Received: 11 May 2023

DOI: 10.1111/vox.13500

ORIGINAL ARTICLE

```
Vox Sanguinis
```

World human neutrophil antigens investigation survey

Behnaz Bayat¹ | Jonas Lowack¹ | Marie Audrain² | Laure Croisille³ | Brian Curtis⁴ | Rebecca Dangerfield⁵ | Behnaz Esmaeili^{6,7} | Claudia Grabowski⁸ 1 Margaret Keller⁵ | Hyungsuk Kim⁹ | Hartmut Kroll⁸ | Marjeta Macek Kvanka¹⁰ | Janette Kwok¹¹ | Elyse Moritz¹² | Oytip Nathalang¹³ | Derrick Nelson¹⁴ | Kaspar René Nielsen¹⁵ | Gail Pahn¹⁶ | Anthony Poles¹⁷ | Leendert Porcelijn¹⁸ | Ulrich J. Sachs¹ | Marlies Schönbacher¹⁹ | Günther F. Körmöczi¹⁹ | Pawinee Kupatawintu²⁰ | Daisuke Takahashi²¹ | Malgorzata Uhrvnowska²² | Brigitte Flesch²³ | Yoke-Lin Fung²⁴

¹Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Justus-Liebig-University, Gießen, Germany

²Service d'Immunologie, Laboratoire de Biologie, Nantes, France

- ¹¹Division of Transplantation and Immunogenetic, Department of Pathology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
- ¹²Clinical and Experimental Oncology, Escola Paulista de Medicinia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- ¹³Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
- ¹⁴Specialized Laboratory Services, South African National Blood Service, Johannesburg, South Africa
- ¹⁵Klinisk Immunologi, Aalborg Universitetshospital Nord, Aalborg, Denmark
- ¹⁶Platelet & Granulocyte Reference Laboratory, Australian Red Cross Lifeblood, Brisbane, Australia
- ¹⁷Department of Histocompatibility & Immunogenetics, NHS Blood & Transplant, Bristol, UK
- ¹⁸Platelet/Leucocyte Serology Laboratory, Sanquin Diagnostic Services, Amsterdam, The Netherlands
- ¹⁹Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
- ²⁰National Blood Centre, Thai Red Cross Society, Bangkok, Thailand
- ²¹Japanese Red Cross Society Central Blood Institute, Tokyo, Japan
- ²²Institute of Hematology and Transfusion Medicine, Warszawa, Poland
- ²³Laboratory for Immunogenetics/HLA, DRK Blutspendedienst West, Bad Kreuznach, Germany
- ²⁴School of Health, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia

Behnaz Bayat and Yoke-Lin Fung contributed equally to this study.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2023 Institute of Clinical Immunology and Transfusion Medicine and The Authors. Vox Sanguinis published by John Wiley & Sons Ltd on behalf of International

Society of Blood Transfusion.

³Laboratoire HLA-ILP E.F.S Ile-de-France, Créteil, France

⁴Platelet & Neutrophil Immunology Lab, Versiti, Milwaukee, Wisconsin, USA

⁵American Red Cross Neutrophil Immunology Laboratory, St Paul, Minnesota, USA

⁶Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran

⁷Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran

⁸Institut für Transfusionsmedizin Dessau, DRK-Blutspendedienst NSTOB, Dessau, Germany

⁹Seoul National University Hospital, Seoul, South Korea

¹⁰Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia

Correspondence

Behnaz Bayat, Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Justus-Liebig-University, Langhansstrasse 7, 35392, Giessen, Germany. Email: behnaz.bayat@immunologie.med. uni-giessen.de

Funding information

The authors received no specific funding for this work.

Open Access funding enabled and organized by Projekt DEAL.

Abstract

Background and Objectives: Human neutrophil antigens (HNAs) are categorized into five systems: HNA-1 to HNA-5. Given the importance of neutrophils in immunity, we sought to create awareness of the role of HNA diagnostic services in managing immune neutropenia and transfusion-related acute lung injury. To provide health communities all around the world with access to these services, we conducted a survey to create a directory of these HNA diagnostic services.

Materials and Methods: An Excel table-based survey was created to capture information on the laboratory's location and was emailed to 55 individuals with known or possible HNA investigation activity. The collected data were then summarized and analysed.

Results: Of contacted laboratories, the surveys were returned from 23 (38.2%) laboratories; 17 have already established HNA diagnostic (of them 12 were regular participants of the International Granulocyte Immunobiology Workshop [ISBT-IGIW]), 4 laboratories were in the process of establishing their HNA investigation and the remaining 2 responder laboratories, did not conduct HNA investigations. In established laboratories, investigation for autoimmune neutropenia (infancies and adults) was the most frequently requested, and antibodies against HNA-1a and HNA-1b were the most commonly detected.

Conclusion: The directory of survey respondents provides a resource for health professionals wanting to access HNA diagnostic services. The present study offers a comprehensive picture of HNA diagnostics (typing and serology), identifying weak points and areas for improvement for the first time. Identifying more laboratories involved in HNA diagnostics with limited access to international societies in the field will globally improve HNA diagnostics.

Keywords

alloantibody, autoantibody, autoimmune, HNA, neutropenia, neutrophil, TRALI

Highlights

- Investigation for autoimmune neutropenia (infancies and adults) is the most frequently requested analysis for neutrophil serology worldwide.
- Antibodies against human neutrophil antigen (HNA)-1a and HNA-1b are the most commonly detected antibodies involved in autoimmune neutropenia.
- Although neutrophil serology services are distributed across the globe, the number of services available to African, Middle Eastern and Western Pacific populations is limited.

INTRODUCTION

Neutrophils are the major subtype of granulocytes and have a pivotal role in innate and adaptive immunity. Human neutrophil antigens (HNAs) are distributed on five different glycoproteins on the surface of neutrophils and have been designated as HNA-1 to HNA-5 [1]. Eleven HNA alleles have been described so far [2]. HNA incompatibilities during pregnancy or transfusion may induce the production of HNA antibodies [3]. HNA antibodies have been implicated in the mechanism of neonatal alloimmune neutropenia (NAIN), autoimmune

neutropenia (AIN), transfusion-related acute lung injury (TRALI), immune neutropenia after bone marrow transplant and febrile non-haemolytic transfusion reactions [2, 4].

Neutropenia may arise from a defect in neutrophil production in bone marrow or increased neutrophil destruction for various reasons [5]. Immune neutropenia involves the attachment of neutrophil reactive antibodies to neutrophil antigens, leading to their clearance from circulation [6]. Depending on the cause, treatment for neutropenia varies. It is therefore important to distinguish immune neutropenia from other causes. Therefore, the availability of services to detect **TABLE 1A** Directory of participating established laboratories.

TABLE :	A Directory of parti	cipating established laboratories.	
	Region	HNA investigating laboratories and contact details	QA (quality assessment)
1	Americas	Dr Elyse Moritz, email: elysemoritz@yahoo.com.br	ISBT-IGIW
		Clinical and Experimental Oncology, Escola Paulista de Medicinia, Universidade Federal de Sao Paulo, Brazil.	
2		Rebecca Dangerfield, email: rebecca.dangerfield@redcross.org; Margaret Keller, email margaret.keller@redcross.org	ISBT-IGIW
		American Red Cross Neutrophil Immunology Laboratory, St Paul, Minnesota, USA.	
3		Dr Brian Curtis, email: brian.curtis@bcw.edu	ISBT-IGIW
		Platelet & Neutrophil Immunology Lab, Versiti, Milwaukee, WI, USA.	
4	Europe	Dr Marlies Schoenbacher, email: marlies.schoenbacher@meduniwien.ac.at	INSTAND EQA
		Dr Günther Körmöczi, email: guenther.koermoeczi@meduniwien.ac.at	
		Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Austria	
5		Dr Kaspar René Nielsen, email: k.nielsen@rn.dk	ISBT-IGIW
		Klinisk immunologi, Aalborg universitetshospital Nord, Denmark.	
6		Dr Laure Croisille, email: laure.croisille@efs.sante.fr	ISBT-IGIW
		Laboratoire HLA-ILP E.F.S Ile-de-France, Créteil, France.	
7		Dr Marie Audrain, email: marie.audrain@chu-nantes.fr	ISBT-IGIW and INSTAND EQA
		Service d'Immunologie, Laboratoire de Biologie, Nantes, France.	
8		Dr Harmut Kroll, email: hartmut.kroll@bsd-nstob.de	INSTAND EQA
		Dr Claudia Grabowski, email: claudia.grabowski@bsd-nstob.de	
		Institut für Transfusionsmedizin Dessau, DRK-Blutspendedienst NSTOB, Dessau, Germany.	
9		Dr Ulrich Sachs, email: ulrich.sachs@med.uni-giessen.de	ISBT-IGIW and INSTAND EQA
		Dr Behnaz Bayat, email: behaz.bayat@immunologie.med.uni-giessen.de	
		Institute for Clinical Immunology and Transfusion Medicine, Giessen, Germany.	
10		Dr Leendert Porcelijn, email: l.porcelijn@sanquin.nl	ISBT-IGIW
		Platelet/Leucocyte Serology Laboratory, Sanquin Diagnostic Services, Amsterdam, The Netherlands.	
11		Dr Malgorzata Uhrynowska, email: muhrynowska@ihit.waw.pl	ISBT-IGIW
		Institute of Haematology and Transfusion Medicine: Warszawa, Poland.	
12		Dr Anthony Poles, email: anthony.poles@nhsbt.nhs.uk	ISBT-IGIW
		Department of Histocompatibility & Immunogenetics, NHS Blood & Transplant, Bristol, United Kingdom.	
13		Dr Marjeta Macek Kvanka, email: marjeta.macek@ztm.si	ISBT-IGIW
		Blood transfusion centre of Slovenia, Ljubljana, Slovenia	
14	South East Asia	Dr Oytip Nathalang, email: oytipntl@hotmail.com	
		Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12120, Thailand.	
15	Western Pacific	Gail Pahn, email: gpahn@redcrossblood.org.au	ISBT-IGIW
		Platelet & Granulocyte Reference Laboratory, Australian Red Cross Lifeblood, Brisbane, Australia.	
16		Dr Janette Kwok, email: kwoksy@ha.org.hk	INSTAND EQA
		Queen Mary Hospital, Division of Transplantation and Immunogenetics, Department of Pathology, Hong Kong SAR.	
17		Dr Daisuke Takahashi, email: d-takahashi@jrc.or.jp	
		Japanese Red Cross Society Central Blood Institute, Tokyo, Japan.	

Vox Sanguinis Soft International Society 765

anti-neutrophil antibodies enables the physician to confirm immune neutropenia thus avoiding the invasive bone marrow biopsy [7]. This is particularly useful in cases of infant and childhood neutropenia. The implication of HNA antibodies, particularly anti-HNA-3a in clinically severe TRALI has also significantly emphasized the importance of HNA antibody detection.

The International Society of Blood Transfusion (ISBT)-Granulocyte Immunology Working Party (GIWP) organizes an annual quality assessment workshop to assess a laboratory's ability to carry out neutrophil serology and genotyping investigations. There are currently only 18 reference laboratories participating in this quality assessment workshop, but we expect that there are other laboratories performing similar investigations around the world as well. Given the significant role of neutrophils in immunity, we conducted a survey to identify and catalogue laboratories around the globe performing neutrophil serology and genotyping investigations. The goal is to create a worldwide directory of granulocyte investigating laboratories conducting neutrophil serology and genotyping investigations to increase awareness of these diagnostic services and to make these specialized services more accessible to health communities all around the world.

MATERIALS AND METHODS

The survey consisted of an Excel table that captured information on the laboratory's location, the range of neutrophil investigations (e.g., AIN, TRALI, neutrophil reactive antibodies in transplants and convalescent plasma of COVID-19 patients) conducted, list of techniques used for serology and molecular investigations, and whether they participated in a quality assessment programme(s) in the 12-month period from January 2019 to January 2020. The survey was emailed to 55 individuals with known or possible HNA investigation activity, and recipients were encouraged to forward the survey to any other laboratories that may conduct HNA investigations. A literature search (keywords: HNA frequency, human neutrophil antigens, neutrophils, neutrophil antigen 'country') was conducted to gather reports on HNA frequencies from different populations.

RESULTS

A total of 23 surveys were returned equating to a return rate of 41.8%. From the responses received, 17 established laboratories regularly conducted HNA investigations, 3 (17.6%) are in the Americas, 10 (58.8%) in Europe, 1 in South-East Asia (5.9%) and 3 (17.6%) in the Western Pacific area (Table 1A). Of these 17 laboratories, 15 (88.2%) participated in a granulocyte quality assessment program, the most common (n = 11) being the International Society of Blood Transfusion-International Granulocyte Immunobiology Workshop (ISBT-IGIW) and the other being the INSTAND External Quality Assessment (EQA) programme (Table 1A). Four institutes (National Blood Centre Thailand, South Africa, Iran and South Korea) are in the process of establishing their HNA investigation services and have

been clustered as 'Laboratories in development' (Table 1B). The remaining two responses did not conduct HNA investigations: the New Zealand Blood Transfusion Service referred their investigations to Australia, and Dr Olnaiyi Olanrewaju from the Irrua Specialist Teaching Hospital, Irrua/Ambrose Alli University, Ekpoma, Edo State Nigeria reported that they had cases of immune neutropenia but did not have a laboratory to refer the samples to.

Serological testing was conducted by 16 of 17 established laboratories and all 4 laboratories in development (Table 2) but the range of techniques varied. All 16 laboratories from first group and 1 from second group conducted granulocyte immunofluorescence tests (GIFT) and used a typed panel of granulocytes. All these laboratories complimented the GIFT with the granulocyte agglutination test (GAT) or another technique, except in Aalborg and Créteil. LabScreen Multi was used by 6 established laboratories and 3 of 4 laboratories in development (Table 2) [8]. Monoclonal antibody immobilization of granulocyte antigen (MAIGA) [9] was conducted by 12 established laboratories, with Sao Paulo and Tehran in the process of optimizing the assay. All laboratories investigating CD16 used two monoclonal antibodies (mAb) except for USA. Versiti, MEM-166 was the most common CD177 mAb and Bear 1 for CD11b. Sixteen established laboratories and two laboratories in development conducted genotyping for HNA-1, HNA-3, HNA-4 and HNA-5, but only five from first group also genotyped for HNA-2 (Table 3).

NAIN investigations were conducted by 15 established laboratories (Table 4). Of the samples tested in the survey period, 88 samples were positive, and the most common antibodies detected were anti-HNA-1a and anti-HNA-1b. Samples were referred by physicians from

TABLE 1B	Directory of participating laboratories in
development.	

1	Africa	Dr Derrick Nelson, email: derrick.nelson@ sanbs.org.za
		Specialized Laboratory Services, South African National Blood Service, Johannesburg, South Africa.
2	Eastern Mediterranean	Dr Esmaeili Behnaz, email: esmaeili. behnaz@yahoo.com
		Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
3	W.Pac	Dr Hyungsuk Kim, email: hyungsuk. kim79@gmail.com
		Seoul National University Hospital, Seoul, Korea.
4	South East Asia	Dr Pawinee Kupatawintu, email: pawinee. k@redcross.or.th
		Dr Atthapol Srisuddee, email: atthapol.s@ redcross.or.th
		National Blood Centre, Thai Red Cross Society, Bangkok, Thailand.

Abbreviations: EQA, External Quality Assessment; HNA, human neutrophil antigens; ISBT-IGIW, International Society of Blood Transfusion-International Granulocyte Immunobiology Workshop.

	IIGATIO													_vo>	Sangu	linis	15	Ы	of	ernational Socie Blood Transfusio
	HLA class I				W6/32				B1G6	W6/32						W6/32				
	CD 18		IB4		7E4						IB4	7E4	7E4							
	CD11b CD18	Bear1			Bear1			Bear1	Bear1	Bear1		Bear1	Bear1			Bear1				
	-	В								В		В	Ξ							
	CD11a (LFA-1α)				HI111			HI111	25.3.1							25.3.1				
			7D8	7D8					7D8	7D8	TAG4		7D8							
	CD177	MEM166			M- 166		MEM166	EM- 166	MEM166	MEM166	MEM166 TAG4	MEM166	MEM166 7D8			MEM166				
	9 9	МЕ			MEM- 166		ME	MEM- 166	ME	ME	ME	МЕ	ME			ME	6			
																	3H1029			
AIGA			238.7																	
Monoclonal antibodies used in MAIGA			BCW238.7								238,7						MEM154			
dies use			30c	MBC238.7	goc				30c		goc	30c	238.7			goc	õ			
antiboc			DJ130c	MBC	DJ130c				DJ13		DJ13	DJ13	MBC			DJ13	D113			
clonal		3G8 LNK16	3G8 LNK16		3G8 LNK16		3G8 LNK16	3G8 LNK16	3G8 LNK16 DJ130c	3G8 LNK16	3G8 LNK16 DJ130c	LNK16 DJ130c	3G8 LNK16 MBC238.7			3G8 LKN16 DJ130c	3G8 LNK16 DJ130			
Mono		3G8	3G8		3G8		3G8	3G8	3G8	3G8	3G8	3G8	3G8			3G8	3G8			
	MAIGA	inP	≻	≻	≻		×		≻	≻		≻		≻	z		z	z		z
		.=			-		ĺ	7		-	~		ell 🗸	~	2	≻	2	2		2
	techniques												NA-3a/3b cell lines, GCLT, LIFT							
	Other t				WIFT	D-GIFT							rHNA-3a/3b cell lines, GCLT, LIFT					ICFA		
	tory																			
	Laboratory screen	≻										≻	~	≻	z		≻	≻		≻
ġ	typed cells			2-10			9						-	-				3-5		
No.		С	5	2-	က	4	3-6	4	4	4	2	2	2+	÷ κ		က	с	μ		
	Typed T panel	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻		≻	≻	≻		
	GIFT GAT	≻	≻	<u>ر.</u>	≻			≻	≻	≻	≻	≻		≻	z	≻	≻			
	GP	× د	≻	≻	≻	≻	≻	≻	х	≻	≻	≻	≻	≻	z	≻	≻	≻	pment	
		Brazil, Sao Paulo	U	siti	/ienna	rg	réteil	lantes	Germany, Dessau	en ,	The Netherlands, Sanquin	Poland, Warsaw	United Kingdom, NHS	ana	iland, Thammasat University	poo	ng Kong, Queen Mary	Ŋ	Laboratories in development	rica, 3S
	ß	azil, Sa	USA, ARC	USA, Versiti	Austria, Vienna	Denmark, Aalborg	France, Créteil	France, Nantes	ermany	Germany, Giessen	ne Netherl Sanquin	oland, V	nited Ki NHS	Slovenia, Ljubljana	Thailand, Thammasa University	Australia, Lifeblood	16 Hong Kong, Queen N	17 Japan, JRC	tories ii	South Africa, SANBS
	Serology	ā	Ċ	Ċ	4 Aı	5 D	6 Fr	7 Fr	ڻ ∞	ڻ م	10 Tł	11 Pc	12 U	13 SI	14 T	15 Aı	9 1	7 Ja	abora	1 Sc

4230410, 2023, 9, Downloaded

from https://onlinelibrary.wiley.com/doi/10.1111/vox.13500 by Justus Liebig Univ

Wiley Online Library on [22/11/2023]. See the Terms

and Condition

Wiley Online

Library for

of use; OA

articles

are gov

erned by the applicable Creative Cor

patients with neutropenia (absolute neutrophil count [ANC] < 1500 cells/ μ L for adults and ANC < 1000 per microliter). The number of investigations for AIN was higher and the positive rates ranged from 9% to 52.2% (Table 5). Requests for AIN investigations were mainly for patients aged 2–36 months and in adults (Table 5). Only 16 established laboratories conducted TRALI investigations, and the number of samples tested in each laboratory varied considerably (Table 6). The majority of TRALI-associated antibodies were in donor samples and only three established laboratories detected antibodies in the patient.

DISCUSSION

The survey results show that the distribution of HNA investigation capability among laboratories is varied. There is a large cluster of laboratories in Europe (58.8%), three in America (17.6%), three in Western Pacific (17.6%) and one in South East Asia (5.8%; Tables 1A and 1B). There are presently no established laboratories in Africa or Eastern Mediterranean, but there is a laboratory in development in Tehran, Iran.

NAIN is a disorder of the foetus that results from maternal alloimmunization against paternal HNA expressed on fetal neutrophils [4, 10]. NAIN is analogous to haemolytic disease of the foetus/ newborn (HDFN) which affects red blood cells and foetal/neonatal alloimmune thrombocytopenia (FNAIT) which affects platelets [11]. In NAIN, the mother develops alloantibodies against HNAs expressed on foetal neutrophils that may cause elimination of neutrophils leading to neutropenia in foetus [11]. Of the 17 established laboratories that regularly investigate NAIN, the majority (58.8%) are located in Europe, and there are none in Africa or Easter Mediterranean (Tables 1A and 1B). The glycoproteins carrying epitopes for HNA-1 and HNA-2 are the most frequently involved in the NAIN cases in this study. Seven laboratories identified alloantibodies against HNA-2 as the second most frequent alloantibodies involved in NAIN cases. In the reports from four laboratories (Creteil and Nantes in France, Sanquin in the Netherlands and NHS in UK), alloantibodies against HNA-1c were described in the cases of NAIN. Interestingly, only the UK laboratory reported alloantibodies against HNA-3a in cases of NAIN. There have been rare reports on NAIN associated with high-frequency antigens HNA-4a [12] and HNA-5a [13]. As HNA-4b frequency is very low in many populations, this may explain the rare reports of NAIN cases mediated by alloantibodies against this antigen. In addition, the low frequency of antibodies against HNA-4 and HNA-5 can also be correlated to the non-immunogenic structure of CD11b and CD11a where HNA-4 and HNA-5 epitopes are located.

The survey results show that AIN is the most requested HNA investigation, conducted in 15 established laboratories and the laboratories in development in Iran (Table 5). Specifically, primary AIN occurs mainly in infants and children. The AIN autoantibody is elusive because the antibody concentration can change. Hence, AIN investigation often requires testing of multiple patient sera at different times to detect the antibody [14]. The antibody specificity has

(Dentinued)	
Ľ	,
۰ ۲	1
ш	a.
_	ł
α	2
⊿	(

ILA	lass I	— (U
	10) CD11b CD18 0			
CD11	(LFA-1			
	CD177	MEM166		
		9		
	CD16	LNK1		
	MAIGA	inP	z	z
	Other techniques	UIFT		
Laboratory	screen		≻	≻
typed	cells	2		
Typed	VT panel	≻		
	GIFT G/	Y Y		
	Serology	2 Iran, Tehran	3 Korea, Seoul	4 Thailand, Red Cross
		Typed typed Laboratory GIFT GAT panel cells screen Other techniques MAIGA CD16 CD116 CD	Typed typed Laboratory CD11a GIFT GAT panel cells screen Other techniques MAIGA CD14 CD11A CD11a CD11b CD11b	Typed typed Laboratory CD1a CD1a

Abbreviations: GAT, granulocyte agglutination test; GCLT, granulocyte chemiluminescence test; GIFT, granulocyte immunofluorescence test; HNA, human neutrophil antigen; ICFA, immunocomplex capture luorescence analysis; LIFT, lymphocyte immunofluorescence test; MAIGA, monoclonal antibody immobilization of granulocyte antigen; WIFT, white cell immunofluorescence test. TABLE 3 Human neutrophil antigen (HNA)-genotyping conducted by participants.

Genotyping	Y/N	HNA-1	HNA-2	HNA-3	HNA-4	HNA-5
1. Brazil, Sao Paulo	Y	HNA-1		HNA-3	HNA-4	HNA-5
2. USA, ARC	Y	HNA-1	HNA-2	HNA-3	HNA-4	HNA-5
3. USA, Versiti	Y	HNA-1		HNA-3	HNA-4	HNA-5
4. Austria, Vienna	Y	HNA-1	HNA-2	HNA-3	HNA-4	HNA-5
5. Denmark, Aalborg	Y	HNA-1	HNA-2	HNA-3	HNA-4	HNA-5
6. France, Créteil	Y	HNA-1		HNA-3	HNA-4	HNA-5
7. France, Nantes	Y	HNA-1		HNA-3	HNA-4	HNA-5
8. Germany, Dessau	Y	HNA-1		HNA-3	HNA-4	HNA-5
9. Germany, Giessen	Y	HNA-1		HNA-3	HNA-4	HNA-5
10. The Netherlands, Sanquin	Y	HNA-1		HNA-3	HNA-4	HNA-5
11. Poland, Warsaw	Y	HNA-1	HNA-2	HNA-3	HNA-4	HNA-5
12. United Kingdom, NHS	Y	HNA-1		HNA-3	HNA-4	HNA-5
13. Slovenia, Ljubljana	Y	HNA-1		HNA-3	HNA-4	HNA-5
14. Thailand, Thammasat University	Y	HNA-1		HNA-3	HNA-4	HNA-5
15. Australia, Lifeblood	Y	HNA-1		HNA-3	HNA-4	HNA-5
16. Hong Kong, Queen Mary	Y	HNA-1	HNA-2	HNA-3	HNA-4	HNA-5
17. Japan, JRC	Y	HNA-1		HNA-3		
Laboratories in development						
1. South Africa, SANBS	Ν					
2. Iran, Tehran	Y	HNA-1		HNA-3	HNA-4	HNA-5
3. Korea, Seoul	Y	HNA-1		HNA-3	HNA-4	HNA-5
4. Thailand, Red Cross	Ν					

 TABLE 4
 Human neutrophil antigen (HNA) antibody specificities detected in neonatal alloimmune neutropenia investigations.

				Antibody	specificity	(%)						
	natal alloimmune neutropenia stigations	Samples tested (n)	Samples positive (n)	HNA-1a	HNA-1b	HNA-1c	HNA-2	HNA-3a	HNA-4a	HLA- class II	HLA- class I	CD16 Iso Ab
1	Brazil, Sao Paulo	2	1	0	100	0	0	0	0	0	0	0
2	USA, ARC	6	2	0	100	0	0	0	0	0	0	0
3	USA, Versiti	40	3	50	25	0	25	0	0	0	0	0
4	Austria, Vienna	5	3+	0	33.3	0	33.3	0	0	0	0	33.3
5	Denmark, Aalborg	7	1	0	100	0	0	0	0	0	0	0
6	France, Créteil	37	8	62	25	13	0	0	0	0	0	0
7	France, Nantes	24	6	0	33	17	17	0	0		0	33
8	Germany, Dessau	3	0	0	0	0	0	0	0	0	0	0
9	Germany, Giessen	38	8	25	25	0	25	0	0	0	12.5	12.5
10	The Netherlands, Sanquin	12	5	20	0	20	20	0	0	0	0	40
11	Warsaw, Poland		380 ^a	42	13	0	0	0	2	6		25
12	United Kingdom, NHS	55	7	43	0	14	29	14	0	0	0	0
13	Slovenia, Ljubljana	6	1	50	30	0	20	0	0	0	0	0
14	Australia, Lifeblood	4	1	0	100	0	0	0	0	0	0	0
15	Hong Kong, Queen Mary	36	10	100	0	0	0	0	0	0	0	0

^aTotal number of diagnosed neutropenia (auto- or alloimmune).

also been reported to change with time [15]. Diagnosis of primary AIN is especially useful as it supports exclusion of other causes of neutropenia [16].

Although in many cases of adult AIN no antigen specificity is described, antibodies against HNA-1a and HNA-1b have been detected as the most common target antigens for autoantibodies involved in cases of AIN in adults [17]. In contrast to primary AIN in

infancy, AIN in adults is not a self-limiting condition and manifests a higher frequency in females (up to 70% of cases) [6].

Transfusion of blood products containing HNA alloantibodies to recipients with the cognate antigen has been known to induce reactions such as TRALI [18]. The role of neutrophils in TRALI is well established [19]. However, some alloantibodies such as alloantibodies against HNA-3a have been implicated in severe and some fatal TRALI

TABLE 5 Patient age distribution and positivity rate in neonatal autoimmune neutropenia investigations.

		Sample	Positive	results	Patient age	distribution (%)		
Autoimm	nune neutropenia investigations	tested (n)	n	%	Newborn	2-36 months	Primary	Adult
1	Brazil, Sao Paulo	33	11	33.3	0.0	36.4	18.2	45.5
2	USA, ARC	95	32	33.7	0.0	43.2	0.0	56.8
3	USA, Versiti	1981	526	26.6	0.1	47.0	18.2	34.8
4	Austria, Vienna	75	15	20.0	21.4	64.3	0.0	14.3
5	Denmark, Aalborg	90	20	22.2	0.0	54.1	18.9	27.0
6	France, Créteil	1169	105	9.0	0.0	30.1	0.0	69.9
7	France, Nantes	774	87	11.2	1.2	26.2	0.0	72.6
8	Germany, Dessau	63	9	14.3	0.0	36.4	36.4	27.3
9	Germany, Giessen	990	255	25.8	0.0	17.9	13.5	68.6
10	The Netherlands, Sanquin	270	79	29.3	57.0			43.0
11	Warsaw, Poland	380			0.0	91.5	0.0	8.5
12	United Kingdom, NHS	2004	488	24.4	0.6	58.5	30.4	10.5
13	Slovenia, Ljubljana	30	8	26.7	0.0	43.2	18.9	37.8
14	Australia, Lifeblood	141	58	41.1	0.0	2.1	1.4	96.5
15	Hong Kong, Queen Mary	11	0	0.0	0.0	18.2	36.4	45.5
LiD	Iran, Tehran	23	12	52.2	0.0	40.0	40.0	20.0

TABLE 6 Transfusion-related acute lung injury (TRALI) investigation findings.

		Samples	Patient antibody	4	Donor an	tibody
TRALI inves	tigations	tested (n)	n	%	n	%
1	USA, ARC	60	0	0	6	10.0
2	USA, Versiti	73			1	1.4
3	Austria, Vienna	3	0	0	2	66.7
4	Denmark, Aalborg	9			1	11.1
5	Germany (Dessau)	276	1	0.3	1	0.3
6	Germany (Giessen)	37	0	0	3	8.1
7	France, Nantes	29	0	0	0	0.0
8	The Netherlands, Sanquin	2	0	0	0	0.0
9	Poland, Warsaw	22			1	4.5
10	United Kingdom, NHS	78	Not tested		4	20.0
11	Slovenia, Ljubljana	3			1	33.3
12	Thailand Red Cross	7	1	14.3	1	14.3
13	Thailand, Thammasat University	2	0	0	2	100.0
14	Australia, Lifeblood	2	0	0	1	50.0
15	Hong Kong	0	0	0	0	0
16	Japan, JRC	72	9	12.5	28	38.9

on Wiley Online Library for rule

of use; OA articles are

governed by the applicable Creative Cor

BAYAT ET AL.

: populations.
different
frequencies in
(HNAs)-allele 1
antigens (
The human neutrophil
TABLE 7

Population 1a 1b 1c Asian 5 1 1 1 Asian 5 1 1 1 1 Southern Thai 0.619 0.365 0.0012 0.004 Northern Thai 0.677 0.323 0 0 Northern Thai 0.677 0.323 0 0 Northern Thai 0.6677 0.323 0 0 Thai 0.6677 0.333 0 0 Chinese (Han, Guangzhou) 0.6677 0.333 0 0 Chinese (Han, Zhejiang) 0.6673 0.3357 0 0 Chinese (Han, Zhejiang) 0.6613 0.3357 0 0 Korean 0.6413 0.6133 0.3357 0 0 Indian 0.6423 0.6413 0.3357 0 0 Burnese 0.6423 0.6413 0.6423 0.6444 0.635 Malays (Total) 0.725 0.2345 0.0	Positive 1 0.983 0.983 0.987	Negative 0 0.017 0.012 0.013	3a 0.808 0.718 0.755 0.755 0.738 0.741 0.654 0.654 0.654 0.654 0.654 0.747	3b 0.192 0.282 0.225 0.215 0.215 0.262 0.29	4a 0.973 0.975	4b 0.027 0.025	<mark>5a</mark> 0.656	5b 0341	Author, year Intharanut et al 2019 [42]
ation 1a 1b ation 0.619 0.365 thern Thai 0.548 0.452 thern Thai 0.677 0.323 thern Thai 0.677 0.323 thern Thai 0.677 0.323 thern Thai 0.677 0.323 thern Thai 0.677 0.333 these than, Guangzhou) 0.667 0.333 nese (Han, Zhejiang) 0.678 0.335 nese (Han, Zhejiang) 0.613 0.337 an 0.613 0.377 an 0.613 0.375 an 0.613 0.377 an 0.613 0.377 an 0.613 0.377 an 0.613 0.375 anese 0.623 0.377 en 0.725 0.275 ays (Total) 0.706 0.294		Negative 0.005 0.017 0.012 0.013	3a 0.808 0.718 0.755 0.775 0.738 0.738 0.738 0.747 0.654 0.654 0.747 0.845	3b 0.192 0.282 0.215 0.215 0.215 0.262 0.29	4a 0.973 0.975	4b 0.027 0.025	5a 0.656	5b	Author, year Intharanit et al 2019 [42]
thern Thai 0.619 0.365 trial Thai 0.548 0.452 thern Thai 0.577 0.323 thern Thai 0.677 0.323 thern Thai 0.677 0.323 theastern Thai 0.677 0.323 theastern Thai 0.677 0.323 in 0.677 0.323 nese (Han, Guangzhou) 0.667 0.333 nese (Han, Zhejiang) 0.613 0.315 ean 0.613 0.315 an 0.613 0.315 ean 0.613 0.315 an ese 0.613 0.315 ean 0.623 0.377 ays (Total) 0.725 0.275 ean 0.363 0.363		0.005 0 0.017 0.012 0.013	0.808 0.718 0.775 0.775 0.738 0.738 0.738 0.738 0.654 0.654 0.654 0.747 0.845	0.192 0.282 0.225 0.215 0.215 0.262 0.262 0.346	0.973 0.975	0.027 0.025	0.656	778 C	Intharanııt et al 2019 [42]
n Thai 0.619 0.365 Thai 0.548 0.452 in Thai 0.677 0.323 stern Thai 0.696 0.301 stern Thai 0.696 0.301 (Han, Guangzhou) 0.667 0.333 (Hong Kong) 0.678 0.315 (Han, Zhejiang) 0.613 0.315 (Han, Zhejiang) 0.613 0.377 e 0.623 0.377 e 0.623 0.377 e 0.605 0.395 (Total) 0.706 0.294		0.005 0 0.017 0.012 0.013	0.808 0.718 0.775 0.785 0.785 0.785 0.785 0.654 0.654 0.654 0.654 0.654 0.647	0.192 0.282 0.225 0.215 0.215 0.262 0.262 0.29	0.973 0.975	0.027 0.025	0.656	0 244	Intharaniit et al. 2019 [42]
Thai 0.548 0.452 In Thai 0.677 0.323 In Thai 0.677 0.323 Istern Thai 0.696 0.301 Istern Thai 0.667 0.333 Ithong Kong) 0.667 0.333 Ithong Kong) 0.667 0.333 Ithong Kong) 0.667 0.333 Ithon, Zhejiang) 0.613 0.347 Ithon, Zhejiang) 0.613 0.347 Ithon, Zhejiang) 0.613 0.377 Ithon 0.605 0.275 Ithotal) 0.706 0.294		0.005 0 0.017 0.012 0.013	0.718 0.775 0.785 0.738 0.71 0.654 0.655 0.655 0.654 0.747 0.845	0.282 0.225 0.215 0.262 0.29 0.346	0.975	0.025		110.0	IIIIIaiaiiai (1 ai)
n Thai 0.677 0.323 astern Thai 0.696 0.301 astern Thai 0.696 0.301 (Han, Guangzhou) 0.667 0.333 e (Hong Kong) 0.678 0.315 e (Han, Zhejiang) 0.613 0.387 e 0.613 0.377 e 0.603 0.377 e 0.605 0.395 (Total) 0.706 0.294		0.005 0 0.017 0.012 0.013	0.775 0.785 0.738 0.71 0.654 0.655 0.695 0.695 0.654 0.747	0.225 0.215 0.262 0.29 0.346			0.771	0.229	Intharanut et al., 2019 [42]
stern Thai 0.696 0.301 (Han, Guangzhou) 0.667 0.333 (Hong Kong) 0.678 0.315 (Han, Zhejiang) 0.613 0.315 (Han, Zhejiang) 0.613 0.377 e 0.623 0.377 e 0.605 0.375 (Total) 0.706 0.294		0.005 0 0.017 0.012 0.013	0.785 0.738 0.71 0.654 0.695 0.695 0.654 0.654 0.747	0.215 0.262 0.29 0.346	0.965	0.035	0.748	0.252	Intharanut et al., 2019 [42]
e (Han, Guangzhou) 0.667 0.333 (Hong Kong) 0.678 0.315 (Han, Zhejiang) 0.613 0.387 e 0.613 0.387 e 0.623 0.377 e 0.623 0.377 e 0.623 0.377 e 0.605 0.275 (Total) 0.706 0.294		0.005 0 0.017 0.012 0.013	0.738 0.71 0.654 0.695 0.695 0.654 0.747 0.845	0.262 0.29 0.346	0.972	0.028	0.676	0.324	Intharanut et al., 2019 [42]
e (Han, Guangzhou) 0.667 0.333 e (Hong Kong) 0.678 0.315 e (Han, Zhejiang) 0.613 0.387 e 0.613 0.387 e 0.623 0.377 e 0.605 0.375 e 0.775 0.275 (Total) 0.706 0.294		0 0.017 0.012 0.013	0.738 0.71 0.654 0.695 0.695 0.812 0.747 0.747	0.262 0.29 0.346					Nathalang et al., 2018 [41]
e (Hong Kong) 0.678 0.315 (Han, Zhejiang) 0.613 0.387 e 0.433 0.444 e 0.623 0.377 e 0.605 0.395 (Total) 0.706 0.294 0.36 0.631		0.017 0.012 0.013	0.71 0.654 0.695 0.695 0.812 0.654 0.747 0.845	0.29 0.346	0.996	0.004	0.854	0.146	Xia et al., 2011 [33]
e (Han, Zhejiang) 0.613 0.387 e 0.433 0.444 0.623 0.377 e 0.605 0.395 0.706 0.294 (Total) 0.706 0.294		0.012 0.013	0.654 0.695 0.812 0.654 0.747 0.845	0.346	0.995	0.005	0.852	0.148	Tam et al., 2018 [35]
e 0.433 0.444 e 0.623 0.377 e 0.605 0.395 0.725 0.275 (Total) 0.706 0.294		0.012 0.013	0.695 0.812 0.654 0.747 0.845		1	0	0.896	0.104	He and Zhang, 2014 [34]
e 0.433 0.444 e 0.623 0.377 e 0.605 0.395 0.725 0.275 (Total) 0.706 0.294		0.012 0.013	0.812 0.654 0.747 0.845	0.305	0.986	0.014	0.959	0.041	Han and Han, 2015 [38]; Han and Han, 2006 [39]
e 0.623 0.377 e 0.605 0.395 0.725 0.275 (Total) 0.706 0.294		0.013	0.654 0.747 0.845	0.188	0.955	0.045	0.237	0.763	Gogri et al., 2022 [36]
e 0.605 0.395 0.725 0.275 (Total) 0.706 0.294 0.36 0.631			0.747 0.845	0.346	1	0	0.84	0.16	Matsuhashi et al., 2012 [<mark>37</mark>]
0.725 0.275 (Total) 0.706 0.294 0.36 0.631			0.845	0.253	0.971	0.029	0.559	0.441	Simtonget al., 2018 [32]
(Total) 0.706 0.294 0.36 0.631				0.155	0.956	0.044	0.693	0.307	Simtong et al., 2018 [32]
0.36 0.631			0.758	0.242	0.977	0.023	0.708	0.292	Manaf et al., 2015 [40]
0.36 0.631									
			0.801	0.199	0.889	0.111	0.665	0.335	Grabowski et al., 2019 [44]
Danish 0.348 0.623 0.029			0.814	0.186	0.881	0.119	0.724	0.276	Nielsen et al., 2012 [<mark>26</mark>]
English (Caucasoid) 0.318 0.668 0.014			0.768	0.232	0.882	0.118	0.736	0.264	Cardoso et al., 2013 [43]
Russian (St. Petersburg) 0.384 0.584 0.032			0.804	0.196	0.898	0.102	0.708	0.292	Krobinets et al., 2020 [45]
Turkish 0.42 0.564 0.03			0.737	0.263	0.881	0.119	0.754	0.246	Hauck et al., 2011 [46]
African									
Zambian 0.395 0.345 0.25			0.975	0.025	0.895	0.105	0.5	0.5	Nielsen et al., 2012 [26]
United States (Black population) 0.59 0.77 0.23									Kissel et al., 2000 [31]
United States (African American)			0.929	0.071					Bowens et al., 2012 [30]
United States (Hispanic/Latino)			0.826	0.174					Bowens et al., 2012 [30]
United States (Native)			0.946	0.054					Bowens et al., 2012 [30]
Brazilian 0.315 0.637 0.048			0.81	0.19	0.822	0.178	0.711	0.289	Santos et al., 2016 [27]; Lopes et al., 2014 [28]; Cardone et al., 2006 [29]
									(Continues)

	HNA-1			HNA-2		HNA-3		HNA-4		HNA-5		References
Population	1a	1b	1c	Positive 1	Negative	3a 3b	Зb	4a 4b	4b	5a 5b	5b	Author, year
Middle Eastern												
Iranian	0.34 0.63	0.63	0.03			0.63	0.37	0.85	0.15	0.72	0.28	Esmaeili, 2022 [<mark>3</mark>]
Syrian	0.375	0.58	0.04			0.742	0.258	0.86	0.14	0.66	0.34	Hauck-Dlimi et al., 2018 [47]

(Continued)

TABLE 7

cases. This may be due to the fact that HNA-3a is expressed not only on neutrophils but also on other cells such as endothelial cells, monocytes and platelets [18, 20]. Conscious of the role of HNA antibodies in TRALI, the ISBT Working Party on Granulocyte Immunobiology published recommendations for leukocyte antibody investigations in TRALI [21]. Data from this survey confirm that in the majority of cases the antibodies are in the transfused blood product (Table 6). As twothirds of TRALI cases are associated with alloantibodies; both HLA Class I and II, and HNA [22], these investigations provide a vital way to identify and manage donors with the culprit antibodies.

During COVID-19 pandemic, transfusion of plasma obtained from COVID-19-immunized healthy donors containing neutralizing antibodies against COVID-19 antigen to COVID-19 patients (known as COVID-19 convalescent plasma [CCP]) was considered as promising therapy. It is worth noting that previous reports indicate the development of TRALI in COVID-19-infected patients after transfusion with CCPs [23, 24]. Therefore, analysis of convalescent plasma for detection of anti-HNAs and HLAs antibodies was conducted. Among participants of this current survey, four laboratories have tested CCPs. However, the frequency of anti-HNAs positive samples among investigated CCPs in these laboratories is not yet reported.

Investigation for the presence of HNA antibodies usually involves screening test, most commonly GIFT and GAT [25, 26]. Use of HNAtyped panel cells at the screening stage may facilitate identification of antibody specificity. The MAIGA provides another way to confirm antibody specificity but is liable to false negatives. Among this survey's participants, 16 established laboratories and 1 laboratory in development conducted GIFT, 11 of 17 established laboratories and one laboratory in development conduct GAT and 12 established laboratories conduct MAIGA with two laboratories optimizing the MAIGA (Table 2). Six established laboratories and three laboratories in development use the LabScreen Multi test kit [21]. The combination of GIFT, GAT and MAIGA assays is considered as the 'gold standard' for HNA testing.

It is interesting to note that although there are only five established laboratories in the Asia Pacific, since 2012, there have been at least 12 publications of HNA frequencies from that region (Table 7). Genotyping has made this feasible. There is a gap in our knowledge on HNA frequencies in African, the Middle Eastern and Western Pacific populations (Table 7). HNAs allele frequency analysis among different populations indicated a different pattern for HNA-1 alleles between Asian and Western populations; in many Asian populations, no HNA-1c allele has been detected. Currently, we do not know if the deviation in allele frequency is due to genotyping techniques applied in the region or if there is a real absence of HNA-1c in some Asian populations.

To evaluate the accuracy and effectiveness of a laboratory's ability to detect HNA antibodies, the ISBT-GIWP conducts the International Granulocyte Immunobiology Working Party (IGIWP) every year. In 2022, each of the 18 participating laboratories received four blinded samples (four DNA and four serum samples) to analyse. Of the 18 participating laboratories, only 13 responded to this survey. It is hoped that this survey will encourage other laboratories to participate in IGIWP workshop. In addition to IGIWP, there is the INSTAND EQA for Granulocyte Immunobiology. This is an intradisciplinary non-profit, scientific-medical association designated by the German Medical Association to promote quality assurance. For each evaluation, INSTAND distributes blinded samples for HNAs genotyping and detection of anti-HNA-alloantibodies.

This is the first study to provide a comprehensive synopsis of HNA typing and serology conducted in diagnostic laboratories across the whole world. The number of samples received and analysed provides a picture of HNA-related diseases such as adults and infants AIN, immunization frequencies against HNA and is indication of the population-related HNA involved in alloimmune neutropenia. The data provide a summary of investigation techniques employed that may help interested health services develop HNA investigation capability and improve the activities of established laboratories. Importantly, the list of participants (Tables 1A and 1B) provides a useful contact list for physicians and also regional hospitals wanting to contact HNA-diagnostic services.

ACKNOWLEDGEMENTS

B.B. and L.C. designed the research study, prepared the questionnaire and mailing list, collected data and wrote the manuscript, J.L. prepared the synopsis on HNA allele frequencies in different populations, M.A., L.C., B.C., R.D., B.E., C.G., M.K., H.Ki., H.Kr., M.M.K., J.K., E.M., O.N., D.N., K.R.N., G.P., A.P., L.P., U.J.S., M.S., G.F.K., P.K., D.T. and M. U. provided the data. B.F. provided valuable input into the drafting and finalization of the manuscript. Open Access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST STATEMENT

There are no conflicts identified.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Behnaz Bayat ^D https://orcid.org/0000-0002-5608-4317 Elyse Moritz ^D https://orcid.org/0000-0002-0636-4556 Oytip Nathalang ^D https://orcid.org/0000-0002-2858-3063 Yoke-Lin Fung ^D https://orcid.org/0000-0002-7777-6179

REFERENCES

- Flesch BK, Reil A. Molecular genetics of the human neutrophil antigens. Transfus Med Hemother. 2018;45:300–9.
- Browne T, Dearman RJ, Poles A. Human neutrophil antigens: nature, clinical significance and detection. Int J Immunogenet. 2021;48: 145–56.
- Esmaeili B, Bayat B, Alirezaee A, Delkhah M, Mehdizadeh MR, Pourpak Z. Human neutrophil antigen genotype and allele frequencies in Iranian blood donors. J Immunol Res. 2022;2022:e4387555.
- Porcelijn L, de Haas M. Neonatal alloimmune neutropenia. Transfus Med Hemother. 2018;45:311–6.
- Justiz Vaillant AA, Zito PM. Neutropenia. StatPearls. Treasure Island, FL: StatPearls Publishing; 2022.

 Capsoni F, Sarzi-Puttini P, Zanella A. Primary and secondary autoimmune neutropenia. Arthritis Res Ther. 2005;7:208–14.

773

- Solomou EE, Salamaliki C, Lagadinou M. How to make the right diagnosis in neutropenia. Clin Hematol Int. 2021;3:41–6.
- Martins JO, Moritz E, Abbas SA, Lopes LB, Barros MMO, Chiba AK, et al. Antibodies against human neutrophil antigens in nontransfused women with red blood cell alloimmunisation induced by pregnancy. Blood Transfus. 2021;19:479–86.
- Bux J, Kober B, Kiefel V, Mueller-Eckhardt C. Analysis of granulocyte-reactive antibodies using an immunoassay based upon monoclonal-antibody-specific immobilization of granulocyte antigens. Transfus Med. 1993;3:157–62.
- Prasath A, Grafius A, Bonanno M, Ambrusko S, Nair J. Alloimmune neutropenia in a neonate: case report and review of literature. Antibodies. 2022;11:63.
- Arneth B. Neonatal immune incompatibilities between newborn and mother. J Clin Med. 2020;9:1470.
- Fung YL, Pitcher LA, Willett JE, Reed C, Mison L, Bux J, et al. Alloimmune neonatal neutropenia linked to anti-HNA-4a. Transfus Med. 2003;13:49–52.
- Porcelijn L, Abbink F, Terraneo L, Hoogen LO, Huiskes E, de Haas M. Neonatal alloimmune neutropenia due to immunoglobulin G antibodies against human neutrophil antigen-5a. Transfusion. 2011;51: 574–7.
- Bux J, Behrens G, Jaeger G, Welte K. Diagnosis and clinical course of autoimmune neutropenia in infancy: analysis of 240 cases. Blood. 1998;91:181–6.
- Bruin M, Dassen A, Pajkrt D, Buddelmeyer L, Kuijpers T, de Haas M. Primary autoimmune neutropenia in children: a study of neutrophil antibodies and clinical course. Vox Sang. 2005;88:52–9.
- Audrain M, Martin J, Fromont P, Prié N, Thomas C, Muller et J-Y. Autoimmune neutropenia in children: analysis of 116 cases: autoimmune neutropenia in children. Pediatr Allergy Immunol. 2011;22: 494–6.
- Fujita M, Kawabata H, Oka T, Hishizawa M, Kitano T, Kondo T, et al. A rare case of adult autoimmune neutropenia successfully treated with prednisolone. Intern Med. 2017;56:1415–9.
- Reil A, Keller-Stanislawski B, Günay S, Bux J. Specificities of leucocyte alloantibodies in transfusion-related acute lung injury and results of leucocyte antibody screening of blood donors. Vox Sang. 2008;95:313–7.
- Fung YL, Silliman CC. The role of neutrophils in the pathogenesis of transfusion-related acute lung injury. Transfus Med Rev. 2009;23: 266–83.
- Bayat B, Tjahjono Y, Sydykov A, Werth S, Hippenstiel S, Weissmann N, et al. Anti-human neutrophil antigen-3a induced transfusion-related acute lung injury in mice by direct disturbance of lung endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33: 2538–48.
- ISBT Working Party on Granulocyte Immunobiology, Bierling P, Bux J, Curtis B, Flesch B, Fung L, et al. Recommendations of the ISBT Working Party on Granulocyte Immunobiology for leucocyte antibody screening in the investigation and prevention of antibodymediated transfusion-related acute lung injury. Vox Sang. 2009;96: 266–9.
- Muller MCA, Porcelijn L, Vlaar APJ. Prevention of immune-mediated transfusion-related acute lung injury; from bloodbank to patient. Curr Pharm Des. 2012;18:3241–8.
- Amrutiya V, Patel R, Baghal M, Patel B, Waykole T, Patel H, et al. Transfusion-related acute lung injury in a COVID-19-positive convalescent plasma recipient: a case report. J Int Med Res. 2021;49:1–5.
- Juskewitch JE, Stubbs JR, Gandhi MJ. Elevated rate of HLA antibodies in male COVID-19 convalescent plasma donors: a risk factor for transfusion-related acute lung injury. Mayo Clin Proc. 2021;96: 500–2.

- Fung YL, Minchinton RM, Fraser JF. Neutrophil antibody diagnostics and screening: review of the classical versus the emerging. Vox Sang. 2011;101:282–90.
- Nielsen KR, Koelbaek MD, Varming K, Baech J, Steffensen R. Frequencies of HNA-1, HNA-3, HNA-4, and HNA-5 in the Danish and Zambian populations determined using a novel TaqMan real time polymerase chain reaction method. Tissue Antigens. 2012;80:249–53.
- Santos VC, Grecco M, Pereira KMC, Terzian CCN, Andrade LEC, Silva NP. Fc gamma receptor IIIb polymorphism and systemic lupus erythematosus: association with disease susceptibility and identification of a novel FCGR3B*01 variant. Lupus. 2016;25:1237–43.
- Lopes LB, Baleotti W Jr, Suzuki RB, Fabron A Jr, Chiba AK, Vieira-Filho JPB, et al. HNA-3 gene frequencies in Brazilians and a new polymerase chain reaction-restriction fragment length polymorphism method for HNA-3a/3b genotyping. Transfusion. 2014;54:1619–21.
- Cardone JDB, Bordin JO, Chiba AK, Norcia AMMI, Vieira-Filho JPB. Gene frequencies of the HNA-4a and -5a neutrophil antigens in Brazilian persons and a new polymerase chain reaction-restriction fragment length polymorphism method for HNA-5a genotyping. Transfusion. 2006;46:1515–20.
- Bowens KL, Sullivan MJ, Curtis BR. Determination of neutrophil antigen HNA-3a and HNA-3b genotype frequencies in six racial groups by high-throughput 5' exonuclease assay. Transfusion. 2012; 52:2368–74.
- Kissel K, Hofmann C, Gittinger FS, Daniels G, Bux J. HNA-1a, HNA-1b, and HNA-1c (NA1, NA2, SH) frequencies in African and American Blacks and in Chinese. Tissue Antigens 2000;56:143–8.
- Simtong P, Puapairoj C, Leelayuwat C, Santoso S, Romphruk AV. Assessment of HNA alloimmunisation risk in Northeastern Thais, Burmese and Karen. Transfus Med. 2018;28:47–55.
- Xia W, Bayat B, Sachs U, Chen Y, Shao Y, Xu X, et al. The frequencies of human neutrophil alloantigens in the Chinese Han population of Guangzhou. Transfusion. 2011;51:1271–7.
- He J, Zhang W. Genotyping of human neutrophil antigens by polymerase chain reaction sequence-based typing. Blood Transfus. 2014; 12:s292–s298.
- Tam K, Tang I, Ho J, Yeung W, Lee CK, Ip P, et al. A study of human neutrophil antigen genotype frequencies in Hong Kong. Transfus Med. 2018;28:310–8.
- Gogri H, Parihar M, Kulkarni S, Madkaikar M, Sharma J, Gorakshakar A. Phenotyping and genotyping of HNA: prevalence, risk of alloimmunization, and HNA incompatibilities in Indians. Transfus Med Hemother. 2022;50:1–9.

- Matsuhashi M, Tsuno NH, Kawabata M, Mishima Y, Okochi N, Santoso S, et al. The frequencies of human neutrophil alloantigens among the Japanese population. Tissue Antigens. 2012;80:336–40.
- Han TH, Han KS. Gene frequency of human neutrophil alloantigen-3 in the Korean population. Korean J Blood Transfus. 2015;26:185–92.
- Han TH, Han KS. Gene frequencies of human neutrophil antigens 4a and 5a in the Korean population. Korean J Lab Med. 2006;26:114–8.
- Manaf SM, NurWaliyuddin HZA, Panneerchelvam S, Zafarina Z, Norazmi MN, Chambers GK, et al. Human neutrophil antigen profiles in Banjar, Bugis, Champa, Jawa and Kelantan Malays in Peninsular Malaysia. Blood Transfus. 2015;13:610–5.
- Nathalang O, Siriphanthong K, Petvises S, Jeumjanya N. Flowcytometric analysis of HNA-2 expression and phenotypes among Thai blood donors. Ann Lab Med. 2018;38:362–6.
- Intharanut K, Sasikarn W, Mitundee S, Nathalang O. HNA-1, -3, -4, and -5 genotyping using multiplex PCR among southern Thais: developing continual HNA-1 null detection. J Clin Lab Anal. 2019;33: e22651.
- Cardoso SP, Chong W, Lucas G, Green A, Navarrete C. Determination of human neutrophil antigen-1, -3, -4 and -5 allele frequencies in English Caucasoid blood donors using a multiplex fluorescent DNAbased assay. Vox Sang. 2013;105:65–72.
- Grabowski C, Jorks S, Kroll H. Genotyping of human neutrophil antigens 1, 3, 4 and 5 using a novel multiplex polymerase chain reaction. Transfus Med. 2019;29:110–5.
- Krobinets II, Mineeva NV, Bogdanova IO, Chechetkin AV. Human neutrophil antigen allele frequencies and assessment of HNA alloimmunisation risk in donors and hematological patients. Bull Sib Med. 2020;19:48–54.
- Hauck B, Philipp A, Eckstein R, Ott S, Zimmermann R, Dengler T, et al. Human neutrophil alloantigen genotype frequencies among blood donors with Turkish and German descent. Tissue Antigens. 2011;78:416–20.
- Hauck-Dlimi B, Damrah M, Achenbach S, Ott S, Zimmermann R, Zingsem J, et al. Human neutrophil alloantigen genotype frequencies among Syrian population. Clin Lab. 2018;64:597–601.

How to cite this article: Bayat B, Lowack J, Audrain M, Croisille L, Curtis B, Dangerfield R, et al. World human neutrophil antigens investigation survey. Vox Sang. 2023;118: 763–74.