
Justus-Liebig-Universität Gießen 

Fachbereich Agrarwissenschaften, Ökotrophologie und Umweltmanagement 

Institut für Tierzucht und Haustiergenetik 

Estimation of genetic parameters, phenotype and genomic predictions for novel 

functional traits in the special context of high-throughput cow genotyping and 

challenging environmental descriptors 

Habilitationsschrift 

zur Erlangung der Lehrbefähigung für das Fach Tierzucht und Haustiergenetik 

im Fachbereich Agrarwissenschaften, Ökotrophologie und Umweltmanagement 

der Justus-Liebig-Universität Gießen 

vorgelegt von 

Dr. Yin, Tong 

Gießen 2021 



 

Table of Contents 

 

Table of Contents 

 

List of Abbreviations...................................................................................................................I 

1. General introduction.............................................................................................................1 

1.1. Functional traits.............................................................................................................1 

1.1.1. Heat stress response............................................................................................2 

1.1.2. Greenhouse gas emissions..................................................................................3 

1.1.3. Body weigt..........................................................................................................4 

1.1.4. Behavior traits.....................................................................................................5 

1.2. Molecular markers in animal breeding..........................................................................6  

1.3. Genome-wide association studies..................................................................................7 

1.4. Similarity matrices in genomic predictions....................................................................9 

1.5. Cow training sets.........................................................................................................13 

1.6. Environmental descriptors...........................................................................................14 

1.6.1. Discrete environmental descriptors..................................................................15 

1.6.2. Continuous environmental descriptors.............................................................15 

2. Pulications..........................................................................................................................23 

2.1. Original research paper 1.............................................................................................23 

2.2. Original research paper 2.............................................................................................35 

2.3. Original research paper 3.............................................................................................51 

2.4. Original research paper 4.............................................................................................67 

2.5. Original research paper 5.............................................................................................81 

2.6. Original research paper 6.............................................................................................96 

2.7. Original research paper 7...........................................................................................113 

2.8. Original research paper 8...........................................................................................137 

2.9. Original research paper 9...........................................................................................154 

3. General discussion............................................................................................................163 

3.1. Genetic architecture of functional traits.....................................................................163 

3.1.1. Methane..........................................................................................................163 

3.1.2. Body weight....................................................................................................164 

3.1.3. Behavior traits.................................................................................................167 

3.2. Genotype by environment interaction........................................................................168 



 

Table of Contents 

 

3.2.1. Discrete environmental descriptor: Conventional and organic production 

systems............................................................................................................168 

3.2.2. Temperature-humidity-index..........................................................................169 

3.2.3. Herd descriptors..............................................................................................170 

3.2.4. Future environmental descriptors...................................................................172 

3.3. Factors affecting genome-wide associations.............................................................172 

3.3.1. Population stratification..................................................................................172 

3.3.2. Multi-breed and within-breed genome-wide association studies....................173 

3.3.3. Genome-wide association studies for maternal genetic effects.......................174 

3.4. Genetic and genomic parameters...............................................................................176 

3.4.1. Heritabilities...................................................................................................176 

3.4.2. Variance components.....................................................................................177 

3.5. Breeding schemes with focus on genotyped cows and functional traits.....................177 

3.6. Novel traits for future breeding goals.........................................................................179 

4. Summary..........................................................................................................................185 



 
List of Abbreviations 

I 
 

List of Abbreviations 

Abbreviation Explanation 

BACT Basic activity 

BLUP Best linear unbiased prediction 

BW Body weight 

BW23 Body weight recorded at 2 to 3 months of age 

BW1314 Body weight recorded at 13 to 14 months of age 

CH4 Methane emission 

DIM Days in milk 

DSN Black and white dual-purpose cattle 

EBV Estimated breeding value 

FEED Feeding 

G×E Genotype by environment interaction 

GBV Genomic breeding value 

GHG Greenhouse gas 

GWAS Genome-wide association study 

HACT High activity 

LD Linkage disequilibrium 

LPL Length of productive life 

NACT Resting / non-active 

PCA Principal component analysis 

QTL Quantitative trait loci 

ram Genetic correlations between direct and maternal genetic effects 

RFLP Restriction fragment length polymorphism 

RRM Random regression model 

RUM Ruminating 

SCS Somatic cell score 

SD Standard deviation 

SE Standard error 

SNP Single nucleotide polymorphism 

THI Temperature humidity index 

WEL_IC Welfare index class 

WEL_IP Welfare index point 



 
General introduction 

1 

 

1. General introduction 

The main aims of this thesis are 1) to estimate genetic parameters for novel functional traits in 

dairy cattle considering a broad pattern of environmental descriptors and 2) to evaluate 

accuracies of estimated breeding values (EBV) using pedigree and genomic based approaches. 

Therefore, this chapter gives an overview for novel functional traits in dairy cattle, provides a 

short history of genetic markers as applied in animal breeding, addresses statistical approaches 

in the context of genomic applications (especially from the background of training sets in dairy 

cattle populations), and introduces important environmental descriptors.  

 

1.1. Functional traits 

In the dairy cattle sector, the term “functional traits” comprises characteristics of cattle that 

affect economic efficiency by input cost reductions (Groen et al., 1997). Basically, the 

functionality for dairy cattle can be classified into five major groups, i.e., health, fertility, 

calving ease, efficiency and milkability, and every group comprises several novel traits (Groen 

et al., 1997). Nowadays, in contrast to production traits including milk yield and milk 

compositions, functional traits are gaining importance in overall dairy cattle breeding goals. 

For example, health traits (mastitis, metabolic diseases, feet and leg diseases and reproduction 

disorders) have been accumulatively recorded and genetically evaluated during the past 

decades in Scandinavia. Live body weight is a very important functional trait in selection 

indices in some countries with pasture-based farming systems (Pryce and Harris, 2006). In 

Germany, longevity, 13 direct health traits (mastitis resistance, claw disorders, fertility diseases, 

and metabolic disorders from the overall categories) and calf/heifer fitness traits are included 

into the routine national genetic evaluation for Holstein since 2018. Antagonistic genetic 

associations between production and functional traits encourage direct consideration of 

functional traits in breeding goals, because solely selection on productivity implies 

deteriorations of health, fertility, efficiency, and fitness performances. Moreover, the 

stagnation of milk prices constraints the profit in dairy cattle farming. In order to maintain a 

certain level of net revenue, it is imperative to reduce involuntary cow cullings to decrease the 

costs for disease treatments, to increase feed efficiency and to preserve cow fitness. From the 

perspective of the society, breeding schemes aiming at a balanced improvement of production 

and functional traits fulfil the consumer acceptance of dairy products. 
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1.1.1. Heat stress response 

Climate change is a topic of increasing importance in dairy cattle production systems, 

encouraging genetic studies on heat stress resistance, and to consider heat stress in genetic 

evaluations. Based on meteorological data from more than 4,000 weather stations in European 

countries, the number of days with extreme temperature and wet-bulb temperature were tripled 

from 1950 to 2018 (Lorenz et al., 2019). In order to investigate the impact of heat stress on 

production and functional traits, the temperature humidity index (THI), (considering dry bulb 

temperature and relative humidity (NRC, 1971)) has been used as continuous environmental 

gradient. Ravagnolo et al. (2000) combined test-day records from 15,012 Holstein cows with 

climatic information from the closest weather station. They identified a production trait decline 

for THI ≥ 72. Moreover, Ravagnolo and Misztal (2000) reported an alteration of additive 

genetic variances for heat stress at THI ~ 72.  In consequence, THI 72 (when using the NRC 

equation for the THI calculation) is generally accepted as heat stress threshold in dairy cattle 

populations. However, in some studies, detrimental impact has been identified for lower THI. 

In this regard, a decrease in semen productivity for German Holstein Friesian sires (Al-Kanaan 

et al., 2015) and in female fertility for German Holstein cows (Brügemann et al., 2013) was 

observed for  THI > 60. The threshold for production deteriorations and for detrimental impact 

on energy indicator traits in high yielding Holstein cows from large-scale cooperator herds was 

THI 68 (Gernand et al., 2019). For the health status of lactating cows and considering 

meteorological data from on-farm measurements, identified heat stress thresholds were specific 

for different health disorders (Gernand et al., 2019). Hence, heat stress thresholds varied among 

traits and across countries, production systems and populations. 

Innovative statistical modelling approaches allow simultaneous consideration of continuous 

time scales and of environmental gradients. In this regard, variance components for additive 

genetic and permanent environmental effects estimated via random regression models (RRM) 

differed along the grid pattern combining days in milk (DIM) and THI (e.g., Brügemann et al., 

2011; Bohlouli et al., 2019). Brügemann et al. (2011) applied a RRM with a pedigree-based 

relationship matrix. As an example, the heritability for daily protein yield was 0.16 at DIM 5 

combined with THI 72, but 0.37 at DIM 305 combined with THI 21. Bohlouli et al. (2019) 

focused on genomic RRM, and confirmed the heritability increase for milk yield with 

increasing DIM and decreasing THI. Low genetic correlations (< 0.50) between milk yield 

recorded at moderate and at extreme THI (Bohlouli et al., 2019) indicate possible genotype by 

environment interactions (G×E) for milk performances when considering “well-being” and 
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heat stress conditions. In consequence, a heat stress interaction term should be considered in 

genetic evaluations for production as well as for functional traits. Studies addressing prediction 

accuracies considering heat stress interactions and genetic parameters for test-day production 

traits in the context of THI are presented in the original research papers 1 and 2 of this thesis. 

 

1.1.2. Greenhouse gas emissions 

Productivity and functionality of dairy cattle react sensible to heat stress. Vice versa, the 

modern dairy cattle industry is one of the major causes contributing to climate change. The 

dairy cattle sector generates about 4% of the total global anthropogenic greenhouse gas (GHG) 

emissions (Food and Agriculture Organization of the United Nations., 2010). Methane (CH4), 

the most detrimental GHG from dairy cattle farming, is a by-product of fermentation processes 

in ruminants, and is 25 times more potent than CO2 to global warming. Consideration of 

individual CH4 output in breeding approaches might genetically influence feed efficiency 

indicators, such as dry matter intake  (de Haas et al., 2011), residual feed intake (Yan et al., 

2010), and gross energy intake (Moraes et al., 2014). Biologically, CH4 emissions from 

ruminants can be classified into three physiological pathways: 1) CH4 derived from rumen and 

lower gut which is absorbed into blood and exhaled from the lungs via expiration; 2) CH4 

emitted directly from rumen by eructation, and 3) CH4 produced from hindgut and released in 

flatus and respiration (Ricci et al., 2014; Hammond et al., 2016). Basically, CH4 measurements 

taken directly from nostrils of ruminants account for most of the enteric CH4 produced in the 

rumen and hindgut, because a large proportion of CH4 produced in hindgut is also absorbed 

into blood and emitted through expiration. The proportion of CH4 released via flatus in relation 

to the total CH4 emission was only 2% (Murray et al., 1976). Therefore, in addition to the 

expensive but most accurate CH4 measurements in the respiration chamber, technical 

instruments with focus on CH4 exhaled in normal breath, such as the handheld laser methane 

detector, quantify enteric CH4 with high accuracy (Chagunda and Yan, 2011). Due to the 

different recording techniques, CH4 measurements are expressed in several units, such as the 

CH4 emission rate (in g/d or L/d), the CH4 concentration (in ppm), and CH4 yield (in g CH4/kg 

dry matter intake). Heritabilities ranged from 0.21 to 0.29 for the CH4 emission rate (Lassen 

and Løvendahl, 2016; Pinares-Patiño et al., 2013), from 0.05 to 0.14 for the CH4 concentration 

(Pickering et al., 2015; Paganoni et al., 2017), and from 0.13 to 0.2 for CH4 yield (Pinares-

Patiño et al., 2013; Donoghue et al., 2015). In addition to real CH4 emissions recorded from 

different technical devices, CH4 emissions can be predicted based on correlated indicator traits 
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and considering specific environmental and feeding conditions. Different equations have been 

introduced to predict daily CH4. For example, Kirchgessner et al. (1995) reported an equation 

only including milk yield and metabolic body weight. de Haas et al. (2011) derived CH4 

emissions from feed intake and maintenance levels. Alternatively, milk fatty acid composition 

in milk mid-infrared spectra data was utilized to predict enteric CH4, because of the shared 

biochemical pathways among CH4, acetate, and butyrate in the rumen (Lassen and Løvendahl, 

2016). Using data from Brown Swiss cows kept on low-input farms in mountainous regions of 

Switzerland, Yin et al. (2015) compared the two prediction equations as introduced before. The 

same authors stated that the phenotypic and genetic correlations between the two predicted 

CH4 parameters were larger than 0.8 across lactation. Detailed curves for predicted CH4 

emissions and corresponding heritabilities in dependency of DIM, as well as genetic 

correlations between predicted CH4 and production, fertility and health traits, are presented in 

the original research paper 3.    

 

1.1.3. Body weight 

Body weight (BW) of dairy cattle is a valuable indicator to predict feed efficiency, energy 

balance and maintenance costs. In consequence, BW has been included in national selection 

indexes in several countries (Pryce et al., 2015). Genetic correlations of 0.76 and 0.45 were 

estimated between BW after first calving with dry matter intake and energy balance, 

respectively (Veerkamp et al., 2000). Recently, Li et al. (2018) reported genetic correlations 

between BW and feed intake slightly larger than 0.3 across first lactation. Besides the favorable 

correlations with other breeding goal traits or energy efficiency indicators, moderate to large 

heritabilities, e.g., 0.45 for weaning weight, 0.75 for calving weight, and 0.35 for weekly 

averaged live weight (Lassen and Løvendahl, 2016), indicate substantial selection response for 

BW when implementing direct BW selection strategies. Some large-scale dairy cattle farms in 

Germany routinely record BW at birth and around the first insemination date, because BW at 

these time points was closely correlated with test-day production and female fertility traits (Yin 

and König, 2018). However, due to the variation in the length of energy deficiency periods and 

the levels of energy deficiency with aging, genetic correlations between BW and productivity  

altered on the time scale (Veerkamp et al., 2001). Thus, it is imperative to focus on longitudinal 

BW data as generated in experimental farms or in commercial farms with automatic milking 

or weighing systems, instead of using single BW measurements from distinct time points. 

Brotherstone et al. (2007) and Yin and König (2018) estimated heritabilities for longitudinal 
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BW from birth to first calving via RRM applications. Body weight heritability curves altered 

with age, but the curve pattern was very similar in both studies. In contrast, Li et al. (2018) 

estimated quite constant heritabilities for BW by DIM in first parity Holstein cows. Genetic 

correlations between weekly BW and weekly dry matter intake increased at the beginning of 

lactation with a “peak estimate” of 0.7 in lactation week 7, but decreased afterwards (Li et al., 

2018). The variation in genetic correlation estimates by DIM also suggests longitudinal BW 

recording. Such aspects, additionally addressing covariance components among BW, 

productivity, functionality and health traits, are content of the original research papers 4 and 

5. As a further novelty, original research paper 6 displays variance components for growth 

curve parameters from three non-linear functions combined with different genomic kernel 

matrices. 

 

1.1.4. Behavior traits 

Schutz and Pajor (2001) examined the role of behavior traits in dairy cattle genetic selection 

schemes. Their review focused on feeding, reproductive and maternal behavior, temperament 

and social interactions. Further “natural behavior” categories reflecting biological rhythms and 

sleep are not under genetic control (Hohenboken, 1986). Basically, subjectively scored 

temperament traits (scoring done by milking persons) displayed small to moderate heritabilities 

in the range from 0.09 (Wethal et al., 2020) to 0.22 (Visscher and Goddard, 1995). Milking 

temperament of dairy cows strongly influences labor time and labor quality in the milking 

parlor. In consequence, milking temperament is already included into overall breeding goals in 

many countries. In addition, milking speed, which is moderately correlated with milking 

temperament (Schutz and Pajor, 2001), is also considered in breeding objectives. Generally, 

newborn calves are separated from their dams directly after calving.  From an animal welfare 

perspective, the dam should have the possibility to lick its calf, which stimulates the calf to 

breathe, to suckle, and ultimately contributes to calf vitality. Also, such dam – calf behavior 

interactions are partly under genetic control (Schutz and Pajor, 2001). As pointed out by Schutz 

and Pajor (2001), feeding behavior (e.g., the number of daily meals, meal size, chewing time, 

eating time or drinking time), drinking behavior (e.g., the frequency and amount of water 

consumption) as well as rumination time play an important role with regard to overall 

productivity. Aiming on the understanding of the genetic architecture of cattle behavior, and in 

order to infer correlations between behavior traits and other traits of economic importance, the 

availability of dense behavior trait pattern is imperative. Hence, automatic or electronic 
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recording systems should be implemented, e.g., sensor technology. Sensors in combination 

with location detectors can be applied to determine rumination and eating time with high 

accuracy. Activities of cows detected via electronic motion sensors plus temperature 

measurements via heat mount detectors might indicate estrus periods. In consequence, the 

original research paper 7 focuses on the estimation of genetic parameters for behavior traits 

based on ear tag sensor recording, such as rumination time, feeding time, basic active time, 

high active time and not active time. Furthermore, genetic associations between those behavior 

traits with production traits are addressed. A further novelty is an across-country approach 

considering genomic data from multiple breeds, in order to detect genomic regions and 

potential candidate genes for dairy cow behavior. 

 

1.2. Molecular markers in animal breeding 

Molecular markers, defined as DNA polymorphisms among species and among individuals 

within a species (Beuzen et al., 2000), can be classified into different types. Three types are 

mainly used in animal breeding and genetics, including restriction fragment length 

polymorphisms (RFLP), microsatellites, and single nucleotide polymorphisms (SNP). One 

example for the successful application of RFLPs is the following. In 1990, the bovine leukocyte 

adhesion deficiency, which is caused due to a single point mutation in the CD18 gene, became 

an important autosomal recessive congenital disease, because heterozygous carriers were 

among the most prominent bulls (Nagahata, 2004). Hence, a polymerase chain reaction-RFLP 

screening test for the CD18 mutation was applied, in order to identify carriers and to avoid 

matings between carriers. Such strategy successfully decreased the prevalence of bovine 

leukocyte adhesion deficiency (Nagahata, 2004). Hence, RFLP were mostly used to detect 

genetic defects, i.e., genetic disorders with classic Mendelian inheritance. Microsatellites, 

which contain two to six nucleotide repeats, are more interesting in quantitative genetic 

approaches, because they can be used to construct the linkage map for domestic animals 

(Rohrer et al., 1994). The map provides the framework for identifying genes that contribute to 

economic and functional traits, and the linkage between markers and quantitative trait loci 

(QTL) can be used in marker assisted selection schemes. For example, using 159 autosomal 

microsatellites covering approximately two thirds of the bovine genome, Georges et al. (1995) 

mapped QTL underlying the genetic variation of milk production in an elite Holstein cattle 

population. A SNP is a substitution of one nucleotide for another, or an insertion or a deletion 

of one or a few nucleotides in the genome (Beuzen et al., 2000). Basically, microsatellites are 
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more informative than SNP, because microsatellites contain multi-allelic variants, but SNP 

mostly represent two alleles. Nevertheless, nowadays, SNP are the commercially used genetic 

markers for routine animal breeding approaches. The arguments are the following: 1) the large 

number of valid SNP equally distributed across the genome implies marker locations in 

neighboring distance to a QTL which directly affects a protein function; 2) the stable 

inheritance of SNP markers allows efficient long-term selection approaches (Beuzen et al., 

2000), and 3) from a technical perspective, high throughput SNP chips can be efficiently 

created using DNA microarrays  (Lipshutz et al., 1999). The size of SNP chips for routine 

applications increased within a few years from 10k (low-density chip) to 777k (high-density 

chip). Recently, whole genome sequencing data considering up to 15.8 million SNP and 1.6 

million indel variants for Holstein Friesian and Simmental can be used in the context of next 

generation sequencing (Hayes et al., 2012). However, due to the quite small effective 

population size and quite high level of linkage disequilibrium (LD) in dairy cattle (Goddard 

and Hayes, 2009), a medium-density 50k SNP chip is sufficient to achieve reliable prediction 

accuracies in genomic evaluations (Erbe et al., 2012). Therefore, in this thesis, most of the 

research papers consider 50k or low-density 10k genotypes, but also imputations were applied. 

 

1.3. Genome-wide association studies 

Genome-wide association studies (GWAS) have been applied in animals, plants and humans, 

aiming on the identification of QTL underlying the traits of interest at a population level. The 

simplest statistical model to exploit the association between a marker and a trait is single 

marker regression, implying the regression of phenotypic records for the trait of interest on the 

number of copies for the respective allele at each locus, one by one. The general statistical 

model for the single marker regression is: 

� = �� +�� + � 

where y = a vector of phenotypes for the trait of interest; b = a vector of fixed effects, e.g., herd, 

year, calving age, etc.; g = effect of the marker; e = vector for random residuals following N 

(0, 	
�); W and X = incidence matrices allocating the fixed effects (b) and the marker effect (g) 

to phenotypic records, respectively. Actually, both b and g are treated as fixed effects, but the 

effects of the marker (g) and its incidence matrix (W) change, due to the consecutive analyses 

for the single SNP. Significance of the individual markers can be tested through F test statistics, 

considering estimates from �� , 
� , y, X and W (Hayes and Daetwyler, 2015), or through 
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likelihood-ratio tests comparing likelihoods of models with and without the marker effect (plus 

an ongoing test statistic following a �� distribution with 1 degree of freedom under the null 

hypothesis) (Yang et al., 2011). 

However, false positive SNP associations from the simple marker regression model are 

reported frequently, since it does not take population structure into account (Pritchard et al., 

2000). In dairy cattle, an elite bull might produce thousands of daughters, because of artificial 

insemination and international genetic evaluations as well as similar international selection 

strategies considering similar breeding goals. Besides, breeds with similar genetic background 

(e.g., Holstein Friesian and Deutsches Schwarzbuntes Niederungsrind) are included into the 

same genetic evaluation processes, irrespective of breed or production systems particularities. 

Phenotypes and genotypes from different breeds and countries can be combined, in order to 

increase the number of records and power of GWAS. However, in this regard, population 

stratification in dairy cattle is more prevalent than in human studies. Therefore, a modified 

single marker regression model with polygenic effects is recommended, since this alternative 

can remove false positive signals caused by the population structure. In matrix notation, the 

respective mixed model is: 

� = �� +�� + �� + � 

where y, b, g, e, X and W = notations as defined for the single marker regression model above; 

u = a vector of polygenic effects with a variance-covariance structure of N (0, �	��), where K 

= relationship matrix between animals and 	�� = polygenic variance; Z = incidence matrix 

allocating animal polygenic effects (u) to phenotypic records. The relationship matrix K can 

be the pedigree-based relationship matrix A, the genomic relationship matrix G (VanRaden, 

2008), or other matrices representing similarities between individuals (Schaid, 2010b). 

Alternatively, the K matrix or genotypes of the involved animals can be converted into linearly 

uncorrelated variables, i.e., into principal components. As implemented in human GWAS, the 

first principal components which explain a certain amount of variation are included in the 

single marker regression model and in the mixed model as additional fixed effects, in order to 

account for population structure (Mahmoud et al., 2018). However, principal components 

approaches should be conducted with caution, due to ambiguous corrections which are difficult 

to follow (Daetwyler et al., 2012).  

Several factors determine the power of GWAS. First, larger LD between SNP and QTL 

increased the detection power significantly (Wang and Xu, 2019). The power is maximized 
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when the SNP is in complete LD with the causative mutation. Increasing the number of SNP 

contributes to shorter distances between markers and QTL, with positive impact on the 

detection power. Also, the significant threshold according to the stringent Bonferroni 

correction depends on the number of tested markers. The second important factor influencing 

detection power is the proportion of the total phenotypic variance explained by the QTL. For 

monogenic traits, e.g., polled in cattle, and multifactorial traits with major QTL (e.g. the 

DGAT1 gene for milk fat content), GWAS inferred causative mutations with high accuracy 

(Coppieters et al., 1998). However, in dairy cattle, multiple genes with only minor effects plus 

environmental effects simultaneously contribute to trait expressions. The third important factor 

is the sample size. Pritchard and Przeworski (2001) stated that the sample size depends on a 

factor of 1/r2, with r2 being the LD between marker and QTL. Additionally, the detection power 

was different for loci with a minor allele frequency < 0.1 compared to loci with a minor allele 

frequency < 0.4 (Ardlie et al., 2002). Therefore, SNP filtering prior to GWAS is recommended. 

Finally, the detection power depends on the significance threshold. Because of the problem of 

multiple testing in GWAS (usually testing thousands of markers), an adjusted significant level 

is necessary to account for false positive associations. In this regard, Bonferroni correction 

adjusts for the number of markers, in spite of the fact that markers on the same chromosome 

are not independent. Thus, relaxed significant thresholds, such as a threshold based on a 

permutation test (Churchill and Doerge, 1994), the false discovery rate (Benjamini and 

Hochberg, 1995), or a Bonferroni correction considering the number of independent markers 

(Pausch et al., 2011), are suggested alternatives.  

In this thesis, GWAS were conducted to inferring direct and maternal genetic effects on BW at 

birth and at first insemination (see original research paper 5). Additional, one study focused 

on a multi-breed GWAS and on the annotation of potential candidate genes associated with 

behavior (e.g., rumination, feeding and activity pattern) in original research paper 7. 

  

1.4. Similarity matrices in genomic predictions 

GWAS approaches identified numerous potential candidate genes and unraveled genetic 

mechanisms for many traits in dairy cattle. However, most of the quantitative traits are 

controlled by an infinite number of QTL with infinitely small effects. Hence, statistical models 

which consider effects of all involved genes, are widely used in genetic evaluations. In this 
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regard, the simplest statistical model is an animal model (being also the basis for enhanced 

other models). The animal model is very similar to the GWAS model with polygenic effects: 

� = �� + �� + � 

where y, b, u, e, X and Z = as defined for in the GWAS model above. However, the single 

marker regression coefficient is excluded from the animal model. The expectation of the 

variables are: E(y) = Xb; E(u) = E(e) = 0. Assuming independently distributed residual effects 

with variance of 	
�, var(e) = I	
� = R; var(u) = �	�� = Gu and cov(u, e) = cov(e, u) = 0. 

Henderson (1975) developed best linear unbiased prediction (BLUP) to solve linear mixed 

models, allowing the estimation of solutions for fixed effects and breeding values 

simultaneously with maximized reliability. The mixed model equation for BLUP is: 

��′���� �′����
�′���� �′���� + ����

� ������ = ��′����
�′����� 

Assuming that R and Gu are non-singular matrices and since R = I	
�, then the equation can 

be simplified to: 

��′� �′�
�′� �′� + ����� ������ = ��′��′�� 

where � = 	
� 	��⁄ . As mentioned above, the similarity matrix K can be constructed according 

to different approaches. The most traditional approach is to build the matrix based on pedigree 

information, i.e., the A matrix, which reflects the expected additive genetic relationship among 

individuals. Availability of high-throughput SNP across the whole genome enables 

calculations of realized relationships, accounting for the Mendelian sampling term. For 

example, the G matrix allows relationship coefficients for full-sibs around 0.5, instead of being 

exactly equal to 0.5 as defined for the A matrix. In consequence, EBVs of non-phenotyped full-

sibs could differ, leading to improved prediction accuracies especially for young animals 

without own performances or without daughter records. The G matrix can be constructed 

according to different formulas. First, VanRaden (2008) proposed a G matrix with elements 

calculated as 
��!

∑�#$%&�#$', where � = ( − *.  M is a matrix containing the  genotypes (coded as 

0, 1, or 2) of the animals, P is a matrix with the ith column equals to two times ,-, and ,- is the 

allele frequency for marker i in the genotyped population. Nowadays, this is the most popular 

method to create G, and defined as default G matrix in software packages used for genomic 

evaluations, such as in the BLUPF90 package (Misztal et al., 2002) and in DMUv6 (Madsen 
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and Jensen, 2013). Alternatively, the centralized � matrix can be scaled with .2,-%1 − ,-', 
implying 

�1�!
2 , where m is the number of markers used to create the G matrix, and 1 is a m-by-

m diagonal matrix with 
&

�#$%&�#$' on the diagonal (Amin et al., 2007). Furthermore, Yang et al. 

(2010) adjusted for the sampling error associated with each SNP. In this regard, they stated that 

the relationship between two different individuals should be calculated according to Amin et 

al. (2007), but when focusing on the relationship between the same animal, the formula 

changed to 1 + &
2∑ 3$45 �%&6�#$'3$46�#$5

�#$%&�#$'
2-7& , where 8-9  = genotype at marker i for animal j. 

Legarra et al. (2009) computed a combined H matrix by blending A and G matrices, implying 

the following inverse of the H matrix: 

:�� = ;�� + �< << ��� − ;==��� 
where A22 = the submatrix of the pedigree-based relationship matrix for genotyped animals.  

The regular G matrix can be replaced by �> = %1 − ?'� + ?;==, with w = the ratio of the 

residual polygenic variance in relation to the total additive genetic variance (Christensen and 

Lund, 2010). In practice, the value for w is set to a small value in single-step genomic prediction 

models, such as 0.1 (Gao et al., 2018) and 0.05 (Naderi et al., 2018). 

In addition to relationship coefficients calculated based on pedigree or marker information, the 

variance-covariance structure between individuals can be constructed using all or a subset of 

markers (X) through a nonparametric function g(X) (Gianola and van Kaam, 2008). The 

function g(X) is assumed to be a function space ℋK, which is generated by a positive definite 

kernel function @%∙,∙' under theory of reproducing kernel Hilbert space (RKHS). According to 

the Representer theorem (Kimeldorf and Wahba, 1971), the solution of g(X) = KC, where K is 

a n-by-n kernel matrix (n = no. genotyped animals) and α = (D&, … , DF) is a vector of unknown 

parameters. Element (i, j) in K is K(xj, xk), which is calculated by the reproducing kernel 

function based on the genotypes of animal j and animal k. In a RKHS model with fixed effects 

and genotypes of animal, the respective equation is:  

� = �� + �C + � 

where y, �, X, e = as defined for the animal model; C = a vector of unknown parameters 

(D&, … , DF); K = n-by-n kernel similarity matrix. As shown by Liu et al. (2007), � and C can 

be estimated by minimizing the residual sum of squares and the penalty for C, G%H, C' =
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%� − �� − �C'′%� − �� − �C' + IC′�. Differentiating G%�, C' with respect to � and C leads 

to  �′�� + �′�C − �′� = < and �′�� + �′�C + I�C − �′� = <, or in equation form: 

��′� �′�
�′� �′� + ��� �

��C�� = ��′��′�� 
then, C~K%<,���	L�' where 	L� = variance of C and � = σN� 	L�⁄ . Because K is a symmetric 

matrix and K-1 exists, the second equation is C� = %� + OP'�&%� − ��� '. Accordingly, Q� =
�C� = �%� + �P'�&R� − ��� S = %P + ����'��%� − ��� ', which connects with the linear mixed 

model (Liu et al., 2007), because the equation form is: 

��′� �′� P + ����� ���Q�� = ��′�� � 
The equation is identical to the normal equation from the linear mixed model: 

� = �� + Q + � 

where g = a vector of random effects. Therefore, the restricted maximum likelihood algorithm 

as implemented in standard software packages for mixed models can be used to estimate 	L� 

and σN�, and in further consequence, to estimate the tuning parameter � (Liu et al., 2007; Wang 

et al., 2015). 

Hence, choosing the appropriate kernel function is of great importance in the RKHS regression, 

since the impact of marker information on traits of interest are expressed only in the kernel 

matrix K, which is produced from the kernel function. Because a new kernel can be created 

either from a symmetric function that generates a positive definite matrix or from an existing 

kernel via multiplication with other kernels (Schaid, 2010a), the K matrix captures additive 

genetic as well as nonlinear effects. For example, pairwise K×K interaction effects among SNP 

located in 186 unique candidate genes which were associated with birth weight were tested, 

and 23 gene pairs were significant at 0.001 significance level (Li and Cui, 2012). Schaid 

(Schaid, 2010b; Schaid, 2010a) reviewed various kernel functions, such as a weight linear 

kernel (Wu et al., 2011), a polynomial kernel (Zien et al., 2000), a Gaussian kernel (Mallick et 

al., 2005), and binomial and trinomial kernels (González-Recio et al., 2008). On the basis of 

all kernels, similarities or dissimilarities between individuals can be measured. 

In the original research paper 1, predictive abilities from a genomic RRM and considering 

the G matrix, are presented for trait responses in extreme THI classes through simulations. The 

original research paper 2 focuses on the impact of heat stress on production traits considering 
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genotypes of cows and sires as well as the pedigree information, implying single-step genomic 

predictions. Finally, prediction accuracies for animal models using realized genomic 

relationship matrices and different kernel matrices are content of the original research paper 

6.  

 

1.5. Cow training sets 

In the starting period of genomic selection in cattle, only bulls with highly reliable EBV were 

genotyped. Hence, breeding organizations mainly focused on improving the male selection 

pathway. Furthermore, the highly reliable sire EBV based on progeny testing contributed to 

the development of accurate SNP prediction equations. However, in comparison to the whole 

population, the number of elite sires with a large number of daughter records is quite small per 

generation, implying that only a limited number of animals can be added into the training set 

per year. Additionally, SNP effects and genomic breeding values (GBV) estimated based on 

EBV of intensively pre-selected bulls might not represent the genetic architecture of the 

production population (Patry and Ducrocq, 2011). Only considering pre-selected sires for 

genotyping might contribute to biased GBV, especially when applying BLUP methodology. 

Hence, from such perspective, it is imperative to consider cows for genotyping, and to 

implement cow training sets. The decrease of genotyping costs was a major impulse for large-

scale cow genotyping with a low-/medium-density chip. In several countries, the genotyped 

cows are gradually included into the training sets, with the aim to achieve large reference 

populations and an adequate representation of the population. For example, the German “Kuh-

L project” (Naderi et al., 2018) focused on genomic selection innovations considering high-

throughput genotypes from 20,000 cows. Buch et al. (2012) especially favored cow training 

sets for low heritability functional traits, which are not considered in official recording schemes. 

For these traits, Buch et al. (2012) found higher GBV accuracies when deriving SNP effects 

based on cow phenotypes instead of daughter yield deviations. Consideration of daughter yield 

deviations from genotyped bulls in genomic prediction ignores the variations within a group of 

daughters. Therefore, compared to individual cow phenotypes, the information content is 

reduced when average daughter records per sire are used as pseudo-phenotype. The inclusion 

of cows into training sets was associated with increased reliabilities of genomic predictions, 

reduced rate of inbreeding and decreased variance for the selection response in small dairy 

cattle populations (Thomasen et al., 2014). In small populations, the reliability of EBV for the 

proven bulls is often restricted due to the small number of animals available for progeny testing, 
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suggesting to derive SNP effects based on individual cow records. Cow training sets also 

improved prediction accuracies in large populations. As an example, in a simulation study with 

420,000 daughter records, adding genotypes and phenotypes of cows into training sets 

contributed to an increase of GBV reliabilities for young selection candidates (Plieschke et al., 

2016). The authors (Plieschke et al., 2016) also recommended combined cow and bull training 

sets to avoid biased breeding value estimations caused by intensive pre-selection of young bulls. 

Another argument for the implementation of cow training sets are genetic improvements for 

functional traits, especially when these traits are very difficult or expensive to measure. 

Methane emission, longitudinal BW and behavior traits are examples in this regard, and 

addressed via genomic selection based on cow training sets in this thesis. Other examples for 

successful implementations of cow training sets include health disorders, such as resistance to 

specific pathogens (Mahmoud et al., 2018), residual feed intake (Pryce et al., 2012), milk fatty 

acid composition (Gebreyesus et al., 2019) and longevity (Shabalina et al., 2020). In a 

stochastic simulation study, Plieschke et al. (2018) verified the increase of GBV reliabilities 

for low heritability novel functional traits when considering genotypes and phenotypes from 

cows. Detailed benefits from an economic perspective when focusing on cow genotyping are 

topic of the original research paper 9 of this thesis. Furthermore, the comprehensive 

simulation study (original research paper 1) and the studies addressing real functional traits, 

i.e., heat stress in the original research paper 2, BW in the original research paper 5, growth 

curve parameters in the original research paper 6, and behavior traits in the original research 

paper 7, mainly rely on cow training sets for genomic predictions and genetic parameter 

estimations. 

 

1.6. Environmental descriptors 

Because of worldwide utilization of artificial insemination, a great proportion of semen from 

same bulls is spread over different countries and production systems. However, differences in, 

e.g., climatic conditions and management characteristics might contribute to possible genotype 

by environment interactions, indicating different genotype responses with environmental 

alterations. Both discrete and continuous environmental descriptors have been considered in 

genetic-statistical modelling approaches, in order to depict environmental variations. Genetic 

correlations between the same traits recorded in different environments are generally used as 

indicators for possible G×E, with a genetic correlation threshold of 0.80 (Robertson, 1959).  



 
General introduction 

15 

 

 

1.6.1. Discrete environmental descriptors 

A very basic discrete descriptor is country, because production systems and climatic zones 

might be extremely different between countries. For example, the genetic correlation between 

milk yield in Brazil and United Kingdom was 0.85 (Costa et al., 2000), but decreased to 0.49 

when considering two diverse countries, e.g., Kenya and United Kingdom (Ojango and Pollott, 

2002). With focus on regions with similar management and climate characteristics, milk yield 

in North America was genetically closely correlated with milk yield in Western Europe (genetic 

correlations larger than 0.85) (Weigel et al., 2001). Additionally, different production systems, 

such as organic versus conventional (Nauta et al., 2006), small-scale versus large-scale (König 

et al., 2005), grazing versus confinement (Kearney et al., 2004), were considered as 

environmental descriptors in G×E studies. However, most of the genetic correlations between 

milk yields under varied production systems were close to 1, indicating only minor or absence 

of G×E. Further discrete environmental descriptors were milking system classifications 

(Mulder et al., 2004), herd classifications according to average production levels (Ruiz-

Sánchez et al., 2007) and the herd fertility status (Craig et al., 2018). 

 

1.6.2. Continuous environmental descriptors 

Apart from multi-trait modeling to estimate genetic correlations between same traits from 

different discrete environments, enhanced RRM can be applied to estimate genetic (co)variance 

components for a longitudinal data structure along a continuous time and environmental scale. 

A prerequisite for RRM applications is a continuous covariate, reflecting changes in time or 

environment within the measuring period. Against this background, days in milk, as a classical 

covariate describing lactation stages, is included in RRM for the estimation of daily EBV for 

production traits (Jamrozik and Schaeffer, 1997). Furthermore, phenotypic herd descriptors, 

such as average herd protein yield and herd coefficients of variation for protein yield (Hayes 

et al., 2003) and bulk milk somatic cell count (Calus et al., 2006), were defined as continuous 

gradients in sire RRM. As an apparent indicator for climatic conditions, THI was considered  

in sire and animal RRM (Hayes et al., 2003; Brügemann et al., 2011), i.e., to study the effect 

of heat stress gradients on genetic variance components and to identify heat stress thresholds 

for production and functional traits. Additionally, a social-ecological descriptor, i.e., the survey 

stratification index (Hoffmann et al., 2017), reflecting the build-up density and the distance to 
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the city center, was a covariate in statistical models defined by Pinto et al. (2020). Pinto et al. 

(2020) aimed on stuying the influence of ecological gradients in combination with human-

animal interactions on dairy cattle production and functional trait responses. In this thesis, 

genetic parameters, heritabilities and correlations for a broad trait pattern were estimated via 

sire RRM, considering phenotypic, genetic and genomic herd descriptors (as presented in the 

original research paper 8). Animal RRM were applied in a simulation study (original 

research paper 1), and in a study based on real test-day records (original research paper 2), 

aiming on the evaluation of predictive abilities of models with or without G×E. 
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  ABSTRACT 

  A simulation study was conducted to evaluate the 
performance of genomic random regression models for 
the continuous environmental descriptor temperature-
humidity index (THI). Statistically innovative aspects 
of the study included the combined simulation of both 
longitudinal phenotypic data representing the same 
trait in the course of THI and genomic data. The longi-
tudinal trait was simulated (phenotypically expressed) 
at 5 different values of THI. For a moderate heritabil-
ity trait, heritabilities were 0.30, 0.35, 0.40, 0.40, and 
0.35 for THI of 15, 30, 45, 60 and 75, respectively. 
In a consecutive run, low heritabilities of 0.05, 0.1, 
0.15, 0.15, and 0.10 were simulated, respectively. On 
the genomic level, simulation combined high and low 
linkage disequilibrium with 5,000-, 15,000-, and 50,000-
SNP chip applications to simulate different scenarios 
of genomic architecture. With regard to data analyses, 
2 strategies were applied to evaluate the accuracy of 
genomic predictions across THI, with special focus on 
the extreme ends of the environmental scale. In the 
first strategy, 100, 80, 50, or 20% of phenotypes at THI 
75 were deleted randomly and the remaining data set 
was used to predict the breeding value at THI 75 for 
non-phenotyped, but genotyped cows. In the second 
strategy, 1,600 cows had complete information (geno-
types and phenotypes) and 400 cows were genotyped, 
but with missing phenotypes for all THI. For the first 
strategy and without phenotypic observations at THI 
75, accuracies of genomic predictions were lower than 
0.34. When only 20% of cows had phenotypic records 
at THI 75, accuracies increased (~0.60). Such a small 
proportion of phenotyped cows was sufficient to pre-
dict reliable genomic breeding values for cows without 
phenotypes for extreme THI. For the second strategy, 
also for low linkage disequilibrium combined with a 
low density 5,000-SNP chip, the average accuracy of 

genomic predictions was 0.52, which is substantially 
higher than accuracies based on pedigree relationships. 
From a practical perspective, genomic random regres-
sion models can be used to predict genomic breeding 
values for scarce phenotypes (e.g., novel traits) traits 
measured in extreme environments, or traits measured 
late in life, such as longevity. 
  Key words:    genomic selection ,  genotype by environ-
ment interaction ,  random regression 

  INTRODUCTION 

  Methods for dealing with longitudinal data in genetic 
evaluations have evolved from the use of repeatability 
models with permanent environmental effects or multi-
ple-trait models with covariance matrices (Henderson, 
1984) to random regression models (RRM; Schaeffer 
and Dekkers, 1994) with covariance functions (Kirk-
patrick et al. 1990). The use of RRM for analyzing 
longitudinal production data are a standard in genetic 
evaluations for dairy cattle worldwide, because such 
models provide an overview of genetic parameters and 
breeding values across the whole lactation trajectory. 
Additionally, further applications of RRM to describe 
performances over a range of environments in reaction 
norm studies have been proposed. Such models are 
interesting with regard to genotype by environment in-
teractions, where different environments can be defined 
on a continuous scale. Ravagnolo and Misztal (2000) 
estimated variance components for milk production 
traits at different levels of heat stress, defined by a 
temperature-humidity index (THI). In more recent 
studies, RRM were further elaborated by defining THI 
as an environmental covariate (Aguilar et al., 2009; 
Brügemann et al., 2011). The basic idea of RRM ap-
plications is to depict the physiological background or 
genetic mechanisms of traits in a quantitative genetic 
context, meaning that different genes are switched on 
or off with, for example, aging of the animal or with 
environmental changes. Substantial changes of both 
quantitative genetic parameters and gene expression 
profiles by inducing heat stress were shown in fertility 
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traits of mice (Cammack et al., 2006, 2009). Genetic 
studies on heat stress in dairy cattle have an important 
practical background with regard to semen and live-
stock exports. For example, the German dairy cattle 
industry, and especially the dairy cattle breeding or-
ganization Masterrind GmbH (Verden, Germany), is 
strongly involved in exports of livestock and sire semen. 
Target countries include tropical countries located in 
Asia, Africa, and South America. In 2012, a total of 
26,249 heifers were exported to these countries (DHV, 
2013). The tropical and hot climates in the importing 
countries causes heat stress in the cows, especially when 
the THI rises above 72 (Bohmanova et al., 2005). In 
contrast, performance testing within Germany exhibits 
a shift from population-wide recording schemes toward 
so-called selected “contract herds” (Schierenbeck et al., 
2011). Contract herds are characterized by superior 
feeding, management, and housing conditions, and by 
substantially lower THI levels realized by, for example, 
housing systems with integrated cooling techniques 
(Brügemann et al., 2012).

Classically, RRM applications (also when studying 
genotype by environment interactions) are based on 
longitudinal phenotypic records combined with genetic 
relationships from pedigree data. Nowadays, the avail-
ability of high-throughput genotyping technologies 
with decreasing costs encourages dairy cattle farmers 
worldwide to genotype an increasing percentage of 
cows, heifers, and female calves. Especially for novel 
traits, reliable, conventional EBV of bulls do not exist. 
Hence, basing genomic selection on calibration groups 
of cows might be a promising alternative (Buch et al., 
2012). Examples include health traits (Pintus et al., 
2013), and traits reflecting energy balance (Verbyla et 
al., 2010). Furthermore, Misztal et al. (2010) suggested 
the inclusion of genomic information to improve the ac-
curacy of genetic evaluations of young animals for heat 
tolerance. Availability of cow genotypes combined with 
longitudinal phenotypic data enable the application of 
genomic RRM (gRRM) to estimate genomic breed-
ing values (GBV) for scarcely recorded traits, or for 
environmental descriptors that are not or poorly rep-
resented in a data set. In this latter context, Suchocki 
and Szyda (2011) estimated SNP effects over time by 
applying a mixed model with orthogonal polynomials 
and genotyped animals for longitudinal growth data. 
An alternative might be the direct estimation of GBV 
using gRRM and BLUP. Simulations are a powerful 
tool to evaluate a broad variety of statistical proce-
dures based on longitudinal phenotypic and genomic 
data and, in consequence, to study the effects of various 
scenarios on selection and mating schemes. Accuracies 
of genomic predictions strongly depend on technical 
parameters (e.g., size of calibration group and pattern 

of SNP chips), the quantity and quality of phenotypic 
data, quantitative genetic parameter estimates, and the 
genomic architecture of the trait. To our knowledge, 
no simulation package exists that simultaneously ad-
dresses those aspects for longitudinal data structures 
and directly provides true breeding values (TBV), 
GBV, and phenotypes in the course of a continuous 
environmental descriptor.

Consequently, the objectives of the present study 
were to (1) develop a framework for the simulation 
of longitudinal phenotypic data combined with high-
throughput genotypes, (2) evaluate the performance of 
a gRRM in the context of reaction norms, and (3) in-
vestigate the accuracy of genomic predictions for cows 
that are poorly or not at all represented in the group 
of cows with records for environmental descriptors. For 
illustration and based on experiences from previous 
studies, the environmental descriptor THI was chosen, 
but applications to further problems will be discussed. 
The study was performed by varying the assumptions 
related to the genomic architecture of traits.

MATERIALS AND METHODS

Simulation of Populations

Populations were simulated using the software QM-
Sim (Sargolzaei and Schenkel, 2009). With QMSim, the 
simulation process is divided in 2 stages. First, a histor-
ical population is simulated for several generations to 
generate a desired level of linkage disequilibrium (LD). 
In a second step, using animals from the last historical 
generation as founders, further recent populations are 
simulated for a desired number of generations. Within 
this second simulation step, population parameters can 
be varied to generate the appropriate population struc-
ture. In the present study, 2 different types of historical 
populations were simulated to create scenarios with 
either low or high LD. For both low-LD and high-LD 
scenarios, 10 recent generations were simulated based 
on the parameters as specified in Table 1.

Additionally, Table 1 summarizes the parameters of 
the simulated genome. The simulated genome consisted 
of 30 chromosomes of 100 cM each. The number of 
QTL per chromosome was set to 10 and QTL positions 
on the chromosome were randomly assigned. Effects 
of QTL alleles were drawn from a gamma distribution 
with a shape parameter 0.4. The number of QTL alleles 
at each locus was randomly assigned and was 2, 3, or 
4. To achieve resemblance with different densities of 
SNP chips, 3 scenarios with respect to the number of 
markers on the genome were simulated. The simulation 
of 167, 500, and 1,667 biallelic markers per chromosome 
depicts applications with 5,000 (5K)-, 15,000 (15K)-, 
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and 50,000 (50K)-SNP chips, respectively. Both mark-
er and QTL mutation rates were 2.5 × 10−5, whereas 
recurrent mutation was only allowed for markers. The 
crossing-over interference was defined as 25 cM (i.e., a 
random placement of crossing over along chromosomes 
can be interrupted if the distance between a pair of a 
crossing over is smaller than 25 cM).

Simulation of Longitudinal Data

The QMSim output, which included QTL genotypes, 
QTL effects, and SNP markers, was modified by our 
own programming to produce longitudinal data records 
for 2,000 cows in the last generation. In total, 300 QTL 
controlling the trait of interest (i.e., heat tolerance per 
se or performances at different heat stress levels) were 
randomly divided into 10 groups, with an even group 
size of 30 QTL. True breeding values of cows in 10 
different groups were based on the 30 different QTL in 
each group and were calculated using the correspond-
ing QTL effects as produced from the QMSim program. 
Following the protocol of Brügemann et al. (2011), the 
environmental continuous descriptor THI varied from 
15 to 75 in increments of 15. To model changes in gene 
expression in the course of THI, only QTL in groups 
1 to 6 were assigned to express at THI 15, indicat-
ing that TBV of 2,000 cows at THI 15 (TBV_THI15) 

were the sum of effects for each QTL in groups 1 to 
6. At THI 30, only QTL in groups 2 to 7 contributed 
to TBV_THI30, and so on (Table 2). This simulation 
strategy resulted in 5 groups of overlapping QTL (i.e., 
150 QTL) between adjacent THI levels. For example, 
QTL in groups 2 to 6 expressed simultaneously at THI 
15 and THI 30. Even the 2 most extreme THI levels 
(THI 15 and THI 75) had 2 groups of QTL in com-
mon (groups 5 and 6). Simulation was done in this 
way to smooth the correlations across the THI levels. 
Furthermore, this simulation strategy reflects the fact 
that the trait has some basic genetic background effect-
ing its phenotypic expression also with environmental 
changes. Consequently, the true genetic correlations 
between THI levels were determined by the number of 
overlapping QTL groups, which depicts the basic idea 
and flexibility of our simulation strategy.

Phenotypes were created by adding a residual to 
TBV at THI 15 to 75 according to a set of defined 
heritabilities. Heritabilities for the 5 chosen THI (15, 
30, 45, 60, and 75) were 0.30, 0.35, 0.40, 0.40, and 0.35, 
respectively, for a moderate heritability trait, and 0.05, 
0.10, 0.15, 0.15, and 0.10, respectively, in a consecutive 
run for a low heritability trait. In total, the number 
of phenotypic records for the 2,000 cows was 10,000, 
indicating that each cow had 5 repeated measurements 
(i.e., the same trait expressed at 5 different THI). Lon-

Table 1. Parameters of the simulation process 

Item Low LD1 High LD

Population structure
 Historical population
  Total generations (no.) 1,640 2,620
  No. of animals in first generation 4,040 2,000
  Bottleneck No Yes2

  No. of animals in last generation 4,0402 4,0403

 Current population
  Generations 10
  No. of sires and dams 40 and 4,000
  No. of offspring per mate 1
  Probability for sex of the offspring 0.5
  Selection and mating designs Random
  Replacement ratios for sires and dams (%) 50 and 25
  Culling criteria Age
Genomic parameters
 No. of chromosomes 30
 Length of each chromosome (cM) 100
 No. of QTL per chromosome 10
 Effects of QTL alleles Gamma (0.4)
 No. of QTL alleles Random (2, 3, 4)4

 No. of biallelic markers per chromosome 167; 500; 1,677
 Maker and QTL mutation rate 2.5 × 10−5 (recurrent for markers)
 Crossover interference (cM) 25
 Position of markers and QTL Random

1LD = linkage disequilibrium.
2Population size was 200 from generation 2,570 to 2,580.
3Forty males and 4,000 females.
4The number of QTL alleles at each locus was randomly assigned to be 2, 3, or 4.
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gitudinal data records are characterized by phenotypic 
and genetic relationships along the trajectory of the 
continuous environmental descriptor THI. Genetic and 
phenotypic correlations between 5 different THI aver-
aged across 10 replicates are listed in Table 3 for the 
moderate-heritability scenario and in Table 4 for the 
low-heritability scenario. Higher genetic correlations for 
protein yield between adjacent THI than for very dif-
ferent THI were also found by Brügemann et al. (2011) 
and reflect the physiological and practical background 
of our simulation.

Statistical Model

A gRRM was applied to analyze the simulated longi-
tudinal data using the AI-REML algorithm and apply-
ing the DMU package (Madsen and Jensen, 2010). In 
matrix notation, the statistical model was

y = Xb + Z1a + Z2p + e,

where y = vector of phenotypic observations for cows, 
b = vector of fixed regressions on THI using third-
order Legendre polynomials, a = vector of additive 
genetic effects for random regression coefficients on 
THI using third-order Legendre polynomials, p = vec-
tor of permanent environmental effects, e = vector of 
random residual effects, and X, Z1, and Z2 = incidence 
matrices for b, a, and p, respectively. The genetic re-
lationship matrix between individuals was either built 

via pedigrees including 10 generations (A) or via SNP 
data of cows (G). In the following, scenarios based 
on genomic data are labeled G_*, where the asterisk 
(*) specifies the level of LD and the size of the SNP 
chip. The pedigree-based scenario is labeled A. The G 
matrix was computed from the Gmatrix program (Su 
and Madsen, 2011) based on the method proposed by 
VanRaden (2008). Markers with minor allele frequency 
lower than 0.05 were deleted. A small value (0.01) was 
added to the diagonal of the G matrix to ensure that 
the matrix was positive definite.

For all scenarios, results from the gRRM were com-
pared by applying a relatively simple genomic repeat-
ability model (gRM). In matrix notation, the gRM was

y = Xb + Z1a + Z2p + e,

where b = vector of fixed effects of THI levels and a 
= vector of additive genetic effects. Other effects were 
identical to those of the gRRM.

Accuracy of Genomic Predictions

Conventional EBV and GBV in the course of the 
environmental descriptor were calculated by multiply-
ing random regression coefficients for additive genetic 
effects for each cow with corresponding Legendre poly-
nomials for THI 15, 30, 45, 60, and 75. Accuracies of 
estimates were correlations between TBV and GBV (or 
EBV). For calculating the accuracy of genomic predic-

Table 2. Expression of groups of QTL at different temperature-humidity index (THI) levels for mimicking the 
physiological background of gene expression 

THI

QTL group

1 2 3 4 5 6 7 8 9 10

15 X1 X X X X X
30 X X X X X X
45 X X X X X X
60 X X X X X X
75 X X X X X X

1X = QTL expressed in the group.

Table 3. Heritabilities (diagonal), genetic (above diagonal), and 
phenotypic (below diagonal) correlations of the simulated longitudinal 
data between different temperature-humidity indices (THI)1 

THI

THI

15 30 45 60 75

15 0.30 0.86 0.69 0.54 0.38
30 0.28 0.35 0.83 0.68 0.53
45 0.24 0.32 0.40 0.84 0.69
60 0.19 0.25 0.35 0.40 0.85
75 0.13 0.18 0.27 0.32 0.35

1Simulation of a moderate-heritability trait.

Table 4. Heritabilities (diagonal), genetic (above diagonal), and 
phenotypic (below diagonal) correlations of the simulated longitudinal 
data between different temperature-humidity indices (THI)1 

THI

THI

15 30 45 60 75

15 0.05 0.86 0.69 0.54 0.38
30 0.05 0.10 0.83 0.68 0.53
45 0.06 0.10 0.15 0.84 0.69
60 0.05 0.08 0.13 0.15 0.85
75 0.01 0.05 0.08 0.10 0.10

1Simulation of a low-heritability trait.
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tions for cows without phenotypes, 2 strategies of data 
analysis were applied. In the first strategy, 100, 80, 50, 
or 20% of records only at THI 75 were deleted ran-
domly and the remaining data set was used to predict 
GBV (or EBV) for non-phenotyped cows at THI 75. In 
a second strategy, complete information (genotypes and 
phenotypes) was available from 1,600 cows (training 
set), and phenotypes were missing from 400 cows (vali-
dation set) for all THI. Within this second strategy, 2 
approaches were simulated to allocate cows to the 2 
sets. In the first approach, 1,600 cows were randomly 
selected as reference animals and used to predict GBV 
(or EBV) for the 400 cows without phenotypes. An 
alternative approach to allocate cows in training and 
validation sets was accomplished by mimicking low 
relationships between candidates in both groups. The 
alternative approach implied that the training set only 
included daughters of 8 sires (400 cows), and daughters 
from the other 32 sires (1,600 cows) were represented 
in the validation set. The 2 different strategies and the 
2 approaches within the second strategy for allocating 
cows in training and validation sets are illustrated in 
Figure 1.

RESULTS AND DISCUSSION

Genomic Architecture

Degree of LD between all possible SNP pairs was 
measured by using the squared correlation coefficient 
(r2; Hill and Robertson, 1968). In total, 2,000 cows 
with genomic information were used to compute r2. 

The bottleneck in the historical population was a cru-
cial factor influencing LD between markers. Linkage 
disequilibrium strongly determines the genomic archi-
tecture of traits, which has a substantial effect on (1) 
the choice of the method for genomic evaluations and 
(2) the reliability of its outcome (e.g., Daetwyler et al., 
2010). The average r2 from 1 of the 30 chromosomes 
across 10 replicates between SNP pairs for both the low 
LD and high LD scenarios combined with 5K-, 15K-, 
and 50K-SNP chip applications are plotted against a 
map distance of up to 2 Mb (Figure 2). Generally, aver-
age r2 for both high- and low-LD scenarios decreased 
with an increase in map distances between SNP. We 
observed substantial declines with regard to average r2 
for distances in the range from 0 to 0.8 Mb, but the 
declines were low to moderate for distances ranging be-
tween 0.8 and 2.0 Mb. Such an exponential decrease for 
r2 was shown in several studies (e.g., Jiménez-Montero 
et al., 2013). The average r2 for high-LD scenarios were 
larger than for low-LD scenarios, especially for a small 
distance between 2 SNP. However, if the distance be-
tween markers was larger than 5.0 Mb, no difference in 
r2 was found between high-LD and low-LD scenarios. 
The average r2 was very close to zero (0.005) when dis-
tances were 100 Mb.

Accuracies of Breeding Values for Cows  

With Phenotypes

Accuracies of GBV of cows with phenotypes at all 
THI levels were calculated for both scenarios (high and 

Figure 1. Strategies and approaches within strategies for defining subsets for genomic prediction with genomic random regression models 
(cows given in the dashed-line box and in the gray box indicate the animals without phenotypes for the 2 different strategies). THI = temper-
ature-humidity index.
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low LD) combined with different sizes of SNP chips (5K, 
15K, and 50K). Average accuracies from 10 replicates 
for the longitudinal trait with moderate heritability 
using the complete data set of 2,000 cows with pheno-
types and genotypes are shown in Figure 3. Generally, 
accuracies of GBV and EBV increased with increasing 
heritabilities and were highest for a heritability of 0.40 
at THI 45. Interestingly, accuracies at THI 30 are mar-
ginally higher than at THI 75 even though the same 
heritability (h2 = 0.35) was assumed. To explain this 
phenomenon, a trait with a constant heritability (h2 = 
0.35) in the course of THI was simulated and accuracies 
for the 2 scenarios G_HighLD_15KSNP and A (where 
G = scenario based on the genetic relationship matrix 
using the SNP data of cows and A = scenario based 
on the pedigree relationship matrix) were calculated. 
For both scenarios, and assuming identical heritabili-
ties along the trajectory, accuracies of predictions were 
highest at THI 45. An explanation might be that phe-
notypic records at THI 45 were genetically highly cor-
related with records measured at remaining THI (the 
lowest genetic correlation was 0.68). In contrast, for 
GBV (or EBV) estimated at THI 15, only data from 
THI in close proximity to THI 15 (THI 30 and 45) 
were highly correlated with data from THI 15 (genetic 
correlation >0.68). Records at the upper end of the 
environmental scale (THI 60 and 75) only showed mod-
erate genetic correlations of 0.54 and 0.38, respectively 
(Table 3).

Accuracies of GBV for scenarios based on genomic 
relationship matrices were always higher compared 
with EBV from the pedigree-based scenario A, except 
for low LD combined with a low-density SNP chip 
(G_LowLD_5KSNP; Figure 3). The highest accuracy 
was realized in scenario G_HighLD_50KSNP with a 
value of 0.82 at THI 45 and 60. For genomic scenarios, 
accuracies of GBV increased with increasing LD and 
increasing size of the SNP chip. A strong and positive 
relationship between LD and accuracy of GBV was ob-
served in previous studies (e.g., by Zhong et al., 2009). 
Due to the fact that more markers and QTL are in LD, 
more markers capture a higher proportion of genetic 
variance of the trait (Goddard, 2009). Additionally, 
higher marker density increased the r2 between adjacent 
markers and the accuracy of genomic prediction (Meu-
wissen, 2009). As one example in our study, the average 
r2 for the scenario G_HighLD_50KSNP was 0.26, but r2 
was only 0.11 for the scenario G_HighLD_5KSNP. The 
corresponding averaged accuracies of genomic predic-
tions for the 2 scenarios were 0.79 and 0.74, respectively.

Figure 4 depicts accuracies of predictions for different 
levels of LD and marker density at 5 THI for the low-
heritability trait. As expected, accuracies were lower 
compared with results for the moderate-heritability 
trait (Figure 3), but revealing identical tendencies with 
regard to LD and the size of SNP chips. Especially for 
the low-heritability trait in the range from THI 15 to 
45 (Figure 4), genomic scenarios with high LD achieved 

Figure 2. Average linkage disequilibrium [LD; squared correlation coefficient (r2)] between SNP markers dependent on their map distance 
for the different sets of simulated marker data. 5K = 5,000; 15K = 15,000; 50K = 50,000.
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substantially higher accuracies of prediction compared 
with the pedigree-based scenario. Buch et al. (2012) 
also found that genotyping of cows simultaneously in-
creased accuracies of genomic prediction for traits with 
low heritability. When basing within-herd replacement 
decisions of cows on GBV instead on pedigree indices, 
accuracy of selection and genetic merit of females will 
be improved with an associated positive effect on farm 
economy (Weigel et al., 2012).

For the low-heritability trait, the pedigree-based 
RRM, but especially the more complex gRRM, revealed 
some convergence problems (i.e., longer computing 
time was required to meet convergence criteria). Hence, 
we conclude that more observations are required when 
applying gRRM to low-heritability traits. Yin et al. 
(2012) applied RRM to estimate genetic parameters by 
DIM and by parity for low-heritability functional traits 
comprising a comparatively small data set of 1,283 
cows from low-input systems in Switzerland. In some 
cases, statistical models not only failed to converge, but 
also estimates of heritabilities or genetic correlations 
were extraordinarily high at the extreme ends of the 
continuous time scale.

Accuracies of Breeding Values for Cows  

Without Phenotypes

Figure 5 shows accuracies of breeding values for non-
phenotyped cows by altering percentages of cows with 
phenotypes at an extreme end of the continuous envi-

ronmental scale (THI 75). For the moderate-heritability 
scenario, and without phenotypic records at THI 75, 
accuracies of predictions at THI 75 were generally low 
and, on average, at a value of 0.22 (average of all sce-
narios) with corresponding high standard deviations in 
the range from 0.19 to 0.33 within scenarios. However, 
for 20% of phenotyped cows at THI 75, accuracies of 
predictions substantially increased to a moderate value 
of 0.60, by decreasing standard deviations (within sce-
narios, the standard deviation decreased by factor 5). 
An average accuracy of prediction of 0.69 was realized 
for 80% of the 2,000 cows with phenotypic records at 
THI 75 and with the 15K SNP chip used for genotyp-
ing. Interestingly, for the scenario without phenotypes 
at THI 75, accuracies of predictions from the gRM 
were higher than from the gRRM. For example, for 
the scenario G_HighLD_15KSNP, accuracies were 0.56 
and 0.33, respectively. In contrast with 20% or more 
of phenotyped cows at THI 75, gRRM were superior 
to gRM. Again, for the scenario G_HighLD_15KSNP, 
accuracy from the gRRM was 0.63, and 0.57 from the 
gRM. Generally, standard deviations of accuracies from 
the gRM were larger than standard deviations from 
gRRM applications.

According to the heat stress studies conducted by 
Brügemann et al. (2012) in Germany, only a limited 
number of genotyped heifers or cows had phenotypic 
performances in environments with extremely high 
THI. Based on the results from our present study, only 
a small proportion of phenotyped cows (i.e., 20%) in 

Figure 3. Average accuracies of genomic predictions for a longitudinal trait with heritabilities of 0.30, 0.35, 0.40, 0.40, and 0.35 for tem-
perature-humidity indices (THI) of 15, 30, 45, 60, and 75, respectively. Different scenarios include variation in SNP density [5,000 (5K), 15,000 
(15K), and 50,000 (50K)] and linkage disequilibrium (LD). G = scenario based on the genetic relationship matrix using the SNP data of cows; 
A = scenario based on the pedigree relationship matrix.
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environments representing heat stress (i.e., THI 75) 
is required to predict reliable GBV of cows without 
phenotypes. Without phenotypic records at THI 75, 
the maximal accuracy amounts to 0.33, indicating that 
RRM or gRRM cannot predict the genetic variance of 
the trait accurately when there is a complete lack of 
phenotypes at the extreme ends of a continuous en-
vironmental scale. A further practical application of 
gRRM might be the prediction of GBV for longevity 
of genotyped heifers or other traits measured late in a 
dairy cow’s life. Such a general application of RRM for 
predicting longevity was suggested by Schaeffer (2004).

Figure 6 depicts accuracies of predictions for the 
pedigree-based and for the genomic scenarios with 
1,600 cows in a calibration set (i.e., genotypes and 
phenotypes were available for all THI), and 400 cows 
in the prediction set (i.e., cows with genotypes but 
without phenotypes). The scenario high LD using the 
15K SNP chip (G_HighLD_15KSNP) provided the 
highest accuracy of genomic predictions across THI. 
Average accuracies across replicates and THI were 0.54 
for the scenario high LD with the 5K SNP chip, 0.58 
for the scenario high LD with the 15K SNP chip, 0.49 
for scenario A, 0.52 for the scenario low LD with the 
5K SNP chip, and 0.56 for the scenario low LD with 
the 15K SNP chip. Among the 5 scenarios, again the 
pedigree-based predictions were less accurate compared 
with genomic predictions, even compared with low LD 

in combination with the low-density 5K SNP chip (ac-
curacy of genomic prediction ranged between 0.49 and 
0.55). Not only gRRM, but also genomic multiple-trait 
models increase the accuracy of genomic predictions 
compared with genomic univariate models (Tsuruta et 
al., 2011), especially when multiple traits are strongly 
correlated. For an environmental descriptor with only a 
few environmental levels, also a genomic multiple-trait 
model can be applied, but not for a continuous environ-
mental descriptor with more levels at closer intervals 
(as also valid for THI, in practice).

In addition to genetic architecture and marker densi-
ty, the level of genetic relationships between cows in the 
defined calibration set and cows in the prediction set 
is a crucial factor influencing the accuracy of genomic 
predictions in gRRM. The genotyped 2,000 cows in this 
study were progeny from 40 sires, with an average of 
50 daughters per sire. For the first approach of the 
second strategy (Figure 1), each sire had, on average, 
10 daughters in the calibration set and 40 daughters 
in the training set. Therefore, cows in the prediction 
set were genetically related to their half-sibs in the 
prediction set and these close relationships might have 
increased the accuracy of genomic prediction. To verify 
accuracies caused by LD and marker density only, a 
large genetic distance between both groups should be 
achieved (Bolormaa et al., 2010). This distance was 
maximized by deleting phenotypes of daughters from 8 

Figure 4. Average accuracies of genomic predictions for a longitudinal trait with heritabilities of 0.05, 0.10, 0.15, 0.15, and 0.10 for temper-
ature-humidity indices (THI) of 15, 30, 45, 60, and 75, respectively. Different scenarios include variation in SNP density [5,000 (5K) and 15,000 
(15K)] and linkage disequilibrium (LD). G = scenario based on the genetic relationship matrix using the SNP data of cows; A = scenario based 
on the pedigree relationship matrix.
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Figure 6. Average accuracies of genomic predictions for the scenarios with 400 cows in the prediction set and 1,600 cows in the calibration 
set with heritabilities of 0.30, 0.35, 0.40, 0.40, and 0.35 for temperature-humidity indices (THI) of 15, 30, 45, 60, and 75, respectively. Different 
scenarios include variation in SNP density [5,000 (5K) and 15,000 (15K)] and linkage disequilibrium (LD). G = scenario based on the genetic 
relationship matrix using the SNP data of cows; A = scenario based on the pedigree relationship matrix. 

Figure 5. Average accuracies of genomic predictions for non-phenotyped cows at a temperature-humidity index (THI) of 75 for 0, 20, 50, and 
80% of cows with phenotypic records at THI 75 with heritabilities of 0.30, 0.35, 0.40, 0.40, and 0.35 for THI 15, 30, 45, 60, and 75, respectively. 
Different scenarios include variation in SNP density [5,000 (5K) and 15,000 (15K)] and linkage disequilibrium (LD). G = scenario based on the 
genetic relationship matrix using the SNP data of cows; A = scenario based on the pedigree relationship matrix.
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sires. The cows from the remaining 32 sires comprised 
the training set. Hence, the average pedigree-based 
genetic relationships between cows in the calibration 
sets and cows in the prediction sets were lower, and 
ranged from 3.35 to 2.77% (Table 5). The accuracy of 
predictions for the 5 scenarios decreased, on average, by 
25%. In detail, the accuracy was 0.34 for scenarios with 
pedigree information, 0.44 for G_HighLD_15KSNP, 
and 0.44 for G_LowLD_15KSNP. Corresponding ac-
curacies were 0.49, 0.59, and 0.56 when 400 cows were 
randomly allocated to the prediction set. Also for 
gRRM, the results indicate that genetic relationships 
between cows in the calibration set and cows in the 
prediction set played an important role with regard to 
realized accuracies of predictions. However, accuracies 
that result from genetic relationships will erode in the 
long term, and only the effects of SNP in LD with 
QTL are persistent across populations and generations 
(Hayes et al., 2009).

Moderately accurate genomic predictions with gRRM 
also for cows that are completely non-phenotyped (i.e., 
without phenotypes across THI) allow further improve-
ments with regard to on-farm selection strategies. The 
availability of a cheap low-density SNP chip implies 
an extension of genotyping from preselected bull dams 
toward cohorts of heifers or young cows in commercial 
dairy cattle herds (e.g., Achler, 2013). Additionally, 
efficient imputing strategies for totally ungenotyped 
animals that use information from genotyped relatives 
are developed for practical application (Pimentel et al., 
2013). Application of those imputing techniques will 
enlarge the pool of genotyped animals while keeping 
costs constant. Hence, the lack of phenotypes is the 
most limiting factor for novel traits that are difficult 
or expensive to measure (e.g., traits related to health, 
product quality, or animal welfare). Hence, reliable 
GBV can be predicted when genotyping cows on a large 
scale, but only phenotyping a subset of the genotyped 

cows for novel traits. Such a scenario might be relevant, 
for example, for longitudinal health traits as recorded 
in contract herds (Gernand et al., 2012).

CONCLUSIONS

In the present study, first we developed a strategy 
for simulating longitudinal phenotypic records along 
with marker information. This strategy is based on dif-
ferentiated gene or QTL expression on a continuous 
environmental scale and might be helpful for future 
evaluations of breeding strategies based on longitudinal 
data sets. From a methodological point of view, results 
from this study revealed higher accuracies of predic-
tions when replacing the traditional pedigree-based 
genetic relationship matrix with the realized genomic 
relationship matrix in RRM applications. The simul-
taneous use of genetically correlated longitudinal data 
in gRRM can predict genetic values of animals without 
phenotypes. Only a small proportion of cows (i.e., 20%) 
with phenotypes at the extreme ends of an environ-
mental scale (here, THI 75) is required to predict GBV 
of non-phenotyped cows at THI 75. For this scenario, 
accuracies of predictions of GBV from gRRM for com-
pletely non-phenotyped cows were of moderate size and 
ranged between 0.50 and 0.60. For a minimized genetic 
relationship between the calibration and the prediction 
population, accuracies of genomic predictions decreased 
for various scenarios (scenarios included variations in 
LD and of SNP density) by 20 to 30%.
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Table 5. Average pedigree- and genomic-based relationships for cows within the calibration and the prediction 
population, and between the 2 populations1 

Scenario2

Relationship

Calibration3 Calibration4 Prediction3 Prediction4 Between3 Between4

G_LowLD_5KSNP 0.0008 0.0022 0.0045 0.0285 −0.0005 −0.0064
G_LowLD_15KSNP 0.0008 0.0023 0.0045 0.0291 −0.0005 −0.0067
A 0.0348 0.0362 0.0382 0.0616 0.0335 0.0277
G_HighLD_5KSNP 0.0008 0.0022 0.0044 0.0283 −0.0005 −0.0064
G_HighLD_15KSNP 0.0008 0.0022 0.0044 0.0287 −0.0005 −0.0068

1Averages are from 10 replicates.
2G = scenario based on the genetic relationship matrix using the SNP data of cows; A = scenario based on the 
pedigree relationship matrix; LD = linkage disequilibrium; 5K = 5,000; 15K = 15,000.
3Four hundred cows were randomly allocated to the prediction population; the remaining cows (1,600) were 
assigned to the calibration population.
4Daughters of 8 sires were allocated to the prediction population; the remaining cows were assigned to the 
calibration population.
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ABSTRACT

The aim of this study was to compare genetic (co)vari-
ance components and prediction accuracies of breeding 
values from genomic random regression models (gRRM) 
and pedigree-based random regression models (pRRM), 
both defined with or without an additional environ-
mental gradient. The used gradient was a temperature-
humidity index (THI), considered in statistical models 
to investigate possible genotype by environment (G×E) 
interactions. Data included 106,505 test-day records for 
milk yield (MY) and 106,274 test-day records for so-
matic cell score (SCS) from 12,331 genotyped Holstein 
Friesian daughters of 522 genotyped sires. After single 
nucleotide polymorphism quality control, all genotyped 
animals had 40,468 single nucleotide polymorphism 
markers. Test-day traits from recording years 2010 
to 2015 were merged with temperature and humidity 
data from the nearest weather station. In this regard, 
58 large-scale farms from the German federal states of 
Berlin-Brandenburg and Mecklenburg-West Pomerania 
were allocated to 31 weather stations. For models with a 
THI gradient, additive genetic variances and heritabili-
ties for MY showed larger fluctuations in dependency of 
DIM and THI than for SCS. For both traits, heritabili-
ties were smaller from the gRRM compared with esti-
mates from the pRRM. Milk yield showed considerably 
larger G×E interactions than SCS. In genomic models 
including a THI gradient, genetic correlations between 
different DIM × THI combinations ranged from 0.26 
to 0.94 for MY. For SCS, the lowest genetic correlation 
was 0.78, estimated between SCS from the last DIM 
class and the highest THI class. In addition, for THI × 
THI combinations, genetic correlations were smaller for 
MY compared with SCS. A 5-fold cross-validation was 

used to assess prediction accuracies from 4 different 
models. The 4 different models were gRRM and pRRM, 
both modeled with or without G×E interactions. Pre-
diction accuracy was the correlation between breeding 
values for the prediction data set (i.e., excluding the 
phenotypic records from this data set) with respective 
breeding values considering all phenotypic information. 
Prediction accuracies for sires and for their daughters 
were largest for the gRRM considering G×E interac-
tions. Such modeling with 2 covariates, DIM and THI, 
also allowed accurate predictions of genetic values at 
specific DIM. In comparison with a pRRM, the effect 
of a gRRM with G×E interactions on gain in prediction 
accuracies was stronger for daughters than for sires. In 
conclusion, we found stronger effect of THI alterations 
on genetic parameter estimates for MY than for SCS. 
Hence, gRRM considering THI especially contributed 
to gain in prediction accuracies for MY.
Key words: genotype by environment interaction, 
temperature-humidity index, random regression model, 
genomic prediction

INTRODUCTION

In the global dairy cattle industry, daughter records 
of bulls are available in various environments and 
countries because of the widespread use of AI. Environ-
mental differences might contribute to daughter record 
variations, consequently resulting in re-rankings of bulls 
across environments (Hammami et al., 2009; Hayes et 
al., 2016). These are the principles of a genotype by 
environment (G×E) interaction, meaning that differ-
ent genotypes react differently across environments 
(Falconer and Mackay, 1996). Generally, in quantitative 
genetic studies, a genetic correlation lower than 0.80 
between the same trait measured in 2 discrete environ-
ments indicates G×E interaction (Robertson, 1959). 
Challenging environmental impact, especially climate 
change and associated heat stress response, might cause 
re-rankings of sires under different climatic conditions. 
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As a consequence, to be competitive in a broad range 
of climates worldwide, international dairy cattle breed-
ing programs should consider G×E interaction effects 
in genetic evaluations (Ravagnolo and Misztal, 2000). 
Some countries (e.g., Australia) routinely implement 
genomic and genetic evaluations for heat tolerance 
(Nguyen et al., 2018).

In the past decade, several studies analyzed G×E 
interactions for milk production traits using either 
pedigree-based relationship matrices (pRRM; Calus 
et al., 2006; Hammami et al., 2013; Carabaño et al., 
2016) or genomic relationship matrices (gRRM; Haile-
Mariam et al., 2015; Tiezzi et al., 2017). To quantify 
differences in gene expressions in various environments, 
genomic multiple-trait models (Haile-Mariam et al., 
2015; Yao et al., 2017) and reaction norm or random re-
gression models (RRM; Macciotta et al., 2017; Tiezzi 
et al., 2017) were applied. Yao et al. (2017) and Tiezzi 
et al. (2017) demonstrated the advantages of statistical 
models with interaction effects for the estimation of 
environment-specific genomic parameters. Accordingly, 
also in simulations, genomic predictions had improved 
accuracies when considering specific QTL in different 
environments (Bohlouli et al., 2017).

Random regression models allow the estimation of 
genetic (co)variance components and breeding values 
over the whole trajectory of a time-dependent (e.g., 
DIM) or environment-dependent (e.g., temperature-
humidity indices; THI) covariate. Modeling the effect 
of a genotype as a function of time and environment 
(Bohmanova et al., 2007; Brügemann et al., 2011) im-
plies the detection of G×E interactions via differences 
in genetic (co)variance components for different combi-
nations of DIM with THI. In this regard, Ravagnolo and 
Misztal (2000) found considerable genetic variances for 
heat tolerance when applying an RRM to production 
traits and including a function for THI. Furthermore, 
specific genetic parameters or breeding values for dis-
tinct heat stress levels (Brügemann et al., 2011; Nguyen 
et al., 2016) are suitable indicators for the selection of 
optimal progeny testing environments (Schierenbeck et 
al., 2011) or for the selection of herds to be included 
in cow training sets for genomic selection (Naderi et 
al., 2018). However, the effect of THI combined with 
a large data set of genotyped cows from commercial 
large-scale production herds on possible G×E interac-
tions, and on accuracies of genomic predictions, needs 
deeper analyses. Therefore, the objective of the present 
study was to apply RRM with gRRM and pRRM and 
to study the effect of models with THI gradients on (1) 
estimates for genetic (co)variance components, (2) pos-
sible G×E interactions, and (3) accuracies of genomic 
predictions.

MATERIALS AND METHODS

Phenotypes

Data were first-lactation test-day records for milk 
yield (MY) and SCC (recording years 2010–2015) from 
12,331 genotyped Holstein dairy cows kept in 58 large-
scale test herds. Herds were located in the region of 
former East Germany (i.e., in the federal states of 
Berlin-Brandenburg and Mecklenburg-Western Pomer-
ania). Age at first calving ranged from 20 to 39 mo. 
Days in milk were restricted between 5 and 305 d. Each 
cow had at least 5 test-day records, and a minimum of 
5 records were defined for each herd test-date. Test-day 
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A constant 4 was added to avoid the problem of nega-
tive values in the data (Martins et al., 2011). After data 
editing, 106,274 test-day records were available for SCS 
and 106,505 test-day records were available for MY. 
The SCS ranged from 0.16 to 10.47, and MY ranged 
from 2.0 to 61.5 kg.

Genotypes and Pedigrees

A total of 5,104 animals, including 4,973 cows and 131 
sires, were genotyped with the Illumina BovineSNP50 
v2 BeadChip (Illumina, San Diego, CA). A further set 
of 7,749 animals, including 7,358 cows and 391 sires, 
were genotyped with the Illumina Bovine Eurogenom-
ics 10K low-density chip (the so-called Euro10K LD 
chip; see Reents, 2014). The animals genotyped with 
10K were further imputed to 50K using the procedure 
for official national genetic evaluations as implemented 
by project partner VIT Verden (Segelke et al., 2012). 
After imputation, 45,613 SNP were available from 522 
genotyped sires and 12,331 genotyped cows. The SNP 
quality controls were performed using the preGSf90 
program (Aguilar et al., 2010). First, we discarded 3,581 
SNP with minor allele frequency lower than 0.05. Ac-
cording to Wiggans et al. (2009), a difference between 
observed and expected heterozygous frequencies larger 
than 0.15 indicates a departure from Hardy–Weinberg 
equilibrium. In this regard, we excluded 2 SNP from the 
ongoing analyses. Furthermore, according to Wiggans 
et al. (2009), we discarded 696 highly correlated SNP 
and 866 SNP located on the X and Y chromosomes. 
Finally, 40,468 SNP were considered for all genomic 
analyses.

Pedigree was traced back as far as possible (back 
to founders born in 1965) to increase across-herds ge-
netic connectedness. The pedigree file included 48,977 
animals (i.e., 3,085 sires and 33,703 dams). Among the 
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sires, 250 sires (202 with genotypes) had 1 to 4 geno-
typed daughters, 305 sires (274 with genotypes) had 5 
to 50 genotyped daughters, 33 sires (31 with genotypes) 
had 51 to 100 genotyped daughters, and 17 sires (15 
with genotypes) had more than 100 genotyped daugh-
ters. One genotyped sire had 772 genotyped daughters. 
Only 134 dams were genotyped. Detailed information 
for animals with phenotypes and genotypes is given in 
Table 1.

Meteorological Data

The weather station nearest to the farm was identi-
fied using longitude and latitude information of farms 
and weather stations and applying the Geosphere pack-
age in R (Hijmans et al., 2016). In this regard, 31 dif-
ferent weather stations were allocated to the 56 differ-
ent farms. The maximum distance between a weather 
station and a farm was 32.8 km, and the minimum 
distance was 1.2 km. Hourly THI was calculated based 
on hourly temperature (T) and hourly relative humid-
ity (RH) as follows (NRC, 1971):

 THI T RH T= × +( )− − ×( )× × −( )1 8 32 0 55 0 0055 1 8 26. . . . .

The average THI 3 d before the test date was merged 
with the respective test-day record (Bohmanova et al., 
2008).

Statistical Models

Genomic RRM for MY and SCS considered only the 
time-dependent covariate DIM (model 1) or DIM and 
THI simultaneously (model 2). The gRRM (Equation 
1) was
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and the gRRM (Equation 2) was
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where yijklmn was the nth test-day record for the mth 
cow; HTDi was a fixed effect for the ith herd test-date, 
MFj was a fixed effect for the jth milking frequency 
(2 or 3 times per day, or milking robot); αko was the 
oth fixed regression coefficient specific for the kth age 
at first calving class (k = 20 classes; minimum: 20 
mo, maximum: 39 mo) within DIM classes (DIM were 
grouped into 30 classes: 5–15 d, 16–25 d, . . ., 296–305 
d); βlo and δlo were the oth random regression coef-
ficients for additive genetic effects for the lth animal 
by DIM classes and by THI classes, respectively (THI 
was grouped into 13 classes: 35–44, 45–46, 47–48, . . 
., 67–68); γmo and εmo were the oth random regression 
coefficient for the permanent environmental effects for 
the mth cow by DIM and by THI classes, respectively; 
q was the number of covariates; zo(d) was the vectors of 
covariates of size q describing the shape of the lactation 
curve for fixed and random regressions evaluated at the 
dth DIM class; zo(t) was the vector of covariates of size 
q describing the shape of the lactation curve of fixed 
and random regressions at the tth THI class; and eijklmn 
was the random residual effect. The classification of 
DIM and THI values was done to reduce computation 
time. Fixed and random regressions were modeled us-
ing Legendre polynomials of order 2.

The (co)variance structure for model 1 was
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and the (co)variance structure for model 2 was
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where Wβ and Wδ were 3 × 3 (co)variance matrices of 
random regression coefficients for the additive genetic 
effects by DIM and THI classes, respectively; Wβδ and 
Wδβ were 3 × 3 covariance matrices for the additive 

Table 1. Pedigree structure

Information source
Total  
no.

Genotyped  
no.

Animal from pedigree data 48,977 12,853
Sire from pedigree data 3,085 522
Dam from pedigree data 33,703 134
Cows with phenotypes 12,331 12,331
 With genotyped sires  11,448
 With genotyped dams  151
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genetic effects for combinations of DIM and THI class-
es, respectively; Pγ and Pε were 3 × 3 (co)variance 
matrices of random regression coefficients for perma-
nent environmental effects by DIM and THI, respec-
tively; Pγε and Pεγ were 3 × 3 covariance matrices for 
permanent environmental effects for combinations of 
DIM and THI classes, respectively; ⊗ denotes the Kro-
necker product of matrices; σ

e

2 was the residual vari-
ance; and Im and In were identity matrices for perma-
nent environmental effects considering m cows and re-
sidual effects considering n observations, respectively.

In single-step genomic best linear unbiased prediction 
models as developed by Aguilar et al. (2010), the matrix 
H combines the pedigree-based numerator relationship 
matrix A with the genomic relationship matrix G to 
consider animals with and without genomic informa-
tion simultaneously. The inverse of H was defined as
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The G matrix was constructed according to VanRaden 
(2008).

In the pRRM, the pedigree-based relationship matrix 
A was used instead of the H matrix. Hence, model 
3 was a pRRM in analogy to model 1, just consider-
ing the continuous DIM effect. Model 4 was a pRRM 
in analogy to model 2 (i.e., considering both effects 
DIM and THI). All analyses were conducted using 
the GIBBS2F90 program from the BLUPF90 software 
package (Misztal et al., 2002) using a Bayesian frame-
work via Gibbs sampling. In total, 60,000 samples were 
generated, and the first 10,000 samples were discarded 
as burn-in. Posterior means and standard deviations 
of (co)variance components were calculated from every 
50th sample. The number of samples and the length 
of the burn-in period were determined based on visual 
inspections for all estimates.

Estimation of Genetic Parameters

The additive genetic and permanent environmental 
(co)variances matrices were calculated as ΦWΦ′ and 
ΦPΦ′, respectively, where Φ was a matrix of Legendre 
polynomial functions for DIM or THI classes. The ele-

ments on the diagonals were additive genetic σ
a

2( ) and 

permanent environmental σ
pe

2( ) variances for each DIM 

or THI class. The covariances between the ith DIM and 
jth THI classes were calculated as ΦiWβδΦ′j and 
ΦiPγεΦ′j for additive genetic and permanent environ-
mental effects, respectively. As a consequence, the MY 

or SCS heritability for the ith DIM class within the jth 

THI class h
ij( )( )2  was
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where σ
βa i( )

2  and σ
δa j( )

2  were additive genetic variances for 

MY or SCS from the ith DIM and jth THI classes, re-
spectively; σ

γp i( )
2  and σ

εp j( )
2  were permanent environmen-

tal variances for MY or SCS from the ith DIM and jth 
THI classes, respectively; σ

βδa ij( ) and σ
γεp ij( ) were addi-

tive genetic and permanent environmental covariances 
for MY or SCS between the ith and jth classes of DIM 
and THI, respectively; and σ

e

2 was the residual variance 
for MY or SCS. Further model improvement might be 
due to the consideration of heterogeneous residual vari-
ances. However, such modeling implies longer computa-
tion time (e.g., Lillehammer et al., 2009). Furthermore, 
in a comprehensive study by Fujii and Suzuki (2006), 
modeling of heterogeneous residual variances over years 
did not affect the ranking of Japanese Holstein sires.

Random regression coefficient solutions were used to 
estimate genomic breeding values (GEBV) for specific 
DIM and THI classes. The sum of all GEBV for each 
individual across DIM or THI classes was the total 
GEBV for the first lactation (GEBVDIM) or for the 
whole THI range (GEBVTHI), respectively. Accord-
ingly, the conventional EBV based on the pedigree 
relationship matrix for the first whole lactation was 
EBVDIM, and the EBV for the whole THI range was 
EBVTHI.

Validation of Genomic and Pedigree- 

Based Predictions

A 5-fold cross-validation as introduced by Ovenden 
et al. (2018) was used to compare prediction accuracies 
from gRRM and pRRM with or without modeling the 
G×E interactions. For cross-validations, sires were ran-
domly allocated to 5 different groups. Daughter records 
of sires from 4 groups were used as a training set, and 
records from remaining daughters from group 5 were 
considered as a validation set (Figure 1). Daughter 
group allocations according to the sire information was 
done to minimize genetic relationships among groups. 
In the basic runs for all models, GEBV or EBV for 
all animals were estimated considering the phenotypes 
from all cows in all groups. In the ongoing run, phe-
notypes from cows in group 5 (validation set) were 
discarded. For each model, the prediction accuracy was 
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the correlation between breeding values for sires and 
daughters in the validation set from the reduced data 
(i.e., without cow phenotypes in group 5) with breed-
ing values for corresponding sires and daughters in the 
full data set (considering the phenotypes from cows in 
group 5). Finally, the average prediction accuracy from 
5 replicates was calculated.

RESULTS AND DISCUSSION

Meteorological Data and Traits

Average monthly temperatures, relative humidity, 
and THI from 2010 to 2015 are shown in Figure 2. 
Monthly temperatures and THI were lowest in the win-
ter season (December–February) and highest during 
the summer months (June–August). Over 6 yr, there 
was a general increase in monthly mean temperature 
and THI, especially for winter months. Relative hu-
midity was quite constant in the considered time span. 
In total, 9.94% of test-day records matched with THI 
values larger than 62, indicating heat stress for dairy 
cows in Europe (Hammami et al., 2015).

Milk yield was highest (32.87 kg) for the DIM class 
considering DIM 56 to 65 and lowest (25.82 kg) at the 
end of lactation for DIM 296 to 305. The maximal SCS 
(4.24) was identified at the beginning of lactation. The 
antagonistic relationship between MY and SCS, espe-

cially in early lactation, is in line with studies by, for 
example, de los Campos et al. (2006) or Jamrozik et al. 
(2010). For all lactation stages, MY was quite constant 
until THI 62. Afterward, for larger THI, MY decreased 
significantly. Test-day SCS continuously increased with 
increasing THI, especially in the early-lactation period. 
Results correspond with previous evaluations of THI ef-
fects on production traits in middle Europe (Hammami 
et al., 2013, 2015).

Genetic Parameters

Models Without G×E Interactions. Heritabili-
ties from model 1 and model 3 for specific DIM classes 
are shown in Figure 3. As expected, heritabilities for 
MY were larger than heritabilities for SCS. Heritabili-
ties for MY from model 1 were lowest in the early lacta-
tion stage and increased gradually to 0.35 at the end 
of lactation. Generally, for MY, heritabilities from the 
pedigree-based model 3 (0.20 to 0.46 from early to late 
lactation, respectively) were larger than heritabilities 
(0.19 to 0.35 from early to late lactation, respectively) 
from the genomic model 1. Accordingly, inflated herita-
bilities at the peripheries of lactations were reported in 
previous pRRM applications (Strabel et al., 2005; Za-
vadilová et al., 2005). Heritabilities for SCS were quite 
constant throughout lactation and ranged between 
0.07 and 0.09 from model 1 and between 0.08 and 0.09 
from model 3. Heritabilities by DIM from the pRRM 
without G×E interaction effect (i.e., model 3) were in 
line with estimates from previous studies (Zavadilová 
et al., 2005; Nishiura et al., 2015). Posterior standard 
deviation from model 1 (<0.01 for both traits across 
DIM) were smaller than from model 3 (range from 0.01 
to 0.04 for both traits across DIM), indicating a larger 
accuracy for variance component estimations when 
considering the genomic relationship matrix (Bérénos 
et al., 2014).

Models with G×E Interactions. Model 2 and 
model 4 allowed the estimation of (co)variance compo-
nents for all combinations of THI × THI and THI × 
DIM classes. Genetic parameters from models 2 and 4 
for MY and for SCS are presented in Figures 4 and 5, 
respectively, for the different class combinations. Addi-
tive genetic variances for both traits MY (Figure 4A) 
and SCS (Figure 5A) varied across different combina-
tions of DIM × THI classes. Hence, additive genetic 
variances depended on the environmental gradient (i.e., 
THI) as well as on time alterations (i.e., DIM). Us-
ing model 2, the largest additive genetic variance for 
MY was estimated for the DIM class latest in lactation 
(296–305 d) combined with the lowest THI class (THI 
>45). In contrast, for SCS and model 2, the largest ad-
ditive genetic variance was identified for the last DIM 

Figure 1. Strategy for the creation of training (TS) and validation 
(VS) sets and the estimation of prediction accuracy. GEBV = genomic 
breeding value.
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class combined with the highest THI class (THI 67–68). 
Hence, we postulate that dairy cows express their ge-
netic potential differently for a production trait (MY) 
and for a low-heritability functional trait (SCS) under 
heat stress conditions. Similarly, in such context, Schie-
renbeck et al. (2011) analyzed daughter yield deviations 
and identified a better genetic differentiation for SCS 
in challenging environments. In contrast, for MY, supe-
rior management, husbandry, and feeding conditions in 
large-scale herds contributed to a broader range of yield 
deviations and to more extreme sire breeding values 
(Schierenbeck et al., 2011). Accordingly, König et al. 
(2005) found an increase of additive-genetic variances 
for protein yield with increasing herd size. They stated, 
“A reason for this could be that within herd correla-
tions of genotype × management (e.g., as arising from 
feeding according to the genetic potential) are higher in 
large farms since all available management tools can be 
applied which would not be feasible on a small farm.”

Permanent environmental variances were largest in 
the late-lactation stage combined with the highest THI 
class (i.e., THI 67–68) for both traits MY (Figure 4B) 
and SCS (Figure 5B). Very similar permanent environ-
mental variances were estimated from models 2 and 4.

For the genomic and pedigree-based models, herita-
bilities for MY increased by DIM and decreased by THI 
(Figure 4C). Zwald et al. (2003) focused for herd group-
ing on several environmental descriptors across country 
borders. In agreement with results from our study, heri-
tabilities for MY based on data from herds located in 
hot climates were smaller than heritabilities from herds 
located in temperate climates. For Brazilian Holstein 

dairy cattle, Santana et al. (2017) reported the largest 
production trait heritabilities for low THI values in late 
lactation. However, they identified opposite heritability 
trends for SCS. In our study, SCS heritabilities from 
model 2 and 4 increased with increasing THI at the be-
ginning of lactation but decreased in the late lactation 
stage (Figure 5C). In the studies by Brügemann et al. 
(2011) and Bohlouli et al. (2013), protein yield and MY 
heritabilities slightly altered across THI. Differences in 
additive genetic variances and heritabilities indicate 
variation in selection response, additionally depend-
ing on the function used for modeling both descriptors 
DIM and THI. Heritabilities for production traits as a 
function of THI are different depending on populations 
and locations (e.g., Ravagnolo and Misztal, 2000; Ham-
mami et al., 2015). Santana et al. (2017) expected the 
largest selection response for MY in the thermal com-
fort zone because of the largest MY heritabilities for 
THI <45. In our study, heritabilities for SCS increased 
with increasing THI. Accuracy of selection depends on 
trait heritabilities. Hence, selection response for SCS 
might increase when considering trait recording in chal-
lenging environments (i.e., environments representing 
heat stress).

When comparing models with or without G×E inter-
actions, heritabilities were larger from models consid-
ering the THI component. Accordingly, Abdullahpour 
et al. (2013) reported significantly larger heritabili-
ties from models considering detailed environmental 
herd information. In simulations neglecting the G×E 
interaction, the residual variance component substan-
tially increased, with effect on heritability decreased 

Figure 2. The monthly average temperature-humidity index (THI), relative humidity (RH), and temperature (T) from 2010 to 2015.
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(Bohlouli et al., 2013). König et al. (2005) identified 
smaller permanent and residual variance components in 
small-scale farms than in large-scale farms. This might 
be due to the heterogeneous environmental effects in 
large-scale farms, mainly due to specific feeding and 
management strategies in created subgroups of cows 
within herds. Inclusion of the source of variation as 
a G×E interaction component into statistical model-
ing might increase the additive genetic variance for the 
trait of interest while simultaneously decreasing the 
residual effect (Bowman, 1972).

Smaller heritabilities were estimated when using a 
gRRM (models 1 and 2) instead of a pRRM (models 3 
and 4). For a chicken population, Momen et al. (2017) 
also reported smaller heritabilities for body measure-
ment and productivity when modeling a genomic re-
lationship matrix. Veerkamp et al. (2011) estimated 
heritabilities for MY, DMI, and BW of Holstein dairy 
cattle. Estimates were smaller when considering the ge-
nomic relationships. Different (co)variance components 
from pRRM and gRRM can be expected because for 
genotyped animals, identity by state relationships and 
undefined base population structure is used instead of 
identity by descent relationships (Powell et al., 2010). 
Snelling et al. (2009) reported that different SNP 
densities as used for the construction of G matrices 
might contribute to differences in variance component 
estimates. Moreover, some of the environmental effects 

might be confounded with pedigree relationships (Lee 
et al., 2010; Veerkamp et al., 2011). The given argu-
ments might explain heritability differences from the 
pRRM and the gRRM.

Figure 4D (for MY) and Figure 5D (for SCS) dis-
play genetic correlations between all combinations of 
DIM × THI classes from models 2 and 4. For model 
2 and MY, the genetic correlation was smallest (0.26) 
between DIM 5 to 15 and THI <45, indicating dif-
ferences in genetic mechanisms for early lactation 
and for low THI. Early lactation with a natural en-
ergy deficiency in high-yielding cows is associated with 
physiological stress, but THI <45 implies well-being 
for cows. Accordingly, substantial re-rankings of sires 
according to GEBV for MY were observed; sires with 
high GEBV early in lactation had low GEBV for THI 
<45 and vice versa (Figure 6). The same tendencies 
were found in previous studies using pedigree-based re-
lationship matrices to depict DIM × THI interactions 
(e.g., Bohlouli et al., 2013; Hammami et al., 2015). 
Large genetic correlations (>0.80) between MY from 
the middle of lactation with MY from all THI classes 
suggest selection of sires with high genetic values at 
DIM 100 to 200, to use correlated selection response for 
heat tolerance. For SCS, the lowest genetic correlation 
(0.78) was estimated between the latest DIM and the 
highest THI class (Figure 5D). Hence, there was no evi-
dence for the existence of a significant lactation period 

Figure 3. Heritability estimates for milk yield (MY) and SCS for different DIM classes estimated with the genomic random regression model 
1 and the pedigree-based random regression model 3 (both models without genotype by environment interactions). For MY, posterior SD of 
heritabilities ranged from 0.011 to 0.014 for model 1 and from 0.027 to 0.041 for model 3. For SCS, posterior SD of heritabilities ranged from 
0.007 to 0.008 for model 1 and from 0.011 to 0.014 for model 3.
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Figure 4. Additive genetic (AG) and permanent environmental (PE) variances, heritabilities, and genetic correlations for milk yield (MY) 
estimated with the genomic random regression model 2 and the pedigree-based random regression model 4 (both models considering genotype 
by environment interactions) for DIM and temperature-humidity index (THI) combinations. Posterior SD for estimates from model 2 ranged 
from 0.32 to 0.95 (A), 0.20 to 0.71 (B), 0.01 to 0.02 (C), 0.03 to 0.08 (D), and 0.00 to 0.07 (E). Posterior SD for estimates from model 4 ranged 
from 0.68 to 2.62 (A), 0.53 to 1.86 (B), 0.02 to 0.04 (C), 0.06 to 0.16 (D), and 0.00 to 0.13 (E).
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Figure 5. Additive genetic (AG) and permanent environmental (PE) variances, heritabilities, and genetic correlations for SCS estimated 
with the genomic random regression model 2 and the pedigree-based random regression model 4 (both models considering genotype by environ-
ment interactions) for DIM and temperature-humidity index (THI) combinations. Posterior SD for estimates from model 2 ranged from 0.02 to 
0.03 (A), 0.02 to 0.06 (B), 0.00 to 0.01 (C), 0.05 to 0.09 (D), and 0.00 to 0.09 (E). Posterior SD for estimates from model 4 ranged from 0.02 to 
0.07 (A), 0.02 to 0.08 (B), 0.01 to 0.02 (C), 0.04 to 0.11 (D), and 0.00 to 0.12 (E).
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× heat stress interaction for SCS. Accordingly, only 
slight re-rankings of sires according to GEBV across 
DIM and THI classes (Figure 7) were observed. Similar 
results were reported from pedigree-based models, aim-
ing on the exploration of environmental sensitivity of 
SCS. For instance, genetic correlations for SCS were 

quite large (>0.80) when grouping herds according to 
herd parameters [e.g., intraherd standard deviations for 
milk yield (Castillo-Juarez et al., 2000; Raffrenato et 
al., 2003) or average herd SCS (Banos and Shook, 1990; 
Calus et al., 2005)]. However, Calus et al. (2006) found 
considerable re-rankings of sires according to their SCS 

Figure 6. Genomic estimated breeding values (GEBV) for milk yield for 10 genotyped sires (S1–S10) with at least 150 genotyped daughters 
by DIM and temperature-humidity index (THI) classes.

Figure 7. Genomic estimated breeding values (GEBV) for SCS for 10 genotyped sires (S1–S10) with at least 150 genotyped daughters by 
DIM and temperature-humidity index (THI) classes.
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EBV for different combinations of bulk milk SCC levels 
and DIM.

Genetic correlations between the same traits recorded 
in different THI classes (i.e., model 2 and model 4) de-
creased with increasing distances between THI classes 
(Figure 4E for MY; Figure 5E for SCS). Genetic cor-
relations were smallest between MY at THI <45 with 
MY at THI 67 to 68 (i.e., 0.49 from model 2 and 0.18 
from model 4). Genetic correlations for SCS across dif-
ferent THI classes were larger than estimates for MY. 
The lowest genetic correlation was 0.85 from model 2 
and 0.80 from model 4 (Figure 5E). Quite large genetic 
correlations for SCS across THI classes support the 
explanations given for the large SCS correlations across 
DIM × THI combinations (i.e., less environmental sen-
sitivity for SCS compared with MY). Hence, in agree-
ment with Hayes et al. (2016), we suggest consideration 
of MY from different THI classes as correlated traits in 
genetic evaluations for German Holsteins.

Prediction Accuracies

Models Without G×E Interactions. Prediction 
accuracies from the 5-fold cross-validations are listed 
in Table 2. In general, prediction accuracies were larger 
for MY compared with SCS. The heritability, a major 
parameter for the genetic trait architecture, had sub-
stantial effect on prediction accuracies (Goddard and 
Hayes, 2009; Hayes et al., 2009). Given the same size of 
a reference population, prediction accuracies increased 
with increasing trait heritabilities (Goddard and Hayes, 
2009; Guo et al., 2014; Yao et al., 2017).

In agreement with Yin et al. (2014) and Forneris et 
al. (2016), replacing A by G contributed to an increase 
of genomic predictions. In our study, consideration of 
genomic information had substantial effect on predic-
tion accuracies for daughters (i.e., almost a doubling 
of prediction accuracies). For MY, the prediction accu-
racy for GEBVDIM of sires via model 1 was 0.82, but the 
prediction accuracy for the same sires for the conven-
tional EBV (EBVDIM) from model 3 was only 0.72. For 
their daughters, the prediction accuracy was 0.79 from 
model 1 and 0.39 from model 3. Prediction accuracies 
were lower for SCS than for MY but also increased 
for SCS when considering genomic information. A sig-
nificant prediction accuracy increase when considering 
genomic information was reported for low-heritability 
traits (Buch et al., 2012).

Models with G×E Interactions. An increase in 
prediction accuracies was due to the inclusion of the 
THI component into statistical modeling and when bas-
ing predictions on DIM × THI combinations (Table 2). 
For only SCS and the pRRM applications, prediction 
accuracies were slightly larger from model 3 (0.43 for T
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daughters, 0.64 for sires) than for the combined DIM 
× THI effect from model 4 (0.39 for daughters, 0.61 for 
sires). Somatic cell score seems to be a specific trait in 
genomic and genetic evaluations for German Holsteins. 
Despite low heritabilities, SCS is the trait with highest 
accuracies for GEBV. Yin and König (2018) related 
genetic parameters to genomic herd descriptors. Also 
in this study, the genetic (co)variance pattern for SCS 
differed from those for milk or protein yield.

Regarding the gRRM considering THI (model 2), 
MY prediction accuracies for GEBVTHI were 0.88 for 
sires and 0.83 for their daughters. A slight prediction 
accuracy increase was due to the GEBV construction 
considering genomic effects for DIM × THI classes si-
multaneously. The prediction accuracy for GEBVDIM-THI 
was 0.89 for sires (plus 0.07 compared with model 1) 
and 0.83 for their daughters (plus 0.04 compared with 
model 1). For SCS, prediction accuracies for GEBVTHI 
were lower than for GEBVDIM (0.65 vs. 0.75 for sires; 
0.59 vs. 0.70 for daughters). Regarding genomic models 
and SCS, prediction accuracies were largest for GEB-
VDIM-THI. The gain in prediction accuracy when calcu-
lating GEBVDIM-THI instead of GEBVDIM or instead of 
GEBVTHI was larger for SCS compared with MY.

The accuracies of genomic predictions for selected 
DIM (i.e., prediction accuracies for GEBVDIM) and for 
specific THI (i.e., prediction accuracies for GEBVTHI) 
are given in Table 3. For both traits MY and SCS, 
accuracies were larger for the middle and the end of 
lactation compared with the early-lactation period. In 
contrast to MY, prediction accuracies for SCS were 
larger under heat stress (THI 67–68) compared with 

THI <45, especially for sires. Generally, prediction ac-
curacies of selected DIM × THI combinations (i.e., pre-
diction accuracies for GEBVDIM-THI; Table 4) followed 
the same pattern for results as given in Table 3. For 
MY, prediction accuracies were throughout larger for 
THI <45, but for SCS and genomic prediction of sires, 
a light prediction accuracy increase under heat stress 
conditions (THI 67–68) was observed.

Genomic RRM with a THI gradient allowed the esti-
mation of GEBVTHI and GEBVDIM-THI. As a further ad-
vantage, prediction accuracies for GEBVDIM increased 
when modeling the THI effect (model 2) compared with 
a gRRM considering only the time-dependent covariate 
DIM (model 1). Both types of RRM (i.e., gRRM and 
pRRM) consider longitudinal data as correlated traits. 
Information from genetically correlated traits in mul-
titrait genomic models improved genomic predictions 
over single-trait genomic predictions (Guo et al., 2014; 
Jiang et al., 2015). In simulations, further increase in 
prediction accuracy was due to consideration of G×E 
interaction terms for gRRM (Yin et al., 2014) as well 
as for multitrait genomic model applications (Bohlouli 
et al., 2017). As a further advantage, such modeling 
allows detection of QTL expressions in specific environ-
ments (Lillehammer et al., 2007). Tiezzi et al. (2017) 
considered different environmental descriptors (e.g., 
herd management, latitude and altitude, geographi-
cal region, herd fertility, and meteorological effects) in 
models with G×E interactions. However, apart from 
meteorological effects, such G×E modeling only mar-
ginally improved genomic prediction accuracies for 
genotyped bulls. Hence, climate information seems to 

Table 3. Prediction accuracies (SD in parentheses) from the 5-fold cross-validation for sires and their daughters for milk yield (MY) and SCS 
breeding values for specific DIM and temperature-humidity index (THI) classes, estimated with genomic random regression models

Trait  Validation

DIM

 

THI

5–15 146–155 296–305 <45 67–68

MY Sires 0.81 (0.034) 0.88 (0.021) 0.88 (0.022) 0.89 (0.030) 0.85 (0.016)
 Daughters 0.77 (0.045) 0.83 (0.026) 0.81 (0.027) 0.83 (0.025) 0.80 (0.039)
SCS Sires 0.73 (0.044) 0.75 (0.051) 0.76 (0.057) 0.65 (0.113) 0.71 (0.106)
 Daughters 0.67 (0.047) 0.69 (0.022) 0.70 (0.017) 0.59 (0.066) 0.60 (0.062)

Table 4. Prediction accuracies (SD in parentheses) from the 5-fold cross-validation for sires and their daughters for milk yield (MY) and 
SCS breeding values for combinations of specific DIM and temperature-humidity index (DIM × THI) classes, estimated with genomic random 
regression models

Trait  Validation

THI <45

 

THI 67–68

5–15 DIM 146–155 DIM 296–305 DIM 5–15 DIM 146–155 DIM 296–305 DIM

MY Sires 0.86 (0.006) 0.89 (0.026) 0.89 (0.027)  0.82 (0.026) 0.87 (0.017) 0.88 (0.021)
 Daughters 0.82 (0.017) 0.84 (0.024) 0.83 (0.025)  0.79 (0.035) 0.82 (0.035) 0.82 (0.026)
SCS Sires 0.76 (0.012) 0.80 (0.021) 0.80 (0.028)  0.77 (0.031) 0.81 (0.019) 0.81 (0.013)
 Daughters 0.71 (0.072) 0.74 (0.046) 0.76 (0.031)  0.69 (0.119) 0.72 (0.088) 0.75 (0.062)
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be a crucial environmental parameter to improve the 
accuracy of breeding values in genomic evaluations. For 
both traits, utilization of model 4 instead of model 3 did 
not improve prediction accuracies. Hence, we suggest 
consideration of a larger number of phenotypic records 
to increase prediction accuracies in pRRM with inter-
action terms (Meseret et al., 2015). An increase of both 
data sources, phenotypic performances and genomic 
information for specific DIM and THI classes, allows 
a target-orientated selection in commercial dairy cattle 
herds in the context of precision farming. According 
to Bewley et al. (2015), precision farming contributes 
to the improvement of cow management strategies to 
optimize farm economy via utilization of modern tech-
nologies. Genetic marker technology allows phenotype 
prediction of genotyped female calves or heifers (Yin 
and König, 2016), which can be optimized when consid-
ering environmental particularities via G×E interaction 
models. An increase of SNP markers and test-day re-
cords per genotyped animals for a large number of THI 
classes and the application of G×E interaction models 
will gradually contribute to improvements of genomic 
predictions.

CONCLUSIONS

Genomic RRM considering G×E interactions con-
tributed to an increase of prediction accuracies of 
breeding values for sires and their daughters. Hence, 
the availability of a large data set including genotyped 
cows with longitudinal test-day records for a broad THI 
range allows genomic predictions for extreme THI class-
es representing limited phenotypic data. In addition, 
for genomic models with G×E interactions, posterior 
standard deviations of genetic (co)variance components 
were very small. Genetic parameters and prediction ac-
curacies from the gRRM were more accurate than those 
from the pRRM. As a further disadvantage for the 
pRRM, heritabilities from the extreme THI classes were 
inflated. Regarding gRRM applications, some genetic 
correlations for MY and specific THI × THI or THI × 
DIM combinations were extremely small (e.g., only 0.26 
between MY recorded at DIM 5–15 and MY recorded 
at THI <45). Hence, it is imperative to consider G×E 
interactions via THI gradients in gRRM for MY. Such 
a modeling strategy for MY (i.e., simultaneous con-
sideration of DIM and THI) also improved prediction 
accuracies of GEBV for specific DIM compared with 
a simpler model just considering the DIM covariate. 
Nevertheless, regarding practical implementations, we 
found increasing computation time for a gRRM ac-
counting for G×E interactions (26 d compared with a 
genomic model without G×E interactions).
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ABSTRACT

This study presents an approach combining pheno-
types from novel traits, deterministic equations from 
cattle nutrition, and stochastic simulation techniques 
from animal breeding to generate test-day methane 
emissions (MEm) of dairy cows. Data included test-day 
production traits (milk yield, fat percentage, protein 
percentage, milk urea nitrogen), conformation traits 
(wither height, hip width, body condition score), female 
fertility traits (days open, calving interval, stillbirth), 
and health traits (clinical mastitis) from 961 first lacta-
tion Brown Swiss cows kept on 41 low-input farms in 
Switzerland. Test-day MEm were predicted based on 
the traits from the current data set and 2 determinis-
tic prediction equations, resulting in the traits labeled 
MEm1 and MEm2. Stochastic simulations were used 
to assign individual concentrate intake in dependency 
of farm-type specifications (requirement when calculat-
ing MEm2). Genetic parameters for MEm1 and MEm2 
were estimated using random regression models. Pre-
dicted MEm had moderate heritabilities over lactation 
and ranged from 0.15 to 0.37, with highest heritabilities 
around DIM 100. Genetic correlations between MEm1 
and MEm2 ranged between 0.91 and 0.94. Antagonistic 
genetic correlations in the range from 0.70 to 0.92 were 
found for the associations between MEm2 and milk 
yield. Genetic correlations between MEm with days 
open and with calving interval increased from 0.10 at 
the beginning to 0.90 at the end of lactation. Genetic 
relationships between MEm2 and stillbirth were nega-
tive (0 to −0.24) from the beginning to the peak phase 
of lactation. Positive genetic relationships in the range 
from 0.02 to 0.49 were found between MEm2 with 
clinical mastitis. Interpretation of genetic (co)variance 
components should also consider the limitations when 
using data generated by prediction equations. Predic-

tion functions only describe that part of MEm which 
is dependent on the factors and effects included in the 
function. With high probability, there are more impor-
tant effects contributing to variations of MEm that are 
not explained or are independent from these functions. 
Furthermore, autocorrelations exist between indicator 
traits and predicted MEm. Nevertheless, this integra-
tive approach, combining information from dairy cattle 
nutrition with dairy cattle genetics, generated novel 
traits which are difficult to record on a large scale. The 
simulated data basis for MEm was used to determine 
the size of a cow calibration group for genomic selec-
tion. A calibration group including 2,581 cows with 
MEm phenotypes was competitive with conventional 
breeding strategies.
Key words:  predicted methane emissions, genetic 
parameters, random regression models

INTRODUCTION

Modern dairy cattle breeding goals incorporate a 
variety of traits representing the overall categories 
of productivity and functionality. Breeding goals will 
continue to be extended by the direct inclusion of ad-
ditional functional traits mainly reflecting health and 
product quality (Boichard and Brochard, 2012). In 
addition, and especially when following the consum-
ers’ perspective, dairy cattle’s environmental impact 
or resource efficiency will play a major role in future 
breeding strategies (König et al., 2013).

As a by-product of bacterial fermentation in rumi-
nants, greenhouse gas (GHG) emissions, mainly in-
cluding CH4, contribute to global climate change and 
an inefficient use of dietary energy. The dairy cattle 
sector accounts for 4% of the total global anthropogenic 
GHG emissions, with a 52% contribution from methane 
(FAO, 2010). Controlling and mitigating of methane 
emissions (MEm) is imperative because the expected 
global warming potential for MEm is 25 times larger 
than for CO2 (Forster et al., 2007). Several methods to 
measure enteric MEm from ruminants can be applied, 
whereas the most traditional and accurate method is 
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the use of respiration chambers (Muñoz et al., 2012). 
This expensive method requires tremendous logistical 
efforts, and can only be applied to a limited number 
of individuals. The sulfur hexafluoride tracer technique 
(Johnson et al., 1994) was used to measure MEm from 
individuals kept under grazing conditions. However, 
when using this tracer technique, a permeation tube 
containing sulfur hexafluoride has to be placed into 
the cow’s rumen and a sampling apparatus must be 
attached to the cow. Moreover, this method does not 
allow measuring the small amount of MEm produced 
in the large intestine (Murray et al., 1976). A further 
indicator used for the prediction of individual MEm 
is based on samples from milk (i.e., FA compositions 
measured by GC; e.g., Chilliard et al., 2009) or based 
on milk mid-infrared spectral data (Dehareng et al., 
2012). This method requires access to milk laboratories 
with capacities for analyzing and saving spectral data 
as well as the development and validation of predic-
tion equations. Utilization of a mobile laser methane 
detector allows direct on-farm measurements of breath 
MEm without disturbing the natural behavior of cows 
(Chagunda et al., 2009). However, high costs for the 
mobile equipment including technician input, hamper 
commercial application. The same applies to measure-
ments of breath MEm of individual cows by using the 
Fourier transform infrared method (Lassen et al., 2012).

A variety of animal-associated and environmental 
effects contribute to variations of daily MEm. Cow-
specific effects include milk productivity (Garnsworthy, 
et al., 2012a), parity, BW, and stage of lactation (Bell, 
et al., 2011; Garnsworthy, et al., 2012b). Major envi-
ronmental factors reflect influences of feeding systems 
and of feeding strategies (Vlaming et al., 2005). Feed-
ing components include variations of MEm due to diet 
compositions (Yan et al., 2006) and due to the amount 
of fluids in diets and further nutritional factors (Hegarty 
and McEwan, 2010). Also, the recording technique used 
affects the accuracy of MEm measurements (Muñoz et 
al., 2012). Direct MEm measurements are associated 
with technical challenges and high costs, implying the 
development of MEm prediction equations. Available 
prediction equations are based on information from a 
limited number of cows kept in experimental herds and 
on data from feed rations combined with physiological 
parameters (e.g., Kirchgessner et al., 1995; Haas et al., 
2011; Garnsworthy et al., 2012b). Furthermore, predic-
tion equations build upon different assumptions (e.g., 
with regard to predefined levels of energy required for 
maintenance and for productivity). Nevertheless, con-
siderable MEm variation was detected also for dairy 
cows fed the same diet (Grainger et al., 2007) and 

housed under identical commercial conditions (Garn-
sworthy et al., 2012b). Substantial MEm variation in 
spite of identical environmental conditions indicates 
differences on the genetic scale. A heritable component 
for MEm is a prerequisite for implementing sustain-
able breeding strategies to reduce GHG and to improve 
resource efficiency of dairy cattle farming.

Moderate heritabilities in the range of 0.30 to 0.35 
for predicted and real measurements of MEm were 
reported for dairy cows and sheep (Haas et al., 2011; 
Pinares-Patiño et al., 2011). Positive genetic correla-
tions were found between predicted MEm and fat- and 
protein-corrected milk yield (0.31), as well as between 
MEm and residual feed intake (0.31; Haas et al., 2011). 
Such moderate genetic relationships suggest the use of 
MEm as an indicator for feed efficiency. Inclusion of 
MEm into overall breeding goals requires additional 
genetic covariances and genetic correlations between 
MEm with fertility and with health traits. Conse-
quently, the objectives of the present study were (1) 
to develop a strategy which combines deterministic 
equations and stochastic simulations to predict daily 
MEm based on routinely recorded on-farm data; (2) to 
estimate daily heritabilities and genetic variances for 
predicted longitudinal MEm with random regression 
models; (3) to estimate genetic correlations between 
predicted longitudinal MEm with test-day produc-
tion traits [milk yield (MY), fat percentage (Fat%), 
protein percentage (Pro%) and MUN], fertility traits 
[calving interval (CI), days open (DO), and stillbirth 
(SB)], and with the binary health trait clinical masti-
tis (CM); and (4) to evaluate a variety of direct and 
indirect MEm breeding strategies with and without 
genomic information.

MATERIALS AND METHODS

Data

Basis for data generation and data analyses were 
916 first parity Brown Swiss cows born between 2000 
and 2007. The cows were kept on 41 low-input farms 
located in mountainous regions of Switzerland. Herd 
size ranged from 9 to 49 cows, with an average of 22.34 
cows per herd. The average number of observations per 
contemporary group (herd × test-year-season) included 
7.05 cows. A total of 911 cows were daughters of 274 
sires (5 cows had unknown parents), indicating an aver-
age of 3.32 daughters per sire. The genetic structure 
was as follows: 138 sires had only 1 daughter, 105 sires 
had 2 to 5 daughters, 13 sires had 6 to 10 daughters, 
10 sires had 11 to 20 daughters, 6 sires had 21 to 30 
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daughters, and 3 sires had 31 to 50 daughters. The 
largest progeny include 47 daughters per sire.

Test-day production traits were repeated measure-
ments for MY, Fat%, Pro%, and MUN with a minimum 
of 2 and a maximum of 8 observations per cow. Confor-
mation traits included wither height (WH), hip width 
(HW), and BCS. Reproduction traits of interest were 
the continuously distributed traits CI and DO and the 
binary trait SB. Following Yin et al. (2014) for health 
data preparation, CM was defined as an all-or-none bi-
nary trait with 1 representing occurrence of CM within 
−1 d before to 120 d after calving, and 0 representing 
healthy cows. Body weight of cows was predicted based 
on formula [1], developed by Enevoldsen and Kristensen 
(1997):

BW = 439 + 0.2 × DIM + 4.2 × HH + 29.2 × HW  

 + 0.3 × HW2 +33.5 × BCS.  [1]

Hip height (HH) was not considered in the official type 
trait classification system for Brown Swiss cows until 
August 2010. Due to the close correlation between HH 
and WH (London et al., 2012), we replaced HH with 
WH in equation [1]. Daily ECM was calculated using 
formula [2], as introduced by Haas et al. (2011):

ECM = (0.337 + 0.116 × Fat% + 0.06  

 × Pro%) × MY.  [2]

Prediction of Daily MEm

Two different equations were applied to predict 
daily MEm for the first-parity cows from the low-input 
production systems, resulting in MEm1 and MEm2. 
Equation [3], used for the calculation of MEm1, was 
introduced by Kirchgessner et al. (1995) and is based 
only on records for MY and metabolic BW (BW0.75):

MEm1 = (10.0 + 4.9 × MY + 1.5 × BW0.75)  

 × 0.0132.  [3]

An alternative, equation [4], was reported by Haas et 
al. (2011) and used to predict MEm2:

MEm2 = FI × 18.4/0.005565 × 0.006  

 × [1 + (2.38 − LI) × 0.04],  [4]

where FI represents daily feed intake of cows and LI 
is the level of intake or multiples of the maintenance 
intake level. Feed intake for first-parity cows was cal-

culated based on formula [5], provided by Schwarz and 
Gruber (1999):

FI = 15.28 + 0.008 × (BW − 603) + 0.2389  

× (ECM − 20) − 0.005874 × (ECM − 20)2 + 0.305  

× (CON − 2.88) + 0.959 × (ECR − 5.41) − 0.0028  

× (DIM − 112) + 1.142 × [ln(DIM) − 4.33] + 0.0443  

 × (MON − 6.36) − 0.019776 × (MON − 6.36)2,  [5]

where CON represents the intake of concentrates (in kg 
of DM/d), ECR is the energy content of roughage, and 
MON is the month of lactation varying from 1 (Janu-
ary) to 12 (December). Because CON and ECR are 
difficult to measure for individuals, both variables were 
simulated on the basis of assumed intraherd feeding 
strategies. Feeding strategies are characterized by levels 
of energy and protein of the feeding ration. The feeding 
ration itself is reflected by contents for Pro% and MUN 
of milk samples (König et al., 2008). High Pro% com-
bined with low values for MUN characterize a feeding 
strategy with high levels of concentrates, but reduced 
roughage supply. In contrast, low Pro% combined with 
high values for MUN is an indicator of concentrate 
limitations and increased intake of roughage. Thus, 
41 herds were categorized into the 4 different feeding 
strategies: high or low Pro% combined with either high 
or low levels of MUN (Supplementary Table S1; http://
dx.doi.org/10.3168/jds.2014-8618). Adaptation to low-
input practices based on guidelines from Bio Suisse 
(2008) for organic farming in Switzerland was realized 
via simulation strategies. 10% of concentrates in the 
feeding ration (maximal tolerated level of concentrates) 
were assigned to cows located in farms with an average 
value for Pro% larger than the overall mean for Pro% 
(mean from all 41 participating herds). Otherwise, cows 
were fed without concentrates. Cows from farms with 
an averaged MUN level larger than the overall mean 
of MUN received ECR of 6.0 MJ/kg; otherwise ECR 
was 4.5 MJ/kg. Individual intake of concentrates for 
cows from the farms with the 10% concentrate feeding 
strategy were sampled from a normal distribution with 
a mean of 1.781 and standard deviation of 0.411 (Notz 
et al., 2013). Maximum (6.0 MJ/kg) and minimum (4.5 
MJ/kg) values for ECR were fixed using real data from 
a sample of herds. Descriptive statistics for all test-day 
production traits (MY, Fat%, Pro%, and MUN), for 
the predicted test-day methane emissions (MEm1 and 
MEm2), for reproduction traits (CI, DO, and SB), and 
for the health trait (CM) of first-parity cows are given 
in Table 1.
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Statistical Models

Bivariate animal models were used to estimate 
genetic parameters during lactation for all combina-
tions of MEm1 and MEm2 with longitudinal test-day 
production traits, with reproduction traits, and with 
CM. The AI-REML algorithm as implemented in the 
package DMU (Madsen and Jensen, 2012) was applied 
to all bivariate models.

Model 1: Bivariate Random Regression Mod-
els for 2 Longitudinal Traits. For the estimation 
of genetic (co)variance components between MEm1 
and MEm2 with test-day production traits, bivariate 
random regression models (RRM) were applied. The 
time-dependent covariate was DIM, altering on a con-
tinuous scale from 1 to 305 d after calving. In matrix 
notation, the statistical RRM for both longitudinal 
traits was defined as follows (longitudinal traits are 
indicated with index 1):

y1 = X1b1 + Z1a1 + W1p1 + e1, 

where y1 was a vector of records for predicted test-day 
MEm (MEm1 or MEm2) and for a test-day production 
trait (MY, Fat%, Pro%, or MUN); b1 was a vector of 
fixed effects including herd, test-year-season, and third-
order Legendre polynomial regressions on DIM; a1 and 
p1 were vectors of additive genetic and permanent en-
vironmental effects, respectively, for random regression 
coefficients using second-order Legendre polynomials; 
and e1 is a vector of random residual effects. X1, Z1, 
and W1 were incidence matrices for b1, a1, and p1, 
respectively. Random effects were assumed to follow 
a normal distribution with zero means. The variance-
covariance structure for random effects was:
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where G and P were 6 × 6 (co)variance matrices of 
random regression coefficients for the additive genetic 
and permanent environmental effects; A was an addi-
tive genetic relationship matrix; Ip and In were identity 
matrices for p cows and n observations, respectively; R 
was a 2 × 2 variance (matrix) for residual effects; and 

 denotes the Kronecker product.
Model 2: Bivariate Random Regression and 

Single-Trait Models for Genetic Analyses of 
1 Longitudinal Trait 1 with a Single Trait. For 
estimating genetic (co)variance components between 
MEm1 and MEm2 with reproduction traits (CI, DO, 
and SB) and with CM in consecutive bivariate runs, 
again RRM were applied to daily MEm1 and MEm2. 
Single-trait animal models were used for traits without 
repeated measurements (i.e., fertility and health data, 
and indicated with index 2). Generalized linear mixed 
model equations with a logit link function were applied 
to binary traits SB and CM. The bivariate model in 
matrix notation was:
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where y1 was a vector of longitudinal records for pre-
dicted test-day MEm1 or MEm2; y2 was a vector of 
records for CI or DO, or vector of liabilities for SB or 
CM; b1 was a vector of fixed effects for methane emis-
sions, including herd, test-year-season, and third-order 

Table 1. Descriptive statistics for test-day production traits, test-day methane emissions (MEm), reproduction 
traits, and clinical mastitis of first parity cows

Trait
Record  

(n)
Cow  
(n) Mean SD Minimum Maximum

Milk yield (kg) 7,804 916 19.23 4.44 2.00 35.50
Fat percentage (%) 7,781 916 4.03 0.56 1.50 9.65
Protein percentage (%) 7,783 916 3.39 0.31 2.48 5.82
MUN (mg/dL) 7,781 916 25.11 8.25 5.00 61.00
MEm11 (Mcal) 7,804 916 3.35 0.28 2.17 4.46
MEm21 (g) 7,781 916 280.61 20.32 157.64 337.83
Calving interval (d) 713 713 387.94 60.57 273 664
Days open 850 850 98.22 60.57 20 370
Stillbirth (0 or 1) 835 835 0.05 0.21 0 1
Clinical mastitis (0 or 1) 911 911 0.11 0.32 0 1

1MEm1 = (10.0 + 4.9 × MY + 1.5 × BW0.75) × 0.0132, and MEm2 = FI × 18.4/0.005565 × 0.006 × [1 + 
(2.38 − LI) × 0.04], where MY is milk yield, BW0.75 is metabolic BW, FI is feed intake, and LI is level of intake.
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Legendre polynomial regressions on DIM; b2 was a vec-
tor of fixed effects including herd, calving-year-season 
for CI, DO, SB, and CM, and additionally the sex of the 
calf for SB; a1 and p1 were vectors for additive genetic 
and permanent environmental effects, respectively, for 
random regression coefficients using second-order Leg-
endre polynomials; a2 was a vector of additive genetic 
effects; s2 was a vector of random service sire effects for 
CI and SB; e1 and e2 were residual effects. X1, X2, Z1, 
Z2, W1, and Q2 were incidence matrices for b1, b2, a1, 
a2, p1, and s2, respectively. The (co)variance structure 
of the random effects was assumed as:
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where g11 was a 3 × 3 (co)variance matrix of random 
regression coefficients for the additive genetic effects for 
methane emissions; g22 was the additive genetic vari-
ance of fertility traits or CM; g12 was the the additive 
genetic covariance vector between methane emissions 
and fertility traits or between methane emissions and 
CM; pe11 was a 3 × 3 (co)variance matrix of random 
regression coefficients for permanent environmental 
effects for predicted methane emissions; ss2 was the 
variance of random service sire effects for CI or SB; Is 
was an identity matrix for s sires; A, Ip, R, In, and 
were the same as described previously for the bivariate 
RRM.

Approximate standard errors of heritability estimates 
were calculated by a Taylor series expansion as reported 
by Fischer et al. (2004). Variance of heritability at time 
i was calculated using the following equation:
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where yi,i = gi,i + pi,i + e; gi,i, pi,i and yi,i are diagonal 
elements of the genetic, the permanent environmental 
and total phenotypic (co)variance matrix, respectively; 
e is residual; and var(gi,i), var(yi,i), and cov(gi,i, yi,i) are 
variances and covariances of genetic and phenotypic 
variances at time i.

Standard errors of genetic correlations were calcu-
lated as suggested by Lynch and Walsh (1998):
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where rg is genetic correlation between traits 1 and 
2; var(g1) and var(g2) denote the variance of genetic 
variance for the 2 traits; g12 is genetic covariance be-
tween traits 1 and 2; var(g12) is the variance of ge-
netic covariance between traits 1 and 2; cov(g1,g2) is 
the covariance between the genetic variance of traits 1 
and 2; cov(g1,g12) is the covariance between the genetic 
variance of trait 1 and the genetic covariance of the 
2 traits; and cov(g12,g2) is the covariance between the 
genetic covariance of the 2 traits and the genetic vari-
ance of trait 2.

Breeding Program Scenarios

Expected overall genetic gain and response to selec-
tion in MEm per generation were assessed using an 
R script (SIG.R; Pimentel and König, 2012); SIG.R 
is a selection index program that combines pheno-
typic and genomic information sources according to the 
theoretical framework as developed by Dekkers (2007). 
Traits in the breeding goal for a young sire included a 
production trait (MY), a fertility trait (DO), a health 
trait (CM), and a trait representing GHG emissions 
(MEm1). Equal economic weights per genetic standard 
deviation were defined for all 4 traits. Selection inten-
sity was set to i = 1.

In 3 different scenarios, we varied index traits and 
information sources (i.e., daughter records vs. genomic 
information). Scenario I reflected a progeny testing 
program and index traits included 100 daughter re-
cords for MY and DO, 10 daughter records for CM, 
and alterations of 0 to 100 daughter records for MEm1. 
In scenario II, daughter records for MEm1 were re-
placed with a sires’ genomic estimated breeding value 
(GEBV). In scenario III, daughter records for all 4 
traits were completely neglected and young bull GEBV 
were available for all traits. Accuracies of GEBV in 
scenarios II and III varied between 0.1 and 1.0 and were 
always identical for all traits within 1 simulation. Char-
acteristics describing the 3 different breeding scenarios 
are summarized in Table 2. Genetic and phenotypic 
parameters used for selection index calculations are 
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presented in Table 3 and reflect the genetic parameter 
estimates from the present study on a lactation basis.

RESULTS AND DISCUSSION

Predicted MEm

Predicted daily MEm1 and MEm2 (average from all 
cows) are represented in Figure 1. The MEm1 tended 
to decrease from 1 to 305 DIM, with maximal values 
of 3.66 Mcal/d at the beginning of the lactation (d 
33), 3.29 Mcal/d at d 200, to minimal values with 3.05 
Mcal/d at the end of lactation (d 260). Conversely, 
MEm2 was lowest at the beginning of lactation (about 
225 g/d), increased sharply to 275 g/d around 75 DIM, 
and remained quite constant at this level until the 
end of lactation. Haas et al. (2011) also used equation 
[4] to predict MEm2 and showed a similar pattern of 
daily MEm during lactation. However, mean and range 
(Table 1) for predicted test-day MEm2 in the low-input 
Brown Swiss population differed from those predictions 
by Haas et al. (2011) for Holstein-Friesian cows kept 
in conventional production systems. The lower MEm2 
of Brown Swiss cows compared with Holstein-Friesian 
might be attributed to the general breed effect (i.e., a 

lower level of milk yield; Dechow et al., 2007), lighter 
BW (Ozkaya and Bozkurt, 2009), and lower feed in-
take (Carroll et al., 2006). Milk yield, especially, has 
direct effect on predicted daily MEm (Garnsworthy 
et al., 2012b). Relationships between organic or low-
input production system characteristics and production 
levels were carefully outlined by Nauta et al. (2006) 
and Yin et al. (2012). The comparably high level of 
MUN, with an average value of 25.11 mg/dL for cows 
in organic and low-input farms in Switzerland (Table 
1), reflects diets with a high amount of degradable 
protein and deficiencies in fermentable carbohydrates 
(Yin et al., 2012). Such feeding rations contribute to 
lower MEm because retention and fermentation time 
is shorter compared with diets with a high fraction 
of carbohydrates. As outlined by Garnsworthy et al. 
(2012b), results of the present study confirm the strong 
dependency of predicted daily MEm and the equation 
used for the prediction. Nevertheless, phenotypic cor-
relations between MEm1 and MEm2 at identical test 
days were generally larger than 0.80 and significantly 
different from zero (Table 4). The lowest phenotypic 
correlation between MEm1 and MEm2 was 0.82 for the 
time interval directly after calving including DIM 1 to 
30 and was highest for the interval from DIM 271 to 
305, with a correlation coefficient of 0.91.

Genetic Parameters for Daily MEm

Figure 2 depicts daily heritabilities with correspond-
ing SE for MEm1 and MEm2 from the bivariate RRM. 
Daily heritabilities for both traits were in a moderate 
range from 0.15 to 0.37 during first lactation. Daily 
heritability for MEm2 was 0.17 at the beginning of 
lactation, and increased to a maximum value of 0.30 at 
128 DIM. Afterward, between 150 and 305 DIM, heri-
tability decreased to a minimum value of 0.15. Interest-
ingly, and despite the phenotypic differences, daily heri-
tabilities for MEm1 and MEm2 followed an identical 
pattern. One obvious difference was the peak of daily 

Table 2. Characteristics of the 3 breeding program scenarios

Index trait1

Breeding scenario

Scenario I, MEm1- 
MY-DO-CM

Scenario II, gMEm1- 
MY-DO-CM

Scenario III, gMEm1- 
gMY-gDO-gCM

Daughters (no.)    
 MEm1 0–100 in increments of 10 No No
 MY 100 100 No
 DO 100 100 No
 CM 10 10 No
Accuracy of GEBV No 0.1–1.0 for MEm1 0.1–1.0 for all traits

1MEm1 = (10.0 + 4.9 × MY + 1.5 × BW0.75) × 0.0132; DO = days open; MY = milk yield; CM = clinical 
mastitis; g = genomic breeding values; BW0.75 = metabolic BW.

Table 3. Estimated phenotypic variances, heritabilities (diagonal), 
and genetic (above diagonal) and phenotypic (below diagonal) 
correlations between traits on a lactation basis as used for selection 
index calculations

Item

Trait

MEm1 MY DO CM

Methane emissions1 (MEm1) 0.44 0.89 0.86 0.03
Milk yield (MY) 0.92 0.34 0.93 0.04
Days open (DO) 0.10 0.12 0.03 −0.18
Clinical mastitis (CM) 0.02 0.01 0.02 0.10
Phenotypic variance 0.05 8.30 3,668.64 3.65

1MEm1 = (10.0 + 4.9 × MY + 1.5 × BW0.75) × 0.0132, where BW0.75 
is metabolic BW.
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heritabilities for MEm2, which was 30 d earlier com-
pared with the maximal heritability for MEm1. Moder-
ate heritabilities from the present study (i.e., average 
across lactation of 0.31 for MEm1 and 0.25 for MEm2) 
were in line with heritabilities for predicted MEm re-
ported by Haas et al. (2011) for Holstein-Friesian and 

Figure 1. Predicted daily methane emissions (average from all cows) for MEm1 (�) and for MEm2 (×) in the course of lactation. MEm1 = 
(10.0 + 4.9 × MY + 1.5 × BW0.75) × 0.0132, and MEm2 = FI × 18.4/0.005565 × 0.006 × [1 + (2.38 × LI) × 0.04], where MY is milk yield, 
BW0.75 is metabolic BW, FI is feed intake, and LI is level of intake.

Table 4. Phenotypic correlations between MEm1 and MEm21 within 
test-day intervals

DIM
Observations  

(n) Correlation SE P-value

1–30 697 0.822 0.021 <0.001
31–60 814 0.845 0.019 <0.001
61–90 797 0.884 0.017 <0.001
91–120 799 0.892 0.016 <0.001
121–150 802 0.886 0.016 <0.001
151–180 804 0.898 0.016 <0.001
181–210 785 0.888 0.016 <0.001
211–240 783 0.890 0.016 <0.001
241–270 788 0.898 0.016 <0.001
271–305 712 0.905 0.016 <0.001

1MEm1 = (10.0 + 4.9 × MY + 1.5 × BW0.75) × 0.0132, and MEm2 = 
FI × 18.4/0.005565 × 0.006 × [1 + (2.38 − LI) × 0.04], where MY is 
milk yield, BW0.75 is metabolic BW, FI is feed intake, and LI is level 
of intake.

Figure 2. Daily heritabilities for methane emissions MEm1 (black 
line; SE in the range of 0.05 to 0.06) and MEm2 (gray line; SE in the 
range of 0.05 to 0.06). MEm1 = (10.0 + 4.9 × MY + 1.5 × BW0.75) × 
0.0132, and MEm2 = FI × 18.4/0.005565 × 0.006 × [1 + (2.38 × LI) 
× 0.04], where MY is milk yield, BW0.75 is metabolic BW, FI is feed 
intake, and LI is level of intake.
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for real MEm recorded in ewes (Pinares-Patiño et al., 
2011). Cassandro et al. (2010) based the prediction 
equation on DMI of Holstein-Friesian cows and found a 
lower heritability (0.12) for predicted MEm.

Daily genetic correlations between MEm1 and MEm2 
at identical test days were higher than 0.90 throughout 
lactation with small SE in the range from 0.01 to 0.04 
(Figure 3). The correlation increased from 0.91 to 0.96 
between DIM 1 and 60 and was 0.96 for later lactation 
stages. High phenotypic and genetic relationships at 
identical test days indicate that MEm1 and MEm2 can 
be considered as identical traits for genetic evaluations. 
Figure 3 also displays genetic correlations between indi-
vidual DIM and 5 DIM for both measurements MEm1 
and MEm2. As expected, genetic correlations between 
adjacent DIM were higher than those for DIM with a 
greater distance. Similar results were shown in previous 
studies for production and functional traits (e.g., de 
Roos et al., 2004; Karacaören et al., 2006). For MEm1, 
genetic correlations between individual DIM and 5 
DIM were close to 1 in the beginning of lactation, fol-
lowed by a gradually decrease to 0.89 at 210 DIM, and 
were lowest (0.88) at the very end of lactation (DIM 
305). The same trend was found for MEm2, except that 
genetic relationships slightly increased to 0.94 from 200 
to 305 DIM. High genetic correlations in the same trait 
between different DIM indicate that MEm measured 
at different time points of lactation might be geneti-

cally the same trait. High genetic correlations imply 
identical ranks of sires according to EBV for MEm over 
lactation. Garnsworthy et al. (2012b) also found con-
sistency when ranking dairy cows according to MEm 
across lactation. For predicted MEm, Haas et al. (2011) 
reported a substantially lower genetic correlation of 
0.36 between predictions early in lactation (wk 1 to 5) 
with predictions late (wk 26 to 30) in lactation.

Genetic Correlations Between Daily MEm and Test-

Day Production Traits

Daily genetic correlations between MEm2 and test-
day MY ranged between 0.70 and 0.92 (Figure 4), in-
dicating an antagonistic genetic relationship between 
MEm and productivity. Standard errors of genetic 
correlation estimates gradually increased from 0.03 to 
0.16 from the beginning to the end of lactation. The 
bivariate RRM model, including MEm1 and MY, did 
not converge for a strict convergence criterion. An ex-
planation might be the autocorrelation between both 
traits. In this context, an autocorrelation means a 
strong effect of MY on predicted MEm1. Nevertheless, 
a strong association between milk productivity per cow 
and resource efficiency in terms of reduced MEm per 
kilogram of milk was emphasized in previous studies 
(e.g., Flachowski and Brade, 2007). Positive genetic 
correlations between predicted MEm with fat- and with 
protein-corrected milk production were also reported 
by Haas et al. (2011). However, estimates by Haas et al. 
(2011) were lower than those in the present study and 
ranged from 0.19 at the beginning to 0.58 at the end of 
lactation, presumably due to the effect of precorrection 
for MY. Genetic correlations between MEm1 and Fat% 
differed from correlations between MEm2 and Fat%. 
For example, slightly positive genetic correlations were 
found for MEm2 with Fat% from 100 to 220 DIM (ge-
netic correlation ranged from 0.11 to 0.25), but genetic 
relationships were negative when correlating MEm1 
with Fat% within the same time interval (genetic cor-
relation ranged from −0.30 to −0.23). Negative genetic 
correlations between MEm2 and Fat% were observed 
at the beginning and at the end of lactation. Likewise, 
genetic correlations between MEm1 and Fat% were 
lowest (−0.57) at the end of lactation. Negative genetic 
relationships between MEm1 and Fat% across lactation 
indicate that selection on increasing Fat% is associated 
with desired effects on reduced MEm. In contrast, ge-
netic relationships between MEm2 and Fat% were posi-
tive in the middle of lactation. Variation of genetic cor-
relations during lactation indicates changes of genetic 
or of physiological mechanisms. For example, high Fat% 
early in lactation is mostly due to mobilization of body 

Figure 3. Daily genetic correlations between MEm1 and MEm2 
(solid gray line, SE in the range of 0.02 to 0.09), genetic correlations 
between daily MEm1 with MEm1 from d 5 (solid black line; SE in 
the range of 0 to 0.14), genetic correlations between daily MEm2 with 
MEm2 from d 5 (dashed black line; SE in the range of 0 to 0.19). 
MEm1 = (10.0 + 4.9 × MY + 1.5 × BW0.75) × 0.0132, and MEm2 = 
FI × 18.4/0.005565 × 0.006 × [1 + (2.38 × LI) × 0.04], where MY is 
milk yield, BW0.75 is metabolic BW, FI is feed intake, and LI is level 
of intake.
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fat depots (Toni et al., 2011), but strongly determined 
by the composition and ingredients of the feeding ra-
tion in the middle of lactation. Also, genetic variances 
and heritabilities for Fat% varied substantially across 
lactation, with the lowest heritability (0.15) at 64 DIM.

Curves for daily genetic correlations between Pro% 
and MEm1, and between Pro% and MEm2, showed a 
similar shape across lactation with maximal values in 
the middle of lactation. Genetic correlations between 
MEm and Pro% close to zero at the beginning of lacta-
tion imply that selection on MEm does not influence 
Pro% on the genetic scale and vice versa. Genetic cor-
relations between MEm predictions with Pro% were 
favorably negative in the last third of lactation (−0.45 
to −0.20) and in agreement with selection strategies 
aiming on improved Fat%.

Throughout lactation, genetic correlations between 
MEm1 and MUN were almost identical with correla-
tions between MEm2 and MUN at corresponding test 
days. Genetic correlations declined from 0.20 directly 
after calving to −0.40 in the peak phase of lactation 

(200 DIM), and were negative (<−0.20) in the last lac-
tation stage. Yin et al. (2012) found a high level of MUN 
in organic and low-input herds and attributed these 
findings to the lower percentage of concentrates in the 
feeding ration. Reduction of concentrates is strongly 
associated with a lack of dietary energy, but energy 
is required for the activation of ruminal microbacteria 
to metabolize urea into protein. With regard to the 
first 50 DIM, reduction of MUN is also associated with 
decreasing MEm on the genetic scale. Differences might 
be due to the interplay between breeding and feeding. 
From the middle to the end of lactation, direct genetic 
selection on increasing MUN indirectly reduces MEm. 
However, a breeding strategy on increasing MUN is as-
sociated with impaired female fertility (König et al., 
2008) and indicates energy deficiency of lactating cows 
(Roy et al., 2011) with associated risks of subsequent 
health problems. A high concentration of ammonia due 
to metabolism of excess dietary protein might even be 
toxic to animal tissues (Rajala-Schultz et al., 2001). 
From an environmental perspective, an increase in 

Figure 4. Daily genetic correlations between MEm1 and MEm2 with test-day milk yield (MY), fat percentage (Fat%), protein percentage 
(Pro%), and MUN. MEm1 = (10.0 + 4.9 × MY + 1.5 × BW0.75) × 0.0132, and MEm2 = FI × 18.4/0.005565 × 0.006 × [1 + (2.38 × LI) × 
0.04], where BW0.75 is metabolic BW, FI is feed intake, and LI is level of intake. Standard errors of daily genetic correlations were in the follow-
ing range: 0.04 to 0.16 (MEm2 with MY), 0.02 to 0.11 (MEm1 with Fat%), 0.01 to 0.09 (MEm2 with Fat%), 0.01 to 0.10 (MEm1 with Pro%), 
0.01 to 0.12 (MEm2 with Pro%), 0.01 to 0.18 (MEm1 with MUN), and 0.01 to 0.12 (MEm2 with MUN).
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MUN is associated with aggravated ammonia emissions 
into the atmosphere (Powell et al., 2011).

Genetic Correlations Between Daily MEm  

and Reproduction Traits

Genetic correlations between predicted MEm and 
both female fertility traits DO and CI showed an iden-
tical pattern across lactation (Figure 5) and illustrate 
the close relationship between both interval traits DO 
on CI (Silva et al., 1992), also on the genetic scale. High 
genetic correlations, especially at the end of lactation 
(0.93 between MEm2 and DO and 0.85 between MEm2 
and CI at 305 DIM), indicate resource inefficiency for 
cows with impaired female fertility. Positive genetic 
correlations between predicted MEm and fertility traits 
(DO and CI) imply that breeding on shorter CI, shorter 
DO, and lower MEm can be achieved simultaneously. 
Hence, without access to phenotypic data for MEm 
(e.g., measurements from a respiration chamber or from 

a mobile laser methane detector), and without avail-
ability of proper indicator traits for MEm predictions 
(e.g., BW), we suggest a breeding strategy emphasizing 
female fertility traits. As a side effect, improved cow 
fertility reduces within-herd replacement rates. As a 
consequence, reduced replacements also contribute to 
decreasing methane emissions (Knapp et al., 2014).

Apart from the end of lactation, methane emissions 
(MEm2) were favorably genetically correlated with 
the functional trait SB. To our knowledge, no studies 
have addressed relationships between GHG emissions 
and SB. In general, results from the present study sup-
port a breeding strategy on functional female fertility 
traits as considered in current breeding goals for dairy 
cattle. The bivariate linear-threshold model, including 
longitudinal test-day MEm1 and categorical SB, did 
not converge. Generally, standard errors of genetic 
correlations between MEm2 and SB were quite large 
(0.189 at the end of lactation). This might be due to 
the binary outcome of SB combined with a low number 
of records. For Gaussian as well as for categorical traits, 

Figure 5. Daily genetic correlation between MEm1 and MEm2 with days open (DO), calving interval (CI), stillbirth (SB), and clinic mastitis 
(CM). MEm1 = (10.0 + 4.9 × MY + 1.5 × BW0.75) × 0.0132, and MEm2 = FI × 18.4/0.005565 × 0.006 × [1 + (2.38 × LI) × 0.04], where 
MY is milk yield, BW0.75 is metabolic BW, FI is feed intake, and LI is level of intake. Standard errors of daily genetic correlations were in the 
following range: 0.001 to 0.11 (MEm1 with DO), 0.003 to 0.14 (MEm2 with DO), 0.001 to 0.11 (MEm1 with CI), 0.001 to 0.16 (MEm2 with CI), 
0.002 to 0.18 (MEm2 with SB), 0.001 to 0.07 (MEm1 with CM), and 0.002 to 0.19 at DIM 305 (MEm2 with CM).



5758 YIN ET AL.

Journal of Dairy Science Vol. 98 No. 8, 2015

standard errors were largest at the extreme ends of the 
time scale.

Genetic Correlations Between MEm and CM

Direct breeding strategies on dairy cattle udder 
health contribute to reduce MEm. In our study, genetic 
correlations between MEm2 and CM were positive, and 
thus favorable, in the course of lactation, with a maxi-
mal value of 0.38 at 305 DIM (Figure 5). Rehbein et 
al. (2013) focused on the relationships between female 
fertility traits and CM on the phenotypic and on the 
genetic scale by applying structural equation models. 
They found longer interval traits and lower success 
of a first insemination for cows with udder infections, 
and they discussed the underlying physiological mecha-
nisms. Hence, breeding on reduced MEm not only will 
improve a cow’s fertility status, but also contribute to 
udder health. Due to moderate heritabilities for MEm 
and the favorable correlations with functional traits, 
it might be worthwhile to implement recording tech-
nique to measure MEm of dairy cows on a farm-gate 
level. Conversely, the implementation of a recording 
technique for health traits not only generates a basis 
for health trait genetic evaluations, but also for genetic 
selection with a focus on MEm.

Limitations of Genetic Statistical Analysis Based  

on Simulated Data

The present approach to predict daily MEm strongly 
relies on the parameters and traits used in both pre-
diction equations. Furthermore, some indicator traits 
for predicting MEm were calculated based on a second 
function. Specifically, FI was used to predict MEm, 
but without direct measurements for FI; thus, FI itself 
was calculated including ECM, CON, DIM, MON, and 
ECR. Stochastic simulations were applied to simulate 
ECR, but only taking into account variants of MUN 
and Pro% as indicators for general feeding strategies 
and a random error component. In practice, a broader 
variety of effects contribute to phenotypic variations of 
ECR. The ECR itself is a major component used as a 
basis for prediction equations, and, as a consequence, 
we assume reduced variations for FI and MEm when 
comparing to real data. Also, MEm1 is a prediction 
function only describing that part of MEm which is 
dependent on the factors and effects included in the 
function. Likely, more important parts contribute to 
variations of MEm that are not explained or are in-
dependent from these functions. The smallest values 
for coefficients of variations for MEm1 and MEm2 
when comparing to other traits underline this theoreti-

cal concept based on functions and parameters of the 
functions. In a strict sense, genetic parameters do not 
reflect the genetic background of MEm but rather for 
the functions of other traits that were used to predict 
MEm. Nevertheless, MEm is a novel trait of increasing 
importance, but cannot be recorded on population-wide 
scales. This approach is a further alternative to get first 
insight into genetic components of MEm using traits 
and parameters from official recording schemes, and 
supporting previous quantitative genetic studies based 
on predicted MEm (e.g., Haas et al., 2011).

Breeding Strategies

Overall genetic gain and response to selection in 
MEm1 per generation are shown in Figures 6 and 7, 
respectively. When increasing the number of daughters 
for MEm1 in a pure progeny testing program (scenario 
I), only a marginal effect on overall genetic gain in 
complex breeding goals including several traits was 
observed. This is particularly the case for large daugh-
ter groups for other traits (i.e., assumed 100 daughter 
records per sire for both conventional traits MY and 
DO). Also, antagonistic genetic relationships among 
traits used in indices and breeding goals hamper selec-
tion response in individual traits. In the present study, 
pronounced antagonistic relationships were found and 
modeled between MY and DO (genetic correlation = 
0.93). König et al. (2013) confirmed those findings via 
the application of selection index methodology to con-
ventional indices (indices without genomic information) 
and to genomic indices stepwise by including additional 
traits into the overall breeding goal.

Both evaluation criteria, overall genetic gain and 
selection response for MEm1 per generation, clearly 
exhibited a strong increase with increasing accuracies 
of GEBV for the pure genomic breeding strategy (sce-
nario III). Genetic gain from scenario III is higher than 
genetic gain from the progeny testing scenario I for 
accuracies of GEBV larger than 0.80. Such a crucial 
threshold for GEBV was identified in previous stud-
ies (e.g., Pimentel and König, 2012) and is achieved in 
dairy cattle breeding programs when basing genomic 
selection on large calibration groups of sires. However, 
for novel traits such as MEm, it is imperative to set up 
a calibration group of cows (Buch et al., 2012; Pszczola 
et al., 2012). Deterministic equations (e.g., Goddard, 
2009; Daetwyler et al., 2010) were developed to de-
termine the required calibration group size for desired 
accuracies of GEBV. For the moderate heritability trait 
MEm1 (h2 = 0.44), assuming an effective population 
size Ne = 100, and applying the deterministic predic-
tion by Daetwyler et al. (2010), a desired accuracy of 
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0.80 for GEBV implies a calibration group including 
2,581 cows. Logistically, phenotyping and genotyping 
of 2,581 cows might be easier to realize compared with 
the implementation of a progeny testing program for a 
novel trait MEm. In Germany, more than 20,000 cows 
from large-scale contract herds located in the eastern 
part of Germany are the basis for genomic selection 
with a focus on low heritability health traits (Martin 
et al., 2013). A fraction of those cows can be used for 
direct or indirect MEm measurements. However, a cow 
calibration group in the Brown Swiss low-input popula-
tion only included 1,126 cows (Kramer et al., 2014); 
therefore, accuracies of GEBV for low-heritability 
functional traits were low to moderate. Following Dae-
twyler et al. (2010), the expected accuracy of GEBV 
is 0.66 for a calibration group size of 1,126 cows (h2 = 
0.44, and Ne = 100). König and Swalve (2009) applied 
selection index methodology for the calculation of the 
required number of daughters per genotyped sire to 
achieve predefined correlations between the index and 
the aggregated genotype (rTI) by altering heritabilities 
and accuracies of GEBV (rmg). For a desired aggregated 
genotype of 0.95, for heritability = 0.45, and for accura-

cies of GEBV = 0.70, at least 66 additional daughters 
have to be included in genetic evaluations. From a lo-
gistic perspective, Schierenbeck et al. (2011) suggested 
the implementation of a contract herd system to en-
sure a combination of novel traits with cow genotypes. 
Furthermore, a contract herd system allows specific 
strategies for the use of sires and, as a consequence, the 
setting up of specific genetic structures being suitable 
for imputation procedures (Pimentel et al., 2013).

CONCLUSIONS

Longitudinal daily MEm can be predicted when com-
bining real data with deterministic equations and sto-
chastic simulations. Moderate heritabilities were found 
for predicted MEm over lactation. Due to the strong 
genetic correlations with production traits, we suggest 
indirect selection strategies on routinely recorded test-
day MY, Fat%, and Pro% by simultaneously reducing 
MEm. Nevertheless, autocorrelations exist because 
MY was used as a fundamental component in predict-
ing MEm. The positive genetic correlations between 
fertility traits (DO and CI) and MEm indicates that 

Figure 6. Genetic gain per generation for scenarios I, II, and III (as explained in Table 2). MEm1 = (10.0 + 4.9 × MY + 1.5 × BW0.75) × 
0.0132; MY = milk yield; DO = days open; CM = clinical mastitis; g = genomic breeding values; BW0.75 = metabolic BW.
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selection for better fertility of cows likewise reduces 
MEm. Genetic correlations between MEm and CM 
were positive, especially at the end of lactation, and 
underline the importance of health data recording at a 
large scale. Genetic (co)variance components for MEm 
might be biased because the prediction functions only 
describe that part of MEm which is dependent on the 
factors and effects included in the function. Therefore, 
it is necessary to evaluate the reliability of the predict 
equation based on real MEm measurements.
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ABSTRACT

A data set including 57,868 records for calf birth 
weight (CABW) and 9,462 records for weight at first 
insemination (IBW) were used for the estimation of 
direct and maternal genetic effects in Holstein Friesian 
dairy cattle. Furthermore, CABW and IBW were corre-
lated with test-day production records and health traits 
in first-lactation cows, and with nonreturn rates in heif-
ers. Health traits considered overall disease categories 
from the International Committee for Animal Record-
ing diagnosis key, including the general disease status, 
diarrhea, respiratory diseases, mastitis, claw disorders, 
female fertility disorders, and metabolic disorders. For 
single-trait measurements of CABW and IBW, animal 
models with maternal genetic effects were applied. The 
direct heritability was 0.47 for CABW and 0.20 for IBW, 
and the direct genetic correlation between CABW and 
IBW was 0.31. A moderate maternal heritability (0.19) 
was identified for CABW, but the maternal genetic ef-
fect was close to zero for IBW. The correlation between 
direct and maternal genetic effects was antagonistic 
for CABW (−0.39) and for IBW (−0.24). In bivari-
ate animal models, only weak genetic and phenotypic 
correlations were identified between CABW and IBW 
with either test-day production or health traits in early 
lactation. Apart from metabolic disorders, there was 
a general tendency for increasing disease susceptibili-
ties with increasing CABW. The genetic correlation 
between IBW and nonreturn rates in heifers after 56 
d and after 90 d was slightly positive (0.18), but close 
to zero when correlating nonreturn rates with CABW. 
For the longitudinal BW structure from birth to the 
age of 24 mo, random regression models with the time-
dependent covariate “age in months” were applied. 
Evaluation criteria (Bayesian information criterion and 
residual variances) suggested Legendre polynomials 
of order 3 to modeling the longitudinal body weight 
(BW) structure. Direct heritabilities around birth and 
insemination dates were slightly larger than estimates 

for CABW and IBW from the single-trait models, but 
maternal heritabilities were exactly the same from both 
models. Genetic correlations between BW were close 
to 1 for neighboring age classes, but decreased with 
increasing time spans. The genetic correlation between 
BW at d 0 (birth date) and at 24 mo was even nega-
tive (−0.20). Random regression model estimates con-
firmed the antagonistic relationship between direct and 
maternal genetic effects, especially during calfhood. 
This study based on a large data set in dairy cattle 
confirmed genetic parameters and (co)variance compo-
nents for BW as identified in beef cattle populations. 
However, BW records from an early stage of life were 
inappropriate early predictors for dairy cow health and 
productivity.
Key words: body weight, health and fertility trait, 
genetic parameter

INTRODUCTION

Body weight of dairy cattle is a novel trait of in-
creasing economic importance, because BW change 
indicates maintenance requirements of lactating cows 
and growing heifers, determines the carcass values of 
cows, and is associated with weight development in 
offspring (Byrne et al., 2016). Energy balance model-
ing via BW changes is also important from a breeding 
perspective, especially during the early lactation stage 
directly after calving (Coffey et al., 2002). The negative 
energy balance impairs health and fertility (Collard et 
al., 2000), as well as productivity in the ongoing and 
later lactations of milking cows (Berry et al., 2003a). 
Compared with other components determining energy 
balance (e.g., DMI, methane emissions, or NEM), BW 
is quite easy to measure under practical on-farm condi-
tions.

Direct heritabilities for BW from different age points 
reported in literature were in a moderate to high range 
(Table 1), indicating the potential for genetic improve-
ments. Also moderate to high genetic correlations 
between BW of milking cows with DMI and energy 
balance (Veerkamp et al., 2000) suggest BW recording 
and utilization for correlated selection response. How-
ever, for production and reproduction traits, genetic 
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correlations with BW were low and varied across stud-
ies (Table 1). For calf birth weight (CABW), direct 
heritabilities were significantly larger compared with 
maternal heritabilities (Everett and Magee, 1965; Jo-
hanson et al., 2011). Moderate to high positive genetic 
correlations between CABW with dystocia, perinatal 
mortality, and gestation length were reported by Jo-
hanson et al. (2011). Availability of producer diagnosis 
keys for cow health traits according to International 
Committee for Animal Recording (ICAR) guidelines 
(Stock et al., 2013), and reflecting the disease catego-
ries of claw disorders, mastitis, metabolic disorders, 
and female fertility disorders, allow further associa-
tion studies with BW measurements. However, to our 
knowledge, detailed genetic analyses in this regard are 
lacking.

Body weight recording allows a longitudinal data 
structure measured at different time points, including 
birth weight, weaning weight, cow calving weight, or 
BW from different lactation stages (Lamb and Barker, 
1975; Coffey et al., 2006). Generally, genetic correla-
tions for weight measurements from time points in 
close distance were quite large [e.g., 0.79 between birth 
weight and weaning weight (Coffey et al., 2006)], and 

between BW in wk 1 and 15 of lactation (Veerkamp 
and Thompson, 1999). In contrast, genetic correlations 
between distant time measurements were quite small 
[e.g., 0.14 between BW from d 50 to 900; Brotherstone 
et al. (2007)]. For genetic analyses of longitudinal 
weight data, repeatability models (e.g., Abdallah and 
McDaniel, 2000), multiple trait models (e.g., Veerkamp 
and Thompson, 1999), or the random regression model 
(RRM, e.g., Coffey et al., 2006) can be applied. Re-
peatability model applications assume identical genetic 
and environmental variances across the given time 
period. An alternative is to consider repeated weight 
measurements from different periods as separate traits, 
being the data basis for multiple trait model applica-
tions (Veerkamp and Thompson, 1999). Multiple trait 
models allow consideration of altering additive-genetic 
and residual variances, with positive effects on the ac-
curacy of genetic evaluations (Thompson and Meyer, 
1986). However, in the case of a large number of traits, 
the multiple-trait model might be over-parameterized 
(Veerkamp and Thompson, 1999). In RRM, alterations 
of genetic parameters and breeding values over the re-
cording trajectory can be estimated based on a limited 
number of random regression coefficients.

Table 1. Overview of heritabilities for BW traits and their genetic correlations with production, fertility, and health traits in Holstein cows

Trait

Heritability

 

Genetic correlation

 ReferenceDirect Maternal Trait Value

Birth weight 0.22 0.04 Gestation length 0.57 Everett and Magee, 1965
Birth to d 36 weight 0.58    Brotherstone et al., 2007
Birth weight 0.26 0.08 Dystocia 0.73 Johanson et al., 2011

Perinatal mortality 0.57
Gestation length 0.52

BW1 0.60  Milk yield −0.03 Berry et al., 2003a
Protein yield 0.03
Fat yield −0.01
Interval to first service −0.25
Pregnant to first service −0.22
First service to conception interval 0.37
Number of services 0.15

BW2 0.17  3.7% FCM −0.15 Abdallah and McDaniel, 2000
2×, 305-d, mature equivalent fat yield −0.11
Days open −0.11

Birth weight 0.53  Weaning weight 0.79 Coffey et al., 2006
Calving weight 0.50

Weaning weight 0.45 Calving weight 0.59
Calving weight 0.75
Live weight3 0.35  Fat- and protein-corrected milk −0.10 Lassen and Løvendahl, 2016
Live weight4 0.48  Milk yield −0.06 Veerkamp et al., 2000

Fat yield 0.31
Protein yield 0.20
DMI 0.76
Energy balance 0.45
Interval until first luteal activity −0.11  

1Average BW from DIM 5, 60, 120, 180.
2Predicted BW after calving.
3Weekly average live weight measured by automatic milking systems.
4Live weight within the first week of first-lactation cows.
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Apart from CABW and weaning weight, there is a 
gap addressing genetic investigations for weight records 
along the trajectory between birth and first calving. 
Furthermore, genetic associations between BW during 
aging with health and productivity are unclear. Hence, 
the objectives of the present study were to (1) estimate 
genetic parameters for CABW and body weight at first 
insemination (IBW) applying multiple trait models, 
(2) to infer genetic and phenotypic relationships be-
tween CABW and IBW with nonreturn rates in heifers, 
and with production and health traits during the early 
lactation period of first-parity cows, and (3) to analyze 
longitudinal BW records from birth to first calving ap-
plying RRM.

MATERIALS AND METHODS

Data

CABW and IBW. The CABW was available from 
57,868 animals kept in 53 large-scale contract herds 
located in 2 federal states of northeast Germany. The 
calves were born from 2005 to 2014, and CABW varied 
between 20 to 60 kg. No further outliers for CABW 
were detected. A subset of 9,462 heifers additionally 
had records for IBW. Heifers with IBW were extracted 
according to their weight date and first insemination 
date. If the difference between the 2 dates was shorter 
than 10 d, the heifer weight was considered as IBW. 
Insemination age of the 9,462 heifers varied from 329 to 
777 d, with an average value of 452.68 d. On average, 
the difference between weight date and first insemina-
tion date was 5.05 d.

Cow Production and Health Traits.  Produc-
tion and health traits were available from first-lactation 
cows. Analogous to Mahmoud et al. (2017), the produc-
tion traits included records from the first and second 
official test-day after calving for milk yield (MY1 and 
MY2), fat percentage (FP1 and FP2), protein per-
centage (PP1 and PP2), fat yield (FY1 and FY2), 
protein yield (PY1 and PY2), fat to protein ratio 
(FPR1 and FPR2), and SCS (SCS1 and SCS2).

Health traits of first-lactation cows were recorded ac-
cording to the hierarchical diagnosis key as considered 
in the official ICAR guidelines (Stock et al., 2013). For 
the present analyses, the same overall disease categories 
as introduced by Mahmoud et al. (2017) were used. 
These were the general disease status (GDS), diarrhea 
(DIA), respiratory diseases (RD), mastitis (MAST), 
claw disorders (CL), female fertility disorders (FF), 
and metabolic disorders (MET). The overall disease 
trait category GDS reflects the first level of the hi-
erarchical diagnosis key (i.e., just a classification if a 
cow is healthy or sick, without specifying the disease). 

The remaining disease categories used in this study 
(RD, MAST, CL, FF, and MET) represent the second 
level of the diagnosis key. The diagnosis key also has 
options for a detailed disease specification including, 
for example, the location of the disease in the case 
of claw disorders. However, the detailed specification 
system for single diseases was not used in all herds, 
and for some specific diseases, incidences were quite 
low. Hence, we decided to use the diagnosis key levels 
1 and 2 with the corresponding disease categories in 
the present study. If one entry of the particular disease 
category was observed in the first lactation, a value of 1 
was assigned for a sick cow. Otherwise, a 0 was assigned 
for a healthy cow.

Heifer Fertility Traits. Female fertility traits of 
heifers were the nonreturn rate after 56 d (NRR56) 
and the nonreturn rate after 90 d (NRR90). The 
NRR56 and NRR90 were also defined as binary traits, 
with a 0 for nonpregnant heifers and a 1 for pregnant 
heifers. Descriptive statistics for CABW, IBW, cow 
production, and cow health traits, as well as reproduc-
tion traits from heifers are summarized in Tables 2 and 
3.

Longitudinal Weight Data. In the selected large-
scale contract herds, weight recording of calves and 
heifers from different age stages was performed in close 
intervals because of automatically installed weighting 
technique. The CABW was available from all calves 
from the herd, and a large subset was recorded for IBW. 
A large fraction of animals was weighed shortly before 
first calving at an age of 24 mo. Hence, the time span 
for repeated measurement analyses was from birth to 
an age of 24 mo. Only animals with a record for CABW 
and 5 repeated measurements were considered. The ef-
fects of the herd, weighing year, and weighing month 
were combined to create a contemporary group “herd-
year-month.” Editing criterion was that each level of 
the herd-year-month effect included at least 10 weight 
records. Weight outliers were detected by studentized 
residuals, reflecting the influence of each weight re-
cord on the overall estimates. For each weight record, 
studentized residuals and corresponding Bonferroni P-
values were calculated using the outlier test function in 
the R-package “car” (Fox and Weisberg, 2011). Records 
with P-value smaller than 0.05 or larger than 0.95 were 
excluded as outliers. Finally, 32,404 longitudinal weight 
observations from 4,952 animals were considered.

Statistical Models

Single Weight Measurement Analysis: Genetic 
Parameters for CABW and IBW. An animal mod-
el with maternal genetic effects was applied to estimate 
genetic (co)variance components for CABW and IBW. 
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In matrix notation, the statistical model [1] for CABW 
and IBW was

 y Xb Zd Wm Sp em= + + + + , [1]

where y was a vector of observations for CABW or 
IBW; b was a vector of fixed effects including herd, 
birth year, birth month, and gestation length for 
CABW, and herd, insemination year, insemination 
month, and age at first insemination for IBW; d was a 
vector of direct additive-genetic effects; m was a vector 
of random maternal genetic effects; pm was a vector 
of maternal permanent environmental effects; e was a 
vector of random residual effects; and X, Z, W, and S 
were incidence matrices for b, d, m, and pm, respec-
tively.

The equations to estimate direct heritabilities hd
2( ), 

maternal heritabilities hm
2( ), and total heritabilities ht

2( ) 
were

 hd
d

d m dm p em

2
2

2 2 2 2
=

+ + + +

σ

σ σ σ σ σ

, 

 hm
m

d m dm p em

2
2

2 2 2 2
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+ + + +

σ

σ σ σ σ σ

,  and 

 ht
d dm m

d m dm p em

2
2 2

2 2 2 2

1 5 0 5
=

+ +

+ + + +

σ σ

σ σ σ σ σ

. .
,

σ

 

where σd
2 was the direct genetic variance; σm

2  was the 
maternal genetic variance; σdm was the covariance be-

Table 2. Descriptive statistics for calf birth weight, weight at first insemination, weight from 0 to 24 mo, and test-day production traits

Trait No. of animals1 Mean2 SD2 Min.2 Max.2 No. of animals3

Calf birth weight (kg) 57,868 41.48 4.82 20 60  
Weight at first insemination (kg) 9,462 406.46 32.90 270 570  
Milk yield at first test-day (kg) 46,055 28.32 6.59 3.0 58.4 7,549
Fat percentage at first test-day (%) 46,055 4.21 0.78 1.61 8.49 7,549
Fat yield at first test-day (kg) 46,055 1.18 0.30 0.07 3.62 7,549
Protein percentage at first test-day (%) 46,055 3.26 0.33 2.21 4.50 7,549
Protein yield at first test-day (kg) 46,055 0.91 0.19 0.09 2.02 7,549
Fat to protein ratio at first test-day 46,055 1.30 0.24 0.37 3.26 7,549
SCS at first test-day 45,949 2.88 1.70 −1.64 9.64 7,527
Milk yield at second test-day (kg) 39,652 32.45 5.98 3.0 59.4 6,419
Fat percentage at second test-day (%) 39,652 3.70 0.55 1.60 8.42 6,419
Fat yield at second test-day (kg) 39,652 1.19 0.24 0.07 2.60 6,419
Protein percentage at second test-day (%) 39,652 3.07 0.24 2.20 4.39 6,419
Protein yield at second test-day (kg) 39,652 0.99 0.17 0.10 1.80 6,419
Fat to protein ratio at second test-day 39,652 1.21 0.19 0.48 2.88 6,419
SCS at second test-day 39,620 2.21 1.65 −2.64 9.64 6,412
Weights from 0 to 24 mo (kg) 4,952 253.61 168.66 20 742  

1No. of animals for estimating genetic correlations between calf birth weight and test-day, health, and fertility traits. 
2Mean, SD, minimum (Min.), and maximum (Max.) values were calculated based on the number of animals in column 2.
3No. of animals for estimating genetic correlations between weight at first insemination and test-day, health, and fertility traits.

Table 3. Descriptive statistics for incidences of health traits and for success rates (SR) of female fertility traits

Trait

Data set 11

 

Data set 22

No. of animals SR/incidence (%) No. of animals SR/incidence (%)

Nonreturn rate after 56 d 51,947 70.06 9,445 67.46
Nonreturn rate after 90 d 51,947 65.49 9,445 63.43
General disease status 57,225 79.24 9,349 78.77
Diarrhea 57,225 5.74 9,349 5.77
Respiratory disease 57,225 2.37 9,349 4.41
Mastitis 57,225 22.12 9,349 23.32
Claw disorders 57,225 27.25 9,349 25.20
Female fertility disorders 57,225 41.41 9,349 41.53
Metabolic disorders 57,225 1.23 9,349 1.51

1No. of animals for estimating genetic correlations between calf birth weight and health and fertility traits.
2No. of animals for estimating genetic correlations between weight at first insemination and health and fertility 
traits.
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tween direct and maternal genetic effects; σpm
2  was the 

variance for maternal permanent environmental effect; 
and σe

2 was the residual variance.
The equation to estimate the genetic correlation (rdm) 

between direct additive genetic and maternal genetic 
effects was

 rdm
dm

d m

=
σ

σ σ
2 2×

. 

Single Weight Measurement Analysis: Genetic 
Parameters for Production and Health Traits. A 
linear animal model (for Gaussian test-day traits), and 
a threshold model (for binary health traits) was defined 
for first-lactation test-day production and health traits. 
The statistical model [2] for both trait categories was

 y Xb Zd e= + + , [2]

where y was a vector of observations for test-day pro-
duction traits (MY1, FP1, FY1, PP1, PY1, MY2, FP2, 
FY2, PP2, PY2, FPR1, FPR2, SCS1, and SCS2), and 
of disease liabilities for binary health traits (GDS, DIA, 
RD, MAST, CL, FF, and MET); b was a vector of 
fixed effects including the herd, calving year and calv-
ing season; d was a vector of additive genetic effects; e 
was a vector of random residual effects; and X and Z 
were the incidence matrices for b and d, respectively.

Single Weight Measurement Analysis: Genetic 
Parameters for Nonreturn Rates. A threshold 
model [3] including the random service sire effects was 
defined for NRR56 and NRR90. Model [3] was

 y Xb Zd Ws e= + + + , [3]

where y was a vector of insemination success rates for 
NRR56 and NRR90; b was a vector of fixed effects 
including the herd, insemination year, insemination 
month, and age at first insemination; s was a vector of 
random service sire effects; X and W were incidence 
matrices for b and s, respectively; and d, e, and Z were 
the same as defined in model [2].

Single Weight Measurement Analysis: Bivari-
ate Models. A first bivariate model considered CABW 
and IBW simultaneously. The following covariance 
structure of random effects was assumed:
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where Gd was a 2 × 2 (co)variance matrix for 
the direct additive genetic effects; Gm was a 2 × 2  
(co)variance matrix for the maternal genetic effects; 
Gdm was a 2 × 2 covariance matrix between direct 
additive genetic and maternal genetic effects; A was 
the additive genetic relationship matrix; Pm was a 2 × 
2 (co)variance matrix for maternal permanent environ-
mental effects; Im was an identity matrix for m dams; 
R was a 2 × 2 (co)variance matrix for residual effects; 
In was an identity matrix for n observations, and ⊗ was 
the direct matrix product.

In bivariate runs combining model [1] with models 
[2] and [3], genetic correlations were estimated between 
CABW or IBW with cow production and health traits, 
and with nonreturn rates in heifers. The following (co)
variance structure of random effects was assumed:
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where Gd was a 2 × 2 (co)variance matrix for the direct 
additive genetic effects including one production, 
health, or fertility trait, and CABW or IBW; σm

2  was 
the maternal genetic variance for CABW or IBW; gdm 
was a 2 × 1 vector for the covariances between direct 
additive genetic effects for one weight trait (CABW or 
IBW) and for one of the production, fertility, or disease 
traits with maternal genetic effects for CABW or IBW; 
σpm

2  was the maternal permanent environmental vari-

ance for CABW or IBW; σs
2 was the variance for service 

sires; and Is was an identity matrix for s service sires 
(only relevant for NRR56 and NRR90).

For all bivariate models, the BLUPF90 software 
package (Misztal et al., 2002) was applied. The AI-
REML algorithm was used for bivariate models with 2 
continuous traits. For runs including one binary trait 
(nonreturn or disease traits), a Bayesian approach and 
Gibbs sampling was applied. In total, a chain length 
of 300,000 samples was generated, and the first 60,000 
rounds were discarded as “burn-in.” Every 10th sample 
was saved for the calculation of posterior means and 
standard deviations. Hence, in total, 24,000 samples 
were the basis to infer genetic parameters. The number 
of samples and the length of the burn-in period were 
determined based on visual inspections for genetic co-
variances, and on the effective sample size. Misztal et 
al. (2002) suggested an effective sample size of NS = 
30, which was achieved for all runs.
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Repeated Measurement Analysis for Weight 
Data: Growth Models. To identify the most ap-
propriate function for modeling longitudinal weight 
data, we evaluated 4 nonlinear growth models using 
the NLMIXED procedure in SAS University Edition 
(SAS Institute Inc., Cary, NC). These were the logistic 
growth model (Fekedulegn et al., 1999), the Gompertz 
growth model (Wellock et al., 2004), the Brody growth 
model (Fitzhugh, 1976), and the Richards growth 
model (Fekedulegn et al., 1999). Additionally, 3 linear 
models with linear, quadratic, and cubic Legendre 
polynomials (Kirkpatrick et al., 1990) were analyzed 
using the MIXED procedure in SAS (SAS Institute 
Inc.). Evaluation criteria were the Akaike’s information 
criterion (AIC; Akaike, 1973), the Bayesian informa-
tion criterion (BIC), and residual variances.

Repeated Measurement Analysis for Weight 
Data: Estimation of Genetic Parameters. An 
RRM with the time dependent covariate “age in month” 
was applied to longitudinal BW data. The statistical 
model [4] was

 y Xb Qd Wm Zp Sp e= + + + + +
m

, [4]

where y was a vector of observations for longitudinal 
BW; b was a vector of fixed effects including herd-
year-month, and regressions on age in month using 
cubic Legendre polynomials nested within birth year; 
d was a vector of direct additive-genetic effects for ran-
dom regression coefficients, which were modeled with 
Legendre polynomials of order 3; p was a vector of 
permanent environmental effects for random regression 
coefficients, which were modeled with Legendre poly-
nomials of order 3; m was a vector of random maternal 
genetic effects; pm was a vector of maternal permanent 
environmental effects; e was a vector of random residual 
effects; and X, Q, W, Z, and S were incidence matrices 
for b, d, m, p, and pm, respectively. Heterogeneous 
residual variances were assumed across the weighing 
age for the following time intervals: 0, 1 to 4, 5 to 8, 9 
to 12, 13 to 16, 17 to 20, and 21 to 24 mo. The following 
(co)variance structure for random effects was assumed:
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where Gd was a 4 × 4 (co)variance matrix of random 
regression coefficients for the direct additive-genetic ef-

fects; gm was the maternal-genetic variance; gdm was 
the vector of additive genetic covariances between di-
rect and maternal genetic effects; A was the additive 
genetic relationship matrix; P was a 4 × 4 (co)variance 
matrix of random regression coefficients for permanent 
environmental effects; Ip was an identity matrix for p 
cows; σpm

2  was the variance of random maternal perma-

nent environmental effects; Im was an identity matrix 
for m dams; R was a (co)variance matrix for residual 
effects of dimension 7 × 7 (for the defined 7 time inter-
vals); In was the identity matrix for n observations, and 
⊗ was the direct matrix product. Also for the RRM 
analyses, Gibbs sampling as implemented in BLUP90 
(Misztal et al., 2002) was applied, again using a chain 
length of 300,000 samples, and considering a burn-in 
period of 60,000 rounds. The thinning interval was set 
to 10.

RESULTS AND DISCUSSION

Genetic Parameters for Single BW Measurements

Direct, maternal, and total heritabilities for CABW 
and IBW are given in Table 4. The direct heritability of 
0.47 for CABW was in line with the moderate to high 
direct heritabilities as reported in previous studies (Ta-
ble 1), for example, a direct heritability of 0.53 based 
on weight records from 486 Holstein calves kept in one 
experimental herd (Coffey et al., 2006). McCorquodale 
et al. (2013) analyzed weight data from 1,588 Holstein 
calves. The direct heritability including a recording 
period from 0 to 8 d of age was 0.44. The maternal 
heritability of 0.19 from our study was larger compared 
with previous estimates in dairy cattle [e.g., Everett 
and Magee (1965); Johanson et al. (2011)]. Fisher and 
Williams (1978) also found a quite large maternal ge-
netic heritability of 0.26 using data from 1,552 Holstein 
calves. In Nellore beef cattle, heritabilities were 0.32 
and 0.10 for direct and maternal effects, respectively 
(Chud et al., 2014). In the Charolais, Limousin, Blonde 
d'Aquitaine, and Maine-Anjou breeds, the direct herita-
bilities ranged from 0.28 to 0.38, and the corresponding 
maternal heritabilities were in the range from 0.08 to 
0.10 (Phocas and Laloë, 2004). Apparently, in beef as 
well as in dairy cattle populations, direct heritabilities 
were significantly larger than the maternal component.

Direct and maternal heritabilities for IBW were sig-
nificantly smaller compared with estimates for CABW 
(Table 4). Coffey et al. (2006) also found a decrease 
of direct BW heritabilities during the time span from 
birth to weaning age. The genetic part of the total heri-
tability included the direct additive genetic variance 
for the calves, the maternal genetic variance, and the 



2164 YIN AND KÖNIG

Journal of Dairy Science Vol. 101 No. 3, 2018

covariance between direct and maternal genetic effects. 
Therefore, given the negative covariance between the 2 
genetic sources, the total heritability or realized herita-
bility of mass selection (Willham, 1972) was lower than 
the direct heritability. The genetic correlation between 
direct effects of CABW and IBW was 0.31, indicating 
the changing genetic background of BW with aging.

The genetic correlations between direct and mater-
nal genetic effects were −0.39 for CABW and −0.24 
for IBW. Accuracy of genetic correlation estimates 
between direct and maternal genetic effects increases 
with an increasing number of dams with phenotypes 
(Heydarpour et al., 2008). In our data set, the 57,868 
calves with records for CABW were offspring of 43,714 
dams, and the 9,462 heifers with records for IBW were 
offspring of 8,729 dams. However, only 13,800 dams 
were phenotyped for CABW, and only 731 dams had 
records for IBW, indicating 68.43 and 91.62% of dams 
with missing BW records, respectively. Heydarpour 
et al. (2008) recommended a proportion of dams with 
missing records smaller than 50%, to avoid biased es-
timates for maternal genetic and maternal permanent 
environmental variances, and for the direct-maternal 
covariance component. In consequence, we additionally 
performed runs based on a reduced data set including 
only the dams with phenotypes. For this specific data 
set, the maternal heritability for CABW was 0.22, and 
0.12 for IBW. The direct-maternal genetic correlation 
was −0.42 for CABW, and −0.26 for IBW. Hence, the 
results from the analysis as suggested by Heydarpour 
et al. (2008) confirmed the estimates as presented in 
Table 4. The negative genetic correlation between di-
rect and maternal effects was identified in several pre-
vious beef cattle analyses, indicating incompatibility 
between genes increasing an animal’s BW and genes 
contributing to improved maternal performance of a 
cow (Garrick et al., 1989). Hence, similar genetic or 
physiological mechanisms seem to exist in dairy cattle. 
In this regard, Lee (2001) stated that a “biological 
explanation of genetic antagonism between direct and 
maternal genetic effects is currently unavailable.” From 
a biological perspective, Bauman and Currie (1980) 
addressed nutrient competition for either growth or 
milk yield traits, and Bijma (2006) raised questions 
addressing genetic modeling aspects. However, also 

when accounting in statistical models for environmen-
tal covariances between dam and offspring records, the 
antagonistic relationship between direct and maternal 
effects still existed (Bijma, 2006).

Correlations Between BW and Test-Day Traits

Genetic and phenotypic correlations between CABW 
and IBW with test-day traits are given in Table 5. Heri-
tabilities were moderate for production traits, and were 
low for SCS. The heritabilities for the same trait were 
identical from 2 runs including either CABW or IBW. 
In agreement with Mahmoud et al. (2017), heritabilities 
in same traits were larger at the second official test-day 
compared with estimates from the first official test-day. 
Generally, genetic and phenotypic correlations between 
CABW with productivity and SCS were close to zero. 
Throughout negative genetic correlations (but also on a 
very low level) were detected between CABW with FP 
and with FPR from both test-days. As an indicator for 
a cow’s energy status (Friggens et al., 2007), a high FPR 
indicates negative energy balance and a quick mobiliza-
tion of body fat depots. Therefore, the negative genetic 
correlations between CABW and FPR suggest that ani-
mals with large BW early in life tend to prevent energy 
deficiency early in lactation. However, it is a long time 
span from the calf toward the milking cow stage. Simi-
larly, only weak associations were identified between 
the calf health status and milking cow production traits 
(Mahmoud et al., 2017). The time point for measuring 
IBW is closer to the lactation stage, and accordingly, 
a stronger effect of IBW on cow test-day traits was 
identified (Table 5). The highest genetic correlations 
were found between IBW with protein yield (i.e., 0.22 
with PY1 and 0.24 with PY2). Also, genetic correla-
tions between IBW with MY1 and MY2 were positive, 
indicating that higher IBW marginally increased milk 
production at first and second test-days. Close to zero 
genetic correlations were found between averaged BW 
records with milk production traits from multiparous 
Holstein-Friesian cows (Berry et al., 2003a). Veerkamp 
et al. (2000) correlated BW and production traits from 
the same lactation, but also from overlapping periods 
for both trait categories; genetic associations had a 
minor effect.

Table 4. Direct (hd
2), maternal (hm

2), and total (ht
2) heritabilities and genetic correlations between direct and 

maternal genetic effects (rdm) for calf birth weight (CABW) and BW at first insemination (IBW)

Weight hd
2 SE hm

2 SE ht
2 SE rdm SE

CABW 0.47 0.02 0.19 0.01 0.39 0.01 −0.39 0.02
IBW 0.20 0.01 0.06 0.00 0.19 0.01 −0.24 0.03
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Correlations Between BW and Nonreturn Rates

As a female fertility trait, heritabilities for NRR56 
and NRR90 were consistently small in all bivariate 
runs with either CABW or IBW (Table 6). The low 
heritabilities for nonreturn rates correspond with large-
scale studies conducted in Holstein cows (Weigel and 
Rekaya, 2000) or in Norwegian Red (Andersen-Ranberg 
et al., 2005). As found for the cow test-day traits, small 
phenotypic correlations were identified between BW 
measurements and heifer fertility traits (Table 6). Ge-
netic correlations between nonreturn rates with CABW 
were slightly negative (−0.10 for NR56 and −0.11 for 
NR90), but positive between nonreturn rates and IBW 
(0.18; Table 6). Genetically, increasing IBW benefitted 
nonreturn rates of heifers, indicating the positive as-
sociations between improved BW development around 
insemination time and female fertility. Phenotypic cor-
relations between either CABW or IBW with nonreturn 
rates were very close to zero (Table 6). Only a limited 
number of studies focused on associations between BW 
and nonreturn rates in dairy cattle. Veerkamp et al. 
(2001) used the BW indicator BCS, and found nega-

tive genetic correlations between BCS with the calving 
interval, and with the time span from calving to first 
service in first-lactation cows. The genetic correlation 
between BCS and NRR56 in first lactation was −0.10 
(Banos et al., 2004), and −0.11 between BW in the first 
week after calving and commencement of first luteal 
activity (Veerkamp et al., 2000). From a management 
perspective, the “close to zero” phenotypic correlations 
with female fertility traits suggest an intermediate op-
timum for BW or BW indicators (e.g., BCS) around 
insemination time. Genetically, Abdallah and McDaniel 
(2000) reported that heavier cows from 6 experimental 
herds conceived earlier than smaller cows.

Correlations Between BW and Health Traits

Heritabilities for disease traits as well as genetic and 
phenotypic correlations between health traits with 
CABW and IBW are shown in Table 7. Heritabilities 
for health traits are in agreement with estimates from 
previous studies, that is, with Mahmoud et al. (2017) 
for cow respiratory diseases, with Harder et al. (2006) 
for metabolic disorders, with König et al. (2005) or Ger-

Table 5. Heritabilities for test-day traits, and genetic (rg) and phenotypic (rp) correlations between test-day traits with calf birth weight 
(CABW) and BW at first insemination (IBW)

Test-day  
trait1

CABW with test-day traits

 

IBW with test-day traits

h2 SE rg SE rp h2 SE rg SE rp

MY1 0.16 0.001 0.05 0.003 −0.01 0.16 0.001 0.11 0.003 0.08
MY2 0.25 0.001 0.05 0.003 −0.01 0.25 0.001 0.16 0.003 0.11
FP1 0.15 0.001 −0.12 0.003 0.01 0.15 0.001 −0.06 0.003 0.07
FP2 0.29 0.002 −0.06 0.003 0.01 0.29 0.002 −0.02 0.003 0.08
FY1 0.19 0.001 −0.06 0.003 −0.00 0.19 0.001 0.06 0.003 0.13
FY2 0.21 0.001 −0.05 0.003 −0.00 0.21 0.001 0.11 0.003 0.17
PP1 0.16 0.001 −0.05 0.003 0.00 0.16 0.001 0.17 0.003 0.01
PP2 0.37 0.002 0.00 0.003 0.00 0.36 0.002 0.10 0.003 −0.01
PY1 0.15 0.001 0.04 0.003 −0.01 0.15 0.001 0.22 0.003 0.09
PY2 0.18 0.001 0.05 0.003 −0.01 0.19 0.001 0.24 0.003 0.12
FPR1 0.15 0.001 −0.10 0.003 0.01 0.15 0.001 −0.15 0.003 0.07
FPR2 0.21 0.001 −0.06 0.003 0.01 0.22 0.001 −0.09 0.003 0.09
SCS1 0.09 0.001 −0.01 0.003 0.01 0.09 0.001 0.11 0.003 −0.00
SCS2 0.09 0.001 0.05 0.003 0.02 0.09 0.001 0.09 0.003 0.00

1MY = milk yield; FP = fat percentage; PP = protein percentage; FY = fat yield; PY = protein yield; FPR = fat-to-protein ratio. 1 indicates 
the observation from the first test-day after calving; 2 indicates the observation from the second test-day after calving.

Table 6. Posterior means and posterior SD of the Gibbs samples for heritabilities (h2) of nonreturn rate after 56 (NRR56) and 90 d (NRR90), 
and for genetic (rg) and phenotypic (rp) correlations between nonreturn rates and calf birth weight (CABW) and BW at first insemination (IBW)

Heifer fertility  
trait

CABW with nonreturn rate

 

IBW with nonreturn rate

h2 SD rg SD rp h2 SD rg SD rp

NRR56 0.03 0.01 −0.10 0.08 −0.01  0.02 0.01 0.18 0.17 −0.03
NRR90 0.03 0.01 −0.11 0.08 −0.00  0.01 0.01 0.18 0.18 −0.03
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nand et al. (2012) for claw disorders, and with Zwald 
et al. (2006) for clinical mastitis. Genetic correlations 
between CABW and health traits were larger than 
the corresponding correlations with test-day traits or 
with nonreturn rates, but also in a narrow range from 
−0.09 to 0.22. Genetic correlations were positive and 
larger than 0.10 between CABW with GDS, MAST, 
CL, and FF. The positive correlation indicates, from a 
genetic perspective, that heavier calves have a higher 
risk for disease occurrence later in life. McCorquodale 
et al. (2013) stated that calves with higher CABW had 
less disease early in life, along with improved disease 
resistance during aging. In contrast, Mahmoud et al. 
(2017) found improved disease resistance after calv-
ing for cows with respiratory and digestive infections 
during calfhood, independent from growth develop-
ment. Genetic correlation estimates were even weaker 
between IBW and cow disease traits. The only obvious 
difference when comparing CABW and IBW correla-
tions was identified for RD: the genetic correlation be-
tween CABW and RD was positive (0.22), but negative 
between IBW and RD (−0.24). Hence, alterations of 
genetic covariances between BW development and RD 
suggest deeper analyses in this regard, from a genetic-
statistical perspective (e.g., application of RRM), as 
well as from molecular applications (e.g., studies on 
gene expressions). The negative correlations between 
both BW measurements CABW and IBW with MET 
indicates that animals with more BW or better body 
development are less susceptible to metabolic disorders 
(Frigo et al., 2010). Further BW–disease genetic as-
sociations were studied in lactating cows. Pérez-Cabal 
and Charfeddine (2016) reported positive correlations 
(i.e., antagonistic associations) between BW with sole 
ulcer, white line disease, and overall definitions of claw 
disorders. Frigo et al. (2010) found a slightly positive 
genetic correlation of 0.15 between BW at DIM 10 and 
mastitis using data from 2 experimental dairy herds.

Genetic Parameters for Longitudinal BW

The model evaluation criteria AIC, BIC, and residual 
variances for 4 nonlinear models and Legendre poly-
nomials 1 to 3 orders are compared in Table 8. Based 
on AIC, the Gompertz growth model gave the best fit. 
Residual variances and BIC indicated model superior-
ity for Legendre polynomials of third order. Köhn et 
al. (2007) also suggested modeling of growth curves of 
the Göttingen minipig using third-order polynomials. 
Goldberg and Ravagnolo (2015) compared 5 nonlinear 
models and concluded that the Richards model gave 
best predictions of weights from birth to maturity for 
Angus cows kept in pasture-based production systems. 
Random regression models using cubic Legendre poly-
nomials and cubic regressions were suggested for the 
description of growth curves in Nellore cattle (Nobre 
et al., 2003) and in dairy cattle (Brotherstone et al., 
2007), respectively.

Due to the results from growth curve evaluation, 
time-dependent covariates in genetic studies with RRM 
were modeled using Legendre polynomials of order 3. 
Total, direct genetic, and maternal genetic heritabilities 
for longitudinal BW by age in months are depicted in 
Figure 1. The direct and total heritabilities overlapped, 

Table 7. Posterior means and posterior SD of the Gibbs samples for heritabilities (h2) of health traits, and for genetic (rg) and phenotypic (rp) 
correlations between disease traits and calf birth weight (CABW) and BW at first insemination (IBW)

Disease trait1

CABW with health traits

 

IBW with health traits

h2 SD rg SD rp h2 SD rg SD rp

GDS 0.26 0.01 0.22 0.04 0.04  0.26 0.01 0.03 0.09 0.05
DIA 0.13 0.02 0.09 0.08 0.04  0.15 0.02 −0.03 0.14 −0.02
RD 0.03 0.01 0.22 0.18 0.02  0.07 0.02 −0.24 0.30 0.01
MAST 0.13 0.01 0.15 0.05 0.02  0.13 0.01 0.02 0.10 0.07
CL 0.13 0.01 0.21 0.05 0.05  0.14 0.01 0.11 0.09 0.09
FF 0.12 0.013 0.24 0.05 0.04  0.13 0.012 0.11 0.10 0.04
MET 0.12 0.033 −0.09 0.11 0.00  0.14 0.031 −0.04 0.17 0.06

1GDS = general disease status; DIA = diarrhea; RD = respiratory disease; MAST = mastitis; CL = claw disorders; FF = female fertility dis-
orders; MET = metabolic disorders.

Table 8. Akaike information criterion (AIC), Bayesian information 
criterion (BIC), and residual variances for longitudinal BW analyses 
(values in bold represent the lowest value for the respective evaluation 
criterion)

Model AIC BIC Residual

Logistic 320,503 320,536 1,157
Gompertz 316,269 316,302 1,015
Brody 316,968 317,001 1,037
Richards 338,014 338,056 1,843
Legendre polynomial 1 317,531 317,537 1,055
Legendre polynomial 2 316,942 316,949 1,036
Legendre polynomial 3 316,294 316,300 1,015
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apart from small differences early in life (0 to 4 mo). 
Identical estimates from 5 to 24 mo were due to the ex-
tremely small covariance between direct and maternal 
genetic effects. The direct and total heritabilities were 
larger than 0.49 at birth, decreased to 0.26 at age mo 1, 
and increased gradually to 0.57 at age mo 4. A gradu-
ally increase of direct and total heritabilities was ob-
served between mo 5 and 24, with the largest estimate 
of 0.83 at the end of the continuous age scale. However, 
extremely large genetic variances and heritabilities at 
the peripheries of environmental or time scales were 
observed in previous RRM applications (Berry et al., 
2003b; Strabel et al., 2005), especially in small data 
sets. Direct BW heritabilities from this study are in 
agreement with estimates from RRM considering a 
time span from birth to the age of 33 mo (Brotherstone 
et al., 2007). Only during the period between 20 to 24 
mo, direct heritabilities from our study were signifi-
cantly larger.

As expected, the maternal heritability for BW gradu-
ally decreased from birth to an age of 5 mo, and was 
zero afterward (Nobre et al., 2003). The direct, mater-
nal, and total heritabilities for birth weight estimated 
from RRM in the present study were 0.58, 0.16, and 
0.49, respectively. The direct heritability was slightly 
larger than the corresponding heritability estimated 
from the single-trait animal model for CABW, but the 
maternal heritability was slightly lower. Insemination 

age for the heifers ranged from 11 to 26 mo, and the 
direct and total heritabilities during this period were 
always larger than 0.37. Those heritabilities were larger 
than the direct and maternal heritabilities for IBW 
from the single-trait animal model.

Genetic correlations between BW at birth with BW 
from remaining age points gradually decreased from 
1.00 to 0.12 at an age of 4 mo (Figure 2). Large genetic 
correlations for neighboring test-days, but a substantial 
decrease for test-days in greater distance, is well known 
for longitudinal production records within lactation 
(e.g., Strabel and Misztal, 1999). The physiological 
background might be that different genes are “switched 
on or off” with aging or with DIM. The genetic cor-
relation between BW at birth and at 24 mo was even 
negative (−0.20). Hence, BW from age points in great 
distance are genetically different traits. Accordingly, 
Brotherstone et al. (2007) reported decreasing genetic 
correlations with an increasing interval between birth 
and weight date. Genetic correlations between BW 
from different time points were larger in the study by 
Coffey et al. (2006). They found a genetic correlation 
of 0.79 between birth weight and weaning weight in a 
Holstein-Friesian dairy cattle population. The respec-
tive genetic correlation in our study, considering a 
similar time period, was only 0.20.

Genetic correlations between direct and maternal ge-
netic effects at the same age were negative throughout 

Figure 1. Posterior means of the Gibbs samples for direct (h2d), maternal (h2m), and total heritabilities (h2t) for longitudinal BW. Posterior 
SD for direct heritabilities ranged from 0.02 to 0.06, for maternal heritabilities from 0.00 to 0.04, and for total heritabilities from 0.01 to 0.04.
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from birth to the age of 10 mo, and from the age of 20 
to 24 mo. The correlation coefficient of −0.39 at d 0 
was exactly the same value as estimated with an animal 
model with maternal genetic effects (model 1, results 
in Table 4). The negative genetic correlations between 
direct and maternal effects for birth weight were also 
found in other dairy cattle populations (Hansen et al., 
2004; Johanson et al., 2011), as well as in beef cattle 
(Chud et al., 2014). Boujenane et al. (2015) also stated 
that those correlations were negative for birth weight, 
and for BW at 90 and 135 d in D’man sheep. The direct 
genetic effect was slightly positive correlated with the 
maternal genetic effect from mo 11 to 19. In contrast, 
a negative correlation of −0.24 was found for IBW and 
model [1] applications. However, for BW later in life, 
the maternal genetic component was almost zero, im-
plying that minor changes in covariances can have a 
major effect on correlation coefficients.

CONCLUSIONS

As found in beef cattle studies, BW recorded from 
Holstein dairy calves (trait: CABW) and heifers (trait: 
IBW) had a direct genetic and a maternal genetic com-
ponent. The direct heritability for CABW estimated 
from single-trait animal models with maternal genetic 

effects was 0.47, and 0.20 for IBW. Comparable direct 
heritabilities were obtained from RRM for a longitudi-
nal BW data structure. In addition, an antagonistic re-
lationship between direct genetic and maternal genetic 
effects around birth date was identified, with −0.39 for 
CABW from single trait as well as repeated measure-
ment analyses. The maternal genetic heritability was 
0.19 for CABW, but close to zero later in life, espe-
cially in RRM applications. Genetic and phenotypic 
correlations between CABW or IBW with either cow 
test-day traits and cow health traits, or with female 
fertility traits from heifers, were close to zero. However, 
apart from MET, a general tendency was observed for 
increasing disease susceptibilities in early lactation for 
heavier calves.
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Abstract 

Background: Body weight (BW) at different ages are of increasing importance in dairy cattle breeding schemes, 

because of their strong correlation with energy efficiency traits, and their impact on cow health, longevity and farm 

economy. In total, 15,921 dairy cattle from 56 large-scale test-herds with BW records were genotyped for 45,613 

single nucleotide polymorphisms (SNPs). This dataset was used for genome-wide association studies (GWAS), in 

order to localize potential candidate genes for direct and maternal genetic effects on BW recorded at birth (BW0), at 

2 to 3 months of age (BW23), and at 13 to 14 months of age (BW1314).

Results: The first 20 principal components (PC) of the genomic relationship matrix ( G ) grouped the genotyped cattle 

into three clusters. In the statistical models used for GWAS, correction for population structure was done by including 

polygenic effects with various genetic similarity matrices, such as the pedigree-based relationship matrix ( A ), the G

-matrix, the reduced G-matrix LOCO (i.e. exclusion of the chromosome on which the candidate SNP is located), and 

LOCO plus chromosome-wide PC. Inflation factors for direct genetic effects using A and LOCO were larger than 1.17. 

For G and LOCO plus chromosome-wide PC, inflation factors were very close to 1.0. According to Bonferroni correc-

tion, ten, two and seven significant SNPs were detected for the direct genetic effect on BW0, BW23, and BW1314, 

respectively. Seventy-six candidate genes contributed to direct genetic effects on BW with four involved in growth 

and developmental processes: FGF6, FGF23, TNNT3, and OMD. For maternal genetic effects on BW0, only three signifi-

cant SNPs (according to Bonferroni correction), and four potential candidate genes, were identified. The most signifi-

cant SNP on chromosome 19 explained only 0.14% of the maternal de-regressed proof variance for BW0.

Conclusions: For correction of population structure in GWAS, we suggest a statistical model that considers LOCO 

plus chromosome-wide PC. Regarding direct genetic effects, several SNPs had a significant effect on BW at different 

ages, and only two SNPs on chromosome 5 had a significant effect on all three BW traits. Thus, different potential 

candidate genes regulate BW at different ages. Maternal genetic effects followed an infinitesimal model.
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(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Some countries with pasture-based production systems 

consider dairy cow live weight in overall breeding goals or 

in selection indices [1, 2]. Positive genetic correlations of 

body weight (BW) with milk yield and protein yield have 

been reported [3–5]. Feed efficiency reflects the ability of 

dairy cows to produce more milk for a given feed con-

sumption [6]. Different traits are defined to measure 

feed efficiency, e.g. the ratio of milk to body weight, 

feed intake, residual feed intake [7], and feed saved [8]. 

Most of these definitions imply that BW or changes in 

BW are taken into account. Moreover, dry matter intake 

and energy balances are favourably correlated with BW 

[3]. In addition, BW influences dairy cow fertility and 

health. For example, survival of new-born calves and 

calving ease are moderately correlated with birth weight 
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of calves and BW of cows [9]. Berry et  al. [5] reported 

that heavier cows had a shorter interval between calv-

ing and first service, but conception rates decreased with 

increasing BW. In contrast, in heifers, increasing BW was 

associated with improved non-return rates after 56 and 

90  days [4]. Hence, we hypothesize that different genes 

are involved in BW at different ages, as indicated in quan-

titative genetic studies via random regression models [4].

On the genomic scale, GWAS for BW or BW indicators 

have considered only one time point per animal [10–12]. 

Zhang et al. [12] analysed longitudinal BW records in cat-

tle at 6, 12, 18 and 24 months of age, but BW was predicted 

from measurements for heart girth and hip height. The 

aforementioned publications focussed only on the esti-

mation of direct additive genetic effects on BW. However, 

especially in early life, BW should be separated into direct 

genetic and maternal genetic effects [13]. Dams with high 

breeding values for maternal ability provide an improved 

nourishing environment, with an associated positive 

impact on survival rates and birth weight in offspring. For 

a deeper understanding of the mechanisms between direct 

and maternal effects, it is imperative to detect the func-

tional segments of the genome that contribute to maternal 

genetic effects on BW, and to study direct-maternal asso-

ciations on the genomic scale. To date, only a few studies 

[14–16] have addressed such topics.

The power of GWAS contributes to the detection of 

significant markers, and, furthermore, has an impact 

on the identification of associated potential candidate 

genes. Linkage disequilibrium (LD) is one of the param-

eters that affects the power of GWAS. The use of a dense 

50 K single nucleotide polymorphism (SNP) chip implies 

that it contains markers that are closely located to the 

functional mutation and contribute to acceptable LD 

between markers and causal loci [17]. Body weight is a 

trait with a moderate to high pedigree-based heritability 

[4, 5, 18], which is favourable for the detection of QTL. 

Furthermore, currently, the trend is to use large numbers 

of female observations for the estimation of SNP effects, 

which contributes to an increasing number of phenotypic 

records for GWAS [19], with a positive impact on the 

statistical power for the detection of SNP effects. Non-

causative rare alleles with high frequencies in large half-

sib daughter groups might contribute to false positive 

signals in GWAS. Usually, the first principal components 

and similarity matrices can be considered in statistical 

modelling to correct for population stratification [20]. In 

dairy cattle breeding, deep pedigree information is avail-

able, which enables the use of mixed models for GWAS 

with random polygenic effects based on pedigree [21] or 

on genomic relationship matrices [22].

Consequently, the objectives of our study were: (1) 

to perform GWAS using phenotypes and de-regressed 

proofs for direct genetic and maternal genetic effects on 

BW at different ages; (2) to correct for population stratifi-

cation in GWAS when using pedigree-based or genomic 

relationship matrices, or a combination of relationship 

matrices with principal components; (3) to infer (co)vari-

ance components for/between direct genetic and mater-

nal genetic effects on different scales (pedigree-based 

genetic parameters, whole genome, and single chromo-

somes); and (4) to identify associated potential candidate 

genes for direct genetic and maternal genetic effects.

Methods
Phenotype data

Body weight records at birth (BW0), 2  to  3  months of 

age (BW23), and 13 to 14 months of age (BW1314) were 

available for 250,173, 42,632 and 54,768 female animals, 

respectively. The number of animals with phenotypic 

records at all three age intervals was 15,234. Animals 

were born between 2004 and 2016, and kept in 56 large-

scale dairy cattle test-herds, which were located in the 

German federal states of Mecklenburg-Westpommer-

ania and Berlin-Brandenburg. For the 250,173 calves, 

the gestation length of their dams ranged from 265 to 

295  days (average: 279.4  days). For BW0, we discarded 

birth weights above 60 kg or below 20 kg. For the detec-

tion of outlier data for BW23 and BW1314, we followed 

the approach by Yin et al. [4] and calculated studentized 

residuals and corresponding Bonferroni p values (using 

the outlier test function in the R package “car” [23]). 

Records were excluded from further analyses when p val-

ues were lower than 0.05 or higher than 0.95. The pedi-

gree file included 411,943 animals, born between 1948 

and 2016.

Genotype data

Among the Holstein cattle with BW records, 13,827 

calves with BW0 records, 4246 calves with BW23 

records, and 7920 heifers with BW1314 records, were 

genotyped. Genotyping was performed using the Illu-

mina Bovine 50 K SNP BeadChip V2 (4120 animals), or 

the Illumina Bovine Eurogenomics 10 K low-density chip 

(11,801 animals). Animals with low-density genotypes 

were imputed to the 50 K chip (according to the routine 

procedure for official national genetic evaluations [24]). 

Finally, for all the genotyped cattle, 45,613 SNPs were 

available that had a call rate higher than 95%, a minor 

allele frequency higher than 0.01, and did not deviate sig-

nificantly from Hardy–Weinberg equilibrium (p > 0.001). 

Only SNPs located on Bos taurus autosomes (BTA) were 

considered. Furthermore, we discarded animals with 

more than 95% identical genotypes. Quality control of 

SNP data was done by using the GenABEL package in R 

[25]. In order to verify the impact of LD between SNPs 
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on the inflation factors in GWAS, we applied the indep-

pairwise option in PLINK [26]. We eliminated one SNP 

from pairs of SNPs that had a LD coefficient (r2) higher 

than 0.25 [27]. The remaining SNPs after this elimination 

procedure were defined as pruned SNPs. The numbers 

of animals, numbers of the full SNPs, and numbers of 

pruned SNPs, are in Table 1.

Population stratification

The genomic relationship matrix G was constructed as 

in [28] based on the full SNP dataset, and then used for 

principal component analysis, in order to visualise pos-

sible population stratification for the 15,921 genotyped 

animals. The software package GCTA [29] generated the 

first 20 principal components (PC). Then, k-means clus-

tering was applied by including the first 10 PC, because 

the remaining 10 PC were not informative and over-

loaded k-means clustering.

Statistical models

Pedigree‑based (co)variance components and breeding 

values

A multiple-trait animal model was defined, in order to infer 

the genetic components and to estimate breeding values for 

direct genetic and maternal genetic effects. In this regard, 

we applied restricted maximum likelihood (REML) via 

AIREMLf90 from the BLUPF90 software package [30]. The 

statistical Model 1 for the three BW traits (BW0, BW23, 

BW1314) in matrix notation was:

where y is a vector of phenotypes for BW0, BW23, and 

BW1314 from 250,173, 42,632 and 54,768 female ani-

mals, respectively; b is a vector of fixed effects, including 

herd, birth year, birth month, and the covariate (linear 

regression) gestation length for BW0, and age (in days) 

of the calves/heifers for BW23 and BW1314; u is a vec-

tor of direct additive-genetic effects, with u ∼ N
(

0,Aσ
2
u

)

 , 

where A is the pedigree-based relationship matrix and 

σ
2
u is the direct-genetic variance; m is a vector of random 

maternal-genetic effects, with m ∼ N
(

0,Aσ
2
m

)

 , where σ2m 

is the maternal-genetic variance; pm is a vector of ran-

dom maternal permanent environmental effects; e is a 

vector of random residual effects; and X , Z , W , and S are 

incidence matrices for b , u , m , and pm , respectively.

Estimated breeding values from Model 1 for direct 

genetic and maternal genetic effects were used to cal-

culate de-regressed proofs (DRP) for the direct genetic 

(dDRP) and for the maternal genetic component (mDRP), 

respectively, according to Garrick et al. [31]. Only the ani-

mals with a DRP weight greater than 0.2 were considered 

in ongoing GWAS (see Model 3). The number of DRP 

records for direct genetic and maternal genetic effects is 

in Table 1. Since animal models generate breeding values 

for all the animals from the pedigree database, all these ani-

mals, including the phenotyped and non-phenotyped ani-

mals, were considered for DRP calculations, which means 

that an increased number of genotyped animals for DRP is 

available.

Genomic heritabilities and correlations

Variance components and correlations for the three BW 

traits explained by SNPs on all the chromosomes were esti-

mated via genomic REML (GREML), as implemented in 

GCTA [29]. Model 2 was defined as follows:

where, y is a vector of phenotypes for BW0, BW23, and 

BW1314, and b is a vector of fixed effects including the 

same effects as specified in Model 1. The variance for 

additive genetic effects u was equal to Gσ
2
u , with G repre-

senting the genomic relationship, and σ2u representing the 

variance explained by SNPs from the full dataset. For the 

estimation of covariance components in bivariate mod-

els, GCTA requires that the fixed effects are the same for 

both traits. Hence, we ran bivariate models for pairwise 

combinations of pre-corrected phenotypes for BW0, 

BW23, and BW1314. The pre-corrected phenotype for a 

specific genotyped animal was the sum of the estimated 

direct breeding value, the maternal breeding value, the 

maternal environmental effect, and the residual (i.e. out-

put from Model 1).

(1)y = Xb + Zu + Wm + Spm + e,

(2)y = Xb + Zu + e,

Table 1 Number of  animals and  SNPs for  the  genome-

wide association studies

BW0: body weight recorded at birth; BW23: body weight recorded at 

2 to 3 months of age; BW1314: body weight recorded at 13 to 14 months of age; 

dDRP: de-regressed proofs for the direct genetic effect; mDRP: de-regressed 

proofs for the maternal genetic effect

a Number of cows with genotypes

b Number of cows with genotypes after quality control

c Number of markers after quality control

d Number of markers after pruning

Trait Dependent 
variable

#animalsa #animalsb #markersc #markersd

BW0 Phen 13,827 13,714 42,468 11,955

dDRP 15,921 14,121 42,465 11,954

mDRP 16,455 16,022 42,540

BW23 Phen 4246 4219 42,388 11,908

dDRP 15,921 8017 42,421 11,933

mDRP 16,455 6803 42,498

BW1314 Phen 7920 7874 42,443 11,943

dDRP 15,921 7874 42,443 11,943

mDRP 16,455 6996 42,503
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Genome‑wide association studies

The software package GCTA [29] was also used to esti-

mate SNP effects via linear mixed models with a random 

polygenic effect. The statistical Model 3 for single marker 

regression analysis was:

where y is a vector of phenotypes, dDRP or mDRP for 

BW0, BW23, and BW1314; b is a vector of fixed effects 

including the same effects as specified in Model 1 for 

phenotypes as dependent variables, but for DRP, b only 

considered the overall mean effect; g is the vector for 

SNP effects; u is a vector of polygenic effects with a vari-

ance–covariance structure of u ∼ N
(

0,Kσ
2
u

)

 , where K is 

the genetic similarity matrix between individuals, and σ2u 

is the polygenic variance; e is a vector of random resid-

ual effects with e ∼ N
(

0, Iσ2e

)

 ; and X , W , and Z are inci-

dence matrices for b , g , and u , respectively. According to 

the Bonferroni correction, the defined GWAS significant 

threshold was 0.05/N, where N refers to the number of 

SNPs. In addition to the Bonferroni correction, a less 

conservative adjusted p value, based on false discovery 

rate (FDR), was calculated for each SNP [32]. The thresh-

old for FDR significance was 0.05.

The genetic similarity matrix K was constructed with 

different information sources. First, we created K based 

on the pedigree relationship matrix A , as generated from 

AIREMLF90. Second, the construction of K was based on 

the genomic relationship matrix G . Due to possible unde-

sired effects of SNP double-counting [33], alternative G

-matrices excluded all SNPs from the chromosome on 

which the candidate SNP is located. This strategy is defined 

as “leave-one-chromosome-out” (LOCO) [34]. Since the 

length of bovine chromosomes is not constant, many SNPs 

on the large chromosomes are excluded. Hence, SNPs 

located on the large chromosomes BTA1 to 11 (these chro-

mosomes contain more than 1500 SNPs) were separated 

into two segments per chromosome. The modified LOCO 

approach (LOCO_SEG40, i.e. the 22 segments from chro-

mosomes 1–11 plus the remaining 18 chromosomes) con-

structed G-matrices using all SNPs, except those from the 

respective chromosome segment (for BTA1 to BTA11), 

or excluding all SNPs from the whole chromosome (for 

BTA12 to BTA30). In addition, chromosomes were sepa-

rated into smaller segments according to the number of 

SNPs with (a) segments including 90–100 SNPs (a total 

of 441 segments = LOCO_SEG441), and (b) segments 

including 47–50 SNPs (a total of 864 segments = LOCO_

SEG864). In order to account for the loss in similarity due 

to the deleted chromosome in LOCO, the first 20 PC were 

included as covariates (LOCO + PC20). However, consider-

ation of 20 PC combined with the LOCO G-matrix implies 

partial overlap of genomic information. Hence, as a further 

(3)y = Xb + Wg + Zu + e,

alternative, we focussed on principal component analyses 

for the G-matrix from each chromosome, and the first 3, 10 

or 20 PC were included as covariates (LOCO + CHR_PC3, 

LOCO + CHR_PC10, and LOCO + CHR_PC20, respec-

tively). All the similarity matrices ( G-matrix, LOCO G

-matrix, and G-matrix from each chromosome) as men-

tioned above were constructed based on the full SNP data-

set. An additional LOCO scenario using the pruned SNPs 

(LOCO_prune) was considered, in order to test the effect 

of LD between SNPs on inflation.

We used the inflation factor ( � ) as evaluation criterion 

for the different approaches, which was calculated based 

on the χ2

i
 statistic for the i-th SNP:

The expected inflation factor of value 1 indicates suf-

ficient correction for population stratification. A value 

above 1.05 indicates inflation in the sample [35], and thus 

that the detected genome-wide associations might be false 

positives.

Chromosome‑wide genomic parameters

Genetic variances for each chromosome were estimated via 

GREML using the full SNP dataset, and applying GCTA 

[29]. The univariate Model 4 was:

where y and b are vectors of phenotypes and fixed 

effects, respectively, as introduced in Model 1; ui is the 

additive genetic effect with variance of Giσ
2
ui

 , where Gi 

is the genomic relationship matrix constructed from 

SNPs located on chromosome i , and σ2ui is the variance 

explained by SNPs on chromosome i ; uall_without_i is the 

additive genetic effect due to all the SNPs except those on 

chromosome i ; e is the residual effect; and X , Z1 , and Z2 

are incidence matrices for b , ui and uall_without_i , respec-

tively. The heritability for each chromosome is equal to 

the ratio of σ2ui divided by the sum including the variance 

components from all SNPs on chromosome i plus the 

variance components from all other SNPs plus the resid-

ual variance.

Gene annotation

The database (version UMD3.1) including gene loca-

tions, start positions and end sites for all bovine genes 

was downloaded from Ensembl [36]. Originally, 24,616 

gene ID entries were available in the database. How-

ever, only the 17,545 genes on BTA1 to 29 with valid 

evidences for gene ontology [37, 38] were considered in 

subsequent analyses. First, SNPs used for GWAS (i.e. the 

full SNP dataset) were mapped to the genes, by applying 

the MAGMA software [39], and considering a window 

�̂ =

Median
(
χ
2
i

)

0.4549
.

(4)y = Xb + Z1ui + Z2uall_without_i + e,
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100 kb upstream and downstream for each gene. In the 

next step, a test statistic for each gene was generated by 

summing − 2log(p values) from a set of SNPs within the 

aforementioned window. This test followed a Chi square 

distribution [39]. Also, the p-value for each of the 17,545 

genes was calculated, and further adjusted according 

to the FDR [32]. Only the genes with a FDR lower than 

5% were considered as significantly associated with one 

of the BW traits. Then, functional classification analyses 

were conducted for the significant candidate genes, based 

on information from the PANTHER database [40].

Results and discussion
Genetic parameters

Direct pedigree-based heritabilities (i.e. using the A

-matrix) for BW traits were moderate to high: 0.46 for 

BW0, 0.37 for BW23, and 0.48 for BW1314 (Table  2). 

Similar heritabilities were reported in previous quantita-

tive genetic studies for BW [5, 18, 41]. Interestingly, the 

maternal genetic component had also a moderate contri-

bution, even for BW1314 recorded later in life. Maternal 

heritabilities of 0.14, 0.11 and 0.13 were found for BW0, 

BW23, and BW1314, respectively. Although the genomic 

relationship matrix ( G ) takes the Mendelian sampling 

term into account, direct genomic heritabilities (Model 

2) i.e. 0.33 for BW0, 0.19 for BW23, and 0.22 for BW1314 

were lower compared to the pedigree-based heritabilities 

estimated with the A-matrix (Model 1). The lower her-

itabilities estimated with the G-matrix could be due to 

incomplete LD between SNPs on the 50 K SNP chip and/

or very different sample sizes used for the estimations. An 

explanation for the overestimated pedigree-based herit-

abilities could be the occurrence of confounding between 

environmental effects and pedigree relationships [42]. 

Direct genetic correlations between the three BW traits 

estimated from genomic relationships (0.51 between 

BW0 and BW23, 0.33 between BW0 and BW1314, 0.47 

between BW23 and BW1314) were slightly higher than 

those based on pedigree information.

Population stratification

The k-means clustering approach (using the first 10 PC) 

created three clusters including 856 cows (cluster 1), 

14,305 cows (cluster 2) and 760 cows (cluster 3). Genetic 

distances between animals based on the two most impor-

tant PC (the first two PC that contribute to genetic vari-

ation) are shown in Fig. 1. Our study included Holstein 

dairy cattle from only two neighbouring German breed-

ing organizations. When tracing back to the ancestors of 

the calves and heifers from the three clusters, we found 

that animals in clusters 1, 2 and 3 were daughters from 

2, 890, and 11 sires, respectively. One specific influential 

sire (Gunnar) in cluster 1 had 855 daughters, whereas 

another sire (Raik) in cluster 1 had only one daugh-

ter in cluster 1 and one daughter in cluster 2 (i.e. the 

only black dot that overlaps with the red dot in Fig.  1). 

The 760 calves and heifers in cluster 3 were daughters 

from 11 different sires. One specific sire (Guarini) had 

750 daughters in cluster 3, and the remaining 10 sires 

only had one daughter each. The maternal grandsire of 

the nine daughters was Guarini. Sires in cluster 2 origi-

nated from various countries, but more than 75% calves 

and heifers had German and Dutch sires. The remaining 

25% females were daughters of sires from 12 other coun-

tries. The average number of daughters per sire in clus-

ter 2 was quite small (on average only 16.09). In contrast, 

the calves and heifers allocated to clusters 1 and 2 were 

mainly daughters from only two German sires. Conse-

quently, as expected from the pedigree structure, genetic 

distances between animals within clusters 1 and 2 were 

short. Hence, the stratification that was observed in the 

genotyped calves and heifers was mainly due to the size 

and structure of the half-sib groups. The effect of breed-

ing organization (geographical location) on population 

Table 2 Genetic parameters for  body weight recorded at  different ages based on  pedigree and  genomic relationship 

matrices

Standard errors in parentheses

BW0: body weight recorded at birth; BW23: body weight recorded at 2 to 3 month of age; BW1314: body weight recorded at 13 to 14 months of age

Relationship matrix Trait Heritability Genetic correlation for direct 
effects

Direct Maternal Total BW23 BW1314

Pedigree BW0 0.46 (0.01) 0.14 (0.01) 0.40 (0.01) 0.46 (0.03) 0.39 (0.03)

BW23 0.37 (0.01) 0.11 (0.01) 0.23 (0.01) 0.46 (0.04)

BW1314 0.48 (0.02) 0.13 (0.01) 0.34 (0.01)

Genomic BW0 0.33 (0.01) 0.51 (0.05) 0.33 (0.04)

BW23 0.19 (0.02) 0.47 (0.07)

BW1314 0.22 (0.02)



Page 6 of 14Yin and König  Genet Sel Evol            (2019) 51:4 

stratification was of minor importance, because geno-

typed animals in all clusters represented both breeding 

organisations quite equally.

PC1 and PC2 only explained 1.53 and 1.13% of the 

total genetic variation, respectively. Consequently, we 

observed several overlaps between the three clusters, 

especially for animals allocated to clusters 2 and 3. In 

other studies, population stratification occurred when 

various breeds were pooled in the same GWAS [43], or 

because of obvious differences in breeding and selection 

strategies [44]. In addition, family structure, especially 

in large families with many closely related paternal half-

sibs, generated false positive SNP effects. In this regard, 

in a preliminary GWAS without considering any poly-

genic effects, we detected a large number of more than 

2000 significant SNPs (after Bonferroni correction), and 

the inflation factor was equal to 6.04.

GWAS for body weights

Direct genetic effects

The number of significant SNPs that contributed to 

direct genetic effects for the three BW traits (results from 

Model 3) are listed in Table 3. Evaluation criteria for all 

similarity matrices are provided for BW0 only. The gen-

eral trend in terms of number of significant SNPs and 

inflation factors for BW23 and BW1314 was in agreement 

with corresponding similarity matrices for BW0. Inflation 

factors were largest when using LOCO for the construc-

tion of the genetic similarity matrix. This was the case for 

both types of dependent variables, i.e. phenotypes (infla-

tion factor = 2.22) and dDRP (inflation factor = 2.19). 

The number of significant SNPs and inflation factors 

decreased slightly when SNPs on BTA1 to BTA11 were 

partitioned into two segments (LOCO_SEG40). A further 

decrease in inflation factor was observed when the num-

ber of segments (LOCO_SEG441 and LOCO_SEG864) 

increased, associated with a reduction of significant 

SNPs. LOCO plus the first 20 PC of the overall G-matrix 

as covariates identified a quite fairly large number of 

73 significant SNPs, and contributed to large inflation 

factors (1.90 for phenotypes and 1.87 for dDRP). The 

inclusion of 20 PC of chromosome-wide G-matrices as 

fixed regressions in the model (LOCO + CHR_PC20) 

decreased the number of significant SNPs, and the infla-

tion factor was close to 1. Inflation factors and number 

of detected significant SNPs were substantially larger for 

A (phenotype: 1213 SNPs according to FDR, λ = 1.92) 

compared to G (phenotype: 7 SNPs according to FDR, 

λ = 0.96). Such obvious differences were not expected, 

because G is the realized relationship matrix and A is 

the expected relationship matrix. Models with G and 

LOCO + CHR_PC produced inflation factors that were 

equal to 1.0 or slightly lower than 1.0. Generally, a near 

identical number of significant SNPs was found in the G

-matrix scenario and LOCO + CHR_PC scenarios. The 

number of significant SNPs was larger for BW0 than for 

BW1314 or BW23. Pruning the SNPs according to low 

LD decreased inflation factors slightly. This was the case 

for all three BW traits, regardless of whether phenotypes 

or dDRP were used as dependent variables. For example, 

when the phenotype of BW0 was the dependent variable, 

inflation factors decreased from 2.22 (LOCO) to 1.97 

(LOCO_prune). The decrease in inflation factor was even 

smaller for BW23 and BW1314, which indicated that 

high LD between SNPs was not the main reason for the 

large number of false positive SNPs in our dataset.

Based on our results, it is imperative to correct for 

population stratification in the German Holstein popula-

tion via G or G-similarities (i.e. the LOCO_CHR_PC-sce-

narios). GWAS that include multiple breeds and ignore 

population structure, increased spurious LD, which led 

to an inflation of false positive signals [43, 45, 46]. There-

fore, PC and genetic relationships [15] were included in 

the GWAS to prevent spurious associations. Yang et  al. 

[34] compared linear mixed models by including or not 

candidate markers and recommended exclusion of can-

didate markers from the G-matrix because this improved 

statistical power. However, for the German Holstein pop-

ulation with many closely related animals, LOCO over-

estimated SNP effects, which indicated that the G-matrix 

from LOCO cannot capture all of the family relatedness. 

Correlations between the off-diagonal elements from the 

“full” G-matrix and the LOCO G-matrix ranged from 

0.98 to 1.0, but the LOCO G-matrix slightly underesti-

mated the genomic relationships between animals. This 

underestimation was identified because the regression 

coefficients were always smaller than 1.0 when regressing 

relationships from the “full G ” on relationships from the 

“LOCO-G”.

Fig. 1 Plot of principal components (PC) 1 and 2 for 15,921 

genotyped cows
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Most of the significant SNPs for direct genetic effects 

on the three BW traits were located on BTA5 (Table 4). 

Manhattan and Q–Q plots for direct genetic effects 

for the three BW traits based on different similarity 

matrices are presented in Additional file  1. For dDRP 

of BW23, only two SNPs on BTA5 were significant. 

Both SNPs were detected using the G-matrix. SNP 

Hapmap60480-ss46526970 was also significant when 

applying LOCO + CHR_PC. Only two SNPs (Hap-

map60480-ss46526970 and Hapmap57466-rs29018274) 

on BTA5 significantly contributed to the three BW 

traits. SNP Hapmap60480-ss46526970 was significant, 

regardless of the approach applied. However, SNP Hap-

map57466-rs29018274 was significant only when the 

G-matrix was considered. The pleiotropic SNP (Hap-

map60480-ss46526970) on BTA5, and the significant 

SNP on BTA18 (ARS-BFGL-NGS-109285), also contrib-

uted significantly to BW changes in genotyped Holstein 

dairy cows in the US [47]. On BTA18, SNP ARS-BFGL-

NGS-109285 was significantly associated with body 

shape, body size, dystocia, longevity, lifetime economic 

merit [48], and calving difficulty [15]. The four signifi-

cant SNPs, i.e. ARS-BFGL-NGS-39379 for BW0 and 

BW1314, ARS-BFGL-NGS-5139 for BW0, ARS-BFGL-

NGS-107035 for BW0, and ARS-BFGL-NGS-109317 for 

BW0, had a significant impact on BW [49], live weight 

[50], carcass retail beef yield [43], and hot carcass weight 

[51] in beef and crossbred beef cattle.

Maternal genetic effects

For maternal genetic effects, only three significant SNPs 

according to the FDR threshold were identified when 

using LOCO plus chromosome-wide PC (Table 5). Two 

SNPs located on BTA4 and one SNP on BTA19 influ-

enced BW0 significantly (Table  6). Regarding maternal 

genetic effects at later age points for BW23 and BW1314, 

no significant SNP was detected. The Manhattan plots for 

maternal genetic effects on BW0 are in Fig. 2. In a study 

conducted in crossbred beef cattle [51], the significant 

SNP ARS-BFGL-NGS-61198 on BTA4 explained 2.67% 

of the phenotypic variation for lean rate. The significant 

SNP Hapmap53086-rs29025958 on BTA19 was identi-

fied as a marker for a QTL that controls fat percentage 

[52]. According to the infinitesimal model for maternal 

effects on calving performance [15], many genes with 

small effects influenced the maternal effect on BW. In this 

regard, the most significant SNP on BTA 19 explained 

only 0.14% of the mDRP variance for BW0.

Correlations between SNP effects (using DRP and 

the G-matrix in Model 3) for direct genetic and mater-

nal genetic effects were − 0.15 for BW0, − 0.27 for 

BW23, and − 0.62 for BW1314. Antagonistic correla-

tions between SNP effects for direct genetic and mater-

nal genetic effects for each chromosome were identified 

for all three BW traits, except for BW0 (0.01) on BTA16 

(Fig.  3). In agreement with correlations that take the 

SNPs on all the chromosomes into account, and in agree-

ment with pedigree-based correlations, antagonistic 

Table 3 Number of  significant SNPs influencing direct 

genetic effects and  inflation factor for  body weight 

recorded at different ages

FDR: false discovery rate; Bonferroni: Bonferroni correction; λ: inflation 

factor; BW0: body weight recorded at birth; BW23: body weight recorded at 

2 to 3 month of age; BW1314: body weight recorded at 13 to 14 months of age; 

dDRP: de-regressed proofs for the direct genetic effect; mDRP: de-regressed 

proofs for the maternal genetic effect; LOCO_pruned: LOCO based on pruned 

SNPs

a Number of significant SNPs according to false discovery rate

b Number of significant SNPs according to Bonferroni-correction

Trait Dependent 
variable

Polygenic effect FDRa Bonferronib λ

BW0 Phen A 1213 64 1.92

G 7 3 0.96

LOCO 2268 125 2.22

LOCO_pruned 394 43 1.97

LOCO_SEG40 1811 103 2.06

LOCO_SEG441 80 17 1.29

LOCO_SEG864 41 12 1.18

LOCO + PC20 1132 73 1.90

LOCO + CHR_PC20 16 7 0.93

dDRP A 1463 104 1.96

G 15 6 0.96

LOCO 2212 163 2.19

LOCO_pruned 414 54 1.91

LOCO_SEG40 1802 143 2.07

LOCO_SEG441 103 23 1.28

LOCO_SEG864 57 15 1.17

LOCO + PC20 1180 108 1.87

LOCO + CHR_PC20 13 8 0.90

BW23 Phen A 11 0 1.17

G 0 0 0.99

LOCO + CHR_PC20 0 0 0.66

LOCO + CHR_PC10 0 0 0.93

dDRP A 22 5 1.33

G 3 2 1.00

LOCO + CHR_PC20 0 0 0.70

LOCO + CHR_PC10 1 1 0.96

BW1314 Phen A 47 14 1.46

G 5 3 0.97

LOCO + CHR_PC20 2 2 0.72

LOCO + CHR_PC10 7 4 0.98

dDRP A 50 17 1.45

G 7 6 0.97

LOCO + CHR_PC20 3 3 0.72

LOCO + CHR_PC10 12 6 0.97
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relationships between direct genetic and maternal genetic 

effects were most obvious for BW1314. If we focus on the 

functional region on BTA5 (i.e. between 105,445,909 and 

107,612,671  bp), the direct-maternal correlations based 

on the effects of 46 SNPs were equal to − 0.04 for BW0, 

0.06 for BW23, and − 0.87 for BW1314.

Genomic heritability for each chromosome

Genomic heritabilities for the three BW traits across the 

29 bovine autosomes (results from Model 4) are in Fig. 4. 

For BW0, genomic heritability was highest (0.03) when 

the SNPs on BTA5 were considered and decreased to 

0.001 when those on BTA26 were considered. BTA5 and 

BTA26 explained 9.92 and 0.31% of the total genomic 

variance for BW0, respectively. Genomic heritabili-

ties higher than 0.015 were estimated for BTA2, 4, 5, 7, 

11, and 25. When comparing chromosomal genomic 

variances with GWAS results for BW0 (see Additional 

file 1a and c), the proportion of explained genomic vari-

ance increased as the number of significant SNPs per 

chromosome increased. For BW23, genomic heritabili-

ties were lower than 0.001 for BTA2, 15, and 28, higher 

than 0.015 for BTA3, 9, 19 and 21, but significant SNPs 

were detected only on BTA5 (see Additional file 1e). For 

BW1314, the highest genomic heritability (0.02) was 

found for BTA7, but significant SNPs were detected on 

BTA3, 5, 8, 16, and 18 (see Additional file 1g), for which 

genomic heritabilities were higher than 0.012 for BTA3, 

5, 8, and 18 and only 0.007 for BTA16.

Heterogeneous chromosomal contributions were also 

reported for BW in Korean beef cattle [53]. Consistent 

with the latter study, we found variations in chromo-

some-wise BW variances for the same chromosomes 

at different ages. Hence, such changes in genomic 

Table 4 Significant SNPs according to  Bonferroni correction for  direct genetic effects on  body weight recorded 

at different ages

BW0: body weight recorded at birth; BW23: body weight recorded at 2 to 3 month of age; BW1314: body weight recorded at 13 to 14 months of age

The indicated significant SNPs are from runs that consider the following similarity matrices: athe genomic relationship matrix G , bLOCO + CHR_PC20 and 
cLOCO + CHR_PC10

SNP Chr Position Ref allele Effect BW0 BW23 BW1314

Phen dDRP Phen dDRP Phen dDRP

INRA-658 3 29627982 A − Xc

BTB-01695573 4 10794285 C + Xb Xb

ARS-BFGL-NGS-3933 5 105695909 G − Xa

Hapmap47397-BTA-74925 5 105744830 A − Xab Xab Xac

Hapmap60480-ss46526970 5 105870613 C − Xab Xab Xac Xac Xac

ARS-BFGL-NGS-39379 5 106269362 G − Xab Xab Xc Xac

ARS-BFGL-NGS-10732 5 106780606 G − Xac Xac

Hapmap57466-rs29018274 5 107362671 A + Xa Xa Xa

ARS-BFGL-NGS-5139 7 92474466 A + Xb

ARS-BFGL-NGS-107035 7 93007435 A + Xb Xab

ARS-BFGL-NGS-109285 18 57589121 A + Xb Xac Xac

ARS-BFGL-NGS-109317 29 49906123 A + Xb

ARS-BFGL-NGS-40378 29 50296573 A + Xb Xb

Table 5 Number of  significant SNPs influencing maternal 

genetic effects and  inflation factor for  body weight 

recorded at different ages

FDR: false discovery rate; Bonferroni: Bonferroni correction; λ: inflation 

factor; BW0: body weight recorded at birth; BW23: body weight recorded at 

2 to 3 months of age; BW1314: body weight recorded at 13 to 14 months of age; 

dDRP: de-regressed proofs for the direct genetic effect; mDRP: de-regressed 

proofs for the maternal genetic effect

a Number of significant SNPs according to false discovery rate

b Number of significant SNPs according to Bonferroni-correction

Trait Dependent 
variable

Polygenic effect FDRa Bonferronib λ

BW0 mDRP A 26 6 1.12

G 0 0 0.99

LOCO + CHR_PC20 0 0 0.64

LOCO + CHR_PC3 3 0 1.00

BW23 mDRP A 0 0 1.04

G 0 0 0.99

LOCO + CHR_PC20 0 0 0.59

LOCO + CHR_PC3 0 0 0.91

BW1314 mDRP A 0 0 1.08

G 0 0 1.00

LOCO + CHR_PC20 0 0 0.56

LOCO + CHR_PC3 0 0 0.91
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variances indicate that the genetic mechanisms under-

lying BW differ with age, i.e. that different genes are 

“switched on or off” during the growth period. We have 

identified some chromosomes that explain more than 

0.015% of the total genomic variance, although no sig-

nificant SNP was detected (BTA9 for BW23 and BTA7 

for BW1314), which indicates polygenic contribution to 

BW on these chromosomes.

In contrast to [54], we found weak negative covari-

ances between chromosome-wise genomic effects 

in our data, because the proportions of the sum of 

chromosome-wise variances to total genomic vari-

ances reached 100.81% for BW0, 106.56% for BW23, 

and 101.41% for BW1314. Linear associations between 

chromosome length and chromosomal genomic vari-

ances were weak for BW0 and BW1314, with  R2 val-

ues of 0.20 and 0.21, respectively, and null for BW23 

 (R2 = 0.02). Weak associations between chromosome 

length and chromosomal genomic variances indicate 

that the QTL for BW are not evenly distributed across 

the genome [54].

Gene annotation

Direct genetic effect

The identified potential candidate genes that significantly 

influence direct genetic effects on BW are in Additional 

file  2. These candidate genes are located on 12 chro-

mosomes: BTA3, 4, 5, 7, 8, 11, 13, 18, 19, 23, 25 and 29, 

Table 6 Significant SNPs according to  false discover rate for  maternal-genetic effects on  body weight recorded 

at different ages

BW0: body weight recorded at birth; BW23: body weight recorded at 2 to 3 month of age; BW1314: body weight recorded at 13 to 14 months of age

The indicated significant SNPs are from the run that consider the similarity matrix: LOCO + CHR_PC3

SNP Chr Position Ref. allele Effect BW0 mDRP BW23 mDRP BW1314 mDRP

ARS-BFGL-NGS-61198 4 112474006 A + X

ARS-BFGL-NGS-107181 4 114464406 A + X

Hapmap53086-rs29025958 19 37626478 G + X

Fig. 2 Manhattan plot from GWAS for maternal genetic effects on birth weight. G : Genomic relationship matrix; LOCO + CHR_PC3: 

leave-one-chromosome-out plus 3 principal components based on the chromosomal genomic relationship matrix. The red line is the significance 

threshold line for the Bonferroni correction of 5%, and the green dots represent significant SNPs according to a false discovery rate of 5%
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which BTA5 and BTA18 carrying more than ten. Over-

all, for the three BW traits, 76 potential candidate genes 

had adjusted p values lower than 0.05 (according to FDR), 

with 51 significant genes for BW0, 12 for BW23, and 38 

for BW1314; these figures reflect the smaller number of 

significant SNPs detected in the GWAS for BW at later 

ages. Six genes contributed significantly to the three 

BW traits and 12 more contributed to both BW0 and 

BW1314, but only one more gene, i.e. fast skeletal mus-

cle troponin T (TNNT3) had a significant effect on both 

BW0 and BW23. Low to moderate genetic correlations 

between BW traits at different age points, but with some 

overlapping between significant genes, could indicate 

pleiotropic effects of the candidate genes.

Some of the potential candidate genes on BTA18 for 

BW traits are known to be involved in calving perfor-

mance and conformation traits. For example, Abo-Ismail 

et al. [16] reported that cytosolic thiouridylase subunit 1 

(CTU1) and ENSBTAG00000037537 are highly associ-

ated with body conformation traits and kallikrein related 

peptidase 4 (KLK4), CTU1 and ENSBTAG00000004608 

contributes to calving ease. Purfield et  al. [15] showed 

that CTU1 and ENSBTAG00000037537 contain one 

and two significant missense variants, respectively, that 

are associated with calving difficulty in a mixed bull 

population including Holstein–Friesian, Charolais and 

Limousin. Since the above-mentioned six genes also 

influence birth weight, the calving difficulties in these 

breeds are mainly due to increased BW of the newborn 

[55].

Our analyses revealed that the identified potential can-

didate genes were involved in 12 biological processes 

(Fig. 5): cellular processes (30 genes), metabolic mecha-

nisms (14 genes), biological regulations and responses to 

stimuli (10 genes), growth (one gene), and body devel-

opmental processes (four genes). The latter four genes 

were fibroblast growth factors 6 (FGF6) and fibroblast 

growth factors 23 (FGF23), fast skeletal muscle troponin 

T (TNNT3), and osteomodulin (OMD). FGF6 and FGF23 

belong to the fibroblast growth factor family, which plays 

an important role in a variety of biological processes, 

including angiogenesis, morphogenesis, tissue regen-

eration, and oncogenesis [40]. Another significant gene, 

i.e. cathepsin D (CTSD) is involved in the activation and 

degradation of polypeptide hormones and growth factors 

[56]. TNNT3 produces troponin T protein in the mam-

malian fast skeletal muscle, with causal effects on  Ca2+ 

muscle contractions [57]. OMD regulates the diameter 

and shape of collagen fibrils, which suggest an effect on 

bone formation [58].
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Fig. 3 Correlations between direct genetic and maternal genetic marker effects for body weight recorded at birth (BW0), at 2 to 3 months of age 

(BW23) and at 13 to 14 months of age (BW1314)
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Fig. 4 Chromosomal genomic heritabilities for direct genetic effects of body weights recorded at birth (BW0), at 2 to 3 months of age (BW23) and 

at 13 to 14 months of age (BW1314). The red bars represent chromosomes with genomic heritabilities higher than 0.015
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Maternal genetic effect

Four potential candidate genes on BTA19, i.e. solute car-

rier family 35 member B1 (SLC35B1), speckle-type POZ 

protein (SPOP), neurexophilin 3 (NXPH3), and nerve 

growth factor receptor (NGFR), were significantly asso-

ciated with birth weight (see Additional file 3), although 

only one significant SNP was detected on BTA19. The 

biological functions of SLC35B1 and NXPH3 remain 

unknown. SPOP is an important regulator of luminal epi-

thelial cell proliferation [59] and is associated with vari-

ous cancers. NGFR affects cell growth and survival [60]. 

None of these four genes overlapped with the candidate 

genes identified for direct genetic effects.

Conclusions
Ignoring the population structure of Holstein–Friesian in 

the GWAS increased the number of false positive SNPs. 

Population structure was corrected properly when using 

G and LOCO plus chromosome-wide PC in the statistical 

models for the GWAS. The number of significant SNPs 

increased when DRP instead of phenotypes were used 

as dependent variables. Two SNPs on BTA5 influenced 

direct genetic effects significantly for BW at the three 

ages measured. Chromosomes with a larger number of 

significant SNPs had higher direct chromosomal herit-

abilities. Gene annotation analysis identified 76 poten-

tial candidate genes that are involved in 12 biological 

processes, which indicates that weight development is a 

very complex biological process. Regarding birth weight, 

only a limited number of significant SNPs and candidate 

genes were identified for the maternal genetic effects, 

which suggests an infinitesimal model for these effects. 

Antagonistic associations between direct genetic and 

maternal genetic effects were observed both when SNPs 

on all bovine chromosomes or on single chromosomes 

were considered, and for potential functional regions on 

BTA5.

Additional files

Additional file 1. Manhattan plots and Q–Q plots from GWAS for birth 

weight phenotypes (a and b), for birth weight de-regressed proofs (c 

and d), for BW23 phenotypes and de-regressed proofs (e and f ), and for 

BW1314 phenotypes and de-regressed proofs (g and h). Description: A 

is the pedigree-based relationship matrix; G is the genomic relationship 

matrix; LOCO is leave-one-chromosome-out (LOCO); LOCO_SEG864 is 

leave one segment out; LOCO + PC20 is LOCO plus 20 principal compo-

nents; LOCO + CHR_PC20 is LOCO plus 20 principal components based 

on the chromosomal genomic relationship matrix. The red line is the sig-

nificance threshold line for the Bonferroni correction of 5%, and the green 

dots represent significant SNPs according to ae false discovery rate of 5%.

Additional file 2. Potential candidate genes for direct genetic effects on 

body weight recorded at birth (BW0), at 2 to 3 months of age (BW23) and 

at 13 to 14 months of age (BW1314).

Additional file 3. Potential candidate genes for maternal genetic effects 

on body weights recorded at birth (BW0), at 2 to 3 months of age (BW23) 

and at 13 to 14 months of age (BW1314).
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ABSTRACT

Availability of longitudinal body weight (BW) records 
allows the application of nonlinear models (NLINM) 
to predict phenotypic and genomic growth curves in 
dairy cattle. In this regard, we considered a data set 
including 31,722 BW records from 4,952 female Hol-
stein cattle, during the period from birth (mo 0) to ap-
proximately age at first calving (mo 24). Parameters of 
the growth curves were estimated using 3 NLINM: the 
logistic (LOG), the Gompertz (GOM), and the Rich-
ards (RICH) functions. Residuals for the growth curve 
parameters from the NLINM applications were used 
as pseudo-phenotypes in the ongoing genomic analyses 
with different similarity matrices, including 2 genomic 
relationship matrices (G1 and G2), a combined pedi-
gree and genomic relationship matrix (H), and 3 kernel 
matrices. The kernels were a weighted “alike by state” 
kernel function (K1), an exponential dissimilarity ker-
nel (K2), and a Gaussian kernel (K3). On the basis 
of G1 and G2 matrices, genomic heritabilities for the 
growth curve parameters birth weight (W0), mature 
weight (Wm), and growth rate (k), and the shape pa-
rameter (m; only available from RICH) were moderate 
to large, in the range from 0.29 (m from RICH) to 0.46 
(k from RICH). Fitting the similarity matrices based 
on kernel functions contributed to an increase of the 
ratio of the variance explained by the similarity matrix 
in relation to the total variance (compared with the 
heritability when modeling G1 or G2). Genetic cor-
relations between W0, Wm, and k were always positive 
(>0.30), especially for the same growth curve param-
eters estimated from different NLINM (>0.90). The 
shape parameter m from RICH was negatively corre-
lated with other growth curve parameters, from −0.29 
to −0.95. In a next step, estimated genomic breeding 

values for growth curve parameters were input data for 
the respective NLINM, aiming to construct genomic 
growth curves. Prediction accuracies were correlations 
between genomic growth curves and genomic breeding 
values from random regression models for sires and 
female cattle. Considering all genotyped female cattle 
with pseudo-phenotypes, prediction accuracies were 
larger from RICH than from LOG and GOM. However, 
differences in prediction accuracies from the NLINM × 
similarity matrix combinations were quite small. Ac-
cordingly, in 5-fold cross-validations using heifer groups 
with masked phenotypes, very similar prediction ac-
curacies across modeling approaches were identified. 
Especially for specific age months, genomic growth 
curve predictions were more accurate for sires than for 
female cattle, indicating that the relationships between 
animals in training and validation sets are more impor-
tant than the selection of specific NLINM × similarity 
matrix combinations.
Key words: longitudinal body weight, nonlinear 
models, growth curve parameters, genomic predictions

INTRODUCTION

Body weight is a trait of increasing importance in 
dairy cattle breeding programs. Classically, BW was 
used to determine feed requirements for maintenance 
and production demands (Visscher et al., 1994). Re-
cently, Pryce et al. (2015) suggested controlling of 
maintenance costs and improvements for feed efficiency 
through the optimal combination of BW and production 
traits in selection index applications. Similarly, Connor 
(2015) mentioned the possibilities of predicting main-
tenance costs when simultaneously considering residual 
feed intake and mature live weight. Consequently, due 
to the strong influence of BW on feed efficiency traits, 
dairy cattle breeders have requested inclusion of BW in 
overall breeding goals, especially in pasture-based pro-
duction systems (Pryce and Harris, 2006). Furthermore, 
BW is genetically favorably correlated with production 
and fertility traits (Berry et al., 2003; Yin and König, 
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2018), indicating indirect selection response in a broad 
pattern of trait categories when incorporating BW in 
selection indexes.

Automatic weighing systems, as installed in modern 
dairy cattle farming systems, allow generation of a 
dense longitudinal BW data structure along the growth 
trajectory. For genetic analyses of repeated BW mea-
surements, Yin and König (2018) applied linear repeat-
ability and linear random regression models (RRM) 
with continuous time-dependent covariates. For the 
prediction of BW at specific time points and the model-
ing of individual growth curves, specific nonlinear func-
tions have also been considered. For instance, Koskan 
and Ozkaya (2014) modeled growth curves for female 
Holstein cattle by applying the Brody (Fitzhugh, 1976), 
Gompertz (France et al., 1996), Logistic (France et al., 
1996), Richards (France et al., 1996), and von Berta-
lanffy functions (von Bertalanffy, 1957). A comprehen-
sive evaluation of the 5 nonlinear models (NLINM) 
was carried out via meta-analysis (Teleken et al., 2017), 
considering growth data from 14 different publications. 
Teleken et al. (2017) indicated that estimated param-
eters from NLINM reflect biological characteristics 
such as mature weight and maturing rate. However, ir-
respective of their flexibility, the complexity of NLINM 
hampered their applications for phenotypic and genetic 
BW predictions at specific points in time.

Availability of high-density SNP marker panels and 
sequencing data from genotyped cows allows consider-
ation of alternative approaches regarding genetic-sta-
tistical modeling and genomic predictions via NLINM. 
An obvious problem for estimations of SNP effects with 
linear regression models, especially for novel functional 
traits, is the substantially smaller number of genotyped 
cows compared with the number of SNP. Alternatively, 
in nonparametric regressions (Gianola and van Kaam, 
2008), all or a subset of the markers (X) can be used 
to build the variance-covariance structure between 
individuals through the definition of a nonparametric 
function g(X). The function g(X) can be specified by 
reproducing kernel Hilbert space regression (Gianola 
and van Kaam, 2008). According to the Representer 
theorem (Kimeldorf and Wahba, 1971), the solution of 
g(X) = Kα, where K is a n-by-n kernel matrix (n = 
number of genotyped animals) and α = (α1, …, αn) 
is a vector of unknown parameters. Element (i, j) in K 
is K(xi, xj), which is calculated by the kernel function, 
based on the genotypes of animal i and animal j. Hence, 
the input marker information is linked to the traits 
only through the kernel matrix K as produced from the 
kernel function. Schaid (2010a,b) reviewed various ker-
nel functions, including the weight linear kernel (Wu et 
al., 2011), the polynomial kernel (Zien et al., 2000), and 

the Gaussian kernel (Mallick et al., 2005). The general 
characteristics of all kernels are identified similarities 
or dissimilarities between individuals, based on, for 
instance, genotypes, amino acids, or gene expressions. 
Additionally, when a pedigree-based (A) matrix or a 
marker-based (G) relationship with almost 50,000 SNP 
is chosen as a kernel, a classical additive infinitesimal 
model in quantitative genetics is depicted (de los Cam-
pos et al., 2010a). However, in contrast with A and 
G matrices, the variance-covariance structure built on 
specific kernel functions, such as the polynomial kernel 
or the Hadamard product of 2 kernel matrices, captures 
additive genetic as well as nonlinear effects, such as 
SNP marker interactions (Wang et al., 2015).

To the best of our knowledge, no studies are available 
that combine parameters from NLINM with genomic 
information in specific kernel functions for the predic-
tion of growth curves. Therefore, the objectives of the 
present study were as follows: (i) to use longitudinal 
BW data from Holstein heifers for the modeling of phe-
notypic growth curves, considering 3 nonlinear growth 
curve functions (logistic, Gompertz, and Richards mod-
els); (ii) to estimate genomic breeding values (GBV) of 
the growth curve parameters from the 3 nonlinear func-
tions based on 2 G matrices and 3 similarity kernels 
(weighted “alike by state” kernel, exponential dissimi-
larity kernel and Gaussian kernel); and (iii) to assess 
the prediction accuracies of genomic growth curves.

MATERIALS AND METHODS

Phenotype Data

Data editing for BW followed the protocol by Yin 
and König (2018). In this regard, we excluded levels 
of herd-year-month effects with fewer than 10 BW 
records and BW outliers based on studentized residu-
als and corresponding Bonferroni P-values < 0.05 or 
> 0.95. Body weights of 4,952 female Holstein cattle 
were recorded repeatedly during a period from birth 
(mo 0) to 24 mo (approximately age at first calving). 
The total number of BW records was 31,722, imply-
ing on average 6.41 records per animal (range: 4 to 
19 repeated measurements). The cattle were kept in 
10 large-scale herds, located in the German federal 
states of Mecklenburg-West Pomerania and Berlin-
Brandenburg, and they were born between 2005 and 
2014. The mean, minimum, maximum, and standard 
deviation for BW were 252.75 kg, 20 kg, 742 kg, and 
168.63 kg, respectively. Pedigree after pruning included 
20,176 animals, born between 1955 and 2014. On aver-
age, every dam had 1.22 phenotyped daughters within 
a range of 1 to 4. Number of daughter BW records 
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per dam ranged from 4 to 45, and the average was 
7.82. The 4,952 Holstein heifers were daughters from 
780 sires, 1 to 173 phenotyped daughter per sire. The 
number of daughter records per sire ranged from 4 to 
1,073 (average: 40.67 daughter records per sire). The 
distribution of BW records by age is given in Figure 1 
for the heifers with phenotypes and for the heifers with 
phenotypes and genotypes.

Genotype Data

Among the female cattle with phenotypic data, 620 
were genotyped using the Illumina Bovine 50K SNP 
BeadChip V2 (161 animals), or the Illumina Bovine 
Eurogenomics 10K low-density chip (459 animals; Il-
lumina, San Diego, CA). Additionally, 1,101 sires of 
4,952 calves and heifers were also genotyped with the 
Illumina Bovine 50K SNP BeadChip V2 (180 sires) or 
the Illumina Bovine Eurogenomics 10K low-density 
chip (921 sires). The 10K SNP genotypes were imputed 
to the 50K SNP panel by project partner vit (Verden, 
Germany), as done for national routine genetic evalu-
ations (Segelke et al., 2012). Genotype quality controls 
were performed using PLINK software, version 1.9 
(Chang et al., 2015; Purcell and Chang, 2019). Filter-
ing criteria for markers were as follows: consideration 
only of SNP located on Bos taurus autosomes; minor 
allele frequency larger than 0.01; minimum call rate of 
0.95; and no significant deviation from Hardy-Weinberg 
equilibrium (P > 0.0001). Finally, 1,721 genotyped 

animals with 44,314 SNP were included in genomic 
analyses.

Nonlinear Growth Functions

Three frequently used nonlinear growth functions 
(Table 1), including two 3-parameter functions and 
one 4-parameter function, were employed to model the 
growth curves of the phenotyped female cattle. The 
3-parameter functions were the logistic (LOG) and the 
Gompertz (GOM) models, both with the characteris-
tics of a sigmoidal shape and a fixed inflection point. 
The fixed inflection points of the 2 models are located 
at about 50% (LOG) and 37% (GOM) of the mature 
weight (Teleken et al., 2017). The curve parameters 
with biological meanings of LOG and GOM models are 
the birth weight (W0), the mature body weight (Wm), 
and a constant growth rate (k) reflecting an average 
velocity from birth to mature weight. The 4-parameter 
Richards (RICH) function embraces all the parameters 
from LOG and GOM. The auxiliary parameter is a 
shape parameter (m), indicating associations between 
proportions of mature weight with the inflection point 
(Gbangboche et al., 2008).

The “saemix” function from the R package “saemix” 
(Comets et al., 2017), with an implemented stochastic 
approximation expectation maximization algorithm, 
was used to estimate parameters of the 3 NLINM. The 
equation for the models with homogeneous residuals 
was as follows:
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Figure 1. Number of observations per growth month for all cattle with phenotype BW records (Pheno, 4,952 cattle) and for genotyped cattle 
with BW records (Geno, 620 cattle).
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 y f t eij ij i ij= ( )+, ,Ψ  [1a]

and when assuming an exponential error, the model 
was as follows:

 log logy f t eij ij i ij( )= ( )




+, ,Ψ  [1b]

where yij = the jth BW observation for animal i; f(tij, 
Ψi) = one of the nonlinear functions; tij  = age of animal 
i when the jth observation was recorded; Ψi = individ-
ual parameters for the nonlinear functions with 

Ψ Ψ βi

l

il l ih= + +
=
∑pop
1

9

η ,  where Ψpop = one of the popu-

lation growth curve parameters (overall mean), hil = 
dummy variables for the herd effect l (only the herd 
effect was included, due to convergence problems), βl = 
estimates for a single herd l compared with the refer-
ence herd (herd no. 10), ηi = random effects for each 
animal, N(0,Ω); eij = random residual effects with 

, .eij e∼ Ν σ0 2( )  The subscripts varied from 1 to 4,952 

(number of animals) for i and from 4 or 19 (no. of re-
peated measurements per animal) for j. Ψpop was a 
vector with d elements, and Ω was a d × d variance-
covariance matrix. For the 3-paramater functions (LOG 
and GOM), d was 3, and for RICH, d was 4. Model 
evaluation criteria were the −2 times maximum log-
likelihood (−2LL), the Akaike information criterion 
and the Bayesian information criterion, which are all 
output from the applied “saemix” function. Low values 
for −2LL, Akaike information criterion, and Bayesian 
information criterion indicate model superiority.

In the first step, population parameters (Ψpop), 
variance-covariance matrices (Ω), residual variances 

σe
2( ),  and coefficients for the herd effect were estimated. 

Afterward, the individual growth curve parameters (Ψi) 
were calculated based on 100 samples from the condi-

tional distribution p pop
2

Ψ Ψ σi i ey| ˆ .;�
�

;Ω;






  Due to the fact 

that Ψi as estimated from the R package “saemix” com-
prised the herd effect again, the conditional means of 
each individual were further adjusted for herd and birth 
year. Thus, we applied a weighted least squares model, 
which incorporated the respective conditional varianc-
es. The statistic model in scalar notation was

 yijk = hi + bj + eijk, [2]

where yijk = conditional means of individual parameters 
for animal k within herd i and birth year j; hi = herd i; 
bj = birth year j; and eijk = random residual effects with 

e N Wijk k~ , ,0 σe
2( )  where Wk = reciprocals of conditional 

variance for animal k. Residuals for the growth curve 
parameters from the weighted least squares analyses 
were used as pseudo-phenotypes in the ongoing ge-
nomic analyses.

Genetic Parameter Estimations

The residuals of 10 curve parameters (3 for LOG, 3 
for GOM, and 4 for RICH) from 620 genotyped female 
cattle were used as pseudo-phenotypes in animal models 
to estimate genomic curve coefficients for all animals. 
We applied the REML algorithm as implemented in the 
DMU v. 6 software package (Madsen and Jensen, 2013). 
The statistical model was

 y = 1µ + g + e, [3]

where y = a vector of pseudo-phenotypes; µ = the 
overall mean; g = a vector of random polygenic effects 
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Table 1. Applied growth functions for the modeling of growth curves

Model  Equation1  Reference

Logistic W t
W

W

W
e

m

m kt

( )=

+











−

















−1 1
0

France et al., 1996

Gompertz W t W em

W

W
e

m

kt

( )=












−ln 0

Teleken et al., 2017

Richards W t
W W

W W W e

m

m
m
m m kt m

( )=

+ −( )





−

0

0 0

1
France et al., 1996

1W(t) = BW at age t; W0 = birth weight; Wm = mature BW; k = constant growth rate; m = shape parameter; 
t = age in months, and e = a mathematical constant.
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with a variance-covariance structure of g K~ , ,N g0 2σ( )  

where K = the similarity matrix between individuals, 

σg
2 =  the polygenic variance, and e = a vector of ran-

dom residual effects with e I~ , .N 0 2σe( )
Using the genomic marker data, 5 similarity matrices 

were constructed. First, we created K according to the 
genomic relationship matrix as introduced by Van-

Raden (2008). Therefore, G
ZZ

1
2 1

=
′

−( )∑ p pk k

,  where 

Z = M − 2P with M = genotypes (coded as 0, 1, or 2) 
of the animals; P = a matrix with allele frequency for 
marker k in column k; pk = allele frequency for marker 
k in the genotyped population (k varied from 1 to 
44,314). The second similarity matrix followed the same 
rules, but the centralized Z matrix was standardized 

with 2 1p pk k−( ),  implying G
ZDZ

2 =
′

p
,  where p = 

the number of markers after filtering (44,314) and D = 

a p-by-p diagonal matrix with 
1

2 1p pk k−( )
 on the di-

agonal (Amin et al., 2007). To avoid singularities of G1 
and G2, a small value of 0.02 was added to the diagonal 
of both matrices.

In addition to the 2 genomic relationship matrices G1 
and G2, 3 kernel matrices were constructed to measure 
the similarities in terms of genomic marker conformity 
among all individuals. The weighted “alike by state” 
kernel function, as introduced by Wu et al. (2011), was 
defined as the first kernel (K1). The respective formula 

is as follows: K1 i j, ,( )= − −( )=∑k

p

k ik jkw x x
1
2  where p 

was the number of markers; xik was the genotype of the 

kth marker for animal i; and w
p p

k

k k

=
−( )

1

1
.  Hence, 

the allele difference of every SNP was weighted consid-
ering the respective allele frequency (Wang et al., 2015). 
For the exponential kernel K2 based on a dissimilarity 
score (S), we used the following algorithm from 
González-Recio et al. (2008): (1) calculation of frequen-
cies for marker k and genotype s (fks), implying 1 of the 
3 frequencies for every marker corresponding to geno-
types 0, 1, and 2 when genotypes for animal i and j at 
the kth marker are identical; (2) calculation of the dis-
similarity score S between animal i and j for the kth 
marker on chromosome 1

 
T T f S S x x

S S T T

k k ks k k ik jk

k k k k

= = =

= + =

− −

− −

1 1

1 1 1

;

;

and if

and if xx xik jk≠








,  

where Tk = temporary dissimilarity score for the kth 
marker, xik = genotype for animal i and marker k, T0 
= 1, and S0 = 0; the loop ran from the first to the last 
SNP on chromosome 1, resulting in Schr1; (3) calculation 
of the dissimilarity score S as described in step 2 for all 
the other chromosomes, one by one; and (4) calculation 
of the overall S = (Schr1 + … + Schr29)/p. The exponen-
tial kernel was calculated as K2 = exp(−S).

Another exponential kernel, that is, the Gaussian 
kernel (K3), was formed as 

 K3 i j
x x x x x xi j i j i j

, exp( )= −
−













= −
−( )′ −( )

2

δ
exp

δδ













,

where δ was a bandwidth parameter. The optimal 
bandwidth parameter was chosen among a grid of val-

ues ranging from 0 1
2

. × −{ }max x xi j  to 

1 0
2

. × −{ }max x xi j  with an interval of 0.1. Evalua-

tion of the bandwidth parameters was carried out using 
the R package “rrBLUP” (Endelman, 2011) with re-
spect to the log-likelihood of the model when fitting 
different δ to scale the kernel matrix. Generally, for all 
the growth parameters, the log-likelihood was maxi-

mized when δ was 0.8 max× −{ }x xi j

2
.  Therefore, the 

optimal bandwidth for K3 in this study was always set 

to 0.8 max× −{ }x xi j

2
.

Additionally, genomic growth curve parameters for 
all female cattle (4,952) were estimated via genomic 
animal models, applying REML as implemented in the 
software package DMU v. 6 (Madsen and Jensen, 2013):

 y = 1µ + Zu + e, [4]

where y, µ, and e were the same as defined in model 3; 

u = a vector of estimated GBV with u 0 H~ , ;N uσ
2( )  

σu
2 =  the genetic variance; and Z = incidence matrix 

for u. The combined H matrix was computed by blend-
ing A and the weighted genomic relationship matrix 
(Gw; Legarra et al., 2009). Gw was calculated as fol-
lows: G G Aw 1 22= × + ×( )0 95 0 05. . ,  where A22 is the 

submatrix of the pedigree-based relationship matrix for 
genotyped animals. Heritabilities of the growth curve 
parameters were estimated from univariate models. 
Genetic and phenotypic correlations among all growth 
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curve parameters were estimated with model 3, imply-
ing series of bivariate runs for all trait combinations. 
Standard errors for phenotypic and genetic correlations 
were calculated based on the estimated (co)variance 
component matrix, using the “deltamethod” function 
from the R package “msm” (Jackson, 2019).

Genomic Random Regression Model

Data basis was 31,722 BW records from 4,952 heif-
ers. A Bayesian approach, as implemented in the DMU 
v. 6 package (Madsen and Jensen, 2013), for genomic 
RRM was applied to estimate genomic breeding values 
(GBV-RRM) for BW at specific age months. The 
RRM was defined according to Yin and König (2018):

 y = Xb + Qd + Wm + Zp + Spm + e, [5]

where y = vector of observations for longitudinal BW; 
b = vector of fixed effects including herd-year-month, 
and regressions on age in month using cubic Legendre 
polynomials nested within birth year; d = vector of 
direct additive genetic effects for random regression 
coefficients, which were modeled with Legendre poly-
nomials of order 3; p = vector of permanent environ-
mental effects for random regression coefficients, which 
were modeled with Legendre polynomials of order 3; 
m = vector of maternal genetic effects; pm = vector 
of maternal permanent environmental effects; e = vec-
tor of random residual effects; S = incidence matrices 
for b and pm, respectively; and X, Q, W, and Z = 
coefficient matrices for d, m, and p, respectively. Het-
erogeneous residual variances were assumed across the 
age scale for the following time intervals: 0, 1 to 4, 5 to 
8, 9 to 12, 13 to 16, 17 to 20, and 21 to 24 mo. Again, 
the genetic relationships were constructed using the H 
matrix (Legarra et al., 2009) as explained above.

In the Bayesian framework, we considered a chain 
length of 300,000 iterations, a burn-in period of 60,000 
rounds, and a thinning interval of 10. Effective sample 
sizes of the estimates ranged from 23.1 for the mater-
nal permanent environmental effect to 21,650.6 for the 
residual component in mo 5 to 8. Estimated random 
regression coefficients for direct genetic and permanent 
environmental effects were averaged, considering the 
24,000 Gibbs samples. Afterward, GBV-RRM were 
calculated by multiplying the final estimated random 
regression coefficients for direct genetic effects (matrix 
Ad of dimension 20,176 × 4) with Legendre polynomi-
als coefficients

 L = −( ) −( )





1
2

3
2

5
2
3
2
2 1

2
7
2
5
2
3 3

2
, , , ,t t t tx x x x  

 t
t

x
l= − +
−( )
−

1 2
0

24 0
,  

and tl from 0 to 24 mo, implying the calculation of 
GBV-RRM via AdL′. Hence, GBV-RRM were avail-
able for all animals as included in the pedigree file, with 
25 monthly GBV from age 0 to 24 mo.

A detailed overview addressing all models 1 to 5 is 
given in Table 2.

Accuracies of Genomic Growth Curves

We focused on 3 different evaluation strategies (Fig-
ure 2). First, we considered the 620 genotyped female 
cattle and estimated their GBV (application of model 
3) for the pseudo-phenotypes. Afterward, the GBV 
served as input parameters for the calculation of in-
dividual genomic growth curves using the respective 
NLINM. The genomic growth curves for the 620 cattle 
were correlated with GBV-RRM from model 5. Alter-
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Table 2. Descriptions of the models as applied in the present study1

Model  
Model 
no.  Dependent variable  

Similarity 
matrix

No. of 
animals

No. of 
observations

y f t eij ij i ij= ( )+,Ψ [1a] Longitudinal BW  — 4,952 31,722

log logy f t eij ij i ij( )= ( )




+,Ψ [1b]  

yijk = hi + byj + eijk

[2] Individual growth curve 
parameters from model 1b

 — 4,952 4,952

y = 1µ + g + e [3] Residuals from model 2  G1, G2, K1, K2, 
and K3

620 620

y = 1µ + g + e [4] Residuals from model 2  H 4,952 4,952
y = Xb + Qd + Wm + Zp + Spm + e [5] Longitudinal BW  H 4,952 31,722

1G1 = genomic relationship matrix according to VanRaden, 2008; G2 = genomic relationship matrix according to Amin et al., 2007; K1 = 
kernel matrix according to Wu et al., 2011; K2 = kernel matrix according to González-Recio et al., 2008; K3 = Gaussian kernel; H = combined 

matrix blending A and the weighted genomic relationship matrix according to Legarra et al., 2009; σg
2  = variance explained by the similarity 

matrix. 
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natively, in a second evaluation strategy, GBV for the 
growth curve parameters (also solutions from model 3) 
considering the 43 genotyped sires with more than 20 
phenotyped daughters, were used for genomic growth 
curve modeling via NLINM. The correlations between 
predicted genomic growth curves of the 43 sires and 
GBV-RRM for the same sires from model 5 were de-
fined as prediction accuracies for sires.

In a third evaluation approach, we focused on a 
5-fold cross-validation considering the 620 genotyped 
female cattle. The females were randomly assigned into 
5 groups. For the creation of validation sets, pseudo-
phenotypes of cattle in groups 1 to 5 were masked 
consecutively, and the cattle from the remaining 4 
groups represented the training sets. Hence, for the 
estimation of GBV, pseudo-phenotypes of growth curve 
parameters from training set animals (496 cattle) were 
used as input data for model 3. The predicted GBV of 
the 124 nonphenotyped female cattle in validation sets 
were input for the respective NLINM to calculate the 3 
genomic growth curves. The genomic growth curves for 
the 124 cattle were correlated with the GBV-RRM of 
the same animals. The average correlation from 5 vali-
dation sets represented accuracies of prediction from 
5-fold cross-validations.

The correlations between genomic growth curves and 
GBV-RRM were calculated as follows: (1) correlations 

between aggregated genomic growth curves for age 0 
to 24 mo considering GBV of growth curve parameters 
and aggregated GBV-RRM from the 25 age months 
(rsum); (2) monthly correlations between genomic 
growth curves and GBV-RRM for ages 0 to 24 mo 
(rmon); (3) average of the 25 correlations (birth to 24 
mo) from step 2 (rmean). Standard errors (SE) for the 
correlation coefficients were calculated via a bootstrap 
approach, using the “boot” function with 1,000 repli-
cates, as implemented in the R package “boot” (Canty 
and Ripley, 2019).

RESULTS AND DISCUSSION

Nonlinear Models and Growth Curve Parameters

With regard to the growth curve modeling, consider-
ation of the herd effect plus fitting an exponential re-
sidual substantially improved the model evaluation 
criteria (Table 3). This was the case for all 3 functions 
LOG, GOM, and RICH. Consequently, in the ongoing 
genomic analyses, pseudo-phenotypes were growth 
curve parameters estimated from NLINM with herd ef-
fect and exponential residual. An across-function com-
parison for −2LL, Akaike information criterion, and 
Bayesian information criterion indicated superiority of 
RICH over GOM and LOG. Additionally, the residuals 
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Figure 2. Strategies to evaluate accuracies of genomic growth curves predicted from genomic breeding values of growth curve parameters.
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for the 3 NLINM ranged from 0.08 (for GOM and 
RICH) to 0.09 (for LOG; Table 4), again indicating the 
superiority of GOM and RICH over LOG. The RICH 
function is a generalized growth function for a variety 
of other functions (i.e., also for LOG and GOM) due to 
the possibility of modeling the shape parameter m 
(Richards, 1959). For m approaching 0, RICH can be 
transformed to GOM, and for m = 1, RICH reflects 
LOG (Teleken et al., 2017). For our BW data, the 
population value for m was 0.67 (Table 4), indicating 
an intermediate growth curve shape between GOM and 
LOG. Substituting m → 0, m = 0.67, and m = 1 into 

W
m

Winflection

m

m=
+











1

1

1

 (Goshu and Rao, 2013), inflec-

tion points for LOG, RICH, and GOM were located at 
50%, 46%, and 37% of the mature weight, respectively.

The population parameter estimates for birth weight 
(W0) were 40.17 kg (GOM), 40.49 kg (RICH), and 
40.72 kg (LOG). The population mature BW (Wm) 
ranged from 436.45 kg for LOG to 571.19 kg for GOM 
(Table 4). The population growth rates k ranged from 
0.14 (GOM) to 0.31 (LOG) with very small variances. 

However, quite large variances were observed for Wm, 
indicating the substantial BW variations of Holstein 
heifers close to the first insemination date.

Vázquez et al. (2012) compared the von Bertalanffy, 
Weibull (Seber and Wild, 1989), modified Hill (López 
et al., 2000), LOG, and GOM functions, and they iden-
tified superiority of the von Bertalanffy function for 
growth curve modeling of 6 dairy cattle breeds (Ayr-
shire, Jersey, Guernsey, Holstein, Charolais, and French 
Friesian). Teleken et al. (2017) applied RICH to model-
ing growth curves of Holstein bulls and identified an m 
value of −0.22 (indicator for a von Bertalanffy func-
tion). Beltrán et al. (1992) compared Brody with RICH 
in 2 lines of Angus beef cows, and they suggested the 
application of specific functions for specific age stages. 
Koskan and Ozkaya (2014) made similar conclusions 
for modeling growth curves of Holstein calves. Hence, 
due to the flexible function parameter m, we generally 
suggest RICH applications for nonlinear growth curve 
modeling based on BW data.

The growth curves for 1 cow with 4 observations and 
1 animal with 19 observations are plotted in Figure 
3A and 3B, respectively. For only a few BW measure-
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Table 3. Model evaluations for the nonlinear growth functions (models 1a and 1b) with different covariates 
and residuals based on −2 times maximized log-likelihood (−2LL), Akaike information criterion (AIC), and 
Bayesian information criterion (BIC)

Growth 
function  Covariate  Residual

Evaluation criterion

−2LL AIC BIC

Logistic        
  —  Homogeneous 289,798.7 289,812.7 289,858.2
  —  Exponential 279,817.7 279,831.7 279,877.3
  Herd  Homogeneous 284,216.8 284,284.8 284,506.0
  Herd  Exponential 276,447.4 276,515.4 276,736.7
Gompertz        
  —  Homogeneous 282,626.9 282,640.9 282,686.5
  —  Exponential 275,008.9 275,022.9 275,068.5
  Herd  Homogeneous 278,917.5 278,985.5 279,206.7
  Herd  Exponential 272,580.3 272,648.3 272,869.5
Richards        
  —  Homogeneous 283,757.6 283,775.6 283,834.2
  —  Exponential 274,851.8 274,869.8 274,928.4
  Herd  Homogeneous 277,796.9 277,886.9 278,179.8
  Herd  Exponential 270,405.9 270,495.9 270,788.7

Table 4. Estimated population growth curve parameters from model 1b (as described in Table 2) with herd effect and exponential residual

Growth function

Growth curve parameters1

W0 Wm k m σe σW0
2 σWm

2 σk
2 410× σm

2

Logistic 40.72 436.45 0.31 — 0.09 10.18 381.21 4.79 —
Gompertz 40.17 571.19 0.14 — 0.08 11.75 437.13 0.71 —
Richards 40.49 452.45 0.25 0.67 0.08 11.30 602.30 0.61 0.01

1W0 = birth weight; Wm = mature BW; k = constant growth rate; m = shape parameter; σe = residual standard deviation; σW0
2 =  variance of 

birth weight; σWm
2 =  variance of mature BW; σk

2 =  variance of growth rate; σm
2 =  variance of shape parameter.
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ments during growth, LOG underestimated BW in the 
period from 18 to 24 mo of age. In contrast to LOG, 
growth curves predicted from GOM and RICH showed 
an almost linear positive slope during the same measur-
ing period. The observed differences between GOM and 
RICH with LOG might be due to the variations in the 
estimations for k and Wm. More specifically, k was 0.32 
for LOG, 0.14 for GOM, and 0.16 for RICH, and Wm 

was 397.77 kg for LOG, 525.44 kg for GOM, and 490.03 
kg for RICH. For a denser BW structure (Figure 3B) 
with more BW observations, LOG and RICH gener-
ated similar growth curves. Furthermore, only minor 
differences between GOM curve predictions and real 
BW observations were observed in the interval from 22 
to 24 mo of age.

Variance Components of Growth Curve Parameters

Variance components and genetic parameters for the 
10 parameters estimated from the genomic models 
(model 3) with different similarity matrices are listed in 
Table 5. For the genomic relationship matrices G1 and 

G2, σg
2  in relation to σt

2  are the heritabilities of the 

growth parameters. Heritabilities for W0 from LOG and 
GOM and considering G1 and G2 were larger than 
0.40. From RICH, the heritabilities for W0 were 0.35 
(G1) and 0.37 (G2). Heritabilities for Wm in the range 
from 0.32 to 0.39 were slightly smaller than heritabili-
ties for W0. The moderate to high heritabilities for the 
growth curve parameters W0 and Wm confirm previous 
estimates based on “conventional” modeling approaches 
considering pedigree relationships. For birth weight in 
Holstein cattle, heritabilities ranged from 0.26 (Johan-
son et al., 2011) to 0.47 (Yin and König, 2018). For 
mature weight in Angus beef cattle, Kaps et al. (1999) 
estimated heritabilities (based on Brody curve predic-
tions) in the range from 0.44 (estimate from a single-
trait model) to 0.52 (estimate from a bivariate model). 
Meyer (1995) used GOM and estimated a heritability 
for mature weight of 0.49. Our Wm heritabilities of 0.32 
(G1 and RICH) and 0.39 (G2 and GOM) are in agree-
ment with the heritabilities for mature weight from 
growth curves using lifetime BW records in 5 cattle 
breeds (Johnson et al., 1990) and for live weight of 
lactating Holstein cows (Lassen and Løvendahl, 2016). 
For the growth rate k from GOM applications in Here-
ford cattle, Meyer (1995) reported heritabilities ranging 
from 0.37 to 0.48. Equivalent heritabilities (0.38 to 
0.46) were estimated in the present study. However, in 
the study by Meyer (1995), values for k were very small, 
with k < 0.005. In the present study, k ranged from 0.01 
to 0.36. Substantially lower heritabilities (<0.10) for k 
were estimated when applying the von Bertalanffy 
function to modeling growth curves in 2 beef cattle 
breeds (Oliveira et al., 1994; Forni et al., 2007). Also for 
the shape parameter m, heritabilities were moderate: 
0.29 (G1) and 0.31 (G2). As far as we know, this is a 
first study estimating heritabilities for the shape pa-
rameter (here based on RICH predictions). However, as 
an approximation, inflection points also describe the 
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Figure 3. Growth curves for animals with 4 (A) and 19 (B) re-
peated BW measurements estimated from model 1b.
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shape of growth curves. Heritabilities for the inflection 
points in chicken populations were 0.25 (Manjula et al., 
2018) and 0.50 (Grossman and Bohren, 1985).

In comparison with G1 and G2, most of the variance 
components increased when considering the kernels 
K1, K2, or K3. The substantially larger variances 
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Table 5. Variance components and variance ratios for the parameters of the growth functions from model 3 considering different similarity 
matrices1

Similarity 
matrix  

Growth 
function  Parameter

Variance component

σ σg t
2 2 SE hc

2σg
2 σe

2 σt
2

G1  Logistic  W0 2.60 3.66 6.26 0.42 0.10 0.42
    Wm 38.51 71.74 110.25 0.35 0.09 0.35
    k × 104 0.93 1.58 2.51 0.37 0.09 0.37
  Gompertz  W0 3.06 4.60 7.66 0.40 0.10 0.40
    Wm 23.77 39.76 63.53 0.37 0.09 0.38
    k × 104 0.17 0.27 0.44 0.40 0.09 0.40
  Richards  W0 2.61 4.80 7.41 0.35 0.09 0.35
    Wm 76.46 164.49 240.96 0.32 0.08 0.32
    k × 104 0.04 0.04 0.08 0.46 0.05 0.47
    m × 104 13.39 32.05 45.44 0.29 0.09 0.30
G2  Logistic  W0 2.70 3.55 6.25 0.43 0.10 0.44
    Wm 39.32 71.00 110.32 0.36 0.09 0.36
    k × 104 1.01 1.51 2.51 0.40 0.10 0.40
  Gompertz  W0 3.18 4.48 7.65 0.41 0.10 0.42
    Wm 24.70 38.93 63.63 0.39 0.09 0.39
    k × 104 0.19 0.25 0.44 0.42 0.10 0.43
  Richards  W0 2.71 4.69 7.40 0.37 0.10 0.37
    Wm 79.27 161.75 241.02 0.33 0.09 0.33
    k × 104 0.02 0.04 0.06 0.38 0.04 0.38
    m × 104 14.09 31.36 45.45 0.31 0.10 0.31
K1  Logistic  W0 13.87 2.95 16.83 0.82 0.07 0.53
    Wm 217.93 58.72 276.65 0.79 0.08 0.47
    k × 104 5.35 1.23 6.58 0.81 0.07 0.51
  Gompertz  W0 16.27 3.78 20.04 0.81 0.08 0.51
    Wm 127.16 33.26 160.42 0.79 0.07 0.48
    k × 104 0.97 0.21 1.18 0.82 0.07 0.52
  Richards  W0 13.49 4.16 17.65 0.76 0.09 0.44
    Wm 421.32 140.74 562.06 0.75 0.08 0.42
    k × 104 0.22 0.05 0.27 0.81 0.07 0.50
    m × 104 72.81 28.20 101.01 0.72 0.10 0.38
K2  Logistic  W0 11.35 2.77 14.13 0.80 0.09 0.56
    Wm 194.20 51.26 245.47 0.79 0.08 0.54
    k × 104 4.32 1.18 5.49 0.79 0.09 0.53
  Gompertz  W0 13.60 3.48 17.09 0.80 0.09 0.54
    Wm 106.83 30.81 137.64 0.78 0.08 0.51
    k × 104 0.79 0.20 0.99 0.80 0.08 0.55
  Richards  W0 11.36 3.89 15.25 0.74 0.10 0.47
    Wm 363.38 130.09 493.47 0.74 0.09 0.46
    k × 104 0.18 0.05 0.23 0.79 0.08 0.54
    m × 104 58.77 27.49 86.25 0.68 0.12 0.40
K3  Logistic  W0 6.12 1.85 7.96 0.77 0.14 0.70
    Wm 104.25 35.98 140.23 0.74 0.14 0.67
    k × 104 2.40 0.78 3.18 0.75 0.14 0.69
  Gompertz  W0 7.28 2.41 9.69 0.75 0.15 0.68
    Wm 63.01 18.46 81.47 0.77 0.14 0.71
    k × 104 0.44 0.12 0.57 0.78 0.14 0.72
  Richards  W0 6.20 2.91 9.11 0.68 0.15 0.60
    Wm 205.03 94.27 299.30 0.69 0.14 0.61
    k × 104 0.10 0.03 0.13 0.76 0.13 0.69
    m × 104 31.86 22.61 54.47 0.58 0.16 0.50

1G1 = genomic relationship matrix according to VanRaden, 2008; G2 = genomic relationship matrix according to Amin et al., 2007; K1 = 

kernel matrix according to Wu et al., 2011; K2 = kernel matrix according to González-Recio et al., 2008; K3 = Gaussian kernel; σg
2 =  variance 

explained by the similarity matrix; σe
2 =  residual variance; σt

2 =  total variance; σ σg t
2 2 =  variance explained by the similarity matrix in rela-

tion to the total variance; SE = standard error of σ σg t
2 2 ;  hc

2 =  corrected heritability according to Legarra (2016); W0 = birth weight; Wm = 
mature BW; k = constant growth rate; m = shape parameter.
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linked to the kernel and smaller residuals variances 

contributed to an increase of the variance ratio σ σg t
2 2 .  

The variance components were further transformed 
into comparable scales by scaling the variances linked 
to the similarity matrices with Dk, where 

D diagk = ( )−K K  (Legarra, 2016). In our study, Dk 

was 1.01 for G1 and G2, 0.24 for K1, 0.30 for K2, and 
0.71 for K3. Corrected heritabilities from K1 and K2 
were larger than from G1 and G2. When setting K3 as 
relationship matrix, the corrected heritabilities in-
creased to 0.50 for the shape parameter and to 0.72 for 
the growth rate. However, SE for the variance ratios 
from K3 were quite large (Table 5).

The heritabilities from the single-trait model 4 as well 
as genetic (rg) and phenotypic correlations (rp; from the 
series of bivariate runs using model 4) among growth 
curve parameters are given in Table 6. Heritabilities 
for growth curve parameters from the H matrix ap-
proach were identical or slightly smaller compared with 
the respective parameter heritabilities based on G1 or 
G2 modeling. However, compared with the H matrix 
estimates, heritabilities and variance ratios from G1 
and G2 approaches had larger SE, probably due to the 
different numbers of animals with pseudo-phenotypes 
(4,952 cattle in model 4, and 620 cattle in model 3). 
Genetic correlations between the same growth curve 
parameters from different NLINM were larger than 
0.90: 0.99 between W0 from LOG with W0 from GOM 
or RICH. The corresponding phenotypic correlations 

were larger than 0.82. Birth weight (W0) was genetical-
ly moderately correlated with growth rate (k) and with 
mature weight (Wm; from 0.33 to 0.49). Corresponding 
phenotypic correlations ranged from 0.07 to 0.28. The 
large correlations between k and Wm (0.69 to 0.88 for 
rg, and 0.44 to 0.73 for rp) indicate the strong influence 
of growth rate on mature weight phenotypically and ge-
netically. Accordingly, a pronounced favorable genetic 
correlation between k and Wm (0.82) was reported for 
predictions from the von Bertalanffy function in Nelore 
cattle (Forni et al., 2007). The growth rate k was geneti-
cally negatively correlated with the shape parameter m 
(rg from −0.88 to −0.95). Also for all remaining curve 
parameters, genetic correlations with m were negative. 
The negative correlations indicate that increasing W0, 
Wm, and k influences the shape of growth curves from 
RICH by decreasing the percentages of mature weight 
at inflection points. Standard errors for correlation es-
timates were quite small, between 0.01 and 0.08 for rg 
and generally lower than 0.02 for rp.

Accuracies of Genomic Growth Curves  

for Animals with Phenotypes

The correlations between genomic growth curves 
based on GBV of growth curve parameters and respec-
tive GBV-RRM for all genotyped female cattle are 
listed in Table 7. For rsum, the accuracies ranged from 
0.75 to 0.79 with corresponding SE from 0.01 to 0.02. 
Accuracies were largest when combining estimated 
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Table 6. Heritabilities (bold and diagonal), genetic (above diagonal) and phenotypic correlations (below diagonal) between growth curve 
parameters (W0 = birth weight; Wm = mature BW; k = constant growth rate; m = shape parameter) from model 4 using a relationship matrix 
combining pedigree and genomic information (H matrix); SE are given below the parameter estimates

Growth 
function  Parameter

Logistic

 

Gompertz

 

Richards

W0 Wm k W0 Wm k W0 Wm k m

Logistic  W0 0.42 0.33 0.49 0.99 0.35 0.48 0.99 0.39 0.36 −0.39
   0.04 0.08 0.07 0.00 0.08 0.07 0.00 0.08 0.08 0.08
  Wm 0.07 0.30 0.69 0.36 0.95 0.81 0.32 0.96 0.86 −0.56
   0.02 0.04 0.06 0.08 0.01 0.04 0.08 0.01 0.04 0.08
  k 0.27 0.44 0.25 0.47 0.78 0.97 0.41 0.73 0.91 −0.95
   0.01 0.01 0.03 0.07 0.05 0.01 0.07 0.06 0.02 0.01
Gompertz  W0 0.98 0.09 0.24 0.43 0.36 0.47 1.00 0.40 0.36 −0.35
   0.00 0.02 0.01 0.04 0.08 0.07 0.00 0.08 0.08 0.08
  Wm 0.11 0.89 0.57 0.12 0.31 0.88 0.31 0.95 0.92 −0.67
   0.02 0.00 0.01 0.02 0.04 0.03 0.08 0.02 0.02 0.07
  k 0.28 0.60 0.96 0.26 0.71 0.25 0.41 0.84 0.94 −0.90
   0.01 0.01 0.00 0.01 0.01 0.02 0.07 0.04 0.01 0.02
Richards  W0 0.97 0.10 0.19 0.98 0.11 0.22 0.43 0.37 0.31 −0.29
   0.00 0.02 0.02 0.00 0.02 0.02 0.04 0.08 0.08 0.08
  Wm 0.08 0.91 0.51 0.09 0.83 0.66 0.10 0.28 0.84 −0.60
   0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.04 0.04 0.08
  k 0.18 0.63 0.88 0.17 0.73 0.90 0.13 0.62 0.32 −0.88
   0.02 0.01 0.00 0.02 0.01 0.00 0.02 0.01 0.03 0.03
  m −0.30 −0.25 −0.91 −0.26 −0.39 −0.85 −0.20 −0.29 −0.75 0.22
   0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.01 0.01 0.03
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pseudo-phenotypes from RICH with G1, G2, K1, or 
K2. RICH always performed better than LOG or GOM, 
and, throughout, the lowest accuracies were identified 
for LOG. The increase in accuracies for RICH over LOG 
ranged from 0.02 (for G2 and K1) to 0.03 (for G1, K2 
and K3), reflecting the phenotypic NLINM evaluations 
(Table 3). Apart from LOG, accuracies were maximized 
when modeling the kernel K1, but the accuracy differ-
ences for different similarity matrices were quite small.

Accuracies according to rmean varied between 0.65 for 
GOM combined with K3 and 0.68 for RICH combined 
with G1, G2, K1, or K2. Generally, values for rmean 
were lower than the respective values for rsum. Never-
theless, applications of RICH combined with G2 or K1 

implied the largest accuracies, independent from the 
evaluation criterion. Standard errors for rmean were close 
to 0.02.

The detailed correlations in monthly intervals (rmon) 
explain the differences between rsum and rmean (Figure 
4). The correlations between genomic growth curves 
and GBV-RRM were larger than 0.60 from birth until 
the age of 20 mo. However, probably due to the low 
data coverage in the period from 21 to 24 mo, the accu-
racies substantially decreased from approximately 0.60 
to −0.05 at the end of the time scale. Accordingly, the 
accuracy for rmean was quite large (0.77 for G1) when 
excluding correlations beyond 21 mo. The pattern of 
accuracies along the growth trajectory was very similar 
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Table 7. Correlations between genomic growth curves (model 3) and genomic breeding values (GBV) from 
the random regression model (model 5) considering genotyped female cattle with BW records (SE ranged from 
0.01 to 0.02)1

Similarity 
matrix

rsum

 

rmean

Logistic Gompertz Richards Logistic Gompertz Richards

G1 0.76 0.78 0.79 0.67 0.66 0.68
G2 0.772 0.78 0.79 0.672 0.66 0.68
K1 0.77 0.782 0.792 0.67 0.672 0.682

K2 0.76 0.78 0.79 0.67 0.66 0.68
K3 0.75 0.77 0.78 0.66 0.65 0.67

1G1 = genomic relationship matrix according to VanRaden, 2008; G2 = genomic relationship matrix accord-
ing to Amin et al., 2007; K1 = kernel matrix according to Wu et al., 2011; K2 = kernel matrix according to 
González-Recio et al., 2008; K3 = Gaussian kernel; rsum = correlation between the sum of genomic growth 
curve breeding values and the sum of GBV from the random regression model; rmean = average of 25 monthly 
correlations between genomic growth curve breeding values and GBV from the random regression model.
2Highest correlation coefficient within each column.

Figure 4. Correlations between genomic growth curves (model 3) and respective genomic breeding values from the random regression model 
per age month (model 5). G1 = genomic relationship matrix according to VanRaden, 2008; G2 = genomic relationship matrix according to 
Amin et al., 2007; K1 = kernel matrix according to Wu et al., 2011; K2 = kernel matrix according to González-Recio et al., 2008; K3 = 
Gaussian kernel.
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for the 5 different similarity matrices. Standard errors 
for rmon were smallest at age 6 to 9 mo (0.01), but were 
larger at birth (0.02) and at age 24 mo (0.04).

Accuracies of Predicted Genomic Growth Curves  

for Animals Without Phenotypes

Genomic prediction accuracies for the female cattle 
from the 5-fold cross-validation and for the sires are 
given in Table 8 for rsum and rmean. Accuracies were 
lower than the accuracies for female cattle with pseudo-
phenotypes, such as approximately 0.40 for rsum (SE 
= 0.07 − 0.08) and approximately 0.33 for rmean (SE 
= 0.08). The lower accuracies were expected, because 
only accuracies for female cattle with masked pseudo-
phenotypes were considered. Genomic growth curves 
predicted from parameters of RICH showed only minor 
gains in accuracies compared with GOM and LOG. 
With a focus on the different similarity matrices, values 
for rsum were again largest when modeling the kernel K1. 
According to rmean, prediction accuracies were largest 
when modeling G1 but showed only minor differences 
compared with the G2 and K1 modeling approaches. 
Standard deviations for the prediction accuracies from 
the 5-fold cross-validation ranged from 0.06 at birth to 
0.14 at age 19 and 20 mo.

Given the fact that only influential sires with more 
than 20 phenotyped daughters were considered, the 
prediction accuracies for sires were larger than for 
the female cattle. The SE for the accuracies ranged 
from 0.14 to 0.15 for all NLINM and similarity matrix 
applications. However, the differences in prediction 

accuracies between sires and female cattle were quite 
small, because only 31 sires additionally had daughters 
with genotypes. For sires, and for both evaluation cri-
teria rsum and rmean, accuracies from GOM were slightly 
larger than from RICH or LOG. However, when con-
sidering the corresponding SE, differences in prediction 
accuracy with similarity combinations did not differ 
significantly. de los Campos et al. (2010b) compared 
the Gaussian kernel average with Bayesian ridge regres-
sion and with G. For protein content, Bayesian ridge 
regression and G performed better than the Gaussian 
kernel average, but for daughter fertility, de los Cam-
pos et al. (2010b) detected opposite results. Hence, 
trait specifics should be considered when selecting the 
most appropriate similarity matrix. Furthermore, de 
los Campos et al. (2010a) identified almost the same 
residual variances and mean squared errors from a 
Gaussian kernel with optimal bandwidth and from the 
Gaussian kernel average. In the current study, the opti-
mal bandwidth for the Gaussian kernel K3 was chosen 
according to log-likelihood values. Hence, for the sire 
data set evaluation, K3 modeling was associated with 
the largest prediction accuracies (apart from rmean and 
RICH pseudo-phenotypes). In contrast, in genomic pre-
dictions for sires without daughter records, González-
Recio et al. (2008) indicated a better predictive ability 
for the kernel K2 compared with A, trinomial kernels, 
linear regressions, or 24 informative SNP in a BayesA 
approach.

Correlations across the growth curve in monthly 
intervals (rmon) for female cattle without phenotypes 
(SE = 0.07 − 0.09) and for sires (SE = 0.11 − 0.16) 
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Table 8. Correlations between growth curves calculated from genomic breeding values (GBV) of growth curve parameters (model 3) and GBV 
from the random regression model (model 5) for genotyped female cattle from a 5-fold cross-validation and for 43 genotyped sires (SE ranged 
from 0.07 to 0.08 for heifers and from 0.14 to 0.15 for sires)1

Testing set  
Similarity 
matrix

rsum

 

rmean  

Logistic Gompertz Richards Logistic Gompertz Richards

Female  G1 0.40 0.40 0.41 0.342 0.332 0.342

  G2 0.40 0.40 0.41 0.34 0.33 0.34
  K1 0.402 0.412 0.422 0.33 0.33 0.33
  K2 0.39 0.40 0.41 0.32 0.32 0.32
  K3 0.40 0.40 0.41 0.33 0.32 0.33
Sire  G1 0.43 0.44 0.41 0.38 0.39 0.37
  G2 0.43 0.44 0.42 0.38 0.39 0.382

  K1 0.42 0.42 0.40 0.36 0.37 0.35
  K2 0.41 0.41 0.39 0.35 0.36 0.35
  K3 0.452 0.452 0.422 0.382 0.392 0.37

1G1 = genomic relationship matrix according to VanRaden, 2008; G2 = genomic relationship matrix according to Amin et al., 2007; K1 = 
kernel matrix according to Wu et al., 2011; K2 = kernel matrix according to González-Recio et al., 2008; K3 = Gaussian kernel; rsum = correla-
tion between sum of genomic growth curves based on GBV of growth curve parameters and the sum of GBV from the random regression model; 
rmean = average of 25 monthly correlations between genomic growth curves and GBV from the random regression model; Female = genotyped 
female cattle with masked pseudo-phenotypes; Sire = genotyped sires with more than 20 phenotyped daughters.
2Highest correlation coefficient for each nonlinear function based on 5-fold cross-validations for sires.
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were almost the same for different similarity matrices. 
Thus, only results from G1 are plotted in Figure 5. The 
prediction accuracies for female cattle and sires were 
very similar at the extreme ends of the age scale. From 
birth to 5 mo of age, rmon varied from 0.3 and 0.4 for 
both validation strategies. Afterward, the correlation 
increased gradually to 0.58 for sires, but was 0.40 for 
female cattle at age 18 mo. At the end of the growth 
curve interval, probably due to the smaller number of 
animals with phenotypic records, rmon in both data sets 
sets (sires and heifers) substantially decreased, and was 
close to 0 at 24 mo. The shape of the prediction ac-
curacy curves (the values for rmon at specific ages) was 
very similar for pseudo-phenotypes from LOG, GOM, 
and RICH applications for sires as well as for female 
cattle.

CONCLUSIONS

For the modeling of phenotypic growth curves based 
on longitudinal BW records in dairy cattle from birth 
to approximate age at first calving, RICH applications 
with herd effects and exponential residuals contributed 
to superior NLINM over LOG and GOM. Heritabili-

ties for NLINM growth curve parameters based on 
G1 and G2 modeling approaches were the same or 
slightly larger than the corresponding heritabilities 
based on the H matrix. Genetic correlations among the 
growth curve parameters W0, Wm, and k were always 
positive (>0.30), especially for the same growth curve 
parameters estimated from different NLINM (>0.90). 
The shape parameter m in RICH was genetically nega-
tively associated with other growth curve parameters. 
Accuracies of the genomic growth curves for the 620 
female cattle with pseudo-phenotypes favored RICH 
applications over LOG and GOM, irrespective of the 
similarity matrices used. However, due to the large SE, 
differences in prediction accuracies from the different 
approaches considering sires with more than 20 daugh-
ters with BW records, or the results from the 5-fold 
cross-validations, were not significant. Generally, when 
focusing on animals without phenotypes, prediction 
accuracies were larger for sires than for female cattle, 
especially for specific ages in the interval from age 6 
mo to 18 mo. Hence, increasing the phenotypic BW 
data set is more important for the increase of genomic 
growth curve accuracies than are function or similarity 
matrix specifications. For complex modeling approach-
es, as used in the present study based on a quite large 
number of phenotypes, it is also imperative to increase 
the number of genotyped animals.
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Abstract

Basic bovine behavior is a crucial parameter influencing cattle domestication. In addition,

behavior has an impact on cattle productivity, welfare and adaptation. The aim of the pres-

ent study was to infer quantitative genetic and genomic mechanisms contributing to natural

dual-purpose cow behavior in grazing systems. In this regard, we genotyped five dual-pur-

pose breeds for a dense SNPmarker panel from four different European countries. All cows

from the across-country study were equipped with the same electronic recording devices. In

this regard, we analyzed 97,049 longitudinal sensor behavior observations from 319 local

dual-purpose cows for rumination, feeding, basic activity, high active, not active and ear

temperature. According to the specific sensor behaviors and following a welfare protocol,

we computed two different welfare indices. For genomic breed characterizations and multi-

breed genome-wide association studies, sensor traits and test-day production records were

merged with 35,826 SNPmarkers per cow. For the estimation of variance components, we

used the pedigree relationship matrix and a combined similarity matrix that simultaneously

included both pedigree and genotypes. Heritabilities for feeding, high active and not active

were in a moderate range from 0.16 to 0.20. Estimates were very similar from both relation-

ship matrix-modeling approaches and had quite small standard errors. Heritabilities for the

remaining sensor traits (feeding, basic activity, ear temperature) and welfare indices were

lower than 0.09. Five significant SNPs on chromosomes 11, 17, 27 and 29 were associated

with rumination, and two different SNPs significantly influenced the sensor traits “not active”

(chromosome 13) and “feeding” (chromosome 23). Gene annotation analyses inferred 22

potential candidate genes with a false discovery rate lower than 20%, mostly associated

with rumination (13 genes) and feeding (8 genes). Mendelian randomization based on geno-

mic variants (i.e., the instrumental variables) was used to infer causal inference between an

exposure and an outcome. Significant regression coefficients among behavior traits indicate

that all specific behavioral mechanisms contribute to similar physiological processes. The

regression coefficients of rumination and feeding on milk yield were 0.10 kg/% and 0.12 kg/
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%, respectively, indicating their positive influence on dual-purpose cow productivity. Geno-

mically, an improved welfare behavior of grazing cattle, i.e., a higher score for welfare indi-

ces, was significantly associated with increased fat and protein percentages.

Introduction

The current fundamental interest in dairy cattle research addresses a deeper understanding of

the role of genetics in phenotypic expressions of behavior traits. Behavior is an essential part of

biological regulations and influences the production and welfare of farm animals. However,

the underlying genetic mechanisms explaining the relationships between cattle behavior and

productivity are unclear. Currently, consumer demands strongly influence animal husbandry

and management decisions, e.g., a wish towards the utilization of natural and cow friendly pro-

duction systems. Furthermore, there are increasing concerns, critically addressing the high

yielding Holstein Friesian breed and suggesting local dual-purpose cattle as a breed alternative.

Against this background, a better understanding of the genetic mechanisms of animal behavior

allows for the implementation of local dual-purpose cattle selection strategies for specific envi-

ronments, e.g., for specific grazing conditions. Hohenboken [1] listed behavior traits in cattle

under genetic control, such as feeding and reproductive behavior, social interactions and tem-

perament. In addition, especially in grazing systems, a proportion of variation in foraging

behavior is genetically inherited [2,3]. In addition to feeding, rumination time and rumination

intervals are defined as novel traits that influence milk yield and butterfat production [4]. Nev-

ertheless, subjectively scored cattle behavior traits are low to moderate heritability traits, with

heritabilities ranging from 0.01 to 0.44 [5,6]. Despite a few quantitative genetic studies based

on pedigree relationship matrices, there is a gap in knowledge addressing genomic mecha-

nisms of behavior trait expressions [4]. Dense longitudinal phenotypic data and dense single

nucleotide polymorphism (SNP) marker information are required to perform genome-wide

association studies (GWAS) and to unravel the genetic architectures of complex traits. Conse-

quently, only a limited number of potential candidate genes significantly associated with cattle

behavior traits were identified [7]. Alam et al. [8] detected polymorphisms of the bovine neu-

ropeptide Y5 receptor gene (NPY5R), which regulates appetite and feeding behavior in beef

cattle. Similar mechanisms for polymorphisms of the melanocortin 4 receptor gene (MC4R),

i.e., influences on feed intake capacity and feeding behavior, were reported in Korean Hanwoo

cattle [9]. Nevertheless, a strong environmental component influences behavior trait expres-

sions, suggesting a detailed recording of environmental effects for a broad pattern of behavior

characteristics [4].

In the process of animal husbandry system intensifications, domestication and artificial

selection via specific mating plans were major driving components contributing to extensive

linkage disequilibrium (LD) across the bovine genome [10,11]. Consequently, broad confi-

dence intervals for significant SNP were identified, implying difficulties in precisely mapping

potential candidate genes [10]. Raven et al. [10] hypothesized that lower levels of long-range

LD across bovine breeds, and thus, a multi-breed GWAS, could accurately pinpoint the loca-

tion of well-conserved functional mutations. When considering several breeds simultaneously,

LD over short distances (5–10 kb for Bos taurus) already reached r2> 0.3 [12], while long-

range LD decreased. Hence, with higher probability compared to a single-breed GWAS, a sig-

nificant SNP from a multi-breed GWAS is located in close distance to a quantitative trait locus

(QTL), which has an effect on the same trait across breeds. Significant across-breed SNP effects

Multi-breed genomic analyses for cow behaviour across country borders
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are mainly due to LD with the QTL and are independent of pedigree relationship influences

[11,13]. This phenomenon is well exploited in refining QTL regions in dogs, but the methodol-

ogy only contributed to a limited number of identified potential candidate genes [14]. In detail,

in the dog study, identification of QTLs was based on a single dog breed with extensive LD. In

a second step, multiple dog breeds and dense SNP chips were used to precisely map causal var-

iants [10,14]. Hence, with regard to QTLs segregating in multiple breeds, a multi-breed

GWAS implies more precise mapping, while within-breed analyses contribute to improved

detection power for breed-specific QTLs. Hence, a multi-breed GWAS might increase the

probability of detecting older conserved mutations, but it is less efficient in identifying recently

diverged mutations [10]. With the aim of inferring the causes of general and well-conserved

genetic mechanisms in basic bovine behavior traits, a multi-breed GWAS seems to be a prom-

ising method.

The current study is based on SNP data from five dual-purpose cattle breeds located in Ger-

many (DE_DSN = black and white dual-purpose cattle), Poland (PL_BS = Brown Swiss,

PL_DSN = black and white dual-purpose cattle), Slovenia (Sl_BS = Brown Swiss,

Sl_Si = Simmental) and Switzerland (CH_OBV = dual-purpose Original Braunvieh,

CH_Si = Simmental). Genotyped cows were phenotyped based on 24 hours of continuously

recorded behavior data in grazing systems. The overall hypothesis is that electronically recorded

natural behavior of cows for feeding (FEED), ruminating (RUM), resting / non-active (NACT),

basic activity (BACT) and high activity (HACT) and digital ear surface temperature (ET) con-

tributes to the detection of significant SNP markers and associated potential candidate genes

across the bovine genome. Additionally, for population structure analyses, we considered geno-

types from the dual-purpose Red andWhite breed from Germany (DE_DN) and from German

Holstein (DE_HF) and Slovenian Holstein (Sl_HF) subpopulations. We assume that different

breeds with a similar breeding history share ancestral mutations and recombination events.

Accordingly, Gutiérrez-Gil et al. [15] identified selection signatures influencing metabolic

homeostasis and disease resistance across breeds with different production trait characteristics.

The present study is based on dense genomic marker data and longitudinal behavior traits

from different dual-purpose cows across European country borders. Such unique data can be

used i) to infer the population structure for European dual-purpose and dairy cattle breeds; ii)

to estimate genetic parameters for behavior traits based on pedigree and genomic information;

iii) to detect associated SNP and potential candidate genes significantly influencing cattle

behavior; and iv) to infer causal trait associations.

Results

Population structure and breed assignment

Principal component analyses. When plotting the first and the second principal compo-

nents (explaining 4.71% and 3.05% of the variation in genomic relationships, respectively),

two distinctly diverged clusters of genetic origin were detected (Fig 1A). The Holstein lines

and DSN showed obvious genetic differentiation from the other breeds (Sl_Si, Sl_BS, PL_BS,

CH_OBV, and CH_Si). Depicting the first and third (explaining 2.38% of variation) principal

components, three clusters were formed in a triangle-like 2-dimensional form (Fig 1B). Each

cluster was positioned at the three apexes of the triangle, with the admixed populations of

Sl_Si in an intermediate position. The first cluster includes DE_HF, DE_DSN, DE_DN, Sl_HF

and PL_DSN; the second cluster consists of PL_BS, Sl_BS and CH_OBV; and CH_Si and Sl_Si

(but in slight distance) are represented in cluster 3. The three clusters were also identified

when plotting the second and third principal components (Fig 1C). However, the second prin-

cipal component illustrates the diversity within the Holstein lines and DSN.

Multi-breed genomic analyses for cow behaviour across country borders
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Breed assignment. The breed assignment (Fig 2) identified ten cattle breeds with the larg-

est ancestry proportions from the world reference dataset in Web-Interfaced Next Generation

Database (WIDDE) [16] for the populations in this study. All populations from our study

shared at least 57.83% of alleles with European breeds, affirming their European origin. The

predominant genetic ancestry consisted of Holstein, Hereford, French Red Pied Lowland and

Fig 1. Plot of principal components 1 versus 2 (A), 1 versus 3 (B) and 2 versus 3 for the genomic relationship matrix based on 615 genotyped cows.
DE_DSN = black and white dual-purpose (Germany); DE_DN = red and white dual-purpose (Germany); DE_HF = Holstein Friesian (Germany);
PL_BS = Brown Swiss (Poland); PL_DSN = black and white dual-purpose (Poland); Sl_Si = Simmental (Slovenia); Sl_BS = Brown Swiss (Slovenia);
Sl_HF = Holstein Friesian (Slovenia); CH_OBV = dual-purpose Original Braunvieh (Switzerland); CH_Si = Simmental (Switzerland).

https://doi.org/10.1371/journal.pone.0221973.g001

Fig 2. Ancestry composition of the genotyped cows considering the ten reference populations inWIDDE [16].DE_DSN = black and white dual-purpose
(Germany); DE_DN = red and white dual-purpose (Germany); DE_HF = Holstein Friesian (Germany); PL_DSN = black and white dual-purpose (Poland);
Sl_Si = Simmental (Slovenia); CH_OBV = dual-purpose Original Braunvieh (Switzerland).

https://doi.org/10.1371/journal.pone.0221973.g002
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French Brown Swiss breeds. However, aside from European ancestors, exotic ancestral propor-

tions from Sheko, Zebu Bororo, Gir or Arabic Zebu appeared.

Genetic parameters for sensor traits

Heritabilities and corresponding standard errors or sensor traits were on a low to moderate

level but very similar for the estimations based on either the pedigree relationship matrix (A)

or the combined relationship matrix (H) matrices (Table 1). Heritabilities for FEED, HACT

and NACT ranged from 0.16 to 0.20 due to moderate additive genetic and small residual vari-

ances. The low heritable traits RUM, BACT, ET, welfare index points (WEL-IP) and welfare

index classes (WEL-IC) had small additive genetic variances. Repeatabilities were moderate

(0.24–0.34) for sensor traits but ranged on a lower level from 0.10 to 0.13 for the two welfare

indices. Standard errors of repeatabilities from the multi-breed estimation were quite small

(0.01–0.02).

Multi-breed genome-wide association study

Overall, according to the 20% false discovery rate (FDR) threshold, seven SNP markers were

significantly associated with behavior traits (Table 2). One of these SNPs was also significant

considering the more stringent Bonferroni threshold. Significant SNPs were located on six dif-

ferent chromosomes and associated with the behavior traits NACT, RUM and FEED. The

most significant SNP influencing NACT is located on Bos taurus autosome 13 (BTA13, P-

value = 2.36E-08) (S1 Fig). Five SNPs on BTA11, 17, 27, and 29 were significantly associated

with RUM (S2 Fig), and another SNP on BTA23 was significantly associated with FEED (S3

Fig). A more significant SNP was detected for the dependent variable de-regressed proof

(DRP) in comparison to the means of repeated sensor traits (MEAN). Only for NACT, the

same SNP on BTA13 (Hapmap60738-rs29023086) significantly influenced both dependent

variables MEAN and DRP. The inflation factors for all GWAS runs ranged from 1.00 to 1.04

for DRP, and from 0.88 to 0.99 for MEAN, indicating restricted false positives from population

stratification.

The SNP coverage was examined by counting the number of SNPs in consecutive windows

of 1 Mb on each chromosome. The mean SNP coverage per Mb considering the 29 autosomes

was 14.2, ranging from zero to 27 SNP per Mb. At least one Mb window without a SNP was

identified on ten chromosomes (BTA6, 7, 10, 12, 14, 15, 18, 21, 24 and 26).

Table 1. Heritabilties (h2) and reliabilities (r) with standard errors (SE) for sensor behavior traits.

Pedigree Combined pedigree and genomic data

Trait h2 SE r SE h2 SE r SE

RUM 0.02 0.04 0.28 0.02 0.02 0.04 0.28 0.02

FEED 0.19 0.05 0.26 0.02 0.20 0.05 0.27 0.02

BACT 0.08 0.05 0.26 0.02 0.06 0.05 0.26 0.02

HACT 0.19 0.05 0.27 0.02 0.20 0.05 0.29 0.02

NACT 0.16 0.06 0.33 0.02 0.18 0.06 0.34 0.02

ET 0.07 0.04 0.24 0.02 0.07 0.04 0.25 0.02

WEL-IP 0.03 0.02 0.12 0.01 0.04 0.02 0.13 0.01

WEL-IC 0.03 0.02 0.10 0.01 0.04 0.02 0.10 0.01

RUM = rumination; FEED = feeding; BACT = basic active; HACT = high active; NACT = not active; ET = ear temperature; WEL-IP = welfare index point;

WEL-IC = welfare index class.

https://doi.org/10.1371/journal.pone.0221973.t001
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With regard to the GWAS for fat percentage (Fat%), two significant SNPs above the Bonfer-

roni corrected threshold on BTA14 (S4 Fig) were identified. This is the chromosomal segment

for the DGAT1 gene. Hence, the multi-breed GWAS identified the most prominent candidate

gene in dairy and dual-purpose cattle.

Potential candidate genes

Based on the P-values of all SNPs, i.e., GWAS output, 22 potential candidate genes were identi-

fied (S1 Table). All of the inferred potential candidate genes might play a role in the expression

of bovine behavior in dual-purpose cattle populations. The 13 potential candidate genes on

BAT21, 27, and 29 are associated with RUM. For RUM, one potential candidate gene (BTBD1)

is located on BAT21, and two are on at BAT27 (THAP1 and RNF170). The remaining ten

potential candidate genes are located on at BAT29. Both dependent variables for RUM (DRP

and MEAN) were associated with eight putative candidate genes (RPS6KB2, PTPRCAP,

CORO1B, GPR152, CABP4, TMEM134, AIP, and PITPNM1). With regard to the DRP for

RUM, we identified two potential candidate genes without clear biological functions on

BTA29 (the novel gene ENSBTAG00000000776 andMRGPRG). The SNP Hap-

map48998-BTA-104140 (P-value = 6.55E-06 on BAT19) suggested PPM1E as a potential can-

didate gene for BACT. With regard to the DRP of FEED, we identified seven potential

candidate genes on BAT11 (STXBP1, CFAP157, PTRH1, TOR2A, LCN8, LCN15 and

PPP1R26). The two neighboring SNPs ARS-BFGL-NGS-80066 and ARS-BFGL-NGS-111955

on BTA23 indicated one putative candidate gene (SLC25A27) for FEED.

Causal associations

The regression coefficients for the variety of trait associations are summarized in Table 3. The

values in bold indicate significance according to FDR< 0.05. Behavior related to feed intake,

i.e., RUM and FEED, had a significantly negative impact on behavior reflecting locomotion

(BACT and HACT) and vice versa. Associations were positive between traits from the same

behavior category, i.e., between FEED and RUM, and between HACT and BACT. For exam-

ple, for an increase of 1% in FEED, RUM increased by 0.12%. The regression coefficient of

HACT on BACT was 0.18%. Sleeping and resting (NACT) negatively influenced RUM, FEED,

and HACT. When NACT was the exposure and BACT was the outcome, the slope was 0.10%.

The impact of behavior traits on ET was generally weak and not significant. For example, a 1%

increase in HACT was associated with an increase of 0.11 degrees Celsius for ET. Apart from

HACT, behavior traits responded significantly to alterations of welfare indices because

Table 2. List of SNPmarkers significantly associated with sensor behavior traits (significance threshold: False discovery rate of 20%).

Trait Chr. SNP bp P-value Method Prop.

RUM 11 BTB-01638234 55229674 2.04E-05 DRP 2.73%

RUM 17 ARS-BFGL-NGS-104430 68187177 1.79E-05 DRP 3.38%

RUM 27 ARS-BFGL-NGS-13449 37283994 1.36E-05 DRP 3.03%

RUM 29 ARS-BFGL-NGS-24800 46014507 9.07E-06 DRP 2.91%

RUM 29 ARS-BFGL-NGS-81862 49036580 2.01E-05 DRP 3.43%

FEED 23 ARS-BFGL-NGS-80066 19834215 5.13E-06 DRP 4.41%

NACT 13 Hapmap60738-rs29023086 79178395 2.36E-08
1.08E-06

DRP
MEAN

5.51%
3.63%

RUM = rumination; FEED = feeding; NACT = not active; Chr. = chromosome number; bp = base pair; DRP = de-regressed proof; MEAN = mean of observations; Prop.

= proportion of phenotypic variance explained by SNP markers.

https://doi.org/10.1371/journal.pone.0221973.t002
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behavior traits are components of the indices. An increase in feeding behavior (RUM and

FEED) had favorable effects on milk yield (MY) but impaired udder health (increase of

somatic cell score; SCS). A regression coefficient of -0.14 kg/% was estimated for the response

of MY on NACT. Welfare indices were significantly associated with Fat% and protein percent-

age (Pro%).

Discussion

Population structure analyses

The identified breed clusters from the principal component analysis (PCA) reflect the geo-

graphical origin of the European cattle breeds. The optimization criterion for PCA is the maxi-

mization of variation in the genomic relationship matrix considering the first principal

components [17], which also contribute to geographic differentiation. The PCA clearly differ-

entiated between the Holstein lines and DSN with the Simmental and Brown Swiss breeds (Fig

1A), regardless of geographic distance. Hence, these breeds have different ancestors and do

not share the same founder alleles. Due to their pronounced genetic relationships, Sl_HF,

PL_DSN, DE_HF, DE_DSN, and DE_DN were allocated to the same cluster. The other two

distinct clusters represent Simmental and Brown Swiss breeds (Fig 1B and 1C). The origin of

genotypes certainly contributed to cluster formation. Furthermore, breed-specific breeding

goals or country and farm specificities influenced breed differentiations [18]. Interestingly,

only the second principal component presented genetic diversity within the cluster containing

Holstein lines and DSN. Because of different breeding goal definitions [19], commercial Hol-

stein lines (DE_HF and Sl_HF) were separated from black and white dual-purpose cattle

(DE_DSN and DE_DN) during selection. The PL_DSN, reflecting an intermediate breeding

goal “between” classical dual-purpose cattle and modern HF, is consequently grouped between

Holstein lines and DSN. Nevertheless, DSN is the dominant founder population for modern

HF [20], and similar breeding schemes and an identical herdbook were used before officially

separating the two breeds in 1997 [21]. Differentiations between the Holstein lines and DSN

underline the footprints of artificial selection in the last two decades [22]. Although DE_DN

and DE_DSN are dual-purpose breeds, they share ancestors with Holstein Friesian cattle more

than 50 years ago, explaining their rather close relationship. As a consequence, the PCA results

reflect these breed origins and separate endogamous breeding units for Holstein, DSN, Brown

Swiss and Simmental cattle, emphasizing the historical ‘genetic isolation’ by the absence of

admixture.

Table 3. Regression coefficients among sensor behavior traits and between sensor behavior traits and production traits.

Trait RUM FEED BACT HACT NACT ET WEL-IP WEL-IC MY Fat% Pro% SCS

RUM 0.14 -0.40 -0.09 -0.51 0.02 0.02 0.00 0.10 0.00 0.00 0.05

FEED 0.12 -0.34 -0.06 -0.48 0.00 -0.05 0.01 0.12 0.00 0.00 0.02

BACT -0.77 -0.78 0.18 0.19 -0.01 0.05 -0.02 -0.14 0.00 0.00 -0.05

HACT -0.51 -0.29 0.59 -0.78 0.11 0.07 -0.01 0.04 0.02 0.01 -0.05

NACT -0.41 -0.59 0.10 -0.10 -0.01 -0.03 0.01 -0.14 0.00 0.00 -0.02

WEL-IP 1.60 -0.97 0.80 0.29 -1.72 0.44 -0.23 -0.10 0.07 0.05 0.12

WEL-IC -5.00 1.74 -4.67 -0.61 7.99 -1.44 -3.56 1.40 -0.57 -0.30 -0.65

RUM = rumination; FEED = feeding; BACT = basic active; HACT = high active; NACT = not active; ET = ear temperature; WEL-IP = welfare index point;

WEL-IC = welfare index class; MY = milk yield (in kg); Fat% = fat percentage; Pro% = protein percentage; SCS = somatic cell score; the bold values represent significant

regression coefficients.

https://doi.org/10.1371/journal.pone.0221973.t003
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Breed assignment results gave deeper insights into the pattern of genetic diversity and prin-

ciples of historical evolutionary processes in dual-purpose cattle populations. All breeds

depicted at least 57.83% of ancestral allele proportion to European cattle breeds, affirming

their European origin. Nevertheless, for the European dual-purpose cattle genotypes, exotic

ancestral allele proportions from Sheko, Zebu Bororo, Gir or Arabic Zebu were identified.

Despite the fact that cattle are ascribed to two major geographic types, i.e., taurine (humpless-

European, African, Asian) and indicine (humped- South Asian, East African), the same ances-

tors were identified more than 250,000 years ago [12]. Ancient genetic ties to a common ances-

tor as well as interbreeding [12] explain a proportion of up to 7.09% shared alleles between

Sheko with DE_DSN, DE_DN, DE_HF, PL_DSN and Sl_Si. In this regard, the Bovine Hap-

Map Consortium [12] specified five unique endogamous breeding units (Holstein, Jersey, Her-

eford, Romagnola, and Guernsey) and one closed endogamous breeding unit (Brown Swiss,

Norwegian Red, Limousin, Charolais, and Piedmontese) for ten European breeds. Further-

more, they [12] identified indicine and taurine crosses, such as Beefmaster, Santa Gertrudis

and Sheko. Accordingly, in the present study, low proportions of common ancestry between

populations from our study and indicine breeds were identified.

Early breeders who spread from the Fertile Crescent towards North-West Europe used two

different migration routes [23]. One route to northern Europe followed the Balkan rivers

(Danubian route) to Germany and the Netherlands, while the second route (Mediterranean

route) to western Europe (Italy, Spain and France) crossed the Mediterranean Sea [23]. During

these migration waves, potential interbreeding between wild European aurochs and already

domesticated populations explain the exotic breed footprints within the European bovine

genome [17]. These findings are in agreement with the known shared ancestry between Hol-

stein and Norwegian Red [12]. Consequently, we also detected genetic relations between

DE_DSN, DE_DN, DE_HF and PL_DSN with Norwegian Red. Gautier et al. [17] affirmed the

Northern European origin of Angus, Red Angus, French and American Holstein, French Red

Pied Lowland and Norwegian Red cattle via Reynolds genetic distances (computation based

on allele frequencies at 44,706 SNP loci). Hence, these results [17] support the identified ances-

try proportions, as illustrated in Fig 2. Close genetic proximity between French Red Pied Low-

land with DE_DSN, DE_DN, and DE_HF is due to the Red Pied Lowland’s recent derivation

from Red Holstein and Meuse-Rhin-Yssel breeds [17]. Relatively high proportions of ancestry

between Hereford with Sl_Si (8.87%), CH_OBV (10.58%), DE_DN (10.92%), PL_DSN

(11.37%), DE_DSN (11.69%) and DE_HF (12.39%) were identified. Accordingly, Gautier et al.

[17] allocated Hereford, Holstein and Brown Swiss to one major cluster. The genetic influence

of Hereford on Holstein, DSN, Brown Swiss and Simmental genomes is due to historical inter-

breeding events [24], which occurred before the establishment of the Hereford breed herd in

1846 [25].

The PCA results as well as the breed assignment analyses indicate the European origin of

dairy (DE_HF) and dual-purpose breeds (DE_DSN, DE_DN, PL_DSN, Sl_Si, and CH_OBV)

and reflect selection according to geographic and breeding goal characteristics. The evolution-

ary formative events contributed to the establishment of different genetic variants in cattle

breeds in different regions. Moreover, they influenced the differentiation of allele frequencies

among populations [12] and the associations between phenotypes and genotypes.

Genetic parameters for sensor behavior traits

Apart from BACT, genetic parameter estimates from the pedigree-based approach (Amatrix)

were very similar or slightly smaller compared to theHmatrix approach (i.e., additionally con-

sidering genomic marker data). This result is in agreement with other studies focusing on
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genetic parameter estimations based on different genetic relationship matrices [26,27]. Basic

dairy cattle habits (e.g., HACT, NACT and FEED) underlie moderate genetic control. For

RUM, BACT, ET, WEL-IP andWEL-IC, the small heritabilities indicate pronounced environ-

mental influence and challenges for genetic improvements. Nevertheless, the recording tech-

nique might also explain the lower heritabilities for sensor-recorded RUM and BACT. As a

recording alternative, microphone-monitored rumination time contributed to heritability esti-

mates for RUM in the range from 0.14 to 0.44 in Holstein cows [6]. Another reason for the

smaller RUM heritability in the current study addresses characteristic differences in the pro-

duction system. In grazing systems, with a higher percentage of fresh fibrous grass in the feed-

ing ratio, rumination mechanisms might differ from total mixed rations fed in indoor systems.

Hence, the genetic mechanisms for rumination might differ and influence additive genetic var-

iances. A strong impact of food characteristics on rumination time was identified in previous

studies, e.g., the influence of forage neutral detergent fiber [28], physical effective fiber [29], or

long-particle alfalfa silage [30]. Nevertheless, rumination time is an interesting trait for geno-

mic selection because of the moderate to strong association with feed efficiency [6,31]. Feeding

costs are the dominant cost component in dairy and dual-purpose cattle farming systems [32].

Consequently, the selection of RUM also contributes to high feed efficiency and profitable

milk production [33].

The heritability for FEED behavior is in agreement with estimates from other studies using

alternative recording techniques. Løvendahl and Munksgaard [5] estimated a heritability of

0.20 for pooled eating time (hour/day) considering early and late lactation stages. Eating time

was recorded via focal scanning in batches at 10-minute intervals for 24 hours. Robinson and

Oddy [34] reported a heritability of 0.36 for time spent feeding, measured in automatic feeder

pens. Hence, feeding time has a moderate genetic component, but the open question addresses

the optimal breeding and selection strategy. A breeding goal with a focus on increasing feeding

time (FEED) implies an antagonistic impact on other types of behavior, e.g., reduced lying

time (NACT) [35,36].

Heritabilities for daily BACT reflect estimates based on accelerometer recordings (0.03–

0.12) [37,38]. Schöpke and Weigel [37] considered 1,171 postpartum HF cows with at least 100

days of consecutive accelerometer measurements, and the HACT accelerometer heritabilities

support the HACT sensor heritabilties from our study. Furthermore, in agreement with our

results, variance components and heritabilities were different for different levels of activity,

i.e., during nonestrus periods in the range of 0.03–0.05 and 0.12 during estrus [37]. Coinci-

dently, in our study, heritabilities for HACT were larger than for other behavior activities.

Nevertheless, the NACT heritability from the cows in the outdoor grazing system was larger

than the heritability estimates of dairy cattle for lying time indoors (0.01) [5]. Even in humans,

genetic parameters for active and non-active behavior traits have been estimated. Our herita-

bility estimate for lying or sleeping is in agreement with the heritability for children sleeping

duration [39]. A quite larger heritability was estimated for total daily sleep duration (daytime

sleep duration plus nighttime sleep duration), considering 53 pairs of monozygotic and dizy-

gotic female twins [40]. However, such an estimate might be biased due to a large proportion

of common environmental effects in twins’ samples.

The low heritability estimates for ET indicate partial genetic control of temperature regula-

tion mechanisms but a stronger impact due to environmental effects and production levels

[41]. Heritabilities for rectal temperature were larger in the range from 0.15 to 0.17 [41,42].

Nevertheless, regarding trait definition, there is a difference when measuring surface or rectal

temperature [42]. Environmental temperature had a stronger impact on surface ET than on

rectal and core body temperature [42,43]. Hence, heritabilities for rectal temperature were

larger in the range from 0.15 to 0.17 [41,44]. The complex definition of welfare indices and the
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inclusion of several antagonistic related traits might explain the quite small heritabilities and

repeatabilities for WEL-IP andWEL-IC. In conclusion, we suggest the utilization of welfare

indices as a novel management tool and not as a selection instrument to improve an animal’s

welfare status via breeding.

Multi-breed genome-wide association study

To our knowledge, this is the first study considering dense sequences of longitudinal behavior

measurements of dual-purpose cows from grazing systems across countries, combined with

high-throughput genomic marker data. On the basis of a multi-breed GWAS, we gained new

insights into the genetic control of dual-purpose cattle behavior under grazing conditions, and

we located some interesting chromosomal segments. Nevertheless, for the detection of causal

functional mutations in ongoing studies, it is imperative to use denser SNP data or even

sequence data and a larger sample of genotyped cows [45,46]. Regarding the response traits,

DRP reflected the daily behavior expression more accurately than one single MEAN value. In

the statistical models for DRP, all important environmental (fixed) effects influencing bovine

behavior [47] were considered. For the dependent variable MEAN, pre-correction of the data

only accounted for the ‘breed-farm’ effect. Consequently, we suppose that the MEAN from an

extended observation period does not fully reflect the genetic variation of bovine behavior due

to confounding environmental effects. Additionally, when referring to the multi-breed

GWAS, only one significant SNP was detected via the MEAN approach, but seven significant

SNPs were discovered using DRP.

The identification of the DGAT1 gene on BTA14 supported our a priori hypothesis that

(despite the small sample size) the multi-breed GWAS is an appropriate approach to identify

putative causative variants and candidate genes. Using an FDR of 20%, the number of identi-

fied significant genetic variants, including SNP and potential candidate genes, was larger com-

pared to the stricter Bonferroni correction. However, the risk of detecting false positive SNPs

also increased. The consideration of accumulated effects from a set of SNPs ±50 Kb of a gene

(set-based association) was very powerful for detecting potential candidate genes, as suggested

in previous studies [48]. Some of the discovered potential candidate genes are linked to behav-

ior traits or diseases in cattle [49], humans [50], pigs [51] or mice [52].

Rumination. Based on the five significant SNPs with FDR< 20%, we detected 13 poten-

tial candidate genes for RUM. Mutations of the identified potential candidate gene RNF170

were associated with autosomal dominant sensory ataxia in humans [53]. The putative candi-

date gene RPS6KB2 is involved in innate immune response mechanisms in indigenous and

crossbred cattle [54]. In addition, the gene RPS6KB2 was differentially expressed in Angus cat-

tle selected for low and high residual feed intake [49] and in bovine tuberculosis-infected and

control cattle [55]. Other findings suggest an association of RPS6KB2 with embryonic develop-

ment in cattle [56]. The PTPRCAP gene is an additional identified potential candidate gene

that is associated with RUM behavior. In humans, PTPRCAP is involved in defense response

mechanisms and is a key regulator of lymphocyte activation [50].

The putative candidate gene CaBP4, coding for a neuronal Ca2+-binding protein, was

expressed in photoreceptors in mice and regulated synaptic terminals [52]. Haeseleer et al.

[52] concluded that CaBP4−/−mice have behaviors similar to those in patients with incom-

plete congenital stationary night blindness. Generally, CaBP4 is involved in the process of sig-

nal transduction [57] and visual perception [58].

The identified potential candidate gene TMEM134 influences obesity and atherosclerosis in

adults [59]. Furthermore, TMEM134 is involved in the prototypical inflammatory nuclear fac-

tor-κB (NF-κB) signaling pathway [59]. The modulation of downstream NF-κB signaling is
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the most important characteristic for innate immune programming in chronic inflammation

[60]. The identified potential candidate gene PITPNM1 is associated with retinal degeneration

and hypopyon in humans and is involved in pathways of metabolism and glycerophospholipid

biosynthesis [61].

Feeding. The potential candidate gene LCN15 for FEED is involved in the transport of

glucose and other sugars, bile salts and organic acids, metal ions and amine compounds as well

as the transport of vitamins and nucleosides [61]. As a member of the lipocalin gene family,

LCN2 influences obesity and diabetes in humans [62]. Furthermore, LCN15 physiologically

interacted with high glucose levels in enterocytes [62]. Extended periods for FEED indicate an

increase in feed intake [34], implying higher levels of sugars, fatty acids, amino acids, and vita-

mins. Hence, cows with different FEED levels might differ regarding specific expression pro-

files for the potential candidate gene (LCN15).

The potential candidate gene SLC25A27 is part of a recently identified genetic network

associated with economically important traits in Wagyu x Limousin crossbred cattle [63].

Additionally, SLC25A27 contributes to long chain fatty acid uptake [63] and controls several

diseases in humans, such as Alzheimer’s disease [64], oxidative stress [65], and fasting [66].

The mitochondrial uncoupling protein 4 encoded by the SLC25A27 gene is involved in

thermoregulatory heat production and metabolism in the brain [67].

Basic activity. Only one potential candidate gene (PPM1E) influenced BACT behavior in

dual-purpose cattle. Accordingly, the dephosphorylation gene (PPM1E) was associated with

feeding behavior in Danish Duroc boars [51]. Do et al. [51] assumed that PPM1E is mediated

by 5’AMP-activated protein kinase (AMPK), which plays a key role in controlling energy bal-

ances. The enzyme AMPK is involved in hypothalamic glucose and nutrient sensing. Hence,

due to the identified impact of PPM1E on activity traits in dual-purpose cattle and due to the

strong correlation between feeding and activity (S2 Table), behavior across species is based on

the same genetic mechanisms.

Associations among behavior traits and between behavior and productivity

The behavior traits RUM, FEED, BACT, HACT and NACT were interdependent, implying

that the expression of basic behavior is involved in similar physiological processes. Addition-

ally, from a practical perspective, some strong associations were expected. For example, an

increase of feed intake (FEED) implies intensification of rumination time (RUM). Behavior-

related feed intake had negative genetic impacts on BACT, enhanced BACT (HACT), and rest-

ing/sleeping (NACT) [68]. An increase in rumination and feeding contributes to improved

milk production [69], but intensification of “production behavior” implies less time for BACT,

HACT and NACT. “Normal” daily BACT behavior of dual-purpose cows was in balance with

sleeping behavior (NACT). However, during estrus or parturition, cows express excessive

walking, mounting and overall restlessness behavior (HACT), while the usual resting habits

decrease [70] and body temperature increases [71,72]. Interestingly, welfare indices were also

associated with ET.

Cows with 1% higher levels for RUM and FEED produced 0.10 kg and 0.12 kg more milk

[68], respectively, along with increased somatic cell count. A simultaneous increase of SCS is

due to the antagonistic relationship between MY and SCS [73]. High levels of daily BACT posi-

tively correlated with body condition loss, implying a reduction in MY [74]. The positive

impact of BACT on NACT might explain the negative regression coefficient of NACT onMY.

In general, daily bovine behaviors, including RUM, FEED, BACT, HACT, and NACT, do not

have a significant impact on Fat% and Pro%. However, improved welfare indices were associ-

ated with higher values for Fat% and Pro%. Currently, in practical breeding schemes, Fat%
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and Pro% are used as indicators to assess the cows’ energy status [75]. Additionally, based on

the results from the present study, Fat% and Pro% might be suitable indicator traits for cattle

welfare.

Materials andmethods

Animal ethics statement

Genotype data were provided from the national breeding organizations. Phenotypes reflect the

standard trait pattern from official milk recording schemes. Behavior recording was non-

invasive.

Breeds and herd location

The five dual-purpose cattle breeds with phenotypic sensor behavior data were from Germany

(DE_DSN), Poland (PL_BS, PL_DSN), Slovenia (Sl_BS, Sl_Si) and Switzerland (CH_OBV,

CH_Si) (Table 4). In Germany and Poland, dual-purpose cows were kept in organic university

research herds. The German research farm belongs to the federal state of Hesse in the center of

Germany, and the farm in Poland is close to the Baltic Sea. In Slovenia, data recording consid-

ered three commercial grazing herds located in mountainous regions in the western part of the

country, at 920 m to 970 m above sea level. In Switzerland, one original Braunvieh near

Lucerne and one Simmental herd in the region around Basel were chosen for the across-coun-

try analyses. All farming conditions reflect pasture-based production systems, allowing grazing

for at least 6 hours per day fromMay until November. Herd sizes ranged from 24 to 250 cows.

Phenotypic data

Sensor traits. For the electronic recording of behavior traits, dual-purpose cows were

equipped with sensors implemented in ear tags (Dutch CowManager system Agis Automati-

sering BV). The validation and testing phase of ear tag sensors under grazing conditions cov-

ered a period from 1 May 2016 until 31 June 2016 [68]. After one month of adaptation,

ongoing analyses considered sensor data from July 2016 until March 2018 from 319 cows.

Only cows with at least 30 consecutive days of sensor recording were included in the overall

database. Once implemented in the cow’s left ear, the sensor system uses a 3-dimensional

accelerometer to identify behavior categories based on location coordinates. The behavior cat-

egories were RMU, FEED, NACT, BACT, and HACT. In addition, the sensor systems use a

Table 4. Data structure for the cattle breeds included in multi-breed GWAS and genetic parameter estimations.

Country Breed No. of cows with sensor
behavior data

No. of genotyped cows with sensor
behavior data

No. of longitudinal sensor
behavior records

No. of sensor behavior records
per cow

DE DE_DSN 69 46 22,718 329.25

PL PL_BS 49 28 17,332 353.71

PL_DSN 66 51 24,386 369.49

Sl SI_Si 17 14 2,973 174.88

SI_BS1 20 20 3,617 180.85

SI_BS2 8 8 1,633 204.13

CH CH_OBV 45 36 11,944 265.42

CH_Si 45 43 12,446 276.58

DE_DSN = black and white dual-purpose (Germany); PL_BS = Brown Swiss (Poland); PL_DSN = black and white dual-purpose (Poland); Sl_Si = Simmental (Slovenia);

Sl_BS = Brown Swiss (Slovenia); CH_OBV = dual-purpose Original Braunvieh (Switzerland); CH_Si = Simmental (Switzerland).

https://doi.org/10.1371/journal.pone.0221973.t004
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digital surface temperature monitor to measure the mean hourly ET. The system detects RUM

based on the typical repetitive ear movement due to chewing and regurgitation. Feeding is

related to food intake, expressed through masticatory movement. The activity parameters are

subcategorized into BACT, HACT and NACT. The state of BACT describes any kind of mod-

erate ear movement resulting from walking, head shaking or other movements, which cannot

be associated with the specific repetitive ear movement during RUM or FEED. High activity is

due to increased BACT, e.g., during estrus periods and including mounting behavior. No

activity refers to minimal ear movements, while sleeping or resting. The hourly percentage of

time spent for every behavior category is transmitted through a wireless connection to a router.

Afterwards, the hourly percentages for behavior traits were transformed into daily time per-

centages. Whenever the sensor records a certain behavior, such as RUM, it does not assign this

time to another behavior trait. Additionally, to evaluate the five sensor behavior categories,

two welfare indices (WEL-IP andWEL-IC) were created following the welfare quality assess-

ment protocol1 [76] (Table 5). In this regard, sensor traits were assigned a score of 0, 1 or 2

according to physiological thresholds. WEL-IP was the sum of the scores from the different

sensor traits. WEL-IC based onWEL-IP, but considering additional constraints as described

in Table 6.

Production traits. Test-day records were from lactations 1 to 12 and considered the calv-

ing years from August 2015 until February 2018. Test-day MY, Fat%, Pro% and the log-trans-

formed somatic cell count (SCS) were available for 329 cows from Germany, Poland and

Switzerland. Descriptive statistics of the sensor traits, welfare indices and test-day traits are

listed in Table 7.

Genotypes

The five dual-purpose breeds, two additional breeds from Germany (DE_DN and DE_HF)

and one from Slovenia (Sl_HF) were genotyped with the Illumina Bovine 50K Bead chip ver-

sion 2, with the Illumina Bovine 50K Bead chip version 3, and with a customized bovine 50K

SNP chip (IDB V3), according to the Illumina Infinium assay protocol (Illumina Inc., San

Diego, CA, USA). Quality controls of the genotype data were conducted using PLINK software

[77], defining a minor allele frequency of 0.01 and a deviation from Hardy–Weinberg equilib-

rium of p< 0.00001. All SNPs had a call rate larger than 85%, and SNPs located on sex chro-

mosomes were excluded. Cows with a call rate lower than 80% for all loci were excluded.

Whenever the genomic relation between two animals was larger than 0.95, one animal was

excluded. Sporadic missing SNPs were imputed by the BEAGLE version 3.3.2 [78]. After SNP

data editing and imputation, 35,826 SNPs from 615 cows were available (Table 8), and 246

genotyped cows had sensor records.

The data used in the present study is available as supplementary file S1 File.

Table 5. Point assignment for welfare indices using the welfare quality assessment protocol1 [76].

Rumination Feeding Basic Active High Active Not Active

Min Opt Max Min Opt Max Min Opt Max Min Opt Max Min Opt Max

Range, %/d < 29.2 29.2–41.7 > 41.7 < 12.5 12.5–20.8 > 20.8 < 8.3 8.3–12.5 > 12.5 < 8.3 8.3–12.5 > 12.5 < 16.7 16.7–41.7 > 41.7

Range, h/d < 7 7–10 > 10 < 3 3–5 > 5 < 2 2–3 > 3 < 2 2–3 > 3 < 4 4–10 > 10

Points 0 2 1 0 2 1 0 2 1 1 2 0 1 2 0

Meaning Al Norm OK Al Norm OK Al Norm i.h. - Norm i.h. Al Norm Al

Opt = optimum (normal) behavior range; Al = alarming (check animal or management); Norm = normal; OK = harmless, but not as good as Norm; i.h. = possibly in

heat; the welfare index point of every observation can be calculated by summing the points for rumination, feeding, basic active, high active, and not active.

https://doi.org/10.1371/journal.pone.0221973.t005
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Population structure and breed assignment

PCA was conducted to account for potential population stratification prior to GWAS and to

explore the genetic diversity of the European cow dataset. PCA based on the genomic relation-

ship matrix was generated in GCTA [79]. In a second step, a breed assignment analysis was

conducted using the WIDDE program [16]. The WIDDE cattle database contained over

750,000 SNPs from 3,951 individuals, which belong to 129 different populations [16]. The

broad variety of local cattle populations in WIDDE represents the bovine genetic diversity and

covers the three main cattle groups, i.e., European and African taurine (Bos taurus) as well as

zebus (Bos indicus) [16]. The allele proximity between the genotyped populations from this

study and the populations represented in the world reference dataset in WIDDE were esti-

mated using supervised clustering [16]. A convergence criterion of 0.01 for log-likelihood val-

ues was defined when calculating the percentage of ancestry proportions between each

genotyped cow and the 129 populations from the WIDDE world reference dataset.

Genetic parameter estimations

For the estimation of genetic parameters, genomic and pedigree relationship matrices were

combined. In additional analyses, only the pedigree relationship matrix was considered. The

pedigree consisted of 8,798 animals and was traced back as far as possible. The oldest ancestors

in the pedigree were born in 1944 for Germany, in 1981 for Poland, in 1990 for Slovenia, and

Table 6. Composed welfare index classes based on the welfare quality assessment protocol1 [76].

Welfare index
classes

Meaning Pointsa Criteria

1 Excellent > 6 (7–
10)

1) at least 1 point in every sensor trait category; 2) rumination and feeding should have 2 points
according to Table 5.

2 Acceptable 5–9

3 Poor (health/welfare
impairment)

< 5

a Sum of welfare points across rumination, feeding, basic active, high active, and not active for each observation according to Table 5.

https://doi.org/10.1371/journal.pone.0221973.t006

Table 7. Descriptive statistics for sensor behavior and production traits.

Trait No. of observations No. of cows Mean SD Min. Max.

RUM 97,049 319 34.13 7.07 5.94 81.36

FEED 97,049 319 23.87 8.47 0.19 66.32

BACT 97,049 319 8.45 5.28 0.16 50.75

HACT 97,049 319 7.76 3.22 0.18 33.78

NACT 97,049 319 25.79 7.51 4.58 72.83

ET 97,049 319 24.66 4.59 2.23 38.28

WEL-IP 97,049 319 6.27 1.49 0 10

WEL-IC 97,049 319 2.04 0.42 1 3

MY 6,571 329 19.33 6.3 1.6 47.2

Fat% 6,546 329 4.1 0.67 1.84 7.98

Pro% 6,546 329 3.43 0.41 2.12 5.5

SCS 6,546 329 2.43 1.54 -1.32 10.5

RUM = rumination; FEED = feeding; BACT = basic active; HACT = high active; NACT = not active; ET = ear temperature; WEL-IP = welfare index point;

WEL-IC = welfare index class; MY = milk yield (in kg); Fat% = fat percentage; Pro% = protein percentage; SCS = somatic cell score.

https://doi.org/10.1371/journal.pone.0221973.t007
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in 1917 for Switzerland. Variance components of sensor traits were estimated via univariate

animal models using the AIREML procedure, as implemented in the DMU software package

[80]. The statistical model (1) in matrix notation was defined as follows:

y ¼ Xbþ Z1aþ Z2pþ e ð1Þ

where y was the observation vector for sensor traits and indices (RUM, FEED, NACT, BACT,

HACT, ET, WEL-IP andWEL-IC); b was the vector of fixed effects including the combined

breed-farm effect, the year-month effect for the measuring date, and the age of cows as a fixed

linear regression; a was the vector for additive genetic effects; p was the vector for permanent

environmental effects for the cows with repeated measurements; e was the vector of random

residual effects, and X, Z1, and Z2 were incidence matrices for b, a, and p, respectively. The

assumed variance-covariance structure was a ~ N (0, Ks2

a
), where s2

u
was the genetic variance,

K was the Amatrix, or the combinedHmatrix when blending A and the weighted genomic

relationship matrix (Gw) [81].Gw was calculated as follows:

Gw ¼ ð0:95� Gþ 0:05� A22Þ

where A22 is the submatrix of the pedigree-based relationship matrix for genotyped animals.

Estimated breeding values (EBV) from model 1 and consideration of the Amatrix were the

databases for the calculation of DRP according to Garrick et al. [82]. Only animals with a DRP

weight larger than 0.2 were considered for the ongoing GWAS [83].

The genetic-statistical model (2) used for test-day production traits and SCS based on the A

matrix was defined as follows:

y ¼ Xbþ Z1aþ Z2pþ e ð2Þ

where y was the observation vector for MY, Fat%, Pro%, and SCS; b was the vector of fixed

effects including the breed-farm and calving-year-season effects, and the lactation curve mod-

eled via Legendre polynomials of order three for days in milk; a was the vector for additive

genetic effects based on the Amatrix; p was the vector for permanent environmental effects

for the cows with repeated measurements; e was the vector of random residual effects, and X,

Table 8. Genotype data of five cattle breeds included in PCA,WIDDE and multi-breed GWAS.

Country Breed No. of cows No. of cows after SNP quality control

DE DE_DSN 266 266

DE_DN 20 20

DE_HF 50 50

PL PL_BS 34 34

PL_DSN 59 59

Sl Sl_Si 46 44

Sl_BS 36 36

Sl_HF 14 14

CH CH_OBV 48 46

CH_Si 48 46

DE_DSN = black and white dual-purpose (Germany); DE_DN = red and white dual-purpose (Germany);

DE_HF = Holstein Friesian (Germany); PL_BS = Brown Swiss (Poland); PL_DSN = black and white dual-purpose

(Poland); Sl_Si = Simmental (Slovenia); Sl_BS = Brown Swiss (Slovenia); Sl_HF = Holstein Friesian (Slovenia);

CH_OBV = dual-purpose Original Braunvieh (Switzerland); CH_Si = Simmental (Switzerland).

https://doi.org/10.1371/journal.pone.0221973.t008
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Z1, and Z2 were the incidence matrices for b, a, and p, respectively. Again, EBV were de-

regressed to obtain DRP for test-day production traits and SCS.

Multi-breed GWAS

Single-trait multi-breed GWAS was performed using the software package GCTA [79]. In this

regard, we considered the leave-one-chromosome-out (loco) option. Dependent variables (i.e.,

our phenotypes) were MEAN and DRP. For testing single-locus SNP effects, the following sta-

tistical model (3) was used:

y ¼ XbþWgþ Zuþ e ð3Þ

where y was the vector of DRP or MEAN for RUM, FEED, NACT, BACT, HACT, ET,

WEL-IP, and WEL-IC, as well as DRP for production traits; b was a vector of fixed effects con-

sidering only the overall mean for DRP and additionally the breed-farm effect for MEAN; g

was the vector for additive fixed effects of the candidate SNP; u was the vector for polygenic

effects considering all SNPs but excluding SNPs from the chromosome where the candidate

SNP was located; and e was the vector of random residual effects; X,W, and Z were incidence

matrices for b, g, and u, respectively. The Bonferroni threshold for SNP associations was pBonf
= 0.05/(number of SNP) = 0.05/35,826 = 4.47 x 10−7. The FDR as introduced by Benjamini

and Hochberg [84] was a further significance threshold for genome-wide associations. The

FDR to detect candidate SNPs for behavior traits and test-day production traits was set to 20%.

Candidate gene annotation

The associated potential candidate genes were identified via a gene-based test in GCTA and

applying the fastBAT option [48]. The database (version UMD3.1), including gene locations

and start and end positions for the bovine genes, was downloaded from Ensembl [50]. A total

of 24,616 gene ID entries were originally available in the database, but only 17,545 genes on

chromosomes 1 to 29 were included in further analyses (i.e., exclusion of pseudogenes accord-

ing to [76,85,86]). In the first step, all SNPs from the GWAS were mapped to the genes, consid-

ering a window of 50 kb upstream and 50 kb downstream from the genes. Subsequently, P-

values considering the set of SNPs within the window were used simultaneously for candidate

gene detection. The P-values of genes were adjusted according to FDR (significance

threshold< 20%). In the last step, physiological functions and positions of candidate genes

were inferred based on information from the Ensembl [50], NCBI [87], UniProt [88] and Gen-

ecard [61] databases.

Causal associations

In epidemiology, Mendelian randomization uses genetic variants as instrumental variables to

test for the causal inference between an exposure and an outcome [89]. Hence, we assume an

instrumental variable z, representing the SNP genotype. The exposure x considered one of the

behavior traits, and the outcome y was the test-day productivity or SCS. Assuming uncorre-

lated z and uncorrelated residuals when regressing y on x and covðz; xÞ 6¼ 0, the regression

coefficient of b̂yx was [90]:

b̂yx ¼
covðz; yÞ

covðz; xÞ
¼

covðz;yÞ

varðzÞ

covðz;xÞ

varðzÞ

¼
b̂yz

b̂xz
ð4Þ

where b̂yz and b̂xz were the estimated SNP effects from GWAS when using y and x as
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phenotypes, respectively. The variance of b̂yx was:

varðb̂yxÞ ¼
varðeyxÞ

n � varðxÞ � R2

xz

¼
varðyÞ � ð1� r

2

xyÞ

n � varðxÞ �
2�p�ð1�pÞ�b̂2xz

varðxÞ

¼
varðyÞ � ð1� r

2

xyÞ

n � 2 � p � ð1� pÞ � b̂2xz
ð5Þ

where varðexyÞ was the residual variance when fitting x as a fixed regression to explain y; n was

the sample size; varðxÞ was variance of trait x; and R2

xz was the proportion of variance x

explained by z, which equaled
2�p� 1�pð Þ�b̂2xz

varðxÞ
. In Eq (5), varðyÞ was the variance of trait y; r2

xy was the

squared correlation between trait x and trait y; p was the allele frequency, and b̂2xz was the

squared SNP effect estimate from GWAS for trait x. The test statistic
TMR ¼ b̂2yx

varðb̂yxÞ
followed w2

1
[91],

which was used to test the significance of b̂yx.

To fulfill the precondition of covðz; xÞ 6¼ 0, 445 homologous genes in the human and

bovine genome that were involved in the biological process of behavior were searched and

downloaded from AmiGO2, a Gene Ontology database [85,86]. A total of 1,011 SNPs within a

window of 50 kb up- and downstream of the 445 homologous genes were considered.

Afterwards, the GWAS estimates for the 1,011 SNP were transmitted into a self-modified

version of the GSMR package [92] in R to calculate the variance of b̂yx for a small sample size.

The aforementioned SNP was filtered according to the following criteria: 1) P-value of the

SNP lower than 0.05 to meet the assumption of covðz; xÞ 6¼ 0; and 2) LD between SNP lower

than 0.25 to prune highly correlated SNPs. After filtering, the number of SNPs for behavior

traits and welfare indices varied between 36 (for BACT) and 64 (for RUM).

Supporting information

S1 Fig. Manhattan plot and Q-Q plot from GWAS based on the mean (MEAN) and de-

regressed proofs (DRP) of daily not active time. The red line is the significance threshold

line for the Bonferroni correction of 5%, and the green dots represent significant SNP accord-

ing to the false discovery rate of 20%.
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rumination time. The red line is the significance threshold line for the Bonferroni correction

of 5%, and the green dots represent significant SNP according to the false discovery rate of

20%.
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feeding time. The red line is the significance threshold line for the Bonferroni correction of

5%, and the green dots represent significant SNP according to the false discovery rate of 20%.

(PDF)

S4 Fig. Manhattan plot and Q-Q plot from GWAS based on de-regressed proof of test-day

fat percentage. The red line is the significance threshold line for the Bonferroni correction of

5%, and the green dots represent significant SNP according to the false discovery rate of 20%.

(PDF)

S1 Table. Potential candidate genes associated with animal behavior traits.

RUM = rumination; FEED = feeding; BACT = basic active; BTA = Bos taurus chromosome;

DRP = de-regressed proof; MEAN =mean of observations; functions derived from Ensembl1,
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ABSTRACT

The most common approach in dairy cattle to prove 
genotype by environment interactions is a multiple-trait 
model application, and considering the same traits in 
different environments as different traits. We enhanced 
such concepts by defining continuous phenotypic, 
genetic, and genomic herd descriptors, and applying 
random regression sire models. Traits of interest were 
test-day traits for milk yield, fat percentage, protein 
percentage, and somatic cell score, considering 267,393 
records from 32,707 first-lactation Holstein cows. Cows 
were born in the years 2010 to 2013, and kept in 52 
large-scale herds from 2 federal states of north-east 
Germany. The average number of genotyped cows per 
herd (45,613 single nucleotide polymorphism mark-
ers per cow) was 133.5 (range: 45 to 415 genotyped 
cows). Genomic herd descriptors were (1) the level 
of linkage disequilibrium (r2) within specific chromo-
some segments, and (2) the average allele frequency for 
single nucleotide polymorphisms in close distance to 
a functional mutation. Genetic herd descriptors were 
the (1) intra-herd inbreeding coefficient, and (2) the 
percentage of daughters from foreign sires. Phenotypic 
herd descriptors were (1) herd size, and (2) the herd 
mean for nonreturn rate. Most correlations among herd 
descriptors were close to 0, indicating independence of 
genomic, genetic, and phenotypic characteristics. Heri-
tabilities for milk yield increased with increasing intra-
herd linkage disequilibrium, inbreeding, and herd size. 
Genetic correlations in same traits between adjacent 
levels of herd descriptors were close to 1, but declined 
for descriptor levels in greater distance. Genetic corre-
lation declines were more obvious for somatic cell score, 
compared with test-day traits with larger heritabilities 
(fat percentage and protein percentage). Also, for milk 
yield, alterations of herd descriptor levels had an obvi-

ous effect on heritabilities and genetic correlations. By 
trend, multiple trait model results (based on created 
discrete herd classes) confirmed the random regression 
estimates. Identified alterations of breeding values in 
dependency of herd descriptors suggest utilization of 
specific sires for specific herd structures, offering new 
possibilities to improve sire selection strategies. Regard-
ing genomic selection designs and genetic gain transfer 
into commercial herds, cow herds for the utilization in 
cow training sets should reflect the genomic, genetic, 
and phenotypic pattern of the broad population.
Key words: genotype × environment interactions, 
test-day production trait, genetic and genomic herd 
descriptors, random regression model

INTRODUCTION

The existence of genotype by environment interac-
tions (G×E) indicates that different genotypes show 
different trait reactions in different environments. Ob-
vious G×E imply re-rankings of genotypes in different 
environments. The physiological background might 
be that different genes are switched on and off with 
environmental changes. Such genomic determinants of 
G×E were also studied via gene expressions (Grishkev-
ich and Yanai, 2013).

The general quantitative-genetic proof for the detec-
tion of G×E is based on Falconer’s concept (Falconer 
and Mackay, 1996), that is, defining same traits in dif-
ferent environments as different traits, and applying 
multiple trait models. As an indicator for a possible 
G×E, Robertson (1959) recommended a genetic cor-
relation threshold of 0.80. During the past decades, 
a multiplicity of G×E studies applied the classical 
multiple trait approach (König et al., 2005). Genetic 
correlations substantially lower than 0.80 were identi-
fied for pronounced differences of production systems 
within countries [e.g., “grazing” versus “conventional” 
(Boettcher et al., 2003)], or for extremely diverse coun-
tries [e.g., “Kenya” versus “United Kingdom” (Ojango 
and Pollott, 2002)]. König et al. (2002) stretched this 
concept by stratifying data according to production 
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systems plus considering cow sire characteristics. Cow 
sire characteristics addressed the sire origin (i.e., the 
creation of specific data sets only including daughters 
from foreign proven sires, or proven sires from Ger-
many, or national test bulls). Production systems were 
defined as family farms from the western (west) versus 
large-scale farms from the eastern (east) part of Ger-
many. Genetic correlations for protein yield defined in 
the east and west as different traits were close to 1 for 
the cow data set from proven sires, but substantially 
decreased when exclusively considering daughters from 
test bulls. König et al. (2002) assumed the effect of 
the size of the data sets (substantially lower number 
of cows from test bulls), and of genetic connectedness 
between the data sets, on genetic correlation estimates. 
Recently, they continued their previous study by creat-
ing identical data sets for the different cow sire groups. 
In this regard, “identical datasets” implied an identical 
number of cow records, and an equal number and dis-
tribution of daughter records per sire category (Table 
1). However, the general trend still existed: genetic 
correlations decreased for an increased herd size in the 
east region, and the effect was more pronounced in test 
bull daughters compared with daughters from proven 
sires (Table 1). One possible explanation might be the 
effect of selection strategies. In a theoretical approach, 
Via and Lande (1985) studied G×E and additionally 
considered the type of selection on phenotypic plas-
ticity. Selection itself influenced genetic architectures 
within populations (Bastiaansen et al., 2012).

Results from G×E studies (Table 1) were the mo-
tivation for ongoing research in this regard (i.e., to 
identify possible effects of genetic or genomic herd or 
sub-population characteristics on genetic correlations 

for the same traits recorded in different environments). 
In the genomic era, the availability of high-throughput 
genomic SNP marker data from commercial cows al-
lows detailed insight into specific chromosomal regions 
and genetic architectures. In the German “cow calibra-
tion group” project for Holstein cows (Yin and König, 
2016), more than 20,000 cows from large-scale herds 
have been genotyped on a 50K SNP platform. For this 
data structure, Naderi et al. (2016) identified the effect 
of disease incidences in cow training sets on accuracies 
of genomic predictions. In consequence, they suggested 
a training set composition reflecting disease incidences 
in the broad population.

Random regression or reaction norm methodology 
was applied to study the effect of continuous environ-
mental herd descriptors or phenotypic herd means on 
genetic (co)variance components. For example, G×E 
for production and functional traits were identified 
along gradients for within-herd temperature-humidity 
indices (Brügemann et al., 2011, 2013), or when consid-
ering mean values for the intra-herd BCS (Calus and 
Veerkamp, 2003). In the genomic era, random regres-
sion models or reaction norm models were enhanced 
by modeling genomic instead of pedigree relationships 
(Yin et al., 2014), by incorporating one-step methodol-
ogy (Tsuruta et al., 2015), and by estimating intercept 
and slope of the regression line using SNP marker 
data (Streit et al., 2013; Nguyen et al., 2016). So far, 
availability of genomic marker data on an animal level 
enhanced statistical modeling. Furthermore, on a herd 
level, genetic and genomic characteristics of herds in-
cluded in cow training sets might influence (1) genetic 
(co)variance components between the 2 strata of data 
(training set and remaining population), and in conse-

Table 1. Structure of the data and genetic correlations for protein yield between strata of the data for 305-d lactation protein yield1

Region

 
Sire  
category

No. of cows No. of  
sires in  
common

Average no. of daughters  
of sires in common

rg  Reference2A  B Region A Region B Region A Region B

West East All 43,926 94,335 586 51 91 0.93 A
West East Proven 26,149 77,414 247 81 169 0.96 B
West East Test bull 9,054 11,556 119 42 2 0.88 B
West East>150 All 43,926 34,368 291 68 65 0.87 A
West East>150 Proven 26,149 27,999 161 51 97 0.89 B
West East>150 Test bull 9,054 4,906 105 18 2 0.79 B
West East All 7,013 7,004 100 31 12 0.91 C
West East Proven 7,000 6,996 100 31 12 0.95 C
West East Test bull 7,011 7,003 100 31 12 0.84 C
West East>150 All 4,500 4,497 291 13 6 0.84 C
West East>150 Proven 4,499 4,506 161 13 6 0.88 C
West East>150 Test bull 4,502 4,501 85 13 6 0.74 C

1West and east denote regions (states) from western and eastern Germany; East>150 denotes large-scale herds with at least 150 cows from first 
lactation per herd-calving year.
2A: König et al. (2005); B: König et al. (2002); C: König (2017).
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quence, (2) genomic prediction accuracies. The level of 
relationships between training and testing sets was one 
important parameter influencing genomic prediction 
accuracies (e.g., Habier et al., 2010; Clark et al., 2012; 
Pszczola et al., 2012). However, differences in predic-
tion accuracies and genetic parameter estimates were 
observed when either using pedigree- or genomic-based 
relationship matrices (Veerkamp et al., 2011).

In consequence, in the present study, we used pheno-
types and high-throughput genotypes (50K SNP chip 
panel) from cows kept in large-scale contract herds to 
create herd descriptors on phenotypic (herd size and 
nonreturn rate), genetic (inbreeding and daughter per-
centage from foreign sires), and genomic [level of link-
age disequilibrium (LD) and allele frequencies] scales. 
The aims of this study were (1) to estimate genetic 
parameters in dependency of herd descriptors, and (2) 
to estimate genetic correlations in same traits across 
herd descriptor levels. Results indicate the effect of 
herd characteristics on quantitative-genetic (co)vari-
ance components and breeding values in the context of 
possible G×E, with practical relevance when selecting 
cow herds for their use in cow calibration groups.

MATERIALS AND METHODS

Cow Traits

The test-day data set consisted of 267,393 records 
from 32,707 first lactation Holstein cows, born in 2010 
to 2013. Test-day traits included milk yield (MY), fat 
percentage (fat%), protein percentage (Pro%), and 
SCS. For all test-day traits, cows had at least 3 repeat-
ed measurements. Descriptive statistics for the test-day 
traits are listed in Table 2. Cows were from 52 large-
scale herds, located within 2 federal states of north-east 
Germany. Herd size ranged from 246 to 2,067 cows, 
with an average of 654.14 cows per herd. The average 
number of records per contemporary group (herd-test-
day) was 139.41. The 32,707 cows were daughters from 
681 sires, indicating an average of 48.03 daughters per 
sire. The daughter distribution within sires was as fol-
lows: 150 sires had 2 to 10 daughters, 332 sires had 11 
to 40 daughters, 149 sires had 41 to 100 daughters, and 
50 sires had more than 100 daughters. The most influ-

ential sire had 938 daughters. Each sire had daughter 
records in at least 2 different herds.

Herd Descriptors

Genomic Herd Descriptors. Genotyping was per-
formed with the Illumina Bovine 50K SNP BeadChip 
V2 (applied to 4,569 cows; Illumina, San Diego, CA), 
and with the Illumina Bovine Eurogenomics 10K low 
density chip (applied to 2,047 cows). The low density 
genotypes were imputed to the 50K panel as used in the 
national official German genomic evaluations, resulting 
in 45,613 SNP for all animals. The average number of 
genotyped cows per herd was 133.5, ranging from 45 to 
415 genotyped cows.

LD. The level of LD between all possible SNP pairs 
within 25 kb windows was calculated based on pairwise 
r2 (Hill and Robertson, 1968), and applying the PLINK 
software package (Purcell et al., 2007). Intra-herd r2 
was the average r2 from all SNP pairs, considering (1) 
the genotyped cows in the respective herd, and (2) 
SNP with a minor allele frequency of 0.05 within the 
25-kb window. First, we focused on 397 SNP within 
the 40- to 60-Mbp segment on chromosome 6 (rchr6

2), 
because in a meta-analysis (Khatkar et al., 2004), QTL 
in this region contributed with significant effects on 
milk yield, fat yield, protein yield, fat percentage, and 
protein percentage. Second, we calculated intra-herd r2 
based on 786 SNP within the 0 to 40 Mbp segment on 
chromosome 14 (rchr14

2), to consider LD in the DGAT1 
region (Thaller et al., 2003).

Allele Frequency. We calculated the intra-herd 
allele frequency (p) for one specific SNP (ARS-BFGL-
NGS-4939) located on chromosome 14. The exact posi-
tion for this SNP is at 1,801,116 bp in the DGAT1 gene 
(Jiang et al., 2010; Minozzi et al., 2013). The DGAT1 
gene start and end positions are 1,795,351 and 1,804,562 
bp on chromosome 14. The DGAT1 K232A polymor-
phism explained 50% of the genetic variance for fat 
percentage (Schennink et al., 2007). Accordingly, there 
is selection pressure on the DGAT1 gene, with different 
intensity and with different direction in different herds. 
Selection itself has a strong effect on the ARS-BFGL-
NGS-4939 allele frequency. Allele frequency changes 
might influence selection response.

Table 2. Descriptive statistics for test-day traits

Trait No. of records No. of cows Mean SD Minimum Maximum

Milk yield (kg) 267,393 32,707 29.71 6.35 2.00 67.20
Fat percentage (%) 267,393 32,707 3.89 0.67 1.60 10.31
Protein percentage (%) 267,393 32,707 3.36 0.33 2.03 6.86
SCS 266,849 32,620 2.38 1.59 −3.64 9.64
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Genetic Herd Descriptors

Inbreeding Coefficient. Intra-herd pedigree-based 
inbreeding coefficients (F) were calculated using the 
software package CFC (Sargolzaei et al., 2006). We 
considered all of the 1,292,113 animals in the pedigree 
file when calculating the inbreeding coefficients of the 
32,707 active cows.

Percentage of Cows with a Non-European 
Union Sire. We calculated the percentage of cows with 
a non-European Union (EU) sire in each herd (sire%) 
based on sire origin information from national genetic 
evaluation databases. Non-EU sires mostly included 
Holstein sires from the United States and Canada (95% 
of the non-EU sires). Among the 681 sires, 77 non-EU 
sires were from the United States, 15 non-EU sires were 
from Canada, and 1 non-EU sire was from Australia. 
The remaining sires were from European countries, 
especially Germany.

Phenotypic Herd Descriptors

Herd Size. We considered cows from calving years 
2010 to 2013 for the calculation of intra-herd herd sizes 
(HS).

Nonreturn Rate After 56 d. We characterized 
herds on a continuous phenotypic “cow trait scale” via 
herd means for nonreturn rates after 56 d (NRR56) 
from the calving years 2010 to 2013. Nonreturn rate as 
a phenotypic descriptor reflects the effect of natural se-
lection, which occurred in female fertility traits rather 
than in production traits (Bishop, 1964).

Descriptive statistics for all herd descriptors are 
given in Table 3. To prepare data for the multiple trait 
approach, we grouped herds into distinct classes ac-
cording to their herd descriptor means. For all herd 
descriptors (rchr6

2, rchr14
2, p, F, sire%, HS, and NRR56), 

we created 3 groups, defined as small, middle, and high. 
We ordered herds according to herd descriptors, and we 
allocated an equal number of herds to small, middle, 
and high; the small group included the first 17 herds 
with the smallest value for the respective descriptor, 
middle represented herds from rank 18 to rank 33, and 

the remaining 17 herds with the largest means were 
considered in the high herd group. In a random herd 
allocation scenario (random), herds randomly received 
consecutive numbers from 1 to 52. According to the as-
signed random numbers, herds were allocated to small, 
middle, or high. We used 50 replicates for the random 
herd number allocations. Hence, presented genetic pa-
rameters were averages from the 50 replicates, along 
with corresponding standard deviation.

Statistical Models

Two different statistical models based on the AI-
REML algorithm as implemented in the DMU pack-
age (Madsen and Jensen, 2013). The first model was a 
random regression sire model (RRM), using the herd 
means for rchr6

2, rchr14
2, p, F, sire%, HS, and NRR56 as 

continuous descriptors. In matrix notation, the RRM 
was defined as follows:

 y = Xb + Zu + Wp + e, 

where y was a vector of records for test-day traits; b was 
a vector of fixed effects including herd-test-day, fixed 
regressions on age at first calving (in month) modeled 
with Legendre polynomials of order 3, and fixed regres-
sions on DIM also modeled with Legendre polynomials 
of order 3; u was a vector of random regression coef-
ficients for additive-genetic sire effects modeled with 
linear regressions for the continuous herd descriptors 
(consecutive runs for the different herd descriptors); p 
was a vector of permanent environmental effects for the 
cows; and e was a vector of random residual effects. 
X, Z, and W were incidence matrices for b, u, and 
p, respectively. Random effects were assumed to follow 
a normal distribution with zero means. The variance-
covariance structure for random effects was

 var ,
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Table 3. Descriptive statistics for the continuous herd descriptors

Herd descriptor Mean SD CV Minimum Maximum

r2 on chromosome 6 between 40 and 60 Mbp (rchr6
2) 0.28 0.01 0.04 0.25 0.32

r2 on chromosome 14 between 0 and 40 Mbp (rchr14
2) 0.31 0.01 0.03 0.29 0.36

Allele frequency of the SNP located in the DGAT1 gene (p) 0.69 0.05 0.07 0.61 0.82
Pedigree-based inbreeding coefficient (F) 0.05 0.003 0.06 0.04 0.05
Percentage of cows with a non-European Union sire (sire%) 0.10 0.08 0.80 0.00 0.39
Herd size (HS) 654.14 391.51 0.60 246 2,067
Nonreturn rate after 56 d (NRR56) 0.50 0.07 0.14 0.35 0.68
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where G was a 2 × 2 (co)variance matrix of random 
regression coefficients for the additive genetic effect; Au 
was an additive genetic relationship matrix for sires; σp

2 

and σe
2 were variances for the permanent environmental 

and residual effect, respectively; Ip and In were identity 
matrices for p cows and n observations, respectively; 
and ⊗ denotes the Kronecker product.

Second, we applied multiple trait repeatability sire 
models (MTRM). Following the concept by Falconer 
and Mackay (1996), we defined same traits recorded 
in different herd descriptor groups as different traits. 
Accordingly, we assumed nonexisting phenotypic and 
residual covariances among traits, because the same 
cow only represented one herd descriptor class.

In matrix notation, the MTRM including the 3 traits 
was
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where y1, y2, and y3 were vectors of test-day records 
for small, middle, and high, respectively; b1, b2, and b3 
were vectors of fixed effects for the 3 traits including 
the same fixed effects as specified in the RRM (apart 
from the continuous herd descriptor); u1, u2, and u3 
were vectors of additive-genetic sire effects for the 3 
traits; p1, p2, and p3 were vectors of permanent envi-
ronmental effects for the cows in the 3 data sets; and e1, 
e2, and e3 were vectors for the corresponding residual 
effects. X1, X2, X3, Z1, Z2, Z3, W1, W2, and W3 were 
incidence matrices for b1, b2, b3, u1, u2, u3, p1, p2, and 
p3, respectively. The variance-covariance structure for 
random effects was as follows:
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where g11, g22, and g33 were additive-genetic sire effects 
for the 3 traits; g12 and g21 were additive genetic co-
variances for sire effects between traits in small and 
middle; g13 and g31 were additive-genetic covariances 
for sire effects between traits in small and high; g23 and 
g32 were additive-genetic covariances for sire effects 

between traits in middle and high; σp1
2

, σp2
2

, and σp3
2  

were the variances for permanent environmental cow 
effects for the 3 traits; Ip1 , Ip2 , and Ip3  were identity 

matrices for the cows with records for the 3 traits; and 
r11, r22, and r33 were residual variances for the 3 traits.

RESULTS AND DISCUSSION

Characteristics of Herd Descriptors

Averaged r2 for the segment on chromosome 6 was 
0.28, and 0.31 within the segment on chromosome 14, 
both with small SD of 0.01 (Table 3). A small range for 
intra-herd LD for the 52 herds from the same region 
indicates a similar breeding history. The slightly higher 
r2 in the DGAT1 region compared with the average r2 of 
pairwise SNP within a 25 kb distance across the whole 
genome is due to intensive selection on milk production 
traits in the past decades (Grisart et al., 2002). For 
the whole genome, Qanbari et al. (2010) reported a 
slightly larger average r2 value for a German Holstein 
sub-population, but their analysis based on intensively 
pre-selected potential bull dams and bull sires. Intra-
herd rchr14

2 within the DGAT1 segment was moderately 
correlated with intra-herd rchr6

2 (0.41; Table 4). Never-
theless, among all herd descriptors, this was one of the 
strongest associations. The correlation coefficient was 
slightly larger (0.47) between intra-herd rchr14

2 and the 
intra-herd inbreeding coefficient. The correlation of 0.25 
between rchr6

2 and F also reflects the effect of selection 
on genomic architecture characteristics. In analogy to 
intra-herd r2-values, intra-herd inbreeding coefficients 
varied within a small range from 0.04 to 0.05 (Table 
3). Hence, inbreeding in the sub-population including 
only 52 herds from a specific region in the eastern part 
of Germany does not reflect the broader variation of 
within-herd inbreeding as identified in the former west 
Germany (König and Simianer, 2006).

Intra-herd allele frequencies for the SNP located in 
the DGAT1 gene were in a broader range from 0.61 to 
0.82. Also for this genomic herd descriptor, the coef-
ficient of variation was quite small (0.05). Nevertheless, 
the allele frequency variations across herds depict the 
different production trait selection strategies, that is, 
a fraction of herds with a stronger focus on an allele 
A (increasing milk yield, but decreasing fat percent-
age), and other herds favoring the opposite allele B 
(decreasing milk yield, but increasing fat percentage). 
The correlation coefficient between p and rchr14

2 was 
0.28. The negative correlation between NRR56 and F 
(−0.27) was in line with previous findings by Cassell 
et al. (2003), who argued that increasing inbreeding 
accumulates harmful recessive alleles in the progenies.
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Correlations were weak among the remaining herd 
descriptors. This is especially true when correlating 
phenotypic herd descriptors reflecting the herd envi-
ronment (HS) or the herd management (NRR56) with 
genomic descriptors. The generally weak to moderate 
correlations indicate independence among genomic, 
genetic, and phenotypic characteristics. Low antagonis-
tic correlations were identified between NRR56 with 
LD descriptors (i.e., −0.14 with rchr6

2 and −0.17 with 
rchr6

2). Hence, a better intra-herd nonreturn rate was 
associated with a lower level of LD. In such a context 
[i.e., assuming the effect of selection intensity on the 
LD structure (Pimentel et al., 2013)], antagonistic cor-
relations between production and female fertility traits 
were especially identified in Holstein herds, which were 
intensively selected for milk yield over decades (König 
et al., 2008). In contrast, in the dual-purpose cattle 
population Deutsches Schwarzbuntes Niederungsrind 
(the founder population for Holstein, limited selection 
on milk yield), levels of LD were lower than in the 
Holstein population, and correlations between MY and 
fertility were close to zero (Jaeger et al., 2016).

Genetic Parameters for Test-Day Traits  
on Continuous Herd Descriptor Scales/Within  
Herd Descriptor Classes

Genomic Herd Descriptors. With regard to rchr6
2, 

and considering the narrow herd interval from 0.25 to 
0.32, heritabilities for test-day traits SCS and Pro% 
were quite stable (Figure 1A). As expected, among 
all traits, heritabilities were lowest in the range from 
0.10 to 0.12 for the functional trait SCS. Only a minor 
effect of rchr6

2 on heritabilities for SCS was assumed, 
because identified QTL in this region (Khatkar et al., 
2004) indicate intensified selection on milk volume and 
content traits Pro% and fat%, but not on low heritabil-
ity SCS. Accordingly, we observed an obvious effect of 
intra-herd rchr6

2 on heritabilities for MY and fat% [i.e., 
a heritability increase with rchr6

2 > 0.29 (Figure 1A)]. 
Theoretically, larger LD between markers represents 
that markers are closely linked among each other, and 
that those markers (same genetic variants) are trans-
mitted from parents to offspring (Falconer and Mackay, 
1996). In consequence, the heritability increase for MY 
and fat% with increasing rchr6

2 indicates that markers 
in herds with higher rchr6

2 capture QTL in this region 
of the genome. This is in line with previous findings 
(Khatkar et al., 2004), pointing out that this segment 
on chromosome 6 significantly contributed to milk pro-
duction traits. Obvious reactions of genetic variances 
for MY and fat% on LD characteristics might be due 
to selection. Strong selection intensities on the cow-sire 

pathway of selection were identified for MY and fat% 
in worldwide Holstein populations in the past decades 
(Powell et al., 2003), but cow-sire selection was less 
intensive for female fertility and SCC (Powell et al., 
2003; Miglior et al., 2005).

Heritabilities from the MTRM (Table 5) for test-day 
traits in the 3 rchr6

2 herd classes, small, middle, and 
high, confirmed the results from the RRM (i.e., larger 
heritabilities for MY and fat% within high compared 
with small or middle). For SCS (in analogy to the RRM 
results), we found lowest heritabilities in the high intra-
herd rchr6

2 class. However, heritability differences in the 
different classes were minor, representing the range of 
standard errors.

Genetic correlations in same test-day traits were 
close to 1 for neighboring intra-herd rchr6

2 values, but 
decreased with increasing rchr6

2 distances (Figure 1B). 
This was especially the case for MY, but also for SCS. 
With regard to MY and SCS, genetic correlations be-
tween the lowest and the highest rchr6

2 herd were 0.35 
for both traits. Genetic correlations lower than 0.80 
indicate G×E (Robertson, 1959), and a re-ranking of 
animals when performing in the different genomic herd 
environments. Also for the MTRM (Table 5), genetic 
correlations were larger when correlating same traits in 
small and middle or in middle and high, compared with 
the more distant herd classes small and high. Because 
of the relevance of this chromosome 6 segment on milk 
volume, such effects were assumed for MY, but not for 
SCS. One argument addresses the general sensitivity 
of SCS (sensitivity in terms of altering genetic covari-
ances and genetic correlations) in G×E studies. Using 
classical environmental categories (e.g., geographical 
regions, sea level, or organic versus conventional), ge-
netic correlations were always close to 1 for test-day 
production traits, but declined for SCS. This was the 
case for Holstein (Nauta et al., 2006) as well as for local 

Table 4. Correlations among continuous herd descriptors1

Item

Herd descriptor

rchr14
2 p F Sire% HS NRR56

rchr6
2 0.41 −0.06 0.25 0.12 −0.12 −0.14

rchr14
2  0.28 0.47 −0.16 0.07 −0.17

p   −0.11 0.13 0.06 −0.01
F    −0.24 0.13 −0.27
Sire%     0.18 −0.05
HS      −0.08

1rchr6
2 = r2 on chromosome 6 between 40 and 60 Mbp; rchr14

2 = r2 on 
chromosome 14 between 0 and 40 Mbp; p = allele frequency of the 
SNP located in the DGAT1 gene; F = pedigree-based inbreeding coef-
ficient; sire% = percentage of cows with a non-European Union sire; 
HS = herd size; NRR56 = nonreturn rate after 56 d.
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Table 5. Heritabilities (diagonal) and genetic correlations (above diagonal) ± SE for same test-day traits in different herd classes defined as small, middle, and high according to 
genomic herd descriptors1

Item

Milk yield

 

Fat %

 

Protein %

 

SCS

Small Middle High Small Middle High Small Middle High Small Middle High

rchr6
2             

 Small 0.24 ± 0.03 0.80 ± 0.05 0.79 ± 0.06 0.35 ± 0.03 0.96 ± 0.02 0.95 ± 0.02 0.40 ± 0.03 0.96 ± 0.02 0.92 ± 0.03 0.09 ± 0.01 0.78 ± 0.05 0.67 ± 0.07
 Middle  0.25 ± 0.03 0.79 ± 0.06  0.38 ± 0.03 0.91 ± 0.03  0.40 ± 0.04 0.84 ± 0.04  0.10 ± 0.02 0.76 ± 0.09
 High   0.27 ± 0.03   0.44 ± 0.03   0.38 ± 0.03   0.07 ± 0.01
rchr14

2             
 Small 0.27 ± 0.03 0.90 ± 0.04 0.80 ± 0.04 0.32 ± 0.03 0.94 ± 0.02 0.87 ± 0.02 0.39 ± 0.03 0.97 ± 0.02 0.94 ± 0.02 0.08 ± 0.01 0.84 ± 0.06 0.83 ± 0.07
 Middle  0.25 ± 0.02 0.85 ± 0.05  0.37 ± 0.03 0.93 ± 0.03  0.36 ± 0.04 0.92 ± 0.03  0.10 ± 0.01 0.78 ± 0.07
 High   0.36 ± 0.03   0.44 ± 0.03   0.33 ± 0.03   0.07 ± 0.01
p             
 Small 0.21 ± 0.03 0.94 ± 0.04 0.89 ± 0.04 0.33 ± 0.03 0.98 ± 0.02 0.93 ± 0.03 0.44 ± 0.04 0.95 ± 0.02 0.93 ± 0.03 0.09 ± 0.01 0.90 ± 0.07 0.80 ± 0.07
 Middle  0.23 ± 0.03 0.76 ± 0.05  0.32 ± 0.03 0.94 ± 0.02  0.36 ± 0.03 0.91 ± 0.03  0.09 ± 0.01 0.84 ± 0.05
 High   0.32 ± 0.03   0.37 ± 0.03   0.40 ± 0.03   0.07 ± 0.01

1rchr6
2 = r2 on chromosome 6 between 40 and 60 Mbp; rchr14

2 = r2 on chromosome 14 between 0 and 40 Mbp; p = allele frequency of the SNP located in the DGAT1 gene.
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to 0.80, specific sires should be selected for specific ge-
nomic herd architectures.

With regard to heritabilities for test-day traits on the 
continuous to rchr14

2 scale (Figure 2A), again we iden-
tified lowest values in a narrow range (0.11–0.13) for 
SCS. In analogy with the rchr6

2 descriptor, heritabilities 
for MY and fat% gradually increased with increasing 
levels for rchr14

2. Among all test-day traits, the highest 
heritability of 0.53 for fat% was observed at the high-
est rchr14

2 level. The increase of heritabilities for MY 
and fat% with increasing intra-herd rchr14

2, and also the 
larger extent of LD for the chromosome 14 segment 
compared with the segment on chromosome 6, might be 
due to the pronounced effect of the DGAT1 gene. The 
segment from 1,463,676 to 2,117,455 bp on chromosome 
14 explained 41.4% of the total SNP variance for fat% 
(van Binsbergen et al., 2012), reflecting the variance 
proportion (31%) directly explained by the DGAT1 
K232A polymorphism (Grisart et al., 2002). Heritabili-
ties for Pro% slightly decreased with increasing intra-
herd rchr14

2. In Holstein populations, allele substitution 
effects for the DGAT1 K232A polymorphism on Pro% 
were quite small, in the range from 0.05% (Kühn et 
al., 2004) to 0.08% (Thaller et al., 2003). With regard 
to the MTRM, heritabilities for MY and fat% were 
also largest in the herd class high (Table 5). Also the 
slight heritability decrease for Pro% from small to high, 
and the quite constant SCS heritabilities for all 3 herd 
classes, confirmed RRM estimates.

For the RRM applications (Figure 2B), genetic cor-
relations of 0.63 for fat%, of 0.67 for SCS, and of 0.37 
for MY, were quite small between the minimum and 
maximum rchr14

2 levels, suggesting a gradually changing 
genetic background of the 3 test-day traits in depen-
dency of rchr14

2. In general, with RRM and time depen-
dent covariates, estimates at the “extreme ends of the 
time scale” differed from the remaining scale levels and 
were associated with large standard errors (Gernand 
and König, 2014). However, in the present study for 
the rchr14

2 descriptor, standard errors of genetic correla-

tions for fat%, Pro%, and MY were generally smaller 
than 0.07. For Pro%, not only did the heritability curve 
differ from the corresponding estimates for fat% and 
MY (Figure 2A), but also the genetic correlations be-
tween different rchr14

2 levels were substantially larger 
(Figure 2B). With regard to genetic correlations from 
the MTRM (Table 5), and with regard to correlations 
between sire EBV (Table 6), estimates confirmed the 
general trends from the RRM, but were substantially 
larger for all traits (closer to 1) and exactly 1.00 for 
Pro% (EBV correlations).

Heritability pattern for test-day traits on the con-
tinuous allele frequency (p) scale (Figure 3a) are in 
close agreement with the corresponding trait curves on 
the rchr14

2 scale. This is the logical consequence, because 
we assume the effect of DGAT1 selection strategies on 
rchr14

2, as indicated via the moderate correlation of 0.28 
between both herd descriptors. Again, heritabilities 
for SCS were quite constant in the range from 0.09 to 
0.11 for all intra-herd allele frequencies, and heritabili-
ties for MY and fat% increased with increasing p. In 
the present study, the minor allele frequency for the 
SNP marker ARS-BFGL-NGS-4939 averaged across 
all herds was 0.31, and therefore larger than in Italian 
Holsteins (Minozzi et al., 2013). The larger minor allele 
frequency indicate more diverse selection strategies in 
German herds: some farms focus on genetic improve-
ments of MY, whereas other farm have a stronger focus 
on the content trait fat%. Hence, genetic parameters 
of both traits MY and fat% altered on the continuous 
p scale. Significant effects of minor allele frequencies 
for the marker ARS-BFGL-NGS-4939 on allele substi-
tution effects for production traits were identified in 
Italian (Minozzi et al., 2013) and in Chinese Holstein 
cattle populations (Jiang et al., 2010). In consequence, 
allele frequencies affect genetic variances. Heritabili-
ties from the MTRM for fat% and MY were larger in 
the high classes compared with the small classes, but 
we detected only minor differences between small and 
middle (Table 5). Again, and in agreement with the 

Table 6. Rank correlations for estimated sire test-day trait breeding values (the 681 sires with daughters) 
between the lower 5th and upper 95th percentiles for herd descriptors

Herd descriptor

Test-day trait

Milk yield Fat % Protein % SCS

r2 on chromosome 6 between 40 and 60 Mbp (rchr6
2) 0.80 0.96 0.99 0.84

r2 on chromosome 14 between 0 and 40 Mbp (rchr14
2) 0.78 0.94 1.00 0.88

Allele frequency of the SNP located in the DGAT1 gene (p) 0.83 0.92 0.95 0.87
Pedigree based inbreeding coefficient (F) 0.73 0.92 0.97 0.92
Percentage of cows with a non-European Union sire (sire%) 0.58 0.99 0.95 0.80
Herd size (HS) 0.80 0.95 0.97 0.61
Nonreturn rate after 56 d (NRR56) 0.82 0.93 0.93 0.69
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RRM estimates, heritabilities for Pro% and SCS were 
quite constant for the 3 herd classes (Table 5).

The shape of genetic correlation curves (Figure 3B) 
was identical for all test-day traits. Genetic correlations 
were minimal when correlating the respective traits 
from intra-herd allele frequencies in greatest distance 
(i.e., traits recorded at P = 0.6 and at P = 0.825). 
However, genetic correlations for the p descriptor were 

generally larger compared with the LD descriptors. In 
agreement with the rchr14

2 descriptor, the lowest genetic 
correlations were estimated for MY and the largest for 
Pro%. Genetic correlations from the MTRM (Table 5) 
and the correlations between sire EBV (Table 6) were 
larger than 0.80 for all test-day traits.

Figure 2. Heritabilities (A) and genetic correlations between the 
minimal level and remaining levels (B) for the genomic herd descriptor 
“linkage disequilibrium of 786 SNP between 0 and 40 Mbp on chromo-
some 14 (rchr14

2)” considering the following test-day traits: milk yield 
(MY), fat percentage (fat%), protein percentage (Pro%), and SCS. 
Standard errors for heritabilities ranged from 0.054 to 0.110 for MY, 
from 0.074 to 0.113 for fat%, from 0.078 to 0.100 for Pro%, and from 
0.021 to 0.041 for SCS. Standard errors for genetic correlations ranged 
from 0.001 to 0.059 for MY, from 0.001 to 0.063 for fat%, from 0.001 
to 0.079 for Pro%, and from 0.001 to 0.065 for SCS; SE for genetic cor-
relations increased with increasing distance between herd descriptors.

Figure 3. Heritabilities (A) and genetic correlations between the 
minimal level and remaining levels (B) for the genomic herd descriptor 
“allele frequency of the marker ARS-BFGL-NGS-4939 (p)” considering 
the following test-day traits: milk yield (MY), fat percentage (fat%), 
protein percentage (Pro%), and SCS. Standard errors for heritabilities 
ranged from 0.047 to 0.090 for MY, from 0.070 to 0.105 for fat%, from 
0.080 to 0.097 for Pro%, and from 0.020 to 0.031 for SCS. Standard 
errors for genetic correlations ranged from 0 to 0.063 for MY, from 0 to 
0.056 for fat%, from 0.001 to 0.058 for Pro%, and from 0.001 to 0.116 
for SCS; SE for genetic correlations increased with increasing distance 
between herd descriptors.
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Genetic Herd Descriptors. Among all herd de-
scriptors, we identified the largest association between 
rchr14

2 and F (correlation coefficient of 0.47). In conse-
quence, similarities of heritability curves were identified 
for both continuous herd descriptors rchr14

2 and F. Heri-
tabilities were quite constant (0.06 to 0.10) for SCS on 
a low F level, heritabilities decreased with increasing F 
for Pro%, and heritabilities for MY and fat% increased 
within the range from moderate to highest intra-herd 
inbreeding coefficients (Figure 4a). However, also for 
MY and fat%, the heritability was largest for the low-
est intra-herd inbreeding coefficient. Theoretically, in a 
long-term perspective, intensive selection accumulates 
inbreeding, and reduces genetic variation within popu-
lations (Falconer and Mackay, 1996). In the present 
study, largest heritabilities for MY, fat%, and Pro% 
for herds with lowest inbreeding are in line with those 
theoretical expectations. Regarding intra-herd inbreed-
ing coefficients in the present study, only minor herd 
differences existed, in a narrow range from F = 0.034 to 
F = 0.052. Increase of F did not influence heritabilities 
for SCS, reflecting the nonsignificant inbreeding depres-
sions for SCS on phenotypic scales in older (Miglior et 
al., 1992) as well as in more recent studies (Thompson 
et al., 2000). As found for genomic descriptors, also 
for pedigree-based F, heritability estimates from the 
MTRM confirmed the RRM trends, but (apart from 
MY) estimates in the 3 different F classes only differed 
marginally (Table 7).

Genetic correlations in MY decreased when consider-
ing herds with large intra-herd F differences (Figure 
4B), supporting genetic correlation estimates from the 
MTRM (Table 7), and also reflecting the sire EBV 
correlation for MY (Table 6). Inbreeding within herds 
accumulated due to the strong selection focus on MY in 
past decades (König and Simianer, 2006), which might 
explain the pronounced effects of F on genetic covari-
ance and genetic correlation estimates for MY. Among 
all herd descriptors, only for the intra-herd inbreed-
ing scale, genetic correlation estimates were largest 
for SCS, but associated with largest SE (Figure 4B). 
Nevertheless, genetic correlations for SCS across dif-
ferent herd classes were also quite large with rg > 0.80 
(Table 7). Quantitative genetic parameters for SCS 
from the present analysis might be surprising because, 
in general, low heritability functional traits react more 
sensitively to environmental or herd descriptor altera-
tions compared with production traits. Nevertheless, 
SCS seems to be a specific functional trait. Gener-
ally, in genomic predictions, and also when following 
deterministic equations (Goddard, 2009), reliabilities 
of genomic breeding values increased with increasing 
trait heritability. However, in German national genomic 

evaluations for Holstein sires, among all traits, predic-
tion accuracies are largest for low heritability SCS. 

In addition to intra-herd inbreeding coefficients, we 
estimated genetic parameters in dependency of intra-
herd pedigree based relationships. As expected, results 
were similar for both descriptors, because relationships 
among parents directly reflect inbreeding in offspring. 
Also for the intra-herd genetic relationships, genetic 

Figure 4. Heritabilities (A) and genetic correlations between the 
minimal level and the remaining levels (B) for the genetic herd de-
scriptor “inbreeding coefficient (F)” considering the following test-day 
traits: milk yield (MY), fat percentage (fat%), protein percentage 
(Pro%), and SCS. Standard errors for heritabilities ranged from 0.048 
to 0.115 for MY, from 0.069 to 0.117 for fat%, from 0.078 to 0.147 for 
Pro%, and from 0.019 to 0.037 for SCS. Standard errors for genetic 
correlations ranged from 0.001 to 0.050 for MY, from 0.01 to 0.062 for 
fat%, from 0.001 to 0.069 for Pro%, and from 0.001 to 0.306 for SCS; 
SE for genetic correlations increased with increasing distance between 
herd descriptors.
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correlation were largest for SCS, with rg > 0.92 for all 
pairwise combinations from the RRM application. In 
agreement with the intra-herd inbreeding coefficients, 
genetic correlations for MY substantially decreased 
with increasing intra-herd relationship differences. For 
example, the genetic correlation was only 0.10 when 
correlating MY between herds with the lowest intra-
herd relationship coefficient (0.09) and herds with the 
largest intra-herd relationship coefficient (0.14).

For the sire% herd descriptor, heritability curves were 
different for fat% and Pro% (Figure 5A). Heritabilities 
for fat% slightly decreased from 0.38 to 0.25 with the 
increase of intra-herd sire%, but heritabilities for Pro% 
increased from 0.39 to 0.52. Only by trend, the MTRM 
heritabilities for distinct classes (Table 7) reflect the 
RRM heritability curve pattern for fat% and Pro%. 
Also for this herd descriptor, heritabilities for SCS were 
in a low and constant range over all sire% levels.

Especially genetic correlations for MY were extreme-
ly low for substantial differences in sire herd structures 
(Figure 5B). The genetic correlation in MY between 
the 0% of non-EU sires herds with the 39% of non-
EU sires was only 0.26. Such an effect of the genetic 
structure of herds on genetic correlations reflects the 
findings from our previous studies as explained via 
Table 1. The genetic composition of herds influenced 
genetic correlations in yield traits, and it was not only 
the herd location (east versus west), which contributed 
to G×E. Sires from the United States used in German 
AI programs were intensively selected elite sires with 
mostly outstanding genetic values for MY and protein 
yield. In contrast, sires from German origin also repre-
sented young bulls from progeny testing programs with 
partly extremely low EBV, or proven cow sires with 
only average genetic values. In the era of genomic selec-
tion allowing intensive pre-selection among young sires, 
genetic levels of all sire origins substantially improved. 
Hence, in future analyses in this regard, we hypothesize 
only minor effects of sire herd structures on genetic 
covariance component estimates.

Obvious decreases in genetic correlation estimates 
with increasing herd distances for sire% were identified 
for MY and for SCS (Figure 5B). The MY and SCS 
genetic correlation decrease is in line with results for 
sire breeding value correlations (Table 6), and with es-
timates from the MTRM (Table 7). As outlined above, 
G×E for SCS were always obvious in previous studies 
when grouping herds according to classical environmen-
tal or farm management descriptors (Hayes et al., 2003; 
Mulder et al., 2004; van Binsbergen et al., 2012). Gen-
erally, such dairy cattle farms applying an improved 
herd management have a stronger focus on proven sires 
from foreign countries with outstanding genetic values 
(König and Simianer, 2006).T
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Phenotypic Herd Descriptors. Increasing herd 
size was associated with a SCS heritability increase 
(Figure 6A). Hammond (1947) suggested superior envi-
ronments for animal selection, because in superior en-
vironments, animals can fully express their true genetic 
potential. Henderson (1964) recommended optimal 
environments in terms of herd husbandry and manage-

ment conditions for progeny testing in AI programs. 
König et al. (2005) identified improved intra-herd feed-
ing, husbandry, and management conditions in large-
scale farms. Hence, a large German dairy cattle farm 
might represent such a superior environment, allowing 
clear genetic differentiation. However, regarding genetic 
differentiation in functional health or health indicator 
traits (e.g., SCS), Schierenbeck et al. (2011) found ex-
treme daughter yield deviations, larger heritabilities, 
and larger additive-genetic variances in herds where the 
cows’ immune system is under challenge. Larger heri-
tabilities for MY in large-scale herds (Figure 6A, Table 
7) correspond with previous findings in other German 
federal states for protein yield (König et al., 2005).

Genetic correlations from the RRM between the 
smallest and the largest herd were quite low for MY 
(0.27), and even lower for SCS (0.16) (Figure 6B). Ac-
cordingly, genetic correlations in both traits between 
the distant herd classes small and high were larger 
compared with the more similar herd classes small 
and middle, or middle and high (Table 7). However, 
substantially lower genetic correlations for MY and 
SCS from the RRM compared with the MTRM needs 
further clarification. Partly surprising or overestimated 
genetic (co)variance components were identified in pre-
vious RRM studies when using continuous time scales 
(Gernand and König, 2014). Explanations addressed 
the limited number of observations at the extreme ends 
of the time scale, or the covariance function used for 
longitudinal data analyses. Due to the substantial dif-
ferences in German farm types (i.e., on one hand the 
small family farm and on the other hand large-scale 
industrial types), data stratification according to herd 
sized contributed to G×E. In contrast, in other coun-
tries, such as Australia (Hayes et al., 2003), genetic cor-
relations were close to 1 when grouping herds according 
to herd size.

Remaining test-day production trait heritabilities 
continuously increased from the middle of the NRR56 
scale (NRR56 = 0.50) toward best fertility herds 
(NRR56 = 0.69). A high fertility status of herds reflects 
improved farm management, contributing to optimized 
genetic differentiation (Schierenbeck et al., 2011). For 
MY and fat%, heritabilities were quite large in herds 
with extremely poor nonreturn rates (Figure 7A). This 
was also the case for the MTRM applications (Table 7). 
Some authors (e.g., König et al., 2008) were very criti-
cal of the trait nonreturn rate, because biased genetic 
(co)variance components might be due to poor data 
quality (e.g., the utilization of natural service bulls or 
insufficient trait recording).

The shape of genetic correlation curves, and genetic 
correlations between the worst NRR56 herd with re-

Figure 5. Heritabilities (A) and genetic correlations between the 
minimal level and remaining levels for the genetic herd descriptor “per-
centage of cows with a non-EU sire (sire%)” (B) considering the fol-
lowing test-day traits: milk yield (MY), fat percentage (fat%), protein 
percentage (Pro%), and SCS. Standard errors for heritabilities ranged 
from 0.042 to 0.083 for MY, from 0.055 to 0.070 for fat%, from 0.070 to 
0.102 for Pro%, and from 0.017 to 0.040 for SCS. Standard errors for 
genetic correlations ranged from 0.001 to 0.048 for MY, from 0.001 to 
0.054 for fat%, from 0.001 to 0.051 for Pro%, and from 0.001 to 0.075 
for SCS; SE for genetic correlations increased with increasing distance 
between herd descriptors.
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maining herds, were quite similar for all test-day traits 
(Figure 7B). Lowest genetic correlations were found for 
SCS, and were largest for fat% and Pro%. In stud-
ies aiming on phenotypic herd descriptors (Jaeger et 
al., 2016), low heritability functional traits were more 
susceptible to G×E compared with high heritability 

production traits. Accordingly, correlations among sire 
EBV reflect obvious environmental sensitivity for SCS 
and MY (Table 7).

For the random herd descriptor and the MTRM ap-
plication, genetic correlations in same traits from dif-
ferent random herd classes were larger than 0.90 for 

Figure 6. Heritabilities (A) and genetic correlations between the 
minimal level and remaining levels for the phenotypic herd descriptor 
“herd size (HS)” (B) considering the following test-day traits: milk 
yield (MY), fat percentage (fat%), protein percentage (Pro%), and 
SCS. Standard errors for heritabilities ranged from 0.047 to 0.111 for 
MY, from 0.069 to 0.097 for fat%, from 0.079 to 0.105 for Pro%, and 
from 0.019 to 0.057 for SCS. Standard errors for genetic correlations 
ranged from 0.001 to 0.039 for MY, from 0.001 to 0.048 for fat%, 
from 0.001 to 0.046 for Pro%, and from 0.001 to 0.048 for SCS; SE for 
genetic correlations increased with increasing distance between herd 
descriptors.

Figure 7. Heritabilities (A) and genetic correlations between the 
minimal level and remaining levels for the phenotypic herd descriptor 
“nonreturn rate after 56 days (NRR56)” (B) considering the follow-
ing test-day traits: milk yield (MY), fat percentage (fat%), protein 
percentage (Pro%), and SCS. Standard errors for heritabilities ranged 
from 0.051 to 0.088 for MY, from 0.075 to 0.117 for fat%, from 0.089 
to 0.137 for Pro%, and from 0.021 to 0.045 for SCS. Standard errors 
for genetic correlations ranged from 0.001 to 0.048 for MY, from 0.001 
to 0.046 for fat%, and from 0.001 to 0.083 for SCS; SE for genetic cor-
relations increased with increasing distance between herd descriptors.
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MY, fat%, and Pro% (Table 7). Interestingly, also for 
a random herd allocation, lowest correlations (but also 
close to 0.90) were estimated for SCS. Also from the 
RRM, large genetic correlations were identified. Only 
by trend, genetic correlations were larger for neighbor-
ing random herd numbers compared with herd numbers 
in greater distance. This might be an artifact of ran-
dom regression modeling with the chosen polynomial 
structure.

Interestingly, RRM performed better when using 
continuous genetic or phenotypic herd descriptors com-
pared with genomic herd descriptors. In this regard, 
and for all test-day traits, Akaike information crite-
ria (AIC) and Schwarz Bayesian information criteria 
(BIC) were smaller for F, sire%, HS, and NRR56 com-
pared with rchr6

2, rchr14
2, or p (Table 8). The AIC and 

BIC calculations take the number of model parameters 
into account. Hence, such evaluation criteria also allow 
RRM–MTRM model comparisons for same traits. Both 
AIC and BIC were always smaller for the MTRM, indi-
cating superiority of simpler and more robust genetic-
statistical modeling via MTRM for such type of data 
combined with the herd descriptors used.

CONCLUSIONS

Although linkage disequilibrium and allele frequen-
cies are characteristics for different populations, breeds, 
and species, intra-herd means from Holstein cows 
varied on the genomic scale (rchr6

2, rchr14
2, p). Genomic 

herd differences might be due to different selection 
strategies after reunification in 1990. For MY, being 
the trait under intensive selection for decades, herita-
bilities increased with increasing rchr6

2, rchr14
2, and p. 

Furthermore, an extremely small and a high intra-herd 
inbreeding coefficient, a high percentage of sires from 
non-EU countries, a large herd size, and a high intra-
herd NRR56 contributed to MY heritability increases. 

Heritabilities were always lowest and quite constant for 
SCS in dependency of intra-herd variations. Genetic 
correlations were lower than 0.80 when considering 
herds “in great descriptor distance,” especially for MY 
and SCS. Generally, results from the MTRM were in 
agreement with those from the RRM, but less extreme 
(closer to 1). Correlations among sire EBV reflected the 
genetic correlation estimates, suggesting specific sires 
for specific herd structures. In the present study, we 
identified the effect of phenotypic, genetic, and genomic 
herd compositions on genetic correlations. From a prac-
tical perspective, we suggest utilization of a broad herd 
pattern when designing cow calibration groups to avoid 
possible G×E due to specific herd architectures.
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Introduction

General genomic selection  

applications in breeding programs

Genomic selection (GS) as theoretically introduced by Meuwissen et al. 

(2001) has been successfully implemented worldwide in dairy cattle breed-

ing programs reflecting large populations, i.e., Holsteins, Fleckvieh, Jersey, 
and Brown Swiss, and has revolutionized conventional breeding schemes. 
Revolution of dairy cattle breeding programs via GS was the logical con-

sequence due to the obvious possibilities in shortening generation inter-
vals combined with highly accurate genomic breeding values, increased 
selection intensities, and prevention of preferential treatment of bull dams. 
Improvement of those breeding program characteristics simultaneously 
contributed to increased economic gain (König et al., 2009; König and 

Swalve, 2009). Prerequisite for highly accurate genomic breeding values 
is the implementation of large sire calibration groups including bulls with 

highly reliable conventional breeding values, as established within the Eu-

roGenomics consortium (Lund et al., 2010). Typically, calibration group 

sires are genotyped with high-density SNP-chip panels, and estimated ad-

ditive-genetic values for SNP or haplotype effects are transmitted to male 
selection candidates (young bulls) from the broad population.

Further GS applications focus on genotyping females with the objec-

tives i) to improve within-herd selection strategies using low-density 10K 
SNP-chip panels and ii) to predict phenotypes and to explain causal muta-

tions using high-density or even whole-genome sequence data. Objective i 
addresses the evaluation of on-farm selection strategies combined with the 
utilization of reproduction technologies while still using “SNP-equations” 
from a bull calibration group. Objective ii implies relating genotypes di-
rectly to phenotypes, along with an evaluation of statistical methodology 
for phenotype prediction, with genome-wide association studies and with 

studies on genotype by environment (farm) interactions. As outlined, a 
major focus is placed on dairy cattle, but at specific points, applications to 
other species will be discussed as well.

Improving the Herd Management  

Using Genomic Information

Improving within-herd selection

Genotyping of female animals has rarely been considered in genomic 

breeding program designs (e.g., Schaeffer, 2006), mainly due to low selec-

tion pressure, high replacement rates, and minor impact of the cow dam 

pathway on genetic gain (Van Tassel and Van Vleck, 1991). However, with 
the availability of inexpensive low density (LD) SNP chips, interest in ge-

notyping of females has strongly increased, especially for improvements 
of intra-herd selections on commercial dairy cattle farms (Wiggans et al., 

2012). Genotyping of female calves and heifers in combination with the 
use of reproductive technologies like embryo transfer (ET) or sexed semen 
promises substantial decreases in generation intervals while simultane-

ously increasing selection intensities (Chesnai, 2012; Schefers and Weigel, 

2012). Moreover, a genomic breeding value is an unbiased selection instru-

ment and free from preferential treatment (Pryce and Hayes, 2011).
The computer package SIG-R (Pimentel and König, 2012) was used 

to assess the impact of genotyped females on selection response for sin-

gle traits and on monetary genetic gain for different within-herd breed-

ing strategies. The computer package SIG-R was developed to combine 
genomic and phenotypic information sources via selection index meth-

odology based on the theoretical approach by Dekkers (2007). For this 
purpose, a dairy cattle herd with 200 milking cows was assumed. Ninety 
heifer calves (under 12 mo) and 80 heifers (12 to 24 mo) represented po-

tential replacement candidates of the herd. The replacement rate was fixed 
to 25% in the basic runs for each scenario, but further on, varied within 
the range from 25 to 40% in increments of 5%. Generation intervals were 
defined according to the selection structure of the different scenarios, by 
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Implications

•  Pre-assuming accuracies of genomic breeding values larger than 
0.7 for a moderate heritability production trait, and larger than 0.5 
for a low heritability functional trait, additional profit from geno-

typing female calves or heifers compensates costs for genotyping 
in commercial herds.

•  Herd management will be improved by including SNP informa-

tion into electronically mating software, e.g., through the exploi-
tation of non-additive genetic effects and via controlling of in-

breeding and genetic relationships.

•  Random forest methodology can infer binary disease phenotypes 

in validation sets with moderate accuracy, also for a small number 
of diseased genotyped animals in training sets.

•  Genomic random regression models can be used to predict ge-

nomic breeding values for animals without phenotypes in, e.g., 
harsh environments.
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considering an age at first calving of 25 mo and a calving interval of 13 
mo. Because of the application of reproductive biotechnologies (embryo 
transfer and semen sexing), selection intensity also varied (due to the 
changing number of selection candidates).

The overall breeding goal of the dairy cattle farmer included one mod-

erate heritability production trait (MY) and one low heritability function-

al trait (FL) with equal economic weights per genetic SD. According to 
selection strategies in dairy cattle farms, MY represents lactation milk 
yield from first parity, whereas FL was defined as functional longevity 
(in days). In total, seven on-farm breeding strategies for the cow-dam 
pathway of selection were evaluated. Scenario I reflects the conventional 
and conservative selection strategy, i.e., basing cow-dam selection on a 
cow’s own performance. Hence, the cow dam selection pool only com-

prised lactating cows, implying a generation interval of 4.25 yr. In sce-

nario II, selection is based on a female calf’s genotype combined with 

phenotypic information from related animals. Selection at an early stage 

enlarges the pool of female selection candidates and implies a short gen-

eration interval of 3.1 yr. In scenario III, 50% 

of female heifers with highest genetic merit (ac-

cording to pedigree index) were inseminated 
with sexed semen. Utilization of sexed semen 
increased selection intensity, due to fewer cows 

being required to generate the same number of 

female offspring. Generation interval was even 
lower than in scenario II and identical with the 

age at first calving because always a first calf 
of a selected heifer is female. Scenario IV was 

identical compared with scenario III but used 

genomic estimated breeding values (GEBV) 

for pre-selection of heifers instead of pedigree 

indices. Reproduction technology ET was ap-

plied to 50% of genetically best heifers at the 

age of 12 mo according to pedigree index and 
according to GEBV in scenario V and scenario 

VI, respectively. Two female offspring per do-

nor heifer and year, and a further decrease in 

generation intervals (1.75 yr), were assumed. 
An overview of index sources as considered in 
different scenarios is given in Table 1. Genetic 
parameters were obtained from a current study 

using test herds from the eastern part of Ger-

many: h2 = 0.30 for MY, h2 = 0.10 for FL, and genetic and phenotypic cor-
relations between MY and FL of 0.10 and -0.10, respectively. Phenotypic 
SD was 1,000 kg for MY and 500 d for FL.

Genomic index sources considered moderately accurate GEBV (r
MG

 = 0.7 
for MY, and r

MG
 = 0.5 for FL). Highest genetic gain per year for MY and 

FL was identified for scenarios III, IV, V, and VI (Fig. 1). Compared with 
scenarios I and II, these scenarios strongly focused on the use of reproduc-

tion technologies. Hence, the decision to genotype heifers strongly depends 
on the assumptions for reproduction rates. König et al. (2007) analyzed ET 
traits such as the number of flushed and transferrable oocytes, and they found 
a substantial variation across herds and donor stations, and also a moderate 
genetic component. In a simulation study, Sorensen and Sorensen (2010) 

compared genetic gain in genomic breeding programs when either assuming 

one or five offspring per donor. Obvious success of genomic multiple ovu-

lation and embryo transfer (MOET) breeding programs over conventional, 
or over genomic breeding programs without ET, required more than one fe-

male offspring per donor cow. For identical “reproduction scenarios,” genetic 

Table 1. Phenotypic information sources with respect to the production (MY) and functional trait (FL) as used 

(indicated with a “+”) for the different within-herd breeding scenarios. A “g” indicates a genomic breeding value 

for the given trait.

Scenario

I II III IV V VI

MY FL MY FL MY FL MY FL MY FL MY FL

Selection candidate + g g g g g g

100 paternal half sibs + + + + + +

50 paternal half sibs + + + + + +

Dam + + + + + + + + + + + +

Daughter +

Selected females (in %) 77 55 45 45 35 35
Generation interval 4.25 yr 3.1 yr 2 yr 2 yr 1.75 yr 1.75 yr

Figure 1. Genetic gain per year for milk yield (in kg) and functional longevity (in days). Black and gray bars = equal 
economic weights for milk yield and function longevity, respectively; black dotted and gray dotted bars = genetic gain 
for milk yield and functional longevity, respectively, when doubling the economic weight for functional longevity.
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gain was higher when basing selection of young heifers on GEBV instead 
on pure pedigree indices (comparison of scenario IV with III, and of VI with 

V). Increase of genetic gain in genomic scenarios was always higher for MY 

compared with FL. This is mainly due to the assumed higher accuracy of 
GEBV for MY. Also for identical accuracies, genetic gain was larger for the 
production trait, supporting results from deterministic economic evaluations 
on a long-term population-wide scale (König et al., 2009). In a combined 

breeding goal, more selection pressure is always on the higher heritability 

trait, and competiveness of low heritable functional traits is only possible 
when increasing economic weights for such traits. Similar genetic gain for the 

functional trait was also realized in the current investigation when doubling 
the economic weight for FL (Fig. 1, comparison of dotted bars).

Figure 2 displays additional annual monetary genetic gain (in euros) of 
genomic scenarios compared with scenario I for the combined breeding 

goal including MY and FL with equal economic weights per genetic SD. 
With regard to scenario II, for all accuracies of genomic predictions, and 

assuming genotyping costs of 50 euros/animal with the LD chip, selection 
of female calves based on GEBV did not compensate the costs for geno-

typing. When doubling the economic weight for FL (Fig. 3), additional 
monetary genetic gain of 55 euros compensated for the costs of genotyp-

ing, pre-assuming moderate accuracies of GEBV (0.70 for MY and 0.50 
for FL). For high accuracies of GEBV (0.80 for MY and 0.60 for FL), 
additional monetary genetic gain was 61 euros.

Pryce and Hayes (2011) assumed genotyping costs of AU$29/animal, 
but discounted profit was AU$46/cow when genotyping 40 heifers to iden-

tify the top 20 as replacements for 100 cows. In their simulation study, 

Weigel et al. (2012) studied gains in lifetime net merit breeding values of 
selected females in commercial herds due to genomic testing by taking 
costs of genotyping into account (US$40 for the 3K low-density applica-

tion). Economic gains increased with increasing selection intensity and with 
increasing incompleteness of pedigree information and were US$121 per 
female calf for a low within-herd replacement rate of 10%. As pointed out 
by Wiggans et al. (2011), availability of low-priced 3K SNP chips will also 
encourage commercial farmers to participate in genomic activities. Wei-
gel et al. (2012) considered genotyping of a large number of females as a 

“significant financial investment.” González-Recio et al. (2014a) estimated 

genetic (co)variances for feed efficiency traits using 843 genotyped heifers 
(632,000 SNPs). Estimates were used to incorporate residual feed intake of 
heifers into the Australian Profit Ranking index. Utilization of this index 
increased annual farm profitability by 3%, which implies an economic gain 
of AU$0.55 million considering the total Australian Holstein population.

Optimization of mating designs

Application of an optimum genetic contribution (OGC) concept ac-

cumulates genetic gain by constraining inbreeding or additive-genetic 
relationships in a long-term perspective (e.g., Meuwissen, 1997). In this 
regard, and for a practical and sustainable implementation in conventional 
progeny-testing programs, König and Simianer (2006) recommended op-

timizing elite matings between bull dams and bull sires. In the genomic 
era and with a strong focus on improvements of functional traits, Schie-

renbeck et al. (2011) used semi-definite programming and relationships 
constructed from SNP data to define optimum genetic contributions for 
genotyped bull dams and bull sires. For a substantial minimization of in-

breeding coefficients in the short term in the next progeny generation, 
Sonesson and Meuwissen (2000) developed a simulated annealing algo-

rithm for the specification of mating designs using OGC output. Wide-

spread genotyping of “commercial” cows additionally allows the optimi-
zation and specification of within-herd matings, also from the perspective 
of within-breed biodiversity. In his keynote about genomic breeding pro-

grams, Schaeffer (2006) suggested the calculation of heterozygosity indi-
ces based on SNP data for each genotyped animal and maximization of 
this index in the ongoing generation via specific mating designs.

Consideration of genomic information in mating designs allows exclu-

sion of lethal recessives in the homozygous form. VanRaden et al. (2011) 
used SNP data to form haplotypes along the chromosome and compared 
observed and expected haplotype frequencies. They identified detrimen-

tal haplotypes with significant effects on paternal fertility and stillbirth. 
Based on the findings by VanRaden et al. (2011) for several cattle breeds, 
or by Kadri et al. (2014) for Nordic Red cattle, Swalve (2014) explicitly 
recommended inclusion of genomic data into mating plan software on a 

herd-gate level. Identification of individual functional mutations affecting 
male subfertility in the Fleckvieh population based on a genome-wide as-

Figure 2. Additional monetary genetic gain of genomic breeding scenarios II, IV, and 

VI compared with the basic scenario I. Here: Equal economic weights per genetic SD 
for milk yield and functional longevity.

Figure 3. Additional monetary genetic gain of genomic breeding scenarios II, IV, and 

VI compared with the basic scenario I. Here: Economic weight per genetic SD for 
functional longevity is doubled.
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sociation study (Pausch et al., 2014) strongly supports such enhancements 
of electronically organized mating plans.

As a further aspect, mating schemes including genomic data could 
exploit the effects of dominance. In a study by Varona et al. (1998), the 
dominance component explained 9% of the phenotypic variation for stat-
ure of dairy cattle. Consideration of dominance effects reflecting specific 
combining abilities allows for allocating the best sire for a given cow 
(DeStefano and Hoeschele, 1992). However, inclusion of dominance in 
traditional genetic evaluations is associated with increasing computation-

al requirements (Miztal et al., 1998). In the genomic era with the avail-
ability of SNP data, Toro and Varona (2010) pointed to the necessity to 
re-evaluate models or selection strategies including dominance. In their 
simulation study for a random mating scheme, extra selection response 
for a whole-genome evaluation from an additive model additionally in-

cluding dominance ranged from 9 to 14%. Even higher genetic gain was 
achieved when combining the dominance model with OGC theory. In a 
recent study, Ertl et al. (2014) used 777,962 SNPs from 1996 genotyped 
Fleckvieh cows. The proportion of genomic variance due to dominance 
was 3 to 50% of the genetic variance. In consequence, the authors saw the 
potential to consider dominance for planned matings, also being a motiva-

tion for commercial dairy cattle farmers to genotype their cows.

There is an increasing trend in dairy cattle farming worldwide to im-

prove functional traits via crossbreeding. Freyer et al. (2008) reviewed 
and evaluated “crossbreeding experiments,” but practical results partly 
lagged behind theoretical expectations. Exploitation of dominance based 
on high-density SNP marker data also might help to improve crossbreed-

ing designs, i.e., for an accurate differentiation of breeds and genetics 

lines and for an accurate assessment of heterosis effects (Swalve, 2014). 
Identification of detrimental haplotypes or optimized mating schemes via 
consideration of dominance requires dense marker maps, but for com-

mercial applications, farmers usually genotype female calves and heifers 
using low-density SNP chip panels. Nevertheless, efficient imputing strat-

egies have been developed, either based on LD, 
family information, or a combination of both 

(Pimentel et al., 2013).

Prediction of Phenotypes

Individual phenotypes in 

calibration groups

A so called “genomic production value,” de-

fined as the sum of estimates for additive-genetic 
and dominance effects, might be an efficient se-

lection instrument to optimize herd replacements 
and mating allocations. Estimation of both ef-
fects simultaneously requires the implementa-

tion of a cow calibration group, and using a 

cow’s phenotype or corrected phenotype instead 

of a sire’s EBV as dependent variable for the es-

timation of SNP effects. Compared with inten-

sively pre-selected bulls as currently used in sire 
calibration groups, unselected cows represent 

genomic architecture of the broad milking cow 
population. Basing genomic selection on geno-

typed cows from the broad population might be 

associated with unbiased estimated SNP effects 
and unbiased genomic breeding values (Patry and Ducrocq, 2009).

Furthermore, cow calibration groups are imperative when focusing on 
novel traits that are not yet considered in official genetic evaluations. Most 
new traits of interest are strongly associated with animal robustness and re-

quire phenotyping strategies for the following trait categories health, work-

ability, persistency, fertility, fitness, and mobility (Calus et al., 2013a). Nev-

ertheless, Calus et al. (2013b) pointed to the generally antagonistic genetic 
relationships between new and conventional breeding goal traits and also 
discussed the generally small economic weights for new traits. Both com-

ponents, antagonistic associations and small economic values, require refer-
ence populations including at least 10,000 individuals (Calus et al., 2013b). 
Otherwise, selection response for new traits will be extremely small.

Accuracy of derived SNP effects or genomic breeding values from ref-
erence groups basing on individual phenotypes strongly depend on the 
group size, on the heritability of the trait, and on genomic architecture 
reflected by LD or effective population size (Goddard, 2009). Following 
Goddard’s deterministic prediction equation, more than 20,000 cows need 

to be genotyped to realize moderate accuracies of genomic predictions 
larger than 0.5 for a low heritability trait (h2 ~ 0.05). However, without 
availability of highly accurate conventional sire EBV, a crucial ques-

tion remains the validation of estimates from cow calibration groups for 
novel traits. In a first “German cow calibration study,” Becker-Scalez et 
al. (2015) based their studies on a subset of 3,521 genotyped Holstein 
cows. With a focus on longitudinal test-day milk yield, random regression 
coefficients (RRC) from Legendre polynomials of order 2 were defined 
as phenotypes in the reference set to predict genomic random regression 

coefficients for cows in the validation set. A fivefold cross validation was 
done to evaluate the accuracies of genomic intercepts, linear and quadratic 
RRC (gRRC0, gRRC1, and gRRC2, respectively). For this purpose, the 
whole dataset of genotyped cows was randomly divided into five groups, 
and cows’ gRRC of one group were assumed to be unknown (validation 

source: © 2015 AdobeStock.org/egiadone.
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set). Effects of SNP estimated from the other 
four groups were used to predict the gRRC 

of cows in the validation set. Cross validation 
was repeated five times for each coefficient. 
Pearson’s correlation coefficients between the 
realized RRC and the predicted gRRC for the 
animals in the validation set were calculated 
for each coefficient in each replicate. Moder-
ate correlations were found between RRC and 

predicted gRRC, i.e., 0.62 ± 0.02 for RRC0, 

0.67 ± 0.01 for RRC1, and 0.69 ± 0.02 (Fig. 
4). Utilization of cow prediction and validation 
sets exhibiting substantial differences or obvi-
ous similarities regarding disease incidences, 

production levels, genomic architectures, and 
genetic relationships underlines the necessity of 

complex cross-validation studies. Pérez-Cabal 
et al. (2012) presented and compared a variety 
of cross-validation strategies, also for within or 
across generation predictions.

The advantages and flexibilities of “random 
regression phenotypes” for genetic evaluations 
were clearly outlined by Santos et al. (2010). Silva et al. (2013) used 
parameter estimates from nonlinear logistic regressions as phenotypes 

for the modeling of genomic growth curves in pigs. Also in this study, 
independence of growth curve modeling and genomic modeling simpli-
fies statistical procedures and reflects a classical two-step procedure for 
longitudinal data, i.e., basing genetic marker predictions on pre-corrected 
phenotypes (Pong-Wong and Hadjipavlou, 2010).

A detailed overview of non-parametric machine-learning procedures for 
genome-assisted predictions is given by González-Recio et al. (2014b). Gen-

erally, a machine-learning technique uses past events to set up a prediction 
model for the interpretation of new information and is suitable to process 

invisible information from large datasets, especially from datasets character-
ized by a large number of markers in relation to a small number of genotyped 
animals. Random forest (RF) is one of the suggested specific machine-learn-

ing methods. In a further cow calibration study, Naderi et al. (2014) used 
simulated binary and real binary data from genotyped cows to predict pheno-

types for disease traits based on RF methodology (e.g., González-Recio and 
Forni, 2011). In the stochastic simulation, 20% of phenotyped females from 
the last two generation were defined as sick and received the code 1, and 

the remaining healthy cows received the code 0. Females from the last two 
generations were divided into a reference and a validation set. Phenotypes of 
the animals in the validation set were assumed to be unknown. In different 
scenarios, reference and validation sets were created according to the health 
status of cows. In the basic scenario, the total number of sick cows (4,000 
cows) was assigned to the validation set, and 16,000 healthy cows were as-
signed to the reference set. Main evaluation criterion was the area under the 
receiving operating characteristic curve (AUC). The AUC reflects results for 
the comparisons of true positive, false positive, true negative, or false nega-

tive outcomes with a predicted disease based on genomic information from 
related animals. An AUC close to 1 indicates an accurate predictive ability 
(González-Recio et al., 2014b), which was higher throughout our simulation 
study for RF compared with GBLUP for all variants of cow allocations to 
either reference or validation sets (Table 2). Lowest prediction accuracies 
were found for a low percentage of sick animals in the reference set. Using 
real phenotypes for clinical mastitis from 6,762 genotyped cows, calculated 
AUC values ranged from 0.53 to 0.57 for a variety of training and validation 
set compositions (variations due to group sizes and due to the percentage of 
sick animals in both groups). Again, highest AUC were identified when dis-
ease incidences in calibration groups reflected population disease incidenc-

Figure 4. Box plot for the correlations between realized random regression coefficients and predicted genom-

ic random regression coefficients for the cows in the validation set (according to Becker-Scalez et al., 2015).

Table 2. Area under the receiving operating characteristic curve (AUC) for the prediction of phenotypes of disease 

traits in the validation set for GBLUP and random forest (RF) applications (50K SNP chip, h2 = 0.10 and 725 QTL). 

Values in parenthesis show the SDs from 10 replicates (according to Naderi et al., 2014).

Percentage and number of sick animals in reference set1

10%

4002

20%

8002

30%

12002

40%

16002

50%

20002

60%

24002

70%

28002

80%

32002

90%

36002

100%

40002

RF 0.57 0.598 0.60 0.59 0.60 0.61 0.63 0.63 0.64 0.63
(0.06) (0.03) (0.04) (0.03) (0.03) (0.04) (0.03) (0.04) (0.04) (0.04)

GBLUP 0.58 0.64 0.64 0.66 0.66 0.63 0.64 0.66 0.64 0.63
(0.01) (0.02) (0.02) (0.02) (0.03) (0.04) (0.02) (0.01) (0.01) (0.03)

1Size of reference and validation included 16,000 and 4,000 cows, respectively, for all scenarios.
2 Number of sick animals assigned to the reference set (number of healthy animals in reference set is the difference between this number and the total number of cows 

(N = 16,000) in the reference set).
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es. Luan et al. (2009) used a sire calibration group, GBLUP, and Bayesian 
methods to estimate genomic breeding values for clinical mastitis in Norwe-

gian Red cattle. They identified variations in accuracies of genomic predic-

tions for clinical mastitis records from different lactation stages, probably 

due to different heritabilities, and also due to variations of disease incidences.
In a key publication addressing phenotype predictions based on ge-

nomic data, Ober et al. (2012) used ~2.5 million SNP from whole-genome 
sequence data to predict phenotypes for starvation stress resistance and 
locomotor startle response in Drosophila melanogaster. Statistical meth-

odologies included GBLUP and Bayes B with internal SNP selection. Pre-

dictive ability was defined as the correlation between genomic breeding 
values and phenotypes for Drosophila melanogaster in the validation set 
based on a series of fivefold cross validations. Ober et al. (2012) only 
found a moderate predictive ability, i.e., 0.239 ± 0.008 for starvation re-

sistance and 0.2330 ± 0.012 for locomotion startle response, and also only 
minor differences for GBLUP and Bayes B applications. A crucial thresh-

old of 150,000 SNPs was identified, implying a minor increase of predic-

tive ability with increasing numbers of SNPs above this threshold. The 
authors partly attributed the moderate predictive ability to the sample size 
of 157 lines, but they also defined the potential of quantitative trait predic-

tions based on genome information, especially for evolutionary biology 
and medicine. Hence, a first simulation study for phenotype prediction 
based on dense genomic marker data focused on the prediction of individ-

ual genetic risk to a specific disease in case-control studies (Wray et al., 
2007). Ongoing research is aimed at a mouse population and the predic-

tion of unobserved phenotypes for coat color and mean cell hemoglobin 
using high-density SNP data (Lee et al., 2008). Unobserved phenotypes 
were predicted using a model including simultaneously genomic additive 
and genomic dominance effects. Using a family design (splitting families 
into an estimation and into a prediction group with equal frequencies), 

correlations between predicted and real phenotypes (= prediction accura-

cies) were in a moderate to high range from 0.4 to 0.9.

Prediction of genotypes and  

phenotypes adopted to environments

In plant breeding, multi-environment models have been developed for 
genomic predictions of breeding values and for performance prediction of 
untested genotypes by considering genotype × environment interactions 
(Burgueño et al., 2012). Their multi-environment model considered specif-
ic within-line across-environment covariance structures based on genomic 
or pedigree relationships or by combining both genomic and pedigree in-

formation. Performance prediction of genotypes with genetic evaluations 
in some specific conventional environments, but not in, e.g., harsh envi-
ronments, also addresses practical animal breeding. Increasing heat stress 

especially depresses productivity, reproduction, and health of dairy cattle 
kept in outdoor systems. The most used continuous environmental descrip-

tor reflecting heat stress in farm animals by combining air temperature with 
humidity is the temperature-humidity index (THI) (e.g., Bohmanova et al., 
2007). In their stochastic simulation study, Yin et al. (2014) used genomic 
random regression models (gRRM) to predict cattle performances in de-

pendency of THI, assuming a variety of genomic architectures. Repeated 
measurement analysis revealed highly accurate predictions for cows with 
SNP genotypes but without phenotypes in defined harsh environments, 
e.g., for THI 75. However, according to their findings, a small fraction of 
20% of animals needs to be phenotyped for the trait of interest at THI 75. 
Consideration of the environmental impact and of possible genotype by 

environment interactions in genomic predictions is of practical relevance. 
Examples address the background of livestock and semen exports in tropi-
cal or subtropical countries or the transfer of SNP prediction equations 
from conventional to organic production systems.

Phenotypic modifications for an identical genetic background due to 
environmental changes were described by Gause (1947), who introduced 
the term “phenotypic plasticity.” In a present study based on genomic 
data from the German cow calibration group, phenotypic plasticity and 

variation of genetic parameters were studied by consideration of both en-

vironmental variation and genetic architecture effects. Considering both 
effects simultaneously, this approach will also evaluate Robertson’s (1959) 
recommendation to use a genetic correlation of 0.80 or lower as general 
indicator for genotype by environment interactions. For the two strata herd 
size (environmental effect) and average herd LD measured as r2 between 

all possible SNP pairs (herd characteristic on the genomic scale), and using 
6,616 genotyped cows (50K), the largest additive-genetic variances were 
identified for large within-herd r2 in large-scale herds. Genetic correlations 

in the same traits across herds were lower than 0.80 for substantial differ-
ences in genetic herd architectures (e.g., level of inbreeding, level of LD, 
and percentage of daughters from influential sires from North America).

Conclusion

Farmers are encouraged to genotype female calves and heifers to ac-

celerate genetic gain on the cow-dam pathway of selection. Detection 

of the most promising heifers for replacements, and the specification of 
mating schemes, are valuable instruments to improve the overall farm 
management. Inclusion of genomic information into selection and mat-

ing instruments substantially improves accuracy of selection compared 
with the utilization of “conventional” pedigree indices. Exploration of 
non-additive genetic effects based on SNP data can be used to optimize 

Grazing heifers from the research station of Kassel university: Genotyping as a 
tool for phenotype prediction (source: © 2015 König).
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specific matings within breeds as well as for the selection of optimal lines 
in crossbreeding designs. A further farm management component from 
an animal breeding perspective addresses controlling of inbreeding and 
genetic relationships in a long-term perspective. Heterozygosity indices 
based on SNP data and avoiding lethal recessive genotypes might have 
practical applications in the near future. A variety of novel traits reflect-
ing resource efficiency (e.g., methane emissions) or product quality (e.g., 
milk fatty acid composition based on spectral data), while also reflect-
ing the demand of consumers, might be interesting for modern breeding 

goals. However, without availability of highly accurate conventional sire 
EBV, it is imperative to implement cow calibration groups that are directly 
based on cow phenotypes. Using cow calibration groups for the deriva-

tion and validation of SNP effects requires alternative statistical modeling, 
such as random forest methodology, or extensions of random regression 
models for longitudinal data. Further potential of genomic random regres-

sion models is related to a variety of specific breeding scenarios, e.g., the 
prediction of genomic breeding values for animals without phenotypes in 
harsh environments.
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3. General discussion 

 

3.1. Genetic architecture of functional traits 

In general, most of the functional traits in dairy cattle (e.g., health disorders, fertility, and 

behavior) are controlled by numerous genes with minor effects, implying only low heritabilities. 

However, a few examples for functional traits with moderate to high heritabilities exist, e.g., 

body weight and feed efficiency (Byskov et al., 2017), and resistance to specific viral and 

bacterial pathogens (Mahmoud et al., 2018). Furthermore, for diseases within the same trait 

category, the genetic background varied substantially (Mahmoud et al., 2018). In the ongoing 

studies and overall discussion of this thesis, focus is on genetic architecture analyses for 

functional traits as presented in original research paper 3 to 7, i.e., methane emissions, body 

weight and behavior traits.  

 

3.1.1. Methane 

Heritabilities for CH4 differed considerably, depending on prediction equations, measuring 

approaches and population characteristics. For example, the average heritabilities across first 

lactation from the two different prediction equations were 0.25 and 0.31 (original research 

paper 3). An even broader CH4 heritability range for CH4 was presented by van Engelen et 

al. (2015). They predicted CH4 based on milk fatty acids (Dijkstra et al., 2011) recorded in 

1,905 first-lactation Dutch Holstein-Friesian cows, and they used three different prediction 

equations. The CH4 heritabilities were in the range from 0.05 to 0.30. A few years later, the 

same authors (van Engelen et al., 2018)reported a heritability of 0.11 for CH4, based on 

measurements from infrared sensors installed in automatic milking systems. Ricci et al. (2014) 

measured CH4 with a portable handheld laser methane detector, and classified the overall CH4 

emission into respiration CH4 and eructation CH4. In a CH4 study including 330 ewes, Reintke 

et al. (2020) followed the recording protocol by Ricci et al. (2014), but estimated CH4 

heritabilities for different respiration and eructation traits were very small, with a maximal 

heritability of 0.04. 

Pinto et al. (2020a) recorded CH4 emissions in exotic, indigenous and crossbred cows in India 

using the portable hand-held laser methane detector. The variance explained by the simple 

random cow effect in relation to the total variance ranged from 0 for the CH4 mean to 0.10 for 

maximal respiration CH4 within a measuring duration of 2 minutes. The small CH4 cow 
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variance as measured in the harsh environment in India along heterogeneous social-ecological 

gradients indicates a small genetic variance component. However, most of the genetic CH4 

studies conducted in cattle or in small ruminants base on a quite small number of phenotyped 

animals. In consequence, all available data sources for direct and indirect CH4 measurements, 

also from an across-country perspective, should be considered for CH4 genetic evaluations. 

Against this background, de Haas et al. (2017) suggested residual feed intake and milk fatty 

acid composition as proper CH4 indicator traits, and they suggested international cow reference 

populations for genomic predictions.  

Genome-wide association studies for direct CH4 and adjusted CH4 (i.e., adjustments through 

correlated traits) reflect the polygenic nature of the trait. For example, Pszczola et al. (2018) 

converted concentrations of CH4 and CO2 in 287 Polish Holstein-Friesian cows, which were 

measured by infrared sensors during milking in automatic milking systems, to daily CH4. They 

identified 50 significantly associated SNP, which only explained 0.154% of the total genetic 

CH4 variation. Calderón-Chagoya et al. (2019) applied multi-breed GWAS using daily CH4 

concentrations from 280 cows. Again, a similar number of 46 significant SNP with small 

effects, were detected. The significant SNP reported from both studies are located in genomic 

regions with impact on milk compositions and feed efficiency, such as fatty acid compositions, 

daily gain, live weight and residual feed intake. Hence, shared biological pathways for CH4, 

milk fatty acids and feed efficiency, are assumed. However, when using both direct CH4 and 

adjusted CH4 as phenotypes in GWAS (i.e., correction of CH4 emissions on dry matter intake 

and live weight), only a scarce number of shared significant SNP was detected (Manzanilla-

Pech et al., 2016). The explanation was the small phenotypic and genetic correlation between 

adjusted and direct CH4. In other words, adjusted CH4 and raw CH4 are different traits. 

Genetic variances and heritabilities for CH4 emissions slightly increased when the G matrix 

was built based on approximately 3,300 significant SNP for dry matter intake and live weight 

(Manzanilla-Pech et al., 2016). Such result indicates that genetic CH4 variation is largely 

captured by SNP contributing to strongly correlated feed efficiency traits.  

 

3.1.2. Body weight 

Previous studies (Coffey et al., 2006; Lassen and Løvendahl, 2016) and the results from the 

original research papers 4 to 6 indicate  that BW is a moderate to high heritability trait. 

However, the proportion of genetic variations depends on populations and on age stages. 
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Coffey et al. (2006) and Brotherstone et al. (2007) estimated heritabilities slightly larger than 

0.50 for BW at birth, and of 0.75 and 0.59, respectively, for BW at the first calving date. 

Similarly, quite large heritabilities based on a longitudinal monthly data structure are presented 

in the original research paper 4. Furthermore, in this study, maternal genetic and maternal 

permanent environmental effects for BW were included in RRM. The maternal genetic effect 

accounted for 18% of the total BW variance at birth, but substantially decreased (as expected) 

with aging. The gradually decrease in maternal heritabilities from birth to age month 5, and the 

extremely low maternal heritabilities in later life, indicate the importance of the maternal 

environment in dairy cattle only close to the calving date. Variances for the maternal permanent 

environmental effects were only 0.40 kg2 and 0.65 kg2, respectively (as presented in the 

original research papers 4 and 6). However, on average 1.22 phenotyped daughters per dam 

might not be sufficient to partition properly the maternal component into the maternal 

permanent environmental variance component and the maternal genetic variance component.   

Interestingly, moderate to high heritabilities were also reported for growth curve parameters 

from different nonlinear functions, irrespective of the applied relationship matrices, i.e., the 

pedigree-based relationship matrix (A) as used by Meyer (1995) and Forni et al. (2007), or the 

genomic relationship matrix (G) and the combined relationship matrix (H) as considered in the 

original research paper 6. In our study, we additionally modelled nonlinear functions with 

curve parameters reflecting biological meanings. Specifically, apart from the shape parameter 

from the Richards function, the other three curve parameters reflect birth weight, mature weight 

and growth rate. In consequence, the moderate to high heritability estimates for the curve 

parameters are in line with heritabilities for birth weight, mature weight and growth rate.  

Only a limited number of SNP was significantly associated with birth weight, weaning weight 

and insemination weight (as shown in the original research paper 5). Nevertheless, because 

of the heritabilities for BW which were larger than 0.36 when using the A matrix, stronger SNP 

effects were expected. In addition, the very similar and small genetic variances for BW on 

chromosome levels indicate the polygenic inheritance of BW. As suggested by Manzanilla-

Pech et al. (2016), only SNP with P-values < 0.05 for one BW trait were kept to estimate the 

variance components and heritabilities for the other two BW traits. Compared to the “full 

matrix” approach using all available SNP, the genetic variances for the BW trait of interest 

decreased, when only the significantly associated SNP for the two other BW traits were used 

to build the G matrices (Table 1). Consequently, except for BW recorded at 2 to 3 months of 

age (BW23), heritabilities based on the SNP subsets were substantially smaller (reduction up 
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to factor 0.5) compared to the heritabilities when using all SNP. Such results indicate, apart 

from BW23, that ~2,000 significant SNP (P-values < 0.05) explain half of the genetic variation, 

which is captured by ~42,000 SNP (Table 1). For BW23, ~2,000 SNP explain as much as 

genetic variance as the underlying genes that link to ~42,000 SNP across the genome.  Hence, 

as indicated in Table 1, BW from different ages along the growth trajectory have a changing 

genetic background, i.e., different SNP (and consequently linked genes) contribute to trait 

responses. In this regard, Zhang et al. (2014) suggested to consider SNP with specific weights 

to build trait-specific G matrices, in order to improve the accuracies of genomic predictions. 

However, comparing to the construction of the G matrix as suggested by vanRaden (2008), 

tremendous efforts are required, i.e., to collect prior information for each SNP and each trait. 

Moreover, only minor improvements are expected when all underlying functional genes 

similarly contribute to the phenotype of interest.  

 

Table 1. Genetic (σ�
�), residual (σ�

�), phenotypic variances (σ�
�), heritabilities (h�), and standard 

errors of heritabilities (SE) for body weight recorded at birth (BW0), at 2 to 3 months of age 

(BW23) and at 13 to 14 months of age (BW1314) estimated via models using all SNP (ALL) 

and models only considering SNP with P-values < 0.05 for BW0 (sBW0), BW23 (sBW23), 

and BW1314 (sBW1314). 

Trait SNP #SNP 
Genetic parameter 

σ�
� σ�

� σ�
�    h� SE 

BW0 ALL 42,468 6.08 12.37 18.46 0.33 0.01 

 sBW23 2,071 3.08 14.99 18.06 0.17 0.01 

 sBW1314 2,083 3.14 14.96 18.11 0.17 0.01 

BW23 ALL 42,388 20.28 84.54 104.82 0.19 0.02 

 sBW0 2,087 14.80 89.35 104.18 0.14 0.02 

 sBW1314 2,083 15.05 88.43 103.48 0.15 0.02 

BW1314 ALL 42,443 174.96 604.65 779.61 0.22 0.02 

 sBW0 2,087 95.56 669.54 765.10 0.13 0.01 

 sBW23 2,071 89.40 674.69 764.08 0.12 0.01 
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3.1.3. Behavior traits 

According to the genetic variances and heritabilities as reported in original research paper 7, 

natural bovine behavior of cows including feeding (FEED), ruminating (RUM), resting / non-

active (NACT), basic activity (BACT) and high activity (HACT), is under low to moderate 

genetic control. Among the behavior traits recorded via sensor technology, FEED, RUM, and 

NACT displayed larger heritabilities than RUM and BACT. A small number of significant SNP 

were detected for RUM, FEED and NACT, when considering the very relaxed false discovery 

rate of 20%. With regard to the stringent Bonferroni threshold, only one SNP was significantly 

associated with NACT. Hence, the genetic and genomic studies for automatically recorded 

behavior via sensor technology confirms that basic cattle habits are controlled by numerous 

loci with mainly small effects.  

 

Table 2. Genetic (σ�
�), permanent environmental (σ�

�), residual variances (σ�
�), heritabilities 

(h�), and standard error of heritabilities (SE) for behavior traits using the combined pedigree 

(A) and genomic (G) relationship matrix with different numbers of SNP. 

 Combined A and G with 35,826 SNP 
 

Combined A and G with 1,011 SNP1 

Trait σ�
� σ��

�  σ�
� h� SE  σ�

� σ��
�  σ�

� h� SE 

RUM 0.84 10.52 29.59 0.02 0.05  0.49 10.82 29.59 0.01 0.03 

FEED 9.51 3.63 35.48 0.20 0.05  5.91 6.77 35.48 0.12 0.04 

BACT 1.57 5.04 18.47 0.06 0.05  0.51 5.96 18.47 0.02 0.03 

HACT 1.68 0.72 6.01 0.20 0.05  1.08 1.26 6.01 0.13 0.04 

NACT 7.79 6.69 28.60 0.18 0.06  6.48 7.78 28.60 0.15 0.05 

WEL_IP 0.08 0.19 1.88 0.04 0.02  0.05 0.21 1.88 0.02 0.02 

WEL_IC2 0.07 0.10 1.56 0.04 0.02  0.04 0.13 1.56 0.02 0.01 

RUM = rumination; FEED = feeding; BACT = basic active; HACT = high active; NACT = not 

active; WEL_IP = welfare index point; WEL_IC = welfare index class; 1: SNP within a window 

of 50 kb up- and downstream of the 445 homologous genes; 2: Genetic, permanent 

environmental, and residual variances for WEL_IC are multiplied with 10. 

 

In a further approach, 1,011 SNP within a window of 50 kb up- and downstream of 445 

homologous genes were considered to construct a reduced G matrix. The 445 genes were 
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involved in the biological process of behavior as mentioned in the original research paper 7. 

Using the reduced G matrix, genetic variances and heritabilities for all behavior traits decreased 

(Table 2). Interestingly, the decrease in genetic variation was associated with an increase of the 

permanent environmental variance component. Residual variances were almost identical when 

modelling the full or the reduced genomic relationship matrices. Among all behavior traits, 

NACT displayed the smallest heritability decrease, indicating that the 1,011 SNP near the 445 

homologous genes are able to capture almost all the genetic variation, which is explained by 

the full number of 35,826 SNP. In other words, the 445 genes might comprise most of the 

genomic regions contributing to NACT. However, for the very low heritability traits (RUM, 

BACT, WEL_IP and WEL_IC), functions of the 445 genes were not conserved in the process 

of evolution.  

 

3.2. Genotype by environment interaction 

A comprehensive study to test G×E for production and health traits as well as for the length of 

productive life (LPL) considering conventional and organic production systems was conducted 

by Shabalina et al. (2019). Genetic correlations for disease traits and LPL between organic and 

conventional production systems using either the A or the G matrices were lower than 0.80, 

indicating obvious G×E. In contrast, genetic correlations between moderate heritability test-

day production traits from the different systems were larger than 0.80. In an ongoing approach 

using the genomic marker data, patterns of genome-wide associations were different for LPL 

and health traits in both production systems, and different gene networks and causal pathways 

were identified. Generally, environmental sensitivity on quantitative-genetic and genomic 

levels was generally stronger for functional than for production traits. For continuous 

environmental descriptors, results from the original research papers 1 and 2 indicated the 

influence of heat stress on simulated traits and production traits across THI levels, based on the 

A, G and H matrices. Additionally, results from the original research paper 8 displayed 

alterations of estimated (co)variance components across continuous genomic, genetic and 

phenotypic herd descriptors. 

 

3.2.1. Discrete environmental descriptor: Conventional and organic production systems 

As indicated above, Shabalina et al. (2019) estimated quite large genetic correlations between 

production traits from organic and conventional herds, e.g. of 0.85 (standard error (SE) of 0.03) 
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for lactation fat percentage. However, with regard to health traits, the genetic correlations 

decreased to 0.41 (SE of 0.21) for mastitis, 0.34 (SE of 0.18) for ovarian cycle disorders, and 

0.30 (SE of 0.14) for digital dermatitis. The genetic correlation between LPL recorded in 

organic herds and in conventional herds was 0.67 (SE of 0.13). According to a threshold of rg 

≤ 0.80 as suggested by Robertson (1959), considerable G×E existed for all functional traits. 

Compared to production traits, lower genetic correlations with larger SE were expected for 

health traits, because the multiple-trait modelling approach without residual covariances is a 

challenge for low heritability traits, especially for binary traits with low disease incidences 

(Calus et al., 2004). For milk yield, the genetic correlation was larger when modelling the G 

matrix compared to the modelling approach with the A matrix, because the G matrix reflects 

the similarity between animals based on SNP markers instead of common ancestors.  

 

3.2.2. Temperature-humidity-index 

In addition to the general approach using discrete environmental descriptors (as outlined above 

by Shabalina et al. (2019)), the present thesis focuses on the estimation of (co)variance in 

dependency of continuous explanatory variables such as THI. In contrast to the quite large  

genetic correlations among THI levels as reported by Brügemann et al. (2011), the genetic 

correlations for milk yield between low and high THI  were 0.49 (based on the A matrix) and 

0.18 (based on the H matrix), implying re-ranking of sires in genetic evaluations across THI. 

Interestingly, for somatic cell score, the corresponding genetic correlations were 0.85 for the 

A matrix and 0.80 for the H matrix. Somatic cell score seems to be a specific trait in genomic 

evaluations for German Holstein cows. In official genetic evaluations, prediction accuracies 

for low heritability somatic cell score (SCS) are larger than for the moderate heritability traits 

milk yield or fat percentage. Hence, traits with fundamental differences in genetic architectures, 

e.g., in the number of segregating QTL, in the distribution of QTL effects, and in variance 

ratios for additive genetic, dominance and epistatic effects, show specific (unexpected) 

covariances with respect to alterations of environmental gradients. In this regard,  when using 

repeated test-day instead of lactation records, both between-cow and within-cow variations can 

be used to infer possible G×E in more detail (Hayes et al., 2003).  

Another topic for differences in G×E studies addresses animal versus sire model applications. 

In the present thesis in original research papers 1, 2, 3, and 4, RRM animal models were 

applied to analyze a longitudinal data structure. Especially in heat stress studies, animal models 
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might be more suitable, because the same cow has the possibility to produce under various 

climatic conditions. In consequence, a more accurate G×E prediction is expected from animal 

model than from sire model applications. The very similar modelling strategy in this thesis 

when compared to Hayes et al. (2003) displayed a very similar behavior of genetic (co)variance 

pattern for longitudinal test-day production traits in both studies. The general superiority of 

animal over sire model applications, e.g., the more detailed possibilities to estimate variance 

components, was described by Hudson and Schaeffer (1984). Ramirez-Valverde et al. (2001) 

and Sun et al. (2009) confirmed the animal model superiority via EBV evaluations, e.g., larger 

EBV accuracies and improved EBV stabilities.   

 

3.2.3. Herd descriptors 

Phenotypic herd descriptors (herd size and herd non-return rate) as well as novel genetic and 

genomic herd characteristics (intra-herd inbreeding coefficient, percentage of daughters from 

foreign sires, level of LD within specific chromosome segments, allele frequency for a SNP 

within the DGAT1 gene) were continuous explanatory variables in the G×E study in the 

original research paper 8. A reference scenario addressed random herd descriptors. Again, a 

focus was on RRM applications. In addition, in further validations, multiple trait models were 

applied, implying the allocation of herds into different groups named “high”, “middle” and 

“low”. This was done in consecutive runs for all herd descriptors. For the herd descriptor based 

on random numbers, the assigning and analyzing procedure was repeated for 50 times, in order 

to generate the mean and standard deviation (SD) for all parameter estimates. The heritabilities 

for SCS were quite constant across the random descriptor scale (Figure 1). For production traits, 

heritabilities slightly increased at the curve peripheries. The genetic correlations curves were 

almost identical for milk composition traits and SCS, i.e., in the range from 1.00 to ~ 0.75, and 

from 1.00 to 0.62 for milk yield. With regard to the random herd allocation approach, genetic 

correlations between same traits form high, middle and low random descriptor classes were 

always larger than 0.81, indicating that G×E were non-existent. In contrast, obvious G×E were 

identified for milk yield for all herd descriptors (except for the allele frequency of the SNP 

located in the DGAT1 gene), for fat percentage in dependency of the herd non-return rate and 

herd inbreeding coefficient, for protein percentage in dependency of herd size, and for SCS in 

response to herd size, herd non-return rate, LD and percentage of foreign sire alterations. 

Interestingly, the genetic correlations were larger than 0.62 when considering the extreme allele 

frequencies, but were substantially lower when correlating the herds with the best and the worst 
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non-return rate. Although the K232A substitution within DGAT1 is in complete LD with the 

SNP ARS-BFGL-NGS-4939 (Wang et al., 2012), the allele frequency of the SNP is not 

sufficient to fully represent the gene segregation. Further polymorphic variants were detected 

in the DGAT1 gene (Kühn et al., 2004). Consequently, the single SNP within the DGAT1 gene 

captures only a small proportion of the variance. In this regard, Fang et al. (2014) identified 

small heritabilities on a SNP basis with 0.06 for milk yield, 0.03 for fat yield and 0.02 for 

protein yield. Hence, due to the small genetic variation from single SNP, it is questionable to 

consider allele frequencies in comprehensive G×E studies. However, also non-return rate is a 

very low heritability fertility trait, displaying heritabilities of 0.03 and 0.02 in the original 

research paper 4, but in contrast to single SNP, intra-herd non-return rate also reflects 

environmental variations. The descriptor herd size comprises a broad pattern of environmental 

effects, due to associations with feeding, husbandry, and management conditions. Accordingly, 

considerable G×E were observed for milk yield and SCS when considering the largest and the 

smallest herds. Hence, variation in the herd environment contributed to genetic differentiation. 

 

Figure 1. Heritabilities and genetic correlations between the minimal level and remaining 

levels for the random herd descriptor considering the following test-day traits: milk yield (MY), 

fat percentage (Fat%), protein percentage (Pro%), and somatic cell score (SCS). Standard 

deviations (SD) for posterior heritability estimates ranged from 0.005 to 0.044 for MY, from 

0.005 to 0.042 for Fat%, from 0.006 to 0.045 for Pro%, and from 0.002 to 0.018 for SCS. SD 

for posterior estimates of genetic correlations ranged from 0 to 0.126 for MY, from 0 to 0.122 

for fat%, from 0 to 0.099 for Pro%, and from 0 to 0.167 for SCS; SD for genetic correlations 

increased with increasing distance between herd descriptors. 
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3.2.4. Future environmental descriptors 

The survey stratification index (Hoffmann et al., 2017), considering build-up density and the 

distance to the city center, was defined as a continuous environmental descriptor to reflect 

social-ecological characteristics in harsh environments in Bangalore in India (Pinto et al., 

2020b). This index comprises not only the aforementioned environmental components, but also 

human-animal relationships and interactions. Results from linear mixed model applications 

displayed the variation in productivity and functionality along the rural-urban interface (Pinto 

et al., 2020b). In particular, compared to rural strata, cows kept in urban farms responded with 

higher milk yield and desired body condition and hygiene scores. The cows in urban locations 

had higher incidences for disease categories including feet and leg disorders and subclinical 

mastitis. The phenotypic differentiations in the context of social-ecological heterogeneity 

might contribute to genetic stratification and G×E along the rural-urban gradient, being the 

current research topic of the habilitation applicant. 

 

3.3. Factors affecting genome-wide associations  

Classically, the power of GWAS depends on the amount of LD between SNP and QTL, the 

QTL effects, the number of phenotypic records, allele frequencies of SNP, and the chosen 

significance threshold. Furthermore, approaches for adjusting population stratification, types 

of the dependent variables and number of breeds included in GWAS play an important role. 

Therefore, the original research paper 5 compared and evaluated different approaches that 

can be used to adjust population stratification, with impact on the identification of potential 

candidate genes, also from a maternal genetic perspective. A further focus was on the 

evaluation of GWAS in a multi-breed context in the original research paper 7.  

 

3.3.1. Population stratification 

Generally, presence of a systematic difference in allele frequencies between subpopulations in 

a population contributes to population stratification, with further impact on inflations of false 

positive associations in GWAS as applied in humans and animals (Kang et al., 2008; Price et 

al., 2006; Ma et al., 2012). In both human and dairy cattle populations, admixture of individuals 

with different origins might contribute to population stratification. In modern dairy cattle 

breeding programs, artificial selection and preferential mating and the worldwide utilization of 

artificial insemination with same sires, are major causes for population stratification. Therefore, 
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various approaches, e.g., the genomic control approach focusing on markers not linked with 

the trait of interest (Devlin and Roeder, 1999), adding principal components (Price et al., 2006), 

or  using a mixed model with polygenic effects (Yu et al., 2006),  were suggested to correct the 

false positive discovery rates. In this thesis, we compared the GWAS results from models with 

polygenic effects calculated on the basis of selected SNP with principal component analysis 

(PCA). Evaluation criteria were inflation factors and overlaps between significant SNP. In 

conclusion, the inclusion of polygenic effects with the G matrix underestimated the SNP effects. 

Consideration of the A matrix and the leave-one-chromosome-out G matrix were not sufficient 

to correct for the population structure. Based on our evaluations, we suggest the construction 

of an alternative G matrix using all SNP apart from the candidate SNP.  However, such strategy 

implies an extremely long computation time, because the number of alternative G matrices, 

which have to be constructed, is equal to the number of SNP from the genotyped animals. 

Therefore, from a practical perspective, the direct inclusion of the full G matrix might not be 

the most precise method, but seems to be the most efficient way to correct population 

stratification.  

 

3.3.2. Multi-breed and within-breed GWAS 

In order to increase the population size in GWAS, animals from more than one breed were  

included to conduct multi-breed GWAS (Sanchez et al., 2017; Akanno et al., 2018; van den 

Berg et al., 2016). Compared to within-breed GWAS, multi-breed GWAS is superior in terms 

of detecting QTL segregating between breeds, and in mapping precisions. The improvement in 

mapping precisions can be explained by the shortened extent of LD across breeds (Raven et al., 

2014). However, breed-specific QTL might be overshadowed by larger QTL segregating in 

dominated breeds (van den Berg et al., 2016). Hence, for a deeper evaluation in this thesis, 

single-breed GWAS were carried out considering the breeds as used in the multi-breed GWAS 

from the original research paper 7. According to the correlations (Table 3), the marker effects 

from the multi-breed GWAS were in agreement with the effects estimated in black and white 

dual-purpose cattle (DSN), probably due to the domination of DSN cattle in the multi-breed 

GWAS. Specifically, 39.43% of the genotyped cows were DSN, and the remaining proportions 

were 23.17% for Simmental, 22.76% for Brown Swiss and 14.63% for Original Braunvieh. 

The significant SNP from the multi-breed GWAS, ARS-BFGL-NGS-104430 and ARS-BFGL-

NGS-24800 for rumination, and Hapmap60738-rs29023086 for not active, were also the top-

ranked makers according to their P-values in the DSN population. The four significant SNP 
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for feeding in DSN did not include the significant SNP (ARS-BFGL-NGS-80066) from the 

multi-breed GWAS. Interestingly, although no significant SNP was detected for the behavior 

“basic active” from the multi-breed GWAS, two and nine breed-specific makers were identified 

in Brown Swiss and Simmental, respectively. In contrast to “basic active” sharing probably no 

QTL across breeds, QTL underlying rumination strongly segregated across breeds (van den 

Berg et al., 2016). Surprisingly, a GWAS for feeding in Original Brauvieh detected 53 

significant SNP. However, the SNP were spread over 20 chromosomes, and only one SNP on 

chromosome 2 surpassed the strong Bonferroni threshold. Furthermore, the quite small 

population size should be kept in mind when comparing and interpreting results from single-

breed GWAS (97 DSN cows, 57 Simmental cows, 56 Brown Swiss cows and 36 Original 

Braunvieh cows). 

 

Table 3. Number of significant markers (according to false discovery rate of 20%) associated 

with sensor behavior traits and correlations (in parentheses) between marker effects estimated 

from multi-breed GWAS and within-breed GWAS. 

 
Multi-breed 

GWAS 

Within-breed GWAS 

Trait 
Brown Swiss Black and white 

dual-purpose 

Original 

Braunvieh 

Simmental 

RUM 5 0 (0.29) 0 (0.52) 0 (0.51) 0 (0.44) 

FEED 1 0 (0.37) 4 (0.69) 53 (0.45) 0 (0.25) 

BACT 0 2 (0.38) not converge 0 (0.42) 9 (0.33) 

HACT 0 0 (0.33) 0 (0.72) 0 (0.34) 1 (0.33) 

NACT 1 0 (0.42) 3 (0.69) 0  (0.30) 0 (0.37) 

ET 0 1 (0.36) 0 (0.65) 0 (0.39) 0 (0.37) 

WEL_IP 0 0 (0.29) 0 (0.72) 0 (0.43) 0 (0.30) 

WEL_IC 0 0 (0.30) 0 (0.74) 0 (0.41) 0 (0.27) 

RUM = rumination; FEED = feeding; BACT = basic active; HACT = high active; NACT = not 

active; WEL_IP = welfare index point; WEL_IC = welfare index class. 

 

3.3.3. GWAS for maternal genetic effects 

Genetically, traits expressed directly at birth and during the short period after birth can be 

separated into direct genetic and maternal genetic effects. The maternal genetic component 

represents the ability of the dam to provide a nourishing environment. Pseudo-phenotypes for  

maternal genetic effects for calving ease and stillbirth in GWAS were de-regressed proofs 

(Abo-Ismail et al., 2017), daughter yield deviations (Olsen et al., 2010), and predicted 
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transmitting abilities (Purfield et al., 2015). However, only a limited number of significant SNP 

and potential causative mutations were identified (Abo-Ismail et al., 2017; Olsen et al., 2010), 

even for birth weight with a moderate maternal heritability. Therefore, in the framework of this 

thesis, a simulation study was carried out to investigate the impacts of genetic correlations 

between direct and maternal genetic effects (ram), as well as the number and effects of 

underlying QTL, on the power of GWAS when focusing on maternal genetic effects. The 

correlation ram strongly influenced the significance of SNP marker effects in GWAS (Figure 

2). Surprisingly, no specific conclusion can be made for the effect of the number of QTL. 

However instead of a gamma distribution with a few major genes, normal distributed QTL 

effects for maternal genetic effects can barely show any QTL with large effects, which might 

explain any ambiguities. Moreover, the number of significant SNP was quite constant when 

ram increased from -1.00 to 0. For ram larger than zero, the number of detected SNP increased 

apparently. However, negative ram are very common for the calving relevant traits in dairy 

cattle (Johanson et al., 2011; Eaglen et al., 2012), due to the existence of  a direct-maternal 

environmental covariance (Eaglen and Bijma, 2009) and additional sire or sire × year variation 

(Robinson, 1996). Even for the ideal scenario of ram = 1.00, averaged over 50 repeats, only 0.5 

significant SNP per repeat was close to the true causative QTL. In consequence, detection of 

QTL for maternal genetic effects remains a challenging task. Further studies addressing the 

distribution of maternal QTL effects for specific traits and the application of alternative 

statistical models, are suggested.  

 

Figure 2.  Number of significant SNP located within a window of five makers up- and 

downstream from the true causative QTL for maternal genetic effects in dependency of the 

number of QTL (NQTL) and genetic correlations between direct and maternal genetic effects. 
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3.4. Genetic and genomic parameters 

Variance components and heritabilities estimated on the basis of the A, G and/or H matrices 

are presented in the original research paper 2 for production traits, in the original research 

paper 5 for body weight, in the original research paper 6 for growth curve parameters and in 

the original research paper 7 for behavior traits. Additionally, the ongoing chapters of this 

thesis discuss some recent work from Shabalina et al. (2019), focusing on genetic parameter 

estimates for longevity and health traits from pedigree-based and SNP-based approaches.     

 

3.4.1. Heritabilities 

In most cases, SNP-based heritabilities (i.e., G matrix construction) were smaller than the 

pedigree-based (i.e., the A matrix construction) heritabilities, irrespective of the genetic 

architecture. Only for milk yield and fat percentage considering cows in organic farming 

systems, as well as for rumination and not active in a multi-breed analysis, heritabilities were 

larger when considering the G matrix (but associated with quite large SE). A major explanation 

for larger heritabilities from the A matrix is incomplete LD among SNP from the low- and/or 

medium-density SNP chips, contributing to insufficient genetic variation captured by the G 

matrix (Román-Ponce et al., 2014). The improved accuracy due to the consideration of the 

Mendelian sampling term in the G matrix was not sufficient to thwart the reduction in accuracy 

due to incomplete LD between SNP and QTL (Calus et al., 2013). 

Modelling the H matrix, i.e., combining the A and G matrices, contributed to the increased 

heritabilities in the original research paper 2 for milk yield and SCS, as well as for behavior 

traits in the original research paper 7. In the original research paper 6, only the heritabilities 

for the growth curve parameters representing birth weight were larger when replacing G with 

H. For the other growth curve parameters including mature weight, the growth rate and the 

shape parameter, consideration of G in animal models was associated with heritability 

increases. The SE for heritabilities from the H matrix approach ranged from 0.02 to 0.04, but 

were in the range from 0.05 and 0.10 when replacing H by G. In the original research papers 

2 and 7, SE and SD of posterior heritabilities for the same trait were very similar when applying 

different genetic relationship modelling approaches. Our results from the original research 

paper 6 indicate most accurate estimations via H applications. In the H matrix, usually a 

weighted genomic relationship matrix (Gw) rather than the simple G matrix is included to 
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depict relationships between genotyped animals (Christensen and Lund, 2010). Since �	 =

�α� + �1 − α)���), where α is the proportion of variance explained by markers in relation to 

the total genetic variance, and A22 is the submatrix of the A matrix for genotyped animals, the 

Gw matrix contains the variances captured by markers and pedigree at the same time (Legarra 

et al., 2014). Consequently, from our point of view, the heritability increase is in line with the 

theoretical background when using the H matrix.  

 

3.4.2. Variance components 

The heritability increase when considering the H matrix was due to the increase of genetic 

variance components. For example, in original research paper 2, the additive genetic 

variances for milk yield in the lowest DIM and THI class were 10 kg2 and 5 kg2 when using 

the H and the A matrices, respectively. For the low heritability welfare index, the genetic 

variance increased by 16.67% when modelling the H matrix instead of the A matrix. 

Accordingly, Forni et al. (2011) reported smaller additive genetic variances for litter size with 

the A matrix than with the H matrix. In their studies, variances for the remaining effects, e.g., 

permanent environmental effects and residuals, decreased correspondingly, resulting in almost 

constant total phenotypic variances and in increased heritabilities. 

 

3.5. Breeding schemes with focus on genotyped cows and functional traits 

For the evaluation of genetic gain, discounted returns and discounted costs in traditional 

progeny testing and genomic breeding programs comprising production and novel functional 

traits, Frevert et al. (2014) performed deterministic simulations via  ZPLAN+ (Täubert et al., 

2010). In the study by Frevert et al. (2014), the breeding goal comprised the six traits milk 

yield, methane emission, days open, clinical mastitis, body condition score and milking 

temperament. In the genomic breeding schemes, accuracies of genomic breeding values were 

varied from 0.20 to 0.80, with increments of 0.20. When assuming equal economic weight per 

genetic standard deviation for all breeding goal traits, total discounted returns were almost 

identical for a classical conventional progeny testing scheme and a genomic breeding program 

assuming accuracies of GBV of 0.2. The substantial reduction in generation intervals was the 

major parameter explaining the quite large selection responses per year and discounted returns 

in genomic breeding programs, even when assuming low GBV accuracies. Generation intervals 

in conventional and genomic breeding programs were 4.97 and 3.17 years, respectively. 
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Therefore, for an investment duration of 30 years, 6.04 and 9.46 generations were considered 

in the two programs, respectively. The total discounted return per animal gradually increased 

from 4.62 Euro to 7.97 Euro, when the accuracy of GBV increased from 0.20 to 0.80. The 

possible increase of breeding value accuracies in genomic breeding programs is a new 

opportunity to increase the response to selection for novel traits, such as methane emissions, 

mastitis, or milking temperament. However, strong selection on most of the functional traits 

implies antagonistic selection response in milk yield (Gernand and König, 2014; Windig et al., 

2006; Pszczola et al., 2019), i.e., a milk yield decrease in the range from 0.45 kg/day to 0.72 

kg/day, depending on the GBV accuracies.  

In addition to the improvements of genetic or genomic evaluations, it is imperative to derive 

economic weights for breeding goal traits using scientific methodology, because apart from 

generation intervals and accuracies, economic weights mainly determine the selection response 

in individual traits. Generally, it will be a challenge to include properly all new functional traits 

into overall breeding goals. Further important functional traits which have been ignored in our 

deterministic calculations (Frevert et al. 2014)  are body weight and fat to protein ratio (Coffey 

et al., 2002; Friggens et al., 2007), milk urea nitrogen (Mitchell et al., 2005; Yin et al., 2012), 

milk fatty acids (Dijkstra et al., 2011), and the overall health status (Bastin et al., 2011). 

 

Figure 3. Selection responses and total discounted return per animal when assuming equal 

economic weights per genetic standard deviation for the six breeding goal traits (according to 

Frevert et al., 2014). 
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3.6. Novel traits for future breeding goals 

In recent years, the dairy cattle herd management has been improved stepwise, in order to 

compensate the genetic deteriorations in functionality (Egger-Danner et al., 2015), to maintain 

a sustainable production process and to fulfil societal demands (Boichard and Brochard, 2012). 

Hence, also from a breeding perspective, dairy cattle breeding goals should be extended, with 

a focus on further novel functional traits. The ongoing attempts in precision farming, which 

focuses on on-farm data collection and data transfer through the implementation of electronic 

animal identification, the development of sensor-based data recording, and new 

communication technologies, contribute to an increasing amount of data (Boichard and 

Brochard, 2012). In this thesis, precision-farming devices, i.e., electronic ear tags with sensors 

and automatic weighing systems, were installed in farms to record behavior traits and BW on 

a longitudinal data basis. Additionally, methane emissions were measured with a portable 

handheld laser methane detector according to the protocol as defined by Reintke et al. (2020). 

Further opportunities for CH4 recording are infrared sensors installed in automatic milking 

systems (van Engelen et al., 2018). In addition to methane, automatic milking systems can also 

generate dense data for production, behavior and health traits (Santos et al., 2018).  

THI as considered in the original research paper 2 was calculated on the basis of 

meteorological data from the nearest official weather stations. Aiming on more detailed THI-

cow trait associations, on-farm temperature and humidity can be recorded via USB climatic 

data loggers (Gernand et al., 2019). Furthermore, high-throughput technologies allow to 

generate large-scale multi-omics data, including genomic data (e.g., SNP and indel), 

transcriptomic data (e.g., RNA) and proteomic data (e.g., protein sequence and structure), 

which might help to understand the nature of functional traits in more detail (Vazquez et al., 

2016). Meanwhile, consideration of interactions between phenotypic data and multi-omics data 

being available from the animals (hosts) and microbes in the rumen (Li et al., 2019), specific 

major pathogens (Mahmoud et al., 2018) and parasitic agents in endoparasite infections (May 

et al., 2019), might contribute to improvements in the predictive abilities.  
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4. Summary  

This thesis focused on the estimation of genetic parameters for novel functional traits in dairy 

and dual-propose cattle populations including heat stress responses, methane emissions, 

longitudinal body weights and respective growth curve parameters as well as electronically 

recorded behavior pattern. In this regard, quantitative-genetics and genomic modelling 

approaches were applied. Moreover, genetic architectures for body weight and behavior traits 

were inferred, i.e., via GWAS for direct-genetic as well as maternal-genetic effects, and 

ongoing pathway analyses to identify potential candidate genes and their functional annotations. 

Possible G×E were studied, considering simultaneously continuous time (e.g., aging) and 

environmental descriptors (e.g., THI). As a novelty, genetic (co)variance components were 

estimated via RRM on genetic and genomic herd scales, aiming on a deeper understanding of 

G×E.  

In the original research paper 1, we stochastically simulated longitudinal phenotypic cow 

records at five THI levels, as well as genotypes from the 2,000 cows, aiming on the evaluation 

of the effects of heritabilities, LD, maker density and the proportion of phenotypic records for 

extreme THI, on prediction accuracies in genomic RRM. As expected, prediction accuracies 

increased with increasing heritability, LD and SNP density.  In order to improve accuracies of 

genomic predictions, it was imperative to consider a proportion of cows with phenotypic 

records in heat stress environments (i.e., THI larger than 75), when estimating genomic 

breeding values of remaining genotyped but not phenotyped cows. In all scenarios, prediction 

accuracies were larger when modelling the G matrix instead of the A matrix.  

The advantage of RRM considering genotyped cows and heat stress interactions with regard to 

prediction accuracies for test-day milk yield and SCS was confirmed in original research 

paper 2. Four RRM, i.e., RRM with or without genotyped cattle combined with or without 

G×E interaction terms, were evaluated using 5-fold cross-validations. The highest prediction 

accuracies for both traits were identified when applying genomic RRM, and modelling THI as 

an environmental descriptor. Such modelling superiority was stronger for milk yield than for 

SCS. For test-day milk yield, a quite large range in genetic correlation estimates for days in 

milk × THI combinations were identified, indicating GxE interactions. For test-day SCS, 

genetic correlations were more stable and throughout larger than 0.80. In conclusion, for traits 

showing sensitive responses to heat stress such as milk yield, it is imperative to include a heat 

stress indicator in genetic evaluation models, which also contributes to the improved 

identification of robust dairy cattle in harsh environments. 
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Genetic parameters for test-day CH4, which were predicted through a deterministic approach 

as well as an approach combining deterministic equations and stochastic simulations, were 

estimated on a time scale via RRM in original research paper 3. The heritabilities for daily 

CH4 ranged from 0.15 to 0.37. Genetic correlations between CH4 from different prediction 

equations were larger than 0.90. Antagonistic genetic correlations in the range from 0.70 to 

0.92 were estimated between CH4 and milk yield. Genetic correlations with other functional 

breeding goal traits were close to zero, but altered in the course of lactation. The simulated data 

basis for CH4 was used to determine the size of a cow calibration group for genomic selection. 

A calibration group including 2,581 cows with own measurements for CH4 (a heritability of 

0.44 and an effective population size of 100) was competitive with conventional breeding 

strategies in terms of prediction accuracy. 

Genetic parameters and genetic architectures for body weight from different ages were studied 

in the original research papers 4 and 5, respectively. Body weight from birth to calving had 

moderate to high direct heritabilities. The maternal genetic component was detectable for body 

weights of calves in the period from birth to an age of 5 months, but later on, maternal genetic 

variances were close to zero. Body weights for calves and heifers were weakly correlated with 

production, female fertility and health traits in first parity cow. Genetic correlations between 

production and fertility traits with insemination body weight were stronger than with birth 

weight. Considering genomic data of genotyped cows, heritabilities as presented in the original 

research paper 5 verified the genetic parameter estimates (original research paper 4). 

Furthermore, in the original research paper 5, GWAS for birth weight, weaning weight and 

body weight at the first insemination date inferred significantly associated SNP and underlying 

potential candidate genes. With regard to GWAS for maternal-genetic effects, three SNP were 

significantly associated with birth weight according to the threshold based on 5% false 

discovery rate. No SNP significantly contributed to maternal-genetic effects on body weight 

recorded at weaning and at first insemination. Gene annotations identified 76 potential 

candidate genes for body weight, and these genes were involved in 12 biological processes. 

Hence, weight development is a very complex biological process, which is controlled by many 

genes with minor effects. 

Original research paper 6 focused on the estimation of genetic parameters and on prediction 

accuracies for growth curve parameters from three non-linear growth models, i.e., the Logistic, 

the Gompertz and the Richards functions, in combination with different kernel similarity 

matrices. Moderate heritabilities for growth curve parameters confirmed the pronounced 
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genetic background for body weight with aging. Prediction accuracies for genomic growth 

curve parameters from different similarity matrices, including two genomic relationship 

matrices and three kernel matrices, combined with same non-linear functions, were very similar. 

In combination with all genomic relationship and kernel matrices, model superiority and largest 

prediction accuracies were observed when fitting the non-linear Richards function.  

Heritabilities for novel behavior traits, which were electronically recorded via ear tag sensors, 

ranged from 0.04 for rumination to 0.20 for feeding and high active. Differences in heritabilities 

and genetic variances indicate a diverse genetic background for different behavior traits. The 

underlying genetic mechanisms were unraveled through multi-breed GWAS in original 

research paper 7. According to a very relaxed threshold based on 20% false discovery rate, 

only five SNP were significantly associated with rumination, one SNP with feeding and one 

SNP with “not active”. The reason for the quite small number of significantly associated SNP 

with natural cattle behavior might be short-range LD when pooling breeds or limited conserved 

mutations across breeds. Mendelian randomization based on genomic variants (i.e., the 

instrumental variables) was used to infer causal inference between an exposure and an outcome. 

For example, the regression coefficients of rumination and feeding on milk yield were 0.10 

kg/% and 0.12 kg/%, respectively, indicating their positive influences on dual-purpose cow 

productivity. Genomically, an improved welfare behavior of grazing cattle, i.e., a higher score 

for welfare indices, was significantly associated with increased fat and protein percentages. 

The original research paper 8 depicted possible G×E for production traits and SCS along 

phenotypic, quantitative-genetic and genomic herd descriptors. Hence, we provided the proof 

that genetic covariances and correlations between same traits from different herds strongly 

depend on genetic and genomic herd characteristics, such as inbreeding coefficients or LD 

within specific chromosomal segments.  Apart from the herd variable “allele frequency for the 

SNP ARS-BFGL-NGS-4939 within the DGAT1 gene”, genetic correlations between milk yield 

at minimal and maximal levels for the other descriptors were always lower than 0.6, indicating 

environmental sensitivity. Especially for low heritability SCS, low genetic correlations were 

estimated when considering extreme herd classes according to LD of a genomic region on 

chromosome 6 at herd level, herd size, intra-herd percentage of non-EU sires, and the herd 

average for non-return rate. Alterations of estimated breeding values of sires in dependency of 

phenotypic, genetic and genomic herd structures suggest utilization of specific sires for specific 

herds, indicating further possibilities to optimize mating programs.  
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Original research paper 9 addressed the importance of genotyped cows from a commercial 

herd perspective, including economic aspects and phenotype predictions. For different herd 

replacement strategies and a herd breeding goal aiming on antagonistically related production 

and functionality, genetic gain was maximized when focusing on large-scale female cattle 

genotyping. Especially selection response on the cow-dam pathway increased, through 

improved replacement and mating designs. From a literature review perspective, the original 

research paper 9 discussed further opportunities of cow training sets and commercial cow 

genotyping. Several studies and theoretical derivations highlighted the importance to including 

genotyped female cattle in training sets, because cow training sets avoid biased genomic 

predictions due to intensively pre-selected sires. Additionally, long-term genetic gain in novel 

functional traits is only possible when implementing the cow training sets. Detection of non-

additive genetic effects as well as the control of inbreeding and genetic relationships (to avoid 

lethal defects) were further arguments to genotype cows in commercial herd.  

In conclusion, mainly based on studies using comprehensive datasets for genotyped cows 

recorded for novel traits, the habilitation thesis presented results for broad genetic mechanisms 

and identified potential candidate genes for various functional traits. Additionally, G×E were 

detected along novel continuous “environmental” gradients for both production and functional 

traits. These findings are important for future improvements of dairy cattle breeding programs, 

e.g., when expanding breeding goals with further functional trait categories (e.g., behavior 

traits), and simultaneously considering environmental sensitivity (e.g., heat stress response).  
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