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Abstract: The study of aging is an important topic in contemporary research. Considering the
demographic changes and the resulting shifts towards an older population, it is of great interest to
preserve youthful physiology in old age. For this endeavor, it is necessary to choose an appropriate
model. One such model is the nematode Caenorhabditis elegans (C. elegans), which has a long tradition
in aging research. In this review article, we explore the advantages of using the nematode model in
aging research, focusing on bioenergetics and the study of secondary plant metabolites that have
interesting implications during this process. In the first section, we review the situation of aging
research today. Conventional theories and hypotheses about the ongoing aging process will be
presented and briefly explained. The second section focuses on the nematode C. elegans and its
utility in aging and nutrition research. Two useful genome editing methods for monitoring genetic
interactions (RNAi and CRISPR/Cas9) are presented. Due to the mitochondria’s influence on aging,
we also introduce the possibility of observing bioenergetics and respiratory phenomena in C. elegans.
We then report on mitochondrial conservation between vertebrates and invertebrates. Here, we
explain why the nematode is a suitable model for the study of mitochondrial aging. In the fourth
section, we focus on phytochemicals and their applications in contemporary nutritional science, with
an emphasis on aging research. As an emerging field of science, we conclude this review in the fifth
section with several studies focusing on mitochondrial research and the effects of phytochemicals
such as polyphenols. In summary, the nematode C. elegans is a suitable model for aging research that
incorporates the mitochondrial theory of aging. Its living conditions in the laboratory are optimal for
feeding studies, thus enabling bioenergetics to be observed during the aging process.
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1. Aging in the Focus of the 21st Century

Over 90% of the available online research literature about aging was published after
the year 2000. One of the major targets of today’s research is an understanding of this
multifactorial biological process. Aging starts at birth and ultimately ends with the death of
the individual [1]. In the medical sense, the process of aging only becomes relevant in later
life. Above all, aging plays a major role as a risk factor for age-related diseases such as can-
cer, atherosclerosis, and Alzheimer’s disease [2]. Age-associated phenomena are observed
throughout this process, including a reduction in cell quantity [3] and deterioration of
tissue proteins, which may lead to tissue atrophy [4]. In addition, aging leads to a decrease
in the metabolic rate [5], an increase in diseases, and a loss of adaptability [6,7]. These
manifestations differ between individuals and depend on the organ affected [8]. The aging
process is a degenerative change in the body that is associated with biological markers
and can be determined by environmental factors [9]. Environmental factors related to
lifestyles, such as stress, work, smoking, sun exposure, inadequate diet, physical inactivity,
or few social contacts, can either speed up or slow down the aging process [10]. In today’s
research, the goal is to stop this acceleration by finding countermeasures to these damaging
environmental factors and thereby delay biological aging.
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For the first time in history, people have a life expectancy that significantly exceeds the
age of 60 [11]. In low- and middle-income countries, this increase in life expectancy is the
result of a large reduction in mortality at younger ages, such as mortality during infancy
and childbirth. Better therapy and treatment for infectious diseases also play a major role
in these countries [12]. In countries with higher incomes, on the other hand, the increase
in life expectancy is explained by a decline in mortality among the older population [13].
These extra years of life, combined with a demographic shift towards an aging population,
have profound implications for each person and society as a whole. Thus, these changes
offer unprecedented opportunities, pose major problems, and have a fundamental impact
on current lifestyles. However, knowing that demographic changes will not stop, these
changes are predictable and can be partly planned and prevented. In addition to age-related
phenomena at the organ level, cellular processes are of great importance in advancing age.

Over the years, several molecular theories of aging have been put forward. These
theories include the “telomere hypothesis of cell senescence”, which states that sufficient
telomere loss on one or more chromosomes in normal body cells triggers cell senescence,
while reactivation of the enzyme is necessary for immortality [14,15]. Other theories refer
to more specific brain aging. The “calcium hypothesis of Alzheimer’s disease and brain
aging” sheds light on the neuronal calcium ion, its regulation, its subcellular concentration,
and its relationship to aging and genetics [16]. Over time, stress-related theories have
also emerged. For example, the “metabolic stability theory of aging” states that metabolic
stability, i.e., the ability of cellular regulatory processes to maintain metabolic homeostasis
under stressful conditions, is the main cause of aging [17]. Nevertheless, the mitochondrial
and radical-associated theories of aging are considered standard in contemporary aging
research (e.g., the “free radical theory of aging” and the “mitochondrial free radical theory
of aging” by Denham Harman [18]). In this article, we focus on mitochondrial theories and
the possibility to use the established model organism C. elegans for such research.

Mitochondrial dysfunctions have long been associated with aging and age-related
diseases [19]. With advancing age, mitochondrial dynamics, biogenesis, and oxidative
phosphorylation capacity steadily decline [20]. In addition, damage to mitochondrial DNA
(mtDNA), production of reactive oxygen species, induction of apoptotic processes, and
oxidation of multiple mitochondrial proteins lead to the formation of damaging protein
fragments [21].

2. Caenorhabditis elegans as a Model of Aging

The nematode Caenorhabditis elegans (C. elegans) has become one of the main model
organisms for fundamental studies within molecular and cellular biology, especially in the
field of aging research and genetics [22]. Sydney Brenner was one of the first to conduct
research on the development of C. elegans as a model organism in the 1960s [23]. With the
sequencing of the complete genome in 1998, C. elegans became accessible for molecular
analyses. Of the ∼20,000 genes in C. elegans, an estimated 15–30% are essential, but many
genes have not yet been identified or characterized [24]. It became clear that the similarities
are remarkable between nematodes and humans in terms of genetic background. About
40% of the genes associated with human diseases are phylogenetically identical to those
in C. elegans, so-called homologs [25]. This fact makes the nematode a suitable model for
understanding disease development in humans. C. elegans offers numerous advantages as a
model for the study of eukaryotes, including its small body size, high reproductive rate, ease
of cultivation, low cost, long-term cryopreservation, rapid generation time, transparency,
invariant cell number, and development. In addition, there is the possibility to employ gene
knockdown using RNAi, a technology developed using C. elegans [26]. This technique offers
several advantages for research with C. elegans. It is specific, effective, rapid, and easy to
perform with the nematode model. As it results in loss-of-function phenotypes, this method
is a useful tool for studying genetic interactions [27–29]. Over the years, several protocols
have been developed to induce genetic knockdown in C. elegans. This knockdown can be
achieved via microinjection [30], feeding [31], or soaking [32] the nematodes in dsRNA.
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A more recent method for genome editing is the clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas9 system [33]. One advantage of this tool is its ability to
produce targeted mutations in the endogenous genes of the individual [34]. In addition,
it is possible to incorporate fluorescent proteins into the nematode using this method to
closely monitor the expression and localization of genetic products [35]. Therefore, this
method is faster and less laborious than other more conventional methods of transgenesis
or bombardment with microparticles to generate transgenic strains or mutants [36].

Several strains of nematode were created to screen aging in invertebrates. Other
strains of nematode were created to improve research with this organism. Nematode egg
laying begins from the young-adult stage, and a hermaphrodite can lay up to 300 eggs.
After the sperm is used up, an increase in the number of offspring up to 1000 can be
achieved by mating with males [37]. Handling this high amount of progeny requires time
and patience. Therefore, sterilization of the parental generation is an established tool to
avoid distorting the results. One of these methods is chemical sterilization with the DNA
synthesis inhibitor 5-fluoro-2′-deoxyuridine (FUdR). By inhibiting cell division, the larvae
in the eggs are prevented from further development. The eggs remain in the body of the
parent animal and do not hatch [38]. Unfortunately, the use of FUdR has negative effects
on mitochondria, which have a significant impact on the determination of lifespan [39].
To avoid this influence and prevent bias through a high amount of progeny, other genetic
methods were used. A good example of such a method is the nematode strain PX627
created using CRISPR/Cas9 [40]. Exposure of the nematodes to auxin, a non-native, non-
toxic, and cost-effective hormone, leads to the inducement of sterility in hermaphrodites
and males. Recent studies showed that this auxin-inducible strain offers a far better option
to maintain the physiological conditions of the mitochondria after sterilization [41].

A major advantage in research with C. elegans is the investigation of aging processes.
As lifespan is a genetically regulated trait, several long- and short-lived mutants have
been isolated. Various genes and signaling pathways have subsequently been described
as regulative for longevity. A prominent candidate is the long-lived daf-2 mutant. The
insulin/insulin-like growth factor 1 receptor (I/IGF-1R) homolog DAF-2 signals through a
conserved PI3 kinase/Akt pathway and ultimately inhibits the activity of DAF-16, a FOXO
family transcription factor [42]. Another mutant strain that exhibits significant lifespan
extension is the age-1 mutant [43,44]. Like daf-2, which also depends on DAF-16, age-1 is
integrated into the PI3K/Akt pathway and encodes a homolog of mammalian PI3K [45].
One of these nematode strains is called TJ401. This age-1 mutant strain showed a 65%
increased mean lifespan compared to wild-type nematodes. Mutations, such as those in
the daf-2 and age-1 strains, resulted in arrested larvae and forced larvae into the Dauer
stage. This process increased nematode longevity and improved stress resistance [46]. The
hyperresistance of these strains supports the free radical theory, one of the most important
theories proposed by Denham Harman in 1956, since reactive oxygen species can modulate
the transfer of DAF-16 into the nucleus, where it exerts its activity as a transcription
factor [47,48]. Short-lived animals, such as C. elegans, generally have several advantages.
Due to their short generation time and short, medium, and maximum lifespans compared
to higher animals, results can be obtained within a very short period of about two weeks.

Recent studies have found that nematode longevity can be increased through feed-
ing with polyphenols and plant extracts containing high levels of various phenolic com-
pounds [49]. Pre-metabolized compounds also showed similar effects, although they
represent metabolization by bacteria in the human gut [50]. Lifespan extension is not the
only important effect of these metabolites. The use of harmful substances such as pesticides
leads to a strong reduction in the vitality and lifespan of nematodes [51,52]. Simultaneous
treatment with phenolic compounds can restore the vitality of these nematodes [53], possi-
bly yielding antioxidant mechanisms and a distinct influence on life-prolonging signaling
pathways such as the insulin/IGF-1 signaling pathway. The translocation of DAF-16/FOXO
into the nucleus increases the expression of several life-prolonging genes, which could be
responsible for the observed results [54].
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3. Mitochondria, Aging, and C. elegans

As an extension of the “free radical theory of aging”, also by Denham Harman, mi-
tochondria were added in the 1970s, leading to the “mitochondrial free radical theory of
aging” [18]. The core message of this theory is that the conservative cause of mitochon-
drial dysfunction and, therefore, also that of aging processes in eukaryotic organisms is
mitochondrial reactive oxygen species (ROS), damaging biological macromolecules. This
connection between ROS, molecular damage, malfunctioning of the mitochondria, and the
aging process has been explored and verified by a large number of studies to date [55,56].
When considering aging, a decrease in mitochondrial integrity and function is usually man-
ifested. In addition, reduced ATP synthesis increased ROS production and led to lowered
redox defenses. However, it is unclear to what extent these processes are natural causes or
consequences of the aging process [57,58]. The relationship between mitochondria and the
aging process has been described in several studies over the years. It is now believed that
functional and dynamic changes in the mitochondria trigger mitochondrial dysfunction
and thus contribute to aging.

Mitochondrial biogenesis is one of these changes. This mechanism is necessary for
enlargement of the mitochondria by increasing their mass and number and is controlled
by peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) [59]. It has been
noted that mitochondrial biogenesis may decrease due to an age-dependent decrease in
PGC-1α levels [60]. Although nematodes lack this protein, skn-1 also drives mitogenesis
and thus has comparable functions to PGC-1α [61]. Regulation of mitochondrial biogenesis
occurs through mitophagy, a selective form of autophagy [62]. In C. elegans, this process
regulates mitochondrial content and nematode longevity. One of the key mediators of
mitophagy and ensuring longevity under stress conditions, which is transduced to SKN-1
signaling, is DCT-1. dct-1 expression localized to the outer mitochondrial membrane is
controlled in part by the FOXO transcription factor DAF-16 and is increased in the presence
of low insulin/IGF-1 signaling [63]. It has been extensively observed that mitophagy
mediated by dct-1 is involved in the aging of C. elegans. With advancing age, mitochondria
accumulate in wild-type nematodes, leading to a deficiency of dct-1. The autophagy key
gene bec-1 was found to further reflect the effects of aging on mitochondrial masses in
young adult animals. The induction of mitophagy was observed in long-lived daf-2 mu-
tants. Impairment of mitophagy by knocking down dct-1, pink-1, and pdr-1 (the nematode
Parkin homolog) significantly shortened the lifespan of daf-2 mutants. Indeed, dct-1 was
transcriptionally induced under the control of skn-1 and daf-16 to remove dysfunctional
mitochondria via mitophagy and coordinate mitochondrial biogenesis and mitophagy [63].
Mitophagy and mitochondrial biogenesis may work together to counteract the aging
process [64]. Regarding bioenergetics as another conductor of aging, changes in basal
and ATP-linked oxygen consumption rate (OCR) at the critical third larval stage were
found to be a potential predictor of lifespan extension in response to mitochondrial stress
by RNAi. These changes most likely precede processes of reprogramming in favor of
longevity. Alterations in basal and ATP-linked OCR likely promote metabolic, genetic, and
epigenetic reprogramming later in life, which are causally involved in longevity [65,66].
Consequently, mild mitochondrial stress results in less profound changes in mitochon-
drial functional parameters [67]. Another mechanism associated with the aging process
is mitochondrial translation. This process consists of four phases: Ribosome initiation,
elongation, termination, and recycling [68]. Mitochondrial translation is carried out by
mammalian mitochondrial ribosomes (mitoribosomes), whose major task is to synthesize
proteins essential for ATP production via oxidative phosphorylation. This mitochondrial
translation is more similar to prokaryotic translation and differs from that of cytoplasmatic
ribosomes [69] because mitochondrial protein synthesis requires several mitochondrial
factors at each stage [70]. The main regulatory factor for the initiation of the translation pro-
cess MTIF2 was also shown to play a role in pathological myocardial hypertrophy during
aging and obesity [71]. Additionally, the lack of MTIF2 in Saccharomyces cerevisiae results
in impaired mitochondrial protein synthesis, affecting respiration [72]. Recent studies have
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shown that the disruption of mitochondrial network homeostasis by blocking fusion or
fission, combined with reduced mitochondrial translation, prolongs lifespan and stimulates
the stress response [73]. The underlying reason for this increased lifespan is the influence
of primary lysosome biogenesis and autophagy transcription factor HLH-30/transcription
factor EB (TFEB) [74,75]. This result mainly suggests that mitochondrial dynamics occur
downstream of mitochondrial translational stress to affect longevity and that mitochondrial
dysfunction transmits stress signals to lysosomes. These processes stimulate lysosome
biogenesis and, consequently, promote longevity [73]. The mitochondrial network is main-
tained by mitochondrial fission and fusion. These processes coordinate a mitochondrial
structure that is flexible and adaptable to the changing cellular environment.

Studies in recent years have shown that mild mitochondrial dysfunction can de-
lay aging and age-related loss of function in various animal models, including mice,
Drosophila melanogaster, and Caenorhabditis elegans [76–78]. In addition to the mitochondrial
function of mitochondria, the shape of the mitochondria is also affected by fission and
fusion under these conditions. Notably, for C. elegans, several orthologs for mitochondrial
dynamics have been found. There are two orthologs for fusion proteins (FZO-1 and EAT-3)
and three for fission proteins (DRP-1, FIS-1, and FIS-2) [79]. Beyond having a clear impact
on aging, the role of mitochondrial dynamics in regulating lifespan is not well understood.
Regarding studies of D. melanogaster and C. elegans, mitochondrial fusion is associated
with increased longevity, and age correlates with fragmentation of the mitochondrial net-
work [80–82]. Mitochondrial dynamics are required for lifespan extension under various
conditions of longevity, including the target of rapamycin kinase complex 1 (TORC1)-
mediated longevity, AMP-activated protein kinase (AMPK)-mediated longevity, and in the
presence of nutritional restriction [83,84]. A classic example of a nutrient sensor associated
with longevity is TORC1. This highly conserved protein complex promotes processes such
as protein translation to provide macromolecules for growth and proliferation. At the same
time, this protein inhibits catabolic activities such as autophagy. Suppression of TORC1 at
the genetic and pharmacological levels by rapamycin administration promotes longevity in
a variety of animal species. In contrast to TORC1, the conserved kinase AMPK is activated
under low-energy conditions. Activation promotes catabolic processes that generate ATP,
including the TCA cycle, fatty acid oxidation, and autophagy, leading to prolonged lifespan
in C. elegans [84].

Since mitochondrial dysfunction is one of the hallmarks of aging [57], the mitochon-
drial response to unfolded proteins (mtUPR) is the first response that leads to protection
from stress [85]. The main role of this process is to repair or eliminate misfolded proteins
to mitigate damage [86]. The underlying reaction pathway is thought to have complex
effects on longevity. In C. elegans, this response is controlled by activating transcription
factor associated with stress-1 (ATFS-1). Under stress-free conditions, ATFS-1 is degraded
in the mitochondria after being imported by Lon protease [87]. Under mitochondrial
stress conditions, the transfer of ATFS-1 into the mitochondria is prevented. ATFS-1 can
thus enter the nucleus, where it upregulates the expression of mitochondrial chaperones,
various detoxification enzymes, and metabolic enzymes [88]. An activator of mtUPR, as
well as FOXO signaling, is the NAD+/sirtuin pathway [89]. NAD+ represents an important
cofactor for several processes, which include the regulation of metabolic homeostasis and
its function as a substrate for sirtuin deacetylases [90,91]. In C. elegans, the homolog of the
mammalian sirtuin is sir-2.1, which controls mitochondrial function by deacetylating the
FOXO homolog DAF-16 [92]. In a recent study, NAD+ precursors were shown to lead to an
improvement in mitochondrial homeostasis [89] through the activation of sir-2.1, which
led to an improvement in the disturbed balance between OXPHOS subunits encoded by
mitochondrial DNA and nuclear DNA. This phenomenon is related to the activation of
UPRmt, which promotes longevity, and the subsequent translocation and activation of the
FOXO transcription factor daf-16, triggering an antioxidant protective mechanism.

In mitochondrial research, C. elegans offers strong and unique advantages. The degree
of conservation of mitochondrial proteins between nematodes and mammals is very high,
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indicating that information acquisition from nematode research on mitochondria can be
transferred to mammals [93]. The possibility of staining mitochondria and tracing their
mobility, structure, and even function in transparent nematodes reinforces C. elegans as
a suitable model for mitochondrial research. Assays used to study human mitochondria
are easily transferable to the same studies on nematodes with minor modifications. This
similarity applies to studies on oxidative phosphorylation, electron transport chain (ETC)
enzyme assays, blue native gels (BNGs), free radical production, etc. [94,95]. It should be
noted, however, that isolation of functional mitochondria from nematodes is somewhat
more difficult than that from mammalian cells, primarily because the cuticle must be
disrupted while the intact mitochondria remain intact. A useful tool for this process
is the Balch homogenizer. This device allows rapid and careful homogenization and
permeabilization of the nematode and the extraction of functional organelles [96]. A very
simple method for this process is to create nuclear defects in the mitochondria using
RNAi. Thus, it is possible to generate different degrees of mitochondrial damage via RNAi
treatment and thereby investigate many mitochondrial proteins whose knockouts can be
lethal for the animal [97].

To date, several mutant nuclear-encoded and mitochondrial-encoded subunits of the
respiratory chain complexes have been studied in C. elegans. In addition, mutations that
lead to an inhibition of the synthesis of coenzyme Q have been identified [98]. These, as
well as proteins that indirectly modify the complexes of the respiratory chain, have been
investigated at the molecular and cellular level, respectively, and in the whole animal
model through a range of experimental approaches. In these models, the dysfunction of
individual respiratory chain complexes can lead to increased or decreased lifespan [99,100],
neuromuscular deficits [101], restricted development [102], reduced fertility [103], or altered
anesthetic sensitivity [104]. All of these symptoms mimic those that occur in people with
mitochondrial damage. Furthermore, the dysfunction of mitochondrial respiratory chain
complexes can affect gene expression profiles [105,106], as well as ROS formation [107,108].
Furthermore, mutants of mitochondrial respiratory chain complexes with an altered life
span are useful in studying the contribution of energy consumption, ROS, and stress
responses to the process of aging.

Nevertheless, there are major differences between mitochondria in mammals and
those in C. elegans. The approximately 14 kb circular mitochondrial DNA (mtDNA) of
C. elegans contains homologs of 36 of the 37 genes found in humans. However, the ATP8
subunit of complex V is missing in C. elegans [109]. In addition, C. elegans appears to have
fewer copies of mtDNA per cell than humans [110,111]. Instead of coenzyme Q10, which
has a chain of ten isoprenyl repeats, C. elegans, like rodents, mainly harbors coenzyme
Q9 [112]. While the glyoxylate cycle is not normally found in animals, C. elegans has a
malate synthase/isocitrate lyase that cleaves isocitrate to glyoxylate and succinate [113].
In contrast to plants, this metabolic pathway is encoded by a gene in nematodes, which
gives the nematodes the ability to divide the TCA cycle and thus form fragments with
two carbon atoms. These atoms are then used for anabolic processes. Furthermore, iso-
lated intact C. elegans mitochondria can respire using malate as a substrate. However,
malate is a poor substrate for mammalian mitochondria. In addition, mitochondria from
C. elegans are less sensitive to some artificial uncouplers of the respiratory chain, as well as
to theonoyltrifluoroacetone (TTFA), an inhibitor of complex II in mammals [114].

Despite these differences, mitochondria originating from C. elegans are very similar
to those of mammals. Thus, research on mitochondria in the C. elegans model organism
provides a useful system for investigating unanswered questions about mitochondrial
bioenergetics and dysfunction.

4. Polyphenols and Secondary Plant Metabolites in Aging Research

The effects of plants or plant extracts from traditional Indian and Chinese medicine
have been known for centuries [115]. Today, these effects can be traced back to their indi-
vidual components, so-called natural substances. These substances represent a large family
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of substances with a broad spectrum of biological activity. Natural substances are mainly
obtained from plants but also from bacteria, fungi, and marine sources. The physiologist
and Nobel Prize winner Albrecht Kossel divided them into primary (e.g., proteins, lipids,
and carbohydrates) and secondary substances (e.g., pheromones, alkaloids, phenols, and
steroids) [116]. Such a classification is now outdated but is still used in the literature for
historical reasons. Today, it is known that a natural substance can have life-sustaining
functions, as well as the functions of a classical secondary metabolism.

More than 200,000 plant compounds are currently known and are divided into several
groups depending on their chemical properties [117]. Phenolic compounds form the
largest group, with more than 8000 different polyphenols known [118]. Depending on
their structure, the group of polyphenols can be divided into 10 subgroups. The most
important and largest group is the group of flavonoids, which comprises about 4000
known compounds [119].

Due to their ubiquitous occurrence in many fruits and vegetables, flavonoids are a
daily component of the human diet [120]. High polyphenol contents are found, for example,
in grapes, pomegranates, apples, and various types of tea. Of particular note are grapes and
apples, which can have a polyphenol content of approximately 200–300 mg polyphenols per
100 g fresh weight [121]. The pleiotropic effects of polyphenols include anti-allergenic, anti-
inflammatory, anti-microbial, anti-oxidative, and anti-aging effects. In addition, polyphe-
nols have protective effects on blood vessels and the heart and can prevent thrombosis [122].
Anti-cancer and neuroprotective effects have also been described [123–125] (Table 1).

Table 1. Classes of polyphenols with their commonly used agents, studied effects, and corresponding
important literature.

Classes of
Polyphenols

Commonly Used
Representatives Studied Effects Literature

Flavone

Luteolin

• Sensitizes cancer cells to therapeutically induced cytotoxicity by
suppressing cell survival pathways (PI3K/Akt, NF-κB, and
XIAB)

• Stimulates apoptosis pathways inducing the tumor suppressor
p53

[126–130]

Baicalein
• Anti-malignant potential through the influence of several

signaling cascades (MAPK, mTOR, PKB/Akt, PARP, MMP-2,
MMP-9, and caspase)

[131–135]

Apigenin
• Induces intrinsic apoptosis pathways
• Leads to the downregulation of matrix metallopeptidases
• Leads to downregulation of PI3K/Akt/NF-κB signaling

[136–139]

Flavonol

Kaempferol
• Induces apoptosis and cell cycle arrest at the G2/M phase
• Downregulation of the epithelial–mesenchymal transition

(EMT)-related markers, and PI3K/PKB signaling pathways
[140–143]

Myricetin

• Therapeutic effects on atherosclerosis, thrombosis, diabetes, and
Alzheimer’s disease

• Regulates MAPK, PI3K,/Akt/mTOR, IκB/NF-κB, and AChE
• Enhances immunomodulatory functions

[144–148]

Quercetin

• Inhibits NF-κB
• Activates SIRT1 by improving the NAD+ level
• Inhibits α-glucosidase and increases adiponectin
• Decreases the activity of inflammatory enzymes such as 5-LOX,

12-LOX, COX, NOS, and MPO

[149–152]
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Table 1. Cont.

Classes of
Polyphenols

Commonly Used
Representatives Studied Effects Literature

Flavanone

Hesperitin

• Improves mitochondrial function by increasing complex
function

• Upregulates antioxidant levels (SOD, GPx, and GR) by
triggering PI3K/Akt pathway

• Offers neuroprotection by regulating the TLR4/NF-κB signaling
pathway

• Augments antioxidant cellular defenses via the ERK/Nrf2
signaling pathway

[153–156]

Naringenin

• Inhibits TNF-α-induced TLR2 expression by inhibiting
activation of the NF-κB and c-Jun NH2-terminal kinase
pathways

• Modulates the MAPK signaling pathway
• Offers protective effects against LPS-induced injury

[157–159]

Flavanonol

Taxifolin

• Offers anti-inflammatory effects through suppressing NF-κB
activation

• Offers hepatoprotective effects through reduced CD4+ and
CD8+ T cells in injured liver tissue

• Downregulates the levels of TNF-α and COX-2

[160–162]

Engeletin

• Mitigates Aβ1-42-induced oxidative stress and
neuroinflammation through the Keap1/Nrf2 pathway

• Offers hepatoprotective effects through activation of PPAR-γ
• Reduces NF-κB-dependent signaling

[163–165]

Anthocyanidin

Malvidin
• Inhibits IL-6, TNF-α, and IL-1β
• Increases antioxidative enzymes (SOD and GPx)
• Stimulates AMPK-mediated autophagy

[166,167]

Delphinidin

• Increases expression of antioxidant protein Nrf2-related phase
II enzyme heme oxygenase-1 (HO-1)

• Modulates JAK/STAT3 and MAPKinase signaling to induce
apoptosis

[168,169]

Flavan-3-ol Epigallocatechin
gallate

• Offers anti-viral and anti-bacterial effects
• Inhibits tumor necrosis factor-α (TNF-α)-induced production of

monocyte chemoattractant protein-1 (MCP-1)
[170,171]

Isoflavone

Daidzein

• Blocks the transcriptional activation of pro-inflammatory genes
and decreases the mRNA level of Cxcl2 in TNF-α-treated cells

• Increases AMPK phosphorylation followed by GLUT 4
translocation and glucose uptake

[172,173]

Genistein

• Induces apoptosis through activation of caspase-1
• Offers anti-proliferative effects through downregulation of

DNA methylation
• Suppresses Akt activity, promoting deactivation of NF-κB

[174–176]

C. elegans provides a solid model for studying the effects of polyphenols on the aging
system. The administration of substances to the nematode’s natural diet is a suitable way
to observe the effects of the compound on the animal [177]. Starting in 1974, the first drug
tests were performed on C. elegans by incorporating substances into the agar of plates [23].
In contrast to the current use of substances, this method consumed large amounts of sub-
stances and was labor intensive. Although this type of method was maintained for several
observations, the nematode eventually evolved into a suitable model for high-throughput
screening (HTS) [178]. The main advantages of the nematode HTS model are the availability
of proven genetic tools and genomic resources (RNAi and CRISPR/Cas9) [33,179]. The
complexity of the whole organism system improves the chances of identifying agents that
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will ultimately be more effective in more complex organisms such as humans [180]. The
presence of a large number of phenotypes opens the possibility to observe visual changes
after drug administration [181]. The ability to study absorption, distribution, metabolism,
excretion, and toxicity (ADMET) and drug efficacy, as well as the ability to model complex
human diseases that are not easily reproduced in other in vitro models, affords various
pharmaceutical and medical opportunities [182]. The use of automated microscopic de-
vices, microplate readers, and automated worm transfer has simplified and accelerated the
screening of large quantities of bioactive compounds [183,184].

5. Mitochondria as a Target of Phytochemicals

Before polyphenols can act as bioactive agents, they must reach the cells or com-
partments intended for them. Polyphenols undergo various biotransformations, not only
through digestive enzymes but also (especially) by the microbiota, which changes the
chemical structure and properties of the molecules consumed [185]. The human intestinal
microbiota consists of approximately 1012–1014 bacterial cells and is an extremely diverse
entity involved in the digestion and fermentation of food components such as polyphenols.
In this context, the microbiota interacts closely with the immune system, making a balanced
microbiota essential for maintaining a healthy state [186,187]. Ultimately, traceability in
plasma reveals the availability of various phenolic acids after microbial remodeling. There-
fore, it is important to note that the phenolic compounds circulating in the human system
can differ greatly from those administered. Only those that reach the desired tissue can
exhibit their bioactive functions [188] (Figure 1). The best known and most extensively
described are the antioxidant properties of polyphenols, which give them the ability to
scavenge ROS [189,190]. Since ROS play a crucial role in the development of various dis-
eases [191,192], antioxidants, which play a protective role against free radicals, are thought
to be beneficial in preventing these diseases [193]. The antioxidant properties of polyphe-
nols are also thought to protect against inflammation. In this respect, such properties could
also be useful in inflammation-related diseases such as autoimmune diseases [194,195].
Although polyphenols can directly scavenge ROS, new evidence suggests that consumable
amounts of polyphenols are not sufficient for this outcome. Rather, it is assumed that
polyphenols activate, among others, the Keap1/Nrf2/ARE signaling pathway, which trig-
gers a hormonal activation of phase II enzymes and thus strengthens the body’s oxidative
defense system [196,197]. In mammals, the Drosophila melanogaster and C. elegans detoxifi-
cation pathways are tightly regulated, making their basic activity low. Contact with toxic
xenobiotics or other oxidants then simultaneously activates the expression of several genes
through inducible transcription factors [198]. SKN-1 is a transcription factor orthologous to
the mammalian Nrf2. Activated by various xenobiotics, oxidants, and electrophiles, SKN-1
confers resistance by activating detoxification genes [199–202].

In addition to direct antioxidant mechanisms, polyphenols have also been shown to
initiate indirect mechanisms that promote innate detoxification pathways. One of these
mechanisms is hormesis [203]. Hormesis refers to a biphasic, dose-dependent effect of
bioactive substances. While high concentrations are considered toxic, moderate to low doses
of exposure can be beneficial to health and activate cellular adaptive mechanisms [204]. A
very prominent hermetic process in aging research is caloric restriction. Reduced caloric
intake was shown to increase life expectancy in subjects [205]. In addition, it was reported
that phytochemicals can be neuroprotective by exhibiting hermetic processes through the
involvement of various genes [196]. Heat shock proteins should also be mentioned because
temperature is an important hermetic factor. The induction of heat shock leads to the
upregulation of heat shock proteins and chaperones. These types of proteins preserve
the three-dimensional structures of proteins and help newly synthesized proteins fold
correctly [206,207]. In C. elegans, variation in hormesis effects was shown to be genetically
determined. These results confirm that hormesis is formed by mechanisms that were
optimized during evolution [208]. A recent study in C. elegans showed that the phenolic
acids protocatechuic acid, gallic acid, and vanillic acid trigger the hormesis process [50].



Biomolecules 2022, 12, 1550 10 of 19
Biomolecules 2022, 12, x FOR PEER REVIEW 11 of 22 
 

 

Figure 1. Possible interactions between polyphenols and metabolic pathways associated with aging. 

After biotransformation, polyphenols may acquire the ability to cross the cell membrane into the 

cytosol. It is in the cytosol that the polyphenols exert their effects. Mitochondrial biogenesis is stim-

ulated by polyphenols via an SIRT1-activated PGC-1α-mediated mechanism. Mitochondrial stress 

triggered by ROS production in the mitochondria can be averted either directly or indirectly by ROS 

scavenging or by the influence of polyphenols on FOXO transcription factor activation. Polyphenols 

cause the dissociation of Keap1 from the Nrf2/Keap1 complex. Translocation of Nrf2 to the nucleus 

leads to its association with ARE in the regulatory regions of target genes. This process induces the 

transcription of antioxidant and detoxification enzymes. Some polyphenols can directly affect oxi-

dative phosphorylation or complexes of ETC. In this way, energy performance can be changed. 

In addition to direct antioxidant mechanisms, polyphenols have also been shown to 

initiate indirect mechanisms that promote innate detoxification pathways. One of these 

mechanisms is hormesis [203]. Hormesis refers to a biphasic, dose-dependent effect of bi-

oactive substances. While high concentrations are considered toxic, moderate to low doses 

of exposure can be beneficial to health and activate cellular adaptive mechanisms [204]. A 

very prominent hermetic process in aging research is caloric restriction. Reduced caloric 

intake was shown to increase life expectancy in subjects [205]. In addition, it was reported 

that phytochemicals can be neuroprotective by exhibiting hermetic processes through the 

involvement of various genes [196]. Heat shock proteins should also be mentioned be-

cause temperature is an important hermetic factor. The induction of heat shock leads to 

the upregulation of heat shock proteins and chaperones. These types of proteins preserve 

the three-dimensional structures of proteins and help newly synthesized proteins fold 

correctly [206,207]. In C. elegans, variation in hormesis effects was shown to be genetically 

determined. These results confirm that hormesis is formed by mechanisms that were op-

timized during evolution [208]. A recent study in C. elegans showed that the phenolic acids 

protocatechuic acid, gallic acid, and vanillic acid trigger the hormesis process [50]. 

Besides the ability of polyphenols to scavenge ROS, other mechanisms in mitochon-

dria have been described and studied. These mechanisms include the complex activity of 

the ETC, which was recently improved by the phenolic compound protocatechuic acid 

[76]. Energy release in the form of ATP was also described as being altered after treatment 

with various polyphenols [209–211]. In addition, the influence of phenolic compounds 

and metabolites on mtDNA was observed [49]. Resveratrol is a polyphenol found in 

grapes and red wine that possesses several biological activities, including anti-inflamma-

tory and antioxidant activities [212]. Recent studies reported an increase in mtDNA quan-

tity after treatment with resveratrol [213,214]. Thus, resveratrol may lead to an elevated 

level of mitochondrial biogenesis [215]. Other effects of polyphenols on mtDNA have also 

been demonstrated in disease models. As with resveratrol, the incubation of MDA-MB-

231 human breast cancer cells with this compound results in decreased levels of mtDNA 

Figure 1. Possible interactions between polyphenols and metabolic pathways associated with aging.
After biotransformation, polyphenols may acquire the ability to cross the cell membrane into the
cytosol. It is in the cytosol that the polyphenols exert their effects. Mitochondrial biogenesis is
stimulated by polyphenols via an SIRT1-activated PGC-1α-mediated mechanism. Mitochondrial
stress triggered by ROS production in the mitochondria can be averted either directly or indirectly
by ROS scavenging or by the influence of polyphenols on FOXO transcription factor activation.
Polyphenols cause the dissociation of Keap1 from the Nrf2/Keap1 complex. Translocation of Nrf2
to the nucleus leads to its association with ARE in the regulatory regions of target genes. This
process induces the transcription of antioxidant and detoxification enzymes. Some polyphenols can
directly affect oxidative phosphorylation or complexes of ETC. In this way, energy performance can
be changed.

Besides the ability of polyphenols to scavenge ROS, other mechanisms in mitochondria
have been described and studied. These mechanisms include the complex activity of the
ETC, which was recently improved by the phenolic compound protocatechuic acid [76].
Energy release in the form of ATP was also described as being altered after treatment with
various polyphenols [209–211]. In addition, the influence of phenolic compounds and
metabolites on mtDNA was observed [49]. Resveratrol is a polyphenol found in grapes
and red wine that possesses several biological activities, including anti-inflammatory and
antioxidant activities [212]. Recent studies reported an increase in mtDNA quantity after
treatment with resveratrol [213,214]. Thus, resveratrol may lead to an elevated level of
mitochondrial biogenesis [215]. Other effects of polyphenols on mtDNA have also been
demonstrated in disease models. As with resveratrol, the incubation of MDA-MB-231
human breast cancer cells with this compound results in decreased levels of mtDNA [216].
This result may be due to increased autophagy induced in response to mtDNA damage.
Similarly, treatment with curcumin in HepG2 human hepatoma cells leads to increased
damage to mtDNA [217]. This damage was shown to trigger apoptosis in these cancer cell
lines. Another effect of resveratrol on aging in C. elegans was demonstrated through direct
interaction with mitochondrial respiration. By decreasing the activity of mitochondrial
respiration, resveratrol prolongs lifespan through a mechanism related to caloric restriction.
In this case, sir-2.1 was increased after the treatment of nematodes with resveratrol [218]. In-
fluences on mitophagy were also observed. Catechinic acid resulted in a prolonged lifespan
and a reduction in age-related behaviors by regulating genes associated with mitophagy
pathways in C. elegans. By affecting bec-1 and pink-1, mitochondrial phagocytosis was
induced at early stages and lifespan may be affected [219]. The mechanism of mitophagy
leads to the elimination of accumulated dysfunctional mitochondria, which can prolong
lifespan. Epigallocatechin-3-gallate was shown in recent studies to be able to restore mito-
chondrial function by increasing biogenesis in nematodes, thereby improving the redox
status of nematodes [220]. Another interesting polyphenol that showed direct influences on
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the respiratory chain is oenothein B. This hydrolyzable polyphenol from the tannin group
showed health-promoting effects via isp-1, including a reduction of ROS accumulation,
improvement of motility flexibility, and aging pigments. The gene isp-1 encodes a subunit
of the mitochondrial complex III in C. elegans, also known as the coenzyme Q–cytochrome
c oxidoreductase [221].

6. Conclusions

In summary, the C. elegans nematode model offers great advantages for mitochondrial
research, especially by elucidating aging phenomena in a nutritional and environmental
context. Due to the ease of handling this model organism, the high rate of mitochondrial
maintenance, and the close monitoring of food sources, this animal is an ideal candidate for
monitoring much more than the aging process itself. Future nutritional scientists working
with phenolic compounds and extracts from fruits and vegetables should consider C. elegans
as a suitable model for their research purposes. Understanding interspecies transferability
will also play a major role in future research to find alternative models to classical animal
models for drug or natural substance research. Unveiling new effects of secondary plant
compounds on metabolic pathways will be a key task for researchers going forward. In
addition, the potential application of these compounds as therapeutics will be of great
interest. If the aging process cannot be halted, youthful physiology could potentially be
maintained into old age. The pharmaceutical treatment of age-related diseases could also
be supported with natural substances, and the time of illness could be shortened.
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