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P R E FA C E

I started my work on this thesis by reading the classification of nearly
all Erdős-Ko-Rado sets (EKR sets) of generators in finite classical
polar spaces by Valentina Pepe, Leo Storme, and Frédéric Vanhove.
Their publication combines techniques from algebraic combinatorics
with geometrical arguments and this heavily influenced my work.
Methods from algebraic combinatorics are easy to apply, very general,
and involve much theory. Contrary to this, finding geometrical count-
ing arguments often involves much toying around with the problem
until one finds a nice construction, which actually solves the problem,
but might only work in a very specific case. In some cases, methods
from algebraic combinatorics work better, in other cases, geometrical
arguments seem to be preferable. Finally, in some cases combining
both worlds is a powerful tool. As the reader will find out, this thesis
contains examples for all of the above.

I am usually interested in families of objects which satisfy some
nice condition. Consider the following.

• A family of 3-element subsets of {1, 2, 3, 4, 5, 6} which pairwise
intersect in at least two elements. An example is

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}.

• A family of 3-element subsets of {1, 2, 3, 4, 5, 6} which are pair-
wise disjoint. An example is

{1, 2, 3}, {4, 5, 6}.

• We put weights on {1, 2, 3, 4, 5, 6} such that the sum of all weights
is zero. How many 3-element subsets of {1, 2, 3, 4, 5, 6} have non-
negative weight? An example would be that we put the weight
−5 on 1 and the weight 1 on the five other numbers. Then all
10 subsets with 3 elements, which contain the 1, have positive
weight. The other 10 subsets have a negative weight.
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There are many interesting question one can ask about these ob-
jects. This thesis is mostly concerned about proving upper and lower
bounds as well as classifying the largest or smallest examples of these
sets. This work investigates the vector space and polar space analogs
of the generalizations of the problems given above.

This thesis is organized as follows. The necessary notation and
some simple, often well-known results are introduced in Chapter 1.
An overview over the state of the art of the considered Erdős-Ko-Rado
problems is given in Chapter 3.

I started my work on my PhD with improving the best known
upper bounds on EKR sets of generators in some Hermitian polar
spaces together with Klaus Metsch. This resulted in Chapter 4, where
we apply a technique from algebraic combinatorics, the linear pro-
gramming bound, to the problem.

On our way back from the conference Combinatorics 2012 in Pe-
rugia on the bus to the airport, Klaus Metsch and I discussed the
largest (d, t)-EKR sets on polar spaces. While we first thought that a
similar approach as in Chapter 4 might be helpful, it turned out that
a mixture of geometrical and algebraic techniques was a better way
to classify these sets. While the basic ideas are simple, working out
the complete arguments in detail was a very tiresome process during
the last two years. This result is presented in Chapter 5.

In our attempts to prove an EKR theorem for H(9,q2), Klaus Metsch
also asked me about the maximum size of so-called cross-intersecting
EKR sets. Based on eigenvalue techniques from algebraic combina-
torics, this turned out to be a nice problem. Particularly, I was very
happy that I found a problem, where I could bound the size of an
object with Hoffman’s bound and then classify all examples reaching
this bound by eigenspace arguments and some geometry. Basically, I
imitated the results by Valentina Pepe, Leo Storme, and Frédéric Van-
hove on normal EKR sets. This homage to their work is written down
in Chapter 6.

On the initiative of Klaus Metsch, I visited John Bamberg and the
University of Western Australia from February to April 2013. There
I collaborated with John Bamberg and Jan De Beule on weighted in-
triguing sets and the non-existence of ovoids in finite classical polar
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spaces. While our results are submitted and I did spend much time on
them, they do not fit into the theme of this thesis. But I did discuss
many techniques from algebraic combinatorics with John Bamberg,
which resulted in Chapter 7; among other things a new bound on
spreads in Hermitian polar spaces H(2d− 1,q2), d even.

The last chapter of my thesis is about the Manickam-Miklós-Singhi
conjecture, a problem closely related to EKR theorems. Simeon Ball
mentioned this problem to me on a short car drive March 2014 in
Ghent. I found the problem interesting, worked on it for three weeks
(I did barely do anything else during that time), and got Chapter 8 as
a reward, which solves the problem for most finite vector spaces.

Then there is also Chapter 2. There I collected all the inequalities I
calculated during my PhD to approximate numbers in finite geome-
tries. At least one inequality there is noteworthy, because it is a very
decent approximation of the number of generators in a finite classical
polar space.
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N E W R E S U LT S

Here we present some of the new results of this thesis, which the
author considers noteworthy. For the sake of simplicity, this list sim-
plifies some of the results. We refer to the specific chapters for the
used notation.

• Lemma 2.7. Let α > 1 be a real number with α log(1+q−e−1) 6
log(1+q−e). Let x be the number of generators of a polar space
of rank d and type e. Then

x · q−de−(
d
2) =

d−1∏
i=0

(1+ q−e−i) 6
(
1+ q−e

) α
α−1 .

• Theorem 4.1. An EKR set of generators on H(2d− 1,q2), d odd,
has at most approximately ≈ q(d−1)2+1 elements.

• Theorem 5.1. The largest (d, t)-EKR set of generators of a finite
classical polar space is the following.

(a) Case t even. A d-junta if one of the following conditions is
satisfied:

(i) t 6
√
8d
9 − 2, q > 2,

(ii) t 6
√
8d
5 − 2, q > 3.

(b) Case t odd. A (d− 1)-junta if one of the following condi-
tions is satisfied:

(i) t 6
√
8d
9 − 2, q > 2,

(ii) t 6
√
8d
5 − 2, q > 3.

• Corollary 5.13. The largest (d, 2)-EKR set of generators of a finite
classical polar space is either a d-junta or corresponds to a (3, 2)-
EKR set.
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• Theorem 5.34. A (d, t)-EKR set of generators of a finite classical
polar space of type e over a finite field of order q > 2 has

– at most approximately qt(d−t−1)+(
t
2)+te elements if t odd

or e > 1.

– at most approximately qt(d−t−1)+(
t+1
2 ) elements if t even

and e 6 1.

• Corollary 6.2, Theorem 6.4, Theorem 6.14, Theorem 6.16, and
Theorem 6.19. A classification of the largest cross-intersecting
EKR sets (Y,Z) of generators of finite classical polar spaces with
respect to |Y| · |Z| with the exception of H(2d− 1,q2), d > 2.

• Theorem 6.17. A cross-intersecting EKR set (Y,Z) of generators
of on H(2d− 1,q2), d > 3, satisfies approximately

√
|Y| · |Z| 6

qd
2−2d+2.

• Theorem 7.4. An {i}-clique of generators on H(2d− 1,q2) has at
most size

q2d−1 − q
q2d−2 − 1

q+ 1
.

• Theorem 8.1. Let V be an n-dimensional vector space. Let f be
a weighting of the points of V such that the sum of all weights
is zero. Then for sufficiently large q and n > 2k, the number of
nonnegative k-dimensional subspaces of V is at least

[
n−1
k−1

]
. If

this bound is tight, then the set of nonnegative k-dimensional
subspaces is the set of k-dimensional subspaces containing a
fixed point.

• Lemma 8.14. There is no need for an analog of Theorem 8.1 for
k 6 n < 2k as in this case the problem can be reduced to the
case 2k 6 n.
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2 preliminaries

The aim of this chapter is to fix some notation from linear alge-
bra, (algebraic) graph theory, association schemes, and finite geome-
try. The author assumes that the reader is familiar with these topics.

1.1 linear algebra

Let A be an (n ×m)-matrix over some field K. We say that A is a
quadratic matrix if n = m. We denote the transpose of A by Aᵀ. If K
is the field C of the complex numbers, then we denote the complex
conjugate of A by A. We say that A is a Hermitian matrix if A = Aᵀ

and K = C. We say that A is a symmetric matrix if A = Aᵀ.
There are some special matrices and vectors for which we shall fix

our notation in the following. Notice that the size of the following
objects will be always clear from the context.

(a) We denote the identity matrix by I ∈ Kn×n, i.e. a quadratic matrix
where all entries on the diagonal are 1, all other entries are 0.

(b) We denote the all-ones matrix by J ∈ Kn×n, i.e. a quadratic matrix
where all entries equal 1.

(c) We denote the all-ones vector by j ∈ Kn, i.e. the vector where all
entries are 1.

(d) We denote the i-th vector of the canonical basis by ei ∈ Kn, i.e.
the i-th entry of ei is 1, all the other entries are 0.

(e) We say that two vectors χ,ψ ∈ Cn are orthogonal if χᵀψ = 0.

(f) We define the Euclidean norm |χ| by |χ| =
√
χᵀχ.

(g) The finite field with q elements is denoted by Fq.

(h) The Kronecker delta δij is 1 if i = j and 0 otherwise.

Recall the following basic results from linear algebra on Hermitian
matrices, in particular, on real symmetric matrices.

Lemma 1.1. A Hermitian (n× n)-matrix has (with multiplicities) n real
eigenvalues.
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Lemma 1.2. LetA be a Hermitian matrix. Then there exists an orthonormal
basis of eigenvectors of A.

Let V0, . . . ,Vd be the eigenspaces of a Hermitian (n×n)-matrix A.
We denote the dimension of Vi by fi. Let Wi = {w1, . . . ,wfi} be an
orthonormal basis of Vi. LetMi be the matrix which has the elements
of Wi as it columns. Define the (n×n)-matrix Ei as MiM

ᵀ
i .

The basis Wi is orthonormal, so we have Mᵀ
iMi = I. Hence,

E2i = (MiM
ᵀ
i )
2 =MiM

ᵀ
i = Ei, (1.1)

and Ei is idempotent. Let χ be a vector of Cn. The mapping χ 7→ Eiχ

can be seen as the orthogonal projection of χ onto the eigenspace Vi.
A simple calculation shows

d∑
i=0

Eiχ = χ. (1.2)

This implies
∑d
i=0 Ei = I. If we denote the eigenvalue of the eigen-

space Vi by λi, then we have the spectral decomposition theorem for
Hermitian matrices.

Theorem 1.3. Let A be a Hermitian matrix. Let λ0, . . . , λd be its distinct
eigenvalues. Then there exist idempotent matrices E0, . . . ,Ed such that

A =

d∑
i=0

λiEi.

1.2 graph theory

The notation used in this thesis on graphs is mostly a mixture of [13]
and [38]. A graph Γ is a pair (X, ∼) where ∼ is a symmetric binary
relation on the vertex set X. We say that ∼ is the adjacency relation of Γ .
Sometimes we will view ∼ as a subset of X× X. We say that x and y
are adjacent or neighbors if x ∼ y. We say that x and y are non-adjacent if
not x ∼ y. We say that the graph Γ is a simple graph if x is non-adjacent
to itself for all vertices x. Two graphs Γ1 = (X, ∼1) and Γ2 = (Y, ∼2)
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are isomorphic if there exists a bijection f from X to Y that preserves
adjacent, i.e. x ∼1 y if and only if f(x) ∼2 f(y).

A graph Γ ′ = (Y, ∼2) is called a subgraph of Γ = (X, ∼) if Y is a subset
of X and ∼2 is a subset of ∼. We say that Γ ′ is an induced subgraph of Γ
if x ∼2 y for all x,y ∈ Y if and only if x ∼ y. In particular, an induced
subgraph is determined by its vertex set.

If all vertices Y of an induced subgraph Γ ′ of Γ are pairwise ad-
jacent, then we call Y a clique. If there exists no clique Y ′ of Γ with
Y ⊆ Y ′ and Y 6= Y ′, then we call Y a maximal clique. If there exists no
clique Y ′ of Γ with |Y| < |Y ′|, then we call Y a maximum clique and
say that |Y| is the clique number of Γ . Many authors denote the clique
number of a graph Γ by ω(Γ).

If all vertices Y of an induced subgraph Γ ′ of Γ are pairwise non-
adjacent, then we call Y an independent set or a coclique. If there exists
no independent set Y ′ of Γ with Y ⊆ Y ′ and Y 6= Y ′, then we call Y a
maximal independent set. If there exists no independent set Y ′ of Γ with
|Y| < |Y ′|, then we call Y a maximum independent set and say that |Y| is
the independence number of Γ . Many authors denote the independence
number of a graph Γ by α(Γ).

One classical problem in combinatorial graph theory is to prove
bounds on α(Γ) and ω(Γ). Finding good bounds on these parame-
ters or finding large induced subgraphs with the desired property for
particular graphs is, as we shall see in this thesis for a few particular
examples, often a very challenging task.

Let a path of length d be a sequence (x0, . . . , xd) of d+ 1 vertices
with xi ∼ xi+1 for all i, 0 6 i < d. We define the distance d(x,y)
between two vertices x, y as the minimal length of a path (x0, . . . , xd)
with x0 = x and xd = y. If there exists no such sequence, then we set
d(x,y) =∞. If d(x,y) <∞ for all vertices x,y of a graph Γ , then Γ is
a connected graph. Notice that d(x, x) = 0 and d(x,y) = 1 if x ∼ y. The
diameter of a graph Γ is the maximum distance that occurs between
two vertices of Γ . For given x we denote the set of vertices in Γ at
distance i from x by Γi(x).

The degree of a vertex is |Γ1(x)|. A graph is called a regular graph or
k-regular graph if it is simple and all vertices have degree k.
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Let d be the diameter of a simple graph Γ . If there exist constants
c1, . . . , cd, a0, . . . ,ad, b0, . . . ,bd−1 such that for all vertices x, y of Γ

(a) ai = |Γi(x)∩ Γ1(y)| where i = d(x,y),

(b) bi = |Γi+1(x)∩ Γ1(y)| where i = d(x,y) < d,

(c) ci = |Γi−1(x)∩ Γ1(y)| where i = d(x,y) > 0,

then Γ is a distance-regular graph with the intersection array

{c1, . . . , cd;a0, . . . ,ad;b0, . . . ,bd−1}.

Obviously, all distance-regular graphs are regular graphs. We want
to remark that the intersection arrays of nearly all known families
of distance-regular graphs have so-called classical parameters and can
be described by just four parameters [13, Ch. 6]. Also notice that a
distance-regular graph is not uniquely determined by its intersection
numbers, e.g. the so-called disjointness graph of lines of the sym-
plectic polar space W(3, 3) and the disjointness graph of lines of the
parabolic polar space Q(4, 3) have the same parameters, but are not
isomorphic [13, p. 279].

If a distance-regular graph Γ has at most diameter 2, then Γ is called
a strongly regular graph. For a strongly regular graph there exist num-
bers (n,k, λ,µ) such that Γ has n vertices, Γ is k-regular, two adja-
cent vertices have λ common neighbors, and two non-adjacent ver-
tices have µ common neighbors, then (n,k, λ,µ) are the parameters
of the strongly regular graph Γ .

A graph is called distance-transitive graph if the automorphism group
of a graph acts transitively on pairs of vertices at the same distance. It
is easy to see that all distance-transitive graphs are distance-regular
graphs. As it is always the case with regularity properties and ana-
log symmetry properties, distance-regularity is weaker than distance-
transitivity. There exist plenty of distance-regular graphs that are not
distance-transitive.1

1 There are plenty examples even for strongly-regular graphs, see [54] for a classifi-
cation of some strongly regular graphs with parameters (57, 24, 11, 9). The authors
provide approximately 1010 non-isomorphic distance regular graphs with these pa-
rameters and nearly all of them have a trivial automorphism group.
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An adjacency matrix A of a graph Γ = (X, ∼) is defined by

(A)ij =

1 if i ∼ j,

0 otherwise.

Here A is indexed by (i, j) ∈ X× X. Notice that an adjacency matrix
A only depends on the ordering of the vertices of the graph Γ , so we
can abuse language and denote A as the adjacency matrix of Γ .

As we shall see in the following sections the adjacency matrix of
a graph is a very important tool to investigate the properties of a
graph. Vice versa, for a given symmetric 0-1-matrix A ∈ Cn×n (i.e. A
is symmetric and all entries of A are in {0, 1}) we can define a graph
Γ = (X, ∼) if we take the canonical basis {e1, . . . , en} of Cn×n as X and
define ∼ by

ei ∼ ej if and only if eᵀiAej = 1.

Hence, we can identify a graph with its adjacency matrix. For exam-
ple the phrase “Let λ− be the smallest eigenvalue of the graph Γ .”
means the smallest eigenvalues of the adjacency matrix of Γ .

There exists a more general concept of an adjacency matrix, the
extended weight adjacency matrix of a graph Γ = (X, ∼). We say that a
symmetric matrix A = (aij) ∈ Rn×n is an extended weight adjacency
matrix of Γ if

(a) R 3 aij 6 0 if i and j are non-adjacent,

(b) aii = 0,

(c) the all-ones vector j is an eigenvector of A.

(d) aij > 0 for one pair (i, j) with i and j adjacent.

We denote the eigenvalue of j by k. Obviously, the (0-1-)adjacency ma-
trix of a k-regular graph is an extended weight adjacency matrix. In
the notation of Section 1.1 we denote the eigenspaces of a k-regular
extended weighted adjacency matrix A by V0, . . . ,Vd, their associated
eigenvalues by λ0, . . . , λd, and their multiplicities by f0, . . . , fd. We
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suppose λ0 = k and j ∈ V0. Note that the eigenspace V of the eigen-
vector j might have a dimension larger than 1. In this case we find a
subspace Vd+1 ⊂ V with V = 〈j〉 ⊥ Vd+1 and dim(Vd+1) = f0 − 1.
Additionally, we can easily define an orthonormal projection matrix
Ed+1 onto Vd+1. Therefore we can assume without loss of generality
V0 = 〈j〉, f0 = 1 and

E0 = n
−1J (1.3)

throughout this thesis. As this simplifies many statements signifi-
cantly, we shall do so. Alternatively, one could assume that all con-
sidered graphs are connected (i.e. no two vertices x, y of the graph
satisfy d(x,y) = ∞). As one major class of graphs considered in this
thesis, the dual polar graphs of the hyperbolic quadric Q+(2d− 1,q),
d even, are not connected, we prefer to proceed with this assumption
on V0.

1.3 association schemes

Association schemes generalize distance-regular graphs. The exact
definition of an association scheme varies.2 We use the definition of
[13, Ch. 2]. In this work an association scheme is what others might
call a symmetric association scheme. It is defined as follows.

Definition 1.4. Let X be a finite set. A d-class association scheme is a
pair (X,R), where R = {R0, . . . ,Rd} is a set of symmetric binary relations
on X with the following properties:

(a) R0 is the identity relation.

(b) R is a partition of X×X.

(c) There are numbers pkij such that for x,y ∈ Xwith xRky there are exactly
pkij elements z with xRiz and zRjy.

2 See the following blog entry by Peter Cameron for an exhaustive dis-
cussion of this topic: http://cameroncounts.wordpress.com/2014/06/08/

terminology-association-scheme-or-coherent-configuration/ (retrieved:
26/11/2014)

http://cameroncounts.wordpress.com/2014/06/08/terminology-association-scheme-or-coherent-configuration/
http://cameroncounts.wordpress.com/2014/06/08/terminology-association-scheme-or-coherent-configuration/
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Remark 1.5. It is a common practice to shorten association scheme to
scheme. This scheme is unrelated to the schemes known from algebraic ge-
ometry.

The number ni := p0ii is called the i-valency of (X,R). The total
number of elements of X is

n := |X| =

d∑
i=0

ni.

The relations Ri are described by their adjacency matricesAi ∈ Cn×n

defined by

(Ai)xy =

1 if xRiy

0 otherwise.

The matrices Ai are symmetric 0-1-matrices, so we can identify them
with a graph with the vertex set X as seen in Section 1.2. We shall call
this graph as the graph of Ri. We can use these matrices to restate Def-
inition 1.4. Then symmetric 0-1-matrices A0, . . . ,Ad ∈ Cn×n belong
to a d-class association scheme if

(a) A0 = I,

(b)
∑d
i=0Ai = J,

(c) there exist nonnegative integers pkij such that

AiAj =

d∑
k=0

pkijAk

for all (i, j,k) ∈ {0, . . . ,d}× {0, . . . ,d}× {0, . . . ,d}.

The symmetric matrices Ai are linearly independent by (b), so they
generate a (d+ 1)-dimensional algebra by (c). This algebra is called
the Bose-Mesner algebra of the scheme.

The matrices Ai are symmetric, so they have n real eigenvalues
by Lemma 1.1. Additionally, they commute, so we can diagonalize
them simultaneously [33, 4.3.6, p. 239]. Therefore, we can decompose
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Cn into the d+ 1 common eigenspaces V0, . . . ,Vd of A0, . . . ,Ad. We
denote the dimension of Vi by fi. We have that J =

∑d
i=0Ai, so

the eigenspaces V0, . . . ,Vd are eigenspaces of J. The matrix J has n
as an eigenvalue with multiplicity 1, and 0 as an eigenvalue with
multiplicity n− 1. Therefore, we have fi = 1 for one i. We suppose
f0 = 1.

Notice that our Eis here are the same as in Theorem 1.3. Hence, we
can use Theorem 1.3 and the preceding notes. In particular, all Ei are
idempotents, their sum is the identity matrix, and E0 = n−1J.

We define the (d+ 1)× (d+ 1)-matrices P and Q over C by

Aj =

d∑
i=0

PijEi, Ej =
1

n

d∑
i=0

QijAi.

The matrices P and Q are called the eigenvalue matrices of the associa-
tion scheme. Notice that some authors define Q as Ej =

∑d
i=0QijAi.

By the pairwise orthogonality of the Eis, we have

AjEi =

(
d∑
i=0

PijEi

)
Ei = PijEi.

This shows that the Pijs are exactly the eigenvalues of the Ajs. Also
notice that the linear independence of the Eis and

Ej =
1

n

d∑
i=0

QijAi

=
1

n

d∑
i=0

Qij

d∑
k=0

PkiEk

=
1

n

d∑
i=0

QijPjiEj

imply that PQ = nI = QP.
We shall summarize some well-known properties of the eigenvalue

matrices in the following.

Lemma 1.6 ([13, Lemma 2.2.1]). The eigenmatrices P and Q of an asso-
ciation scheme satisfy the following.
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(a) Pi0 = Qi0 = 1,

(b) P0j = nj, Q0j = fj,

(c) fiPij = njQji.

Association schemes are often used to investigate distance-regular
graphs Γ = (X, ∼) of diameter d. The graph Γ can be seen as an asso-
ciation scheme if we define the relations R0, . . . ,Rd by

xRiy =

1 if d(x,y) = i,

0 otherwise.

There are many other general mathematical structures that can be
considered as association schemes, e.g. groups and buildings provide
many examples for schemes [81, Introduction].

Remark 1.7. The reader might wonder if there exists a natural ordering of
the Ais and Eis.

(a) So-called metric (or P-polynomial) schemes have a natural ordering of
the matrices Ai. A scheme with an ordering of the matrices Ai is metric
if pkij 6= 0 implies k 6 i+ j and moreover pi+jij 6= 0 for all i, j, k.

(b) So-called cometric (orQ-polynomial) schemes have a natural ordering
of the matrices Ei. The Bose-Mesner algebra is closed under component-
wise (bad student’s, Hadamard, Schur) multiplication ◦. Hence we can
define the Krein parameters or dual intersection numbers qkij by

Ei ◦ Ej =
1

n

d∑
k=0

qkijEk.

A scheme is cometric if the qkij satisfy the analog conditions as the pkij.

All relevant association schemes in this work are metric and cometric. We
will always use the Ai, Ei, Ri, and Vi in the ordering used by the cited
source. This is always a metric and cometric ordering.

Also notice that these orderings are not unique. It is an easy exercise to
see that (A0,A1,A2) and (A0,A2,A1) are both metric orderings if A1 is a
connected strongly-regular graph.
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1.4 algebraic combinatorics

The purpose of this chapter is to introduce some important concepts
of algebraic combinatorics and algebraic graph theory. The main idea
of algebraic graph theory is to take a graph Γ and to associate it with
an algebraic object such as the eigenvalues of its adjacency matrix.
Then the properties of this object provide new insights on X itself.
We restrict ourselves to the adjacency matrices of our graphs and
association schemes. While we only work in distance-regular graphs,
we keep the results as general as it seems appropriate.

We want to investigate subsets of a graph Γ = (X, ∼). The basic tool
for the investigation of subsets Y of X is the characteristic vector χY
indexed by X which is defined by

(χY)x =

1 if x ∈ Y,

0 if x /∈ Y.

1.4.1 Regular Graphs

In this section Γ = (X, ∼) denotes a regular simple graph with n ver-
tices. The matrix A is an (extended weight) adjacency matrix of Γ
with eigenvalues λ0 = k, λ1 . . . , λd. Suppose that k is the eigenvalue
of j. We denote the smallest eigenvalue of A by λ−, the associated
eigenspace by V−, the associated idempotent matrix by E−, and its
multiplicity by f−. As usual, we denote the multiplicity of λi by fi.
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Recall that we always assume without loss of generality E0 = 1
nJ

and that we can write χY as a sum of orthogonal eigenvectors as
follows.

χY =

d∑
i=0

EiχY

=
1

n
JχY +

d∑
i=1

EiχY

=
|Y|

n
j +

d∑
i=1

EiχY .

Hence, we have the following Lemma.

Lemma 1.8. Let Y be a subset of X. Then

χY =
|Y|

n
j +

d∑
i=1

EiχY .

The following result is well-known, but we include a proof as it is
a good introduction to the proof of Proposition 1.12.

Proposition 1.9 (Hoffman’s Bound for Independent Sets). Let Y ⊆ X
be an independent set of Γ and k+ λ− > 0. Then

|Y| 6
nλ−

λ− − k

with equality only if χY ∈ 〈j〉 ⊥ V−.

Proof. Recall that, by Theorem 1.3, we can decompose A into pairwise
orthogonal idempotent matrices Ei as

A =
k

n
J+

d∑
i=1

λiEi,

Let χ be χY , the characteristic vector of Y. We have that Y is an inde-
pendent set and A an extended weight adjacency matrix, so χᵀAχ 6 0.
We put y = |Y|. By Lemma 1.8,

χ =
y

n
j +

d∑
i=1

Eiχ.
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By EiEj = δijE2i , we have

0 > χᵀAχ

=
k

n
χᵀJχ+

d∑
i=1

λiχ
ᵀEiχ

=
ky2

n
+

d∑
i=1

λi(Eiχ)
ᵀ(Eiχ)

>
ky2

n
+ λ−

d∑
i=1

(Eiχ)
ᵀ(Eiχ) (1.4)

Furthermore, χ is a 0-1-vector, so

y = χᵀχ =
y2

n2
jᵀj +

d∑
i=1

(Eiχ)
ᵀ(Eiχ). (1.5)

If we put this back into our previous inequality (1.4), then we have

0 >
ky2

n
+

d∑
i=1

λi(y−
y2

n
)

>
ky2

n
+ λ−

(
y−

y2

n

)
. (1.6)

Rearranging yields the first part of the assertion.
If this bound is tight, then we have equality in (1.4) and (1.6).

Hence,

χ =
y

n
j + E−χ

which shows the second part of the assertion.

Remark 1.10. Am short remark on the name of Hoffman’s bound. The pre-
vious result, Hoffman’s bound, is (with 0-1-adjacency matrices) due to an
unpublished result by Hoffman. It was independently discovered for the spe-
cial case of association schemes (and published) by Delsarte, so some call it
Delsarte bound, some call it Hoffman-Delsarte bound. Others call it ra-
tio bound. All these names are sometimes accompanied by adjectives such
as weighted or generalized, since original statements of the bound did
restrict themselves to 0-1-adjacency matrices.
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There are plenty generalizations of Hoffman’s bound. For reasons
which will be explained in Chapter 6 the author found some interest
in the following variant of the problem: Instead of a set of pairwise
non-adjacent vertices Y of Γ consider a pair (Y,Z) with Y,Z ⊆ X such
that all vertices of Y are non-adjacent to all vertices of Z. We say that
such a pair (Y,Z) is a cross-intersecting independent set.3

Let λ+ be the largest eigenvalue besides k (with λ+ = k if the mul-
tiplicity of k is larger than 1 and k is the largest eigenvalue). Again,
denote the associated idempotent, eigenspace, and multiplicity by E+,
V+, and f+. Define λb = max{λ+,−λ−}. We say that λb is the second
largest absolute eigenvalue of Γ . Hoffman’s bound for cross-intersecting
sets seems to be first published by Willem H. Haemers in [40]. The
author learned about this technique from a paper by Tokushige [75]
where he uses a variant of the result based on the work of Ellis,
Friedgut, and Pipel [31]. The proof is nearly identical to the proof
of the normal Hoffman bound.

We have to restate one of the proofs, since all the mentioned pub-
lications did not characterize the case of tightness in a way that is
specific enough for our application of this result.

Lemma 1.11 (Inequality of Arithmetic and Geometric Means). Let 0 6
α,β 6 1. Then we have

√
1−α

√
1−β 6 1−

√
αβ

with equality if and only if α = β.

Proposition 1.12 (Hoffman’s Bound for Cross-Intersecting Indepen-
dent Sets). Let (Y,Z) be a cross-intersecting independent set of Γ and
k+ λb > 0. Then√

|Y| · |Z| 6 nλb
k+ λb

.

If equality holds, then |Y| = |Z|. Define α by |Y| = |Z| = αn. Furthermore,
one of the following cases occurs.

(a) We have λ+ = λb > −λ−, χY = αj + v+, and χZ = αj − v+ for some
vector v+ ∈ V+.

3 This name is non-standard.
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(b) We have λ+ < λb = −λ−, χY = αj + v−, and χZ = αj + v− for some
vector v− ∈ V−. In this case Y = Z, and Y is an independent set of
maximum size.

(c) We have λ+ = λb = −λ−, χY = αj+v−+v+, and χZ = αj+v−−v+
for some vectors v− ∈ V− and v+ ∈ V+.

Proof. Let χ be χY , the characteristic vector of Y. Let ψ be χZ, the char-
acteristic vector of Z. We have that (Y,Z) is a cross-intersecting inde-
pendent set andA an extended weight adjacency matrix, so χᵀAψ 6 0

Put y = |Y| and z = |Z|. Suppose without loss of generality y > z >
0. By Lemma 1.8,

χ =
y

n
j +

d∑
i=1

Eiχ,

ψ =
z

n
j +

d∑
i=1

Eiψ.

Similar to the proof of Proposition 1.9, we have

0 > χᵀAψ

=
k

n
χᵀJψ−

∣∣∣∣∣
d∑
i=1

λiχ
ᵀEiψ

∣∣∣∣∣ (1.7)

>
kyz

n
−

d∑
i=1

|λi(Eiχ)
ᵀ(Eiψ)| (1.8)

>
kyz

n
− λb

d∑
i=1

|Eiχ| · |Eiψ| (1.9)

>
kyz

n
− λb

√√√√ d∑
i=1

(Eiχ)ᵀ(Eiχ) ·

√√√√ d∑
i=1

(Eiψ)ᵀ(Eiψ) (1.10)
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In (1.7) equality holds knχ
ᵀJψ > 0, so the remaining term is negative.

Notice that we apply the Cauchy-Schwartz inequality for (1.9) and
(1.10). Furthermore, as in (1.4),

y =
y2

n
+

d∑
i=1

(Eiχ)
ᵀ(Eiχ), (1.11)

z =
z2

n
+

d∑
i=1

(Eiψ)
ᵀ(Eiψ).

If we put this back into our previous inequality (1.10), then we have
by Lemma 1.11 and similar to the proof of Lemma 1.9

0 >
kyz

n
− λb

√
yz

√
1−

y

n

√
1−

z

n
(1.12)

>
kyz

n
− λb

√
yz(1−

√
yz/n). (1.13)

Rearranging yields the first part of the assertion.
If this bound is tight, then we have equality from (1.7) to (1.13). In

particular, equality in Lemma 1.11 and (1.13) shows y = z. Equality
in (1.9) shows

χ =
y

n
j + E−χ+ E+χ

ψ =
z

n
j + E−ψ+ E+ψ.

Equality in (1.7) shows E−χ = E−ψ and E+χ = −E+ψ.

1.4.2 Association Schemes

This subsection presents those results from algebraic combinatorics
which are (in the context of this thesis) best stated in the context of
association schemes. We will mostly consider the following type of
problems. Let (X,R) be a d-class association scheme with the usual
notation (see Section 1.3). Let I ⊆ {1, . . . ,d}. Let Y be a subset of X
such that all pairwise different elements y,y ′ ∈ Y satisfy yRiy ′ for
some i ∈ I. What are the properties of Y? In particular, can we bound
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the possible sizes of Y and can we describe Y if it reaches one of these
bounds?

In the following we adapt the notation of [13, Sec. 2.5]. Let Y be
a nonempty subset of X. Let χ be χY , the characteristic vector of Y.
Then we define a = (a0,a1, . . . ,ad), the inner distribution of Y, by

ai =
1

|Y|
χᵀAiχ.

This means that ai is the average number of intersections in Y in
relation Ri. Alternatively,

ai =
1

|Y|
|{(y,y ′) ∈ Y × Y : yRiy

′}|.

Notice that a0 = 1 and
∑d
i=0 ad = |Y|.

For I ⊆ {1, . . . ,d} we call Y an I-clique if its inner distribution a

satisfies ai = 0 for all i ∈ {1, . . . ,d} \ I. We call Y an I-coclique if
its inner distribution a satisfies ai = 0 for all i ∈ I. Let I denote
{1, . . . ,d} \ I. Some trivial observations:

(a) An I-clique is an I-coclique and vice versa.

(b) An I-clique is a clique of the graph with adjacency matrix
∑
i∈IAi.

An I-clique is an independent set of the graph with adjacency ma-
trix
∑
i∈IAi.

(c) Graphs with an adjacency matrix of the form
∑
i∈IAi are regular.

In particular, we already have the tools presented in 1.4.1 at our dis-
posal to investigate I-cliques and I-cocliques.

Lemma 1.13 (Delsarte [25]). The inner distribution a of a nonempty set
Y ⊆ X satisfies

(|Y|aQ)i = nχ
ᵀEiχ.

Proof. By the definitions of Q and a, we have

(|Y|aQ)i = |Y|

d∑
k=0

akQki =

d∑
k=0

χᵀAkχQki

= χᵀ

(
d∑
k=0

QkiAk

)
χ = nχTEiχ.
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The matrices Ei are positive semidefinite, so Lemma 1.13 shows the
following result, Delsarte’s linear programming bound.

Proposition 1.14 (Delsarte [25]). The inner distribution vector a of a
nonempty set Y ⊆ X satisfies aQ > 0. If (aQ)i = 0, then χY ∈ V⊥i .

This proposition defines linear constraints on the inner distribu-
tion of any subset Y of X. E.g. if we consider {1}-cliques with d = 3,
then we have a = (1,a1, 0, 0). Hence, we have the linear constraints
Q0i + a1Q1i > 0, i ∈ {1, 2, 3}, and we want to maximize the non-
negative variable a1. This is a linear programming problem with 4
constraints and 1 variable. This problem is bounded, since we have
Q1i = fiPi1/n1 < 0 for at least one i. One can use standard algo-
rithms to solve this for given parameters efficiently (see any book on
linear optimization such as [64]).

It was shown by Luz [59] (and appears to have been folklore even
before his publication) that Proposition 1.14 is a special case of Propo-
sition 1.9. Normally, the same holds for generalizations of Hoffman’s
bound such as Proposition 1.12. Again, all the different names men-
tioned in Remark 1.10 seem to be in use for this bound.

There exists a bound for cliques which is also called Hoffman’s
bound. The following version is due to Chris Godsil who contributed
the multiplicity argument. We restate the proof as Godsil did for-
mulate the result for cliques of regular graphs, while we focus on
association schemes here.

Proposition 1.15 (Godsil [36, Theorem 3.5]). Let Y be a subset of X
under the condition that all elements of Y are pairwise in relation R0 or Ri.
Let j ∈ {1, . . . ,d}.

(a) If Pji < 0, then we have

|Y| 6 1−ni/Pji

with equality only if χY ∈ V⊥j .

(b) If Q0j 6= Qij, then we have

|Y| 6 1+ fj
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with equality only if |Y| = 1−ni/Pji, equivalently, Qij 6= −1.

Proof. Recall

nEj =

d∑
i=0

QijAi.

The entry (Ej)xy only depends on the k for which we have xRky.
Therefore, the |Y|× |Y|-submatrix S of Ej indexed by Y has the form
αI+ βJ. Let χ be χY , the characteristic vector of Y and let χ|Y be the
restriction of χ to the vertices in Y. Then we have

0 6 χᵀEjχ = χᵀ
|Y
(αI+βJ)χ|Y = α|Y|+β|Y|2 (1.14)

with equality only if χY ∈ V⊥j . By the definition of Ej and Lemma 1.6,
we have

nα = Q0j −Qij = fj(1−
Pji

ni
)

nβ = Qij =
fj

ni
Pji.

Rearranging (1.14) yields the first part of the assertion.
Furthermore,

rank(S) = rank(αI+βJ) 6 rank(Ej) = fj.

Now for α,β 6= 0,

rank(S) = |Y|− 1 if α = −β|Y|,

rank(S) = |Y| if α 6= −β|Y|.

As |Y| = 1− ni/Pji, we have that |Y| = fj + 1 implies − niPji = fj. This
shows the second part of the assertion.

1.5 graphs related to finite geometries

The purpose of this chapter is to introduce some geometrical objects
and their associated association schemes. See other sources such as
[44, 45] for details. We adopt the ordering of the Ais and Eis from
our sources.
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1.5.1 Sets

Many problems in finite geometry come from analog problems on
sets. Let N = {1, . . . ,n}. The Johnson graph Γ of the k-sets of N has
all k-element subsets of N as its vertices X. Two vertices x and y are
adjacent if |x∩ y| = k− 1. We write J(n,k) for Γ .

Theorem 1.16 ([13, Th. 9.1.2]). Let Γ be J(n,k). Then Γ has diameter d =

min(k,n− k) and is distance-regular. The eigenvalues and multiplicities of
Γ are given by

λi = (k− i)(n− k− i) − i, fi =

(
n

i

)
−

(
n

i− 1

)
for i ∈ {0, 1, . . . ,d}.

1.5.2 Vector Spaces

Let V be an n-dimensional vector space of a finite field K of order q.
The Grassmann graph Γ of the k-subspaces of V has the k-dimensional
subspaces of V as its vertices. Two vertices x and y are adjacent if
dim(x∩ y) = k− 1. We write Jq(n,k) for Γ .

For integers n,k the Gaussian coefficient is defined as

[
n

k

]
q

=


∏k
i=1

qn−i+1−1
qi−1

if 0 6 k 6 n

0 otherwise.

We will write
[
n
k

]
instead of

[
n
k

]
q

if the choice for q is clear from the
context. An easy calculation shows[

n

k

]
=

[
n

n− k

]
, (1.15)

and for (n,k) 6= (0, 0)[
n

k

]
=

[
n− 1

k

]
qk +

[
n− 1

k− 1

]
(1.16)

=

[
n− 1

k

]
+

[
n− 1

k− 1

]
qn−k.
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A standard double counting argument shows that the number k-
dimensional subspaces of an n-dimensional vector space over a fi-
nite field of order q is

[
n
k

]
. We write [n] for

[
n
1

]
, the number of 1-

dimensional subspaces of V . If P is a 1-dimensional subspace, then
the factor space V/P contains

[
n−1
k−1

]
(k − 1)-dimensional subspaces.

Hence, exactly
[
n−1
k−1

]
k-dimensional subspaces of V contain a fixed

1-dimensional subspace. We shall investigate the Gaussian coefficient
in some more detail in Section 2.

Theorem 1.17 ([13, Th. 9.3.3]). Let Γ be Jq(n,k). Then Γ has diameter d =

min(k,n− k) and is distance-regular. The eigenvalues and multiplicities of
Γ are given by

λi = q
i+1[k− i][n− k− i], fi =

[
n

i

]
−

[
n

i− 1

]
for i ∈ {0, 1, . . . ,d}.

Notice that we can identify V with the projective space P of dimen-
sion n − 1 over K where the 1-dimensional subspaces of V are the
points of P, and the 2-dimensional subspaces of V are the lines of P.
Furthermore, we call the (n− 1)-dimensional subspaces of V hyper-
planes.

A Grassmann graph is distance-regular, so we can easily define an
association scheme on it by

(Ai)xy =

1 if codim(x∩ y) = i,

0 if codim(x∩ y) 6= i.

Here we define codim(x∩y) = k−dim(x∩y). Formulas for the eigen-
values of these association schemes were calculated by Delsarte [26]
and Eisfeld [30]. We use the notation of Vanhove [78, Theorem 3.2.4,
Remark 3.2.5] whose PhD thesis is an excellent reference for the prop-
erties of Grassmann schemes (as well as the association scheme which
belongs to finite classical polar spaces). In particular, Theorem 3.2.2
and Remark 3.2.5 in Section 3.2 of [78] show the following theorem.
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Theorem 1.18 ([30]). Let Y be the set of all k-dimensional spaces on a fixed
point of Fnq . Then χY is an eigenvector of Ai with associated eigenvalue[

n− k− 1

i

][
k− 1

i

]
q(i+1)i −

[
n− k− 1

i− 1

][
k− 1

i− 1

]
qi(i−1).

Proof. By [78, Theorem 3.2.2], the vector χY is an eigenvector in the
eigenspace Vk1 . By [78, Remark 3.2.5], (1.15), and (1.16), the corre-
sponding eigenvalue is[

n− k

n− k− i

][
k− 1

i

]
qi
2

−

[
n− k− 1

n− k− i

][
k

i

]
qi(i−1)

=

[
n− k

i

][
k− 1

i

]
qi
2

−

[
n− k− 1

i− 1

][
k

i

]
qi(i−1)

=

[
n− k− 1

i

][
k− 1

i

]
q(i+1)i +

[
n− k− 1

i− 1

][
k− 1

i

]
qi
2

−

[
n− k− 1

i− 1

][
k

i

]
qi(i−1)

=

[
n− k− 1

i

][
k− 1

i

]
q(i+1)i −

[
n− k− 1

i− 1

][
k− 1

i− 1

]
qi(i−1).

To the knowledge of the author the property that the χY of the pre-
vious result is an eigenvector of Ai was first explicitly observed by
Frankl and Wilson [35]. It is not hard to notice this property while
calculating the eigenvalues Pij, so it should have been known to Del-
sarte as well.

1.5.3 Finite Classical Polar Spaces

A polar space is an incidence geometry introduced by Veldkamp [79].
We refer to Veldkamp [79] and Tits [74] for the theory of polar spaces.
We refer to Hirschfeld [44] for an overview over Galois geometries.

Let F be a field. Let σ be a field automorphism of F. Let V be a
vector space over F. A sesquilinear form f is a map f : V × V → F that
is linear in its first argument and semilinear in its second argument,
i.e. all v,w,u ∈ V and all a ∈ F satisfy
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• f(v+w,u) = f(v,u) + f(w,u),

• f(av,w) = af(v,w),

• f(v,w+ u) = f(v,w) + f(v,u),

• f(v,aw) = aσf(v,w).

A sesquilinear form is called reflexive form if f(v,w) = 0 implies
f(w, v) = 0 for all v,w ∈ V . A sesquilinear form is called symplectic
form if f(v, v) = 0 for all v ∈ V . A sesquilinear form is called Hermitian
form if σ 6= σ2 = id and f(v,w) = f(w, v)σ for all v,w ∈ V .

A quadratic form Q is a map Q : V → F such that

• Q(av) = a2Q(v) for all v ∈ V and a ∈ F,

• there exists a sesquilinear form f with σ = id such that Q(v+

w) = Q(v) +Q(w) + f(v,w) for all v,w ∈ V .

We say that f is the associated bilinear form of Q.
A reflexive sesquilinear form f is called degenerate if there exists

v ∈ V \ {0} with f(v,w) = 0 for all w ∈ V . A quadratic form is called
degenerate if there exists a vector v ∈ V with Q(v) = 0 and f(v,w) = 0
for all w ∈ V . A reflexive sesquilinear form, respectively, quadratic
form is called non-degenerate if it is not degenerate. A subspace is
called totally isotropic, respectively, totally singular whenever the form
vanishes completely on this subspace.

The set of totally isotropic subspaces of V with respect to a reflexive
sesquilinear form f, respectively, quadratic formQ form a so-called in-
cidence geometry with respect to f, respectively,Q. Two totally isotropic
subspaces S and T are called incident if S ⊆ T or T ⊆ S. If V is finite
and f, respectively, Q is non-degenerate and reflexive, then the geom-
etry defined by f, respectively, Q is a polar space. The maximal totally
isotropic subspaces of a polar space are called generators. If the (vector
space) dimension of a generator is larger than 2, then all finite polar
spaces are classical [74]. The dimension of a generator is the same for
all generators of a polar space. This dimension is called the rank of
the polar space.

There exist the following types of finite classical polar spaces of
rank d over a finite field of order q.
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(a) The hyperbolic quadric Q+(2d− 1,q). Up to coordinate transfor-
mation its non-degenerate quadratic form is x0x1+ . . .+x2d−1x2d.

(b) The parabolic quadric Q(2d,q). Up to coordinate transformation
its non-degenerate quadratic form is x20 + x1x2 + . . .+ x2dx2d+1.

(c) The elliptic quadric Q−(2d+ 1,q). Up to coordinate transforma-
tion its non-degenerate quadratic form is f(x0, x1) + x2x3 + . . .+
x2d+1x2d+2. Here f(x0, x1) is an irreducible homogenous quadra-
tic polynomial of Fq.

(d) The Hermitian polar spaces H(2d−1,q) and H(2d,q). Here q = r2

for a prime power r. Up to coordinate transformation the corre-
sponding non-degenerate sesquilinear form is x0yr0 + . . .+ xny

r
n

for H(n,q).

(e) The symplectic polar space W(2d− 1,q). Up to coordinate trans-
formation the corresponding non-degenerate sesquilinear form is
x0y1 − x1y0 + . . .+ x2d−1y2d − x2dy2d−1.

Remark 1.19. We have the following conventions.

(a) Unless otherwise mentioned, we use vector space dimension and not
projective dimension.

(b) Whenever we say totally isotropic, then we mean totally singular if the
considered polar space is a quadric.

Define the parameter e of a finite classical polar space as follows.
The second and third columns contain alternative names (see [13, p.
274]). In the following table r is the natural number defined by q = r2.

Polar Space Chevalley Group Graph e

Q+(2d− 1,q) Dd(q) Ω+(2d,q) 0

H(2d− 1,q) 2A2d−1(r) U(2d, r) 1/2

Q(2d,q) Bd(q) Ω(2d+ 1,q) 1

W(2d− 1,q) Cd(q) Sp(2d,q) 1

H(2d,q) 2A2d(r) U(2d+ 1, r) 3/2

Q−(2d+ 1,q) 2Dd+1(q) Ω−(2d+ 2,q) 2
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We say that a polar space over Fq has type e. A polar space of rank d
and type e has exactly

d−1∏
i=0

(qi+e + 1) (1.17)

generators. A polar space possesses

(qd−1+e + 1)[d] (1.18)

totally isotropic points.
Let U be a subspace of V with an associated form f. If f is a

quadratic form, then f restricted to U is also a quadratic form. If f
is a symplectic form, then f restricted to U is also a symplectic form.
If f is a Hermitian form, then f restricted to U is also a Hermitian
form.

In the following we list a few more well-known properties of fi-
nite classical polar spaces, which we shall use throughout this thesis
without further reference.

Remark 1.20. The set of generators of an hyperbolic quadric of rank d can
be partitioned into Latin and Greek generators. These are two sets of the
same size such that

(a) Latin generators meet each other in even codimension,

(b) Greek generators meet each other in even codimension,

(c) Latin generators meet Greek generators in odd codimension.

Here the codimension of a subspace S is defined as d− dim(S).

Remark 1.21. If q is even, then the polar spaces W(2d− 1,q) and Q(2d,q)
are isomorphic.

Let f be a non-degenerate sesquilinear form of a vector space V of
dimension n. Let U be a subspace of V . Define U⊥, the perp of U, by

U⊥ = {v ∈ V : f(v,w) = 0 for all w ∈ U}.
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If f is non-degenerate, then ⊥ maps c-spaces onto (n− c)-spaces. Par-
ticularly, f induces a bijection between points and hyperplanes of V .
In this case f is an example for a duality on V .

The dual polar graph Γ has the generators of a polar space P as its
vertices, and two vertices x,y are adjacent if dim(x∩ y) = d− 1.

Theorem 1.22 ([13, Th. 9.4.3]). Let Γ be the dual polar graph of a polar
space of rank d and type e. Then Γ has diameter d and is distance-regular.
The eigenvalues and multiplicities of Γ are given by

λi = q
e[d− i] − [i],

fi = q
i

[
d

i

]
1+ qd+e−2i

1+ qd+e−i

i∏
j=1

1+ qd+e−j

1+ qj−e

for i ∈ {0, 1, . . . ,d}.

A dual polar graph is distance-regular, so we can easily define an
association scheme on it by

(Ai)xy =

1 if codim(x∩ y) = i,

0 if codim(x∩ y) 6= i.

Formulas for the eigenvalues of these association schemes were
calculated by Stanton [70], Eisfeld [30], and Vanhove [78, Theorem
4.3.6]. We will use Frédérics Vanhove’s version which is stated in the
following. We do explicitly state the eigenvalues of Ad as these are
the most important for us.

Theorem 1.23. For a polar space of rank d and type e, the eigenvalues of
the adjacency matrix As are

Pr,s =

min(d−s,r)∑
t=max(r−s,0)

(−1)r−t
[
d− r

d− s− t

][
r

t

]
q(
r−t
2 )+(

s−r+t
2 )+(s−r+t)e.

Particularly, the eigenvalues of Ad are

Pr,d = (−1)rq(
d−r
2 )+(r2)+e(d−r). (1.19)
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1.6 counting in these geometries

This section collects some of the necessary counting results which we
shall need in the following chapters.

Recall that P0s = ns, so we can use Theorem 1.23 also as a ref-
erence for some basic counting arguments.4 We will do some more
calculations with these numbers in the individual chapters to obtain
our specific results.

Corollary 1.24. In a polar space of type e and rank d, exactly[
d

d− s

]
q(

s
2)+se.

generators meet a fixed generator in codimension s.

Definition 1.25. Let r, s,u, z, z1, z2, t be integers. Let d > 0. Let

• ψ12(d, r, s,u) be the number of r-spaces meeting a fixed s-space in a
fixed u-space in Fdq if 0 6 u 6 s 6 d, 0 otherwise.

• ψ2(d, r, s,u) be the number of r-spaces meeting a fixed s-space in
some u-space in Fdq if 0 6 s 6 d, 0 otherwise.

• ψ3(d, x,y, z, z1, z2) be the number of z-spaces that meet a fixed x-
space X in some z2-space and a fixed y-space Y ⊆ X in some z1-space
in Fdq if 0 6 y 6 x 6 d, 0 otherwise.

Theorem 1.26 ([44, Theorem 3.3, p. 88]). Let r, s,u, z, z1, z2, t be integers.
Let d > 0. We have the following identities.

(a) ψ12(d, r, s,u) =

q(r−u)(s−u)
[
d− s

r− u

]
.

(b) ψ2(d, r, s,u) =[
s

u

]
ψ12(d, r, s,u).

4 Eisfeld, Stanton and Vanhove used ns to obtain formulas for P0s and not the other
way around.
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(c) ψ3(d, x,y, z, z1, z2) =

q(z2−z1)(y−z1)+(z−z2)(x−z2)

[
y

z1

][
x− y

z2 − z1

][
d− x

z− z2

]
.

Proof. By [45, Theorem 3.3, (1), p. 88],

ψ12(d, r, s,u) = q(r−u)(s−u)
[
d− s

r− u

]
.

By [45, Theorem 3.3, (2), p. 88],

ψ2(d, r, s,u) =
[
s

u

]
ψ12(d, r, s,u).

First we calculate ψ3(d, x,y, z, z1, z2). For this consider an x-dimen-
sional subspace X and a y-dimensional subspace Y with Y ⊆ X. We
want to choose a z-dimensional subspace Z with

dim(Z∩ Y) = z1, dim(Z∩X) = z2.

The number of ways choosing Z∩X is ψ2(x, z2,y, z1). Then the num-
ber of ways choosing Z through a fixed subspace Z ∩ X is exactly
ψ12(d, z, x, z2). Hence, we have

ψ3(d, x,y, z, z1, z2) = ψ2(x, z2,y, z1)ψ12(d, z, x, z2).

Corollary 1.27. Let n > k,a > 1. Let P be a point. Let S be an a-
dimensional subspace of an n-dimensional vector space which does not con-
tain P. Then there are

qa(k−1)
[
n− a− 1

k− 1

]
k-dimensional subspaces which do contain P and meet S trivially.

Proof. In the factor space of P we see that we have ψ12(n − 1,k −
1,a, 0) possibilities to choose the k-dimensional subspace. Theorem
1.26 shows the assertion.



1.6 counting in these geometries 29

The Gaussian coefficient satisfies many interesting identities. One
of them is the following.

Lemma 1.28. Let n 6= 0. Let a > 0. Then,

a∑
k=0

(−1)n−k
[
n

k

]
q(
n−k
2 ) = (−1)n+a

[
n− 1

a

]
q(
n−a
2 ).

Proof.

a∑
k=0

(−1)n−kq(
n−k
2 )
[
n

k

]
(1.16)
=

a∑
k=0

(−1)n−kq(
n−k
2 )
(
qn−k

[
n− 1

k− 1

]
+

[
n− 1

k

])

=

a∑
k=0

(−1)n−k
(
q(
n−k+1
2 )

[
n− 1

k− 1

]
+ q(

n−k
2 )
[
n− 1

k

])
=(−1)n−aq(

n−a
2 )
[
n− 1

a

]
.
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The purpose of this chapter is to provide some useful inequalities
for the Gaussian coefficient and the number of generators in a polar
space.

2.1 bounds on the gaussian coefficient

We start with several bounds on the Gaussian coefficient.

Lemma 2.1. Let n > k > 0.

(a) Let q > 2. Then[
n

k

]
6
111

32
qk(n−k) 6

7

2
qk(n−k).

(b) Let q > 3. Then[
n

k

]
6 2qk(n−k).

(c) Let q > 4. Then[
n

k

]
6 (1+ 2q−1)qk(n−k).

(d) Let q > 2. Let n > 1. Then

[n] 6
q

q− 1
qn−1.

Proof. First we prove the first three claims.
By definition,[

n

k

]
=

k∏
i=1

qn−k+i − 1

qi − 1
6

k∏
i=1

qn−k+i

qi − 1
= qk(n−k)

k∏
i=1

qi

qi − 1
.

(2.1)

Our claim is[
n

k

]
6 (1+αq−1)qk(n−k) (2.2)
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for α = 79
16 and q = 2, α = 3 and q = 3, respectively, α = 2 and q > 4.

The basis. In the following we check for k 6 8 that

k∏
i=1

qi

qi − 1
6 1+αq−1,

so (2.2) holds by (2.1) for k 6 8. For q = 2, 3 this is trivial. For q > 4

we that(
q(1+ 2q−1)

k∏
i=1

(qi − 1)

)
− q(

k+1
2 )

evaluates to

2,

q− 2,

q3 − 3q2 − q+ 2,

q6 − 3q5 − 2q4 + q3 + 3q2 + q− 2,

q10 − 3q9 − 2q8 + 2q6 + 4q5 − q3 − 3q2 − q+ 2,

q15 − 3q14 − 2q13 + q11 + 3q10 + 3q9

+ q8 − 3q7 − 3q6 − 2q5 + q3 + 3q2 + q− 2,

q21 − 3q20 − 2q19 + q17 + 2q16 + 2q15 + 4q14

− q13 − 3q12 − 3q11 − 3q10 − 2q9 + 2q8

+ 4q7 + q6 + 2q5 − q3 − 3q2 − q+ 2,

q28 − 3q27 − 2q26 + q24 + 2q23 + q22 + 3q21

+ 2q20 − q19 − 3q18 − 4q17 − 4q16 + 2q13

+ 5q12 + 3q11 + 2q10 − q9 − 3q8 − 2q7 − q6

− 2q5 + q3 + 3q2 + q− 2,

q36 − 3q35 − 2q34 + q32 + 2q31 + q30 + 2q29

+ q28 + 2q27 − q26 − 4q25 − 5q24 − 2q23 − q22

− q21 + 3q20 + 4q19 + 5q18 + 3q17 + q16 − 2q15

− q14 − 4q13 − 5q12 − 2q11 + q10 + 2q9 + q8

+ 2q7 + q6 + 2q5 − q3 − 3q2 − q+ 2
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for k = 0, . . . , 8. It is tedious but easy to check that all these expression
evaluate to a positive number for q > 4.

The inductive step. We shall show

k∏
i=1

qi

qi − 1
6 1+α

qk−1 − 2

qk − 2
(2.3)

for k > 8 by induction. This is easy to verify for k = 8. For k > 8 we
have

k+1∏
i=1

qi

qi − 1
6

(
1+α

qk−1 − 2

qk − 2

)
qk+1

qk+1 − 1

= 1+α
qk − 2

qk+1 − 2
−

47·22k+103·22+k−380
25(2k−2)(2k−1)(2k+1−1)

if q = 2 and α = 79
16 ,

2(32k+2+10·3k−8)
(3k−2)(3k+1−2)(3k+1−1)

if q = 3 and α = 3,
(qk+1−2qk+2)(4qk+1−qk−6)
(qk−2)(qk+1−2)(qk+1−1)

if q > 4 and α = 2.

Hence (2.3) yields the assertion, since

1+α
qk−1 − 2

qk − 2
6 1+αq−1.

The last assertion follows directly from the definition of the Gaus-
sian coefficient, since

[n] =
qn − 1

q− 1
< qn−1

q

q− 1
.

Lemma 2.2. Let n be a natural number. Let 0 < k < n. Then

(1+ q−1)qk(n−k) 6

[
n

k

]
.

If q = 2, then

(2−
1

qn−k
)qk(n−k) 6

[
n

k

]
.
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Proof. We have[
n

k

]
=

k∏
i=1

qn−k+i − 1

qi − 1

>
qn+1−k − 1

q− 1

k∏
i=2

qn−k+i − 1

qi − 1

>
qn+1−k − 1

q− 1

k∏
i=2

qn−k+i

qi

>
qn+1−k − 1

q− 1
· 1

qn−k
· qk(n−k).

This shows both statements.

Lemma 2.3. For 0 6 k 6 a 6 n− k we have

qa(k−1)
[
n− a− 1

k− 1

]
>

(
1−

2

qn−k−a+1

)[
n− 1

k− 1

]
.

Proof. We may assume k > 1, since in the case k = 0 both sides of
the equation are zero. We also suppose n > 2, since n = 1 implies
k = 0. We shall show the statement by counting subspaces in Fnq .
Let P be a point and S an a-dimensional subspace which intersects P
trivially. Count the number of k-dimensional subspaces that contain
P and intersect S trivially. There are

[
n−1
k−1

]
k-dimensional subspaces

on P and at most [a]
[
n−2
k−2

]
of them meet S non-trivially. By Corollary

1.27, we have

qa(k−1)
[
n− a− 1

k− 1

]
>

[
n− 1

k− 1

]
− [a]

[
n− 2

k− 2

]
. (2.4)
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Furthermore, the following inequality can be easily verified under the
hypothesis and k > 1.

[a]
[
n−2
k−2

][
n−1
k−1

] =
(qa − 1)(qk−1 − 1)

(qn−1 − 1)(q− 1)

=
2

qn−a−k+1

− qk+a+1−2qk+a+qk+1+qa+2−q2−2q−n+k+a+2+2q−n+k+a+1

q(q−1)(qn−q)

6
2

qn−a−k+1
−
qk+1+qa+2−q2−2q−n+k+a+1(q−1)

q(q−1)(qn−q)

6
2

qn−a−k+1
−
q2 + q3 − q2 − 2q(q− 1)

q(q− 1)(qn − q)

6
2

qn−a−k+1
. (2.5)

The equations (2.4) and (2.5) yield the assertion.

2.2 bounds on generators

In this part we give upper and lower bounds on the number of gener-
ators of polar space, i.e. we provide bounds on products of the form

b∏
i=a

(1+ c−i),

where c > 1. While the proofs work in far more general settings,
we avoid generalizations that are unnecessary for this work. We start
with this bound which is folklore.

Lemma 2.4 ([76]). Let x > 0. Then we have

2x

2+ x
6 log(1+ x) 6

x

2
· 2+ x
1+ x

.

Lemma 2.5. Let q > 2. The function f : [0,∞)→ R defined by

f(x) = log(1+ q−x)/ log(1+ q−x−1).



2.2 bounds on generators 37

Then the first derivative f ′ of f is bounded by

f ′(x) > c · (qx(2q− 2) − 1),

where

c =
log(q)

log(1+ q−x−1)2(qx + 1)(qx+1 + 1)(4q2x+1 + 2qx+1)

Particularly, f is monotonically increasing in x, i.e. f ′(x) > 0 for all x ∈
(0,∞).

Proof. Consider the first derivative of log(1 + q−x)/ log(1 + q−x−1)
which is, by Lemma 2.4, q > 2, and x > 0,

log(q)
(
(qx + 1) log(1+ q−x) − (qx+1 + 1) log(1+ q−x−1)

)
log(1+ q−x−1)2(qx + 1)(qx+1 + 1)

> c · (qx(2q− 2) − 1) > 0.

Here we used the upper and lower bounds provided in Lemma 2.4 to
bound (qx + 1) log(1+ q−x) − (qx+1 + 1) log(1+ q−x−1) by qx(2q−

2) − 1.

Corollary 2.6. Let α > 1 be a real number with

α log(1+ q−x−1) 6 log(1+ q−x).

Let q > 2. Then the function g : [0,∞)× [2,∞)→ R defined by

g(x,q) = (1+ q−x)
α
α−1

is monotonically decreasing in x and q.

Proof. Fir we prove the claim for x. We have that

α− 1

α
= 1−

log(1+ q−x−1)
log(1+ q−x)

.

By Lemma 2.5, the first derivative of α
α−1 with respect to x is positive.

By q > 2, 1+ q−x decreases if we increase x. Hence, g is monotoni-
cally decreasing in x.

By log(1+ q−x) > log(1+ q−x−1), the assertion for q follows.
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Lemma 2.7. Let P be a polar space of rank d and type e.

(a) The polar space P contains at least

qde+(
d
2)

generators.

(b) Let α > 1 be a real number with

α log(1+ q−e−1) 6 log(1+ q−e).

Let x be the number of generators of P. Then

x · q−de−(
d
2) =

d−1∏
i=0

(1+ q−e−i) 6
(
1+ q−e

) α
α−1 .

Furthermore, the second inequality holds for all e ∈ R.

Proof. The first claim is trivial consequence of (1.17). We shall prove
the second claim in the following.

By Lemma 2.5, the hypothesis on α implies

α log(1+ q−e−1−i) 6 log(1+ q−e−i)

for all i > 0. Then

∞∑
i=0

log(1+ q−e−i) 6
∞∑
i=0

α−i log(1+ q−e)

= log(1+ q−e)
∞∑
i=0

α−i = log(1+ q−e)
α

α− 1
.

Hence,

d−1∏
i=0

(1+ q−e−i) 6
(
1+ q−e

) α
α−1 .
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Particularly, the upper bound in the previous result is noteworthy
as it is much tighter for many choices of q and e than the standard
upper bound of

d−1∏
i=0

(1+ q−e−i) < 2+
1

qe
.

See [66, Lemma 11] for a proof of this standard bound. Alternatively,
one can prove bounds like these by induction. The following is an
example for this.

Lemma 2.8. Let q > 2. Let d > 1. Then

d−1∏
i=1

(qi + 1) 6
2qd

qd + 1

(
q(
d
2) − q(

d−1
2 ) + 1

)
+ q(

d−2
2 )+2(d−2).

Proof. We prove the assertion by induction on d. It can be easily
checked that assertion is true for d 6 4. If the assertion is true for
d > 4, then

d∏
i=1

(qi + 1) 6 (qd + 1)
(
2qd

qd+1

(
q(
d
2)−q(

d−1
2 )+1

)
+q(

d−2
2 )+2(d−2)

)
(∗)
6

2qd+1

qd+1 + 1

(
q(
d+1
2 ) − q(

d
2) + 1

)
+ q(

d−1
2 )+2(d−1).

The difference between the right hand side of (*) and the left hand
side of (*) equals

qd

qd+1 + 1
(2q(

d
2)+2 − 2q(

d
2)+1 − 3q(

d
2)

+ 2q(
d−1
2 ) − q(

d−1
2 )−2 − 2qd+1 + 2q− 2),

which is a positive expression for q > 2 and d > 4.





3
E K R S E T S

41



42 ekr sets

The aim of this chapter is to give an overview over the state of the
art on various topics related to Erdős-Ko-Rado sets (EKR sets) without
the new results presented in this thesis.

3.1 ekr sets

In the most restrictive definition, an EKR set is a set of k-subsets of
{1, . . . ,n} which pairwise intersect non-trivially. Alternatively, an EKR
set is a {1, . . . ,d− 1}-clique of J(n,k). Erdős, Ko, and Rado proved the
following famous result in [32].

Theorem 3.1 (Theorem of Erdős, Ko, and Rado). Let be n > 2k. Let Y
be an EKR set of k-element subsets of {1, . . . ,n}. Then

|Y| 6

(
n− 1

k− 1

)
with equality for n > 2k if and only if Y is set of all k-sets containing a
fixed element.

There exist many generalizations of this problem. One type of gen-
eralization changes the conditions on Y, another type of generaliza-
tions changes the association scheme from J(n,k) to something else.
Relevant for this thesis are analogs of the following problems on
J(n,k) in vector spaces and polar spaces. We state all these results
for distance-regular graphs with diameter d.

(a) The largest t-intersecting families. Here Y is a {1, . . . , t}-clique.

(b) The largest cross-intersecting families. Here one has sets Y and Z
such that each element in Y has at most distance d− 1 from each
element in Z. The meaning of the word largest is that we want to
maximize |Y| · |Z|.

(c) The dual problem, a {d}-clique.

(d) A mysteriously related problem, the so-called Manickam-Miklós-
Singhi conjecture (MMS conjecture).
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We will discuss all of these different generalization for the Johnson
scheme, the Grassmann scheme, and the schemes of the generators of
dual polar graphs. Nearly all of the stated results can be proven with
Proposition 1.9 and Proposition 1.12.

3.1.1 The Largest t-Intersecting EKR Sets

Already Erdős, Ko, and Rado considered the natural generalization
of the problem to {1, . . . , t}-cliques in [32], but there were unable to
give tight bounds for these cases. Tight bounds were first given by
Frankl [34], and by Wilson [80].

Theorem 3.2. Let be n > 2k. Let Y be a t-intersecting EKR set of k-element
subsets of {1, . . . ,n}. Then

|Y| 6 max
{(
n− t

k− t

)
,
(
2k− t

k

)}
.

The case of equality was first classified by Wilson [80] when t =

d− 1, and by Ahlswede and Khachatrian [2] for general t.

3.1.2 Cross-Intersecting EKR Sets

There exists the following modification of the original EKR problem
which attracted a lot of interest: a cross-intersecting EKR set is a pair
(Y,Z) of sets of subsets with k elements of {1, . . . ,n} such that all
y ∈ Y and z ∈ Z intersect non-trivially. If one wants to generalize the
theorem of Erdős, Ko, and Rado to this structure, then the following
question arises: how do we measure the size of (Y,Z)? There are at
least two natural choices. Either one goes for an upper bound for
|Y| + |Z| or one tries to find the upper bound for |Y| · |Z|. In the set
case the first project was pursued in [42], while the second one was
completed in [62]. It turns out in the set case that the largest example
satisfies Y = Z and Y is one of the largest EKR sets.



44 ekr sets

3.1.3 Partitions

The dual problem, a {d}-clique, is a partial partition of the set {1, . . . ,n}
into k-element sets. Obviously, the largest examples have size bnk c.

3.1.4 The MMS Conjecture

The MMS conjecture is motivated by the first distribution invariant of
an association scheme (X,R). The concept of the i-th distribution invari-
ant was introduced by Bier and Delsarte [8, 9]. We say that a vector
v is general if and only if vᵀχx 6= 0 for all x ∈ X. The i-th distribution
invariant of an association scheme is defined as

min
w∈Vi general

|{x : wᵀχx > 0}|.

In other words, we put weights on the vertices of the association
scheme such that we minimize the number of vertices with postive
weights. Hereby we have the restriction that the weight vector has to
lie in the i-th eigenspace and is general. The first distribution invari-
ant of J(n,k) was calculated by Bier and Manickam [10].

It turns out that the determination of the first distribution invariant
for the Johnson scheme is nearly identical to the following problem
as was noticed by Manickam, Miklós, and Singhi [60, 61]. Let f : X→
R be a weight function with

∑
x∈X f(x) = 0. What is the minimum

number of k-element subsets S such that
∑
x∈S f(x) is nonnegative?

Manickam, Miklós, and Singhi conjectured the following.

Conjecture 3.3 ([61, Conjecture 1.4]). Let n > 4k. The number of k-
element subsets S such that

∑
x∈S f(x) is nonnegative is at least

(
n−1
k−1

)
. In

the case of equality, the nonnegative subsets are all k-element subsets on a
fixed element.

The connection to Theorem 3.1 is obvious, as the bound is the same
and the examples reaching this bound are the same. At the time of
writing the MMS conjecture is a quite popular topic. We shall men-
tion some important works on this conjecture such as a result by Alon,
Huang, and Sudakov [3] who obtained the first polynomial bound
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on n with n > min{33k2, 2k3}, a result by Pokrovskiy [67] who ob-
tained the first linear bound on k with n > 1046k, and a result by
Chowdhury, Sarkis, and Shahriari [16] who did prove the conjecture
for n > 8k2 and also obtained a result on the analog problem on
vector spaces.

3.2 ekr sets of vector spaces

Define the following examples for t-intersecting EKR sets. The names
are only used in this thesis, but they are inspired by the work of Irit
Dinur and Ehud Friedgut [27]. Their main purpose is that they make
the similarities between large EKR sets of vector spaces and polar
spaces more obvious.

(a) We call the set of all k-dimensional subspaces, which meet a fixed
s-space at least in dimension (s+ t)/2, an (s, t)-junta.

(b) We call a (t, t)-junta a t-dictatorship.

We call a 1-dictatorship dictatorship and a (s, 1)-junta s-junta.
Other words used for a dictatorship include sunflower, star, and

point-example. The EKR theorem for vector spaces is as follows.

Theorem 3.4 ([46]). Let be n > 2k. Let Y be an EKR set of k-dimensional
subspaces of Fnq . Then

|Y| 6

[
n− 1

k− 1

]
.

If the bound is tight, then one of the following occurs:

(a) Y is a dictatorship,

(b) n = 2k and Y is a (2k− 1)-junta.

The most part of the classification was done by Hsieh [46] with a
few exceptions. Frankl and Wilson [35] classified all largest examples
when n > 2k. The largest examples for n = 2k became folklore after
1986, one proof can be found in Newman’s PhD thesis [63].



46 ekr sets

3.2.1 The Largest t-Intersecting EKR Sets

The t-intersecting EKR theorem for vector spaces was first given by
Frankl and Wilson who also classified nearly all examples in their
famous paper [35]. All largest examples were classified in a very ele-
gant proof by Tanaka [72].

Theorem 3.5 ([35, 72]). Let be n > 2k− 1+ t. Let Y be an EKR set of
k-dimensional subspaces of Fnq . Then

|Y| 6 max
{[
n− t

k− t

]
,
[
2k− t

k

]}
.

If the bound is tight, then one of the following cases occurs:

(a) Y is a t-dictatorship,

(b) n = 2k− 1+ t and Y is a (2k− t, t)-junta.

3.2.2 Cross-Intersecting EKR Sets

Cross-t-intersecting EKR sets (i.e. cross-intersecting EKR sets (Y,Z)
with pairwise intersections in at least dimension t) were studied re-
cently by Tokushige [75]. The largest examples satisfy Y = Z and
are exactly the largest t-intersecting EKR sets. Related results are due
to Suda and Tanaka [71] who did classify the largest examples of
cross-intersecting EKR sets (Y,Z) with the difference that Y is a set of
k-spaces and Z is a set of s-spaces.

3.2.3 Spreads

The dual problem, finding large {d}-cliques of Jq(n,q), is well-known
in finite geometry. These cliques are called (partial) spreads.

Theorem 3.6 ([7, Result 2.1]). The vector space Fnq contains a spread of
k-dimensional subspaces if and only if k divides n.

Note that there are things similar to a spread if k does not divide
n.
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Theorem 3.7 (Beutelspacher [7, Theorem 4.2]). The vector space V = Fnq
with n = bk+ r and 0 6 r 6 k− 1. Let S be a (k+ r)-dimensional subspace
of V . Then there exists a partition of V \ S into k-dimensional subspaces.

Notice that one can easily add one k-dimensional subspaces T ⊆ S
to the set of k-dimensional subspaces described in Theorem 3.7. In
particular, [7, Theorem 4.1] shows that the example in Theorem 3.7 is
a {d}-clique of maximum size.

3.2.4 The MMS Conjecture

Manickam and Singhi considered the analog problem to the MMS
conjecture on sets for vector spaces [61]. In this case the problem can
be paraphrased as follows. Let V be a finite n-dimensional vector
space. Let P be the set of 1-dimensional subspaces of V . Let f : P→ R

be a weight function with
∑
P∈P f(P) = 0. What is the minimum num-

ber of k-dimensional subspaces S such that
∑
P∈S f(P) is nonnegative?

They conjectured the following.

Conjecture 3.8 ([61, Conjecture 1.4]). Let n > 4k. The number of k-
dimensional subspaces S such that

∑
P∈P f(P) is nonnegative is at least the

size of a dictatorship, i.e. the number of k-dimensional subspaces on a fixed
1-dimensional subspace.

Manickam and Singhi were able to prove their conjecture if k di-
vides n (which includes n = k, 2k, 3k) [61]. Recently, Chowdhury,
Huang, Sarkis, Shahriari, and Sudakov showed that Conjecture 3.8
holds for n > 3k [47, 16]. Hence, technically Conjecture 3.8 is proven,
but all known counterexamples satisfy k < n < 2k, so it seems rea-
sonable to conjecture that only n > 2k is necessary. We shall extend
the technique used by Chowdhury, Sarkis, and Shahriari to show the
conjecture for n > 2k and (very) large q (Theorem 8.1) as well as re-
duce the analog problem for k 6 n < 2k to the case 2k 6 n (Lemma
8.14).

Note that also in this case there is an analog to the first distribution
invariant of Jq(n,k). See [61] for details.
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3.3 ekr sets of polar spaces

In the case of polar spaces of rank d, we call (d− t)-intersecting EKR
sets (d, t)-EKR sets. Define the following examples for EKR sets.

(a) We call the set of all generators, which meet a fixed totally iso-
tropic s-space at least in dimension (s+ d− t)/2, an (s, t)-junta.

(b) We call a (t,d− t)-junta a t-dictatorship.

If σ is an isomorphism of a polar space and Y is a largest EKR
set of the same polar space, then Yσ is a largest EKR set. Hence the
following results are classifications up to isomorphism even if we do
not mention this explicitly.

Theorem 3.9 (Stanton [68]). A set of pairwise non-trivially intersecting
generators of a finite classical polar space has at most the size of a dictatorship
with the following exceptions:

(a) In the case Q+(2d − 1,q), d odd, the set of all Latin generators is a
largest example.

(b) The Hermitian polar space H(2d− 1,q2), d odd.

Theorem 3.10 (Pepe, Storme, and Vanhove [66]). A largest set of pair-
wise non-trivially intersecting generators of a finite classical polar space is a
dictatorship with the following exceptions:

(a) In the case Q+(2d− 1,q), d odd, the set of all Latin (or Greek) genera-
tors is the unique largest example.

(b) In the case Q(2d,q), d odd, the set of all Latin (or Greek) generators of
a Q+(2d− 1,q) is another largest example. If d = 3, then a 3-junta is
another largest example. These are all examples.

(c) The case W(2d− 1,q), q even, is as the case Q(2d,q).

(d) In the case H(5,q2) a 3-junta is the only largest example.

(e) The Hermitian polar space H(2d− 1,q2), d odd, d > 3.
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In the last case of the previous theorem, the largest examples are un-
known. The results in this thesis are basically the first on t-intersecting
EKR sets and cross-intersecting EKR sets, so we can not state any pre-
vious results.1

3.3.1 (Partial) Spreads

A partial spread is called a spread of generators of a polar space if
it is a partition of the points of the polar space. In general, not that
much is known about spreads of polar spaces. We just mention some
existence results in Table 1.

We prove a new upper bound on partial spreads in H(2d− 1,q2),
d > 4 even, in Chapter 7.

3.3.2 The MMS Conjecture

In this case the problem can be paraphrased as follows. Let P be the
set of points of a polar space. Let f : P → R be a weight function
with

∑
P∈P f(P) = 0. What is the minimum number of generators

S such that
∑
P∈S f(P) is nonnegative? Nothing is known about the

MMS conjecture for polar spaces, not even a conjecture. The author
assumes that again dictatorships give lower bounds on the minimum
number of nonnegative subspaces. The only reason to mention the
conjecture is that one can easily apply the proof by Manickam and
Singhi [61] for vector spaces which did show the following.

Theorem 3.11 ([61, Theorem 3.1]). Suppose that k divides n. Then the
number of k-dimensional subspaces such that

∑
P∈P f(P) is nonnegative

is at least the number of k-dimensional subspaces on a fixed 1-dimensional
subspace. If equality holds, then the nonnegative k-dimensional subspaces
are an EKR set.

The same proof can be used to derive the following which is unpub-
lished, but not very interesting for everybody who knows the proof
of [61, Theorem 3.1].

1 See the corresponding chapters for restrictions on this claim.
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Polar Space Existence of Spreads

W(2d− 1,q) yes

Q(6,q)

q = 3h: yes
q = 2h: yes
q > 5 prime: yes
q = ph, p ≡ 2 mod 3, p
prime, h odd: yes

Q(2d,q)
d = 2: yes
q even: yes
d > 2 even, q odd: no

Q−(2d+ 1,q)
d = 2: yes
q even: yes

Q+(2d− 1,q)

d = 2: yes
d = 4: yes if and only if
Q(6,q) has a spread
d even, q even: yes
d odd: no

H(2d− 1,q2) no

H(4, 4) no

Table 1: The existence of spreads according to [19].
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Theorem 3.12. Suppose that a polar space P has a spread. Then the number
of generators such that

∑
P∈P f(P) is nonnegative is at least the size of the

largest EKR set of the polar space.

Hence, for all cases where there is a yes in Table 1, the problem is
simple. Otherwise the problem seems to be complicated.

3.4 concluding remarks

There are many more interesting results on EKR sets in various set-
tings. This list is far from complete. The author wants to point out
some more nice geometrical results, for example on EKR sets in vector
spaces and projective spaces on planes [21] and Hilton-Milner type
Theorems for Q+(4n + 1,q) [23]. There also other structures where
EKR problems are heavily investigated. One very popular example
are permutation groups [15, 57, 37, 31]. Other examples include par-
ticular designs [22].
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Prior to the result presented in this chapter, the best known upper
bound on EKR sets Y in H(2d− 1,q2), d > 3 odd, was approximately
|Y| 6 qd(d−1) [68]. In this chapter set[

n

k

]
=

[
n

k

]
q2

.

We shall prove the following.

Theorem 4.1. Let Y be an EKR set of generators on H(2d− 1,q2), d > 3

odd. Then

|Y| 6
nqd−1 − f1(q

d−1 − 1) (1− c)

q2d−1 + qd−1 + f1(qd−1 − 1)c
≈ q(d−1)2+1

where the constants n, f1, c are defined by n =
∏d−1
i=0 (q

2i+1 + 1), f1 =

q2[d]q
2d−3+1
q+1 and c = q2−q−1+q−2d+3

q2d−1
.

4.1 proof of theorem 4 .1

We start by explicitly stating some parameters of the dual polar graph
of H(2d− 1,q2). By (1.17), we have

n =

d−1∏
i=0

(q2i+1 + 1).

By Theorem 1.23, we have

ns = P0,s = q
s2
[
d

s

]
,

P1,s =

[
d− 1

s

]
qs

2

−

[
d− 1

s− 1

]
q(s−1)

2

,

Pr,d = (−1)rq2(r−1)
2+(3−2d)(r−1)+(d−1)2 .

By Theorem 1.22, we have

f1 = q
2[d]

q2d−3 + 1

q+ 1
.
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By Lemma 1.6 and the previous calculations, we have

Qs,1 = n
−1
s P1,sf1

=
f1

([
d−1
s

]
qs

2
−
[
d−1
s−1

]
q(s−1)

2
)

qs
2
[
d
s

]
= f1

q2(d−s) − q− 1+ q−2s+1

q2d − 1
.

In particular,

Q0,1 = f1,

Qd−1,1 = f1
q2 − q− 1+ q−2d+3

q2d − 1
,

and for d− 1 > s > 0

(q2d − 1)
Qs,1 −Qd−1,1

f1

= q2(d−s) − q−2d+3 + q−2s+1 − q2 (4.1)

> q4 − q−1 − q2 > 0.

Let Y be a subset of X and χ the characteristic vector of Y. Put
y := |Y|. Define the inner distribution a = (a0,a1, . . . ,ad) of Y as
in Subsection 1.4.2. We have a0 = 1 and

∑d
i=0 ai = y. Furthermore,

Lemma 1.13 and Proposition 1.14 show that

(yaQ)j = nχ
ᵀEjχ > 0. (4.2)

Recall that

d∑
j=0

Ej = I, E0 = n
−1J, Aj =

d∑
i=0

PijEi
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Note that Pd,d is the minimum of {Pi,d : i = 0, . . . ,d} if d odd. By
these observations and d > 3 odd, we have

0 6 nχᵀ
(
d∑
i=2

(Pi,d − Pd,d)Ei

)
χ

= nχᵀ (Ad − P0,dE0 − P1,dE1)χ−nPd,dχ
ᵀ (I− E0 − E1)χ

= nχᵀAdχ−nPd,dχ
ᵀχ− (P0,d − Pd,d)χ

ᵀJχ

−n(P1,d − Pd,d)χ
ᵀE1χ

= nχᵀAdχ−nPd,dy− (P0,d − Pd,d)y
2 − y(P1,d − Pd,d)(aQ)1.

Let Y be an EKR set. By definition χᵀAdχ = 0. Hence the previous
inequality can be rewritten as

(P0,d − Pd,d)y+ (P1,d − Pd,d)(aQ)1 6 −nPd,d.

As Y is an EKR set, we have ad = 0. Hence,

a0 = 1, and

ad−1 = y− 1−

d−2∑
i=1

ai.

By (4.1), Qi,1 −Qd−1,1 > 0 for d− 1 > i > 0. Hence,

(aQ)1 =

d−1∑
i=0

Qi,1ai

= Q0,1 +Qd−1,1ad−1 +

d−2∑
i=1

Qi,1ai

= Q0,1 +Qd−1,1

(
y− 1−

d−2∑
i=1

ai

)
+

d−2∑
i=1

Qi,1ai

= Q0,1 −Qd−1,1 +Qd−1,1y+

d−2∑
i=1

(Qi,1 −Qd−1,1)ai

> Q0,1 −Qd−1,1 +Qd−1,1y.

Thus we obtain the inequality

(P0,d − Pd,d)y+ (P1,d − Pd,d)(Qd−1,1y+ (Q0,1 −Qd−1,1))

6 −nPd,d.
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This can be rewritten as

y 6
−nPd,d − (P1,d − Pd,d)(Q0,1 −Qd−1,1)

P0,d − Pd,d + (P1,d − Pd,d)Qd−1,1

=
nqd−1 − f1(q

d−1 − 1)
(
1− q2−q−1+q−2d+3

q2d−1

)
q2d−1 + qd−1 + f1(qd−1 − 1)

q2−q−1+q−2d+3

q2d−1

.

As n ≈ qd2 and f1 ≈ q4(d−1), the largest term in the nominator
is nqd−1 ≈ qd

2+d−1, and the largest term in the denominator is
q3(d−1). Hence, the bound on y is approximately q(d−1)

2+1, as stated
in the theorem.

4.2 concluding remarks

The general idea is to take the inner distribution vector a and the
d+ 1 linear inequalities

(aQ)j > 0

and solve the corresponding linear optimization problem. The matrix
Q is implicitly given by Theorem 1.23 and Lemma 1.6, so it is easy to
calculate an optimal solution for arbitrary d. For d = 3 this yields

y 6 q5 + q4 + q3 + 1.

The new result shows the same inequality. In [66] it is proven that the
sharp upper bound is

y 6 q5 + q3 + q+ 1.

For d = 5 linear optimization yields

y 6 q17 + 2q16 + 2q15 + q14 + q10 + 2q9 + 3q8 + 2q7 + q+ 1.

The new result shows

y 6 q17 + 3q16 + 4q15 + 5q14 + 7q13 + 9q12

+ 11q11 + 12q10 + 12q9 + 9q8 + 3q7 − 7q6

− 19q5 − 35q4 − 55q3 − 77q2 − 97q− 111.
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The largest known examples for EKR sets of generators in H(9,q2)
is a dictatorship, i.e. the set of all generators through a point. The
second largest known example is a d-junta, i.e. the set of generators
that meet a given generator in at least a plane, this selected generator
included. Both examples have a size of approximately q16. Hence it
seems reasonable to assume that this algebraic approach is not able to
give the correct upper bound. Together with Klaus Metsch the author
conjectured that a dictatorship is the largest EKR set of generators on
H(2d− 1,q2) for d > 3.

As a conclusion it does not seem worth to prove the best possi-
ble result with linear programming for general d for the following
reasons.

(a) The given proof is much easier than a proof of the linear program-
ming bound.

(b) The given bound is nearly as good as the expected bound through
linear programming.

(c) The best possible bound through linear programming is most
likely wrong about the factor q for d > 3.

We give an alternative proof of Theorem 4.1 in Chapter 6. This
alternative proof relies on the same idea and is a tad more general,
but the author did not check if it yields exactly the same bounds. The
bound in Chapter 6 is also approximately q(d−1)

2+1.
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With two exceptions no attempts were made to investigate (d, t)-
EKR sets of finite classical polar spaces until now. One exception is
the investigation of (d,d − 1)-EKR sets which is the topic of other
parts of this thesis. The other exception is the investigation of {0, 1, 2}-
cliques of dual polar graphs by Brouwer and Hemmeter [14], where
they classified all {0, 1, 2}-cliques of generators on polar spaces in the
non-Hermitian case. This problem was modified by De Boeck [21] to
EKR sets, where he classified EKR sets Y of planes (not necessarily
generators) for d ∈ {3, 4, 5} and |Y| > 3q4 + 3q3 + 2q2 + q+ 1.

Brouwer and Hemmeter investigated (d, 2)-EKR sets of classical fi-
nite polar spaces. This paper is concerned about generalizing their
work to (d, t)-EKR sets of maximum size for more values of t. We
classify the largest (d, t)-EKR sets for t 6

√
8d/5 − 2 if q > 3 and

for t 6
√
8d/5− 2 if q > 2 (Theorem 5.12, Theorem 5.24, and Theo-

rem 5.1). These results imply upper bounds on the size of the second
largest example, so it might provide a reasonable basis to classify the
second largest maximal (d, t)-EKR sets as it was done for EKR sets
of sets [43], vector spaces [12], and some special cases in polar spaces
[23, 21]. Furthermore, we give non-trivial upper bounds for general
t, q > 3 (Theorem 5.33). As a side effect we determine the smallest,
largest, and second largest eigenvalues of the adjacency matrix of the
considered associated graph for q > 3 in Theorem 5.25. These num-
bers alone are important parameters of a graph as they can be easily
used to make non-trivial statements on many other properties of the
graph such as the chromatic number or the convergence of random
walks.

The main result of this section is the following.

Theorem 5.1. Let 0 < t 6 d. All finite classical polar spaces of rank d
satisfy the following.

(a) Case t even. The largest (d, t)-EKR set is a d-junta if one of the follow-
ing conditions is satisfied:

(i) t 6
√
8d
9 − 2, q > 2,

(ii) t 6
√
8d
5 − 2, q > 3.
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(b) Case t odd. The largest (d, t)-EKR set is a (d− 1)-junta if one of the
following conditions is satisfied:

(i) t 6
√
8d
9 − 2, q > 2,

(ii) t 6
√
8d
5 − 2, q > 3.

Beyond these results the author hopes that the used technique,
which combines algebraic and geometrical arguments, is applicable
to EKR problems in other interesting structures, and can be modified
to classify all (d, t)-EKR sets of generators of maximum size for more
d and t.

This chapter is organized as follows. The main parts are Section 5.3
and Section 5.4, where we develop stability results for (d, t)-EKR sets
in Theorem 5.12 and Theorem 5.24 which depend on the maximum
size of (2t− 1, t)- and (2t− 2, t)-EKR sets. We use the inequalities on
the Gaussian coefficient and the number of generators from Chapter
2 to approximate Hoffman’s bound for (d, t)-EKR sets in Section 5.6
for q > 3. Finally, in Section 5.7 we prove Theorem 5.1.

5.1 some constants

We define the following constants. Recall the definition of ψ2 and ψ3
from Section 1.6. Even if the constants depend on the type e of the
polar space, we usually leave e out of the name of the polar space as
we do not have interactions between polar spaces of different type (so
e is always fixed).

Definition 5.2. Let d, t, r be integers. Let d > 0.

• Let ψ0 be for t even defined as

t/2−1∑
i=1

ψ3(d,d−
3

2
t,d− 2t+ 1,d−

t

2
,d−

5

2
t+ 1+ i,d− 2t).
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• Let ψ1 be for t odd defined as

t/2−3/2∑
i=1

ψ3(d− 1,d−
3

2
t+

1

2
,d− 2t+ 2,

d−
1

2
t−

1

2
,d−

5

2
t+

5

2
+ i,d− 2t+ 1)

• Let ψ1 be ψ2(d,d− t
2 +

1
2 ,d− 3

2t+
1
2 ,d− 2t+ 1) for t odd.

• Let ω(d, r) be the number of generators that contain a fixed (d− r)-
space in a polar space of rank d if 0 6 r 6 d, 0 otherwise.

• Let cd,t be the maximum size of a (d, t)-EKR set of generators of a
finite classical polar space of rank d.

Lemma 5.3. We have the following.

(a)

ψ0 = q
3
4t
2

t/2−1∑
i=1

q(
t
2−1−i)(

t
2−i)

[
d− 2t+ 1

t/2− i

][
t/2− 1

i

]
,

(b)

ψ1 = q(
t
2−

1
2 )(

3
2t−

3
2 )

·
t/2−3/2∑
i=1

q(
t
2−

3
2−i)(

t
2−

1
2−i)

[
d− 2t+ 2

(t− 1)/2− i

][ t
2 −

3
2

i

]
,

(c)

ψ
1
= q(

3
2t−

1
2 )(

t
2−

1
2 )

[
d− 3

2t+
1
2

(t− 1)/2

]
,

(d)

ω(d, r) =
r−1∏
i=0

(qi+e + 1).

Proof. Theorem 1.26 shows the first three claims.
The number ω(d, r) equals the number of generators in the quo-

tient geometry of a (d− r)-space. That is a polar space of the same
type with generators of rank r. The claim follows from (1.17).
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5.2 a property of (d, t)-ekr sets

An (d, t)-EKR set is maximal if it is not a proper subset of another
(d, t)-EKR set. We need the following basic result on maximal (d, t)-
EKR sets.

Lemma 5.4. Let Y be a (d, t)-EKR set where d > t > 0. If Y is a (d, t− 1)-
EKR set, then Y is not a maximal (d, t)-EKR set.

Proof. If t = 0, then the unique maximal (d,−1)-EKR set is the empty
set, but every maximal (d, 0)-EKR set is a set with one generator as
its only element.

Let t > 0. Suppose that Y is a (d, t− 1)-EKR set.
Case 1. If there are no a1,a2 ∈ Y such that dim(a1 ∩a2) = d− t+ 1,

then (by induction on t) Y is not a maximal (d, t− 1)-EKR set, hence
also not a maximal (d, t)-EKR set.

Case 2. There exist a1,a2 ∈ Y such that dim(a1 ∩ a2) = d− t+ 1.
Take a (d − 1)-dimensional subspace a ′1 of a1 such that dim(a ′1 ∩
a2) = d− t. Then all b ∈ Y satisfy dim(a ′1 ∩ b) > dim(a1 ∩ b) − 1 =

d− t. Let Y ′ be the set of all generators through a ′1. By construction
Y ∪ Y ′ is still a (d, t)-EKR set, but there exists a generator c through
a ′1 such that dim(c∩ a2) = d− t. Hence, Y is not maximal.

Notice that not only, as seen in the previous result, (d,−1)-EKR sets
and (d, 0)-EKR sets are trivial, but also (d, 1)-EKR sets are trivial by
the following result. Particularly, the case d = 2 is trivial.

Lemma 5.5. The largest (d, 1)-EKR set Y is a dictatorship.

Proof. Suppose |Y| > 1. Let a,b ∈ Y such that a ∩ b is a subspace of
dimension d− 1. Suppose for a contradiction that there exists a c ∈ Y
with a ∩ b ∩ c is a subspaces of dimension smaller than d− 1. As we
have dim(a ∩ b) = dim(a ∩ c) = dim(b ∩ c) = d− 1 and 〈a ∩ b,a ∩
c〉 ∩ (b∩ c) = a∩ b∩ c, this shows

dim(〈a∩ b,a∩ c,b∩ c〉)
= dim(a∩ b) + dim(a∩ c) + dim(b∩ c) − 2dim(a∩ b∩ c)
= 3(d− 1) − 2(d− 2) = d+ 1.
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As 〈a ∩ b,a ∩ c,b ∩ c〉 is a totally isotropic subspace, this is a con-
tradiction. Hence, if |Y| > 1, then all elements of Y contain a fixed
(d− 1)-dimensional subspace S.

5.3 ekr sets , t even

Throughout this section we work in a finite classical polar space of
rank d > 2 and given type e. Also Y is a maximal (d , t)-EKR set and
t is even.

Definition 5.6. We define the constants b01 and b02 by

b01 =

[
d − 3

2 t

t/2 − 1

]
c2t−1 ,t

b02 = qe
t
2+(

t/2
2 )ψ0 .

Lemma 5.7. Let Y be a (d , t)-EKR set.

(a) Let P be a subspace of dimension at least d − 3
2 t. If dim(c ∩ P) >

dim(P) − t
2 for all elements c of Y , then Y has at most b01 elements.

(b) Let U be a generator, P a subspace of U of dimension d − 3
2 t, and

A a subspace of P with dim(A) > d − 2t + 1. If all elements c
of Y satisfy dim(U ∩ c) = d − t

2 , dim(c ∩ P) = d − 2t, and
dim(c ∩ A) > dim(A) − t

2 + 1, then Y has at most b02 elements.

Proof. (a) By replacing P if necessary by a subspace of P of dimen-
sion d − 3

2 t, we may assume that dim(P) = d − 3
2 t. Then the

Gaussian coefficient in the definition of b01 is the number of sub-
spaces U of P of codimension t

2 − 1. By hypothesis, every element
of Y contains one such subspace U. The elements of Y on such
a fixed subspace U form a (2t − 1 , t)-EKR set in the quotient
geometry of U.

(b) By replacing A if necessary by a subspace of A of dimension d −

2t + 1, we may assume that dim(A) = d − 2t + 1. There are ψ0

subspaces T of U with dim(T ) = d − t
2 , dim(T ∩ P) = d − 2t,

and dim(T ∩ A) = dim(A) − t
2 + 1 + i with i ∈ {0 , . . . , t/2 −

2}. For each such T consider the quotient geometry T⊥/T which
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is isomorphic to a polar space of the same type with rank t
2 . It is

well-known (see for example Corollary 1.24) that there are exactly

qe
t
2+(

t/2
2 ) generators in T⊥/T disjoint to U/T . Hence, there are

exactly qe
t
2+(

t/2
2 ) generators a with a ∩ U = T .

U = 〈`12, `13, `23〉

a1
a2

a3

`12

`23`13
P

Figure 1: The setting of Lemma 5.8.

We write Pijk for ai ∩ aj ∩ ak, `ij for ai ∩ aj and Uijk for 〈ai ∩
aj,ai ∩ ak,aj ∩ ak〉 in the remaining parts of this chapter. Hereby we
are allowed to substitute i, j, or k with other symbols. This is a purely
formal convention. The strings Pijk and Uijk are only an expression
if ai, aj, and ak are appropriately defined.

Lemma 5.8. Let Y be a (d, t)-EKR set, and consider a1,a2,a3 ∈ Y. Then
the following holds true.

(a) The dimension of a1 ∩ a2 ∩ a3 is at least d− 3
2t.

(b) Suppose that equality holds in Part (a) and put U := U123 and P :=

a1 ∩ a2 ∩ a3. Then

(i) dim(U) = d.

(ii) dim(`ij) = d− t for 1 6 i < j 6 3.

(iii) dim(ai ∩ U) = d − t
2 and ai ∩ U = 〈`ij, `ik〉 for {i, j,k} =

{1, 2, 3}.
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(iv) Every b ∈ Y satisfies dim(b ∩ U) > d − t
2 or dim(b ∩ P) >

d− 2t.

Proof. (a) As Y is a (d, t)-EKR set, then dim(`ij) > d − t. As U is
totally isotropic, then dim(U) 6 d. Since `12 ∩ `23 = P as well as
〈`12, `13〉 ∩ `23 = P (because 〈`12, `13〉 ∩ `23 ⊆ a1 ∩ `23 = P), then

d > dim(U) = dim(〈`12, `13, `23〉)
= dim(〈`12, `13〉) + dim(`23) − dim(P)

= dim(`12) + dim(`13) − dim(P) + dim(`23) − dim(P)

> 3(d− t) − 2dim(P).

Hence, dim(P) > d− 3
2t.

(b) As dim(P) = d− 3
2t, the argument in (a) shows that dim(U) = d

and dim(`ij) = d − t for all i, j. For {i, j,k} = {1, 2, 3}, we have
`ij, `ik ⊆ ai ∩U, and so U = 〈ai ∩U, `jk〉. Also ai ∩U ∩ `jk =

ai ∩ `jk = P, and hence

d = dim(U) = dim(〈ai ∩U, `jk〉)
= dim(ai ∩U) + dim(`jk) − dim(P)

= dim(ai ∩U) + (d− t) − (d−
3

2
t).

Therefore, dim(ai ∩U) = d− t
2 . Hence, as

dim(〈`ij, `ik〉) = dim(`ij) + dim(`ik) − dim(P) = d−
t

2
,

we have ai ∩U = 〈`ij, `ik〉. We have proved the first three state-
ments. For the final part, consider b ∈ Y.

Part (a) shows that dim(b ∩ `ij) > d− 3
2t. Put ` ′ij := b ∩ `ij. Then

〈` ′12, ` ′13〉 ∩ ` ′23 ⊆ (a1 ∩ b) ∩ `23 = b ∩ P and hence equality holds.
Clearly, ` ′12 ∩ ` ′13 = b∩ P. This implies that

dim(b∩U) > dim(〈` ′12, ` ′13, ` ′23〉)
> dim(` ′12) + dim(` ′13) + dim(` ′23) − 2dim(b∩ P)

> 3(d−
3

2
t) − 2dim(b∩ P).
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Hence, if dim(b∩ P) 6 d− 2t, then dim(b∩U) > d− t
2 .

Lemma 5.9. Let t > 0. If dim(a1 ∩ a2 ∩ a3) > d− 3
2t for all a1,a2,a3

of a maximal (d, t)-EKR set Y, then |Y| 6 b01.

Proof. By Lemma 5.4, there exist a1,a2 ∈ Y with dim(a1 ∩a2) = d− t.
Consider a third element a3 ∈ Y and put P := a1 ∩ a2 ∩ a3. Consider
any element b ∈ Y. By hypothesis, dim(b∩ a1 ∩ a2) > d− 3

2t+ 1. As
P and b∩ a1 ∩ a2 lie in a1 ∩ a2, the dimension formula shows that

dim(b∩ P) = dim((b∩ a1 ∩ a2)∩ P)
> dim(b∩ a1 ∩ a2) + dim(P) − dim(a1 ∩ a2)

> dim(P) + 1−
t

2
.

Lemma 5.7 shows that |y| 6 b01.

Lemma 5.10. Let Y be a (d, t)-EKR set such that there exists a generator
U and a (d− 3

2t)-space P ⊆ U such that a ∈ Y implies that

dim(a∩U) > d− t

2
or dim(a∩ P) > d− 2t.

If dim(a∩U) < d− t
2 for at least one element a of Y, then |Y| 6 b01 + b

0
2.

Proof. For a ∈ Y with dim(a∩U) > d− t
2 we have

dim(a∩ P) = dim(a∩U) + dim(P) − dim(〈a∩U,P〉)
> dim(a∩U) + dim(P) − dim(U) > d− 2t

with equality only if dim(a∩U) = d− t
2 . Hence, with

Y1 = {a ∈ Y : dim(a∩U) = d− t

2
, dim(a∩ P) = d− 2t},

Y2 = {a ∈ Y : dim(a∩ P) > d− 2t},

we have a partition Y = Y1 ∪ Y2 of Y. The first part of Lemma 5.7
gives |Y2| 6 b01. By hypothesis, there exists a element a2 ∈ Y with
dim(a2 ∩U) < d− t

2 . Then a2 ∩ P has dimension at least d− 2t+ 1.
We shall show that dim(a1 ∩a2 ∩P) > dim(a2 ∩P)− t

2 for all a1 ∈ Y1.
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Then the second part of Lemma 5.7 with A := a2 ∩ P gives |Y1| 6 b02
and we are done. Consider any element a1 ∈ Y1.

We want to show that 〈a1 ∩ P,a2 ∩ P〉 is a proper subspace of
P. Suppose to the contrary that 〈a1 ∩ P,a2 ∩ P〉 = P. As dim(U) −

dim(a1 ∩ U) = t/2 = dim(P) − dim(a1 ∩ P), this implies that U =

〈a1 ∩U,a2 ∩ P〉. Hence, every point of a1 ∩ a2 lies in U⊥; but U is a
generator, so a1 ∩ a2 ⊆ U. It follows that

dim(a2 ∩U) > dim(〈a1 ∩ a2,a2 ∩ P〉)
= dim(a1 ∩ a2) + dim(a2 ∩ P) − dim(a1 ∩ a2 ∩ P)
= dim(a1 ∩ a2) − dim(a1 ∩ P)

+ dim(〈a1 ∩ P,a2 ∩ P〉)
= dim(a1 ∩ a2) + dim(P) − dim(a1 ∩ P)

= dim(a1 ∩ a2) +
t

2
> d−

t

2
.

Here we use dim(a1 ∩ a2) > d− t, since a1,a2 ∈ Y. This contradicts
dim(a2 ∩U) < d− t

2 .
Hence 〈a1 ∩ P,a2 ∩ P〉 is a proper subspace of P and thus has di-

mension at most dim(P) − 1 = d− 3
2t− 1. It follows that

dim(a1 ∩ a2 ∩ P) = dim((a1 ∩ P)∩ (a2 ∩ P))

> dim(a1 ∩ P) + dim(a2 ∩ P) − (d−
3

2
t− 1)

= dim(a2 ∩ P) −
t

2
+ 1.

This completes the proof.

Example 5.11. A d-junta, i.e. the set consisting of all generators that meet
a given generator in a subspace of dimension at least d− t

2 , is a maximal
(d, t)-EKR set.

Proof. As the given generator U has dimension d, the dimension for-
mula shows that the meet of two elements of Y has dimension at
least d− t, thus Y is a (d, t)-EKR set. Consider any generator T with
dim(U ∩ T) < d− t

2 . Then U has a subspace R of dimension d− t
2

such that dim(R ∩U∩ T) < d− t. The subspace T ′ := 〈R,R⊥ ∩ T〉 is a
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generator on R and in the quotient on R one sees that there exists a
generator T ′′ on R with T ′′ ∩ T ′ = R. Then

T ′′ ∩ T = T ′′ ∩ T ∩ R⊥

= T ′′ ∩ T ∩ T ′ = T ∩ R.

Hence, dim(T ∩ T ′′) < d− t. As T ′′ ∈ Y, this shows that Y ∪ {T } is not
a (d, t)-EKR set and hence Y is maximal.

Theorem 5.12. Let Y be a maximal (d, t)-EKR set with |Y| > b01 + b
0
2.

Then Y is a d-junta.

Proof. In the view of Lemma 5.9 and Lemma 5.8 (a) there are distinct
elements a1,a2,a3 ∈ Y such that P := a1 ∩a2 ∩a3 has dimension d−
3
2t. Put U := 〈a1 ∩ a2,a1 ∩ a3,a2 ∩ a3〉. Lemma 5.8 gives dim(U) = d

and shows that every b ∈ Y satisfies dim(b ∩U) > d− t
2 or dim(b ∩

P) > d− 2t. If dim(b ∩U) > d− t
2 for all b ∈ Y, then the maximality

of Y implies that Y is as in Example 5.11. Otherwise, Lemma 5.10

shows that |Y| 6 b01 + b
0
2.

The following result was already shown by Brouwer and Hemme-
ter in [14] for e 6= 1

2 , 32 .

Corollary 5.13. Let Y be a maximal (d, 2)-EKR set with d > 2. Then either
Y is as in Example 5.11 or all elements of Y contain a fixed (d− 3)-space.

Proof. In this case b02 = 0, since

ψ0 = 0.

Hence, in the proof of Lemma 5.10 |Y1| = 0. Recall that P in the proof
of Lemma 5.10 has dimension d− 3

2t = d− 3 and that every subspace
of Y2 meets P in a subspace of at least dimension d− 2t+ 1 = d− 3,
hence contains P. Therefore either all elements of Y contain a fixed
(d− 3)-space P or Y is as in Example 5.11 by the proof of Theorem
5.12.
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5.4 ekr sets , t odd

Throughout this section we assume that we work in a finite classical
polar space of rank d > 2 and given type e. Also Y is a maximal
(d, t)-EKR set with t odd.

Definition 5.14. Define the constants b11, b12, b13 by

b11 =

[
d− 3

2t+
1
2

(t− 3)/2

]
c2t−2,t,

b12 =ω(d, (t+ 1)/2)ψ1,

b13 =q
t−1
2 e+(

(t−1)/2
2 )ψ

1.

Lemma 5.15. Let Y be a (d, t)-EKR set.

(a) Let P be a totally isotropic subspace of dimension at least d− 3
2t+

1
2 . If

dim(c∩ P) > dim(P) − t
2 +

3
2 for all elements c ∈ Y, then |Y| 6 b11.

(b) Let U be a totally isotropic subspace of dimension d− 1, P a subspace
of U of dimension d− 3

2t+
1
2 , and A a subspace of P with dim(A) >

d − 2t + 2. If all elements c ∈ Y satisfy dim(U ∩ c) = d − t
2 − 1

2 ,
dim(c ∩ P) = d− 2t+ 1, and dim(c ∩A) > dim(A) − t

2 +
3
2 , then

|Y| 6 b12.

(c) Let G be a generator, and P a subspace of G of dimension d− 3
2t+

1
2 . If

all c ∈ Y satisfy dim(G∩ c) = d− t
2 +

1
2 and dim(c∩P) = d− 2t+ 1,

then |Y| 6 b13.

Proof. (a) By replacing P if necessary by a subspace of dimension
d− 3

2t+
1
2 , we may assume that dim(P) = d− 3

2t+
1
2 . Then the

Gaussian coefficient in the definition of b11 is the number of sub-
spaces U of P of codimension t

2 −
3
2 . By hypothesis, every element

of Y contains one such subspace U. The elements of Y on such a
fixed subspace U form a (2t− 2, t)-EKR set in the quotient geom-
etry on U.

(b) By replacing A if necessary by a subspace of A of dimension d−
2t+ 2, we may assume that dim(A) = d− 2t+ 2. There are ψ1

subspaces T of U with dim(T) = d− t
2 −

1
2 , dim(T ∩ P) = d− 2t+
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1, and dim(T ∩A) = dim(A)− t
2 +

3
2 + iwith i ∈ {0, . . . , t/2− 5/2}.

For each such T , there are exactly ω(d, (t + 1)/2) generators a
with a∩U ⊇ T .

(c) There are exactly ψ1 subspaces T of G with dim(T) = d− t
2 +

1
2

and dim(T ∩ P) = d− 2t+ 1. For each such T , there are exactly

q
t−1
2 e+(

(t−1)/2
2 ) generators a with T = a∩G, since it is well-known

that q
t−1
2 e+(

(t−1)/2
2 ) generators are disjoint to G in the quotient

geometry of T (see for example Corollary 1.24 with d = (t− 1)/2

and s = d).

Lemma 5.16. Let Y be a (d, t)-EKR set, and consider a1,a2,a3 ∈ Y. Then
the following holds true.

(a) The dimension of a1 ∩ a2 ∩ a3 is at least d− 3
2t+

1
2 .

(b) Suppose that equality holds in (a) and put `ij = ai ∩ aj for different
i, j ∈ {1, 2, 3}, U := 〈`12, `13, `23〉, and P = a1 ∩ a2 ∩ a3. Then one of
the following cases occurs:

1. (i) dim(U) = d− 1.

(ii) dim(`ij) = d− t for 1 6 i < j 6 3.

(iii) ai ∩U = 〈`ij, `ik〉 for {i, j,k} = {1, 2, 3}.

(iv) dim(ai ∩U) = d− t
2 −

1
2 for i ∈ {1, 2, 3}.

(v) Every b ∈ Y satisfies dim(b ∩ P) > d− 2t+ 1 and equality
implies that dim(b∩U) > d− t

2 −
1
2 .

2. (i) dim(U) = d.

(ii) dim(`ij) = dim(`ik) = d− t and dim(`jk) = d− t+ 1 for
some {i, j,k} = {1, 2, 3}.

(iii) ai ∩U = 〈`ij, `ik〉 for {i, j,k} = {1, 2, 3}.

(iv) dim(aj ∩ U) = dim(ak ∩ U) = d − t
2 + 1

2 , and dim(ai ∩
U) = d − t

2 − 1
2 for some {i, j,k} = {1, 2, 3} (with the same

order as in (ii)).
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(v) Every b ∈ Y satisfies dim(b ∩ P) > d− 2t+ 1 and equality
implies that dim(b ∩U) > d− t

2 −
1
2 . Also, if dim(b ∩ P) =

d− 2t+ 1 and dim(ai∩aj) = d− t, then dim(ai∩aj∩b) =
d− 3

2t+
1
2 .

Proof. (a) As Y is a (d, t)-EKR set, then dim(`ij) > d − t. As U is
totally isotropic, then dim(U) 6 d. Since `12 ∩ `13 = P as well as
〈`12, `13〉 ∩ `23 = P (because 〈`12, `13〉 ∩ `23 ⊆ a1 ∩ `23 = P), then

d > dim(U) = dim(〈`12, `13, `23〉)
= dim(〈`12, `23〉) + dim(`23) − dim(P)

= dim(`12) + dim(`13) − dim(P) + dim(`23) − dim(P)

> 3(d− t) − 2dim(P).

Hence, dim(P) > d− 3
2t+

1
2 .

(b) As dim(P) = d− 3
2t+

1
2 , the argument in (a) shows that dim(U) ∈

{d− 1,d}.

For {i, j,k} = {1, 2, 3}, we have `ij, `ik ⊆ ai ∩U and hence U =

〈ai ∩U, `jk〉. Also ai ∩U∩ `jk = ai ∩ `jk = P. Hence,

dim(U) = dim(〈ai ∩U, `jk〉)
= dim(ai ∩U) + dim(`jk) − dim(P)

= dim(ai ∩U) + dim(`jk) − (d−
3

2
t+

1

2
).

Consider first the case that dim(U) = d− 1. Then the argument
to prove the first part of the lemma yields dim(`ij) = d− t for
all i 6= j, i, j ∈ {1, 2, 3}. Therefore, dim(ai ∩U) = d− t

2 −
1
2 , which

implies that ai ∩U = 〈`ij, `ik〉.

Now consider the case that dim(U) = d. Then the argument to
prove the first part of the lemma yields dim(`ij) = dim(`ik) =

d− t and dim(`jk) = d− t+ 1 for some {i, j,k} = {1, 2, 3}. There-
fore, with the same choice of i, j,k, dim(ai ∩ U) = d − t

2 − 1
2

and dim(aj ∩U) = d− t
2 +

1
2 = dim(ak ∩U). This implies that

ai ∩U = 〈`ij, `ik〉 for all {i, j,k} = {1, 2, 3}.

The final part is proved for both cases together.
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Consider b ∈ Y. We may assume that dim(a1 ∩ a2) = d − t. It
follows from the first statement of the lemma that ` ′ij := b ∩ `ij,
1 6 i < j 6 3 has dimension at least d− 3

2t+
1
2 . As P and ` ′12 =

b∩ a1 ∩ a2 lie in a1 ∩ a2, the dimension formula shows that

dim(b∩ P) = dim(` ′12 ∩ P)
> dim(` ′12) + dim(P) − dim(a1 ∩ a2)

> 2(d−
3

2
t+

1

2
) − (d− t) = d− 2t+ 1,

and equality implies that ` ′12 = a1 ∩ a2 ∩ b has dimension d −
3
2t +

1
2 . Suppose finally that dim(b ∩ P) = d − 2t + 1. We have

〈` ′12, ` ′13〉 ∩ ` ′23 ⊆ (a1 ∩ b)∩ `23 = b∩ P and ` ′12 ∩ ` ′13 = b∩ P. This
implies that

dim(b∩U) > dim(〈` ′12, ` ′13, ` ′23〉)
> dim(` ′12) + dim(` ′13) + dim(` ′23) − 2dim(b∩ P)

> 3(d−
3

2
t+

1

2
) − 2dim(b∩ P) = d− t

2
−
1

2
.

Lemma 5.17. If dim(a1 ∩ a2 ∩ a3) > d− 3
2t+

1
2 for all a1,a2,a3 of a

maximal (d, t)-EKR set Y, then |Y| 6 b11.

Proof. Lemma 5.4 gives a1,a2 ∈ Y with dim(a1 ∩ a2) = d− t. Con-
sider a third element a3 ∈ Y and put P := a1 ∩ a2 ∩ a3. Consider any
element b ∈ Y. By hypothesis, dim(b ∩ a1 ∩ a2) > d− 3

2t+
3
2 . As P

and b∩ a1 ∩ a2 lie in a1 ∩ a2, the dimension formula shows that

dim(b∩ P) = dim((b∩ a1 ∩ a2)∩ P)
> dim(b∩ a1 ∩ a2) + dim(P) − dim(a1 ∩ a2)

> dim(P) −
t

2
+
3

2
.

As dim(P) > d− 3
2t−

1
2 (by hypothesis), Lemma 5.15 proves the as-

sertion.
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Lemma 5.18. Let Y be a (d, t)-EKR set such that there exist a generator
G0, a (d− 1)-space U ⊆ G0, and (d− 3

2t+
1
2)-spaces P,Q ⊆ U such that

a ∈ Y implies the following:

dim(a∩U) > d− t

2
−
1

2
or

dim(a∩ P) > d− 2t+ 1 or dim(a∩Q) > d− 2t+ 1.

Suppose also that dim(a ∩U) < d− t
2 −

1
2 for at least one element a of Y.

Then |Y| 6 2b11 + b
1
2 + b

1
3.

Proof. For a ∈ Y with dim(a∩U) > d− t
2 −

1
2 we have

dim(a∩ P) = dim(a∩U) + dim(P) − dim(〈a∩U,P〉)
> dim(a∩U) + dim(P) − dim(U) > d− 2t+ 1.

Hence, with

Y1 := {a ∈ Y : dim(a∩U) = d− t

2
−
1

2
, dim(a∩ P) = d− 2t+ 1},

Y2 := {a ∈ Y : dim(a∩ P) > d− 2t+ 1},
Y3 := {a ∈ Y : dim(a∩Q) > d− 2t+ 1},

we have a cover Y1 ∪ Y2 ∪ Y3 of Y. Lemma 5.15 gives |Y2|+ |Y3| 6 2b11.
By hypothesis, there exists a element a2 ∈ Y2 with dim(a2 ∩U) 6

d− t
2 −

3
2 . Define the following two subsets of Y1:

S := {a1 ∈ Y1 : 〈a1 ∩ P,a2 ∩ P〉 = P}
T := {a1 ∈ Y1 : 〈a1 ∩ P,a2 ∩ P〉 6= P}.

In the following, we use Lemma 5.15 to show that |S| 6 b13 and |T | 6
b12.

Let a1 ∈ S. As dim(U)−dim(a1 ∩U) = t
2 −

1
2 = dim(P)−dim(a1 ∩

P) we have U = 〈a1 ∩U,P〉. As P = 〈a1 ∩ P,a2 ∩ P〉 this implies that
U = 〈a1 ∩U,a2 ∩ P〉 and hence U = 〈a1 ∩U,a2 ∩U〉. Therefore every
point of a1 ∩ a2 lies in U⊥ and

dim(a1 ∩ a2 ∩U) = dim(a1 ∩U) + dim(a2 ∩U) − dim(U)

6 (d−
t

2
−
1

2
) + (d−

t

2
−
3

2
) − (d− 1)

= d− t− 1.
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As a1,a2 ∈ Y, we have dim(a1 ∩ a2) > d− t. As U has dimension
d− 1, it follows that U and a1 ∩a2 span a generator G, which implies
that dim(a1 ∩ a2) = d− t and dim(a1 ∩ a2 ∩U) = d− t− 1, which
in turn shows that dim(a2 ∩U) = d − t

2 − 3
2 . Then dim(a1 ∩ G) =

dim(a1 ∩ U) + 1 = d − t
2 + 1

2 . Clearly, G = 〈U,U⊥ ∩ a2〉 and thus
G is independent of the choice of a1 ∈ S. Hence every element of
S meets G in a subspace of dimension d− t

2 +
1
2 . Recall S ⊆ Y1, so

dim(a1 ∩P) = d− 2t+ 1. Applying the third part of Lemma 5.15 now
gives

|S| 6 b13.

For a1 ∈ T we have that 〈a1 ∩ P,a2 ∩ P〉 is a proper subspace of P ,
so we have

dim(a1 ∩ a2 ∩ P)
> dim(a1 ∩ P) + dim(a2 ∩ P) − dim(〈a1 ∩ P,a2 ∩ P〉)
> dim(a1 ∩ P) + dim(a2 ∩ P) − dim(P) + 1

= dim(a2 ∩ P) −
t

2
+
3

2
.

Then the second part of Lemma 5.15 applied with A = a2 ∩ P gives
|T | 6 b12. Hence |Y| = |Y2|+ |Y3|+ |S|+ |T | < 2b11 + b

1
2 + b

1
3.

Example 5.19. A (d− 1, t)-junta, i.e. the set consisting of all generators
which meet a given (d − 1)-space U in a subspace of dimension at least
d− t

2 −
1
2 , is a maximal (d, t)-EKR set.

Proof. As the given subspace U has dimension d− 1, the dimension
formula shows that the meet any of two elements of Y has dimension
at least d− t, thus Y is a (d, t)-EKR set. Consider any generator T with
dim(U ∩ T) < d− t

2 −
1
2 . Then G has a subspace R of dimension d−

t
2 −

1
2 such that dim(R∩G∩ T) < d− t. The subspace T ′ := 〈R,R⊥ ∩ T〉

is a generator on R and in the quotient on R one sees that there exists
a generator T ′′ on R with T ′′ ∩ T ′ = R. Then T ′′ ∩ T = R ∩G ∩ T and
hence dim(T ∩ T ′′) < d− t. As T ′′ ∈ Y, this shows that Y ∪ {T } is not a
(d, t)-EKR set.



76 (d , t)-ekr sets of polar spaces

Lemma 5.20. Let Y be a (d, t)-EKR set. Let a1,a2,a3,a4 ∈ Y. Suppose
that we have

dim(P123) = dim(P124) = d−
3

2
t+

1

2
,

dim(a4 ∩P123) = d− 2t+ 1, and dim(a1 ∩a2) = d− t. Let U = U123 ∩
U124. Then

dim(U) > d− 1 and dim(a4 ∩U) > dim(U) −
t

2
+
1

2
.

Proof. By Lemma 5.16 (a), dim(Pijk) > d−
3
2t+

1
2 . Hence,

dim(U) > dim(〈a1 ∩ a2,a1 ∩ a3 ∩ a4,a2 ∩ a3 ∩ a4〉)
> dim(a1 ∩ a2) + dim(〈a1 ∩ a3 ∩ a4,a2 ∩ a3 ∩ a4〉)

− dim(a4 ∩ P123)
= (d− t) + dim(a1 ∩ a3 ∩ a4) + dim(a2 ∩ a3 ∩ a4)

− 2dim(a4 ∩ P123)

> (d− t) + 2(d−
3

2
t+

1

2
) − 2dim(a4 ∩ P123) = d− 1.

This shows the first part of the assertion.
If dim(U123) = dim(U124) = d − 1, then the claim on dim(a4 ∩

U) follows by Lemma 5.16 (b) 1.(iv). Hence suppose without loss of
generality dim(U124) = d. Then Lemma 5.16 (b) 2.(ii) shows that
dim(a1 ∩ a4) + dim(a2 ∩ a4) = 2d− 2t+ 1. Then, by Lemma 5.16 (b)
2.(iv), dim(a4 ∩U124) = d− t

2 + 1
2 . Hence, dim(a4 ∩U) > d− t

2 −
1
2 .

Definition 5.21. We call a (d, t)-EKR set Y funny if it has the following
property: For all a1,a2,a3 ∈ Y we have that

dim(a1 ∩ a2 ∩ a3) = d−
3

2
t+

1

2

implies dim(U123) = d.

Remark 5.22. A (d− 1, t)-junta is funny if and only if e = 0.

Lemma 5.23. If a maximal (d, t)-EKR set Y is funny, but not a (d− 1, t)-
junta, then |Y| 6 2b11 + b

1
2 + b

1
3.
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Proof. Let Y0 be a (d − 1, t)-junta. By assumption, Y 6= Y0. Further-
more, Y is maximal, so Y can not be a subset of Y0 either. We shall use
this in the proof.

If all a1,a2,a3 ∈ Y satisfy dim(a1 ∩ a2 ∩ a3) > d − 3
2t +

1
2 , then

Lemma 5.17 shows |Y| 6 b11. Hence suppose that there are a1,a2,a3 ∈
Y with dim(a1 ∩ a2 ∩ a3) = d− 3

2t+
1
2 , dim(a1 ∩ a2) = d− t, and

dim(a1 ∩U123) = d− t
2 −

1
2 (see Lemma 5.16 (b) 2.). Set

Y1 := {a ∈ Y : dim(a∩ P123) > d− 2t+ 1},
Y2 := {a ∈ Y : dim(a∩ P123) = d− 2t+ 1}.

By Lemma 5.16 (b) 2.(v), Y = Y1 ∪ Y2 is a partition of Y. We have
|Y| 6 b11 by Lemma 5.15. We may thus assume that Y2 6= ∅.

Case 1. All a4 ∈ Y2 satisfy dim(U123 ∩U124) = d. Let U ⊆ U123
be a (d− 1)-dimensional subspace of U123 with a1 ∩U123 ⊆ U. By
Lemma 5.16 (b) 2.(v) and dim(a4 ∩ P123) = d− 2t+ 1, dim(P124) =

d− 3
2t+

1
2 . By Lemma 5.16 (b) 2. (iv) and dim(a1 ∩ a2) = d− t, all

a4 ∈ Y2 satisfy

dim(a4 ∩U) > dim(a4 ∩U124) − 1

= d−
t

2
−
1

2
.

As Y is not a subset of Y0, there exists a a5 ∈ Y with dim(a5 ∩U) <
d − t

2 − 1
2 . Hence, we can apply Lemma 5.18 with G0 = U123 and

P = Q = P123. This shows |Y| 6 2b11 + b
1
2 + b

1
3.

Case 2. There exists a generator a4 ∈ Y2 with dim(U123 ∩U124) 6
d− 1. Put U := U123 ∩U124. By Lemma 5.16 (b) 2.(v) and dim(a4 ∩
P123) = d− 2t+ 1, dim(a1 ∩a2) = d− t, and dim(P124) = d−

3
2t+

1
2 .

Hence, by Lemma 5.20, dim(U) = d− 1. Define the following subsets
of Y2:

S := {ai ∈ Y2 : dim(ai ∩ P124) = d− 2t+ 1},
T := {ai ∈ Y2 : dim(ai ∩ P124) > d− 2t+ 1}.

By Lemma 5.16 (b) 2.(v), this is a partition Y2 = S ∪ T of Y2. Let
ai ∈ S. By Lemma 5.16 (b) 2.(v) and dim(ai ∩ P123) = d − 2t + 1,
dim(P12i) = d−

3
2t+

1
2 . Hence, by Lemma 5.20, dim(U12i ∩U123) >
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d − 1 and dim(U12i ∩ U124) > d − 1. Suppose for a contradiction
dim(U12i ∩ U123 ∩ U124) = d − 2. Then dim(U12i ∩ U123) = d − 1

and dim(U12i ∩U124) = d− 1. Hence,

d > dim(〈U12i ∩U123,U12i ∩U124,U123 ∩U124〉)
= dim(U12i ∩U123) + dim(U12i ∩U124) + dim(U123 ∩U124)
− 2dim(U12i ∩U123 ∩U124)
= 3(d− 1) − 2(d− 2) = d+ 1.

This is a contradiction. Hence, we have U ⊆ U123 ∩U12i. Hence, by
Lemma 5.20, all ai ∈ S satisfy

dim(ai ∩U) > d−
t

2
−
1

2
.

As Y is not a subset of Y0, there exists a a5 ∈ Y with dim(a5 ∩U) <
d − t

2 − 1
2 . Thus we can apply Lemma 5.18 with U ⊆ G0 = U123,

P = P123, and Q = P124. This shows |Y| 6 2b11 + b
1
2 + b

1
3.

Theorem 5.24. Let Y be a maximal (d, t)-EKR set where |Y| > 2b11 + b
1
2 +

b13. Then Y is a (d− 1)-junta.

Proof. In view of Lemma 5.23 there exist a1,a2,a3 ∈ Y such that
dim(P123) = d− 3

2t+
1
2 and dim(U123) < d. Thus dim(U) = d− 1

by Lemma 5.16. Lemma 5.16 shows that every b ∈ Y satisfies dim(b∩
U) > d− t

2 −
1
2 or dim(b∩ P) > d− 2t+ 1. If dim(b∩U) > d− t

2 −
1
2

for all b ∈ Y, then the maximality of Y implies that Y is as in Example
5.19. Now Lemma 5.18 (with P = Q) shows that |Y| 6 2b11 + b

1
2 +

b13.

5.5 association schemes of dual polar graphs revisited

We are interested in the eigenvalues of
∑a
s=0Ad−s, so we shall have

to explicitly calculate these. Since the Vr are the common eigenspaces
of A0, . . . ,Ad, the Vr are subspaces of eigenspaces of

∑a
s=0Ad−s.

Hence, the eigenvalue of
∑a
s=0Ad−s on Vr is λar :=

∑a
s=0 Pr,d−s.
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Theorem 5.25. For a < d we have

λa0 =

a∑
s=0

[
d

s

]
q(
d−s
2 )+(d−s)e.

For a < d and r > 0 we have

λar = (−1)r+a
min(a,d−r)∑

s=max(a−r+1,0)

(−1)sA(r, s,a)

where

A(r, s,a) :=
[
d− r

s

]
q(
d−r−s
2 )+(d−r−s)e

[
r− 1

a− s

]
q(
r−a+s
2 ).

Proof. The case r = 0 follows directly from Theorem 1.23.
In the case r > 0 starting with Theorem 1.23 we see

λar =
∑a
s=0

∑min(s,r)
t=max(r+s−d,0)(−1)

r−t[d−rs−t][
r
t]q

(r−t2 )+(d−r+t−s2 )+(d−r+t−s)e

=
∑r
t=0(−1)

r−t[rt]q
(r−t2 )∑min(a,d−r+t)

s=t [d−rs−t]q
(d−r+t−s2 )+(d−r+t−s)e

=
∑r
t=0(−1)

r−t[rt]q
(r−t2 )∑min(a−t,d−r)

s=0 [d−rs ]q(
d−r−s
2 )+(d−r−s)e

=
∑min(a,d−r)
s=0 [d−rs ]q(

d−r−s
2 )+(d−r−s)e∑min(a−s,r)

t=0 (−1)r−t[rt]q
(r−t2 )

1.28
=
∑min(a,d−r)
s=max(a−r,0) [

d−r
s ]q(

d−r−s
2 )+(d−r−s)e∑a−s

t=0 (−1)
r−t[rt]q

(r−t2 )

1.28
=
∑min{a,d−r}
s=max(a−r+1,0) [

d−r
s ]q(

d−r−s
2 )+(d−r−s)e(−1)r+a−s[r−1a−s]q

(r−a+s2 )

=(−1)r+a
∑min(a,d−r)
s=max(a−r+1,0)(−1)

s[d−rs ]q(
d−r−s
2 )+(d−r−s)e[r−1a−s]q

(r−a+s2 )

=(−1)r+a
∑min(a,d−r)
s=max(a−r+1,0)(−1)

sA(r,s,a).

Corollary 5.26. For a 6 d− 1 we have

(a)

λa1 = −

[
d− 1

a

]
q(
d−a−1
2 )+(d−a−1)e = −A(1,a,a),

(b)

λad = (−1)d−a
[
d− 1

a

]
q(
d−a
2 ) = (−1)d+aA(d, 0,a),
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(c)

λad−1 = (−1)d−1+a
([
d− 2

a

]
q(
d−a−1
2 )+e −

[
d− 2

a− 1

]
q(
d−a
2 )
)

.

5.6 hoffman’s bound revisited

Hoffman’s bound restricts the maximum size cd,t of a (d, t)-EKR set.
As mentioned before, it is known that this bound is sharp for t = d−1
except when e = 1

2 and d is odd [66]. Hoffman’s bound for (d, t)-EKR
sets looks as follows.

Proposition 5.27 (Proposition 1.9). The size cd,t of a (d, t)-EKR set is
bounded by

cd,t 6
nλmin

λmin − k
,

where λmin := minr λd−t−1r is the smallest eigenvalue of the adjacency
matrix

∑d
s=t+1As, and k = λd−t−10 is the valency of the graph associated

to this matrix.

To our knowledge the smallest eigenvalue of
∑d
s=t+1Ad−s was

never calculated except for easy cases such as t = d− 1, so this section
is concerned about approximating λmin. Our claim is the following:

Theorem 5.28. For a 6 d− 1, and q > 3, the following holds:

(a) The eigenvalue λa1 is the maximum of {|λar | : r = 1, . . . ,d} if e > 1.

(b) The eigenvalue λad is the maximum of {|λar | : r = 1, . . . ,d} if e 6 1.

(c) The eigenvalue λa1 is the minimum of {λar : r = 1, . . . ,d} if d− a is
even or e > 1.

(d) The eigenvalue λad is the minimum of {λar : r = 1, . . . ,d} if d− a is odd
and e 6 1.

Note that the result should also hold for q = 2, but our techniques
are ill-suited to handle this case. We shall prove Theorem 5.28 in sev-
eral steps.
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Lemma 5.29. Theorem 5.28 holds for a = d− 1.

Proof. It suffices to notice from Theorem 5.25 that

λd−1r = −1

for all r ∈ {1, . . . ,d}.

We make the following trivial observation.

Lemma 5.30. Theorem 5.28 holds for d 6 2.

Proof. By Lemma 5.29, the claim holds for (d,a) ∈ {(2, 1), (1, 0)}. The
case (d,a) = (2, 0) remains. By Corollary 5.26,

λ01 = −qe λ02 = q.

The assertion follows.

Proposition 5.31. Let a 6 d− 2, q > 3. Then

(a)

|λa1 |− |λad|


> 0 if e > 1,

= 0 if e = 1,

< 0 if e < 1.

(b) If d > 3, then

|λa1 |, |λ
a
d| > |λad−1|

Proof. By Corollary 5.26,

|λa1 |− |λad| =

[
d− 1

a

]
q(
d−a−1
2 )+(d−a−1)e −

[
d− 1

a

]
q(
d−a
2 )

=

[
d− 1

a

]
q(
d−a
2 )
(
q(d−a−1)(e−1) − 1

)
.
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As a 6 d− 2, the statement in (a) follows. For (b) we calculate

|λad−1| =

∣∣∣∣[d− 2a
]
q(
d−a−1
2 )+e −

[
d− 2

a− 1

]
q(
d−a
2 )
∣∣∣∣

(1.16)
=

∣∣∣∣q(d−a−12 )+e
[
d− 2

a

]
+ q(

d−a−1
2 )

([
d− 2

a

]
−

[
d− 1

a

])∣∣∣∣
= q(

d−a−1
2 )

∣∣∣∣(qe + 1)[d− 2a
]
−

[
d− 1

a

]∣∣∣∣
= q(

d−a−1
2 )

[
d− 1

a

] ∣∣∣∣(qe + 1)qd−1−a − 1qd−1 − 1
− 1

∣∣∣∣ .
If a < d− 2, then by Corollary 5.26

|λad−1| 6 q
(d−a−12 )+e

[
d− 1

a

]
6 |λa1 |, |λ

a
d|.

If a = d− 2, then by d > 3 and Corollary 5.26

|λad−1| 6 q
(d−a−12 )

[
d− 1

a

] ∣∣∣∣(q2 + 1) q− 1

qd−1 − 1
− 1

∣∣∣∣
6 q(

d−a−1
2 )+1

[
d− 1

a

]
6 |λa1 |, |λ

a
d|.

This shows (b).

s

A(r, s,a)
A(r, a−e2 ,a)

Figure 2: The function A(r, s,a) imagined as a continuous unimodal func-
tion in s.
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Lemma 5.32. For fixed r > 0, q > 3, and a ∈ {0, . . . ,d− 1} the sequence

(A(r, s,a))max(a−r+1,0)6s6min(a,d−r)

is unimodal. More precisely, we have

(a) If 2s+ e− a > 1
2 , then A(r, s,a) > A(r, s+ 1,a).

(b) If 2s+ e− a 6 −12 , then A(r, s,a) < A(r, s+ 1,a).

Proof. We investigate the sign of x := A(r, s,a) −A(r, s+ 1,a) for in-
tegers s with max(a− r+ 1, 0) 6 s 6 min(a,d− r) − 1.

x =

[
d− r

s

][
r− 1

a− s

]
q(
d−r−s
2 )+(r−a+s2 )+(d−r−s)e

−

[
d− r

s+ 1

][
r− 1

a− s− 1

]
q(
d−r−s−1

2 )+(r−a+s+12 )+(d−r−s−1)e

Hence, x = qyB for some integer y and

B :=q2s+e−a
[
d−r
s

]
q(d−r−s)s

·
[
r−1
a−s

]
q(r−1−a+s)(a−s)

−

[
d−r
s+1

]
q(d−r−s−1)(s+1)

·
[
r−1
a−s−1

]
q(r−a+s)(a−s−1)

.

We distinguish several cases. Notice the following implications. We
shall use them without any further notice.

• If 0 = s, then
[
d−r
s+1

]
= [d− r].

• If a− s = r− 1, then
[
r−1
a−s−1

]
= [r− 1] by (1.15).

• If s = d− r− 1, then
[
d−r
s

]
= [d− r] by (1.15).

• If a− s− 1 = 0, then
[
r−1
a−s

]
= [r− 1].

Our claim is the following.

• If 2s+ e− a > 1
2 , then B > 0.

• If 2s+ e− a 6 −12 , then B < 0.
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First we shall show the statements for q > 4.
Case 0 = s and a− s = r− 1 and s = d− r− 1 and a− s− 1 = 0.

Obviously, B = q2s+e−a − 1.
Case 0 = s and a− s = r− 1 and (s = d− r− 1 xor a− s− 1 = 0).

By Lemma 2.2 and Lemma 2.1 (d),

q2s+e−a −
q

q− 1
6 B 6 q2s+e−a − (1+ q−1).

Case 0 = s and a− s = r− 1 and
not (s = d− r− 1 or a− s− 1 = 0). By Lemma

2.2 and Lemma 2.1 (d),

q2s+e−a −

(
q

q− 1

)2
6 B 6 q2s+e−a − (1+ q−1)2.

Case (0 = s xor a− s = r− 1) and not (s = d− r− 1 or a− s− 1 = 0).
By Lemma 2.2, Lemma 2.1 (c), and Lemma 2.1 (d),

q2s+e−a(1+ q−1) − (1+ 2q−1) · q

q− 1

6 B 6 q2s+e−a(1+ 2q−1) − (1+ q−1)2.

Case s = d− r− 1 and a− s− 1 = 0 and (0 = s xor a− s = r− 1).
By Lemma 2.2 and Lemma 2.1 (d),

q2s+e−a(1+ q−1) − 1 6 B 6 q2s+e−a · q

q− 1
− 1.

Case s = d− r− 1 and a− s− 1 = 0 and
not (0 = s or a− s = r− 1). By Lemma 2.2

and Lemma 2.1 (d),

q2s+e−a(1+ q−1)2 − 1 6 B 6 q2s+e−a
(

q

q− 1

)2
− 1.

Case (s = d− r− 1 xor a− s− 1 = 0) and not (0 = s or a− s = r− 1).
By Lemma 2.2, Lemma 2.1 (c), and Lemma 2.1 (d),

q2s+e−a(1+ q−1)2 − (1+ 2q−1)

6 B 6 q2s+e−a(1+ 2q−1) · q

q− 1
− (1+ q−1).
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Case (0 = s xor a− s = r− 1) and
(s = d− r− 1 xor a− s− 1 = 0).

By Lemma 2.2 and Lemma 2.1 (c),

q2s+e−a(1+ q−1) − (1+ 2q−1)

6 B 6 q2s+e−a(1+ 2q−1) − (1+ q−1).

Case not (s = d− r− 1 or a− s− 1 = 0 or 0 = s or a− s = r− 1).
By Lemma 2.2, Lemma 2.1 (c),

q2s+e−a(1+ q−1)2 − (1+ 2q−1)2

6 B 6 q2s+e−a(1+ 2q−1)2 − (1+ q−1)2.

With the given inequalities one can easily verify that the following
two statements are true:

• If 2s+ e− a > 1
2 and q > 4, then B > 0. Hence, x > 0.

• If 2s+ e− a 6 −12 and q > 4, then B < 0. Hence, x < 0.

For q = 3, the case e ∈ {12 , 32 } does not occur. Hence, 2s+ e− a > 1
2

implies 2s+ e− a > 1 and 2s+ e− a 6 −12 implies 2s+ e− a 6 −1.
If one uses the bound for q = 3 of Lemma 2.1 instead of the bound
for q > 4 (i.e. replace all the factors 1+ 2q−1 by 2), then the proof for
this case is the same.

Corollary 5.33. Let q > 3, a < d, and r > 0. Let s0 ∈ {0, . . . ,a} be the
value for which A(r, s0,a) is largest. Then the following holds:

|λar | 6 A(r, s0,a).

Proof. This is a direct consequence of the formula for λar given in
Theorem 5.25 and the unimodality of A(r, s,a) given in Lemma 5.32.

Proof of 5.28. The theorem was proven in Lemma 5.29 for a = d− 1,
and in [66, p. 1295] for a = 0. Hence, we assume now that 1 6 a 6
d− 2. In view of Proposition 5.31 and since λa1 < 0, it suffices to show
that |λa1 | > |λar | for 2 6 r 6 d− 2. Corollary 5.33 gives

|λar | 6 max{A(r, s,a) :

max(a− r+ 1, 0) 6 s 6 min(a,d− r)}.
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Define

f(r, s) :=
(
d− r− s

2

)
+ (d− r− s)e+

(
r+ s− a

2

)
+ (d− r− s)s+ (r+ s− 1− a)(a− s)

for all integers r, s with a+ 1 6 r+ s 6 d. We have λa1 = −A(1,a,a)
and Lemma 2.2 gives

A(1,a,a) >
4

3
qf(1,a).

Lemma 2.1 gives

A(r, s,a) 6 4qf(r,s).

As q > 3, it suffices therefore to show that f(1,a) > f(r, s) + 1 for all
r, s with 2 6 r 6 d− 2 and a+ 1 6 r+ s 6 d and 0 6 s 6 a. Consider
such a pair (r, s). An easy calculation gives

f(1,a) − f(r, s) = (d− a− 1)(r− 1) − (r+ s− a− 1)(r− e− s)

> (d− a− 1)(r− 1) − (r+ s− a− 1)(r− s).

Denote the right hand side by g(r, s). We can suppose a < d− 1 by
Lemma 5.29. If s > 2, then by s 6 a, s+ r 6 d and r > 2, we have that

g(r, s) > (d− a− 1)(r− 1) − (r+ s− a− 1)(r− 2)

> (d− a− 1)(r− 1) − (d− a− 1)(r− 2)

> d− a− 1 > 1.

If s = 1, then by d− 1 > r > 1

g(r, s) = (d− a− 1)(r− 1) − (r− a)(r− 1)

= (r− 1)(d− r− 1) > r− 1 > 1.

If s = 0, then by a < d− 1

g(r, 0) = (d− r− 1)(r− 1) + a > 1.
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We have calculated the smallest eigenvalues and, therefore, Hoff-
man’s bound, but it would be nice to have a simpler formula for the
approximations of Section 5.7. This simplification will conclude this
section.

Theorem 5.34. Define α by α log(1+ q−e−1) 6 log(1+ q−e). Set γ = 2

if q = 3, and γ = 1+ 2q−1 otherwise. Let 0 < t < d.

(a) We have

cd,t 6 −λmin(1+ q
−e)

α
α−1 ,

where λmin := minr λd−t−1r is the smallest eigenvalue of the matrix∑d
s=t+1As.

(b) Suppose q > 3. If t odd or e > 1, then

cd,t 6 γq
t(d−t−1)+(t2)+te(1+ q−e)

α
α−1 .

(c) Suppose q > 3. If t even and e 6 1, then

cd,t 6 γq
t(d−t−1)+(t+12 )(1+ q−e)

α
α−1 .

(d) The same statements hold for q = 2, γ = 111
32 , and t = d− 1.

Proof. Here we have a = d− t− 1. Furthermore, by Theorem 5.25

k = λd−t−10 > q(
d
2)+de.

By Proposition 5.27, Theorem 5.25, Lemma 2.7 and λmin < 0, we have

cd,t 6
nλmin

λmin − k
6 −λmin

n

k
6 −λmin(1+ q

−e)
α
α−1 .

By Theorem 5.28 and Lemma 2.1, we have

−λmin =

[
d− 1

t

]
q(

t
2)+te

6 γqt(d−t−1)+(
t
2)+te
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if t odd or e > 1, respectively,

−λmin = (−1)t
[
d− 1

t

]
q(
t+1
2 )

6 γqt(d−t−1)+(
t+1
2 )

if t even and e 6 1.
Part (d) can be proven in the same way by using the eigenvalues

provided in Theorem 1.23 instead of the ones provided in Theorem
5.28, which is limited to q > 3.

5.7 proof of theorem 5 .1

In this section we want to specify the q, d, and t for which our pre-
vious results are non-trivial statements. We shall do so by providing
lower, respectively, upper bounds on all the parameters used in The-
orem 5.12 and Theorem 5.24. For this we shall provide some upper
estimates for b01,b02,b11,b12,b13. Throughout this section, q is fixed and
we define α and γ as follows.

(a) Let γ = 111
32 if q = 2, γ = 2 if q = 3, and γ = 1+ 2q−1 if q > 4.

(b) Let α be chosen as α log(1 + q−e−1) = log(1 + q−e). We shall
apply Theorem 5.34, where we only demand α log(1+ q−e−1) 6
log(1+ q−e). This is more convenient for numerical approxima-
tions as we then do not have to calculate the exact values of the
logarithms (which is usually not possible).

Lemma 5.35. Let 5t 6 2d+ 1. Then we have the following.

(a) Suppose that t is even. Then we have

ψ0 6 q
3
4t
2+ t

2 (d−2t)−(d− 5
2t+2) γ2

1−q−2 .

(b) Suppose that t is odd. Then we have

ψ1 6 q(
t
2−

1
2 )(

3
2t−

3
2 )+(d−2t+1)( t2−

1
2 )−(d− 5

2t+
7
2 ) γ2

q2−1
.
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Proof. Let t be even. For integers i with 1 6 i 6 t
2 − 1, Lemma 2.1

shows that

q(
t
2−1−i)(

t
2−i)

[
d− 2t+ 1

t/2− i

][
t/2− 1

i

]
6 q(

t
2−1−i)(

t
2−i)+( t2−i)(d−

5
2t+1+i)+i(

t
2−1−i)γ2

= q
t
2 (d−2t)−i(d−

5
2t+1+i)γ2.

Hence by Lemma 5.3 and 5t 6 2d, we have

ψ0 = q
3
4t
2

t/2−1∑
i=1

q(
t
2−1−i)(

t
2−i)

[
d− 2t+ 1

t/2− i

][
t/2− 1

i

]

6 q
3
4t
2+ t

2 (d−2t)γ2
t/2−1∑
i=1

q−i(d−
5
2t+1+i)

6 q
3
4t
2+ t

2 (d−2t)−(d− 5
2t+2)γ2

t/2−2∑
i=0

q−2i

6 q
3
4t
2+ t

2 (d−2t)−(d− 5
2t+2) γ2

1−q−2 .

This shows part (a).
Let t be odd. Similarly by Lemma 2.1, we have

q(
t
2−

3
2−i)(

t
2−

1
2−i)

[
d− 2t+ 2

(t− 1)/2− i

][
t/2− 3

2

i

]
6 q(

t
2−

3
2−i)(

t
2−

1
2−i)+( t2−

1
2−i)(d−

5
2t+

5
2+i)+i(

t
2−

3
2−i)γ2

= q(d−2t+1)(
t
2−

1
2 )−i(d−

5
2t+

5
2+i)γ2.
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Hence by Lemma 5.3 and Lemma 2.1, we have

ψ1 = q(
t
2−

1
2 )(

3
2t−

3
2 )

·
t/2−3/2∑
i=1

q(
t
2−

3
2−i)(

t
2−

1
2−i)

[
d− 2t+ 2

(t− 1)/2− i

][ t
2 −

3
2

i

]

6 q(
t
2−

1
2 )(

3
2t−

3
2 )+(d−2t+1)( t2−

1
2 )γ2

t/2−3/2∑
i=1

q−i(d−
5
2t+

5
2+i)

6 q(
t
2−

1
2 )(

3
2t−

3
2 )+(d−2t+1)( t2−

1
2 )−(d− 5

2t+
7
2 )γ2

t/2−5/2∑
i=0

q−2i

6 q(
t
2−

1
2 )(

3
2t−

3
2 )+(d−2t+1)( t2−

1
2 )−(d− 5

2t+
7
2 ) γ2

1−q−2 .

This shows part (b).

Recall that the numbers b0i are only defined for t even and that the
numbers b1i are only defined for t odd.

Lemma 5.36. Let 0 6 5t 6 2d.

(a) If q > 3, then

b01 6 q
( t2−1)(d−2t+1)+t(t−2)+(

t
2)+teγ2(1+ q−e)

α
α−1 if e > 1,

b01 6 q
( t2−1)(d−2t+1)+t(t−2)+(

t+1
2 )γ2(1+ q−e)

α
α−1 if e 6 1,

b11 6 q
t−3
2 (d−2t+2)+(t−3)t+(t2)+teγ2(1+ q−e)

α
α−1 ,

b02 6 q
e t2+(

t/2
2 )+

2t(d+5)−t2−4d−8
4

γ2

1−q−2 ,

b12 6 q
e t+12 +((t+1)/22 )+ 2t(d+5)−t2−6d−13

4
γ2

1−q−2 (1+ q
−e)

α
α−1 ,

b13 6 q
e t−12 +((t−1)/22 )+ 2t(d+1)−t2−2d−1

4 γ.
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(b) If q = 2, then

b01 6 q
( t2−1)(d−2t+1)+(

2t−2
2 )+(2t−2)eγ2(1+ q−e)

α
α−1 if e > 1,

b01 6 q
( t2−1)(d−2t+1)+(

2t−1
2 )γ2(1+ q−e)

α
α−1 if e 6 1,

b11 6 q
t−3
2 (d−2t+2)+(2t−32 )+(2t−3)eγ2(1+ q−e)

α
α−1 ,

b02 6 q
e t2+(

t/2
2 )+

2t(d+5)−t2−4d−8
4

γ2

1−q−2 ,

b12 6 q
e t+12 +((t+1)/22 )+ 2t(d+5)−t2−6d−13

4
γ2

1−q−2 (1+ q
−e)

α
α−1 ,

b13 6 q
e t−12 +((t−1)/22 )+ 2t(d+1)−t2−2d−1

4 γ.

Proof. First consider the case q > 2. Apply Theorem 5.34, cx,0 = 1,
Lemma 2.7, Lemma 2.1, and Lemma 5.35 on the following to obtain
the stated upper bounds.

b01 =

[
d− 3

2t

t/2− 1

]
c2t−1,t

b11 =

[
d− 3

2t+
1
2

(t− 3)/2

]
c2t−2,t

b02 = ψ
0qe

t
2+(

t/2
2 )

b12 = ψ
1ω(d, t/2+

1

2
) = ψ1

t/2− 1
2∏

i=0

(qi+e + 1)

b13 = ψ
1
qe

t−1
2 +((t−1)/22 )

= q(
3
2t−

1
2 )(

t
2−

1
2 )

[
d− 3

2t+
1
2

(t− 1)/2

]
qe

t−1
2 +((t−1)/22 )

Since we can not apply Theorem 5.34 (a)–(c) for q = 2 for all t, we
use c2t−1,t < c2t−1,2t−2, respectively, c2t−2,t < c2t−2,2t−3 together
with Theorem 5.34 (d) and Theorem 1.23 for the approximation. By
Theorem 1.23, the eigenvalues for the disjointness graph of a polar
space of rank d and type e are

(−1)rq(
d−r
2 )+(r2)+e(d−r).
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for r ∈ {0, 1, . . . ,d}. Hence, the smallest eigenvalue for the bound on
c2t−1,2t−2 is

− q(
2t−2
2 )+e(2t−2) for t even and e > 1,

− q(
2t−1
2 ) for t even and e 6 1.

By Theorem 5.34 (d), the approximations for b01 follow. Similarly, the
smallest eigenvalue for the bound on c2t−2,2t−3 is

−q(
2t−3
2 )+e(2t−3).

By Theorem 5.34 (d), the approximation for b11 follows.

Additionally, we need lower bounds for the size of our examples.
Recall that the case t = d− 1 is not covered by Theorem 5.1 and that
the case t = 1 is trivial, so we can assume 2 6 t 6 d− 2.

Lemma 5.37. Let q > 2. Let d− 2 > t > 2. Example 5.11 has size at least

y0 :=

[
d
t
2

]
qe

t
2+(

t/2
2 ) > qe

t
2+(

t/2
2 )+

t
2 (d−

t
2 )(1+ q−1).

Example 5.19 has size at least

y1 :=

[
d− 1
t−1
2

]
qe

t+1
2 +(

t+1
2
2
)(1+ q−e)

> qe
t+1
2 +(

t+1
2
2
)+ t−1

2 (d− t+1
2 )(1+ q−1)(1+ q−e).

If q = 2, then

y1 > qe
t+1
2 +(

t+1
2
2
)+ t−1

2 (d− t+1
2 )(2−

1

q2
)(1+ q−e).

Proof. Case t even. Let Y ′ be the set of all generators which meet
a given generator in exactly dimension d− t

2 . Obviously, Y ′ has less
elements than Example 5.11. We shall show |Y ′| > y0. By Lemma 1.24,
there are exactly[

d
t
2

]
qe

t
2+(

t/2
2 )
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such generators. Lemma 2.2 shows the remaining inequality for y0.
Case t odd. Let U be a (d − 1)-dimensional totally isotropic sub-

space. Let G be a generator with U ⊆ G. Let Y ′ be the set of all
generators which meet U in dimension d− t

2 −
1
2 . Obviously, Y ′ has

at most as many elements as Example 5.19. We shall show |Y ′| > y1.
We have

[d−1
t−1
2

]
possibilities to choose a (d − t

2 − 1
2)-dimensional

subspace T of U. Let H ∈ Y ′ with U ∩H = T . Then G ∩H = T or
V := G∩H has dimension dim(T) + 1 and satisfies V ∩U = T . In the
quotient geometry on T , Corollary 1.24 shows that there exist

qe
t+1
2 +(

t+1
2
2
)

generators H with H ∩G = T . The number of subspaces V of G with
dim(V) = dim(T) + 1 and V ∩U = T is

[
t+ 1

2
] − [

t− 1

2
] = q

t−1
2

as can be seen in the quotient geometry on T . For each such V , Corol-
lary 1.24 applied to the quotient geometry of V shows that there are

qe
t−1
2 +(

t−1
2
2
)

generators H with H∩G = V . Hence, we find that Y ′ has at least[
d− 1
t−1
2

](
qe

t+1
2 +(

t+1
2
2
) + q

t−1
2 · qe

t−1
2 +(

t−1
2
2
)
)

=

[
d− 1
t−1
2

]
qe

t+1
2 +(

t+1
2
2
) (1+ q−e)

elements. Lemma 2.2 shows the remaining inequality. In particular, if
q = 2, then the condition d− 1 > t > 3 implies d− t

2 −
1
2 > 2. Hence,

by Lemma 2.2,[
d− 1
t−1
2

]
> (2− q−2)q(d−

t
2−

1
2 )(

t
2−

1
2 ).



94 (d , t)-ekr sets of polar spaces

All left to do is to compare b01 + b
0
2, respectively, 2b11 + b

1
2 + b

1
3

to the sizes of the examples (y0, respectively, y1) using the given
upper, respectively, lower bounds. Then Theorem 5.12 and Theorem
5.24 yield our last theorem. Hence, we compare all degrees of the
bounds in q to y0, respectively, y1. This yields for q > 3,

δ01 := deg(y0) − deg(b01) =

d+ 1− 2e+1
4 t− 5

8t
2 if e > 1,

d+ 1− 5−2e
4 t− 5

8t
2 if e 6 1,

δ02 := deg(y0) − deg(b02) = d+ 2−
5

2
t,

δ11 := deg(y1) − deg(b11) = d+
25

8
+ e/2−

(e+ 1)t

2
−
5

8
t2,

δ12 := deg(y1) − deg(b12) = d+
7

2
−
5

2
t,

δ13 := deg(y1) − deg(b13) = e.

For q = 2 only the following values are different from the values for
q > 3:

δ01 := deg(y0 − b01) =

d− 2+ 2e− 6e−9
4 t− 9

8t
2 if e > 1,

d+ 2e+1
4 t− 9

8t
2 if e 6 1,

δ11 := deg(y1 − b11) = d+
7

2
e−

23

8
+
6− 3e

2
t−

9

8
t2.

These approximations make it clear that Theorem 5.12 and Theo-
rem 5.24 are non-trivial for d large and t fixed. In the following we
want to be more specific about the necessary size of d. Recall γ = 111

32

if q = 2, γ = 2 if q = 3, and γ = 1+ 2q−1 if q > 4.

Lemma 5.38. Let z be a integer. Let q > 2.

(a) The equation

qz(1+ q−1) > γ2((1+ q−e)
α
α−1 + 1

1−q−2 )

is satisfied if z > 7 or if z > 3 and q > 3.
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(b) The equation

qz(1+ q−1)(1+ q−e) > γqz−e + γ2(1+ q−e)
α
α−1 (2+ 1

1−q−2 )

is satisfied if z > 4 and q > 3.

(c) The equation

qz(2− q−2)(1+ q−e) > γqz−e + γ2(1+ q−e)
α
α−1 (2+ 1

1−q−2 )

is satisfied if z > 13.

Proof. One can check that the difference between the left side and the
right side of the inequality is monotonically increasing for z > 4 in q
and e, so one only has to check q ∈ {2, 3, 4} and e = 0. We shall show
the monotonicity in the following.

Step 1: We can assume e = 0. In the equation in (a) only the term

(1+ q−e)
α
α−1 (5.1)

depends on e. By Lemma 2.6, the term (5.1) decreases if we increase
e. Hence, increasing e decreases the right side of the equation in (a),
but leaves the left side constant.

For the same statement for the equality in (b) we show that the
terms

qz(1+ q−1) − γ2(1+ q−e)
α
α−1 (2+ 1

1−q−2 ) and

qz−e(1+ q−1) − γqz−e

both increase by increasing e. The first term, again by Lemma 2.6,
is monotonically increasing in e. For the second term, γ > 1+ q−1

shows the claim.
The monotonicity in e for (c) can be seen as in (b), using γ = 111

32 >
7
4 = 1+ 2q−1 for q = 2.

Step 2: We can assume q ∈ {2, 3, 4}. We shall show that the differ-
ence between the left side and the right side increases if we substitute
q by q+ 1 for q > 4. By Step 1 we can assume e = 0.

The right side of the equation in (a) is monotonically decreasing in
q by Lemma 2.6. The right side is increasing as seen by

(q+ 1)z(1+ (q+ 1)−1) − qz(1+ q−1)

= (q+ 1)z−1(q+ 2) − qz−1(q+ 1) > 0.
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This shows the assertion.
For (b) and (c) we only show that

2qz(1+ q−1) − γqz

increases by increasing q. This is sufficient as the remaining term on
the right side of equations decreases by increasing q by Lemma 2.6.
By 2(1+ q−1) = 2+ 2q−1 > 1+ 2q−1 = γ for q > 4. This shows the
last part of the assertion.

All that remains is to show the inequalities for e = 0 and q ∈ {2, 3, 4}.
The author did this by computer. To check the given inequalities nu-
merically, one has to pay some attention to numerical stability. Here it
is important to keep in mind that all of the used results only require
α log(1+ q−e−1) 6 log(1+ q−e), which make numerical approxima-
tions possible.

Proof of Theorem 5.1. Case t = 1: By Lemma 5.5, the largest (d, 1)-EKR
set is the set of all generators through a fixed (d− 1)-space.

Case t > 2: We shall apply Theorem 5.12, respectively, Theorem
5.24.

Let z be as in Lemma 5.38. If t is even, then according to the appro-
priate part of Lemma 5.38, Lemma 5.37, and Lemma 5.36

min(δ01, δ02) > z

is a sufficient condition for b01 + b
0
2 < |Y|. If z is odd, then

min(δ11, δ12, δ13) > z

is a sufficient condition for 2b11 + b
1
2 + b

1
3 < |Y|.

The given conditions on t imply the above inequalities for t > 2 as
we shall see in the following.

If t is even and q = 2, then z has to be at least 7 by Lemma 5.38

(a). The given condition is 2 6 t 6
√
8d
9 − 2. Since we may assume

t > 2, this implies d > 32·9
8 . A simple calculation shows that we have

min(δ01, δ02) > 7 under these conditions.
If t is even and q > 3, then z has to be at least 3 by Lemma 5.38

(a). The given condition is 2 6 t 6
√
8d
5 − 2. Since we may assume
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t > 2, this implies d > 42·5
8 . A simple calculation shows that we have

min(δ01, δ02) > 4 under the given conditions.
If t is odd and q = 2, then z has to be at least 13 by Lemma 5.38

(c). The given condition is 3 6 t 6
√
8d
9 − 2. Since we may assume

t > 3, this implies d > 52·9
8 . A simple calculation shows that we have

min(δ11, δ12) > 13 under these conditions.
If t is even and q > 3, then z has to be at least 4 by Lemma 5.38

(b). The given condition is 3 6 t 6
√
8d
5 − 2. Since we may assume

t > 3, this implies d > 53

8 . A simple calculation shows that we have
min(δ11, δ12) > 11 under the given conditions.

Remark 5.39. (a) Obviously, even the trivial upper bound for c2t−1,t, i.e.
the number of generators in a polar space of rank 2t− 1, is independent
of d. If one uses this bound instead of Theorem 5.34 to bound c2t−1,t,

then the restriction on t is approximately t 6
√
8d
9 as in the q = 2

case.

(b) If one uses the linear programming bound instead of Hoffman’s bound
to approximate cd,t, then computer results suggest that the conditions
on t in Theorem 5.1 should simplify to approximately t 6 2

√
2d for d

large.

(c) If one could prove that c2t−1,t is the size of Example 5.11, respectively,
that c2t−1,t is the size of Example 5.19, then the conditions on t would
improve to approximately t 6 2

5d. So it would be sufficient to focus on
these cases to improve the results significantly.

5.8 concluding remarks

This project was started with the hope that it would be simple to
generalize the classification of (d,d− 1)-EKR sets of maximum size
provided in [66] by applying Hoffman’s bound or one of its general-
izations since Hoffman’s bound is tight in this case [68] if e 6= 1

2 . It
turns out that for nearly all (d, t)-EKR sets Hoffman’s bound is far
larger than the largest known examples.
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Linear programming can be used to obtain better algebraic bounds
for all d. While computer results suggest that these upper bounds
should be able to improve Theorem 5.1 to approximately t 6 2

√
2d,

even these bounds are still far away from the largest known exam-
ples. Hence, one has to rely explicitly on the geometrical properties
of polar spaces for the classification. It might be very interesting to
find a purely algebraical proof of the presented results, since our ap-
proach stops working as soon as t is too large compared to d, while
techniques from algebraic combinatorics seem to work the best when
t is large compared to d.

In general, a classification of all (d, t)-EKR sets seems to be very
desirable, since the author conjectures that it would turn out to be
the following, nice looking result.

Conjecture 5.40. Let Y be a (d, t)-EKR set of maximum size. Then one of
the following cases occurs:

(a) We have that Y is a dictatorship.

(b) We have that t is even and Y is a d-junta.

(c) We have that t is odd and Y is a (d− 1)-junta.

(d) We have that e = 0, t = d− 1, d is odd and Y is the largest example for
Q+(2d− 1,q) as given in [66], i.e. the set of all Latin generators or the
set of all Greek generators.
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A general overview over the topic of cross-intersecting EKR sets
was given in Chapter 3. Recall that a cross-intersecting EKR set of gen-
erators is a pair (Y,Z) of sets of generators such that all y ∈ Y and all
z ∈ Z intersect in at least a point. In this setting this chapter is only
concerned with an upper bound on |Y| · |Z| and a classification of all
cross-intersecting EKR sets reaching this bound.

An additional motivation for this problem is the following: as men-
tioned before the problem of EKR sets of maximum size on H(2d−

1,q2) is still open for d > 3 odd. Let P be a point of H(2d − 1,q2)
and let X be an EKR set of H(2d− 1,q2). Furthermore, let Y be the
set of generators of X on P and Z the set of generators of X not on P.
Now in the quotient geometry of P isomorphic to H(2d− 3,q2) the
projection of the generators of Y and Z onto the quotient geometry is
a cross-intersecting EKR set. Hence both problems are related.

One last thing to point out is that the following does not provide
tight upper bounds for cross-intersecting EKR sets in H(2d− 1,q2) for
all d > 1. The problem is very similar to the open problem of the max-
imum size of EKR sets in H(9,q2). Therefore, it could be reasonable
to first solve the problem of the maximum size of cross-intersecting
EKR sets in H(7,q2) and then generalize the technique to EKR sets in
H(9,q2).

6.1 first observations

In this section we shall calculate tight upper bounds for all polar
spaces except H(2d− 1,q2), and classify all examples in case of equal-
ity. For all polar spaces except H(2d − 1,q2) we can imitate the ap-
proach of Pepe, Storme, and Vanhove [66]. Recall from Section 1.3 that
we have a natural ordering of the eigenspaces V0(= 〈j〉),V1, . . . ,Vd of
the association scheme which we defined on generators of a polar
space of rank d.

Lemma 6.1. Let P be a polar space over Fq with parameter e and let Ad
be the adjacency matrix matrix of the disjointness graph of generators of P.
Then k = q(

d
2)+de and we have the following:
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• If P = Q+(2d− 1,q), then λb = q(
d
2). Moreover, if d is even, then

λb = λ+ > −λ− and V+ = Vd; if d is odd, then λb = λ− > −λ+
and V− = Vd.

• If P ∈ {Q(2d,q), W(2d− 1,q)}, then λb = q(
d
2). Moreover, if d is

even, then λb = −λ− = λ+, V− = V1 and V+ = Vd; if d is odd,
then λb = −λ− > λ+ and V− = V0 ⊥ V1 ⊥ Vd.

• If P ∈ {H(2d,q), Q−(2d+ 1,q)}, then λb = q(
d−1
2 )+de. Moreover,

λb = −λ− > λ+ and V− = V1.

• If P = H(2d − 1,q), then λb = q(
d
2). Moreover, if d is even, then

λb = λ+ > −λ− and V+ = Vd; if d is odd, then λb = −λ− > λ+
and V− = V1 ⊥ Vd.

Proof. The eigenvalues of Ad were given in Theorem 1.23 as

(−1)rq(
d−r
2 )+(r2)+e(d−r).

For r = 0 this is the eigenvalue that belongs to the all-one vector j, so
define k by

k = q(
d
2)+de.

For e = 0 note that the absolute eigenvalues for r = 0 and r = d

are equal. Therefore, the eigenspace belonging to k has dimension
at least 2 which make k also the second largest absolute eigenvalue.
Hence, we have the following for the different polar spaces. For e = 0
(i.e. P = Q+(2d− 1,q)) the second largest absolute eigenvalue occurs
if and only if r = d, for e = 1 (i.e. P ∈ {Q(2d,q), W(2d− 1,q)}) the
second largest absolute eigenvalue occurs if and only if r ∈ {1,d},
for e ∈ {3/2, 2} (i.e. P ∈ {H(2d,q), Q−(2d+ 1,q)}) the second largest
absolute eigenvalue occurs if and only if r = 1.

Using Proposition 1.12 and the classification of EKR sets of genera-
tors of maximum size given in [66] we get the following result.

Corollary 6.2. Let (Y,Z) be a cross-intersecting EKR set of maximum size
of a finite classical polar space P not isomorphic to Q(2d,q) with d even,
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W(2d− 1,q) with d even, Q+(2d− 1,q) with d even, or H(2d− 1,q2),
where |Y| · |Z| reaches the bound in Theorem 6.3. Then Y = Z, and Y is an
EKR set of maximum size.

Proof. By Proposition 1.12 and Lemma 6.1, all cross-intersecting EKR,
which reach the bound, are EKR sets of maximum size. These EKR
sets exist as shown in [66].

The cases, which are summarized in the following result, remain.

Theorem 6.3. Let (Y,Z) be a cross-intersecting EKR set of generators of
maximum size of a polar space P, with P isomorphic to Q(2d,q), d even,
W(2d − 1,q), d even, or Q+(2d − 1,q), d even. Let n be the number of
generators of P. Then we have the following:

• If P = Q+(2d − 1,q), then
√
|Y| · |Z| is at most n/2, and if this

bound is reached, then there are v− ∈ V1 and v+ ∈ Vd such that
χY = αj + v− + v+ and χZ = j/2+ v− − v+.

• If P ∈ {Q(2d,q), W(2d− 1,q)}, then
√
|Y| · |Z| is at most the number

of generators on a fixed point, and if this bound is reached, then there
are v− ∈ V1 and v+ ∈ Vd such that χY = αj + v− + v+ and χZ =

αj + v− − v+, with α = 1
qd+1

.

Proof. Apply Lemma 1.12 and Lemma 6.1.

6.2 the non-ekr cases

We shall continue to classify the more complicated cases, i.e. the cases
where it is not already clear that the largest cross-intersecting EKR
sets are EKR sets.

6.2.1 The Hyperbolic Quadric of Even Rank

As mentioned in Chapter 1 the generators of Q+(2d − 1,q) can be
partitioned into Latin generators X1 and Greek generators X2 with
|X1| = |X2| = n/2. Recall that for x1 ∈ X1 and x2 ∈ X2 the codimen-
sion of the intersection of x1 ∩ x2 is odd. Recall that for x1, x2 ∈ X1
the codimension of the intersection of x∩y is even. This implies for d
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even that (X1,X2) is a cross-intersecting EKR set of maximum size ac-
cording to Theorem 6.3. There exist x1, x2 ∈ X1 with dim(x1 ∩ x2) = 0
if d is even, so (X1,X1) is not a cross-intersecting EKR set.

Theorem 6.4. Let (Y,Z) be a cross-intersecting EKR set of maximum size
of Q+(2d− 1,q) with d even. Then Y = Xi and Z = Xj for {i, j} = {1, 2}.

Proof. By Theorem 6.3, we have χY = j/2+ v− + v+ and χZ = j/2+
v−− v+. As in Theorem 16 of [66] V0 is spanned by χX1 +χX2 , and Vd
is spanned by χX1 −χX2 . Hence χY ,χZ ∈ {χX1 ,χX2} as χY ,χZ,χX1 ,χX2
are 0-1-vectors with χX1 + χX2 = j. Hence without loss of generality
Y = X1. Since (X1,X1) is not a cross-intersecting EKR set, we have
Z = X2.

6.2.2 The Parabolic Quadric and the Symplectic Polar Space of Even Rank

Before we classify cross-intersecting EKR sets of generators of maxi-
mum size in parabolic quadrics and symplectic polar spaces, we men-
tion a few simple lemmas. We include their proofs to make this thesis
more self-contained.

Lemma 6.5. Let χ ∈ 〈j〉 ⊥ V for some eigenspace V of an (extended weight)
adjacency matrix A of a k-regular graph with n vertices associated with
eigenvalue λ. Then the characteristic vector ei of the i-th vertex satisfies

e
ᵀ
iAχ =

χᵀj
n

(k− λ) + λeᵀi χ.

Proof. By definition, χ =
χᵀj
n j + v for some v ∈ V . Then

e
ᵀ
iAχ = eᵀiA(

χᵀj
n

j + v)

= eᵀi (
χᵀj
n
kj + λv)

= eᵀi (
χᵀj
n

(k− λ)j + λχ)

=
χᵀj
n

(k− λ) + λeᵀi χ.

Recall for this section that all matrices Ai of a given association
scheme have the same eigenspaces Vj.
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Corollary 6.6. Let χ,ψ ∈ 〈j〉 ⊥ V− ⊥ V+ for some eigenspaces V− and
V+ of a (weighted) adjacency matrix A of a k-regular graph with n vertices,
where λ− is the eigenvalue associated with V− and λ+ is the eigenvalue
associated with V+. If χ = αj + v− + v+ and ψ = αj + v− − v+ for some
α ∈ R, v− ∈ V−, and v+ ∈ V+, then

e
ᵀ
iAχ =

(χ+ψ)ᵀj
2n

(k− λ−) +
(λ− + λ+)

2
e
ᵀ
i χ+

(λ− − λ+)

2
e
ᵀ
iψ,

e
ᵀ
iAψ =

(χ+ψ)ᵀj
2n

(k− λ−) +
(λ− + λ+)

2
e
ᵀ
iψ+

(λ− − λ+)

2
e
ᵀ
i χ.

Proof. We have χ+ψ ∈ 〈j〉 ⊥ V− and χ−ψ ∈ V+. By Lemma 6.5 and
jᵀv− = 0 = jᵀv+,

e
ᵀ
iA(χ+ψ) =

(χ+ψ)ᵀj
n

(k− λ−) + λ−e
ᵀ
i (χ+ψ)

e
ᵀ
iA(χ−ψ) = λ+e

ᵀ
i (χ−ψ).

Now the equations 2eᵀiAχ = e
ᵀ
iA(χ + ψ) + eᵀiA(χ − ψ), 2eᵀiAψ =

e
ᵀ
iA(χ+ψ) − e

ᵀ
iA(χ−ψ) yield the assertion.

Lemma 6.7. Consider the adjacency matrices {A0,A1, . . . ,Ad} of Q(2d,q)
(or W(2d − 1,q)). For the adjacency matrix Ad−s the eigenspace V1 is
associated with eigenvalue

λ−,s := −

[
d− 1

s

]
q(
d−s
2 ) +

[
d− 1

s− 1

]
q(
d−s+1
2 ),

the eigenspace Vd is associated with eigenvalue

λ+,s := (−1)d−s
[
d

s

]
q(
d−s
2 ),

and the eigenspace E0 = 〈j〉 is associated with eigenvalue

ks :=

[
d

s

]
q(
d−s+1
2 ) =

([
d− 1

s

]
+

[
d− 1

s− 1

]
qd−s

)
q(
d−s+1
2 ).

Proof. By Theorem 1.23, the eigenvalue of Vj for Ai is

min(d−i,j)∑
u=max(j−i,0)

(−1)j+u
[
d− j

d− i− u

][
j

u

]
·q(u+i−j)(u+i−j+1)/2+(

j−u
2 ).
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For j = 0, j = 1, j = d, and i = d− s, this formula yields the assertion.
The last equality is an application of (1.16).

If a cross-intersecting EKR set (Y,Z) of Q(2d,q) satisfies χY ,χZ ∈
V0 ⊥ V1, then Y = Z, and Y is an EKR set of maximum size (as
it satisfies the Hoffman bound 1.9 with equality). So only the case
χY ,χZ ∈ V0 ⊥ V1 ⊥ Vd remains. In the following denote V1 by V−

and Vd by V+. Furthermore, as in Lemma 1.12 we write

χY = αj + v− + v+

=
|Y|

n
j + v− + v+

=
λb

k+ λb
j + v− + v+

and

χZ = αj + v− − v+

=
|Z|

n
j + v− − v+

=
λb

k+ λb
j + v− − v+

with v− ∈ V− and v+ ∈ V+.

Proposition 6.8. Let (Y,Z) be a cross-intersecting EKR set of Q(2d,q) or
W(2d− 1,q), d even, of maximum size such that Y ∩Z 6= Y. Let G ∈ Y \Z.

(a) If d− s is even, then G meets 0 elements of Z in dimension s.

(b) If d− s is odd, then G meets 0 elements of Y in dimension s.

(c) If d− s is even, then G meets[
d

s

]
q(
d−s
2 )

elements of Y in dimension s.
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(d) If d− s is odd, then G meets[
d

s

]
q(
d−s
2 )

elements of Z in dimension s.

In particular, Y ∩Z = ∅.

Proof. We can calculate these numbers with Lemma 6.7 and Corollary
6.6 by choosing χ{G} as ei. For Ad−s the parameters are given by

ks − λ−,s =

([
d− 1

s

]
+

[
d− 1

s− 1

]
qd−s

)
q(
d−s+1
2 )

+

[
d− 1

s

]
q(
d−s
2 ) −

[
d− 1

s− 1

]
q(
d−s+1
2 )

= q(
d−s
2 )
[
d− 1

s

] (
qd−s + 1

)
+ q(

d−s+1
2 )

[
d− 1

s− 1

] (
qd−s − 1

)
Def.
= q(

d−s
2 )
[
d− 1

s

] (
qd−s + 1

)
+ qd−s · q(

d−s
2 )
[
d− 1

s

]
(qs − 1)

= q(
d−s
2 )
[
d− 1

s

] (
qd + 1

)
,

for d− s even

λ−,s + λ+,s
(1.16)
= 2

[
d− 1

s− 1

]
q(
d−s+1
2 ),

λ−,s − λ+,s
(1.16)
= −2

[
d− 1

s

]
q(
d−s
2 ),

for d− s odd

λ−,s + λ+,s
(1.16)
= −2

[
d− 1

s

]
q(
d−s
2 ),

λ−,s − λ+,s
(1.16)
= 2

[
d− 1

s− 1

]
q(
d−s+1
2 ).
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Recall that

(χY + χZ)
ᵀj

2n
=

λ+

k+ λ+
=

q(
d
2)

q(
d+1
2 ) + q(

d
2)

=
1

qd + 1
.

Hence by Corollary 6.6 and g /∈ Z,

e
ᵀ
iAd−sχY =

ks − λ−,s

qd + 1
+

(λ− + λ+)

2
e
ᵀ
i χ

= q(
d−s
2 )
[
d− 1

s

]
+

(λ− + λ+)

2
e
ᵀ
i χ.

If d− s is even and eᵀi χ = 1, then by (1.16)

e
ᵀ
iAd−sχY = q(

d−s
2 )
[
d− 1

s

]
+ q(

d−s+1
2 )

[
d− 1

s− 1

]
= q(

d−s
2 )
[
d

s

]
.

If d− s is odd and eᵀi χ = 1, then

e
ᵀ
iAd−sχY = q(

d−s
2 )
[
d− 1

s

]
− q(

d−s
2 )
[
d− 1

s

]
= 0.

All remaining cases follow from the fact that |Y| · |Z| has maximum
size and symmetry. No element of Y meets g in the same dimension
as an element of Z, hence Y ∩Z = ∅.

Now we have obtained a strong combinatorial information about
cross-intersecting EKR sets (Y,Z) of maximum size which are not
EKR sets. By adding some geometrical arguments this leads to a com-
plete classification of cross-intersecting EKR sets in these parabolic
and symplectic polar spaces.

Lemma 6.9. Let (Y,Z) be a largest cross-intersecting EKR set of Q(2d,q)
or W(2d− 1,q), d even. Let G,H ∈ Y disjoint (see Proposition 6.8 (c)). Let
π1, . . . ,π[d] ⊆ G be the [d] subspaces of dimension d− 1 of G. Then the
following holds:

(a) Exactly [d] elements z1, . . . , z[d] of Z meet G in dimension d− 1.

(b) We have {zi : i ∈ {1, . . . , [d]}} = {〈πi,π⊥i ∩H〉 : i ∈ {1, . . . , [d]}}.
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(c) We have that zi ∩ zj is a (d− 2)-dimensional subspace of g.

Proof. By Proposition 6.8 (d) and Y 6= Z (as G and H are disjoint),
exactly [d] elements of Z meet G in dimension d− 1. This shows (a).
By Proposition 6.8 (b), dim(zi ∩ zj) < d − 1 for i 6= j. Hence, each
hyperplane πi of G lies in exactly one element zi, and zi satisfies
zi ⊆ π⊥i . Since (Y,Z) is a cross-intersecting EKR set, all zj meet H in
at least a point. Since πi ⊆ G and G ∩H = ∅, we see that π⊥i ∩H is a
point. Hence,

{zi : i ∈ {1, . . . , [d]}} = {〈πi,π⊥i ∩H〉 : i ∈ {1, . . . , [d]}}.

This shows (b). We have zi ∩ zj ⊆ G for i 6= j as otherwise 〈zi ∩G, zj ∩
G, zi ∩ zj〉 would be a totally isotropic subspace of dimension at least
d+ 1. As zi ∩G = πi and zj ∩G = πj are different hyperplanes of G,
zi ∩ zj has dimension d− 2. This shows (c).

6.2.2.1 The Parabolic Quadric Q(2d,q)

Let s be a subspace of PG(2d,q). We write Y ⊆ s if all elements of Y
are subspaces of s, Y ∩ s for all elements of Y in s, and Y \ s for all
elements of Y not in s.

Lemma 6.10. Let G and H be disjoint generators of Q(2d,q). Let h be the
span of G and H. Then Q := h∩Q(2d,q) is isomorphic to Q+(2d− 1,q).

Proof. The generators G and H are disjoint, hence Q is not degenerate.
The hyperplane h obviously contains generators, hence Q is not iso-
morphic to Q−(2(d−1)+1,q). Therefore, the intersection h∩Q(2d,q)
is isomorphic to Q+(2d− 1,q).

Lemma 6.11. Let (Y,Z) be a cross-intersecting EKR set of Q(2d,q), d even,
of maximum size such that Y 6= Z. Let G ∈ Y. Let Ỹ be the set of the q(

d
2)

generators of Y disjoint to G (see Proposition 6.8).

(a) There exists a hyperplane h isomorphic to Q+(2d − 1,q) such that
G, Ỹ ⊆ h.

(b) Let z ∈ Z. If z meets an element of {G} ∪ Ỹ in a subspace of dimension
d− 1, then z ⊆ h and all elements of Z disjoint to z are in h.
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(c) If G̃ ∈ Y and dim(G̃ ∩H) = d− 2 for an H ∈ Ỹ, then G̃ and the q(
d
2)

generators disjoint to G̃ are in h.

Proof. By Proposition 6.8, a generator G ∈ Y is disjoint to q(
d
2) gener-

ators of Y. Let H ∈ Ỹ. By Lemma 6.10, the intersection of h := 〈G,H〉
with Q(2d− 1,q) is isomorphic to Q+(2d− 1,q). We shall show Ỹ ⊆ h.

Suppose to the contrary that there exists a generator H̃ ∈ Ỹ not in
h. We write

ZA = ZA,B = {zi : i ∈ {1, . . . , [d]}} (6.1)

= {〈πi,π⊥i ∩B〉 : i ∈ {1, . . . , [d]}} ⊆ Z

for A,B ∈ Y disjoint in the notation of Lemma 6.9. In particular, notice
that ZG,H = ZG,H̃ by Lemma 6.9 (a).

Set

P := {h̃∩ zi : i ∈ {1, . . . , [d]}}.

By Lemma 6.9 (c), |P| = |ZG| = [d]. Furthermore, ZG ⊆ η, so P ⊆ H̃∩η.
Hence,

[d] = |P| 6 |H̃∩ η| = [d− 1].

This is a contradiction. Thus, Ỹ ⊆ h. This proves (a).
To prove (b), suppose without loss of generality that z meets G

in a subspace of dimension d − 1. We have z ∈ ZG,H as (Y,Z) is a
cross-intersecting EKR set, so z ∈ h. Let P be a point of G disjoint
to z. By Lemma 6.9 (b), the generator z̃ defined as 〈P,P⊥ ∩H〉 is in
ZH,G. Then z̃ ⊆ h. By Lemma 6.9 (c), z̃ is disjoint to z, since otherwise
〈P, z̃ ∩ z, z ∩ G〉 would be a totally isotropic subspace of dimension
d+ 1. Hence, 〈z, z̃〉 = h. By (a), all elements of Z disjoint to z are in h.
This shows (b).

Let G̃ ∈ Y with dim(H ∩ G̃) = d− 2. Then there exists a z ∈ ZH,G

with H∩ G̃ ⊆ z. By (b) and dim(H∩ G̃) = d− 2, G̃ ⊆ h. Let H̃ ∈ Y be
disjoint to G̃. As (Y,Z) is a cross-intersecting EKR set, z meets H̃ in a
point. Let z̃ ∈ ZH̃,G̃ with z disjoint to z̃. By (b) and dim(H∩ z) = d− 1,
〈z, z̃〉 = h. Hence, H̃ ⊆ h. By (a), all elements of Y disjoint to G̃ are in
h. This shows (c).
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Proposition 6.12. Let (Y,Z) be a cross-intersecting EKR set of Q(2d,q) of
maximum size such that Y ∩ Z 6= Y. Then there exists a hyperplane h such
that Y,Z ⊆ h.

Proof. Let G ∈ Y. In the view of Lemma 6.11, we find a hyperplane
h that contains a generator G ∈ Y, a set Y1 of q(

d
2) generators of Y

disjoint to G, and, by Proposition 6.8 and Lemma 6.11 (d), the set Y2
of
[
d
2

]
q(
d−2
2 ) generators of Y which meet G in dimension d− 2.

Suppose contrary to the assertion that there exists an element G̃ ∈ Y
that is not in h. Then G̃ and the set Y3 of q(

d
2) generators of Y disjoint

to g̃ lie in a second hyperplane η ′ 6= η by Lemma 6.11. Lemma 6.11 (a)
and (c) show that being contained in the same hyperplane is transitive
for elements in Y, which are disjoint or meet in dimension d− 2. By
Lemma 6.11 (a) and h 6= h ′, we have that Y1 ∩ Y3 = ∅. By Lemma 6.11

(a), (c) and h 6= h ′, we have that Y2 ∩ Y3 = ∅. By Lemma 6.11 (a), (c)
and h 6= h ′, we have that g /∈ Y3, G̃ /∈ Y1 ∪ Y2, and G 6= G̃.

Hence,

|Y| > |Y1|+ |Y2|+ |Y3|+ 2

= 2
(
q(
d
2) + 1

)
+

[
d

2

]
q(
d−2
2 ). (6.2)

According to Theorem 6.3,

|Y| =

d−1∏
i=1

(qi + 1). (6.3)

By Lemma 2.1 and Lemma 2.8, (6.2) and (6.3) contradict each other.

Remark 6.13. Instead of the used counting argument, one could have used
Lemma 6.11 (a), respectively, (c) and the (in thesis: unproven) fact that the
subgraph induced by all Latin generators on the graphs Ad, respectively, A2
of an hyperbolic space is connected.

Theorem 6.14. Let (Y,Z) be a cross-intersecting EKR set of Q(2d,q), or
W(2d− 1,q) with q even, of maximum size such that Y ∩ Z 6= Y. Then d
even and Y ∪Z are the generators of a subgeometry isomorphic to Q+(2d−

1,q).
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Proof. First consider Q(2d,q). By Proposition 6.8, then Y ∩ Z = ∅.
By Proposition 6.12, Y,Z ⊆ h for some hyperplane h isomorphic to
Q+(2d− 1,q) if not Y = Z. Hence, (Y,Z) is a cross-intersecting set of
Q+(2d− 1,q) of maximum size. These sets were classified in Theorem
6.4.

The part of the assertion for W(2d− 1,q), q even, follows, since in
this case Q(2d,q) and W(2d− 1,q) are isomorphic.

6.2.2.2 The Symplectic Polar Space W(2d− 1,q), d even, q odd

Similar to [66] we use the following property of W(2d− 1,q), d even
(see [65, 1.3.6, 3.2.1, 3.3.1]).

Theorem 6.15. Let `1, `2, `3 be three pairwise disjoint lines of W(3,q), q
odd. Then the number of lines meeting `1, `2, `3 is 0 or 2.

Theorem 6.16. Let (Y,Z) be a cross-intersecting EKR set of W(2d− 1,q),
d even, q odd, of maximum size. Then Y = Z.

Proof. Suppose to the contrary that Y 6= Z. By Proposition 6.8, then
Y ∩ Z = ∅. By Proposition 6.8, we can find two disjoint generators
G and H in Y. Again by Proposition 6.8, there are exactly q[d][d −

1]/(q+ 1) generators in Y which meet G in a subspace of dimension
d− 2. The generator G has [d][d− 1]/(q+ 1) subspaces of dimension
d− 2. Hence, we find a subspace ` ⊆ G of dimension d− 2 such that
` is contained in q elements of Y ′. Since q is odd, there are at least
three elements y1,y2,y3 of Y through `.

Consider the quotient geometry W3 of ` isomorphic to W(3,q) and
the projection of the elements of Y and Z onto W3 from `. Since el-
ements of Y do not meet each other in dimension d− 1 by Proposi-
tion 6.8, y1,y2,y3 are three disjoint lines in W3 after projection. The
subspace `⊥ ∩H has dimension 2, so we find a subspace ˜̀ ⊆ H of di-
mension d− 2 disjoint to `⊥. Let π1,π2,π3 be subspaces of dimension
d− 1 in Hwith ˜̀ ⊆ π1,π2,π3. By Lemma 6.9 (b), we find z1, z2, z3 ∈ Z
with πi ⊆ zi for i ∈ {1, 2, 3}. By Lemma 6.9 (c), the pairwise meets of
z1, z2, z3 are contained in ˜̀. As we have that ˜̀ meets `⊥ trivially, we
have that z1, z2, z3 are projected onto three disjoint lines on W3. These
three lines have to meet the projections of y1, y2, and y3, since (Y,Z)
is a cross-intersecting EKR set. This contradicts Theorem 6.15.



112 cross-intersecting ekr sets of polar spaces

6.3 the hermitian polar space H(2d− 1,q2)

In this section we rewrite the proof of Theorem 4.1 as a Hoffman
bound proof. Thereby we modify it in a way such it also works for
cross-intersecting EKR sets in H(2d− 1,q2), d even.

Theorem 6.17. Let (Y,Z) be a cross-intersecting EKR set of H(2d− 1,q2)
with d > 1. Then√

|Y| · |Z| 6 nλb
λb − k

≈ qd2−2d+2,

where n =
∏d−1
i=0 (q

2i+1 + 1),

λb = −q(d−1)
2

−α

(
1− f1

1− c

n

)
,

k = qd
2

+αf1

(
c+

1− c

n

)
,

f1 = q
2[d]q2

q2d−3 + 1

q+ 1
,

c =
q2 − q− 1+ q−2d+3

q2d − 1
,

α =

qd(d−1) − q(d−1)
2

if d odd,
qd(d−1)+q(d−1)2

1−2(1−c)f1/n
if d even.

Proof. Let d > 1. Let Ad be the disjointness matrix as defined in
Section 5.5. Consider the matrix A defined as

A = Ad −αE1 +
αf1c

n
J+αf1

1− c

n
I.

claim 1 Our first claim is that A is an extended weight adjacency
matrix. By Section 5.5, it is clear that the entry (x,y) of E1 equals
Qi,1/n if x and y meet in codimension i. It was shown at the begin-
ning of Chapter 4 that the following holds (note that the equations in
Chapter 4 do not depend on d odd):
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(a) Q0,1 = f1,

(b) Qd−1,1 = f1c,

(c) Qs,1 > f1c if s < d by (4.1),

(d) Qd,1 < 0.

Hence, the entry (x,y) of the matrix A is 0 if x = y, it is less or
equal to zero if 1 6 codim(x ∩ y) 6 d− 1, and it is larger than 1 if x
and y are disjoint. This shows that A is an extended weight adjacency
matrix of the disjointness graph of generators.

claim 2 Our second claim is that one of the second absolute lar-
gest eigenvalues of A is

−q(d−1)
2

−α

(
1− f1

1− c

n

)
,

and that

k = qd
2

+αf1

(
c+

1− c

n

)
.

Notice that A is a linear combination of the Ais of the scheme, so
the common eigenspaces of the Ais are the eigenspaces of A. Notice
for the following that c ∈ [0, 1] and f1,α > 0. By Theorem 1.23, the
eigenvalues of A are

qd
2

+αf1

(
c+

1− c

n

)
for 〈j〉,

− q(d−1)
2

−α

(
1− f1

1− c

n

)
for V1,

(−1)rq(d−r)
2+r(r−1) +αf1

1− c

n
for Vr with 1 < r < d,

(−1)dqd(d−1) +αf1
1− c

n
for Vd.

a simple calculation shows that

−q(d−1)
2

−α

(
1− f1

1− c

n

)
= (−1)d

(
qd(d−1) −αf1

1− c

n

)
is the second largest absolute eigenvalue. This proves our claim.
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Now we can apply Proposition 1.12 with these values. Note that
k has approximately size qd

2+d−2, the second largest absolute eigen-
value λb has approximately size qd(d−1), and n has approximately
size qd

2
. Therefore,

nλb
λb − k

has approximately size qd
2−2d+2.

Note that the normal adjacency matrix of the graph only yields ap-
proximately qd

2−d as an upper bound, so this improves the standard
bound significantly.

For the sake of completeness we want to mention all cross-inter-
secting EKR sets for d = 2. We will do this after providing a general
geometrical result on maximal cross-intersecting EKR sets, where we
call a cross-intersecting EKR set (Y,Z) maximal if there exists no gen-
erator x such that (Y ∪ {x},Z) or (Y,Z∪ {x}) is a cross-intersecting EKR
set.

Lemma 6.18. Let (Y,Z) be a maximal cross-intersecting EKR set in a finite
classical polar space of rank d. If two distinct elements y1,y2 ∈ Y meet in a
subspace of dimension d− 1, then all elements of Z meet this subspace in at
least a point.

Proof. Assume that there exists a generator z which meets y1 and y2
in points P,Q not in y1 ∩ y2. Then 〈P,Q,y1 ∩ y2〉 is a totally isotropic
subspace of dimension d+ 1. Contradiction.

Proposition 1.12 yields

(q+ 1)(q3 + 1)

q2 + 1

as an upper bound on cross-intersecting EKR sets of H(3,q2). This
bound is not sharp as the following trivial result shows.

Theorem 6.19. Let (Y,Z) be a maximal cross-intersecting EKR set of the
polar space H(3,q2) with |Y| > |Z|. Then one of the following cases occurs:

(a) The set Y is the set of all lines of H(3,q2), and Z = ∅. Here |Y| · |Z| = 0.
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(b) The set Y is the set of all lines meeting a fixed line ` in at least a point,
and Z = {`}. Here |Y| · |Z| = (q2 + 1)q+ 1.

(c) The set Y is the set of all lines on a fixed point P, and Y = Z. Here
|Y| · |Z| = (q+ 1)2.

(d) The set Y is the set of lines meeting two disjoint lines `1, `2, and Z =

{`1, `2}. Here |Y| · |Z| = 2(q2 + 1).

(e) The set Y is the set of lines meeting three disjoint lines `1, `2, `3, and Z is
the set of all q+ 1 lines meeting the lines of Y. Here |Y| · |Z| = (q+ 1)2.

Proof. Suppose that (a) does not occur.
By Lemma 6.18, as soon as two elements of Y meet in a point P, then

all elements of Z contain P. Hence, (b) occurs or at least 2 elements of
Z meet in P. Hence, all elements of Y contain P by Lemma 6.18. This
is case (c).

So assume that Y and vice-versa Z only consist of disjoint lines. If
there are two lines `1, `2 ⊆ Z, then there are q2 + 1 (disjoint) lines L
meeting `1 and `2 in a point (hence |Y| 6 q2 + 1). If more than q+ 1
of these lines meet `1 (hence |Y| > q + 1), then Z contains at most
two lines, since in H(3,q2) exactly q+ 1 lines meet 3 pairwise disjoint
lines in a point. This yields (d). If |Z| > 3, then |Y| 6 q + 1 by the
previous argument. We may assume |Y| > 3. Then it is well-known
that there are exactly q+ 1 lines meeting the q+ 1 lines of Y. Hence,
we can add these lines and then Z is maximal. This yields (e).

The author tried to prove that the largest cross-intersecting EKR
set of H(5,q2) is the unique EKR of maximum size given in [66], but
aborted this attempt after he got lost in too many case distinctions.
This EKR set of all generators meeting a fixed generator in at least a
line is the largest cross-intersecting EKR set known to the author and
has size q5+q3+q+ 1. The largest example known to the author for
H(7,q2) is the following.

Example 6.20. Let G be a generator of H(7,q2). Let Y be the set of all
generators that meet G in at least a line. Let Z be the set of all generators
that meet G in at least a plane. Then (Y,Z) is a cross-intersecting EKR set.
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Proof. A generator of H(7,q2) is a 4-space. A plane and a line of a
4-space meet pairwise in at least a point. Hence, (Y,Z) is a cross-
intersecting EKR set.

In this example Y has

1+ q+ q3 + q4 + q5 + q6 + q7 + 2q8 + q10 + q12

elements, Z has

1+ q+ q3 + q5 + q7

elements, so in total the cross-intersecting EKR set has size√
|Y| · |Z| ≈ q19/2.

The bound given in Theorem 6.17 for this case is approximately q10.
For H(2d− 1,q2), d > 4, the largest example known to the author is
the EKR set of all generators on a fixed point. The author assumes
that the largest known examples are also the largest examples.

6.4 concluding remarks

We summarize our results in the following table. We only list the
cases, where cross-intersecting EKR sets of maximum size are not
necessarily EKR sets. The table includes the size of the largest known
example if it is not known if the best known bound does not seem to
be tight.
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Polar Space The Maximum Size of√
|Y| · |Z|

The Largest (known)
Examples

Th.

Q+(2d− 1,q), d odd n/2 Y latins, Z greeks 6.4

Q(2d,q), d odd (q+ 1) · . . . · (qd−1+ 1) Y latins and Z greeks
of a Q+(2d+ 1,q), or
Y = Z EKR set

6.14

W(2d − 1,q), d odd,
q even

(q+ 1) · . . . · (qd−1+ 1) see Q(2d,q) 6.14

H(3,q2) q3 + q+ 1 Z = {`}, Y all lines
meeting `

6.19

H(5,q2) / q5 largest EKR set, size
≈ q5

6.17

H(7,q2) / q10 Example 6.20, size ≈
q19/2

6.17

H(2d− 1,q2), d > 1 / q(d−1)
2+1 all generators on a

point, size ≈ q(d−1)2
6.17
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In this chapter we improve the best known bounds for {i}-cliques
of generators of H(2d− 1,q2) for large even d. In particular, the result
improves some of the best known upper bounds for partial spreads
of H(2d − 1,q2). The result is a combination of the extensive work
of the author with the eigenvalue matrices of the dual polar graphs
while he was reading old lecture notes by Chris Godsil and discussing
various clique bounds with John Bamberg in Perth, Western Australia.
The lecture notes mention the multiplicity bound of Proposition 1.15.
At the same time the author worked with an association scheme of
H(2d− 1,q2) where one multiplicity is very small (and therefore the
bound is good). The proof of the result itself is trivial, but definitely
not folklore for d > 1 as for example [20] fails to mention it.

An {d}-clique in the dual polar graph of H(2d − 1,q2) is called a
partial spread, since it is a set of pairwise disjoint generators. The first
complete survey on spreads of polar spaces was done by Thas [73]
in 1981. Later this problem was generalized to the study of partial
spreads on polar spaces. The best result known to the author on the
maximum size of partial spreads in H(2d− 1,q2), d even, is due to
De Beule, Klein, Metsch, and Storme [20].

The problem of the maximum size of partial spreads is a special
case of the problem of the maximum size of constant distance codes of
generators in H(2d − 1,q2). Constant distance codes are of particu-
lar importance for random network coding as introduced in [55]. We
refer to [56] for the general concept of constant distance codes of sub-
spaces. For the purpose of this thesis, constant distance codes are just
{i}-cliques in a distance-regular graph, i.e. for generators of Hermitian
polar spaces constant distance codes are sets of subspaces which pair-
wise intersect in codimension i. Particularly, partial spreads are con-
stant distance codes with i = d. The only non-trivial upper bounds
known to the author on these sets for general i were provided in the
PhD thesis of Vanhove [78].

Notice that partial spreads fit very well into the investigation of
EKR sets with pairwise intersections in points, since it is its dual
problem: an {d}-coclique of H(2d − 1,q2) is an EKR set of H(2d −

1,q2).
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7.1 related results

Recall that the Hermitian polar space H(2d− 1,q2) posses

d∏
i=1

(q2i−1 + 1)

generators and

(q2d−1 + 1)(q2d − 1)

q2 − 1

points. The number of generators on a point of H(2d− 1,q2) equals
the number of generators of H(2d − 3,q2). A generator of H(2d −

1,q2) contains (q2d − 1)/(q2 − 1) points. Let Y be a (partial) spread
of H(2d − 1,q2). Using the given combinatorial properties, double
counting pairs (P,G) with P ∈ G and G ∈ Y yields

|Y| 6 q2d−1 + 1 (7.1)

with equality if and only if Y is a spread. This bound is never reached
for d > 1. In some sense this bound corresponds to the sphere pack-
ing bound for codes if we consider all generators on a point as a
sphere. One obtains the same bound by applying Proposition 1.9 on
the graph with adjacency matrix A = A1 +A2 + . . .+Ad−1 (with A
as the extended weight matrix).

In the following we list the previous results on (partial) spreads in
H(2d− 1,q2) known to the author that improve bound (7.1).

Theorem 7.1 (De Beule, Klein, Metsch, Storme [20]). Let Y be a partial
spread of H(3,q2). Then

|Y| 6
1

2
(q3 + q+ 2).

In particular, this bound is sharp for q = 2, 3.

Theorem 7.2 (De Beule, Klein, Metsch, Storme [20]). Let Y be a partial
spread of H(2d− 1,q2), d > 2 even. Then

|Y| 6 q2d−1 − q3d/2(
√
q− 1).



122 partial spreads of hermitian polar spaces

The following theorem is stated for the more general concept of
near polygons in [78]. The Hermitian polar space H(2d− 1,q2) is a
regular near 2d-polygon of order (q2,q), so we will only provide this
theorem for this particular case.

Theorem 7.3 (Vanhove [78, Theorem 6.4.10]). Let Y be a set of generators
of H(2d−1,q2) such that all elements of Y pairwise intersect in codimension
i odd. Then

|Y| 6 1+ qi.

Our result is the following:

Theorem 7.4. Let Y be a set of generators of H(2d− 1,q2), d > 1, such
that all elements of Y pairwise intersect in codimension i. Then

|Y| 6 q2d−1 − q
q2d−2 − 1

q+ 1
.

In particular, this is a bound on the maximum size of partial spreads in
H(2d− 1,q2).

If i is even, then this bound seems to be better than a any linear
programming approach using Proposition 1.14. In many cases, it is
also far better than any simple counting argument. If i is odd, then
linear programming in form of Theorem 7.3 is far better.

First we will compare the case that Y is a partial spread (so i = d),
d even, to the previous results in the following table.

d even q Best known bound Theorem

2 2 6 7.1, 7.4

2 4 25 [17]

2 6= 4 1
2(q

3 + q+ 2) 7.1

4 2, 3 q2d−1 − qq
2d−2−1
q+1 7.4 (new)

4 > 3 q2d−1 − q3d/2(
√
q− 1) 7.2

> 4 q2d−1 − qq
2d−2−1
q+1 7.4 (new)
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These bounds are sharp for H(3, 4) [28] and H(3, 9) [29]. They are
not sharp for H(3, 16) [17].1 For all other cases the tightness of these
bounds seems to be unknown.

For d odd a sharp upper bound of qd + 1 on the maximum size of
partial spreads of H(2d− 1,q2) was proven by Vanhove [77]. Exam-
ples reaching this bound were given by Aguglia, Cossidente, Ebert
for d = 3 [1], and by Luyckx for d > 3 odd [58].

Now we will discuss the general case. If i is odd, then Theorem 7.3
gives a better bound for all i. In particular, for i = 1 it is well-known
that the largest example is the set of all q+ 1 generators on a fixed
subspace of rank d− 1 (see Lemma 5.5). According to [39, Remark 4]
there exists a constant-rank distance code with i = 2 and q = 2 in
H(2d− 1,q2) of size

q2d − 1

q2 − 1
.

For q = 2 this is one less than the bound of Theorem 7.4. Therefore,
Theorem 7.4 is nearly sharp. In particular, in the case q = 2, i = 2 the
bound is sharp (see above) and d = 3 as shown in a yet unpublished
result by Maarten De Boeck.

A similar application of Godsil’s bound for near polygons known
to the author is the upper bound s5 − s3 + s− 1 on the size of partial
distance-2 ovoids in the generalized hexagon with parameter (s, s3)
by Coolsaet and Van Maldeghem [18]. As in [78, Theorem 6.4.10] this
bound and the new result could be stated in an unified way for many
so-called near polygons with parameters (s, t, c1, . . . , cd) with t > s2

and ci = (s2i − 1)/(s2 − 1). Unfortunately, according to [24, Theorem
3.4] there are no other near polygons with these parameters for d >
2. To illustrate this point, we will sketch a more general proof for
generalized polygons in Appendix A.

1 This result by Cimráková and Fack is due to an intelligent computer search. A purely
combinatorial proof can be found in the PhD thesis of Beukemann [6].
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7.2 proof of theorem 7 .4

By Theorem 1.22, the dual polar graph H(2d − 1,q2) has the multi-
plicities

fd = q2d
q1−2d + 1

q+ 1
= q2d−1 − q

q2d−2 − 1

q+ 1
.

By Theorem 1.23, our eigenvalues satisfy

Pdi
P0i

= (−q)−i.

By Lemma 1.6,

Qid =
Pdi
P0i

Q0d = fd(−q)
−i.

Proof of Theorem 7.4. Let Y be a set of generators of H(2d− 1,q2) such
that the generators of Y are pairwise in relation R0 or Ri, i > 0. By
Proposition 1.15,

|Y| 6 fd = q2d−1 − q
q2d−2 − 1

q+ 1
,

since

Q0d = fd 6= fd(−q)−i = Qid 6= −1.

The assertion follows.
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Recall Conjecture 3.8 which was proven by Chowdhury, Huang,
Sarkis, Shahriari, and Sudakov [16, 47] for n > 3k. This chapter is
devoted to the proof of the following result which is the result of
a minor improvement of the technique used by Chowdhury, Sarkis,
and Shahriari. Besides small q, the given theorem completely solves
the MMS problem for vector spaces with weights on points.

Theorem 8.1. Let V be an n-dimensional vector space over a finite field
Fq. Let P be the set of 1-dimensional subspaces of V . Let f : P → R be
a weighting of the 1-dimensional subspaces such that

∑
P∈P f(P) = 0. Let

2 6 x 6 k. If one of the following conditions is satisfied, then there are at
least

[
n−1
k−1

]
k-dimensional subspaces with nonnegative weights.

(a) (x− 1)n > (2x− 1)k− x+ 2, 3k > n > 2k+ 2,
and q > (x− 1)! · 2x+2,

(b) (x− 1)n > (2x− 1)k− x+ 1, 3k− 1 > n > 2k+ 1,
and q > (x− 1)! · 22x+1,

(c) n > 3k or n = 2k, and q > 2.

If equality holds and n > 2k+ 1, then the set of nonnegative k-dimensional
subspaces is the set of all k-dimensional subspaces on a fixed 1-dimensional
subspace.

This implies the following for x = k.

Corollary 8.2. Let V be an n-dimensional vector space over a finite field
Fq. Let P be the set of 1-dimensional subspaces of V . Let f : P → R be
a weighting of the 1-dimensional subspaces such that

∑
P∈P f(P) = 0. Let

k > 2. Then there exists a q0 > 2 such that the following holds. If n > 2k,
and q > q0, then there are at least

[
n−1
k−1

]
k-dimensional subspaces with

nonnegative weight. If equality holds and n > 2k+ 1, then the set of non-
negative k-dimensional subspaces is the set of all k-dimensional subspaces
on a fixed 1-dimensional subspace.

We shall extend the technique used by Chowdhury et al. to prove
this. The purpose of the main theorem is to show that Conjecture 3.8
holds for n > 2k if q is large. Often we will ignore minor improve-
ments on the condition on q if this would decrease the readability of
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x 2 3 4 5 6

n > 3k 5k/2 7k/3 9k/4 11k/5

q > 16 64 384 3072 30720

Table 2: The lower bounds on q in Theorem 8.1 for small x if n > 2k+ 2. Note that
the case x = 2 is basically [16] where a more careful counting achieved
q > 2 for n > 3k+ 1.

x 2 3 4 5 6

k 6 2 4 6 8 10

q > 32 256 3072 49152 983040

Table 3: The lower bounds on q in Theorem 8.1 for small k if n = 2k+ 1. Note that
there is an unpublished result by Chowdhury, Sarkis, and Shahriari that
shows the result for (n,k,q) = (5, 2,q), q > 2. Based on their unpublished
notes the author proved the conjecture for (n,k,q) = (5, 2,q).

the formulas. With the used techniques the lower bound on q can not
be much better than (x− 1)!, so the condition on q in Theorem 8.1 is
reasonably good.

8.1 a bound on pairwise intersecting subspaces

One crucial ingredient of the result by Chowdhury et al. is [16, Lemma
3.6] which roughly says the following.

Lemma 8.3 ([16, Lemma 3.6]). Let n > 2k. Let A and C be two k-
dimensional subspaces of V . If A ∩C is a 1-dimensional subspace, then the
number of k-dimensional subspaces of V which non-trivially intersect both
A and C but do not contain A∩C is at most

1

qn−3k

[
n− 1

k− 1

]
.

It is possible to generalize this statement and we shall do so in
this section with Lemma 8.6. Lemma 8.6 is the main improvement
of [16] while all the other results are merely technically necessary
reformulations of the methods given by Chowdhury et al.
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Definition 8.4. Let Y be a set of subspaces of an n-dimensional vector
space V . We say that a subspace M intersects Y badly if all A ∈ Y satisfy
dim(A∩M) = 1 and all A,B ∈ Y with A 6= B satisfy dim(A∩B∩M) =

0.

Definition 8.5. We shall call Y a bad configuration if it is a set of k-
dimensional subspaces of an n-dimensional vector space V such that all
C ∈ Y intersect Y \ {C} badly.

Lemma 8.6. Let 1 < x 6 k. Let q > 3. Let n > 2k + δ > 2k + 1.
Suppose (x− 1)n > (2x− 1)k− x+ δ. Let Y be a bad configuration of k-
dimensional subspaces of a vector space V with x = |Y|. Then the number of
k-dimensional subspaces of V which meet Y badly is at most

x2 · 2x · q−δ
[
n− 1

k− 1

]
.

Proof. Let Y = {A1, . . . ,Ax} be a bad configuration. Let B̃ be a k-
dimensional subspace of V which meets Y badly. Define S as 〈B̃∩Ai :
1 6 i 6 x〉. By the definition of B̃, the subspace S meets Y badly. The
subspace S has at most dimension x, since it is spanned by x vectors,
and S has at least dimension 2, since it intersects Y badly (i.e. the
subspaces S ∩ Ai are pairwise disjoint). Let m, 2 6 m 6 x, be the
dimension of S. We shall provide upper bounds for the number of
choices for S for given m in Part 1. Then, in Part 2, we will bound the
number of choices to extend a given S to a k-dimensional subspace
of V .

part 1 : the number of choices for a badly intersecting

m-dimensional subspace . Case x = m > 2. We have at most
[k]x choices for the 1-dimensional intersections of S with A1, . . . ,Ax,
since any Ai contains [k] 1-dimensional subspaces.

Case x > m > 2. Put M = {S ∩Ai : 1 6 i 6 x}. By assumption, S
has dimension m, so there exists a set B ⊆ M with m elements such
that 〈B〉 = S. Hence, we can choose S in m steps by choosing B. More
formally, define the sets Bi, 2 6 i 6 m, as follows. Put B1 = {S∩A1}.
For B1, . . . ,Bi given, let j0 the smallest number such that the meet of
〈Bi〉 and Aj0 is trivial. Set

Bi+1 = Bi ∪ {S∩Aj0}.
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Define Mi as {〈Bi〉 ∩Aj : 〈Bi〉 ∩Aj non-trivial}.
Since m < x, we have |Mi| > |Mi−1| + 2 for one i. Let i0 be the

smallest i where this occurs. Let Aj,Ai0 be two of the elements of
Y which meet 〈Bi0−1〉 trivially, but 〈Bi0〉 non-trivially. Notice that
i0 ∈ {2, . . . ,m} and j ∈ {i0 + 1, . . . ,m}. In the following we are going
to double count the tuples (i0, j,B1, . . . ,Bm = B,S) in accordance
with the given defintions.

For given {B1, . . . ,Bi−1}, i 6= i0, we have at most [k] choices for Bi,
since any Ai contains [k] 1-dimensional subspaces. Hence, we have at
most [k]m−1 choices for all {Bi : 1 6 i 6 m, i 6= i0}.

We have at most m − 1 6 x − 2 choices for i0. We have at most
x − i0 − 1 choices for j for given i0 as by construction all elements
of A1, . . . ,Ai0−1 meet 〈Bi0〉 non-trivially. Therefore, we have at most(
x−1
2

)
choices for the pair (i0, j). By our choice of i0, Ai0 ∩ 〈Bi0〉 is a

subspace of 〈Bi0 ,Aj〉. By k = dim(Aj) = dim(Ai0), we have

dim(〈Bi0 ,Aj〉 ∩Ai0)
6 dim(〈Bi0 ,Aj〉) + dim(Ai0) − dim(〈Aj,Ai0〉)
6 (dim(〈Bi0〉) + dim(Aj) − 1) + dim(Aj) − (2dim(Aj) − 1)

= dim(〈Bi0〉) 6 m.

Therefore, we have at most [m] choices to extend Bi0−1 to Bi0 by
choosing a 1-dimensional subspace in Ai0 . For given B = Bm, S is
uniquely determined by S = 〈B〉. Hence, we have

(
x−1
2

)
[k]m−1[m]

choices for S for given (i, j0,B1, . . . ,Bm).
On the other hand, for S given, B, Bi and therefore i0 and j are

uniquely determined by their definitions.

part 2 : the number of choices for a k-dimensional sub-
space on a given m-dimensional subspace . For given S

have we have
[
n−m
k−m

]
choices for a k-dimensional subspace through

S. So if m = x, then we have at most

[k]x
[
n− x

k− x

]
6 2x+1qx(k−1)+(n−k)(k−x) (8.1)
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choices for B by Corollary 2.1. If m < x, then we have at most

[k]m−1

(
x− 1

2

)
[m]

[
n−m

k−m

]
6

(
x− 1

2

)
· 2m+1q(m−1)k+(n−k)(k−m) (8.2)

choices for B by Corollary 2.1.
By (8.2) and n > 2k+ 1 we find that the choices for B for which the

dimension of S is less than x is at most

x−1∑
m=2

(
x− 1

2

)
· 2m+1q(m−1)k+(n−k)(k−m)

6

(
x− 1

2

)( x−1∑
m=2

2m+1

)
max

m=2,...,x−1
q(m−1)k+(n−k)(k−m)

6

(
x− 1

2

)
· 2x+1 max

m=2,...,x−1
q(m−1)k+(n−k)(k−m)

=

(
x− 1

2

)
· 2x+1qk+(n−k)(k−2)

= (x− 1)(x− 2) · 2xqk+(n−k)(k−2)

Hence an upper bound for this number and (8.1) is, by (x− 1)n >
(2x− 1)k− x+ δ, n > 2k+ δ, and (x− 1)(x− 2) + x 6 x2 for x > 2,

x2 · 2xqmax(k+(n−k)(k−2),x(k−1)+(n−k)(k−x))

6 x2 · 2xq−δ+(n−k)(k−1). (8.3)

Applying the inequality
[
n−1
k−1

]
> q(k−1)(n−k) to (8.3) shows the asser-

tion.

8.2 an eigenvalue technique

In this section we restate the arguments used in Section 3 of [16]. We
include proofs for the results as our results extend results of [16] in
some way. Before we do this we want to give some context to the used
eigenvalue technique.
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Let V be a vector space over Fq. Let f : P → R a weighting of P

with
∑
P∈P f(P) = 0. We suppose f 6≡ 0 throughout this section, since

the case f ≡ 0 is trivial for Theorem 8.1. We say that two subspaces R
and S are incident if S ⊆ R or R ⊆ S. Define the incidence matrix Wij as
the matrix whose rows are indexed by the i-dimensional subspaces
of V , whose columns are indexed by the j-dimensional subspaces of
V , by

(Wij)RS =

1 if S is incident with R,

0 otherwise.

Let Ai be the distance-i-adjacency matrix of the Grassman graph (see
Subsection 1.5.2). We write bS for the weight of a k-dimensional sub-
space S of V (i.e. bS =

∑
P∈S f(P)). By the definition of the weight of

S, clearly b = Wk1f holds if we consider f = (f(P))P∈P as a vector
indexed by the 1-dimensional subspaces P of V and b = (bS)S as a
vector indexed by the k-dimensional subspaces S of V . By Theorem
1.18, b =Wk1f is an eigenvector of Ai and lies in the eigenspace V1.

Lemma 8.7. Let Ai be the distance-i adjacency matrix of the k-dimensional
subspaces of V . Let b be the weight vector of the k-dimensional subspaces of
V . Then b is an eigenvector of Ai with eigenvalue[

n− k− 1

i

][
k− 1

i

]
q(i+1)i −

[
n− k− 1

i− 1

][
k− 1

i− 1

]
qi(i−1).

For a given k-dimensional subspaces C we have∑
dim(S∩C)=k−i

bS = (Aib)C =

([
n− k− 1

i

][
k− 1

i

]
q(i+1)i −

[
n− k− 1

i− 1

][
k− 1

i− 1

]
qi(i−1)

)
bC,

which makes these eigenvalues very useful. In particular, for Ak−1
we get the following result. Notice that this number was directly
calculated by Chowdhury et al. in [16, Equation (3.15)] and that we
adopted their presentation of the formula.
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Lemma 8.8. Let n > 2k+ 1. Let C be a k-dimensional subspace of V . Then
we have

∑
dim(S∩C)=1 bS =(

qk(k−1)
[
n− k− 1

k− 1

]
− q(k−1)(k−2)[k− 1]

[
n− k− 1

k− 2

])
bC.

Let A be one of the k-dimensional subspaces with bA = maxbS
(i.e. a k-dimensional subspace with the highest weight). The idea of
this section is to reach a situation where we can apply Lemma 8.6
on a large bad configuration. We shall do this in several steps. In
Lemma 8.10 we show that we are able to find a lot of nonnegative
k-dimensional subspaces which intersect A in a 1-dimensional sub-
space and have a weight of nearly bA for large q. Lemma 8.11 then
shows that many of these nonnegative k-dimensional subspaces pair-
wise intersect in exactly a 1-dimensional subspace, which leads to a
situation where we can apply Lemma 8.6.

Lemma 8.9. Let n > 2k+ 1. Let A denote a highest weight k-dimensional
subspace of V . Let C be a nonnegative k-dimensional subspace of V . Then at
least (

1−
3

qn−2k+1

)[
n− 1

k− 1

]
bC
bA

nonnegative k-dimensional subspaces intersect C in exactly a 1-dimensional
subspace.

Proof. By Lemma 8.8,
∑

dim(S∩C)=1 bS =(
qk(k−1)

[
n− k− 1

k− 1

]
− q(k−1)(k−2)[k− 1]

[
n− k− 1

k− 2

])
bC.

Each bS is less than or equal to bA which yields at least(
qk(k−1)

[
n− k− 1

k− 1

]
− q(k−1)(k−2)[k− 1]

[
n− k− 1

k− 2

])
bC
bA
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nonnegative k-dimensional subspaces that intersect C in exactly a 1-
dimensional subspace. As n > 2k+ 1, we have

q(k−1)(k−2)[k− 1]
[
n−k−1
k−2

][
n−1
k−1

] (8.4)

= q(k−1)(k−2)[k− 1]
qk−1 − 1

qn−k+1 − 1

k−2∏
i=1

qn−k−i − 1

qn−i − 1

< q(k−1)
2

q−n+2k−2q−(k−2)k

6
1

qn−2k+1
.

Then Lemma 2.3 (with a = k) shows the assertion.

Lemma 8.10. Let n > 2k+ 1. Let c be a real number with 3 6 c 6 q.
Let A denote a highest weight k-dimensional subspace of V . Let Ci denote
the i-th highest weight k-dimensional subspace of V such that dim(A ∩
Ci) = 1. Suppose i 6 c−3

q

[
n−1
k−1

]
+ 1, and suppose that there are at most[

n−1
k−1

]
nonnegative k-dimensional subspaces of V , then bCi , the weight of

Ci, satisfies

bCi >

(
1−

c

q

)
bA

Proof. By Lemma 8.8 and bCi 6 bA, we have∑
j>i

bCj =
∑

bCj −
∑
j<i

bCj > bA·(
qk(k−1)

[
n− k− 1

k− 1

]
− q(k−1)(k−2)[k− 1]

[
n− k− 1

k− 2

]
− i+ 1

)
.

We suppose that we have at most
[
n−1
k−1

]
nonnegative k-dimensional

subspaces. Hence, we find

bCi >
qk(k−1)

[
n−k−1
k−1

]
− q(k−1)(k−2)[k− 1]

[
n−k−1
k−2

]
− i+ 1[

n−1
k−1

] .

(8.5)
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By hypothesis i 6 c−3
q

[
n−1
k−1

]
+ 1 6

(
c
q − 3

qn−2k+1

) [
n−1
k−1

]
+ 1, n > 2k+

1, and (8.4), we have

q(k−1)(k−2)[k− 1]

[
n− k− 1

k− 2

]
+ i− 1

6

(
c

q
−

2

qn−2k+1

)[
n− 1

k− 1

]
. (8.6)

By Lemma 2.3,

qk(k−1)
[
n− k− 1

k− 1

]
>

(
1−

2

qn−2k+1

)[
n− 1

k− 1

]
.

Hence, (8.6) and (8.5) yield assertion.

Lemma 8.11. Let n > 2k + δ > 2k + 1. Let c be a real number with
3 6 c 6 q. Let q > 3. LetA denote a highest weight k-dimensional subspace
of V . Let Ci denote the i-th highest weight k-dimensional subspace of V such
that dim(A ∩ Ci) = 1. Let I be a subset of {1, . . . , bc−3q

[
n−1
k−1

]
+ 1c} with

|I| 6 k− 1. Set x = |I|+ 1. Set M := {A}∪ {Ci : i ∈ I}. Suppose that there
are at most

[
n−1
k−1

]
nonnegative k-dimensional subspaces. Then we have the

following.

(a) At least(
1−

(x− 1)c

q
−

3x

qn−2k+1

)[
n− 1

k− 1

]
nonnegative k-dimensional subspaces intersect each element of M in
exactly a 1-dimensional subspace.

(b) Suppose that M is a bad configuration. Suppose x > 1 with (x −

1)n > (2x − 1)k − x + δ. Then there exist S,R ∈ M such that the
1-dimensional subspace S∩ R lies in at least(

1−
(x− 1)c

q
−

3x

qn−2k+1
− x2 · 2xq−δ

) [n−1
k−1

](
x
2

)
nonnegative k-dimensional subspaces.
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Proof. We write M = {M1, . . . ,Mx} with M1 = A.
First we shall show by induction on x > 1 that at least(

1−
(x− 1)c

q
−

3x

qn−2k+1

)[
n− 1

k− 1

]
(8.7)

nonnegative k-subspaces intersect all elements of {M1, . . . ,Mx} in ex-
actly a 1-dimensional subspace.

For A we find by applying Lemma 8.9 that A meets at least(
1−

3

qn−2k+1

)[
n− 1

k− 1

]
(8.8)

nonnegative k-dimensional subspaces in a 1-dimensional subspace.
This shows (8.7) for x = 1.

Now suppose x > 1. By hypothesis, there are at most
[
n−1
k−1

]
nonneg-

ative k-dimensional subspaces. So by Lemma 8.9, Lemma 8.10, (8.7),
and the sieve principle, we find that at least(

1−
(x− 1)c

q
−

3x

qn−2k+1

)[
n− 1

k− 1

]
+

(
1−

c

q
−

3

qn−2k+1

)[
n− 1

k− 1

]
−

[
n− 1

k− 1

]
(8.9)

>

(
1−

xc

q
−
3(x+ 1)

qn−2k+1

)[
n− 1

k− 1

]
nonnegative k-dimensional subspaces intersect all elements of the set
{M1, . . . ,Mx} in exactly a 1-dimensional subspace. This shows (a).

By Lemma 8.6 and (8.7), we have that at least(
1−

(x− 1)c

q
−

3x

qn−2k+1
− x2 · 2xq−δ

)[
n− 1

k− 1

]
(8.10)

nonnegative k-dimensional subspaces intersect all elements of M in
exactly a 1-dimensional subspace and contain a 1-dimensional sub-
space of the form Mi ∩Mj, i 6= j. As we have at most

(
x
2

)
such 1-

dimensional subspaces Mi ∩Mj, this shows (b).

Lemma 8.12. Let n > 2k+ 1. Let x be a number with 2 6 x 6 k. Let
q > (x− 1)! · 2x+2. Let A denote a highest weight k-dimensional subspace
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of V . Let Ci denote the i-th highest weight k-dimensional subspace of V
such that dim(A∩Ci) = 1. Suppose that there are at most

[
n−1
k−1

]
nonnega-

tive k-dimensional subspaces of V . Suppose that no 1-dimensional subspace
is contained in more than 3

q

[
n−1
k−1

]
nonnegative k-dimensional subspaces.

Then M̃x := {A} ∪ {Ci : i 6
(x−2)!·2x+1−3

q

[
n−1
k−1

]
+ 1} contains a bad con-

figuration M with x elements and A ∈M.

Proof. We shall prove our claim by induction on x. If x = 1, then {A} is
a bad x-configuration. If x = 2, then {A,C1} is a bad x-configuration.

Only the case x > 2 remains. Suppose that M̃x contains a bad x-
configuration M = {M1, . . . ,Mx} with A ∈ M and x > 2. By Lemma
8.11 (a), at least

α :=

(
1−

(x− 1)! · 2x+1

q
−

3x

qn−2k+1

)[
n− 1

k− 1

]
nonnegative k-dimensional subspaces intersect all elements of M in
exactly a 1-dimensional subspace. By hypothesis, at most

3

q

(
x

2

)[
n− 1

k− 1

]
nonnegative k-dimensional subspaces of V contain one of the

(
x
2

)
1-

dimensional subspaces Mi ∩Mj, i 6= j. So the number of nonnegative
k-dimensional subspaces which meet M badly is, by definition, by
q > (x− 1)! · 2x+2, and by n− 2k+ 1 > 2, at least

α−
3

q

(
x

2

)[
n− 1

k− 1

]
=

(
1−

(x− 1)! · 2x+1 + 3
(
x
2

)
q

−
3x

qn−2k+1

)[
n− 1

k− 1

]

>

(
1−

(x− 1)! · 2x+1 + 3
(
x
2

)
+ 3x/q

q

)[
n− 1

k− 1

]

>

(
1−

(x− 1)! · 2x+1 + 3
(
x
2

)
+ 1

q

)[
n− 1

k− 1

]
=: β.
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There are at most
[
n−1
k−1

]
nonnegative k-dimensional subspaces and,

by Lemma 8.10 and q > (x− 1)! · 2x+2, all elements of M̃x+1 have
nonnegative weight, so at least

β+ |M̃x+1|−

[
n− 1

k− 1

]
>

(
(x− 1)! · 2x+2 − 3− (x− 1)! · 2x+1 − 3

(
x
2

)
− 1

q

)[
n− 1

k− 1

]

=

(
(x− 1)! · 2x+1 − 4− 3

(
x
2

)
q

)[
n− 1

k− 1

]
nonnegative k-dimensional subspaces meetM badly and are in M̃x+1.
For x > 2 this number is positive, so we will find a bad configuration
of nonnegative k-dimensional subspaces in M̃x+1.

8.3 an averaging bound

In [16, Lemma 4.5] Chowdhury, Sarkis, and Shahriari apply a result by
Beutelspacher (Theorem 3.7) on partial spreads of projective spaces.
They do not fully state what their proof shows which is why we have
to restate their result here in a bit more detail. We refer1 to [16] for
the complete argument.

Lemma 8.13. If n = 2k+ δ with 0 6 δ < k, and T is a negative weight
k-dimensional subspace, then there are at least(

1−
2

q

)[
n− 1

k− 1

]
nonnegative k-dimensional subspaces that have trivial intersection with T .

Proof. The proof is as in [16, Lemma 4.5] with the exception of [16,
Equation (4.51)]. By Lemma 2.3 and [16, Equation (4.51)], we have for
n = 2k+ δ

|F| > q(k+δ)(k−1)
[
n− k− δ− 1

k− 1

]
= q(k+δ)(k−1) >

(
1−

2

q

)[
n− 1

k− 1

]
.

1 One can find a preprint of [16] on the arXiv.
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8.4 proof of theorem 8 .1

Proof of Theorem 8.1. We may assume that there are at most
[
n−1
k−1

]
non-

negative k-dimensional subspaces. We will also assume 2k < n < 3k,
since the remaining cases are covered in [16, Theorem 1.3] and [61]
(see Subsection 3.2.4). Also notice that the theorem reuqires x > 2.

If there exists a 1-dimensional subspace P which is contained in[
n−1
k−1

]
nonnegative k-dimensional subspaces, then we are done. There-

fore, we can suppose that all 1-dimensional subspaces are contained
in at least one k-dimensional subspace with negative weight.

Suppose there exists a 1-dimensional subspace P which is con-
tained in more than 2

q

[
n−1
k−1

]
nonnegative k-dimensional subspaces.

There exists a negative k-dimensional subspace T on P, so there are
at least(

1−
2

q

)[
n− 1

k− 1

]
nonnegative k-dimensional subspaces not on P by Lemma 8.13. Then
there are more than

[
n−1
k−1

]
+ 1 nonnegative k-dimensional subspaces

which contradicts our assumption.
Therefore no 1-dimensional subspace is contained in more than

2
q

[
n−1
k−1

]
nonnegative k-dimensional subspaces. Let A denote a heigh-

est weight k-dimensional subspace of V . Let Ci denote the i-th high-
est weight k-dimensional subspace of V such that dim(A ∩ Ci) = 1.
By Lemma 8.12, there exists a bad configuration in {A} ∪ {Ci : i 6
(x−2)!·2x+2−3

q

[
n−1
k−1

]
+ 1} with x elements. Hence, we can apply Lemma

8.11 (b) with

c = (x− 2)! · 2x+1

which shows that we find a 1-dimensional subspace that is a subspace
of at least(

1−
(x− 1)! · 2x+1

q
−

3x

qn−2k+1
− x2 · 2x · q−δ

) [n−1
k−1

](
x
2

) (8.11)
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nonnegative k-dimensional subspaces where δ = 2 in Case (a), and
δ = 1 in Case (b).

If δ = 2, then the assumptions q > (x− 1)! · 2x+2, (x− 1)n > (2x−

1)k− x+ 2 (particularly, x > 1), and n > 2k+ 2 imply

(x− 1)! · 2x+1

q
6
1

2
,

3x

qn−2k+1
6
3x

q3
6

3x

23(x+2)
6

3

256
,

x2 · 2x · q−δ 6 x2 · 2x

(2x+2)
2
6

x2

2x+4
6
1

8
,

q(
x
2

) >
(x− 1)! · 2x+3

x(x− 1)
> 16,

so (8.11) is at least(
1−

1

2
−

3

256
−
1

8

) [n−1
k−1

](
x
2

) =
93

256
(
x
2

)[n− 1

k− 1

]
>
93

16q

[
n− 1

k− 1

]
>
2

q

[
n− 1

k− 1

]
.

This contradicts our assumption that no 1-dimensional subspace P
is contained in more than 2

q

[
n−1
k−1

]
nonnegative k-dimensional sub-

spaces. Hence, Part (a) of the theorem follows.
If δ = 1, then the assumptions q > (x − 1)! · 22x+1, (x − 1)n >

(2x− 1)k− x+ 1, and n > 2k+ 1 imply Part (b) of the theorem with
similar calculations. Here we have

(x− 1)! · 2x+1

q
6
1

4
,

3x

qn−2k+1
6
3x

q3
6

3x

23(2x+1)
6

3

1024
,

x2 · 2x · q−δ 6 x2 · 2x

22x+1
6

x2

2x+1
6
9

16
,

q(
x
2

) >
(x− 1)! · 22x+2

x(x− 1)
> 32.
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Then (8.11) is at least(
1−

1

4
−

3

1024
−
9

16

) [n−1
k−1

](
x
2

) =
189

1024
(
x
2

)[n− 1

k− 1

]
>
189

32q

[
n− 1

k− 1

]
>
2

q

[
n− 1

k− 1

]
.

8.5 duality

For the sake of completeness we also mention the following simple
exercise, which was (at least when the author first published it) not
common knowledge among the experts on the topic.

Lemma 8.14. Let n > 2k. If there are at least α (n− k)-dimensional sub-
spaces with nonnegative weight, then there are at least α k-dimensional
subspaces with nonnegative weight. Furthermore, the set of k-dimensional
subspaces with nonnegative weights is isomorphic to a dual of the set of
nonnegative (n− k)-dimensional subspaces.

Proof. Let H be the set of hyperplanes of V . Define the weight func-
tion g : H → R by g(H) =

∑
P∈H f(P). Define the g-weight of a

k-dimensional subspace U by g(U) =
∑
U⊆H g(H). Furthermore by∑

P∈P f(P) = 0,

g(U) =
∑
U⊆H

g(H)

=
∑
U⊆H

∑
P∈H

f(P)

=
∑
U⊆H

( ∑
P∈H∩U

f(P)

)
+

 ∑
P∈H\U

f(P)


=
∑

P∈P∩U
([n− k]f(P) +

∑
P∈P\U

[n− k− 1]f(P))

= qn−k−1f(U).
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Hence, we can consider the problem in the dual vector space of V
(which is isomorphic to V) with g as the weight function on points
(of the dual space). Then the assertion is obvious.

This shows that one only has to investigate the MMS problem for
n > 2k: If n < 2k, then n > n+ (n− 2k) = 2(n− k).

8.6 concluding remarks

The used argument is based on the observation that the only set of
nonnegative k-dimensional subspaces which reaches the bound

[
n−1
k−1

]
seems to be the set of all generators on a fixed 1-dimensional sub-
space. This can no longer work for n = 2k, since one can construct
another example of that size as follows. Fix a (2k − 1)-dimensional
subspace S, put the weight −1 on all 1-dimensional subspaces not in
S and the weight q2k−1/[2k− 1] on all 1-dimensional subspaces in S.
Then exactly the

[
n−1
k−1

]
k-dimensional subspaces in S are the nonneg-

ative ones, so this is a second example. This is in fact the only other
example in this case (see below).

Conjecture 3.8 is wrong for k < n < 2k as one can see by a sim-
ilar example which we obtain by duality: Fix a (n− 1)-dimensional
subspace S, put the weight −1 on all 1-dimensional subspaces not
in S, put the weight qn−1/[n − 1] on all 1-dimensional subspaces
in S. Then the nonnegative k-dimensional subspaces are exactly the
k-dimensional subspaces in S. There are

[
n−1
k

]
such subspaces, so[

n−1
k

]
<
[
n−1
k−1

]
for k < n < 2k shows that Conjecture 3.8 does not

hold in this range.
As the cases n < 2k are covered by Lemma 8.14, it seems to be

reasonable to conjecture the following.

(a) For k < n < 2k, the minimum number of nonnegative k-dimen-
sional subspaces is

[
n−1
k

]
with equality for the example given

above,

(b) For n = 2k, the minimum number of nonnegative k-dimensional
subspaces is

[
n−1
k−1

]
with equality for the two given example, i.e.

either all nonnegative k-dimensional subspaces contain a fixed
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1-dimensional subspace or all nonnegative k-dimensional sub-
spaces are contained in a fixed (n− 1)-dimensional subspace,

(c) For n > 2k, the minimum number of nonnegative k-dimensional
subspaces is

[
n−1
k−1

]
with equality if and only if all nonnegative

k-dimensional subspaces contain a fixed 1-dimensional subspace.

Notice that (b) is implied by the proof of [61, Theorem 3.1] and the
classification of all Erdős-Ko-Rado sets of size

[
n−1
k−1

]
. Chowdhury

remarked2 that this conjecture is the canonical generalization of a
conjecture on the MMS problem for sets given in [4, 11] which was
confirmed for small cases in [41]. Additionally, the author did a (non-
exhaustive) computer search for weightings with a minimum number
of nonnegative k-dimensional subspaces which support the stated
conjecture on vector spaces.

2 Private correspondence.
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154 a multiplicity bound for generalized polygons

In this chapter we discuss the analog of Theorem 7 for all gener-
alized polygons with parameters (s, t). We refer to [13, Section 6.5]
for the necessary definitions. Note that generalized d-gons satisfy
d ∈ {4, 6, 8} if s, t > 1 [13, Th. 6.5.1].

If d = 4, then according [13, Table 6.4] the multiplicity of one of the
eigenvalues is s2(st+ 1)/(s+ t). Hence, by Proposition 1.15 (with a
few exceptions for particular s and t), s2(st+ 1)/(s+ t) is an upper
bound on the size of an {i}-clique in a generalized quadrangle. By [13,
p. 202], linear programming yields st+ 1 as an upper bound if i = 2.
Hence, if

s 6

√
4t+ 1+ 1

2
,

then the multiplicity bound is better than the linear programming
bound for i = 2. An easy calculation shows that this happens if t >
s(s− 1). Note that generalized quadrangles always satisfy t 6 s2 [13,
Th. 6.5.1]. Additionally, the multiplicity s2(st+ 1)/(s+ t) has to be an
integer. Hence, this bound is only useful for generalized quadrangles
with parameters (s, s2 − s) and (s, s2) (also see [65, Result 1.2.4]).

If d = 6, then by [13, Table 6.4] one multiplicity is

s3(1+ st+ s2t2)

s2 + st+ t2
.

By [13, p. 202], the linear programming bound for a {2}-clique is

1+
s2t(t+ 1)

(s− 1)
√
st+ s

.

It is easy to verify that for t = s3 the multiplicity bound is better.
See also Coolsaet and Van Maldeghem [18], who first observed this
bound and even improved it further by one. Also note that s 6 t3 [13,
Th. 6.5.1].

If d = 8, then by [13, Table 6.4] one multiplicity is

s4(1+ st)(1+ s2t2)

(s+ t)(s2 + t2)
.



a multiplicity bound for generalized polygons 155

By [13, p. 203], the linear programming bound for a {4}-clique is

s6 + 1

and even better for other {i}-cliques. As we have s 6 t2 [13, Th. 6.5.1],
here the linear programming bound is always better than the multi-
plicity bound.

For all other multiplicities and choices of i, the multiplicity bound
is worse than the linear programming bound.
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158 open problems

Here is a list of open problems which I encountered during my
PhD and which I consider interesting. Some are already mentioned
in the individual chapters.

• Partial Spreads of H(2d − 1,q2), d even. Fix d. Many people
assume that partial spreads have at most size O(q2d−2). Prove
that a partial spread has at most size O(q2d−1−e) for some e >
0. Alternatively, construct an infinite class of spreads of size
O(q2d−2+e).

• Is the bound given in Theorem 7.4 tight for any other choice of
d, i and q besides (d, i,q) = (2, 2, 2) and (d, i,q) = (3, 2, 2)?

• Generalized quadrangles with parameters (s, s2) are not classi-
fied. Does there exist a quadrangle for which the bound given
in Theorem 7, respectively, Chapter A is tight besides H(3, 4)?
This question is due to Jason Williford.

• Cross-intersecting EKR sets on H(2d− 1,q2), d > 2 odd. Are the
examples given in Chapter 6 the largest?

• Cross-interesting EKR sets in general. What are tight bounds on
cross-intersecting EKR sets of totally isotropic subspaces, which
are not generators? This question is due to Klaus Metsch.

• EKR sets, H(2d− 1,q2), d > 3 odd. Which size have the largest
examples? What are the largest examples?

• Is Conjecture 5.40 on the maximum size of EKR sets true?

• After I published a preprint of the paper version of Chapter
6, Dennis Stanton asked me the following question by e-mail
(and in a publication from 1980 [69]). Are there perfect 1-codes
in Q(2d,q) or W(2d− 1,q) if d = 2h − 1 for integer h? Here a
perfect 1-code is a set Y of generators such that every genera-
tor meets exactly one generator of Y in a subspace of at most
codimension 1.

• Is the MMS conjecture for vector spaces true for all n > 2k and
q?
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