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Abstract 

Climate change and a growing population alter established water usage pathways in 

Eastern Africa and create an urgent need for effective and sustainable water management 

strategies. However, required data to develop such strategies is often missing, especially 

in remote regions. This dissertation examines (1) whether water level data collected by 

citizens can improve the hydrological database, (2) how this data can be used to establish 

rainfall-runoff models, and (3) the socio-economic background and motivation of citizens 

to participate in data collection or reasons that prevent them from continuing. 

First, a crowdsourced water level monitoring network was established at thirteen 

locations within the Sondu-Miriu River basin located in Western Kenya. Interested citizens 

were invited to record water level data and report these values by sending a simple text 

message using their cellphone. Over a period of 3.5 years 258 citizens reported 3,480 valid 

data points. Validation against water level data collected by an automatic radar station at 

one of the sites revealed high data quality. 

In a second step, a conceptual rainfall-runoff model was calibrated on water level data 

collected by citizens using Spearman-Rank-Coefficients between the simulated discharge 

and the water levels. Considering a water balance filter derived from measured 

precipitation and remotely sensed evapotranspiration, the model calibrated on 

crowdsourced data reached a model efficiency close to values obtained from a benchmark 

model that was built using automatically measured discharge data (Nash-Sutcliffe-

Efficiency of 0.69 compared to 0.88). 

Finally, a telephone survey among the participants in the monitoring project revealed 

that those who submitted data over a long period were generally between 30 and 50 years 

old and hold a primary or secondary school diploma. Many participants stated that 

helping water management and conservation purposes were their primary motivation of 

involvement. Sensitization meetings were mentioned as the main source of information 

about the project by long-term participants.  

This reserach shows that crowdsourced monitoring approaches are a promising 

additional tool for water resources management, particularly in ungauged or poorly 

gauged catchments and under limited financial resources. These findings can be used to 

support the development for sustainable community-based water monitoring programs. 
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1 Extended summary 

1.1 Introduction 

Water provisioning is one of the most fundamental ecosystem services for human beings 

(Buytaert et al. 2014). However, stressors such as climate change, population growth, and 

land use changes put pressure on this resource and jeopardize established water usage 

pathways both for human society and for nature itself (Johnson et al. 2007, Everard 2012). 

Falcone et al. (2010) postulated that these stressors directly affect the hydro-

biogeochemical processes of ecosystems and impairs their resilience to extreme events or 

other disruptive factors. Land use change and climate variability further alter the 

availability of water in catchments and make it difficult to predict local and regional 

changes (Jackson et al. 2001). Buytaert et al. (2014) suggested that insufficient water supply 

often represents a significant bottleneck for sustainable development and poverty 

alleviation. Consequently, the changes and effects caused by stressors obstruct the 

achievement of the Sustainable Development Goals defined by the United Nations in the 

Agenda 2030, which are intended to ensure a better and more sustainable future (United 

Nations 2015). 

Sustainable water management strategies are crucial to minimizing the impact of negative 

effects on water availability. The evidence-based decision making that is needed for 

sustainable water management requires dense hydrological monitoring networks with a 

high temporal and spatial resolution (Mishra and Coulibaly 2009, Ochoa-Tocachi et al. 

2018). Grab sampling approaches are often too expensive for regional or national 

monitoring programs (Hildebrandt et al. 2006) and can miss short hydrological events 

(Jacobs et al. 2018b). Permanently installed automatic monitoring stations, like river 

gauging stations, are prone to corrosion, vandalism, and theft and therefore require 

routine site maintenance and security (Gomani et al. 2010, Hannah et al. 2011, van 

Overloop et al. 2014). In addition, remote locations are often inaccessible, which further 

limits the amount of data that can be collected with available resources (Zheng et al. 2018). 

Data restriction policies delay data release (Vörösmarty et al. 2001) and limit the use of 

data for water resources management, especially when up-to-date information is required 
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(Wagner et al. 2009). Hence, substantial costs and challenges in practical implementation 

lead to sparse data collection and irregular monitoring. While the available data pool is 

frequently sufficient in developed countries, low-income countries are often constrained 

by data scarcity which complicates or prevents the implementation of sustainable 

management practices and sustainable development (Gilbert 2010, Buytaert et al. 2014, 

Jacobs et al. 2018b, Rufino et al. 2018). 

Recent literature underlines the fact that hydrological data in large parts of the world is 

incomplete and the lengths of the time series are insufficient to characterize and 

adequately manage water resources (Mishra and Coulibaly 2009, Chacon-Hurtado et al. 

2017). As a result, research increasingly focuses on alternative data collection methods. 

Besides the use of remote sensing technology for meteorological and discharge data (Smith 

et al. 1996), studies also investigated the use of cameras (Le Coz et al. 2016, Jiang et al. 

2019), social media (Le Boursicaud et al. 2016, Chaudhary et al. 2019), cell phone networks 

(Gosset et al. 2016) or privately operated weather stations (Bell et al. 2013) to gather 

additional information.  

Relatively new are citizen science methods for monitoring environmental data, which 

have received increasing attention from the scientific community and the public during 

the last years (Njue et al. 2019). Citizen science is described as a practice in which 

volunteers are involved in the scientific research process such as collecting, categorizing, 

transcribing, or analyzing scientific data (Bonney et al. 2009). The European Commission 

(2013) defined citizen science as a “general public engagement in scientific research 

activities where citizens actively contribute to science either with their intellectual effort, 

or surrounding knowledge, or their tools and resources”. In the literature, common terms 

like volunteer-based monitoring (Deutsch and Ruiz-Córdova 2015), crowdsourcing 

(Howe 2006), community-based monitoring (Palmer Fry 2011), citizen observatories (Liu 

et al. 2014), or participatory monitoring (Danielsen et al. 2005) are used to describe 

different forms of public participation in scientific processes.  

Over the last twenty years, citizen science projects are considered as a promising approach 

for long-term monitoring of local and global environmental change (Danielsen et al. 2005, 

Silvertown 2009, Johnson et al. 2014, McKinley et al. 2017). These projects can be a cost-

effective way of data collection and support the implementation of otherwise labor-

intensive or expensive research problems (Tweddle et al. 2012, Gura 2013, Bonney et al. 
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2014, Pocock et al. 2014). Consequently, decision-makers and non-governmental 

organizations increasingly cooperate with volunteers for monitoring tasks. Besides 

reducing expenses, citizen science projects link scientific work to the broader community 

which may raise public awareness and the public’s attitude towards the topic investigated 

(Chase and Levine 2018). Overdevest et al. (2004) reported that locals, who are involved 

in citizen science activities are more likely to protect environmental resources and 

participate in community services or socio-political activities. 

The data collected by citizens can be used in a wide range of research scenarios. While 

high quality and high frequent discharge data remain complex to measure, the literature 

suggests that especially water level data can easily be collected with high accuracy by 

citizen either using physical (Weeser et al. 2018, Lowry et al. 2019) or virtual staff gauges 

(Seibert et al. 2019). This data can then be, for example, used in hydrological models and 

offer a way to assess the behavior of catchments to climate change and land use scenarios, 

which allows the development and evaluation of sustainable management strategies. In 

order to do so, these models require data like precipitation, temperature, and discharge. 

Nevertheless, using crowdsourced data for hydrological modeling is still in its infancy. 

Data collected by citizens differ from traditionally collected data in their temporal- and 

spatial coverage, quantity, and accuracy (Assumpção et al. 2018). Until now, only a few 

studies investigated how these characteristics influence the model calibration process 

using synthetic datasets derived from traditionally measured discharge (Mazzoleni et al. 

2017, Mazzoleni et al. 2018), water levels (Seibert and Vis 2016, Weeser et al. 2019) or water 

levels measured by volunteers, which were converted into discharge using site-dependent 

stage-discharge relationships (Avellaneda et al. 2020).  

This dissertation aims to further evaluate the potential of crowdsourcing approaches to 

contribute to hydrological research, particularly for low-income countries where 

experience with crowdsourced projects are limited and required hydrological data is often 

not available (Buytaert et al. 2014, Njue et al. 2019). First, a crowdsourced water level 

monitoring network with thirteen stations was designed and implemented in western 

Kenya to investigate with which temporal resolution and accuracy volunteers contribute 

data in such a setting (Weeser et al. 2018). In a second step, the data generated within the 

network was used to assess whether the data was suitable to run a hydrological model 

and how the model efficiency differs between a model calibrated on crowdsourced water 
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level data against a model calibrated on traditional discharge measurements (Weeser et al. 

2019). One key factor to ensure a successful and sustainable citizen science project that 

contributes to an abiding data collection are motivated and long-term engaged volunteers. 

Thus, understanding the socio-economic background and reasons why volunteers 

participate can support the design of an effective program. Hence, in a final step of this 

dissertation, citizen scientists in the aforementioned water level monitoring program were 

interviewed through a telephone survey to investigate their socio-economic background, 

understand their motivations and identify potential obstacles that might hinder them from 

turning into a long-term engaged volunteer (Weeser et al. under review).   

1.2 Research Questions 

The main aim of this dissertation is: 

To rigorously test the feasibility to collect water level data by citizen scientists in a low-

income country, evaluate the potential use of crowdsourced data for hydrological studies 

and modeling, and assess the background and motivations of participating citizens.   

Three research questions will be addressed in separate chapters: 

Chapter 2: Can the involvement of citizens in a water level monitoring be an 

appropriate way to overcome data scarcity in remote catchments like 

the Sondu-Miriu River basin in Kenya? 

Chapter 3: Is water level data collected by citizen scientists suitable to calibrate a 

rainfall-runoff model and how do model uncertainties differ in 

comparison to a model calibrated with conventional data sources? 

Chapter 4: What is the socio-economic background and motivation of citizen 

scientists in this project, and which challenges or opportunities exist 

for improving their engagement? 

In addition to addressing the scientific knowledge gap on the use of crowdsourced data 

in hydrological research, the expertise gained from this study can be used to address data 

scarcity in remote catchments and support evidence-based decision making for 

sustainable water resources management and associated land use planning. 
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1.3 Methods & Approaches 

1.3.1 Study Area 

The data used for this dissertation was acquired in the Sondu-Miriu River basin (3,450 

km2) located in western Kenya. Citizens measured water levels at thirteen locations 

distributed over the entire catchment. Additionally, data from an automatic measuring 

system installed next to a crowdsourced station at one headwater catchment was used 

(Jacobs et al. 2018b, Jacobs et al. 2020). The automatic system provided water levels with a 

high temporal resolution (ten minutes interval), high measurement accuracy (±2 mm) and 

served as a benchmark for the crowdsourced measurements and the hydrological model 

(see chapter 1.3.3). The location of the basin, all thirteen crowdsourced water level stations, 

the automatic station, a weather monitoring station, and tipping buckets used for climatic 

input data can be found in Figure 1. 

 

Figure 1: (a) Map of the Sondu-Miriu-River Basin showing the thirteen crowdsourced water level stations. 

Reference grid displays coordinates in WGS 1984. (b) Subcatchment for which the model was set-up including 

the position of the automatic measuring system, the weather station and the tipping buckets used to collect model 

input data. 
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The elevation in the Sondu-Miriu River basin ranges from 1,140 meters above sea level (m 

a.s.l.) at the outlet at Lake Victoria up to 2,900 m a.s.l. in the north-east region. Land use is 

dominated by smallholder agriculture and subsistence farming, with cultivation of maize, 

beans, cabbage, and potatoes in the eastern region. The central part of the basin is covered 

by the Mau Forest, Kenya’s largest indigenous closed-canopy forest. Commercial tea and 

tree (mainly eucalyptus) plantations prevail in the northern parts around Kericho town. A 

mixed land use dominated by smallholder agriculture and small settlements can be found 

towards Lake Victoria. 

The climate is influenced by the Intertropical Convergence Zone, which leads to a bimodal 

rainfall pattern with longer rainy seasons from April to July and a shorter rainy season 

between October and December. Monthly rainfall ranges from about 20 mm during the 

dry season to 180 mm during the rainy season (Olang and Kundu 2011). Annual rainfall 

varies from 1,300 mm yr-1 at the lower altitudes of the study area, to 1,900 mm yr-1 in the 

north-eastern region (Krhoda 1988). The temperature does not show significant 

seasonality but correlates with altitude. Highest temperatures, with an annual mean of 

23°C have been recorded close to Lake Victoria (Vuai and Mungai 2012), whereas the 

upland area around Kericho has a mean annual temperature of about 16°C (Stephens et 

al. 1992). Potential evapotranspiration rates range from 1,800 mm yr-1 at the lower altitudes 

to 1,400 mm yr-1 in elevated areas (Krhoda 1988). Nitisols are common at the higher 

altitudes, whereas Acrisols are prevailing in the middle, and Regosols are mainly found 

in the lower parts of the basin (Vuai and Mungai 2012).  

The Mau Forest Complex provides critical water-related ecosystem services such as water 

storage, river flow, flood mitigation, groundwater recharge, and micro-climate 

regulation (Benn and Bindra 2011). Poor implementations of land use policies in 

combination with a growing population and the need for agricultural land as well as 

settlement have resulted in a rapid forest degradation. More than one-quarter (100,000ha) 

of the native forest has been lost within the last few decades (Khamala 2010). This land use 

change seems to affect the hydrological cycle and lead to a decline in discharge (Olang and 

Kundu 2011) but comprehensive data to further investigate the land use change effects is 

still absent. Therefore, are clear need of data, particularly in remote and understudied 

locations like the Mau Forest Complex exists. 
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1.3.2 Crowdsourced water level collection framework 

To investigate if engagement of citizens in a water level monitoring project can help to 

overcome data scarcity in remote catchments, we designed a crowdsourced water level 

monitoring network in the Sondu-Miriu River basin. Thirteen water level gauges were 

installed at easily accessible locations. Each gauge was equipped with a signboard (Figure 

2) that explained with pictures and written instructions in English as well as Swahili how 

to read the water level, transmit the data, and hence, how to participate in the project. 

Following an approach described by Fienen and Lowry (2012), participants first read the 

water level and then sent a text message to a central phone number, containing their 

measurement and the station-ID as indicated on the signboard. The simple method 

allowed volunteers to participate without requiring special equipment such as a 

smartphone or a mobile internet connection. Text messages are a common way of 

communication in East Africa, which are inexpensive (~0.01 USD), easy to use, and of high 

availability. Besides, using a text message-based system allows providing real-time 

feedback to the volunteers, which enable the user to immediately detect and rectify 

incorrect inputs. 

 

Figure 2: Example of a crowdsourced water level monitoring station (a) with a sign board (b+c) holding simple 

and precise instructions that make it easy for interested citizens to participate. 

A SMS-server handling the incoming messages was built with a Raspberry Pi 2 Model B 

combined with a GSM-modem providing a local cell phone connection. A python script 

processed the incoming data. All data underwent a plausibility check whereby 
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implausible data was flagged for further manual checking. The processed data was stored 

in a database and feedback based on the plausibility check was sent to the observer within 

seconds after the initial transmission. All data was accessible through a website. An 

interactive plot allowed interested citizens and authorities to view the water level curve at 

each site and to download data for further use.  

Sensitization meetings with interested citizens were arranged at each site to promote the 

project idea, train the citizens, and assess its acceptance. During the meetings, it became 

evident that citizens, especially in the remote areas of the basin, might have issues sending 

the data due to a lack of cell phone credit. Hence, a reimbursement system for participants 

was tested at one station where the transmission costs (1 KES ≈ 0.01 USD) were reimbursed 

twofold for every valid observation sent. The amount was automatically calculated and 

disbursed at the end of each month using the SMS-server as described below. All other 

stations operated without reimbursement.  

The costs for the crowdsourced monitoring network, including the hardware, were low 

with approximately 6,000 USD for all thirteen gauges. Additional minor costs were caused 

by on-site meetings with observers, the SMS-response, and the webpage. 

1.3.3 Crowdsourced enhanced rainfall-runoff modeling 

To assess if crowdsourced collected data can be applied to run a conceptual rainfall-runoff-

model, a lumped model using the Catchment Modelling Framework (CMF) (Kraft et al. 

2011) was developed. CMF operates with building blocks to construct hydrological 

models (Jehn et al. 2017), which allows a flexible model set-up. 

The conceptual rainfall-runoff processes that were represented by the model are based on 

the results of Jacobs et al. (2018a). As input, daily timeseries of precipitation and potential 

evapotranspiration derived from temperature and extraterrestrial radiation applying the 

Hargreaves equation (Hargreaves and Samani 1985) were used. Within the model, 

precipitation was first divided by saturation excess, where water that was not able to 

infiltrate (qinf) was directly transported to the outlet (qsurf) (Figure 3). Infiltrated water was 

stored in a single storage box that loses water either due to evapotranspiration (ET) or 

outflow (qout). Five parameters were needed to calibrate the model. Three parameters (β, 

Q0, V0) controlled a power-law equation that determined the outflow of the storage box, 

the parameter fETV1 modified the evapotranspiration and, the parameter W1/2 represented 
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the saturation at which half of the incoming water infiltrates and the other half is directed 

to the outlet. 

 

Figure 3: Schematic model structure. Processes from the Catchment Modeling Framework (Kraft et al. 2011)  are 

given in bold (ET=Evapotranspiration) and their parameters in italic letters. Oval structures represent sinks, the 

hexagon an input flux, the box a storage and the rhombus a distribution node without storage functionality.    

The available data was split in a warm-up period (1 January 2016 to 31 March 2016), a 

calibration period (April 1, 2016 to March 31, 2017), and a validation period (April 1, 2017 

to March 31, 2018). The open-source python package SPOTPY (Houska et al. 2015) was 

applied to calibrate the model using a Monte Carlo based calibration using Latin Hyper 

Cube sampling (McKay et al. 1979). A total of 106 parameter sets were generated within 

predefined (a priori) parameter ranges. The calibration efficiency was evaluated with two 

objective functions, the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe 1970) and 

percentage bias (PBIAS). While the NSE is mainly influenced by peak values and therefore 

ensures an acceptable model fit under high runoff conditions, the PBIAS shows the model 

tendency to over- or underestimate the runoff over the whole simulation period.  

In addition to measured discharge, water level data reported by the citizens was used as 

an alternative source to calibrate the model. This approach is applicable since the water 

levels are dynamically linked to the discharge variation, which allows a comparison of 

modeled discharge against measured water levels using the Spearman rank correlation 

coefficient (RSpear) (Seibert and Vis 2016). A benefit of using water level data over 

converting the water levels to discharge is that the uncertainty introduced by using a 

stage-discharge relation is avoided (Jian et al. 2017). Admittedly, water levels do not 
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contain information on the total water volume, which can lead to a systematical bias. Since 

the Rspear only reflects the similarity of the dynamics between the observed discharge and 

water level data and not the absolute volumes a high agreement does not ensure a perfect 

fit in the modeled water volume (Seibert and Vis 2016). The same dynamics of the modeled 

discharge and the measured water levels consequently lead to a perfect fit even if the 

model over- or underestimates the absolute volume.  

To overcome this problem, the literature suggests several approaches to reduce the risk of 

bias. Seibert and Vis (2016) assumed that information on the annual streamflow volume is 

available and used this information to filter acceptable model parameters after calibrating 

the model on water level data. Jian et al. (2017) proposed the integration of regionalized 

runoff coefficients from similar catchments to account for and to reduce the volume bias. 

While annual streamflow information remains difficult to obtain, especially for remote or 

ungauged catchments like the Sondu-Miriu river, regionalized runoff coefficients might 

not fit for a specific study area, even if they are obtained from similar catchments. To 

adress these issues, a new Water-Balance-Filter approach, which only relies on measured 

precipitation and actual evapotranspiration derived from MODIS (Moderate Resolution 

Imaging Spectroradiometer) data was developed within this thesis. The annual water 

balance in the catchment was calculated based on the mean actual evapotranspiration 

(ETact) of 1,055 mm yr-1 provided by MODIS for the two-year simulation period and 

subtracting the mean observed precipitation of 1,422 mm yr-1 for the same period. We 

applied a confidence interval of +/-30% to the retrieved MODIS value to compensate for 

measurement errors and unknown uncertainties as well as possible storage changes 

within the catchment area, resulting in an ETact between 738 and 1,371 mm yr-1. 

Consequently, model runs which resulted in a simulated specific discharge of >684 mm yr-

1 or <51 mm yr-1 were discarded within the Water-Balance-Filter based calibration routine. 

Six independent calibration schemes were designed to assess the contribution of 

crowdsourced data to the model uncertainty. The model calibrated on daily discharge 

data, using either the NSE or the Spearman-Rank coefficient (schemes Q-NSE and Q-SR), 

served as a benchmark assuming that the models using these calibration schemes 

represent the best possible results. In a second step, the model was calibrated using 

crowdsourced water level measurements only (scheme CS-SR). The last three calibration 

schemes used all accepted runs from the first three calibration schemes (Q-NSE, Q-SR, and 
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CS-SR) and filtered the accepted runs further using the Water-Balance-Filter (resulting in 

schemes Q-NSEF, Q-SRF, CS-SRF). Behavioral parameter sets that can give a good 

prediction of the discharge were selected through ranking all model runs by their 

associated objective function value taking the best 0.25 % of all 106 runs, resulting in 2,500 

parameter sets.  

1.3.4 Telephone survey 

For obtaining information about the socio-economic background and motivation of the 

volunteers participating in the water level monitoring, standardized telephone interviews 

were conducted in the first week of July 2017. For this purpose, the telephone numbers 

from all messages received between the start of the project in April 2016 and the June 30, 

2017 were extracted from the SMS-server, excluding numbers that were related to project 

staff or commercial and other non-project related purposes. A team of trained interns from 

the Water Resources Authority office in Kericho speaking Swahili and English, as well as 

one of the local languages (Luo or Kalenjin), conducted the interviews to overcome 

potential language barriers. Each phone number was called three times at different times 

and days until the respective person was reached. If none of the attempts to get in touch 

was successful, a text message informing about the survey was sent, inviting the person 

to arrange a suitable time if interested in participating in the survey. No in-kind or 

monetary compensation was offered for participation. The survey contained open as well 

as pre-coded questions to assess the motivation, possible obstacles, and socio-economic 

background information. The manifest message method described by Weisberg et al. 

(1996) was used to code the open questions.  

The degree of engagement was classified according to the number of valid measurements 

reported to the SMS-server. Persons with 0-1 readings were classified as low engaged, 

persons with 2-9 or 10 or more readings as medium or high engaged, respectively. As a 

second classification, persons that continue sending data after the survey were classified 

as long-term participants.  

All valid survey responses were analyzed using R studio 1.2.1335. The explanatory 

variables source of information about the project, frequency of passing the station, 

distance to station, type of phone, age class, highest completed level of education, and 

Water Resource Users Association membership were used to identify the driving factors 

why participants are low, medium or high engaged or why they were short-term or long-
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term engaged using random forest classification (Breiman 2001). The out-of-bag (OOB) 

error rate calculated by the R package ‘randomForest’ (Breiman et al. 2018) was used as an 

indicator for model accuracy after running the model 5,000 times for each measure of 

engagement (low/medium/high and long-term/short-term). The mean decrease in Gini 

index served as a measure to assess the relative importance of each explanatory variable.  

1.4 Main results 

1.4.1 Crowdsourced water level collection framework 

Between April 1, 2016 and October 31, 2019, 3,480 valid and 304 (8.75%) invalid 

measurements were reported by 258 different participants for all thirteen stations. Invalid 

readings were mainly caused by misuse (e.g., citizens trying to apply for a job) or missing 

information (no station-ID or no water level). Around half of the participants (53%) 

submitted only one record, the most active participant reported 542 valid measurements. 

The majority of data was generated by participants who highly committed themselves to 

the project, sending several readings each month. Participants who sent more than ten 

valid readings during the project period contributed to 91% of the overall valid data. Only 

little data (9%) was generated by random passers-by sending in total less than ten valid 

values during the entire project period. 

One station got damaged during a flood event within the first months and was excluded 

from further analysis. Most measurements were transmitted within the first year after the 

installation of the gauges, when the citizens showed high interest in the project and the 

functionality of the system (Figure 4). In the further course of time, the participation 

decreased at most stations, which can be attributed to declining interest, reduced 

communication between project staff and participants and in addition to more difficult 

conditions to read the gauges and sign-boards due to weathering processes or vandalism. 

The most active station KIPTO received 1,081 valid measurements reported by 31 different 

observers.  



Chapter 1 

13 

 

Figure 4: Monthly aggregated valid data for each crowdsourced monitoring station in the Sondu-Miriu River 

basin, Kenya, between April 2016 and October 31, 2019. Dark blue indicates a high activity, light blue less 

active months. Months without crowdsourced data are marked grey. 

The comparison of automatically collected water level data recorded by a radar 

(VEGAPULS WL61, VEGA Grieshaber KG, Schiltach, Germany) and the crowdsourced 

data revealed similar trends in both data sets (Figure 5). The visible deviation between the 

two datasets during high- and low-flow conditions is mainly caused by a slightly different 

cross-section, as the radar was installed 20 m upstream from the water level gauge were 

citizens did the measurements. Overall, the crowdsourced monitoring framework proved 

to be a very cost-efficient and robust approach to monitor water levels at thirteen stations 

within the basin. 

 

Figure 5: Time series of data collected by citizens and validation data from April 2016 to October 31, 2019. 

Validation data generated by a radar sensor is displayed as a light blue line, the citizen science data as blue dots. 

The blue bars on top of the graphic show daily rainfall data measured by an ECRN-100 tipping bucket 120 

meters to the north-west of the gauge. 
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1.4.2 Crowdsourced enhanced rainfall-runoff modeling 

A conceptual rainfall-runoff model was set-up to investigate if water level data collected 

by citizen scientists is suitable to calibrate such a model and how the uncertainty differ in 

comparison to a model calibrated with conventional discharge measurements. 

Calibrated on the conventional observed discharge (Q-NSE scheme) the model simulated 

the discharge well and reached a mean NSE of 0.88 during calibration and a mean NSE of 

0.86 during validation when considering the best 0.25% (equals 2,500) runs as behavioral. 

If the model was calibrated on discharge but using runs that achieved the best 0.25% of 

the RSpear values (Q-SR scheme) the model performance decreased, achieving a mean NSE 

of 0.43 (0.69 during validation). When the model was calibrated and validated against the 

crowdsourced water level data without applying the Water-Balance-Filter (CS-SR scheme) 

the model still predicted the discharge within appropriate ranges. With the CS-SR scheme, 

the mean NSE reached comparable values than during the Q-SR calibration scheme. It is 

worth noting that the mean PBIAS was >0 in all RSpear calibrated cases indicating that the 

RSpear-based schemes tend to overestimate the total discharge.  

The Water-Balance-Filter, which discarded model runs which violated a specific range of 

annual discharge based on a water balance calculated on actual evapotranspiration and 

precipitation, remarkably improved the model performance for all RSpear-based calibration 

schemes. The model was able to predict the discharge almost as good as during the 

reference calibration scheme Q-NSE when using a calibration based on crowdsourced 

water level data and the Water-Balance-Filter (CS-SRF scheme) reaching a NSE of 0.69 

during calibration and 0.82 during validation. All calibration schemes tended to 

marginally overestimate the base flow conditions but yielded similar lower discharge 

bands. Only the upper discharge band deviated clearly for the CS-SR scheme compared 

to the CS-SRF and Q-NSE scheme. Figure 6 represents the modeled discharge time series 

during calibration and validation for the Q-NSE scheme and the two crowdsourced based 

calibration schemes CS-SR and CS-SRF.  

The simulated processes operated within realistic boundaries. The simulated flows under 

the various calibration schemes did not differ substantially from each other. The 

variability in the fluxes of different components of the model was smallest for the Q-NSE 

scheme and elevated for the filtered and unfiltered schemes. However, the distribution 

within the unfiltered and filtered schemes were comparable, which indicated that the 



Chapter 1 

15 

objective function might have a bigger influence on the model than the type of data (i.e. 

discharge or crowdsourced water level) used for calibration. Surface runoff was low 

during all calibration schemes which is in accordance with findings reported by Jacobs et 

al. (2018a) for the same catchment.  

 

Figure 6: Observed precipitation (top) and discharge (black dashed line in the lower box) from April 2016 to 

March 2018. The simulated discharge is displayed for three different calibration schemes during calibration and 

validation. Q-NSE indicates a traditional calibration against observed discharge data. CS-SR a calibration 

against 2500 runs with the highest Spearman-Rank-Coefficient obtained during a calibration against 

crowdsourced water level data. CS-SRF a calibration using the same runs obtained from CS-SR but filtered for a 

maximum yearly runoff based on an estimated water balance using observed precipitation and actual 

evapotranspiration derived from MODIS. 

To conclude, simple to obtain crowdsourced monitoring data can be combined with a 

modeling approach to improve the knowledge of available water resources and process 

understanding in otherwise understudied catchments. Hence, the approach presented 

here could be considered as an additional tool for water resources management, 

particularly in elsewise ungauged catchments and under limited financial resources. 
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1.4.3 Telephone survey 

In total 87 persons (5 females, 78 male) participated in the telephone survey representing 

a response rate of 56%. Most participants were younger than 50 years (90%). The 

educational level was uniformly distributed among primary, secondary, and higher 

education. Two third (67%) were classified as low engaged participants sending zero or 

one valid message during the evaluation time.  

The signs at the monitoring stations and sensitization meetings were mentioned most 

frequently as the main source of information. Highly engaged participants were mainly 

reached through sensitization meetings while participants with a low level of engagement 

became aware of the project mainly through the sign. Most respondents were aware of the 

purpose of the monitoring program stating that they contribute to water level observations 

(n=46). Less frequently mentioned were “monitoring for management and conservation 

purposes” (n=27) or other purposes like flood monitoring, rainfall measurements or water 

quality assessment (Figure 7).  

Most of the respondents state that managing and conserving water as an important 

resource is their main reasons for participation in the project, followed by curiosity to test 

the system or willingness to volunteer (Figure 7).  

 

Figure 7: Respondents' answers on (a) the perceived purpose of project and (b) their reason to participate as 

citizen scientist. n indicates the number of total responses. 
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More than half of the respondents (62%) stated that they did not experienced any 

challenges during their participation. Respondents who mentioned challenges mostly 

described a lack of cellphone credit (n=10) or difficult access to the station (n=10). Asked 

about what could improve the engagement most respondents indicated a need for more 

training, education, and sensitization meetings (n=58). 

Based on the random forest models, the highest completed level of education turned out 

to be the most important variable that determines the level of engagement measured by 

the amount of data points reported. The age class had the least influence on the 

engagement level. Contrary to these results, the age class was the most important variable 

when long-term commitment was the target variable (Figure 8). 

 

Figure 8: Relative importance of the included variables in the random forest models to predict the level and 

duration of engagement of the participants in the citizen science water monitoring project. The dots indicate the 

median value, the segments the range of values from all 10,000 runs. WRUA = Water Resource Users 

Association. 

Summing up, identifying the target groups for citizen science projects and understanding 

the socio-economic background as well as motivations of volunteers is crucial to 

implement a successful project. Understanding these variables allows overcoming 

potential challenges that might hamper a long-term engagement. Particularly sensitization 

meetings turned out to be a powerful tool to reach out the community and increase the 

likelihood of participation within a setting like the remotely located study area in Kenya.  
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1.5 Implications & Outlook 

Global annual water usage is expected to increase by more than two trillion cubic meters 

until 2030, leading to a global water crisis unless efforts to monitor and manage this 

resource are strengthened (Gilbert 2010). Particularly in low-income countries, the 

required data is regularly not available, even though the pressure on water resources in 

these countries is high (Hannah et al. 2011, Buytaert et al. 2016). The situation is further 

complicated by the fact that long-term monitoring networks using classical methods (e.g., 

automatic sampling, gauging stations, or weather stations) cause substantial costs during 

installation, management, and maintenance (Lowry and Fienen 2013, Buytaert et al. 2014, 

Mazzoleni et al. 2017). Resulting data gaps impede the assessment of temporal and spatial 

changes of environmental variables, which is an essential prerequisite to avoid natural 

disasters and for sound decision making (Davids et al. 2017). In addition, empirical 

evidence is required to advance our understanding of hydrological processes which is the 

basis to characterize catchment behavior (Royem et al. 2012). A profound process 

understanding is also essential for model-based future projections, which are crucial to 

implement mitigation measures and to meet policy needs (Tetzlaff et al. 2017). 

One possible solution to improve the hydrological data pool is the implementation of 

citizen science based monitoring frameworks in which participants voluntarily contribute 

to data collection or any scientific process. The number of studies reporting citizen science 

approaches to measure hydrological data increased rapidly in the last decade, especially 

since 2014 (Njue et al. 2019). The steady increase in the number of citizen science studies 

in hydrology over the last decade coincides with emerging technologies like low-cost 

sensor equipment, better phone coverage, and a growing interest in sustainable water 

resource management. The rapid technological advances in sensors and the massive 

spread of mobile communication technologies combined with an increased computational 

power further support the use of alternative data collection methods or data analysis, 

particularly in low-income countries.  

This thesis demonstrated that citizens were able to collect water level data in a remote 

catchment in western Kenya. The citizens consequently contributed valuable data to an 

otherwise understudied basin. The reported water level data was of high quality and 

showed a good agreement with reference measurements. Several studies that evaluated 

the role of citizens in reporting environmental data came to similar conclusions. Fienen 
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and Lowry (2012), for example, reported a good match between crowdsourced water level 

data and data recorded by a pressure transducer in the United States of America and 

concluded that the observation of relatively simple parameters can be efficiently 

conducted by citizen scientists. Strobl et al. (2019) demonstrated that citizens can estimate 

stream level classes sufficiently well.  

Beyond water level measurements citizens can report additional relevant hydrological 

parameters. Especially parameters that can be acquired without special effort or specific 

hardware are promising to be integrated into citizen-based data collection frameworks. 

Large-Scale Particle Image Velocimetry (Fujita et al. 1998) can, for example, be used to 

estimate discharge. As smartphone technology becomes more powerful, Large-Scale 

Particle Image Velocimetry can be applied on-site on commercially available smartphones 

(Lüthi et al. 2014). Combined with decreasing prices of smartphones, the development of 

smartphone-based measurement methods will provide easier access to such techniques in 

the future, allowing citizens to easily contribute to the data collection. Seibert et al. (2019) 

introduced a simple way to avoid the installation of physical water level gauges by using 

virtual ones generated within a smartphone application. Such techniques allow a fast and 

easy upscaling of monitoring programs and decrease implementation costs. The project 

Soda Bottle Science (Davids et al. 2019a) showed that citizens can improve precipitation 

observations by complementing ground-based and remotely-sensed precipitation in 

Nepal. On a nationwide scale, the CoCoraHS project (the Community Collaborative Rain, 

Hail, and Snow network) collected more than 31 million daily precipitation values by 

37,500 participants in the United States (Reges et al. 2016).  

The study presented in Chapter 3 demonstrated that crowdsourced water level data can 

be used to calibrate a conceptual rainfall-runoff model and consequently that citizen 

science based monitoring contribute to a better process understanding in catchments that 

have so far been understudied. However, water levels were the only crowdsourced data 

used for the modeling approach. Professionally collected high-resolution rainfall and 

temperature data was used as model input. Since several studies suggest that citizen can 

collect these types of data a rainfall-runoff processes modeling based on data collected 

only by citizens, eventually combined with freely available remotely sensed data, seems 

promising and should further be investigated. During this follow-up work, special 

attention should be given to how the different temporal resolutions and uncertainties in 
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the individual measurements relate to each other and whether such a purely citizen-

supported format can provide useful results.  

In addition, future work could evaluate how many crowdsourced data points are needed 

to ensure reliable model calibration. Given that the available data pool generated by 

citizens in this thesis is dense, a gradual reduction of crowdsourced measurements used 

during model calibration could identify to which degree the model efficiencies depend on 

the amount of data. If this is done systematically by e.g., reducing only peak flow or base 

flow measurements these findings could contribute to answering the question when it 

might be most crucial to engage citizens to measure data. This conclusion is supported by 

a study by Pool et al. (2017) which revealed that only twelve strategically sampled runoff 

measurements can be sufficient to calibrate a runoff model. Once these strategically 

important sampling points are identified, the results can be used to communicate to 

participants of a crowdsourced monitoring network when measurements are most crucial. 

Such a communication strategy would, in turn, lead to more efficient monitoring and 

avoids an unnecessary burden on the participants.  

A limitation of the modeling approach presented in Chapter 3 is that only one catchment 

was available to compare the value of crowdsourced data versus automatically recorded 

data from a fully automatic classic gauging station to calibrate the model. Hence, future 

work should additionally focus on testing the approach under multiple catchment 

conditions with different climatic and environmental settings and include, as indicated 

above, crowdsourced measurements not only for water level but also for input parameters 

like precipitation. However, the datasets required for such a comparison are currently not 

available. A comparative study using synthetically derived data from 671 catchments by 

Seibert and Vis (2016) revealed that the general approach might be transferable to various 

catchments. Similar behavior can be expected when using real crowdsourced data.  

In practice, a successful citizen science project relies on motivated volunteers that are 

willing to commit their time to contribute to the goals of the project. To be able to address 

potential volunteers, the correct identification of target groups is essential. A proper 

determination of the target groups could increase the probability of success of a citizen 

science project (Parrish et al. 2018, Füchslin et al. 2019). Differences in the socio-economic 

and cultural background between geographic regions make the characterization of citizen 

scientists difficult. The telephone survey conducted within this thesis revealed, for 
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example, that particularly participants between 30 and 50 years turn into long-term or 

highly engaged participants for water level monitoring in Kenya. These findings differ 

from the results described by Füchslin et al. (2019), who found that people with an age of 

50 and above showed a higher willingness to participate in a Swiss citizen science project 

than younger people. However, the discrepancy of around 17 years in life expectancy 

between the two countries may also have contributed to these trends. Unlike in many 

developed countries, where people have more time during retirement, many people in 

this rural setting in Kenya are committed to lifelong full-time farming activities. Apart 

from targeting specific socio-economic groups, targeting members from existing groups 

that voluntarily work on water conservation strategies, like members from the Water 

Resource Users Associations in Kenya, is promising to increase the overall engagement of 

volunteers since crowdsourced monitoring projects could address their needs (Golumbic 

et al. 2020). However, structural problems like a low rate of acceptance of such associations 

by governmental water management authorities may impede a better integration of such 

associations.  

The sustainability of a citizen science project is another important indicator when 

examining the relevance of such projects. This is linked to the question of how volunteers 

can be kept involved for a longer period. The participation rate in the crowdsourced 

monitoring network presented in this thesis decreased towards the end. Active 

management of citizen science projects seems to be crucial to ensure a long-term 

commitment and sustainability of monitoring networks. Similar hypotheses were 

reported by San Llorente Capdevila et al. (2020) who identified the interaction between 

citizens and institutions as one key factor for successful citizen science project 

implementations. After collecting data at 120 locations in the United States over eight 

years, Lowry et al. (2019) concluded that a strong citizen science network is maintained by 

a core group of engaged individuals where 0.1% of the total number of participants 

contributed almost 20% of all observations. These results correlate well with the findings 

within the monitoring network in Kenya (Chapter 2).  

The importance of a reliable communication strategy was also highlighted by the 

participants of the telephone survey presented in Chapter 4. Regular feedback could show 

participants the impact of their contributions and help them to understand the importance 

of their voluntary contribution (San Llorente Capdevila et al. 2020). Even though the data 
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collection framework used in this thesis included a simple feedback loop by sending a 

confirmation of reception to each participant and presenting the data on an interactive 

webpage, the communication method might have not addressed the participants’ needs. 

Due to a lack of internet access, it is likely that most participants were not able to obtain 

further information about the project or display the data they reported. Future citizen 

science projects in similar settings should, therefore, explicitly incorporate communication 

strategies tailored to the needs of the potential citizens. Ideally, they would further 

investigate the impact of such strategies on the overall participation rate. 

As illustrated earlier, the governmental structure, the motivations and challenges 

described by participants, and the target groups in the water level monitoring projects 

described in this thesis depend on the local conditions and could differ per region. These 

differences might limit a direct transferability of the methods and particular the results 

presented in this thesis. Consequently, the local situation should thoroughly be 

considered, and the study design accordingly adapted to the local circumstances before a 

citizen science project is implemented. Future studies are necessary to investigate the 

transferability of hydrological related citizen science projects between locations with 

different environmental, socio-cultural, or governmental conditions. The outcome of such 

studies could facilitate the design and implementation of future citizen science monitoring 

approaches worldwide. Such studies should, as mentioned above, integrate a 

comprehensive communication strategy adapted to local conditions to allow for cost-

effective, science-based and successful crowdsourcing schemes for monitoring water 

resources particularly in understudied catchments. 
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2 Citizen science pioneers in Kenya –  

A crowdsourced approach for hydrological 

monitoring 

This chapter is published in Science of the Total Environment as: 

Weeser, B., J. Stenfert Kroese, S. R. Jacobs, N. Njue, Z. Kemboi, A. Ran, M. C. Rufino, and L. Breuer. 

2018. Citizen science pioneers in Kenya – A crowdsourced approach for hydrological 

monitoring. Science of The Total Environment 631-632:1590–1599. 

2.1 Introduction 

Water provides crucial ecosystem services for human beings and comprehensive 

hydrological knowledge is essential to manage this resource sustainably (Buytaert et al. 

2014). However, water management strategies can only be effective if they are based on 

reliable monitoring. The absence of long-term data makes it difficult to develop 

sustainable management practices (Gilbert 2010). While the available water data pool is 

arguably sufficient in developed countries, low-income countries are constrained by 

scarce data, restricting sustainable development (Buytaert et al. 2014). Ongoing climate 

and land use change processes influence water availability and, as a result, regional and 

local changes become more variable and difficult to predict (Jackson et al. 2001). Climate 

variability will increase pressure on the development of sustainable water resource 

management strategies, especially on the African continent (Unesco 2015). In addition, 

empirical evidence is required to advance our understanding of hydrological processes, 

e.g. observations are necessary to improve hydrological models (Royem et al. 2012). Fast 

developing African nations with an increasing water demand face the largest constraints 

to acquire and manage water data (Unesco 2003). However, the installation of 

comprehensive monitoring networks raise costs for technical equipment, personnel, 

management, and maintenance (Mazzoleni et al. 2017), especially in remote areas, where 

accessing the sensors for maintenance and data collection becomes a time-consuming task. 

In low-income countries, these installations and running costs may prevent the 

establishment and maintenance of water monitoring networks. Remote sensing 

technologies can be a potential source to gain hydrological information, but are limited by 
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the spatial resolution (spaceborne measurements) or temporal resolution and costs 

(airborne or unmanned aerial vehicle-borne measurements). Thus, the use of remote 

sensing techniques to obtain comprehensive datasets of water level in medium (100-1000 

m) and small (< 100 m) rivers with sufficient accuracy, spatial resolution and temporal 

dynamics remains challenging (Bandini et al. 2017).  

Citizen science projects have the potential to be a cost-effective way of gathering data and 

can reduce laborious or costly research problems (Tweddle et al. 2012, Gura 2013, Bonney 

et al. 2014, Pocock et al. 2014). This seems to motivate decision-makers and non-

governmental organizations worldwide, who are engaging volunteers for various 

monitoring responsibilities. In general, citizen science is described as a practice in which 

volunteers with no science background assist in conducting research (Raddick et al. 2010), 

generating new scientific knowledge (Buytaert et al. 2014), or collecting data without a 

direct integration into the scientific process (often referred to as crowdsourcing). Besides 

reducing costs, citizen science projects are an opportunity to link scientific work to the 

broader community. Involving the general public may increase public awareness and the 

public’s attitude towards the topic investigated (Chase and Levine 2018). Referring to the 

US National Science Foundation, citizen science projects are more readily funded, because 

they satisfy the requirement for “broader impact on society” of research grants (Gura 

2013). Consequently, citizen science publications have increased more than 10-fold within 

the last fifteen years (Tipaldo and Allamano 2016).  

Incorporating the general public in data assimilation has a long history in science. For 

example, the Christmas Bird Count by the National Audubon Society has been using 

eyewitness accounts to discover the distribution and abundance of birds in the United 

States for over 100 years (Audubon 2017). Lowry and Fienen established a crowdsourcing 

approach to collect water level data in the U.S (Lowry and Fienen 2013) by setting up a 

software called “Social.Water” (Fienen and Lowry 2012). Starting with nine sites in 2011, 

their project monitors now more than 100 water level stations in lakes and streams over 

the United States. Breuer et al. (2015) conducted a crowdsourcing campaign to determine 

the spatial distribution of nitrogen solutes in German surface waters. Especially low-

income countries in Africa, like Kenya, can profit from this method of data collection to 

extend the spatial and temporal resolution of their monitoring networks. A wide range of 

actors, including NGOs and scientific organisations are engaged in in citizen science 
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studies and citizen science increased its popularity in the media, with policymakers and 

the scientific community (Pettibone et al. 2017). We chose Kenya to test this innovative 

way of data collection considering that Kenya is recognized as the economic hub of East 

Africa. The fast economic growth in this region will bring about new environmental 

concerns, challenging natural resource managers to adapt and to implement appropriate 

mitigation strategies. However, investments in a monitoring infrastructure are essential to 

make robust management decisions, but these investments are currently implemented at 

a relatively low speed in Kenya. Nevertheless, integrating the general public in collecting 

hydrological measurements is still an uncommon practice, since the measurements are 

more complex and often require expensive techniques (Buytaert et al. 2016). To support 

efficient use of water resources, sustainable water management and allocation plans have 

to be developed and implemented, thus requiring effective and reliable monitoring data. 

However, the Kenyan water sector of Kenya does not have the financial capacity to 

monitor natural resources with expensive high-tech equipment. New and affordable 

technologies have the potential to engage new actors in the monitoring process, 

transforming data collection from few data collectors toward a dynamic and decentralized 

network of citizens scientists (Buytaert et al. 2016).  

The objective of this study was to determine whether engaging the citizens in a water level 

monitoring project is a suitable way to overcome data scarcity in remote catchments like 

the Sondu-Miriu River basin in Kenya. There are three research questions framing this 

study: 

(1) Is citizen science a suitable approach to gather water levels in a remote tropical 

region? 

(2) Is a text-message-based monitoring platform sufficiently user-friendly to be 

accepted by participants? 

(3) Is the water level data gathered by the general public robust and trustworthy? 
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2.2 Materials and Methods 

2.2.1 Study area 

The study was conducted in the Sondu-Miriu River basin (3,450 km2) located in Western 

Kenya  

(Figure 9). Elevation ranges from 1,140 meters above sea level (m a.s.l.) at the outlet of the 

basin at the Lake Victoria up to 2,900 m a.s.l. in the north-east region. The land use in the 

eastern region is dominated by smallholder agriculture and subsistence farming 

cultivating e.g. maize, beans, cabbage and potatoes. The central part of the basin is covered 

by the Mau Forest, Kenya’s largest indigenous closed-canopy forest. Commercial tea and 

eucalyptus plantations, established in the first half of the 20th century (Binge 1962) 

characterize the overall landscape in the north around the town of Kericho. A mixed land 

use pattern, consisting of smallholder agriculture and small settlements prevails towards 

Lake Victoria. 

 

Figure 9: The Sondu-Miriu River basin in Kenya, including the stream network, major towns, natural forest 

areas, and the location of the crowdsourced monitoring stream gauging stations. The coordinates of the stations 

and additional information can be found in Table 1. Reference grid displays coordinates in WGS 1984. 
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The climate is influenced by the Intertropical Convergence Zone, resulting in a bimodal 

rainfall pattern with longer rainy seasons from April to July and a shorter rainy season 

between October and December. Monthly rainfall ranges from about 20 mm during the 

dry season to 180 mm during the rainy season (Olang and Kundu 2011). Annual rainfall 

ranges from 1,300 mm yr-1 at the lower altitudes of the study area, to 1,900 mm yr-1 in the 

north-east region (Krhoda 1988). The temperature does not show significant seasonality, 

but correlates with altitude. Highest temperatures, with an annual mean of 23°C have been 

recorded close to Lake Victoria (Vuai and Mungai 2012), whereas the upland area around 

Kericho has a mean annual temperature of about 16°C (Stephens et al. 1992). Potential 

evapotranspiration rates range from 1,800 mm yr-1 at the lower altitudes to 1,400 mm yr-1 

in elevated areas (Krhoda 1988). Nitisols are common at the higher altitudes, whereas 

Acrisols are prevailing in the middle, and Regosols are mainly found at the lower parts of 

the basin (Vuai and Mungai 2012).  

The Mau Forest Complex provides critical water related ecosystem services e.g. water 

storage, river flow, flood mitigation, groundwater recharge, and micro-climate 

regulation (Benn and Bindra 2011). Poor implementation of land use policies have resulted 

in a rapid forest degradation. More than one-quarter (100,000 ha) of the native forest have 

been lost within the last few decades (Khamala 2010). This land use change had a negative 

impact on the hydrological cycle, resulting in an noticeable decline of discharge (Olang 

and Kundu 2011). 

2.2.2 Data collection 

For this study, we installed thirteen locally-manufactured water level gauges at easily-

accessible locations selected in agreement with the local water management authority, e.g. 

at public bridges (Table 1). Each monitoring site was equipped with a signboard placed 

next to the water level gauge (Figure 10) explaining the monitoring process using pictures 

and instructions in English as well as Swahili to invite passers-by to send data. Similar to 

the approach described by Fienen and Lowry (2012), participants read the water level and 

sent a text message, containing their record and the station-ID, which was indicated on the 

signboard. We aimed at keeping the method as simple as possible to minimise barriers for 

participation. Neither special equipment (like a smartphone with a camera) nor a mobile 

Internet connection or registration was required. The text message service is an easy to 

use, stable, inexpensive (0.01 USD each message) and established method of 
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communication in East Africa. In addition, the system was designed to allow real-time 

feedback by sending response text messages to the observer. 

Table 1: Station, site-ID, and geographical coordinates of the water level stations monitored in the Sondu-Miriu 

River basin, Kenya. Number of observations, the number of participants and the percentage of days with data for 

the period between April 2016 and March 2017 are given for every station. 

Station name site-ID Coordinatesa Observations Participants Coverageb 

  Latitude Longitude   % 

Kiptiget 1JA02 AYNDL -0.554822 35.258283 74 10 18.6 

Sondu 1JG05 BZFGM -0.395118 35.015983 178 18 44.9 

Kipsonoi 1JF08 CWPFK -0.514703 35.080172 27 8 7.1 

Kipsonoi 1JF06 CXKFS -0.708547 35.221307 90 12 15.1 

Kipsonoi 1JF07 DUEGL -0.592747 35.086642 29 11 7.9 

Kimugu 1JC03 EPSHL -0.368775 35.298784 50 24 12.1 

Ainabkoi 1JD04 EURGH -0.465570 35.179745 53 12 13.2 

Itare 1JB05 FZEMK -0.488137 35.181330 9 5 1.9 

Chemosit 1JB03 HLVAR -0.475725 35.174287 27 12 6.0 

Kuresoi KIPTO -0.401145 35.475240 434 15 74.2 

Sondu 1JG04 OWHCP -0.354440 34.805502 160 8 42.7 

Lisere-Ainapkoi RMLFG -0.458506 35.112567 32 7 7.4 

Lower Sisei SMBTZ -0.757450 35.122997 12 11 2.5 

a WGS 1984 UTM Zone 36 S 
b Percentage of the days between Apr 2016 and Mar 2017 with ≥1 observation per day 
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Figure 10: Example of the signboard (c) placed next to a water level gauge (b) (station AYNDL) (a). Simple and 

precise instructions make it easy for interested citizens to participate. Every gauge has an individual sign 

showing the station-ID. 

To promote the project idea and assess its acceptance, several meetings were arranged 

with interested citizens at each site at the beginning of the project. These meetings were 

used to explain the measurement process and to train potential participants. It became 

evident that citizens, especially in the remote areas of the basin, had issues raising the 

money to send the data using their cell phones. To investigate if the lack of cash limits 

participation, we tested a reimbursement system for participants at the KIPTO station. The 

transmission costs (1 KES ≈ 0.01 USD) were reimbursed twofold for every valid 

observation sent. This payment was completed by transferring an aggregated monthly 

amount as cell phone credit to each observer and was limited to a maximum of 60 KES (i.e. 

thirty observations). The amount was automatically calculated and disbursed using an 

SMS-server as described in the section below. All other stations were operated without 

any reimbursement. The initial costs for the full monitoring network were low with 
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approximately 6,000 USD for the gauges, mounting and sign-boards. Minor running costs 

were caused by on-site meetings with observers, the SMS-response and the webpage. The 

initial costs for simple pressure transducer to collect water level data automatically are 

substantially higher and need a regular maintenance and data collection, which causes 

further costs. 

2.2.3 Description of the SMS-Server 

2.2.3.1 General Approach 

To collect and process the observations made by the citizens, we developed a software and 

hardware framework based on the general approach described by Fienen and Lowry 

(2012). Both approaches used text messages sent by the observers to transmit the collected 

data and signboards placed next to the water level gauges explained the system for 

interested potential participants. Furthermore, both systems could handle spelling 

mistakes in the transmitted data using a text matching approach as described below. To 

adapt the idea to the local requirements in Kenya, we extended and changed the general 

approach. In contrast to the approach described by Fienen and Lowry (2012), where 

Google Voice is used to receive the text messages, we developed our own server 

infrastructure based on a Raspberry Pi 2 Model B. This allowed us to use the server outside 

the U.S., where Google Voice is not available, to avoid any dependency to the Google 

infrastructure and to provide a local cell phone number to ensure low transmission costs 

for participants. Furthermore, this approach allowed us to extend the functionality of the 

framework. We provided a real-time plausibility check of the data combined with a direct 

feedback to the participant by sending a text message fully automated by the server and 

imbedded a SQLite-database for data storing. In addition, we tested an automatic 

reimbursement system, where observers at one station received a cost compensation 

depending on the amount of valid data they sent. Further information regarding the 

technical implementation can be found in Appendix 2-1. 

2.2.3.2 Software 

From the moment of sending an observation until the online presentation of the data, all 

transmitted messages underwent a process described schematically in Figure 11 and 

Appendix 2-1. Based on the result of the plausibility check, the Python script automatically 

sent a feedback to the participant. Implausible data was flagged for further manual 

checking and the processed data was stored in the database. If a reading was valid, the 
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participant received an SMS confirming the detected water level value and the station 

name associated with the site-ID. Furthermore, the number of previously reported values 

for the same site was given with an acknowledgment for the participation. If the water 

level sent was too high for the site, the participant was informed that the reading is above 

the maximum gauge height. Similarly, the participant was informed if the submitted site-

ID did not coincide with a valid site-ID. Providing an immediate feedback using the same 

communication channel had several advantages. First, the participants were able to 

evaluate whether their contribution had the proper format or if they should check and 

resubmit the observation. Second, giving feedback about the number of collected data at 

the site could be an additional incentive and motivation to continue participating. The 

server was also used to calculate the amount of monthly reimbursement based on the 

amount of valid measurements per month for every participant were applicable. The 

reimbursement was then transferred automatically to the cell-phone of each participant 

using an interface provided by the Kenyan network operator. A website 

(www.uni-giessen.de/hydro/hydrocrowd_kenya) was created to publish the 

crowdsourced data. On the website, all processed data could be accessed with information 

about the individual monitoring sites. An interactive plot allowed interested citizens and 

authorities to view the hydrograph at each site and to download data for further use.  

 

Figure 11: Schematic view of the crowdsourced data collection process. Observers read the water level and send a 

text message containing the value and a specific site-ID to a central server. The server stores the data received in 

a SQLite-database and an algorithm programmed in Python further processes the raw data and gives individual 

real-time feedback to observers. 



Chapter 2 

32 

2.2.2.4 Validation of data transmitted 

To validate the crowdsourced data, a radar-based sensor (VEGAPULS WL61, VEGA 

Grieshaber KG, Schiltach, Germany) was placed twenty meters upstream of the KIPTO 

site, measuring water level data at ten-minute intervals. The hydrograph was inspected 

visually to estimate the quality of the crowdsourced collected data. Furthermore, the water 

levels at stations OWHCP and BZFGM, both located in the Sondu River, were evaluated 

and compared by assessing the difference of all standardized water levels collected on the 

same days for both stations. 

2.2.2.5 Telephone survey 

A telephone survey was carried out to obtain information about the socio-economic 

background of the participants. All participants were contacted using the phone number 

provided during the data transmission and asked to answer questions related to the 

project. This survey enabled us to give an overview about the gender, age and educations 

status of the volunteers. 

2.3 Results  

2.3.1 Received data 

Between April 1st, 2016 and March 31th, 2017, 124 different participants reported 1,175 valid 

measurements. The amount of observations for each person varied from one (56.8% of the 

observers) to 224 transmitted values for the most active participant. Apart from station 

FZEMK, which was damaged during a flood event and therefore excluded from the 

analysis, citizens regularly reported measurements for most of the stations (Figure 12). 

 

Figure 12: Monthly aggregated valid data for each station in the Sondu-Miriu River basin, Kenya, between 

April 2016 and March 2017. Dark blue indicates low activity, dark red very active months, and months without 

data received are grey. 
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It is noteworthy that even when some stations did not receive data for two or three months, 

these stations became active again (e.g. CXKFS, RMLFG). Most observations were 

reported after installing the gauges, when the citizens showed high interest in the project 

and the functionality of the system. Station KIPTO received the most measurements with 

434 valid readings reported by fifteen different observers, followed by BZFGM and 

OWCHP with 178 and 160 observations, respectively. The station with the lowest amount 

of data was SMBTZ with only twelve received measurements (Table 1). The number of 

participants at each station did not vary greatly and ranged from seven individual 

observers at RMLFG to 24 observers at EPSHL.  

Observers who reported more than ten water level records during the project period were 

considered active observers (AOs). Figure 13 gives an overview of the temporal resolution 

and the behaviour of the 13 identified AOs. Six observers continued transmitting values 

throughout the entire observation period, whereas the other seven AOs only sent 

messages for a certain period.  

 

Figure 13: Temporal resolution of water level data in the Sondu-Miriu River basin in Kenya reported by active 

observers (more than ten observations during the observation period) in the period from April 2016 to March 

2017. Every dot represents a measurement from the observer (Sender-ID). The related station is indicated by the 

colour as described in the colour ramp to the right. Grey rows mark wet periods with more than 120 mm 

precipitation per month. 

While most of the AOs began participating during the initial project phase, some AOs 

joined after the project was already in progress. AOs were consistently sending data from 

one station, i.e. they did not move within the study area. The majority of AOs transmitted 

data for the full observation period. Some of them also resumed their work after long 

intervals without any transmission. Only a few AOs left the project after six to eight weeks. 
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The wet periods, defined as months with more than 120 mm precipitation, did not 

influence the behaviour of the AOs, i.e. the amount of observations neither increased nor 

decreased during wet periods. Even though new participants joined in from time to time, 

most data was generated by AOs sending several readings each month. Only the minority 

of data (17%) was generated by random passers-by sending less than ten values. 

Even though we aimed at keeping the system as simple as possible, not every text message 

provided by the citizens contained valid or interpretable data. Fifty-nine messages were 

marked as invalid (5%). Most of these errors were induced by misuse (e.g. citizens trying 

to apply for a job as regular gauge readers), mistyping as well as omitting the station-ID 

or the value. While the latter type of error can be handled by the system providing an 

immediate response to the observer, the first type of error causes unusable data, which 

were excluded from further analysis. Table 2 shows typical text messages containing 

invalid data detected and marked by the system. 

Table 2: Examples for typical text messages containing errors or invalid readings. All messages have been 

automatically marked as invalid by the SMS-server. Some sentences have been partly corrected for spelling and 

grammar. 

No. Message Problem 

1 The level of water is 155 Station-ID missing 

2 Wish to work with you. Kindly consider me when a 

chance arise. Thanks in advance  

Applying for a job 

3 What do you give me if I am sent the waterlevel 

everyday? 

Applying for a job 

4 Chemosit bridge 135+160=295 Real name of the site. Two readings at 

once (-> Invalid time stamp) 

5 176 Station-ID missing 

6 30 ml Station-ID missing 

7 Hi I’m Vincent, I am at KUREXOI NORTH. I am 

happy to express your support for water as source of 

life 

Requested further information about 

the project 

8 When you will be back again? I want to join you as 

an environmental volunteer 

Requested information about the 

project 

2.3.2 Data quality and validation 

Comparison of data recorded by the radar sensor and the crowdsourced data at Station 

KIPTO showed similar trends in both datasets (Figure 14). Given that the radar was 

installed upstream, the observations from the radar and from the participants cannot be 

compared precisely, even when the shape and condition of the riverbed was almost 
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similar. The citizen reported water levels systematically deviate from the water levels 

recorded by the radar during high-flow and low-flow conditions was related to the 

different cross-sections between the two locations. The visual comparison of the radar data 

with the crowdsourced water levels depicted a good agreement. Both datasets showed 

similar behaviour to rainfall events in terms of rising and falling water levels. Both high 

flow and base flow conditions were measured accurately by the citizens.  

 

Figure 14: Time series of citizen-transmitted and validation data at the KIPTO catchment in the period from 

April 2016 to March 2017. Validation data generated by a VEGA radar sensor is displayed as a red line, the 

citizen science data is displayed usng blue dots. The blue bars show daily rainfall data measured by an ECRN-

100 tipping bucket 120 meters to the north-west of the gauge. 

As a second benchmark, we compared the data of two stations: BZFGM and OWHCP, 

which is located 35.5 km downstream of station BZFGM, both within the Sondu River. 

Because of the proximity of the stations without significant tributaries flowing into the 

river between these stations, we expected a uniform trend for both hydrographs when 

comparing measurements recorded on the same day. Due to the distance between stations, 

we assume that the observers did not know one another. Therefore, we considered the 

samples independent. Data collected by the citizens would be reliable if the measurements 

reported were correlated. In contrast, we would expect a weak correlation if the 

crowdsourced data contained large random errors. To make the data of both stations 

comparable, we normalized the water level readings and plotted them together with the 

differences between both observations (Figure 15). With this transformation we are now 

able to compare the water level changes of both stations taking into account that the 

riverbed between these two stations is different (and therefore give a systematically bias 
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of the absolute values). Both stations clearly followed the same trend and did not show a 

distinctive drift over the year. The difference between the normalized water level of the 

two stations moved around the zero line suggesting a reliable and unbiased data 

acquisition for these stations. 

 

Figure 15: Standardized water level data and their differences (∆) observed on the same day for two nearby 

stations (OWHCP and BZFGM) close to the outlet of the Sondu-Miriu river basin in Kenya between April 2016 

and Mach 2017. The water levels transmitted for both stations follow the same trend and do not show a 

deviation over the time indicating reliable data reported by citizens. 

2.3.3 Socioeconomic background of the participants 

During the telephone survey in July 2017, 87 observers were reached and agreed to 

participate. Seven interviewed persons (8%) were female and 80 persons (92%) male. From 

thirteen identified AOs, twelve could be contacted by phone. One AO, who was active 

from January to March 2017 was not reachable and the phone number was not online 

anymore. Table 3 shows the distribution of gender, age and education of the twelve AOs 

in comparison to 75 observers which contributed less than ten values. The survey showed 

that the AOs in our study were in general older and of lower educational background. 

Table 3: Age and education level of 87 observers contacted during a telephone-survey campaign. The data was 

divided in answers provided by active observers, which transmitted more than ten values (AO) and observers 

which reported ten or less observations (Other). 

  AO (n = 12) Other (n = 75) 

Mean Age  40 33,5 

Education [%] 

Primary 50 20 

Secondary 42 36 

High 8 37 

No Answer 0 7 
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2.4 Discussion  

In this study, we tested whether involving citizens in the monitoring process could help 

to overcome the low spatial and temporal resolution of water level data. After one year of 

water level monitoring conducted by volunteers, we were able to assess the overall 

performance of this innovative data collection method in a remote tropical catchment. 

2.4.1 Motivation and participation of citizens 

High enthusiasm was shown by participants, which resulted in more than 1,100 valid data 

points for thirteen monitoring sites within the observation period from April 2016 to 

March 2017. The thirteen most AOs reported 83% of all data. Only 17% were reported by 

citizens, which sent ten or less values. This indicates that especially some persons identify 

themselves with the project and the idea of monitoring their environment. Whereas most 

of the AOs participated over the full project period, some new observers joined the project 

later. We attribute the increase in participation to a recruitment by other motivated 

observers, who were positive about the project. In combination with the socioeconomic 

background of the AOs and all participants we conclude that the active participation is 

not depending on the actual education level but rather induced by their personal 

perception of and dependency on their environment. Especially citizens who depend on 

local water resources are expected to be interested in increasing their understanding of 

their environment and to participate in local political decisions to ensure a sustainable use 

of their resources (Overdevest et al. 2004). We experienced a similar behaviour during our 

field campaigns, where especially farmers of smallholder areas were interested in 

monitoring their water resources. Besides the increment of data, the participation of 

citizens can potentially lead to other positive side-effects. It has been observed that 

participants who increase their understanding of local resources, motivate neighbours and 

form opinions to support local policies (Overdevest et al. 2004). At the same time, low 

participation rates at some stations can be attributed partly to the transmitting cost of 

0.01 USD per text message, which was paid by the volunteers. Especially in rural areas, 

participants expressed that they might be unable to participate due to costs. Buytaert et al. 

(2014) described that observers in low-income countries often derive an income from their 

engagement in citizen-science projects. These authors argue, that the concept of sending 

data voluntarily is not well developed, and that it may be necessary to reward people at 

local wages for motivation. We found that paying a small reward that covers the costs 
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significantly increases the overall participation rate. In comparison to the other stations, 

the amount of data reported for station KIPTO, where a reimbursement system was set 

up, is seven times larger than the average of reported data from stations without 

reimbursement system and 2.5 times larger in comparison with the second most active 

station BZFGM. By paying back the transmission costs twofold, the motivation of the 

observers may remain strong over a longer period. The same behaviour was observed for 

station OWHCP, where the amount of data transmitted significantly increased after 

August 2016 (Figure 12). Instead of a reimbursement centrally paid by the project, 

interested water users organized an own reward system by collecting a contribution from 

several users to reimburse one person recording the water level data. However, a real 

payment or reward was not necessary, since the intrinsic motivation of the participants 

seemed to be sufficient when lack of money was overcome.  

Transmitting the observations using simple cell phones and text messages turned out to 

be stable and reliable without major technical problems. Text messages are a common way 

of communication and significantly lowered the technical barrier to contribute and send 

data. The use of this communication channel was widely accepted. Furthermore, the 

participants were able to send text messages without additional training. The SMS-server 

was available most of the time. Only during the initial phase we faced minor problems 

caused by unstable drivers of the GSM-modem used, resulting in a loss of data for some 

transmitted values. This issue was fixed by changing the GSM-modem. Furthermore, the 

feedback loop allows participants to identify whether their observation was correctly 

received. We occasionally faced phone network coverage issues. Due to the location of the 

water level gauges in valleys, mostly in remote areas, the network coverage at the 

monitoring point was sometimes weak. However, those stations with restricted network 

availability did not turn out as a limited factor for data contribution. Observers took the 

readings of the water level and waited until they reached an area with network coverage 

to send their messages. This led to a minor deviation of the time of the record since the 

time stamp is generated from the text message header. However, we expect that the 

observers sending messages after a couple of minutes rather than waiting several hours. 

In comparison to more sophisticated methods, like using smartphones, we believe that 

this approach produces more and, in turn, more reliable results in a low-income country 

because wrong data and outliers become obvious. 
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2.4.2 Data accuracy and suitability 

The quality and temporal resolution of the crowdsourced data is important to assess their 

usefulness. The comparison of the citizen data with data measured by an automatic radar 

sensor at station KIPTO revealed a high correlation between these datasets. Intensive 

training of the participants was not necessary to ensure high quality data. Fienen and 

Lowry (2012) obtained a RMSE (4.88 x 10-3 m) between crowdsourced data and a pressure 

transducer, from which the authors concluded, that the observations of relatively simple 

parameters can be efficiently conducted by citizen scientists. From 83 citizen science 

studies evaluated by Aceves-Bueno et al. (2015), only one study reported an insufficient 

data quality. Our results showed that citizens provided data comparable to conventional 

data loggers. From over 1,000 recorded data points, less than 5% were invalid and 

therefore not useable for further analysis. In most cases, these errors were caused by 

participants trying to submit or inquire additional information that cannot be handled 

automatically by the system. In these cases, a personal interaction with the participants is 

necessary. The research team or data managers of citizen science projects should evaluate 

this additional information to recognize further demands of the participants. Regarding 

the temporal resolution, we observed a large variability between the stations. While some 

stations have data for 50, and even up to 75% of the days per year, other stations only 

received data for less than 15% of the days per year.  

It seems that citizens cannot deliver the same temporal resolution as modern automated 

monitoring equipment. However, hydrological models can play an important role to fill 

gaps in irregular measurements taken by citizens. Seibert and Vis (2016) evaluated 

whether stream level data without an established rating curve would be sufficient to 

calibrate a simple hydrological model using the Spearman rank correlation coefficient. The 

authors observed, that a water level time series is already sufficient to obtain a good model 

performance in wet catchments where precipitation is higher than the potential 

evapotranspiration. The Sondu-Miriu River basin has both: wet areas in the elevated parts 

and dry areas towards Lake Victoria, making it a good place to test this approach. In a 

recent study van Meerveld et al. (2017) demonstrated, that this approach is applicable also 

with a reduced vertical resolution of stream level data. Seibert and Beven (2009) 

demonstrated, that a few discharge observations were already sufficient to calibrate a 

model for several catchments in Sweden. After adding 32 observations, the authors did 

not obtain an improvement of the average model performance. In a follow up study Pool 
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et al. (2017) showed, that already twelve strategically sampled discharge measurements 

have the potential to calibrate simple hydrological models across the eastern US. 

Mazzoleni et al. (2017) demonstrated, that (synthetic) crowdsourced discharge data 

complements traditional monitoring networks when used for flood forecasting even when 

the crowdsourced data were characterized as asynchronous. In a review written by 

Assumpção et al. (2017) the authors concluded that crowdsourced data can be integrated 

in hydrological models and improve their overall performance. Other studies reveal that 

citizen are particularly interested in monitoring extreme events, which could be a valuable 

support in the flood risk assessment (Le Coz et al. 2016). Based on our experience and that 

of others in different regions, we see a potential to use crowdsourced water level data to 

extend conventional monitoring networks. However, the integration of crowdsourced 

data in hydrology is still evolving, and more research is needed to unravel its full 

advantages and disadvantages. 

2.4.3 Towards citizen-based monitoring 

One of the two most commonly cited reasons for unsuccessful management strategies is 

the lack of proper monitoring data (Aceves-Bueno et al. 2015). We argue that the simplicity 

and cost-effectiveness of our method has the potential to create new insights in the 

hydrological cycle and can support the decision process of local water managers. We agree 

with Buytaert et al. (2014), that data collected by citizens can create new hydrological 

knowledge and help to identify the human impacts on the water cycle, especially in remote 

regions. Involving the general public in monitoring can increase drastically the amount of 

environmental observations. It is necessary that scientists and resource managers accept 

the data collected by the general public to use them for further analysis (Freitag et al. 2016). 

Based on 83 peer-reviewed published papers on citizen science case studies in natural 

resource management settings, Aceves-Bueno et al. (2015) concluded, that in 41% of the 

studies the data gathered by the general public was used to make management decisions. 

We conclude that using data collected by citizens for simple measurements should be 

taken into account as a valuable data source. Moreover, citizen science projects should not 

only be considered as possible data source, but also as a great opportunity to support 

citizens in generating further knowledge about their environment and, additionally, to 

bring often complex research projects closer to the communities. It has been observed, that 

crowdsourced based monitoring increases the volunteers’ awareness of their local 

resources and a multiplier effect, where volunteers share the knowledge gained with other 
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community members (Storey et al. 2016). We also noticed these multiplier effects in our 

projects where new volunteers stepped in and actively contributed data, most likely after 

being motivated by other observers. 

Overall, the results of our study indicate that citizens have the ability to record water level 

data of a sufficient quality and quantity. However, prospective experiments should be 

conducted to analyse further the precision of the citizen science data. We plan to install 

additional automatic water level sensors next to the citizen monitoring stations to 

investigate the long-term precision and accuracy of the crowdsourced data. As a next step, 

we will test the usefulness of the crowdsourced data for hydrological modelling and 

upscaling purposes. We plan to set up and run simple models and compare if the increased 

spatial resolution of the data collected by citizens has the potential to increase the model 

performance. Furthermore, we plan to assess if only the water level data is useful to 

calibrate models in a tropical catchment using the method described by Seibert and Vis 

(2016) To overcome poor participation due to text message costs that have to be covered 

by observers, we suggest to establish a toll-free number, which allows observers to 

transmit their data without any costs. Alternatively, if a toll-free number cannot be 

established, the influence of a reward system on the data quality and quantity should be 

systematically tested. Finally, we plan to investigate whether the framework presented in 

the study can be used to collect more sophisticated data like water quality parameters. 

2.5 Conclusion 

The increasing demand for water makes it necessary to use this resource more efficiently 

based on sustainable management strategies and monitoring solutions. Citizen science 

programs are promising cost-efficient methods to monitor environmental resources, 

which make them especially suitable for low-income countries to overcome their sparse 

data resolution. Since today’s citizen science studies are mostly located in high-income 

countries, we are enthusiastic to motivate the scientific community to conduct citizen 

science studies in low-income countries. Overall, our study shows that involving the local 

community in the water level data collection in a remote Kenyan basin generates good 

quality data and is promising to deliver new insights into the hydrological processes. It is 

important to understand the driving factors that keep participants motivated. Giving 

feedback to the participants is necessary, since it keeps the participants updated and 

prevents raising unrealistic expectations associated with the monitoring, management 
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plans or rewards. By using the text message system for the data collection, we were able 

to give fast and individual feedback.  

We conclude that: 

(1) The interest and motivation of the citizens can be considered as one of the leading 

reasons to decide whether a citizen science approach is applicable. Our research 

has shown that it is possible to engage community members to conduct water level 

monitoring resulting in more than 1,000 measurements within the first year.  

(2) Text messages are a common way of communication in Kenya and were accepted 

as a method to contribute data. Since this method does not rely on expensive 

smartphones or an Internet connection, this approach lowers the technical barrier 

of participation. A small reimbursement covering the costs has the potential to 

improve participation. 

(3) Crowdsourced data can be a valuable additional data-source to monitor water 

resources. Data delivered by citizens is reliable, consistent and of similar quality to 

data collected by an automatic radar.  

For the Sondu-Miriu River basin in particular the collected water level data has the 

potential to support the development of water allocation plans, which becomes evermore 

essential due to the increasing water demand in this region. The basin currently does not 

have a sufficient water allocation plan, which can be attribute to the data scarcity in this 

region. Local Water Resource User Associations could profit from additional data to 

develop small-scale sub-catchment management plans, which are part of their assignment. 

Members of Water Resource User Associations expressed their interest in the data for this 

purpose during personal talks with the authors. Coupled with river discharge data, this 

data can furthermore be used to develop strategies to prevent or mitigate flood-related 

disasters, which affects people living in the lower part of the basin in particular. This 

population suffers from floods and droughts and it can be expected that these effects will 

increase with ongoing climate change. 
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Appendix 2-1 

This appendix gives further information about the technical implementation of the 

developed SMS-server handling the data reported by citizens. The server was connected 

to the local cell-phone network using a mobile broadband modem (ZTE MF 190) and a 

SIM-card from a local mobile network operator. The power supply was ensured by 

connecting the server to the local electricity network. Additionally, a 10,000 mAh 

powerbank was connected, acting as an uninterrupted power supply. In case of power 

cuts, the powerbank was able to provide electricity for another 24 hours. To handle the 

incoming text messages we used the Gammu SMS Deamon (Gammu SMSD), which 

collected the text messages from the modem and storeed them in a SQLite database using 

the ‘libdbi backend’. SQLite was chosen because of its high performance and the absence 

of multi-user-access needs on the server. However, more complex database systems, like 

MySQL or PostgreSQL, could be easily integrated if required. After receiving and storing 

the raw data, data was further processed to ensure consistentcy using a Python script 

developed for this project. This script retrieved the raw data from the database, extracted 

the specific site identifier (site-ID) as well as the transmitted water level value and verified 

the data plausibility. Data became implausible if the new water level value was higher 

than the gauge height at the associated site or if the submitted site-ID did not match any 

of the existing site-IDs. If the script detected questionable data, the observation was 

flagged to allow a manual correction where applicable. To avoid errors caused by 

mistyping, the submitted site-ID was extracted and compared with all existing site-IDs 
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using the Levenshtein Distance. As a result, the most likely site-ID was returned with a 

matching factor ranging from zero (no similarity) to one-hundred (perfect match). We 

used the python package “fuzzywuzzy“ (Cohen 2016), to implement the Levenshtein 

distance calculation and to determine the differences between the string sequences of the 

incoming station name and the existing stations. A regular expression (\d+[\.,]?\d*) was 

applied to extract the water level value from the text message. If a message contained more 

than one value, only the first value was extracted for further analysis. 
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3 Rainfall-Runoff Modelling Using Crowdsourced 

Water Level Data 

This chapter is published in Water Resources Research as: 

Weeser, B., S. Jacobs, P. Kraft, M. C. Rufino, and L. Breuer. 2019. Rainfall‐Runoff Modeling Using 

Crowdsourced Water Level Data. Water Resources Research 55(12):10856–10871. 

 

3.1 Introduction 

Increasing human population and climate change increase the pressure on water 

resources, make society more dependent on this resource, and require practitioners to be 

better prepared to manage this scarce resource more efficiently (Rodda 2001, Montanari et 

al. 2013). Sustainable and effective water resource management decisions can only be 

made if reliable spatial and temporal water balance information is available. The 

performance of hydrological models, which can offer central support in the decision-

making process, depends on sound hydro-meteorological input (Wagner et al. 2009). In 

contrast, the engagement and investment of environmental agencies in hydrological and 

meteorological monitoring effort is decreasing worldwide (Vörösmarty et al. 2001, van de 

Giesen et al. 2014). Particularly large tropical basins are suffering from this decrease, many 

remain poorly gauged or were never gauged, often due to poor accessibility (Getirana et 

al. 2009). In addition, data restriction policies can lead to a delay on data release 

(Vörösmarty et al. 2001), which makes data use for immediate water resources 

management difficult especially when recent information is needed (Wagner et al. 2009). 

This data gap prevents the investigation of temporal and spatial changes of relevant 

parameters for water resources management, which are critical to support decision-

making and the design of for example mitigation actions to prevent natural disasters 

(Davids et al. 2017). 

Hydrological models can be used to investigate land use or climate change impacts on 

basins and to predict and assess the effects of management decisions on water resources. 

The level of complexity and the required amount of input data vary between different 

models. Nevertheless, all models need input and calibration data and require a monitoring 



Chapter 3 

46 

network, which can be difficult and costly to establish and maintain. In the recent past, 

attempts have been made to obtain necessary data using novel ways. The increasing 

availability of remotely sensed data provides scientists with some of the important water 

balance variables in regions where monitoring networks are scarce (Montanari et al. 2013). 

While remote sensing provides spatial data of variable resolution, hydrologists are still 

looking for ways to obtain direct hydrometric information such as on water levels or 

discharge at higher temporal and spatial resolution. So far, spaceborne remote sensing 

methods provide information like water level data in a sufficient resolution for large to 

medium-sized catchments (Yan et al. 2015), but these methods are still not operational for 

narrow rivers (<100-m width) (Bandini et al. 2017).  

Besides remotely sensed data, crowdsource approaches have recently become attractive in 

research and capacity building campaigns from nongovernment institutions and agencies 

to fill hydrometeorological monitoring gaps (Walker et al. 2016, Davids et al. 2017). Data 

collected by citizens can help to create new hydrological knowledge and may support the 

efforts to identify the human impacts on the water cycle (Buytaert et al. 2014, Njue et al. 

2019). The fast developments of communication technology will further increase the 

potential for citizen scientists to collect, submit, store, and process relevant data more 

easily (Buytaert et al. 2012, Montanari et al. 2013). In order to ensure a smooth and 

widespread implementation, the tasks assigned to citizens should be quick to perform and 

should not require special equipment. Davids et al. (2019b) showed that undergraduate 

researchers can conduct discharge measurements using, among others, the salt dilution 

streamflow measurement method within reasonable ranges when compared against 

professional measurements. Other studies revealed that collecting simple parameters such 

as water levels is straightforward and that citizens can perform this task successfully 

(Fienen and Lowry 2012, Weeser et al. 2018) and over long periods (Lowry et al. 2019).  

Recent studies proved that water level instead of discharge data can be used for model 

calibration by using the monotonic relationship between water level and discharge 

mapped by the Spearman-Rank-Coefficient (Seibert and Vis 2016, Jian et al. 2017, van 

Meerveld et al. 2017). This step avoids the need to convert water levels to discharge and 

potentially reduces the uncertainty introduced by this conversion (Jian et al. 2017). 

However, this step can also lead to a systematic bias since no information on the total 

water volume is taken into account. Therefore, there have been different attempts to 
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include additional data during model calibration, for example, by filtering acceptable 

model parameters using annual streamflow volume (Seibert and Vis 2016) or regionalized 

runoff coefficients from similar catchments (Jian et al. 2017). In this study, we tested a 

simple Water-Balance-Filter, which does not rely on any previous hydrometric 

information other than measured precipitation and actual evapotranspiration derived 

from MODIS (Moderate Resolution Imaging Spectroradiometer) data. 

Using crowdsourced data for hydrological modeling is still in its infancy, and the value of 

this data source has not been comprehensively tested yet. Data collected by citizens differ 

from traditionally collected data in being irregular and of unknown quality and 

uncertainty. A few studies investigated the impact of these before-mentioned 

characteristics on the model calibration process using synthetic data sets derived from 

traditionally measured discharge (Mazzoleni et al. 2017, Mazzoleni et al. 2018), water 

levels (Seibert and Vis 2016), or discharge combined with an error term generated from 

discharge estimates by citizens (Etter et al. 2018). However, none of these studies used real 

crowdsourced data.  

Besides the potential use of crowdsourced data, involving the community brings 

additional benefits. Locals, who are supporting citizen science projects are more likely to 

protect environmental resources and participate in community services or sociopolitical 

activities (Overdevest et al. 2004). Linking this to the fact that especially low-income 

countries face pressing challenges in the water sector, it is attractive to test the integration 

of crowdsourced data for water resources management. To address this need, we 

established a comprehensive monitoring network based on crowdsourcing in the Sondu-

Miriu River basin in Kenya in 2016 (Weeser et al. 2018). To date, the implementation of 

this approach has yielded more than 5,000 records of water levels.  

This study aimed at rigorously testing the potential use of crowdsourced data for 

hydrological modeling, which could support the assessment of management practices in 

tropical environments. It was designed to answer the question of (1) whether water level 

data collected by citizen scientists are suitable for calibrating a rainfall-runoff model with 

an uncertainty similar to the uncertainty resulting from a calibration with conventional 

data sources and (2) if the model uncertainties can be reduced by using a simple to obtain 

Water-Balance-Filter as an additional criterion.  
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3.2 Materials and Methods 

3.2.1 Study Area 

The study was conducted in a headwater catchment (27.4 km2) in the north-western part 

of the Sondu-Miriu-River Basin in Western Kenya (0.35°S, 35.5°E WGS1984) (Figure 16). 

Smallholder agriculture dominates the land use including annual crops, grazing lands, 

woodlands, and forests and led to a degraded land cover (Olang and Kundu 2011). 

Increasing human population has resulted in rapid forest cover loss and forest 

degradation in the last decades (Brandt et al. 2018) and physical evidence has revealed a 

noticeable discharge decline for major rivers in the region (Olang and Kundu 2011). The 

soils are in general deep and well-drained classified as Humic Nitisols and Mollic 

Andosols (ISRIC - World Soil Information 2007) 

 

Figure 16: Location of the Sondu-Miriu-River Basin in Western Kenya (red dot in the overview map) and a map 

of the study area, including the stream network, outlet, weather station, and tipping buckets. The reference grid 

displays coordinates in WGS 1984. 

The climate is influenced by the Intertropical Convergence Zone, resulting in a bimodal 

rainfall pattern with a longer rainy season from April to July and a shorter rainy season 

between October and December (Figure 17). Temperature and precipitation (Table 4) were 

recorded by a weather station (ECRN-100 high-resolution rain gauge and VP-3 sensor, 
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Decagon Devices, Pullman WA, USA) located 100 m northwest of the outlet measuring at 

a 10-min resolution. The installation of the instruments was carried out as far as possible 

according to the WMO guidelines, whereby local conditions had to be taken into account. 

The resolution of the rain gauge is 0.2 mm per tip, the accuracy of the VP-3 sensor depends 

on the temperature and humidity but lies in most cases within ~0.25°C and 2-5% humidity. 

Precipitation was measured at two additional sites located in the center and the upper part 

of the catchment using tipping buckets (Theodor Friedrichs, Schenefeld, Germany). 

Thiessen-Polygons were used to calculate the area-weighted precipitation. If precipitation 

data gaps existed, the weights were adjusted by omitting the tipping bucket where no data 

was available. Data gaps in the temperature and precipitation time series were scarce 

(precipitation: tipping buckets <0.1%, precipitation from the weather station 5.5%; 

temperature: 7.2%) and filled with a linear interpolation after the data were aggregated to 

daily time steps. The yearly potential evapotranspiration (ETpot) using grass as a reference 

crop was calculated based on the daily minimum, maximum and mean temperatures and 

the extraterrestrial radiation using the Hargreaves equation (Hargreaves and Samani 

1985). These values were in line with long term, altitude depending, ETpot of 1,400 to 1,800 

mm reported for this area (Nyenzi et al. 1981, Krhoda 1988). 

 

Figure 17: Daily mean areal weighted precipitation using Thiessen-Polygons (upper panel), specific discharge 

(middle panel) and crowdsourced (CS) reported water level data (bottom panel) of the catchment for January 

2016 - April 2018. 
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Table 4: Averaged annual hydrometeorological data for the study area. 

Period 
Specific Discharge Precipitation Mean daily temperature ETpot  

mm mm °C mm 

01. Apr 2016 - 

31. Mar 2017 
413 1,287 14.9 1,596 

01. Apr 2017 - 

31. Mar 2018 
485 1,557 14.4 1,522 

Note. ETpot = potential evapotranspiration calculated using the Hargreaves equation. Temperature 

represents the mean daily temperature measured at the weather station at the catchment outlet 

Water levels were measured in two different ways. A radar-based sensor (VEGAPULS 

WL61, VEGA Grieshaber KG, Schiltach, Germany) automatically collected water level 

data 20 m upstream of the outlet at 10-min intervals. Data collected by citizens (n=271 

during the calibration period) were recorded at the outlet (Weeser et al. 2018). The 

crowdsourcing-monitoring station was installed in April 2016 and equipped with a sign-

board that explains to locals how they can participate in the monitoring. A small reward 

of 0.02 USD per measurement is paid automatically to compensate for the transmission 

costs. The coverage in the observation period was high with typically more than 16 

observations per month covering 75% of all days during the calibration period. The data 

were not further filtered. Only one obvious outlier caused by a misinterpretation of the 

received text message was removed after checking the original text message associated 

with the doubtful data point. A comparison between the crowdsourced data and the 

automatically measured water levels showed a high agreement between both data types 

resulting in a Pearson correlation coefficient of 0.98 for the 271 measurements during the 

calibration period (Figure 18a). The high value of the correlation coefficient indicates that 

the crowdsourced data only differs slightly from professional measurements. Note that 

intercept and slope deviate from 0 and 1, respectively, due to the fact that readings from 

citizens were conducted 20 m upstream from where the professional reading took place 

resulting in slightly different cross sections. 

A rating curve and the catchment area were used to convert the automatically measured 

water levels into daily specific discharge, which was the basis for model testing and 

evaluation (Figure 18b). To develop the rating curve (Eq 1), 86 manual discharge 

measurements using the salt dilution method (n=82) and an Acoustic Doppler Current 

Profiler (RiverSurveyor S5, SonTek, San Diego CA, USA) (n=4) over a wide range of water 

levels (h) were conducted. Extrapolation below the water level of 0.236 m was done using 



Chapter 3 

51 

a quadratic function through the lowest measured discharge and zero discharge (Jacobs et 

al. 2018b). For water levels above the highest measured water level used to develop the 

rating curve (0.66 m), we extrapolated the discharge using the same rating curve (3.3% of 

the time). To assess the discharge uncertainty we followed the procedure described in 

Jacobs et al. (2018b), where the uncertainty was estimated based on the standard deviation 

(SD) of repeated measurements (SD water level: 1 mm, SD ADCP: 6.2%, SD Salt Dilution: 

6.9%). We assumed that the true values were within 3*SD and generated 10,000 random 

samples for each water level/discharge combination. Figure 18b shows the uncertainty 

95% confidence interval for the rating curve.   

Eq 1 𝑄 = {
0.0973 − 1.892 ∙ ℎ + 6.923 ∙ ℎ2, ℎ ≥ 0.236 𝑚

 0.651 ∙ ℎ2, ℎ < 0.236 𝑚
 R2 = 0.98 

 

 

Figure 18: (a) Correlation between automatic water level measurements and crowdsourced water level data 

(Pearson correlation r=0.98, n=271) for the calibration period and (b) Rating curve (solid blue line) with 95% 

confidence interval (blue shaded band) for the outlet of the study area based on 86 water level discharge pairs 

(black crosses). 

3.2.2 Model Setup 

We developed a lumped conceptual rainfall-runoff-model (Figure 19) using the 

Catchment Modelling Framework (Kraft et al. 2011) Version 1.4.1 (Kraft et al. 2018) for 

Python 3. Catchment Modelling Framework is a python based programing library to build 

hydrological models from building blocks (Jehn et al. 2017). This framework has been 
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applied to a variety of catchments and is considered to describe the underlying 

hydrological processes sufficiently well (Windhorst et al. 2014, Jehn et al. 2017, Maier et al. 

2017). The model structure represents the conceptual understanding of the rainfall-runoff 

processes reported by Jacobs et al. (2018a). Daily precipitation and ETpot are the only model 

inputs required. 

 

Figure 19: Schematic model structure. CMF processes are given in bold and their parameters in italic letters. 

Oval structures represent sinks, the hexagon an input flux, the box a storage and the rhombus a distribution 

node without storage functionality.    

In the model, water storage is represented as a single storage volume (V), which receives 

water from infiltration and loses water to the catchment outlet and actual 

evapotranspiration (Eq 2). Precipitation (P) is partitioned into infiltration (qinf) and direct 

runoff (qsurf) by saturation excess (esat) (Eq 3). Since the soil saturation happens only in 

parts of the catchment area, depending on the stored volume, the saturated area is 

modeled with the Boltzmann sigmoidal function based on the soil water storage and a 

parameter W1/2. The parameter W1/2 represents the saturation at which half of the incoming 

water infiltrates and the other half is routed to the outlet without timelag. Water in the 

storage box is released to the outlet using the normalized water volume raised to a power. 

This power-law equation (Eq 4) determines the outflow (qout) based on the actual water 

volume stored in the box (V) and the parameters V0 (reference volume), Q0 (outflow from 

the source when V equals V0), and β (shape of the response curve). Water in the storage 

box is subject to evapotranspiration where the daily ETpot is limited by the available water 

in the storage box. Actual evapotranspiration is assumed to be equal to the potential 

evapotranspiration if the water volume in the box is greater than the factor fETV1 
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multiplied by the box capacity. If the volume is lower, the actual evapotranspiration is 

linearly scaled down to 0.  

We used the implicit, error controlled CVode solver (Hindmarsh et al. 2005) to integrate 

the differential equation (Eq 2) to prevent numerical problems (Kavetski and Clark 2011). 

A priori model parameter ranges (Table 5) were chosen based on expert knowledge from 

previous applications of comparable model types and an exploratory analysis of a large 

parameter space. 

 

Eq 2 
𝑑𝑉

𝑑𝑡
= 𝑞𝑖𝑛𝑓(𝑃, 𝑉) − 𝑞𝑜𝑢𝑡(𝑉) − 𝑓𝐸𝑇(𝑉) ∙ 𝐸𝑇𝑝𝑜𝑡(𝑡) 

Eq 3 
𝑞𝑠𝑢𝑟𝑓(𝑉, 𝑃) = 𝑒𝑠𝑎𝑡(𝑉, 𝑊1/2)𝑃 

𝑞𝑖𝑛𝑓 = 𝑃 − 𝑞𝑠𝑢𝑟𝑓 = (1 − 𝑒𝑠𝑎𝑡(𝑉, 𝑊1/2)) 𝑃 

Eq 4 𝑞𝑜𝑢𝑡 = 𝑄0 (
𝑉

𝑉0

)
β

 

3.2.3 Model Calibration and Validation  

The time series were split-up in a warm-up period (1 January 2016 to 31 March 2016), a 

calibration period (1 April 2016 to 31 March 2017) and a validation period (1 April 2017 to 

31 March 2018). We followed a Monte Carlo based calibration approach and quantified 

the model parameter uncertainty using the open-source python package SPOTPY (Houska 

et al. 2015). We evaluated the calibration efficiency using two objective functions, that is, 

Nash-Sutcliffe-Efficiency (NSE, Eq 5 where ei is the i-th observation, si is the i-th simulation 

and 𝑒̅ 𝑖s the mean of the observations) (Nash and Sutcliffe 1970) and percent bias (PBIAS, 

Eq 6).  

Eq 5 𝑁𝑆𝐸 = 1 −
∑ (𝑒𝑖 − 𝑠𝑖)

2𝑁
𝑖=1

∑ (𝑒𝑖 − 𝑒̅)2𝑁
𝑖=1

  

Eq 6 𝑃𝐵𝐼𝐴𝑆 = 100 ∗
∑ (𝑒𝑖 − 𝑠𝑖)

𝑁
𝑖=1

∑ (𝑒𝑖)
𝑁
𝑖=1
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While the NSE is mainly influenced by peaks and therefore ensures an acceptable model 

fit during high flow conditions, the PBIAS indicates the tendency of overestimation or 

underestimation of the discharge through the model over the full period. In total, 106 

parameter sets were generated for the calibration process within predefined (a priori) 

parameter ranges (Table 5). Instead of sampling the entire parameter space, we used Latin 

Hypercube Sampling (McKay et al. 1979).  

Table 5: Model parameters and a priori ranges. 

Name Meaning Unit 
A priori 

parameter ranges 

   Min Max 

β Kinematic flow curve shape exponent [-] 1 6 

Q0 Reference runoff when storage contains the reference volume V0 [mm day-1] 0.01 1,000 

Vo Reference volume where storage runoff is equal to Q0 [mm] 100 3,000 

fETV1 Scaling factor for potential evapotranspiration [-] 0.01 0.8 

W1/2 Saturation, where half of the catchment area is saturated [-] 0.1 0.9 

 

3.2.3.1 Using the Spearman-Rank-Coefficient to Calibrate on Water Level Data 

To calibrate the model on water level data we took advantage of the fact that water levels 

are dynamically linked to discharge variation and that they can, therefore, be compared 

against modeled discharge by using the Spearman rank correlation coefficient (RSpear) 

(Seibert and Vis 2016). Ranging from -1 to 1, an RSpear close to 1 indicates that the simulated 

discharge and the measured water levels reproduce the same dynamics and that the water 

level and discharge values are strictly monotonically related (Seibert and Vis 2016). The 

RSpear is not affected if the data is transformed using a strictly monotonically increasing or 

decreasing function as done by the rating curve in this study. In this case, the RSpear values 

will be similar regardless if the automatically measured water level data (which was 

converted into discharge data using the rating curve) or the discharge data itself is used. 

Consequently, we do not show a calibration based on the automatically measured water 

level data since the results are the same as obtained from a discharge-based calibration.  

Since the Rspear only reflects the similarity of the dynamics between the observed discharge 

and water level data and does not reflect the absolute volumes, a value of 1 does not ensure 

a perfect fit (Seibert and Vis 2016). Therefore, a threshold for behavioral parameter sets 

cannot be defined similarly to a calibration based on objective functions like the NSE. 

Instead, we propose to select behavioral parameter sets by ranking all model runs by their 
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associated RSpear value and take the top set. In this study, we defined behavioral parameter 

sets by taking the best 0.25% of the 106 runs, resulting in 2,500 parameter sets. The same 

procedure of taking the best 0.25% was applied when the model was calibrated on 

discharge data and the NSE to ensure the comparability of the different calibration 

schemes.  

3.2.3.2 Water-Balance-Filter 

As stated above, utilizing water level readings for calibrating a model to calculate 

discharge can lead to overestimation or underestimation. Therefore, we tested a simple 

annual Water-Balance-Filter to obtain acceptable model outputs by selecting only those 

parameters sets where model runs resulted in a high RSpear and additionally matched a 

simplified water balance. The annual water balance was calculated from observed 

precipitation minus mean actual evapotranspiration (ETact). ETact can be retrieved from 

spaceborne remote sensing data sets obtained from the MODIS. For the study area, a mean 

ETact of 1,055 mm yr-1 was derived from data provided by the MOD16A2 Collection 6 

Global Evapotranspiration Product from MODIS imagery based on land surface 

temperature and albedo and the Penman-Monteith equation (Running et al. 2017) for the 

2-yr simulation period. These values are close to the estimation from our measured data 

when we subtract runoff from precipitation assuming that possible storage changes can 

be considered small enough to be ignored for the 2-yr period and the remaining water 

consequently represents the ETact (Senay et al. 2011). From our measured data we derived 

an ETact of 973 mm on average for the 2 yr, which is 7.7% less than the value determined 

using the MODIS dataset. The MOD16A2 Collection 6 dataset, obtained from the satellite 

Terra, contains composite evapotranspiration data with 500-m pixel resolution for 8-day 

periods. In order to calculate the annual ETact each satellite image was cropped to the 

catchment area, fill values without calculated ET were set to unavailable, the result was 

multiplied by 0.1 (scale factor after Running et al. (2017)) and a mean value for the 

catchment area was calculated. In order to determine the annual value, all individual 

values were summed up. To compensate measurement errors, unknown uncertainties and 

possible storage changes we added a (subjective) confidence interval of +/-30%, resulting 

in an ETact between 738 and 1,371 mm yr-1 (ETact/ETpot-ratio = 48-88%) for the study area. 

This value is in line with a study of Velpuri et al. (2013), which reported mean uncertainties 

up to 25% for MOD16 datasets at basin scale. Given the average annual precipitation over 
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the 2-yr observation period of 1,422 mm (Table 4), model runs were discarded if the 

simulated specific discharge was >684  or <51 mm yr-1.  

3.2.3.3 Calibration Schemes 

Six independent calibration schemes were carried out to evaluate the value of 

crowdsourced water level data for model calibration. As a benchmark, we first calibrated 

the model on the discharge data using both the Nash-Sutcliffe-Efficiency and the 

Spearman-Rank coefficient (schemes Q-NSE and Q-SR). After that, we calibrated the 

model on the crowdsourced water level measurements and did not consider any 

automatically measured water level or discharge data (CS-SR). Finally, all accepted 

parameters from the different calibration schemes were filtered using the Water-Balance-

Filter (Q-NSEF, Q-SRF, CS-SRF). 

3.2.4 Model Comparison (Benchmark) 

The model was validated by conducting runs for the validation period using the a posteriori 

parameter sets, comparing the modeled with observed discharge. To compare the model 

efficiencies between the different calibration schemes, we defined a lower benchmark 

(Rlower) following an approach described by Seibert et al. (2018). For this, we run the model 

2,500 times with random parameter sets within the a priori parameter ranges (Table 5). 

From these 2,500 model runs, a mean discharge time series was calculated and compared 

against the observed discharge for both, the calibration and validation period. The upper 

benchmark (Rupper) was defined as the best efficiency obtained during the discharge-based 

calibration assuming that this value reflects the best possible calibration of the model for 

the given data set. The relative performance (RRelative) of each calibration scheme can then 

be determined following Eq 7, whereby Rx indicates the performance reached for each 

individual calibration scheme. 

Eq 7 𝑅𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =  
𝑅𝑥 − 𝑅𝑙𝑜𝑤𝑒𝑟

𝑅𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑙𝑜𝑤𝑒𝑟
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3.3 Results 

3.3.1 Lower and Upper Benchmark   

To compare the efficiencies of the different model calibration scenarios a lower benchmark 

was defined by randomly selecting 2,500 model runs and calculating a mean discharge 

time series, which was compared against the observed discharge values. A NSE of -0.56 

and a PBIAS of 97.51% was found as a lower benchmark for the calibration period. For the 

validation using the same 2,500 random parameter sets, the NSE was 0.13 and the PBIAS 

111.31%. The highest performance measure within the Q-NSE scheme defined the upper 

benchmark, resulting in an upper NSE benchmark of 0.93 and a PBIAS of 0%. All schemes 

resulted in at least one parameter set with similar best performance measures for all 

schemes. 

3.3.2 Discharge-Based Calibration (Q-NSE and Q-SR) 

The model simulated observed discharge reasonably well when calibrated against 

discharge using the Q-NSE scheme (Table 6). Under this scheme the model achieved a 

mean NSE of 0.88 and a relative NSE performance for the mean of all runs of 96.6% 

(relative performance of PBIAS 99.1%) when compared against the upper and lower 

benchmark of the Q-NSE scheme. The parameter sets which achieved the best 0.25% 

(equals 2500) NSE values (Q-NSE) or RSpear values (Q-SR) were considered as behavioral 

and were accepted for further analysis. When testing the behavioral parameter sets of Q-

NSE against the validation time series the model performance was only marginally lower 

achieving a mean NSE of 0.86 and a relative NSE performance 91.3% (relative performance 

of PBIAS 93.8%).  

Calibrated on discharge but using 0.25% of all parameter sets with the highest RSpear instead 

of NSE (Q-SR) the model performance decreased achieving a mean NSE of 0.43 and a 

relative performance of 66.4%. The mean PBIAS increased from -0.88% (Q-NSE) to 52% 

during calibration. The same trend was followed during validation with similar 

performance measures.
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Table 6: Relative performance and model efficiency measures Nash-Sutcliffe-Efficiency (NSE) and percent bias (PBIAS) during calibration and validation of the different calibration 

schemes using discharge observations (Q) and the crowdsourced data (CS) without and with a Water-Balance-Filter (Filter) for the best 0.25% of all 106 model runs calibrated on the 

NSE or RSpear. Heat map indicates best (green) to worst (yellow) model performance. 

 

     NSE PBIAS 

     Calibration Validation Calibration Validation 

Dataset Calibrated with Filter ID n-Runs 
mean 

[-] 

best 

[-] 

Rrelative 

[%] 

mean 

[-] 

best 

[-] 

Rrelative 

[%] 

mean 

[-] 
range [%] 

Rrelative

[%] 

mean 

[-] 
range [%] 

Rrelative

[%] 

Q 

NSE 
No Q-NSE 2500 0.88 0.91 96.6 0.86 0.93 91.3 -0.88 [-23,16] 99.1 6.88 [-17,29] 93.8 

Yes Q-NSEF 2500 0.88 0.91 96.6 0.86 0.93 91.3 -0.88 [-23,16] 99.1 6.88 [-17,29] 93.8 

RSpear 
No Q-SR 2500 0.43 0.91 66.4 0.69 0.93 70.0 51.95 [-36,133] 46.7 51.8 [-28,76] 53.4 

Yes Q-SRF 1539 0.70 0.91 84.6 0.80 0.93 83.8 28.48 [-36,65] 70.8 30.4 [-28,76] 72.7 

CS RSpear 
No CS-SR 2500 0.36 0.91 61.7 0.70 0.93 71.3 58.27 [-30,142] 40.2 53.9 [-27,124] 51.6 

Yes CS-SRF 1408 0.69 0.91 83.9 0.82 0.93 86.3 32.5 [-30,65] 66.7 30.9 [-27,70] 72.2 
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3.3.3 Crowdsourced Calibration (CS-SR) 

The model predicted the observed discharge within acceptable ranges when calibrated 

and validated against the crowdsourced water level data without applying the Water-

Balance-Filter. The mean NSE performance decreased by 34.9% during calibration in 

comparison to the Q-NSE scheme to similar values than the ones achieved with the Q-SR 

calibration scheme. However, the CS-SR scheme outperformed the lower benchmark 

model. The PBIAS revealed a decrease of the relative performance of 58.9% in relation to 

the relative performance of the PBIAS during calibration for the Q-NSE scheme. A 

comparable decrease could be observed during validation. Since the mean PBIAS is >0 in 

all cases, the CS-SR schema tends to overestimate the overall discharge.  

3.3.4 Water-Balance-Filter Effects on the Calibration (Q-NSEF, Q-SRF, CS-SRF) 

No differences were observed between the Q-NSE and the Q-NSEF scheme since all 

accepted parameter sets within the Q-NSE scheme already matched the water balance and 

subsequently no parameter set was discarded. For all RSpear-based calibration schemes, the 

filter improved the model performance notably. This holds regardless of the data set used 

for both the discharge-based calibration (Q-SR) and the crowdsourced water level data 

calibration (CS-SR). The relative performance for these calibration schemes increased to 

comparable values between 84% and 86% during calibration and validation for NSE and 

between 66% and 72% for PBIAS. Hence, calibrated with crowdsourced water level data 

combined with the Water-Balance-Filter (CS-SRF), the model predicted the discharge 

almost as well as if calibrated on the observed discharge (Q-NSE). This applies for the 

behavior of both model efficiency measures, the NSE and the PBIAS.  

Figure 20 shows the modeled discharge time series during calibration and validation for 

the Q-NSE scheme and the crowdsourced-based calibration scheme (CS-SR and CS-SRF). 

This figure underlines the similarities and differences between the different calibration 

methods. In general, all calibration schemes tended to slightly overestimate base flow 

conditions. Remarkably, all schemes resulted in similar lower discharge bands and only 

the upper discharge band deviated for the scenario CS-SR compared to the scenarios CS-

SRF and Q-NSE, which was also reflected in the PBIAS. 
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Figure 20: Observed precipitation (top) and discharge (black dashed line in the lower box) in the study area from 

April 2016 to March 2018. Simulated discharge for three different calibration schemes during calibration and 

validation (from light blue to dark blue: CS-SR, CS-SRF and Q-NSE), where Q-NSE indicates a traditional 

calibration against observed discharge data, CS-SR a calibration against 2500 runs with the highest Spearman-

Rank-Coefficient when calibrated against the crowdsourced water level data and CS-SRF a calibration using the 

same runs obtained from CS-SR  but filtered for a maximum yearly runoff based on an estimated water balance 

using observed precipitation and actual evapotranspiration derived from MODIS. 

3.3.5 Comparison of Different Calibration Schemes 

We analyzed specific flux components simulated by the model to further understand and 

evaluate the model behavior regarding the different calibration schemes. This allowed us 

to assess whether the simulated processes are within realistic boundaries and whether the 

different calibration schemes influence the hydrological fluxes. A large discrepancy 

between the individual fluxes would be questionable and indicate a mismatch between 

the model simulations and the underlying processes. The same applies to abnormally large 

or small values for the actual evapotranspiration. In addition, the analysis provides 

insights into the range of the simulated flows under the various calibration schemes and 

thus into the related model uncertainties. Figure 21 shows the distribution of the sums of 

each flux for every model run within the calibration schemes for the validation period (the 

figure for the calibration is similar and not shown) excluding the Q-NSEF scheme, because 

of its redundancy to the Q-NSE scheme. The results reveal an equal distribution of the 

modeled flux components for all five calibration schemes. The variability in fluxes is 

smallest for the Q-NSE scheme and increases for the filtered (Q-SRF, CS-SRF) and 
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unfiltered (Q-SR, CS-SR) schemes. For example, the range of simulated ET values under 

Q-SR was largest (359-1,076 mm), and the contribution to the total water balance was on 

average (mean 693 mm) lower than for Q-NSE (mean 940 mm). Consequently, more water 

left the system from the storage box to the outlet in the Q-SR scheme compared to Q-NSE. 

This can also be seen in the time series where the Q-SR scheme (similar to the CS-SR 

scheme) tends to overestimate the flow (Figure 20). The distributions within the unfiltered 

or filtered calibration schemes are comparable. Consequently, the RSpear calibrated data sets 

show a similar distribution regardless of whether they were calibrated to the discharge or 

the citizen-based water levels. The proportion of surface runoff (SW) was low for all three 

methods. This is in line with the general process understanding for this catchment and its 

environmental conditions (Jacobs et al. 2018a). Surface runoff can occur during heavy rain 

events but remains low. A high fraction of surface runoff would, therefore, not be realistic.   

 

Figure 21: Boxplots of the sum of fluxes released by the different model components (ET = actual 

Evapotranspiration, SB->River = Water released from the Storage Box to the Outlet, SW->River = Water 

released from the Surface Water Storage to the Outlet) under different model calibration schemes (CS-SR = 

calibration based on crowdsourced water level data, Q-SR = calibration based on discharge and the Spearman-

Rank-Coefficient, CS-SRF = calibration based on crowdsourced data in combination with a Water-Balance-

Filter, Q-SRF = calibration based on discharge and the Spearman-Rank-Coefficient data in combination with a 

Water-Balance-Filter, Q-NSE = traditional calibration process based on discharge data and the Nash-Sutcliffe 

model efficiency coefficient) during the validation period. 
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3.4 Discussion 

To date, integrating crowdsourced data into hydrological monitoring remains uncommon 

with only a few studies that examined the value of these data for model calibration 

(Mazzoleni et al. 2017, Starkey et al. 2017, Etter et al. 2018). All these studies, however, lack 

a direct comparison between a model driven by real-world crowdsourced data and a 

model calibrated using conventionally collected discharge measurements. Some of the 

studies used synthetically generated data to mimic crowdsourcing. In contrast, our study 

compares the efficiencies of a model calibrated on crowdsourced water levels, combined 

with or without a Water-Balance-Filter, against results from a model calibrated on 

measured daily discharge. Projects like CrowdHydrology, which resulted in more than 

16,000 observations since 2010 ongoing, proved that it is possible to gather this type of 

data, also over extended periods (Lowry et al. 2019). We found that the model calibrated 

with crowdsourced water levels combined with a Water-Balance-Filter performs similarly 

in terms of model efficiencies but results in greater model uncertainties and 

overestimations of discharge.  

3.4.1 Assessing Model Performance Through Spearman-Rank-Coefficient  

The Spearman-Rank-Coefficient (RSpear) used to identify behavioral parameter sets during 

calibration allowed a comparison of the dynamics of the simulated discharge and 

measured water levels but revealed no information on total discharge volumes (Jian et al. 

2015). There are no previous reports as to which parameter sets should be declared as 

behavioral when using the RSpear as an objective function. Consequently, we ranked all 

parameter sets by their RSpear value and chose a certain percentage (0.25% of 106 runs) as 

behavioral. An advantage of using the RSpear is that for example no extra Inverse Rating 

Curve function with additional uncertainties needs to be estimated (Jian et al. 2015) and 

that water levels can directly be used to calibrate the model. This avoids the tedious 

process of discharge measurements, which also requires special equipment and expert 

knowledge, often not available particularly in remote places in low-income countries. This 

might change in the future when new methods to determine discharge like particle-image-

velocimetry (Adrian 1991) produce sound results, especially when such approaches 

become operational on consumer electronic devices like smartphones as shown by Lüthi 

et al. (2014). We believe, however, that water level measurements carried out by citizen 

scientists remains easier, reduces measurement errors, requires no expert knowledge, 
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delivers reliable measurements and can promote community participation (Lowry and 

Fienen 2013, Weeser et al. 2018).   

3.4.2 The Value of a Water-Balance-Filter 

As stated above, a risk exists that a hydrological model might be biased when only 

calibrated with water level data. Seibert and Vis (2016) addressed this issue when 

calibrating a model for more than 600 catchments in the United States using daily water 

level and discharge data. Their study revealed that models that were calibrated on water 

levels performed well in wet catchments where the precipitation input was higher than 

the potential evapotranspiration. Seibert and Vis (2016) related this to the fact that the 

actual evapotranspiration in these catchments was close to the potential 

evapotranspiration which diminished the influence of different parameter sets on this 

term of the water balance. Our results confirmed these findings by showing acceptable 

results in a catchment with precipitation values close to potential evapotranspiration. At 

the same time, these results indicate that a more intense testing of the approach under 

different environmental conditions is needed. The hydrological behavior of different 

catchments might or might not have a further impact on the transferability of our 

approach, which we finally cannot decide based on a single catchment study. Seibert and 

Vis (2016) indicated that some volume information might improve the results for drier 

catchments and the authors stressed the need for further research on this field. In our 

study, we tested the added value of a Water-Balance-Filter on the parameter set selection 

to reduce the risk of selecting parameter sets that result in biased model calibration. 

However, we have to point out that the uncertainty of the actual evapotranspiration 

derived from the MODIS data set cannot be determined precisely since it depends on 

various local factors. Mu et al. (2011) identified uncertainties in the used algorithm input 

data (such as the daily meteorological data), inaccuracy of the measured eddy covariance 

flux tower data, the scaling from the flux tower point measurements to the landscape and 

algorithm limitations as main factors, which influence the bias between estimated and 

measured ETact. When we compared the derived ETact from MODIS with our measured 

precipitation minus the measured discharge and neglected storage changes (Senay et al. 

2011), we found an overestimation for the remotely sensed actual evapotranspiration of 

7.7%. After applying the uncertainty compensation of ±30%, the resulting Water-Balance-

Filter range falls within the measured ETact value. Consequently, our CS-SRF and Q-SRF 
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results showed that the model efficiencies improved when those parameter sets, which 

were selected as behavioral in the first step using the RSpear, were further filtered. The filter 

effectively removed model runs that resulted in a discharge overestimation. In contrast to 

that, these runs were accepted within the unfiltered RSpear-based calibration schemes (CS-

SR, Q-SR) since no volume information was considered. 

All schemes resulted in fluxes that were in line with the general process representation. 

The analysis of the individual fluxes showed that the different schemes did not change the 

general process understanding of the model. Evapotranspiration was calibrated 

differently, which resulted in more water draining into the river in the crowdsource-based 

model schemes. Having in mind that the approach should be applicable under remote 

conditions or in understudied catchments, we developed a filter that can be easily derived 

from publicly available data sources rather than aiming for a high precision of the filter 

itself. The uncertainty factor (30%) we used to define the Water-Balance-Filter based on 

the measured precipitation and remotely sensed evapotranspiration might deviate for 

other input data or catchments. We, therefore, argue that a wide range should be chosen. 

Since the filter only reduces the previously selected parameter sets but does not affect the 

calibration process itself, the filter has no negative influence on the results. Our results 

show that including such a simple filter in the a posteriori model selection process reduces 

effectively the bias that is inherent when calibrating the model using RSpear as an objective 

function.  

In general, the increasing availability of remotely sensed data brings new opportunities to 

obtain relevant water balance variables, particularly in regions where in situ monitoring 

networks are sparse (Montanari et al. 2013), although the spatial resolution is coarse and 

ground-truthing often is required. The sparse repeat cycle of satellite data hampers the 

measurement of daily or weekly changes further (Jian et al. 2017) making it impossible to 

detect or quantify short events which are typical for tropical catchments. Therefore, the 

combination of crowdsourced observations with remotely sensed data could be a way to 

support hydrological modeling in areas where no or only limited hydrometric information 

is available.  

3.4.3 The Role of Input Data and Innovative Input Data Sources 

Beside water levels, we used precipitation and temperature-based calculated 

evapotranspiration as inputs for our model. The quality and resolution of these data 
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influence the model performance. We used precipitation and temperature data from 

automatic meteorological stations, with a controlled quality to demonstrate the feasibility 

of calibrating a model using crowdsourced water levels. However, these data might not 

be available in all cases and can become an additional error source. For larger catchments, 

where the spatial resolution might be less important which can lead to smoothing effects, 

these data could be derived from remote sensing or interpolated using measurements 

from existing meteorological stations. Beyond that, it is possible that precipitation and 

temperature measurements are performed by citizen scientists. Starting in 1998 as a local 

project the CoCoraHS (the Community Collaborative Rain, Hail, and Snow network) 

became the largest provider of daily manual rainfall measurements in the United States 

with 37,500 participants and over 31 million crowdsourced daily precipitation reports 

(Reges et al. 2016). A study by Walker et al. (2016) showed that an Ethiopian community 

monitored precipitation sufficiently for 18 months resulting in a high correlation between 

the crowdsourced data and data from a national station. By using a community-based rain 

gauge network, a high spatial resolution might compensate a potentially lower data 

precision since local rain events can be captured, which cannot be detected by coarser 

professional networks (Kirchner 2006). Technical development opens the potential for new 

and alternative data collection methods which could contribute to improved availability 

of data. Overeem et al. (2013), for example, showed the possibility to estimate daily mean 

air temperatures from smartphone battery temperatures, while Messer et al. (2006) 

described a method how the signal levels of cellular networks can represent precipitation 

amounts. Gosset et al. (2016) claimed that this technique is particularly suitable for areas 

that lack precipitation measurement infrastructure including large parts in Africa. Linking 

data from different and innovative methods together may have great potential for 

hydrological modeling.  

3.4.4 Model Structure and Data Resolution 

The conceptual model used in this study involved only five parameters, which allowed a 

consistent calibration and avoided over-parameterization (Kirchner 2006). Furthermore, 

since few parameters are involved, the model can be easily applied in data scarce regions. 

However, a more complex physically based and/or spatially distributed model might have 

benefits by providing the opportunity to use observed data from various sources and 

locations and integrate them into the model approach (Starkey et al. 2017). Mazzoleni et 



Chapter 3 

66 

al. (2017) demonstrated the use of synthetically generated crowdsourced streamflow 

observations in a spatially distributed model to improve flood predictions. These authors 

showed that the temporal variability of data influenced the results less than their accuracy, 

which confirms the usefulness of crowdsourced data given that their accuracy is assured. 

However, even the resolution of the water level scale (vertical resolution) is not an 

exclusion criterion. For example, van Meerveld et al. (2017) demonstrated that the vertical 

resolution of water level measurements is less critical. These authors used a time series of 

only two stream level classes to calibrate a conceptual model successfully. These findings 

may further increase the applicability of crowdsourced data as it allows the use of data 

with reduced vertical resolution and hence reduced accuracy and temporal resolution. A 

study by Seibert et al. (2019) showed that virtual water level gauges, generated by a mobile 

application, can be used to monitor water levels in any stream without physical 

installations, which can make the approach scalable. These results indicate a promising 

way to increase the spatial coverage of crowdsourced measurements in future.  

3.4.5 Crowdsourced Versus a Discharge-Based Calibration 

The often-expressed concern that data irregularity induces problems can therewith be 

mitigated. Our study confirms this assumption since no evidence was found that data 

irregularity within the crowdsourced data affected the model performance and the model 

could be calibrated using the crowdsourced data which had a variable temporal resolution 

and measurement uncertainty. The crowdsourced-based calibration schemes led to 

comparable results as the discharge-based calibration when using the RSpear performance 

measure. The increased uncertainty is therefore mainly induced by using the RSpear and 

only marginally by the crowdsourced data itself. The crowdsourced data only led to a 

decrease of the relative performance of around 5% for both the NSE and PBIAS during 

calibration (CS-SR) in comparison to the discharge-based calibration (Q-SR). Compared to 

the NSE-based calibration (Q-NSE) the relative performance decreased by 30-35% under 

the RSpear-based schemes regardless of the model was calibrated on discharge or 

crowdsourced water level data (Q-SR and CS-SR).  

3.5 Conclusions 

Based on our results, we suggest crowdsourced monitoring approaches as an additional 

tool for water resources management, particularly in ungauged or poorly gauged 
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catchments and under limited financial ressources. Combining simple measurement 

carried out by citizen scientists with a modeling approach could be a way to improve our 

knowledge of available water resources and process understanding in catchments that 

have so far been understudied. This approach may be an alternative in places where 

observational gaps are caused by a lack of hydrometeorological gauging networks. 

However, some limitations are worth noting. Although our findings provide evidence that 

crowdsourced water levels can be used to calibrate hydrological models, the outcome also 

depends on the quality of other input data and the general catchment behavior. Our study 

area only had a few flooding events and the water balance seems to be fairly simple. 

Consequently, the observed discharge could be modeled well using a simple model 

structure. The crowdsourced data we used in this study is from outstanding quality with 

high temporal coverage and low measurement errors. Future work should, therefore, 

investigate the behavior of crowdsourced calibrated models for catchments of different 

land use and climatic conditions, test the implementation of crowdsourced climate data 

and investigate the impact of crowdsourced data of various quality.  

Based on our evidence, we provide the following answers to the research questions raised 

in section 1:  

(1) Are water levels collected by citizen scientists suitable for calibrating a rainfall-

runoff model with an uncertainty similar to the uncertainty resulting from a 

calibration with conventional data sources?  

A conceptual rainfall-runoff model can be calibrated on crowdsourced water level 

data. The combination of crowdsourced data and a rainfall-runoff-model might 

solve an often-raised critical point when using crowdsourcing in hydrology, that 

is, data irregularity. After a 1-yr calibration, the model transforms the community-

based collected data into a continuous time series. This is particularly valuable 

when one considers that only water levels were used for calibration and no 

discharge measurements had to be carried out, which would have required special 

equipment and training of the citizen scientists. The model, which was only 

calibrated against water level data, predicts the observed discharge in acceptable 

ranges, but the efficiencies were lower than the efficiencies of a model that was 

calibrated on conventional discharge data. However, the lower efficiencies are 
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mainly introduced by using the RSpear as a performance measure, which leads to an 

overestimation of the discharge.  

(2) Can the model uncertainties be reduced by using a simple to obtain Water-Balance-

Filter as an additional criterion?  

By applying a simple Water-Balance-Filter it was possible to achieve model 

efficiencies similar to those obtained from traditional calibration against 

streamflow. We used a parsimonious water balance derived from measured 

precipitation and remotely sensed evapotranspiration data, avoiding data-intense 

estimates. Similar water balances can be established in other data-sparse regions. 

Combining the filter with the rainfall-runoff model increased the model reliability. 

The filter can compensate the effect of keeping parameter sets that result in 

unrealistic high or low volumes which can occur when using the Spearman-Rank-

Correlation as an objective function. To achieve this effect, the uncertainty of the 

remotely sensed actual evapotranspiration data should not have led to values that 

are too far from the real actual evapotranspiration in the respective catchment.  
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4 Crowdsourced Water Level Monitoring in Kenya’s 

Sondu-Miriu Basin – Who is “the crowd”? 

This chapter is submitted to Frontiers in Earth Science as: 

Weeser, B., J. Gräf, N. K. Njue, P. Cerutti, M.C. Rufino, L. Breuer, and S. R. Jacobs 

Crowdsourced Water Level Monitoring in Kenya’s Sondu-Miriu Basin – Who is “the 

crowd”? Frontiers in Earth Science (under review). 

 

4.1 Introduction 

Currently, two billion people live in an environment where recurrent water stress is 

expected, hindering sustainability and limiting social and economic development (United 

Nations 2018). An increasing water demand from the growing human population will 

further exacerbate water stress, particularly in certain parts of sub-Saharan Africa (Le 

Blanc and Perez 2008). To meet this growing water demand and to allocate water 

equitably, especially in the context of climate change, improvement of water management 

practices is crucial. To develop such plans and practices, comprehensive and expensive 

monitoring approaches as well as sound data are needed. However, studies show that the 

amount of water resource monitoring networks is actually declining worldwide 

(Vörösmarty et al. 2001, Ruhi et al. 2018). Low-income countries, where improved water 

management is particularly urgent, often lack the necessary infrastructure and financial 

capacities. Despite the increased availability of low-cost sensors, remote locations, 

vandalism, and limited capacity building impede the use of advanced technical devices. 

Remote sensing approaches have become increasingly available but are still not 

operational for small catchments. Yet, appropriate monitoring and management of small 

headwater catchments is crucial to ensure water supply to local communities and 

downstream regions. 

As conventional monitoring approaches are not always adequate or feasible to implement 

in low-income countries, new ways of data collection need to be explored. Such methods 

should not rely on major investments, specialized equipment, and highly trained 
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personnel. In recent years, citizen science has increasingly been used for hydrological data 

collection (Njue et al. 2019). Participation of members of the local community in 

environmental monitoring offers the possibility to strengthen local stakeholder 

cooperation, while the data collected by the community members supports evidence-

based management decisions (Overdevest et al. 2004, Domroese and Johnson 2017). 

Additionally, community members can provide valuable local knowledge to support the 

development of management plans (Whitelaw et al. 2003, Nare et al. 2006). Numerous 

studies have shown the successful integration of citizens into, for example, water level 

monitoring (Lowry and Fienen 2013, Weeser et al. 2018, Lowry et al. 2019, Seibert et al. 

2019), precipitation measurements (Reges et al. 2016, Davids et al. 2019a) and water quality 

assessments (Toivanen et al. 2013, Breuer et al. 2015). Furthermore, Weeser et al. (2019) 

demonstrated that data collected by citizens (crowdsourcing) were valuable for 

hydrological modelling. Supported by technological developments and the growing use 

of smartphones, there is an increasing number of environmental variables that can be 

monitored by citizen scientists (Newman et al. 2012). Citizen science approaches have the 

additional advantage that they can easily be scaled and, therefore, generally have a better 

spatial coverage than conventional measurement approaches.  

Citizen science has been identified as a highly promising tool for monitoring the 

sustainable development goals (Quinlivan et al. 2020) and for sustainable development in 

low-income countries (Pocock et al. 2019). However, the success of any citizen science 

project depends on the willingness of volunteers to invest their time and knowledge 

(Parrish et al. 2018). Therefore, knowing what motivates and challenges people’s 

participation can help to design a successful citizen science project (Shirk et al. 2012). 

Furthermore, characterizing the socio-economic background of highly motivated 

participants is important to target the right people (Etter 2020). Although few studies have 

made an attempt at analyzing the motivation and methods of engagement of citizen 

scientists (e.g., Aoki et al. 2017, Rutten et al. 2017, Phillips et al. 2019, Golumbic et al. 2020), 

most of these studies have focused on western countries, where the majority of the citizen 

science-based hydrological monitoring programs have been implemented (Njue et al. 

2019). Because these findings might not apply to low-income countries due to socio-

economic and cultural differences (Hacker et al. 2017), we conducted a telephone survey 

to explore the motivation, challenges and socio-economic background of participants in a 
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citizen science water level monitoring project in the Sondu-Miriu basin, western Kenya. 

Based on this case study, we identified socio-economic characteristics of the participants 

with sustained long-term engagement in crowdsourced water monitoring. Finally, we 

identified motivations, challenges, and opportunities for improving the engagement of the 

local community in water monitoring to support sustainable water management. 

4.2 Material and Methods 

4.2.1 Study area and project background 

The Sondu-Miriu basin (3,450 km²) in western Kenya is one of the many river basins 

contributing water to Lake Victoria and the river Nile. Its headwaters lie in the Mau Forest 

Complex. With more than 40,000 ha, this is East Africa’s largest remaining tropical 

montane forest and an important ‘water tower’, providing numerous water-related 

ecosystem services, such as water storage and supply, groundwater recharge, flood 

mitigation and micro-climate regulation (Benn and Bindra 2011). Large-scale conversion 

of forest to agricultural land, particularly smallholder agriculture, and forest degradation 

have supposedly led to changes in water quality and flow (Mango et al. 2011, e.g. Defersha 

and Melesse 2012, Jacobs et al. 2017, Jacobs et al. 2018a). The Sondu-Miriu basin reaches 

from 1,400 m a.s.l. at the outlet to 2,900 m a.s.l. on the Mau Escarpment. Whereas the upper 

part of the basin receives 1,900 mm rainfall per year, the lower part is a lot drier (1,300 mm 

y−1) and regularly experiences flood events during the rainy season. In addition to the 

challenging climatic variation within the basin, sustainable water management is further 

hampered by the lack of data of sufficient quality and spatiotemporal resolution.  

To improve the data availability and coverage in the Sondu-Miriu basin, a citizen science 

water level monitoring project was implemented in 2016. Together with the local Water 

Resources Authority, 14 monitoring stations were selected and gauges restored or 

installed (Figure 22). A sign with instructions and station code was installed at each site. 

In principle, this would allow any interested citizen to participate in the project. Data was 

submitted by sending a simple text message (SMS) with the water level and the station 

code to a local phone number, provided on the sign. Messages were processed by a server 

infrastructure based on a Raspberry Pi 2 Model B developed specifically for the project 

(full details available in Weeser et al. (2018)) The participant received a response message, 
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thanking the sender for its contribution and repeating the value and site. The sending time, 

message and sender number were stored in the server. 

 

Figure 22: Map of the Sondu-Miriu basin in western Kenya, indicating the citizen science water level 

monitoring stations. Coordinates are displayed in WGS 1984. 

At the start of the project, sensitization meetings were conducted with the help of local 

administration or chairperson of the Water Resource Users Associations (WRUAs), 

depending on their presence near the station. The establishment of WRUAs was enabled 

by the Kenyan Water Act (2002) to support the implementation of water management at 

the grass root level (Omonge et al. 2020). They are considered important to reduce water 

allocation conflicts (Mutiga et al. 2010) and enhance the users’ involvement and 

participation in setting goals and implementation of water management through the 

development of subcatchment management plans (Omonge et al. 2020). Through these 
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subcatchment management plans, the WRUAs are supposed to promote sustainable and 

equitable water use, to safeguard water supply to fulfil ecological demands and basic 

human needs and to improve water quality and quantity through catchment conservation 

measures (Richards and Syallow 2018). Therefore, the WRUAs were considered as an 

essential stakeholder in the project and a good entry point to reach community members 

with an interest in environmental conservation and management. During the sensitization 

meetings, participants were informed about the importance of environmental monitoring 

and purpose of the project. Participants were also trained on how to read the water level 

gauge and how to send data to the SMS server. 

4.2.2 Telephone survey 

To obtain information about the background and motivation of the participating citizen 

scientists, standardized telephone interviews were conducted in the first week of July 

2017. We decided to use a telephone survey, since the telephone numbers of all citizen 

scientists were available from the SMS server. To overcome potential language barriers, a 

team of interns of the Water Resources Authority office in Kericho was engaged as 

enumerators, being fluent in Swahili and English, as well as one of the local languages 

(Luo or Kalenjin). The enumerators received training and conducted test calls.  

All telephone numbers from which at least one message was sent between the start of the 

citizen science water monitoring project in April 2016 and the 30th of June 2017 were 

extracted from the SMS server. The telephone members of project staff and employees of 

the Water Resources Authority were excluded, as well as numbers sending messages for 

commercial and other non-project related purposes. Each telephone number was called 

up to three times at different times and days until contact was established. If these 

attempts were unsuccessful, the person was informed via text message about the survey 

and asked to arrange a suitable time if interested to participate in the survey. No monetary 

incentive was offered for participation and each interview took about 10 minutes. 

The survey consisted of open and pre-coded questions and was structured in two blocks 

(Appendix 4-1). The first block consisted of questions to assess the motivation, possible 

obstacles and background information, like what kind of phone the participant uses and 

distance to the gauge. These questions were structured in four open and five pre-coded 

questions. In the second block, three open and two pre-coded questions were asked to 

obtain socio-economic background information. Some pre-coded questions provided the 
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possibility to give an open answer if the participant did not find an appropriate answer 

within the given possibilities. The answers of the participants were recorded on printed, 

standardized survey sheets. 

4.2.3 Data analysis 

The survey was digitized by entering all answers in Microsoft Excel. Answers from open 

questions were coded using the manifest message method (Weisberg et al. 1996), whereby 

obvious themes, messages and points were extracted from the answers and coded 

accordingly. For these questions, it was possible to have more than one answer per 

respondent. A dataset with only valid cases (i.e. survey respondents) was analyzed using 

R studio 1.2.1335. 

4.2.3.1 Engagement  

The degree of engagement of citizen scientists was assessed using two measures. Firstly, 

participants were classified according to the number of valid measurements sent to the 

SMS server between April 2016 and June 2017. A measurement was considered valid when 

the site and water level reading could be identified from the message, either by an 

algorithm implemented on the SMS server itself (Weeser et al. 2018) or through manual 

interpretation. After inspecting the dataset distribution, participants with 0 or 1, 2 to 9 or 

10 or more valid measurements were classified as low, medium and high level of 

engagement, respectively. 

As a second measure of engagement, telephone numbers from which water level 

measurements were submitted between the 1st of July 2017 and the 31st of December 2018 

were extracted from the SMS database. If a participant continued to submit measurements 

after completion of the telephone survey, the participant was classified as a long-term 

participant. 

4.2.3.2 Random forest 

We used the random forest algorithm (Breiman 2001) to classify respondents as having a 

low, medium or high level of engagement and whether they were short-term or long-term 

engaged, based on several explanatory variables. The latter included source of information 

about the project, frequency of passing the station, distance to station, type of phone, age 

class, level of education and WRUA membership. 



Chapter 4 

75 

For the two indicators of engagement (level and duration), we ran the randomForest 

function from the R package ‘randomForest’ (Breiman et al. 2018), creating 5,000 decision 

trees using sampling with replacement and testing 2 variables at each node. The function 

calculated the out-of-bag (OOB) error rate, which we used as indicator for model accuracy. 

The importance of each explanatory variable was assessed with the mean decrease in Gini 

index by exclusion of the variable, as calculated by the randomForest function. The order 

of the explanatory variables based on decreasing Gini index value represents the relative 

importance of each variable to classify the dependent variable. Only cases without missing 

data were included in the analysis. The algorithm was run 10,000 times, following a Monte 

Carlo approach, whereby the median values for OOB and the importance of the 

explanatory variables over all runs was calculated, together with the minimum and 

maximum values as a measure of uncertainty. 

4.3 Results 

4.3.1 Engagement of project participants 

Out of 155 phone numbers submitting a message (referred to as participants) between 

April 2016 and June 2017, 87 took part in the telephone survey (referred to as respondents), 

resulting in a response rate of 56%. Six respondents did not submit a valid measurement. 

For three of these, the site from which they sent the message could be identified. The 

remaining three respondents were classified to site “Unknown”, together with other 

participants sending only invalid measurements without being able to identify the 

corresponding site (n=14; Figure 23). 

Among all participants, 67% sent 0 to 1 valid message and were therefore classified as 

showing a low level of engagement (Figure 23). Nevertheless, 11 of these participants 

contributed additional measurements after June 2017, suggesting a long-term 

commitment to the project. In total, 83% of the citizen scientists showing long-term 

commitment (n=23) participated in the survey. The response rate was highest under 

participants with a high level of engagement (93%, n=14), followed by respondents with a 

medium (64%, n=23) and low level of engagement (48%, n=50). 
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Figure 23: Number of citizen scientists (n=155), classified as survey respondent (R) or non-respondent (NR) of 

the survey, (a) per site and (b) by level of engagement in the crowdsourced water monitoring project in the 

Sondu-Miriu basin, Kenya between April 2016 and June 2017. Overall engagement was assessed by total 

number of valid measurements until June 2017 (Low = 0-1, Medium = 2-9, High = 10 or more). Long-term 

engagement was assessed based on the contribution of additional measurements after June 2017. 

4.3.2 Characterization of participants 

Only 5 women participated in the survey compared to 78 men (4 respondents did not 

provide an answer), which seems representative based on female participation in 

sensitization meetings at the start of the project. During the sensitization meetings a 

briefing about the project and a short training was conducted with interested citizens and, 

where available, the WRUA members. The majority of the respondents were under 50 

years old (90%, n=76), with 34 of the respondents being 20-29 years old (Appendix 4-2). 

Three respondents did not complete any education, whereas the remaining participants 

were fairly equally distributed among primary, secondary and higher (e.g. vocational 

training, college or university degree) education. 
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The sign at the monitoring sites and sensitization meetings were the most effective 

methods to reach participants, with 69 respondents (79%) identifying these as their source 

of information. Eight out of 14 highly engaged respondents (57%) were informed through 

the sensitization meetings, whereas the majority of the respondents with a low level of 

engagement (60%) read the sign near the gauge (Figure 24). Other sources of information 

mentioned by the respondents included the Water Conservation Forum (n=1) and the 

project staff during installation of the gauges (n=1). Although only 6 of the respondents 

indicated to have been informed about the project through the Water Resources Users 

Association, 20 respondents stated they were members of the local WRUA. Of the non-

members, 26 were aware of the WRUA, 28 had not heard about WRUAs before and 13 did 

not answer the question whether they had heard about the WRUA. 

 

Figure 24: Characterization of the participants of the citizen science water monitoring project in the Sondu-

Miriu basin, Kenya, according to different engagement classes, expressed as percentage of respondents within 

each class. The duration of engagement is based on whether the respondent continued sending data after June 

2017. The level of engagement is based on the number of valid measurements contributed between April 2016 

and June 2017 (Low = 0-1, Medium = 2-9, High = 10 or more). n = number of respondents within each 

engagement class; WRUA = Water Resource Users Association. 

The observation of the water level (‘amount of water’ in the survey) was perceived most 

frequently as purpose of the water monitoring project by the respondents (n=46; Figure 

25a). This was followed by monitoring for management and conservation purposes (n=27). 

Other perceived purposes included monitoring floods, rainfall patterns and the weather 
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(n=4), to determine water quality (n=2), to warn people for disasters (n=1) and to know 

about climate change (n=1). 

When asked about their motivation for participation, the importance of water as a resource 

and the desire to assist in conservation and management of the resource was mentioned 

most frequently (n=27), followed by the willingness to volunteer or curiosity to test the 

system (n=20; Figure 25b). Fifteen respondents mentioned that they participated because 

they were triggered by the changes observed in the environment and water supply 

patterns over the years. Other reasons for participation included the expectation to be paid 

(n=2), to assist in monitoring the environment (n=1), a general concern about the 

environment (n=1) and because the respondent previously worked with project partner 

German Corporation for International Cooperation (GIZ) (n=1). 

 

Figure 25: Respondents' answers on (a) the perceived purpose of the water monitoring project and (b) their 

reason to participate as citizen scientist. n = number of responses. 

Roughly half of the respondents (n=46) estimated they lived within 1 km distance of the 

closest monitoring station, while 26 indicated they lived more than 2 km away. Those 

living closest passed by the site relatively more often, with daily visits by 24 respondents 

living <1 km from station, compared to 3 living 1-2 km away and 8 respondents living 

more than 2 km away. Normal cellphones without comprehensive mobile computing 
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functionality (n=47, 55%) were more often used to participate in the water monitoring 

project than smartphones. This was especially common among the older (≥30 years old) 

respondents (n=33 for basic phone, n=17 for smartphone). 

Based on the survey information, the highest level of engagement was found for people 

who were 30-49 years old, with a primary school education (Figure 24b). Highly engaged 

participants were also characterized by passing by the station on a daily basis, living with 

1 km of the station and being a WRUA member. These highly engaged participants mainly 

learnt about the project through the sensitization meetings. Similar socio-economic 

background characterized respondents with a long-term engagement, although WRUA 

membership was less important for this group than for highly engaged participants and 

most respondents had secondary school education (Figure 24a). A high level of 

engagement did not result in long-term commitment, with 8 out of 14 highly engaged 

respondents also showing long-term engagement. Conversely, neither did a low level of 

engagement preclude long-term commitment: 8 out of 50 respondents with a low level of 

engagement continued sending data after June 2017. 

4.3.3 Challenges and opportunities 

In total, 54 respondents (62%) indicated that they experienced no challenges when 

participating in the project. Nevertheless, 25 of these respondents said they stopped 

participating. Of the 33 respondents (38%) that did experience challenges, 16 respondents 

indicated they stopped participating. Difficult access and lack of cellphone credit (each 

n=10) were mentioned most frequently (Figure 26a). The state of the gauge (either 

damaged or because the water level was below or above the gauge; n=6) and difficulty 

with making an accurate reading due to turbulence (n=5) were also mentioned as 

challenges to sending data. Only one respondent indicated that further training was 

necessary. 

Eleven out of 25 respondents that stopped despite not experiencing challenges indicated 

to have no clear reason for stopping (Figure 26b). Absence from the area, due to, for 

example, living far from the station or temporary migration for education purposes, was 

another common reason (n=12). Other responses included a lack of communication about 

the project (n=2), loss of the phone or phone number (n=2) and having given the 

responsibility to another person (n=1). Challenges did not necessarily translate in a reason 

to stop participation. Note, for example, that out of 5 respondents mentioning lack of 
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cellphone credit as challenge, only one respondent gave this as reason for stopping. In 

general, experiencing challenges to participate was not a determinant to stop participating 

(χ²=0.012, p=0.913). 

 

Figure 26: Respondents' answers regarding (a) type of challenges experienced, classified by whether the 

respondent indicated to have stopped participating, and (b) reason stated for stopping participation, grouped by 

challenge. n = number of responses. 

The majority of the respondents indicated that more training, education and sensitization 

meetings were required to encourage more people to participate (n=58). Increased 

advertisement through, for example signs and social media was mentioned 12 times, 

whereas three respondents mentioned to encourage participation through word of mouth 

(e.g. community leaders, friends). Paying the participants was mentioned by 18 

respondents. In addition, one respondent suggested to use a toll-free number, such that 

volunteers would not spend their own cellphone credit on sending data. Two respondents 

mentioned feedback to the community as a way of keeping volunteers engaged, as well as 

activities by project leads to maintain motivation after the start of the project (n=3). Better 

targeting of communities (those living next to the river) was mentioned once, as was better 

maintenance of the gauge. 
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4.3.4 Explanatory variables 

The random forest models had a moderate explanatory power for both duration and level 

of engagement. The model for the level of engagement had a median out-of-bag error rate 

of 46.1% (range: 42.1-50.0%). This was caused by high error rates for the classes ‘Medium 

engagement’ and ‘High engagement’ (OOB error rate > 70%). Investigation of the mean 

decrease in Gini index showed that the variable ‘Phone type’ was not as important as the 

other variables. A second run without this variable yielded a lower OOB error rate 

(median: 40.3%, range: 37.7-45.5%) (Figure 27a). Especially the accuracy for the class ‘High 

engagement’ improved (median: 57.1%, range: 57.1-64.3%). Respondents in the category 

‘Low engagement’ were best predicted, with an OOB error rate of 20.9% (16.3-25.6%), but 

‘Medium engagement’ still had a high OOB error rate (70.0%; 65.0-85.0%). The algorithm 

performed better for the duration of engagement, with an OOB error rate of 26.3% (25.0-

30.3%). However, long-term engagement had an OOB error rate of 93.8% (81.3-93.8%), 

while the OBB error rate for short-term engagement was only 8.3% (6.7-13.3%). 

 

Figure 27: Performance of the random forest models to predict the level and duration of engagement of the 

participants in the citizen science water monitoring project: (a) model accuracy based on out-of-bag (OOB) error 

rate and (b) relative importance of the included variables in each model. The circles indicate the median value, 

the segments indicate the range of values across 10,000 runs. 

Based on the mean decrease in Gini index, where a higher decrease indicate a higher 

variable importance, the highest level of education was the most important variable 

determining the level of engagement, followed by the source of information about the 

project and WRUA membership (Figure 27b). The frequency of passing by a monitoring 

station, the distance to the station and the age class of the participant were less important. 

Regarding the duration of the engagement, age class, phone type and source of 

information were the most important variables. As for level of engagement, frequency of 

passing by the station as well as distance to station were the least important to determine 

the duration of engagement.  
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4.4 Discussion 

4.4.1 Who participated in monitoring water? 

The first aim of this study was to characterize the participants who are likely to be engaged 

with the project in the long-term. Identification of target groups for citizen science projects 

could increase the likelihood of success of a project (Parrish et al. 2018, Füchslin et al. 2019). 

The majority of the respondents in our study was between 30 and 50 years old. This group 

also had the largest number of long-term or highly engaged participants. This evidence 

differs from the findings of Füchslin et al. (2019), who found that older people (aged 50 

and above) showed a higher willingness to participate in citizen science projects than 

younger people in Switzerland. However, those who showed more willingness to 

participate often had more free time (e.g. retirement or part-time work) or had a higher 

proximity and trust in science (Füchslin et al. 2019). These characteristics are unlikely to 

apply to the participants in the Kenyan citizen science project, due to the rural setting 

where many people are dedicated to lifelong full-time farming activities, and many have 

relatively low education level (e.g. only 25 out 87 respondents reported having received 

education beyond secondary school).  

Younger people (<30 years old) were found to participate less (low or medium 

engagement level) or short-term, as observed in other studies (e.g. Alender 2016, Beza and 

Assen 2016, Etter 2020). Nevertheless, age class was a poor predictor for the level of 

engagement, as demonstrated by the low variable importance (decrease in Gini index) in 

the random forest model (Figure 27b). A similar distribution of participants among age 

classes for the three levels of engagement (Figure 24) makes it difficult to use this variable 

to assess the likelihood of an individual to be highly engaged. On the other hand, there 

was a clear distinction in age distribution between those who were long-term and short-

term engaged, with the majority of the long-term engaged respondents in the 30 to 49 

years age class and most of the short-term engaged respondents under 30 years. 

Due to the high gender imbalance among respondents (78 men, 5 women), we could not 

properly assess the effect of gender on participation rate. There is no clear trend on 

whether men or women are more likely to participate in citizen science projects (Phillips 

et al. 2019), and Füchslin et al. (2019) found that gender was not important in determining 

the likelihood of people to participate in a citizen science project. However, the dominance 

of male respondents in our telephone survey could reflect the gender ratio across all 
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participants in our project. Although a study in the neighboring Nyando basin indicated 

that women were the most important collectors of water in 77% of the households 

(Onyango et al. 2007) and are thus more likely to visit monitoring stations frequently, their 

participation might be limited by a generally lower education level (Republic of Kenya 

2019). Furthermore, in certain parts of the Sondu-Miriu basin phone ownership for women 

is still lower than that for men (Republic of Kenya 2019), which aligns with the overall 

gender gap in phone ownership in low-income countries (Rowntree et al. 2019). 

Furthermore, despite attempts by the Kenyan government to increase participation of 

women in water management by limiting the representation of men to two-thirds in any 

government arrangement including the Water Resource Users Associations (WRUAs), 

ensuring equal participation of men and women in barazas (community meetings 

organized by the area chief) and other events is still challenging (Ifejika Speranza and 

Bikketi 2018). Therefore, women could be less informed about projects such as our water 

level monitoring. The high importance of the variable ‘Source of information about the 

project’ for both level and duration of engagement and the majority of the highly 

motivated respondents having been informed through sensitization meetings, indicates 

that targeted communication could be an important entry point to sustain participation. 

The highest completed level of education was also found to be an important characteristic 

to determine the level and duration of engagement. Unlike citizen science projects in India 

(Johnson et al. 2014) and the USA (Domroese and Johnson 2017), where the majority of the 

participants completed education beyond secondary school, respondents with a higher 

level of education in our study showed less long-term engagement and sent fewer data. A 

medium to high level of engagement was mainly found under respondents that had only 

completed primary school, whereas those educated up to secondary school level were 

more likely to be a long-term participant. As there are few job opportunities in rural areas 

in Africa, people with higher education diplomas likely move to towns and cities 

(Ginsburg et al. 2016), and are thus unable to contribute frequently or long-term to a citizen 

science project in their rural home. 

Finally, distance to the station did not determine the level and duration of engagement of 

the citizen scientists as those living closest to the monitoring stations made up the highest 

number of respondents in each engagement class. Furthermore, distance to site and 

frequency of passing by both had a low importance (low decrease in the Gini index) in the 
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random forest model for both indicators of engagement. Nevertheless, the majority of the 

respondents who were highly or long-term engaged visited the station on a daily basis, 

suggesting that targeting those people who live closest to the station could help to ensure 

a good pool of volunteers. 

4.4.2 Why do citizens participate? 

Knowing the socio-economic characteristic of highly motivated citizen scientists is not 

sufficient for successful engagement of community members in research or data collection. 

Adapting the rationale of a project to what motivates potential participants could ensure 

long-term participation. Following the framework of Batson et al. (2002) to classify 

motivations for community engagement, the majority of the respondents in our survey 

indicated altruistic and collectivistic motivations. The respondents hoped to contribute to 

water management and conservation from the viewpoint that water is an important 

resource for all and a concern triggered by changes in the environment (e.g. changing 

rainfall patterns).  

Although citizen involvement in such projects is often seen as form of community 

empowerment (Aoki et al. 2017), none of the respondents indicated that they expected to 

actively participate in water management. Poor knowledge and information sharing on 

how communities can contribute to local water management, as enforced through the 

establishment of WRUAs could contribute to the lack of motivation to take action. For 

example, one third of the participants indicated not to be aware of the existence of WRUAs 

and thus of their roles and responsibilities. In addition, when asked what the purpose of 

sending water level data was, less than half of the respondents indicated purposes such as 

informing water management, conservation and flood prediction. Improved awareness 

about the relevance of monitoring the water and increased involvement of WRUAs in this 

process could help to increase the motivation to participate, as it will be clearer what the 

overall benefit of this collective action is. 

Concern about the amount or quality of the water, as well as environmental changes over 

time seemed to have triggered the majority of participants to take part. This concern about 

the environment and altruistic behavior of participants was also found in nature 

conservation and water monitoring projects (Johnson et al. 2014, Alender 2016, Phillips et 

al. 2019). In the context of our project, this could also be considered self-interest, because 

the participant could eventually also benefit from improved water management leading 
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to better access to clean water. Unlike other studies, where an interest to contribute to 

science was found to be an important motivation for participation (e.g. Füchslin et al. 2019, 

Vries et al. 2019), none of the respondents mentioned this. Also, motivations related to 

principlism, i.e. the upholding of some moral principle (Batson et al. 2002), were not 

mentioned. Etter (2020) found that such motivations were more relevant in a nature 

monitoring project than in a water level measurement project, highlighting that the subject 

and type of citizen science project also plays a role in the motivation of people to 

participate. 

Fewer respondents mentioned self-interest motivations such as wanting to learn more 

about the water resources. Etter (2020) argues that learning is not as relevant in water 

monitoring projects, as there is less to learn from simply submitting water level data 

compared to, for example, identification of plants and animals. Furthermore, Aoki et al. 

(2017) found that participation out of concern for their own environment, which applies 

to the majority of the participants in our study, was a more important motivation in an air 

pollution project in the USA than the wish to learn about the environment. Nevertheless, 

people might expect to learn something from participating and the failure to fulfil this 

expectation might lead to low and short-term engagement of citizen scientists.  

4.4.3 Why do participants withdraw? 

Although the citizen science water monitoring project in the Sondu-Miriu basin managed 

to engage 155 people, only few of these participants were very active and kept on sending 

data for multiple years. Having a smaller group of very active contributors is not unusual 

in such projects (e.g. Domroese and Johnson 2017, Etter 2020), but tackling the challenges 

encountered by those who stop participating could boost the feasibility of sustainable 

citizen science-based data collection. Although citizens are able to participate and collect 

relevant data, they are not always motivated. Aoki et al. (2017) indicate that experiencing 

personal consequences from the environmental problem that is addressed by the project 

is more likely to motivate people than a more general environmental concern. Also 

intrinsic motivation, such as having an interest in the topic or willingness to learn, and the 

fulfilment of that expectation are very important for long-term commitment (Deci and 

Ryan 2000). Nevertheless, in our study, none of the motivations indicated by the 

respondents were characteristic for high or long-term engagement. 
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Awareness raising seemed to be important for long-term engagement of the participants 

in our project, as well as elsewhere (Hobbs and White 2012). The majority of the highly 

motivated and long-term engaged respondents in our study indicated they heard about 

the project through organized sensitization meetings. Although word of mouth is seen as 

an effective means to reach a wider audience (Johnson et al. 2014), only few respondents 

who were informed about the project by friends kept engaged for a long time. This 

suggests that simply knowing about the project and perhaps contributing a few messages 

is not sufficient to motivate volunteers long-term. The same applied to those who were 

informed through the instructional sign at the station, with 75% of this group of 

respondents sending only one message. Although the sign indicated that submitting water 

level information could help the community (“Support your community and take care of 

your water!”), the relevance was probably not clear enough to motivate people to continue 

sending data (Pocock et al. 2019). More than half of the respondents recommended more 

sensitization meetings even though no in-kind or monetary contribution was offered for 

participation. Additionally, they mentioned project feedback to participants and other 

project-related activities to encourage participation, which is a clear indication that active 

and continued communication with the volunteers is essential for a long-term project. 

The relative simplicity of the measurement did not seem to form a barrier for long-term 

participation (Aoki et al. 2017). Although illiteracy could hinder participation, only one 

respondent indicated that further training was required. However, numerous respondents 

mentioned that readability of the gauge, vandalism and accuracy of the reading due to 

turbulence hindered participation (n=14) and three respondents mentioned these as 

reasons for stopping to participate. These respondents mainly fell in the low level of 

engagement class, suggesting that improved gauge maintenance could remove a barrier 

for long-term participation. On the other hand, 7 out of 20 medium or highly engaged 

respondents that experienced challenges mentioned lack of cellphone credit, although 

only three of these stopped participating for different reasons. The use of a toll-free 

number to submit measurements could address this challenge, as participants would not 

have to spend their own cellphone credit. At 1 KES (~ 0.01 USD) per message, this might 

be a barrier for participation by people from socio-economic deprived groups (Hobbs and 

White 2012). 



Chapter 4 

87 

A common reason for limited engagement of citizen scientist is a mismatch between data 

collection and the expectations that citizens have (Aoki et al. 2017, Etter 2020). Two 

respondents mentioned the expectation to be paid as a reason to participate, whereas four 

medium and highly engaged respondents indicated they stopped participating because 

they did not get paid. Furthermore, 18 respondents indicated that the project would be 

more successful if the volunteers would get paid, which goes against the principles of 

citizen science, whereby citizens voluntarily (i.e. without in-kind or monetary reward) 

participate in scientific activities. In addition to the expectation to be paid, participants 

might have gotten discouraged by the lack of other direct benefits. Those who hoped the 

project would lead to changes in the short-term, did not experience any change in water 

quality or supply as a consequence of improved management since the start of the project. 

Again, targeted and relevant communication could play a role here, as numerous studies 

found that citizen scientists appreciated communication of project findings more than 

receiving appreciation or recognition for their contribution (Alender 2016, Vries et al. 2019, 

Golumbic et al. 2020). Regular feedback through meetings or social media could keep 

participants updated about the impact of their contributions and help them to see why 

continuing sending data is important. This is supported by the feedback by some 

respondents who indicated that more motivation from authorities could help to increase 

participation in the citizen science project. WRUAs could play a big role in this, as they are 

most likely better embedded in local communities than high level authorities or 

international project staff. Also accessibility to the collected data is a good way to keep 

citizen scientists engaged (Vries et al. 2019). However, this is challenging in a setting 

whereby only few people have access to internet and in the absence of a suitable 

infrastructure (e.g. WRUA offices where data could be accessed). Nevertheless, a user-

friendly platform to share data and inform participants could enhance the success of a 

citizen science project (Golumbic et al. 2020). Also showing appreciation through ‘Thank 

you’ messages, as was implemented in our project, could help citizen scientists to stay 

committed (Lowry et al. 2019, Vries et al. 2019). 

4.5 Recommendations 

Previous studies have shown that water level monitoring of sufficient spatial and temporal 

resolution can be achieved through citizen involvement, also in rural areas and low-

income countries (Weeser et al. 2018, Weeser et al. 2019). In our study, we show that there 
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are highly and long-term engaged citizens that are willing to participate, but there are still 

challenges to overcome. Long-term water level monitoring through citizen involvement 

does not necessarily require a few highly engaged citizens. A larger number of short-term 

participants or people with a low level of engagement could also make a valuable 

contribution. This is facilitated by the simplicity of the data collection method used in the 

project in the Sondu-Miriu basin and the fact that nothing but a simple mobile phone is 

required, especially since smartphone ownership in East Africa is still limited (Pocock et 

al. 2019). A toll-free number or reimbursement of cellphone credit used to submit data 

could lower the barrier for participation even further, and at the same time address some 

of the challenges mentioned by the respondents. 

Based on the results of this study, sensitization meetings are a powerful means to reach 

out to the community and engage motivated volunteers. These meetings should be aimed 

at community members that frequently visit the site and are unlikely to move away for 

jobs or education. Those who depend on the river as source of water for domestic use or 

other activities (e.g. watering livestock) are also more likely to be concerned about their 

resource and have a higher incentive to participate. Specific targeting of WRUA members 

as existing community of people with an interest in water management is useful as well, 

as the project could address their needs (Golumbic et al. 2020). In general, active 

involvement of WRUAs in engaging volunteers and communicating results back to their 

members could increase the number of highly engaged volunteers. This requires 

recognition by the local and national water management authorities, who are there to 

support the WRUAs, as the establishment of WRUAs and development of subcatchment 

management plans is still in its infancy in many parts of Kenya. Embedding low-cost 

participatory approaches in water management practices can also empower the WRUAs, 

as it would give them a means to collect and access data which can help in the 

development of their subcatchment management plans. This would add a clear aim and 

benefit to all community members who depend on the local water resources, increase the 

awareness of the relevance of monitoring and thus motivate people to participate.  
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Appendix 4-1 Survey Sheet 

Basic Data 

Telephone number: Station: 

Introduction 

 

How were you informed about the project? 

 I participated in a sensitization meeting 

 I read the sign nearby the bridge 

 A friend informed me about 

 The local administration informed me about the project 

 A WRUA informed me about this project 

 Other answer: 

Why have you decided to participate? 

 

 

 

 

 

What do you think is the purpose of the data you send? 

 For prediction of floods and droughts 

 For observing the amount of water in the river 

 Other answer: 

Do you still send data? If not, why have you stopped sending data? 
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How often do you pass by the water level gauge? 

 Every day 

 Once a week 

 Once a  

 Other answer: 

How far is the water level gauge from your home? 

 I live nearby the gauge 

 < 1 km 

 < 2 km 

 > 2 km 

Do you use a smartphone or a normal phone? 

 Smartphone 

 Normal phone 

Did you face any challenges? 

 

What would you recommend that should be done to encourge more people to participate? 

 

Thank you very much for your feedback. Now we would like to ask you some domegraphic data. 

 

What is your age? 

 

What is your education level? 
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What is your gender? 

 male 

 female 

Are you a WRUA member? 

 yes 

 no 

If not, have you heard about WRUAs before? 
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Appendix 4-2 

Number of respondents in each engagement class for different explanatory variables. The 

duration of engagement is based on whether the respondent continued sending data after 

June 2017. The level of engagement is based on the number of valid measurements 

contributed between April 2016 and June 2017 (Low = 0–1, Medium = 2–9, High = 10 or 

more). The contribution on measurements after June 2017 was seen as an indicator for 

long-term engagement. 

 
 Level of engagement 

Duration of 

engagement 
 

Variable 
Class Low Medium High 

Short-

term 

Long-

term 
Total 

Informed about 

project 

Sensitization 

meeting 
11 9 8 21 7 28 

Sign near gauge 31 8 2 34 7 41 

Friend 4 5 1 8 2 10 

WRUA 3 0 3 3 3 6 

Other 1 1 0 2 0 2 

Passing by station 

 

Daily 17 9 9 26 9 35 

Weekly 21 9 4 27 7 34 

Monthly or less 11 3 1 13 2 15 

No answer  1 2 0 2 1 3 

Distance to station 

 

<1 km 24 15 7 36 10 46 

1–2 km 6 6 2 12 2 14 

>2 km 19 2 5 20 6 26 

No answer 1 0 0 0 1 1 

Type of phone 

 

Basic phone 22 14 11 31 16 47 

Smartphone 27 9 2 36 2 38 

Both 0 0 1 0 1 1 

No answer 1 0 0 1 0 1 

Age group 18–29 18 14 2 31 3 34 
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 30–49 24 8 10 28 14 42 

≥50  7 1 2 8 2 10 

No answer 1 0 0 1 0 1 

Highest completed 

level of education 

 

None 3 0 0 2 1 3 

Primary 6 10 9 19 6 25 

Secondary 19 5 5 20 9 29 

Higher 18 7 0 23 2 25 

No answer 4 1 0 4 1 5 

WRUA 

membership 

 

Yes 9 4 7 15 1 20 

No, but aware 16 7 3 20 6 26 

No, not aware 14 10 4 22 6 28 

No, no answer 11 2 0 11 2 13 
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