
by definition of ~p. Hence

dg(Fi(m7(F1)/c ), Gi(m-(G1)/c-)) = dg(Fa(mr(F2)/c - ), Ga(mr(Ga)/c - ),

which yields the statement.

Moreover,

dg.([F]r, [G]r) = 0 dy(F(m-(F)/c-),G(m-(G)/c-)) =0
F(m:(F)/c-)=G(m:(G)/c-)
F(m.(F)-)=G(m(G) ")

F~rpG < [F]R:[G]R.

to e

The fact that dqyc is symmetric and satisfies the triangle inequality follows directly from the
respective properties of d,.

(ii) By the scaling properties of d it is
dg.ci ([Flr, [Glr) = = daes ([F] R, [GlR)
for all [F|g, [G]r € G4/~r, whence the assertion follows. O

By what has just been shown, any two of the metric spaces (Gy/~r, a?q,c), ¢ > 0, are uniformly,
and therefore topologically, isomorphic. Since we are only interested in topological properties of
these metric spaces such as convergence of sequences in them and continuity of mappings on
them, we will not differentiate between these spaces and therefore always work on (G,/~r, ch’l).

Now observe that the set
Gy = {F(me(F)-): Fege}={F€Gy [pla|"F(dv) =1}

is a complete set of equivalence class representatives, i.e., it contains exactly one element from
each equivalence class of ~g. Because of this, the well-defined mapping

hi Gy/~r > [Flg = F(m.(F)-) € G,

is obviously a bijection. Furthermore, it is

dg1 ([Flr: [Glr) = dg(R([FIr),M[Glr)) V [Flr. [Glr € Gq/~r:
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so that (G,/~r,d,1) and (qu, d,) are isometrically isomorphic. Hence, we will identify these two
metric spaces and assume from now on that the distribution function F' of the data X1,..., X,
n > 2,isin (§q, dq). The appropriate hypotheses for the investigation of the asymptotic behavior
of No(a, B, F)/Ni(c, B, F) now are

Ho: F=F, versus H;: Fe Q’Vq \ {F:}. (4.32)

Trivially, the tests in (4.30) and (4.31) are asymptotic level « tests for this testing problem as
well. Henceforth we will only consider the testing problem (4.32).

Remark 4.8: Note that the above testing problem is such that condition (2.2) is satisfied. To
verify this, observe that since the set of alternatives Jq \ {F:} is obviously not empty, there is
an F' € §q \ {F:}. Now set F} := tF + (1 — t)F; for every t € (0,1). It is easy to see that
F, € G4\ {F-}. Moreover,

T = z|” T — z|” 93:1 —t) = —
[t Futdn) =t [ Jal Plda) + (1= ) [ fol Pr(dn) = 241 -1

T

so that Fy € G, \ {F,} for every t € (0,1). As in Remark 4.2 we can show that d,(F;,, Fy) — 0
as n — oo for any sequence (t,)nen in (0,1) converging to zero, whence it follows that

Ue(Fr) N (Gg \ {Fr}) #0 ¥V e>0. ¢

We proceed by showing that (Wn)nzg and (9n)n22 are standard sequences, the notion of which
was introduced in Definition 2.1.

It follows from (4.27), (4.28) and (4.29) that both sequences of test statistics fulfill condition (BI).
Furthermore, as the kernels k and &* are continuous on [0, 1] x [0, 1], by Mercer’s theorem we get
> jeN A < oo and >_jenAj < oo. Hence, we can use Lemma 4.3 again to see that condition (BII)

holds for both sequences of test statistics as well, where a = 1/ \; for (Wn)nzg and a =1/ /N\f for
(Vn)nZQ-
It remains to verify (BIII). For every F € Jq \ {F;} let

and

by (F) = (/Oo (F(z) - F(z,60))*F(d, &n))m, n>2

Then

Wi,
< ‘% - bn(F)‘ + [bu(F) = b(F))- (4.33)
Let us first examine the first term on the right-hand side of (4.33). Using Minkowski’s inequality,
it is
o0 ) 1/2

(7 ~ ba( ‘ < (/ (Fu(z) — F(2))*F(da, an)) < Py = Floo. (4.34)
Now the Glivenko-Cantelli theorem ensures that || F),, — F'|l«c = op,(1) as n — oo, where op, (1)
signifies convergence to zero in Pp-probability.

Analogously to the above we have

‘7_6) ) < Hﬁn—F||oo+|bn(F)—b(F)|. (4.35)
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Again, Theorem 3.1 of Zhang [31] gives ||F), — F|loo = op.(1) as n — oo.
It remains to show that ‘bn (F) —b(F )‘ — 0 in Pp-probability. To do this, we will use the next
n

lemma.

Lemma 4.9
For every fized continuous distribution function F' the function

Tr: (0,00) 30— (/ (F(z) — FT(,’L’/U))2FT(CZ.T/O')> 1/2 € [0,1]

—0o0

o0

18 continuous.

Proof. We will show the continuity of 7,2, whence the assertion follows. Fix some arbitrary
a € (0,00) and let (0y,)nen be a sequence in (0, 00) that tends to & as n tends to infinity. Then
F(x,0pn) = Fr(x/o,) — Fr(z/o)=F(z,0) ¥V z€R

n

because of the continuity of F.. This shows that the sequence (F(, Un))n oy converges weakly to
F(-,5). Now

Ty (0m)? — Tp(0)?] = \/ F(z,00))2F(dz, o) —/:(F(m) ~ F(2,5))*F(d.5)|
‘/ F(z O'n))2 — (F(z) — F(=, &))QF(dm, on)
/ (F(x) — F(z,5))*F(dz,0n) — / O; (F(z) — F(x,5))*F(de, 5)’

< ‘/m (F(z) — F(z,00))* = (F(z) — F(x,5)) F(dz, 0,)
+ ‘/ F(z,5))°F(dz,0,) — /Oo (F(x) —F(x,&))zF(dxﬁ)‘.

—00

The second term converges to zero as n — oo because of the weak convergence of F(-,0y,) to
F(-,5), using that (F(-) — F(-,5))? is a continuous and bounded function on R. It remains to
investigate the first term on the right-hand side of the above inequality. It is

( / F(z,00))* = (F(x) — F(z,5))*F(dz, o)

IN

/_ |2F (2)(F(2,5) — F(z,00)) + (F(x,00) — F(,5)) (F(2,00) + F(2,5))|F(dz,0,)

IN

4P, 00) = F(8)]loo = 01) as n — oc,

which follows again from the weak convergence of F(-,0,) to F(-,5) and the continuity of the
latter function. O

Next, observe that by the strong law of large numbers it is for every F € éq

Gn(X1, ..., Xp) = 71/7(% i |XZ»\T>1/T — Tl/f</R \x|TF(d:c))l/T = m,(F) =1

Pp-almost everywhere. Together with the preceding lemma this implies that b,(F) — b(F) =
T (6n) — 1-(1) = op.(1) as n — oo, which shows that both (Wn/\/ﬁ)n>2 and (V,/
converge in Pp-probability to b(F') under Hy, but this is just (BIII). -

)n>2

To sum up, we have shown the following proposition.
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Proposition 4.10 R

The sequences (Whp)n>2 and (Vn)n>2 are standard sequences with approzimate slopes b(F ) /A
and b(F )2/ X5 respectively. Thus, the approzimate Bahadur ARE of ( n)nzg relative to (Vn)nzg
is AT/ A1,

It is shown in Example B.2 in the appendix that A\; = 1/#2 for r every 7 € (0,00) and that
)\* < A1. Because of the latter, the approximate Bahadur ARE of (Wn)n>2 relative to (Vn)nzg is
strictly less than one. Moreover, it is independent of the alternative distribution F' € Qq \ {F:}
but depends on the parameter 7 of the null distribution F- through the eigenvalue Aj. For 7 =1
and 7 = 2, the values of A} and A\j/A; are given in Table 2 on page 52.

Next, we want to verify that for both sequences (Wn)nzg and (]7n)n22 Wieand’s condition (WIII)
holds. In order to do this, we have to strengthen the condition on the moments of the distribution
of the data and require from now on that ¢ = 27 if 7 > 1, otherwise ¢ shall be fix in (2, c0).

Theorem 4.11
The sequences (Wp)n>2 and ( n)n>2 fulfill Wieand’s condition (WIII) with

o0 1/2

b: G \{F} 3 F — (/ (F(x)—F.,(gg))QFT(dx)> € (0,1].

— 00

To prove this theorem we need some additional results. For the following investigations, let us
introduce the condition

sup [ |z|*"F(dz) < oo (4.36)
FeM JR

for a set M of distribution functions. We will take a closer look now at the uniform asymptotic
behavior of the sequence (65, )n>2.

Lemma 4.12
Let O # M C G, with (4.36). Then

(i) sup Ep(|6] —1]*) =O(1/n) as n — oo,
FeM
(it) 6p—1=0%(1) in M as n — cc.

Proof. (i) Recall that 7 [, |#|"F(dx) = 1 for every F € G, Thus it is

Er (o7~ 17) = Be((* i(ﬂxir 1)) = iEF((T\Xir —1)?) = AT

1=

2Er(IX177) -1
- F(’ 1| ) < T— sup / \x!QTF dx)
n N rFeMm

for every F' € M, which yields the statement.

To verify (ii), it obviously suffices to show

sup Pp(|6n, —1|>€¢) — 0
FeM n—o0

for e € (0,1). Now observe that there is a K, € (0, 00) such that for every € € (0, 1) the following
inequalities hold

(I1+4¢)7 > 1+ Ke and (1—¢) < 1—K e (4.37)
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Using this, we have for every € € (0,1) and F € M
Pp(|6n—12€¢)=1-Pp(l—e<6p<l4e)=1-Pp((1—€¢) <6}, <(1+¢€))
<1-Pp(l—Kre<6], <1+ Kre) =1- Pp(|o], — 1| < Kye)
= Pp(|6], — 1| > Kye).

Hence, with Markov’s inequality and (i) it is

1
sup PF(|6n -1 > e) < sup PF(|6’TTL -1 > KT(-:) < ek SUJ%EFO&:L — 1|2) n:; 0. O

FeM FeM 7€

Moreover, we get the following result concerning the sequence (6,)n>2.

Lemma 4.13
If the nonempty set M C qu \ {F;} satisfies (4.36), then for every e > 0 and § € (0,1) there is
a C(€,6) > 0 such that

Pp(|on — 1] > €b(F)) <06

for each F € M and for alln € N, n > 2, with \/n > C(€,0)/b(F).

Proof. Obviously, it is sufficient to show the statement for every e € (0,1). Thus, let 0 < ¢€,0 < 1.
Since b(F) € (0,1] for every F € M, it is eb(F') € (0,1), and using (4.37) we get

K

Pp(|6n — 1| > €b(F)) < Pp(|67, — 1] = K- eb(F)) < nK220(F)?

for every F' € M, employing the fact that by Lemma 4.12 (i) there is a K e (0, 00) such that

sup Er (o] — 1) < ~ K

1

FeM n

for every n > 2. Now set C(e, §) := (I?/(KEGQ(S))I/Q. Then for every F' € M it is
Pp (|64 — 1| > €b(F)) <6

for all n € N, n > 2, with \/n > C(¢,0)/b(F). O

Now note again that the density f. is infinitely often differentiable for all z € R* =R\ {0} with

fr(@) = fr(@)rla|™" - (~sgn(x))

and

fi@) = fe@)rlal - (rle ™ = (r = 1l

where sgn = 1(g o) — 1(—0,0) is as before the sign function. Hence, for all (z,0) € R x (0, 00) the
first-order and the second-order partial derivative of f(-,-) with respect to o exist and are given

by

e = ot () gt Gl 129
and
gorte = 20 5:() = G) BT B () )

We will now use the foregoing results to prove the following proposition.
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Proposition 4.14
Let ) # M C g~q \ {F;} be such that (4.36) holds. Then for each € > 0 and § € (0,1) there is a
C(e,6) > 0 with

Pr(|bn(F) = b(F)| > €b(F)) < 6

for all F € M and for alln € N, n > 2, with v/n > C(¢,0)/b(F).

Proof. Let € > 0,6 € (0,1), n > 2 and F € M. By an application of Minkowski’s inequality we
see that

bulF) < ([ (#@) - Fo@) Flaa) " ([ (Fle) = Fe,,) o o)
~ ([ @ - Pr@) i) + [ (F@) = @) (1.6,) = fo(@)ir)
+ (/R(FT(x) - F(x,&n))QF(dx,&n)>1/2
< (02 + [ (@) - Fo@))” | fo.0) = rlalde)
+ (/R(FT(x) - F(:U,&n))QF(dx,6n))l/2
< oF)+ ([ (F@) - @) @60 - fro)de)
+ (/R(FT(@ _ F(a:,&n))QF(dx,&n))l/2,
yzhere the last inequality is due to the fact that va+b < y/a++vb for all a,b > 0. Analogously,
b(F) < bo(F) + (/R(F(x) F(z,60))% | f-(2) — f(3,60) }daz)l/z
+ ( /R (F(z,60) — FT(a:))QFT(d:C)>

1/2

Hence,

o) =P < ([ (@)= B @)? - |1(o0) — Fr(o)]ds)
+ (/R(FT(:E) . F(x,&n))2F(dx,6n))l/2
+(/R(F(x) F(z,60))% | f-(2) — f(3,60) }dx)l/z
+ (/R(F(az,&n) _ FT(x))2FT(d:z)>1/2
— ([ (#@ - Pr@)? |fle.6,) - fo(@)lan)
([ () = P00 (0,60) ~ foo) + fT(w))dw>1/2

- (/R(F(:c) — F(2) + Fr(z) — F(z,60))% - | fr(z) — f(z,62) ‘dx>1/2

’ (/R(F(i”’ )~ Fo(2)) o))

46



4 The limiting Pitman ARE of the two tests for iid centered observations

< 2. (/R(F(a;,&n) —FT(x))zFT(da:))l/Q
v 1)(/R(F<:r>— 2| fr@) — fi)|ax)

/
(V2D ( [ (Fr0) -~ Fla6n)? - |folo) — fo,6,)]de)
=212 4+ (V24+1) IV + (V2 + 1) IIY/2.
Using Taylor’s theorem, we get
I, = F(x)— - n)|d
/R( (x) ) |f f(z, 6 | x
o) 1 02
:/]R(F(x)_FT(:E))2‘ a%(xvl)'(a’n—1>+ ) a f(x fn)( _1 ‘d$

with &, = &,(z) between 6, and 1. Now

I, <

&n—l‘-/R(F(x)—FT(x))z- gi(m,l)’dm

1 0?
+3 @1 [ (F@) - @) [ 6|
R
= I+ %Hn,z. (4.40)
We will first investigate I, ;. It is
I,y = 6n—1‘-/(F(x)—FT(a;))2 gf (z,1) )dx
R
_ (}n—u-/R(F(x)— D)2 |~ f(@) + T h@)|dz by (438)
< |6n — 1’ . /R(F(x) - FT($))2fT($)dZE + ‘(3” - 1‘ : /R(F(CC) - FT(a:))2TfT(x)|a:|de
— II;;1 + 1T
Now IT;, On — 1‘ -b(F)2, so that

Pp(IL,; > €b(F)?) = Pp(|6n — 1] - b(F)? 2 € b(F)?) = Pp(

6’n—1‘ Ze).

By part (ii) of Lemma 4.12 it is 6,, — 1 = 05(1) in M as n — oco. Hence, there is an n;(e,0) € N
such that

sup PF(‘&n — 1‘ > e) <é
FeM

for all n > ny (e, d). With Ci(¢,0) := y/n1(€,0) we therefore have
Pp(Il, > eb(F)?) <6

for every F' € M and every n € N with /n > C1(¢,0)/b(F) > \/ni(€,9).

Next, we investigate 11" It is

k%
I b

on — 1| /R(F(m) — FT(:U))ZfT(a;)ﬂ:c\Tda:
On — 1‘ ' /R(F(x) - FT(x))QfT(:E)l/Q : T’x‘TfT(x)l/de
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<

w11+ ([ @) - Bo@) rlo)ie) - ([ 71 @)laPran)

< &n—ll-b(F)-cT,

where ¢, =7 ([ ]:L“|2TFT(da:))1/2 € (0,00). Thus,
Pp(ILY > eb(F)?) < Pp(|6n — 1] > €b(F)/c,),

and by Lemma 4.13 there is a C3(€,0) > 0 such that the right-hand side of this inequality is less
than 0 for every F € M and n € N, n > 2, with \/n > Cs(¢,d)/b(F).

We now take a look at II,, » defined in (4.40). Recall that

2
0 = (671 — 1)2 . / (F(l’) — FT(x))z . ‘g(j‘é(m,{n) dx

R

with &, = &,(z) lying between &,, and 1.
Fix some h € (0,1) for the rest of the proof. The absolute value of the second-order partial
derivative 92 f /a2 is bounded above on R x [1 — h, 1 + h] by some integrable function H: R —
[0,00), that is,
0*f
do?

and the majorant H can be taken to be

(:v,a)‘ < H() VY (v,0)€Rx[1—h1+h], (4.41)

1 T x T
(1—h)3<2'f7(1+h) +fT(1+h> i
for all € R, cf. (4.39). Obviously, 0 < [p H(z)dz < co.

Coming back to II,, 2, on the event {|6,, — 1| < h} we have (z,§,) € R x [1 — h,1 + h] for all
z € R, and so it follows in this case directly from (4.41) that

H—Lh)"lih

H(z) =

s

" (37 + 77 +T2f7<

5 < (&n—1)2~/H(w)dx.
R
Thus, it is

Pp(Ilno > €b(F)?) < Pp(ll,2 > eb(F)%, |6, — 1| < h) + Pp(|6n, — 1| > h)

IN

Pe(|6n —1] > (¢/ fo H@)dz)*b(F)) + Pr(|60 — 1] > h).
Again by Lemma 4.13 there is a Cs(e,d) > 0 such that for every F' € M it is

. J
Pe(|n =11 = b(F) ¢/ Jp Hx)dz)'"?) < 3
for all n € N, n > 2, with \/n > Cs(e,d)/b(F). Moreover, it follows from Lemma 4.12 (ii) that

there is an na(6) € N with

sup Pr(|6, —1| > h) <
reM

YV n > na(9). (4.42)

For all F € M and n € N such that \/n > max(Cs(e, 6), /n2(0)) /b(F) we then have

Pp (L2 > €b(F)?) < 6.
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4 The limiting Pitman ARE of the two tests for iid centered observations

Next, we investigate
. 2
I, = / (F(:U, On) — Ff(x)) F,(dx).
R

Since F; is differentiable on R, the partial derivative of F'(-,-) with respect to o exists for all

(x,0) € R x (0,00) with op
a0 @)= () +(5)

By the mean value theorem for every = € R there is a &, = &,(z) between &, and 1 such that

Fla,60) — Fu(x) = F(z, 60) — F(z,1) = Z{:(m,f_n) (60— 1). (4.43)

Now let h € (0,1) be as before. The partial derivative 9F/0o is bounded on R x [1 — h,1 + h]
with
OF |z]
| <

90 @O S G
and || f;|lso is in (0,00). On {|6, — 1| < h} we have (x,£,) € R x [1 — h, 1+ k] for all z € R, so
that in this case it follows from the above that

- [(Zwen) e o Il o
In_/]}§<30'(x7€n)> Fe(dz) - (0n —1)" < 70 '/R:c?FT(dx)'(on—l) .

Thus, it is

[ frllso  for (z,0) € R x [1—h, 1+ h],

Pp(L, > eb(F)?) < Pp(L, >eb(F)% |6, — 1| < h) + Pp(|6, — 1| > h)
R 12 p(F)(1 — h)? )
< Pe(lon -1z S O o, - 11> ).

Using Lemma 4.13 once more, we see that there is a Cy(e,0) > 0 so that the first term on the
right-hand side of the last inequality is less than §/2 for every F' € M and n € N, n > 2, with
n > Cy(e,6)?/b(F)2. Hence, for every F € M we have

Pp(L, > eb(F)?) <0

if n € N is such that v/n > max(Ciy(e, ), /n2(6)) /b(F), where na(8) is as in (4.42).

The last term to investigate is
A2 .
M, = [ (Fr(@) = Ple,6)’ - 1:(0) = Fla,60)|do.

Again, the mean value theorem assures that for every z € R there is a én = gn(m) between &,
and 1 such that

Fr(a) = F(@.60) = J(,1) = [(2,60) = (2. 60) - (1 0).

Now consider h € (0, 1) again. The partial derivative 0f/0c is bounded on R x [1 —h, 1+ h] with
of 1 x 1 x x
2L <

aa(w"’)‘ =1 —h)2fT(1 +h> Tz h)27f7<1+h)‘1 “h

for (z,0) € R x [1 — h,1 + A, cf. (4.38). Moreover, let &, be as in (4.43). Then |6, — 1| < h
implies (z,&,), (z,&,) € R x [l — h,1+ k] for all z € R, and on the event {|6, — 1| < h} the
following holds

HIn:/R(gF(:c,én))Q- %(:v,rfn)

T

dz - |, — 1|7

g
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4 The limiting Pitman ARE of the two tests for iid centered observations

x? x -
§</R <1—h>6f7<1+h)d“7/<1— >4ff(1+h)\ h)+2d$)'||fff|go'

=t Z(h) - |1 frll%
where obviously both Z(h) and || f-|le € (0, 00). It follows that

‘ 3

op—1

on—1

Pp (1L, > e b(F)?) < Pp(I1L, > € b(F)?)

< Pp(IlL, > eb(F)?, |6, — 1| < h) + Pp(|6, — 1| > h)

e'/3p(F)
(Z (P £+ 113
Again, Lemma 4.13 ensures the existence of a C5(e,d) > 0 such that

e /3p(F )
) <
for all F € M and n > 2 with /n > C5(¢,d)/b(F). Hence,

IN

PF<|&n—1\2 )1/3>+PF(\&n—1]>h).

PF(|&n 1>

Pp (111, > eb(F)?) < 6

for every F € M and n € N with \/n > max(C5(e, ), \/n2(8)) /b(F), where ny(6) is as in (4.42).
Combining all of the above yields the assertion. O

We will now verify the statement of Theorem 4.11.

Proof of Theorem 4.11. Combining (4.33) and (4.34), we see that
]7 _b(F } < ||Fy = Flloo + |bu(F) — b(F)] (4.44)

for every F € qu \ {F;}. Analogously we have

IN

‘7 —b(F)| < 11Fu = Flloo + [ba(F) = b(F)|

< | Fp = Fulloo + |1 Fn — Flloo + [ba(F) — b(F)|

for every F € §q \ {F;}, where the first inequality is just (4.35).

As was shown in the proof of Theorem 4.5, the Kolmogorov-Smirnov statistic \/n||F, — F||cc
fulfills the assumptions of Proposition 2.4 for every o > 0.

Analogously to the proof of Theorem 4.5, let K := [p |z|F-(dx)/2 € (0,00). It follows from
Lemma 4.1 (i) that there are d1, 2 > 0 such that

| / [9F (dx) — / et F(de)| < K for all F e G, with d(F,F) <6 (4.45)
R R
and

)/ \z|F (dz) — / ya;|F(dx)| < K forall F € G, with dy(F, F,) < 6. (4.46)
R R
Recall that for 7 > 1 we set ¢ = 27 (> 2), and for 7 < 1 we set ¢ > 2 (> 27). Now since

0< / |z|F (dx) < / |z|1F;(dx) + K < o0
R R
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4 The limiting Pitman ARE of the two tests for iid centered observations

for all F' € Us,(F;), see (4.45), we have for both of the above cases

0< sup /\mlzTF (dz) (4.47)
F€U§1 (Fr)

Define g1 := 1 and M := U,, (F>) \ {F;}. Then the set M; fulfills the assumption of Proposi-
tion 4.14, as we have just shown. Moreover, the Kolmogorov-Smirnov statistic obviously fulfills
the assumptions of Proposition 2.4 for ¢ = 1. As a result of this, it follows with inequality (4.44)
that for every e > 0 and 6 € (0,1) there is a C;(€,§) > 0 such that

PF(‘——b( ))zeb(F)) < PF<||Fn7F\|OO+]bn(F)fb(F)]zeb(F)) < 3§

for all FF € M; and for all n € N, n > 2, with /n > Ci(¢,0)/b(F). Thus, we have verified
Wieand’s condition (WIII) for the sequence (W,,)n>2.
Now set K’ := min(F;(0),1 — F-(0))/2. Then K’ > 0, and by Lemma 4.1 (ii) there is a d3 > 0
such that

di(F,Fy) = sup |F(z) — Fr(z)| < K’ for all F € G, with dy(F, F;) < 3. (4.48)

zeR

Let g2 := min(d1, 62, 03) and My = U,, (Fr) \ {Fr}. Since My C Us, (Fy), (4.47) implies that
the assumption of Proposition 4.14 holds for M = M. Additionally, the Kolmogorov-Smirnov
statistic fulfills the assumptions of Proposition 2.4 on Mos, i.e., with 90 = ps. Moreover, observe
that the set Mj is such that (3.7), (3.8) and (3.13) hold. The verification of (3.7) for M follows

along the same lines as in the proof of Theorem 4.5, using ¢ > 2 and (4.45). Condition (3.8) is
also easy to check since

/]a:|F(dx) > K >0
R

for every F' € My because of (4.46), implying that inf{ [, [«|F(dx): F € Mz} > K > 0. Further-
more, condition (3.13) is satisfied because

0<F(0)-K <F0)<F(0)+K <1

for every F' € My by (4.48).

Now we can handle the term ||F}, — F,||so just as in the proof of Theorem 4.5. Combining all of
the above, this shows that for every ¢ > 0 and ¢ € (0,1) there is a Ca(€, ) > 0 such that

PF()——M )| 2 eb(F)) < Pe(IFu = Fullow + 1 = Flloo + [bu(F) = b(F)| = eb(F)) < 6

for every F' € My and every n > 2 such that \/n > Cy(e,0)/b(F), which is just (WIII) for the
sequence (Vp,)n>2. O

We have now gathered all results that are necessary to show that the approximate Bahadur ARE
of Wh)n>2 with respect to (]7n)n22 is equal to the limiting (as a — 0) Pitman ARE. This follows
directly from Theorem 2.3 once we have verified that its assumptions hold. But as we have shown
above, the sequences (W, )n>2 and (1/},1)”22 fulfill conditions (BI), (BII) and (WIII). Moreover,
the distribution functions of W in (4.27) and Vin (4.28) are strictly increasing in their right
tails, cf. Lemma 5.1 in Hérmann [15]. This shows that conditions (i) and (ii) of Theorem 2.3
hold. Observe that assumption (iii) is also satisfied, because 0 < b(F) < ||[F — Fr||oo = dx (F, Fr)
for all F' € Qq \ {F-}, and dg(F,F;) — 0 as dy(F,F;) — 0, F € gq \ {F;}, by Lemma 4.1 (ii).
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4 The limiting Pitman ARE of the two tests for iid centered observations

The remaining condition (iv) of Theorem 2.3 is again trivially fulfilled, as the ratio of approximate
slopes does not depend on the alternative distribution anymore.

As a result of this, we get the following theorem.

Theorem 4.15
For every B € (0,1) it is

lim liminf M = lim limsup M = ﬁ
Q%OFGQVQ\{FT}, Nl(Ck,ﬁ,F) aﬁoFGéq\{Ff}, Nl(a,ﬁ,F) A
dg(F,Fy)—0 dg(F,Fr)—0

(4.49)

As already mentioned, the eigenvalue 5\’{ is strictly less than A1, see Example B.2 in the appendix.

Thus, the limiting Pitman ARE of (W), ),>2 with respect to (V,,)n>2 in (4.49) is strictly less than
one, so that the test based on the latter sequence of test statistics is to be preferred.

For 7 =1 and 7 = 2, we have computed the ratio 5\“{/5\1 explicitly:

It is shown in Example B.2 that A\; = 1 /72 for every F,, 7 > 0. The value of 5\’{, however, will
vary with F;. For 7 = 1 and 7 = 2, i.e., for the double exponential distribution and for the normal
distribution A/(0,1/2), the numerical computation of A% is described in subsection 7.2 of [15]. The
entries for /N\’f in the following table were computed using the R-function eigenvalues.parmod()
of appendix A.2 in [15].

F, M S\T S\T/S\l
Dexp (7 = 1) 1/72 | 0.029837676 | 0.2944861
N(0,1/2) (r=2) || 1/x% | 0.01834741 | 0.1810817

Table 2: Values of A\; and A} for 7 = 1 and 7 = 2.
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5 Preparatory results for stable autoregressive models

5 Preparatory results for stable autoregressive models

In this section we will consider certain stable autoregressive processes with independent and
identically distributed centered errors and discuss the classical empirical distribution function
F, res of the residuals and its centered version Fj, ,¢s. Similar to section 3, we will study the
asymptotic behavior of these functions and their components uniformly with respect to the
distribution of the error variables. Moreover, the uniform behavior of the least squares estimator
of the autoregressive parameter is investigated. We will use these results in the following section
to verify Wieand’s condition (WIII) for the Cramér-von Mises statistics based on Fj, r¢s and
anes-

Let us now state the setting of this section. As before, let M # () be a set of continuous distri-
bution functions F' that are centered and have finite second moments. Moreover, let (£2,.4) be
a measurable space and {Pp: F' € M} be a family of probability measures on A such that for
some fixed p € N there are random variables Sy, S_1,...,S1—p and e;, i € Z, on (2, A) with the
following properties:

e Under Pp the (e;);ez are independent and identically distributed with common distribution
function F for every F' € M.

e The variables So, S_1,...,S1—p are jointly distributed according to some fixed distribution
Q, say, under every Pp, i.e.,
Pro(Sp,S-1,...,%1-p) ' =Q VFeM,
where the left-hand side denotes the joint distribution of Sy, S_1, ..., S1—p under Pp. Fur-
thermore, we assume that So,S_1,...,S1-, have finite second moments.

e The variables Sy, S_1,...,S1—p are independent of (e;);cn under every Pp.

Note that by Kolmogorov’s consistency theorem such a model always exists. Moreover, under
the above assumptions the mapping F' — Pr from M into the set of probability measures on A
is injective.
Now let p1,..., pp be some real constants with p, # 0 that satisfy

{2€C: 2P —p12Pt —pa2P 2 — .. —py12—p, =0} C {z€C:|z| <1}, (5.1)

which is equivalent to the condition {z € C: 1 — p1z—... —ppz? =0} C {z € C: |z| > 1}.
In this section we consider the following autoregressive models:

Model 1:
Let (X;)i>1—p be the autoregressive process of order p (AR(p) for short) on (£2,.4) defined by

Xi=mXio1+ ...+ ppXipte, i2>1, (5.2)

with p1,...,pp € R as above and starting values Xo := So, ..., X1_p := S1_p.

Model 2:

Let (X;)i>1—p be the stationary AR(p) process on (€2, A), i.e., (X;)i>1—p satisfies the model
equation (5.2) and is strictly stationary under every Pr. It is well known that the stability
condition (5.1) implies the existence of this stationary process, and that it is unique, cf. Remark
2 on page 86 in Brockwell and Davis [6]. The stationary process can be expressed as

00
X,L' = Zl/}jei,j Vi >1 - D, (53)
j=0
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5 Preparatory results for stable autoregressive models

where the coefficients 1); € R are uniquely determined, depend on p1, ..., p, alone, and satisfy
[l <K -7, 20, (5-4)

for some K > 0 and ¢ > 1, cf. Theorem 3.1.1 in [6] and its proof. As follows from Proposition
3.1.1 in [6], the series in (5.3) converges in mean square as well as absolutely with probability
one under every Pr, F' € M. The representation (5.3) is called the MA(co)-representation of
(Xi)i>1—p- Note that in contrast to the process of model 1, the distribution of the starting values
Xo, ..., X1_p of the stationary process under the measure Pr does vary with F'.

From now on, let (X;);>1—p be either one of these AR(p) processes. Since we want to study both
of them simultaneously without having to differentiate between them, we will in general not
make use of the stationarity of the process in the second model and derive all results by using
the recursion formula (5.2) instead. Moreover, when explicitly referring to the process of model
1, we will simply write process ¢, ¢ = 1, 2.

When studying functionals such as the expectation Er and the variance Varg, the subscript F
will denote as before that the respective term is understood to be with respect to the measure
Pr. Hence, by the above assumptions it is Er(e;) = Er(e1) = 0 and Varp(e;) = Varp(ey) =
Er(e?) =: 02 € (0,00) for every i € Z and F € M.

It is useful and common practice to express the process (X;);>1—p in matrix notation. In order
to do this, we have to introduce some more notation. Set

X; o= (X5, Xi1, ., Xipn1)| €RPYi>0,
e; = (ei,O,...,O)T ERPVYi>1,

where 27" denotes the transpose of the vector or matrix z. Moreover, let

pPL P2 P3 Pp—2 Pp—1 Pp
1 0 O 0 0 0
0 1 0 0 0 0
A=(0 0 1 0 0 0 | € rpxp.
0 1 0
0 0 1
Then the recursion formula (5.2) can be rewritten as
X, =AX,_1+e;, i>1.
By induction this implies that
X; = A'X( + Z Aj_lelqu,j Vi>0. (55)
j=1
Note that since the characteristic polynomial of A is given by
det(A — 2zI,) = (=1)P(2F — p12P ™t — ... — pp_12 — pp),
the set {2 € C: 2P — p12P~1 — pgzP~2 — ... — pp_12 — pp = 0} is just the set of eigenvalues of A.

Thus, condition (5.1) states that the spectral radius of A is less than one, i.e.,

max{|z|: z is eigenvalue of A} < 1.
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5 Preparatory results for stable autoregressive models

Because of this, there exists a matrix norm || - || 4 such that [|A]|4 < 1, see e.g. Theorem 4.20 in
Schott [28]. Since the transpose AT of A has the same spectral radius as A, there is also a matrix
norm | - || 4r with ||AT|| 4o < 1. Moreover, for every real n x n-matrix B = (bjk)1<jr<n we will
denote by ||B||r: its Frobenius norm, i.e.,

1Bl = | > 3.
1<jk<n

The Frobenius norm is compatible with the Euclidean norm ||| in R", so that || Bz|| < || B||g|/z|
for all B € R™*"™ and all z € R™. Because of the equivalence of norms in finite-dimensional vector
spaces there are positive numbers c4 and c4r such that

[Bller < callBlla and  [|Blr < car [|Bllar

for every B € R"*".

For the following considerations we need a generalization of the notions of Definition 3.1 to
random vectors and random matrices.

Definition 5.1

Let d € N. Let E be either R or R?*? and [-] be a norm on E. Let (a,)nen be a sequence of
positive numbers, and for every F' € M let (Y,, r)nen be a sequence of random elements on (£2,.A)
with values in E. We say that Y, p = o(ayn) in M as n — oo if and only if [Y, ] = o%(ay)
in M as n — oo. Analogously, we say that Y, p = O%(ay,) in M as n — oo if and only if
[Yo r] = Of(an) in M as n — oo.

Note that since all norms in finite-dimensional vector spaces are equivalent, the notions defined
above do not depend on the actual choice of [ - ]| and thus are well-defined.

Next, we will study the stochastic behavior of certain functions of the process (X;);>1—p uniformly
in F' € M. The following results are well known for stable autoregressive processes if M = {F'},
i.e., if the distribution function F' of the errors is fixed. We will investigate again under which
assumptions these results hold uniformly in F' € M if the set M contains arbitrarily many
elements. For this, let us consider once more the following conditions:

inf [ 2F :
Jnf Rx (dz) > 0, (3.5)
sup [ 22F(dz) < oo, (3.6)
FeM JR
g(c) := sup 22F(dz) — 0 for ¢ — oo, (3.7)
FeM J{zeR: |z|>c}
inf F .
ot [ JalFdz) > o 3.
sup / |z| F(dz) < oo. (3.9)
FeM JR

Note again that (3.7) = (3.6) = (3.9) and (3.8) = (3.5).

Remark 5.2: If X is the vector of starting values of process 1, then Ep(||Xol|) = [z, [|2]|Q(dx)
and Ep(||Xo||?) = [gs [|2]?Q(dz) for every F € M, and both quantities are finite by assumption.
Hence,

sup Ep([|[Xo|) < oo and  sup Ex(]|Xo|/?) < oo

FeM FeM
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5 Preparatory results for stable autoregressive models

in this case. Using Markov’s inequality, this implies that Xo = O%(1) in M as n — oo and
Xo = 0% (an) in M as n — oo for every positive real sequence (an)nen with a, 7 0.

If Xy is the vector of starting values of process 2, then

p n o]
Er(Xol) < Br (Y 1X1-4]) = pEr(|Xol) = p lim Er (> we|) < pErllei) D 0] < o0
i=1 Jj=0 J=0
and

o0
F(1Xoll?) ZEF (X7 ) =pEp(X3)=pop ) ¥} <oo
=0

using the stationarity of (X;);>1—p, its MA(oco)-representation (5.3) and inequality (5.4). Hence,

(3.9) = sup Ep(||[Xo|l) <oco and (3.6) = sup EF(||X0||2) < 00
FeM FeM

It follows immediately from this and Markov’s inequality that (3.9) implies Xo = O%(1) in M

as n — oo and Xy = o(an) in M as n — oo for every positive real sequence (an)nen with

an — 00. 1)
n

Lemma 5.3
If the set M is such that (3.7) holds, then max IXi—1|l = 0% (v/n) in M as n — cc.
<i<n

Proof. Because of ||Al4 <1 it is

By using (5.5) we see that for every i € N

i-1 i1
Kol < AT Kol + Y1147 eyl < A e [ Xoll + D A7 I [leiyl
Jj=1 j=1
. Z‘_l .
< cal A a 1Kol + D call A7 a lei]
j=1
1—1
._ .
< eall Al 1 Xoll + D call Al leijl,
j=1

where we used the sub-multiplicativity of || - [| 4 in the last inequality. Thus, it is for every n € N

112a<x X1l < ca [|Xol| —i—cA Juax ]e,\ K.

Now || Xo|| = o%(v/n) in M by Remark 5.2, and since M satisfies (3.7) we have by Lemma 3.2
(i) that maxi<i<n |€;| = 0% (y/n) in M as well, which yields the statement. O

Lemma 5.4
Assume the set M is such that (3.9) holds. Then

(i) sup Ep(||X;|]) =O(1) as i — oo,
FeM

1 n
(i) — > || Xi—1]| = Op(1) in M as n — oo.
n =1
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5 Preparatory results for stable autoregressive models

Proof. (i) Recall that > ;2 ||A|’% =: K < co. Using (5.5), we have for every i > 0 and F € M

%
Er (call Al IXoll + Y cal Al levsis1)
j=1

caEp([Xoll) + caK Ep(lex])

Er (X))

IN

IN

IN

ca sup Ep(||Xo||) + caK sup / |z|F(dx) < o0
FeM FeM JR

by the assumption and Remark 5.2, and the right-hand side does not depend on F' anymore.
(ii) The statement follows with Markov’s inequality and part (i). O

Lemma 5.5
If the set M is such that (3.6) holds, then

() swp Ep(IXIP) = O(1) as i - oo,
FeM
1 n

(i) = > | Xi1||?> = O%(1) in M as n — oo,
N =1

1 n
(1)) —= > Xi—1e; =0%(1) in M as n — oo,
N i=1

1 n

(v) —= > X1 =0%(1) in M as n — oo.
N i=1

Proof. Set K := ) %, ||A[l4; < oo again.

(i) We have to show that the sequence (Ep(]|X[[?)),s, is uniformly bounded in F € M. To do
this, we will investigate for every F' € M the sequence of Ly norms

1/2
Xill o r = (Er(Xa]%)"

instead. Using (5.5) we have

i
Xillor < A XollLop + Y 147 €i1jl o
j=1

for every ¢« > 0. But for all 4 > 1 it is

Ep([AXol?) < [AE&EF(1Xol?) < & A Er(IXol?) < ¢4 glelﬁEF(HXOW)
since || A]|4 < 1. Because the right-hand side of the above display is finite by Remark 5.2 and does
not depend on F anymore, this shows that the sequence (||A"Xo||z,,r).~, is uniformly bounded
in F.

Moreover, for every i € N

>0

Yol i1l e < DI Imlleiri—jllra e < ca Y AN Er(e])'/?
j=1 j=1 j=1

) 1/2
< CAK( sup [ x F(da:)) < 00,
FeM JR

and the statement follows.
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(ii) Using Markov’s inequality, the result follows from (i).
(iii) Let C' € (0,00) and F' € M. Then

1 — 1 1 — 2
PF(Hi Xi—1€i|| > C> < 7EF(H7 Xi_16; >,
Vi & oI 2

and using the fact that under every Pp, F' € M, the sequence of random vectors (Z;)i>1,
Z; = X;_16€;, is a square-integrable martingale difference sequence with respect to the filtration
Fi=0(Xi—p,..., Xo,€1,...,€), 1 > 1, Fy:={0,Q}, it follows that

2 1 <& ) 1 , ,
) = Y Br(Xired) = - Y Br(Xi-al) Er(ed)
=1

=1

1 &
B (|| 77 o Xime
F \/ﬁ; i—164

IN

1 n
=3 " sup Bp(|X1|?) - sup [ 2?F(d).
n - FeM FeM JR

Using (i), this yields

1 n
lim limsup sup PF(H\f E Xi_1eil| > C’> =
n
i=1

C—00 pnooo FeM

(iv) For every n € N it follows from (5.5) that

|77 2% - JMXWWWZNEJH
n t—1

s;ﬁ;um*xom =33 4y (5.6)

=1 j=1
Now it is
1 & . 1
—= > A7 Xl < call A a1 Xol| < *CA [AI5 1 Xoll < —=caK | Xoll,
v FY > Al 1% < 2

and since || Xg|| = O%(1) in M as n — oo, cf. Remark 5.2, the right-hand side (and thus the
left-hand side) of the above inequality is O%(n~'/2). Moreover, the second term in (5.6) is O%(1)
because for every n € N, C' € (0,00) and F' € M it is

i)

PGl e | 2 ) = eI #)e
i=1 j=1 r=1 j=0
1 n—1 n—r—1 ' 9 1 n—1 n—r—1 2
< 2B (| 2)e]) = i@ 2| & #pried
— = = =
2 172

< pyar) Z(CAHRZ AJH ) Er(e?) %- sup | z?F(dz). O]

FeM JR

Let us consider solely the stationary process (X;);>1—p from model 2 on page 53 for the moment.
Since every I € M is centered, it follows that Er(X;) = > 72 ¢ Ep(e1) = 0 for all i > 1 —p,
using the mean square convergence of the series in (5.3) and the continuity of the inner product.
Now set .

3= 3 Er(XoX{),
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5 Preparatory results for stable autoregressive models

where Ep (XOXg) is the covariance matrix of Xy under Pg. Using the stationarity of the process
and the recursion formula (5.5), we see that for every k € N

k
oF 5 =Ep(XeX{) = Ep (X X]) = AV Ep(XoXE) (AT + Y AT B (A7) o,
j=1

where E is the p X p-matrix with a one in the upper left corner and zeros elsewhere. Since
A4 < [|A|% — 0 as k — oo and [|(AT)¥|| 4z < ||ATH];‘T — 0 as k — oo, both A% and (AT)*
converge to the zero matrix as k — oo in any norm on RP*P. Hence,

= AT B (AT (5.7)
j=1

where the series in (5.7) converges to 3 in any norm on RP*P. It is evident from this representation
that ¥ is a function of pi,...,p, alone and does not depend on F'. Moreover, ¥ is symmetric
and positive definite, see e.g. Proposition 5.1.1 and Example 3.3.4 in [6].

Now let (X;)i>1—p be either one of the AR(p) processes from model 1 or model 2 again. We are
now ready to formulate and prove the following lemma.

Lemma 5.6
If the set M satisfies (3.7), then

1 n
— g X; 1 X — 02X =0%(1) in M asn — oo.
n

i=1

Proof. Using (5.5) it is for every n € N

1 = T 1 & i—1 T pTyi—1 1 L i—1 T Ty\j—1
- ZXHXH == ZAZ XoXT(AT) =t 4 EZZAZ Xoe] ;(AT)!
i=1 =1 =1 j=1
1 n i—1 ) ' 1 n 1—1 . i—1 ' T
+ ZZAJAei_ng(AT)H + = (Z Ajflei_j) (Z AJ*lei_j>
i=1 j=1 i=1 j=1 j=1

=: I, + 1, + III,, + IV,,.

Set a := max{||A| 4, |AT|| 4z} € (0,1). We will show first that I, = 0%(1). For each F' € M we
have

1 n . . caAcC n . -
Er(Lalle) <~ Br (3 147 XoXF (A7) ) < “A0 ST B (AN XX A7 1)
i=1 1=1

n e,
CACAT - . CACAT ;
= A B (10X ) D 1415 AT < AT sup B (1%0]%) 3 o < o
=1 i=0

using || XoX? || = [|Xol|? and Remark 5.2. Thus, the statement follows with Markov’s inequality.
Next, we investigate II,. Let F' € M. As || Xoel ||p = || Xo| - |ex| for every k € N, and X, and

e, ...,en are independent under Pr, it is

n 1—1

1 ) .
Er(1Lale) < = Ep (D2 3 147 el Xoel el (A7) )

i=1 j=1
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5 Preparatory results for stable autoregressive models

n t—1
= S 1A e B (1o ) B Clea I (A7)
i=1 j=1
cac n 1—1
r i
< AT (1Ko ) Br(lerl) S0 3 AT AT 5
=1 j=1
CAC
< A% sup Br(|Xol) - sup [ [s1F(da) ZHAHA ZHATHAT@O

using Remark 5.2. Again by Markov’s inequality it follows that II,, = 0%(1) in M as n — oo.
Since III,, = IIE, this immediately implies that III,, = ol (1) as well.

It remains to show that IV,, — 023 = 0%(1). It is

n i—1
v, = —ZZA’ le,_ jez ] AT -ty = Z Z A]_lei_je?_m(AT)m_l
i=1 j=1 =1 1<j<m<i—1

+3LG: > Alei el (AT

i=1 1<m<j<i—1
=1V, +1Va, +1V3,.
By changing the order of summation we have

nlsl n -1

n—1s
Vo=t 3 3 30 A B (AT e = T30S Suls e,
s=2t

82t 1 k=s+1 =1

say, where E is as before the matrix with a one in the upper left corner and zeros elsewhere.

Since the variables eq, ..., e, are independent and centered under every Pp, it is
n—1s—1
Er([1Vanllf) = — Er(e) Y I1Sals, D)l
s=2 t=1

for each F' € M. Now for every 1 <t < s <n — 1 we have

n

I1Su(s, Ol < D 1A B (AT g < cacyr Z AN 1B - AT )5

k=s+1 k=s+1
- 1
< cgcyr Z q2k—s—t=2 SCACATaS_tm,
k=s+1
so that
n—1s—1 cacr nfl s—1 (CACAT)2
Isa(s, 0 < (F245)° S So@y < (240 o
—a (1—a?)
s=2 t=1 s=2 t=1
Hence,
2 2
1 (CACAT) 1 9 2 (CACAT)
Er 2 S—EFeQZ-i‘nS—(sup a:Fda:) R
(IWVanlle) < 5 Bl Tz -n < (50 [ @ Fl) 7

This shows that Vs, = 0%(1). As V3, = IVJ n» it follows from this that IV3,, = 0ojp(1) as well.
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5 Preparatory results for stable autoregressive models

To complete the proof, it remains to show that IV, — U%E = 0%(1) in M as n — oo. Using the
representation (5.7), i.e

0
=) A B (AT
j=1
we can write
1 n 1—1 4 _ ‘ 1 n—1 00 '
Win=-3 Y A E. ATy ', =~ {2 - Y W-E (AT)J}ef
i = ni= j=n—i
1 n—1 1 n—1 oo '
=1 i=1 j=n—1

and we have for every F' € M

Ep(JIV r) < :LZ Z |47 - E - (A7) ||g Er ()

cAc nol oo S .
< Ep(e}) 2 Z Z AP, - 1Bl - AT

CACpT

CACAT 27 2
< 2 J <
sup F(dl’) E E a sup X F(d.’lf) n(l a2)2 n—> 0,

FeM JR i=1 j=n—i FeM JR

so that IV&ZQ = 0%(1). But for IV%L we get

3 ‘3“51\3

n
IV 023 = 2% S -ot) - =
=1

Now recall that we have shown in Lemma 3.2 (iii) that
1 n
—Z(e% - 012[;) =0p(1l) in M as n — 0.
n-

Moreover, €2 /n = o'5(1) in M as n — oo, as is easily seen by Markov’s inequality. This concludes
the proof of this lemma. O

Let now p := (p1,... ,pp)T € RP be the autoregressive parameter in equation (5.2). Then we can

write (5.2) as
X; = pTX,'_1 +e;, 1> 1.

Since p is assumed to be unknown, we have to estimate it by a sequence of estimators (p,)nen-
We will always assume that this sequence is such that

Vn(pn —p) = Op(1) in M asn — . (5.8)

One of the most prominent estimators for p is the least squares estimator

n + n
pES = pES (X Xo) = (X XD ) Yo Xea Xy, neN,
= i=1
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5 Preparatory results for stable autoregressive models

where B denotes the Moore-Penrose pseudoinverse of the matrix B. Recall that if B is nonsin-
gular, then BT and B~! coincide.

We will show next that the sequence of least squares estimators satisfies condition (5.8) under
certain assumptions.

Proposition 5.7
Let the set M be such that (3.7) and (3.5) hold. Then

Vn(pE® —p) = 0%(1) in M as n — .

n

Proof. Set A, := %Z?:l X;-1XT ;. On the event {det(An) # 0} =: D,, we have

1 " -1
pLS = (ZXz X 1) ZXiq(XiT_lp—l-ez‘) =p+ (inflxgﬂ_d Zquei,
i=1 i=1

=1

so that

-1 1 & 1 n
\F(Pn ( ZXz 1 X7 ) \/ﬁ;Xilei:Anl\/ﬁ;Xilei. (5.9)

Let GL(p) denote the general linear group of degree p over R and
inv: GL(p) > B+ B~' € GL(p)

be the inverse operator on GL(p). Consider the matrix 3 from (5.7), which is positive definite
and thus nonsingular. Because of the continuity of inv in ¥ there is a 6 = 6(2) > 0 such that

for all B € GL(p)
IB=%[lr <6 = [[inv(B) — inv(Z)|p < [[inv(Z) |- (5.10)
Set v 1= 2||27!|g/ inf pers 0% € (0,00). Now for every C € (0,00) and every F € M it is
Pe(Ivn(ps® —p)| = C) < Pe({lIVn(ps® = p)| = C} N Dy) + Pe(Dy) =: i + o,
and with (5.9) we have

Lo = P (VAGE =) 2 €} D)

SPF({Hinv \fZX’ 161} >C}ﬂD ﬂ{Hlnv ]F\r>v})

C
=)

1
+PF(H7 Xi-1€;
>

n
< Pr({Ims il = o} 000) + P 2 3o 2 9.
As was shown in Lemma 5.5 (iii),
= zn:Xi_lei = O0p(1) in M as n — oc.
Vi
Moreover, using (5.10) we see that
Pr({|linv(An)|lg = v} N Dy) = PF<{H%inv(i2An> . > U} N Dn>

Op O
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({2 thon)
F r
< Pr({ inv(al%An> —inv(E)|| 2 inv(S)In | N Dn)

1
< Pe(|| 5t -3 2 9).
Op Fr
Now by Lemma 5.6 and (3.5) we have

1
A, —X%

= o%(1). (5.11)

Fr

E
O'l%v Fr —

1 n
7 3 X i
=1

inf
FeM
Combining all this, it follows that

lim limsup sup I, = 0.
C—=0 nosoco FeM

It remains to investigate I ,. Since X is nonsingular, it is det(3) # 0. The continuity of the
determinant function in ¥ implies that there is an n = 7(3) > 0 such that for all B € RP*P

1
|IB—2X|r<n = |det(B)—det(X)| < §| det(X)].
So for every F' € M we have

Pe(Dy) = P (det(o_l%An) - 0)

1
< PF(H—QAH—EH > ),
O'F Fr

and by (5.11) this shows that

limsup sup Pr(D,) = 0. O
n—oo FeM
Let (pn)nen be any sequence of estimators for p now. Then the residuals ép1,...,épp, n € N,

with respect to this sequence of estimators are defined as
€ni ‘= Xi—pAZXifl, 1<i<n, neN.
We will from now on always work under the assumption that py,, is such that (5.8) is satisfied.

Lemma 5.8
If the set M is such that (3.7) holds and the sequence of estimators (pn)n>1 for p fulfills (5.8),
then

n

(i) Zl(ém' —€;) =0%(1) in M asn — oo,
1=

(1) max |én; — ;| = 0%(1) in M as n — oo,
1<i<n

(1ii) max |én;| = oh(y/n) in M as n — oo,
1<i<n
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5 Preparatory results for stable autoregressive models

1 n

(iv) — > |e2;, —e?| =o0%(1) in M asn — oo,
ni=1
1 n

(v) =Y e —o%=0%(1)in M as n — .
ni=1

Proof. (i) We have
Z(ém —e) =—(ph —p") infl = —v/n(pn — P)T\/lﬁ ZXZ‘A = 0p(1)0p(1) = 0p(1)
i = i=1

because of (5.8) and Lemma 5.5 (iv).
(ii) Using the Cauchy-Schwarz inequality, (5.8) and Lemma 5.3, it is

1
~ ~ T ~
e (e = eil = max [(pn — p)" Xica| < [lpn — pll max [Xiea| = OB (=) - op(vn) = 0p(1).

B

(iii) By the previous result and part (i) of Lemma 3.2 we have

5 | < 2 . _ o | = o%(1 u _ U )
121%}% |eni| < 112%}% |eni — €il + 121%}% le;| = op(1) + OP(\/H) OP(\/E)

(iv) It is

1 n

n

1
2 2] _
em—ei‘—gi

i=1

1 ¢ 2

éni — €i| - |éni + € < max |én; — e - (* d |éni — el + = !(%!)
1<i<n n “ 1 n- 1
1= 1=

n

2

< max‘é ~—e~’-<max‘é ~—e’}+— E e-).

= 1<i<n ni () 1<i<n ni % n 4 1| z|
1=

Now it obviously is > 1" ; |e;| = O%(n) since
Pr(E3 > ) £ LY mee) < s [ el <
— €; < — e S — Ssu Xz X oo
) "= nC 3 o C rehr Jn
for every C' € (0,00) and F' € M. Thus, the result follows with part (ii).

(v) Since

I

5N 1< Lo
)Ezéii_a%‘gﬁg }éii_eﬂ—i_‘EE 612_0,%

the result follows from (iv) and Lemma 3.2 (iii).
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5 Preparatory results for stable autoregressive models

5.1 The empirical distribution function of the residuals

Let (pn)nen be a sequence of estimators for the autoregressive parameter p = (p1, ..., pp)7, and
for every n € N let

1
Fn(x) = E Zl{eigx]w z € R,
1=1

be the empirical distribution function of the errors eq,...,e,. In analogy to this, set

IR 1o
Fn,reS(x) = n Z 1{ém§z} = n Z 1{€i§I+(ﬁn—p)TXi71}7 x €R.
i=1 =1

The function F}, s is called the empirical distribution function of the residuals én, . .., Eénp.

In this subsection we will assume that
M C {F: F' is a distribution function that has uniformly continuous Lebesgue density f

and satisfies /

2% F(dx) < oo and /
R

R:cF(dx) = O}.

The uniformly continuous Lebesgue density f of F' will also be denoted by F”. For the following
investigations we will impose the following assumptions on the set M:

{F': F € M} is uniformly equicontinuous, (5.12)
sup F'(z) — 0, (5.13)
FeM |z =00
sup [|[F']|oo < o0. (5.14)
FeM

We are now interested in the asymptotic stochastic behavior of v/n||F,, — Fj, res|loo uniformly
with respect to the set of underlying probability measures {Pp: F' € M}. An answer to this
gives the next theorem. Its proof is based on the one for the classical, non-uniform case with a
fixed underlying probability measure Pp, F' € M, which is described in a more general setting
in section 7.2 of Koul [18].

Theorem 5.9
Suppose that the set M satisfies conditions (5.12), (5.13) and (5.14). Moreover, assume that

(1) n(pn—p)=0%(1) in M as n — oo,

(i)

1 n

— > X;_1=0p(1) in M as n — oo,

n=1

(1ii) max ||X;_1|| = 0% (v/n) in M as n — oo,
1<i<n

1 n
() = > I1Xi—1]] = Op(1) in M as n — oo,
=1

(v) sup EF(Z HX2—1H> = 0(n3/?) as n — oo.
FeM i=1
Then

Vnsup |F,(z) — Fy res(z)| = 0p(1) in M as n — oo.
z€eR
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Note that condition (i) is just (5.8), and as (3.7) = (3.6) = (3.9), it follows with Lemma 5.3,
Lemma 5.4 and part (iv) of Lemma 5.5 that (3.7) implies conditions (ii)—(v).

The proof of Theorem 5.9 uses a more general result, which is formulated in the following theorem.
Hence, we will first prove the next result, and give the proof of the above theorem thereafter.
The proof of the theorem below is based again on the ideas of the proof in the non-uniform case,
as described in subsection 2.2.2 of Koul [18]. Moreover, it uses a typical chaining argument as
discussed for example in Pollard [26], pages 160-162.

Theorem 5.10

Let M be a nonempty set of distribution functions such that all F' € M possess a uniformly
continuous Lebesgque density F' = f and (5.12), (5.13) and (5.14) hold.

Moreover, let (2,.A) be a measurable space and { Pp: F' € M} be a family of probability measures
on A. Let ey, eq, ... be random variables and' Y be a random element on (2, A) such that for each
F € M the variables (e;);en are independent and identically distributed with common distribution
function F under Prp and Y is independent of (e;);en under Pr. Set

Fo=0), Fpo:=0,e1,...,en), n>1

For alln € N let 61, ..., Onn be random variables on (2, A) with
(i) Oni,...,0nn is predictable with respect to Fo C F1 C ... C Fn,

(i) sup Ep (2 >0 [6nil) = o(1) for n — oo,
FeM
(i) ﬁ S |6nil = O%(1) in M as n — oo,

(tv) max [0ni| = 0%(1) in M as n — oo.
1<i<n

Then

n

ilelg \/1,5‘;[1{61‘<$+5m'} — F(z + 6pi)] — ;[l{eiqﬁ} — F(2)] ‘ =o0%b(1) in M asn — oco.

Proof. Let G be a continuously differentiable, strictly increasing distribution function. For every
x,y € R and every F' € M set

dp(z,y) = |F(z) - F(y)|"?,  da(z,y) = |G(z) - G(y)|/?,
and
dp(z,y) = dp(2,y) + da(z,y) = |F(z) — F(y)|'* + |G(z) — G(y)|'/2.

It is easy to see that dp is symmetric and fulfills the triangle inequality, so that dp is a pseudo-
metric. For every F' € M define

wrp(d) = suEpR |f(x) = f(y)|, 6 >0. (5.15)

Note that because of (5.14) the function wp is uniformly bounded. Since

wr(d) < sup  [f(x) - fly)| = sup |f(x) = f(y)]
z,yeR z,yeR
dg(z,y)<o |G(z)—G(y)|<8?

for every F' € M, it follows from Proposition A.3 that

lim sup wg(d) = 0. 5.16
440 FEJI\)/[ F() ( )
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We will now prove the statement of the theorem in several steps.
Step 1:
We will show first that for every € > 0

1 | n
sup sup PF<W‘;[1{&§$+5M} — F(z + 6ni)] — ;[1{@9} — F(x)]‘ > e) — 0. (5.17)

Proof of Step 1. First note that for every Fe M, x e R, neNand 1 <i<n

Er(1ie,<et6,:31Fi-1) = EF(L{e,<ats,31Y = se1=",...,eic1=")o(Yer,...,ei1).
Moreover, by the factorization lemma there is a measurable function g¢,; such that §,; =
gni(Y,e1,...,¢e;—1). Using this and the independence of e; and Y, eq,...,e;—1 under Pp, it is

EF(l{eigme}’Y =Y,61 =T1y...,€6—1 = xi_l)

= Er(le,<otgmi(Vier,mer Y =401 =21, 601 = 2-1) = F(x + gni(y, 1, .. ., 2i-1))-

Thus,
EF(l{e¢§m+§ni}|Fi—l) = F(QZ + gm(Y, [ ei_l)) = F(m + (Sm) (5.18)

Because of (5.18) the random variables
G = Hegoron) = F@ +0m) = [leay — F2)], 1<i<n,

form a martingale difference sequence (MDS) with respect to Fy C Fy C ... C F, under Pp.
Therefore we have for every € > 0

n

PF(\/lﬁ’Zz:;[l{ei<x+5m} — F@+0n)] = 3 _[leicry = F(@)] ‘ =

=1
= PF(‘; Gi

In order to handle the expectations E F(CZ-Q), we will use the following result, which is proven here
in a more general form for later use.

> evn) < # S Er(Q). (5.19)
i=1

Let z,y e R, n e Nand 1 <1¢ < n. Let Sm be a random variable on (£2,.4) that is measurable
with respect to F;_1. Then

To prove (5.20), set
€= Le<oton} — Lieicyio-

Then with (5.18), which holds of course for d,; as well, we have
Er(Uei<oron) = F@+0m) = [y — F+00)]) [ Fica)
= Ep([£ — Ep(¢|Fim)?|Fic1) = Ep (€31 Fi—1) — EF(f’]:ifl)2
< Ep(E@1Fi1) = Br(leorsnd — Yergyesonl 1Fim1)

= B8 (1 ot5,Au+5ui) <o <(o+8n)V 450} Fi=1)
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= F((z 4 6pi) V (y + 0ni)) — F((x + 0ni) A (Y + 0ni))
= |F(2 4 0pi) — Fy + 003,

where the second-to-last equality is shown along the same lines as (5.18).

Now we come back to (5.19). Using (5.20) with y = z and d,; = 0, we see that

1 & 1 1 &
p ZEF(Q?) < 3, ZEF(|F(33 + 6ni) — F(2)]) < 2n Z [ flloo Er (|07:])
i—1 i=1 i—1

IN

1 1 <
— sup || f[loc sup EF(— Z lém|).
FeM FeM n--

Now (5.17) follows with (5.14) and (ii).
Step 2:
For every n € N, x € R and F' € M set

Un F : \/» Z {ei<a+oni} — (CIJ + 5m)] and V, F : Z 1{6 <z} — )] .
We will show now that the condition
hmhmsup sup Pp( sup |Upp(z) — Unp(y)| >€) =0 Ve>0 (5.21)
00 n—oo FeM _z,y€eR
dp(z,y)<d

implies the statement of the theorem.

Proof of Step 2. Assume that (5.21) holds. Then by setting d,,; = 0 for everyn € Nand 1 <i <n
it follows directly that

limlimsup sup Pp( sup |Vorp(z)— Vi r(y)| =€) =0 Ve > 0. (5.22)
010 n—soo FeM z,yeR
dp(z,y)<é

Let k € N and F € M. Because of the continuity of F, for every j € {1,...,k — 1} there is an
zj € R such that F(z;) = j/k. Moreover we have —oo < 1 < ... < xp_1 < 00 because of the
monotonicity of F. The same arguments ensure the existence of —oco < y; < ... < yr_1 < 0o with
G(y;) =3j/k, j=1,...,k —1. Let z1,..., 2z be the common refinement of these two partitions,

ie, {z1,..., a1} = {x1,.. ., zk—1} U{y1,...,yk—1} and —oco < z1 < ... < z < oo. Obviously,
I < 2(k —1). Note that since |F(z;41) — F(x;)| = 1/k and |G(y;+1) — G(y;)| = 1/k for every
j=1,...,k — 2 by construction and zi, ...,z is a refinement of the two partitions, it follows

from the monotonicity of F' and G that
Flzin) = F)| < ks [Glzm) —G) < Uk Vi=1..,0-1  (5.23)
We will show now that

for every x € R there is a j(x) € {1,...,1} such that dp(z, zj(,)) < —= (5.24)

For the proof of (5.24), let x € R. We investigate the following cases:
Case 1: —oo < x < z1. Since z1 = x1 A yi, it follows by the monotonicity of F' and G that

dp(x,21) = |F(z) = F(21)|"? +|G(x) = G(21)|'/? < F(2)"? + G(21) 2
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2

v

Case 2: 21 < « < 7. Then there is a j € {1,...,l — 1} with z; < 2 < zj1;. Using (5.23) we see
that

< F(a1)'? + G(y)'? =

_ 9
dr (2, zj11) < |F(2) — F(zj31) Y2 4+ G(2) — G(2j11)V/? < 7

Case 3: z; < x < oo. Then z; = xr_1 V yr_1, and

dp(z,2) < 1= F(2)|'? +[1 = G()|V? < 1 = Flap—1)['? + 1 = Glye-)|'? = ==

2

This shows (5.24).
Thus, for every F' € M, x € R and n, k € N we have

Ap p(z) = \/15’2[1{61'<90+5m} — F(z+6u)] =Y [e,<ay — F(2)] ‘ = |Un,p(@) = Vo (2)]
=1

i=1

IN

’Un,F(x) - Un F ‘ + |UnF (z)) - Vn,F(Z](x))‘ + ’Vn,F(z](ac)) - Vn,F(x)‘

IN

sup }Un,F(w) — Un,r(y)| + max |Up r(2;) — Va,r(25)|
z,yeR 1<5<!
dp(z,y)<2/Vk

+ sup |Vn,F(‘r) - Vn,F(y)
z,yeR
dp(z,y)<2/Vk

)

where j(z) is as in (5.24). But for every k € N it is

FSE%PF<III<13X|UHF zj) — Vnyp(zj)‘ ) ;EEJI\ZPF(‘UnF 2j) — Vmp(zj){ > e)
k—1
< ZFSEJI\)/[PF(‘UnF ;) — Vo r ()] > 6) + ;FSEJI\}PF(‘Un,F(yj) — Vo,r(ys)| > e)

for every € > 0, and every summand of these two sums converges to zero as n — oo because of
(5.17). Thus it is for every e > 0 and k € N

limsup sup Pr(sup A r(z) >€) < limsup sup PF< sup |UnF(a:) — nF(y)‘ > E)
n—oco FeM  z€R n—oco FeM z,y€R 3
dr(z,y)<2/Vk
+ lim sup sup PF< sup |Vnp(a:) — Vnp(y)’ > E),
n—oo FeM z,yeR 3
JF(xvy)S2/\/E

and the desired result follows because the right-hand side of this inequality converges to zero as
k — oo by (5.21) and (5.22).

Step 3: It remains to show (5.21), which is equivalent to

limlimsup sup Pp( sup |Upp(z) — Uy p(y)] > 64¢) =0 Ve > 0. (5.25)
00 n—oo FeM z,y€R

Proof of Step 3. For arbitrary v € (0,1) set

§(u) = max{j € N: j < 1/u?}.
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5 Preparatory results for stable autoregressive models

Then 0 < u? < ju? <1forj=1,...,5(u).

Let FF € M be arbitrary, but fixed for the moment. Because of the continuity and monotonicity
of F there is a partition —oco < z1(u) < ... < @ju)(u) < oo such that F(z;(u)) = ju? for
j=1,....5).

Analogously, there is a partition —oco < y1(u) < ... < yj(u)(u) < oo such that G(y;(u)) = ju?
for j = 1,...,j(u). Let D(u) := {z1(u),..., 2y (u)} be the common refinement of these two
partitions, i.e.,

D(u) =A{z1(u), ..,z (W)} Uy (u), - yj (u)} (5.26)
and z1(u) < ... < 2y (u). Note that I(u) < 2j(u). By construction, |F(x;1(u)) — F(z;(u))| =
u? = |G(yj1(u) — G(y;(u))| for all j =1,...,5(u) — 1. Since z1(u),. ..,z (u) is a refinement

of the two partitions, we have
F(2ya1(0) = F(z5)] < 02, |Gz (w) = Gl ()] Su? Vi =1,...,[uw) ~1 (5.27)
by the monotonicity of F' and G. Now consider the mapping J,,: R — D(u) with

z1(u) if x € (—o0, z1(u)],
Ju(x) = 1 zj(u) if x € (zj-1(u),zj(u)] for a j € {2,...,l(u)},
2y (u) if 2 € (24 (u), 00).

Then we have

dp(x, Jy(x)) <2u Ve eR. (5.28)

The proof of (5.28) follows along the same lines as the proof of (5.24) and is therefore omitted
here.
Now let € > 0 and 6 € (0,1). Let n € N with

n> (26;/2>4. (5.29)

Then /n > 4¢/5% > 4e, and therefore 0 < ¢/y/n < 1/4 < 1. Thus, D,, := D((e/\/ﬁ)1/2) and
In = Je) 2 R — Dy are well-defined. We set

j(n) = j((e/vm)'?), wj(n) == ;((e/v/n)'/?) and y;(n) := y;((¢/v/n)/?) Vi =1,...,5(n),

and [(n) and z;(n) are defined accordingly. Because of (5.28) it is

- € \1/2  2¢l/2
< _— = —
dp(z, Jo(z)) < 2(\/5) i VacR. (5.30)
Moreover, we have for all z,y € R
dp(z,y) <6 = dp(Ju(z), Ju(y)) < 36. (5.31)

To see that this is true, recall that dp is a pseudometric, so that

_ B _ ) L/
dr(Jn(2), Jn(y)) < dp(Jn(),2) + dr(z,y) + dr(y, Ju(y)) < 2111/42%5 < 36

by (5.30) and (5.29).
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5 Preparatory results for stable autoregressive models

Now for every x,y € R with dp(z,y) < § it is
Unp (@) = Unp ()] < |Unp(@) = Unp(Jn(@))] + Un,r(Jn(@)) = Un,p(Jn(y))|
+ [Un,r(Jn(y)) — Un,r(y)|

2sup ‘UnF(x) - Un,F(Jn(SU))‘ + max ‘UnF(x) - Un,F(y)‘
zeR @y€Dy
dF(I7y)S36

IN

because of (5.31). This implies that for every ¢ > 0 and ¢ € (0,1)

lim sup sup PF< sup  |Up,p(z) — Upr(y)| > 646)

n—oo FeM z,y€R
dr(z,y)<6
< limsup sup Pp(sup |Un,p(2) = Un,p(Jn(x))] = 16¢)
n—oo FeM Tz€R
+limsup sup Prp( max |Upp(x) — U, r(y)| > 326). (5.32)
n—oo FeM _z,YEDy

We will show next that
Step 3a:

limsup sup Pp (sup\UnVF(:c) —Upn,p(Jn(2))] > 16€> =0 Ve>0,0€(0,1).
n—oo FeM z€R

Proof of Step 3a. It is

lim sup sup PF<SUP‘Un7F(1') = Un,r(Jn(z))] > 166)

n—oo FeM z€R

< limsup sup PF< sup  |Upp(z) — Up p(Jn(z))] > 166) (5.33)
n—oo FeM —oco<z<z1(n)

+ lim sup sup PF< sup \Un,p(x) = Up p(Jn(x))| > 166) (5.34)
n—oo FeM 21(n)<z<zy(n)(n)

+ limsup sup Pp sup |Un,p(x) — Up,r(Jn(x))| > 166) (5.35)
n—oo FeM 2i(n) (n)<z<00

We will first investigate the term in (5.34).
As before, let F' € M, € >0, 5 € (0,1) and n € N with (5.29). For x € (21(n), 2)()(n)] there is a
unique ! € {2,...,1(n)} such that x € (z_1(n), z(n)]. Thus, J,(z) = 21(n) by definition. Hence,

Un,p(x) = Un,p(Jn(x)) = Up,r(z) — Uy r(z1(n))

1 < 1 &
= % Z[l{eigz-i-ém-} - F(IE + 6nz)] - % Z[l{eiézz(n)—kém} — F(Zl(n) + 57”)]
=1 i=1

Ln z”: [Les<o 1 (n)tony — F(zi-1(n) + 6ni)| — \/15 g[l{eiql(n)wm} — F(z(n) + 0ni)]
Z ) + 6ni) = F(z1-1(n) + 60i)]
= Uy, (s () — U, p(aa(m) — in il[ (2t(n) + 60i) — F(e11(m) + 6]
> [0 (1)~ U] = = S LFC) ) = Flea-100) 4]

7,:1
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5 Preparatory results for stable autoregressive models

Analogously we see that

Un,p(Jn(7)) — Up,r(z) = Up,r(21(n)) — Uy, r(2)

< |Un,p(z1(n)) = Unp(2i-1(n))| + \/15 > [F(zu(n) + 0ni) = Fzi-1(n) + 6ni)].-
=1

This implies that

|Un,p(Jn(x)) = Un,r ()]

n

< |Un,p(zi(n)) — Un,p(zi-1(n))| + \/15 > [F(z1(n) + 6ni) = F(zi-1(n) + 6pi)]
=1

< max |Upr(z(n)) —Upr(z—1(n))| + max \F Z (z1(n) + i) — F(z—1(n) + 5m~)],

2<i<i(n) 2<i<I(n

whence it follows that

tmsup sup Pe( sup |Unr(e) = Une(a(a))| = 16¢)
n—oo FeM 21(n)<z<2)(n) (n)

< Timsup sup Pr( max (U r(2(n)) = Unr(z-1(n))] = 8¢)
n—oo FcM 2<I<I(n)

1 n
i -5 ) — )] > 8e). .
* hrlzn—>sol<1>p FSEPM Fr (25?21)61) Vn i=1 [F(Zl(n) * 0ns) = Fla-a(n) + 5m)} - 86) (5.36)

We will first investigate the second term on the right-hand side of the above inequality. It is

Ay pi=sup{|f(z) — f(y)]: z,y eR, |z —y| < max |0ni|} = 0p(1) in M asn — oco. (5.37)

To prove (5.37), note that because of (5.12), i.e., because of the uniform equicontinuity of the
family {f: F' € M}, for every n > 0 there is a § > 0 such that for all z,y € R

z—yl<d = |f(x)—fy)|<n VFeM,

so that ax |0ni| < § implies that A, p <nforall F e M. Hence
<i<n

Sup PF(An,F > "7) < sup PF( max |5m| > 5) — 0
FeM FeM 1<i<n n—o00

by assumption (iv), and this shows (5.37).

For any [ € {2,...,l(n)} we now have
in S [P Gw) + 6us) = Fea-1(m) + 500
=1
Z\F 2(n) + 6ni) — F(z(n)) — [F(z1-1(n) + 0ni) = F(z1-1(n))]|
Z\F z(n)) = F(z-1(n))|
< % ;\f(éu)fsm — [(&20)6ni| + €, (5.38)
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5 Preparatory results for stable autoregressive models

where &1; lies between z;(n) + d,; and z;(n), and &; lies between z_1(n) + d,; and z_1(n).
Moreover, in the last inequality we used (5.27) with u = (¢//n)"/2. But

\/15 Z\f(&z‘)&u‘ — f(&2i)0ni]

< 5 2o (1160) — S+ 70) = S )] 1 a ) &)
< \/17—1 ;(AnF + wF(Q(G/\/’ﬁ)l/Q) + An,F) |0nil, (5.39)

where A, p is as in (5.37) and wp was defined in (5.15). To see that |f(z(n)) — f(z—1(n))] <
wr (2(¢/y/n)"/?) is indeed true, note that dp(z(n), z—1(n)) < 2(e/v/n)Y/? by (5.27) with u =

(e/v/m)"/2.
Combining (5.38) and (5.39), it follows that

2<i<l(n

max \f Z Zl + 5nz) - (Zl—l(n) + 5m)]
< (mnf + wF(2(e/\/ﬁ>1/2)) - ; 16| + € = 0%(1) + € (5.40)

by (5.16), (5.37) and assumption (iii). Hence

li P Oni) — — Oni)| > 8
e o P, i a0 ) < a0 6] 2 )

< limsup sup Pp (Op(l) > 76) =0,
n—oo FeM

so that the second term on the right-hand side of inequality (5.36) equals zero. We will next
investigate the first term on the right-hand side of this inequality.

For every I € {2,...,1(n)} it is
Un,r(21(n)) = Un,p(21-1(n))

1 n
=7 D (Yer<amton — F(2(0) + 6ni) = [Lies<aymy46y — F(21-1(n) + 6i)])
=1

= \}ﬁ Z Gi(l)

Using (5.18) we see that (1(1), ..., (. (1) is a MDS with respect to Fyp C Fy C ... C Fy, under Pr,
and |G;()] <1foralli=1,...,n. Forevery [ =2,...,l(n) it follows from (5.20) with z = 2(n),
y = z;—1(n) and 0,; = J,; that

;ﬁ > Er(G?|Fim) < \/15 D P (z1(n) + 6ni) = F(zi-1(n) + 60i)l,
i=1 i=1
so that by (5.40)

2<1<I(n)

max \/15 S Er(GOFi1) < ob(1) + e
i=1
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5 Preparatory results for stable autoregressive models

Then for every n € N with (5.29) it is

Pr(, max |Un,p (1)) = Unp(a(n))] 2 8¢)

< PF<{2§T§1§Z}&) \}ﬁ‘izn;@(l)‘ > 86} {2313%1 ZEF (G2 Fi) < 26})

1
P E 7 11— 2
+ F(zé@’(‘n) \/ﬁ ; F(C ( ) |JT 1) > e)

IA

I(n) n
ZPF({‘Z Q(Z)) > 8fe} {Z Er(G()?|Fily) < 2\/56}) + Pp(ol(1) + € > 2e)

=1

NN
3“
— N

< exp(S\fe—S\felog( 2? >> + Pr(op(1) > €)
=2

2-1(n) - exp (8\/56[1 - 10g(5)]) + Pr(op(1) > €)
exp(8v/nell — og(5)]) + sup Pr(0j(1) > ),

FeM

IN

IN
,p
§ \3

where the third-to-last inequality follows by inequality (A.3) of Lemma A.4, and in the last
inequality we used that I(n) < 2j(n) < 2y/n/e by construction. Now obviously both summands
on the right-hand side of the last inequality do not depend on F' anymore and converge to zero
as n — o0o. Thus, we have shown that

li P U, — U (21— > 8¢) =0,
imsup sup Pr( mmax (U p(1(n)) = Unr(z11(m)] > c)

and this concludes the proof of

lim sup sup PF( ( sup |Un.r(z) — Up p(Jn(z))| > 166) =0

n—oo FeM z1(n)<z<z)(n)(n)

from (5.34).

Next, we will investigate the term in (5.33).
Again, let F € M, e > 0, 6 € (0,1) and n € N with (5.29). Let z € (—o00,21(n)]. Then
Jn(x) = z1(n) by definition of .J,. Thus

Un,p (%) = Up,p(Jn(x)) = Up,r(z) — Up,r(21(n))

1 1

~n ; [Leigorany = Fl@+0ni)] — N ;_1: [Leizarm)+o,y — F21(n) + i)
1 « 1 <

= Zj:l Hesamta) = U5 ; [Heicarmsny = F(21(n) + 6ni)]

1 n
= F 5711, )
77 2 Pl 6
and similarly

Un,r(Jn(x)) = Upp(x) = Up r(21(n)) — Upr(z )
\/15 Z Lies<or(m)46ni) — F(21(n) + 6ni)] f ZF 21(n) + Oni)-
=1
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5 Preparatory results for stable autoregressive models

This yields

sup |Un,r(2) — Up,p(Jn(2))]

—oo<z<z1(n)

< \/15’; [1{61‘S21(n)+5m’} — F(Z1 (n) + 5m)] + \/17; ZZ; F(zl(n) + 5m) (5.41)

Now for all n € N with (5.29) we have F(21(n)) < F(x1(n)) = €¢/+/n by definition, and
1 < 1< 1 &
—= D Fa(n) +6ni) = —= ) f(&)dni + —= D F(z1(n))
o e
< 2= SOIAE) = Frm)ul + ()= D bl e, (342
i=1 =1

where &; lies between z1(n) + 6,; and z1(n). It is | f(&) — f(21(n))| < Ay r because |§; — z1(n)| <
|6ni|. Also,

sup f(z1(n)) — 0. (5.43)

To see that (5.43) is true, note that

0 < f(z1(n) < |f(z1(n)) = f(z1(n) A (=n))[ + f(z1(n) A (=n)).

Because of z1(n) A (—n) < —n — —oo it follows from assumption (5.13) that
n—oo

sup f(z1(n) A (—=n)) — 0.

Moreover, since —oo < z1(n) A (—n) < z1(n) = z1(n) A y1(n) we have

F(z1(n) A (=n)) < F(z1(n)) < F(z1(n)) =

Bl

and

G(z1(n) A (=n)) < G(z1(n)) < G(yi(n)) =

Bk

so that

dp(21(n) A (=n), z1(n)) = |F(z1(n) A (=n)) = F(21(n))] /2 + |G (=21(n) A (=n)) = G(z1(n))] 2

< P+ 6a(m)? <2 (1=)"

Therefore,
€

sup [f(z1(n)) — F(z1(n) A (—n))| < sup wF(z(f)W) 0

FeM FeM Vn n—0o0

because of (5.16). This completes the proof of (5.43).
Combining all this, it follows from inequality (5.42) that

= P + ) € (A S () =D Bl +e= o +e (540
i=1 1=1

by (5.37), (5.43) and assumption (iii).
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5 Preparatory results for stable autoregressive models

Now using (5.41) it follows that

lim sup sup PF< sup  |Upp(z) — Up p(Jn(z))] > 166)

n—oo FeM —oco<z<21(n)

n

) 1
< timsp s Pe(e]3 1 zatossns = Fr)-+ )| = 50

3

1
+ lim sup sup P, (— F(z1(n) 4 0n; 286)
n—)oopFEJI\)4 r \/’E; (1( ) ’m)

: 1 ¢
= hg;i}éP 516111\)4 PF(\/ﬁ’ZZ; [1{ez‘§z1(n)+6ni} — F(z1(n) + 5m)] ’ = 86)‘

Set
G = 1{€i§21(n)+5m'} - F(zl(n) + 5711)7 1=1,...,n.

Because of (5.18) it follows that (i, ..., ¢, is a MDS with respect to Fop C F; C ... C F,, under
Pp, and obviously |¢;| <1 forall i =1,...,n. Also by (5.18) it is

ZEF<C12‘F—1) = ZEF<[1{€iS21(n)+5ni} - EF(l{Ei§z1(n)+6m}|'Fi—1>]2 ‘Fi—l)
=1 =1
< ZEF(l{eiﬁzl(n)+5m} ]:i—l) = Z F(z1(n) + 0ni)

i=1 =1

< op(Vn) + v/ne,

the last inequality following from (5.44). Thus, for all n € N with (5.29) this yields

PFQﬁ‘g[l{eismnH%i} — F(z1(n) + 5m)]( > 8e> - pp(\}ﬁ‘gg > 86)

< PF({’;Q

+ PF (Z EF(C7,2|‘F’L—1) > 2\/ﬁﬁ>
=1

> siie} 0 {3 Er(iFi) < 2vine})

<2-exp <8\/ﬁe — 8v/ne log(l + zgi)) + Pr(op(v/n) + v/ne > 2y/ne)

<2 exp(8v/ne[1 — log(5)] ) + sup Pr(o(1) > o)

where the second-to-last inequality follows again by (A.3) of Lemma A.4. Now the right-hand
side of the last inequality does not depend on F' anymore and converges to zero as n — oo. This
yields

lim sup sup PF< sup |Un,p(x) — Upr(Jn(x))| > 166)
n—oo FeM —oo<z<z1(n)

. 1 ¢ N
< limsup sup PF(\/H‘;“{QSA(H)Jr&m} = F(z1(n) + 0ni)] ‘ > 86) = 0.

Thus, the term in (5.33) is zero.

76



5 Preparatory results for stable autoregressive models

To conclude the proof of Step 3a, it remains to show that the term in (5.35) equals zero. As
before, let I' € M, ¢ > 0,6 € (0,1) and n € N with (5.29). For z € (2,)(n),00) we have
Jn(x) = zy(ny(n) by definition. It is

Un,p(2) = Un,p(Jn(2)) = Un,p () = Unp(2(n) (7))

B \;ﬁ Z(1{zz(n)(n)+5m<6i§$+5ni} N [F(x + 0ns) = F(Zl(n) )+ 5712)})
=1
1 n
= NG ZZ; Ly (m)+8ni<e}

1 " 1 n
- % Z(l{zl(n)(n)+6ni<ei} - [1 - F(’Zl(n) (n) + 5711 ) e Z 1 — Zl —|— 577,1)]
i=1

n =1
and
Un,p(Jn(2)) = Un,p(x) = Un,p(2i(n) (1)) — Un,p()
= \/15 ; (1{e¢§zl<n>(n)+ém} = Yei<atony T F(@ + 6ni) — Fzin)(n) + 5m))
< \}ﬁ zn; [1 = F(zigny(n) + 6ni)].
This yields
Un,#(Jn(x)) = Un,r(z)|
\Hznj( o apticen) — [ Flagn(n) +3)] )| + \/15 znj 1 — F a0 (1) + 600)].

so that

sup ’Un,F(Jn(x)) - UmF(w)’

2y(n)y (n)<z <00

< %‘g(l{eigzz(n)(n)ﬂsm} - F(Zl(”) (n) + 5M))’ 7

For all n € N with (5.29) we have F'(zy(,)(n)) > F(zjn)(n)) =
€/+/n by definition of j(n), so that

Z 1 — Zl —|— 5m)]

= % Z [1 — Zl(n) Z F(zl(n)(n) + 67”)]

= ||M:

ce/v/mand 1—j(n)-e/y/n <

<6+72f (&)l0nil < e+ —= Z‘f (&) — ( ))||5n1|+f(zl(n \FZ‘5m| (5.45)

with &; lying between zj(,)(1) + 0pni and 2,y (n). Now [&; — 2y(n) ()| < |0p;| implies that |f(&;) —
f(zm)(n))] < Ap . Moreover,
sup f (210 ()) —> 0. (5.46)
FeM n—oo

which can be shown similarly to (5.43).
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5 Preparatory results for stable autoregressive models

Hence, by (5.45) we have

Z )+5m)] < (AnF+f(zl n) \/}Z‘éml—i_efop( )+6 (547)
using (5.37), (5.46) and assumption (iii). Combining all this yields

lim sup sup PF< sup \Un,p(x) — Uy p(Jn(x))| > 166)
n—oo FeM Zl(n)(n)<£13<00

< lim sup sup PF<%‘i(l{eigzl(n)(n)—i-(sm} — F(zyn)(n) + (5ni))‘ > 86)
i=1

n—oo FeM

1 n
+ lim sup sup Pp(% Z [1 = F(2n)(n) + 5m)] > 86)
i=1

n—oo FeM

= lim sup sup PF<\/15‘§:(1{62.<ZZ(”) ()+0ni} — F 21y (n) + %))‘ > 86)
=1

n—oo FeM
because of (5.47). Define
(,Ti = 1{€i§2’z(n)(n)+5m} — F(Zl(n) (n) + 5m>7 t=1,...,n.

Using (5.18) we see that Ciy...,Cp is a MDS with respect to Fo C Fy C ... C F, under Pp.
Moreover, all of the |(;| are less than or equal to one. Again by (5.18) it is

Y Ep(GP1Fio) = ZEF<[1{ei§zl(n)(n)+5m} — F(zm(n) + 605)] 2 fi—l)
-1 :

= ZEF( Caipmy )t <ey — (1= F(z1n) (1) + i) )] Q‘J’iﬂ)

)

2
= Z B ([Leyy )+ 5ns<es = BF (L 4 <et 1 Fic1)]

i=1

<> EF<1{zl(n)(n)+5m<ei} ]:i—l> => [1 — F(z(n)(n) + 5m)}
=1 i=1

< op(Vn) + Vne,

and the last inequality follows from (5.47). Hence,

PF(\}ﬁ‘i(l{ei<zz<n)(n)+5m} - F(zl(n) (n) + 51},@))) > 86)
i=1
e

< PF({‘i@ > 8v/nef N {zn:EF(ffml) < 2v/ne}) + Pr(op(1) + € > 2)
i=1 i=1

< 2exp(8v/ne[1 —log(5)]) + sup Pr(op(1) > ¢),
FeM

n

> 86} N {\/15 éEF(Cf’fiq) < 26}) + PF(;E ZEF(@H};J) > 26)

=1

where the last inequality follows again by (A.3) of Lemma A.4. Since both summands on the
right-hand side of the last inequality are independent of F' and converge to zero with n — oo, it
follows that

limsup sup Pg sup \Un.p(x) = Up p(Jn(x))| > 166)
n—oo FeM 2y(n)(n)<z<o00
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1 n
a h7Izn—>Sooup slelpM Fr < Vn ‘ i=1 (1{eigzl(") (n)+0ni} F(Zl(n) (n) + 6m)) ‘ - 86) 0

and this completes the proof of Step 3a.
It follows now from (5.32) that for every e > 0 and ¢ € (0,1)

lim sup sup PF( sup |Up,r(z) — Uy r(y)| > 646)

n—oo FeM z,yeR
<limsup sup PF( max |U,p(x) —Upr(y)| > 326). (5.48)
n—oco FeEM _z,Yy€Dy
dp(z,y)<30

We will next prove the following statement:
If for every € > 0 there is a 6. € (0,1) such that
lim sup sup PF< max |Up p(z) — Upr(y)| > 326) <,

n—oo FeM x,Yy€Dn
dp(z,y)<3de

then (5.25) holds.
For the proof of this, let € > 0. Note that the function h: (0,00) — [0, 1],
h(9) := lim sup sup PF( sup |Upr(x) — Unr(y)| > 646),

n—oo FeM _z,yeR

is monotonically increasing. This ensures the existence of limgsjg h(6) =: h(0) in [0,1]. Because
of the monotonicity it is h(d) > h(0) for all 6 € (0,00). Now let € (0,¢€) be arbitrary. By the
assumptions there is a 6, € (0,1) with

lim sup sup PF< max |Uprp(x)—U,r(y)| > 3277) <.
n—oo FeM _ x,y€Dy
dr(z,y)<36y

Using (5.48), this yields

n>timsup sup Pr( - sup  |Unp(x) — Unp(y)] > 64)

n—oo FeM B z,yeR
dp(z,y)<dy
> limsup sup PF( sup  |Un.p(z) — Un p(y)] > 646) = h(5,) > h(0).
n—oo FeM _ zyeR
dp(z,y)<dy

Since n was chosen arbitrarily, this shows that ~(0) = 0, and this is just (5.25).
To conclude the proof of Step 3, it therefore remains to show:

Step 3b: For every € > 0 there is a §. € (0,1) such that

lim sup sup PF( max Uy p(z) — Upr(y)| > 326) <e. (5.49)
n—oo FeM _ Z,YEDy
dF (x,y)§365

Proof of Step 3b: Let ¢ > 0, § € (0,1/3), F € M and n € N with

n > (46;/2>4. (5.50)
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5 Preparatory results for stable autoregressive models

Set o := (e/4/n)"/2. Then 0 < o < 4(e/+/n)"/? < § because of (5.50). Let
k= k(n) == min{j € N: § < 3’a}.

Note that k is well-defined and greater than or equal to two. Now set

Then
O<a=0,<pq1<...<8=3Ta<sd<d=3a<35<1, (5.51)

where we used that 3« < 38 because 3*"'a < ¢ by definition. Then for every I = 0,...,k the
set D(9;) is well-defined, where D(d;) is as in (5.26) the common refinement of the partitions

x1(0p), ... 7%‘(61)(50 and y1(d;), ... ,yj((;l)(él). Since 0, = o = (e/\/ﬁ)l/Q, we have
D(6) = D(a) = D((e/v/n)"/?) = D,
For every [ = 1,2,...,k let the mapping
N;: D(6) — D(d;-1)

be such that every z € D(¢;) is mapped onto an N;(z) € D(§;_1) so, that dp(z, Ni(2)) < dp(z, )
for all z € D(6;—1). Note that such an element always exists because of the finiteness of D(d;—1),
but it need not be unique. For our purposes, however, it is irrelevant onto which of these elements
z is mapped. By construction,

dr(z,Ni(2)) < dp(z,2) ¥ 2z € D(8), v € D(6_1),
and especially, since Js,_, (2) € D(6;—-1),

dp(z,Ni(2)) < dp(z,J5_,(2)) V¥ 2z € D(§) (5.52)
foralll =1,...,k. Now for every z € D,, = D(Jy) set

sp(z) =z, s1-1(2) := Ni(si(z)) forl=k,..., 1 (5.53)
Then by construction s;(z) € D(4;) for all z € D,, and all [ =0,...,k, and
dr(s1(2), s1-1(2)) = dr(si(2), Ni(s1(2))) < dr(s1(2), Js,_, (31(2))) < 2 611 (5.54)
for all I = k,...,1 using (5.28). Moreover, for every =,y € D,, with dp(x,y) < 3§ it is

dr(so(z),s0(y)) < 216. (5.55)

To see that (5.55) is true, note that

k—1 k—1
dp(so(x),s0(y)) <Y dr(si(@), siq1(x)) + dr(sk(z), sk(y) + Y dr(si(y), si41(y))
1=0 =0
k—1 k—1 k—1
<> 20 +dp(z,y)+ ) 26 <4) 3 a4 36

oo oo
<4-3%a) 371 4+35<4-30> 371436 =21,
=0 =0

where we used (5.54) and again the fact that 3¥a < 34.
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5 Preparatory results for stable autoregressive models

Consequently, for every ¢ >0, 6 € (0,1/3), FF € M and n € N with (5.50) we have

U, U,
max \Up,r () F()l

< max  (|Unr(e) = Unr(so(@))| + [Un,r(so(@)) = Unr(so)] + U r(s0(u)) = Unr(v)])

dp (2,y)<30
< 2 max |Up p(2) — Un,r(s0(2))] + e | Un,r(z) = Un,r(y)l,
dp(,y)<218
and this yields
lim sup sup PF< max |Upp(x)—U,r(y)| > 326)

n—oo FeM _%,y€Dn

< limsup sup Pp<maX |Un,r(z) — Up p(so(x))| > 86) (5.56)
n—oo FeM €Dy,

+ lim sup sup PF< max  |U, p(x) —Upr(y)| > 166) (5.57)
n—oo FEM “z,y€D(do)
dp(z,y)<218
for e >0, 0 € (0,1/3).

We will first investigate the term in (5.57). Let F' € M. For every x,y € D(d) with dp(z,y) < 21§
set

Ci(xa y) = 1{ei§x+5m} - F(:C + 5m) - (1{e¢§y+6m} - F(y + 5nz))
Then U, p(z) — Uy r(y)| = ﬁlzzlzl Cz(x,y)’, and because of (5.18) the random variables
G(z,y), ..., oz, y) form a MDS with respect to Fy C Fi C ... C F,, under Pp. Also,
Gz, )| = |L{ang)toni<es<avy)ront — (F(@Vy) 4+ 0ni) — F((x Ay) 4+ 0n))| <1 (5.58)
foralli=1,...,n. By (5.20) it is

n

D Er(Gz,9)*1Fic1) < D |F(@ + 6ni) — F(y + 6ui)|
=1

=1

n
< sup Z|F(l‘+(5m) — F(y + 6ni)|-
o BYER
dp(z,y)<218

Let 2,y € R with dp(z,y) < 218. Then dp(z,y) = |F(x) — F(y)|'/? < 216 as well, and

D IF(x 4 6ni) — F(y + 6mi)|
=1

<D (@ +6u) = F(@)| + Y |F(z) = F(y)l+ > |F(y) — F(y + 6u)|
=1 =1 =1
< I flleo Z |Opa| + 70 dF(a:,y)2 + | flloo Z [
i=1 =1

1 n
< (2 su co— Snil ) -+ n(216)?
(2 50 1171 22 ) - n+n(213)
= 0%(1/+/n) +n - 44162

because of (5.14) and assumption (iii).
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5 Preparatory results for stable autoregressive models

It follows that

E Fi F( oni) — F Oni
e Z F (G, y)*|Fict) < xsgl/lepR Z| (T 4 0ni) — F(y + 6ni)|
dp(z, y)<21(5 dr(z, y)<215

< O%(n~Y?) 4 n - 44162
So for every € > 0, 6 € (0,1/3), F € M and n € N with (5.50) it is

- >
PF( xvyré%@o) \Un.r(x) — Upr(y)| > 166)
dr(a,y)<216

< PF<{ max ’ZCZ(x,y)’ > 166} ﬂ{ max ZEF Gi(z y) | Fi 1) <n- 44252}>
=1

z,y€D(do) x,y€D(do) 1
dp(z,y)<216 dr(z,y)<218 =

+ Pp ( max ZEF G, y)?|Fiit) > n- 44252>

T yGD (50)
< > PF({]Z@(x,w( > 16/ne ) N {Z Er (Gi(@,y)*|Fimt) < n- 4420} )
irwens

+ Pp(O%(1/y/n) +n - 4416° > n - 4426%)

(16y/ne)? 1 (16y/ne)?
2. — Z

> eXp( 2n 44282 T 2 (ndd257)?

$7y€D(60)

dp(z,y)<216

IN

)+ Pe(op(1) > 6%) = 1

by (A. 4) of Lemma A.4. Now note that for every ' € M we have |D(5)|> < (2 - j(do))?
(2-652)% < 4-67* by definition of dy, D(Jo) and j(Jp). Thus,

6462) . ( 512¢3
Ode” \ (012
22162) " “P\ugsat/mot

1 64€2 e u 2

1< |D(é)[ -2 exp(- )+ Pr(op(1) > %)

This yields

1 64€>
i P( U p(z) — U, >16)<8-— (—7)
msup sup Pr{  max |Unr(@) = Unr(y)l 2 166) < 8- 5 exp(=5575

dp(z,y)<2168

(5.59)

for every € > 0 and § € (0,1/3).

Next, we will study the term in (5.56). For this, let ¢ > 0, 6 € (0,1/3), F € M and n € N with
(5.50). For every = € D,, it is

k
[Un,p(2) = Un,p(s0(2))| = [Un,p(sk(2)) — Un,r(so(z Z n,F(s1(2)) = Un p(s1-1(2))]
k k
Z n i (s1(x) = Unp (Ni(si(2)))| < Zzgjljéi({;( \Un,p(x) — Un,r (Ni(2))],
=1 =1 1)
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5 Preparatory results for stable autoregressive models

so that

max |Un,r(x) — Up,r(so(z))] < ngba)gl \Un,p(x) = Up,p(Ni(2))].

For every [ =1,...,k and = € D(9;) set
d(l‘) = 1{ei§x+6m'} — F(z + 0pi) — (]‘{67;SNZ(I)+5”¢} — F(Ni(z) + 57%))7 i=1,...,n.

Then |Un,p(z) — Unp(Ni(2))| = %‘2?21 Cl(z)|. As before, it follows from (5.18) that under

Pp the random variables ¢! (z), ..., ¢\ (x) form a MDS with respect to Fo C Fi C ... C Fy, and
we see as in (5.58) that [¢!(z)| < 1 for all i = 1,...,n. Moreover, by (5.20) it is

Iggﬁgl ZZ::EF G }-7:1 1 <mgll)a)§l ;’Fx+5m = F(Ni() + 0ns)]-

Since for each [ = 1,...,k and z € D(¢;) we have
|F(x) = F(Ni(x))] = dp(z, Ni(2))* < dp(a, Ni(2))* < dp(, Js_, (2))° < (2 6-1)
by (5.52) and (5.28), it follows that

Z|F$+5m — F(N(x) + 6ni)|
< Z\F(ﬂf +0pi) — F(x) = (F(Ni(@) + 6ni) — F(Ni(2)))| + n|F(z) — F(Ni(=))|
=1

< Z\f@u)am- — f(62i)0ni| + 47,

<Z(|f &) = F@)| +1£(@) = FNi(@)] + 1 F(Ni(2)) = (i)l [00i] + 4nd,

with &1; lying between x + d,; and x, and &; lying between Nj(z) + d,; and Nj(x). Because of
€10 — 2| < [0ns] and [§2; — Ni(@)] < [0l it is
[f(&) = f(@)] < App and  [f(Ni(2)) — f(§2i)| < Anyp.
Furthermore, we have
dp(x, Ni(2)) < dp(z, J5_, (2)) <2-8-1 <2-3-0 = 64,

where in the last inequality we used (5.51). This implies
[f(x) = f(Ni(@))| < sup | f(z) — f(y)| = wr(69).

_ z,YeER

Combining all this, we get for every [ =1,...,k

max ZEF CHa)?|Fie 1)<2AnF Z|5m\f+wF (66)—= Z\éml\f—l—élnél L

IED(ISZ)

By assumption (iii) for € > 0 there is a ¢ € (0,00) such that

(5.60)

M\m

lim sup sup PF(fZ |0ni| > ce) <

n—oo FeM
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5 Preparatory results for stable autoregressive models

Additionally, by (5.16) there is a 6. > 0 with

sup wp(65) < —
FeM Ce

Now if 2An,Fﬁ o1 10ni] < € and ﬁ S 0ni] < e, then for every I=1,...,k

V&€ (0,0).

xgba%(l ZEF CHa ‘]—"Z 1) < 2e\/n 4 4nd? | = 2a°n + 4nd? | < 267 n + 4nd? | = 6né?

for 6 € (0,0, A 1/3) by definition of o and §;. Thus, for all F' € M it is

_ >
Pre(miax [Un (2) — Un,e(s0(@))] = 8c)

IED(ISZ)

< PF({lzk: max ‘Unp( ) — UmF(Nl(x))‘ > 86} N {QAn,F\/lﬁ Zz:; 16| < e}
N {\/ﬁ; |0ni| < ce}> +PF(2An,F\}ﬁ§;|5m| > e) +PF(\}H§;|5”"‘ > CE)

< Pe({>° max [Unr() = Unr(Ni(@))] = 8¢

D
1= *€ (01)

N, ey <o })
+Pp<2AnF ZM >e) + Pr( 1nzn:|5m\ >c).
i:l

Now Ampﬁ Yoy |0nil = 0%(1) because of (5.37) and assumption (iii). Using this and (5.60), it
follows that for every § € (0,9, A 1/3)

lim sup sup PF<maX \Un,r(z) — Up,r(so(z))| > 86)
n—oo FeM z€Dn,

k
< limsup sup PF({Z max ’Unp( )—UnF(Nl )} >8€}
=

n—oo FeM zeD(8;)
k €
l
p{$$§l ZZEF ¢H()*|Fir) < 6ot }) +z. (5.61)
Now set
v i=6-0_1 - \10g(5171)|1/2 Vi=1,... k.
Then

k

k k—1
Zvl Z 5; 1| log(d;—1) / <6- 251/2 =6- Z(?)k_loz)l/Q
=1

- (3%a) 1/22 312 < 6. (36) 1/22 —_ 1§f1

Here we used that x|log(z)| < 1 for = € (0, 1], the definition of & and the fact that 3*a < 36.
Thus, there is a §/ > 0 such that

D w <8 Ve (0,8 N1/3).
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This implies that for every § € (0,0, A7 A1/3), F € M and all n € N with (5.50) we have

PF({Z max ’UHF( ) = Un,p (Ni() }>86}ﬂﬁ{ maX ZEF CHx ‘]:Z 1) < 6nd7- 1})
= :

1 .Z‘ED((;Z)

ng§;g%uaﬂ>—nFm \ZZ¥@Q
ﬁ{mg;;m ZEF (@)% Fia) < 6t })
=1
Slzk;PF({x?&)é \Un,p(x) = Un,r (Ni(2))] >vl}ﬁ{x Da(l ,;LlEF 1) §6m512_1}>

HM»

%: ({’U"F - nF(Nl |>Ul} {ZEF Cz ‘]:, 1) <6n(5l 1})

Now recall that |Uy,p(z) — Unr(Ni(2))| = ﬁ&:?:l ¢!(z)|. By using (A.4) of Lemma A.4 we
get for every I =1,...,k and x € D(9;)

PF({’id(m)) > \/ﬁvl} {ZEF CZ ‘fz 1) < 6n(5[ 1})

(vnur)? (vnur)® v Y
<2 — = =2 — .
= eXp( 2 6no2 +2(6n512_1)2> eXp( 1253_) o p<72f6 )

Observe that because of (5.51) it is for every [ =1,...,k

of 6 |log(q)l*? _ 6°  [log(dw)*? _ 6 |log((e/v/n)'/)*/

N A RN N N ONORE

3
= S () osto) - gV =) 0

n—oo
Also, for every F € M we have |D(&)| < 2j(6) < 2/6? by definition of D(§;) and j(d;).
Combining all this shows that

PF({zk: max ’UnF( )—UnF(Nl )} >86}ﬂﬁ{xgba}§l) ZEF Cz ‘]:Z . <6n5l 1})
=

< 2€D(3) i

<4 n(€) b v?
() S L ()

- 1 60,1 - |log(d,_1)|1/?)2 - 1
:4'eXp(r7(2€))Z52'eXp(_( = 12(:5?2(; — >:4'eXp<r7(26)>252'5l31

:4-exp<@§>>i<%7>2-a1:4-exp<“;§>>i32-a”

)3’“ Z?ﬂ




5 Preparatory results for stable autoregressive models

Thus it is for every 6 € (0,8, A6 A1/3)

k

hngip FS’EZI\)/[PF<{Z;I?D35§Z)’U11 F( ) Un,F(Nl(:E))} > 86}(']
k
ﬂ{xé%aii ;EF (¢H@)?|Ficr) < 6moE, }) <1625,

and so

lim sup sup Pp<max \Un,r(z) — Up,r(so(z))| > 86) <1620 + ¢
n—oo FeM z€Dp 2

because of (5.61).

(5.62)

Using the bounds in (5.62) and (5.59), it follows now from (5.56) and (5.57) that for every

§€ (0,80 N6 N1/3)

. 64¢>
llrrgsogpsg%f’p(_zglggn |Un.rp(z) —Up r(y)| > 325) < 1625+ +8- 51 exp< 39152
dp(2,y)<30
But since

1 64e2
1626+ 8- — (——) 0,
TP T2 G

there is obviously a J. € (0, 1) such that

lim sup sup PF( max Uy p(z) — Upr(y)| > 326) <,
n—oo FeM z,y€Dnp,

dF (IE,y)§35€

which is just the statement of Step 3b in (5.49). This concludes the proof of the theorem.
We are now able to formulate the proof of Theorem 5.9.

Proof of Theorem 5.9. Let '€ M, n € N and z € R. Then

1 @& .
Fores(x) — Fp(x) = " Z [1{€i§x+€i,ém} —F(x+ e — éni) — (1{e,§x} - F(x))]
i=1

+ %Z[F(aﬁL e — éni) — F()],
i=1

and by the mean value theorem there is a & between x + e; — é,,; and x such that

%Z[F(l““ei_ém')_ ngl € em
=1
i - em

i=1 =1

3\*—‘

so that

z€R zeR

O

1| 3
Vnsup [y pes(x) — Fy(2)] < sup \/H‘Z[l{ei<x+5i_éni} —F(z+e —én) — (l{eiﬁx} - F(m))] ‘
i=1
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5 Preparatory results for stable autoregressive models

1 n
+ sup |f(@) = fW)| - —= D _lei — éni
ek \/ﬁ ; 7 ni
lz—y|< max |e;—énil B
1<i<n

. (5.63)

1 |— .
+ 1 flloo - \/ﬁ‘;(ei — €ni)

Since
ei—ém-:([)n—p)TXi_l Vi=1,...,n, n €N,

using the Cauchy-Schwarz inequality we get
1

;ﬁ’;(ei‘é’“‘) v

by assumptions (i) and (ii). Hence, it follows with (5.14) that

(hn — p>T2njxi_1] < |Va(pn — )| - H;fjxi_l\( = ab(1)
i=1 i=1

IFllee- ;ﬁ@ ~ )] < sup [l ;ﬁ@ ~enp)| = (1),
Also,
wax le; — enil < [lon — pll max [IXi—all = Op(1/vn)op(vn) = 0p(1) (5.64)
with (i) and (iii). This yields
sup |f(x) — f(y)| =0p(1) in M as n — oo. (5.65)

z,yeR
lz—y|< max |e;—éng|
1<i<n

To see that (5.65) is true, note that because of the uniform equicontinuity (5.12) of the family
{f: F € M} for every € > 0 there is a 6 > 0 such that for every z,y € R with |z —y| < ¢

sup [f(z) = f(y)| <e
FeM

So if maxj<i<p |€; — éni| < 9, then

sup [f(@) = fly)l <e
x,Yy<
=yl lei el

for all F' € M. Thus,

sup PF< sup ]f(:):)—f(y)]>e> < sup Pp(max \ei—ém\>(5> — 0
FeM z,y€R FeM 1<i<n n—00
lrmyl< max, lei—énil

because of (5.64). This shows (5.65).
Moreover, we have

1 R ) 1<
7 2o €1 enil < lan = ol 31Xl = OB (1)
1= 1=

because of assumptions (i) and (iv). This shows that the second summand on the right-hand side
of inequality (5.63) is a ol5(1) in M as n — oo as well. Therefore it remains to show that

1 |« , .
sup —‘Z[l{eigm+ei_éni} — F(z+ e — éni) — (Lje,<a} — F(x))]‘ =0p(1) in M as n — oo.

(5.66)
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For the proof of (5.66), let F' € M. For every z € R, n € N and ¢t € R? set

W (z,1) WZ Lot (t—px, 13 — Flz+ (t—p) Xi1)].
Then we can write
1 — . R
% Z[l{eigac—l—ei—ém-} - F($ +e; — eni) - (1{ei§a:} - F(l’))] = Wn(l',pn) - Wn(IB, P)
i=1

NG
Now define i
Vi(z,s) = Wy (z,p+ %s) — Wh(z,p), z€R, seRP.
Then (5.66) will follow from
sup  |[Va(z,s)|=0ph(1) in M asn—o00 VCe(0,00). (5.67)

z€R
SERP ||s||I<C

For showing that (5.67) implies (5.66), let F' € M and C € (0,00). Then if v/nl||p, — p|| < C, we
have for all n € Nand z € R

)Wn(zap+\/15[\/ﬁ(ﬁn_p)]) —Wn(l’,p)) = ‘Vn($7 V1 (pn _p))‘ < ilelﬁ Vi (2, s)].

seRP,s||<C

So for every e > 0, n € Nand C € (0,00)

sup Pr (sup|Wo (2, -+ —= [Vt — 0)]) ~ Wala, )| > )

FeM z€R Vn
< sup Pe( sup  [Va(w,8)| > ¢) + sup Pr(vialpn — ol > C),
FeM z€eR FeM
SERP ||s||<C

and this yields

lim sup sup Pr (sup Wi (2, p + = [Vn(pn —p)]) — Wn(:v,p)‘ > e)

n—oo FeM zeR \/ﬁ
< lim sup sup Pr (vl pn = pll > C) Ead 0
n—oo Fe

by (5.67) and assumption (i).

Next, we will show that the two conditions

sup |Vp(z,s)] = 0p(l) in M asn — oo VseRP (5.68)
z€R

and

lim lim sup sup Pp( sup |Vp(z,s) — Vi(z,t)] > e) =0 Ve>0,Ce€(0,00) (5.69)
610 nooo FeM z€R
s,teRP
sl iz <C
lls—tll<é

together imply (5.67), and thus (5.66).
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the closed ball {s € RP: ||s|| < C}.

)
For the proof of the above statement, assume that (5.68) and (5.69) hold. Let C € (0,00) and
0 > 0. Since B¢(0) is compact, there are s1, ..., sy € Bc(0), k € N, such that for every s € Bo(0)
there is a j € {1,...,k} with ||s — s;|| <.

Now let € R, s € RP with ||s|| < C and j € {1,...,k} such that ||s — s;|| < 6. Then for every
FeMandneN

To simplify notation, we denote in the following by B¢ (0

’Vn(l’, 8)| S |Vn($, ‘9) - Vn(ﬂf, Sj)| + ’Vn(ﬂ?, Sj)|

< sup |Vu(z,s) — Vi(z,t)| + max sup |V,(z, s;)|,
z€R 1<5<k zeR
s,t€Bc(0)
l[s—tl|<d

whence it follows that for every ¢, >0, n € Nand F € M

PF( sup |Vi(z,s)| > e)
z€R

s€Bc(0)
<P( V,—V,t>>P( A >)
< Pr( swp Va(z,s) = Valz, )] 2 5 ) + Pr 1@33222&\ (,55)] 2 5
s,t€Bc(0)
st <8

< PF< suﬁ |Vi(x,8) — Vi(z,t)| > ) —i—ZPF(squ (z,55)] > )
xre 1 re

s,t€Bc(0) J=
fs—tll<s

Using (5.68), this yields

limsup sup Pp( sup |V,(z,s)| > ¢€) < limsup sup PF( sup  |Va(z,s) — Vi(x,t)| > %),

n—oo FeM zeR n—oco FeM z€eR
s€Bc(0) s,t€Bc(0)
ls—tl|<é

and the term on the right-hand side of this inequality converges to zero as 6 — 0 by (5.69). This
concludes the proof of (5.68), (5.69) = (5.67).

It remains to show that (5.68) and (5.69) hold.
First, we investigate condition (5.68). For every z € R, s € RP, n € N and F € M it is

Vo(z,s) = W’n(m7p + \}ﬁs) — Wh(z, p)

1 n
N ﬁ Z[l{eigaH’STXi—l/\/ﬁ} - (w +s XZ 1/\F z : {eia} — )]
=1 i=1

1 n
= 7n > [Nezorsny = F@+ ) = (Le,cay — F(2))]
=1

with

T
st X, )
oy <i<n.

VIR
Set Fy := 0(Xo), Fn := 0(Xo,€1,...,e,) for n > 1. Then the random variables d,1,. .., Iy, are
predictable with respect to Fo C F; C ... C Fy. It also is

Z\M— Zyssz 1l < s H*ZHXZ 1l = 0p(1)

Oni =
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by assumption (iv). Moreover,

1
max [ < —=|[s]| max |[X; [} = op(1)

1<i<n V' 1<i<n
by (iii). Additionally we have

e Z|5m|) (DSTXZ 1) < sl =g B (30 1K),

so that

1 & 1 -
sup EF(n; \5m!> < HSHWEEJI\)/[EF(; HXz—IH) =o0(1) as n — 00

FeM

because of (v). Thus, all assumptions of Theorem 5.10 are satisfied, and it follows for every
s € RP that

sup [V (z,8)| = ob(1) in M as n — oo,

IS
which is just (5.68).

Next, we show (5.69). Let F € M, n € N,z € R, C € (0,00), 6 > 0 and s, ¢t € RP with
[sll, [It]] < C and ||s —¢|| < 6. It is

V”(x7 8) - Vn(x7t) - Wn(x7p+ \}ES) — Wn(l',p—i— \}ﬁt)

1 n
- W Z Mergararx oy ymy = F o+ 8" X1/ V)]

f Z {ei<az+tTX;_y//n} — (:L' + tTXi_l/\/ﬁ)}.

As shown before, there is a k € N and s1,...,s; € Be(0) such that for every s € RP with
||s]| < C thereisa j e {1,...,k} with ||s — s;]| <.

Now let s be as above and j € {1,...,k} such that ||s — s;|| < 0. Then it is for every x € R and
1=1,...,n

Y. sI'X. _ o \I'x. sI'X. .
x+8 Xz_1:$+ i 1+(S SJ) Xzfl <o+ g M 1+(5HX1_1||
Jn NG /n 7n Jn
and -
T .
x4 Xi1 > x4+ % Xi - 5|’Xi_1||.

N vn vn
For t as above we have [|s — t|| < §, and so ||t — s;|| < ||t — s|| + ||s — s;|| < 2. This implies for
every x € Rand i=1,...,n that

TY.
tTXi_l <ot S5 Xi-1 n 25||Xi—1H

T+ Jn = T NG n
and .
_— tTXi,l S 55 Xi-1 B 20||X;-1]]
N vn N
Set . .
sy e 2 BNl g e gy SR 200X
ni \/ﬁ \/ﬁ nu \/ﬁ \/ﬁ
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fori=1,...,nand j=1,..., k. Then obviously for every z € Rand i =1,...,n it is

+(5 ()< + TXi—1< +6+()
x x Jn S x+0,.(j
and
+6..(j) < +tT =l < a+5035)
x x N z+6.(5).
Therefore
Vo(z,s) — Vi(x,t)
TZ {€z<$+5+ U} F(CE—F(; Z {el<m+6m ])} (II,’-F(S;;(]))]
2:1
. 1 < .
IZ {ei<a461,()} F(z+0,3(5))] - %Z[ {ei<a+o ()} F(z +0,;(5))]
i=1
+2*Z F(w+85() = F (2 +6,(7))]
+ + — (s
<1121?<ka () + m]axR ()+2 max ig%fz (z+6,} — F(z+6,,(5)],
where
R;f (7) = igg f’Z {ei<z+61,()F — F(x +5T—1",_’L'(j)) - (1{€i§l‘} - F(JU))H
and

R, (j) = sup %‘Z[l{eingr&;i(j)} - F(CE + ‘%‘U)) - (1{61-96} - F(x))] ‘
i=1

zeR

Analogously it follows that
Vi(z,t) — Vi (x, s)

< + () — ~())]-
s REG) s ) 2 s v S+ 550) — Pl + 55,0

This yields

sup |Vn(a:,s)—Vn(m,t)|

z€R

s,t€Bc(0)

Is—t <8

< + o ~(5))]. :
Joax Ry (7) + pax B (j () + 2 max sup 2 \f Z o +05,() = Flz +6,,(7))].  (5.70)

As before, let Fy = 0(Xp) and F,, = 0(Xg, €1, ...,€,) for n > 1. Then for every j = 1,..., k the
random variables 63, (5),..., 0%, (j) are predictable with respect to Fy C Fy C ... C Fp. Also,

rnn
we have for every j =1,...,k

< —=(lls;ll + 25) nax [IX;1]| = op(1)

7

max |05(j)] = max

57 X1 25HX1 1| 1
==
1<i<n 1<i<nl /n
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by assumption (iii) of this theorem. Moreover,

WZM =< (llsjll +20) ~ ZIIXi_1!\=07>(1)
i:1

using (iv). Last, we see that

1?161][\)/[EF( Z! ) H83|’+25)3—/28up EF(ZHXZ 1H>—0( ) as n — oo

because of (v). Comblmng all this, we see that all assumptions of Theorem 5.10 are met, and it
follows from this that
RE(j)=0%(1) in M asn — oo

for all j =1,..., k. But since k neither depends on F' nor n, this implies
R =0%(1) inM — 0. 5.71
pax R (7) = op(1) in Masn — o0 (5.71)

Furthermore, for every j € {1,...;k},z € R,ne N, ie{l,...,n} and F € M it is

b NP 40 Xi—1 |
0< Fz+0,,(5) — Fz+06,,() < [1flloo(6,5:(5) = 6,:(7)) < (FSEJI\}HfHoo) N
Hence,
. 1 <
21%&51«?&@7 E F(z+0,;(5)) = F(z +6,,(5))] <8 (Fsg]%\\f\loo)ﬁ ;1 X1 ]-

Now it follows from (5.70) that for every n € N and § > 0

1 n
sup  [Va(z,5) = Va(,8)] < Ra(8) + 85 (sup [|flloe) = D [ Xia
z€R FeM n-—

s,t€Bc(0) -

l[s—tl|<é
with R,,(d) = o%(1) in M as n — oo by (5.71). So for every e > 0, > 0, K € (0,00) 2 C,n €N
and F' € M it is

PF( sup  |Vp(z,s) — Vp(z,t)| > e)
Tz€ER

s,t€Bc(0)
l[s—tl|<é

< Pre(Ra(6) 2 5 ) + Pr( {80 (50 ufuoo)% Z Xt = 5} 0 {% Z 1%l < K })
=1 1=1
+ PF<% Zn: ||Xz—1H > K)
=1

= PF<R”(5) 2) +PF(5 2 16K

(sup 1Fl) ™) + Pr anz > K),

where we used that suppcy/ || flloo < 00 by (5.14). This implies that for every € > 0 and K >0

hmhmsup sup PF< sup |V (z,s) — Vy(z,t)| > 6)
00 n—oo FeM rER
s,t€Bc(0)
l[s—tlI<é

n—oo FeM

1 n
< limsup sup PF< Z (1 Xi—1]] > K),
i=1

and the last term converges to zero as K — oo because of (iv). Thus, we have shown that (5.69)
holds, and this concludes the proof of Theorem 5.9. O
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5.2 The centered empirical distribution function of the residuals

Let us consider the probability space (£, A, Pr) for some fixed F' € M for the moment. Let
(Pn)nen be a sequence of estimators for the autoregressive parameter p = (p1,...,pp)7 in (5.2)
such that v/n(pn, — p) = Op, (1), and as before let é,; = X; — pEX; 1,1 <i<mn,n €N, be
the residuals with respect to (pn)nen. Analogously to the case of independent and identically
distributed data described in subsection 3.1, it follows from Lemma A.1 that for every n > 2

there is a unique &, = t(énty- .-, €nn) € R such that
1 1 R 1 1
(f - 1) << (f - 1) S (5.72)
n max €p; n min é,;
1<i<n 1<i<n
and

> ——=0 (5.73)
‘ t i
on the event
Qpres '={ min é,; <0 < max é,;} € A,
1<i<n 1<i<n
and by Lemma A.2 the mapping
tn: Qnres D w = t(énl(w), ... ,ém(w)) eR

is Qy res N A, B*-measurable.

Just like the set €),, in subsection 3.1, the complement ﬁ,wes of £, res is asymptotically negligible,
as the following lemma shows. Its proof is a reformulation of the proof of Satz 3.2 in Genz [10]
for the autoregressive processes of order p under investigation here, and is given in detail for the
reader’s convenience.

Lemma 5.11 (cf. Satz 3.2 in [10])
If F € M and \/n(pn, — p) = Op.(1), then

Pr(Qnres) = P (o # (min &, max ém)> — 0. (5.74)

Proof. Recall that F is continuous with [, #F(dz) = 0 and [ 2?F(dz) < oo. Hence, we have

F(0) € (0,1), and by the continuity of F there are x; € (—o00,0) and x2 € (0,00) such that
F(z1) >0 and F(x2) < 1. Now

By using that é,; = (p — pn) X1 +e; fori=1,...,n, it is
n n n
PF(ﬂ{ém > 0}) < PF(ﬂ{Bi > $1}) + PF(U{(ﬁn —p)' X1 < CEl})
i=1 i=1 i=1

n
< Pe(er = 1) + Pe (| J{llp = pull|Xiza]| > —a1})
=1

= (1= F(x1)" + Pr(llp = poll max Xy > —z1)  — 0
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since F(x1) > 0 and because of the assumption /n(p, — p) = Op, (1) and max;<;<p [|Xi—1]| =
op(yv/n), which follows directly from Lemma 5.3 by considering the singleton M = {F'} there.

Analogously, we have

n
PF(Q{ém’ <0)) < Flea) + Pr(lo — pull s |Xio1] > 22) = 0
1=

using F(x2) < 1. O

Because of the above, the set ﬁnmes is irrelevant for asymptotic considerations such as the inves-
tigation of convergence in distribution and convergence in probability under the fixed measure
Pr, and we need not specify the definition of t, on ﬁnmes for such investigations. Thus, when
working with £, we assume henceforth that Qp, res holds.

For every n > 2 define

1
p ~ 1<i<n,
Pri n(l 4+ tnén:) -
and
_ n " 1
F, z) = onilis . = ——1 <, TER
nres(2) ;p mi - {enisa} gn(utném) (enise}

As in subsection 3.1 it follows that ﬁnmes is a discrete distribution function with

/ xﬁnyres(daz) =0.
R

We will call ﬁnmes the centered empirical distribution function of the residuals én1, ..., énn.

Now let F' vary in M again. In order to study the asymptotic stochastic behavior of t, and ﬁn”s
uniformly with respect to the family of probability measures {Pp: F' € M}, we can again not
neglect the set ﬁnﬂ«es a priori, because Pgp (ﬁn’res) will not converge to zero uniformly in F' € M
in general. As in the case of independent and identically distributed data, we will overcome this
issue by making additional assumptions about the set M.

Let us introduce the following condition:

There are x1 € (—00,0), z2 € (0,00), such that

inf F 0 and F 1. 5.75
Aof F(z1) >0 an sup, (z2) < (5.75)

Assume now that the set M satisfies (3.7) and (5.75), and that the sequence (py,)nen is such that
(5.8) holds. Then with Lemma 5.3 it is

|on — p|| max ||X;—1]| = 0p(1) in M as n — oc.
1<i<n

Using this and (5.75), we see as in the proof of Lemma 5.11 that this implies

sup Pr(Qp res) — 0.
FeM n—o0

Hence, under these assumptions about M and (p,)nen the set Qnmes plays no role for uniform
asymptotic considerations as well. We will therefore from now on always assume that these
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5 Preparatory results for stable autoregressive models

conditions hold and continue to work on the event €2, ,.s for every n > 2 when studying fn,
F}, res or functions thereof.

Note that the conditions (3.7) and (5.8) were used before when studying the uniform asymptotic
behavior of X; and the residuals. Thus, they are natural conditions for uniform asymptotic

considerations and are by no means only needed for the uniform convergence of Pr(2, res).

The following results concerning the stochastic behavior of £, and ﬁm«es have been shown for fixed
F € M and autoregressive processes of order one by Genz [11]. Here, we will investigate again
under which assumptions about M these results hold uniformly in F' € M for the autoregressive
processes of order p € N described at the beginning of this section.

The next lemma is an analog of Lemma 3.3.

Lemma 5.12
If the set M s such that (3.5), (3.7) and (5.75) hold and the sequence of estimators (pn)n>1 for
p fulfills (5.8), then

(i) /nt,=0%1) in M asn — oo,

1
(1)) max ———— = O%(1) in M as n — oo,
1<i<n 1 + t,€n;
g 11z :
(iii) tn,=—— > ei+op(1/y/n) in M asn — oco.
OpMNi=1

Proof. The statements are proven analogously to those of Lemma 3.3, using the results of
Lemma 5.8. The proof is therefore omitted here. O

Now recall that for every z € R and distribution function F' € M

Up(z) = /x yF(dy),

—00

Ui @) = [ ) = 1omta) [ uF (),

Uz (@) = | F(dy) = Lo (2) Br(el) + L)+ [ (~)F(dy)
and Up = UI}L — Up. For the following investigations we assume that the set M is such that

the family {Up: F' € M} is uniformly equicontinuous. (5.76)

Note that condition (5.76) is equivalent to the fact that both families {Uj: F € M} and
{Up: F € M} are uniformly equicontinuous.

Lemma 5.13
Suppose the set M fulfills conditions (3.7), (3.8) and (5.76) and the sequence (pn)nen satisfies
(5.8). Then

1 n
sug - Zeil{émgx} —Up(z)| = 0p(1) in M asn — oo.
re i=1

Proof. Since the family {U;\: F € M} is uniformly equicontinuous because of (5.76), for every
€ > 0 there is a ¢ > 0 such that

sup |Uf (z +6) —Uf (z)| <e VF € M. (5.77)
z€eR
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Now if ||pn, — pl| - max HXl 1]l < 0, then

leni — eil = [(pn — p)" Xiza| < [1pn — ol - max ||Xz 1] <6

for every i = 1,...,n. Thus, using (5.77) we have for every x € R and F' € M

1 & 1 @&
a Z e:_l{éniﬁx} - U;?_(x) - ﬁ Z e;’_l{eigx"l‘ei_éni} - U;;_(l‘)
=1

=1

1 n
~ D el oy — U (2) = U (24 6) = U (2)

IN

U (@4 6) = Uf (w4 6)| + €

IN

with U (z) :== 231 € 1{¢,<s}, @ € R, and analogously

n n

1 1
U (@) =~ > e e, <y = UE (@) = — D€l Neuove—én)
=1 =1
< U «—*Ejelgxzﬂ Uit (@) = Uy (2 = 0)
S‘U:ZL‘—(S) U+x— ‘—I—e

This yields

sug Ze Lge, <o} — U+(:1:)‘ < su£|Uj(x) —Uf(z)| +e
xe e

for every F' € M on the event {||p, — p|| - max ||XZ 1|l < 6}. Because of this it is

sup P (sup e; e, —UJr ‘Z2e)
i F erln Z {éni<z} ( )

< > 0y — i
EE%PF(%% Ze Uepi<ay — Up ( )‘ > 2, [|pn — pll max X1l < 5)

+ sup PF(Hﬁﬂ pll - maX ”Xz 1l > 5)
FreM
< sup Pr (sup!UJr —Uf(2)] = 6) +0o(1),
FeM z€R

where the second term tends to zero as n tends to infinity because of Lemma 5.3 and (5.8). But
the first summand on the right-hand side of the above inequality also tends to zero for n — oo,
as was shown in the proof of Lemma 3.4. To sum up, we have shown that

sug Ze Liepi<ay — U+(m)‘ =0%(1) in M as n — co.
Te

Analogously we see that

sug Ze Lig<ay — U;(a:)‘ =0p(1) in M as n — oo.
re
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But this yields the statement, because

n

sup 1 Z eilge, <ot — UF(a:)‘

z€R! T i—
< sup| Ze Lo} — Up (@ >]+sup Ze Liew<a) — Up (@)]. 0
IS

For the rest of this subsection let us assume again that
M C {F : F is a distribution function that has uniformly continuous Lebesgue density f

and satisfies /

RxQF(dac) < 00 and / xF(dx) = O}.

R
As before, the uniformly continuous Lebesgue density f of F' will also be denoted by F”.

The next lemma gives sufficient conditions for (5.76) to hold.

Lemma 5.14
If the set M satisfies conditions (3.6) and (5.14), then (5.76) holds, i.e., the family {Up: F € M}
s uniformly equicontinuous.

Proof. For simplicity of notation, set K := suppcy, [p #*F(dz) and B := suppeyy || flloo- Then
K, B € (0,00) because of the assumptions. Now

K
|Up(z)] < —  for every x € R\ {0} and every F € M. (%)

]

To see that this is true, let > 0 first. Then

W) = | [t - [T urt| = [Curan < b [ e <&

for every F' € M. Analogously, for z < 0 it is

@ == [ ura) < -3 [rn <%

oo x x

for every F' € M. This shows (x).
Now let € > 0 be arbitrary, but fixed. Set C¢ := 4K /e and

O¢ 1= min(2BC 20)

Let z,y € R with | — y| < d. We have to investigate the following cases:
Case 1: z,y € [-C,, C,]. Then

Ur(z) = Ur(y)| =

Yy
WP(d)| < Ce | fllooly— 2] < Cc B-6 < 5 <

for every F € M.

Case 2: x > C. Then either y < C¢, or y > C., too.
If y < C¢, then |y — x| < §¢ < 2C, implies that y > —C.. Thus, using (x) and Case 1 we see that

Up(z) — Ur(y)| < |Ur()| + |Up(Ce)| + |Ur(Ce) — Urp(y)| < g B e €

€
0624Z+

=€

€
2
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for every F € M.
Now suppose y > C. as well. Then for every F' € M

|Ur(z) = Up(y)| < |Ur(z)| + |Ur(y)| < — +

VAN
] o

K
T

< | X
o

using (x).
Case 3: x < —C.. This case follows analogously to Case 2.
To sum up, we have shown that

r,yeR, ly—z|<d = |Up(x)—Upr(y)|<eV F € M,

which yields the statement. O

We will now combine the previous results to show the following expansion of the difference
F res — Fy. Compare this to Proposition 3.5.

Proposition 5.15
Suppose the set M is such that conditions (3.7), (3.8) as well as (5.12), (5.13), (5.14) and (5.75)
hold. Also, let the sequence (ppn)nen of estimators of p be such that (5.8) is satisfied. Then

1
anes(m’)—Fn( ) Z—UF 2 ZeZ+RnF x € R,
F

with ||Ry,rllee = 0%(1/4/n) in M as n — oo.
Proof. Employing once more that 1/(1+y) =1 -y + y?/(1 +y) for every y € R\ {1}, we
can expand the function F,, ;.s for every x € R and n > 2 in the following way

n 52

~ 1 é
Fn,res(x) = Fn,res(x Z eml{e i<z} T t2 Z ﬁ 1{éni§x}'
n€ni

Using this, we have

- 11 11
Fn,res(m) - Fn(w) = Fn,'f"es(x) - Fn<LL‘) - UF(m)Tizel + UF(m)TiZeZ
e TN
R 1 & é2
=1
11 11
= Fores(t) = Fol) = Up(e) 5 — > ei + Up(z) 5~ > &
oF 1 oF i=1
n

;1 ; 1 ;
— o Z; €ilfe,i<a) +tn Z;(ei ~ éni) Heni<o)
i= =
n 52

o 1 es.
+£2.— 7’}’ T
11 11
= Fn,res(l‘) - Fn(l') Zez + UF Zel

—tn (% z_; eile,i<ay — UF($)> — t,Up(x) + fn% Z(ei — éni) 1z, <2}

i=1
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_|_t2 1 iéi?” 1ss
14+ t,éni {énia}
=—Up(r)—— Z ei + Rin(x) + Ron r(2) + R3n p(2) + Ran(x) + Rsp(x),
where
11 .
Rln(l') —Fnres(x) Fn(ﬂf), RZn,F(SU) = UF (72* e —t )
op N
Rgn F(:L‘) = tAn(UF(IL‘) - l ieil{* < }) R4n({L‘) = Ltnl Y (6 — em)l{ <z}
) n 4 énilz} | n g éni<a}s
R lz "
n (7 n = —|—tnem {Enisa}:

Since all assumptions of Theorem 5.9 are satisfied, it follows from this that

HRlTLHOO = Sup ’Fn Tes( ) - Fn(x)‘ = Olﬁ(l/\/ﬁ)

z€eR

Moreover, we have seen before that sup,eg |Up(z)| = |[Up(0)| = Ep(e]) = Ep(e;) = 3 Ep(|e]).
Thus, we have

n

11
Rop Flloc = sup |Up(x ‘ e;
1Ronplloe = suplUr)] | 503
< sup/|x]F (dx) - op(1/y/n) = 0p(1/4/n) in M as n — oo

2 FeM
using Lemma 5.12 (iii).

It also is

1 n
sup|Up (@) = = 3 eilge,<ny)
n Zg%‘ F(x) n ra €i {éni<z}

and the desired result follows from Lemma 5.12 (i) and Lemma 5.13. Note here that Lemma 5.14
ensures that condition (5.76) of Lemma 5.13 indeed holds.

Next, we have
1 n
[Ranlloo < ‘tn’ﬁ 2; lei — énil < |tnl 121?;1 le; — énil = 0113(1/\/7;)
i

by Lemma 5.8 (ii) and Lemma 5.12 (i).

Last, it is
- 1 62
R < $2.Z ni
IBonfloo < 1+
1 n
< 2 max — AN on i m)0n(1)0B(1) = ob(1/v/m
S e X T n; (1/n)0B(1)0p(1) = op(1/v/n)
with Lemma 5.8 (v) and Lemma 5.12 (i), (ii). 0
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6 The limiting Pitman ARE of the two tests in stable autoregres-
sive models

We will now consider goodness-of-fit testing for the error distribution F' in certain stable autore-
gressive models using the classical Cramér-von Mises statistics based on the standard empirical
distribution function of the residuals as well as their modified counterparts based on the cen-
tered empirical distribution function of the residuals. As in the case of independent and iden-
tically distributed centered data investigated in section 4, we will consider testing the simple
null hypothesis that F' is equal to some centered continuous distribution function as well as the
composite null hypothesis that F' belongs to the scale family F; against suitable nonparametric
alternatives, respectively. Similar to before, we will compare the performance of the asymptotic
test corresponding to the classical residual Cramér-von Mises statistic to that of the asymptotic
test corresponding to the modified statistic for each of these testing problems by determining
their limiting Pitman asymptotic relative efficiency.

First, we will describe the setting of this section. For every g € [2, 00) set

G, = {F: F' is a distribution function that has uniformly continuous Lebesgue density f
and satisfies / |z|9F(dz) < oo and / xF(dx) = 0}.
R R

Then gg C Gq, where the latter set is defined in section 4. In this section we consider a measurable
space (£, A) and a family {Pr: F' € G/} of probability measures on A such that the following
requirements are satisfied:

On (£, A) there are random variables Sp, ..., S1—p, p € N fixed, and e;, i € Z, such that

e for each F' € G the variables (e;);cz are independent and identically distributed with
distribution function F' under Pp,

e the random vector S := (Sp,...,S1-p)7 has the same fixed distribution @, say, under
every Pp, F € G, and [g, |lz]|?Q(dx) < oo,

e under every Pp, I’ € G/, the vector Sy is independent of (e;);en-

As in section 5, we assume that (X;);>1—p is either one of the AR(p) processes of model 1 or
model 2 on (€2, A). Then (X;);>1—p satisfies the model equation

Xi=pXici+ ...+ ppXipt+e, 1>1, (6.1)
where p1,. .., pp are real constants with p, # 0 and
{z€C: 2P —p12P 7 —pa2P? — .. —p,12—p, =0} C {z€C:|z| <1}
The autoregressive parameter p = (p1,...,p,)T € RP is assumed to be unknown and therefore

has to be estimated by a suitable sequence of estimators (p,)nen. Moreover, the error variables
ei, 1 € N, are not observable, whereas the process (X;)i>1—, is assumed to be so.

6.1 Simple null hypothesis

Suppose now that the error variables ey, €2, ... have common distribution function F' € G¢, ¢ > 2
fixed, but that F' is unknown. For this reason we consider the testing problem

Ho: F'= Fy versus Hi: F € G\ {Fo} (6.2)
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

for a fixed Fy € G;'. Since unfortunately the errors are not observable, we cannot compute a test
statistic for this testing problem based on a “sample” eq,...,e,. However, we can observe data
Xo, X1,..., Xy, n > 2, and use this sample to study the residuals

~ T .
eni =X —ppXi1, 1<i<n,

where (pp,)n>2 is a suitable sequence of estimators for the unknown autoregressive parameter p.
In the following, we will only consider estimators p,, with /n(p, —p) = Op, (1), which holds for
example for the least squares estimator pL9.

For testing Hy versus Hy, we consider the residual Cramér-von Mises statistic
o0
2 2
Wn,res =n- / (Fn,res(x) - FO(x)) FO(dx)
—00
based on é,1, ..., €y, and its modified version
* = 2
V2 = / (Fores () — Fo(x))* Fo(d),
—0oQ

which are both measurable mappings from € to [0,00). The latter statistic is reasonable here
since the true error distribution function F' is centered, and so is F}, res-

It follows from Koul’s results, see for example chapter 7 in Koul [18], that
IVn(Fyres — Fn)lloo — 0 in Pp-probability (6.3)
n—oo

for every fixed F' € G, where F), is the empirical distribution function of the errors. This can
also be deduced directly from Theorem 5.9, which is in fact just the uniform version of (6.3),
by considering the singleton M = {F'} there. Note that for every F € G, the set M = {F}
satisfies (5.12)—(5.14) and assumptions (ii)—(v) of Theorem 5.9, since (5.12)—(5.14) are trivially
fulfilled by the uniformly continuous Lebesgue density f of F, and the latter conditions follow
from assumption (3.7), which holds for M = {F'} because F' has finite second moment.

Thus, by Slutzky’s theorem we have

Vi(Fppes — F) -5 B°(F) in D[—o0, o) (6.4)

n

under the measure Pr. Now a direct application of the continuous mapping theorem yields
C 1 5 \1/2
T / B(tpd) =W (6.5)
n
0

n,res)1/27 so that a test of asymptotic level o € (0,1) based on W, res
for the testing problem (6.2) can be constructed analogously to the case of independent and
identically distributed data described in subsection 4.1, where the test statistic WW,, was used.
Now let us investigate Vj, yes = (V%res)l/ ?. If we consider the singleton M = {F} for some
F € G/, then all assumptions of Proposition 5.15 are satisfied and it follows that

under Hy for Wy, yes = (W2

o res(2) — F(a) = %Z Yi(@) + Ror(z), z€R, (6.6)
=1

with
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and || Ry, F|lc = 0p.(1/y/n). Hence, by Slutzky’s theorem the processes

T
\/E(Fn,res - F) and —= Y;

have the same limit distribution in D[—o00, co] under the measure Pp. Observe that the process
(nfl/ 25 Yz(ac))x g does only depend on the sequence (e;)ien of independent and identically
distributed random variables, and not on the autoregressive process (X;)i>1—p. The asymptotic
distribution of (nfl/ 25 Yz(x))z cg has been derived by Zhang [31] in a more general setting
than considered here, see the proof of Theorem 3.3 in [31], and Genz [11]| has established the
above expansion of ﬁn’res — F for arbitrary AR(1) processes, see Lemma 3.7 in [11]. It follows
now with Zhang’s result that under Pr

= L .
\/E(Fn,,ﬂes — F) — W in D]—o0, ], (6.7)
where W is just the Gaussian process appearing in (4.3). By applying the continuous mapping
theorem once more, this yields

Vires — (/IW(Fol(t))th)lﬂzv (6.8)
n 0

under Hy, where the random variable V is the same as the limit in (4.5), given that Fy is the
same in both cases, of course. Hence, a test of asymptotic level a € (0,1) for testing (6.2) with
the test statistic Vy, res can be constructed analogously to the case of independent and identically
distributed data described in subsection 4.1.

We proceed by showing that (W, res)n>2 and (Vp res)n>2 are standard sequences.

Since the asymptotic distributions of the two sequences under the null hypothesis are the same as
in the case of independent and identically distributed data discussed in subsection 4.1, conditions
(BI) and (BII) of Definition 2.1 have already been verified there. We only need to show that (BIII)
holds for both sequences. To see this, let ' € G \ {Fp}. Then by Minkowski’s inequality

1/

‘ Wn,res
NG

2
S HFn,res - FHOO

_b(F)‘ < ( / b (Fmres(:c)—F(x)fFo(da;))

—0oQ
and

Yot )| < ([ (Fures(o) = F @) Falie))" < 1P~ Pl

for every n > 2, where

o0

b: G\ {Fo} > F (/ (F(z) — Fo(x))QFO(d:r))lﬂ € (0,1].

— 00

But it follows from (6.4) that

| Frores — Flloo —> 0 in Pp-probability,
—00

n

and analogously
| Fpres — Flloo — 0 in Pp-probability
n—oo

because of (6.7). Thus, (BIII) is satisfied.
Hence, the following result holds.
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Proposition 6.1

The sequences Wh res)n>2 and (Vi res)n>2 are standard sequences with approzimate slopes
b(F)2/A\1 and b(F)?/ )}, respectively, for every F € Gy \{Fo}, where \1 and A} are as in Propo-
sition 4.4. Hence, the approzimate Bahadur ARE of (Wi res)n>2 relative to (Vp res)n>2 15 A\j/A1.

Note that the approximate Bahadur ARE of (W), res)n>2 relative to (Vy res)n>2 is equal to the
one of Wp,)n>2 relative to (Vy,)n>2 when testing the same null hypothesis, see Proposition 4.4.
In particular, it is A] < A1, as noted there.

Our next aim is to show that Wy, res)n>2 and (Vi res)n>2 also satisfy Wieand’s condition (WIII),
so that we can use Theorem 2.3 to determine the limiting Pitman ARE of these two sequences.
For this we need to reduce the set of possible distribution functions F', since we have to require
the alternatives to be sufficiently smooth. Let us introduce some notation first.

For any 0 < v <1 and function h: R — R the v-Hélder coefficient of h is defined as

[h]'y — SU% |h(‘:§)_y}7’(yy)| c [O, ]
w7y

The function h is said to be Hélder continuous with exponent ~ (y-Holder continuous, for short)
if [h]y < oo. In particular, if [h]; < oo, then h is Lipschitz continuous. Obviously, every Holder
continuous function is uniformly continuous. Note that if the function h is bounded and ~-Hé&lder
continuous for some v € (0,1], then [h], < oo for all 0 < k < 7, since

—x h(x)—h K/ —K/y K
[h] = %%[yh(a:) — h(y)|' 7 (W) ] < 2-||h)l7 - [R5 < oo

Hence, if f: R — R is a density with [f], < oo for some v € (0,1], then [f], < oo for all
0 < kK < v, as f is uniformly continuous because of [f], < oo and therefore bounded. For
example, if the density f is differentiable everywhere and has a bounded first derivative, then it
follows by the mean value theorem that [f]; < oo, so that [f], < oo for all v € (0, 1] in this case.

Let w: R — [0,00) be a function with w(z) — oo as |z| — co. We will call such a function w a

weight function, and we set

17[w,00 := [Jwh]|ec = sup |w(z)h(z)| € [0, oc]
z€R

for any function h: R — R.

Now for every g € (2,00), v € (0,1] and weight function w let
Ggyw i= {F : F' is a distribution function having a Lebesgue density f that satisfies

Uy + 1| fllw,e0 + /R |z|?f(x)dr < oo and /R;Ef(:n)dz: = O}. (6.9)

Note that such a Lebesgue density f of F' € G, ~., is uniquely determined, as it is (uniformly)
continuous because of [f], < co. Henceforth we will always refer without further mention to this
uniquely determined uniformly continuous density when considering a density of a distribution
function in Gy . Observe furthermore that by what was said above, it is Gy w C Ggx,w for
every £ € (0,7).

Throughout this subsection we will always assume that w is bounded away from zero, so that
|1/wl]|co < c0. Possible choices of such weight functions are w(z) = exp(alz|®) for some a,s > 0
or w(z) = |z[°1}1 o0)(|7]) + 1jo,1)(|7|) for some s > 0, among others. Moreover, we suppose of
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course that G, ., contains more than one element. For the weight functions just mentioned, this
is obviously the case for every value of v € (0,1] and ¢ > 2, as there are numerous examples
of centered distributions with finite absolute g-th moment that possess a Lebesgue density f
that is differentiable with bounded derivative (= [f], < oo for every v € (0,1]) and satisfies
w(x) f(z) — 0 as |z| — oo, which implies || f||w,00 < 00 because of the continuity of wf.

We will now equip G, With a suitable metric. It is easy to see that the function dg ~ . : Ggy,w X
Ggyw = [0,00),

iyl PLG) = 1 =gl + 1f = glhuco + | [ Iel"P(de) = [ lalrGaa)|

is a metric on G ~ ., Where f and g denote the densities of F' and G, respectively. Observe here
that the fact that dg ., (F, G) = 0 implies F' = G follows for one because || f—¢llwoo =0= f =g
since w is strictly positive by assumption, but also because [f — g], = 0= f = g. To verify this,
note that it follows from [f — g], = 0 that f = g+ ¢ for some ¢ € R, but as f and g are densities,
this is only true for ¢ = 0. Hence, (Gg,~,w, dg,y,w) is a metric space.

For the rest of this subsection, we will only consider distribution functions F' € G, . for some
fixed ¢ > 2, v € (0,1] and weight function w, and we will measure the distance of two such
distribution functions with the metric dy ., unless stated otherwise. Since Gy~ C gg, all
previously derived results of course still hold for F' € Gy - ..

Lemma 6.2
The identity function

id: (Ggyuwsdgyw) 2 F —= F € (Ggryw: dg)

is continuous, where dg is the Kantorovich-Wasserstein metric defined in (4.1).

Proof. Let (F;;)nen, F € Ggryw With dg . (Fy, F') = 0 as n — oo, and let f; and f denote the
densities of F¥ and F', respectively. Then

1= Flloo < I1/llos - 155 = Fllwoo = 0,

using that 1/w is bounded. By Scheffé’s theorem it follows from this that F A F Moreover,
dg~yw(Fi, F) — 0 implies [ |z|9F%(dz) — [ |z|7F(dz) for n — oo. But convergence in distri-
bution of F; to F' combined with convergence of the absolute ¢g-th moments is equivalent to
de(Fy, F) — 0 as n — oo. O

As the composition of continuous functions is continuous again, the next result follows immedi-
ately from the foregoing lemma and Lemma 4.1.

Corollary 6.3
(i) For every r € [1,q| the function

Gupan ) > F > [ ol F(d) € R
18 continuous.
(i) The identity function
id: (Ggrw, dgyw) 2 F = F € (Ggryw: dk)

1 continuous, where di is the Kolmogorov metric.

104



6 The limiting Pitman ARE of the two tests in stable autoregressive models

Since we assume now that e, es, ... are independent and identically distributed with distribution
function F' € Gy ~., we have to adjust the testing problem (6.2) accordingly by letting all null
and non-null distribution functions be in G, - 4, i.e., we consider henceforth the testing problem

Ho: F = Fy versus Hi: F € Gy \ {Fo} (6.10)

for some Fy € Gy w-

Remark 6.4: Note that for this testing problem condition (2.2) holds. To verify this, let F' €
Ggrw \{Fo} and set F} :=tF' + (1 —1t) ) for every t € (0,1). It is easy to see that F; € G, \ {Fo}.
Moreover, F} has Lebesgue density f; := tf+(1—t)fo, where f and fj are the respective densities
of F' and Fy. It is

[fily < tifly+ (@ —=1t)[foly < o0
and
1 fellooo = lwfilloo < tllwflloo + (1 =) 0 folloo = £l Flluse + (1 =) [ follw,oo < o0,

so that Fy € Gy~ \ {Fo} for all t € (0,1). Now note that
dagvul Fs Fo) = o= foly + 1= ollwoo +| [ [el9Fd) = [ IattFulao)
R R

=t (f = foby 4 17 = Pollus + | [ Jal?Fid) = [ JaltFo(aa)])

=t dyyu(F, Fo) — 0,

whence it follows that for every e > 0 there is a t(e) € (0,1) with
F e Ue(F()) N (quw \ {F()}) Vo<t< t(e),

which shows the claim. ¢

For the following investigations, we have to specify the sequence of estimators for the unknown
autoregressive parameter p in (6.1). Henceforth, we will estimate p by the least squares estimator

n + n
pLS = (Z XZ-_1X521> Y XX, n>2.
i=1 i=1

Recall that BT is the Moore-Penrose pseudoinverse of the matrix B.

We are now able to verify Wieand’s condition for our two sequences of test statistics.

Theorem 6.5
The sequences (Wh res)n>2 and (Vn res)n>2 fulfill Wieand’s condition (WIII) with

o0

b Gy \(F0} 3 F o ([ (F@) - Fo))*Foldz)) " € (0,11

—00

Proof. We start by verifying the statement for (W, yes)n>2.
Set K := ([ #*Fy(dx))/2 > 0. Then by part (i) of Corollary 6.3 there is a ¢ > 0 such that

’ / 22 F(dz) — / a:ZFo(da:)‘ <K for all F € Gy with dg.u(F, Fo) < 0. (6.11)
R R
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Now define
M = Uy(Fo) \ {Fo} = {F € Ggyw: dgpu(F, Fo) < o} \ {Fo}- (6.12)
We will show next that this set satisfies conditions (3.5), (3.7) and (5.12)—(5.14).
By (6.11) it is [p #*F(dz) > K > 0 for every F' € M, which implies (3.5).
To check condition (3.7), note that

’/R‘x’qF(dw)_/quFo(dx)’ <o

for every F' € M according to the definition of d .. Using this and the fact that ¢ > 2, we see
as before that for every F' € M and c € (0,00) it is

/ 22F(dx) < 02‘1/ |z|9F (dx) < c2q(g+/ |z|1Fy(dzx)) < oo,
{lz[>c} R R

whence (3.7) is evident.
It follows moreover from the definition of dg ., that [f — foly < 0 and || f — follw,co < o for every
F € M, where f and fy are the densities of ' and Fp, respectively. Hence,

[fly < [f = foly + [foly < o+ [foly < o0

for every F' € M, so that the set {[f],: F' € M} of y-Hélder coefficients is bounded. But this
just implies that the family {f: F' € M} is uniformly equicontinuous, so that condition (5.12)
holds.

Now keep in mind that the uniform continuity of fy implies that it tends to zero as || — oo,
whence || fo||oo < 00 follows.

For every F' € M and z € R it is

@) < 11(@) = foa)| + o(@) < s I = Dol + o@) < s + o)

so that

sup o TR o 0

which is just condition (5.13).
Furthermore, because of ||f — follco < ||1/W||oo - [|f = follw,co < 0+ ||1/w]|cc < 00 we have

[flloo < 11f = folloo + [ folloo < ell1/wlloc + [l folloc < 00

for every F' € M. Hence, (5.14) also holds.

As we have already shown, it follows with Minkowski’s inequality that

Wn,res
Vn
for every F' € Ggyw \ {Fo} and n > 2.

Now the set M is such that by Proposition 5.7 the least squares estimator ﬁrLLS satisfies 1/n( f),LLS —
p) = O%(1) in M as n — oo. Moreover, as M satisfies (3.7), it follows that the assumptions (ii)-
(v) of Theorem 5.9 hold as well. Hence, all assumptions of this theorem are satisfied for M as in
(6.12), so that we have

—0(F)| < [[Fares = Flloo < [[Frires = Fulloo + [ Fn = Fllo

V|| Fy, = Fyreslloo = 0p(1) in M as n — oo.

106



6 The limiting Pitman ARE of the two tests in stable autoregressive models

It remains to investigate || F), — F'||oo- As already mentioned, it is well known that the Kolmogorov-
Smirnov statistic satisfies

Pp(\V/n||F, — Flloo < ) = Pe(|B°(F)|oo <), z€R,

for every F' € Gy .. Moreover, by the continuity of F' the distributions of \/n||F;, — F|o, n > 2,
and || B°(F')||oo under the measure Pr do not depend on F' anymore, and the distribution function
Pr(|B°(F)|lso <) =: Q(:) is continuous.

Thus, if we set

Vn,F = \/ﬁ”Fn - FHOO and Rn,F = \/ﬁHFn - Fmres”oo

for every F' € Gy and n > 2, the assumptions of Proposition 2.6 are satisfied with o as above.
This yields

sup |Pp(Var + Rop <) — Q(z)] — 0 Vz€R,
FeM n

which means that assumption (i) of Proposition 2.4 holds for the family
{(Vnl|Fy = Fllos + Vnl| Fy — Fn7T€5‘|00)n22: F € Gy}

But by what was said above, condition (ii) of the same proposition is trivially met, so that it
follows from this that for every e > 0 and ¢ € (0,1) there is a C(¢,0) > 0 such that

PF<‘W%65 - b(F)) > e b(F)) < Pr(|Fn = Flloo + | Fn = Fopeslloo > € b(F)) < 6

for all F € M and all n € N, n > 2, with n > C(¢,8)/b(F)?, which is (WIII) for W, res)n>2-
We will show next that (WIII) holds for (Vp res)n>2 as well.

Set K' := ([ |z|Fo(dx))/2 > 0. It follows again from Corollary 6.3 (i) that there is a ¢} > 0
such that

‘ / 2| F(dx) — / |xyF0(dx)j < K’ for all F € Ggru with dy~.w(F, Fo) < 0}. (6.13)
R R

Next, note that Fyp(0) € (0,1) because Fy is centered and has positive variance. Hence, by the
continuity of Fy there are z1 € (—00,0) and x5 € (0,00) such that Fy(z1) > 0 and Fp(z2) < 1.
Now set K" := min(Fy(z1),1 — Fy(z2))/2. Part (ii) of Corollary 6.3 now states the existence of
a 0h > 0 with

di (F, Fy) = ||F — Fylleo < K" for all F € G~ with dg~w(F, Fo) < ¢h. (6.14)
Define ¢’ := min(¢f, 05) and
M :=Uy(Fo) \ {Fo} = {F € Ggyow: dgy,w(F, Fo) < o'} \ {Fo}.

We proceed by verifying that this set fulfills conditions (3.7), (3.8), (5.12)—(5.14) and (5.75).

The verification of (3.7) and (5.12)—(5.14) for M’ is analogous to that for the set M before,
simply replace o by ¢ and M by M’.

To see that (3.8) holds, note that (6.13) implies [, |z|F(dz) > K’ > 0 for all F € M.

It remains to check (5.75). Because of (6.14) we have |F(x) — Fo(x)| < K” for all x € R and for
every F' € M'. This obviously implies

F(l’l) > F()(.CEl) —K">0 and F(a:Q) < F()(l’g) + K" <1
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for every F' € M’, so that (5.75) holds as well.

Note that (3.8) implies (3.5), so that the least squares estimator p5 fulfills /n(pL% —p) = O%(1)
in M’ as n — oo by Proposition 5.7.

Now using Minkowski’s inequality we get that

V ~ -
T/ﬁ —b(F)| < ||Fnres — Flloo < | Fnres — Fulloo + |1 Fn — Flloo (6.15)

for every n > 2 and F € Gy~ \ {Fo}. But as the set M’ satisfies the assumptions of Proposi-
tion 5.15, it follows from this that

- 11
HFn,res_FnHOO < HUFHOO 2 )7261'
opin

+ [ Bn,plloo (6.16)

with /n|| R, pllec = 0%(1) in M’ as n — oo. Because of this and Lemma 3.8 (i), (ii) it is clear
that the assumptions of Proposition 2.6 hold with ¢ = ¢’ and

and R, r = v/n||Ryrloos

— 1)1 &
Vaor =|U —‘— g e
n,F || FHOOO’% \/ﬁ £ 7

so that

11 ¢
PF(||UF||00;2]%Z@¢ + Vil Rarlle £@) = Qr(@)| — 0 VazeR
F i=1

with QF as in Lemma 3.8 (i). Now it is evident by the above and by Lemma 3.8 (iii) that the
family

sup
FeM’

11 ¢
{(!\UFIIOO%%|\/H Z;e VIR Elloe) o F € Gy }
satisfies the assumptions of Proposition 2.4 with ¢ = ¢’. Moreover, as was mentioned above, the
family {(v/n||Fn — F|loo)n>2: F' € G~} fulfills the requirements of this proposition as well for
any value of o > 0.

Thus, by Corollary 2.5 there is a ¢ > 0 such that for every ¢ > 0 and § € (0, 1) there is a positive
constant C(e, ) with

PF( V’j/ﬁ - b(F)’ > eb(F)) < Po([|Fupes — Flloo > €b(F))

11
< Pr(IUrlke ], D

+ [ Rp,F

loo + | Fn = Flloo > eb(F)) <6

for all F' € Us(Fp) \ {Fo} and all n € N, n > 2, with n > C(e,8)/b(F)2. Note that we may take
~ /
0 = ¢ here. O

Finally we are ready to determine the limiting (as @ — 0) Pitman ARE of (W), yes)n>2 with
respect to (Vp, res)n>2-

Theorem 6.6
For Thy, = Wi, res and Tay = Vi res, 1 > 2, it is

A0 F e Gy w\{Fo}, Ni(a, B, F) a0 Fegyqw\{Fo}, Ni(a, B, F) - A1
dg,y,w(F,Fo)—0 dg,y,w(F,Fp)—0

for every value of B € (0,1).

108



6 The limiting Pitman ARE of the two tests in stable autoregressive models

Proof. The statement follows from Theorem 2.3 once we have made sure that all of its as-
sumptions are satisfied here. But we have already shown that the sequences (W res)n>2 and
(Vn,res)n>2 satisfy condition (i) of Theorem 2.3. Moreover, as was mentioned in subsection 4.1
the distribution functions of the random variables W in (6.5) and V in (6.8) are strictly increasing
on (0,00), so that condition (ii) also holds. To verify condition (iii) of Theorem 2.3, note that
0 <b(F) <||F = Folloo = di (F, Fp) for every F' € Gy \ {Fo}, and

lim dK(F, F()) =0
FeGq,~y,w\{Fo},
dg,~,w(F,Fo)—0

by Corollary 6.3 (ii). The last assumption of Theorem 2.3 is again trivially satisfied here, since
the approximate Bahadur ARE of the two sequences does not depend on F' € Gy \ {Fo}, cf.
Proposition 6.1, and this concludes the proof. O

As the limiting Pitman ARE of Wy, res)n>2 With respect to (Vi res)n>2 is strictly less than one,
the sequence of tests based on (Vy, res)n>2 is preferable to the one based on (W, res)n>2. Recall
that for certain distribution functions Fy the explicit value of the ratio Aj/A; is given in Table 1
on page 39.
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6.2 Composite null hypothesis

Fix ¢ > 2 again. In this subsection we assume that @ is the Dirac measure on 0 € RP, so that
So = (0,...,0)" € R Pp-almost surely for every F € G¥. Thus, (X;)i>1-p is either the AR(p)

process of model 1 with starting values Xo = ... = X;_, = 0, or the stationary AR(p) process
of model 2.
Suppose again that the errors ey, es, . .. are independent and identically distributed with common

distribution function F' € g};, but that F' is unknown to us. In this subsection we consider the
problem of testing the composite null hypothesis

Ho: Fe Fr = {FT(é>: o€ (0,00)} versus  Hy: F e G\ Fr, (6.17)

where F; is as in subsection 4.2 the distribution function of the exponential power distribution,
and 7 > 0 is kept fixed. Since F: is centered, has moments of all order, and its Lebesgue density
fr is uniformly continuous, it obviously is an element of G7. But if G € G, then it is easily
checked that every scale variant G(-/c), ¢ > 0, is contained in G as well. Consequently, F is
indeed a subset of Q;.

Adopting the notation of subsection 4.2, we set

1
F(z,0) = F; (£> and f(z,0):=—f; (E)
o o’ \o
for every o € (0,00) and = € R, suppressing again the dependency of F(z,0) and f(z,0) on T,
as this is held constant.

As before, we will use the residuals
eni = X; — ﬁz;Xifl, 1<i<n,

based on observed data Xg, X1,...,X,, n > 2, and some suitable sequence of estimators (py )n>2
for the unknown autoregressive parameter p in equation (6.1) to construct test statistics for the
above testing problem. Again, we will consider in the following only such estimators p, that
satisfy

Vn(pn —p) = Op,(1) asn — oco. (6.18)
As already mentioned, the least squares estimator p&° for example fulfills this assumption.

Analogously to the case of independent and identically distributed data discussed in subsec-
tion 4.2, we will estimate the scale parameter o of the family F. by

R R R R I BN Vs
On,res = Un,res(enla ceey 6nn) = Tl/ (ﬁ Z ’enl| ) , n>2. (619)
=1

Thus, the estimator 6y, es is the residual-based version of the maximum likelihood estimator &,
for o based on independent and identically distributed observations, cf. (4.17). Note that 6y, yes =
0 is equivalent to é,; = 0 for all i = 1,...,n. Thus, on the event A, :={é,;, =0Vi=1,...,n}
the estimator &y, es is not contained in the parameter space (0, 00). But since A,, C ﬁn’res with

Q ={ min é,; <0< max €,;
n,res {lgign ni i<i<n m}v

it follows from Lemma 5.11 that Pr(A,) < Prp(Qyres) — 0 as n — 0o. Hence, for all asymptotic
investigations under the fixed probability measure Pr it suffices to work on A,, and therefore
we will assume henceforth that A, holds, which is equivalent to &y, res € (0, 00).
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

For testing (6.17) we will use the residual Cramér-von Mises statistic with estimated parameter
Wr?,res = n/ (Fn,res(ﬁ) - F(xu a'n,res)) F(dCC, 5'71,7”65)
—00
and its counterpart
o © ~ 2
Vn,res = n/ (Fn,res (x) - F(x76n,res)) F<dx76n,res)
—0oQ
based on the centered empirical distribution function of the residuals.

Analogously to the verification of the scale invariance of the test statistics 17\/\,? and 17712 in the
case of independent and identically distributed data discussed in subsection 4.2 we can show that
both of the above test statistics are scale invariant with respect to the residuals, which means
that

— . R —y  (ém bm
Wn,res(enlv SR 6nn) = Wn,res (7, ey
C &
and ) )
152 ~ ~ 32 €Enl Enn
Vn,res(enla R enn) = Vn,res <7, ey 7

for every ¢ € (0,00) and n > 2. For the latter equality to hold on 2, we assume analogously to
the case of independent and identically distributed data that V2 _. is defined on Qp res in such

n,res
a way that it is scale invariant with respect to the residuals on this event as well.

Suppose henceforth that the estimator p, is scale invariant, i.e.,

X X
pn(Xiops s Xn) :,an( ; an) Vee (0,00), n>2. (6.20)

Then the residuals are scale equivariant, since

1, D, Y. ¢ X\T1 . Xi- X
*em'(Xl—py--an):J_Pn( : pv"': n) 7Xi—1:eni( ! pu"'v n)
C C C & C C

for every 1 <i <n,n > 2, and ¢ > 0. As a consequence of this, the test statistics W2 and

n,res
]j 2

nores are scale invariant with respect to the underlying data Xo, X1,..., Xp, n > 2.

Now consider X; := Xi/e, i > 1 — p, for some fixed ¢ > 0. The process ()?i)izl—p obviously
satisfies B B N

Xi=mXiaa+...+ppXip+eé, i2>1,

with €; = e;/c and py1,..., pp as in (6.1). Moreover, we have )Nfl,p =...= )N(O =0if (X;)i>1-p is
the AR(p) process with starting values X1, = ... = Xy = 0, so that in this case both (X;)i>1—p
and (X;)i>1_p are AR(p) processes that start in zero, but the sequences of error variables differ
by the scale factor c. If (X;)i>1—p is the stationary AR(p) process instead, then by using its
MA(o0)-representation (5.3) we get that

X, = Z%‘éi—j Vi>1-p, (6.21)
=0

where é; = ¢;/c for all i € Z, and the convergence of the series is as before in mean square as
well as absolutely with probability one under every Pp. It is evident by this representation that
(Xi)i>1—p is the stationary AR(p) process with respect to the sequence (€;);cz of error variables.
Thus, in both of the models considered here the differences between the processes (X;)i>1—p and

(Xi)i>1—p solely result from changing the scale of the underlying sequence of error variables.
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

Remark 6.7: Note that the least squares estimator p~¥ is scale invariant, i.e., it fulfills (6.20).
To verify this, recall that

n + n
oS = i (Xip, s Xp) = (Z XileiT_1> d XiaXi, n>2,
=1 i=1

with BT denoting the Moore-Penrose pseudoinverse of the matrix B. As the Moore-Penrose
pseudoinverse satisfies (cB)* = ¢! BT for every ¢ € R\ {0}, it follows that

pre A r O\t e "1 lor \tee1 X;
(Kicpe s Xo) = S (XX ) Yo XX = (3 - XX, ) > X ™!
i=1 =1 =1 =1

_ ALS<X1—p XN>

— gy

" c c

for all ¢ > 0. ¢

We will now construct asymptotic level « tests for the testing problem (6.17) based on the test

statistics anes = ()/V,?,nes)l/2 and ﬁnwes = (Vﬁres)l/z. By what was mentioned on the previous

page, it suffices again to assume that F' = F; under Hg in order to determine the asymptotic
null distributions of these statistics.

Let us start by showing that under the measure P, the scale estimator &, ;s admits the same
asymptotic linear expansion as &, in the case of independent and identically distributed data,
see (4.20).

Proposition 6.8
Suppose that F = F; and the sequence (ppn)n>2 satisfies (6.18). Then

. . 1 _
Un,res(enla .. ‘767171) —1= E Z:L(ez) + OPp,_ (n 1/2)7

where L(z) = |z|” —1/7, z € R.

Proof. For every n € N, n > 2, it is

n n

R T . /T T .

On,res — 1= <E Z ‘enir) - 11/T = 9r (ﬁ Z |eni‘T> - gT(l)
i=1 =1

with g, (z) := zV/7, x € [0,00). Since g, is continuously differentiable on (0, 00) with ¢’ (z) =

(1/7)z'/7=1, it follows from the mean value theorem that there is a &, between 3" | |é5|"
and 1 such that

Unres -1 —97— fn ( Z‘emr )
:gT (

n

Z euil” = 1) + (g-(6) = 9, (1) (= X el — 1) = L + 1L,

izl i=1

3\*1

Now

1/7T s 1
b= 2 (2ol 1) = el 2
1=
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1 <& 1 1 <& 1 <&
_ n;(w -—)+ (n;lémr - n,Z;'ei'T)’
1= 1= 1=

so we need to show that

n

1~ 1 _
- ; |éni|” — - Z les|” = opy, (n 12y as n — oo. (6.22)

i=1

Assume now that (6.22) holds. Then (6.22) and the strong law of large numbers imply

T n 1 n 1 n 1 n
IS enil =7 (> D lewl” = =D leil + =Y lel”) = 7Eg(el) =1
n “ n 4 n 4 n “ n—r00

=1 i=1 i=1 1=1

in Pp_-probability. Thus, (6.22) yields

IIn = (g;(fn g‘l‘ ( Z |enl“r — Z ‘67,|T Z |ei|7 o 1)
i:l
= OPp, (1) (OPFT (TL 1/2) + OPF.,- (n_1/2)) = O0pp,_ (n_1/2)a

where Z3 7" | [e;|" — 1= Op,,_ (n~1/2) is easily seen to be true with Chebychev’s inequality.
Thus, it only remains to verify (6.22), which is equivalent to
1 n
Ay = 7n ;Gém\T —lei|™) = op,. (1) as n — oc.
Since Pr_(e; # 0 for alli € N) = 1, we will assume that |e;| > 0 for all i« € N. Now observe
that the function h,(z) := 27, x € [0, 00), is infinitely often differentiable on (0, 00) and Al (z) =

7271, Thus, by the mean value theorem for every i € {1,...,n} there is a (; between |é,;| and
le;] in (0, 00) such that

1 n
= —= > hi(G)(Iéni| — el
1 — 1 -
= h;(’ei‘) |Eni| — |52| h/ (G) — h, (leil)) (|enil — leil

z:l
=: An,l + An’Q.

First, we will investigate A,, 1. It is

n
T 1
Apg = \/ﬁ; leil ™ (1énil — leil)-

Now for every § > 0 and n > 2 set D,, 5 := {maxi<i<p |éni —é€;| < §}. Note that Pg,_ (D, ) = o(1)
as n — oo for every § > 0 by part (ii) of Lemma 5.8 (consider the singleton M = {F.} there).
On D, s we have

n n
Apg = % D el (Eni =€) e 5oy + ﬁ > e (lens] — leil) 1—s<e,<sy
=1 i=1
n
+ % Do ledl ™ e = eni) Lo, <—ay
=1
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\f Z |61|T 1 em - ez) (l{e >0} 1{e,< 5} \f Z |ez|T |em‘ - |el‘)1{ §<e; <6}

R(“(S + RO,

It is
Ry = n > (= pn) Xicaleil ™ Loy = Herea) = (0 = pn) " ZXZ 18 (6.23)
i=1
with &; := |eg|7! (1{€i>5} - 1{ei<_5}), i € N. Now note that under the measure Pr. we have

that X,;_1 and ¢; are independent and ¢; is square-integrable. To verify the latter, observe that
lei] < 677! for 7 € (0,1). If 7 > 1, then Eg_(¢?) < oo since F, has moments of all order.
Furthermore, we have

Er, (ei) = Ep, (leil ™ " essy) — Er (I — & ' _einay) =0

by the symmetry of F,. It follows from this that under Pr_ the sequence of random vectors
(Xi_1€i)i>1 1s a square-integrable martingale difference sequence with respect to the filtration
Fi=0(Xi—p,...,Xo,€1,...,€),1>1, Fy :={0,Q}. Hence, by Markov’s inequality we get for
every C' € (0,00)

2
n E n i 1E; n 2
1 FT( i=1 18 > Y B (IXiaeil?)
Pr, (Hﬁ ZXFI& = C) = nC? B nC?
=1
_ Ep (1) XL Er (X1 ]?)
N nC?
< Ep, (e)K
<=

since (Er, ([[Xi-1[?)),s, is bounded by some constant K € (0, 00), which follows from Lemma 5.5
(i) by considering M = {F;,} there. Thus, we have shown that

1 n
— Xifléi = OP (1)
It follows from this and (6.18) that
R\ = Op, (n"Y*)0p,. (1) = op,. (1). (6.24)
Combining all this, we have for every €, > 0

PFT(’An,l‘ Zf) <PF ({|An1’ > E}mDné) +PF (Ené)

— PFT({|R“6+R“ | > €} N Dys) + Pr, (D)
< Pr.(IR5| = ¢/2) + Pr. (IR §| = ¢/2) + Pr, (Day)
Pr, (IR g| > ¢/2) + o(1) (6.25)
as n — oo. But
R < fupn pr\;ezr Xl s<e <o (6.26)
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so that for every €,0 > 0 and 0 < ¢ < o0 it is

Pr (IR)] > €) < Pp, ({|RY)

on = pll < c}) + P, (Vnllpn = pll > c)

n

Pr, (3 le ™ Xict 1 seeizay > ne/(76)) + Pr (Vall pn — pll > ¢)
=1

n

TC _ .
< > Er (leal™ s<er<ey) B, (IXicall) + Pr. (Vallpn — pll > ¢).
i=1
Now using Lemma 5.4 (i) with M = {F,}, there is a K > 0 such that

Er, (|Xi1]) <K VieN.

Moreover, it is

8 é
T—1 T—1 T—1 2 T
B (leri]™ cscar<oy) =2 | @7 fr(@)de <20 frlloo [ 27 dw = = frllood.
0 0

Thus, we have

2C\|f7||oo

P (IR =€) < 8" + P, (Vnllpn — pll > ¢). (6.27)

Combining (6.25) and (6.27) we get for every ¢,6 > 0 and 0 < ¢ < 00

4 K
lim sup PFT(|An71] > 6) < M(V + lim sup P, (\/ﬁHﬁn —pll > C).

n—»00 € n—00

By letting ¢ tend to zero first and then c tend to infinity, it follows with (6.18) that A, 1 = op,_(1).

It remains to study

LS ) — h.(le; €ni| — |ei
Ao = \/ﬁ;(hT(Q) He(leal)) (1eni] = leil)-

First assume that 7 € [2,00). It is h”(z) = 7(7 — 1)2" "2, 2 € (0,00), and by the mean value
theorem there is an 7; between (; and |e;| such that

’A 277: Q‘CZ |62|‘ “€m| ‘eiH

— Jesl|?

T(r—1 R _
< T ;max(‘em“, ‘ei‘)
n

(T —1 —2
s el s )3

i=1

IN

éni — 67;‘2. (628)

Now note that for all 7 € (0, 00)

n

n
R 2 R _
ni = €i|” < 1pn = pI* Y IXio1|® = Opy, (n1)Op,, (n) = O, (1) (6.29)
i=1 =1

by (6.18) and Lemma 5.5 (ii) (consider M = {F;} again). For 7 = 2, this immediately implies
that A, 2 = op,_(1). To handle the case 7 > 2, we have to work some more.
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For every 7 € (0,00) it is

max |e;| = op,_(n %) for every &> 0. (6.30)
1<i<n

To see that this is true, note that for every ¢, > 0 it is

Pp, (121%>%|6¢| > n‘se) < nPp, (le1| > née) = nPFT(|el|2/5 >n 62/6) < EFT(|61|2/6) — 0

n2 2/5 n—00

using that F’. has finite moments of all order. It follows from this that

< — e . 5y _ 5 .
1121;a<x |€nil 1r£1ax |éni — ei] + 11;1%><§1|ez| opg_(1) +op,_(n°) = op,_(n") (6.31)

for every § > 0 using Lemma 5.8 (ii) with M = {F;}.
Coming back to (6.28) for 7 > 2, we see that by (6.30) and (6.31) it is

el = = Hog, (10)0r, (1)

for every 0 > 0. Hence, choosing ¢ € (0, 1/2], this yields A, 2 = op, (1) for 7 > 2 as well.
Now consider 7 € (1,2). Then

1 . !/ N B . X 5 o )
[ An2| < NG ;:1\117((@) e (leil)] - |[éns] — lesl|
T N =1 m=1] s . . T e =
= \/ﬁ;‘g el ‘ ‘em ez' < Jn ;Zlkz |€z|‘

-1 . 1 7T
: }enz 61‘ < (121?3%|6m €z| T Z

éni — €il

ez} = 0Py (1)

because of Lemma 5.8 (ii), 7 > 1 and

> Jéni = ei| < llon = pll D IIXicall = Opy, (07 ?)Op,. (n) = Opy, (n'/?),
where we used Lemma 5.4 (ii). Thus, A, 2 = op,_(1) also for 7 € (1,2). As A, 2 =0 for 7 =1,

we now have verified (6.22) for every 7 € [1,00).

It remains to verify (6.22) for 7 € (0,1), i.e., we have to show that

1 K s B}
An:\/ﬁ;(’&m" — leg] ):OPFT(1)7 7€ (0,1).

For every ¢ > 0 it is

Ay \/» Z |€m‘ |€7,| 1{|61\<5} +— \/» Z |€n7,| T(‘€i|))1{\ei|>5} =: Bn,& + Un,§-

Recall that D,, 5 = {maxi<i<n |éni — €i] < J}. On Dy, 5/5 we have

1 & X 1 & X
W ;hﬁ(&)(\em‘ — lei]) 1je; >0 = NG ;h;(lei\)(em — i) (Lge;>0y — Lies<—s})

116



6 The limiting Pitman ARE of the two tests in stable autoregressive models

1 - / / N
t ;(m@ — (i) (12ni] = ledl) Lesjs)

with & lying between |é,;| and |e;|, i = 1,...,n. Another application of the mean value theorem
gives

IR o _
Un,é—\/ﬁ;hf(’@’)(em ez)(l{ei>6} 1{e¢<76})

+ \/15 ;hZ(Ci)(Ei — leil) (1nil = leil) Lije;j>61 =: Sns + Tnis,

where (; lies between &; and |e;| and thus between |é,;| and |e;|.

Now note that S, 5 = RS)& with RS)(; from (6.23), and it has been shown in (6.24) that RS)(; =
op_ (1) for all 7 € (0, 00).

Moreover, on D, 5/5 we have

A~

2
eni = i Lje|>s)

1 n R -1 n O\NT—2
T,5] < \/ﬁ; B2 (G éns — €] Tqjeuj>ay < 7 n | Z;(z>

SN\NT27|T — 1| &

<G) X

using (6.29).

3

A 2
€ni — ei} = OPp, (1)

We still have to investigate B, 5. A short computation shows that |y — 27| < 27 |y — x| for
every z,y € (0,00) and 7 € (0,1). Note that for y = 0 this inequality is trivially fulfilled. By
applying this inequality we get

" 1 &
|Busl < —= > leil ™Y enil — leil|Lqei<sy < —= D leil ™ |éni — €il Lje, <5
\/ﬁ =1 \/ﬁ =1

A 1 &~ e
< Hpn—PHﬁZ\GiV 1”Xi—1H1{\ei|§5}a
i=1

and the right-hand side of the last inequality is equal to the upper bound in (6.26) up to the
factor .

Combining all this, we finally get for every ¢,6 > 0 and ¢ € (0, c0)

Pr, (|Anl 2 €) < Pr, (1Bas| 2 €/2) + Pr, ({{Uns| = €/2} 0 Do) + Pr, (Do)
. 1 & e
< Pr (l1on = pll 7= D leil" Xt gegs) 2 €/2) +o()
=1

4c K R
< 2R s 4 b (il — ol > ) + (1)

analogously to the derivation of (6.27). By taking the limit superior of both sides and afterward
letting first d tend to zero and then c¢ tend to infinity, the desired result follows. O

Note that the previous proposition implies the consistency of &y, res under Hp, since

PFT(-/J)(|0A'n,res - U| > 6) = PFT(|5'n,res - 1| > 6/0) — 0

n—oo

for every €,0 > 0 using the scaling properties of 6, res and of the residuals.
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Now consider F' = F- again. For every x € R and n > 2 it is

\/H(Fn,res(x) - F($7 a'n,res)) = \/E(Fn,res($) - Fn(x)) + \/H(Fn($) - F($7&n,res))a

and by using (6.3) it follows that ||\/n(Fy res — Fn)|loo = 0 in Pp, -probability. Additionally, we
n
have .
Vn(Fn() = F(6nres)) — Z in D[—00,00]

under Pp_, where the process Z is as in (4.21). This is proven analogously to the functional
central limit theorem (4.21) by using the differentiability of the mapping in (4.18) and the linear
expansion of the estimator &, res, which has just been shown in Proposition 6.8. Hence, we get
by Slutzky’s theorem that

Vi (Fppes(:) = F(-,6n0es)) — Z in D[—00,00]

n

under Pr_, and Z is a centered Gaussian process with continuous sample paths and covariance
function given in (4.23).

Moreover, for every x € R and n > 2 it is
\/ﬁ(ﬁn,res<x) - F(.%, a'n,res)) = \/ﬁ(ﬁn,res(x> - FT<x)) - \/ﬁ(F((IZ, &n,res> - FT<37))
_ \/15 S Yi@) + Rin(@) — Vi (F(2,60pe) — Fr(@))  (6.32)
i=1

using (6.6) with F' = F, where

Y;(a?) = 1{61536} — FT(a:) — UFTz(x) €, 1€ N,

oy

and || Riy||oo converges to zero in Pr, -probability. Furthermore, it follows from the differentiability
of the mapping in (4.18) and the linear expansion of &, res shown in Proposition 6.8 that

V(F(@,6npes) — Fr(z)) = \/15 S A@)L(es) + Bon(2) (6.33)
=1

with A as in (4.19) and ||R2,|/c converging to zero in Pr -probability. Combining (6.32) and

(6.33), Slutzky’s theorem implies that the processes \/ﬁ(Fn’res() — F(, &n7res)) and
1 n
—= > (Vi) = A()L(es) (6.34)
vn i=1

have the same asymptotic distribution in D[—o00, 00| under Pg_. Now observe that the summand
Yi(-) — A(-)L(e;) of the latter process is just the process in equation (2.17) in Genz [11] in the
special case that F(-,99) = F;, L(e;,¥9) = L(e;) and A(x,v9y) = A(x). Hence, it follows from
the proof of Satz 2.6 in [11] that under P, the process in (6.34) converges in distribution in
D[—00, 0] to the process V' from (4.24), which implies that

= ~ L .
\/E(Fn,res(‘) - F(7 Un,res)) 7) V in D[_OO7 OO]
under Pr_, and V is the centered Gaussian process that already appeared in (4.24). For autore-
gressive processes of order one, the functional central limit theorem for the residual empirical
process with estimated parameter based on F), ,.s has been established in a general setting by

Genz [11], see Lemma 3.8 and Satz 3.9 in [11].
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Now recall that we have shown in (4.26) that [,. |zf/(2)|dz < co. Hence, an application of
Lemma 2.5 from Hérmann [15] in combination with Example 2.6 from [15] and the continuous
mapping theorem yields

_ 00 /2

Wh,res =, ( / Z (x)2FT(da:)) =W (6.35)
and

N ¢ % ) /2

Vn,res — (/ V(Hf) Fr(d'f)) =V (636)

under the measure Pr, . Note that the random variables W and V already appeared as the limits
in (4.27) and (4.28). Hence, we can construct tests of asymptotic level a € (0, 1) for the testing
problem (6.17) based on W, yes and Vy, res just as described in subsection 4.2 for the case of

independent and identically distributed observations, where we used Wn and 9n instead.
For the following investigations, we require again that ¢ > max(2, 7).

Recall that in subsection 4.2 we have studied the equivalence relation
F~p G < F(m(F)-)=Gm(G)") (6.37)

on Gy, where m,(F) = (1 [, |z|"F(dz))Y/™ € (0, 00) for every F € G,. Since G, is a subset of Gy,
this relation is obviously an equivalence relation on G, as well, and

[Flr:={GeGy:GrrF}={F(/c): ce(0,00)}

is the equivalence class of F' € gg under it. Now note that it follows from the considerations on
page 111 that the mappings

Fr PpoW,, ., and Fw PpoV,

from G into the set of probability measures on B* are compatible with ~g. As in subsection 4.2,

o~ o~

this implies in particular that the power of the tests based on (Wi, yes)n>2 and (Vi res)n>2 1S
invariant with respect to the scale of the underlying error variables, so that for every fixed o, 5 €
(0,1) the relative efficiency Na(«, 3, F)/Ni(a, 8, F) of (Wn,res)nzg with respect to (9n,ms)n22 is
invariant on the equivalence classes of ~g. Hence, for investigating the asymptotic behavior of
the relative efficiency when the alternative approaches the null hypothesis we need to identify
distribution functions deriving from the same scale family again. For this reason we will study
the well-defined mappings

[F]R — Pr OW;}“GS and [F]R — Pp 0971

n,res

on the quotient set GY/~p:= {[F]g: F € G/}. Similar to before, the set

QV;‘ = {F(m.(F)-): Fe g};} ={Fegl: 7 [plal F(dr) = 1}

is a complete set of equivalence class representatives of the relation ~r on G;. Thus, for the
investigation of the asymptotic behavior of Na(a, 8, F)/Ni(«, 3, F) we assume henceforth that
the distribution function F' of the variables (e;);en is an element of 63;, and consider in the
following the testing problem

Ho: F=F, wversus Hy:FeGl\{F}. (6.38)

Note that the asymptotic level « tests for (6.17) based on W\nmes and ]7n,res obviously are asymp-
totic level « tests for this testing problem as well.
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We will show now that the sequences (17\/\%7"65)71>2 and (ﬂwe&,)n>2 are standard sequences. Re-
call that we have to verify conditions (BI), (BII) and (BIII) for this. But as the first two of
these conditions only concern the distribution of W and 17, we have already checked them in
subsection 4.2. Therefore it only remains to show that (BIII) holds for both sequences. For this,
consider the functions

b: GU\{F.} 5 F (/

—00

o

(F(z) FT(x))QFT(dx)>1/ e (0,1
and

bnes: GA(FY 5 F o (

—00

[ee]

1/2
(F(z) - F(, an,m))QF(d:c,ﬁn,m)) P01, n>e2

Now let F' € G\ {F;} and n > 2. Then

o~ —~

e e < P

and by Minkowski’s inequality we have

_ bn,TCS(F)’ + [bares(F) = b(F)] (6.39)

—~

Wn,res o 2 ~ 1/2
\/ﬁ - bn,res(F)‘ < (/_Oo(Fn,res(x) - F(m)) F(dxaan,res)) < HFn,res - FHom (640)

where || F}, res — F'|loo = 0P, (1) because of (6.4). Analogously, we get

]771,7“63 ﬁn,res
B~ 0(F)| < [T b (F) | [ (F) = O(F)
< | Fnres = Flloo + [bures(F) = b(F), (6.41)

and the functional central limit theorem (6.7) implies that HFVn,res — Flloc = op,(1). Hence, to
complete the verification of condition (BIII) for both sequences of test statistics, it remains to
show that

|bnres(F) — b(F)| = op. (1) asn — oo (6.42)

for every F' € C?g\{FT} But since by, yes(F') —b(F) = T (6n res) — T (1) with T, as in Lemma 4.9,
it follows by this lemma that (6.42) results from 6,5 — 1 as n — oo in Pp-probability for
every F' € Gi'\ {F:}. In order to show this, we need some additional results.

The following lemma is a generalization of Lemma 5.4 (i) and Lemma 5.5 (i) to arbitrary powers.

Lemma 6.9
Let M be a nonempty set of continuous distribution functions that are centered and have finite
second moments, and let s € (0,00). If suppeps [p [2|°F(dx) < oo, then

sup Er ([ Xs]|°) = O0(1) as i — oc.
FreM

Proof. Consider first s > 1. Let us investigate the sequence of Lg norms
IXillz,,p = Er(1Xll*)*, i >0.

The statement will follow if we show that the sequence (||X;|L, )
F € M. By the representation (5.5) of X; we get

i>0 is uniformly bounded in

i
IXillzor < 1AXKollz,r+ Y 147 el
j=1
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

i
, -
call A4l XollL.r + Y call Al leiri—jlz..r
j=1

s 1/s & j
casup [Xollor o+ ca(suw [ Ja*F(dn) "3 Al
FeM FeM JR =

IN

IN

for every i > 0 and F' € M using ||A[|a < 1. It only remains to show that suppc,/ || Xol|z,,F is
finite. Now recall that either X = ... = X;_, = 0, in which case there is nothing left to show, or
Xy is the vector of starting values of the stationary AR(p) process. Let us investigate the latter
case. By the equivalence of norms in R? there is a positive constant ks such that [|z|| < ks||z]|s

for all x € RP, where
P

1/s
Il R 2@ (M) T e R,

i=1
Hence,
1Xollz., 7 = Er(1Xol|*)/* < ks Ep(I[Xol[3)"/* = ks p™/* Ep(|Xo[*)"/*,

using the strict stationarity of the process for the last equality. By the MA(co)-representation
(5.3) we have

Xo = Z Yje—j; (6.43)
i=0

where the series converges with probability one under every Pp, F' € M. We will show next that
the series also converges to Xy in s-th mean under every Pp. For this, set

Zn =Y thie_j, n>0. (6.44)

Obviously, |Z,| <377, [¥jlle—;|. If s > 1, then by Hélder’s inequality it is

2 < (S tillesl)” < (10l S eyl
j=0 j=0 Jj=0

with r = s/(s — 1). Hence, for s > 1 we have Ep(|Z,|*) < oo for all n > 0, since Ep(le1|?) < oo
by assumption. Furthermore,

sup EF(’Zm_Zn’S) < sup Z W)J’EF |6*J| )1/8 ’e| 1/5 Z W}J =% Y

n—00
m>n m>nj 1 j=n+1

since 72 [¥)j] < oo because of (5.4), and so by the Cauchy criterion the sequence (Z,)n>0
converges in s-th mean with respect to Pr towards a random variable Z with Ep(|Z]°%) < oo.
Since limy, o0 Z,, = Xo Pp-almost surely as well, it follows that Pp(Xo = Z) = 1. This yields

Ep(|Xo[")"* = lim Ep(|Z,[*)"/* < lim ZWJAEFG&A ) =Er(lel)* Y
=0

Sup/\m| Fdx Z|¢]]<oo

for every F' € M, which concludes the proof of the case s > 1.
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

Now let s € (0,1). Again with (5.5) and ||A|4 < 1 it is

7
X3l < callXoll + > call Al Heiri—j| Vi >0,
j=1

and using that the function hs(z) = 2%, = € [0, 00), is subadditive, this yields

s s s s s ! s(j—1
Ep(|X:]*) < ¢ Er(IXoll*) + ¢4 Er(ed®) S 11457
j=1

o0
< s sup Er(Xol) + ¢ sup [ [al*F(do) Y- Al
FeM FeM Jr =

for every ¢ > 0 and F' € M. Therefore it only remains to verify that suppc, Ep(||Xo||®) is finite.
But if Xg = ... = X;j_, = 0, there is nothing left to show. Hence, let us examine the case that
Xy is the vector of starting values of the stationary AR(p) process. Then it is for every F' € M

Er(|Xoll") = Er(( 3" X7 ;)% <Ep(Y_ 1X1-,) = pEr(1Xof),
j=1 Jj=1

using that 0 < s/2 < 1 and the strict stationarity of the process. By the MA(co)-representation
(6.43) of X we get

5) — : sy — : s\ < : NE s
Ep(1Xol*) = Ep(| lim Z,[*) = Ep(lim |Z,[*) < Ep(lim » |u;[*le—;|°)

j=0
n o0
= lim vi|°Ep elsgsup/xstx Uil® < oo
i 358 Er(eal) < s [ 1R Yo

with Z, as in (6.44), where we used the monotone convergence theorem and once more inequality
(5.4). Hence, the statement follows for s € (0,1) as well. O

For the following investigations let us introduce the condition

sup / |z|" F(dz) < o0 (6.45)
FeM JR
for a set M of distribution functions. Obviously, (6.45) is just (3.9) if 7 =1 and (3.6) if 7 = 2.

The next lemma provides a means to establish the convergence of 6, res to 1 in Pp-probability.
Its statement is formulated to hold uniformly in a set M C G/, and hence more general than
needed here, because we will use the uniform result later on.

Lemma 6.10 N
Suppose the nonempty set M C G is such that (6.45) holds. Moreover, assume that the sequence
of estimators (pn)n>2 for p fulfills (5.8). Then

1 ¢ 1
— E |énil” — — E lei|” = 0p(1) in M as n — oco.
n n

i1 i=1

Proof. First, note that by (5.8) it is ||pn — p|| = OB (n~/2) = 0l4(1), whence it follows that

160 — pll = (1) ¥ s € (0,00). (6.46)
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

Consider now 7 € (0,1]. Then ’|£L'|T —|y|"| < |z —y|™ for all z,y € R, so that

1 n 1 n 1 n . 1 n
’n;‘ém"r B ﬁz |énz‘7— - |€i|T‘ < EZ‘ém - 52“ < ”,an - p!Tn; ”Xi_luT.

=1 1=1 =1

U

It is easily seen with Lemma 6.9 and Markov’s inequality that 2 " [|X;_[|” = O%(1). In
combination with (6.46) this yields the statement.

Now let 7 > 1. Note that the function h.(z) = 27, = € [0,00), is |7]-times continuously
differentiable on [0, 00), where |7] = max{n € N: n < 7}, and

MO (@) =7(r—=1)-...-(r—k+1)2"F 1<k<|7]

By Taylor’s theorem we get

o) — ()
L7]— 1h(k)( ) 1 1
-y <y—x>’f+(m_1),/o< D (@ — ) (y — )
k=1
L] (k
_Zh — )k
1
+ (Hll), /O (1= (WD (@ 4+ (g — ) — I (@) ) du (3 — )
for every z,y € [0,00). Hence,
et = lea)| =[5 el = ot
) =1

n (k
< L3S B i g

=1 k=1
1< 1 ! )= (3 (7)) ; (L7))
+1nZ<m_1y (1= (B0 e+ ]~ le) = 147 )
i=1 /0
- (|énil = les) !
=1, +1L,.

First, we investigate I,,. It is

[7] n k L] n
I, < Z Zh (lei]) - |€m‘ |€iH Z Zh(k (lesl) - ‘em - ez’
LTJ 1 & LTJ
< ) clB)llpn — P\lkﬁ Dolel ™ IXia P =) A
k=1 i=1 k=1

with ¢(k) := (7(7—1)-...-(—k+1)) /k!. Now condition (6.45) implies that suppc s [ [#]"F (dz)
is finite for all r € (0,7) by Lyapunov’s inequality. Thus, it follows from Lemma 6.9 that for
every k =1,...,|7] there is a K(k) € (0,00) with

sup Ep(||X;_1|*) < K(k) VieN.
FeM
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

Hence, for every F € M, C >0and 1 <k < |7] it is

1 ~
Pe(> Zw FRalF =€) < G R swp [ el R) < o,

FeM

which implies that
1< _
=D leidl™ Xl = 0p(1).
i=1
It follows from this and (6.46) that A, = o(1) for all k =1,...,|7], so that I, = 0% (1).

It remains to study II,,. Observe that for integer-valued 7 it is h(Tm)(x) = 7!, so that II,, =0 in
this case. If 7 is not integer-valued, then 7 — | 7| € (0,1), and using again Hx|T_m - |y|T_LTJ| <
ly — x|~ for all z,y € R, we get

n

1 1 1

727 _ o=t (D (. 5l e _ D (.
o ni:l(l_TJ—l)!/o(l ) ‘hT (les] + (Jéns| — lei])u) — Al (Iezl)‘du
|LTJ

IA

eni —ei

(1)) - 1] - Z / O [ R ) g

(7)) - I7) - Z/ W (o] — Jeal)|™

<c(lr])- 7]~

du ‘ém — ei‘ 7]

‘ L]

-
z_ei‘
21

< ellrh) 1)l = o7 S IXical” = 0p(1)0B(1) = o (1)
1=1

because of (6.46) and 2 > | [|X;_1||” = O%(1), as is easily shown using Markov’s inequality
and the fact that suppep Er([|X5]|7) = O(1) as i — oo by Lemma 6.9. O

We are now able to conclude the verification of (BIII) for the two sequences (Wn’res)nzg and

(971’7«63)“22. Note that by using the foregoing lemma with M = {F'} and by the strong law of
large numbers it is

|€m|T - l Z

1= =1 =

1 s T T T
=" lewl™ — Er(leal”) |ez| ~Er(lea]")| = 0r (1)
i=1

for every F € §g Thus,
R R R RN Y 17
Snres(entsortun) = (72 feul™) (T/ el Fda)) " = m(F) =1
ni " R

in Pp-probability for every F' € ,C’Z”;, which implies (6.42).
To recapitulate, we have shown the following:

Proposition 6.11
The sequences (W, res)n>2 and (Vn res)n>2 are standard sequences, and their appmmmate slopes

are b(F)2/A1 and b(F)?/X;, respectively, for every F e g“ \ {E.}, where \; and )\1 are as in

Proposition 4.10. Hence, the approzimate Bahadur ARE of ( mnes)n>2 relative to (Vn res)n>2 08
)\T/)\l
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

— ~

Observe again that the approximate Bahadur ARE of (W, yes)n>2 relative to (Vp res)n>2 is
independent of the alternative distribution F' € Gg \ {F:}, as the function b is the same for

P

both sequences. Moreover, it is equal to the approximate Bahadur ARE of (W),,),>2 relative
to (ﬁn)nzg when testing the same null hypothesis in the case of independent and identically
distributed data, cf. Proposition 4.10. As mentioned in subsection 4.2, it is 5\’{ <A = 1/72 for
every 7 € (0,00), so that \:/A; is always less than one. The values of A} and \:/A; for 7 = 1
and 7 = 2 are given in Table 2 on page 52.

— ~

Our next goal is to show that the sequences (W, res)n>2 and (Vp res)n>2 also meet Wieand’s
condition (WIII). For this, we first need to examine the (uniform) asymptotic behavior of the
scale estimator &, r.s more closely, which we will do on the following pages.

Recall that in subsection 4.2 we used the condition

sup/|$]2TF(dm)<oo, (4.36)
FeM JR

where M is a set of distribution functions. It is evident that condition (4.36) implies (6.45) for
every 0 < 7 < oo (given the set M is the same in both cases, of course).

Lemma 6.12 N
Assume that the nonempty set M C Gy satisfies (4.36). Suppose further that the sequence of
estimators (pp)n>2 for p fulfills (5.8). Then 6y yes —1 = 0%(1) in M as n — oo.

Proof. Obviously, it is sufficient to show

sup PF(|6-71,7"65 - 1’ > E) — 0
FeM n—oo

for every € € (0,1). But for every F € M and € € (0,1) it is

PF(|6'n,7‘es_1’ 26) SPF(|&T _1| ZKTG)

n,res
using inequality (4.37), and

AT AT AT AT
|Un,res - 1’ < |Un,res - O-n{ + ‘O-n - 1‘

Now note that the conditions of Lemma 6.10 are satisfied, so that

. . 1~/
‘U;,res - 0-77;‘ = T’E Z(|eni‘7— - |ei|T)

i=1

= op(1)

by this lemma. Moreover, with Markov’s inequality and Lemma 4.12 (i) it is easily seen that
|67, — 1| = 0'5(1) as well, which concludes the proof. O

Let us continue our investigation of &, s with the following lemma.

Lemma 6.13

Let 0 # M C Q~Z; \{F;}. If T > 1, suppose that (6.45) holds, and if T € (0,1), assume that (3.9)
and suppeps g |27 F (dz) < oo hold. Also assume that (pp)n>2 satisfies (5.8). Then for every
€>0 and d € (0,1) there is a C(e,) > 0 such that

1 n
Pe (| S (el = fel)
=1

for every F € M and for alln € N, n > 2, with \/n > C(€,6)/b(F).

ZGMF»<5
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Proof. Let ¢ > 0, 6 € (0,1) and F € M. Since Pr(e; # 0 for all i € N) = 1 because of the
continuity of F', we will assume again that |e;| > 0 for all ¢ € N.

Observe that it follows from (5.8), i.e., from

lim limsup sup Pr(v/nl|pn — pll > a) =0,

=0 psoco FeM

that there are a(d) € (0,00) and ng(d) € N with

IR

sup Pr(v/nllpn — pll > a(8)) <
FeM

for all n > ng(9).

Consider now 7 € (0,1]. Then |y™ — 27| < 27!y — z| for > 0, y > 0. By using this inequality
we get

S (el e < el

1 n
—leil" <> led™
i=1
1« 1
< =D leil™ Mews — el < llon—pll— > IXiallles ™
i=1 i=1
If 7 =1, then |e1|7"! = 1, so that Ep(|e1|7"!) = 1 for all F € M in this case, and for 7 € (0, 1) it

is suppepr Er(le1|™™!) < oo by assumption. Moreover, since (3.9) holds it follows from Lemma 5.4
(i) that there is a constant K € (0, 00) with

sup Ep(||X;_1]) <K VieN.
FeM

Hence,
1 ¢ ~ T T
Pe(|= 7 (lewil = leal")| = cb(P))
=1
< Pr(a(6) =75 > IXictlles ™™ = €b(F) ) + Pe (vl pn — pll = a(d))
a(é) T—1 1 .
< Er(ler] ™) =75 Y Er(1Xi-1ll) + sup Pe(vallpn — pll > a(5))
e b(F) / P
a(d) I? -1 N
< — sup Ep(ler]” + sup P, n|lpn — pll > a(d
(F) v 2 Fle™) sup F (Villpn — pll > a(9))
<240 s
2 2

for all ' € M and n € N such that

f> max( a(é)f(supp?(\;[EFﬂel\T_l)’ no(é))

It remains to investigate the case 7 > 1. Recall that it has been shown in the proof of Lemma 6.10
that

n + 1y,

‘* ‘enz _‘ei‘T) >
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where

L7] L7]

Z Yo — pllF - Z!ez\T FXinal =) A
k=1

with c(k) = (T(T—l)-...‘(T—k-i-l))/k! for 1 <k < |[7], and

=0 ifreN,

11,
<c([7]) - [7] - on = ol 0y 1Xica |7 if 7 ¢ N

Now by Lyapunov’s inequality condition (6.45) implies that suppeys [p [#|"F(dz) < oo for all
r € (0,7). Hence, Lemma 6.9 ensures the existence of positive constants K (k), k = 1,...,|7],

such that B
sup Ep([|X;_1]|%) < K(k) VieN.
FeM

Thus we have for every k= 1,...,|7]

C a kX
Pr(Aue > eb(F) < Pr( ST S et X1 2 €b(F)) + Pr (Vi — ol > a(9)
=1

) T— k
W F(lel 1+k/2 ;EF X IH )

+ sup Pr(v/nllpn — pll = a(9))
FeM

c(k)a(8)* K (k) Lk .
————~ su z|"""F(dz) + sup P, nl|pn — pll > a(d
(F)nk/2 Fezl\zr R’ | (dz) FGJI\)([ F (Villpn — pll > a(9))
()
<§+§_5

for all ' € M and n € N such that

2c(k)a(8)F K (k) suppens fp 2|7 F(dz)

Vn > max( : : n0(5)>.

b(F)

It follows from this that there is a positive constant C(e,d) so that
Pp(l, > eb(F)) <9

for all F' € M and all natural numbers n with \/n > C(e,d)/b(F).

Let us finally study II,,. As already mentioned, I, = 0 if 7 € N, so there is nothing to prove in
this case. Hence, let 7 ¢ N. By Lemma 6.9 there is a K(7) € (0, 00) with

sup Ep(||Xs_1||7) < K(r) VieN.
FeM
Thus

Pp(Ill, > €b(F)) < Pp ( el Z 1Xi_1||” > eb(F ) + Pr(v/nllpn — p|| > a(6))

n1+7'/2

(|77 ]a(d)™ 1 <&
< B 2y Pl + sup P = 1> )

127



6 The limiting Pitman ARE of the two tests in stable autoregressive models

< WDLJal® K)o pr(alln = oll = a(8))
FeM

e b(F)nT/2
d 9
<§+§_5
for all ' € M and n € N such that
1 2¢(|7])|7)a(d)" K (1)
\/ﬁ> @Iﬂ&){( <o N n0(5)> O

The next result is an analog of Lemma 4.13 for 6y, yes-

Lemma 6.14

Let ) # M C 5}; \{F;}. If 7 > 1/2, suppose that (4.36) holds, and if T € (0,1/2) suppose that
condition (3.9) is satisfied. For 7 € (0,1) assume further that suppeys [p- |z F(dz) < oo.
Also, let the sequence of estimators (ppn)n>2 for p be such that (5.8) is satisfied. Then for every
e>0 and § € (0,1) there is a C(e,d) > 0 such that

PF(&n,Tes_l‘ Zﬁb(F)) <4
for every F € M and for alln € N, n > 2, with \/n > C(¢,0)/b(F).

Proof. First, note that we may as well assume that € € (0,1). Then eb(F) € (0,1), as b(F) €
(0, 1]. Thus, by inequality (4.37) we have

Pp(|6nres — 1| > €b(F)) < Pp(|67 05 — 1| = Kreb(F))
1 — K, eb(F X K eb(F
< PF<‘E S (lewl” = led™) | = 627()) v PF< 5 —1| > 62()) =t Anp + Bup.

=1

Now let § € (0,1). As for every value of 7 the conditions of Lemma 6.13 are satisfied, it follows
from this very lemma that there is a Ci(¢,0) € (0,00) so that A, p < 6/2 for all F € M and
n > 2 with /n > C1(¢,9)/b(F). Moreover, we have

4
Bop<—1—— Er(l67 —1/?
mE = R2RH(F)2 pey r(lon =11

using Markov’s inequality, and since it follows from the assumptions that (4.36) holds as well for
every 7 € (0,00), part (i) of Lemma 4.12 ensures the existence of a K € (0,00) such that

1 ~
sup Er (67 — 1) < ~ K
FeM n

for every n > 2. Now set Csa(e,d) = (8%/(K72.626))1/2. Then for every F' € M it is
Pr(|6pres — 1| > €b(F)) <8
for all n € N, n > 2, with /n > max(Ci (¢, ), Ca(e,8)) /b(F). O

We have now gathered all results necessary to prove an analog of Proposition 4.14 for by, yes.

Proposition 6.15
Let ) # M C Gy \{Fr}. If the assumptions of Lemma 6.14 are satisfied, then for every e > 0
and § € (0,1) there is a C(€,9) > 0 such that

Pr(|bpres(F) = b(F)| > €b(F)) < &
for all F € M and for alln € N, n > 2, with \/n > C(€,9)/b(F).
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Proof. First, note that under the above assumptions the set M also satisfies the requirements
of Lemma 6.12, whence it follows that suppcys Pr(6p,res = 0) — 0 as n — 0o because the set
{6nres = 0} is a subset of {|Gy, res — 1| > €} for every € € (0,1). Hence, we can and will assume
that 6, res > 0. Now using the results of Lemma 6.12 and Lemma 6.14, the above statement is
proven analogously to Proposition 4.14 by simply replacing &, by 6, res and by, by by res in the
proof. O
Now recall that our aim is to show that the sequences (Wn,res)nZQ and (]7n7res)n22 satisfy Wie-
and’s condition (WIII). Before we can proceed with this, we have to adjust the set of possible error
distribution functions, because we need the alternative distributions to be sufficiently smooth
again.

Hence, let us consider again the set of distribution functions G, ., defined in (6.9). In this
subsection, we will always use weight functions w of the form w(xz) = |z|%, © € R, for some
s > 0. Unlike the weight functions considered in the previous subsection, this w is obviously not
bounded away from zero. To stress the dependency of || - ||y,00 00 s, we will denote it by || -
ie.,

5,009

[7ls,00 = sup [z|*|A(z)] € [0, oc]
z€R

for any function h: R — R, and for the same reason we will denote G, ., henceforth by G, - s,
so that

Ggryys = {F: F' is a distribution function having a Lebesgue density f that satisfies
(41 e+ [ Jal1f(@)dn < 0 and [ af@)do = 0}
R R

for every ¢ € (2,00), v € (0,1] and s € (0,00). Observe here that for every F' € G, its
density f is bounded, as it is uniformly continuous because of [f], < oco. Moreover, note that
if F' € Gy .5, then the whole scale family {F(-/0): o € (0,00)} generated by F' is contained in
Gq.v,s- To verify this, observe that every F'(-/o) is centered again with finite g-th moment, and
its density f, := oL f(-/o) satisfies [f,], = o"OFTV[f], < 00 and || fols.c0 = 05| flls.00 < 00

Next, we will equip Gy ,s With a suitable metric. On G, s X G4 ~,s We consider the function dg - s
defined by

i

iy (P.G) = 1f = gl 1 = glace + 1 = gl + | [ lal?P (o) = [ laftG(do)

where f and g are the densities of F' and G. It is easy to see that dg. s is a metric on G, 5 s, 50
that (Gg,,s,dg,,s) is @ metric space.

We will continue by listing some properties of the density f; of F;, where 7 is fixed in (0, c0).

First, note that || f||s.c0 < 00 for every s > 0, because the function R 3 z — |z|° f;(x) € [0, 00)
is continuous and lim,|_,« |7|° f(2) = 0, hence it is bounded.

The next lemma sheds light on the Hélder continuity of f;.

Lemma 6.16
If T > 1, then [f:], < oo for everyy € (0,1]. If T € (0,1), then [f;]y < oo if and only if v € (0, 7].

Proof. Recall that for every 7 > 0 the density f; is differentiable for all x € R* with

fr(z) = fr(2)rlz[""" - (~sgn()).
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For 7 > 1, f; is obviously differentiable in 0 as well with f.(0) = 0. Now by the fundamental
theorem of calculus it is

) = o) = [ " f1(u) du

for every —oo < z < y < oo and every 7 € (0, 00). Hence, for every z,y € R we have

|f‘r(y) - fT(x)| <

y e
[ 1slan] = [ 171 gy ) du (6.47)
Consider now 7 > 1. Then (6.47) yields

|f7’(y) - f‘r(x)‘ S ||f7/-”oo : Iy - -’L'| Vﬂc,y € R.

Since fI is bounded (for 7 = 1, set f{(0) := 0 for example), this shows that [f;]; < oo, i.e., f; is
Lipschitz continuous for every 7 > 1. As already mentioned in subsection 6.1, this implies that
[fr]y < oo for every v € (0,1) as well.

Next, we examine the case 7 € (0,1). We will show first that [f;]; < oo, whence [f;], < oo
for every v € (0,7) follows. For this, observe that the function g;: R 5 z — |z|” € [0,00) is
Hoélder continuous with exponent 7, because ||z|” — |y|7| < |x — y|™ for all z,y € R. Moreover,
the function g2: [0,00) 3 = +— exp(—z) € (0,00) satisfies |g2(z) — g2(y)| < |z — y| for every
z,y € [0,00) by the mean value theorem, using that |g5| < 1. Combining all this, we see that for
every z,y € R the function g := g9 o g1 satisfies

l9(z) — g(W)| < |g1(z) — 1 (W)] < |z —yl"

Thus, we have verified that [¢g], < co. But since f; = C(7)g for some positive norming constant
C(7), the statement follows.
Now let v € (7,1]. Then f; is not y-Hoélder continuous, for if it were, there would be a constant

K € (0,00) such that
’fT(x) — f’r(y)|

p— <K Vzx#yekR (6.48)

But for every x > 0 we have

1£-(0) = fr(2)] _ Cr)(1—e")

00—z bl ’

and by I’'Hospital’s rule we see that

T T

1—¢e2 7—1,—x .
im — o = lim 2 = Tlim 2™ = o
aNO a7 a0 yxL v N0
since 7 — v < 0, which contradicts (6.48). O

Since F’; is centered and has moments of all order, it follows that it is an element of the set G, - s
for every ¢ > 2, s > 0 and v € (0,7 A 1]. The foregoing lemma implies moreover that Fr- € Gy s
for all 7% > #.

For the rest of this subsection, we assume that ¢ = 27 if 7 > 1 and ¢ > 2 otherwise. Additionally,
we assume that s > 0 and v € (0,7 A 1].

Suppose now that the random variables (e;);en are independent and identically distributed ac-
cording to an unknown distribution function F' € G, , s and that we want to test

Hyo: F e Fr ={F:(-/0): 0 € (0,00)} versus Hi: F € Gyy,\ Fr (6.49)
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In comparison to the initial testing problem (6.17), the set of distribution functions considered
under H; is reduced here to the subset G, s \ F7r of Q“ \ Fr.

As before, we will test the composite null hypothe31s in (6.49) with the asymptotic level « tests
based on the Cramér-von Mises statistics Wn res and Vn res- For the following investigations, we
have to specify the sequence of estimators for the autoregressive parameter p. Henceforth, we will
use the sequence of least squares estimators (p~%),>o to estimate p. Recall that this estimator
fulfills the assumptions (6.18) and (6.20), where the latter was shown in Remark 6.7.

Proceeding analogously to before, we note that since G, s C G, the relation ~g in (6.37) is
also an equivalence relation on G, . s, and for every I’ € G, , s its equivalence class under this
relation is just the scale family generated by it, i.e.,

Since the least squares estimator p%° is scale invariant, it follows as before that the mappings

Frs ProW! and Fis PpoVt

n,res n,res

from G, - s into the set of probability measures on B* are compatible with ~pg, so that in order to
examine the asymptotic behavior of the relative efficiency No(av, 8, F')/N1(«, 3, F) of (Wn res)n>2
with respect to (]A/n,res)nzg when the alternative approaches the null hypothesis we have to
identify distribution functions deriving from the same scale family again. Because of this, we
consider the mappings

[Flp = ProW,},, and [Flg— PpoV;}

n,res n,res

on the quotient set Gy s/~r:= {[F|r: F € Gg,s}. In analogy to the approach of subsection 4.2
we introduce on G, 4 s/~p the following metrics.

Lemma 6.17
For every fized ¢ > 0, set

dq,%s,ch]Rv [G]Rr) = dq,%S(F(mT(F)/C ) ),G(mT(G)/c : ))

for every [Flg, [G]lr € Gg~.s/~r, where m(F) = (1 fR|x]TF(dx))1/T for every F' € Gy s.
Then

(i) dgr.se is well-defined and a metric on Gygv,s/~R>

(i) for any two constants c1,cy € (0,00) the metrics dgr s, and dg s, are uniformly equiv-
alent.

Proof.
(i) To verify that qus,c is well-defined, observe that for every F;, G; € Gy, 1 = 1,2, with
F1 ~R FQ, Gl ~R GQ it is

Fi(mr(F1) - ) = Fao(m-(F2) - ) and  Gi(m(G1) - ) = G2(m-(G2) - )
by definition of ~p, cf. (6.37). Because of this,
dgpy,s(Fir(mr(F1)/c ), Gi(mr(Gr) /¢ ) = dggys (Fa(mr(F2) [c - ), Go(m-(G2)/c -)),

50 that dyy s o([F1]Rr, [G1]R) = dgry.s.c([F2]r, [Ga]R)-

The metric properties of Jq,%s,c follow directly from the respective properties of d4, s and the
definition of ~p.
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(ii) Let G, H € Gy, and denote by § and h the densities of G = G(m(G)-) and H :=
H(m,(H)-), respectively. Then

La(2) - 2h(2)], = i, = (2) 7 [2a(2) - 2],
Lo(2) = La(2) = Lo he = 2 [ La(2) - La(2)
[ 26(2) - ()] =1 Pl = ()7 20(2) - 20()

Moreover, it is

‘/R|:c|q011§(:1)dx/R|:L’|qcllﬁ<i>dx‘ = (Z;)q‘/qu;g(Z;)dx/R\x|qcl21~1(:2)dx‘

Now set k :=¢1/co and S := {k_(“”), k=1, k5=1 k9}. Using the above, it follows that

and

§,00

dqms,Q([G]R: [H]Rr) = g, 8( ( /e1), (/Cl>)
<max S - dys(G(-/c2), H(-/c2)) = max S - dy.5,0, ((G]r, [H]R)

and
darescr (Glrs [H1R) = dyiys (G (/1) H(:fe))
> min S - dg,s(G(-/c2), H(-/c2)) = min S - dyy 5.6, ([Gr, [H]R),
and since S does neither depend on [G]|g nor [H]g, this concludes the proof. O

The previous lemma shows that any two of the metric spaces (Gy.s/~R,dgr.sc); ¢ > 0, are
uniformly (hence, topologically) isomorphic, so that for our purposes it suffices again to identify
these spaces and to work on (Gy~.s/~R,dg,,s,1). Now note that

éqms = {F(mT(F) ) Fe g‘L%S} = {F € Ggr,s: TfR |z|" F(dz) = 1}

is a complete set of equivalence class representatives of ~ on G 5 s, and the well-defined mapping

(gq,v,S/NRﬂZq,%s,l) > [Flr = F(m.(F)-) € (éq,v,s’dq,v,s)

is easily seen to be an isometric isomorphism. Consequently, the two metric spaces (Gq~.s/~R,
dgrs1) and (Ggn.s,dq,s) are isometrically isomorphic, and we will not differentiate between
them in the following.

For investigating the asymptotic behavior of Na(a, 8, F')/Ni(a, B, F') we will therefore assume
from now on that the unknown distribution function F' of the errors (e;);cn is an element of G - s,

and we will measure the distance of any two distribution functions in Qqu s with the metric dg s
if not stated otherwise. Because of this, we consider in the following the testing problem

Ho: F = F, versus Hi: F € Gyryo\ {Fr 1} (6.50)

Recall that we have studied the testing problem (6.38) before, where the set of alternatives is
larger than in the problem above. But since G, s is a subset of Q};, all results previously derived

under H; still hold true when restricting the alternatives to QNQMS \ {F;}.
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Remark 6.18: The foregoing testing problem satisfies condition (2.2). To see this, note again
that it follows from Lemma 6.16 that Fr« € G, - s for every 7% > «. Hence, the set gim,s contains
the distinct elements Fr«(m,(Fr+) - ), 7% > =, so that the set of alternatives in (6.50) is evidently
not empty.

Now fix an F € g~q,’y,s \ {F:} and set F} :=tF + (1 — t)F; for every ¢t € (0,1). Again, it is easy
to see that Fy € G, \ {F;} and that its Lebesgue density f; :=tf + (1 — t) f- satisfies [f;]y < 00
and || f¢]|s,c0 < 00, with f denoting the density of F. Thus, F} € Gg~.s \ {Fr}. Moreover, it is

T =t- [ |x|"F(dz —t)- | |z|” :Uzl =1
/R|w|Ft<d:c>—t/R||F<d>+<1 ) /R||FT<d> (t+1-t)=1,

; ;
whence it follows that F} € va,s \ {F:} for all t € (0,1). Now since

dq,w,s(Fty FT) =t- dq,w,s(Fa F’T‘) ;)) 0,
the claim follows. ¢

Let us briefly mention some properties of the metric space (fqu,%s,dqms). The first result is an
analog of Lemma 6.2.

Lemma 6.19
The identity function

id: (gq,vysvdqu,S) > F — F € (gqmsvdq)

is continuous, where dg is the Kantorovich-Wasserstein metric defined in (4.1).

Proof. The proof follows along the same lines as the one of Lemma 6.2, except that the conver-
gence || f — f|loo = 0 as n — oo is here a direct consequence of dy~ (£, F) = 0asn — co. [

Thus, in combination with Lemma 4.1 the previous lemma yields the following:

Corollary 6.20
(i) For every r € [1,q| the function

(Gorerdgn) 3 F o / e F(dz) € (R,]- )

15 continuous.

(i)  The identity function
id: (Ggryyssdars) 2 F = F € (Ggsrdic)

1s continuous, where di is the Kolmogorov metric.

o~ o~

We are now able to show that the sequences (Wi, res)n>2 and (Vi res)n>2 fulfill condition (WIII).

Theorem 6.21 R
The sequences (Wh.res)n>2 and (Vp res)n>2 fulfill Wieand’s condition (WIII) with

o0

b: Gy \ {Fr} 3 F (/ (F(x) - FT(x))QFT(dx))l/Q € (0,1].

—00
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Proof. We will first verify the statement for (anes)nzg.
Let K := ([ 2*F-(dz))/2 > 0. It follows from Corollary 6.20 (i) that there is a ¢ > 0 such that

‘ / 2?F(dz) — / xQFT(d:v)‘ < K forall F € G, with dg4(F,F,) < o. (6.51)
R R

Now consider the set

M = Uy(F. )\{F}—{Fegqu dgry,s(Fy Fr) < of \ {Fr}.

We will show next that this set satisfies conditions (5.12)—(5.14), (3.5), (3.7) and (4.36).

As dy~ s(F,F;) < p for every FF € M, it is [f — fr]y < 0, [|f — frlls,;0 < 0 and ||f — fr]ls < 0,
with f denoting the density of F'. Hence,

[fly < [f = foly + [frly <o+ [fr]y < oo,

whence it follows that the set {[f],: F' € M} is bounded. Consequently, the family {f: F' € M}
is uniformly equicontinuous, which proves (5.12). Moreover, for every x € R* we have

f(@) <[f(2) = fr(@)| + fr(2) <

N = Frllsoo + fr(@) < 5 + fr (@),

0
[]*

- les

which yields
4
sup f(z) < WJrfT(l’) — 0,

FeM || =00

so that condition (5.13) is also shown. In addition, we see that (5.14) holds because

[flloo < IIf = frlloo + [[frlloe < @+ [ frlloo < o0

for every F € M.
Since it follows from (6.51) that infpeps [ 2?F(dz) > K > 0, the set M also satisfies (3.5).

Now note that we have
‘/ 2|7F (dz) —/ [ef1F(dx)| < o ¥ F € M,
R R

so that

sup/]a:\qF(d:c)<oo. (6.52)
FeM JR

But as ¢ = 27 for 7 > 1 and ¢ > 2 for 7 € (0, 1], it is ¢ > 2 in both cases. Hence,

sup 2F(dx) < ¥ 7 sup / |z|F(dx)
FeM {|x\>c} FeM

for every ¢ € (0, 00), which yields (3.7).

Observe next that if 7 > 1, then (6.52) is just condition (4.36), since ¢ = 27 in this case. If
0<7<1(&0< 27 <2), then (3.7) implies (4.36), so that the latter condition holds in this
case as well.

Furthermore, note that condition (3.9) holds for any value of 7, as it follows from (3.7).

If 7 € (0,1), then we also have for every F' € M that

T—le _ T—1 d T—1 d
[ = [ e e [ el e
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1
2
< HfHoo2/ a:Tldx—i—/f(x)dw < = sup ||flleo + 1, (6.53)
0 R T FeM

and the right-hand side of the last inequality is finite by (5.14). Hence, for every 7 € (0,1) it is
suppens Jg- |27 F (dz) < oo,

Since it has been shown above that M fulfills the assumptions of Proposition 5.7, it follows that
the least squares estimator satisfies \/n(pL% — p) = O%(1) in M as n — oc.

Moreover, as M meets the requirements of Lemma 6.12, we have supp¢ s Pr(6n res = 0) — 0 as
n — oo. Consequently, for every ¢ € (0, 1) there is a C'(§) > 0 such that

PF(&n,res = 0) <0
for every F' € M and for alln € N, n > 2, with v/n > C(0)/b(F) > C(0), so that for the following
investigations with respect to the measures Pr, F' € M, we can assume again that 6, yes > 0.

Now recall that by (6.39) and (6.40) it is

—~

Wn,res
NG

for every F € éq,%s \ {F;} and n > 2. But

= b(F)| < [[Fagres = Flloo + |bnres(F) — b(F)|

||Fn,res - F”oo § ||Fn,res - FnHoo + ||Fn - F”ooa

and it follows as in the proof of Theorem 6.5 that for every ¢ > 0 and § € (0,1) there is a
Ci(€,6) > 0 with
Pr(|[Fares = Fulloo + 1 Fn = Flloo 2 €b(F)) <0

for every F € M and n € N, n > 2, with \/n > C1(¢,0)/b(F).

Let us now take a look at |by res(F) — b(F)|. Note that we have verified above that M satisfies
the assumptions of Lemma 6.14. Thus, Proposition 6.15 states that for every e > 0 and § € (0, 1)
there is a Ca(€,0) > 0 such that

Prp(|bpyres(F) — b(F)| > €b(F)) < 6
for all F € M and for all n € N, n > 2, with \/n > Cs(¢, ) /b(F).

—

Combining these results, this shows that (W), yes)n>2 satisfies Wieand’s condition (WIII).

It remains to investigate the sequence (]77177«63)”22.

By part (i) of Corollary 6.20 there is a ¢j > 0 such that

) / \z|F(dz) — / \x|FT(dx)‘ < K' for all F € G5 with dy(F, F,) < g} (6.54)
R R

with K := (g |z|Fr(dx))/2 > 0. Moreover, it is 0 < F, < 1 because f; is strictly positive.
Hence, there are real numbers 21 < 0 and zo > 0 with F(z1) > 0 and F-(x2) < 1. It follows
now from part (i) of Corollary 6.20 that for K” := min(F,(z1),1 — Fr(z2))/2 > 0 there is a
0% > 0 such that

dg(F,Fy) = |F — Fyllso < K" for all F € G, with dg~.+(F, F,) < 0j. (6.55)
Let us examine the set
M= Uy (Fr) \{Fr} = {F € Gyrs: dyro(F, Fr) < o'} \ {Fr}

with ¢ := min(¢f, 05).
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Note that we can show that M’ satisfies conditions (5.12)—(5.14), (3.7) and (4.36) analogously
to the verification of the very conditions for the set M before by simply replacing M by M’
and o by ¢'. Moreover, we see as in (6.53) that (5.14) implies suppepy [p- |21 F(dz) < oo for
7€ (0,1).

By (6.54) we also have [, |z|F(dz) > K’ for all '€ M’, which shows that (3.8) holds for M’.

We will verify next that M’ also satisfies (5.75). But this is easily seen to be true, because
F(z1) > Fr(z1) — K" >0 and F(xg) < Fr(xg) + K" < 1

for every F' € M’ by (6.55).
To sum up, we have verified that M’ fulfills conditions (3.7), (3.8), (4.36), (5.12)—(5.14) and
(5.75). Note that M’ also satisfies condition (3.9), since it is implied by (3.7).

As condition (3.5) follows from (3.8), we get from Proposition 5.7 that /n(p%° — p) = O%(1) in
M’ as n — oo.

We have shown above that the set M’ satisfies the requirements of Lemma 6.12, whence it follows
that suppepy Pr(Gnres = 0) — 0 as n — oo. Just like before, the following investigations with
respect to the measures Pp, F' € M’, can therefore be carried out on the event {5y, res > 0}.

Now as mentioned in (6.41), it is

~

eres —
\/ﬁ - b(F)‘ S HFn,res - FHoo + |bn,res(F) - b(F)‘

for every F € éqms \{F:} and n > 2. As in the proof of Theorem 6.5 we can show that for every
€>0and ¢ € (0,1) there is a C1(€,d) > 0 such that

Pr(||Fnres — Flloo > €b(F)) < &

for every F € M’ and n € N, n > 2, with /n > Ci(¢,0)’/b(F'). Moreover, observe that we have
checked above that the set M’ also fulfills the requirements of Lemma 6.14. Consequently, we
get from Proposition 6.15 that for every e > 0 and § € (0, 1) there is a Ca(e, )" > 0 with

Prp(|bpres(F) = b(F)| > €b(F)) < 6

for all 7' € M" and for all n € N, n > 2, with \/n > Cs(e, 0)’/b(F). A combination of these results
evidently implies that (WIII) holds for the sequence (Vy, res)n>2 as well, and this completes the
proof. O

We have now collected all results that are needed to show that the approximate Bahadur ARE
of (Wi, res)n>2 relative to (]7,“188)”22 determined in Proposition 6.11 is equal to the limiting (as
a — 0) Pitman ARE of these sequences. This follows again from Theorem 2.3 once we have
checked that the two sequences of test statistics meet its requirements.

Hence, let us summarize what we have shown. We have verified that the sequences (Wn,res)nZQ
and (17n,ms)n22 fulfill (BI), (BII) and (WIII), which means that they satisfy condition (i) of
Theorem 2.3. Moreover, we have noted before that the random variables W in (6.35) and VY in
(6.36) have distribution functions that are strictly increasing in their right tails, so that condition
(ii) of Theorem 2.3 also holds. Condition (iii) of this theorem is satisfied as well, as is easily seen
using 0 < b(F) < dg(F, F;) for every F € gNW \ {F;} and part (ii) of Corollary 6.20. As
condition (iv) of Theorem 2.3 is again trivially satisfied, we have thus verified the following
theorem.
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Theorem 222 R
Set T, = Whres and Top, = Vi res, n > 2. Then we have for every 5 € (0,1)

lim lim inf w = lim lim sup M = ﬁ
a_)DFegiZ,’Y,S\{FT}H Nl(Oé,ﬁ,F) OL_>0}7’6511’%5\{}7‘7_}7 Nl(avﬁv F) )\1
dg,~,s (F,F7)—0 dg,,s (F,Fr)—0

o~

This shows that the limiting Pitman ARE of the sequence (Wi, yes)n>2 with respect to the

~

sequence (Vy, res)n>2 is also strictly less than one, so that the sequence of tests corresponding to

—~

(Vn,res)n>2 is to be preferred to the one based on (Wj, yes)n>2. The explicit value of the above
limiting Pitman ARE for 7 = 1 and 7 = 2 can be found in Table 2 on page 52.
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Appendices

A Auxiliary Results

Lemma A.1
Letn > 2 and z1,...,x, € R with

min z; < 0 < max z;. (A1)
1<i<n 1<i<n

Then there is exactly one t = t(x1,...,x,) € R with

1 1 1 1
(Fo)—locrc(io)—L
n max &; n min x;
1<i<n 1<i<n

and
n

€T

i=1

Proof. Set z := minj<;<, z;, T := maxj<;<p z; and

First, note that
1+te; >0 Vi=1,...,n, tel.

To verify this, let ¢ € {1,...,n} and t € I. If t <0, then z; < T implies 1+ tz; > 1+ tT, and the
right-hand side of the last inequality is positive since ¢ > —1/Z. Similarly, if ¢ > 0, then z; >
implies that 1+ tx; > 14 tz, and the right-hand side of the last inequality is positive because of
t<—1/x.

Thus, the function

n

f=3 " tel,

=1 1 +t$i7

is well-defined. Obviously, f is continuously differentiable with
F) == gy tel
1 (1 + txi)Q
and f’ < 0 on I because of (A.1), so that f is strictly decreasing. Now define

t = (l—1> ! and tf{ = <%—1)#

" n max z; min z;
1<i<n 1<i<n

Note that 0 € (,,, ) C I. If we can show that f(¢,) > 0 and f(t,}) < 0, the statement follows

ni»'n
from the continuity and monotonicity of f. To do this, consider for ¢ € R* the function

zeR\ {~1/t}.

Then g; is differentiable on R\ {—1/t} with derivative

€T
A 7

1
gi(x) = 0+ )2 > 0.
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Hence, g; is strictly increasing on (—oo,—1/t) and (—1/t,00). By what was shown above, we
have 1+t z; > 0 forall i =1,...,n. Since t;, < 0, this implies that x; < —1/t;, fori=1,...,n.
Thus,

fe) =S > T ymo1).—2

Hltter; T 1+t 1t taz
since at least one summand in the left sum is equal to Z/(1 4 ¢, T) and

x; x .
[ — x,; > () = V’I,:l,...,n
1+ thx; 9oz (@) 2 9,7 (@) l+thz

because of z < x; < —1/t;; and the monotonicity of g,—. Now since (1 —n)z > 0 and nz > 0,
we have

1-— —1
B k) S O O A Ul
nT + (1 —n)z nT + (1 —n)z
nZ(n — 1)z T x

= 0<nx+

+n-1) ———,
( ) 1+thz

nf—i—(l—n)g: 1+t,T

so that f(t;) > 0.

Analogously, we have 1+ t,fx; > 0 for all i = 1,...,n, and it follows from this that z; > —1/t,}
because t is positive. Then
" T x x
6 => iy (P
ftz) —l+tin ~ l+tiz ( ) 1+ti7

because at least one summand in the left sum is equal to z/(1 + ¢, z) and

€Ty __ x .
— = z;) < T)=—-— Vi=1,...,n
T+ il 9pr(@i) < g,+(T) e
since —1/t} < z; < T and 9;+ is monotonically increasing on (—1/t}, 00). Using nz < 0 and
(1 —n)T < 0, this yields

1—n)x — 1)z
B kO R D TP Gl L
nx+ (1 —n)z nx + (1 —n)z
nz(n —1)x x T
= 0>nz+—— =—+(n-1)- ,
T onz+(1-n)T 1+tiz ( ) 1+ 1tz
whence f(t}) < 0 follows. O

Let n > 2. Consider the open set

B, = {(z1,...,2,) € R": min z; <0< max z;}.

1<i<n 1<i<n
For every (z1,...,x,) € By, let t(z1,...,x,) be as in the previous lemma.

Lemma A.2
The function
B, 3 (x1,...,2n) — t(xy,...,2y) €ER

1S continuous.
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Proof. Let (Z1,...,%,) be an arbitrary point in B,, and let ((3371”, e ’xnm))meN be a sequence
in B,, such that (z1*,...,20") — (Z1,...,&,) as m — co. We prove that
.. x) — (T, ., Tn)
m—0o0
by showing that every subsequence of (t(a:T, ey J:,T))m N has a further subsequence that con-
verges to t(Z1,...,Tp).
Let (t(z]™,... ,x:l”k))keN be a subsequence of (t(z7",... ,xnm))meN. Then ((z}™,.. "I?k))kEN
is obviously a subsequence of ((a:’ln, ... ,xﬁ))m cn» and therefore
(fln’“, ce ) —— (B, ..., Ep).
k—o0

We have shown in Lemma A.1 that ¢ satisfies

_ 1 1 m 1 1 n
tpomy, ©= (ﬁ — 1) 7112?2( o <tz < (ﬁ — 1) 71@12 = tmy, (%)
Sisn <i<n

for every k € N. Because of the continuity of min and max the bounds ¢, ,, and ¢}~ converge
in R as k — oo, and therefore are bounded themselves. This implies that (t(z]"™,...,z"*)) N
is a bounded sequence, and therefore it has a convergent subsequence, i.e., there is a sequence
mg mg
(.o 2 l))leN and a ¢ € R such that
mkl

t(xy ) o2

Because of (x) it is

1 1 1 1 1 1
e [V )] © ()
n max T; \n min z; max I; min x;

1<i<n 1<i<n 1<i<n 1<i<n
Now
n $mkl n 7
7 7
— —
;1+t(x7flkl,...,lekl)x;nkl =00 ;14—03«"@"
and by the definition of t(a:Tkl ey xT”) we know that the left-hand side equals zero for every

[ € N. Hence, the limit vanishes as well. But the proof of Lemma A.1 shows that the equation

n

5&.
ZH:&@ =0

i=1
has a unique solution in the interval (—1/max1§i§n Z;, —1/minj<i<p :Ei), namely t(Z1,...,Tp).
This shows that ¢(Z1,...,&,) = ¢, and this concludes the proof. O]

Proposition A.3
Let M be a nonempty set of distribution functions F' such that each F has uniformly continuous
Lebesgue density f and

(i) the family {f: F € M} is uniformly equicontinuous,

(ii) sup f(x) — 0.

FeM || —o00
Moreover, let G be a distribution function that is continuously differentiable and strictly increas-
ing. Then

im sup  sup  |f(2) = f(y)] = 0.
00 FeMm z,yeR
|G(z)—-G(y)|<d
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Proof. Let € > 0 be arbitrary, but fixed. Since
;u]%sup{lf(w) —fWl: 2,y € R, [G(x) — G(y)| < 6}
€

is non-decreasing in ¢, it suffices to show that there is a d. > 0 such that

;ujl\%sup{lf(x) = fW]: 2,y €R,|G(z) = G(y)| <6} < e (A.2)
€

Because of (ii) there is an z¢g > 0 with sup{f(z): F € M} < ¢/2 for all x € R with |z| > z.
Moreover, there are z1,x2 € R such that G(x) < 1/4 for all x < z; and G(x) > 3/4 for x > .
Define

¢, = (—mo) ANx; and ¢

Then G(cF) — G(cZ) > G(x2) — G(x1) > 1/2. Because of (i) there is a d, > 0 such that

[f(x) = fly)| <e

for all 2,y € R with |z — y| < é. and for all f = F’ with F € M. Now set

+ .
. =20 V Ta.

1 1 1 ,
N B N e .: -1
I:= QG(C6 ), 5 + QG(Ce )] c(0,1) and K: mzeaIX|G ()],

where G~V is the continuous derivative of G~1, the inverse function of G. Note that K is well-
defined and in (0, 00) because as G is continuously differentiable and strictly increasing, so is

GL

We will show now that every

5. ¢ <O,min{%G(c;), %(1 ~G(e). /K ) € (0.1/2)

satisfies (A.2). Thus, fix such a d. and take z,y € R with |G(z) — G(y)| < J.. We investigate the
following cases:

Case A: x < ¢_. Then either y < ¢ as well, or y > c_.
In the first case

|f(x) = f(W)| < flx)+ f(y) < sup f(x)+ sup f(y) <2-

FeM FeM

N ™

for every F € M.
In the latter case, i.e., if y > ¢, y has to be less than or equal to ¢, since otherwise

% <G(eh) —G(el) < G(y) — G(x) <6 < %

This implies G(y) € (G(c; ), G(cF)] C I. Additionally,

G(z) = G(y) = |G(z) = G(y)| =2 Gl ) = be = G(c ) —

and so it follows that G(z) € |
have

3G(c7),G(c7)] C I. Hence, using the mean value theorem we

ly—z|= |G (Gy) -G (G(2)| < K -|Gly) — G(2)| < K - b <0,
whence it follows that |f(z) — f(y)| < € for every F € M.
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Case B: ¢ <z < ¢f. Then

G(y) =2 G(z) - [G(z) - Gy)| = G(e.) -

and

1 1
Gly) < G(el) + 6 < 5+ 56G(el),

0e > G(Ce_)

so that G(y) € I. Moreover, G(z) € (G(c;),G(cf)) C I. Thus,

ly—z| < K-|G(y) — Gla)| < K -

which implies |f(y) — f(z)| < e for every F' € M.

Case C: x > ¢F. The proof of this case follows analogously
omitted here.

be < 0e,

to that of Case A. Therefore it is
O

The next result is an exponential inequality for bounded martingale difference sequences (MDS)
and follows from the martingale inequality in Lemma 1 of Hausler [14].

Lemma A.4
Let (1,...,(q be a MDS with respect to the filtration Fo C F
alli=1,...,n. Then for every e, L >0

P({)gg >cfn {gE@Em_l

€ € L
< IR
-—2eXp<1( [KT+_K?}IOg<
€2 163K
<2e(~57 57 ):

1+ —

C...CFyand |G| < K < oo for

)

ek (A3)

)

L

(A.4)

142



B Eigenvalues of certain Hilbert-Schmidt integral operators

B Eigenvalues of certain Hilbert-Schmidt integral operators

Consider the complex Hilbert space
L»(0,1) := {f: (0,1) = C ‘ \j‘"|2 is integrable with respect to Lebesgue measure }

with inner product ( = fo t)dt, where the bar denotes the complex conjugate, and
induced norm || f||z, := < £ f)- As usual, we do not distinguish between two functions f,g €
L5(0,1) that differ only on a set of zero Lebesgue measure. Let the function k: (0,1)?> — C be
such that |k|? is integrable with respect to two-dimensional Lebesgue measure. Then the mapping

1
To: Lo(0,1) 5 f = Tuf € La(0,1),  (Tof)(s) :/0 k(s ) f(D)dt, s € (0,1)

is called the Hilbert-Schmidt integral operator with kernel function k.

Now assume that k: [0, 1] — R is the continuous covariance function of a non-trivial, real-valued,
square-integrable and centered stochastic process X = (X(t))cp,1), i-€,

k:[0,1)%2 3 (s,t) = cov(X(s), X(t)) = E(X(s)X (1)) € R. (B.1)

Then k is bounded, and therefore its restriction to (0, 1)? is square-integrable with respect to two-
dimensional Lebesgue measure. Consequently, the restriction of k is a kernel function. Henceforth
we will not distinguish between k as in (B.1) and its restriction to (0,1)2. In the following, we
will compare the largest eigenvalues of some Hilbert-Schmidt integral operators with certain
covariance kernel functions. It is well known that the operator T) with k& as in (B.1) has at most
a countable set of eigenvalues accumulating only at zero, and that all of its eigenvalues are in
[0, |T%|/], where || Tk|| is the operator norm of Tj.

Let k denote henceforth the covariance function of the Brownian bridge B°, i.e., k(s,t) =
sANt—s-t, s,t € [0,1]. Then it is well known that T} is positive definite and has simple
eigenvalues \; := 1/(j)? with corresponding eigenfunctions g;(-) := v/2sin(jr), j € N.

Example B.1
Let F' € G, for some fixed ¢ > 2, and set

P1(8) = op Up(F~ =0 / F~ s € 10,1],

where 07, = [p *F(dx) € (0,00). Then
p1(s,t) = k(S,t) - ¢1(3)¢1(t)7 s,t € [07 1]7

is the covariance function of the process W o F~1 cf. (4.4). Let (A;)jeN denote the decreasing
sequence of positive eigenvalues of T),, such that every eigenvalue is repeated in the sequence
according to its multiplicity. Then by Remark 5.4 in [15] it is 1/(27)? = A2 < A} < Ay = 1/72,
and

X{ <M <= 0 7'5 <¢1,g1), (B.2)

as follows from Theorem 5.2 in [15]. Now note that since F' is continuous and centered, neither
F~Y(u) >0 for all uw € (0,1) nor F~1(u) <0 for all u € (0,1) is possible. As F~! is moreover
strictly increasing, this implies that there is a ug € (0,1) such that F~* < 0 on (0,up) and
F~' > 0 on (ug,1). Thus, the continuous function h(-) := Ur(F~1(+)) is strictly decreasing on
(0, up), strictly increasing on (ug, 1), and negative on (0,1). Hence,

1 V2 [t
(V1,91) = /0 Y1(u)gr(u)du = — [ h(u)sin(mu)du # 0,

OF Jo

as the integrand is negative on (0,1). By (B.2), this implies that A\} < A\ = 1/72.
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Example B.2
Let F- and f, be as before the distribution function and the Lebesgue density of the exponential
power distribution, 7 € (0, 00). Set

Pa(s) = T_l/zF;l(s)fT(F;l(S))’ s € [0,1].

Then pa(s,t) := k(s,t) —12(s)12(t) is the covariance function of the process Z o F-1, cf. (4.23).
Let (S\j)jeN denote the decreasing sequence of positive eigenvalues of the corresponding inte-
gral operator T),, in which every positive eigenvalue appears as many times as its multiplicity.
Moreover, let 11, p1 and ()\;)jeN be as in Example B.1 with F' = F;. The function

pl?(svt) = ]{Z(S,t) - ¢1(3)¢1(t) - ¢2(3)¢2(t)a s,t € [Oa 1]7

is then the covariance function of the process V o F-1, cf. (4.25). By (S\;f)jeN we will denote the
decreasing sequence of positive eigenvalues of T}, , where again each positive eigenvalue appears
as often as its multiplicity.

Now note that both T),, and T}, are injective. For the former operator, this is shown in Proposition
6.1 of [15], and for the latter operator it follows similarly, see Proposition B.1 below. As the kernel
p12 can be written as p1a2(s,t) = p1(s,t) — Ya2(s)a(t) = pa(s,t) —1(s)1(t), it thus follows from
Remark 5.4 in [15] that A5 < /N\’f < A] as well as Ay < 5\{ < )1, so that 50{ < min(\}, 5\1) Hence,

X{<5\1 — 5\1‘<5\1.

Let us examine Ai. It follows from the symmetry of f- that (¢2,¢1) = 0, which implies that
A =\ = 1/72, see Theorem 5.2 in [15]. Now recall that we have shown in Example B.1 that
A< A\p = 1/7%, so that A\¥ < \; indeed holds. Hence, it is

S\T < :\1.

Proposition B.1
Let pa be as in Example B.2. Then the Hilbert-Schmidt integral operator T, is injective.

Proof. Let g € L(0,1) with T),g = 0. Then
1 1 1
0= (Tn)5) = [ palstig(O)dt = [ (snt—s-tg(0)dt ~vnls) [ ntigrar (B3
s ° 1 1 ° 1 °
= [Ftate+s [ awir—s [ o= uats) [ oo (B.4)

for -almost every s € (0,1). Since (0,1) > ¢t — tg(t) € C and g are integrable on (0,1) with
respect to , the fundamental theorem of calculus for Lebesgue integrals implies that the functions
(0,1) > s = [, tg(t)dt and (0,1) 5 s — fsl g(t)dt are differentiable -almost everywhere with
derivatives sg(s) and —g(s) respectively. Moreover, note that the function 1 is differentiable for
all s € (0,1)\ {1/2} with

1 _ T
(s = = (1 = r[E ).
Hence, we get from (B.4) that

1 1 1
0= sg(s) + / g(t)dt — sg(s) — /0 tg(t)dt — i(s) /0 Ualt)g t)dt
1 ° 1 1
- / g(t)dt - /0 tg(t)dt — )(s) /O balt)g(t)dt (B.5)
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for -almost every s € (0,1). Now if fol Pa(t)g(t)dt = 0, it follows from (B.3) that

1
0= /0 (sAt—s-t)g(t)dt -ae.

But since the integral operator with kernel k(s,t) = s At — s-t is injective, g has to be zero a.e.
Hence, g # 0 a.e. implies fol o (t)g(t)dt # 0. Now suppose that g # 0 a.e. Then by (B.5) we have

o) = ([ o~ [rgar) - ([ vaotar)”,

so that . . .
-1
tim vi(s) = ([ g(ode ~ [ tga) - ([ vatvig(oin) > -
which contradicts limg_,q wé(s) = —oo. It follows from this that g = 0 -a.e., which means that
T), is injective. O
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